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Preface

Knowledge Representation is the field of Artificial Intelligence that focuses on
the design of formalisms that are both epistemologically and computationally ad-
equate for expressing knowledge about a particular domain. One of the main lines
of investigation has been concerned with the principle that knowledge should be
represented by characterizing classes of objects and the relationships between them
The organization of the classes used to describe a domain of interest is based on a
hierarchical structure, which not only provides an effective and compact represen-
tation of information, but also allows the relevant reasoning tasks to be performed
in a computationally effective way.

The above principle drove the development of the first frame-based systems and
semantic networks in the 1970s. However, these systems were in general not for-
mally defined and the associated reasoning tools were strongly dependent on the
implementation strategies. A fundamental step towards a logic-based characteriza-
tion of required formalisms was accomplished through the work on the Kl-One
system, which collected many of the ideas stemming from earlier semantic net-
works and frame-based systems, and provided a logical basis for interpreting ob-
jects, classes (or concepts), and relationships (or links, roles) between them. The
first goal of such a logical reconstruction was the precise characterization of the
set of constructs used to build class and link expressions. The second goal was to
provide reasoning procedures that are sound and complete with respect to the se-
mantics. The article ‘The tractability of subsumption in Frame-Based Description
Languages’ by Ron Brachman and Hector Levesque, presented at AAAI 1984,
addressing the tradeoff between the expressiveness of Kl-One like languages and
the computational complexity of reasoning, is usually regarded as the origin of
research on Description Logics.

Subsequent research came under the label terminological systems to emphasize
the fact that classes and relationships were used to establish the basic terminology
adopted in the modeled domain. Still later, the emphasis was on the set of concept

xiii



xiv Preface

forming constructs admitted in the language, giving rise to the name concept lan-
guages. Recently, attention has moved closer to the properties of the underlying
logical systems, and the term Description Logics has become popular.

Research on Description Logics has covered theoretical aspects, implementation
of knowledge representation systems (modern frame-based systems) and the use of
such systems to realize applications in several areas. This pattern of development
is an example of one of the standard research methodologies, as is recognized by
the Artificial Intelligence community. The key element has been the very close
interaction between theory and practice. On the one hand, there are various im-
plemented systems based on Description Logics, offering a palette of description
formalisms with differing expressive power, and which are employed in various
application domains (such as natural language processing, configuration of tech-
nical systems, databases). On the other hand, the formal and computational prop-
erties (like decidability, complexity) of various description formalisms have been
studied in detail. These investigations are usually motivated by the use of certain
constructors in systems or the need for these constructors in specific applications,
and the results of such investigations have strongly influenced the design of new
systems.

The Description Logics research community currently consists of at least 100
active researchers. In addition, other communities are now becoming interested in
Description Logics, most notably the Databases community and, more recently,
the Semantic Web one. After more than a decade of research on Description Log-
ics there is a substantial body of work and well-established technical literature.
However, there is no comprehensive presentation of the major achievements in the
field, although survey papers have been published and workshop proceedings are
available.

Now, since 1989 a workshop dedicated to Description Logics has been held,
initially every two years but annually from 1994. At the 1997 workshop a Working
Group was formed to develop a proposal for a book that would provide a system-
atic introduction to Description Logics, covering all aspects of the research in the
field, namely: theory, implementation, and applications. Following the spirit that
fostered this research, the Description Logic Handbook would provide a thorough
introduction to Description Logics both for the more theoretically oriented reader
interested in the formal study of Description Logics and for the more practically
oriented reader aiming at a principled usage of knowledge representation systems
based on Description Logics. Although some refinements have been made to the
initial proposal to embody recent developments in the field, the final structure of
the Handbook reflects the original intentions.

The Handbook is organized into three parts plus an initial chapter providing a
general introduction to the field.
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Part I addresses the theoretical work in Description Logics and includes five
chapters. Chapter 2 introduces Description Logics as a formal language for repre-
senting knowledge and reasoning about it. Chapter 3 addresses the computational
complexity of reasoning in several Description Logics. Chapter 4 explores the re-
lationship with other representation formalisms, within and outside the field of
Knowledge Representation. Chapter 5 covers extensions of the basic Description
Logics introduced in Chapter 2 by very expressive constructs that require advanced
reasoning techniques.

Chapter 6 considers extensions of Description Logics by representation features
and non-standard inference problems not available in the basic framework.

Part II is concerned with the implementation of knowledge representation sys-
tems based on Description Logics. Chapter 7 describes the features that need to be
provided, in addition to the inference engine for a particular Description Logic, to
build a knowledge representation system. Chapter 8 reviews implemented knowl-
edge representation systems based on Description Logics that have played or play
an important role in the field. Chapter 9 describes the implementation of the reason-
ing services which form the core of Description Logic knowledge representation
systems.

Part III addresses the deployment of Description Logics in the design and im-
plementation of fielded applications. Chapter 10 discusses the issues involved in
the development of an ontology for some universe of discourse, which is to be-
come a conceptual model or knowledge base represented and reasoned with using
Description Logics. Chapter 11 presents applications of Description Logics in the
area of software engineering. Chapter 12 introduces the problem of configura-
tion and the largest and longest lived family of Description Logic-based config-
urators. Chapter 13 is concerned with the use of Description logics in various
kinds of applications in medical informatics—terminology, intelligent user inter-
faces, decision support and semantic indexing, language technology, and systems
integration. Chapter 14 reviews the applications of Description Logics in web-
based information systems, and the more recent developments related to languages
for the Semantic Web. Chapter 15 analyzes the uses of Description Logics for
natural language processing to encode syntactic, semantic, and pragmatic ele-
ments needed to drive semantic interpretation and natural language generation
processes. Chapter 16 surveys the major classes of application of Description
Logics and their reasoning facilities to the issues of data management, includ-
ing the expression of the conceptual domain model/ontology of the data source,
the integration of multiple data sources, and the formulation and evaluation of
queries.

The syntax and semantics for Description Logics is summarized in an Appendix,
which has been used as a reference to unify the notation throughout the book.
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Finally, an extended, integrated bibliography is provided and, within each chapter,
comprehensive guides through the relevant literature are given.

The chapters are written by some of the most prominent researchers in the field,
introducing the basic technical material before taking the reader to the current
state of the subject. The chapters have been reviewed in a two step process, which
involved two or three reviewers for each chapter. We have relied on the work of
several external reviewers, selected both within the Description Logic community,
and outside the field, to increase the readability for non experts. In addition, each
chapter has been read also by authors of other chapters, to improve the overall
coherence.

As such, the book is conceived as a unique reference for the subject. Although
not intended as a textbook, the Handbook can be used as a basis for specialized
courses on Description Logics. In addition, some of the chapters can be used as
teaching material in Knowledge Representation courses. The Handbook is also a
comprehensive reference to the subject in more introductory courses in the field of
Artificial Intelligence.

We want to acknowledge the contribution and help of several people. First of all,
the authors, who have successfully accomplished the hardest task of writing the
chapters, carefully addressing the reviewers’ comments as well as the issues raised
by the effort in making the presentation and notation uniform. Second, we thank
the reviewers for their precious work, which led to significant improvements in the
final outcome. The external reviewers were:

Premkumar T. Devanbu,
Peter L. Elkin,
Jerome Euzenat,
Erich Grädel,
Michael Gruninger,
Frank van Harmelen,
Jana Koehler,
Diane Litman,
Robert M. MacGregor,
Amedeo Napoli,
Hans-Jürgen Ohlbach,
Marie-Christine Rousset,
Nestor Rychtyckyj,
Renate Schmidt,
James G. Schmolze,
Roberto Sebastiani,
Michael Uschold,
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Moshe Y. Vardi,
Grant Weddell,
Robert A. Weida.

A special thank you goes also to Christopher A. Welty who, besides serving as a
reviewer, also coordinated the reviewing process for some of the chapters. Third,
we express our gratitude to the Description Logics community as a whole (see also
the Description Logics homepage at http://dl.kr.org/) for the outstanding
research achievements and for applying the pressure that enabled us to complete
the Handbook. Finally, we are indebted to Cambridge University Press, and, in
particular, to David Tranah, for giving us the opportunity to put the Handbook
together and for the excellent support in the editing process.

The publisher has used its best endeavours to ensure that the URLs for external
websites referred to in this book are correct and active at the time of going to press.
However, the publisher has no responsibility for the websites and can make no
guarantee that a site will remain live or that the content is or will remain appropriate.





1

An Introduction to Description Logics

DANIELE NARDI
RONALD J. BRACHMAN

Abstract

This introduction presents the main motivations for the development of Description
Logics (DLs) as a formalism for representing knowledge, as well as some important
basic notions underlying all systems that have been created in the DL tradition. In
addition, we provide the reader with an overview of the entire book and some
guidelines for reading it.

We first address the relationship between Description Logics and earlier seman-
tic network and frame systems, which represent the original heritage of the field.
We delve into some of the key problems encountered with the older efforts. Sub-
sequently, we introduce the basic features of DL languages and related reasoning
techniques.

DL languages are then viewed as the core of knowledge representation systems,
considering both the structure of a DL knowledge base and its associated reasoning
services. The development of some implemented knowledge representation systems
based on Description Logics and the first applications built with such systems are
then reviewed.

Finally, we address the relationship of Description Logics to other fields of Com-
puter Science.We also discuss some extensions of the basic representation language
machinery; these include features proposed for incorporation in the formalism that
originally arose in implemented systems, and features proposed to cope with the
needs of certain application domains.

1.1 Introduction

Research in the field of knowledge representation and reasoning is usually focused
onmethods for providing high-level descriptions of theworld that can be effectively
used to build intelligent applications. In this context, “intelligent” refers to the ability

1



2 D. Nardi and R. J. Brachman

of a system to find implicit consequences of its explicitly represented knowledge.
Such systems are therefore characterized as knowledge-based systems.

Approaches to knowledge representation developed in the 1970s – when the field
enjoyed great popularity – are sometimes divided roughly into two categories: logic-
based formalisms,which evolved out of the intuition that predicate calculus could be
used unambiguously to capture facts about the world; and other, non-logic-based
representations. The latter were often developed by building on more cognitive
notions – for example, network structures and rule-based representations derived
from experiments on recall from human memory and human execution of tasks like
mathematical puzzle solving. Even though such approaches were often developed
for specific representational chores, the resulting formalisms were usually expected
to serve in general use. In other words, the non-logical systems created from very
specific lines of thinking (e.g., early production systems) evolved to be treated
as general-purpose tools, expected to be applicable in different domains and to
different types of problems.

On the other hand, since first-order logic provides very powerful and general ma-
chinery, logic-based approachesweremore general-purpose from the very start. In a
logic-based approach, the representation language is usually a variant of first-order
predicate calculus, and reasoning amounts to verifying logical consequence. In the
non-logical approaches, often based on the use of graphical interfaces, knowledge is
represented bymeans of some ad hoc data structures, and reasoning is accomplished
by similarly ad hoc procedures that manipulate the structures. Among these spe-
cialized representations we find semantic networks and frames. Semantic networks
were developed after the work of Quillian [1967], with the goal of characterizing by
means of network-shaped cognitive structures the knowledge and the reasoning of
the system. Similar goals were shared by later frame systems [Minsky, 1981], which
rely on the notion of a “frame” as a prototype and on the capability of expressing
relationships between frames. Although there are significant differences between
semantic networks and frames, both in their motivating cognitive intuitions and in
their features, they have a strong common basis. In fact, they can both be regarded
as network structures, where the structure of the network aims at representing sets
of individuals and their relationships. Consequently, we use the term network-based
structures to refer to the representation networks underlying semantic networks and
frames (see [Lehmann, 1992] for a collection of papers concerning various families
of network-based structures).

Owing to their more human-centered origins, the network-based systems were
often considered more appealing and more effective from a practical viewpoint
than the logical systems. Unfortunately, they were not fully satisfactory, because
of their usual lack of precise semantic characterization. The end result of this
was that every system behaved differently from the others, in many cases despite
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virtually identical-looking components and even identical relationship names. The
question then arose as to how to provide semantics to representation structures,
in particular to semantic networks and frames, which carried the intuition that, by
exploiting the notion of hierarchical structure, one could gain both in terms of ease
of representation and in terms of the efficiency of reasoning.

One important step in this direction was the recognition that frames (at least their
core features) could be given a semantics by relying on first-order logic [Hayes,
1979]. The basic elements of the representation are characterized as unary pred-
icates, denoting sets of individuals, and binary predicates, denoting relationships
between individuals. However, such a characterization does not capture the con-
straints of semantic networks and frames with respect to logic. Indeed, although
logic is the natural basis for specifying a meaning for these structures, it turns out
that frames and semantic networks (for the most part) did not require all the ma-
chinery of first-order logic, but could be regarded as fragments of it [Brachman
and Levesque, 1985]. In addition, different features of the representation language
would lead to different fragments of first-order logic. The most important conse-
quence of this fact is the recognition that the typical forms of reasoning used in
structure-based representations could be accomplished by specialized reasoning
techniques, without necessarily requiring first-order logic theorem provers. More-
over, reasoning in different fragments of first-order logic leads to computational
problems of differing complexity.

Subsequent to this realization, research in the area of Description Logics began
under the label terminological systems, to emphasize that the representation lan-
guage was used to establish the basic terminology adopted in the modeled domain.
Later, the emphasis was on the set of concept-forming constructs admitted in the
language, giving rise to the name concept languages. In more recent years, after at-
tention was further moved towards the properties of the underlying logical systems,
the term Description Logics became popular.

In this book we mainly use the term “Description Logics” for the representation
systems, but often use the word “concept” to refer to the expressions of a DL
language, denoting sets of individuals, and the word “terminology” to denote a
(hierarchical) structure built to provide an intensional representation of the domain
of interest.

Research on Description Logics has covered theoretical underpinnings as well as
implementation of knowledge representation systems and the development of ap-
plications in several areas. This kind of development has been quite successful. The
key element has been themethodology of research, based on a very close interaction
between theory and practice. On the one hand, there are various implemented sys-
tems based on Description Logics, which offer a palette of description formalisms
with differing expressive power, and which are employed in various application
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domains (such as natural language processing, configuration of technical products,
or databases). On the other hand, the formal and computational properties of rea-
soning (like decidability and complexity) of various description formalisms have
been investigated in detail. The investigations are usually motivated by the use of
certain constructors in implemented systems or by the need for these construc-
tors in specific applications – and the results have influenced the design of new
systems.

This book is meant to provide a thorough introduction to Description Logics,
covering all the above-mentioned aspects of DL research – namely theory, imple-
mentation, and applications. Consequently, the book is divided into three parts:

� Part I introduces the theoretical foundations of Description Logics, addressing some of
the most recent developments in theoretical research in the area;

� Part II focuses on the implementation of knowledge representation systems based on
Description Logics, describing the basic functionality of a DL system, surveying the
most influential knowledge representation systems based on Description Logics, and
addressing specialized implementation techniques;

� Part III addresses the use of Description Logics and of DL-based systems in the design
of several applications of practical interest.

In the remainder of this introductory chapter, we review the main steps in the
development of Description Logics, and introduce the main issues that are dealt
with later in the book, providing pointers for its reading. In particular, in the next
section we address the origins of Description Logics and thenwe review knowledge
representation systems based on Description Logics, the main applications devel-
oped with Description Logics, the main extensions to the basic DL framework, and
relationships with other fields of Computer Science.

1.2 From networks to Description Logics

In this sectionwebegin by recalling approaches to representingknowledge thatwere
developed before research on Description Logics began (i.e., semantic networks
and frames).We then provide a very brief introduction to the basic elements of these
approaches, based on Tarski-style semantics. Finally, we discuss the importance of
computational analyses of the reasoningmethods developed forDescriptionLogics,
a major ingredient of research in this field.

1.2.1 Network-based representation structures

In order to provide some intuition about the ideas behind representations of knowl-
edge in network form, we here speak in terms of a generic network, avoiding
references to any particular system. The elements of a network are nodes and links.
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v/r
hasChild

Female

Mother

Woman

(1,NIL)

Person

Parent

Fig. 1.1. An example network.

Typically, nodes are used to characterize concepts, i.e., sets or classes of individ-
ual objects, and links are used to characterize relationships among them. In some
cases, more complex relationships are themselves represented as nodes; these are
carefully distinguished from nodes representing concepts. In addition, concepts can
have simple properties, often called attributes, which are typically attached to the
corresponding nodes. Finally, in many of the early networks both individual objects
and concepts were represented by nodes. Here, however, we restrict our attention
to knowledge about concepts and their relationships, deferring for now treatment
of knowledge about specific individuals.

Let us consider a simple example, whose pictorial representation is given in
Figure 1.1, which represents knowledge concerning persons, parents, children, etc.
The structure in the figure is also referred to as a terminology, and it is indeedmeant
to represent the generality or specificity of the concepts involved. For example the
link betweenMother and Parent says that “mothers are parents”; this is sometimes
called an “IS-A” relationship.

The IS-A relationship defines a hierarchy over the concepts and provides the
basis for the “inheritance of properties”: when a concept is more specific than some
other concept, it inherits the properties of the more general one. For example, if a
person has an age, then a woman has an age, too. This is the typical setting of the
so-called (monotonic) inheritance networks (see [Brachman, 1979]).

A characteristic feature of Description Logics is their ability to represent other
kinds of relationships that can hold between concepts, beyond IS-A relationships.
For example, in Figure 1.1, which follows the notation of [Brachman and Schmolze,
1985], the concept ofParent has a property that is usually called a “role”, expressed
by a link from the concept to a node for the role labeled hasChild. The role has what
is called a “value restriction”, denoted by the label v/r, which expresses a limitation
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on the range of types of objects that can fill that role. In addition, the node has a
number restriction expressed as (1,NIL), where the first number is a lower bound
on the number of children and the second element is the upper bound, and NIL
denotes infinity. Overall, the representation of the concept of Parent here can be
read as “A parent is a person having at least one child, and all of his/her children
are persons.”

Relationships of this kind are inherited from concepts to their subconcepts. For
example, the conceptMother, i.e., a female parent, is a more specific descendant of
both the concepts Female and Parent, and as a result inherits from Parent the link
to Person through the role hasChild; in other words,Mother inherits the restriction
on its hasChild role from Parent.

Observe that there may be implicit relationships between concepts. For example,
if we define Woman as the concept of a female person, it is the case that every
Mother is a Woman. It is the task of the knowledge representation system to
find implicit relationships such as these (many are more complex than this one).
Typically, such inferences have been characterized in terms of properties of the
network. In this case onemight observe that bothMother andWoman are connected
to both Female and Person, but the path from Mother to Person includes a node
Parent, which is more specific then Person, thus enabling us to conclude that
Mother is more specific than Person.

However, the more complex the relationships established among concepts, the
more difficult it becomes to give a precise characterization of what kind of rela-
tionships can be computed, and how this can be done without failing to recognize
some of the relationships or without providing wrong answers.

1.2.2 A logical account of network-based representation structures

Building on the above ideas, a number of systems were implemented and used in
many kinds of applications. As a result, the need emerged for a precise characteri-
zation of the meaning of the structures used in the representations and of the set of
inferences that could be drawn from those structures.

A precise characterization of the meaning of a network can be given by defining
a language for the elements of the structure and by providing an interpretation for
the strings of that language.While the syntax may have different flavors in different
settings, the semantics is typically given as a Tarski-style semantics.

For the syntax we introduce a kind of abstract language, which resembles other
logical formalisms. The basic step of the construction is provided by two disjoint
alphabets of symbols that are used to denote atomic concepts, designated by unary
predicate symbols, and atomic roles, designated by binary predicate symbols; the
latter are used to express relationships between concepts.
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Terms are then built from the basic symbols using several kinds of constructors.
For example, intersection of concepts, which is denoted C � D, is used to restrict
the set of individuals under consideration to those that belong to both C and D.
Notice that, in the syntax of Description Logics, concept expressions are variable-
free. In fact, a concept expression denotes the set of all individuals satisfying the
properties specified in the expression. Therefore,C � D can be regarded as the first-
order logic sentence, C(x) ∧ D(x), where the variable ranges over all individuals
in the interpretation domain and C(x) is true for those individuals that belong to
the concept C .

In this book, we will present other syntactic notations that are more closely
related to the concrete syntax adopted by implemented DL systems, and which are
more suitable for the development of applications. One example of concrete syntax
proposed in [Patel-Schneider and Swartout, 1993] is based on a Lisp-like notation,
where the concept of female persons, for example, is denoted by (and Person

Female).
The key characteristic features of Description Logics reside in the constructs for

establishing relationships between concepts. The basic ones are value restrictions.
For example, a value restriction, written ∀R.C , requires that all the individuals that
are in the relationship R with the concept being described belong to the concept
C (technically, it is all individuals that are in the relationship R with an individual
described by the concept in question that are themselves describable as C’s).

As for the semantics, concepts are given a set-theoretic interpretation: a concept
is interpreted as a set of individuals, and roles are interpreted as sets of pairs of
individuals. The domain of interpretation can be chosen arbitrarily, and it can be
infinite. The non-finiteness of the domain and the open-world assumption are dis-
tinguishing features of Description Logics with respect to the modeling languages
developed in the study of databases (see Chapters 4 and 16).

Atomic concepts are thus interpreted as subsets of the intepretation domain,
while the semantics of the other constructs is then specified by defining the set of
individuals denoted by each construct. For example, the concept C � D is the set
of individuals obtained by intersecting the sets of individuals denoted by C and D,
respectively. Similarly, the interpretation of ∀R.C is the set of individuals that are in
the relationship R with individuals belonging to the set denoted by the concept C .

As an example, let us suppose that Female, Person, and Woman are atomic
concepts and that hasChild and hasFemaleRelative are atomic roles. Using the
operators intersection, union and complement of concepts, interpreted as set opera-
tions, we can describe the concept of “persons that are not female” and the concept
of “individuals that are female or male” by the expressions

Person � ¬Female and Female �Male.
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It is worth mentioning that intersection, union, and complement of concepts have
been also referred to as concept conjunction, concept disjunction and concept nega-
tion, respectively, to emphasize the relationship to logic.

Let us now turn our attention to role restrictions by looking first at quantified
role restrictions and, subsequently, at what we call “number restrictions”. Most
languages provide (full) existential quantification and value restriction that allow
one to describe, for example, the concept of “individuals having a female child” as
∃hasChild.Female, and to describe the concept of “individuals all of whose children
are female” by the concept expression∀hasChild.Female. In order to distinguish the
function of each concept in the relationship, the individual object that corresponds
to the second argument of the role viewed as a binary predicate is called a role filler.
In the above expressions, which describe the properties of parents having female
children, individual objects belonging to the concept Female are the fillers of the
role hasChild.

Existential quantification and value restrictions are thus meant to characterize
relationships between concepts. In fact, the role link between Parent and Person

in Figure 1.1 can be expressed by the concept expression

∃hasChild.Person � ∀hasChild.Person.
Such an expression therefore characterizes the concept of Parent as the set of
individuals having at least one filler of the role hasChild belonging to the concept
Person; moreover, every filler of the role hasChild must be a person.

Finally, notice that in quantified role restrictions the variable being quantified
is not explicitly mentioned. The corresponding sentence in first-order logic is
∀y.R(x, y) ⊃ C(y), where x is again a free variable ranging over the interpretation
domain.

Another important kind of role restriction is given by number restrictions, which
restrict the cardinality of the sets of role fillers. For instance, the concept

(� 3 hasChild) � (� 2 hasFemaleRelative)

represents the concept of “individuals having at least three children and at most two
female relatives”. Number restrictions are sometimes viewed as a distinguishing
feature of Description Logics, although one can find some similar constructs in
some database modeling languages (notably Entity–Relationship models).

Beyond the constructs to form concept expressions, Description Logics provide
constructs for roles, which can, for example, establish role hierarchies. However,
the use of role expressions is generally limited to expressing relationships between
concepts.
Intersection of roles is an example of a role-forming construct. Intuitively,

hasChild � hasFemaleRelative yields the role “has-daughter”, so that the concept
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expression

Woman �� 2 (hasChild � hasFemaleRelative)

denotes the concept of “a woman having at most 2 daughters”.
A more comprehensive view of the basic definitions of DL languages will be

given in Chapter 2.

1.2.3 Reasoning

The basic inference on concept expressions in Description Logics is subsumption,
typically written as C 
 D. Determining subsumption is the problem of checking
whether the concept denoted by D (the subsumer) is considered more general than
the one denoted by C (the subsumee). In other words, subsumption checks whether
the first concept always denotes a subset of the set denoted by the second one.

For example, one might be interested in knowing whether Woman 
 Mother.
In order to verify this kind of relationship one has in general to take into account
the relationships defined in the terminology. As we explain in the next section,
under appropriate restrictions, one can embody such knowledge directly in concept
expressions, thus making subsumption over concept expressions the basic reason-
ing task. Another typical inference on concept expressions is concept satisfiability,
which is the problem of checking whether a concept expression does not neces-
sarily denote the empty concept. In fact, concept satisfiability is a special case of
subsumption, with the subsumer being the empty concept, meaning that a concept
is not satisfiable.

Although the meaning of concepts had already been specified with a logical
semantics, the design of inference procedures in Description Logics was influenced
for a long time by the tradition of semantic networks, where concepts were viewed
as nodes and roles as links in a network. Subsumption between concept expressions
was recognized as the key inference and the basic idea of the earliest subsumption
algorithmswas to transform two input concepts into labeled graphs and test whether
one could be embedded into the other; the embedded graph would correspond to
the more general concept (the subsumer) [Lipkis, 1982]. This method is called
structural comparison, and the relation between concepts being computed is called
structural subsumption. However, a careful analysis of the algorithms for structural
subsumption shows that they are sound, but not always complete in terms of the
logical semantics: whenever they return “yes” the answer is correct, but when they
report “no” the answer may be incorrect. In other words, structural subsumption is
in general weaker than logical subsumption.

The need for complete subsumption algorithms is motivated by the fact that
in the usage of knowledge representation systems it is often necessary to have a
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guarantee that the system has not failed in verifying subsumption. Consequently,
new algorithms for computing subsumption have been devised that are no longer
based on a network representation, and these can be proven to be complete. Such
algorithms have been developed by specializing classical settings for deductive
reasoning to the DL subsets of first-order logics, as done for tableau calculi by
Schmidt-Schauß and Smolka [1991], and also by more specialized methods.

In the paper “The tractability of subsumption in frame-based description lan-
guages”, Brachman and Levesque [1984] argued that there is a tradeoff between
the expressiveness of a representation language and the difficulty of reasoning over
the representations built using that language. In other words, the more expres-
sive the language, the harder the reasoning. They also provided a first example of
this tradeoff by analyzing the language FL− (Frame Language), which included
intersection of concepts, value restrictions and a simple form of existential quan-
tification. They showed that for such a language the subsumption problem could
be solved in polynomial time, while adding a construct called role restriction to
the language makes subsumption a conp-hard problem (the extended language was
called FL).

The paper by Brachman and Levesque introduced at least two new ideas:

(i) “efficiency of reasoning” over knowledge structures can be studied using the tools of
computational complexity theory;

(ii) different combinations of constructs can give rise to languages with different compu-
tational properties.

An immediate consequence of the above observations is that one can study formally
and methodically the tradeoff between the computational complexity of reasoning
and the expressiveness of the language, which itself is defined in terms of the
constructs that are admitted in the language. After the initial paper, a number of
results on this tradeoff for concept languages were obtained (see Chapters 2 and 3),
and these results allow us to draw a fairly complete picture of the complexity of
reasoning for a wide class of concept languages. Moreover, the problem of finding
the optimal tradeoff, namely the most expressive extensions ofFL− with respect to
a given set of constructs that still keep subsumption polynomial, has been studied
extensively [Donini et al., 1991b; 1999].

One of the assumptions underlying this line of research is to use worst-case
complexity as a measure of the efficiency of reasoning in Description Logics (and
more generally in knowledge representation formalisms). Such an assumption has
sometimes been criticized (see for example [Doyle and Patil, 1991]) as not ad-
equately characterizing system performance or accounting for more average-case
behavior.While this observation suggests that computational complexity alonemay
not be sufficient for addressing performance issues, research on the computational
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complexity of reasoning in Description Logics has most definitely led to a much
deeper understanding of the problems arising in implementing reasoning tools. Let
us briefly address some of the contributions of this body of work.

First of all, the study of the computational complexity of reasoning inDescription
Logics has led to a clear understanding of the properties of the language constructs
and their interaction. This is not only valuable from a theoretical viewpoint, but
gives insight to the designer of deduction procedures, with clear indications of the
language constructs and their combinations that are difficult to deal with, as well
as general methods to cope with them.

Secondly, the complexity results have been obtained by exploiting a general tech-
nique for satisfiability checking in concept languages, which relies on a form of
tableau calculus [Schmidt-Schauß and Smolka, 1991]. Such a technique has proved
extremely useful for studying both the correctness and the complexity of the algo-
rithms. More specifically, it provides an algorithmic framework that is parametric
with respect to the language constructs. The algorithms for concept satisfiability
and subsumption obtained in this way have also led directly to practical implemen-
tations by application of clever control strategies and optimization techniques. The
most recent knowledge representation systems based on Description Logics adopt
tableau calculi [Horrocks, 1998b].

Thirdly, the analysis of pathological cases in this formal framework has led to the
discovery of incompleteness in the algorithms developed for implemented systems.
This has also consequently proven useful in the definition of suitable test sets for
verifying implementations. For example, the comparison of implemented systems
(see for example [Baader et al., 1992b;Heinsohn et al., 1992]) has greatly benefitted
from the results of the complexity analysis.

The basic reasoning techniques for Description Logics are presented in Chapter
2, while a detailed analysis of the complexity of reasoning problems in several
languages is developed in Chapter 3.

After the tradeoff between expressiveness and tractability of reasoning was thor-
oughly analyzed and the range of applicability of the corresponding inference tech-
niques had been experimented with, there was a shift of focus in the theoretical
research on reasoning in Description Logics. Interest grew in relating Description
Logics to the modeling languages used in database management. In addition, the
discovery of strict relationships with expressive modal logics stimulated the study
of so-called very expressive Description Logics. These languages, besides admit-
ting very general mechanisms for defining concepts (for example cyclic definitions,
addressed in the next section), provide a richer set of concept-forming constructs
and constructs for forming complex role expressions. For these languages, the ex-
pressiveness is great enough that the new challenge became enriching the language
while retaining the decidability of reasoning. It is worth pointing out that this new
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direction of theoretical research was accompanied by a corresponding shift in the
implementation of knowledge representation systems based on very expressive DL
languages. The study of reasoning methods for very expressive Description Logics
is addressed in Chapter 5.

1.3 Knowledge representation in Description Logics

In the previous section a basic representation language for Description Logics was
introduced along with some key associated reasoning techniques. Our goal now is
to illustrate howDescription Logics can be useful in the design of knowledge-based
applications, that is to say, how aDL language is used in a knowledge representation
system that provides a language for defining a knowledge base and tools to carry
out inferences over it. The realization of knowledge systems involves two primary
aspects. The first consists in providing a precise characterization of a knowledge
base; this involves precisely characterizing the type of knowledge to be specified
to the system as well as clearly defining the reasoning services the system needs
to provide – the kind of questions that the system should be able to answer. The
second aspect consists in providing a rich development environment where users
can benefit from different services that can make their interaction with the system
more effective. In this section we address the logical structure of the knowledge
base, while the design of systems and tools for the development of applications is
addressed in the next section.

One of the products of some important historical efforts to provide precise char-
acterizations of the behavior of semantic networks and frames was a functional
approach to knowledge representation [Levesque, 1984]. The idea was to give a
precise specification of the functionality to be provided by a knowledge base and,
specifically, of the inferences performed by the knowledge base – independent of
any implementation. In practice, the functional description of a reasoning system
is productively specified through a so-called “Tell&Ask” interface. Such an inter-
face specifies operations that enable knowledge base construction (Tell operations)
and operations that allow one to get information out of the knowledge base (Ask
operations). In the following we shall adopt this view for characterizing both the
definition of a DL knowledge base and the deductive services it provides.

Within a knowledge base one can see a clear distinction between intensional
knowledge, or general knowledge about the problem domain, and extensional
knowledge, which is specific to a particular problem. A typical DL knowledge base
analogously comprises two components – a TBox and an ABox. The TBox con-
tains intensional knowledge in the form of a terminology (hence the term “TBox”,
but “taxonomy” could be used as well) and is built through declarations that de-
scribe general properties of concepts. Because of the nature of the subsumption
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relationships among the concepts that constitute the terminology, TBoxes are usu-
ally thought of as having a lattice-like structure; this mathematical structure is
entailed by the subsumption relationship – it has nothing to do with any imple-
mentation. The ABox contains extensional knowledge – also called assertional
knowledge (hence the term “ABox”) – knowledge that is specific to the individuals
of the domain of discourse. Intensional knowledge is usually thought not to change –
to be “timeless”, in a way – and extensional knowledge is usually thought to be
contingent, or dependent on a single set of circumstances, and therefore subject to
occasional or even constant change.

In the rest of the section we present a basic Tell&Ask interface by analyzing the
TBox and the ABox of a DL knowledge base.

1.3.1 The TBox

One key element of a DL knowledge base is given by the operations used to build
the terminology. Such operations are directly related to the forms and the meaning
of the declarations allowed in the TBox.

The basic form of declaration in a TBox is a concept definition, that is, the
definition of a new concept in terms of other previously defined concepts. For
example, a woman can be defined as a female person by writing this declaration:

Woman ≡ Person � Female.

Such a declaration is usually interpreted as a logical equivalence, which amounts
to providing both sufficient and necessary conditions for classifying an individ-
ual as a woman. This form of definition is much stronger than the ones used in
other kinds of representations of knowledge, which typically impose only nec-
essary conditions; the strength of this kind of declaration is usually considered
a characteristic feature of DL knowledge bases. In DL knowledge bases, there-
fore, a terminology is constituted by a set of concept definitions of the above
form.

However, there are some important common assumptions usually made about
DL terminologies:

� Only one definition for a concept name is allowed.
� Definitions are acyclic in the sense that concepts are neither defined in terms of themselves
nor in terms of other concepts that indirectly refer to them.

This kind of restriction is common to many DL knowledge bases and implies that
every defined concept can be expanded in a unique way into a complex expression
containing only atomic concepts by replacing every defined concept with the right-
hand side of its definition.
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Nebel [1990b] showed that even simple expansion of definitions like this gives
rise to an unavoidable source of complexity; in practice, however, definitions that
inordinately increase the complexity of reasoning do not seem to occur. Under
these assumptions the computational complexity of inferences can be studied by
abstracting from the terminology and by considering all given concepts as fully
expanded expressions. Therefore, much of the study of reasoning methods in
Description Logics has been focused on concept expressions and, more specifically,
as discussed in the previous section, on subsumption, which can be considered the
basic reasoning service for the TBox.

In particular, the basic task in constructing a terminology is classification, which
amounts to placing a newconcept expression in the proper place in a taxonomic hier-
archy of concepts. Classification can be accomplished by verifying the subsumption
relation between each defined concept in the hierarchy and the new concept expres-
sion. The placement of the concept will be in between the most specific concepts
that subsume the new concept and the most general concepts that the new concept
subsumes.

More general settings for concept definitions have recently received some atten-
tion, deriving from attempts to establish formal relationships between Description
Logics and other formalisms and from attempts to satisfy a need for increased ex-
pressive power. In particular, the admission of cyclic definitions has led to different
semantic interpretations of the declarations, known as greatest/least fixed-point, and
descriptive semantics. Although it has been argued that different semantics may be
adopted depending on the target application, the more commonly adopted one is
descriptive semantics, which simply requires that all the declarations be satisfied
in the interpretation. Moreover, by dropping the requirement that on the left-hand
side of a definition there can only be an atomic concept name, one can consider
so-called (general) inclusion axioms of the form

C 
 D

where C and D are arbitrary concept expressions. Notice that a concept definition
can be expressed by two general inclusions. As a result of several theoretical stud-
ies concerning both the decidability of and implementation techniques for cyclic
TBoxes, the most recent DL systems admit rather powerful constructs for defining
concepts.

The basic deduction service for suchTBoxes can be viewed as logical implication
and it amounts to verifying whether a generic relationship (for example a subsump-
tion relationship between two concept expressions) is a logical consequence of
the declarations in the TBox. The issues arising in the semantic characterization
of cyclic TBoxes are dealt with in Chapter 2, while techniques for reasoning in
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cyclic TBoxes are addressed in Chapter 2 and in Chapter 5, where very expressive
Description Logics are presented.

1.3.2 The ABox

The ABox contains extensional knowledge about the domain of interest, that is,
assertions about individuals, usually called membership assertions. For example,

Female � Person(ANNA)

states that the individual ANNA is a female person. Given the above definition of
woman, one can derive from this assertion that ANNA is an instance of the concept
Woman. Similarly,

hasChild(ANNA, JACOPO)

specifies that ANNA has JACOPO as a child. Assertions of the first kind are also
called concept assertions, while assertions of the second kind are also called role
assertions.

As illustrated by these examples, in the ABox one can typically specify knowl-
edge in the form of concept assertions and role assertions. In concept assertions
general concept expressions are typically allowed, while role assertions, where the
role is not a primitive role but a role expression, are typically not allowed, being
treated in the case of very expressive languages only.

The basic reasoning task in anABox is instance checking, which verifies whether
a given individual is an instance of (belongs to) a specified concept. Although other
reasoning services are usually considered and employed, they can be defined in
terms of instance checking. Among them we find knowledge base consistency,
which amounts to verifying whether every concept in the knowledge base admits at
least one individual; realization, which finds themost specific concept an individual
object is an instance of; and retrieval, which finds the individuals in the knowledge
base that are instances of a given concept. These can all be accomplished by means
of instance checking.

The presence of individuals in a knowledge base makes reasoning more complex
from a computational viewpoint [Donini et al., 1994b], and may require significant
extensions of someTBox reasoning techniques. Reasoning in theABox is addressed
in Chapter 3.

It is worth emphasizing that, although we have separated out for convenience
the services for the ABox, when the TBox cannot be dealt with by means of the
simple substitutionmechanismused for acyclic TBoxes, the reasoning servicesmay
have to take into account all of the knowledge base including both the TBox and the
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ABox, and the corresponding reasoning problems become more complex. A full
setting including general TBox and ABox is addressed in Chapter 5, where very
expressive Description Logics are discussed.

More general languages for defining ABoxes have also been considered. Knowl-
edge representation systemsproviding apowerful logical language for theABoxand
a DL language for the TBox are often considered hybrid reasoning systems, since
completely different knowledge representation languages may be used to specify
the knowledge in the different components. Hybrid reasoning systemswere popular
in the 1980s (see for example [Brachman et al., 1985]); lately, the topic has regained
attention [Levy and Rousset, 1997; Donini et al., 1998b], focusing on knowledge
bases with a DL component for concept definitions and a logic-programming com-
ponent for assertions about individuals. Sound and complete inference methods
for hybrid knowledge bases become difficult to devise whenever there is a strict
interaction between the knowledge components.

1.4 From theory to practice: Description Logic systems

Adirect practical result of research on knowledge representation has been the devel-
opment of tools for the construction of knowledge-based applications. As already
noted, research on Description Logics has been characterized by a tight connection
between theoretical results and implementation of systems. This has been achieved
by maintaining a very close relationship between theoreticians, system implemen-
tors and users of knowledge representation systems based on Description Logics
(DL-KRSs). The results of work on reasoning algorithms and their complexity have
influenced the design of systems, and research on reasoning algorithms has itself
been focused by a careful analysis of the capabilities and the limitations of imple-
mented systems. In this section we first sketch the functionality of some knowledge
representation systems and, subsequently, discuss the evolution of DL-KRSs. The
reader can find a deeper treatment of the first topic in Chapter 7, while a survey
of knowledge representation systems based on Description Logics is provided in
Chapter 8. Chapter 9 is devoted to more specialized implementation and optimiza-
tion techniques.

1.4.1 The design of knowledge representation systems
based on Description Logics

In order to appreciate the difficulties of implementing andmaintaining a knowledge
representation system, it is necessary to consider that in the usage of a knowledge
representation system, the reasoning service is really only one aspect of a complex
system, one which may even be hidden from the final user. The user, before getting



1 An Introduction to Description Logics 17

to “push the reasoning button”, has to model the domain of interest, and input
knowledge into the system. Further, in many cases, a simple yes/no answer is
of little use, so a simplistic implementation of the Tell&Ask paradigm may be
inadequate. As a consequence, the path one follows to get from the identification
of a suitable knowledge representation system to the design of applications based
on it is a complex and demanding one (see for example [Brachman, 1992]). In the
case of Description Logics, this is especially true if the goal is to devise a system
to be used by users who are not DL experts and who need to obtain a working
system as quickly as possible. In the 1980s, when frame-based systems (such as,
for example, Kee [Fikes and Kehler, 1985]; see [Karp, 1992] for an overview) had
reached the strength of commercial products, the burden on a user of moving to the
more modern DL-KRSs had to be kept small. Consequently, a stream of research
addressed important aspects of the pragmatic usability of DL systems. This issue
was especially relevant for those systems aiming at limiting the expressiveness of
the language, but providing the user with sound, complete and efficient reasoning
services. The issue of embedding a DL language within an environment suitable
for application development is further addressed in Chapter 7.

In recent years, we might add, useful DL systems have often come as internal
components of larger environments whose interfaces could completely hide the DL
language and its core reasoning services. Systems like Imacs [Brachman et al.,
1993] and Prose [Wright et al., 1993] were quite successful in classifying data and
configuring products, respectively, without the need for any user to understand the
details of the DL representation language (Classic) they were built upon.

Nowadays, applications for gathering information from the World Wide Web,
where the interface can be specifically designed to support the retrieval of such
information, also hide the knowledge representation and reasoning component. In
addition, some data modeling tools, where the system provides amore conventional
interface, can provide additional facilities based on the capability of reasoning about
models with a DL inference engine. The possible settings for taking advantage of
Description Logics as components of larger systems are discussed in Part III; more
specifically, Chapter 14 presentsWeb applications and Chapter 15 natural language
applications, while the reasoning capabilities of Description Logics in database
applications are addressed in Chapter 16.

1.4.2 Knowledge representation systems based on Description Logics

The history of knowledge representation is covered in the literature in numerous
ways (see for example [Woods and Schmolze, 1992; Rich, 1991; Baader et al.,
1992b]). Here we identify three generations of systems, highlighting their histori-
cal evolution rather than their specific functionality. We shall characterize them as
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Pre-DL systems, DL systems and Current Generation DL systems. Detailed refer-
ences to implemented systems are given in Chapter 8.

1.4.2.1 Pre-Description Logic systems

The ancestor of DL systems is Kl-One [Brachman and Schmolze, 1985], which
signaled the transition from semantic networks to more well-founded terminologi-
cal (description) logics. The influence ofKl-Onewas profound and it is considered
the root of the entire family of languages [Woods and Schmolze, 1990].

Semantic networks were introduced around 1966 as a representation for the
concepts underlying English words, and became a popular type of framework for
representing a wide variety of concepts in AI applications. Important and common-
sensical ideas evolved in this work, from named nodes and links for representing
concepts and relationships, to hierarchical networks with inheritance of properties,
to the notion of “instantiation” of a concept by an individual object. But semantic
network systems were fraught with problems, including vagueness and inconsis-
tency in the meaning of various constructs, and the lack of a level of structure
on which to base application-independent inference procedures. In his PhD thesis
[Brachman, 1977a] and subsequent work (e.g., see [Brachman, 1979]), Brachman
addressed representation at what he called an “epistemological”, or knowledge-
structuring level. This led to a set of primitives for structuring knowledge that was
less application- and world-knowledge-dependent than “semantic” representations
(like those for processing natural language case structures), yet richer than the im-
poverished set of primitives available in strictly logical languages. The main result
of this work was a new knowledge representation framework whose primitive el-
ements allowed cleaner, more application-independent representations than prior
network formalisms. In the late 1970s, Brachman and his colleagues explored the
utility and implications of this kind of framework in the Kl-One system.
Kl-One introduced most of the key notions explored in the extensive work on

Description Logics that followed. These included, for example, the notions of con-
cepts and roles and how they were to be interrelated; the important ideas of “value
restriction” and “number restriction”, which modified the use of roles in the defi-
nitions of concepts; and the crucial inferences of subsumption and classification. It
also sowed the seeds for the later distinction between the TBox andABox and a host
of other significant notions that greatly influenced subsequent work. Kl-One also
was the initial example of the substantial interplay between theory and practice that
characterizes the history of Description Logics. It was influenced by work in logic
and philosophy (and in turn itself influenced work in philosophy and psychology),
and significant care was taken in its design to allow it to be consistent and seman-
tically sound. But it was also used in multiple applications, covering intelligent
information presentation and natural language understanding, among other things.
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Most of the focus of the original work on Kl-One was on the representation of
and reasoningwith concepts,with only a small amount of attention paid to reasoning
with individual objects. The first descendants ofKl-Onewere focused on architec-
tures providing a clear distinction between a powerful logic-based (or rule-based)
component and a specialized terminological component. These systems came to be
referred to as hybrid systems. A major research issue was the integration of the two
components to provide unified reasoning services over the whole knowledge base.

1.4.2.2 Description Logic systems

The earliest “pre-DL” systems derived directly from Kl-One, which, while itself
a direct result of formal analysis of the shortcomings of semantic networks, was
mainly about the implementation of a viable classification algorithm and the data
structures to adequately represent concepts. DL systems, per se, which followed
as the next generation, were more derived from a wave of theoretical research on
terminological logics that resulted from examination of Kl-One and some other
early systems. This work was initiated in roughly 1984, inspired by a paper by
Brachman and Levesque [Brachman and Levesque, 1984] on the formal complex-
ity of reasoning in Description Logics. Subsequent results on the tradeoff between
the expressiveness of a DL language and the complexity of reasoning with it,
and more generally, the identification of the sources of complexity in DL sys-
tems, showed that a careful selection of language constructs was needed and that
the reasoning services provided by the system are deeply influenced by the set
of constructs provided to the user. We can thus characterize three different ap-
proaches to the implementation of reasoning services. The first can be referred
to as limited+complete, and includes systems that are designed by restricting the
set of constructs in such a way that subsumption would be computed efficiently,
possibly in polynomial time. The Classic system [Brachman et al., 1991] is the
most significant example of this kind. The second approach can be denoted as
expressive+incomplete, since the idea is to provide both an expressive language
and efficient reasoning. The drawback is, however, that reasoning algorithms turn
out to be incomplete in these systems. Notable examples of this kind of system
are Loom [MacGregor and Bates, 1987], and Back [Nebel and von Luck, 1988].
After some of the sources of incompleteness were discovered, often by identifying
the constructs – or, more precisely, combinations of constructs – that would re-
quire an exponential algorithm to preserve the completeness of reasoning, systems
with complete reasoning algorithms were designed. Systems of this sort (see for
example Kris [Baader and Hollunder, 1991a]) are therefore characterized as
expressive+complete; they were not as efficient as those following the other ap-
proaches, but they provided a testbed for the implementation of reasoning tech-
niques developed in the theoretical investigations, and they played an important role
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in stimulating comparison and benchmarking with other systems [Heinsohn et al.,
1992; Baader et al., 1992b].

1.4.2.3 Current generation Description Logic systems

In the current generation of DL-KRSs, the need for complete algorithms for expres-
sive languages has been the focus of attention. The expressiveness of the DL lan-
guage required for reasoningondatamodels and semistructureddata has contributed
to the identification of the most important extensions for practical applications.

The design of complete algorithms for expressive Description Logic has led to
significant extensions of tableau-based techniques and to the introduction of several
optimization techniques, partly borrowed from theorem proving and partly specif-
ically developed for Description Logics. The first example of a system developed
along these lines is Fact [Horrocks, 1998b].

This research has also been influenced by newly discovered relationships be-
tween Description Logics and other logics, leading to exchanging benchmarks and
experimental comparisons with other deduction systems.

The techniques that have been used in the implementation of very expressive
Description Logics are addressed in detail in Chapter 9.

1.5 Applications developed with Description Logic systems

The third component in the picture of the development of Description Logics is
the implementation of applications in different domains. Some of the applications
created over the years may have only reached the level of prototype, but many
of them have the completeness of industrial systems and have been deployed in
production use.

Acritical element in the development of applications based onDescriptionLogics
is the usability of the knowledge representation system. We have already empha-
sized that building a tool to be used in the design and implementation of knowledge-
based applications requires significant work to make it suitable for interactive
development, explanation and debugging, interface implementation, and so on.
In addition, here we focus on the effectiveness of Description Logics as a modeling
language. Amodeling language should have intuitive semantics and the syntaxmust
help convey the intended meaning. To this end, a somewhat different syntax than
we have seen so far, closer to that of natural language, has often been adopted, and
graphical interfaces that provide an operational view of the process of knowledge
base construction have been developed. The issues arising in modeling application
domains using Description Logics are dealt with in Chapter 10, and will be briefly
addressed in the next subsection.
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It is natural to expect that some classes of applications share similarities both
in methodological patterns and in the design of specific structures or reasoning
capabilities.Consequently,we identify several applicationdomains inSection1.5.2;
these include software engineering, configuration, medicine, and digital libraries
and Web-based information systems.

In Subsection 1.5.3 we consider several application areas where Description
Logics play a major role; these include natural language processing and database
management, where Description Logics can be used in several ways.

When addressing the design of applications it is also worth pointing out that
there has been significant evolution in the way Description Logics have been used
within complex applications. In particular, the DL-centered view that underlies the
earliest generation of systems, wherein an application was developed in a single
environment (the one provided by the DL system), was characterized by very loose
interaction, if any, between the DL system and other applications. Later, an ap-
proach that viewed the Description Logic more as a component became evident;
in this view the DL system acts as a component of a larger environment, typically
leaving out functions, such those for data management, that are more effectively
implemented by other technologies. The architecture where the component view is
taken requires the definition of a clear interface between the components, possibly
adopting different modeling languages, but focusing on Description Logics for the
implementation of the reasoning services that can add powerful capabilities to the
application. Obviously, the choice between the above architectural views depends
upon the needs of the application at hand.

Finally, we have already stressed that research in Description Logics has
benefited from tight interaction between language designers and developers of
DL-KRSs. Thus, another major impact on the development of DL research was
provided by the implementation of applications using DL-KRSs. Indeed, work on
DL applications not only demonstrated the effectiveness of Description Logics and
of DL-KRSs, but also provided mutual feedback within the DL community con-
cerning the weaknesses of both the representation language and the features of an
implemented DL-KRS.

1.5.1 Modeling with Description Logics

In order for designers to be able to useDescription Logics tomodel their application
domains, it is important for the DL constructs to be easily understandable; this
helps facilitate the construction of convenient to use yet effective tools. To this
end, the abstract notation that we have previously introduced and that is nowadays
commonly used in the DL community is not fully satisfactory.
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As already mentioned, there are at least two major alternatives for increasing the
usability of Description Logics as a modeling language:

(i) providing a syntax that resembles more closely natural language;
(ii) implementing interfaceswhere theuser can specify the representation structures through

graphical operations.

Before addressing the above two possibilities, one brief remark is in order. While
alternative ways of specifying knowledge, such as natural-language-style syntax,
can be more appealing to the user, one should remember that Description Logics in
part arose from a need to respond to the inadequacy – the lack of a formal semantic
basis – of early semantic networks and frame systems. Those early systems often
relied on an assumption of intuitive readings of natural-language-like constructs
or graphical structures, which in the end made them unsatisfactory. Therefore, we
need to keep in mind always the correspondence of the language used by the user
and the abstract DL syntax, and consequently correspondences with the formal
semantics should always be clear and available.

The option of a more readable syntax has been pursued in the majority of DL-
KRSs. In particular, we refer to the concrete syntax proposed in [Patel-Schneider
and Swartout, 1993], which is based on a Lisp-like notation, where, for example,
the concept of a female person is denoted by (and Person Female). Similarly,
the concept ∀hasChild.Femalewould bewritten (all hasChild Female). In ad-
dition, there are shorthand expressions, such as (the hasChild Female), which
indicates the existence of a unique female child, and can be phrased using qualified
existential restriction and number restriction. In Chapter 10 this kind of syntax is
discussed in detail and the possible sources for ambiguities in the natural language
reading of the constructs are discussed.

The second option for providing the user with a concrete syntax is to rely on
a graphical interface. Starting with the Kl-One system, this possibility has been
pursued by introducing a graphical notation for the representation of concepts and
roles, as well as their relationships. More recently, Web-based interfaces for De-
scription Logics have been proposed [Welty, 1996a]; in addition, an XML standard
has been proposed [Bechhofer et al., 1999; Euzenat, 2001], which is suitable not
only for data interchange, but also for providing full-fledged Web interfaces to
DL-KRSs or applications embodying them as components.

The modeling language is the vehicle for the expression of the modeling no-
tions that are provided to the designers. Modeling in Description Logics requires
the designer to specify the concepts of the domain of discourse and characterize
their relationships to other concepts and to specific individuals. Concepts can be
regarded as classes of individuals and Description Logics as an object-centered
modeling language, since they allow one to introduce individuals (objects) and
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explicitly define their properties, as well as to express relationships among them.
Concept definition, which provides for both necessary and sufficient conditions,
is a characteristic feature of Description Logics. The basic relationship between
concepts is subsumption, which allows one to capture various kinds of subclass-
ing mechanisms; however, other kinds of relationships can be modeled, such as
grouping, materialization, and part–whole aggregation.

The model of a domain in Description Logics is embedded in a knowledge base.
We have already addressed the TBox–ABox characterization of the knowledge
base. We recall that the roles of TBox and ABox were motivated by the need to dis-
tinguish general knowledge about the domain of interest from specific knowledge
about individuals characterizing a specific world or situation under consideration.
Besides the TBox–ABox, other mechanisms for organizing a knowledge base such
as contexts and views have been introduced in Description Logics. The use of the
modeling notions provided by Description Logics and the organization of knowl-
edge bases are addressed in greater detail in Chapter 10.

Finally, we recall that Description Logics as modeling languages overlap to a
large extentwith othermodeling languages developed infields such as programming
languages and databasemanagement.Whilewe shall focus on this relationship later,
we recall here that, when compared tomodeling languages developed in other fields,
the characteristic feature of Description Logics is in the reasoning capabilities that
are associated with them. In other words, we believe that, while modeling has
general significance, the capability of exploiting the description of the model to
draw conclusions about the problem at hand is a particular advantage of modeling
using Description Logics.

1.5.2 Application domains

Description Logics have been used (and are being used) in the implementation of
many systems that demonstrate their practical effectiveness. Some of these systems
have found their way into production use, despite the fact that there was no real
commercial platform that could be used for developing them.

1.5.2.1 Software engineering

Software engineeringwas one of the first application domains forDesciptionLogics
undertaken at AT&T, where theClassic system was developed. The basic idea was
to use a Description Logic to implement a software information system, i.e., a
system that would support the software developer by helping him or her in finding
out information about a large software system.

More specifically, it was found that the information of interest for software devel-
opment was a combination of knowledge about the domain of the application and
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code-specific information. However, while the structure of the code can be deter-
mined automatically, the connection between code elements and domain concepts
needs to be specified by the user.

One of the most novel applications of Description Logics is the Lassie system
[Devambu et al., 1991], which allowed users to incrementally build a taxonomy
of concepts relating domain notions to the code implementing them. The system
could thereafter provide useful information in response to user queries concerning
the code, such as, for example “the function to generate a dial tone”. By exploiting
the description of the domain, the information retrieval capabilities of the system
went significantly beyond those of the standard tools used for software development.
The Lassie system had considerable success but ultimately stumbled because of
the difficulty of maintenance of the knowledge base, given the constantly changing
nature of industrial software. Both the ideas of a software information system and
the usage of Description Logics survived that particular application and have been
subsequently used in other systems. The usage ofDescription Logics in applications
for software engineering is described in Chapter 11.

1.5.2.2 Configuration

One very successful domain for knowledge-based applications built using Descrip-
tion Logics is configuration, which includes applications that support the design of
complex systems created by combining multiple components.

The configuration task amounts to finding a proper set of components that can
be suitably connected in order to implement a system that meets a given specifica-
tion. For example, choosing computer components in order to build a home PC is
a relatively simple configuration task. When the number, the type, and the connec-
tivity of the components grow, the configuration task can become rather complex.
In particular, computer configuration has been among the application fields of the
first expert systems and can thus be viewed as a standard application domain for
knowledge-based systems. Configuration tasks arise in many industrial domains,
such as telecommunications, the automotive industry, building construction, etc.

DL-based knowledge representation systemsmeet the requirements for the devel-
opment of configuration applications. In particular, they enable the object-oriented
modeling of system components, which combines powerfully with the ability to
reason from incomplete specifications and to automatically detect inconsistencies.
Using Description Logics one can exploit the ability to classify the components and
organize them within a taxonomy. In addition a DL-based approach supports incre-
mental specification and modularity. Applications for configuration tasks require at
least two features that were not in the original core of DL-KRSs: the representation
of rules (together with a rule propagationmechanism), and the ability to provide ex-
planations. However, extensionswith so-called “active rules” are nowvery common
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in DL-KRSs, and a precise semantic account is given in Chapter 2; significant work
on explanation capabilities of DL-KRSs has been developed in connection with the
designof configuration applications [McGuinness andBorgida, 1995].Chapter 12 is
devoted to the applications developed in Description Logics for configuration tasks.

1.5.2.3 Medicine

Medicine is also a domain where expert systems have been developed since the
1980s; however, the complexity of the medical domain calls for a variety of uses
for a DL-KRS. In practice, decision support for medical diagnosis is only one
of the tasks in need of automation. One focus has been on the construction and
maintenance of very large ontologies of medical knowledge, the subject of some
large government initiatives. The need to deal with large-scale knowledge bases
(hundreds of thousands of concepts) led to the development of specialized systems,
such as Galen [Rector et al., 1993], while the requirement for standardization
arising from the need to deal with several sources of information led to the adoption
of the DL standard languageKrss [Patel-Schneider and Swartout, 1993] in projects
like Snomed [Spackman et al., 1997].

In order to cope with the scalability of the knowledge base, the DL language
adopted in these applications is often limited to a few basic constructs and the
knowledge base turns out to be rather shallow, that is to say the taxonomy does not
have very many levels of subconcepts below the top concepts. Nonetheless, there
are several advanced language features that would be very useful in the represen-
tation of medical knowledge, such as, for example, specific support for PART-OF
hierarchies (see Chapter 10), as well as defaults and modalities to capture lack of
knowledge (see Chapter 6).

Obviously, since medical applications most often must be used by doctors, a for-
mal logical language is not well-suited; therefore special attention is given to the
design of the user interface; in particular, natural language processing (see Chap-
ter 15) is important both in the construction of the ontology and in the operational
interfaces.

Further, the DL component of a medical application usually operates within a
larger information system, comprising several sources of information, which need
to be integrated in order to provide a coherent view of the available data (on this
topic see Chapter 16).

Finally, an important issue that arises in the medical domain is the management
of ontologies, which not only requires common tools for project management, such
as versioning systems, but also tools to support knowledge acquisition and re-use
(on this topic see Chapter 8).

The use of Description Logics specifically in the design of medical applications
is addressed in Chapter 13.
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1.5.2.4 Digital libraries and Web-based information systems

The relationship between semantic networks and the linked structures implied by
hypertext has motivated the development of DL applications for representing bib-
liographic information and for supporting classification and retrieval in digital li-
braries [Welty and Jenkins, 2000]. These applications have proven the effectiveness
of Description Logics for representing the taxonomies that are commonly used in
library classification schemes, and they have shown the advantage of subsumption
reasoning for classifying and retrieving information. In these instances, a number
of technical questions, mostly related to the use of individuals in the taxonomy,
have motivated the use of more expressive Description Logics.

The possibility of viewing the World Wide Web as a semantic network has been
considered since the advent of the Web itself. Even in the early days of the Web,
thought was given to the potential benefits of enabling programs to handle not only
simple unlabeled navigation structures, but also the information content of Web
pages. The goal was to build systems for querying theWeb “semantically”, allowing
the user to pose queries of the Web as if it were a database, roughly speaking.
Based on the relationship between Description Logics and semantic networks, a
number of proposals were developed that used Description Logics to model Web
structures, allowing the exploitation of DL reasoning capabilities in the acquisition
and management of information [Kirk et al., 1995; De Rosa et al., 1998].

More recently, there have been significant efforts based on the use of markup
languages to capture the information content ofWeb structures. The relationship be-
tween Description Logics and markup languages, such as XML, has been precisely
characterized [Calvanese et al., 1999d], thus identifying DL language features for
representing XML documents. Moreover, interest in the standardization of knowl-
edge representation mechanisms for enabling knowledge exchange has led to the
development of DAML-ONT [McGuinness et al., 2002], an ontology language for
the Web inspired by object-oriented and frame-based languages, and OIL [Fensel
et al., 2001], with a similar goal of expressing ontologies, but with a closer con-
nection to Description Logics. Since the two initiatives have similar goals and use
languages that are somewhat similar (see Chapter 4 for the relationships between
frames and Description Logics), their merger is in progress. The use of Descrip-
tion Logics in the design of digital libraries and Web applications is addressed in
Chapter 14, with specific discussion on DAML-ONT, OIL, and DAML+OIL.

1.5.2.5 Other application domains

The above list of application domains, while presenting some of the most relevant
applications designed with DL-KRSs, is far from complete. There are many other
domains that have been addressed by the DL community. Among the application
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areas that have resorted to Description Logics for useful functions are planning and
data mining.

With respect to planning, many knowledge-based applications rely on the ser-
vices of a planning component. While Description Logics do not provide such a
component themselves, they have been used to implement several general-purpose
planning systems. The basic idea is to represent plans and actions, as well as
their constituent elements, as concepts. The system can thus maintain a taxon-
omy of plan types and provide several reasoning services, such as plan recog-
nition, plan subsumption, plan retrieval, and plan refinement. Two examples of
planning components developed in a DL-KRS are Clasp [Yen et al., 1991b], de-
veloped on top of Classic, and Expect [Swartout and Gil, 1996], developed on
top of Loom. In addition, the integration of Description Logics and other for-
malisms, such as constraint networks, has been proposed [Weida and Litman,
1992]. Planning systems based on Description Logics have been used in many
application domains to support planning services in conjunction with a taxo-
nomic representation of the domain knowledge. Such application domains include,
amongothers, software engineering,medicine, campaign planning, and information
integration.

It is worth mentioning that Description Logics have also been used to represent
dynamic systems and to automatically generate plans based on such representations.
However, in such cases the use of Description Logics is limited to the formalization
of properties that characterize the states of the system, while plan generation is
achieved through the use of a rule propagation mechanism [De Giacomo et al.,
1999]. Such use of Description Logics is inspired by the correspondence between
Description Logics and Dynamic Logics described in Chapter 5.

Description Logics have also been used in data mining applications, where their
inferences can help the process of analyzing large amounts of data. In this kind
of application, DL structures can represent views, and DL systems can be used to
store and classify such views. The classification mechanism can help in discovering
interesting classes of items in the data. We address this type of application briefly
in the next subsection on database management.

1.5.3 Application areas

From the beginning Description Logics have been considered general-purpose lan-
guages for knowledge representation and reasoning, and therefore suited for many
applications. In particular, they were considered especially effective for those do-
mains where the knowledge could be easily organized along a hierarchical struc-
ture, based on the “IS-A” relationship. The ability to represent and reason about
taxonomies in Description Logics has motivated their use as a modeling language
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in the design and maintenance of large, hierarchically structured bodies of knowl-
edge as well as their adoption as the representation language for formal ontologies
[Welty and Guarino, 2001].

We now briefly look at some other research areas that have a more general
relationship with Description Logics. Such a relationship exists either because
Description Logics are viewed as a basic representation language, as in the case of
natural language processing, or because they can be used in a variety of ways in
concertwith themain technology of the area, as in the field of databasemanagement.

1.5.3.1 Natural language

Description Logics, as well as semantic networks and frames, originally had natural
language processing as a major field for application (see for example [Brachman,
1979]). In particular, when work on Description Logics began, not only was a
large part of the DL community working on natural language applications, but
Description Logics also bore a strong similarity to other formalisms used in natural
language work, such as Feature Logics [Nebel and Smolka, 1991].

The use ofDescriptionLogics in natural language processing ismainly concerned
with the representation of semantic knowledge that can be used to conveymeanings
of sentences. Such knowledge is typically concerned with the meaning of words
(the lexicon), and with context, that is, a representation of the situation and domain
of discourse.

A significant body of work has been devoted to the problem of disambiguating
different syntactic readings of sentences, based on semantic knowledge, a pro-
cess called semantic interpretation. Moreover, semantic knowledge expressed in
Description Logics has also been used to support natural language generation.

Since the domain of discourse for a natural language application can be arbitrarily
broad, work on natural language has also involved the construction of ontologies
[Welty and Guarino, 2001]. In addition, the expressiveness of natural language
has led also to investigations concerning extensions of Description Logics, such as
default reasoning (see Chapter 6).

Several largeprojects for natural languageprocessingbasedon theuseofDescrip-
tion Logics have been undertaken, some reaching the level of industrially-deployed
applications. They are referenced in Chapter 15, where the role of Description
Logics in natural language processing is addressed in more detail.

1.5.3.2 Database management

The relationship between Description Logics and databases is rather strong. In
fact, there is often the need to build systems where both a DL-KRS and a DataBase
Management System (DBMS) are present.DBMSsdealwith persistence of data and
with the management of large amounts of it, while a DL-KRS manages intensional
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knowledge, typically keeping the knowledge base in memory (possibly including
assertions about individuals that correspond to data).While some of the applications
created with DL-KRSs have developed ad hoc solutions to the problem of dealing
with large amounts of persistent data, in a complex application domain it is very
likely that a DL-KRSs and a DBMS would both be components of a larger system,
and they would work together.

In addition, Description Logics provide a formal framework that has been shown
to be rather close to the languages used in semantic data modeling, such as
the Entity–Relationship model [Calvanese et al., 1998g]. Description Logics are
equipped with reasoning tools that can bring to the conceptual modeling phase sig-
nificant advantages, as compared with traditional languages, whose role is limited
to modeling. For instance, by using concept consistency one can verify at design
time whether an entity can have at least one instance, thus clearly saving all the
difficulties arising from discovering such a situation when the database is being
populated [Borgida, 1995].

A second dimension of the enhancement of DBMSs with Description Logics
involves the query language.By expressing the queries to a database in aDescription
Logic one gains the ability to classify them and therefore to deal with issues such
as query processing and optimization. However, the basic DL machinery needs to
be extended in order to deal with conjunctive queries; otherwise DL expressiveness
with respect to queries is rather limited. In addition, Description Logics can be used
to express constraints and intensional answers to queries.

A corollary of the relationship between Description Logics and DBMS query
languages is the utility of Description Logics in reasoning with and about views.
In the Imacs system [Brachman et al., 1993], the Classic language was used as
a “lens” [Brachman, 1994] with which data in a conventional relational database
could be viewed. The interface to the data was made significantly more appropriate
for a data analyst, and views that were found to be productive could be saved; in
fact, they were saved in a taxonomy and could be classified with respect to one
another. In a sense, this allows the schema to be viewed and queried explicitly,
something normally not available when using a raw DBMS directly.

A more recent use of Description Logics is concerned with so-called “semi-
structured” datamodels [Calvanese et al., 1998c],which are being proposed in order
to overcome the difficulties in treating data that are not structured in a relational
form, such as data on the Web, data in spreadsheets, etc. In this area Description
Logics are sufficiently expressive to represent models and languages that are being
used in practice, and they can offer significant advantages over other approaches
because of the reasoning services they provide.

Another problem that has recently increased the applicability of Description
Logics is information integration.As already remarked, data are nowadays available
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in large quantities and from a variety of sources. Information integration is the task
of providing a unique coherent view of the data stored in the sources available. In
order to create such a view, a proper relationship needs to be established between
the data in the sources and the unified view of the data. Description Logics not
only have the expressiveness needed in order to model the data in the sources, but
their reasoning services can help in the selection of the sources that are relevant for
a query of interest, as well as to specify the extraction process [Calvanese et al.,
2001c].

The uses of Description Logics with databases are addressed in more detail in
Chapter 16.

1.6 Extensions of Description Logics

In this section we look at several types of extensions that have been proposed
for Description Logics; these are addressed in more detail in Chapter 6. Such
extensions are generally motivated by needs arising in applications. Unfortunately,
some extended features in implemented DL-KRSs were created without precise,
formal accounts; in some other cases, such accounts have been provided using a
formal framework that is not restricted to first-order logic.

A first group of extensions has the purpose of adding to DL languages some
representational features that were common in frame systems or that are relevant
for certain classes of applications. Such extensions provide a representation of some
novel epistemological notions and address the reasoning problems that arise in the
extended framework.

Extensions of a second sort are concerned with reasoning services that are useful
in the development of knowledge bases but are typically not provided by DL-KRSs.
The implementation of such services relies on additional inference techniques that
are considered non-standard, because they go beyond the basic reasoning services
provided by DL-KRSs.

Belowwefirst address the extensions of the knowledge representation framework
and then non-standard inferences.

1.6.1 Language extensions

Some of the research associated with language extensions has investigated the se-
mantics of the proposed extensions, but often the emphasis is only on finding rea-
soning procedures for the extended languages. Within these language extensions
we find constructs for non-monotonic, epistemic, and temporal reasoning, and con-
structs for representing belief and uncertain and vague knowledge. In addition some
constructs address reasoning in concrete domains.
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1.6.1.1 Non-monotonic reasoning

When frame-based systems began to be formally characterized as fragments of
first-order logic, it became clear that those frame-based systems as well as some
DL-KRSs that were used in practice occasionally provided the user with constructs
that could not be given a precise semantic characterization within the framework of
first-order logic. Notable among the problematic constructs were those associated
with the notion of defaults, which over time have been extensively studied in the
field of non-monotonic reasoning [Brachman, 1985].

While one of the problems arising in semantic networks was the oft-cited so-
called “Nixon diamond” [Reiter and Criscuolo, 1981], a whole line of research
in non-monotonic reasoning was developed in trying to characterize the system
behavior by studying structural properties of networks. For example, the general
property that “birds fly” might not be inherited by a penguin, because a rule that
penguins do not fly would give rise to an arc in the network that would block the
default inference. But as soon as the network becomes relatively complex (see for
example [Touretzky et al., 1991]), we can see that attempts to provide semantic
characterization in terms of network structure are inadequate.

Another approach that has been pursued in the formalization of non-monotonic
reasoning in semantic networks is based on the use of default logic [Reiter, 1980;
Etherington, 1987; Nado and Fikes, 1987]. Following a similar approach is the
treatment of defaults in DL-based systems [Baader and Hollunder, 1995a], where
formal tools borrowed from work on non-monotonic reasoning have been adapted
to the framework of Description Logics. Such adaptation is non-trivial, however,
because Description Logics are not, in general, propositional languages.

1.6.1.2 Modal representation of knowledge and belief

Modal logics have been widely studied to model a variety of features that in first-
order logic would require the application of special constraints on certain elements
of the formalization. For example, the notions of knowing something or believing
that some sentence is true can be captured by introducing modal operators, which
characterize properties that sentences have.

For instance the assertion

B(Married(ANNA))

states a fact explicitly concerning the system’s beliefs (the system believes that
Anna is married), rather than asserting the truth of something about the world being
modeled (the system could believe something to be true without firm knowledge
about its truth in the world).

In general, by introducing a modal operator one gains the ability to model prop-
erties like knowledge, belief, time-dependence, obligation, and so on. On the one
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hand, extensions of Description Logics with modal operators can be viewed very
much like the corresponding modal extensions of first-order logic. In particular, the
semantic issues arising in the interpretation of quantifiedmodal sentences (i.e., sen-
tences with modal operators appearing inside the scope of quantifiers) are the same.
On the other hand, the syntactic restrictions that are suited to a DL language lead to
formalisms whose expressiveness and reasoning problems inherit some of the fea-
tures of a specialized DL language. Extensions of Description Logics with modal
operators including those for representing knowledge and belief are discussed in
[Baader and Ohlbach, 1995].

1.6.1.3 Epistemic reasoning

It is not sufficient to provide a semantics for defaults to obtain a full semantic account
of frame-based systems. Frame-based systems have included procedural rules as
well as other forms of closure and epistemic reasoning that need to be covered by
the semantics as well as by the reasoning algorithms. In particular, if one looks at
the most widely-used systems based on Description Logics, such features are still
present, possibly in new flavors, while their semantics is given informally and the
consequences of reasoning sometimes not adequately explained.

Among the non-first-order features that are used in the practice of knowledge-
based applications in both DL-based and frame-based systems we point out these:

� procedural rules (also called trigger rules), which are normally described as if–then
statements and are used to infer new facts about known individuals;

� default rules, which enable default reasoning in inheritance hierarchies;
� role closure, which limits the reasoning involving role restrictions to the individuals
explicitly in the knowledge base;

� integrity constraints, which provide consistency restrictions on admissible knowledge
bases.

In Chapter 6, among other approaches an epistemic extension of Description
Logics with a modal operator is addressed. In the resulting formalism [Donini
et al., 1998a] one can express epistemic queries and, by admitting a simple form of
epistemic sentences in the knowledge base, one can formalize the aforementioned
procedural rules. This characterization of procedural rules in terms of an epistemic
operator has been widely accepted in the DL community and is thus also included
in Chapter 2. The approach has been further extended to what have been called
Autoepistemic Description Logics (ADLs) [Donini et al., 1997b, 2002], where it is
combined with default reasoning. This combination is achieved by relying on the
non-monotonic modal logic MKNF [Lifschitz, 1991], thus introducing a second
modal operator interpreted as autoepistemic assumption. The features mentioned
above can be uniformly treated as epistemic sentences in the knowledge base,
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without the need to give them special status as in the case of procedural rules,
defaults, and epistemic constraints on the knowledge base. This expressiveness
does not come without making reasoning more difficult. An extension of the rea-
soning methods available for deduction in the propositional formalizations of
non-monotonic reasoning to the fragment of first-order logic corresponding to
Description Logics has nonetheless been shown to be decidable.

1.6.1.4 Temporal reasoning

One notion that is often required in the formalization of application domains is
time. Temporal extensions of Description Logics have been treated as a special
kind of modal extension. The first proposal for handling time in a DL framework
[Schmiedel, 1990] was originated in the context of the DL system Back. Later,
following the standard approaches in the representation of time, both interval-
based and point-based approaches have been studied, specifically focusing on the
decidability and complexity of the reasoning problems (see [Artale and Franconi,
2001] for a survey the temporal extensions of Description Logics).

Time intervals can also be treated as a form of concrete domain (see below).

1.6.1.5 Representation of uncertain and vague knowledge

Another aspect of knowledge that is sometimes useful in representing and reason-
ing about application domains is uncertainty. As in other knowledge representation
frameworks there are several approaches to the representation of uncertain knowl-
edge in Description Logics. Two of them, namely probabilistic logic and fuzzy
logic, have been proposed in the context of Description Logics. In the case of prob-
abilistic Description Logics [Heinsohn, 1994; Jaeger, 1994] the knowledge about
the domain is expressed in terms of probabilistic terminological axioms, which
allow one to represent statistical information about the domain, and in terms of
probabilistic assertions, which specify the degree of belief of asserted properties.
The reasoning tasks aim at finding the probability bounds for subsumption relations
and assertions. Amore recent line of work tries to combine Description Logics with
Bayesian networks.

In the case of fuzzyDescription Logics [Yen, 1991] the goal is to characterize no-
tions that cannot be properly defined with a “crisp” numerical bound. For example,
the concept of living near Rome cannot be always defined with a crisp boundary
on the map, but must be represented with a membership or degree function, which
expresses closeness to the city in a continuous way.

Proposed approaches to fuzzy Description Logics not only define the semantics
of assertions in terms of fuzzy sets, but also introduce new operators to express
notions like “mostly”, “very”, etc. Reasoning algorithms are also provided for
computing fuzzy subsumption within the framework of tableau-based methods.
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1.6.1.6 Concrete domains

One of the limitations of basic Description Logics is related to the difficulty of inte-
grating knowledge (and, consequently, performing reasoning) of specific domains,
such as numbers or strings, which are needed in many applications. For example,
in order to model the concept of a young person it seems rather natural to introduce
the (functional) role age and to use a concrete value (or range of values) in the
definition of the concept. In addition, one would like to be able to conclude that a
person of school age is also a young person. Such a conclusion might require the
use of properties of numbers to establish that the expected subsumption relation
holds.

While for some time such extensions were designed in ad hoc ways, in [Baader
and Hanschke, 1991a] a general method was established for integrating knowl-
edge about concrete domains within a DL language. If a domain can be properly
formalized, it is shown that the tableau-based reasoning technique can be suitably
extended to handle the reasoning services in the extended language.

Concrete domains include not only data types such as numerical types, but also
more elaborate domains, such as tuples of the relational calculus, spatial regions,
or time intervals.

1.6.2 Additional reasoning services

Non-standard inference tasks can serve a variety of purposes, among them support
in building andmaintaining the knowledge base, as well as in obtaining information
about the knowledge represented in it.

Among the more useful non-standard inference tasks in Description Logics we
find the computation of the least common subsumer and the most specific concept,
matching/unification, and concept rewriting.

1.6.2.1 Least common subsumer and most specific concept

The least common subsumer (lcs) of a set of concepts is the minimal concept that
subsumes all of them. The minimality condition implies there is no other concept
that subsumes all the concepts in the set and is less general (subsumed by) the lcs.
This notion was first studied in [Cohen et al., 1992] and it has subsequently been
used for several tasks: inductive learning of concept description from examples;
knowledge base vivification (as a way to represent disjunction in languages that do
not admit it); and in the bottom-up construction of DL knowledge bases (starting
from instances of the concepts).

The notion of lcs is closely related to that of most specific concept (msc) of an
individual, i.e., the least concept description that the individual is an instance of,
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given the assertions in the knowledge base; the minimality condition is specified
as before. More generally, one can define the msc of a set of assertions about
individuals as the lcs of the msc associated with each individual. Based on the
computation of themsc of a set of assertions about individuals one can incrementally
construct a knowledge base [Baader and Küsters, 1999].

It interesting to observe that the techniques that have been proposed to compute
the lcs and mcs rely on compact representations of concept expressions, which are
built either following the structural subsumption approach, or through the definition
of a well-suited normal form.

1.6.2.2 Unification and matching

Another tool to support the construction and maintenance of DL knowledge bases
that goes beyond the standard inference services provided by DL-KRSs is the
unification of concepts.

Concept unification [Baader and Narendran, 1998] is an operation that can be
regarded as weakening the equivalence between two concept expressions. More
precisely, two concept expressions unify if one can find a substitution of con-
cept variables into concept expressions such that the result of applying the sub-
stitution gives equivalent concepts. The intuition is that, in order to find possible
overlaps between concept definitions, one can treat certain concept names as vari-
ables and discover, via unification, that two concepts (possibly independently de-
fined by distinct knowledge designers) are in fact equivalent. The knowledge base
can consequently be simplified by introducing a single definition of the unifiable
concepts.

As usual, matching is defined as a special case of unification, where variables
occur only in one of the two concept expressions. In addition, in the framework
of Description Logics, one can define matching and unification based on the sub-
sumption relation instead of equivalence [Baader et al., 1999a].

As with other non-standard inferences, the computation of matching and unifi-
cation relies on the use of specialized representations for concept expressions, and
it has been shown to be decidable for rather simple Description Logics.

1.6.2.3 Concept rewriting

Finally, there has been a significant body of work on the problem of concept rewrit-
ing. Given a concept expressed in a source language, concept rewriting amounts to
finding a concept, possibly expressed in a target language, which is related to the
given concept according to equivalence, subsumption, or some other relation.

In order to specify the rewriting, one can provide a suitable set of constraints be-
tween concepts in the source language and concepts in the target language. Concept
rewriting can be applied to the translation of concepts from one knowledge base to
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another, or in the reformulation of concepts during the process of knowledge base
construction and maintenance.

In addition, concept rewriting has been addressed in the context of the rewriting
of queries using views, in database management (see also Chapter 16), and has
recently been investigated in the framework of information integration. In this
setting, one can apply concept rewriting techniques to automatically generate the
queries that enable a system to gather information from a set of sources [Beeri et al.,
1997]. Given an initial specification of the query according to a common, global
language, and a set of constraints expressing the relationship between the global
schema and the individual sources where information is stored, the problem is to
compute the queries to be posed to the local sources that provide answers, possibly
approximate, to the original query [Calvanese et al., 2000a].

1.7 Relationship to other fields of Computer Science

Description Logics were developed with the goals of providing formal, declarative
meanings to semantic networks and frames, and of showing that such representation
structures can be equipped with efficient reasoning tools. However, the underly-
ing ideas of concept/class and hierarchical structure based upon the generality and
specificity of a set of classes have appeared in many other fields of Computer Sci-
ence, such as database management and programming languages. Consequently,
there have been a number of attempts to find commonalities and differences among
formalisms with similar underlying notions, but which were developed in different
fields. Moreover, by looking at the syntactic form of Description Logics – logics
that are restricted to unary and binary predicates and allow restricted forms of quan-
tification – other logical formalisms that have strong relationships with Description
Logics have been identified. In this section we briefly address such relationships; in
particular, we focus our attention on the relationship of Description Logics to other
class-based languages, and then we address the relationship between Description
Logics and other logics. These topics are addressed in more detail in Chapter 4.

1.7.1 Description Logics and other class-based formalisms

As we have mentioned, Description Logics can, in principle, be related to other
class-based formalisms. Before looking at other fields, it is worth relating Descrip-
tion Logics to other formalisms developed within the field of knowledge repre-
sentation that share the intuitions underlying network-based representation struc-
ture. In [Lehmann, 1992] several languages aiming at structured representations
of knowledge are reviewed. We have already discussed the relationship between
Description Logics and semantic networks and frames, since they provided the
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basic motivations for developing Description Logics in the first place. Among
others, conceptual graphs [Sowa, 1991] have been regarded as away of representing
conceptual structures very closely related to semantic networks (and consequently,
to Description Logics). However, only recently has there been a detailed analysis of
the relationship between conceptual graphs and Description Logics [Baader et al.,
1999c]. The outcome of this work makes it apparent that, although one can estab-
lish a relationship between simple conceptual graphs and a DL language, there are
substantial differences between the two formalisms. Themost significant one is that
Description Logics are characterized by the universally quantified role restriction,
which is not present in conceptual graphs. Consequently, the interpretation of the
representation structures becomes substantially different.

In many other fields of Computer Science we find formalisms for the repre-
sentation of objects and classes [Motschnig-Pitrik and Mylopoulous, 1992]. Such
formalisms share the notion of a class that denotes a subset of the domain of dis-
course, and they allow one to express several kinds of relationships and constraints
(e.g., subclass constraints) that hold among classes. Moreover, class-based for-
malisms aim at taking advantage of the class structure in order to provide various
types of information, such as whether an element belongs to a class, whether a class
is a subclass of another class, and more generally, whether a given constraint holds
between two classes. In particular, formalisms that are built upon the notions of
class and class-based hierarchies have been developed in the field of database man-
agement, in semantic data modeling (see for example [Hull and King, 1987]), in
object-oriented languages (see for example [Kim and Lochovsky, 1989]), and more
generally, in programming languages (see for example [Lenzerini et al., 1991]).

There have been several attempts to establish relationships among the class-based
formalismsdeveloped in different fields. In particular, the common intuitions behind
classes and concepts have stimulated several pieces of work aimed at establishing
a precise relationship between class-based formalisms and Description Logics.
However, it is difficult to find a common framework for carrying out a precise
comparison.

In Chapter 4 a specific Description Logic is taken as a basis for identifying the
common features of frame systems and object-oriented and semantic data models
(see also [Calvanese et al., 1999e]). Specifically, a precise correspondence between
the chosen DL and the Entity–Relationship model [Chen, 1976], as well as with
an object-oriented language in the style of [Abiteboul and Kanellakis, 1989], is
presented there.

This kind of comparison shows that one can indeed identify a large common
basis, but also that there are features that are currently missing in each formalism.
For example, to capture semantic data models one needs a cyclic form of inclusion
assertion, as well as the inverses of roles for modeling relationships that work in
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both directions, while DL roles have a directionality from one concept to another.
Moreover, in order to make a comparison with frame-based systems, one has to
leave out both the non-monotonic features of frames, such as defaults and closures
(which are addressed among the extensions of Description Logics in the previous
section) and their dynamic aspects such as daemons and and triggers (with the ex-
ception of trigger rules, which are also addressed in the previous section). Finally,
with respect to object-oriented data models the main difference is that although
Description Logics provide the expressiveness to model record and set structures,
they are not explicitly available in Description Logics and thus their representation
is a little cumbersome. On the other hand, semantic and object-oriented datamodels
are typically not equipped with reasoning tools that are available with Description
Logics. This issue is further developed in Chapter 16, where the applications of
Description Logics in the field of database management are addressed. However,
if the language is sufficiently expressive, as it needs to be in order to establish rela-
tionships among various class-based formalisms, one needs to distinguish between
finite model reasoning, which is required for database languages that are designed to
represent a closed domain of discourse, and unrestricted reasoning, which is typical
of knowledge representation formalisms and, therefore, of Description Logics.

1.7.2 Relationships to other logics

The initial observation for addressing the relationship of Description Logics to
other logics is the fact that Description Logics are subsets of first-order logic.
This has been known since the earliest days of Description Logics, and has been
thoroughly investigated in [Borgida, 1996]. In fact, the Description Logic ALC
corresponds to the fragment of first-order logic obtained by restricting the syntax to
formulas containing two variables. The importance of this and subsequent studies
on this issue is related to finding adequate characterizations of the expressiveness
of Description Logics.

Since Description Logics focus on a language formed by unary and binary pred-
icates, it turned out that they are closely related to modal languages, if one regards
roles as accessibility relations. In particular, Schild [1991] pointed out that some
Description Logics are notational variants of certain propositional modal logics;
specifically, the Description LogicALC has a modal logic counterpart, namely the
multi-modal version of the logic K (see [Halpern and Moses, 1992]). Actually,
ALC-concepts and formulas in multi-modal K can immediately be translated into
each other.Moreover, anALC-concept is satisfiable if and only if the corresponding
K-formula is satisfiable. Research in the complexity of the satisfiability problem
for modal propositional logics was initiated quite some time before the complex-
ity of Description Logics was investigated. Consequently, this relationship made it
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possible to borrow from modal logic complexity results, reasoning techniques, and
language constructs that had not been previously considered in Description Logics.
On the other hand, there are features of Description Logics that did not have coun-
terparts in modal logics and therefore needed ad hoc extensions of the reasoning
techniques developed for modal logics. In particular, number restrictions as well as
the treatment of individuals in the ABox required specific treatments based on the
idea of reification, which amounts to expressing the extensions through a special
kind of axiomwithin the logic. Finally, wemention that recent work has pointed out
a relationship between Description Logics and guarded fragments, which can be
regarded as generalizations of modal logics. Most of the research on very expres-
sive Description Logics, addressed in Chapter 5, has its roots in the correspondence
with modal logic.

1.8 Conclusion

From their humble origins in the late 1970s as a remedy for logical and semantic
problems in frame and semantic network representations, Description Logics have
grown to be a unique and important keystone in the history of knowledge repre-
sentation. DL formalisms certainly evoked interest in their earliest days, with the
invention and application of theKl-One system, but international attention and re-
search was given a significant boost in 1984when Brachman and Levesque used the
simple and intuitive structure ofDescriptionLogics as the basis for their observation
about the tradeoff between knowledge representation language expressiveness and
computational complexity of reasoning. The way Description Logics were able to
separate out the structure of concepts and roles into simple term-forming operators
opened the door to extensive analysis of a broad family of languages. One could
add and subtract these operators to and from the language and explore both the
computational ramifications and the relationship of the resulting language to other
formal languages in Computer Science, such as modal logics and data models for
database systems.

As a result, the family of Description Logic languages is probably the most
thoroughly understood set of formalisms in all of knowledge representation. The
computational space has been thoroughlymapped out, and awide variety of systems
have been built, testing out different styles of inference computation and being used
in many applications.

Description Logics are responsible for many of the cornerstone notions used
in knowledge representation and reasoning. They helped crystallize many of the
ideas treated informally in earlier notations, such as concepts and roles. But
they added many new important building blocks for later work in the field: the
terminology/assertion distinction (TBox/ABox), number and value restrictions on
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roles, internal structure for concepts, Tell&Ask interfaces, and others. They have
been the subject of a great deal of comparison and analysis with their cousins in
other fields of Computer Science, and DL systems run the gamut from simple, re-
stricted systemswith provably advantageous computational properties to extremely
expressive systems that can support very powerful applications. Perhaps the most
important aspect of work on Description Logics has been the very tight coupling
between theory and practice. The exemplary give-and-take between the formal, an-
alytical side of the field and the pragmatic, implemented side – notable throughout
the entire history ofDescriptionLogics – has been a rolemodel for other areas of AI.
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Basic Description Logics

FRANZ BAADER
WERNER NUTT

Abstract

This chapter provides an introduction to Description Logics as a formal language
for representing knowledge and reasoning about it. It first gives a short overview of
the ideas underlying Description Logics. Then it introduces syntax and semantics,
covering the basic constructors that are used in systems or have been introduced in
the literature, and the way these constructors can be used to build knowledge bases.
Finally, it defines the typical inference problems, shows how they are interrelated,
and describes different approaches for effectively solving these problems. Some of
the topics that are only briefly mentioned in this chapter will be treated in more
detail in subsequent chapters.

2.1 Introduction

As sketched in the previous chapter, Description Logics is the most recent name1

for a family of knowledge representation (KR) formalisms that represent the knowl-
edge of an application domain (the “world”) by first defining the relevant concepts
of the domain (its terminology), and then using these concepts to specify properties
of objects and individuals occurring in the domain (the world description). As the
name Description Logics indicates, one of the characteristics of these languages is
that, unlike some of their predecessors, they are equippedwith a formal, logic-based
semantics. Another distinguished feature is the emphasis on reasoning as a central
service: reasoning allows one to infer implicitly represented knowledge from the
knowledge that is explicitly contained in the knowledge base. Description Logics
support inference patterns that occur inmany applications of intelligent information
processing systems, and which are also used by humans to structure and understand

1 Previously used names are terminological knowledge representation languages, concept languages, term sub-
sumption languages, and Kl-One-based knowledge representation languages.
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the world: classification of concepts and individuals. Classification of concepts de-
termines subconcept–superconcept relationships (called subsumption relationships
inDescription Logics) between the concepts of a given terminology, and thus allows
one to structure the terminology in the form of a subsumption hierarchy. This hi-
erarchy provides useful information on the connection between different concepts,
and it can be used to speed up other inference services. Classification of individuals
(or objects) determines whether a given individual is always an instance of a certain
concept (i.e., whether this instance relationship is implied by the description of the
individual and the definition of the concept). It thus provides useful information
on the properties of an individual. Moreover, instance relationships may trigger the
application of rules that insert additional facts into the knowledge base.

Because Description Logics are a KR formalism, and since in KR one usually
assumes that a KR system should always answer the queries of a user in reasonable
time, the reasoning procedures DL researchers are interested in are decision proce-
dures, i.e., unlike first-order theorem provers, for example, these procedures should
always terminate, both for positive and for negative answers. Since the guarantee
of an answer in finite time need not imply that the answer is given in reasonable
time, investigating the computational complexity of a given Description Logic with
decidable inference problems is an important issue. Decidability and complexity of
the inference problems depend on the expressive power of the Description Logic
at hand. On the one hand, very expressive Description Logics are likely to have
inference problems of high complexity, or they may even be undecidable. On the
other hand, very weak Description Logics (with efficient reasoning procedures)
may not be sufficiently expressive to represent the important concepts of a given
application. As mentioned in the previous chapter, investigating this tradeoff be-
tween the expressivity of Description Logics and the complexity of their reasoning
problems has been one of the most important issues in DL research.

Description Logics are descended from so-called “structured inheritance net-
works” [Brachman, 1977b; 1978], which were introduced to overcome the ambi-
guities of early semantic networks and frames, and which were first realized in the
system Kl-One [Brachman and Schmolze, 1985]. The following three ideas, first
put forward in Brachman’s work on structured inheritance networks, have largely
shaped the subsequent development of Description Logics:

� The basic syntactic building blocks are atomic concepts (unary predicates), atomic roles
(binary predicates), and individuals (constants).

� The expressive power of the language is restricted in that it uses a rather small set of
(epistemologically adequate) constructors for building complex concepts and roles.

� Implicit knowledge about concepts and individuals can be inferred automatically with the
help of inference procedures. In particular, subsumption relationships between concepts
and instance relationships between individuals and concepts play an important role: unlike



2 Basic Description Logics 45

IS-A links in semantic networks, which are explicitly introduced by the user, subsumption
relationships and instance relationships are inferred from the definition of the concepts
and the properties of the individuals.

After the first logic-based semantics forKl-One-likeKR languageswere proposed,
the inference problems like subsumption could also be provided with a precise
meaning, which led to the first formal investigations of the computational proper-
ties of such languages. It has turned out that the languages used in early DL sys-
tems were too expressive, which led to undecidability of the subsumption problem
[Schmidt-Schauß, 1989; Patel-Schneider, 1989b]. The first worst-case complexity
results [Levesque and Brachman, 1987; Nebel, 1988] showed that the subsumption
problem is intractable (i.e., not polynomially solvable) even for very inexpressive
languages. As mentioned in the previous chapter, this work was the starting point of
a thorough investigation of the worst-case complexity of reasoning inKl-One-like
KR languages (see Chapter 3 for details).

Later on it has turned out, however, that intractability of reasoning (in the sense
of being non-polynomial in the worst case) does not prevent a Description Logic
from being useful in practice, provided that sophisticated optimization techniques
are used when implementing a system based on such a Description Logic (see
Chapter 9). When implementing a DL system, the efficient implementation of
the basic reasoning algorithms is not the only issue, though. On the one hand,
the derived system services (such as classification, i.e., constructing the subsump-
tion hierarchy between all concepts defined in a terminology) must be optimized
as well [Baader et al., 1994]. On the other hand, one needs a good user and
application programming interface (see Chapter 7 for more details). Most imple-
mented DL systems provide for a rule language, which can be seen as a very sim-
ple, but effective, application programming mechanism (see Subsection 2.2.5 for
details).

Section 2.2 introduces the basic formalism of Description Logics. By way of
a prototypical example, it first introduces the formalism for describing concepts
(i.e., the description language), and then defines the terminological (TBox) and the
assertional (ABox) formalisms. Next, it introduces the basic reasoning problems
and shows how they are related to each other. Finally, it defines the rule language
that is available in many of the implemented DL systems.

Section 2.3 describes algorithms for solving the basic reasoning problems in
Description Logics. After shortly sketching structural subsumption algorithms, it
concentrates on tableau-based algorithms. Finally, it comments on the problem of
reasoning w.r.t. terminologies.

Finally, Section 2.4 describes some additional language constructors that are
not included in the prototypical family of description languages introduced in
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Fig. 2.1. Architecture of a knowledge representation system based on Description Logics.

Section 2.2, but have been considered in the literature and are available in some
DL systems.

2.2 Definition of the basic formalism

A KR system based on Description Logics provides facilities to set up knowledge
bases, to reason about their content, and tomanipulate them. Figure 2.1 sketches the
architecture of such a system (see Chapter 8 for more information on DL systems).

A knowledge base (KB) comprises two components, the TBox and the ABox.
The TBox introduces the terminology, i.e., the vocabulary of an application do-
main, while the ABox contains assertions about named individuals in terms of this
vocabulary.

The vocabulary consists of concepts, which denote sets of individuals, and roles,
which denote binary relationships between individuals. In addition to atomic con-
cepts and roles (concept and role names), all DL systems allow their users to build
complex descriptions of concepts and roles. The TBox can be used to assign names
to complex descriptions. The language for building descriptions is a characteristic
of each DL system, and different systems are distinguished by their description
languages. The description language has a model-theoretic semantics. Thus, state-
ments in the TBox and in the ABox can be identified with formulae in first-order
logic or, in some cases, a slight extension of it.

A DL system not only stores terminologies and assertions, but also offers ser-
vices that reason about them. Typical reasoning tasks for a terminology are to
determine whether a description is satisfiable (i.e., non-contradictory), or whether
one description is more general than another one, that is, whether the first subsumes
the second. Important problems for an ABox are to find out whether its set of as-
sertions is consistent, that is, whether it has a model, and whether the assertions
in the ABox entail that a particular individual is an instance of a given concept
description. Satisfiability checks of descriptions and consistency checks of sets of
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assertions are useful to determine whether a knowledge base is meaningful at all.
With subsumption tests, one can organize the concepts of a terminology into a hi-
erarchy according to their generality. A concept description can also be conceived
as a query, describing a set of objects one is interested in. Thus, with instance tests,
one can retrieve the individuals that satisfy the query.

In any application, a KR system is embedded into a larger environment. Other
components interact with the KR component by querying the knowledge base and
by modifying it, that is, by adding and retracting concepts, roles, and assertions.
A restricted mechanism for adding assertions uses rules. Rules are an extension
of the logical core formalism, which can still be interpreted logically. However,
many systems, in addition to providing an application programming interface that
consists of functions with a well-defined logical semantics, provide an escape hatch
by which application programs can operate on the KB in arbitrary ways.

2.2.1 Description languages

Elementary descriptions are atomic concepts and atomic roles. Complex descrip-
tions can be built from them inductively with concept constructors. In abstract
notation, we use the letters A and B for atomic concepts, the letter R for atomic
roles, and the letters C and D for concept descriptions. Description languages are
distinguished by the constructors they provide. In the sequel we shall discuss vari-
ous languages from the family of AL-languages. The language AL (= attributive
language) has been introduced in [Schmidt-Schauß and Smolka, 1991] as a min-
imal language that is of practical interest. The other languages of this family are
extensions of AL.

2.2.1.1 The basic description language AL
Concept descriptions in AL are formed according to the following syntax rule:

C, D −→ A | (atomic concept)
� | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C � D | (intersection)
∀R.C | (value restriction)
∃R.� (limited existential quantification).

Note that, in AL, negation can only be applied to atomic concepts, and only the
top concept is allowed in the scope of an existential quantification over a role.
For historical reasons, the sublanguage of AL obtained by disallowing atomic



48 F. Baader and W. Nutt

negation is called FL− and the sublanguage of FL− obtained by disallowing
limited existential quantification is called FL0.

To give examples of what can be expressed in AL, we suppose that Person
and Female are atomic concepts. Then Person � Female and Person � ¬Female

are AL-concepts describing, intuitively, those persons that are female, and those
that are not female. If, in addition, we suppose that hasChild is an atomic role,
we can form the concepts Person � ∃hasChild.� and Person � ∀hasChild.Female,
denoting those persons that have a child, and those persons all of whose children
are female. Using the bottom concept, we can also describe those persons without
a child by the concept Person � ∀hasChild.⊥.

In order to define a formal semantics of AL-concepts, we consider interpreta-
tions I that consist of a non-empty set �I (the domain of the interpretation) and
an interpretation function, which assigns to every atomic concept A a set AI ⊆ �I

and to every atomic role R a binary relation RI ⊆ �I ×�I . The interpretation
function is extended to concept descriptions by the following inductive definitions:

�I = �I

⊥I = ∅
(¬A)I = �I \ AI

(C � D)I = CI ∩ DI
(∀R.C)I = {a ∈ �I | ∀b. (a, b) ∈ RI → b ∈ CI}
(∃R.�)I = {a ∈ �I | ∃b. (a, b) ∈ RI}.

We say that two concepts C , D are equivalent, and write C ≡ D, if CI = DI

for all interpretations I. For instance, going back to the definition of the semantics
of concepts, one easily verifies that ∀hasChild.Female � ∀hasChild.Student and
∀hasChild.(Female � Student) are equivalent.

2.2.1.2 The family of AL-languages
We obtain more expressive languages if we add further constructors to AL. The
union of concepts (indicated by the letter U) is written as C � D, and interpreted
as

(C � D)I = CI ∪ DI .
Full existential quantification (indicated by the letter E) is written as ∃R.C , and

interpreted as

(∃R.C)I = {a ∈ �I | ∃b. (a, b) ∈ RI ∧ b ∈ CI}.
Note that ∃R.C differs from ∃R.� in that arbitrary concepts are allowed to occur
in the scope of the existential quantifier.
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Number restrictions (indicated by the letter N ) are written as � n R (at-least
restriction) and as � n R (at-most restriction), where n ranges over the nonnegative
integers. They are interpreted as

(� n R)I =
{
a ∈ �I

∣
∣
∣ |{b | (a, b) ∈ RI}| ≥ n

}
,

and

(� n R)I =
{
a ∈ �I

∣
∣
∣ |{b | (a, b) ∈ RI}| ≤ n

}
,

respectively, where “| · |” denotes the cardinality of a set. From a semantic view-
point, the coding of numbers in number restrictions is immaterial. However, for the
complexity analysis of inferences it can matter whether a number n is represented
in binary (or decimal) notation or by a string of length n, since binary (decimal)
notation allows a more compact representation.

The negation of arbitrary concepts (indicated by the letter C, for “complement”)
is written as ¬C , and interpreted as

(¬C)I = �I \ CI .
With the additional constructors, we can, for example, describe those persons

that have either not more than one child or at least three children, one of whom is
female:

Person � (� 1 hasChild � (� 3 hasChild � ∃hasChild.Female)).

Extending AL by any subset of the above constructors yields a particular AL-
language. We name each AL-language by a string of the form

AL[U][E][N ][C],

where a letter in the name stands for the presence of the corresponding constructor.
For instance, ALEN is the extension of AL by full existential quantification and
number restrictions (see the appendix on DL terminology for how to extend this
naming scheme to more expressive Description Logics).

From the semantic point of view, not all these languages are distinct, how-
ever. The semantics enforces the equivalencesC � D ≡ ¬(¬C � ¬D) and ∃R.C ≡
¬∀R.¬C . Hence, union and full existential quantification can be expressed using
negation. Conversely, the combination of union and full existential quantification
gives us the ability to express negation of concepts (through their equivalent nega-
tion normal form, see Subsection 2.3.2). Therefore, we assume w.l.o.g. that union
and full existential quantification are available in every language that contains nega-
tion, and vice versa. It follows that (modulo the equivalences mentioned above), all
AL-languages can be written using the letters U , E , N only. It is not hard to see
that the eight languages obtained this way are indeed pairwise non-equivalent. In
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the sequel, we shall not distinguish between anAL-language with negation and its
counterpart that has union and full existential quantification instead. In the same
vein, we shall use the letter C instead of the letters UE in language names. For
instance, we shall write ALC instead of ALUE and ALCN instead of ALUEN .

2.2.1.3 Description languages as fragments of predicate logic

The semantics of concepts identifies description languages as fragments of first-
order predicate logic. Since an interpretation I respectively assigns to every atomic
concept and role a unary and binary relation over�I , we can view atomic concepts
and roles as unary and binary predicates. Then, any concept C can be translated
effectively into a predicate logic formula φC (x) with one free variable x such that
for every interpretation I the set of elements of �I satisfying φC (x) is exactly CI :
An atomic concept A is translated into the formula A(x); the constructors intersec-
tion, union, and negation are translated into logical conjunction, disjunction, and
negation, respectively; ifC is already translated into φC (x) and R is an atomic role,
then value restriction and existential quantification are captured by the formulae

φ∃R.C (y) = ∃x . R(y, x) ∧ φC (x)

φ∀R.C (y) = ∀x . R(y, x)→ φC (x),

where y is a new variable; number restrictions are expressed by the formulae

φ� n R(x) = ∃y1, . . . , yn. R(x, y1) ∧ · · · ∧ R(x, yn) ∧
∧

i< j

yi �= y j

φ� n R(x) = ∀y1, . . . , yn+1. R(x, y1) ∧ · · · ∧ R(x, yn+1)→
∨

i< j

yi = y j .

Note that the equality predicate “=” is needed to express number restrictions, while
concepts without number restrictions can be translated into equality-free formulae.

One may argue that, since concepts can be translated into predicate logic, there
is no need for a special syntax. However, the above translations show that, in
particular for number restrictions, the variable-free syntax of Description Logics is
much more concise. As can be seen from Section 2.3, it also lends itself easily to
the development of algorithms.

A more detailed analysis of the connection between fragments of first-order
predicate logic and Description Logics can be found in Chapter 4.

2.2.2 Terminologies

Wehave seen howwe can form complex descriptions of concepts to describe classes
of objects. Now, we introduce terminological axioms, whichmake statements about
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how concepts or roles are related to each other. Then we single out definitions as
specific axioms and identify terminologies as sets of definitions by which we can
introduce atomic concepts as abbreviations or names for complex concepts. If the
definitions in a terminology contain cycles, wemay have to adopt fixpoint semantics
to make them unequivocal. We discuss for which types of terminologies fixpoint
models exist.

2.2.2.1 Terminological axioms

In the most general case, terminological axioms have the form

C 
 D (R 
 S) or C ≡ D (R ≡ S),

where C , D are concepts (and R, S are roles). Axioms of the first kind are called
inclusions, while axioms of the second kind are called equalities. To simplify the
exposition, we deal in the following only with axioms involving concepts.

The semantics of axioms is defined as one would expect. An interpretation I
satisfies an inclusion C 
 D if CI ⊆ DI , and it satisfies an equality C ≡ D if
CI = DI . If T is a set of axioms, then I satisfies T iff I satisfies each element
of T . If I satisfies an axiom (resp. a set of axioms), then we say that it is amodel of
this axiom (resp. set of axioms). Two axioms or two sets of axioms are equivalent
if they have the same models.

2.2.2.2 Definitions

An equality whose left-hand side is an atomic concept is a definition. Definitions
are used to introduce symbolic names for complex descriptions. For instance, by
the axiom

Mother ≡Woman � ∃hasChild.Person
we associate to the description on the right-hand side the name Mother. Symbolic
names may be used as abbreviations in other descriptions. If, for example, we have
defined Father analogously to Mother, we can define Parent as

Parent ≡ Mother � Father.

A set of definitions should be unequivocal. We call a finite set of definitions T a
terminology or TBox if no symbolic name is defined more than once, that is, if for
every atomic concept A there is at most one axiom in T whose left-hand side is A.
Figure 2.2 shows a terminology with concepts concerned with family relationships.

Suppose T is a terminology. We divide the atomic concepts occurring in T into
two sets, the name symbols NT that occur on the left-hand side of some axiom
and the base symbols BT that occur only on the right-hand side of axioms. Name
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Woman ≡ Person � Female

Man ≡ Person � ¬Woman

Mother ≡ Woman � ∃hasChild.Person
Father ≡ Man � ∃hasChild.Person
Parent ≡ Father �Mother

Grandmother ≡ Mother � ∃hasChild.Parent
MotherWithManyChildren ≡ Mother �� 3 hasChild
MotherWithoutDaughter ≡ Mother � ∀hasChild.¬Woman

Wife Woman hasHusband.Man

Fig. 2.2. A terminology (TBox) with concepts about family relationships.

symbols are often called defined concepts and base symbols primitive concepts.2

We expect that the terminology defines the name symbols in terms of the base
symbols, which now we make more precise.

A base interpretation for T is an interpretation that interprets only the base
symbols. Let J be such a base interpretation. An interpretation I that interprets
also the name symbols is an extension of J if it has the same domain as J , i.e.,
�I = �J , and if it agrees withJ for the base symbols.We say that T is definitorial
if every base interpretation has exactly one extension that is a model of T . In other
words, if we know what the base symbols stand for, and T is definitorial, then the
meaningof the name symbols is completely determined.Obviously, if a terminology
is definitorial, then every equivalent terminology is also definitorial.

The questionwhether a terminology is definitorial or not is related to the question
whether or not its definitions are cyclic. For instance, the terminology that consists
of the the single axiom

Human′ ≡ Animal � ∀hasParent.Human′ (2.1)

contains a cycle, which in this special case is very simple. In general, we define
cycles in a terminology T as follows. Let A, B be atomic concepts occurring
in T . We say that A directly uses B in T if B appears on the right-hand side of
the definition of A, and we define uses to be the transitive closure of the relation
directly uses. Then T contains a cycle iff there exists an atomic concept in T that
uses itself. Otherwise, T is called acyclic.

Unique extensions need not exist if a terminology contains cycles. Consider, for
instance, the terminology that contains only Axiom (2.1). Here, Human′ is a name
symbol and Animal and hasParent are base symbols. For an interpretation where
hasParent relates every animal to its progenitors, many extensions are possible to
interpret Human′ in a such a way that the axiom is satisfied: Human′ can, among
others, be interpreted as the set of all animals, as some species, or any other set of
animals with the property that for each animal it contains also its progenitors.

2 Note that some papers use the notion “primitive concept” with a different meaning; e.g., synonymous with what
we call atomic concepts, or to denote the (atomic) left-hand sides of concept inclusions.
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Woman ≡ Person � Female

Man ≡ Person � ¬(Person � Female)
Mother ≡ (Person � Female) � ∃hasChild.Person
Father ≡ (Person � ¬(Person � Female)) � ∃hasChild.Person
Parent ≡ ((Person � ¬(Person � Female)) � ∃hasChild.Person)

� ((Person � Female) � ∃hasChild.Person)
Grandmother ≡ ((Person � Female) � ∃hasChild.Person)

� ∃hasChild.(((Person � ¬(Person � Female))
� ∃hasChild.Person)
� ((Person � Female)
� ∃hasChild.Person))

MotherWithManyChildren ≡ ((Person � Female) � ∃hasChild.Person) �� 3 hasChild
MotherWithoutDaughter ≡ ((Person � Female) � ∃hasChild.Person)

� ∀hasChild.(¬(Person � Female))
Wife ≡ (Person � Female)

hasHusband.(Person (Person Female))

Fig. 2.3. The expansion of the Family TBox in Figure 2.2.

In contrast, if a terminology T is acyclic, then it is definitorial. The reason is that
we can expand through an iterative process the definitions in T by replacing each
occurrence of a name on the right-hand side of a definition by the concepts that it
stands for. Since there is no cycle in the set of definitions, the process eventually
stops and we end up with a terminology T ′ consisting solely of definitions of the
form A ≡ C ′, where C ′ contains only base symbols and no name symbols. We
call T ′ the expansion of T . Note that the size of the expansion can be exponen-
tial in the size of the original terminology [Nebel, 1990b]. The Family TBox in
Figure 2.2 is acyclic. Therefore, we can compute the expansion, which is shown in
Figure 2.3.

Proposition 2.1 Let T be an acyclic terminology and T ′ be its expansion. Then

(i) T and T ′ have the same name and base symbols;
(ii) T and T ′ are equivalent;
(iii) both T and T ′ are definitorial.

Proof Let T1 be a terminology. Suppose A ≡ C and B ≡ D are definitions in T1

such that B occurs in C . Let C ′ be the concept obtained from C by replacing
each occurrence of B in C by D, and let T2 be the terminology obtained from T1

by replacing the definition A ≡ C by A ≡ C ′. Then both terminologies have the
same name and base symbols. Moreover, since T2 has been obtained from T1 by
replacing equals by equals, both terminologies have the same models. Since T ′
is obtained from T by a sequence of replacement steps like the ones above, this
proves claims (i) and (ii).

Suppose now that J is an interpretation of the base symbols. We extend it to an
interpretation I that covers also the name symbols by setting AI = C ′J , if A ≡ C ′



54 F. Baader and W. Nutt

is the definition of A in T ′. Clearly, I is a model of T ′, and it is the only extension
of J that is a model of T ′. This shows that T ′ is definitorial. Moreover, T is
definitorial as well, since it is equivalent to T ′.

It is characteristic of acyclic terminologies, in a sense to be made more precise,
to uniquely define the name symbols in terms of the base symbols.

Of course, there are also terminologies with cycles that are definitorial. Consider
for instance the one consisting of the axiom

A ≡ ∀R.B � ∃R.(A � ¬A), (2.2)

which has a cycle.However, since∃R.(A � ¬A) is equivalent to the bottomconcept,
Axiom (2.2) is equivalent to the acyclic axiom

A ≡ ∀R.B. (2.3)

This example is typical of the general situation.

Theorem 2.2 Every definitorial ALC-terminology is equivalent to an acyclic
terminology.

The theorem is a reformulation of Beth’s Definability Theorem [Gabbay, 1972]
for the modal propositional logic Kn , which, as shown by Schild [1991], is a
notational variant of ALC.

2.2.2.3 Fixpoint semantics for terminological cycles

Under the semantics we have studied so far, which is essentially the semantics of
first-order logic, terminologies have definitorial effect only if they are essentially
acyclic. Following Nebel [1991], we shall call this semantics descriptive semantics
to distinguish it from the fixpoint semantics introduced below. Fixpoint semantics
are motivated by the fact that there are situations where intuitively cyclic defini-
tions are meaningful and the intuition can be captured by least or greatest fixpoint
semantics.

Example 2.3 Suppose that we want to specify the concept of a “man who has only
male descendants”, for short Momd. In particular, such a man is a Mos, that is, a
“man who has only sons”. A Mos can be defined without cycles as

Mos ≡ Man � ∀hasChild.Man.

For aMomd, however, wewant tomake a statement about the fillers of the transitive
closure of the role hasChild. Here a recursive definition of Momd seems to be
natural. A man having only male descendants is himself a man, and all his children
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are men having only male descendants:

Momd ≡ Man � ∀hasChild.Momd. (2.4)

In order to achieve the desiredmeaning, we have to interpret this definition under an
appropriate fixpoint semantics.We shall showbelow that greatest fixpoint semantics
captures our intuition here.

Cycles also appear when we want to model recursive structures, e.g., binary
trees.3

Example 2.4 We suppose that there is a set of objects that are Trees and a binary
relation has-branch between objects that leads from a tree to its subtrees. Then the
binary trees are the trees with at most two subtrees that are themselves binary trees:

BinaryTree ≡ Tree �� 2 has-branch � ∀has-branch.BinaryTree.
Aswith the definition ofMomo, a fixpoint semantics will yield the desiredmeaning.
However, for this example we have to use least fixpoint semantics.

We now give a formal definition of fixpoint semantics. In a terminology T , every
name symbol A occurs exactly once as the left-hand side of an axiom A ≡ C .
Therefore, we can view T as a mapping that associates to a name symbol A the
concept description T (A) = C . With this notation, an interpretation I is a model of
T if, and only if, AI = (T (A))I . This characterization has the flavor of a fixpoint
equation. We exploit this similarity to introduce a family of mappings such that an
interpretation is a model of T iff it is a fixpoint of such a mapping.

Let T be a terminology, and let J be a fixed base interpretation of T . By ExtJ
we denote the set of all extensions ofJ . Let TJ :ExtJ → ExtJ be the mapping that
maps the extension I to the extension TJ (I) defined by ATJ (I) = (T (A))I for each
name symbol A.

Now, I is a fixpoint of TJ iff I = TJ (I), i.e., iff AI = ATJ (I) for all name
symbols. Thismeans that, for every definition A ≡ C in T , we have AI = ATJ (I) =
(T (A))I = CI ,whichmeans thatI is amodel ofT . This proves the following result.

Proposition 2.5 Let T be a terminology, I be an interpretation, and J be the
restriction of I to the base symbols of T . Then I is a model of T if, and only if, I
is a fixpoint of TJ .

According to the preceding proposition, a terminology T is definitorial iff every
base interpretation J has a unique extension that is a fixpoint of TJ .

3 The following example is taken from [Nebel, 1991].
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Example 2.6 To get a feel for why cyclic terminologies are not definitorial, we
discuss as an example the terminology T Momd that consists only of Axiom (2.4).
Consider the base interpretation J defined by

�J = {Charles1, Charles2, . . .} ∪ {James1, . . . , JamesLast},
ManJ = �J ,

hasChildJ = {(Charlesi ,Charles(i+1)) | i ≥ 1} ∪
{(Jamesi , James(i+1)) | 1 ≤ i < Last}.

Thismeans that theCharles dynasty does not die out, whereas there is a lastmember
of the James dynasty.

We want to identify the fixpoints of T Momd
J . Note that an individual with-

out children, i.e., without fillers of hasChild, is always in the interpretation of
∀hasChild.Momd, no matter howMomd is interpreted. Therefore, if I is a fixpoint
extension of J , then JamesLast is in (∀hasChild.Momd)I , and thus in MomdI . We
conclude that every James is a Momd. Let I1 be the extension of J such that
MomdI1 comprises exactly the James dynasty. Then it is easy to check that I1 is a
fixpoint. If, in addition to the James dynasty, some Charles is aMomd, then all the
members of the Charles dynasty before and after him must belong to the concept
Momd. One can easily check that the extension I2 that interprets Momd as the
entire domain is also a fixpoint, and that there is no other fixpoint.

In order to give definitorial effect to a cyclic terminology T , we must single out
a particular fixpoint of the mapping TJ if there are more than one. To this end,
we define a partial ordering “ ” on the extensions of J . We say that I  I ′ if
AI ⊆ AI

′
for every name symbol in T . In the above example, Momd is the only

name symbol. Since MomdI1 ⊆ MomdI2 , we have I1  I2.
A fixpoint I of TJ is the least fixpoint (lfp) if I  I ′ for every other fixpoint I ′.

We say that I is a least fixpoint model of T if I is the least fixpoint of TJ for
some base interpretation J . Under least fixpoint semantics we only admit the least
fixpoint models of T as intended interpretations. Greatest fixpoints (gfp), greatest
fixpoint models, and greatest fixpoint semantics are defined analogously. In the
Momd example, I1 is the least and I2 the greatest fixpoint of TJ .

2.2.2.4 Existence of fixpoint models

Least and greatest fixpoint models need not exist for every terminology.

Example 2.7 As a simple example, consider the axiom

A ≡ ¬A. (2.5)
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If I is a model of this axiom, then AI = �I \ AI , which implies �I = ∅, an
absurdity.

A terminology containing Axiom (2.5) thus does not have any models, and
therefore also no gfp (lfp) models.

There are also cases where models (i.e., fixpoints) exist, but there is neither a
least one nor a greatest one. As an example, consider the terminology T with the
single axiom

A ≡ ∀R.¬A. (2.6)

LetJ be the base interpretation with�J = {a, b} and RJ = {(a, b), (b, a)}. Then
there are two fixpoint extensions I1, I2, defined by AI1 = {a} and AI2 = {b}.
However, they are not comparable with respect to “ ”.

In order to identify terminologies with the property that for every base interpre-
tation there exists a least and a greatest fixpoint extension, we draw upon results
from lattice theory. Recall that a lattice is complete if every family of elements has
a least upper bound.

On ExtJ we have introduced the partial ordering “ ”. For a family of interpreta-
tions (Ii )i∈I in ExtJ we define I0 =

⊔
i∈I Ii as the pointwise union of the Iis, that

is, for every name symbol A we have AI0 = ⋃
i∈I A

Ii . Then I0 is the least upper
bound of the Iis, which shows that (ExtJ , ) is a complete lattice.

A function f : L → L on a lattice (L , ) is monotone if f (x)  f (y) whenever
x  y. Tarski’s Fixpoint Theorem [Tarski, 1955] says that for a monotone function
on a complete lattice the set of fixpoints is nonempty and itself forms a complete
lattice. In particular, there is a least and a greatest fixpoint.

We define that a terminology T is monotone if the mapping TJ is monotone for
all base interpretations J . By Tarski’s theorem, such terminologies have greatest
and least fixpoints. However, to apply the theorem, we must be able to recognize
monotone terminologies. A simple syntactic criterion is the following. We call a
terminology negation-free if no negation occurs in it. By an induction over the depth
of concept descriptions one can check that every negation-freeALCN -terminology
is monotone.

Proposition 2.8 If T is a negation-free terminology and J a base interpretation,
then there exist extensions of J that are an lfp-model and a gfp-model of T ,
respectively.

Negation-free terminologies are not the most general class of terminologies
having least and greatest fixpoints. We have seen in Proposition 2.1 that acyclic
terminologies are definitorial and thus for a given base interpretation admit only a
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single extension that is a model, which then is both a least and a greatest fixpoint
model.

We obtain a more refined criterion for the existence of least and greatest fixpoints
if we pay attention to the interplay between cycles and negation. To this end, we
associate to a terminology T a dependency graph GT , whose nodes are the name
symbols in T . If T contains the axiom A ≡ C , then for every occurrence of the
name symbol A′ in C , there is an arc from A to A′ in GT . Arcs are labeled as
positive and negative. The arc from A to A′ is positive if A′ occurs inC in the scope
of an even number of negations, and it is negative if A′ occurs in the scope of an
odd number of negations. A sequence of nodes A1, . . . , An is a path if there is an
arc in GT from Ai to Ai+1 for all i = 1, . . . , n − 1. A path is a cycle if A1 = An .

Proposition 2.9 Let T be a terminology such that each cycle in GT contains an
even number of negative arcs. Then T is monotone.

Wecall a terminology satisfying the precondition of this proposition syntactically
monotone.

2.2.2.5 Terminologies with inclusion axioms

For certain concepts we may be unable to define them completely. In this case, we
can still state necessary conditions for concept membership using an inclusion. We
call an inclusion whose left-hand side is atomic a specialization.

For example, if a (male) knowledge engineer thinks that the definition of
“woman” in our example TBox (Figure 2.2) is not satisfactory, but if he also feels
that he is not able to define the concept “woman” in all detail, he can require that
every woman is a person with the specialization

Woman 
 Person. (2.7)

If we also allow specializations in a terminology, then the terminology loses
its definitorial effect, even if it is acyclic. A set of axioms T is a generalized
terminology if the left-hand side of each axiom is an atomic concept and for every
atomic concept there is at most one axiom where it occurs on the left-hand side.

We shall transform a generalized terminology T into a regular terminology T̄ ,
containing definitions only, such that T̄ is equivalent to T in a sense that will be
specified below. We obtain T̄ from T by choosing for every specialization A 
 C
in T a new base symbol Ā and by replacing the specialization A 
 C with the
definition A ≡ Ā � C . The terminology T̄ is the normalization of T .
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If a TBox contains the specialization (2.7), then the normalization contains the
definition

Woman ≡Woman � Person.

Intuitively, the additional base symbol Woman stands for the qualities that
distinguish a woman among persons. Thus, normalization results in a TBox with a
definition for Woman that is similar to the one in the Family TBox.

Proposition 2.10 Let T be a generalized terminology and T̄ its normalization.

� Every model of T̄ is a model of T .
� For every model I of T there is a model Ī of T̄ that has the same domain as I and agrees
with I on the atomic concepts and roles in T .

Proof The first claim holds because a model Ī of T̄ satisfies AĪ = ( Ā � C)Ī =
ĀĪ ∩ C Ī , which implies AĪ ⊆ C Ī . Conversely, if I is a model of T , then the
extension Ī of I, defined by ĀĪ = AI , is a model of T̄ , because AI ⊆ CI implies
AI = AI ∩ CI = ĀĪ ∩ C Ī , and therefore Ī satisfies A ≡ Ā � C .

Thus, in theory, inclusion axioms do not add to the expressivity of terminolo-
gies. However, in practice, they are a convenient means to introduce terms into a
terminology that cannot be defined completely.

2.2.3 World descriptions

The second component of a knowledge base, in addition to the terminology or
TBox, is the world description or ABox.

2.2.3.1 Assertions about individuals

In the ABox, one describes a specific state of affairs of an application domain in
terms of concepts and roles. Some of the concept and role atoms in the ABox may
be defined names of the TBox. In the ABox, one introduces individuals, by giving
them names, and one asserts properties of these individuals. We denote individual
names by a, b, c. Using concepts C and roles R, one can make assertions of the
following two kinds in an ABox:

C(a), R(b, c).

By the first kind, called concept assertions, one states that a belongs to (the inter-
pretation of) C . By the second kind, called role assertions, one states that c is a
filler of the role R for b. For instance, if PETER, PAUL, and MARY are individual
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MotherWithoutDaughter(MARY) Father(PETER)
hasChild(MARY,PETER) hasChild(PETER,HARRY)
hasChild(MARY,PAUL)

Fig. 2.4. A world description (ABox).

names, then Father(PETER) means that Peter is a father, and hasChild(MARY, PAUL)
means that Paul is a child of Mary. An ABox, denoted by A, is a finite set of such
assertions. Figure 2.4 shows an example of an ABox.

In a simplified view, an ABox can be seen as an instance of a relational
databasewith only unary or binary relations.However, contrary to the “closed-world
semantics” of classical databases, the semantics of ABoxes is an “open-world se-
mantics”, since normally knowledge representation systems are applied in situations
where one cannot assume that the knowledge in the KB is complete.4 Moreover, the
TBox imposes semantic relationships between the concepts and roles in the ABox
that do not have counterparts in database semantics.

We give a semantics to ABoxes by extending interpretations to individual names.
From now on, an interpretation I = (�I, ·I) not only maps atomic concepts and
roles to sets and relations, but in addition maps each individual name a to an
element aI ∈ �I . We assume that distinct individual names denote distinct objects.
Therefore, this mapping has to respect the unique name assumption (UNA), that is,
if a, b are distinct names, then aI �= bI . The interpretation I satisfies the concept
assertionC(a) if aI ∈ CI , and it satisfies the role assertion R(a, b) if (aI, bI) ∈ RI .
An interpretation satisfies the ABoxA if it satisfies each assertion inA. In this case
we say that I is a model of the assertion or of the ABox. Finally, I satisfies an
assertion α or an ABoxA with respect to a TBox T if in addition to being a model
of α or of A, it is a model of T . Thus, a model of A and T is an abstraction of
a concrete world where the concepts are interpreted as subsets of the domain as
required by the TBox and where the membership of the individuals to concepts and
their relationships with one another in terms of roles respect the assertions in the
ABox.

2.2.3.2 Individual names in the description language

Sometimes, it is convenient to allow individual names (also called nominals) not
only in the ABox, but also in the description language. Some concept constructors
employing individuals occur in systems and have been investigated in the literature.
The most basic one is the “set” (or one-of ) constructor, written

{a1, . . . , an},
4 We discuss implications of this difference in semantics in Subsection 2.2.4.4.
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where a1, . . . , an are individual names. As one would expect, such a set concept is
interpreted as

{a1, . . . , an}I = {aI1 , . . . , aIn }. (2.8)

With sets in the description language one can for instance define the concept
of permanent members of the UN security council as {CHINA, FRANCE, RUSSIA,

UK, USA}.
In a language with the union constructor “�”, a constructor {a} for singleton sets

alone adds sufficient expressiveness to describe arbitrary finite sets since, according
to the semantics of the set constructor in Equation (2.8), the concepts {a1, . . . , an}
and {a1} � · · · � {an} are equivalent.

Another constructor involving individual names is the “fills” constructor

R : a,

for a role R. The semantics of this constructor is defined as

(R : a)I = {d ∈ �I | (d, aI) ∈ RI}, (2.9)

that is, R : a stands for the set of those objects that have a as a filler of the role R. To
a description language with singleton sets and full existential quantification, “fills”
does not add anything new, since Equation (2.9) implies that R : a and ∃R.{a} are
equivalent.

We note, finally, that “fills” allows one to express role assertions through concept
assertions: an interpretation satisfies R(a, b) iff it satisfies (∃R.{b})(a).

2.2.4 Inferences

A knowledge representation system based on Description Logics is able to perform
specific kinds of reasoning. As said before, the purpose of a knowledge representa-
tion system goes beyond storing concept definitions and assertions. A knowledge
base – comprising TBox and ABox – has a semantics that makes it equivalent to
a set of axioms in first-order predicate logic. Thus, like any other set of axioms,
it contains implicit knowledge that can be made explicit through inferences. For
example, from the TBox in Figure 2.2 and the ABox in Figure 2.4 one can conclude
that Mary is a grandmother, although this knowledge is not explicitly stated as an
assertion.

The different kinds of reasoning performed by a DL system (see Chapter 8) are
defined as logical inferences. In the following, we shall discuss these inferences,
first for concepts, then for TBoxes and ABoxes, and finally for TBoxes and ABoxes
together. It will turn out that there is one main inference problem, namely the
consistency check for ABoxes, to which all other inferences can be reduced.
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2.2.4.1 Reasoning tasks for concepts

When modeling a domain, a knowledge engineer constructs a terminology, say T ,
by defining new concepts, possibly in terms of others that have been defined be-
fore. During this process, it is important to find out whether a newly defined concept
makes sense or whether it is contradictory. From a logical point of view, a concept
makes sense for us if there is some interpretation that satisfies the axioms of T (that
is, a model of T ) such that the concept denotes a nonempty set in that interpreta-
tion. A concept with this property is said to be satisfiable with respect to T and
unsatisfiable otherwise.

Checking satisfiability of concepts is a key inference. As we shall see, a number
of other important inferences for concepts can be reduced to (un)satisfiability. For
instance, in order to checkwhether a domainmodel is correct, or to optimize queries
that are formulated as concepts, we may want to know whether some concept is
more general than another one: this is the subsumption problem. A concept C is
subsumed by a concept D if in every model of T the set denoted by C is a subset
of the set denoted by D. Algorithms that check subsumption are also employed to
organize the concepts of a TBox in a taxonomy according to their generality. Further
interesting relationships between concepts are equivalence and disjointness.

These properties are formally defined as follows. Let T be a TBox.

Satisfiability A concept C is satisfiablewith respect to T if there exists a model I
of T such that CI is nonempty. In this case we say also that I is a model of C .

Subsumption A concept C is subsumed by a concept D with respect to T if CI ⊆
DI for every model I of T . In this case we write C 
T D or T |= C 
 D.

Equivalence Two concepts C and D are equivalent with respect to T if CI = DI

for every model I of T . In this case we write C ≡T D or T |= C ≡ D.
Disjointness Two conceptsC and D are disjointwith respect to T ifCI ∩ DI = ∅

for every model I of T .

If the TBox T is clear from the context, we sometimes drop the qualification “with
respect to T ”.

We also drop the qualification in the special case where the TBox is empty, and
we simply write |= C 
 D if C is subsumed by D, and |= C ≡ D if C and D are
equivalent.

Example 2.11 With respect to the TBox in Figure 2.2, Person subsumes Woman,
both Woman and Parent subsume Mother, and Mother subsumes Grandmother.
Moreover,Woman andMan, and Father andMother are disjoint. The subsumption
relationships follow from the definitions because of the semantics of “�” and “�”.
That Man is disjoint from Woman is due to the fact that Man is subsumed by the
negation of Woman.
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Traditionally, the basic reasoning mechanism provided by DL systems checked
the subsumption of concepts. This, in fact, is sufficient to implement also the other
inferences, as can be seen by the following reductions.

Proposition 2.12 (Reduction to Subsumption) For concepts C, D we have

(i) C is unsatisfiable ⇔ C is subsumed by ⊥;
(ii) C and D are equivalent ⇔ C is subsumed by D and D is subsumed by C;
(iii) C and D are disjoint ⇔ C � D is subsumed by ⊥.
The statements also hold with respect to a TBox.

All description languages implemented in actual DL systems provide the inter-
section operator “�” and almost all of them contain an unsatisfiable concept. Thus,
most DL systems that can check subsumption can perform all four inferences de-
fined above.

If, in addition to intersection, a system allows one to form the negation of a
description, one can reduce subsumption, equivalence, and disjointness of concepts
to the satisfiability problem (see also Smolka [1988]).

Proposition 2.13 (Reduction to Unsatisfiability) For concepts C, D we have

(i) C is subsumed by D ⇔ C � ¬D is unsatisfiable;
(ii) C and D are equivalent ⇔ both (C � ¬D) and (¬C � D) are unsatisfiable;
(iii) C and D are disjoint ⇔ C � D is unsatisfiable.

The statements also hold with respect to a TBox.

The reduction of subsumption can easily be understood if one recalls that, for
sets M , N , we have M ⊆ N iff M \ N = ∅. The reduction of equivalence is correct
because C and D are equivalent if, and only if, C is subsumed by D and D is
subsumed by C . Finally, the reduction of disjointness is just a rephrasing of the
definition.

Because of the above proposition, in order to obtain decision procedures for any
of the four inferences we have discussed, it is sufficient to develop algorithms that
decide the satisfiability of concepts, provided the language for which we can decide
satisfiability supports conjunction as well as negation of arbitrary concepts.

In fact, this observation motivated researchers to study description languages
in which, for every concept, one can also form the negation of that con-
cept [Smolka, 1988; Schmidt-Schauß and Smolka, 1991; Donini et al., 1991b;
1997a]. The approach that considers satisfiability checking as the principal infer-
ence gave rise to a new kind of algorithms for reasoning in Description Logics,
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which can be understood as specialized tableau calculi (see Section 2.3 in this
chapter and Chapter 3). Also, the most recent generation of DL systems, like Kris
[Baader and Hollunder, 1991b], Crack [Bresciani et al., 1995], Fact [Horrocks,
1998b], Dlp [Patel-Schneider, 1999], and Race [Haarslev and Möller, 2001e],
are based on satisfiability checking, and a considerable amount of research work
is spent on the development of efficient implementation techniques for this ap-
proach [Baader et al., 1994; Horrocks, 1998b; Horrocks and Patel-Schneider, 1999;
Haarslev and Möller, 2001c].

In an AL-language without full negation, subsumption and equivalence cannot
be reduced to unsatisfiability in the simple way shown in Proposition 2.13 and
therefore these inferences may be of different complexity.

As seen in Proposition 2.12, from the viewpoint of worst-case complexity, sub-
sumption is the most general inference for anyAL-language. The next proposition
shows that unsatisfiability is a special case of each of the other problems.

Proposition 2.14 (Reducing Unsatisfiability) Let C be a concept. Then the fol-
lowing are equivalent:

(i) C is unsatisfiable;
(ii) C is subsumed by ⊥;
(iii) C and ⊥ are equivalent;
(iv) C and � are disjoint.

The statements also hold with respect to a TBox.

From Propositions 2.12 and 2.14 we see that, in order to obtain upper and lower
complexity bounds for inferences on concepts in AL-languages, it suffices to as-
sess lower bounds for unsatisfiability and upper bounds for subsumption. More
precisely, for each AL-language, an upper bound for the complexity of the sub-
sumption problem is also an upper bound for the complexity of the unsatifiability,
the equivalence, and the disjointness problem. Moreover, a lower bound for the
complexity of the unsatifiability problem is also a lower bound for the complexity
of the subsumption, the equivalence, and the disjointness problem.

2.2.4.2 Eliminating the TBox

In applications, concepts usually come in the context of a TBox. However, for
developing reasoning procedures it is conceptually easier to abstract from the TBox
or, what amounts to the same, to assume that it is empty.

We show that, if T is an acyclic TBox, we can always reduce reasoning problems
with respect to T to problems with respect to the empty TBox. As we have seen in
Proposition 2.1, T is equivalent to its expansion T ′. Recall that in the expansion
every definition is of the form A ≡ D such that D contains only base symbols, not
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name symbols. Now, for each concept C we define the expansion of C with respect
to T as the concept C ′ that is obtained from C by replacing each occurrence of a
name symbol A in C by the concept D, where A ≡ D is the definition of A in T ′,
the expansion of T .

For example, we obtain the expansion of the concept

Woman �Man (2.10)

with respect to the TBox in Figure 2.2 by considering the expanded TBox in
Figure 2.3, and replacing Woman and Man by the right-hand sides of their defini-
tions in this expansion. This results in the concept

Person � Female � Person � ¬(Person � Female). (2.11)

We can readily deduce a number of facts about expansions. Since the expansion C ′

is obtained from C by replacing names by descriptions in such a way that both are
interpreted in the same way in any model of T , it follows that

� C ≡T C ′.
Hence, C is satisfiable w.r.t. T iff C ′ is satisfiable w.r.t. T . However, C ′ contains
no defined names, and thus C ′ is satisfiable w.r.t. T iff it is satisfiable. This yields
that

� C is satisfiable w.r.t. T iff C ′ is satisfiable.

If D is another concept, then we have also D ≡T D′. Thus, C 
T D iff C ′ 
T D′,
and C ≡T D iff C ′ ≡T D′. Again, since C ′ and D′ contain only base symbols, this
implies

� T |= C 
 D iff |= C ′ 
 D′;
� T |= C ≡ D iff |= C ′ ≡ D′.

By similar arguments we can show that

� C and D are disjoint w.r.t. T iff C ′ and D′ are disjoint.

Summing up, expanding concepts with respect to an acyclic TBox allows one to
get rid of the TBox in reasoning problems. Going back to our example from above,
this means that, in order to verify whether Man and Woman are disjoint with
respect to the Family TBox, which amounts to checking whether Man �Woman

is unsatisfiable, it suffices to check that the concept (2.11) is unsatisfiable.
Expanding concepts may be computationally costly, since in the worst case the

size of T ′ is exponential in the size of T , and therefore C ′ may be larger than C by
a factor that is exponential in the size of T . A complexity analysis of the difficulty
of reasoning with respect to TBoxes shows that the expansion of definitions is a
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source of complexity that cannot always be avoided (see Subsection 2.3.3 of this
chapter and Chapter 3).

2.2.4.3 Reasoning tasks for ABoxes

After a knowledge engineer has designed a terminology and has used the reasoning
services of the DL system to check that all concepts are satisfiable and that the
expected subsumption relationships hold, the ABox can be filled with assertions
about individuals. We recall that an ABox contains two kinds of assertions, concept
assertions of the form C(a) and role assertions of the form R(a, b). Of course,
the representation of such knowledge has to be consistent, because otherwise –
from the viewpoint of logic – one could draw arbitrary conclusions from it. If,
for example, the ABox contains the assertions Mother(MARY) and Father(MARY),
the system should be able to find out that, together with the Family TBox, these
statements are inconsistent.

In terms of our model-theoretic semantics we can easily give a formal definition
of consistency. An ABox A is consistent with respect to a TBox T , if there is an
interpretation that is a model of both A and T . We simply say that A is consistent
if it is consistent with respect to the empty TBox.

For example, the set of assertions {Mother(MARY), Father(MARY)} is consistent
(with respect to the empty TBox), because without any further restrictions on the
interpretation of Mother and Father, the two concepts can be interpreted in such a
way that they have a common element. However, the assertions are not consistent
with respect to the Family TBox, since in every model of it,Mother and Father are
interpreted as disjoint sets.

Similarly as for concepts, checking the consistency of an ABox with respect to
an acyclic TBox can be reduced to checking an expanded ABox. We define the
expansion of A with respect to T as the ABox A′ that is obtained from A by
replacing each concept assertion C(a) in A by the assertion C ′(a), where C ′ is
the expansion of C with respect to T .5 In every model of T , a concept C and its
expansion C ′ are interpreted in the same way. Therefore, A′ is consistent w.r.t. T
iff A is so. However, since A′ does not contain a name symbol defined in T , it is
consistent w.r.t. T iff it is consistent. We conclude:

� A is consistent w.r.t. T iff its expansion A′ is consistent.

A technique to check the consistency of ALCN -ABoxes is discussed in Subsec-
tion 2.3.2.

5 We expand only concept assertions because the description language considered until now does not provide
constructors for role descriptions and therefore we have not considered TBoxes with role definitions. If the
description language is richer, and TBoxes contain also role definitions, then they clearly have to be taken into
account in the definition of expansions.
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Other inferences that we are going to introduce can also be defined with respect
to a TBox or for an ABox alone. As in the case of consistency, reasoning tasks for
ABoxes with respect to acyclic TBoxes can be reduced to reasoning on expanded
ABoxes. For the sake of simplicity, we shall give only definitions of inferences with
ABoxes alone, and leave it to the reader to formulate the appropriate generalization
to inferences with respect to TBoxes and to verify that they can be reduced to
inferences about expansions, provided the TBox is acyclic.

Over an ABoxA, one can pose queries about the relationships between concepts,
roles and individuals. The prototypical ABox inference on which such queries are
based is instance checking, or the check whether an assertion is entailed by an
ABox. We say that an assertion α is entailed by A and we write A |= α, if every
interpretation that satisfies A, that is, every model of A, also satisfies α. If α is
a role assertion, instance checking is easy, since our description language does
not contain constructors to form complex roles. If α is of the form C(a), we can
reduce instance checking to the consistency problem for ABoxes because there is
the following connection:

� A |= C(a) iff A ∪ {¬C(a)} is inconsistent.
Also reasoning about concepts can be reduced to consistency checking. We have

seen in Proposition 2.13 that the important reasoning problems for concepts can be
reduced to that of deciding whether a concept is (un)satisfiable. Similarly, concept
satisfiability can be reduced to ABox consistency because for every concept C we
have

� C is satisfiable iff {C(a)} is consistent,
where a is an arbitrarily chosen individual name. Conversely, Schaerf [1994b] has
shown that ABox consistency can be reduced to concept satisfiability in languages
with the “set” and the “fills” constructor. If these constructors are not available,
however, then instance checking may be harder than the satisfiability and the sub-
sumption problem [Donini et al., 1994b].

For applications, more complex inferences than consistency and instance check-
ing are usually required. If we consider a knowledge base as a means to store
information about individuals, we may want to know all individuals that are in-
stances of a given concept description C , that is, we use the description language
to formulate queries. In our example, we may want to know from the system all
parents that have at least two children – for instance, because they are entitled to a
specific family tax break. The retrieval problem is, given an ABoxA and a concept
C , to find all individuals a such that A |= C(a). A non-optimized algorithm for a
retrieval query can be realized by testing for each individual occurring in the ABox
whether it is an instance of the query concept C .
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The dual inference to retrieval is the realization problem: given an individual
a and a set of concepts, find the most specific concepts C from the set such that
A |= C(a). Here, the most specific concepts are those that are minimal with respect
to the subsumption ordering 
. Realization can, for instance, be used in systems
that generate natural language if terms are indexed by concepts and if a term as
precise as possible is to be found for an object occurring in a discourse.

2.2.4.4 Closed- vs. open-world semantics

Often, an analogy is established between databases on the one hand and DL knowl-
edge bases on the other hand (see also Chapter 16). The schema of a database is
compared to the TBox and the database instance with the actual data is compared to
the ABox. However, the semantics of ABoxes differs from the usual semantics of
database instances. While a database instance represents exactly one interpretation,
namely the one where classes and relations in the schema are interpreted by the
objects and tuples in the instance, an ABox represents many different interpreta-
tions, namely all its models. As a consequence, absence of information in a database
instance is interpreted as negative information, while absence of information in an
ABox only indicates lack of knowledge.

For example, if the only assertion about Peter is hasChild(PETER,HARRY), then
in a database this is understood as a representation of the fact that Peter has only
one child, Harry. In an ABox, the assertion only expresses that, in fact, Harry is
a child of Peter. However, the ABox has several models, some in which Harry
is the only child and others in which he has brothers or sisters. Consequently,
even if one also knows (by an assertion) that Harry is male, one cannot deduce
that all of Peter’s children are male. The only way of stating in an ABox that
Harry is the only child is by doing so explicitly, that is by adding the assertion
(� 1 hasChild)(PETER). This means that, while the information in a database is
always understood to be complete, the information in an ABox is in general
viewed as being incomplete. The semantics of ABoxes is therefore sometimes
characterized as an “open-world” semantics, while the traditional semantics of
databases is characterized as a “closed-world” semantics.

This view has consequences for the way queries are answered. Essentially, a
query is a description of a class of objects. In our setting, we assume that queries
are concept descriptions. A database (in the sense introduced above) is a listing
of a single finite interpretation. A finite interpretation, say I, could be written up
as a set of assertions of the form A(a) and R(b, c), where A is an atomic concept
and R an atomic role. Such a set looks syntactically like an ABox, but is not an
ABox because of the difference in semantics. Answering a query, represented by a
complex concept C , over that database amounts to computing CI as it was defined
in Section 2.2.1. From a logical point of view this means that query evaluation in
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hasChild(JOCASTA, hasChild(JOCASTA,
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)
Patricide(OEDIPUS) Patricide(THERSANDROS)

OEDIPUS) POLYNEIKES)

Fig. 2.5. The Oedipus ABox Aoe.

a database is not logical reasoning, but finite model checking (i.e., evaluation of a
formula in a fixed finite model).

Since an ABox represents possibly infinitely many interpretations, namely its
models, query answering is more complex: it requires nontrivial reasoning. Here
we are only concerned with semantical issues (algorithmic aspects will be treated
in Section 2.3). To illustrate the difference between a semantics that identifies
a database with a single model, and the open-world semantics of ABoxes, we
discuss the so-calledOedipus example,whichhas stimulated anumber of theoretical
developments in DL research.

Example 2.15 The example is based on the Oedipus story from ancient Greek
mythology. In a nutshell, the story recounts how Oedipus killed his father, married
his mother Jocasta, and had children with her, among them Polyneikes. Finally,
Polyneikes also had children, among them Thersandros.

We suppose the ABox Aoe in Figure 2.5 represents some rudimentary facts
about these events. For the sake of the example, our ABox asserts that Oedipus
is a patricide and that Thersandros is not, which is represented using the atomic
concept Patricide.

Suppose now that we want to know from the ABox whether Jocasta has a child
that is a patricide and that itself has a child that is not a patricide. This can be
expressed as the entailment problem

Aoe |= (∃hasChild.(Patricide � ∃hasChild.¬Patricide))(JOCASTA) ?

One may be tempted to reason as follows. Jocasta has two children in the ABox.
One, Oedipus, is a patricide. He has one child, Polyneikes. But nothing tells us that
Polyneikes is not a patricide. So, Oedipus is not the child we are looking for. The
other child is Polyneikes, but again, nothing tells us that Polyneikes is a patricide.
So, Polyneikes is also not the child we are looking for. Based on this reasoning,
one would claim that the assertion about Jocasta is not entailed.

However, the correct reasoning is different. All the models ofAoe can be divided
into two classes, one in which Polyneikes is a patricide, and another one in which he
is not. In amodel of the first kind, Polyneikes is the child of Jocasta that is a patricide
and has a child, namely Thersandros, that isn’t. In a model of the second kind,
Oedipus is the child of Jocasta that is a patricide and has a child, namely Polyneikes,
that isn’t. Thus, in all models Jocasta has a child that is a patricide and that itself has
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a child that is not a patricide (though this is not always the same child). This means
that the assertion (∃hasChild.(Patricide � ∃hasChild.¬Patricide))(JOCASTA) is
indeed entailed by Aoe.

As this example shows, open-world reasoning may require case analyses. As will
be explained in more detail in Chapter 3, this is one of the reasons why inferences
in Description Logics are often more complex than query answering in databases.

2.2.5 Rules

The knowledge bases we have discussed so far consist of a TBox T and anABoxA.
We denote such a knowledge base as a pair K = (T ,A).

In some DL systems, such as Classic [Brachman et al., 1991] or
Loom [MacGregor, 1991a], in addition to terminologies and world descriptions,
one can also use rules to express knowledge. The simplest variant of such rules is
an expression of the form

C ⇒ D,

where C , D are concepts. The meaning of such a rule is “if an individual is proved
to be an instance of C , then derive that it is also an instance of D”. Such rules are
often called trigger rules.

Operationally, the semantics of a finite set R of trigger rules can be described
by a forward reasoning process. Starting with an initial knowledge baseK, a series
of knowledge bases K(0), K(1), . . . is constructed, where K(0) = K and K(i+1) is
obtained from K(i) by adding a new assertion D(a) whenever R contains a rule
C ⇒ D such that K(i) |= C(a) holds, but K(i) does not contain D(a). This process
eventually halts because the initial knowledge base contains only finitely many
individuals and there are only finitely many rules. Hence, there are only finitely
many assertions D(a) that can possibly be added. The result of the rule applications
is a knowledge base K(n) that has the same TBox as K(0) and whose ABox is
augmented by the membership assertions introduced by the rules. We call this final
knowledge base the procedural extension of K and denote it by K̄. It is easy to
see that this procedural extension is independent of the order of rule applications.
Consequently, a set of trigger rulesR uniquely specifies how to generate, for each
knowledge baseK, an extended knowledge base K̄. The semantics of a knowledge
base K, augmented by a set of trigger rules, can thus be understood as the set of
models of K̄.

This defines the semantics of trigger rules only operationally. It would be prefer-
able to specify the semantics declaratively and then to prove that the extension
computed with the trigger rules correctly represents this semantics. It might be
tempting to use the declarative semantics of inclusion axioms as semantics for rules.
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However, this does not correctly reflect the operational semantics given above. An
important difference between the trigger rule C ⇒ D and the inclusion axiom
C 
 D is that the trigger rule is not equivalent to its contrapositive ¬D ⇒ ¬C .
In addition, when applying trigger rules one does not make a case analysis.
For example, the inclusions C 
 D and ¬C 
 D imply that every object belongs
to D, whereas neither of the trigger rules C ⇒ D and ¬C ⇒ D applies to an
individual a for which neither C(a) nor ¬C(a) can be proven.

In order to capture the meaning of trigger rules in a declarative way, we must
augment Description Logics by an operator K, which does not refer to objects in
the domain, but to what the knowledge base knows about the domain. Therefore,K
is an epistemic operator. More information on epistemic operators in Description
Logics can be found in Chapter 6.

To introduce the K operator, we enrich both the syntax and the semantics of de-
scription languages. Originally, theK operator was defined forALC [Donini et al.,
1992b; 1998a]. In this subsection, we discuss only how to extend the basic language
AL. For other languages, one can proceed analogously (see also Chapter 6).

First, we add one case to the syntax rule in Subsection 2.2.1.1 that allows us to
construct epistemic concepts:

C, D −→ KC (epistemic concept).

Intuitively, the concept KC denotes those objects for which the knowledge base
knows that they are instances of C .

Next, using K, we translate trigger rules C ⇒ D into inclusion axioms

KC 
 D. (2.12)

Intuitively, the K operator in front of the concept C has the effect that the axiom
is only applicable to individuals that appear in the ABox and for which ABox and
TBox imply that they are instances of C . Such a restricted applicability prevents
the inclusion axiom from influencing satisfiability or subsumption relationships
between concepts. In the sequel, we will define a formal semantics for the operator
K that has exactly this effect.

A rule knowledge base is a triple K = (T ,A,R), where T is a TBox, A is an
ABox, and R is a set of rules written as inclusion axioms of the form (2.12). The
procedural extension of such a triple is the knowledge base K̄ = (T , Ā) that is
obtained from (T ,A) by applying the trigger rules as described above.

The semantics of epistemic inclusions will be defined in such away that it applies
only to individuals in the knowledge base that provably are instances ofC , but not to
arbitrary domain elements, whichwould be the case ifwe droppedK. The semantics
will go beyond first-order logic becausewe not only have to interpret concepts, roles
and individuals, but also have to model the knowledge of a knowledge base. The
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fact that a knowledge base has knowledge about the domain can be understood in
such a way that it considers only a subset W of the set of all interpretations as
possible states of the world. Those individuals that are interpreted as elements of C
under all interpretations inW are then “known” to be in C .

To make this formal, we modify the definition of ordinary (first-order) interpre-
tations by assuming that:

(i) there is a fixed countably infinite set � that is the domain of every interpretation
(common domain assumption);

(ii) there is a mapping γ from the individuals to the domain elements that fixes the way
individuals are interpreted (rigid term assumption).

The common domain assumption guarantees that all interpretations speak about
the same domain. The rigid term assumption allows us to identify each individual
symbol with exactly one domain element. These assumptions do not essentially
reduce the number of possible interpretations. As a consequence, properties like
satisfiability and subsumption of concepts are the same independently of whether
we define them with respect to arbitrary interpretations or those that satisfy the
above assumptions.

Now, we define an epistemic interpretation as a pair (I,W), where I is a first-
order interpretation and W is a set of first-order interpretations, all satisfying the
above assumptions. Every epistemic interpretation gives rise to a unique map-
ping ·I,W associating concepts and roles with subsets of � and �×�, respec-
tively. For�,⊥, atomic concepts, negated atomic concepts, and atomic roles, ·I,W
agrees with ·I . For intersections, value restrictions, and existential quantifications,
the definition is similar to that of ·I :

(C � D)I,W = CI,W ∩ DI,W
(∀R.C)I,W = {a ∈ � | ∀b. (a, b) ∈ RI,W → b ∈ CI,W}
(∃R.�)I,W = {a ∈ � | ∃b. (a, b) ∈ RI,W}.

For other constructors, ·I,W can be defined analogously. Note that for a concept C
without an occurrence of K, the sets CI,W and CI are identical. The set of in-
terpretations W comes into play when we define the semantics of the epistemic
operator:

(KC)I,W =
⋂

J∈W
CJ ,W .

It would also be possible to allow the operator K to occur in front of roles and
to define the semantics of role expressions of the form KR analogously. However,
since epistemic roles are not needed to explain the semantics of rules, we restrict
ourselves to epistemic concepts.
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An epistemic interpretation (I,W) satisfies an inclusion C 
 D if CI,W ⊆
DI,W , and an equality C ≡ D if CI,W = DI,W . It satisfies an assertion C(a) if
aI,W = γ (a) ∈ CI,W , and an assertion R(a, b) if (aI,W , bI,W ) = (γ (a), γ (b)) ∈
RI,W . It satisfies a rule knowledge base K = (T ,A,R) if it satisfies every axiom
in T , every assertion in A, and every rule inR.

An epistemic model for a rule knowledge base K is a maximal nonempty setW
of first-order interpretations such that, for each I ∈W , the epistemic interpretation
(I,W) satisfies K.

Note that, if (T ,A) is first-order satisfiable, then the set of all first-order models
of (T ,A) is the only epistemic model of the rule knowledge base K = (T ,A,∅),
whose rule set is empty. A similar statement holds for arbitrary rule knowledge
bases. One can show that, if W1 and W2 are epistemic models, then the union
W1 ∪W2 is one, too, which impliesW1 =W2 because of the maximality of epis-
temic models.

Proposition 2.16 Let K = (T ,A,R) be a rule knowledge base such that (T ,A)
is first-order satisfiable. Then K has a unique epistemic model.

Example 2.17 LetR consist of the rule

KStudent 
 ∀eats.JunkFood. (2.13)

The rule states that “those individuals that are known to be students eat only junk
food”.

We consider the rule knowledge base K1 = (∅,A1,R), where

A1 = {Student(PETER)}.
Let us determine the epistemic model W of K1. Every first-order interpretation
I ∈W must satisfy A1. Therefore, in every such I, we have that Student(PETER)
is true, and thus Peter is known to be a student. SinceW satisfies Rule (2.13), the
assertion ∀eats.JunkFood(PETER) also holds in every I.

For any other domain element a ∈ �, there is at least one interpretation in W
where a is not a student. Thus, Peter is the only domain element to which the rule
applies. Summing up, the epistemic model of K1 consists exactly of the first-order
models of A1 ∪ {∀eats.JunkFood(PETER)}.

Next we demonstrate with this example that the epistemic semantics for rules
disallows contrapositive reasoning. We consider the rule knowledge base K2 =
(∅,A2,R), where

A2 = {¬∀eats.JunkFood(PETER)}.
In this case, ¬∀eats.JunkFood(PETER) is true in every first-order interpretation of
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the epistemic modelW . However, because of the maximality ofW , there is at least
one interpretation in W in which Peter is a student and another one where Peter
is not a student. Therefore, Peter is not known to be a student. Thus, the epistemic
model of K2 consists exactly of the first-order models of A2. The rule is satisfied
because the antecedent is false.

Clearly, the procedural extension of a rule knowledge base K contains only
assertions that must be satisfied by the epistemic model of K. It can be shown
that the assertions added to K by the rule applications are in fact, as stated in the
following proposition, a first-order representation of the information that is implicit
in the rules (see [Donini et al., 1998a] for a proof).

Proposition 2.18 Let K = (T ,A,R) be a rule knowledge base. If (T ,A) is first-
order satisfiable, then the epistemic model ofK consists precisely of the first-order
models of the procedural extension K̄ = (T , Ā).

2.3 Reasoning algorithms

In Subsection 2.2.4 we have seen that all the relevant inference problems can be
reduced to the consistency problem for ABoxes, provided that the Description
Logic at hand allows conjunction and negation. However, the description lan-
guages of all the early and also of some of the present day DL systems do not
allow negation. For such Description Logics, subsumption of concepts can usu-
ally be computed by so-called structural subsumption algorithms, i.e., algorithms
that compare the syntactic structure of (possibly normalized) concept descriptions.
In the first subsection, we will consider such algorithms in more detail. While
they are usually very efficient, they are only complete for rather simple languages
with little expressivity. In particular, Description Logics with (full) negation and
disjunction cannot be handled by structural subsumption algorithms. For such lan-
guages, so-called tableau-based algorithms have turned out to be very useful. In
the area of Description Logics, the first tableau-based algorithm was presented by
Schmidt-Schauß and Smolka [1991] for satisfiability ofALC-concepts. Since then,
this approach has been employed to obtain sound and complete satisfiability (and
thus also subsumption) algorithms for a great variety of Description Logics ex-
tending ALC (see, e.g., [Hollunder et al., 1990; Hollunder and Baader, 1991a;
Donini et al., 1997a; Baader and Sattler, 1999] for languages with number
restrictions; [Baader, 1991] for transitive closure of roles and [Sattler, 1996;
Horrocks and Sattler, 1999] for transitive roles; and [Baader and Hanschke, 1991a;
Hanschke, 1992; Haarslev et al., 1999] for constructors that allow one to refer
to concrete domains such as numbers). In addition, it has been extended to the
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consistency problem for ABoxes [Hollunder, 1990; Baader and Hollunder, 1991b;
Donini et al., 1994b; Haarslev and Möller, 2000], and to TBoxes allowing general
sets of inclusion axioms and more [Buchheit et al., 1993a; Baader et al., 1996]. In
the second subsection, we will first present a tableau-based satisfiability algorithm
for ALCN -concepts, then show how it can be extended to an algorithm for the
consistency problem for ABoxes, and finally explain how general inclusion axioms
can be taken into account. The third subsection is concerned with reasoning w.r.t.
acyclic and cyclic terminologies.

Instead of designing new algorithms for reasoning in Description Logics, one
can also try to reduce the problem to a known inference problem in logics (see
also Chapter 4). For example, decidability of the inference problems for ALC and
many other Description Logics can be obtained as a consequence of the known
decidability result for the two-variable fragment of first-order predicate logic. The
language L2 consists of all formulae of first-order predicate logic that can be built
with the help of predicate symbols (including equality) and constant symbols (but
without function symbols) using only the variables x, y. Decidability of L2 has
been shown in [Mortimer, 1975]. It is easy to see that, by appropriately re-using
variable names, any concept description of the language ALC can be translated
into anL2-formula with one free variable (see [Borgida, 1996] for details). A direct
translation of the concept description∀R.(∃R.A) yields the formula∀y.(R(x, y)→
(∃z.(R(y, z) ∧ A(z)))). Since the subformula ∃z.(R(y, z) ∧ A(z)) does not contain
x , this variable can be re-used: renaming the bound variable z to x yields the
equivalent formula ∀y.(R(x, y)→ (∃x .(R(y, x) ∧ A(x)))), which uses only two
variables. This connection betweenALC and L2 shows that any extension ofALC
by constructors that can be expressed with the help of only two variables yields
a decidable Description Logic. Number restrictions and composition of roles are
examples of constructors that cannot be expressed within L2. Number restrictions
can, however, be expressed in C2, the extension of L2 by counting quantifiers,
which has recently been shown to be decidable [Grädel et al., 1997b; Pacholski
et al., 1997]. It should be noted, however, that the complexity of the decision
procedures obtained this way is usually higher than necessary: for example, the
satisfiability problem forL2 isNExpTime-complete, whereas satisfiability ofALC-
concept descriptions is “only” PSpace-complete.

Decision procedures with lower complexity can be obtained by using the con-
nection between Description Logics and propositional modal logics. Schild [1991]
was the first to observe that the language ALC is a syntactic variant of the propo-
sitional multi-modal logic K, and that the extension of ALC by transitive closure
of roles [Baader, 1991] corresponds to Propositional Dynamic Logic (pdl). In
particular, some of the algorithms used in propositional modal logics for decid-
ing satisfiability are very similar to the tableau-based algorithms newly developed
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for Description Logics. This connection between Description Logics and modal
logics has been used to transfer decidability results from modal logics to Descrip-
tion Logics [Schild, 1993; 1994; De Giacomo and Lenzerini, 1994a; 1994b] (see
also Chapter 5). Instead of using tableau-based algorithms, decidability of certain
propositional modal logics (and thus of the corresponding Description Logics) can
also be shown by establishing the finite model property (see, e.g., [Fitting, 1993],
Section 1.14) of the logic (i.e., showing that a formula or concept is satisfiable iff
it is satisfiable in a finite interpretation) or by employing tree automata (see, e.g.,
[Vardi and Wolper, 1986]).

2.3.1 Structural subsumption algorithms

These algorithms usually proceed in two phases. First, the descriptions to be tested
for subsumption are normalized, and then the syntactic structure of the normal forms
is compared. For simplicity, we first explain the ideas underlying this approach for
the small language FL0, which allows conjunction (C � D) and value restrictions
(∀R.C). Subsequently,we showhow thebottomconcept (⊥), atomic negation (¬A),
and number restrictions (� n R and � n R) can be handled. Evidently, FL0 and its
extension by bottom and atomic negation are sublanguages of AL, while adding
number restrictions to the resulting language yields the Description Logic ALN .

An FL0-concept description is in normal form iff it is of the form

A1 � · · · � Am � ∀R1.C1 � · · · � ∀Rn.Cn,
where A1, . . . , Am are distinct concept names, R1, . . . , Rn are distinct role names,
and C1, . . . ,Cn are FL0-concept descriptions in normal form. It is easy to see that
any description can be transformed into an equivalent one in normal form, using
associativity, commutativity and idempotence of�, and the fact that the descriptions
∀R.(C � D) and (∀R.C) � (∀R.D) are equivalent.

Proposition 2.19 Let

A1 � · · · � Am � ∀R1.C1 � · · · � ∀Rn.Cn
be the normal form of the FL0-concept description C, and

B1 � · · · � Bk � ∀S1.D1 � · · · � ∀Sl .Dl
the normal form of the FL0-concept description D. Then C 
 D iff the following
two conditions hold:

(i) for all i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ m such that Bi = A j .
(ii) For all i, 1 ≤ i ≤ l, there exists j, 1 ≤ j ≤ n such that Si = R j and C j 
 Di .
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It is easy to see that this characterization of subsumption is sound (i.e., the “if”
direction of the proposition holds) and complete (i.e., the “only if” direction of the
proposition holds as well). This characterization yields an obvious recursive algo-
rithm for computing subsumption, which can easily be shown to be of polynomial
time complexity [Levesque and Brachman, 1987].

If we extend FL0 by language constructors that can express unsatisfiable con-
cepts, then we must, on the one hand, change the definition of the normal form.
On the other hand, the structural comparison of the normal forms must take into
account that an unsatisfiable concept is subsumed by every concept. The simplest
Description Logic where this occurs is FL⊥, the extension of FL0 by the bottom
concept ⊥.

An FL⊥-concept description is in normal form iff it is ⊥ or of the form

A1 � · · · � Am � ∀R1.C1 � · · · � ∀Rn.Cn,
where A1, . . . , Am are distinct concept names different from ⊥, R1, . . . , Rn are
distinct role names, and C1, . . . ,Cn areFL⊥-concept descriptions in normal form.
Again, such a normal form can easily be computed. In principle, one just computes
theFL0-normal form of the description (where⊥ is treated as an ordinary concept
name): B1 � · · · � Bk � ∀R1.D1 � · · · � ∀Rn.Dn . If one of the Bis is⊥, then replace
the whole description by⊥. Otherwise, apply the same procedure recursively to the
Djs. For example, the FL0-normal form of ∀R.∀R.B � A � ∀R.(A � ∀R.⊥) is

A � ∀R.(A � ∀R.(B � ⊥)),

which yields the FL⊥-normal form

A � ∀R.(A � ∀R.⊥).

The structural subsumption algorithm forFL⊥works just like the one forFL0, with
the only difference that⊥ is subsumed by any description. For example,∀R.∀R.B �
A � ∀R.(A � ∀R.⊥) 
 ∀R.∀R.A � A � ∀R.A since the recursive comparison of
their FL⊥-normal forms A � ∀R.(A � ∀R.⊥) and A � ∀R.(A � ∀R.A) finally
leads to the comparison of ⊥ and A.

The extension of FL⊥ by atomic negation (i.e., negation applied to concept
names only) can be treated similarly. During the computation of the normal form,
negated concept names are just treated like concept names. If, however, a name and
its negation occur on the same level of the normal form, then⊥ is added, which can
then be treated as described above. For example, ∀R.¬A � A � ∀R.(A � ∀R.B) is
first transformed into A � ∀R.(A � ¬A � ∀R.B), then into A � ∀R.(⊥ � A � ¬A �
∀R.B), and finally into A � ∀R.⊥. The structural comparison of the normal forms
treats negated concept names just like concept names.
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Finally, if we consider the language ALN , the additional presence of number
restrictions leads to a new type of conflict. On the one hand, as in the case of
atomic negation, number restrictions may be in conflict with each other (e.g., � 2 R
and � 1 R). On the other hand, at-least restrictions � n R for n ≥ 1 are in conflict
with value restrictions ∀R.⊥ that prohibit role successors. When computing the
normal form, one can again treat number restrictions like concept names, and
then take care of the new types of conflicts by introducing ⊥ and using it for
normalization as described above. During the structural comparison of normal
forms, one must also take into account inherent subsumption relationships between
number restrictions (e.g., � n R 
 �m R iff n ≥ m). A more detailed description
of a structural subsumption algorithm working on a graph-like data structure for a
language extending ALN can be found in [Borgida and Patel-Schneider, 1994].

For larger Description Logics, structural subsumption algorithms usually fail
to be complete. In particular, they cannot treat disjunction, full negation, and full
existential restriction ∃R.C . For languages including these constructors, the tableau
approach to designing subsumption algorithms has turned out to be quite useful.

2.3.2 Tableau algorithms

Instead of directly testing subsumption of concept descriptions, these algorithms
use negation to reduce subsumption to (un)satisfiability of concept descriptions: as
we have seen in Subsection 2.2.4, C 
 D iff C � ¬D is unsatisfiable.

Before describing a tableau-based satisfiability algorithm for ALCN in more
detail, we illustrate the underlying ideas by two simple examples. Let A, B be
concept names, and let R be a role name.

As a first example, assume that we want to know whether (∃R.A) � (∃R.B) is
subsumed by ∃R.(A � B). This means that we must check whether the concept
description

C = (∃R.A) � (∃R.B) � ¬(∃R.(A � B))

is unsatisfiable.
First, we push all negation signs as far as possible into the description, using

De Morgan’s rules and the usual rules for quantifiers. As a result, we obtain the
description

C0 = (∃R.A) � (∃R.B) � ∀R.(¬A � ¬B),

which is in negation normal form, i.e., negation occurs only in front of concept
names.

Then, we try to construct a finite interpretation I such that CI0 �= ∅. This means
that there must exist an individual in �I that is an element of CI0 .
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The algorithm just generates such an individual, say b, and imposes the constraint
b ∈ CI0 on it. Since C0 is the conjunction of three concept descriptions, this means
that b must satisfy the following three constraints: b ∈ (∃R.A)I , b ∈ (∃R.B)I , and
b ∈ (∀R.(¬A � ¬B))I .

From b ∈ (∃R.A)I we can deduce that there must exist an individual c such
that (b, c) ∈ RI and c ∈ AI . Analogously, b ∈ (∃R.B)I implies the existence of an
individual d with (b, d) ∈ RI and d ∈ BI . In this situation, one should not assume
that c = d since this would possibly impose toomany constraints on the individuals
newly introduced to satisfy the existential restrictions on b. Thus:

� For any existential restriction the algorithm introduces a new individual as role filler, and
this individual must satisfy the constraints expressed by the restriction.

Since b must also satisfy the value restriction ∀R.(¬A � ¬B), and c, d were
introduced as R-fillers of b, we obtain the additional constraints c ∈ (¬A � ¬B)I

and d ∈ (¬A � ¬B)I . Thus:

� The algorithm uses value restrictions in interactionwith already defined role relationships
to impose new constraints on individuals.

Now c ∈ (¬A � ¬B)I means that c ∈ (¬A)I or c ∈ (¬B)I , and we must choose
one of these possibilities. If we assume c ∈ (¬A)I , this clashes with the other
constraint c ∈ AI , which means that this search path leads to an obvious contradic-
tion. Thus we must choose c ∈ (¬B)I . Analogously, we must choose d ∈ (¬A)I in
order to satisfy the constraint d ∈ (¬A � ¬B)I without creating a contradiction to
d ∈ BI . Thus:

� For disjunctive constraints, the algorithm tries both possibilities in successive attempts.
It must backtrack if it reaches an obvious contradiction, i.e., if the same individual must
satisfy constraints that are obviously conflicting.

In the example, we have now satisfied all the constraints without encountering an
obvious contradiction. This shows that C0 is satisfiable, and thus (∃R.A) � (∃R.B)
is not subsumed by ∃R.(A � B). The algorithm has generated an interpretation I
as witness for this fact: �I = {b, c, d}; RI = {(b, c), (b, d)}; AI = {c} and BI =
{d}. For this interpretation, b ∈ CI0 . This means that b ∈ ((∃R.A) � (∃R.B))I , but
b �∈ (∃R.(A � B))I .

In our second example, we add a number restriction to the first concept of the
above example, i.e., we now want to know whether (∃R.A) � (∃R.B) �� 1 R is
subsumed by ∃R.(A � B). Intuitively, the answer should now be “yes” since � 1 R
in the first concept ensures that the R-filler in A coincides with the R-filler in B, and
thus there is an R-filler in A � B. The tableau-based satisfiability algorithm first
proceeds as above, with the only difference that there is the additional constraint
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b ∈ (� 1 R)I . In order to satisfy this constraint, the two R-fillers c, d of b must be
identified with each other. Thus:

� If an at-most number restriction is violated then the algorithm must identify different role
fillers.

In the example, the individual c = d must belong to both AI and BI , which
together with c = d ∈ (¬A � ¬B)I always leads to a clash. Thus, the search for a
counterexample to the subsumption relationship fails, and the algorithm concludes
that (∃R.A) � (∃R.B) �� 1 R 
 ∃R.(A � B).

2.3.2.1 A tableau-based satisfiability algorithm for ALCN
Before we can describe the algorithm more formally, we need to introduce an
appropriate data structure in which to represent constraints like “a belongs to (the
interpretation of) C” and “b is an R-filler of a”. The original paper by Schmidt-
Schauß and Smolka [1991], and also many other papers on tableau algorithms
for Description Logics, introduce the new notion of a constraint system for this
purpose. However, if we look at the types of constraints that must be expressed, we
see that they can actually be represented byABox assertions. Aswe have seen in the
second example above, the presence of at-most number restrictions may lead to the
identification of different individual names. For this reason, we will not impose the
unique name assumption on the ABoxes considered by the algorithm. Instead, we
allow explicit inequality assertions of the form x � .= y for individual names x, y,
with the obvious semantics that an interpretation I satisfies x � .= y iff xI �= yI .
These assertions are assumed to be symmetric, i.e., saying that x � .= y belongs to
an ABox A is the same as saying that y � .= x belongs to A.

Let C0 by an ALCN -concept in negation normal form. In order to test sat-
isfiability of C0, the algorithm starts with the ABox A0 = {C0(x0)}, and applies
consistency-preserving transformation rules (see Figure 2.6) to the ABox until no
more rules apply. If the “complete” ABox obtained this way does not contain an
obvious contradiction (called clash), then A0 is consistent (and thus C0 is satis-
fiable), and inconsistent (unsatisfiable) otherwise. The transformation rules that
handle disjunction and at-most restrictions are non-deterministic in the sense that
a given ABox is transformed into finitely many new ABoxes such that the origi-
nal ABox is consistent iff one of the new ABoxes is so. For this reason we will
consider finite sets of ABoxes S = {A1, . . . ,Ak} instead of single ABoxes. Such
a set is consistent iff there is some i , 1 ≤ i ≤ k, such that Ai is consistent. A rule
of Figure 2.6 is applied to a given finite set of ABoxes S as follows: it takes an
elementA of S, and replaces it by one ABoxA′, by two ABoxesA′ andA′′, or by
finitely many ABoxes Ai, j .

The following lemma is an easy consequence of the definition of the transfor-
mation rules:
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The →�-rule
Condition A contains (C1 �C2)(x), but it does not contain both C1(x) and C2(x).
Action A′ = A ∪ {C1(x), C2(x)}.
The →�-rule
Condition A contains (C1 � C2)(x), but neither C1(x) nor C2(x).
Action A′ = A ∪ {C1(x)}, A′′ = A∪ {C2(x)}.
The →∃-rule
Condition A contains (∃R.C)(x), but there is no individual name z such that C(z)

and R(x, z) are in A.
Action A′ = A ∪ {C(y), R(x, y)} where y is an individual name not occurring in A.

The →∀-rule
Condition A contains (∀R.C)(x) and R(x, y), but it does not contain C(y).
Action A′ = A ∪ {C(y)}.
The →≥-rule
Condition A contains (�nR)(x), and there are no individual names z1, . . . , zn such

that R(x, zi) (1 ≤ i ≤ n) and zi � .= zj (1 ≤ i < j ≤ n) are contained in A.
Action A′ = A∪ {R(x, yi) | 1 ≤ i ≤ n} ∪ {yi � .= yj | 1 ≤ i < j ≤ n}, where y1, . . . , yn

are distinct individual names not occurring in A.

The →≤-rule
Condition A contains distinct individual names y1, . . . , yn+1 such that (�nR)(x)

and R(x, y1), . . . , R(x, yn+1) are in A, and yi � .= yj is not in A for some i �= j.
Action For each pair yi, yj such that i > j and yi � .= yj is not in A, the ABox

Ai,j = [yi/yj]A is obtained from A by replacing each occurrence of yi by yj .

Fig. 2.6. Transformation rules of the satisfiability algorithm.

Lemma 2.20 (Soundness) Assume that S ′ is obtained from the finite set of ABoxes
S by application of a transformation rule. Then S is consistent iff S ′ is consistent.

The second important property of the set of transformation rules is that the
transformation process always terminates:

Lemma 2.21 (Termination) Let C0 be anALCN -concept description in negation
normal form. There cannot be an infinite sequence of rule applications

{{C0(x0)}} → S1 → S2 → · · · .

The main reasons for this lemma to hold are the following.6

Lemma 2.22 Let A be an ABox contained in Si for some i ≥ 1.

� For every individual x �= x0 occurring in A, there is a unique sequence R1, . . . , Rl
(l ≥ 1) of role names and a unique sequence x1, . . . , xl−1 of individual names such that
{R1(x0, x1), R2(x1, x2), . . . , Rl(xl−1, x)} ⊆ A. In this case, we say that x occurs on level
l in A.

6 A detailed proof of termination for a set of rules extending the one of Figure 2.6 can be found in [Baader and
Sattler, 1999]. A termination proof for a slightly different set of rules has been given in [Donini et al., 1997a].
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� If C(x) ∈ A for an individual name x on level l, then the maximal role depth of C (i.e., the
maximal nesting of constructors involving roles) is bounded by the maximal role depth
of C0 minus l. Consequently, the level of any individual in A is bounded by the maximal
role depth of C0.

� If C(x) ∈ A, then C is a subdescription of C0. Consequently, the number of different
concept assertions on x is bounded by the size of C0.

� The number of different role successors of x inA (i.e., individuals y such that R(x, y) ∈ A
for a role name R) is bounded by the sum of the numbers occurring in at-least restrictions
in C0 plus the number of different existential restrictions in C0.

Starting with {{C0(x0)}}, we thus obtain after a finite number of rule applications
a set of ABoxes Ŝ to which no more rules apply. An ABox A is called complete
iff none of the transformation rules applies to it. Consistency of a set of complete
ABoxes can be decided by looking for obvious contradictions, called clashes. The
ABox A contains a clash iff one of the following three situations occurs:

(i) {⊥(x)} ⊆ A for some individual name x ;
(ii) {A(x),¬A(x)} ⊆ A for some individual name x and some concept name A;
(iii) {(� n R)(x)} ∪ {R(x, yi ) | 1 ≤ i ≤ n + 1} ∪ {yi � .= y j | 1 ≤ i < j ≤ n + 1} ⊆ A for

individual names x, y1, . . . , yn+1, a nonnegative integer n, and a role name R.

Obviously, an ABox that contains a clash cannot be consistent. Hence, if all the
ABoxes in Ŝ contain a clash, then Ŝ is inconsistent, and thus by the soundness lemma
{C0(x0)} is inconsistent as well. Consequently, C0 is unsatisfiable. If, however, one
of the complete ABoxes in Ŝ is clash-free, then Ŝ is consistent. By soundness of
the rules, this implies consistency of {C0(x0)}, and thus satisfiability of C0.

Lemma 2.23 (Completeness) Any complete and clash-free ABoxA has a model.

This lemma can be proved by defining the canonical interpretation IA induced
by A:

(i) the domain �IA of IA consists of all the individual names occurring in A;
(ii) for all atomic concepts A we define AIA = {x | A(x) ∈ A};
(iii) for all atomic roles R we define RIA = {(x, y) | R(x, y) ∈ A}.
By definition, IA satisfies all the role assertions inA. By induction on the structure
of concept descriptions, it is easy to show that it satisfies the concept assertions
as well. The inequality assertions are satisfied since x � .= y ∈ A only if x, y are
different individual names.

The facts stated in Lemma 2.22 imply that the canonical interpretation has
the shape of a finite tree whose depth is linearly bounded by the size of C0 and
whose branching factor is bounded by the sum of the numbers occurring in at-least
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restrictions in C0 plus the number of different existential restrictions in C0. Con-
sequently, ALCN has the finite tree model property, i.e., any satisfiable concept
C0 is satisfiable in a finite interpretation I that has the shape of a tree whose root
belongs to C0.

To sum up, we have seen that the transformation rules of Figure 2.6 reduce
satisfiability of anALCN -concept C0 (in negation normal form) to consistency of
a finite set Ŝ of complete ABoxes. In addition, consistency of Ŝ can be decided by
looking for obvious contradictions (clashes).

Theorem 2.24 It is decidable whether or not an ALCN -concept is satisfiable.

2.3.2.2 Complexity issues

The tableau-based satisfiability algorithm for ALCN presented above may need
exponential time and space. In fact, the size of the canonical interpretation built by
the algorithmmaybe exponential in the size of the concept description. For example,
consider the descriptions Cn (n ≥ 1), which are inductively defined as follows:

C1 = ∃R.A � ∃R.B,
Cn+1 = ∃R.A � ∃R.B � ∀R.Cn.

Obviously, the size of Cn grows linearly in n. However, given the input description
Cn , the satisfiability algorithm introduced above generates a complete and
clash-free ABox whose canonical model is the full binary tree of depth n, and thus
consists of 2n+1 − 1 individuals.

Nevertheless, the satisfiability algorithm can be modified such that it needs
only polynomial space. The main reason is that different branches of the tree
model to be generated by the algorithm can be investigated separately. Since the
complexity class NPSpace coincides with PSpace [Savitch, 1970], it is sufficient
to describe a non-deterministic algorithm using only polynomial space, i.e., for
every non-deterministic rule we may simply assume that the algorithm chooses
the correct alternative. In principle, the modified algorithm works as follows: it
starts with {C0(x0)} and
(i) applies the→�- and→�-rules as long as possible, and checks for clashes of the form

A(x0), ¬A(x0) and ⊥(x0);
(ii) generates all the necessary direct successors of x0 using the→∃- and the→≥-rule;
(iii) generates the necessary identifications of these direct successors using the →≤-rule,

and checks for clashes caused by at-most restrictions;
(iv) successively handles the successors in the same way.

Since after identification the remaining successors can be treated separately, the
algorithm needs to store only one path of the tree model to be generated, together
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with the direct successors of the individuals on this path and the information which
of these successors must be investigated next. We already know that the length of
the path is linear in the size of the input description C0. Thus, the only remaining
obstacle on our way to a PSpace-algorithm is the fact that the number of direct
successors of an individual on the path also depends on the numbers in the at-least
restrictions. If we assumed these numbers to be written in base 1 representation
(where the size of the representation coincides with the number represented),
this would not be a problem. However, for bases larger than 1 (e.g., numbers in
decimal notation), the number represented may be exponential in the size of the
representation. For example, the representation of 10n − 1 requires only n digits
in base 10 representation. Thus, we cannot introduce all the successors required by
at-least restrictions while only using polynomial space in the size of the concept
description if the numbers in this description are written in decimal notation.

It turns out, however, that most of the successors required by the at-least restric-
tions need not be introduced at all. If an individual x obtains at least one R-successor
due to the application of the→∃-rule, then the→≥-rule need not be applied to x
for the role R. Otherwise, we simply introduce one R-successor as representative.
In order to detect inconsistencies due to conflicting number restrictions, we need
to add a new type of clash: {(� n R)(x), (�m R)(x)} ⊆ A for nonnegative inte-
gers n < m. The canonical interpretation obtained by this modified algorithm need
not satisfy the at-least restrictions in C0. However, it can easily be modified to an
interpretation that does, by duplicating R-successors (more precisely, the whole
subtrees starting at these successors).

Theorem 2.25 Satisfiability ofALCN -concept descriptions is PSpace-complete.

The above argument shows that the problem is in PSpace. The hardness result
follows from the fact that the satisfiability problem is already PSpace-hard for the
sublanguageALC, which can be shown by a reduction from validity of Quantified
Boolean Formulae [Schmidt-Schauß and Smolka, 1991]. Since subsumption and
satisfiability ofALCN -concept descriptions can be reduced to each other in linear
time, this also shows that subsumption ofALCN -concept descriptions is PSpace-
complete.

2.3.2.3 Extension to the consistency problem for ABoxes

The tableau-based satisfiability algorithmdescribed in Subsection 2.3.2.1 can easily
be extended to an algorithm that decides consistency ofALCN -ABoxes. LetA be
an ALCN -ABox such that (w.l.o.g.) all concept descriptions in A are in negation
normal form. To testA for consistency, we first add inequality assertions a � .= b for
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every pair of distinct individual names a, b occurring in A.7 Let A0 be the ABox
obtained this way. The consistency algorithm applies the rules of Figure 2.6 to the
singleton set {A0}.

Soundness and completeness of the rule set can be shown as before. Unfortu-
nately, the algorithm need not terminate, unless one imposes a specific strategy on
the order of rule applications. For example, consider the ABox

A0 = {R(a, a), (∃R.A)(a), (� 1 R)(a), (∀R.∃R.A)(a)}.
By applying the→∃-rule to a, we can introduce a new R-successor x of a:

A1 = A0 ∪ {R(a, x), A(x)}.
The →∀-rule adds the assertion (∃R.A)(x), which triggers an application of the
→∃-rule to x . Thus, we obtain the new ABox

A2 = A1 ∪ {(∃R.A)(x), R(x, y), A(y)}.
Since a has two R-successors in A2, the→≤-rule is applicable to a. By replacing
every occurrence of x by a, we obtain the ABox

A3 = A0 ∪ {A(a), R(a, y), A(y)}.
Except for the individual names (and the assertion A(a), which is, however, irrele-
vant),A3 is identical toA1. For this reason, we can continue as above to obtain an
infinite chain of rule applications.

We can easily regain termination by requiring that generating rules (i.e., the rules
→∃ and →≥) may only be applied if none of the other rules is applicable. In the
above example, this strategy would prevent the application of the→∃-rule to x in
the ABox A1 ∪ {(∃R.A)(x)} since the→≤-rule is also applicable. After applying
the→≤-rule (which replaces x by a), the→∃-rule is no longer applicable since a
already has an R-successor that belongs to A.

Using a similar idea, one can reduce the consistency problem forALCN -ABoxes
to satisfiability ofALCN -concept descriptions [Hollunder, 1996]. In principle, this
reduction works as follows: In a preprocessing step, one applies the transformation
rules only to old individuals (i.e., individuals present in the original ABox). Subse-
quently, one can forget about the role assertions, i.e., for each individual name in
the preprocessed ABox, the satisfiability algorithm is applied to the conjunction of
its concept assertions (see [Hollunder, 1996] for details).

Theorem 2.26 Consistency of ALCN -ABoxes is PSpace-complete.

7 This takes care of the UNA.
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2.3.2.4 Extension to general inclusion axioms

In the above subsections, we have considered the satisfiability problem for con-
cept descriptions and the consistency problem for ABoxes without an underlying
TBox. In fact, for acyclic TBoxes one can simply expand the definitions (see Sub-
section 2.2.4). Expansion is, however, no longer possible if one allows general
inclusion axioms of the form C 
 D, where C and D may be complex descrip-
tions. Instead of considering finitely many such axioms C1 
 D1, . . . ,Cn 
 Dn , it
is sufficient to consider the single axiom � 
 Ĉ , where

Ĉ = (¬C1 � D1) � · · · � (¬Cn � Dn).

The axiom � 
 Ĉ simply says that any individual must belong to the concept Ĉ .
The tableau algorithm introduced above can easily bemodified such that it takes this
axiom into account: all individuals (both the original individuals and the ones newly
generated by the →∃-rule and the →≥-rule) are simply asserted to belong to Ĉ .
However, this modification may obviously lead to nontermination of the algorithm.
For example, consider what happens if this algorithm is applied to test consistency
of the ABoxA0 = {A(x0), (∃R.A)(x0)} w.r.t. the axiom� 
 ∃R.A: the algorithm
generates an infinite sequence of ABoxes A1,A2, . . . and individuals x1, x2, . . .
such thatAi+1 = Ai ∪ {R(xi , xi+1), A(xi+1), (∃R.A)(xi+1)}. Since all individuals
xi receive the same concept assertions as x0, we may say that the algorithms has
run into a cycle.

Termination can be regained by trying to detect such cyclic computations, and
then blocking the application of generating rules: the application of the rules→∃ and
→≥ to an individual x is blocked by an individual y in an ABoxA iff {D | D(x) ∈
A} ⊆ {D′ | D′(y) ∈ A}. The main idea underlying blocking is that the blocked
individual x can use the role successors of y instead of generating new ones. For
example, instead of generating a new R-successor for x1 in the above example,
one can simply use the R-successor of x0. This yields an interpretation I with
�I = {x0, x1}, AI = �I , and RI = {(x0, x1), (x1, x1)}. Obviously, I is a model of
A0 and of the axiom � 
 ∃R.A.

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration
of all individual names, and define that an individual x may only be blocked by
individuals y that occur before x in this enumeration. This, together with some
other technical assumptions, makes sure that an algorithm using this notion of
blocking is sound and complete as well as terminating (see [Buchheit et al., 1993a;
Baader et al., 1996] for details). Thus, consistency ofALCN -ABoxes w.r.t. general
inclusion axioms is decidable. It should be noted that the algorithm is no longer
in PSpace since it may generate role paths of exponential length before blocking
occurs. In fact, even for the language ALC, satisfiability w.r.t. a single general
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inclusion axiom is known to be ExpTime-hard [Schild, 1994] (see also Chapter 3).
The tableau-based algorithm sketched above is a NExpTime algorithm. However,
using the translation technique mentioned at the beginning of this section, it can
be shown [De Giacomo, 1995] that ALCN -ABoxes and general inclusion axioms
can be translated into pdl, for which satisfiability can be decided in exponential
time. An ExpTime tableau algorithm for ALC with general inclusion axioms was
described by Donini and Massacci [2000].

Theorem 2.27 Consistency of ALCN -ABoxes w.r.t. general inclusion axioms is
ExpTime-complete.

2.3.2.5 Extension to other language constructors

The tableau-based approach to designing concept satisfiability and ABox consis-
tency algorithms can also be employed for languages with other concept and/or
role constructors. In principle, each new constructor requires a new rule, and this
rule can usually be obtained by simply considering the semantics of the construc-
tor. Soundness of such a rule is often very easy to show. More problematic are
completeness and termination since they must also take interactions between dif-
ferent rules into account. As we have seen above, termination can sometimes only
be obtained if the application of rules is restricted by an appropriate strategy. Of
course, one may only impose such a strategy if one can show that it does not destroy
completeness.

2.3.3 Reasoning w.r.t. terminologies

Recall that terminologies (TBoxes) are sets of concept definitions (i.e., equalities
of the form A ≡ C where A is atomic) such that every atomic concept occurs at
most once as a left-hand side. We will first comment briefly on the complexity of
reasoning w.r.t. acyclic terminologies, and then consider in more detail reasoning
w.r.t. cyclic terminologies.

2.3.3.1 Acyclic terminologies

As shown in Subsection 2.2.4, reasoningw.r.t. acyclic terminologies can be reduced
to reasoning without terminologies by first expanding the TBox, and then replac-
ing name symbols by their definitions in the terminology. Unfortunately, since the
expanded TBox may be exponentially larger than the original one [Nebel, 1990b],
this increases the complexity of reasoning. Nebel [1990b] also shows that this
complexity can, in general, not be avoided: for the languageFL0, subsumption be-
tween concept descriptions can be tested in polynomial time (see Subsection 2.3.1),
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whereas subsumption w.r.t. acyclic terminologies is conp-complete (see also Sub-
section 2.3.3.2 below).

For more expressive languages, the presence of acyclic TBoxes may or may not
increase the complexity of the subsumption problem. For example, subsumption
of concept descriptions in the language ALC is PSpace-complete, and so is sub-
sumption w.r.t. acyclic terminologies [Lutz, 1999a]. Of course, in order to obtain a
PSpace-algorithm for subsumption in ALC w.r.t. acyclic TBoxes, one cannot first
expand the TBox completely since this might need exponential space. The main
idea is that one uses a tableau-based algorithm like the one described in Subsec-
tion 2.3.2, with the difference that it receives concept descriptions containing name
symbols as input. Expansion is then done on demand: if the tableau-based algo-
rithm encounters an assertion of the form A(x), where A is a name occurring on the
left-hand side of a definition A ≡ C in the TBox, then it adds the assertion C(x).
However, it does not further expand C at this stage. It is not hard to show that this
really yields a PSpace-algorithm for satisfiability (and thus also for subsumption)
of concepts w.r.t. acyclic TBoxes in ALC [Lutz, 1999a].

There are, however, extensions ofALC for which this technique no longer works.
One such example is the languageALCF , which extendsALC by functional roles
as well as agreements and disagreements on chains of functional roles (see Sec-
tion 2.4 below). Satisfiability of concepts is PSpace-complete for this language
[Hollunder and Nutt, 1990], but satisfiability of concepts w.r.t. acyclic terminolo-
gies is NExpTime-complete [Lutz, 1999a].

2.3.3.2 Cyclic terminologies

For cyclic terminologies, expansion is no longer possible since it would not termi-
nate. If we use descriptive semantics, then cyclic terminologies are a special case
of terminologies with general inclusion axioms. Thus, the tableau-based algorithm
for handling general inclusion axioms introduced in Subsection 2.3.2.4 can also be
used for cyclicALCN -TBoxeswith descriptive semantics. For cyclicALC-TBoxes
with fixpoint semantics, the connection between Description Logics and proposi-
tional modal logics turns out to be useful. In fact, syntactically monotone ALC-
TBoxes with least or greatest fixpoint semantics can be expressed within the propo-
sitional µ-calculus, which is an extension of the propositional multi-modal logic
Km by fixpoint operators (see [Schild, 1994; De Giacomo and Lenzerini, 1994b;
1997] and Chapter 5 for details). Since reasoning w.r.t. general inclusion axioms
inALC and reasoning in the propositional µ-calculus are both ExpTime-complete,
these reductions yield an ExpTime upper bound for reasoning w.r.t. cyclic termi-
nologies in sublanguages of ALC.

For less expressive Description Logics, more efficient algorithms can, however,
be obtainedwith the help of techniques based onfinite automata. Following [Baader,
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1996b], we will sketch these techniques for the small language FL0. The results
can, however, be extended to the languageALN [Küsters, 1998]. We will develop
the results for FL0 in two steps, starting with an alternative characterization of
subsumption between FL0-concept descriptions, and then extending this charac-
terization to cyclic TBoxes with greatest fixpoint semantics. Baader [1996b] also
considers cyclic FL0-TBoxes with descriptive and with least fixpoint semantics.
For these semantics, the characterization of subsumption is more involved; in par-
ticular, the characterization of subsumption w.r.t. descriptive semantics depends
on finite automata working on infinite words, so-called Büchi automata. Acyclic
TBoxes can be seen as a special case of cyclic TBoxes, where all three types of
semantics coincide.

In Subsection 2.3.1, the equivalence (∀R.C) � (∀R.D) ≡ ∀R.(C � D) was used
as a rewrite rule from left to right in order to compute the structural subsumption
normal form of FL0-concept descriptions. If we use this rule in the opposite di-
rection, we obtain a different normal form, which we call concept-centered normal
form since it groups the concept description w.r.t. concept names (and not w.r.t.
role names, as the structural subsumption normal form does). Using this rule, any
FL0-concept description can be transformed into an equivalent description that
is a conjunction of descriptions of the form ∀R1. · · · ∀Rm .A for m ≥ 0 (not nec-
essarily distinct) role names R1, . . . , Rm and a concept name A. We abbreviate
∀R1. · · · ∀Rm .A by ∀R1 · · · Rm .A, where R1 · · · Rm is viewed as a word over the
alphabet 
 of all role names. In addition, instead of ∀w1.A � · · · � ∀wl .A we write
∀L .A where L = {w1, . . . , wl} is a finite set of words over 
. The term ∀∅.A is
considered to be equivalent to the top concept�, which means that it can be added
to a conjunction without changing the meaning of the concept. Using these abbre-
viations, any pair ofFL0-concept descriptions C, D containing the concept names
A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 � · · · � ∀Uk .Ak and D ≡ ∀V1.A1 � · · · � ∀Vk .Ak,
where Ui , Vi are finite sets of words over the alphabet of all role names. This
normal form provides us with the following characterization of subsumption of
FL0-concept descriptions [Baader and Narendran, 1998]:

C 
 D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

Since the size of the concept-based normal forms is polynomial in the size of the
original descriptions, and since the inclusion tests Ui ⊇ Vi can also be realized
in polynomial time, this yields a polynomial-time decision procedure for subsump-
tion in FL0. In fact, as shown in [Baader et al., 1998a], the structural subsumption
algorithm for FL0 can be seen as a special implementation of these inclusion
tests.
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A ≡ ∀R.A � ∀S.C
B ≡ ∀R.∀S.C
C ≡ P � ∀S.C

SR

A C P

B

S

RS

ε

Fig. 2.7. A TBox and the corresponding automaton.

This characterization of subsumption via inclusion of finite sets of words can
be extended to cyclic TBoxes with greatest fixpoint semantics as follows. A given
TBox T can be translated into a finite automaton8 AT whose states are the concept
names occurring in T and whose transitions are induced by the value restrictions
occurring in T (see Figure 2.7 for an example and [Baader, 1996b] for the formal
definition).

For a name symbol A and a base symbol P inT , the language LAT (A, P) is the set
of all words labeling paths inAT from A to P . The languages LAT (A, P) represent
all the value restrictions that must be satisfied by instances of the concept A. With
this intuition in mind, the following characterization of subsumption w.r.t. cyclic
FL0-TBoxes with greatest fixpoint semantics should not be surprising:

A 
T B iff LAT (A, P) ⊇ LAT (B, P) for all base symbols P .

In the example of Fig. 2.7, we have LAT (A, P) = R∗SS∗ ⊃ RSS∗ = LAT (B, P),
and thus A 
T B, but not B 
T A.

Obviously, the languages LAT (A, P) are regular, and any regular language can
be obtained as such a language. Since inclusion of regular languages is a PSpace-
complete problem [Garey and Johnson, 1979], this shows that subsumption w.r.t.
cyclic FL0-TBoxes with greatest fixpoint semantics is PSpace-complete [Baader,
1996b]. For an acyclic terminology T , the automaton AT is acyclic as well. Since
inclusion of languages accepted by acyclic finite automata is conp-complete, this
provesNebel’s result that subsumptionw.r.t. acyclicFL0-TBoxes is conp-complete
[Nebel, 1990b].

2.4 Language extensions

In Section 2.2 we have introduced the language ALCN as a prototypical Descrip-
tion Logic. For many applications, the expressive power ofALCN is not sufficient.
For this reason, various other language constructors have been introduced in the
literature and are employed by systems. Roughly, these language extensions can be
put into two categories, which (for lack of a better name) we will call “classical”

8 Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions that may be labeled by a
word over 
 rather than a letter of 
.
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and “nonclassical” extensions. Intuitively, a classical extension is one whose se-
mantics can easily be defined within the model-theoretic framework introduced in
Section 2.2, whereas defining the semantics of a nonclassical constructor is more
problematic and requires an extension of the model-theoretic framework (such as
the semantics of the epistemic operator K introduced in Subsection 2.2.5). In this
section, we briefly introduce the most important classical extensions of Description
Logics. Inference procedures for such expressive Description Logics are discussed
in Chapter 5. Nonclassical extensions are the subject of Chapter 6.

In addition to constructors that can be used to build complex roles, we will
introduce more expressive number restrictions, and constructors that allow one to
express relationships between the role-filler sets of different (complex) roles.

2.4.1 Role constructors

Since roles are interpreted as binary relations, it is quite natural to employ the usual
operations on binary relations (such as Boolean operators, composition, inverse,
and transitive closure) as role-forming constructors. Syntax and semantics of these
constructors can be defined as follows:

Definition 2.28 (Role constructors) Every role name is a role description (atomic
role), and if R, S are role descriptions, then R � S (intersection), R � S (union),
¬R (complement), R ◦ S (composition), R+ (transitive closure), R− (inverse) are
also role descriptions.

A given interpretation I is extended to (complex) role descriptions as follows:

(i) (R � S)I = RI ∩ SI , (R � S)I = RI ∪ SI , (¬R)I = �I ×�I \ RI ;
(ii) (R ◦ S)I = {(a, c) ∈ �I ×�I | ∃b. (a, b) ∈ RI ∧ (b, c) ∈ SI};
(iii) (R+)I = ⋃

i≥1(R
I )i , i.e., (R+)I is the transitive closure of (RI );

(iv) (R−)I = {(b, a) ∈ �I ×�I | (a, b) ∈ RI}.

For example, the union of the roles hasSon and hasDaughter can be used to
define the role hasChild, and the transitive closure of hasChild expresses the role
hasDescendants. The inverse of hasChild yields the role hasParent.

The complexity of satisfiability and subsumption of concepts in the language
ALCN � (also called ALCNR in the literature), which extends ALCN by in-
tersection of roles, has been investigated in [Donini et al., 1997a]. It is shown
that these problems are still PSpace-complete, provided that the numbers occur-
ring in number restrictions are written in base 1 representation (where the size of
the representation coincides with the number represented). Tobies [2001b] shows
that this result also holds for non-unary coding of numbers. Decidability of the
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extension of ALCN by the three Boolean operators and the inverse operator is an
immediate consequence of the fact that concepts of the extended language can be
expressed in C2, i.e., first-order predicate logic with two variables and counting
quantifiers, which is known to be decidable in NExpTime [Grädel et al., 1997b;
Pacholski et al., 1997]. Lutz and Sattler [2000a] show that ALC extended by role
complement isExpTime-complete, whereasALC extended by role intersection and
(atomic) role complement is NExpTime-complete.

In [Baader, 1991], the Description LogicALC trans, which extendsALC by transi-
tive closure, composition, and union of roles, has been introduced, and subsumption
and satisfiability ofALC trans-concepts has been shown to be decidable. Schild’s ob-
servation [Schild, 1991] that ALC trans is just a syntactic variant of Propositional
Dynamic Logic (pdl) [Fischer and Ladner, 1979] yields the exact complexity of
subsumption and satisfiability inALC trans: they areExpTime-complete [Fischer and
Ladner, 1979; Pratt, 1979; 1980]. The extension of ALC trans by the inverse con-
structor corresponds to converse pdl [Fischer and Ladner, 1979], which can also be
shown to be decidable in deterministic exponential time [Vardi, 1985].Whereas this
extension of ALC trans does not change the properties of the obtained Description
Logic in a significant way, things become more complex if both number restric-
tions and the inverse of roles are added toALC trans. WhereasALC trans andALC trans
with inverse still have the finite model property, ALC trans extended by inverse and
number restrictions does not. Indeed, it is easy to see that the concept

¬A � ∃R−.A � (� 1 R) � ∀(R−)+.(∃R−.A � (� 1 R))

is satisfiable in an infinite interpretation, but not in a finite one. Nevertheless, this
Description Logic still has an ExpTime-complete subsumption and satisfiability
problem. In fact, in [De Giacomo, 1995], number restrictions, the inverse of roles,
and Boolean operators on roles are added to ALC trans, and ExpTime-decidability
is shown by a rather ingenious reduction to the decision problem for ALC trans. It
should be noted, however, that in this work only atomic roles and their inverse may
occur in number restrictions, and that the complement of roles is built with respect
to a fixed role any, which must contain all other roles, but need not be interpreted as
the universal role (i.e., �I ×�I). As we shall see below, allowing more complex
roles inside number restrictions may easily cause undecidability.

2.4.2 Expressive number restrictions

There are three different ways in which the expressive power of number restrictions
can be enhanced.

First, one can consider so-called qualified number restrictions, where the num-
ber restrictions are concerned with role fillers belonging to a certain concept. For
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example, given the role hasChild, the simple number restrictions introduced above
can only state that the number of all children is within certain limits, such as in
the concept � 2 hasChild �� 5 hasChild. Qualified number restrictions can also
express that there are at least 2 sons and at most 5 daughters:

� 2 hasChild.Male �� 5 hasChild.Female.

Adding qualified number restrictions to ALC leaves the important inference prob-
lems (like subsumption and satisfiability of concepts, and consistency of ABoxes)
decidable: the worst-case complexity is still PSpace-complete. Membership in
PSpace was first shown for the case where numbers occurring in number re-
strictions are written in base 1 representation [Hollunder and Baader, 1991a;
Hollunder, 1996]. More recently, this has been proved even for the case of binary
(or, equivalently, decimal) representation of numbers [Tobies, 1999c; 2001b]. The
language stays decidable if general sets of inclusion axioms are allowed [Buchheit
et al., 1993a].

Second, one can allow complex role expressions inside number restrictions. As
already mentioned above, allowing the three Boolean operators and the inverse
operator in number restrictions of ALCN leaves us within C2, which is known
to be decidable. In [Baader and Sattler, 1996b; 1999], languages that allow com-
position of roles in number restrictions have been considered.9 The extension of
ALC by number restrictions involving composition has a decidable satisfiability
and subsumption problem. On the other hand, if either number restrictions involv-
ing composition, union and inverse, or number restrictions involving composition
and intersection are added, then satisfiability and subsumption become undecidable
[Baader and Sattler, 1996b; 1999]. For ALC trans, the extension by number restric-
tions involving composition is already undecidable [Baader and Sattler, 1999].

Third, one can replace the explicit numbersn in number restrictions byvariablesα
that stand for arbitrary nonnegative integers [Baader and Sattler, 1996a; 1999]. This
allows one, for example, to define the concept of all persons having at least as many
daughters as sons, without explicitly saying how many sons and daughters the
person has:

Person ��α hasDaughter ��α hasSon.

The expressive power of this language can further be increased by introducing
explicit quantification of the numeric variables. For example, it is important to know
whether the numeric variables are introduced before or after a value restriction. This
is illustrated by the following concept

Person � ↓α.(∀hasChild.(�α hasChild ��α hasChild)),

9 Note that composition cannot be expressed within C2.
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in which introducing the numerical variable before the universal value restriction
makes sure that all the children of the person have the same number of children.
Here, ↓α stands for an existential quantification of α. Universal quantification of
numerical variables comes in via negation. In [Baader and Sattler, 1996a; 1999] it is
shown that ALCN extended by such symbolic number restrictions with universal
and existential quantificationof numerical variables has anundecidable satisfiability
and subsumption problem. If one restricts this language to existential quantification
of numerical variables and negation on atomic concepts, then satisfiability becomes
decidable, but subsumption remains undecidable.

2.4.3 Role-value-maps

Role-value-maps are a family of very expressive concept constructors, which were,
however, available in the originalKl-One system. They allow one to relate the sets
of role fillers of role chains.

Definition 2.29 (Role-value-maps) A role chain is a composition R1 ◦ · · · ◦ Rn
of role names. If R, S are role chains, then R ⊆ S and R = S are concepts (role-
value-maps). The former is called a containment role-value-map, while the latter
is called an equality role-value-map.

A given interpretation I is extended to role-value-maps as follows:

(i) (R ⊆ S)I = {a ∈ �I | ∀b. (a, b) ∈ RI → (a, b) ∈ SI},
(ii) (R = S)I = {a ∈ �I | ∀b. (a, b) ∈ RI ↔ (a, b) ∈ SI}.

For example, the concept

Person � (hasChild ◦ hasFriend ⊆ knows)

describes the persons knowing all the friends of their children, and

Person � (marriedTo ◦ likesToEat = likesToEat)

describes persons having the same favorite foods as their spouse.
Unfortunately, in the presence of role-value-maps, the subsumption problem is

undecidable, even if the language allows only conjunction and value restriction as
additional constructors [Schmidt-Schauß, 1989] (see also Chapter 3).

To avoid this problem, onemay restrict attention to role chains of functional roles,
also called attributes or features in the literature. An interpretation I interprets the
role R as a functional role iff {(a, b), (a, c)} ⊆ RI implies b = c. In the following,
we assume that the set of role names is partitioned into the set of functional roles
and the set of ordinary roles. Any interpretation must interpret the functional roles
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as such. Usually, we write functional roles with small letters f, g, possibly with
index.

Definition 2.30 (Agreements) If f , g are role chains of functional roles, then
f

.= g and f � .= g are concepts (agreement and disagreement).
A given interpretation I is extended to agreements and disagreements as

follows:

(i) ( f
.= g)I = {a ∈ �I | ∃b. (a, b) ∈ f I ∧ (a, b) ∈ gI},

(ii) ( f � .= g)I = {a ∈ �I | ∃b1, b2. b1 �= b2 ∧ (a, b1) ∈ f I ∧ (a, b2) ∈ gI}.

In the literature, the agreement constructor is sometimes also called the same-as
constructor. Note that, since f , g are role chains between functional roles, there
can be at most one role filler for a w.r.t. the respective role chain. Also note that the
semantics of agreements and disagreements requires these role fillers to exist (and
be equal or distinct) for a to belong to the concept.

For example, hasMother, hasFather, and hasLastNamewith their usual interpre-
tation are functional roles, whereas hasParent and hasChild are not. The concept

Person � (hasLastName
.= hasMother ◦ hasLastName)

� (hasLastName � .= hasFather ◦ hasLastName)

describes persons whose last name coincides with the last name of their mother,
but not with the last name of their father.

The restriction to functional roles makes reasoning in ALC extended by agree-
ments and disagreements decidable [Hollunder and Nutt, 1990]. A structural sub-
sumption algorithm for the language provided by the Classic system, which in-
cludes the same-as constructor, can be found in [Borgida and Patel-Schneider,
1994]. However, if general inclusion axioms (or transitive closure of functional
roles or cyclic definitions) are allowed, then agreements and disagreements be-
tween chains of functional roles again cause subsumption to become undecidable
[Nebel, 1991; Baader et al., 1993]. Additional types of role interaction constructors
similar to agreements and role-value-maps are investigated in [Hanschke, 1992].
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3

Complexity of Reasoning

FRANCESCO M. DONINI

Abstract

We present lower bounds on the computational complexity of satisfiability and
subsumption in several Description Logics. We interpret these lower bounds as
coming from different “sources of complexity”, which we isolate one by one.
We consider both reasoning with simple concept expressions and reasoning with
an underlying TBox. We discuss also complexity of instance checking in simple
ABoxes. We have tried to enhance clarity and ease of presentation, sometimes
sacrificing exhaustiveness for lack of space.

3.1 Introduction

Complexity of reasoning has been one of the major issues in the development
of Description Logics. This is because such logics are conceived [Brachman and
Levesque, 1984] as the formal specification of subsystems for representing knowl-
edge, to be used in larger knowledge-based systems. Since using knowledge also
means deriving implicit facts from the given ones, the implementation of derivation
procedures should take into account the optimality of reasoning algorithms. The
studyof optimal algorithms starts from the elicitation of the computational complex-
ity of the problem the algorithm should solve. Initially, studies about the complexity
of reasoning problems in Description Logics were more focused on polynomial-
time versus intractable (np- or conp-hard) problems. The idea was that a knowledge
representation system based on a Description Logic with polynomial-time infer-
ence problems would guarantee timely answers to the rest of the system. However,
once systems based on very expressive Description Logics with exponential-time
reasoning problems were implemented [Horrocks, 1998b], it was recognized that
knowledge bases of realistic size could be processed in reasonable time. This shifted
most of the complexity analysis to Description Logics whose reasoning problems
are ExpTime-hard, or worse.

96
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This chapter presents some lower bounds on the complexity of basic reasoning
tasks in simple Description Logics. The reasoning services taken into account are:
first, satisfiability and subsumption of concept expressions alone (no TBox), then
the same reasoning services considering a TBox also, and in the last part of the
chapter, instance checking w.r.t. an ABox.

We show in detail some reductions from problems that are hard for complexity
classes np, conp, PSpace, ExpTime, and from semidecidable problems to satis-
fiability/subsumption in various Description Logics. Then, we show how these
reductions can be adapted to other Description Logics as well.

In several reductions, we use tableau expansions to prove the correctness of the
reduction. Thus, a secondary aim in this chapter is to show how tableaux are useful
not only in devising reasoning algorithms and complexity upper bounds – as seen in
Chapter 2 – but also in finding complexity lower bounds. This is because tableaux
untangle two different aspects of the computational complexity of reasoning in
Description Logics:

� The first aspect is the structure of possible models of a concept. Such a structure is – in
many Description Logics – a tree of individual names, linked by arcs labeled by roles.
We consider such a tree an AND-tree, in the sense that all branches must be followed to
obtain a candidate model. Following [Schmidt-Schauß and Smolka, 1991], we call each
branch of such a tree a trace. Readers familiar with tableaux terminology should observe
that traces are not tableau branches; in fact, they form a structure inside a single tableau
branch.

� The second aspect is the structure of proofs or refutations. Clearly, if a trace contains an
inconsistency – a clash in the terminology set up in Chapter 2—the candidate models
containing this trace can be discarded. When all candidate models are discarded this way,
we obtain a proof of subsumption, or unsatisfiability. Hence, the structure of refutations
is often best viewed as an OR-tree of traces containing clashes.

Here we have chosen to mark the nodes with AND, OR when considering a sat-
isfiability problem; if either unsatisfiability or subsumption is considered, AND
and OR labels should be exchanged. Before starting with the various results, we
elaborate on this subject in the next subsection.

3.1.1 Intuition: sources of complexity

The deterministic version of the calculus for ALCN in Chapter 2 can be seen as
exploring anAND–OR tree, where anAND-branching corresponds to the (indepen-
dent) check of all successors of an individual, while an OR-branching corresponds
to the different choices of application of a nondeterministic rule.

Realizing that, one can see that the exponential-time behavior of the calcu-
lus is due to two independent origins: the AND-branching, responsible for the
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exponential size of a single candidate model, and the OR-branching, responsible
for the exponential number of different candidate models. We call these two differ-
ent combinatorial explosions sources of complexity.

3.1.1.1 OR-branching

The OR-branching is due to the presence of disjunctive constructors, which make a
concept satisfiable by more than one model. The obvious disjunctive constructor is
�; hence ALU is a good sublanguage to see this source of complexity. Recall that
ALU allows one to form concepts using negation of concept names, conjunction �,
disjunction �, universal role quantification ∀R.C , and unqualified existential role
quantification ∃R. This source of complexity is the same that makes propositional
satisfiability np-hard: in fact, satisfiability inALU can be trivially proved np-hard
by rewriting propositional letters as atomic concepts, ∧ as �, and ∨ as �. Many
proofs of conp-hardness of subsumption were found by exploiting this source of
complexity ([Levesque and Brachman, 1987; Nebel, 1988]), by reducing an np-
hard problem to non-subsumption. In Subsection 3.2.1, we show how disjunction
can also be introduced by combining role restrictions and universal quantification,
and in Subsection 3.2.2 by combining number restrictions and role intersection.

3.1.1.2 AND-branching

The AND-branching is more subtle. Its exponential behaviour is due to the inter-
play of qualified existential and universal quantifiers; hence ALE is now a min-
imal sublanguage of ALCN with these features. As mentioned in Chapter 2 one
can see the effects of this source of complexity by expanding the tableau {D(x)},
when D is the following concept (whose pattern appears in many papers, from
[Schmidt-Schauß and Smolka, 1991], to [Hemaspaandra, 1999]) – see Chapter 2
for its general form:

∃P1.∀P2.∀P3.C11 �
∃P1.∀P2.∀P3.C12 �
∀P1.(∃P2.∀P3.C21 �

∃P2.∀P3.C22 �
∀P2.(∃P3.C31 �

∃P3.C32)).

For each level l of nested quantifiers, we use a different role Pl (but using the same
role R would produce the same results). The structure of the tableau for {D(x)},
which is the candidate model for D, is a binary tree of height 3: the nodes are the
individual names, the arcs are given by the Pl-successor relation, and the branches
are the traces in the tableau.
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Each trace ends with an individual that belongs to C1i ,C2 j ,C3k , for i, j, k ∈
{1, 2}. Hence, a clash may be found independently in each trace, i.e., in each
branch of the tree. To verify that this structure is indeed a model, one has to check
every AND-branch of it; and branches can be exponentially many in the nesting of
quantifiers.

This source of complexity causes an exponential number of possible refutations
to be searched through (each refutation being a trace containing a clash).

This second source of complexity is not evident in propositional calculus, but a
similar problem appears in predicate calculus – where the interplay of existential
and universal quantifiers may lead to large models – and in Quantified Boolean
Formulae.

Remark 3.1 For Description Logics that are not closed under negation, a source of
complexity could be absent in satisfiability while it might appear in subsumption.
This is because C is subsumed by D iff C � ¬D is unsatisfiable, where ¬D could
belong a Description Logic which is more expressive than the DL of C and D.

3.1.2 Overview of the chapter

We first present separately the effect of each source of complexity. In the next
section, we discuss intractability results stemming from disjunction (OR-
branching), which lead to conp-hard lower bounds. We discuss both the case
of plain logical disjunction (as the Description Logic FL), and the case of dis-
junction arising from alternative identification of individuals (ALEN ). Then in
Section 3.3 we present an np lower bound stemming fromAND-branching, namely
a Description Logic in which concepts have one candidate model of exponential
size.

A PSpace lower bound combining the two sources of complexity is pre-
sented in Section 3.4, and then in Section 3.5 we show how axioms can com-
bine in a succinct way the sources of complexity, leading to ExpTime-hardness of
satisfiability.

In Section 3.6 we examine one of the first undecidability results found for a
Description Logic, using the powerful construct of role-value-maps – now recog-
nized as very expressive, because of this result.

Finally, we analyze intractability arising from reasoning with individuals in
ABoxes (Section 3.7), and add a final discussion (Section 3.8) about the significance
of these results – beyond the initial study of theoretical complexity of reasoning –
also for benchmark testing of implemented procedures.

Section 3.9, with a list of complexity results for satisfiability and subsumption,
closes the chapter.
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Table 3.1. Syntax and semantics of the Description Logic FL. For FL−, omit
role restriction.

concept expressions semantics

concept name A ⊆ �I

concept intersection C � D CI ∩ DI
limited exist. quant. ∃R {x ∈ �I | ∃y. (x, y) ∈ RI}
value restriction ∀R.C {x ∈ �I | ∀y. (x, y) ∈ RI → y ∈ CI}

role expressions semantics

role name P ⊆ �I ×�I

role restriction R|C {(x, y) ∈ �I ×�I | (x, y) ∈ RI ∧ y ∈ CI}

3.2 OR-branching: finding a model

When the number of candidate models is exponential in the size of the concepts
involved, it is a combinatorial problem to find the right candidate model to check.
In Description Logics, this may lead to np-hardness of satisfiability, and conp-
hardness of subsumption.

3.2.1 Intractability in FL
Brachman and Levesque [1984] (see also [Levesque and Brachman, 1987]) were
the first to point out that a slight increase in the expressiveness of a Description
Logicmay result in a drastic change in the complexity of reasoning. They called this
effect a “computational cliff” of structured knowledge representation languages.
They considered the language FL, which admits concept conjunction, universal
role quantification, unqualified existential quantification, and role restriction. For
readability, the syntax and semantics of FL are recalled in Table 3.1.

Role restriction allows one to construct a subrole of a role R, i.e., a role whose
extension is a subset of the extension of R. For example, the role child|male may

be used for the “son-of ” relation. Observe two properties of role restriction, whose
proofs easily follow from the semantics in Table 3.1:

(i) for every role R, the role R|� is equivalent to R;
(ii) for every role R, and concepts A,C, D, the concept (∀(R|C ).A) � (∀(R|D).A) is equiv-

alent to ∀(R|(C�D)).A.

The second property highlights that disjunction – although not explicitly present in
the syntax of the language – arises from semantics.

Brachman and Levesque defined also the language FL−, derived from FL by
omitting role restriction. They first showed that for FL−, subsumption can be
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decided by a structural algorithm, with polynomial-time complexity, similar to the
one shown in Chapter 2. Then they showed that subsumption in FL is conp-hard,
exhibiting the first “computational cliff ” in Description Logics.

Since the original proof of conp-hardness is somewhat complex, we give here a
simpler proof, found by Calvanese [1990]. The proof is based on the observation
that if C1 � · · · � Cn ≡ �, then, given a role R and a concept A, we have

(∀(R|C1 ).A) � · · · � (∀(R|Cn ).A) ≡ (from (ii)) (3.1)

∀R|(C1�···�Cn).A ≡ (3.2)

∀R|�.A ≡ (from (i)) (3.3)

∀R.A.
Moreover, observe that, for every role Q and every concept C , the disjunction
∃Q � ∀Q.C is equivalent to the concept �. Hence ∀(R|∃Q).A � ∀(R|∀Q.C ).A is
equivalent to ∀R.A. These observations are the key to the reduction from tautology
checking of propositional 3DNF formulae to subsumption in FL.

Theorem 3.2 Subsumption in FL is conp-hard.

Proof Given an alphabet of propositional variables L = {p1, . . . , pk}, define a
propositional formula F = G1 ∨ · · · ∨ Gn in 3DNF over L , where each disjunctGi

is made of three literals l1i ∧ l2i ∧ l3i , and for every i ∈ {1, . . . , n}, and j ∈ {1, 2, 3},
each literal l ji is either a variable p ∈ L , or its negation p.

Given a set of role names {R, P1, . . . , Pk} (one role Pi for each variable pi ) and
a concept name A, define the concept CF = (∀R|C1 .A) � · · · � (∀R|Cn .A) where,
for each i ∈ {1, . . . , n}, Ci is the conjunction of three concepts D1

i � D2
i � D3

i , and
each D j

i is

D j
i =

{∀Ph.A, if l ji = ph
∃Ph, if l ji = ph

for j ∈ {1, 2, 3}, i ∈ {1, . . . , n}.
Then the claim follows from the following lemma.

Lemma 3.3 F is a tautology if and only if CF ≡ ∀R.A.

Proof The proof of the claim is straightforward; however, since it appears only in
Calvanese’s Master thesis (in Italian), we present it here in full.
Only if If F is a tautology, then C1 � · · · � Cn ≡ �. This can be shown by

contradiction: suppose C1 � · · · � Cn is not equivalent to �. Then, there exists an
interpretation I in which there is an element x �∈ CIi , for every i ∈ {1, . . . , n}. Since
each Ci = D1

i � D2
i � D3

i , it follows that for each i there is a j ∈ {1, 2, 3} such that
x �∈ D j

i . Define a truth assignment τ to L as follows. For each h ∈ {1, . . . , k},
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� τ (ph) = false iff l ji = ph , and x �∈ D j
i

� τ (ph) = true iff l ji = ph , and x �∈ D j
i .

Observe that we cannot have both τ (ph) = false and τ (ph) = true at the same
time, since this would imply both x �∈ ∃Ph and x �∈ ∀Ph.A, which is impossi-
ble since ∃Ph � ∀Ph.A ≡ �. Evidently, τ assigns false to at least one literal for
each disjunct of F , contradicting the hypothesis that F is a tautology. Therefore
C1 � · · · � Cn ≡ �.

The claim is now implied by equivalences (3.1)–(3.3).
If Suppose F is not a tautology. Then, there exists a truth assignment τ such that

for each i ∈ {1, . . . , n}, there exists a j ∈ {1, 2, 3} such that τ (l ji ) = false.
Define an interpretation (�I, ·I), with�I containing three elements x, y, z, such

that PIh = (y, z) if τ (ph) = false, and PIh = ∅ otherwise. Moreover, let AI = ∅,
and RI = {x, y}.

Observe that in this way, y ∈ (∃Ph)I iff τ (ph) = false, and y ∈ (∀Ph.A)I iff
τ (ph) = true. This implies that x �∈ (∀R.A)I . To prove the claim, we now show
that x ∈ CIF .

Observe that, for each i ∈ {1, . . . , n}, there exists a j ∈ {1, 2, 3} such that τ (l ji ) =
false. For such a j , we show by case analysis that y �∈ (D j

i )
I :

� if l ji = ph then D j
i = ∀Ph .A, and in this case, τ (ph) = false, hence y �∈ (∀Ph .A)I ;

� if l ji = ph then D j
i = ∃Ph , and in this case, τ (ph) = true, hence y �∈ (∃Ph)I .

Therefore, for every i ∈ {1, . . . , n} we have y �∈ CIi . This implies that (x, y) �∈
R|I(C1�···�Cn), hence x ∈ (∀R|(C1�···�Cn).A)

I , which is a concept equivalent to CF .

The above proof shows only that subsumption inFL is conp-hard. However, role
restrictions could also be used to obtain qualified existential quantification, since
∃R.C = ∃R|C . Hence,FL contains also the AND-branching source of complexity.
Combining the two sources of complexity, Donini et al. [1997a] proved a PSpace
lower bound for subsumption inFL, matching the upper bound found by Schmidt-
Schauß and Smolka [1991].

3.2.2 Intractability in FL− plus qualified existential quantification
and number restrictions

As shown in Chapter 2, disjunction arises also from qualified existential quantifi-
cation and number restrictions. This can be easily seen examining the construction
of the tableau checking the satisfiability of the concept

(∃R.A) � (∃R.(¬A � ¬B)) � (∃R.B) �� 2 R
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in which, once three objects are introduced to satisfy the existentials, one has to
choose between three non-equivalent identifications of pairs of objects, where only
one identification leads to a consistent tableau branch.

Remark 3.4 When aDescription Logic includes number restrictions, then negation
of concept names is included for free, at least from a computational viewpoint. In
fact, a concept name A and its negation ¬A can be coded as, say, � 4 RA and
� 3 RA where RA is a new role name introduced for A. Now these two concepts
obey the same axioms as A and¬A – namely, their conjunction is⊥ and their union
is �. Hence, everything we say about computational properties of Description
Logics including FL− plus number restrictions holds also for AL plus number
restrictions.

We now present a proof of intractability based on this property. The reduction
was first published by Nebel [1988], who reduced the np-complete problem of set
splitting [Garey and Johnson, 1979, p. 221] to non-subsumption in theDescription
Logic of the Back system, which included the basicFL− plus intersection of roles
and number restrictions. set splitting is the following problem:

Definition 3.5 (Set splitting) Given a collection C of subsets of a basic set S,
decide if there exists a partition of S into two subsets S1 and S2 such that no subset
of C is entirely contained in either S1 or S2.

We simplify the original reduction. We start from a variant of set splitting
(still np-complete) in which all c ∈ C have exactly three elements, and reduce it
to satisfiability in FL− plus qualified existential role quantification and number
restrictions.1 Since role intersection can simulate qualified existential role quantifi-
cation (see next Subsection 3.2.2.1) this result implies the original one.

Theorem 3.6 Satisfiability in FL−EN is np-hard.

Proof Let S = {1, . . . , n}, and let c1, . . . , ck be the subsets of S. There exists a
splitting of S iff the concept D1 � D2 � D3 is satisfiable, where D1, D2, D3 are
defined as follows:

D1 = ∃R.B1 � · · · � ∃R.Bn (3.5)

D2 = ∀R.(� 2 Q1 � · · · �� 2 Qk) (3.6)

D3 = � 2 R (3.7)

where each concept Bi codes which subsets element i appears in, as follows:

Bi = � j | i∈cj∃Q j .Ai

1 From Remark 3.4, this DL has the same computational properties of ALEN [Donini et al., 1997a]
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y1 yn

yi

Qj1 Qjk

· · ·

zijkzij1 zij2

Qj2

R

x

R · · ·

· · ·

Fig. 3.1. The AND-tree structure of the tableau obtained by applying rules for � and ∃R.C
to D1 � D2 � D3(x). Applying the rule for � 2 R(x) would lead to several OR-branches (as
many as the possible identifications of ys).

and concepts A1, . . . , An are defined in such a way that they are pairwise disjoint –
say, for i ∈ {1, . . . , n} let Ai = � i R � � i R. Intuitively, when tableau rules deal-
ing with � and qualified existential quantification are applied to D1 � D2 � D3(x),
one obtains a tableau whose tree structure of individual names can be visualized as
in Figure 3.1. The rest of the proof strictly follows the original one [Nebel, 1988],
hence we do not present it here. The intuition is that D3 forces every ys generated
by D1 to be identified with one of only two successors of the root individual name
x . Such identifications correspond to the sets S1 and S2. Then D2 forces the split
of each 3-subset, since it makes sure that neither of these successors has more than
two Q j -successors, and thus both have at least one Q j -successor (since there are
three of them).

We clarify the construction and show its relevant properties by an example.

Example 3.7 Suppose S = {1, 2, 3, 4}, and let c1 = {1, 2, 4}, c2 = {2, 3, 4}, c3 =
{1, 3, 4}. Applying the tableau rules of Chapter 2 to D1, one obtains the following
tree of individual names (definitions of each Bi are expanded):

D1(x)






R(x, y1) B1(y1)

{
Q1(y1, z11) A1(z11)
Q3(y1, z13) A1(z13)

R(x, y2) B2(y1)

{
Q1(y2, z21) A2(z21)
Q2(y2, z22) A2(z22)

R(x, y3) B3(y1)

{
Q2(y3, z32) A3(z32)
Q3(y3, z33) A3(z33)

R(x, y4) B4(y1)






Q1(y4, z41) A4(z41)
Q2(y4, z42) A4(z42)
Q3(y4, z43) A4(z43)

where the individual names y1, . . . , y4 stand for the four elements of S, and each
zi j codes the fact that element i appears in subset c j . Because of assertions Ai (zi j ),
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no two z’s disagreeing on the first index – e.g., z32 and z42 – can be safely identified,
since they must satisfy assertions on incompatible A’s. This is the same as if the
constraints zi j �= zhj , for all i, h ∈ {1, . . . , |S|}with i �= h, and all j ∈ {1, . . . , |C|},
were present.

Now D3 states that y1, . . . , y4 must be identified into only two individual names.
Observe that identifying y2, y3, y4 leads to an individual name (say, y2) having
among others, three unidentifiable Q2-fillers z22, z32, z42. But D2 states that all
R-fillers of x , including y2, have no more than 2 fillers for Q2. This rules out
the identification of y2, y3, y4 in the tableau. Observe that this identification cor-
responds to a partition of S into {1} and {2, 3, 4}, which is not a solution of set
splitting because the subset c2 is not split. Following the same line of reason-
ing, one could prove that the only identifications of all R-fillers into two indi-
vidual names, leading to a satisfiable tableau, are one-to-one with solutions of
set splitting.

The same reduction works for non-subsumption, since D1 � D2 � D3 is
satisfiable iff D1 � D2 is not subsumed by ¬D3 ≡ � 3 R. This type of reduction
has also been applied (see [Donini et al., 1999]) to prove that subsumption in
ALNI is conp-hard, where ALNI is the Description Logic including AL,
number restrictions and inverse roles.

Observe that also FL−EN contains the AND-branching source of complexity,
since qualified existential restriction is present. With a more complex reduction
from Quantified Boolean Formulae, combining the two sources of complexity,
satisfiability and non-subsumption in ALEN has been proved PSpace-complete
by Hemaspaandra [1999].

Note that in the above proof of intractability, pairwise disjointness of A1, . . . , An
could be also expressed by conjoining log n concept names and their negations
in all possible ways. Hence, the proof needs only the concept � 2 R, and when
qualified existentials are simulated by subroles, only � 1 R is used. This shows
that the above proof of intractability is quite sharp: intractability arises indepen-
dently of the size of the numbers involved. The computational cliff is evident
if one moves to having 0 and 1 only in number restrictions, which leads to so-
called functional roles – since the assertion � 1 R(x) forces R to be a partial
function of x . In that case, the tractability of a Description Logic can usually
be established, e.g., the Description Logic of the system Classic [Borgida and
Patel-Schneider, 1994]. The intuitive reason for tractability of functional roles can
be found in the corresponding tableau rules, which for number restrictions of the
form � 1 R(x) become deterministic: there is no choice in identifying individuals
names y1, . . . , yk which are all R-fillers for x , but to collapse them all into one
individual.
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3.2.2.1 Simulating ∃R.C with role conjunction

Donini et al. [1997a] showed that a concept D containing qualified existential
role quantifications ∃R.C is satisfiable iff the concept D̃ is satisfiable, where in D̃
each occurrence of a concept ∃R.C is replaced by the concept ∃(R � QC ) � ∀(R �
QC ).C , adding QC as a new role name (a different QC for each occurrence of ∃R.C ,
to be used nowhere else). We call D̃ an �-simulation of D in the rest of the chapter.

The proof that the simulation is correct can be easily given by referring to
tableaux.

Example 3.8 Considering the concept D below on the left, and simulating qualified
existential quantifications in D by role intersections, one obtains the concept D̃ on
the right,

D =





∃R.A �
∃R.B �
∀R.C

D̃ =





∃(R � QA) � ∀(R � QA).A �
∃(R � QB) � ∀(R � QB).B �
∀R.C

where subscripts on new role names help to identifywhich existential they simulate.
Applying the tableau rules of Chapter 2 to D̃(x), one obtains the model

R(x, y) A(y)
QA(x, y) C(y)
R(x, z) B(z)
QB(x, z) C(z)

which satisfies both concepts.

Proposition 3.9 A concept D is satisfiable iff D̃ is satisfiable.

Proof The proof of the proposition follows the example. Namely, an open tableau
branch for D̃ is also an open tableau branch for D (ignoring assertions on new role
names), and an open tableau branch for D can be transformed to an open tableau
branch for D̃ just by adding the assertions about new role names.

As observed by Nebel [1990a], an acyclic role hierarchy in a Description Logic
can be always simulated by conjunctions of existing roles and new role names. In
the above example, using two role names QA, QB and the inclusions QA 
 R,
QB 
 R yields the same simulation.

Applying �-simulation, one could obtain from the reduction in Theorem 3.6 the
original reduction by Nebel, proving that satisfiability (and non-subsumption) in
ALN (�) isnp-hard. Using amore complex reduction, Donini et al. [1997a] proved
that satisfiability in ALN (�) is in fact PSpace-complete.
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3.3 AND-branching: finding a clash

Whencandidatemodels of a concept have exponential size – as for theALE-concept
of Subsection 3.1.1.2 – models cannot be guessed and checked in polynomial time.
In this case, it is a combinatorial problem to find the clash – if any – in the candidate
model. This leads to np-hardness of unsatisfiability and subsumption. However, for
many Description Logics the AND-tree structure of a model is such that its traces
(branches of theAND-tree) have polynomial size. A conceptC is satisfiable iff there
is no trace containing a clash; hence it is sufficient to guess such a trace to show that
C is unsatisfiable. From this argument,Schmidt-Schauß and Smolka [1991] proved
that satisfiability in ALE is in conp.

3.3.1 Intractability of satisfiability in ALE
We now report a proof that satisfiability in ALE is conp-complete. The original
proof was based on a polynomial-time reduction from a variant of the np-complete
problem one-in-three 3sat [Garey and Johnson, 1979, p. 259]. Here we present a
proof based on the same idea, but with a slightly different construction, relying on
a reduction from the np-complete problem exact cover (xc) [Garey and Johnson,
1979, p. 221]. Such a problem is defined as follows.

Definition 3.10 (Exact coverxc) LetU = {u1, . . . , un}be afinite set, and letMbe
a familyM1, . . . ,Mm of subsets ofU . Decide if there are q mutually disjoint subsets
Mi1, . . . ,Miq such that their union equalsU , i.e.,Mih ∩ Mik = ∅ for 1 ≤ h < k ≤ q ,
and

⋃q
k=1 Mik = U .

The reduction consists in associating every instance of xc with anALE-concept
CM, such that M has an exact cover if and only if CM is unsatisfiable. It is
important to note that, differently from the previous sections, here a solution of
the np-complete source problem is related to a proof of the absence of a model. In
fact, exact covers ofM are related to those traces of {CM(x)} that contain a clash;
hence proving the existence of a solution of an np-complete problem is related to
a refutation in the target Description Logic.

In the following we assume R to be a role name.We translateM into the concept

CM = C1
1 � · · · � Cm

1 � D1

where each concept C j
1 represents a subset Mj , and is inductively defined as

C j
l =

{
∃R.C j

l+1, if either l ≤ n, ul ∈ Mj or l > n, ul−n ∈ Mj

∀R.C j
l+1, if either l ≤ n, ul �∈ Mj or l > n, ul−n �∈ Mj

for l ∈ {1, . . . , 2n}
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and by the base case C j
2n+1 = �. The concept D1 is defined by

D1 = ∀R. · · · ∀R.︸ ︷︷ ︸
2n

⊥

and each of D2, D3, . . . has one universal quantifier less than the previous one.
Intuitively, for every element ul in U there are two corresponding levels l, l + n

in the concepts C j
1 ’s, where “level” refers to the nesting of quantifiers. The element

ul is present in Mj if and only if there is an existential quantifier in the concept C j
1

at level l + n – which implies by construction that ∃ is also at level l. The concept
D1 is designed in such a way that a clash for {CM(x)} can only occur in a trace
containing at least 2n + 1 individual names.

Example 3.11 Consider the following instance of xc: let U = {u1, . . . , u3}, and
M = {M1 = {u1, u2},M2 = {u2, u3},M3 = {u3}}.

The corresponding ALE-concept CM is given by the conjunction of C1
1 ,C

2
1 ,C

3
1

and D1, defined as follows.

u1 u2 u3 u1 u2 u3

M1 ↔ C1
1 = ∃R.∃R.∀R.∃R.∃R.∀R.�

M2 ↔ C2
1 = ∀R.∃R.∃R.∀R.∃R.∃R.�

M3 ↔ C3
1 = ∀R.∀R.∃R.∀R.∀R.∃R.�
D1 = ∀R.∀R.∀R.∀R.∀R.∀R.⊥

where on the left we put the subset Mj corresponding to each C j
1 , and above we

put the elements ofU corresponding to each level of the concepts. Observe that the
elements of U appear twice.

The conjunction of the above concepts is unsatisfiable if and only if the interplay
of the various existential and universal quantifiers, represented by a trace, forces
an individual name in the tableau for {CM(x)} to belong to the extension of ⊥.
This reduction creates a correspondence between such a trace and an exact cover
of U .

In order to formally characterize such a correspondence, we define the activeness
of a concept in a trace. Let T be a trace and C be a concept. We say that C is active
in T if C is of the form ∃R.D and there are individual names y, z such that T
contains C(y), R(y, z), and D(z). Therefore, an existentially quantified concept
∃R.D is active in T if the→∃-rule has been applied to the assertion ∃R.D(y) in T .
Intuitively, if C j

k is active in a trace of {CM(x)} containing a clash, then uk belongs
to an exact cover ofM.
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Lemma 3.12 ([Donini et al., 1992a], Lemma 3.1) Let T be a trace of {CM(x)}.
(i) Suppose C j

k is active in T . Then for all l ∈ {1, . . . , k} if the concept C j
l is of the form

∃R.C j
l+1, then it is active in T .

(ii) If T contains a clash, then for every l ∈ {1, . . . , 2n} there exists exactly one j such that
C j
l is active in T .

Example 3.13 The reader can gain an insight into the importance of the above
properties by constructing the tableau for the concept

(∃R.∀R.∃R.A) �
(∃R.∀R.∃R.B) �
(∀R.∃R.�)

and verifying that the trace reaching the concept A has both existentials of the first
line active (and neither existential of the second line), and vice versa for the trace
reaching B.

Example 3.14 (Example 3.11 Continued) Note that in Example 3.11 the two
subsets M1 and M2 form a (non-exact) cover of U , and indeed, the tableau for
{C1

1 � C1
2 � D1(x)} is satisfiable. Moreover, observe the importance of the two

levels. If concepts were formed by just one level, the following concepts would be
unsatisfiable (choose the highlighted existentials):

C1
1 = ∃R.∃R.∀R.�

C1
2 = ∀R.∃R.∃R.�
D1 = ∀R.∀R.∀R.⊥

corresponding to a cover by M1 and M2 which is non-exact. The second level
ensures that once an existential is chosen, all nested existentials must be chosen too
to form a trace.

Theorem 3.15 Unsatisfiability in ALE is np-hard.

Proof We show that an instance (U,M) of xc has an exact cover if and only if
CM is unsatisfiable. LetM = {M1, . . . ,Mm} be a set of subsets of U and CM =
C1

1 � . . . � Cm
1 � D1 be the corresponding concept. Since this proof is the base for

three others in the chapter, we present it in some detail.
Only if Let Mi1, . . . ,Miq be an exact cover of U . Let T be a trace of {CM(x1)}

defined inductively as follows:

T1 = {C j
1 (x1) | j ∈ {1, . . . ,m}} ∪ {D1(x1)}

Tl+1 = Tl ∪ {R(xl, xl+1)} ∪ {C j
l+1(xl+1) | ul+1 ∈ Mj } ∪ {Dl+1(xl+1)}.
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Obviously, T = T2n+1 contains a clash, because D2n+1 = ⊥. For each level l there
is exactly one j such that C j

l = ∃R.C j
l+1. Using this fact, one can easily show that

T is a trace by induction on l.
If If CM is unsatisfiable, then there exists a trace T of {CM(x)} such that T

contains a clash. We show that the subsets in

{Mj | ∃l ∈ {1, . . . , n} : C j
n+l is active in T }

form an exact cover of U . First of all, since T is a trace, for every level
l ∈ {1, . . . , 2n} there exists a j such thatC j

l is active in T (Lemma 3.12(ii)). Hence
the union of these subsets covers U .

We now prove that no two subsets overlap: in fact, suppose there are i , j such that
Mi , Mj intersect non-trivially in an element ul . Here we exploit the two-layered
construction ofCM. By definition, there are h, k such thatCin+h andC j

n+k are active
in T . Since ul is in both Mi and Mj , by construction of CM we have Cil = ∃R.Cil+1

and C j
l = ∃R.C j

l+1. From Lemma 3.12(i), we know that Cil and C j
l are both active

in T . Hence i = j from Lemma 3.12(ii).

The above reduction works also for the special case of xc in which every subset
has at most three elements, which corresponds to at most six nested existential
quantifications in each concept C j

1 . Hence, bounding the number of nested exis-
tential quantifications by a constant k ≥ 6 does not yield tractability. The original
reduction from one-in-three 3sat shows moreover that bounding the number of
existentials in each level by a constant k ≥ 3 does not yield tractability.

Simulating qualified existential quantifications in CM by role intersection (see
Subsection 3.2.2.1), we conclude that unsatisfiability of concepts in AL(�) – AL
plus role conjunction – is np-hard, too.

Theorem 3.16 Satisfiability and subsumption of concepts are np-hard in AL(�).

We note that this source of intractability is not due to the presence of the concept
⊥, but to the interplay of universal and existential quantification. In fact, the above
reduction works also for the Description LogicFL−E , which isFL− plus qualified
existential quantification.

Theorem 3.17 Subsumption is np-hard in FL−E .

Proof Theproof is based on the reduction given forALE . TheALE-conceptCM =
C1

1 � · · · � Cm
1 � D1 in that reduction is unsatisfiable if and only if C1

1 � · · · � Cm
1

is subsumed by ¬D1. Now C1
1 � · · · � Cm

1 is a concept in FL−E and ¬D1 can be
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rewritten to the equivalent concept E , defined as

E = ∃R. · · · ∃R.︸ ︷︷ ︸
2n

�

i.e., a chain of 2n qualified existential quantifications terminating with the concept
�. Obviously, E is in FL−E , hence subsumption in FL−E is np-hard.

We now use the above construction to show that in three other Description Logics
– extendingFL− with each pair of role constructs for role conjunction, role inverse,
and role chain – subsumption is np-hard. The fact that reductions can be easily re-
used is a characteristic of Description Logics. It depends on the compositional
semantics of constructs – hardness proofs obviously carry over to more general
Description Logics – but also on the extensional semantics, that allows one to
simulate a construct with others.

3.3.2 FL− plus role conjunction and role inverse

We abbreviate this Description Logic as FL−(�,− ). We prove that FL−(�,− )
is hard for np by an argument similar to that for FL−E . One may be tempted
to use �-simulation, defined in Subsection 3.2.2.1, which replaces qualified ex-
istential quantifications by role intersections. However, a direct �-simulation
of the concepts used in the reduction for FL−E does not work. In fact, �-
simulation preserves satisfiability, not subsumption; e.g., while ∃R.C � D is sub-
sumed by ∃R.C , its �-simulation ∃(R � Q1) � ∀Q1.C � D is not subsumed by
∃(R � Q2) � ∀Q2.C .

To carry over the proof, it is useful to have a tableau rule for role inverse:

Condition T contains R(x, y),
where R is either a role name P or its inverse P−;

Action T ′ = T ∪ {R−(y, x)},
where if R = P−, then R− = P .

Theorem 3.18 Subsumption in FL−(�,− ) is np-hard.

Proof We refer to the concept CM defined in the reduction given for ALE . Let n
be the cardinality of U in xc. First define the concept F as follows:

F = ∀R. · · · ∀R.︸ ︷︷ ︸
2n

∀(R−). · · · ∀(R−).
︸ ︷︷ ︸

2n

A

where A is a concept name (recall that CM does not contain any concept name but
� and ⊥). F is a concept of FL−(�,− ).
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Observe now that the ALE-concept CM = C1
1 � · · · � Cm

1 � D1 is unsatisfiable
if and only if C̃1

1 � · · · � C̃m
1 � F is subsumed by A (where C̃ is the �-simulation of

C). In fact, the subsumption holds if and only if the complete tableau for {C̃1
1 � · · · �

C̃m
1 � F(x),¬A(x)} contains the only possible clash {A(x),¬A(x)}. This tableau

contains a clash if and only if there is a trace of length 2n in the tableau, and such
a trace is in one-to-one correspondence with the exact covers of the problem xc.
Hence subsumption in FL−(�,− ) is np-hard.

3.3.3 FL− plus role conjunction and role chain

We abbreviate this Description Logic as FL−(�, ◦).

Theorem 3.19 Subsumption in FL−(�, ◦) is np-hard.

Proof Again, we refer to the concept CM defined in the reduction given forALE .
Observe that the ALE-concept CM = C1

1 � . . . � Cm
1 � D1 is unsatisfiable if and

only if C̃1
1 � . . . � C̃m

1 is subsumed by ¬D1 (again, C̃ is the �-simulation of C).
The claim holds, since C̃1

1 � . . . � C̃m
1 is in FL−(�) and ¬D1 can be expressed as

the equivalent concept G, defined as follows:

G = ∃ (R ◦ · · · ◦ R)
︸ ︷︷ ︸

2m

. (3.8)

Obviously, G is in FL−(◦), hence subsumption in FL−(�, ◦) is np-hard.

We note that in the above reduction, subsumption is proved intractable by
using only role conjunction in the subsumee (to simulate existential quantifica-
tion), and only role chain in the subsumer. We will exploit the subsumer (3.8) also
in Subsection 3.3.4.

3.3.4 FL− plus role chain and role inverse

We abbreviate this Description Logic as FL−(◦,− ). We first show that, similarly
to Subsection 3.2.2.1, qualified existential quantifications in a concept D can be
replaced by a combination of role chains and role inverses, obtaining a new concept
D̂ that is satisfiable iff D is.

3.3.4.1 Simulating ∃R.C via role chains and role inverses

Donini et al. [1991b; 1999] showed that a concept D containing qualified ex-
istential role quantifications ∃R.C is satisfiable iff the concept D̂ is satisfiable,
where in D̂ each occurrence of a concept ∃R.C is replaced by the concept
∃(R ◦ QC ) � ∀(R ◦ QC ◦ Q−C ).C , adding QC as a new role name (a different Q for
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each occurrence of ∃R.C , to be used nowhere else). We say that Ĉ is a ◦-simulation
of C .

This simulation too can be explained by referring to tableaux, through an example
concept.

Example 3.20 Consider the concept D below on the left, and its ◦-simulation D̂
on the right:

D =
{ ∃R.A �
∃R.B �
∀R.C

D̂ =





∃(R ◦ QA) � ∀(R ◦ QA ◦ Q−A).A �
∃(R ◦ QB) � ∀(R ◦ QB ◦ Q−B ).B �
∀R.C

where subscripts on new role names help to identifywhich existential they simulate.
Applying the tableau rules of Chapter 2 to D̂(x), one obtains the model

R(x, y) A(y) QA(y, uy)
C(y)

R(x, z) B(z) QB(z, uz)
C(z)

where subscripts on individuals uy , uz highlight that there is a new individual name
for each individual name used to satisfy an existential quantification. That is, the
number of individual names in the tableau for D̂ is at most twice that in the tableau
for D.

Lemma 3.21 Let D be an ALE-concept and D̂ its ◦-simulation. Then D is satis-
fiable if and only if D̂ is satisfiable.

Proof The proof extends the above example. In one direction, an open tableau for
D̂ is also an open tableau for D (ignoring assertions on new role names). In the
other direction, an open tableau for D can be transformed to an open tableau for D̂:
to every role assertion R(x, y) – added to satisfy an existential ∃R.C in D – chain
an assertion QC (y, uy).

IfC is anALE-concept, its ◦-simulation Ĉ is a concept belonging to the language
AL(◦,− ), that is, AL plus role inverses and role chains. Of course, ◦-simulations
could be defined for concepts belonging toDescription Logicsmore expressive than
ALE . For Description Logics in which every concept is satisfiable (likeFL−(◦,− ))
this simulation can be interesting only in subsumptions.

We can now come back to subsumption in the Description Logic FL− plus role
inverses and role chains.
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Theorem 3.22 Subsumption in FL−(◦,− ) is np-hard.

Proof For every ALE-concept C , one can compute in quadratic time an ◦-
simulation Ĉ . For a given instance (U,M) of xc, CM is unsatisfiable iff (by
Lemma 3.21) ĈM is satisfiable iff Ĉ1

1 � . . . � Ĉm
1 is subsumed by ¬D1. Now the

subsumee contains no negated concept, hence it belongs to FL−(◦,− ). The sub-
sumer is equivalent to the concept G in (3.8), which again is in FL−(◦,− ).

3.4 Combining sources of complexity

In a Description Logic containing both sources of complexity, one might expect to
code any problem involving the exploration of polynomial-depth, rooted AND–OR
graphs. The computational analog of such graphs is the class APTime (problems
solved in polynomial time by an alternating Turing machine) which is equivalent to
PSpace (e.g., see [Johnson, 1990, p. 98]). Awell-known PSpace-complete problem
is Validity of Quantified Boolean Formulae:

Definition 3.23 (Quantified Boolean Formulae qbf) Decide the validity of the
(second-order logic) closed sentence

(Q1X1)(Q2X2) · · · (QnXn)[F(X1, . . . , Xn)],

where each Qi is a quantifier (either∀ or ∃) and F(X1, . . . , Xn) is aBoolean formula
with Boolean variables X1, . . . , Xn .

The problem remains PSpace-complete if F is in 3CNF, i.e., conjunctive normal
formwith at most three literals per clause.We call the string of quantifiers the prefix
of the quantified formula, and the 3CNF formula F its matrix.

This problem can be encoded in anAND–ORgraph, usingAND-nodes to encode
∀-quantifiers, and OR-nodes for ∃-quantifiers. In the leaves, there is the matrix F .
We use this analogy to illustrate the reduction, taken from [Schmidt-Schauß and
Smolka, 1991].

3.4.1 PSpace -hardness of satisfiability in ALC
Without loss of generality, we assume that each clause is non-tautological, i.e.,
a literal and its complement do not appear both in the same clause. Let F =
G1 ∧ · · · ∧ Gm . TheQBF (Q1X1) · · · (QnXn)[G1 ∧ · · · ∧ Gm] is valid iff theALC-
concept

C = D � C1
1 � · · · � Cn

1 (3.9)
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is satisfiable, where in C all concepts are formed using the concept name A and
the atomic role name R. The concept D encodes the prefix, and is of the form
D1 � ∀R.(D2 � ∀R.(. . . (Dn−1 � ∀R.Dn) . . .)where for i ∈ {1, . . . , n} each Di cor-
responds to a quantifier of the QBF in the following way:

Di =
{

(∃R.A) � (∃R.¬A), if Qi = ∀
∃R.�, if Qi = ∃.

The concept Ci1 is obtained from the clause Gi using the concept name A when
a Boolean variable occurs positively in Gi , ¬A when it occurs negatively, and
nesting l universal role quantifications to encode the variable Xl . In detail, let k
be the maximum index of all Boolean variables appearing in Gi . Then, for l ∈
{1, . . . , (k−1)} one defines

Cil =





∀R.(A � Cil+1), if Xl appears positively in Gi

∀R.(¬A � Cil+1), if Xl appears negatively in Gi

∀R.Cil+1, if Xl does not appear in Gi

and the last concept of the sequence is defined as

Cik =
{∀R.A, if Xk appears positively in Gi

∀R.¬A, if Xk appears negatively in Gi .

It can be shown that each trace in a tableau branch for D corresponds to a truth as-
signment to the Boolean variables, and that all traces of a tableau branch correspond
to a set of truth assignments consistent with the prefix. Therefore, Schmidt-Schauß
and Smolka conclude that satisfiability in ALC is PSpace-hard. Combining this
result with the polynomial-space calculus given for ALCN in Chapter 2, one ob-
tains that satisfiability (and subsumption) inALCN are PSpace-complete, and that
the exponential-time behavior of the calculus cannot be improved unless PSpace
=PTime. Satisfiability and subsumption are still in PSpace if role conjuctions are
added to ALCN [Donini et al., 1997a], or if inverse roles and transitive roles are
added to ALC [Horrocks et al., 2000b].

Using �-simulations, one can use the same reduction to prove that both satisfia-
bility and subsumption in ALU(�) are PSpace-hard (and thus PSpace-complete).
By a more complex reduction, Donini et al. [1991a] proved that satisfiability in
ALN (�) is also PSpace-hard. Hemaspaandra [1999] proved that satisfiability in
ALEN is PSpace-hard using a reduction from qbf, where the prefix was coded
with a concept similar to D (more precisely, similar to the concept D in Subsec-
tion 3.1.1.2), and the matrix was coded in a more complex way. Also FL was
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proved PSpace-hard in [Donini et al., 1997a]. Observe that all these Description
Logics contain both sources of complexity.

3.4.2 A remark on reductions

Schild [1991] observed that ALC is a notational variant of multi-modal logic K,
whose satisfiability was proved PSpace-hard by Ladner [1977], using a different
reduction from qbf. This gives us the occasion to point out a characteristic of
reductions from a different, fairly experimental viewpoint.

The target modal formula in Ladner’s reduction has size quadratic w.r.t. the given
instanceofqbf,while one canobserve that the conceptC in (3.9) has only linear size.
From a theoretical perspective of the PSpace reduction, this is irrelevant. However,
qbf has also been studied from an experimental point of view (e.g., [Cadoli et al.,
2000; Gent and Walsh, 1999]): trivial cases have been identified, easy-hard-easy
patterns have been found, and one can use ratios of clauses/variables for which the
probability that a random QBF is valid is around 0.5 – which have been proved
experimentally to contain the “hard” instances. This experimental work can be
transferred to Description Logics, to compare the various algorithms and systems
for reasoning in ALC. This transfer yields the benefits that

� concepts which are trivially (un)satifiable do not need to be isolated again;
� the translation of “hard” QBFs can be used to test reasoning algorithms for ALC;
� the performance of algorithms for ALC can be compared with best known algorithms
for solving qbf (see [Cadoli et al., 2000; Rintanen, 1999; Giunchiglia et al., 2001]), and
optimizations can be carried over.

However, using Ladner’s reduction to obtain “hard-to-reason” concepts, the
quadratic blowup of the reduction soon makes the resulting concepts too big to
be significantly tested. Using Schmidt-Schauß and Smolka linear reduction, in-
stead, one can use a spectrum of “hard” concepts as wide as the original instances
of qbf. Thus, experimental analysis might make significant differences between
(theoretically equivalent) polynomial many-to-one transformations used in reduc-
tions [Donini and Massacci, 2000].

3.5 Reasoning in the presence of axioms

In this section we consider the impact of axioms on reasoning. Intuitively, axioms
introduce new concept expressions in every individual generated in a tableau, so that
simple arguments on termination and complexity based on the nesting of operators
do not apply. We start with a comparison with Dynamic Logic, and then we show
how axioms can encode a succinct representation of AND–OR graphs, leading to
an ExpTime lower bound.
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3.5.1 Results from Propositional Dynamic Logic

Propositional Dynamic Logic (pdl) [Harel et al., 2000] is a formalism able to
express propositional properties of programs. Instead of introducing yet another
logical syntax, we will talk about pdl in terms of Description Logics. A precise
correspondence between Description Logics and pdl can be found in Chapter 5.

The counterpart of pdl in Description Logics is ALCtrans [Baader, 1991], al-
ready defined in Chapter 2. We recall that ALCtrans is ALC plus a rich set of role
constructors: union of roles, composition, and transitive closure. To be precise,
pdl has also a role-forming constructor which is role identity, and the closure of a
role is the reflexive–transitive one, denoted as R∗. Reflexive–transitive closure is
defined similarly to transitive closure, but considering also every pair (a, a) to be
in the interpretation of R∗. However, Schild [1991] showed that these are minor
differences, as long as we are concerned with computational behavior only.
pdl andALCtrans are relevant in this section about axioms, because using union

and transitive closure of roles, one can “internalize” axioms in a concept in the
following way [Baader, 1991; Schild, 1991]. Let C be anALC concept, T a set of
axioms of the form Ci 
 Di , i ∈ {1, . . . ,m}. Observe that every axiom can also be
thought of as a concept¬C � D which every individual in a model must belong to.
Let R1, . . . , Rn be all the role names used in either C or T . Then C is satisfiable
w.r.t. T iff the following concept is satisfiable:

C � ∀(R1 � · · · � Rn)∗.((¬C1 � D1) � · · · � (¬Cm � Dm)). (3.10)

The key property that makes this reduction correct is the connected model property
[Streett, 1982]: if C has a model w.r.t. a set of axioms, then it has also a model in
which one element a ∈ �I is in CI , and for every other element b in the model,
there is a path of roles from a to b.

Concept (3.10) is just a syntactic variant of a pdl expression. Hence, every upper
bound on complexity of satisfiability for pdl applies also to concept satisfiability
in ALC w.r.t. axioms, including all role constructors of pdl. Namely, satisfiabil-
ity in pdl was proved to be decidable in deterministic exponential time, first by
Pratt [1979], and then by Vardi and Wolper [1986] using an embedding into tree
automata. This upper bound holds also for ALC plus axioms. It is interesting to
observe that the deterministic exponential time upper bound was nontrivial; sim-
ple nondeterministic upper bounds were proved by Fischer and Ladner [1979] for
pdl and by Buchheit et al. [1993a] for Description Logics, using tableaux. Only
recently a tableau with lemmas providing a deterministic exponential upper bound
has been found [Donini and Massacci, 2000].

Regarding hardness, every lower bound on reasoning inALC with axioms carries
over to pdl. However, lower bounds for pdl were already known. Fischer and



118 F. M. Donini

Ladner [1979] proved that pdl is ExpTime-hard using a reduction from Alternating
Turing Machines working in polynomial space (recall that the complexity class
Alternating Polynomial Space is the same as ExpTime [Johnson, 1990]). van
EmdeBoas [1997] proved the same result using a reduction fromalternating domino
games.However, both hardness proofs use a very small part of pdl, and in particular,
transitive closure on roles appears only in one expression of the form (3.10), so that
proofs could be adapted to ALC concept satisfiability w.r.t. a set of inclusions, in
a very simple way. Moreover, the proofs use ∀R.C to code an AND-node, and
∃R.C to code an OR-node. Hence, they follow the same intuition presented in the
previous section, where we showed the correspondence between AND–OR trees
and satisfiability of ALC without axioms.

Here, we want to present yet another proof, of a very different nature, that high-
lights the fact that concept inclusions can express a large structure in a succinct way.

3.5.2 Axioms and succinct representations of AND–OR graphs

We now needmore precise definitions about AND–OR graphs. AnAND–OR graph
is a graph in which nodes are partitioned into AND-nodes and OR-nodes. An OR-
node is reachable if one of its predecessors is reachable (as in ordinary graphs),
while an AND-node is reachable only if all its predecessors are reachable.

Definition3.24 (AND–ORgraphAccessibilityProblem(agap)) Given anAND–
OR graph, a set of source nodes S1, . . . , Sm , and a target node T , is T reachable
from S1, . . . , Sm?

Let n be the number of nodes of the graph, and d (a constant) the maxi-
mum number of predecessors of a node. It is well known that agap can be
solved in time polynomial in n (e.g., it can be reduced to Monotone Circuit
Value, which is PTime-complete [Papadimitriou, 1994]). However, agap becomes
ExpTime-complete when one considers its succinct version [Balcazar, 1996]. Let
the out-degree of a node be bounded by a constant d. Let C be a Boolean circuit
with log n inputs, and with 1+ d log n outputs; when the input of C is the binary
encoding of a node N , its outputs are the encodings of the type of N (AND/OR)
and of the d predecessors of N (using a dummy node if there are fewer than d
predecessors).

Definition 3.25 (Succinct AND–OR Graph Accessibility Problem (s(agap)))
Given a circuitC representing anAND–ORgraph, a set of source nodes S1, . . . , Sm ,
and a target node T , is T reachable from S1, . . . , Sm?
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Now, s(agap) is ExpTime-complete [Balcazar, 1996]. The intuition for this ex-
ponential blowup in complexity is that there are many circuits which can encode
graphs whose size is exponentially larger than the circuit size. This intuition applies
to many other succinct representations of problems with circuits [Papadimitriou,
1994, p. 492] or with propositional formulae [Veith, 1997], yielding complete prob-
lems for high complexity classes.

We reduce s(agap) for graphs with in-degree d = 2 to unsatisfiability of anALC
concept C w.r.t. a set of inclusions T . Intuitively, the axioms can succinctly encode
either a proof of unsatisfiability for a concept, or a model for C w.r.t. T . We note
that, since we are coding reachability into unsatisfiability, we will use � to code
OR-nodes – a conjunction is unsatisfiable when at least one of its conjuncts is –
and � to code AND-nodes.

First of all, let A1, . . . , Alog n be a set of concept names one-to-onewith the inputs
of the circuit C. Each node N in the graph is then mapped into a conjunction of As
and their negations, denoted by concept(N ), depending on the code of N : if the
i th bit in the code of N is 1, use Ai , if it is 0, use ¬Ai . For example, if N has code
1101 then concept(N ) is A1 � A2 � ¬A3 � A4.

Then, let B1
1 , . . . , B

1
log n and B2

1 , . . . , B
2
log n be two sets of concept names one-

to-one with the outputs of C. Conjunctions of Bs with negations code predecessor
nodes.

Moreover, let two concept names AND , OR represent the type of a graph node.
If C has k internal gates, we use also k concept names W1, . . . ,Wk . For each
gate, we use a concept equality that mimics the Boolean formula defining the gate.
E.g., if C has an ∧-gate x1 ∧ x2 = x3, we use the equality X1 � X2 = X3, where
X1, X2, X3 can either be concept names among W1, . . . ,Wk denoting input/output
of internal gates, or be some of the As and Bs, denoting inputs/outputs of the whole
circuit.

For the output ofC encoding the type of the node, we use directly the two concept
names AND , OR in the concept equality coding the output gate of C. Moreover,
to model the different interpretation of predecessors for the two type of nodes, we
use the inclusions

AND 
 ∃R1.� � ∃R2.� (3.11)

OR 
 ∃R1.� � ∃R2.� (3.12)

where R1 and R2 are two role names (we use indices 1,2 to parallel indices of the
Bs). Observe that concept AND implies a disjunction �, and concept OR implies
a conjunction �. This is because we reduce reachability to unsatisfiability, as we
said before. Moreover, observe that predecessors in the AND–OR graph are coded
into role successors in the target Description Logic.
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For the output of C encoding the predecessors of a node, we add the following
inclusions for i ∈ {1, . . . , log n}:

B1
i 
 ∀R1.Ai (3.13)

¬B1
i 
 ∀R1.¬Ai (3.14)

B2
i 
 ∀R2.Ai (3.15)

¬B2
i 
 ∀R2.¬Ai . (3.16)

We denote by TC the set of all of the above axioms.
We now give an example of what the axioms imply. Suppose C computes the

two predecessors 1011 and 0110 for node 1101. Then, equalities coding C force
concept(1101) = A1 � A2 � ¬A3 � A4 to be included in B1

1 , ¬B1
2 , B

1
3 , B

1
4 (first

predecessor) and¬B2
1 , B

2
2 , B

2
3 ,¬B2

4 (second predecessor). Then inclusions (3.13)–
(3.16) say that every R1-successor is included in A1,¬A2, A3, A4 –which conjoined,
make concept(1011) – and that every R2-successor is included in ¬A1, A2, A3,
¬A4 (concept(0110)). Moreover, if C computes an AND-type for node 1101, then
axiom (3.11) implies that the corresponding concept is included in AND , and this
implies that either an R1-successor or an R2-successor exists. For OR-type nodes,
both successors exist.

Theorem3.26 LetC be a circuit, T be the target node, and S1, . . . , Sm be the source
nodes in an instance of s(agap). Then T is reachable from S1, . . . , Sm iff concept(T )
is unsatisfiable in the TBox TC ∪ {concept(S1) 
 ⊥} ∪ · · · ∪ {concept(Sm) 
 ⊥}.

Proof Most of the rationale of the proof has been informally given above. We
sketch what is needed to complete the proof.

If Suppose T is unreachable from S1, . . . , Sm . We construct a model (I,�I)
for concept(T ) satisfying the axioms as follows. Let �I be the set of all nodes in
the graph which are unreachable from S1, . . . , Sm . Then, (R1)I is the set of pairs
(a, b) of nodes in �I , such that b is the first predecessor of a, and similarly for
(R2)I (second predecessor). For i ∈ {1, . . . , log n}, (Ai )I is the set of nodes in �I

whose binary code has the i th bit equal to 1. The interpretation of the Bs, W s, and
AND , OR concepts is according to the 1-value of the circuit: node a is in their
interpretation iff the output they correspond to is 1 when the code of a is the input
of the circuit.

Then, T ∈ (concept(T ))I , and moreover (I,�I) satisfies by construction all
axioms in TC; e.g., if an OR-node is unreachable, then both its predecessors are
unreachable, hence both predecessors are in �I , and axiom (3.12) is satisfied.
Similarly for an AND-node.
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Only if Let N be any node reachable from S1, . . . , Sm , and let d(N ) be the depth
of the shortest hyperpath leading from S1, . . . , Sm to N . We show by induction on
d(N ) that concept(N ) is unsatisfiable in the TBox.

If d(N ) = 0, the claim holds by construction. Let N be a reachable node, with
d(N ) = k + 1. If N is an OR-node, at least one of its predecessors – let it be the
first predecessor, and call it M – is reachable with d(M) = k. Then concept(M) is
unsatisfiable by inductive hypothesis. But axiom (3.12) implies that concept(N ) is
included in∃R1.� � ∃R2.�, while (3.13)–(3.16) imply that concept(N ) is included
in ∀R1.concept(M), that is, ∀R1.⊥. Hence, also concept(N ) is unsatisfiable. A
similar proof holds in case N is an AND-node.

Then, the claim holds for N = T .

Observe that in the above proofwe did not use qualified existential quantification;
hence, the proof works for the sublanguage of ALC called ALU . Now, axioms
coding the circuit can be propositionally rewritten without union. Moreover, the
only other axiom in which union is needed is (3.11), which could be rewritten
equivalently as ∀R1.⊥ � ∀R2.⊥ 
 ¬OR, which is now in the language AL.

Theorem 3.27 Let C be a concept and T a set of inclusions in AL, with at least
two role names. Deciding whether C is unsatisfiable w.r.t. T is ExpTime-hard.

The above theorem sharpens a result by Calvanese [1996b], who proved Exp-
Time-hardness for ALU . McAllester et al. [1996] proved ExpTime-hardness for a
logic that includes FL−E , and their proof can be rewritten to work with ALU .

Remark 3.28 The above proof does not follow the correspondence used by
Fischer and Ladner [1979] between AND-nodes and ∀R.C concepts on one side,
and OR-nodes and ∃R.C concepts on the other side. There, quantifications ∃R and
∀R.C were used to code predecessors in the graph, node type was coded by �, �
constructors, while axioms were crucial to mimic the behavior of the circuit.

3.5.3 Syntax restrictions on axioms

In the proof, no restriction on axioms was imposed. A significant syntactic restric-
tion is to allow only concept names on the left-hand side of axioms. In this case, a
dependency graph induced by the axioms of a TBox T can be constructed, whose
nodes are labeled by concept names. A node A is connected to a node B if the
concept name B appears (also as a subconcept) in a concept C , and A 
 C is an
axiom. Then, it makes sense to distinguish between cyclic axioms, in which the
dependency graph contains a cycle, and acyclic axioms.
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Acyclicity is significant, because if only acyclic axioms are allowed, then rea-
soning in ALC can be performed in PSpace by expanding axioms when needed
[Baader and Hollunder, 1991b; Calvanese, 1996b]. The only case for ALC (till
now) in which acyclic axioms make reasoning ExpTime-hard is when concrete
domains are also added [Lutz, 2001b].

Also sublanguages of ALC can be considered. With regard to acyclic axioms
in AL, Buchheit et al. [1998] proved that subsumption in acyclic AL TBoxes is
conp-hard, and in PSpace. Calvanese [1996b] proved that cyclic axioms inAL are
PSpace-complete, and other results for ALE and ALU .

A second possible restriction is to allow axioms of the form A ≡ C , but in which
a concept name can appear only once on the left-hand side. For axioms of this form
inALN , Küsters [1998] proved that reasoning is PSpace-complete when the TBox
is cyclic, and np-complete when it is acyclic.

3.6 Undecidability

One of the main reasons why satisfiability and subsumption in many Descrip-
tion Logics are decidable – although highly complex – is that most of the con-
cept constructors can express only local properties about an element [Vardi, 1997;
Libkin, 2000]. Let C be a concept inALC: recalling the tableau methods in Chap-
ter 2, an assertion C(x) states properties about x , and about elements which are
linked to x by a chain of at most |C | role assertions. Intuitively, this implies that
a constraint regarding x will not “talk about” elements which are arbitrarily far
(w.r.t. role links) from x . This also means that in ALC, and in many Description
Logics, an assertion on an individual cannot state properties about a whole structure
satisfying it. However, not every Description Logic satisfies locality.

3.6.1 Undecidability of role-value-maps

The first notable non-local Description Logic is a subset of the language of the
knowledge representation system Kl-One, isolated by Schmidt-Schauß [1989],
which we call2 FL−(◦,=). It contains conjunction, universal quantification, role
composition, and equality role-value-maps R = Q. A role-value-map allows one
to express concepts like “persons whose co-workers coincide with their relatives”,
as it could be, e.g., a small family-based firm. Using two role names co-worker and
relative, this concept would be expressed as (co-worker = relative � person).

The Description Logic proved undecidable by Schmidt-Schauß used equal-
ity role-value-maps. Here we present a simpler proof for a Description Logic

2 In his paper, Schmidt-Schauß used the name ALR.
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Table 3.2. Syntax and semantics of the Description Logic FL−(◦,⊆).

concept expressions semantics

concept name A ⊆ �I

value restriction ∀R.C {x ∈ �I | ∀y. (x, y) ∈ RI → y ∈ CI}
concept intersection C � D CI ∩ DI

role-value-map R ⊆ Q {x ∈ �I | ∀y. (x, y) ∈ RI → (x, y) ∈ QI}
role expressions semantics

role name P ⊆ �I ×�I

role composition R ◦ Q {(x, y) ∈ �I ×�I | ∃c. (x, z) ∈ RI , (z, y) ∈ QI}

using containment role-value-maps R ⊆ Q. We call this Description Logic
FL−(◦,⊆). Clearly, FL−(◦,⊆) is (slightly) more expressive than FL−(◦,=),
since R = Q can be expressed by (R ⊆ Q) � (Q ⊆ R), but not vice versa. Most of
the original reduction is preserved, though.

Although all constructs ofFL−(◦,⊆) have already been defined in different parts
of Chapter 2, we recall for convenience their syntax and semantics in the single
Table 3.2. Recall that R ⊆ Q is a concept: namely, the concept of all elements
whose set of fillers for role R is included in the set of fillers for role Q. To avoid
many parentheses, we assume ◦ has always precedence over ⊆.

Before giving the proof that subsumption in FL−(◦,⊆) is undecidable, let us
consider an example illustrating why FL−(◦,⊆) is not local.

Example 3.29 Let Q, R, S,U, V be role names. Consider whether the con-
ceptC = ∀S.∀U.A � (R ◦ Q ⊆ S) � ∀R.(Q ◦U ⊆ V ) is subsumed by the concept
D = ∀R.∀Q.∀U.B.

The answer is no: in fact, a model satisfying C and not satisfying D is shown in
Fig. 3.2. This model can be obtained by trying to satisfy ¬D = ∃R.∃Q.∃U.¬B
with individual x, y, z, w, and then adding role assertions satisfying C . Ob-
serve that a model of C cannot be a tree because of concepts like (R ◦ Q ⊆ S).
Hence, any notion of “distance” between two individuals in a model, as the num-
ber of role links connecting them, is ambiguous when a Description Logic has
role-value-maps. Moreover, the satisfaction of the assertions (R ◦ Q ⊆ S)(x) and
∀S.A(x) in an interpretation depends on the satisfaction of the assertion A(z),
for every individual z connected to x via a path of role fillers that can be com-
posed according to role-value-maps. In fact, replacing B with A in D yields a
concept D′ which now subsumes C – and indeed, the previous model satisfies
also D′.
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∀S.∀U.A(x)

(R ◦Q⊆S)(x)

∀R.(Q ◦ U⊆V )(x)

(Q ◦ U ⊆ V )(y)

∀U.A(z)

A(w)

¬B(w)
R(x, y)

Q(y, z)

S(x, z)

V (y, w)

U(z, w)

Fig. 3.2. A possible countermodel for C 
 D in Example 3.29. Boxes group assertions
about an individual; arrows represent role assertions.

These properties are crucial for the reduction from ground rewriting systems
to subsumption in FL−(◦,⊆). For basics about rewriting systems, consult [Der-
showitz and Jouannaud, 1990].

Definition 3.30 (Ground rewriting system) Let
 be a finite alphabet {a, b, . . .}.
A term w on 
 is an element of 
∗, i.e., a finite sequence of 0 or more letters
from 
. If v,w are terms, their concatenation is a term, denoted by vw. A ground
rewriting system is a finite set of rewriting rules ρ = {si → ti }i=1,...,n , where for

every i ∈ {1, . . . , n} both si and ti are terms on
. The rewriting relation
∗→ induced

by a set of rewriting rules ρ is the minimal relation which is reflexive, transitive,
and satisfies the following conditions:

(i) if s → t ∈ ρ then s
∗→ t ;

(ii) for every letter a ∈ 
, if p
∗→ q then both ap

∗→ aq and pa
∗→ qa.

The rewriting problem for ground rewriting systems is: Given a set of rewriting
rules ρ and two terms v,w, decide whether v

∗→ w.

Remark 3.31 In general, a single rewriting step of a term v consists in finding
a substring of v which coincides with the antecedent s of a rewriting rule s → t ,
and then substituting t for s in v. Hence, v

∗→ w if there exist n terms u1, . . . , un
such that u1 = v, un = w, and for each i ∈ {1, . . . , n − 1} the two terms ui , ui+1

are such that for some terms p and q , we have ui = psq, ui+1 = ptq, and s →
t ∈ ρ. This proves that the term problem is recursively enumerable. However, it is
semidecidable (recursively enumerable, but nonrecursive).

We reduce this problem to subsumption in FL−(◦,⊆) as follows. First of all,
observe that we can define the following one-to-one correspondence between terms
and role chains:

� For every letter a in 
, let Pa be a role name.
� For every termw, let Rw be the composition of the role names corresponding to the letters
of w. For example, if w = aab, then Rw = Pa ◦ Pa ◦ Pb.
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Now for each set of rewriting rules ρ, we define the concept Cρ as

Cρ =�s→t∈ρ(Rs ⊆ Rt ).

Let Q be a new atomic role: we define a concept C
 as

C
 =�a∈
(Q ◦ Pa ⊆ Q).

Intuitively, if a model I satisfies C
(x), then for every term w, if (Q ◦ Rw)(x, z)
holds in I, then Q(x, z) also holds, i.e., x is directly connected via Q to every other
element z to which it is indirectly connected via Q ◦ Rw.

If also I |= ∀Q.Cρ(x), then Cρ(z) holds for every such z. This is a key property
of the reduction.

Remark 3.32 The two concepts ∀Q.Cρ and C
 are a way to internalize simple
axioms in a concept. Consider a TBox T = {� 
 Cρ} which states that every in-
dividual in a model must satisfy concept Cρ . One could prove that in FL−(◦,⊆)
a concept C is subsumed by a concept D w.r.t. T iff C
 � ∀Q.Cρ � ∀Q.C is
subsumed by ∀Q.D, where the latter is plain subsumption between concept ex-
pressions.

Theorem 3.33 Subsumption in FL−(◦,⊆) is undecidable.

Let ρ be a set of rewriting rules, and v,w be two terms. Define the following
two concepts:

C = C
 � ∀Q.Cρ (3.17)

D = ∀Q.(Rv ⊆ Rw). (3.18)

We divide the proof in two lemmas.

Lemma 3.34 If v
∗→ w then the concept C is subsumed by D.

Proof Wefirst prove that the claimholds for the base case of the inductive definition
of

∗→ (Condition (i) in Definition 3.30). Then, we prove the claim for the two
inductive cases (Condition (ii)). Finally, we prove that the proof carries over the
closure conditions. In all cases, let s → t ∈ ρ.
Base case The concept D is ∀Q.(Rs ⊆ Rt ). Observe that the concept ∀Q.Cρ is

equivalent to�s→t∈ρ∀Q.(Rs ⊆ Rt ). Hence, C is subsumed by D because D is
one of the conjuncts of (an equivalent form of ) C .
Inductive cases For the first inductive case, let D = ∀Q.(Pa ◦ Rp ⊆ Pa ◦ Rq),

and let the inductive hypothesis be that C is subsumed by ∀Q.Rp ⊆ Rq . For a
contradiction, suppose C is not subsumed by D: then, there is a model I in which
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both C(x) and ¬D(x) hold. The latter constraint implies that there is an element y
such that

(i) I |= Q(x, y)
(ii) I |= (Pa ◦ Rp)(y, z)
(iii) I �|= (Pa ◦ Rq )(y, z).
From (ii), there is an element y′ such that both Pa(y, y′) and Rp(y′, z) hold. Now
fromC
(x), wemust haveI |= Q(x, y′), and from the inductive hypothesis this im-
plies (Rp ⊆ Rq)(y′). Then, I |= Rq(y′, z) holds, hence I |= (Pa ◦ Rq)(y, z), con-
tradicting (iii).

The second inductive case is simpler, since one does not need to consider C
(x).
The interested reader can use it as an exercise.

We conclude the proof by showing that the reduction carries over the reflexive
and transitive closure of

∗→.
First, from the semantics in Table 3.2 it follows that Rw ⊆ Rw is equivalent to

�, which implies also that D ≡ �. Hence the claim holds also for w
∗→ w (i.e.,

reflexivity).
For transitivity, the induction is easy: suppose u

∗→ v and v
∗→ w: then by

induction C is subsumed by D1 and by D2, where D1 = ∀Q.(Ru ⊆ Rv) and
D2 = ∀Q.(Rv ⊆ Rw). Then C is subsumed also by D1 � D2 which is equivalent
to ∀Q.((Ru ⊆ Rv) � (Rv ⊆ Rw)). This concept is subsumed by ∀Q.(Ru ⊆ Rw),
which is the claim.

We now prove the other direction of the reduction.

Lemma 3.35 If v � ∗→ w, then the concept C is not subsumed by D.

Proof We give the rule for constructing an infinite tableau branch T and show that
it defines a model that satisfiesC , and does not satisfy D. The tableau is one-to-one
with an infinite automaton accepting the term v, and every other term into which v

can be rewritten. Let v[1], . . . , v[n] denote the n letters of v (v[i] is the i th letter
of v).

Let x, y, z be individual names. Start from the set of assertions

T0 = Pv[1](y, y1), . . . , Pv[i+1](yi , yi+1), . . . , Pv[n](yn−1, z).

Then add role assertions to T following the→⊆-rule:

Condition there is a rewriting rule s → t ∈ ρ

where s = s[1] · · · s[h] and t = t[1] · · · t[k];
T contains h + 1 individuals y0, . . . , yh and h assertions
Ps[i](yi−1, yi ) for i ∈ {1, . . . , h}
T does not contain all assertions Pt[1](y0, y′1), . . . , Pt[k](y

′
k−1, yh)
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Action T ′ = T ∪ {Pt[1](y0, y′1), . . . , Pt[k](y′k−1, yh)},
where y′1, . . . , y

′
k−1, are k − 1 individual names not occurring in T .

Intuitively, if there is in T a path of role assertions such that Rs(y0, yh) holds, the
→⊆-rule adds another path such that also Rt (y0, yh) holds.Of course,Tω can have an
infinite number of individuals and role assertions between them; this is reasonable,
since its role paths from y to z are one-to-one with the possible transformations on v

one can make using the rewriting rules. One can also think of Tω as an infinite-state
automaton accepting v = {u | v ∗→ u}.

The →⊆-rule always adds new assertions to T , and its application given some
premises does not destroy other premises of application of the→⊆-rule itself, since
we keep in T all the rewritten terms. Therefore, the construction is monotonic
over the ⊆-lattice of all tableaux with a countable number of individuals and role
assertions between individuals. Hence there exists a fixpoint Tω. In building Tω,
however, a fair strategy must be adopted. That is, if at a given stage Ti of the
construction, the →⊆-rule is applicable for individuals y0, . . . , yh , then for some
finite k, in Ti+k the→⊆-rule has been applied for those premises – i.e., a possible
rule application is not indefinitely deferred. This could be achieved by, e.g., inserting
possible rule applications in a queue.

Proposition 3.36 Let Tω be constructed using the→⊆-rule, and a fair strategy.
For every term u = u[1] · · · u[k], v ∗→ u iff in Tω there are k − 1 individual names
y1, . . . , yk−1 and k assertions Pu[1](y, y1), . . . , Pu[k](yk−1, z).

Proof If v
∗→ u, then there are a minimum finite number n of applications of

rewriting rules in ρ transforming v into u. By induction on such n, the premises of
the→⊆-rule are fulfilled, and since Tω is built adopting a fair strategy, from some
finite stage of its construction onwards, Ru(y, z) must hold. For the other direction,
if Ru(y, z) holds in Tω, then for each→⊆-rule application leading to Ru(y, z) one
can apply a rewriting rule to v, leading to u.

We can now define the model I satisfying C and not satisfying D. Let N be the
set of individual names of Tω. I has domain {x} ∪ N . Let I = Tω ∪ {Q(x, y)|y ∈
N }. Then I satisfies C(x) straightforwardly; moreover, it does not satisfy D from
Proposition 3.36.

To prove that subsumption is undecidable in the less expressiveDescriptionLogic
FL−(◦,=), Schmidt-Schauß [1989] started from the word problem for groups.
Starting from the Post correspondence problem, with a more complex construction,
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Patel-Schneider [1989b] proved that subsumption is also undecidable in the more
expressive Description Logic FL−(◦,⊆) plus role inverses, functional roles, and
role restrictions.

Starting from the word problem – which is less general than the term rewrit-
ing problem, but still semidecidable – Baader [1998] showed that subsumption in
FL−(◦,⊆) is undecidable without referring to tableaux. We report here the second
part of his proof (corresponding to Lemma 3.35), since it is quite short and elegant,
and shows a different way of proving the only-if direction, namely, giving a direct
definition of an infinite structure satisfying the concepts.

The word problem follows Definition 3.30, but considers the reflexive-
symmetric-transitive closure

∗↔ of rewriting rules. This is also known as the word
problem for semigroups, or Thue systems. In this case, ground term and word are
synonyms. Of course,

∗↔ is an equivalence relation on words; let [v] denote the
∗↔-equivalence classes. Note that [u] = [v] iff u

∗↔ v. There is a natural multipli-
cation on these classes induced by concatenation: [u][v] = [uv] (since

∗↔ is even
a congruence, this is well-defined).

Taking the equivalence classes plus one distinguished element x as the domain
of the model I, the roles can be interpreted as

QI = {(x, [u])|u ∈ 
∗} (3.19)

(Pa)
I = {([u], [ua])|a ∈ 
, u ∈ 
∗}. (3.20)

Then, it can be shown that if v � ∗↔ w, then x belongs toCI but not to DI , as follows.

(i) x belongs toCI : from (3.20), for every word u we have (x, [u]) ∈ QI and ([u], [ua]) ∈
(Pa)I ; but also from (3.19), (x, [ua]) ∈ QI , hence C
(x) is satisfied by I. Regarding
∀Q.Cρ(x), suppose ([u], [w]) ∈ (Rs)I , where s → t ∈ ρ. Then [w] = [us] by defini-

tion of (Pa)I . Moreover, from s → t ∈ ρ it follows that us
∗↔ ut , hence [us] = [ut].

Consequently, ([u], [w]) = ([u], [ut]) ∈ (Rt )I from (3.20).
(ii) x does not belong to DI : for the empty word ε, [ε] is a Q-filler of x ; however, [ε] does

not satisfy the concept Rv ⊆ Rw. In fact, ([ε], [v]) ∈ (Rv)I ; but ([ε], [v]) /∈ (Rw)I , since
[w] is the only Rw-filler of [ε] but [v] �= [w] from the assumption that v � ∗↔ w.

3.7 Reasoning about individuals in ABoxes

When an ABox is considered, the reasoning problem of instance checking arises:
Given an ABoxA, an individual a and a conceptC , decide whetherA |= C(a). For
the instance check problem, the size of the input is formed by the size of the concept
expressionC plus the size ofA. Since the size of one input may bemuch larger than
the other in real applications, it makes sense to distinguish the complexity w.r.t.
the two inputs – as is usually done in databases with data complexity and query
complexity [Vardi, 1982].
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A common intuition [Schmolze and Lipkis, 1983] about instance checking was
that it could be performed via subsumption, using the so-called most specific con-
cept (msc) method.

Definition 3.37 (Most specific concepts) LetA be an ABox in a given Description
Logic, and let a be an individual in A. A concept C is the most specific concept of
a in A, written msc(A, a), if, for every concept D in the given Description Logic,
A |= D(a) implies C 
 D.

Recall from Chapter 2 a slightly different definition of msc in the realization prob-
lem: given an individual a and an ABoxA, find the most specific concepts C (w.r.t.
subsumption) such that A |= C(a) [Nebel, 1990a, p. 104]. Since conjunction is
always available in every Description Logic, the two definitions are equivalent (just
conjoin all specific concepts of realization into one msc).

Clearly, oncemsc(A, a) is known, to decidewhether a is an instance of a concept
D it should be sufficient to check whether msc(A, a) is subsumed by D, turning
instance checking into subsumption. Moreover, when a TBox is present, off-line
classification of all msc’s in the TBox may provide a way to pre-compute many
instance checks, providing an on-line speed-up.

The intuition about how to compute msc(A, a) was to gather the con-
cepts/properties explicitly stated for a inA. However, this approach is quite sensi-
tive to the Description Logic chosen to express msc(A, a) and the queries. In fact,
most specific concepts can be easily computed for simple Description Logics, like
AL. However, it may not be possible when slightly more expressive languages are
considered.

Example 3.38 A simple example (simplified from [Baader and Küsters, 1998])
is the ABox made just by the assertion R(a, a). If FL− is used for most specific
concepts and queries, then msc({R(a, a)}, a) = ∃R. However, if qualified existen-
tial quantification is allowed for most specific concepts, then each of the concepts
∃R, ∃R.∃R, ∃R.∃R.∃R, . . . , is more specific than the previous one. Using this
argument, it is possible to prove that msc({R(a, a)}, a) has no finite representation,
unless transitive closure on roles is also allowed. Using the axiom A 
 ∃R.A in an
ad hoc TBox,msc({R(a, a)}, a) = A for the simple ABox of this example – but this
does not simplify instance checking. An alternative approach would be to raise in-
dividuals in the language to express concepts, through the concept constructor {. . .}
that enumerates the individuals belonging to it (called “one-of ” inClassic). In that
case, msc({R(a, a)}, a) = ∃R.{a} (see [Donini et al., 1990]). But this “solution”
to instance checking becomes now a problem for subsumption, which must take
individuals into account (for a treatment of Description Logics with one-of, see
[Schaerf, 1994a]).
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The msc method makes an implicit assumption: to work well, the size of
msc(A, a) should be comparable with the size of the whole ABox, and in most
cases much shorter. However, consider the Description Logic ALE , in which
subsumption is in np. Then, solving instance checking by means of subsump-
tion in polynomial space and time would imply that instance checking was in
np, too. However, suppose that we prove that instance checking is hard for conp.
Then, solving instance checking by subsumption implies that either conp ⊆ np, or
msc(A, a), if ever exists, has superpolynomial size w.r.t.A. The former conclusion
is unlikely to hold, while the latter would make unfeasible the entire method of
msc’s.

In general, this argument works whenever subsumption in a Description Logic
belongs to a complexity class C, while instance checking is proved hard for a
different complexity class C ′, for which C ′ ⊆ C is believed to be false. We present
here a proof using this argument, found by Schaerf [1993; 1994b; 1994a].

We first start with a simple example highlighting the construction.

Example 3.39 Let f, c1, c2, x, y, z be individuals, R, P, N be role names, and A
be a concept name. LetA be the following ABox, whose structure we highlight by
means of arrows between assertions:

f
↗
↘

R( f, c1)
↗ P(c1, x) A(x)
↘ N (c1, y)

R( f, c2)
↗ P(c2, y)
↘ N (c2, z) ¬A(z).

The query ∃R.(∃P.A � ∃N .¬A)( f ) is entailed byA. That is, one among c1 and c2
has its P-filler in A and its N -filler in ¬A. This can be verified by case analysis
on y: in every model either A(y) or ¬A(y) must be true. For models in which
A(y) holds, c2 is the R-filler of f satisfying the query; for models in which ¬A(y)
holds, c1 is. Observe that ifALE is used to express most specific concepts, the best
approximation we can find for msc(A, f ), by collecting assertions along the role
paths starting from f , is the concept C = ∃R.(∃P.A � ∃N ) � ∃R.(∃P � ∃N .¬A),
in which the fact that the same individual y is both the N -filler of ∃N and the
P-filler of ∃P is lost. Indeed, C is not subsumed by the query, as one can see by
constructing an open tableau for C � ¬∃R.(∃P.A � ∃N .¬A)( f ).

The above example can be extended to a proof that deciding A |= C(a), where
C is an ALE-concept, is conp-hard. Observe that this is a different source of
complexity w.r.t. unsatisfiability in ALE . In fact, a concept C is unsatisfiable
iff {C(a)} |= ⊥(a). This problem is np-complete when C is a concept in ALE
(Subsection 3.3.1).
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The source conp-complete problem is the complement of 2+2-sat, which is the
following problem.

Definition 3.40 (2+2-sat) Given a 4CNF propositional formula F , in which every
clause has exactly two positive literals and two negative ones, decide whether F is
satisfiable.

The problem 2+2-sat is a simple variant of the well-known 3-sat. Indeed, for
3-literal clauses mixing both positive and negative literals, add a fourth disjunct,
constantly false; e.g., X ∨ Y ∨ ¬Z is transformed into the 2+2-clause X ∨ Y ∨
¬Z ∨ ¬true. Unmixed clauses can be replaced by two mixed ones using a new
variable (see [Schaerf, 1994a, Theorem 4.2.6]).

Given an instance of 2+2-sat F = C1 ∧ C2 ∧ · · · ∧ Cn , where each clause Ci =
Li1+ ∨ Li2+ ∨ ¬Li1− ∨ ¬Li2−, we construct an ABox AF as follows. AF has one
individual l for each variable L in F , one individual ci for each clause Ci , one
individual f for the whole formula F , plus two individuals true and false for the
corresponding propositional constants.

The roles of AF are Cl (for Clause), P1, P2 (for positive literals), N1, N2 (for
negative literals), and the only concept name is A. Finally, AF is given by (we
group role assertions on first individual to ease reading):

Cl( f, c1)






P1(c1, l11+)
P2(c1, l12+)
N1(c1, l11−)
N2(c1, l12−)

...
...

Cl( f, cn)






P1(cn, ln1+)
P2(cn, ln2+)
N1(cn, ln1−)
N2(cn, ln2−)

A(true), ¬A( f alse).

Now let D be the following, fixed, query concept:

D = ∃Cl.((∃P1.¬A) � (∃P2.¬A) � (∃N1.A) � (∃N2.A)).

Intuitively, an individual name l is in the extension of A or¬A iff the propositional
variable L is assigned true or false, respectively. Then, checking whether AF |=
D( f ) corresponds to checking that in every truth assignment for F there exists a
clausewhose positive literals are interpreted as false, andwhose negative literals are
interpreted as true – i.e., a clause that is not satisfied. If one applies the above idea
to translate the two clauses (having just two literals each) false ∨ ¬Y , Y ∨ ¬true,
one obtains exactly the ABox of Example 3.39.
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The correctness of this reductionwas proved by Schaerf [1993; 1994a].We report
here only the concluding lemma.

Lemma 3.41 A 2+2-CNF formula F is unsatisfiable if and only if AF |= D( f ).

Hence, instance checking inALE is conp-hard. This implies that instance check
inALE cannot be efficiently solved by subsumption, unless conp⊆ np. We remark
that only the size ofAF depends on the source formula F , while D is fixed. Hence,
instance checking inALE is conp-hard with respect to knowledge base complexity
– and it is also np-hard from Subsection 3.3.1. The upper bound for knowledge
base complexity of instance checking in ALE is in �

p
2 , but it is still not known

whether the problem is �
p
2 -complete. Regarding combined complexity – that is,

neither the size of the ABox nor that of the query is fixed – in [Schaerf, 1994a;
Donini et al., 1994b] it was proved that instance checking in ALE is PSpace-
complete.

Since the above reduction makes use of negated concept names, it may seem
that conp-hardness arises from the interaction between qualified existential quan-
tification and negated concept names. However, all that is needed are two concepts
whose union covers all possible cases.We saw inSubsection 3.2.1 that∃R and∀R.B
have this property. Therefore, if we replace A and ¬A in AF with ∃R and ∀R.B,
respectively (where R is a new role name and B is a new concept name), we obtain a
new reduction forwhichLemma3.41 still holds.Hence, instance checking inFL−E
(i.e., ALE without negation of concept names) is conp-hard too, thus confirming
that conp-hardness is originated by qualified existential quantification alone. In
other words, intractability arises from a query language containing both qualified
existential quantification, and pairs of concepts whose union is equivalent to �.
Hence, for languages containing these constructs, the msc method is not effective.

Regarding the expressivity of the language for assertions in the ABox, conp-
hardness of instance checking arises already when assertions in the ABox involve
just concept and role names. However, note that a key point in the reduction is the
fact that two individuals in the ABox can be linked via different role paths, as f
and y were in Example 3.39.

3.8 Discussion

In this chapter we analyzed various lower bounds on the complexity of reasoning
about simple concept expressions in Description Logics. Our presentation appealed
to the intuitive notions of exploring AND–OR trees, in the special case when the
tree is derived from a tableau.

We remark that an alternative approach to reasoning is to reduce it to the emptiness
test for automata (e.g., [Vardi, 1996]), which has been quite successfully applied
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to temporal logics, and propositional logics of programs. However, till now such
techniques have been used to obtain upper bounds in reasoning, while in order to
obtain lower bounds one would need a way to reduce problems on automata to un-
satisfiability/subsumption in Description Logic. The only example of this reduction
is [Nebel, 1990b], for a very simple Description Logic, which we have omitted in
this chapter for lack of space.

We end the chapter with a perspective on the significance of the np, conp,
and PSpace complexity lower bounds we have presented. Present reasoning
systems in Description Logics (see Chapter 8) can now cope with reasonable
size ExpTime-complete problems. Hence the computational complexity of the
problems now reachable is above PSpace. However, in our opinion, for imple-
mented systems the significance of a reduction lies not just in the theoretical
lower bound obtained, but also in the reduction itself. In fact, when experiment-
ing with algorithms for subsumption, satisfiability, etc. [Baader et al., 1992b;
Hustadt and Schmidt, 1997] on an implemented system, one can exploit al-
ready known “hard” cases of a source problem like 3-sat, 2+2-sat, set split-
ting, or qbf validity to obtain “hard” instances for the algorithm under test.
These instances isolate the influence of each source of combinatorial explosion
on the performance of the overall reasoning system, and can be used to opti-
mize reasoning algorithms in a piecewise fashion [Horrocks and Patel-Schneider,
1999], separately for the various sources of complexity. In this respect, the is-
sue of finding “efficient” reductions (w.r.t. the size of the resulting concepts)
is still open, and can make the difference when concepts to be tested scale up
(see [Donini and Massacci, 2000]).

3.9 A list of complexity results for subsumption and satisfiability

Many names have been invented for languages of different Description Logics,
e.g., FL for Frame Language, ALC for Attributive Descriptions Language with
Complement, etc. Although suggestive, these names are not very explicit about
which constructs are in the named language. This makes the huge mass of results
about complexity of reasoning in Description Logics often difficult to screen by
non-experts in the field. To clarify the constructs each language is equipped with,
we use two lists of constructors: the first one for concept constructors, and the
second one for role constructors. For example, the pair of lists (�, ∃R,∀R.C) (�, ◦)
denotes a language whose concept constructors are conjunction �, unqualified
existential quantification ∃R, and universal role quantification ∀R.C , and whose
role constructors are conjunction � and composition ◦. Many combinations of
concept constructors have been given a name which is now commonly used. For
instance, the first list of the above example is known as FL−. In these cases,
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we follow a syntax first proposed in [Baader and Sattler, 1996b], and write just
FL−(�, ◦) – that is, FL− augmented with role conjunction and composition – to
make it immediately recognizable by researchers in the field.

3.9.1 Notation

In the following catalog, satisfiability and subsumption refer to the problems with
plain concept expressions. When satisfiability and subsumption are w.r.t. a set of
axioms, we state it explicitly. Moreover, when the constructs of the Description
Logic allow one to reduce subsumption between C and D to satisfiability of C �
¬D, we mention only satisfiability.

In the lists,we have tried to use the symbol of theDLconstructwhenever possible.
We have abbreviated some constructs, however: unqualified number restrictions
� nR, � nR are denoted by ≶ R, while qualified number restrictions � n R.C ,
� n.RC are ≶ R.C . When a construct is allowed only for names (either concept
names in the first list, or role names in the second one) we apply the construct to
the word name.

3.9.2 Subsumption in PTime

To the best of the author’s knowledge, no proof of PTime-hardness has been given
for any Description Logic so far. Therefore the following results refer only to
membership in PTime.

� (�, ∃R,∀R.C) () known as FL− [Levesque and Brachman, 1987].
� (�, ∃R,∀R.C,¬(name)) () known as AL [Schmidt-Schauß and Smolka, 1991].
� (�, ∃R,∀R.C,≶ R) () known as ALN [Donini et al., 1997a].
� AL(◦),AL(−) [Donini et al., 1999].
� FL−(�) [Donini et al., 1991a].
� (�, ∃R.C, {individual}) (�,− ) known as ELIRO1 [Baader et al., 1998b].

3.9.3 np and conp
� (�, ∃R.C,∀R.C,¬(name)) () (known asALE) subsumption and unsatisfiability are np-
complete [Donini et al., 1992a] (see Subsection 3.3.1).

� AL(�), ALE(�), and (�, ∃R.C,∀R.C) () (known as ALR, ALER and FL−E respec-
tively) subsumption and unsatisfiability are np-complete [Donini et al., 1997a] (see The-
orems 3.16, 3.17 for hardness, and [Donini et al., 1992a] for membership).

� (�,�, ∃R,∀R.C,¬(name)) () (known as ALU) subsumption and unsatisfiability are
conp-complete [Donini et al., 1997a] (see Subsection 3.1.1.1).

� ALN (−) subsumption is conp-complete, while satisfiability is decidable in polynomial
time [Donini et al., 1999].

� FL−(�,− ), FL−(�, ◦), and FL−(◦,− ) [Donini et al., 1999] (see Subsections 3.3.2,
3.3.3, and 3.3.4).
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� AL(), satisfiability w.r.t. a set of acyclic axioms is conp-hard [Buchheit et al., 1994a;
Calvanese, 1996b; Buchheit et al., 1998] (conp-complete forALE() [Calvanese, 1996b]).

3.9.4 PSpace
� (�,�,¬, ∃R.C,∀R.C) () (known as ALC) [Schmidt-Schauß and Smolka, 1991] (see
Subsection 3.4.1).

� (�,¬(name), ∃R.C,∀R.C,≶ R) () (known as ALEN ) [Hemaspaandra, 1999].
� FL−(R|C ) (known as FL), ALN (�), ALU(�), (�, ∃R.C,∀R.C,¬,≶ R) (�) (known
as ALCNR) [Donini et al., 1997a].

� ALC(�,�, ◦) satisfiability [Massacci, 2001]. Membership is nontrivial.
� ALE() satisfiability w.r.t. a set of cyclic axioms is PSpace-complete [Calvanese, 1996b].
� ALN () satisfiability w.r.t. a set of cyclic axioms of the form A ≡ C , where each concept
name A can appear only once on the left-hand side, is PSpace-complete [Küsters, 1998].

3.9.5 ExpTime
� AL w.r.t. a set of axioms (see Section 3.5 for hardness).
� (�,�,¬, ∃R.C,∀R.C) (�, ◦,∗ , id (),− ) which includesALCtrans [Baader, 1991; Schild,
1991]. Membership is nontrivial, and was proved by Pratt [1979] without inverse, and
by Vardi and Wolper [1986] for converse-pdl, reducing the problem to emptiness of tree
automata.

� (�,�,¬, ∃R.C,∀R.C,≶name.C,≶name−.C) (�, ◦,∗ ,− , id ()), known as ALCQIreg
(see Chapter 5). Membership is nontrivial.

� (�,�,¬, ∃R.C,∀R.C, µx .C[x], {individual}) (−), whereµx .C[x] denotes the least fix-
point of x [Sattler and Vardi, 2001]. Membership is nontrivial.

3.9.6 NExpTime
� adding concrete domains (see [Baader and Hanschke, 1991a]), satisfiability inALC w.r.t.
a set of acyclic axioms, and ALC(−) [Lutz, 2001a].

� ALC(�,�,¬) satisfiability [Lutz and Sattler, 2001].
� (�,�, ∃R.C,∀R.C,¬, {individual},≶ R.C) () satisfiability [Tobies, 2001b].
� (�,�,¬, ∃R.C,∀R.C,≤≥ R) (�) (knownasALCNR) satisfiabilityw.r.t. a set of axioms
(only membership was proved) in [Buchheit et al., 1993a]).

3.9.7 Undecidability results
� FL−(◦,=), which is a subset of the language of the knowledge representation sys-
tem Kl-One [Schmidt-Schauß, 1989] (see Subsection 3.6.1 for undecidability of
FL−(◦,⊆) ).

� FL−(◦,⊆,− , functionality, R|C ), which is a subset of the language of the knowledge
representation system Nikl [Patel-Schneider, 1989a].

� (), (�, ◦,¬) (known as U ) [Schild, 1989].
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� ALCN (◦,�,− ), ALCN (◦,�) satisfiability w.r.t. a set of axioms [Baader and Sattler,
1999].
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Relationships with other Formalisms
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Abstract

In this chapter, we are concerned with the relationship between Description Logics
and other formalisms, regardless of whether they were designed for knowledge rep-
resentation issues or not. We concentrate on those representation formalisms that
either (1) had or have a strong influence on Description Logics (e.g., modal logics),
(2) are closely related to Description Logics for historical reasons (e.g., seman-
tic networks and structured inheritance networks), or (3) have similar expressive
power (e.g., semantic data models). There are far more knowledge representation
formalisms than those mentioned in this chapter. For example, “verb-centered”
graphical formalisms like those introduced by Simmons [1973] are not mentioned
since we believe that their relationship with Description Logics is too weak.

4.1 AI knowledge representation formalisms

In artificial intelligence (AI), various “non-logical” knowledge representation for-
malisms were developed, motivated by the belief that classical logic is inadequate
for knowledge representation in AI applications. This belief wasmainly based upon
cognitive experiments carried out with human beings and the wish to have repre-
sentational formalisms that are close to the representations in human brains. In this
section, we discuss some of these formalisms, namely semantic networks, frame
systems, and conceptual graphs. The first two formalisms are mainly presented for
historical reasons since they can be regarded as ancestors of Description Logics. In
contrast, the third formalism can be regarded as a “sibling” of Description Logics
since both have similar ancestors and live in the same time.

4.1.1 Semantic networks

Semantic networks originate in Quillian’s semantic memory models [Quillian,
1967], a graphical formalism designed to represent “word concepts” in a
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Canary Shark

Bird Fish

Animal
- has skin
- can move around
- eats
- breathes

- has feathers

- has wings
- can fly

- has fins
- can swim
- has gills

- can sing
- is yellow

- can bite
- is dangerous

Ostrich
- has long,
   thin legs
- is tall
- can’t fly

Salmon
- is pink
- is edible
- swims upstreams
   to lay eggs

Fig. 4.1. A semantic network describing animals.

definitorial way, i.e., similar to the one that can be found in an encyclopedia defi-
nition. This formalism is based on labeled graphs with different kinds of edges and
nodes. Besides others, Quillian’s networks allow subclass–superclass edges, and
and or edges, and subject–object edges between nodes.

Following Quillian’s memory models, a great variety of semantic network
formalisms were proposed; an overview of their history can be found in [Brach-
man, 1979]. In general, semantic networks distinguish between concepts (de-
noted by generic nodes) and individuals (denoted by individual nodes), and be-
tween subclass–superclass edges and property edges. Using subclass–superclass
links, concepts can be organised in a specialization hierarchy. Using prop-
erty edges, properties can be associated to concepts, that is, to the individ-
uals belonging to the concept the properties are associated with. Figure 4.1
contains a hierarchy of animals, birds, fishes, etc. Interestingly, the cogni-
tive adequacy of this approach was proven empirically [Collins and Quillian,
1970].

The two kinds of edges interact with each other: a property is inherited along
subclass–superclass edges – if not modified in a more specific class. For ex-
ample, birds are equipped with skin because animals are equipped with skin,
and birds inherit this property because of the subclass–superclass edge be-
tween birds and animals. In contrast, although ostriches are birds, they do not
inherit the property “can fly” from birds because this property is “modified” for
ostriches.
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Intuitively, it should be possible to translate subclass–superclass edges into con-
cept definitions, for example,1

Shark ≡ Fish � CanBite � IsDangerous.

According to Brachman [1985], the above translation is not always intended.
Subclass–superclass edges can also be read as primitive concept definitions, that
is, they impose only necessary properties but not sufficient ones. Hence the above
translation might better be

Shark 
 Fish � CanBite � IsDangerous.

Due to the lack of a precise semantics, there are even more readings of subclass–
superclass edges, which are discussed in [1975; 1977b; 1985]. A prominent reading
is that of inheritance by default, which can be specified in different ways, thus
leading to misunderstandings and to the question which of these specifications is
the “right” one (see also Chapter 6).

As a consequence of this ambiguity, new formalisms mainly evolved along two
lines: (1) To capture inheritance by default, various non-monotonic inheritance sys-
tems, respectively variousways of reasoning in non-monotonic inheritance systems,
were investigated [Touretzky et al., 1987; 1991; Selman andLevesque, 1993]. (2) To
capture the monotonic aspects of semantic networks, a new graphical formalism,
structured inheritancenetworks,was introduced and implemented in the systemKl-
One [Brachman, 1979; Brachman and Schmolze, 1985]. It was designed to cover
the declarative, monotonic aspects of semantic networks, and hence did not specify
the way in which (non-monotonic multiple) inheritance was supposed to function
in conflicting situations. Brachman and Schmolze [1985] argue that Kl-One does
not allow cancellation or inheritance by default because such mechanisms would
make taxonomies meaningless. Indeed, all properties of a given concept could be
canceled, so that it would fit everywhere in the taxonomy. Their proposition is to
make a strict separation of default assertions and conceptual descriptions.

Brachman and Schmolze [1985], besides pointing out the computation of the
taxonomy as a core system service, describe the meaning of various concept con-
structors that were implemented in Kl-One, for example conjunction, universal
value restrictions, role hierarchies, role-value-maps, etc. Moreover, we find a clear
distinction between individuals and concepts, and between a terminological and an
assertional formalism.

Later [Levesque andBrachman, 1987],Kl-Onewasprovidedwith awell-defined
“Tarski-style” semantics which fixed the precisemeaning of its graphical constructs
and led to the definition of the first Description Logic [Levesque and Brachman,
1987], at that time also called terminological languages, concept languages, or

1 In the following, we use standard Description Logics as defined in Chapter 2.



140 U. Sattler, D. Calvanese, and R. Molitor

Kl-One based languages. Besides giving a precise meaning to semantic networks,
this formalization allowed the investigation of inference algorithms with respect
to their soundness, completeness, and computational complexity. For example, it
turned out that subsumption in Kl-One is undecidable, mainly due to role-value-
maps [Schmidt-Schauß, 1989].

4.1.2 Frame systems

Minsky [1981] introduced frame systems as an alternative to logic-oriented ap-
proaches to knowledge representation, which he thought were not adequate to
“simulate common-sense thinking” for various reasons.His systemprovides record-
like data structures to represent prototypical knowledge concerning situations and
objects and includes defaults, multiple perspectives, and analogies. Nowadays,
semantic networks and frame systems are often viewed as the same family of
formalisms. However, in standard semantic networks, properties are restricted to
primitive, atomic ones, whereas, in general, properties in frame systems can be
complex concepts described by frames.

One goal of the frame approach was to gather all relevant knowledge about
a situation (e.g., entering a restaurant) in one object instead of distributing this
knowledge across various axioms. Roughly speaking, a situation (or an object) is
described in one frame. A frame contains slots, similar to entries in a record, to
represent properties of the situation described by the frame. Reasoning comes in
two shapes: (1) Using a “partial matching”, more specific frames are embedded
into more general ones, thus giving, for example, meaning to a new situation or
classifying an object as a kind of, say, bird. (2) Searching for slot fillers to collect
more information concerning a specific situation. A variety of expert systems [Fikes
and Kehler, 1985; Christaller et al., 1992; Gen, 1995; Flex, 1999] are based on a
frame-based formalism and are further enhanced with rules, triggers, daemons, etc.

Despite the fact that frame systems were designed as an alternative to logic,
the monotonic, declarative part of this formalism could be shown to be captured
using first-order predicate logic [Hayes, 1977; 1979]. To our knowledge, no precise
semantics could be given for the non-declarative, non-logical, or non-monotonic
aspects of frame systems. Hence neither their expressive power nor the quality of
the corresponding reasoning algorithms and services can be compared with other
formalisms.

In the remainder of this section, we show how the monotonic part of a frame-
based knowledge base can be translated into an ALUN TBox [Calvanese et al.,
1994].2 Since there is no standard syntax for frame systems, we have chosen to use

2 Not only the translation but also the example are by Calvanese et al. [1994].
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basically the notation adopted by Fikes and Kehler [1985], which is used also in
the Kee3 system.

A frame definition is of the formFrame : F in KBF E , where F is a frame name
and E is a frame expression, i.e., an expression formed according to the following
syntax:

E −→ SuperClasses: F1, . . . , Fh
MemberSlot: S1
ValueClass: H1

Cardinality.Min: m1

Cardinality.Max: n1

· · ·
MemberSlot: Sk
ValueClass: Hk
Cardinality.Min: mk

Cardinality.Max: nk .

Fi denotes a frame name, Sj denotes a slot name,m j and n j denote positive integers,
and Hj denotes slot constraints. A slot constraint can be specified as follows:

H −→ F |
(INTERSECTION H1 H2) |
(UNION H1 H2) |
(NOT H ).

A frame knowledge base F is a set of frame definitions.
For example, Figure 4.2 shows a simpleKee knowledge base describing courses

in a university. Cardinality restrictions are used to impose aminimumandmaximum
number of students that may be enrolled in a course, and to express that each
course is taught by exactly one individual. The frameAdvCourse represents courses
which enroll only graduate students, i.e., students who already have a degree. Basic
courses, on the other hand, may be taught only by professors.

Hayes [1979] gives a semantics to frame definitions by translating them to first-
order formulae in which frame names are translated to unary predicates, and slots
are translated to binary predicates.

In order to translate frame knowledge bases toALUN knowledge bases, we first
define the function � that maps each frame expression into an ALUN concept
expression as follows: Each frame name F is mapped onto an atomic concept
�(F), each slot name S onto an atomic role �(S), and each slot constraint H onto
the corresponding Boolean combination �(H ) of concepts. Then, every frame

3 Kee is a trademark of Intellicorp. Note that Kee users does not directly specify their knowledge base in this
notation, but are allowed to define frames interactively via the graphical system interface.
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Frame: Course in KB University
MemberSlot: enrolls

ValueClass: Student
Cardinality.Min: 2
Cardinality.Max: 30

MemberSlot: taughtby
ValueClass: (UNION GradStudent

Professor)
Cardinality.Min: 1
Cardinality.Max: 1

Frame: AdvCourse in KB University
SuperClasses: Course
MemberSlot: enrolls

ValueClass: (INTERSECTION
GradStudent
(NOT Undergrad))

Cardinality.Max: 20

Frame: BasCourse in KB University
SuperClasses: Course
MemberSlot: taughtby

ValueClass: Professor

Frame: Professor in KB University

Frame: Student in KB University

Frame: GradStudent in KB University
SuperClasses: Student
MemberSlot: degree

ValueClass: String
Cardinality.Min: 1
Cardinality.Max: 1

Frame: Undergrad in KB University
SuperClasses: Student

Fig. 4.2. A Kee knowledge base.

expression of the form

SuperClasses: F1, . . . , Fh
MemberSlot: S1
ValueClass: H1

Cardinality.Min: m1

Cardinality.Max: n1

· · ·
MemberSlot: Sk
ValueClass: Hk
Cardinality.Min: mk

Cardinality.Max: nk

is mapped into the concept

�(F1) � · · · ��(Fh) �
∀�(S1).�(H1) ��m1 �(S1) �� n1 �(S1) �
· · ·
∀�(Sk).�(Hk) ��mk �(Sk) �� nk �(Sk).

Making use of the mapping �, we obtain the ALUN knowledge base �(F)
corresponding to a frame knowledge base F , by introducing in �(F) an inclusion
assertion �(F) 
 �(E) for each frame definition Frame : F in KB F E in F .

The ALUN knowledge base corresponding to the Kee knowledge base given
in Figure 4.2 is shown in Figure 4.3.

The correctness of the translation follows from the correspondence between
the set-theoretic semantics of ALUN and the first-order interpretation of frames
[Hayes, 1979; Borgida, 1996; Donini et al., 1996b]. Consequently,



4 Relationships with other Formalisms 143

Course # ∀enrolls.Student �� 2 enrolls �� 30 enrolls �
∀taughtby.(Professor � GradStudent) �= 1 taughtby

AdvCourse Course � ∀enrolls.(GradStudent � ¬Undergrad) �� 20 enrolls
BasCourse Course � ∀taughtby.Professor

GradStudent Student � ∀degree.String �=1 degree
Undergrad Student

Fig. 4.3. The ALUN knowledge base corresponding to the Kee knowledge base in
Figure 4.2.

� verifying whether a frame F is satisfiable in a knowledge base and
� identifying which of the frames are more general than a given frame

are captured by concept satisfiability and concept subsumption in ALUN knowl-
edge bases. Hence reasoning for the monotonic, declarative part of frame systems
can be reduced to concept satisfiability and concept subsumption inALUN knowl-
edge bases.

4.1.3 Conceptual graphs

Besides Description Logics, conceptual graphs [Sowa, 1984] can be viewed as de-
scendants of frame systems and semantic networks. Conceptual graphs (CGs) are a
rather popular (especially in natural language processing) and expressive formalism
for representing knowledge about an application domain in a graphical way. They
are given a formal semantics, e.g., by translating them into (first-order) formulae.

In the CG formalism, one is, just as for Description Logics, not only interested
in representing knowledge, but also in reasoning about it. Reasoning services for
CGs are, for example, deciding whether a given graph is valid, i.e., whether the
corresponding formula is valid, or whether a graph g is subsumed by a graph h,
i.e., whether the formula corresponding to g implies the formula corresponding
to h. Since CGs can express all of first-order predicate logic [Sowa, 1984], these
reasoning problems are undecidable for general CGs. In the literature [Sowa, 1984;
Wermelinger, 1995; Kerdiles and Salvat, 1997] one can find complete calculi for
validity of CGs, but implementations of these calculi may not terminate for for-
mulae that are not valid. An approach to overcoming this problem, which has also
been employed in the area of Description Logics, is to identify decidable frag-
ments of the formalism. The most prominent decidable fragment of CGs is the
class of simple conceptual graphs (SGs) [Sowa, 1984], which corresponds to the
conjunctive, positive, and existential fragment of first-order predicate logic (i.e.,
existentially quantified conjunctions of atoms). Even for this simple fragment, how-
ever, subsumption is still an np-complete problem [Chein and Mugnier, 1992].4

4 Since SGs are equivalent to conjunctive queries (see also Chapter 16), the np-completeness of subsumption
of SGs is also an immediate consequence of np-completeness of containment of conjunctive queries [Chandra
and Merlin, 1977].
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AlthoughDescription Logics and CGs are employed in very similar applications,
precise comparisons were published, to our knowledge, only recently [Coupey and
Faron, 1998; Baader et al., 1999c]. These comparisons are based on translations of
CGs andDL concepts into first-order formulae. It turned out that the two formalisms
are quite different for several reasons:

(i) CGs are translated into closed first-order formulae, whereas DL concepts are translated
into formulae in one free variable;

(ii) since Description Logics use a variable-free syntax, certain identifications of variables
expressed by cycles in SGs and by co-reference links in CGs cannot be expressed in
Description Logics;

(iii) in contrast to CGs, most Description Logics considered in the literature only allow
unary and binary relations and not relations of arity greater than 2;

(iv) SGs are interpreted by existential sentences, whereas almost all Description Logics
considered in the literature allow for universal quantification.

Possibly as a consequence of these differences, so far no natural fragment of CGs
that corresponds to a Description Logic has been identified. In the sequel,
we will illustrate the main aspects of the correspondence result presented by
Baader et al. [1999c], which strictly extends the one proposed by Coupey and
Faron [1998].

Simple conceptual graphs

Simple conceptual graphs (SGs) as introduced by Sowa [1984] are the most promi-
nent decidable fragment of CGs. They are defined with respect to a so-called sup-
port. Roughly speaking, the support is a partially ordered signature that can be used
to fix the a primitive ontology of a given application domain. It introduces a set of
concept types (unary predicates), a set of relation types (n-ary predicates), and a set
of individual markers (constants). As an example, consider the support S shown
in Figure 4.4, where � is the most general concept type representing the entire
domain. The partial ordering on the individual markers is flat, i.e., all individual
markers are pairwise incomparable and the so-called generic marker ∗ is more gen-
eral than all individual markers. In this example, all relation types are assumed to
have arity 2 and to be pairwise incomparable except for hasDescendants, which is
more general than hasChild. The partial orderings on the types yield a fixed special-
ization hierarchy for these types that must be taken into account when computing
subsumption relations between SGs. For binary relation types, this partial ordering
resembles a role hierarchy in Description Logics.

An SG over the support S is a labeled bipartite graph of the form g =
(C, R, E, �), where C is a set of concept nodes, R is a set of relation nodes,
E ⊆ C × R is the edge relation L, and l is a labeling of concept nodes.
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hasDescendants

attends hasChild likes

concept types: relation types: individual marker:

CSCourseHuman

� ∗

KR101PETERMARY

Male Female Student

Fig. 4.4. An example of a support.

Female : Maryc0
Female : ∗d0

CScourse : KR101c3

Student : ∗c2
Human : ∗d1

Human : ∗d2

g:

1 1

1 2

likeslikes

21

1

2

attends

2 12

c1

h:

1

2 2

hasChild hasChild

Human : PETER

hasChild hasChild

Fig. 4.5. Two simple graphs.

As an example, consider the SGs depicted in Figure 4.5: the SG g describes a
woman Mary having a child who likes its grandfather Peter and who attends the
computer science course number KR101; the node d0 in the SG h describes all
mothers having a child who likes one of its grandparents.

Each concept node is labeled by l with a concept type (such as Female) and a
referent, i.e., an individual marker (such as MARY) or the generic marker ∗. A
concept node is called generic if its referent is the generic marker; otherwise, it
is called an individual concept node. Each relation node is labeled with a relation
type r (such as hasChild), and its outgoing edges are labeled with indices according
to the arity of r . For example, for the binary relation hasChild, there is one edge
labeled with 1 (leading to the parent), and one edge labeled with 2 (leading to the
child).

Simple graphs are given a formal semantics in first-order predicate logic (FOL)
by the operator � [Sowa, 1984]: each generic concept node is related to a unique
variable, and each individual concept node is related to its individual marker.
Concept types and relation types are translated into atomic formulae, and the whole
SG g is translated into the existentially closed conjunction of all atoms obtained
from the nodes in g.
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c0

d0

Female Student

�

c1 e0

(1) (2) (3)

Female: MARY

Student: MARY

FemStud

FemStud: MARY {Female, Student}: MARY

Fig. 4.6. Expressing conjunction of concept types in SGs.

In our example, this operator yields

�(g) = ∃x1.(Female(MARY) ∧ Human(PETER) ∧ Student(x1) ∧
CScourse(KR101) ∧ hasChild(PETER,MARY) ∧
hasChild(MARY, x1) ∧ likes(x1,PETER) ∧ attends(x1,KR101)),

�(h) = ∃x0x1x2.(Female(x0) ∧ Human(x1) ∧ Human(x2) ∧
hasChild(x1, x0) ∧ hasChild(x0, x2) ∧ likes(x2, x1)),

where x1 in �(g) is (resp. x0, x1, and x2 in �(h) are) introduced for the generic
concept node c2 (resp. the generic concept nodes d0, d1, and d2).

In general, there are three different ways of expressing conjunction of concept
types. For example, suppose we want to express that Mary is both female and a
student. This can be expressed by an SG containing one individual concept node
for each statement (see Figure 4.6(1)).5 A second possibility is to introduce a new
concept type in the support for a common specialization of Female(MARY) and
Student(MARY) (see Figure 4.6(2)). Finally, such a conjunction can be represented
by labeling the corresponding concept node with a set of concept types instead of
a single concept type (see Figure 4.6(3); for details on how to handle SGs labeled
with sets of concept types see [Baader et al., 1999c]).
Subsumption with respect to a support S for two SGs g, h is defined by a

so-called projection from h to g [Sowa, 1984; Chein and Mugnier, 1992]: g
is subsumed by h w.r.t. S iff there exists a mapping from h to g that (1) maps
concept nodes (resp. relation nodes) in h onto more specific (w.r.t. the partial
ordering in S) concept nodes (resp. relation nodes) in g and that (2) preserves
adjacency.

In our example (Figure 4.5), it is easy to see that g is subsumed by h, since
mapping di onto ci for 0 ≤ i ≤ 2 yields a projection w.r.t. S from h to g.

Subsumption for SGs is an np-complete problem [Chein and Mugnier, 1992]. In
the restricted case where the subsumer h is a tree, subsumption can be decided in
polynomial time [Mugnier and Chein, 1992].

5 Note that this solution could not be applied if the individual markerMARYwere replaced by the generic marker
∗, because the two resulting generic concept nodes would be interpreted by different variables.



4 Relationships with other Formalisms 147

Concept descriptions and simple graphs

In order to determine a Description Logic corresponding to (a fragment of) SGs,
one must take into account the differences between Description Logics and CGs
mentioned before.

� Most Description Logics only allow role terms corresponding to binary relations and
concept descriptions describing connected structures. Thus, Baader et al. [1999c] and
Coupey and Faron [1998] restrict their attention to connected SGs over a support S
containing only unary and binary relation types.

� Due to the different semantics of SGs and concept descriptions (closed formulae vs. for-
mulae in one free variable), Coupey and Faron restrict their attention to SGs that are trees.
Baader et al. introduce so-called rooted SGs, i.e., SGs that have one distinguished node
called the root. An adaption of the operator � yields a translation of a rooted SG g into
an FO formula �(g)(x0) with one free variable x0.

� Since all Description Logics considered in the literature allow conjunction of concepts,
Baader et al. allow concept nodes labeled with a set of concept types instead of a single
concept type in order to express conjunction of atomic concepts in SGs. Coupey and Faron
avoid the problem of expressing conjunction of atomic concepts: they just do not allow
(1) conjunctions of atomic concepts in concept descriptions, and (2) individual concept
nodes in SGs.

The Description Logic considered by Baader et al., denoted by ELIRO1, allows
existential restrictions and intersection of concept descriptions (EL), inverse roles
(I), intersection of roles (R), and unary one-of concepts (O1). For the constants
occurring in the one-of concepts the unique name assumption applies, i.e., all
constants are interpreted as different objects. Coupey and Faron only consider a
fragment of the Description Logic ELI.

In both papers, the correspondence result is based on translating concept descrip-
tions into syntax trees. For example, consider the ELIRO1-concept

C = Female � ∃hasChild−.(Human � {PETER}) �
∃(hasChild � likes).(Male � Student � ∃attends.CScourse)

describing all daughters of Peter who have a fond child that is a student attending
a computer science course. The syntax tree corresponding to C is depicted on the
left-hand side of Figure 4.7.

One can show [Baader et al., 1999c] that, if concept descriptions C are re-
stricted to contain at most one unary one-of concept in each conjunction, the cor-
responding syntax tree TC can be easily translated into an equivalent rooted SG
gC that is a tree6 (see Figure 4.7). Conversely, every rooted SG g that is a tree
and that contains only binary relation types can be translated into an equivalent

6 In this context, a tree may contain more than one relation between two adjacent concept nodes.
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attends

1

1

22

1

2

2

c2c1

c3

{Male, Student} : ∗

{CScourse} : ∗

likes

1

c3 : CScourse

attends

c2 : Male, Studentc1 : Human, {PETER}

hasChild−

TC :
c0 : Female

likes � hasChild

{Female} : ∗gC :
c0

{Human} : PETER

hasChild hasChild

Fig. 4.7. Translating concept descriptions into simple graphs.

ELIRO1-concept description Cg. There are, however, rooted SGs that can be
translated into equivalent ELIRO1-concept descriptions though they are not trees.
For example, the rooted SG g depicted in Figure 4.5 is equivalent to the concept
description

Cg = {MARY} � Female � ∃hasChild−.(Human � {PETER}) �
∃hasChild.(Student � ∃attends.({KR101} � CScourse) � ∃likes.{PETER}).

In general, the above correspondence result can be strengthened as follows [Baader
et al., 1999c]: every rooted SG g containing only binary relation types can be trans-
formed into an equivalent rooted SG that is a tree if each cycle in g with more
than two concept nodes contains at least one individual concept node. Hence, each
such rooted SG can be translated into an equivalent ELIRO1-concept descrip-
tion.

Note that the SG h with root d0 in Figure 4.5 cannot be translated into an
equivalent ELIRO1-concept description Ch because, in ELIRO1, one cannot
express that the grandparent (represented by the concept node d1) and the hu-
man liked by the child (represented by the concept node d2) must be the same
person.

The correspondence result between ELIRO1 and rooted SGs allows the
tractability result for subsumption between SGs that are trees to be trans-
ferred to ELIRO1. Furthermore, the characterization of subsumption based
on projections between graphs was adapted to ELIRO1 and other Descrip-
tion Logics, e.g., ALE , and is used in the context of inference problems like
matching and computing least common subsumers [Baader and Küsters, 1999;
Baader et al., 1999b]. Conversely, the correspondence result can be used as a basis
for determining more expressive fragments of conceptual graphs, for which va-
lidity and subsumption are decidable. Based on an appropriate characterization of
a fragment of conceptual graphs corresponding to a more expressive Description
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Logic (likeALC), one could use algorithms for these Description Logics to decide
validity or subsumption of graphs in this fragment.

4.2 Logical formalisms

In this section, we will investigate the relationship between Description Logics and
other logical formalisms.

Traditionally, the semantics of Description Logics is given in a Tarski-style
model-theoretic way. Alternatively, it can be given by a translation into predicate
logic, where it depends on the Description Logic whether this translation yields
first-order formulae or whether it goes beyond first-order, as is the case for De-
scription Logics that allow, e.g., the transitive closure of roles or fixpoints. Due
to the variable-free syntax of Description Logics and the fact that concepts denote
sets of individuals, the translation of concepts yields formulae in one free variable.
Following the definition by Borgida [1996], a conceptC and its translation π (C)(x)
are said to be equivalent if and only if, for all interpretations7 I = (�I, ·I) and all
a ∈ �I , we have

a ∈ CI iff I |= π (C)(a).

A Description Logic DL is said to be less expressive than a logic L if there is
a translation that translates all DL-concepts into equivalent L formulae. Such a
translation is called preserving.

Note that there are various other ways in which equivalence of formulae and
logics being “less expressive than” others could have been defined [Baader, 1996a;
Kurtonina and de Rijke, 1997; Areces and de Rijke, 1998]. For example, a less
strict definition is the one that only asks the translation to preserve satisfiability.

To start with, we give a translation π that translatesALC-concepts into predicate
logic and which will be useful in the remainder of this section. For those familiar
with modal logics, note that this translation parallels the one from propositional
modal logic [van Benthem, 1983; 1984]; the close relationship between modal
logic and Description Logic will be discussed in Subsection 4.2.2. For ALC, the
translation of concepts into predicate logic formulae can be defined in such a way
that the resulting formulae involve only two variables, say x, y, and only unary and
binary predicates. In the following, Lk denotes the first-order predicate logic over
unary and binary predicates with k variables.

The translation is given by two mappings πx and πy from ALC-concepts into
L2 formulae in one free variable. Each concept name A is also viewed as a unary
predicate symbol, and each role name R is viewed as a binary predicate symbol.

7 In the following, we view interpretations both as DL and predicate logic interpretations.
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For ALC-concepts, the translation is inductively defined as follows:

πx (A) = A(x), πy(A) = A(y),
πx (C � D) = πx (C) ∧ πx (D), πy(C � D) = πy(C) ∧ πy(D),
πx (C � D) = πx (C) ∨ πx (D), πy(C � D) = πy(C) ∨ πy(D),
πx (∃R.C) = ∃y.R(x, y) ∧ πy(C), πy(∃R.C) = ∃x .R(y, x) ∧ πx (C),
πx (∀R.C) = ∀y.R(x, y) ⊃ πy(C), πy(∀R.C) = ∀x .R(y, x) ⊃ πx (C).

Other concept and role constructors that can easily be translated into first-order
predicate logic without involving more than two variables are inverse roles, con-
junction, disjunction, and negation on roles, and one-of.8

If a Description Logic allows number restrictions � n R, � n R, the translation
involves either counting quantifiers ∃≥n , ∃≤n (and still involves only two variables)
or equality (and involves an unbounded number of variables):

πx (� n R) = ∃≥n y.R(x, y) = ∃y1, . . . , yn.
∧

i �= j yi �= y j ∧
∧

i R(x, yi )
πx (� n R) = ∃≤n y.R(x, y) = ∀y1, . . . , yn+1.

∧
i �= j yi �= y j ⊃

∨
i ¬R(x, yi ).

For qualified number restrictions, the translations can easily be modified with the
same effect on the number of variables involved.

So far, all Description Logics have been less expressive than first-order predicate
logic (possibly with equality or counting quantifiers). In contrast, the expressive
power of a Description Logic including the transitive closure of roles goes beyond
first-order logic: First, it is easy to see that expressing transitivity (ρ+(x, y) ∧
ρ+(y, z)) ⊃ ρ+(x, z) involves at least three variables. To express that a relation
ρ+ is the transitive closure of ρ, we first need to enforce that ρ+ is a transitive
relation including ρ –which can easily be axiomatized in first-order predicate logic.
Secondly, we must enforce that ρ+ is the smallest transitive relation including ρ –
which, as a consequence of the Compactness Theorem, cannot be expressed in
first-order logic.

Internalization of Knowledge Bases: So far, we have been concerned with pre-
serving translations of concepts into logical formulae, and thus could reduce satis-
fiability of concepts to satisfiability of formulae in the target logic. In Description
Logics, however, we are also concerned with concept consistency and logical im-
plication w.r.t. a TBox, and with ABox consistency w.r.t. a TBox.

Furthermore, TBoxes differ in whether they are restricted to be acyclic, allow
cyclic definitions, or allow general concept inclusion axioms (see Chapter 2 for
details). In first-order logic, the equivalent to a TBox assertion is simply a univer-
sally quantified formula, and thus it is not necessary to make the above-mentioned
distinction between, for example, pure concept satisfiability and satisfiability with

8 In this case, the translation is to L2 with constants.
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respect to a TBox – provided that cyclic TBoxes are read with descriptive semantics
[Baader, 1990a; Nebel, 1991] (cyclic TBoxes read with least or greatest fixpoint
semantics go beyond the expressive power of first-order predicate logic). In the
following, we consider only the most expressive form of TBoxes, namely those
allowing general concept inclusion axioms. Given a preserving translation π from
DL concepts into first-order formulae and a TBox T = {Ci 
 Di | 1 ≤ i ≤ n}, we
define

π (T ) = ∀x .
n∧

i=1

(πx (Ci ) ⊃ πx (Di )).

Then it is easy to show that:

� A concept C is satisfiable with respect to T iff the formula πx (C) ∧ π (T ) is satisfiable.
� A concept C is subsumed by a concept D with respect to T iff the formula πx (C) ∧
¬πx (D) ∧ π (T ) is unsatisfiable.

� Given two index sets I , J , an ABox {Rk(ai , a j ) | 〈i, j, k〉 ∈ I } ∪ {C j (ai ) | 〈i, j〉 ∈ J } is
consistent with T iff the formula

∧

〈i, j,k〉∈I
Rk(ai , a j ) ∧

∧

〈i, j〉∈J
πx (C j )(ai ) ∧ π (T )

is satisfiable, where the ai -s in the formula are constants corresponding to the individuals
in the ABox.

Observe that, if all concepts in a TBox T can be translated to L2 (resp. C2), then
the translation π (T ) of T is also a formula of L2 (resp. C2).

Hence in first-order logic, reasoningwith respect to a knowledge base (consisting
of a TBox and possibly anABox) is notmore complex than reasoning about concept
expressions alone – in contrast to the complexity of reasoning for most Description
Logics, where considering even acyclic TBoxes canmake a considerable difference
(for example, see [Calvanese, 1996b; Lutz, 1999a]). This gap is not surprising since
first-order predicate logic is farmore complex thanmostDescriptionLogics, namely
undecidable.

In the following, we investigate logics that are more closely related to Descrip-
tion Logics, namely restricted variable fragments, modal logics, and guarded frag-
ments.

4.2.1 Restricted variable fragments

One way to define decidable fragments of first-order logic is to restrict the set of
variables which are allowed inside formulae and the arity of relation symbols. As
mentioned in the previous section, we use Lk to denote first-order predicate logic
over unary and binary predicates with at most k variables. Analogously, Ck denotes
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first-order predicate logic over unary and binary predicates with at most k variables
and counting quantifiers ∃≥n , ∃≤n .

With the exception of the Description Logics introduced by Calvanese
et al. [1998a] and Lutz et al. [1999], the translation of DL concepts into predi-
cate logic formulae involves predicates of arity at most 2.

From the translations in the previous section, it follows immediately that

� ALCR is less expressive than L2 and that
� ALCNR is less expressive than C2.

As we have shown above, general TBox assertions can be translated into L2 for-
mulae. These facts together with the linearity of the translation yield upper bounds
for the complexity ofALCR andALCNR (even though these bounds are far from
being tight): L2 and C2 are known to beNExpTime-complete [Grädel et al., 1997a;
Pacholski et al., 2000] (for C2, this is true only if numbers in counting quantifiers are
assumed to be coded in unary, an assumption often made in Description Logics);
hence satisfiability and subsumption with respect to a (possibly cyclic) TBox are
in NExpTime for ALCR and ALCNR.

However, both L2 and C2 are far more expressive than ALCR and ALCNR,
respectively. For example, both logics allow the negation of binary predicates,
i.e., subformulae of the form ¬R(x, y). In Description Logics, this corresponds
to negation of roles, an operator that is rarely considered in Description Logics,
except in the weakened form of difference9 [De Giacomo, 1995; Calvanese et al.,
1998a] (exceptions are the work by Mameide and Montero [1993] and Lutz and
Sattler [2000b], which deal with genuine negation of roles). Moreover, L2 and C2

allow “global” quantification, i.e., formulae of the form ∃x .�(x) or ∀x .�(x) that
talk about thewhole interpretation domain. In contrast, quantification inDescription
Logics is, in general, “local”, e.g., concepts of the form ∀R.C only constrain all
R-successors of an individual.

Borgida [1996] presents a variety of results stating that a certain Description
Logic is less expressive than, or as expressive as, a certain fragment of first-order
logic. We mention only the most important ones:

� ALC extended with

(role constructors) full Boolean operators on roles, inverse roles, cross-product of two
concepts, an identity role id, and

(concept constructors) individuals (“one-of”),

is as expressive asL2 (and therefore decidable and,more precisely,NExpTime-complete).

9 Difference of roles is easier to deal with than genuine negation, since it does not destroy “locality” of quantifi-
cation.
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� A further extension of this logic with all sorts of role-value-maps is as expressive as L3

(and therefore undecidable).

Since both extensions include full Boolean operators on roles, they can simulate a
universal role using the complex role R � ¬R, and thus general TBox assertions
can be internalized (see Chapter 5). Thus, for these two extensions, reasoning with
respect to (possibly cyclic) TBoxes can be reduced to pure concept reasoning – i.e.,
the TBox can be internalized – and the above complexity results include both sorts
of reasoning problems.

Later, a second Description Logic was presented that is as expressive asL2 [Lutz
et al., 2001a]. In contrast to the logic in [Borgida, 1996], this logic does not allow
a role to be built as the cross-product of two concepts, and it does not provide
individuals. However, using the identity role id (with idI = {(x, x) | x ∈ �I} for
all interpretations I), we can guarantee that (the atomic concept) N is interpreted
as an individual, i.e., a singleton set, using the following TBox axiom:

� 
 ∃(R � ¬R).(N � ∀¬id.¬N ).

4.2.2 Modal logics

Modal logics and Description Logics have a very close relationship, which was first
described in [Schild, 1991]. In a nutshell, Schild [1991] points out thatALC can be
seen as a notational variant of the multi-modal logic Km. Later, a similar relation-
ship was observed between more expressive modal logics and Description Logics
[De Giacomo and Lenzerini, 1994a; Schild, 1994], namely between (extensions of)
Propositional Dynamic Logic pdl and (extensions of) ALCreg, i.e., ALC extended
with regular roles. Following and exploiting these observations, various (complex-
ity) results for Description Logics were found by translating results from modal or
propositional dynamic logics and the µ-calculus to Description Logics [De Gia-
como and Lenzerini, 1994a; 1994b; Schild, 1994; De Giacomo, 1995]. Moreover,
upper bounds for the complexity of satisfiability problems were tightened consid-
erably, mostly in parallel with the development of decision procedures suitable for
implementations and optimization techniques for these procedures [De Giacomo
and Lenzerini, 1995; De Giacomo, 1995; Horrocks et al., 1999]. In the following,
we will describe the relation between modal logics and Description Logics in more
detail.

We start by introducing the basic modal logic K; for a nice introduction and
overview see [Halpern and Moses, 1992; Blackburn et al., 2001]. Given a set
of propositional letters p1, p2,. . . , the set of formulae of the modal logic K is
the smallest set that
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� contains p1, p2, . . . ,
� is closed under Boolean connectives ∧, ∨, and ¬, and
� if it contains φ, then it also contains ✷φ and ✸φ.

The semantics of modal formulae is given by so-called Kripke structures M =
〈S, π,K〉, where S is a set of so-called states or worlds (which correspond to
individuals in Description Logics), π is a mapping from the set of propositional
letters into sets of states (i.e., π (pi ) is the set of states in which pi holds), and K is
a binary relation on the states S, the so-called accessibility relation (which can be
seen as the interpretation of a single role). The semantics is then given as follows,
where, for a modal formula φ and a state s ∈ S, the expression M, s |= φ is read
as “φ holds in M in state s”.

M, s |= pi iff s ∈ π (pi )
M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= ¬φ iff M, s �|= φ

M, s |= ✸φ iff there exists s ′ ∈ S with (s, s ′) ∈ K and M, s ′ |= φ

M, s |= ✷φ iff for all s ′ ∈ S, if (s, s ′) ∈ K, then M, s ′ |= φ.

In contrast to many other modal logics, K does not impose any restrictions on the
Kripke structures. For example, the modal logic S4 is obtained from K by restrict-
ing the Kripke structures to those where the accessibility relationK is reflexive and
transitive. Other modal logics restrictK to be symmetric, well-founded, an equiva-
lence relation, etc. Moreover, the number of accessibility relations may be different
from one. Then we are talking about multi-modal logics, where each accessibility
relation Ki can be thought to correspond to one agent, and is quantified using the
multi-modal operators ✷i and ✸i (or, alternatively [i] and 〈i〉). For example, Km

stands for the multi-modal logic K with m agents.
To establish the correspondence between themodal logicKm and theDescription

Logic ALC, Schild [1991] gave the following translation f from ALC-concepts
using role names R1, . . . , Rm to Km:

f (A) = A,

f (C � D) = f (C) ∧ f (D),

f (C � D) = f (C) ∨ f (D),

f (¬(C)) = ¬( f (C)),

f (∀Ri .C) = ✷i ( f (C)),

f (∃Ri .C) = ✸i ( f (C)).

Now, Kripke structures can easily be viewed as DL interpretations and vice versa.
Then, from the semantics of Km and ALC, it follows immediately that a is an
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instance of anALC-conceptC in an interpretation I iff its translation f (C) holds in
a in theKripke structure corresponding to I. Obviously, we can define an analogous
translation from Km formulae into ALC.

There exists a large variety of modal logics for a variety of applications. In the
following, we will sketch some of them together with their relation to Description
Logics.

Propositional Dynamic Logics are designed for reasoning about the behavior
of programs. Propositional Dynamic Logic (pdl) was introduced by Fischer and
Ladner [1979], and proven to have an ExpTime-complete satisfiability problem by
Fischer and Ladner [1979] and Pratt [1979]; for an overview, see [Harel et al.,
2000]. pdlwas designed to describe the (dynamic) behavior of programs: complex
programs can be built starting from atomic programs by using non-deterministic
choice (∪), composition (;), and iteration (·∗). pdl formulae can be used to describe
the properties that should hold in a state after the execution of a complex program.
For example, the following pdl formula holds in a state if the following condition
is satisfied: whenever program α or β is executed, a state is reached where p holds,
and there is a sequence of alternating executions of α and β such that a state is
reached where ¬p ∧ q holds:

[α ∪ β]p ∧ 〈(α;β)∗〉(¬p ∧ q).
Its DL counterpart, ALCreg, was introduced independently by Baader [1991].
ALCreg is the extension of ALC with regular expressions over roles10 and can
be seen as a notational variant of Propositional Dynamic Logic. For this corre-
spondence, see the work by Schild [1991] and De Giacomo and Lenzerini [1994a],
and Chapter 5. There exist a variety of extensions of pdl (or ALCreg), for example
with inverse roles, counting, or difference of roles, most of which still have an Exp-
Time satisfiability problem; see, e.g., [Kozen and Tiuryn, 1990; De Giacomo, 1995;
De Giacomo and Lenzerini, 1996] and Chapter 5.

The µ-calculus can be viewed as a generalization of dynamic logic, with simi-
lar applications, and was introduced by Pratt [1981] and Kozen [1983]. It is ob-
tained from multi-modal Km by allowing (least and greated) fixpoint operators
to be used on propositional letters. For example, for µ the least fixpoint operator
and X a variable for propositional letters, the formula µX.p ∨ 〈α〉X describes the
states with a (possibly empty) chain of α edges into a state in which p holds. In
pdl, this formula is written 〈α∗〉p, and its ALCreg counterpart is ∃R∗α.p. However,
the µ-calculus is strictly more expressive than pdl or ALCreg: for example, the

10 Regular expressions over roles are built using union (�), composition (◦), and the Kleene operator (·∗) on roles
and can be used in ALCreg-concepts in the place of atomic roles (see Chapter 5).
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µ-calculus can express well-foundedness of a program (binary relation), i.e., there
is a µ-calculus formula that has only models in which α is interpreted as a well-
founded relation (that is, a relationwithout any infinite chains). In [DeGiacomo and
Lenzerini, 1994b; 1997; Calvanese et al., 1999c], this additional expressive power
is shown to be useful in a variety of DL applications. The DL counterpart of the
µ-calculus extended with number restrictions [De Giacomo and Lenzerini, 1994b;
1997] and additionally with inverse roles [Calvanese et al., 1999c] is proven to have
an ExpTime-complete satisfiability problem.

There are two other classes of Description Logics with other forms of fixpoints:
in Description Logics, fixpoints first came in through (1) the transitive closure op-
erator [Baader, 1991], which is naturally defined using a least fixpoint, and (2) ter-
minological cycles [Baader, 1990a], which have a different meaning according to
whether a greatest, least, or arbitrary fixpoint semantics is employed [Nebel, 1991;
Baader, 1996b; Küsters, 1998].

Temporal logics are designed for reasoning about time-dependent information.
They have applications in databases, automated verification of programs, hardware,
distributed systems, natural language processing, planning, etc. and come in various
shapes; for a survey of temporal logics, see, e.g., [Gabbay et al., 1994]. Firstly, they
can differ in whether the basic temporal entities are time points or time intervals.
Secondly, they differ in whether they are based on a linear or on a branching
temporal structure. In the latter structures, the flow of time might “branch” into
various succeeding future times. Finally, they differ in the underlying logic (e.g.,
Boolean logic or first-order predicate logic) and in the operators provided to speak
about the past and the future (e.g., operators that refer to the next time point,
to all future time points, to a future time point and all its respective future time
points, etc.).

In contrast to some other modal logics, temporal logics do not have very close
Description Logic relatives. However, they are mentioned here because they are
used to “temporalize” Description Logics; for a survey on temporal Description
Logics, see [Artale and Franconi, 2001] and Chapter 6. When speaking of the
“temporalization” of a logic, e.g., ALC, one usually refers to a logic with two-
dimensional interpretations. One dimension refers to the flow of time, and each
state in this flow of time comprises an interpretation of the underlying logic,
e.g., an ALC interpretation. Obviously, the logic obtained depends on the tem-
poral logic chosen for the temporal dimension and on the underlying (descrip-
tion) logic. Moreover, one has the choice of requiring that the interpretation
domain of each time point is the same for all states (“constant domain assump-
tion”) or that it is a subset of the domains of the interpretations underlying future
states. Examples of temporalized Description Logics can be found in [Wolter and
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Zakharyaschev, 1999d; Sturm and Wolter, 2002; Artale et al., 2001; Schild, 1993;
Lutz et al., 2001b]. An alternative to this temporalization is to extend a Descrip-
tion Logic with a temporal concrete domain [Baader and Hanschke, 1991a]. This
yields a “two-sorted” interpretation domain, consisting of abstract individuals on
the one hand and time points or intervals on the other hand. Abstract individuals
are then related to the temporal structure using features (functional roles) and the
standard concrete domain constructs. An example of such a logic is described by
Lutz [2001a].

Hybrid logics extend standard modal logics with the ability to refer to single
states (individuals in the interpretation domain) using so-called nominals (see, e.g.,
[Blackburn and Seligman, 1995; Areces et al., 2000; Areces, 2000] for hybrid
logics related to Description Logics). Nominals are simply special propositional
variables which hold in exactly one state. Hybrid logics enjoy a variety of “nice”
properties whose description goes beyond the scope of this article; for a summary,
see [Areces, 2000]. In Description Logics, there are three standard ways to refer to
individuals: (1) we can use ABox individuals in ABoxes, (2) we can use the “one-
of” concept constructor {o1, . . . , ok} which can be applied to individual names oi
andwhich is present in only a fewDescription Logics (e.g., in theDescription Logic
described in [Bresciani et al., 1995]), and (3) we can use nominals in a similar way
as in hybrid logics (e.g., [De Giacomo, 1995; Tobies, 2000; Horrocks and Sattler,
2001]), namely as special atomic concepts that are interpreted as singleton sets. For
most Description Logics, there is a direct mapping between nominals and the “one-
of” constructor and back: let oi stand for individual names and, at the same time,
nominals. Then we can extend the translation f mentioned above to the “one-of”
constructor as follows – provided that we make the unique name assumption (see
Chapter 2) either for both the individual names and the nominals or for neither of
them:

f ({o1, . . . , ok}) = f ({o1} � · · · � {ok}) = o1 ∨ · · · ∨ ok .
ABox individuals can be viewed as a restricted form of nominals, and each ABox
in a Description Logic L can be translated into a single concept of (the extension
of) L with conjunction, existential restriction, and “one-of”: first, translate each
assertion of the form

C(a) into {a} � C and
R(a, b) into {a} � ∃R.{b}.

Next, for C1, . . . ,Cm the resulting concepts of this translation and U a role
name not occurring in any Ci , define C = �

1≤i≤m
∃U.Ci . Then each model of
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C is a model of the original ABox – provided, again, that the unique name as-
sumption holds either for both individual names and nominals or for neither.
Vice versa, each model of the original ABox can easily be extended to a model
of C .

So far, we have only mentioned the weakest way in which nominals occur in
hybrid logics. The next stronger form is formulae of the form ϕ@oi which de-
scribes, intuitively, that ϕ holds in the state oi . For U a universal role and Cϕ the
translation of ϕ, this formula corresponds to the concept ∃U.(oi � Cϕ). Finally, we
only point out that there are even more expressive ways of talking about nominals
in hybrid logics using, for example, variables for nominals and quantification over
them.

So much for the relation between certain modal logics and certain Description
Logics. In the remainder of this section, the relationship between standard DL
constructors and their counterpart in modal logics is discussed.

Number restrictions: In modal logics, the equivalent to qualified number restric-
tions � n R.C and � n R.C [Hollunder and Baader, 1991b] is known as graded
modalities [Fine, 1972; Van der Hoek and de Rijke, 1995], whereas no equivalent
to the standard, weaker form of number restrictions, � n R and � n R, has been
considered explicitly.

Number restrictions can be said to play a central role in Description Logics: they
are present in almost all knowledge representation systems based on Description
Logics, several variants have been investigated with respect to their computational
complexity (e.g., see [Tobies, 1999c] for qualified number restrictions, [Baader and
Sattler, 1999] for symbolic number restrictions and number restrictions on complex
roles), and it was proved by De Giacomo and Lenzerini [1994a] that reasoning with
respect to (possibly cyclic) TBoxes for the DL equivalent to converse-pdl extended
with qualified number restrictions (on atomic and inverse atomic roles) isExpTime-
complete.

In contrast, theyplay aminor role inmodal anddynamic logics.Amoreprominent
role in dynamic logics is played by deterministic programs, i.e., programs that are
to be interpreted as functional relations (see Chapter 2). Ben-Ari et al. [1982] and
Parikh [1981] show that validity (and hence satisfiability) of dpdl (i.e., the logic
that is obtained from pdl by restricting programs to be deterministic) is ExpTime-
complete. Moreover, Parikh [1981] has shown that pdl formulae can be linearly
translated into dpdl formulae, and this translation was used by De Giacomo and
Lenzerini [1994a] to code qualified number restrictions into dpdl formulae. As a
consequence, we have that satisfiability and subsumption with respect to (possibly
cyclic) TBoxes inALC extended with regular expressions over roles and qualified
number restrictions is in ExpTime.
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Transitivity: In modal logics and Description Logics, transitivity comes in (at
least) two different shapes, as transitive roles (or frameswhose accessibility relation
is transitive, as inK4m) and as the transitive closure operator on roles (or the Kleene
star operator on programs in pdl). Interestingly, these two sorts of transitivity differ
in their complexity.

Fischer and Ladner [1979] prove that satisfiability in pdl is ExpTime-complete.
However, the only operator on programs (or roles) used in the hardness proof is the
transitive closure operator. Translated to Description Logics, this yields ExpTime-
completeness of satisfiability inALC extended with the transitive closure operator
on roles.

In contrast, K4m is known to be of the same complexity as Km (or ALC),
namely PSpace-complete [Halpern and Moses, 1992], while providing tran-
sitivity: K4m is obtained from Km by restricting Kripke structures to those
where the accessibility relations are transitive. Translated into Description Log-
ics, this means that concept satisfiability in ALC extended with transitive roles
(i.e., the ability to say that certain roles are interpreted as transitive relations)
is in PSpace [Sattler, 1996]. An extension of this Description Logic with
role hierarchies was implemented in the Description Logic system Fact [Hor-
rocks, 1998a]. Although pure concept satisfiability of this extension is Exp-
Time-hard, its highly optimized implementation behaves quite well [Horrocks,
1998b].

Inverse roles: Without the converse operator on programs/time (or the inverse
operator on roles), binary relations are restricted to be used asymmetrically: for
example, one is restricted to modeling either “into the future” or “into the past”,
or one must decide whether to use a role “has-child” or “is-child-of”, but may not
use both and relate them in the proper way. Hence in both modal and Description
Logics, the converse/inverse operator plays an important role since it overcomes
this asymmetry, and a variety of logics allowing this operator have been investigated
[Streett, 1982; Vardi, 1985; De Giacomo and Massacci, 1996; Calvanese, 1996a;
De Giacomo, 1996; Horrocks et al., 1999].

4.2.3 Guarded fragments

Andréka et al. [1996] introduce guarded fragments as natural generalizations of
modal logics to relations of arbitrary arity. Their definition and investigation was
motivated by the question why modal logics have such “nice” properties, e.g.,
finite axiomatizability, Craig interpolation, and decidability. Guarded fragments
are obtained from first-order logic by allowing the use of quantified variables only
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if these variables are guarded by appropriate atoms11 before they are used in the
body of a formula. More precisely, quantifiers are restricted to appear only in the
form

∃y(P(x, y) ∧�(y)) or ∀y(P(x, y) ⊃ �(y)) (First Guarded Fragment)
∃y(P(x, y) ∧�(x, y)) or ∀y(P(x, y) ⊃ �(x, y)) (Guarded Fragment)

for atoms P , vectors of variables x and y, and (first) guarded fragment formulae
� with free variables in y and x (resp. in y). The loosely guarded fragment further
allows a restricted form of conjunction as guards.

Obviously, the translation (∃y.R(x, y) ∧ ϕ(y))(x) of theK formula ✸ϕ (or of the
ALC concept ∃R.Cϕ) is a formula in the first guarded fragment since the quantified
variable y is “guarded” by R. A more complex guarded fragment formula is

∃z1, z2.(parents(x, z1, z2)∧ (married(z1, z2)∧ (∀y.parents(y, z1, z2)⊃ rich(y))))

in one free variable x , a guard atom parents, and describing all those persons that
have married parents and whose siblings (including oneself) are rich.

All guarded fragments have been shown to be decidable [Andréka et al., 1996].
Grädel [1999] proves that satisfiability of the guarded fragment is in ExpTime –
provided that the arity of the predicates is bounded – and 2ExpTime-complete
for unbounded signatures. Interestingly, the guarded fragment was shown to re-
main in 2ExpTime when extended with fixpoints [Grädel and Walukiewicz, 1999].
These “nice” properties together with their close relationship to modal logics and
Description Logics suggest that they are a good starting point for the development
of a Description Logic with n-ary predicates [Grädel, 1998]: in [Lutz et al., 1999],
a restriction of the guarded fragment was proven to be PSpace-complete, where the
restriction concerns the way in which variables are used in guard atoms. Roughly
speaking, each predicate A comes with a two-fold arity (i, j) and, when A is used
as a guard, either all first i variables are quantified and none of the last j are or,
symmetrically, all last j variables are quantified and none of the first i are. Hence
one might think of the predicates as having two-fold “groupings”. A similar logic,
the so-called action-guarded fragment AGF, is proposed in [Gonçalvès and Grädel,
2000]: it comes with a similar grouping of variables in predicates (which is, when
extendedwith “inverse actions”, the same as the grouping in [Lutz et al., 1999]) and,
additionally, it divides predicates into those allowed as guards and those allowed
in the body of formulae. From a DL perspective, this should not be too severe a
restriction since it parallels the distinction between role and concept names. Inter-
estingly, the extension of AGFwith counting quantifiers (the first-order counterpart
of number restrictions), inverse actions, and fixpoints yields an ExpTime logic –
provided that the arity of the predicates is bounded and that numbers in counting

11 Atoms are formulae P(x1, . . . , xk ) where P is a k-ary predicate symbol and xi are variables.
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quantifiers are coded unarily [Gonçalvès and Grädel, 2000]. This result is even
more interesting when we note that the guarded fragment, when extended with
number restrictions, functional restrictions, or transitivity (i.e., statements saying
that certain binary relations are to be interpreted as transitive relations) becomes
undecidable [Grädel, 1999].

To the best of our knowledge, the only other n-ary Description Logics with sound
and complete inference algorithms are DLR [Calvanese et al., 1998a] and DLRµ

[Calvanese et al., 1999c], which seem to be orthogonal to the guarded fragment. An
exact description of the relationship betweenDLR (resp.DLRµ) and the guarded
fragment (resp. its extension with fixpoints) is missing so far.

4.3 Database models

In this section we will describe the relationship between Description Logics and
data models used in databases. We will consider both traditional data models used
in the conceptual modeling of an application domain, such as semantic and object-
oriented data models, and more recently introduced formalisms for representing
semistructured data and data on the web. We will concentrate on the relationship
between the formalisms and refer to Chapter 16 for a more detailed discussion on
the use of Description Logics in data management [Borgida, 1995].

4.3.1 Semantic data models

Semantic data models were introduced primarily as formalisms for database
schema design [Abrial, 1974; Chen, 1976], and are currently adopted in most
of the database and information system design methodologies and Computer
Aided Software Engineering (CASE) tools [Hull and King, 1987; Batini et al.,
1992]. In semantic data models, classes provide an explicit representation of ob-
jects with their attributes and their relationships to other objects, and subtype–
supertype relationships are used to specify the inheritance of properties. Here, we
concentrate on the Entity–Relationship (ER) model [Chen, 1976; Teorey, 1989;
Batini et al., 1992; Thalheim, 1993], which is one of the most widespread semantic
data models. However, the considerations we make hold also for other formalisms
for conceptual modeling, such as UML class diagrams [Rumbaugh et al., 1998;
Jacobson et al., 1998].

4.3.1.1 Formalization

The basic elements of the ERmodel are entities, relationships, and attributes, which
are used to model the domain of interest by means of an ER schema.



162 U. Sattler, D. Calvanese, and R. Molitor

RegistrationCustomer

Business
Customer

Private
Customer

Location

Service

Supply

serv

servcust

loc

com

(1,1)

(1,∞) (0,∞)

(0,20)

code/Integer

SSN/String

city/String

street/String

(0,∞)

(exclusive, complete)

field/String Department

name/String

name/String

Fig. 4.8. An Entity–Relationship schema.

Figure 4.8 shows a simple ER schema representing the registration of customers
for (telephone) services provided by departments (e.g., of a telephone company).
The schema is drawn using the standard graphical ER notation, in which entities
are represented as boxes, and relationships as diamonds. An attribute is shown as a
circle attached to the entity for which it is defined. An entity type (or simply entity)
denotes a set of objects, called its instances, with common properties. Elementary
properties are modeled through attributes, whose values belong to one of several
predefined domains, such as Integer, String, Boolean, etc. Relationships between
instances of different entities are modeled through relationship types (or simply
relationships). A relationship denotes a set of tuples, each one representing an
association among a combination of instances of the entities that participate in the
relationship. The participation of an entity in a relationship is called an ER role and
has a unique name. It is depicted by connecting the relationship to the participating
entity. The number of ER roles for a relationship is called its arity.
Cardinality constraints can be attached to an ER role in order to restrict the

minimum or maximum number of times an instance of an entity may participate
via that ER role in instances of the relationship [Abrial, 1974; Grant and Minker,
1984; Lenzerini and Nobili, 1990; Ferg, 1991; Ye et al., 1994; Thalheim, 1992;
Calvanese and Lenzerini, 1994b]. Minimal andmaximal cardinality constraints can
be arbitrary non-negative integers. However, typical values for minimal cardinality
constraints are 0, denoting no constraint, and 1, denotingmandatory participation of
the entity in the relationship; typical values formaximal cardinality constraints are 1,
denoting functionality, and ∞, denoting no constraint. In Figure 4.8, cardinality
constraints are used to impose that each customer must be registered for at least
one service. Also, each service is provided by exactly one department, which in
turn may not provide more than 20 different services.

To represent inclusions between the sets of instances of two entities or two rela-
tionships, so called IS-A relations are used. An IS-A relation states the inheritance of
properties from a more general entity (resp. relationship) to a more specific one. A
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generalization is a set of IS-A relationswhich share themore general entity (resp. re-
lationship).Multiple generalizations can be combined in a generalization hierarchy.
A generalization can be mutually exclusive, meaning that all the specific entities
(resp. relationships) aremutually disjoint, or complete,meaning that the union of the
more specific entities (resp. relationships) completely covers themore general entity
(resp. relationship). In Figure 4.8, amutually exclusive and complete generalization
is used to represent the fact that customers are partitioned into private and business
customers.

Additionally, keys are used to represent the fact that an instance of an entity is
uniquely identified by a certain set of attributes, or that an instance of a relation-
ship is uniquely identified by a set of instances of the entities participating in the
relationship.

Although we do not provide a formal definition here, the semantics of an ER
schema can be given by specifying which database states are consistent with
the information structure represented by the schema; for details see e.g., [Calvanese
et al., 1999e].

Traditionally, the ER model has been used in the design phase of commercial
applications, and modern CASE tools usually provide sophisticated schema editing
facilities and automatic generation of code for the interaction with the database
management system. However, these tools do not provide any support beyond the
graphical user interface, for dealing with the complexity of schemas. In particular,
the designer is responsible for checking schemas for important properties such as
consistency and redundancy. This may be a complex and time-consuming task if
performed by hand. By translating an ER schema into a DL knowledge base in
such a way that the verification of schema properties corresponds to traditional DL
reasoning tasks, the reasoning facilities of a DL system can be profitably exploited
to support conceptual database design.

4.3.1.2 Correspondence with Description Logics

Both in Description Logics and in the ER model, the domain of interest is mod-
eled through classes and relationships, and various proposals have been made
for establishing a correspondence between the two formalisms. Bergamaschi and
Sartori [1992] provide a translation of ER schemas into acyclic ALN knowledge
bases. However, due to the limited expressiveness of the target language, several
features of the ER model and desired reasoning tasks could not fully be captured
by the proposed translation. Indeed, when relating the ER model to Description
Logics, one has to take into account the following aspects:

(i) TheERmodel allows relations of arbitrary arity, while in traditionalDescriptionLogics
only unary and binary relations are considered.
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Registration # ∀custRegistration.Customer �= 1 custRegistration�
∀locRegistration.Location �=1 locRegistration �
∀servRegistration.Service �=1 servRegistration

Supply # ∀servSupply.Service �=1 servSupply �
∀comSupply.Customer �= 1 comSupply

Customer # ∀custRegistration−.Registration�� 1 custRegistration−

Location # ∀locRegistration−.Registration
Service # ∀servRegistration−.Registration �

∀servSupply−.Supply �=1 servSupply−

Department # ∀comSupply−.Supply �� 20 comSupply−

Customer # BusinessCustomer � PrivateCustomer

BusinessCustomer # Customer

PrivateCustomer # Customer � ¬BusinessCustomer

Customer # ∀name.String �=1 name

Fig. 4.9. Part of the knowledge base corresponding to the Entity–Relationship schema in
Figure 4.8.

(ii) The assumption of acyclicity is unrealistic in an ER schema, while it is common in DL
knowledge bases.

(iii) Database states are considered to be finite structures, while no assumption on finiteness
is usually made on the interpretation domain of a DL knowledge base.

Before discussing these issues in more detail, we show in Figure 4.9 part of the
ALUNI knowledge base corresponding to the ER schema in Figure 4.8, derived
according to the translation proposed by Calvanese et al. [1994; 1999e]. We have
omitted the part corresponding to the translation of most attributes, showing as an
example only the translation of the attribute name of the entity Customer.

Due to point (i), when translating ER schemas into knowledge bases of a tradi-
tionalDescriptionLogic, it becomes necessary to reify relationships, i.e., to translate
each relationship into a concept whose instances represent the tuples of the relation-
ship. Each entity is also translated into a concept, while each ER role is translated
into a Description Logic role. Then, using functional roles, one can enforce that
each instance of the atomic concept C corresponding to a relationship R represents
a tuple of R, i.e., for each role representing an ER role of R, the instance of C is
connected to exactly one instance of the entity associated to the ER role.

There is, however, one condition, which is implicit in the semantics of the ER
model, but which does not necessarily hold once relationships are reified, andwhich
can also not be enforced in Description Logics on the models of a knowledge base:
the condition is that the extension of a relationship R does not contain some tuple
twice. After reification this corresponds to the fact that there are no two instances
of the concept corresponding to R that are connected through all roles of R exactly
to the same instances of the entities associated to the roles. However, it can be
shown that, when reasoning on a knowledge base corresponding to an ER schema,
nothing is lost by ignoring this condition. Indeed, given an arbitrary model of such
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a knowledge base, one can always find a model in which the condition holds, and
thus one that corresponds directly to a legal database state [Calvanese et al., 1994;
De Giacomo, 1995; Calvanese et al., 1999e].

Cardinality constraints are translated using number restrictions on the inverse
of the roles connecting relationships to entities. To avoid the need for qualified
number restrictions, in the translation in Figure 4.9 we have disambiguated the
roles by appending to their name the name of the relationship they belong to.
An alternative would be to allow the same role to appear in several places, and
use qualified number restrictions instead of unqualified ones. While considerably
complicating the language, this makes it possible to translate also IS-A relations
between relationships, which cannot be captured using the translation proposed by
Calvanese et al. [1999e]. Also more general forms of cardinality constraints have
been proposed for the ER model [Thalheim, 1992], allowing one, e.g., to limit the
number of locations a customer may be registered for, independently of the service.
To the best of our knowledge, such types of cardinality constraints cannot be cap-
tured in Description Logics in general. Borgida and Weddell [1997] have studied
reasoning in Description Logics in the presence of functional dependencies that
are more general than unary ones, and which allow one to represent keys of rela-
tions. Decidability of reasoning in a very expressive Description Logic augmented
with non-unary key constraints has been shown by Calvanese et al. [2000b], and
Calvanese et al. [2001a] have shown that also general functional dependencies can
be added without losing ExpTime-completeness.

IS-A relations are simply translated using concept inclusion assertions. General-
ization hierarchies additionally require negation, if they are mutually disjoint, and
union, if they are complete.

With respect to point (ii), we observe that the translation of an ER schema
containing cycles obviously gives rise to a cyclic DL knowledge base. However,
due to the necessity of properly relating a relationship via an ER role to an entity,
even when translating an acyclic ER schema, the resulting knowledge base contains
cycles. On the other hand, it is sufficient to use inclusion assertions rather than
equivalence, since the former naturally correspond to the semantics of ER schemas.

With respect to point (iii), we observe that one cannot simply ignore it
and adopt algorithms that reason with respect to arbitary models. Indeed, the
ER model itself does not have the finite model property [Cosmadakis et al.,
1990; Calvanese and Lenzerini, 1994b], which states that, if a knowledge base
(resp. schema) has an arbitrary, possibly infinite model (resp. database state),
then it also has a finite one (see also Chapter 5 for more details). A further
confirmation comes from the fact that, for correctly capturing ER schemas in
Description Logics, possibly cyclic knowledge bases expressed in a Descrip-
tion Logic including functional restrictions and inverse roles are required, and
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such knowledge bases do not have the finite model property [Calvanese et al., 1994;
1999e]. Therefore one must resort to techniques for finite model reasoning.
Calvanese et al. [1994] show that reasoning w.r.t. finite models in ALUNI
knowledge bases containing only inclusion assertions is ExpTime-complete, and
Calvanese [1996a] presents a 2ExpTime algorithm for reasoning inALCQI knowl-
edge bases with general inclusion assertions.

4.3.1.3 Applications of the correspondence

The study of the correspondence between Description Logics and semantic data
models has led to significant advantages in both fields. On the one hand, the richness
of constructs that is typical of Description Logics makes it possible to add them to
semantic data models and take them fully into account when reasoning on a schema
[Calvanese et al., 1998g]. Notable examples are:

� the ability to specify not only IS-A and generalization hierarchies, but also arbitrary
Boolean combinations of entities or relationships, which can correspond to forms of
negative and incomplete knowledge [Di Battista and Lenzerini, 1993];

� the ability to refine properties along an IS-A hierarchy, such as restricting the numeric
range for cardinality constraints, or refining the participation in relationships using uni-
versal quantification over roles;

� the ability to define classes bymeans of equality assertions, and not only to state necessary
properties for them.

The correspondence between semantic data models and Description Logics has
been recently exploited to add such advanced capabilities to CASE tools. A notable
example is the i•com tool [Franconi and Ng, 2000] for conceptual modeling, which
combines a user-friendly graphical interface with the ability to automatically infer
properties of a schema (e.g., inconsistency of a class, or implicit IS-A relations) by
invoking the Fact Description Logic reasoner [Horrocks, 1998a; 1999].

On the other hand, the basic ideas behind the translation of semantic data mod-
els into Description Logics, namely reification and the fact that one can restrict the
attention tomodels inwhich distinct instances of a reified relation correspond to dis-
tinct tuples, have led to the development of Description Logics in which relations of
arbitrary arity are first class citizens [De Giacomo and Lenzerini, 1994c; Calvanese
et al., 1997; 1998a]. Using suchDescriptionLogics, the translation of anER schema
is immediate, since now relationships of arbitrary arity also have their direct coun-
terpart. For example, usingDLR [Calvanese et al., 1998a], the part of the schema in
Figure 4.8 relative to the ternary relation Registration can be translated as follows:

Registration 
 ($1:Customer) � ($2: Location) � ($3:Service)

Customer 
 ∃[$1]Registration.
We refer to Chapter 16, Subsection 16.2.2 for the details of the translation.
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Description Logics could also be considered as expressive variants of semantic
data models with incorporated reasoning facilities. This is of particular importance
in the context of information integration, where a high expressiveness is required to
capture in the best possible way the complex relationships that hold between data in
different information sources [Levy et al., 1995; Calvanese et al., 1998d; 1998e].

4.3.2 Object-oriented data models

Object-oriented data models have been proposed recently with the goal of devising
database formalisms that could be integrated with object-oriented programming
systems [Abiteboul and Kanellakis, 1989; Kim, 1990; Cattell and Barry, 1997;
Rumbaugh et al., 1998]. Object-oriented data models rely on the notion of object
identifier at the extensional level (as opposed to traditional data models which are
value-oriented) and on the notion of class at the intensional level. The structure of
the classes is specified by means of typing and inheritance. Since we aim at dis-
cussing the relationship with Description Logics, which are well-suited to describe
structural rather than dynamic properties, we restrict our attention to the structural
component of object-oriented models. Hence we do not consider all those aspects
that are related to the specification of the behavior and evolution of objects, which
nevertheless constitute an important part of these data models. Although in our
discussion we do not refer to any specific formalism, the model we use is inspired
by the one presented by Abiteboul and Kanellakis [1989], and embodies the basic
features of the static part of the ODMG standard [Cattell and Barry, 1997].

4.3.2.1 Formalization

An object-oriented schema is a finite set of class declarations, which impose con-
straints on the instances of the classes that are used tomodel the application domain.
A class declaration for a class C has the form

class C is-a C1, . . . ,Ck type-is T,

where the is-a part, which is optional, specifies inclusions between the sets of
instances of the classes involved, while the type-is part specifies through the type
expression T the structure assigned to the objects that are instances of the class.
We consider union, set, and record types, built according to the following syntax,
where the letter A is used to denote attributes:

T −→ C |
union T1, . . . , Tk end |
set-of T |
record A1: T1, . . . , Ak : Tk end.
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class Customer type-is
union BusinessCustomer, PrivateCustomer
end

class PrivateCustomer is-a Customer type-is
record

SSN: String
end

class Service type-is
record

code: Integer,
suppliedBy: Department

end

class Registration type-is
record

cust: Customer,
regis: set-of record

serv: Service
loc: Location

end
end

Fig. 4.10. Part of an object-oriented schema.

Figure 4.10 shows part of an object-oriented schema modeling the same reality
as the Entity–Relationship schema of Figure 4.8. Notice that now registrations are
represented as a class and grouped according to the customer, since all registrations
related to one customer are collected in the set-valued attribute regis.

The meaning of an object-oriented schema is given by specifying the character-
istics of a database state for the schema. The definition of a database state makes
use of the notions of object identifier and value. Starting from a finite setOJ of ob-
ject identifiers, the set of complex values over OJ is built inductively by grouping
values into finite sets and records. A database state J for a schema is constituted
by the set of object identifiers, a mapping πJ assigning to each class a subset of
OJ , and a mapping ρJ assigning to each object in OJ a value over OJ .

Notice that, although the set of values that can be constructed from a set OJ of
object identifiers is infinite, for a database state one only needs to consider the finite
subset VJ of values assigned by ρJ to the elements of OJ , including the values
that are not explicitly associated with object identifiers, but are used to form other
values.

The interpretation of type expressions in a database state J is defined through
an interpretation function ·J that assigns to each type expression T a set T J of
values in VJ as follows:
� if T is a class C , then T J = πJ (C);
� if T is a union type union T1, . . . , Tk end, then T J = T J1 ∪ · · · ∪ T Jk ;
� it T is a record type (resp. set type), then T J is the set of record values (resp. set values)
compatible with the structure of T . For records we are using an open semantics, meaning
that the records that are instances of a record type may have more components than those
explicitly specified in the type [Abiteboul and Kanellakis, 1989].

A database state J for an object-oriented schema S is said to be legal (with
respect to S) if for each declaration

class C is-a C1, . . . ,Cn type-is T
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in S, we have (1)CJ ⊆ CJi for each i ∈ {1, . . . , n}, and (2) ρJ (CJ ) ⊆ T J . There-
fore, for a legal database state, the type expressions that are present in the schema
determine the (finite) set of values that must be considered. The construction of
such values is limited by the depth of type expressions.

4.3.2.2 Correspondence with Description Logics

When establishing a correspondence between an object-oriented model such as
the one presented above, and Description Logics, one must take into account that
the interpretation domain for a DL knowledge base consists of atomic objects,
whereas each object of an object-oriented schema is assigned a possibly struc-
tured value. Therefore one needs to explicitly represent in Description Logics the
type structure of classes [Calvanese et al., 1994; 1999e; Artale et al., 1996a]. We
describe now the translation proposed by Calvanese et al. [1994; 1999e], that over-
comes this difficulty by introducing into the DL knowledge base concepts and
roles with a specific meaning: the concepts AbstractClass, RecType, and SetType
are used to denote instances of classes, record values, and set values, respectively.
The associations between classes and types induced by the class declarations, as
well as the basic characteristics of types, are modeled by means of specific roles:
the functional role valuemodels the association between classes and types, and the
role member is used for specifying the type of the elements of a set. Moreover, the
concepts representing types are assumed to be mutually disjoint, and disjoint from
the concepts representing classes. These constraints are expressed by the following
inclusion assertions, which are always part of the knowledge base that is obtained
from an object-oriented schema:

AbstractClass 
 = 1 value

RecType 
 ∀value.⊥
SetType 
 ∀value.⊥ � ¬RecType.

The translation from object-oriented schemas to Description Logic knowledge
bases is defined through amapping�, whichmaps each type expression to a concept
expression as follows:

� Each class C is mapped to an atomic concept �(C).
� Each type expression union T1, . . . , Tk end is mapped to �(T1) � · · · � �(Tk).
� Each type expression set-of T is mapped to SetType � ∀member.�(T ).
� Each attribute A is mapped to an atomic role �(A), and each type expression
record A1: T1, . . . , Ak : Tk end is mapped to

RecType � ∀�(A1).�(T1) � = 1�(A1) � · · · �
∀�(Ak).�(Tk) � = 1�(Ak).
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Customer # AbstractClass � ∀value.(BusinessCustomer � PrivateCustomer)
PrivateCustomer # AbstractClass � Customer � ∀value.(RecType �=1 SSN � ∀SSN.String)

Service # AbstractClass �
∀value.(RecType �=1 code � ∀code.Integer �

= 1 suppliedBy � ∀suppliedBy.Department)
Customer # AbstractClass �

∀value.(RecType �=1 cust � ∀cust.Customer �
= 1 regis � ∀regis.(SetType �

∀member.(RecType �
serv � ∀serv.Service �
loc loc.Location)))

Fig. 4.11. The specific part of the knowledge base corresponding to the object-oriented
schema in Figure 4.10.

Then, the knowledge base �(S) corresponding to an object-oriented schema S is
obtained by taking for each class declaration

class C is-a C1, . . . ,Cn type-is T

an inclusion assertion

�(C) 
 AbstractClass � �(C1) � · · · � �(Cn) � ∀value.�(T ).

We show in Figure 4.11 the knowledge base resulting from the translation of the
fragment of object-oriented schema shown in Figure 4.10.

Analogously to the ERmodel, it is sufficient to use inclusion assertions instead of
equivalence assertions to capture the semantics of object-oriented schemas. A trans-
lation to an acyclic knowledge base is possible under the assumption that no class in
the schema refers to itself, either directly in its type or indirectly via the class decla-
rations12 [Artale et al., 1996a]. However, since this assumption represents a rather
strong limitation in expressiveness, cycles are typically present in object-oriented
schemas, and in this case the resulting DL knowledge base will contain cyclic asser-
tions. No inverse roles are needed for the translation, since in object-oriented mod-
els the inverse of an attribute is rarely considered. Furthermore, the use of number
restrictions is limited to functionality, since all attributes are implicitly functional.

To establish the correctness of the transformation, and thus ensure that the
reasoning tasks on an object-oriented schema can be reduced to reasoning tasks
on its translation into Description Logics, we would like to establish a one-to-
one correspondence between database states legal for the schema and models of
the knowledge base resulting from the translation. However, as for the ER model,
the knowledge base may have models that do not correspond directly to legal
database states. In this case, this is due to the fact that, while values have a
treelike structure, the corresponding individuals in a model of the Description
Logic knowledge base may be part of cyclic substructures. One way of ruling

12 Note that cyclic references cannot appear directly in a type, which is constructed inductively, but only through
the class declarations.



4 Relationships with other Formalisms 171

out such cyclic substructures would be to adopt a specific constructor that allows
one to impose well-foundedness [Calvanese et al., 1995], or even exploit general
fixed points on concepts [Schild, 1994; De Giacomo and Lenzerini, 1994a; 1997;
Calvanese et al., 1999c]. However, it turns out that, in this case, it is not necessary
to explicitly enforce such a condition. Indeed, due to the finite depth of nesting of
types in a schema, it can be shown that each model of the translation of the schema
can be unfolded into one that directly corresponds to a legal database state (more
details are provided by Calvanese et al. [1999e]).

4.3.2.3 Applications of the correspondence

Similarly to the ER model, the existence of property-preserving transformations
from object-oriented schemas into DL knowledge bases makes it possible to exploit
the reasoning capabilities of a DL system for checking relevant schema properties,
such as consistency and redundancy [Bergamaschi and Nebel, 1994; Artale et al.,
1996a; Calvanese et al., 1998g]. Additionally, several extensions of the object-
oriented formalism that are useful for the purpose of conceptual modeling can be
considered:

� Not only IS-A, but also disjointness, and,more generally, Boolean combinations of classes
can be used.

� Class definitions can be used to specify not only necessary but also necessary and sufficient
properties for an object to be an instance of a class [Bergamaschi and Nebel, 1994].

� Cardinality constraints and not only implicit functionality can be imposed on attributes.
Having attributes with multiple values could in some cases be a useful alternative to
set-valued attributes.

� By admitting also the use of inverse roles in the language, one gains the ability to impose
constraints using a relation in both directions, as is customary in semantic data models.
The increase in expressiveness that one obtains this way has indeed been recognized
as extremely important by the database community [Albano et al., 1991], and has been
included in the recent ODMG standard [Cattell and Barry, 1997].

The basic characteristics of object-oriented data models have also been included
in the structural part of the Unified Modeling Language (UML) [Rumbaugh et al.,
1998; Jacobson et al., 1998], which is becoming the standard language for the anal-
ysis phase of software and information system development. Additionally, UML
allows the definition of generic recursive data structures (both inductive and co-
inductive) such as lists and trees, and their specialization to specific types. In order
to capture also these aspects of UML in Description Logics and take them fully
into account when reasoning over a schema, the Description Logicmust provide the
ability to represent and reason over data structures. In particular, to represent UML
schemas, it is necesary to resort to very expressive Description Logics including
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number restrictions, inverse roles or n-ary relations, and fixpoint constructs on con-
cepts [Calvanese et al., 1999c]. Also in this case, the reasoning services provided by
a DL system can be integrated into CASE tools and profitably exploited to support
the designer in the analysis phase [Franconi and Ng, 2000].

4.3.3 Semistructured data models and XML

In recent application areas such as data integration, access to data on the web,
and digital libraries, the structure of the data is usually not rigid, as in conven-
tional databases, and thus it is difficult to describe it using traditional data models.
Therefore, so called semistructured data models have been proposed, which are
graph-based data models that provide flexible structuring mechanisms, and thus al-
lowone to represent data that is neither rawnor strictly typed [Abiteboul et al., 2000;
Abiteboul, 1997; Buneman et al., 1997; Mendelzon et al., 1997]. The Extensible
Markup Language (XML) [Bray et al., 1998; Abiteboul et al., 2000], which has
been introduced as a mechanism for representing structured documents on theWeb,
can in fact also be considered a model for semistructured data. Indeed, XML is by
now much the most popular model for data on the Web, and there is a tremen-
dous effort related to XML and the associated standards,13 both in the research
community and in industry.

Description Logics have traditionally been used to describe and organize data in
a more flexible way than is done in databases, basically using graph-like structures.
Hence it seems natural to adopt Description Logics and the associated reasoning
services for representing and reasoning on semistructured data and XML as well.
In the following, we discuss the (rather few) proposals made in the literature. What
these proposals have in common is the necessity to resort to fixpoints, either by
adopting fixpoint semantics [Nebel, 1991; Baader, 1991], or by using reflexive–
transitive closure or explicit fixpoint constructs [De Giacomo and Lenzerini, 1997]
(see also Chapter 5).

For the recent extensive work on the use of Description Logics to provide a
semantically richer representation of data on the Web we refer to Chapter 14.

4.3.3.1 Relationship between semistructured data and Description Logics

Michaeli et al. [1997] propose to extend a semistructured data model that is an
abstraction of the OEM model [Abiteboul et al., 1997] with a layer of classes,
representing objects with common properties. Class expressions correspond to DL
concepts and the properties for the classes are specified by a set of classification
rules, which provide sufficient conditions for class membership and are interpreted

13 http://www.w3.org/
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under a least fixpoint semantics. By a reduction to reasoning in a Description Logic
with fixpoint operators [De Giacomo and Lenzerini, 1997; Calvanese et al., 1999c],
it is shown that determining class satisfiability and containment under a set of rules
is ExpTime-decidable (and in fact ExpTime-complete).

In the following, we discuss in more detail the use of Description Logics to
represent and reason on semistructured data, on the example of one typical rep-
resentative for semistructured data models. In semistructured data models, data
is organized in the form of a graph, and information on both the values and the
schema for the data is attached to the edges of the graph. In the formalism pro-
posed by Buneman et al. [1997], the labels of edges in a schema are formulae of
a complete first order theory, and the conformance of a database to a schema is
defined in terms of a special relation, called simulation. The notion of simulation
is less rigid than the usual notion of satisfaction, and suitably reflects the need for
dealing with less strict data structures. In order to capture in Description Logics
the notion of simulation, it is necessary on the one hand to express the local con-
ditions that a node must satisfy, and on the other hand to deal with the fact that
the simulation relation is the greatest relation satisfying the local conditions. Since
semistructured data schemas may contain cycles, the local conditions may depend
on each other in a cyclic way. Therefore, while the local conditions can be encoded
by means of suitable inclusion assertions inALU , the maximality condition on the
simulation relation can only be captured correctly by resorting to a greatest fix-
point semantics [Calvanese et al., 1998c; 1998b]. Then, using a Description Logic
with fixpoint constructs, such as µALCQ [De Giacomo and Lenzerini, 1994b;
1997] (see also Chapter 5), a so-called characteristic concept for a semistruc-
tured data schema can be constructed, which captures exactly the properties of the
schema. Subsumption between two schemas, which is the task of deciding whether
every semistructured database conforming to one schema also conforms to another
schema [Buneman et al., 1997], can be decided by checking subsumption between
the characteristic concepts of the schemas [Calvanese et al., 1998c].

The correspondence with Description Logics can again be exploited to enrich
semistructured data models, without losing the ability to check schema subsump-
tion. Indeed, the requirement already raised by Buneman et al. [1997], to extend
semistructured data models with several types of constraints, has been addressed
by Calvanese et al. [1998b], who propose several types of constraints, such as exis-
tence and cardinality constraints, which are naturally derived from DL constructs.
Reasoning in the presence of constraints is done by encoding also the constraints in
the characteristic concept of a schema. Calvanese et al. deal also with the presence
of incomplete information in the theory describing the properties of edge labels,
by proposing the use of a theory expressed in µALCQ, instead of a complete first
order theory.
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<?xml version="1.0"?>
<!DOCTYPE Customers SYSTEM "services.dtd">

<Customers>
<Customer type="business">

<Name>FIAT</Name>
<Field>manufacturing</Field>
<Registered service="522">

<Location><City>Torino</City>
<Address>...</Address>

</Location>
<Location>...</Location>

</Registered>
<Registered service="612">

<Location>...</Location>
</Registered>

</Customer>

<Customer type="private">
<Name>...</Name>
<SSN>...</SSN>
<Registered service="214">

<Location>...</Location>
</Registered>

</Customer>
...

</Customers>

<?xml version="1.0"?>
<!DOCTYPE Services SYSTEM "services.dtd">

<Services>
<Department name="standard-services">
<Service code="522">

<Name>call-back when busy</Name>
<Cost>...</Cost>
...

</Service>
<Service code="214">

<Name>three-party call</Name>
</Service>

</Department>

<Department name="business-services">
<Service code="612">

<Name>conference call</Name>
</Service>
...

</Department>
</Services>

Fig. 4.12. Two XML documents specifying respectively customers and services.

4.3.3.2 Relationship between XML and Description Logics

XML [Bray et al., 1998] is a formalism for representing documents that are struc-
tured by means of nested tags. Recently, XML has gained popularity also as a
formalism for representing (semistructured) data and exchanging it over the Web.
Figure 4.12 shows two exampleXMLdocuments containing respectively data about
customers and their registration to services provided by various departments (e.g.,
of a telephone company). A part of an XML document consisting of a start tag
(e.g., <Customer>), the matching end tag (e.g., </Customer>), and everything
in between is called an element. Elements can be arbitrarily nested, and can have
associated attributes, specified by means of attribute–value pairs inside the start
tag (e.g., type="business"). Intuitively, each XML document can be viewed as
a finite ordered unranked tree,14 where each element represents a node, and the
children of an element are those elements directly contained in it. How XML
documents are viewed as trees is defined, together with an API for accessing
and manipulating such trees/XML-documents, by the Document Object Model,15

which defines, besides element nodes, other types of nodes, such as attributes,
comments, etc.

14 In an unranked tree each node can have an arbitrary finite number of child nodes. The tree is ordered since the
order among children of the same node matters.

15 http://www.w3.org/DOM/
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<!-- File: services.dtd -->

<!ELEMENT Customers (Customer)+ >

<!ELEMENT Customer (Name, (Field|SSN), Registered+) >

<!ELEMENT Registered (Location)+ >

...

<!ELEMENT Services (Department)+ >

<!ELEMENT Department (Service)* >

<!ELEMENT Service (Name, Cost?, ...) >

<!ELEMENT Name #PCDATA >

...

<!ATTLIST Customer type (business|private) "private">

<!ATTLIST Registered service IDREF #REQUIRED>

<!ATTLIST Department name CDATA #REQUIRED>

<!ATTLIST Service code ID #REQUIRED>

...

Fig. 4.13. Part of the Document Type Declaration S for the XML documents in Figure 4.12.

In XML, it is possible to impose a structure on documents by means of a Doc-
ument Type Declaration (DTD) [Bray et al., 1998]. A DTD consists of a set of
declarations: For each element type used in the XML document, the DTD must
contain a declaration that specifies, by means of a regular expression, how ele-
ments can be nested within elements of that type. The keyword #PCDATA is used
to specify that the element content (i.e., the part enclosed by the tags) is free text
without nested elements. For each attribute appearing in the XML document, the
DTD must contain a declaration specifying the name of the attribute, the type of
the elements it is associated to, and additional properties (e.g., the type and whether
the attribute is optional or mandatory). Figure 4.13 shows part of the DTD for the
XML documents in Figure 4.12. We refer to [Bray et al., 1998] for a precise defi-
nition of the syntax and semantics of XML DTDs.

We illustrate the method for encoding XML DTDs into DL knowledge bases
proposed in [Calvanese et al., 1999d]. For simplicity, we do not consider XML
attributes, although they can easily be dealt with by introducing suitable roles. Due
to the presence of regular expressions, to encode DTDs into Description Logics, it
is necessary to resort to a Description Logic equipped with constructs for building
regular expressions over roles (see Chapter 5). Notice that the encoding of DTDs
into DL knowledge bases must allow for representing unranked trees and at the
same time for preserving the order of the children of a node. For example, the DTD
in Figure 4.13 enforces that the content of a Customer element consists of a Name
element, followed by (in DTDs, concatenation is denoted by “,”) either a Field
or an SSN element (alternative is denoted by “|”), followed by an arbitrary number
(but at least one) of Registered elements (transitive closure is denoted by “+”).
To overcome these difficulties, Calvanese et al. [1999d] propose to represent XML
documents (i.e., ordered unranked trees) by means of binary trees, and provide
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Fig. 4.14. The binary tree corresponding to the XML document on the left-hand side of
Figure 4.12.

an encoding of DTDs in Description Logics that exploits such a representation.
Figure 4.14 shows the binary tree corresponding to one of the XML documents in
Figure 4.12.

Figure 4.15 shows part of the axioms encoding the DTD in Figure 4.13. The two
roles f and r are used to encode binary trees, and such roles are globally functional
(axiom (4.1)). Moreover, the well-founded construct (see Chapter 5) wf (f � r) is
used to express that there can be no infinite chain of objects, each one connected to
the next by means of f � r. Such a condition turns out to be necessary to correctly
capture the fact that XML documents correspond to trees that are finite. For each
element type E , the atomic concepts StartE and EndE represent respectively the
start tags (4.2) and end tags (4.3) for E , and such tags are leaves of the tree (4.4).
The remaining leaves of the tree are free text, represented by the atomic concept
PCDATA (4.5). Using such concepts and roles, one can introduce for each element
type E appearing in a DTD D an atomic concept ED, and encode the regular
expression specifying the structure of elements of type E in a suitable complex
role, exploiting constructs for regular expressions over roles (including the id(·)
construct). This is illustrated in Figure 4.15 for part of the element types of the
DTD in Figure 4.13. We refer to [Calvanese et al., 1999d] for the precise definition
of the encoding.
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& ≡ � 1 f �� 1 r � wf (f � r)
StartE # Tag for each element type E (4.2

(4.1)
)

EndE # Tag for each element type E (4.3)
Tag # ∀(f � r).⊥ (4.4)

PCDATA # ∀(f � r).⊥ � ¬Tag (4.5)
CustomersS ≡ ∃f.StartCustomers � ∃(r ◦ (id(∃f.CustomerS) ◦ r)+).EndCustomers

CustomerS ≡ ∃f.StartCustomers � ∃(r ◦ id(∃f.NameS) ◦ r
◦ (id(∃f.FieldS) � id(∃f.SSNS)) ◦ r
◦ (id(∃f.RegisteredS) ◦ r)+).EndCustomer

NameS ≡ ∃f.StartName � ∃(r ◦ id(∃f.PCDATA) ◦ r).EndName

...

Fig. 4.15. Part of the encoding of the DTD S in Figure 4.13 into a DL knowledge base.

The encodingofDTDs intoDescriptionLogics canbe exploited to verify different
kinds of properties on DTDs, namely inclusion, equivalence, and disjointness be-
tween the sets of documents conforming respectively to two DTDs. Such reasoning
tasks come in different forms. For strong inclusion (resp. equivalence, disjointness)
both the document structure and the actual tag names are of importance when com-
paring documents, while for structural inclusion (resp. equivalence, disjointness)
one abstracts away from the actual tag names, and considers only the document
structure [Wood, 1995]. Parametric inclusion (resp. equivalence, disjointness) gen-
eralizes both notions, by considering an equivalence relation between tag names,
and comparing documents modulo such an equivalence relation. By exploiting the
encoding of DTDs into Description Logics presented above, all forms of inference
on DTDs can be carried out in deterministic exponential time [Calvanese et al.,
1999d].
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Abstract

This chapter covers extensions of the basic Description Logics introduced in
Chapter 2 by very expressive constructs that require advanced reasoning tech-
niques. In particular, we study reasoning in Description Logics that include general
inclusion axioms, inverse roles, number restrictions, reflexive–transitive closure of
roles, fixpoint constructs for recursive definitions, and relations of arbitrary arity.
The chapter will also address reasoning w.r.t. knowledge bases including both a
TBox and an ABox, and discuss more general ways to treat objects. Since the log-
ics considered in the chapter lack the finite model property, finite model reasoning
is of interest and will also be discussed. Finally, we mention several extensions
to Description Logics that lead to undecidability, confirming that the expressive
Description Logics considered in this chapter are close to the boundary between
decidability and undecidability.

5.1 Introduction

Description Logics have been introduced with the goal of providing a formal
reconstruction of frame systems and semantic networks. Initially, the research has
concentrated on subsumption of concept expressions. However, for certain applica-
tions, it turns out that it is necessary to represent knowledge by means of inclusion
axioms without limitation on cycles in the TBox. Therefore, recently there has been
a strong interest in the problem of reasoning over knowledge bases of a general
form. See Chapters 2, 3, and 4 for more details.

When reasoning over general knowledge bases, it is not possible to gain tractabil-
ity by limiting the expressive power of the Description Logic, because the power
of arbitrary inclusion axioms in the TBox alone leads to high complexity in the
inference mechanisms. Indeed, logical implication is ExpTime-hard even for the

178
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very simple languageAL (see Chapter 3). This has led to the investigation of very
powerful languages for expressing concepts and roles, for which the property of
interest is no longer tractability of reasoning, but rather decidability. Such logics,
called here expressive Description Logics, have the following characteristics:

(i) The language used for building concepts and roles comprises all classical concept-
forming constructs, plus several role-forming constructs such as inverse roles and
reflexive–transitive closure.

(ii) No restriction is posed on the axioms in the TBox.

The goal of this chapter is to provide an overview of the results and techniques for
reasoning in expressive Description Logics. The chapter is organized as follows. In
Section 5.2, we outline the correspondence between expressive Description Logics
and Propositional Dynamic Logics, which has given the basic tools to study reason-
ing in expressive Description Logics. In Section 5.3, we exploit automata-theoretic
techniques developed for variants of Propositional Dynamic Logics to address rea-
soning in expressive Description Logics with functionality restrictions on roles.
In Section 5.4 we illustrate the basic technique of reification for reasoning with
expressive variants of number restrictions. In Section 5.5, we show how to reason
with knowledge bases composed of a TBox and an ABox, and discuss extensions
to deal with names (one-of construct). In Section 5.6, we introduce Description
Logics with explicit fixpoint constructs, which are used to express in a natural way
inductively and coinductively defined concepts. In Section 5.7, we study Descrip-
tion Logics that include relations of arbitrary arity, which overcome the limitations
of traditional Description Logics of modeling only binary links between objects.
This extension is particularly relevant for the application of Description Logics
to databases. In Section 5.8, the problem of finite model reasoning in Description
Logics is addressed. Indeed, for expressive Description Logics, reasoning w.r.t.
finite models differs from reasoning w.r.t. unrestricted models, and requires spe-
cific methods. Finally, in Section 5.9, we discuss several extensions to Description
Logics that lead in general to undecidability of the basic reasoning tasks. This shows
that the expressive Description Logics considered in this chapter are close to the
limit of undecidability, and are carefully designed in order to retain decidability.

5.2 Correspondence between Description Logics and Propositional
Dynamic Logics

In this section, we focus on expressive Description Logics that, besides the standard
ALC constructs, include regular expression over roles and possibly inverse roles
[Baader, 1991; Schild, 1991]. It turns out that such Description Logics correspond
directly to Propositional Dynamic Logics, which are modal logics used to express
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properties of programs. We first introduce the syntax and semantics of the Descrip-
tion Logics we consider, then introduce Propositional Dynamic Logics, and finally
discuss the correspondence between the two formalisms.

5.2.1 Description Logics

Weconsider theDescriptionLogicALCIreg, inwhich concepts and roles are formed
according to the following syntax:

C,C ′ −→ A | ¬C | C � C ′ | C � C ′ | ∀R.C | ∃R.C
R, R′ −→ P | R � R′ | R ◦ R′ | R∗ | id(C) | R−

where A and P denote respectively atomic concepts and atomic roles, and C and
R denote respectively arbitrary concepts and roles.

In addition to the usual concept-forming constructs,ALCIreg provides constructs
to form regular expressions over roles. Such constructs include role union, role com-
position, reflexive-transitive closure, and role identity. Their meaning is straight-
forward, except for role identity id(C) which, given a concept C , allows one to
build a role which connects each instance of C to itself. As we shall see in the next
section, there is a tight correspondence between these constructs and the opera-
tors on programs in Propositional Dynamic Logics. The presence in the language
of the constructs for regular expressions is specified by the subscript “reg” in the
name.
ALCIreg also includes the inverse role construct, which allows one to denote the

inverse of a given relation. One can, for example, state with ∃child−.Doctor that
someone has a parent who is a doctor, by making use of the inverse of the role
child. It is worth noticing that, in a language without inverse of roles, in order to
express such a constraint one must use two distinct roles (e.g., child and parent)
that cannot be put in the proper relation to each other. We use the letter I in the
name to specify the presence of inverse roles in a Description Logic; by dropping
inverse roles from ALCIreg, we obtain the Description Logic ALCreg.

From the semantic point of view, given an interpretation I, concepts are in-
terpreted as subsets of the domain �I , and roles as binary relations over �I , as
follows:1

AI ⊆ �I

(¬C)I = �I \ CI
(C � C ′)I = CI ∩ C ′I

1 We use R∗ to denote the reflexive–transitive closure of the binary relation R, and R1 ◦R2 to denote the
chaining of the binary relationsR1 andR2.



5 Expressive Description Logics 181

(C � C ′)I = CI ∪ C ′I
(∀R.C)I = {o ∈ �I | ∀o′. (o, o′) ∈ RI ⊃ o′ ∈ CI}
(∃R.C)I = {o ∈ �I | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI}

PI ⊆ �I ×�I

(R � R′)I = RI ∪ R′I
(R ◦ R′)I = RI ◦ R′I

(R∗)I = (RI)∗

id(C)I = {(o, o) ∈ �I ×�I | o ∈ CI}
(R−)I = {(o, o′) ∈ �I ×�I | (o′, o) ∈ RI}.

We consider the most general form of TBoxes constituted by general inclusion
axioms of the form C 
 C ′, without any restriction on cycles. We use C ≡ C ′ as
an abbreviation for the pair of axioms C 
 C ′ and C ′ 
 C . We adopt the usual
descriptive semantics for TBoxes (see Chapter 2).

Example 5.1 The following ALCIreg TBox Tfile models a file system constituted
by file-system elements (FSelem), each of which is either a Directory or a File.
Each FSelem has a name, a Directory may have children while a File may not, and
Root is a special directory which has no parent. The parent relationship is modeled
through the inverse of the role child.

FSelem 
 ∃name.String

FSelem ≡ Directory � File

Directory 
 ¬File
Directory 
 ∀child.FSelem

File 
 ∀child.⊥
Root 
 Directory

Root 
 ∀child−.⊥.

The axioms in Tfile imply that in a model every object connected by a chain
of role child to an instance of Root is an instance of FSelem. Formally, Tfile |=
∃(child−)∗.Root 
 FSelem. To verify that the implication holds, suppose that there
exists a model in which an instance o of ∃(child−)∗.Root is not an instance of
FSelem. Then, reasoning by induction on the length of the chain from the instance
of Root to o, one can derive a contradiction. Observe that induction is required, and
hence such reasoning is not first-order.

In the following, when convenient, we assume, without loss of generality, that
� and ∀R.C are expressed by means of ¬, �, and ∃R.C . We also assume that the
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inverse operator is applied to atomic roles only. This can again be done without
loss of generality, since the following equivalences hold: (R1 ◦ R2)− = R−1 ◦ R−2 ,
(R1 � R2)− = R−1 � R−2 , (R∗)− = (R−)∗, and (id(C))− = id(C).

5.2.2 Propositional Dynamic Logics

Propositional Dynamic Logics (PDLs) are modal logics specifically developed for
reasoning about computer programs [Fischer and Ladner, 1979; Kozen and Tiuryn,
1990; Harel et al., 2000]. In this subsection, we provide a brief overview of PDLs,
and illustrate the correspondence between Description Logics and PDLs.

Syntactically, a PDL is constituted by expressions of two sorts: programs and
formulae. Programs and formulae are built by starting from atomic programs and
propositional letters, and applying suitable operators. We denote propositional let-
ters by A, arbitrary formulae by φ, atomic programs by P , and arbitrary pro-
grams by r , all possibly with subscripts. We focus on converse-pdl [Fischer and
Ladner, 1979] which, as it turns out, corresponds to ALCIreg. The abstract syntax
of converse-pdl is as follows:

φ, φ′ −→ � | ⊥ | A | φ ∧ φ′ | φ ∨ φ′ | ¬φ | 〈r〉φ | [r ]φ

r, r ′ −→ P | r ∪ r ′ | r ; r ′ | r∗ | φ? | r−.
The basic Propositional Dynamic Logic pdl [Fischer and Ladner, 1979] is obtained
from converse-pdl by dropping converse programs r−.

The semantics of PDLs is based on the notion of (Kripke) structure, defined
as a triple M = (S, {RP},�), where S denotes a non-empty set of states, {RP}
is a family of binary relations over S, each of which denotes the state transitions
caused by an atomic program P , and� is a mapping from S to propositional letters
such that �(s) determines the letters that are true in state s. The basic semantical
relation is “a formula φ holds at a state s of a structureM”, writtenM, s |= φ, and
is defined by induction on the formation of φ:

M, s |= A iff A ∈ �(s)
M, s |= � always
M, s |= ⊥ never
M, s |= φ ∧ φ′ iff M, s |= φ andM, s |= φ′

M, s |= φ ∨ φ′ iff M, s |= φ orM, s |= φ′

M, s |= ¬φ iff M, s �|= φ

M, s |= 〈r〉φ iff there is s ′ such that (s, s ′) ∈ Rr andM, s ′ |= φ

M, s |= [r ]φ iff for all s ′, (s, s ′) ∈ Rr impliesM, s ′ |= φ

where the family {RP} is systematically extended so as to include, for every program
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r , the corresponding relationRr defined by induction on the formation of r :

RP ⊆ S × S
Rr∪r ′ = Rr ∪Rr ′

Rr ;r ′ = Rr ◦Rr ′

Rr∗ = (Rr )∗

Rφ? = {(s, s) ∈ S × S |M, s |= φ}
Rr− = {(s1, s2) ∈ S × S | (s2, s1) ∈ Rr }.

If, for each atomic program P , the transition relationRP is required to be a function
that assigns to each state a unique successor state, then we are dealing with the
deterministic variants of PDLs, namely dpdl and converse-dpdl [Ben-Ari et al.,
1982; Vardi and Wolper, 1986].

It is important to understand, given a formula φ, which are the formulae that
play some role in establishing the truth-value of φ. In simpler modal logics, these
formulae are simply all the subformulae of φ, but due to the presence of reflexive–
transitive closure this is not the case for PDLs. Such a set of formulae is given by
the Fischer–Ladner closure of φ [Fischer and Ladner, 1979].

To be concrete we now illustrate the Fischer–Ladner closure for converse-pdl.
However, the notion of Fischer–Ladner closure can be easily extended to other
PDLs. Let us assume, without loss of generality, that ∨ and [·] are expressed by
means of ¬, ∧, and 〈·〉. We also assume that the converse operator is applied to
atomic programs only. This can again be done without loss of generality, since the
following equivalences hold: (r ∪ r ′)− = r− ∪ r ′−, (r ; r ′)− = r ′−; r−, (r∗)− =
(r−)∗, and (φ?)− = φ?.

The Fischer–Ladner closure of a converse-pdl formula ψ , denoted CL(ψ), is
the least set F such that ψ ∈ F and such that:

if φ ∈ F then ¬φ ∈ F (if φ is not of the form ¬φ′)
if ¬φ ∈ F then φ ∈ F
if φ ∧ φ′ ∈ F then φ, φ′ ∈ F
if 〈r〉φ ∈ F then φ ∈ F
if 〈r ∪ r ′〉φ ∈ F then 〈r〉φ, 〈r ′〉φ ∈ F
if 〈r ; r ′〉φ ∈ F then 〈r〉〈r ′〉φ ∈ F
if 〈r∗〉φ ∈ F then 〈r〉〈r∗〉φ ∈ F
if 〈φ′?〉φ ∈ F then φ′ ∈ F.

Note that CL(ψ) includes all the subformulae of ψ , but also formulae of the
form 〈r〉〈r∗〉φ derived from 〈r∗〉φ, which are in fact bigger than the formula
they derive from. On the other hand, both the number and the size of the for-
mulae in CL(ψ) are linearly bounded by the size of ψ [Fischer and Ladner, 1979],
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exactly like the set of subformulae. Note also that, by definition, if φ ∈ CL(ψ),
then CL(φ) ⊆ CL(ψ).

A structureM = (S, {RP},�) is called a model of a formula φ if there exists a
state s ∈ S such thatM, s |= φ. A formula φ is satisfiable if there exists a model
of φ, otherwise the formula is unsatisfiable. A formula φ is valid in a structure
M if for all s ∈ S,M, s |= φ. Formulae that are used to select the interpretations
of interest are called axioms. Formally, a structure M is a model of an axiom φ,
if φ is valid in M. A structure M is a model of a finite set of axioms � if M
is a model of all axioms in �. An axiom is satisfiable if it has a model, and a
finite set of axioms is satisfiable if it has a model. We say that a finite set � of
axioms logically implies a formula φ, written � |= φ, if φ is valid in every model
of �.

It is easy to see that satisfiability of a formula φ as well as satisfiability of a finite
set of axioms � can be reformulated by means of logical implication, as ∅ �|= ¬φ
and � �|= ⊥ respectively.

Interestingly, logical implication can, in turn, be reformulated in terms of satis-
fiability, by making use of the following theorem (see [Kozen and Tiuryn, 1990]).

Theorem 5.2 (Internalization of axioms) Let � be a finite set of converse-pdl
axioms, and φ a converse-pdl formula. Then � |= φ if and only if the formula

¬φ ∧ [(P1 ∪ · · · ∪ Pm ∪ P−1 ∪ · · · ∪ P−m )∗]�′

is unsatisfiable, where P1, . . . , Pm are all atomic programs occurring in � ∪ {φ}
and �′ is the conjunction of all axioms in �.

Such a result exploits the power of program constructs (union, reflexive–transitive
closure) and the connected model property (i.e., if a formula has a model, it has
a model which is connected) of PDLs in order to represent axioms. The con-
nected model property is typical of modal logics and it is enjoyed by all PDLs.
As a consequence, a result analogous to Theorem 5.2 holds for virtually all
PDLs.

Reasoning in PDLs has been thoroughly studied from the computational point of
view, and the results for the PDLs considered here are summarized in the following
theorem [Fischer and Ladner, 1979; Pratt, 1979; Ben-Ari et al., 1982; Vardi and
Wolper, 1986]:

Theorem 5.3 Satisfiability in pdl is ExpTime-hard. Satisfiability in pdl, in
converse-pdl, and in converse-dpdl can be decided in deterministic exponential
time.
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5.2.3 The correspondence

The correspondence between Description Logics and PDLs was first published by
Schild [1991].2 In the work by Schild, it was shown thatALCIreg can be considered
a notational variant of converse-pdl. This observation allowed the results on
converse-pdl to be exploited for instantly closing long-standing issues regarding
the decidability and complexity of both satisfiability and logical implication in
ALCreg andALCIreg.3 The paper was very influential for the research in expressive
Description Logics in the following decade, since thanks to the correspondence
between PDLs andDescription Logics, first results but especially formal techniques
and insights could be shared by the two communities. The correspondence between
PDLs andDescription Logics has been extensively used to study reasoningmethods
for expressive Description Logics. It has also led to a number of interesting exten-
sions of PDLs in terms of those constructs that are typical of Description Logics and
have never been considered in PDLs. In particular, there is a tight relation between
qualified number restrictions and graded modalities in modal logics [Van der Hoek,
1992; Van der Hoek and de Rijke, 1995; Fattorosi-Barnaba and De Caro, 1985;
Fine, 1972].

The correspondence is based on the similarity between the interpretation struc-
tures of the two logics: at the extensional level, individuals (members of �I) in
Description Logics correspond to states in PDLs, and links between two individ-
uals correspond to state transitions. At the intensional level, concepts correspond
to propositions, and roles correspond to programs. Formally, the correspondence
is realized through a one-to-one and onto mapping τ from ALCIreg concepts to
converse-pdl formulae, and from ALCIreg roles to converse-pdl programs. The
mapping τ is defined inductively as follows:

τ (A) = A τ (P) = P
τ (¬C) = ¬τ (C) τ (R−) = τ (R)−

τ (C � C ′) = τ (C) ∧ τ (C ′) τ (R � R′) = τ (R) ∪ τ (R′)
τ (C � C ′) = τ (C) ∨ τ (C ′) τ (R ◦ R′) = τ (R); τ (R′)
τ (∀R.C) = [τ (R)]τ (C) τ (R∗) = τ (R)∗

τ (∃R.C) = 〈τ (R)〉τ (C) τ (id(C)) = τ (C)?

Axioms in TBoxes of Description Logics correspond in the obvious way to axioms
in PDLs. Moreover all forms of reasoning (satisfiability, logical implication, etc.)
have their natural counterpart.

2 In fact, the correspondence was first noticed by Levesque and Rosenschein at the beginning of the 1980s, but
never published. In those days Levesque just used it in seminars to show the intractability of certain Description
Logics.

3 In fact, the decidability ofALCreg without the id(C) construct was independently established by Baader [1991].
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One of the most important contributions of the correspondence is obtained by
rephrasing Theorem 5.2 in terms of Description Logics. It says that every TBox
can be “internalized” into a single concept, i.e., it is possible to build a concept that
expresses all the axioms of the TBox. In doing so we rely on the ability to build a
“universal” role, i.e., a role linking all individuals in a (connected) model. Indeed,
a universal role can be expressed by using regular expressions over roles, and in
particular the union of roles and the reflexive–transitive closure. The possibility of
internalizing the TBox when dealing with expressive Description Logics tells us
that for such Description Logics reasoning with TBoxes, i.e., logical implication,
is no harder than reasoning with a single concept.

Theorem 5.4 Concept satisfiability and logical implication in ALCreg are
ExpTime-hard. Concept satisfiability and logical implication in ALCreg and
ALCIreg can be decided in deterministic exponential time.

Observe that for Description Logics that do not allow the expression of a uni-
versal role, there is a sharp difference between reasoning techniques used in the
presence of TBoxes, and techniques used to reason on concept expressions. The
profound difference is reflected by the computational properties of the associated
decision problems. For example, the logicAL admits simple structural algorithms
for deciding reasoning tasks not involving axioms, and these algorithms are sound
and complete and work in polynomial time. However, if general inclusion axioms
are considered, then reasoning becomesExpTime-complete (see Chapter 3), and the
decisionprocedures that havebeendeveloped include suitable termination strategies
[Buchheit et al., 1993a]. Similarly, for the more expressive logic ALC, reasoning
tasks not involving a TBox are PSpace-complete [Schmidt-Schauß and Smolka,
1991], while those that do involve one are ExpTime-complete.

5.3 Functional restrictions

We have seen that the logics ALCreg and ALCIreg correspond to standard pdl and
converse-pdl respectively, which are both well-studied. In this section we show
how the correspondence can also be used to deal with constructs that are typical of
Description Logics, namely functional restrictions, by exploiting techniques devel-
oped for reasoning in PDLs. In particular, wewill adopt automata-based techniques,
which have been very successful in studying reasoning for expressive variants of
PDL and characterizing their complexity.
Functional restrictions are the simplest form of number restrictions considered

in Description Logics, and allow one to specify local functionality of roles, i.e., that
instances of certain concepts have unique role fillers for a given role. By adding
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functional restrictions on atomic roles and their inverse to ALCIreg, we obtain the
Description LogicALCFIreg. The PDL corresponding toALCFIreg is a PDL that
extends converse-dpdl [Vardi and Wolper, 1986] with determinism of both atomic
programs and their inverse, and such that determinism is no longer a global property,
but one that can be imposed locally.

Formally,ALCFIreg is obtained fromALCIreg by adding functional restrictions
of the form � 1 Q, where Q is a basic role, i.e., either an atomic role or the inverse
of an atomic role. Such a functional restriction is interpreted as follows:

(� 1 Q)I = {o ∈ �I | |{o′ ∈ �I | (o, o′) ∈ QI}| ≤ 1}.
We show that reasoning in ALCFIreg is in ExpTime, and, since reasoning in

ALCreg is alreadyExpTime-hard, is in factExpTime-complete.Without loss of gen-
erality we concentrate on concept satisfiability. We exploit the fact thatALCFIreg
has the treemodel property,which states that if anALCFIreg conceptC is satisfiable
then it is satisfied in an interpretation which has the structure of a (possibly infinite)
tree with bounded branching degree (see later). This allows us to make use of tech-
niques based on automata on infinite trees. In particular, we make use of two-way
alternating automata on infinite trees (2ATAs) introduced by Vardi [1998]. 2ATAs
were used by Vardi [1998] to derive a decision procedure for modal µ-calculus
with backward modalities. We first introduce 2ATAs and then show how they can
be used to reason in ALCFIreg.

5.3.1 Automata on infinite trees

Infinite trees are represented as prefix-closed (infinite) sets of words over N (the set
of positive natural numbers). Formally, an infinite tree is a set of words T ⊆ N∗,
such that if x ·c ∈ T , where x ∈ N∗ and c ∈ N, then also x ∈ T . The elements of
T are called nodes, the empty word ε is the root of T , and for every x ∈ T , the
nodes x ·c, with c ∈ N, are the successors of x . By convention we take x ·0 = x ,
and x ·i ·−1 = x . The branching degree d(x) of a node x denotes the number of
successors of x . If the branching degree of all nodes of a tree is bounded by k, we
say that the tree has branching degree k. An infinite path P of T is a prefix-closed
set P ⊆ T such that for every i ≥ 0 there exists a unique node x ∈ P with |x | = i .
A labeled tree over an alphabet
 is a pair (T, V ), where T is a tree and V : T → 


maps each node of T to an element of 
.
Alternating automata on infinite trees are a generalization of nondeterministic

automata on infinite trees, introduced by Muller and Schupp [1987]. They allow an
elegant reduction of decision problems for temporal and program logics [Emerson
and Jutla, 1991; Bernholtz et al., 1994]. Let B(I ) be the set of positive Boolean
formulae over I , built inductively by applying ∧ and ∨ starting from true, false,
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and elements of I . For a set J ⊆ I and a formula ϕ ∈ B(I ), we say that J satisfies
ϕ if and only if assigning true to the elements in J and false to those in I \J makes
ϕ true. For a positive integer k, let [k] = {−1, 0, 1, . . . , k}. A two-way alter-
nating automaton over infinite trees with branching degree k is a tuple A =
〈
, Q, δ, q0, F〉, where 
 is the input alphabet, Q is a finite set of states, δ : Q×

 → B([k]× Q) is the transition function, q0 ∈ Q is the initial state, and F spec-
ifies the acceptance condition.

The transition functionmaps a state q ∈ Q and an input letter σ ∈ 
 to a positive
Boolean formula over [k]× Q. Intuitively, if δ(q, σ ) = ϕ, then each pair (c, q ′) ap-
pearing in ϕ corresponds to a new copy of the automaton going to the direction
suggested by c and starting in state q ′. For example, if k = 2 and δ(q1, σ ) =
((1, q2) ∧ (1, q3)) ∨ ((−1, q1) ∧ (0, q3)), when the automaton is in the state q1 and
is reading the node x labeled by the letter σ , it proceeds either by sending off two
copies, in the states q2 and q3 respectively, to the first successor of x (i.e., x ·1), or
by sending off one copy in the state q1 to the predecessor of x (i.e., x ·−1) and one
copy in the state q3 to x itself (i.e., x ·0).

A run of a 2ATA A over a labeled tree (T, V ) is a labeled tree (Tr , r ) in which
every node is labeled by an element of T × Q. A node in Tr labeled by (x, q)
describes a copy of A that is in the state q and reads the node x of T . The labels of
adjacent nodes have to satisfy the transition function of A. Formally, a run (Tr , r )
is a T × Q-labeled tree satisfying:

(i) ε ∈ Tr and r (ε) = (ε, q0).
(ii) Let y ∈ Tr , with r (y) = (x, q) and δ(q, V (x)) = ϕ. Then there is a (possibly empty)

set S = {(c1, q1), . . . , (cn, qn)} ⊆ [k]× Q such that:
• S satisfies ϕ and
• for all 1 ≤ i ≤ n, we have that y·i ∈ Tr , x ·ci is defined, and r (y·i) = (x ·ci , qi ).

A run (Tr , r ) is accepting if all its infinite paths satisfy the acceptance condition.4

Given an infinite path P ⊆ Tr , let inf (P) ⊆ Q be the set of states that appear
infinitely often in P (as second components of node labels). We consider here
Büchi acceptance conditions. A Büchi condition over a state set Q is a subset F of
Q, and an infinite path P satisfies F if inf (P) ∩ F �= ∅.

The non-emptiness problem for 2ATAs consists in determining, whether a given
2ATA accepts a nonempty set of trees. The results by Vardi [1998] provide the
following complexity characterization of non-emptiness of 2ATAs.

Theorem 5.5 ([Vardi, 1998]) Given a 2ATAA with n states and an input alphabet
with m elements, deciding non-emptiness of A can be done in time exponential in
n and polynomial in m.

4 No condition is imposed on the finite paths of the run.
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5.3.2 Reasoning in ALCFIreg
The (Fischer–Ladner) closure for ALCFIreg extends immediately the analogous
notion for converse-pdl (see Subsection 5.2.2), treating functional restrictions as
atomic concepts. In particular, the closure CL(C0) of an ALCFIreg concept C0

is defined as the smallest set of concepts such that C0 ∈ CL(C0) and such that
(assuming � and ∀ to be expressed by means of � and ∃, and the inverse operator
applied only to atomic roles):5

if C ∈ CL(C0) then ¬C ∈ CL(C0) (if C is not of the form ¬C ′)
if ¬C ∈ CL(C0) then C ∈ CL(C0)
if C � C ′ ∈ CL(C0) then C, C ′ ∈ CL(C0)
if ∃R.C ∈ CL(C0) then C ∈ CL(C0)
if ∃(R � R′).C ∈ CL(C0) then ∃R.C, ∃R′.C ∈ CL(C0)
if ∃(R ◦ R′).C ∈ CL(C0) then ∃R.∃R′.C ∈ CL(C0)
if ∃R∗.C ∈ CL(C0) then ∃R.∃R∗.C ∈ CL(C0)
if ∃id(C).C ′ ∈ CL(C0) then C ∈ CL(C0).

The cardinality of CL(C0) is linear in the length of C0.
It can be shown, following the lines of the proof in [Vardi and Wolper, 1986] for

converse-dpdl, thatALCFIreg enjoys the treemodel property, i.e., every satisfiable
concept has amodel that has the structure of a (possibly infinite) tree with branching
degree linearly bounded by the size of the concept. More precisely, we have the
following result.

Theorem 5.6 Every satisfiable ALCFIreg concept C0 has a tree model with
branching degree kC0 equal to twice the number of elements of CL(C0).

This property allows us to check satisfiability of an ALCFIreg concept C0 by
building a 2ATA that accepts the (labeled) trees that correspond to tree models of
C0. LetA be the set of atomic concepts appearing inC0, andB = {Q1, . . . , Qn} the
set of atomic roles appearing inC0 and their inverses.We construct fromC0 a 2ATA
AC0 that checks thatC0 is satisfied at the root of the input tree. We represent in each
node of the tree the information about which atomic concepts are true in the node,
and about the basic role that connects the predecessor of the node to the node itself
(except for the root). More precisely, we label each node with a pair σ = (α, q),
where α is the set of atomic concepts that are true in the node, and q = Q if the
node is reached from its predecessor through the basic role Q. That is, if Q stands
for an atomic role P , then the node is reached from its predecessor through P ,
and if Q stands for P−, then the predecessor is reached from the node through P .
In the root, q = Pdum, where Pdum is a new symbol representing a dummy role.

5 We recall that C and C ′ stand for arbitrary concepts, and R and R′ stand for arbitrary roles.
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Given an ALCFIreg concept C0, we construct an automaton AC0 that accepts
trees that correspond to tree models of C0. For technical reasons, it is convenient
to consider concepts in negation normal form (i.e., negations are pushed inside as
much as possible). It is easy to check that the transformation of a concept into
negation normal form can be performed in linear time in the size of the concept.
Below, we denote by nnf(C) the negation normal form of C , and by CLnnf(C0)
the set {nnf(C) | C ∈ CL(C0)}. The automaton AC0 = (
, S, δ, sini, F) is defined
as follows.

� The alphabet is 
 = 2A × (B ∪ {Pdum}), i.e., the set of pairs whose first component is a
set of atomic concepts, and whose second component is a basic role or the dummy role
Pdum. This corresponds to labeling each node of the tree with a truth assignment to the
atomic concepts, and with the role used to reach the node from its predecessor.

� The set of states is S = {sini} ∪ CLnnf(C0) ∪ {Q,¬Q | Q ∈ B}, where sini is the initial
state, CLnnf(C0) is the set of concepts (in negation normal form) in the closure of C0, and
{Q,¬Q | Q ∈ B} are states used to check whether a basic role labels a node. Intuitively,
when the automaton in a state C ∈ CLnnf(C0) visits a node x of the tree, this means that
the automaton has to check that C holds in x .

� The transition function δ is defined as follows.
1. For each α ∈ 2A, there is a transition from the initial state

δ(sini, (α, Pdum)) = (0, nnf(C0)).

Such a transition checks that the root of the tree is labeled with the dummy role Pdum,
and moves to the state that verifies C0 in the root itself.

2. For each (α, q) ∈ 
 and each atomic concept A ∈ A, there are transitions

δ(A, (α, q)) =
{
true, if A ∈ α

false, if A �∈ α

δ(¬A, (α, q)) =
{
true, if A �∈ α

false, if A ∈ α.

Such transitions check the truth value of atomic concepts and their negations in the
current node of the tree.

3. For each (α, q) ∈ 
 and each basic role Q ∈ B, there are transitions

δ(Q, (α, q)) =
{
true, if q = Q
false, if q �= Q

δ(¬Q, (α, q)) =
{
true, if q �= Q
false, if q = Q.

Such transitions check through which role the current node is reached.
4. For the concepts in CLnnf(C0) and each σ ∈ 
, there are transitions

δ(C � C ′, σ ) = (0,C) ∧ (0,C ′)
δ(C � C ′, σ ) = (0,C) ∨ (0,C ′)
δ(∀Q.C, σ ) = ((0,¬Q−) ∨ (−1,C)) ∧ ∧

1≤i≤kC0
((i,¬Q) ∨ (i,C))
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δ(∀(R � R′).C, σ ) = (0,∀R.C) ∧ (0,∀R′.C)

δ(∀(R ◦ R′).C, σ ) = (0,∀R.∀R′.C)

δ(∀R∗.C, σ ) = (0,C) ∧ (0,∀R.∀R∗.C)

δ(∀id(C).C ′, σ ) = (0, nnf(¬C)) ∨ (0,C ′)
δ(∃Q.C, σ ) = ((0, Q−) ∧ (−1,C)) ∨ ∨

1≤i≤kC0
((i, Q) ∧ (i,C))

δ(∃(R � R′).C, σ ) = (0, ∃R.C) ∨ (0, ∃R′.C)

δ(∃(R ◦ R′).C, σ ) = (0, ∃R.∃R′.C)

δ(∃R∗.C, σ ) = (0,C) ∨ (0, ∃R.∃R∗.C)

δ(∃id(C).C ′, σ ) = (0,C) ∧ (0,C ′).

All such transitions, except for those involving ∀R∗.C and ∃R∗.C , inductively decom-
pose concepts and roles, and move to appropriate states of the automaton and nodes
of the tree. The transitions involving ∀R∗.C treat ∀R∗.C as the equivalent concept
C � ∀R.∀R∗.C , and the transitions involving ∃R∗.C treat ∃R∗.C as the equivalent
concept C � ∃R.∃R∗.C .

5. For each concept of the form � 1 Q in CLnnf(C) and each σ ∈ 
, there is a transition

δ(� 1 Q, σ ) = ((0, Q−) ∧ ∧
1≤i≤kC0

(i,¬Q)) ∨
((0,¬Q−) ∧ ∧

1≤i< j≤kC0
((i,¬Q) ∨ ( j,¬Q))).

Such transitions check that, for a node x labeled with � 1 Q, there exists at most one
node (among the predecessor and the successors of x) reachable from x through Q.

6. For each concept of the form¬� 1 Q in CLnnf(C) and each σ ∈ 
, there is a transition

δ(¬� 1 Q, σ ) = ((0, Q−) ∧ ∨
1≤i≤kC0

(i, Q)) ∨
∨

1≤i< j≤kC0
((i, Q) ∧ ( j, Q)).

Such transitions check that, for a node x labeled with ¬� 1 Q, there exist at least two
nodes (among the predecessor and the successors of x) reachable from x through Q.

� The set F of final states is the set of concepts in CLnnf(C0) of the form ∀R∗.C . Observe
that concepts of the form ∃R∗.C are not final states, and this is sufficient to guarantee that
such concepts are satisfied in all accepting runs of the automaton.

A run of the automaton AC0 on an infinite tree starts in the root, checking that
C0 holds there (item 1 above). It does so by inductively decomposing nnf(C0)
while appropriately navigating the tree (items 3 and 4) until it arrives at atomic
concepts, functional restrictions, and their negations. These are checked locally
(items 2, 5, and 6). Concepts of the form ∀R∗.C and ∃R∗.C are propagated using
the equivalent concepts C � ∀R.∀R∗.C and C � ∃R.∃R∗.C , respectively. It is only
the propagation of such concepts that may generate infinite branches in a run. Now,
a run of the automaton may contain an infinite branch in which ∃R∗.C is always
resolved by choosing the disjunct ∃R.∃R∗.C , without ever choosing the disjunct
C . This infinite branch in the run corresponds to an infinite path in the tree where
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R is iterated forever and in which C is never fulfilled. However, the semantics of
∃R∗.C requires thatC is fulfilled after a finite number of iterations of R. Hence such
an infinite path cannot be used to satisfy ∃R∗.C . The acceptance condition of the
automaton, which requires that each infinite branch in a run contains a state of the
form ∀R∗.C , rules out such infinite branches in accepting runs. Indeed, a run always
deferring the fulfillment of C will contain an infinite branch where all states have
the form ∃R1. · · · ∃Rn.∃R∗.C , with n ≥ 0 and R1 ◦ · · · ◦ Rn a postfix of R. Observe
that the only remaining infinite branches in a run are those that arise by propagating
concepts of the form ∀R∗.C indefinitely often. The acceptance condition allows for
such branches.

Given a labeled tree T = (T, V ) accepted by AC0 , we define an interpreta-
tion IT = (�I, ·I) as follows. First, we define for each atomic role P , a re-
lation RP as follows: RP = { (x, xi) | xi ∈ T and V (xi) = (α, P) for some α ∈
2A } ∪ { (xi, x) | xi ∈ T and V (xi) = (α, P−) for some α ∈ 2A }. Then, using such
relations, we define:

� �I = { x | (ε, x) ∈ (
⋃

P (RP ∪R−P ))∗ };
� AI = �I ∩ { x | V (x) = (α, q) and A ∈ α, for some α ∈ 2A and q ∈ B ∪ {Pdum} }, for
each atomic concept A;

� PI = (�I ×�I ) ∩RP , for each atomic role P .

Lemma 5.7 If a labeled tree T is accepted by AC0 , then IT is a model of C0.

Conversely, given a tree model I of C0 with branching degree kC0 , we can obtain
a labeled tree TI = (T, V ) (with branching degree kC0 ) as follows:

� T = �I ;
� V (ε) = (α, Pdum), where α = {A | ε ∈ AI};
� V (xi) = (α, Q), where α = {A | xi ∈ AI} and (x, xi) ∈ QI .

Lemma 5.8 If I is a tree model of C0 with branching degree kC0 , then TI is a
labeled tree accepted by AC0 .

From the lemmas above and the tree model property of ALCFIreg (Theorem
5.6), we get the following result.

Theorem 5.9 An ALCFIreg concept C0 is satisfiable if and only if the set of trees
accepted by AC0 is not empty.

From this theorem, it follows that we can use algorithms for non-emptiness
of 2ATAs to check satisfiability in ALCFIreg. It turns out that such a decision
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procedure is indeed optimal w.r.t. the computational complexity. The 2ATA AC0

has a number of states that is linear in the size of C0, while the alphabet is ex-
ponential in the number of atomic concepts occurring in C0. By Theorem 5.5 we
get an upper bound for reasoning in ALCFIreg that matches the ExpTime lower
bound.

Theorem5.10 Concept satisfiability (and hence logical implication) inALCFIreg
is ExpTime-complete.

Functional restrictions, in the context of expressive Description Logics that in-
clude inverse roles and TBox axioms, were originally studied in [De Giacomo
and Lenzerini, 1994a; De Giacomo, 1995] using the so called axiom schema in-
stantiation technique. The technique is based on the idea of devising an axiom
schema corresponding to the property of interest (e.g., functional restrictions) and
instantiating such a schema to a finite (polynomial) number of concepts. A nice
illustration of this technique is the reduction of converse-pdl to pdl in [De Gi-
acomo, 1996]. Axiom schema instantiation can be used to show that reasoning
w.r.t. TBoxes is ExpTime-complete in significant subcases of ALCFIreg (such as
reasoning w.r.t. ALCFI TBoxes [Calvanese et al., 2001b]). However, it is still
open whether it can be applied to show ExpTime-completeness of ALCFIreg.
The attempt in this direction presented in [De Giacomo and Lenzerini, 1994a;
De Giacomo, 1995] turned out to be incomplete [Zakharyaschev, 2000].

5.4 Qualified number restrictions

Next we deal with qualified number restrictions, which are the most general form
of number restrictions, and allow one to specify arbitrary cardinality constraints on
roles with role fillers belonging to a certain concept. In particular we will consider
qualified number restrictions on basic roles, i.e., atomic roles and their inverse. By
adding such constructs to ALCIreg we obtain the Description Logic ALCQIreg.
The PDL corresponding toALCQIreg is an extension of converse-pdlwith “graded
modalities” [Fattorosi-Barnaba and De Caro, 1985; Van der Hoek and de Rijke,
1995; Tobies, 1999c] on atomic programs and their converse.

Formally, ALCQIreg is obtained from ALCIreg by adding qualified number
restrictions of the form � n Q.C and � n Q.C , where n is a nonnegative integer,
Q is a basic role, and C is an ALCQIreg concept. Such constructs are interpreted
as follows:

(� n Q.C)I = {o ∈ �I | |{o′ ∈ �I | (o, o′) ∈ QI ∧ o′ ∈ CI}| ≤ n}
(� n Q.C)I = {o ∈ �I | |{o′ ∈ �I | (o, o′) ∈ QI ∧ o′ ∈ CI}| ≥ n}.
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Reasoning in ALCQIreg is still ExpTime-complete under the standard assump-
tion in Description Logics, that numbers in number restrictions are represented
in unary.6 This could be shown by extending the automata-theoretic techniques
introduced in Section 5.3 to deal also with qualified number restrictions. Here
we take a different approach and study reasoning in ALCQIreg by exhibiting
a reduction from ALCQIreg to ALCFIreg [De Giacomo and Lenzerini, 1995;
De Giacomo, 1995]. Since the reduction is polynomial, we get as a result Exp-
Time-completeness of ALCQIreg. The reduction is based on the notion of reifi-
cation. Such a notion plays a major role in dealing with Boolean combinations of
(atomic) roles [De Giacomo and Lenzerini, 1995; 1994c], as well as in extending
expressive Description Logics with relations of arbitrary arity (see Section 5.7).

5.4.1 Reification of roles

Atomic roles are interpreted as binary relations. Reifying a binary relation means
creating for each pair of individuals (o1, o2) in the relation an individual which is
connected by means of two special roles V1 and V2 to o1 and o2, respectively. The
set of such individuals represents the set of pairs forming the relation. However,
the following problem arises: in general, there may be two or more individuals all
connected bymeans of V1 and V2 to o1 and o2 respectively, and thus all representing
the same pair (o1, o2). Obviously, in order to have a correct representation of a
relation, such a situation must be avoided.

Given an atomic role P , we define its reified form to be the role

V−1 ◦ id(AP ) ◦ V2

where AP is a new atomic concept denoting individuals representing the tuples
of the relation associated with P , and V1 and V2 denote two functional roles that
connect each individual in AP respectively to the first and the second component
of the tuple represented by the individual. Observe that there is a clear symmetry
between the role V−1 ◦ id(AP ) ◦ V2 and its inverse V−2 ◦ id(AP ) ◦ V1.

Definition 5.11 Let C be an ALCQIreg concept. The reified counterpart ξ1(C) of
C is the conjunction of two concepts, ξ1(C) = ξ0(C) ��1, where:

� ξ0(C) is obtained from the original concept C by (i) replacing every atomic role P by
the complex role V−1 ◦ id(AP ) ◦ V2, where V1 and V2 are new atomic roles (the only
ones present after the transformation) and AP is a new atomic concept; (ii) and then

6 In [Tobies, 2001a] techniques for dealing with qualified number restrictions with numbers coded in binary are
presented, and are used to show that even under this assumption reasoning overALCQI knowledge bases can
be done in ExpTime.
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re-expressing every qualified number restriction

� n (V−1 ◦ id(AP ) ◦ V2).D as � n V−1 .(AP � ∃V2.D)
� n (V−1 ◦ id(AP ) ◦ V2).D as � n V−1 .(AP � ∃V2.D)
� n (V−2 ◦ id(AP ) ◦ V1).D as � n V−2 .(AP � ∃V1.D)
� n (V−2 ◦ id(AP ) ◦ V1).D as � n V−2 .(AP � ∃V1.D)

� �1 = ∀(V1 � V2 � V−1 � V−2 )∗.(� 1 V1 �� 1 V2).

The next theorem guarantees that, without loss of generality, we can restrict
our attention to models of ξ1(C) that correctly represent relations associated with
atomic roles, i.e., models in which each tuple of such relations is represented by a
single individual.

Theorem 5.12 If the concept ξ1(C) has a model I then it has a model I ′ such that
for each (o, o′) ∈ (V−1 ◦ id(APi ) ◦ V2)I

′
there is exactly one individual ooo′ such

that (ooo′, o) ∈ V I ′1 and (ooo′, o′) ∈ V I ′2 . That is, for all o1, o2, o, o
′ ∈ �I ′ such that

o1 �= o2 and o �= o′, the following condition holds:

o1, o2 ∈ AI ′Pi ⊃ ¬((o1, o)∈ V I ′1 ∧ (o2, o)∈ V I ′1 ∧ (o1, o
′)∈ V I ′2 ∧ (o2, o

′)∈ V I ′2 ).

The proof of Theorem 5.12 exploits the disjoint union model property: let C be an
ALCQIreg concept and I = (�I, ·I) and J = (�J , ·J ) be two models of C , then
also the interpretation I / J = (�I /�J , ·I / ·J ), which is the disjoint union of
I and J , is a model of C . We remark that most Description Logics have such a
property, which is, in fact, typical of modal logics. Without going into details, we
just mention that the model I ′ is constructed from I as the disjoint union of several
copies of I, in which the extension of role V2 is modified by exchanging, in those
instances that cause a wrong representation of a role, the second component with a
corresponding individual in one of the copies of I.

By using Theorem 5.12 we can prove the result below.

Theorem 5.13 An ALCQIreg concept C is satisfiable if and only if its reified
counterpart ξ1(C) is satisfiable.

5.4.2 Reducing ALCQIreg to ALCFIreg
By Theorem 5.13, we can concentrate on the reified counterparts of ALCQIreg
concepts. Note that these are themselves ALCQIreg concepts, but their special
form allows us to convert them into ALCFIreg concepts. Intuitively, we represent
the role V−i , i = 1, 2 (recall that Vi is functional while V−i is not), by the role
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FVi ◦ F ′Vi ∗, where FVi and F
′
Vi

are new functional roles.7 The main point of such a
transformation is that it is easy to express qualifiednumber restrictions as constraints
on the chain of (FVi ◦ F ′Vi ∗)-successors of an individual. Formally, we define the
ALCFIreg-counterpart of an ALCQIreg concept as follows.

Definition 5.14 Let C be an ALCQIreg concept and ξ1(C) = ξ0(C) ��1 its rei-
fied counterpart. The ALCFIreg-counterpart ξ2(C) of C is the conjunction of two
concepts, ξ2(C) = ξ ′0(C) ∧�2, where:

� ξ ′0(C) is obtained from ξ0(C) by simultaneously replacing:8

– every occurrence of role Vi in constructs different from qualified number restrictions
by (FVi ◦ F ′Vi ∗)−, where FVi and F

′
Vi

are new atomic roles;
– every � n V−i .D by ∀(FVi ◦ F ′Vi ∗ ◦ (id(D) ◦ F ′Vi+)n).¬D;
– every � n V−i .D by ∃(FVi ◦ F ′Vi ∗ ◦ (id(D) ◦ F ′Vi+)n−1).D.

� �2 = ∀(
⊔

i=1,2(FVi � F ′Vi � F−Vi � F ′Vi−))∗.(θ1 � θ2), with θi of the form:

� 1 FVi �� 1 F ′Vi �� 1 F−Vi �� 1 F ′Vi
− � ¬(∃F−Vi .� � ∃F ′Vi−.�).

Observe that �2 constrains each model I of ξ2(C) so that the relations FIVi , F
′
Vi
I ,

(F−Vi )
I , and (F ′Vi

−)I are partial functions, and each individual cannot be linked
to other individuals by both (F−Vi )

I and (F ′Vi
−)I . As a consequence, we get that

((FVi ◦ F ′Vi ∗)−)I is a partial function. This allows us to reconstruct the extension of
Vi , as required.

We illustrate the basic relationships between a model of an ALCQIreg concept
and the models of its reified counterpart and ALCFIreg-counterpart by means of
an example.

Example 5.15 Consider the concept

C0 = ∃P.(= 2 P−.(= 2 P.�))

and consider the model I of C0 depicted in Figure 5.1, in which a ∈ CI0 . Such a
model corresponds to a model I ′ of the reified counterpart ξ1(C0) of C0, shown
in Figure 5.2. The model I ′ of ξ1(C0) in turn corresponds to a model I ′′ of the
ALCFIreg-counterpart ξ2(C0) of C0, shown in Figure 5.3. Notice that from I ′′ we
can easily reconstruct I ′, and from I ′ the model I of the original concept.

It can be shown that ξ1(C) is satisfiable if and only if ξ2(C) is satisfiable. Since, as
it is easy to see, the size of ξ2(C) is polynomial in the size ofC , we get the following
characterization of the computational complexity of reasoning in ALCQIreg.
7 The idea of expressing nonfunctional roles by means of chains of functional roles is due to Parikh [1981], who

used it to reduce standard pdl to dpdl.
8 Here R+ stands for R ◦ R∗ and Rn stands for R ◦ · · · ◦ R (n times).
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a b

P P PP

c d e

Fig. 5.1. A model of the ALCQIreg concept C0 = ∃P.(= 2 P−.(= 2 P.�)).

a b

V2V2 V2 V2

c d e

AP

1

AP APAP

3

V1 V1 V1 V1

2 4

Fig. 5.2. A model of the reified counterpart ξ1(C0) of C0.

Theorem5.16 Concept satisfiability (and hence logical implication) inALCQIreg
is ExpTime-complete.

5.5 Objects

In this section, we review results involving knowledge about individuals expressed
in terms of membership assertions. Given an alphabetO of symbols for individuals,
a (membership) assertion has one of the following forms:

C(a) P(a1, a2)

whereC is a concept, P is an atomic role, anda,a1,a2 belong toO. An interpretation
I is extended so as to assign to eacha ∈ O an elementaI ∈ �I in such away that the
unique name assumption is satisfied, i.e., different elements are assigned to different
symbols inO.I satisfiesC(a) if aI ∈ CI , andI satisfies P(a1, a2) if (aI1 , a

I
2 ) ∈ PI .

An ABoxA is a finite set of membership assertions, and an interpretation I is called
a model of A if I satisfies every assertion in A.

A knowledge base is a pairK = (T ,A),whereT is aTBox, andA is anABox.An
interpretationI is called amodel of K if it is amodel of bothT andA.K is satisfiable
if it has a model, and K logically implies an assertion β, denoted K |= β, where β

is either an inclusion or a membership assertion, if every model of K satisfies β.
Logical implication can be reformulated in terms of unsatisfiability: e.g.,K |= C(a)
iff K ∪ {¬C(a)} is unsatisfiable; similarly K |= C1 
 C2 iff K ∪ {(C1 � ¬C2)(a′)}
is unsatisfiable, where a′ does not occur inK. Therefore, we only need a procedure
for checking satisfiability of a knowledge base.
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a b
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Fig. 5.3. A model of the ALCFIreg-counterpart ξ2(C0) of C0.

Next we illustrate the technique for reasoning on ALCQIreg knowledge bases
[De Giacomo and Lenzerini, 1996]. The basic idea is as follows: checking the
satisfiability of anALCQIreg knowledge baseK = (T ,A) is polynomially reduced
to checking the satisfiability of anALCQIreg knowledge baseK′ = (T ′,A′), whose
ABoxA′ is made of a singlemembership assertion of the formC(a). In other words,
the satisfiability ofK is reduced to the satisfiability of the conceptC w.r.t. the TBox
T ′ of the resulting knowledge base. The latter reasoning service can be realized by
means of the method presented in Section 5.4, and, as we have seen, is ExpTime-
complete. Thus, by means of the reduction, we get an ExpTime algorithm for
satisfiability of ALCQIreg knowledge bases, and hence for all standard reasoning
services on ALCQIreg knowledge bases.

Definition 5.17 Let K = (T ,A) be an ALCQIreg knowledge base. The reduced
form of K is the ALCQIreg knowledge base K′ = (T ′,A′) defined as follows. We
introduce a new atomic role create, and also for each individual ai , i = 1, . . . ,m,
occurring in A, a new atomic concept Ai . Then:

A′ = {(∃create.A1 � · · · � ∃create.Am)(g)},
where g is a new individual (the only one present inA′), and T ′ = T ∪ TA ∪ Taux ,
where:

� TA is constituted by the following inclusion axioms:
– for each membership assertion C(ai ) ∈ A, one inclusion axiom

Ai 
 C

– for each membership assertion P(ai , a j ) ∈ A, two inclusion axioms

Ai 
 ∃P.A j �� 1 P.A j
A j 
 ∃P−.Ai �� 1 P−.Ai

– for each pair of distinct individuals ai and a j occurring in A, one inclusion axiom

Ai 
 ¬A j



5 Expressive Description Logics 199

� Taux is constituted by one inclusion axiom (U stands for (P1 � · · · � Pn � P−1 � · · · �
P−n )∗, where P1, . . . , Pn are all atomic roles in T ∪ TA):

Ai � C 
 ∀U.(¬Ai � C)

for each Ai occurring in T ∪ TA and each C ∈ CLext (T ∪ TA), where CLext (T ∪ TA) is
a suitably extended syntactic closure9 of T ∪ TA whose size is polynomially related to
the size of T ∪ TA [De Giacomo and Lenzerini, 1996].

To understand how the reduced formK′ = (T ′,A′) relates to the original knowl-
edge base K = (T ,A), first observe that the ABox A′ is used to force the exis-
tence of the only individual g connected by the role create to one instance of each
Ai . It can be shown that this allows us to restrict our attention to models of K′
that represent a graph connected to g, i.e., models I = (�I, ·I) of K′ such that
�I = {g} ∪ {s ′ | (g, s ′) ∈ createI ◦ (

⋃
P (P

I ∪ PI−)∗)}.
The TBox T ′ consists of three parts T , TA, and Taux . T is the original inclusion

axioms. TA is what we may call a “naive encoding” of the original ABox A as
inclusion axioms. Indeed, each individual ai is represented in TA as a new atomic
concept Ai (disjoint from the other A j ’s), and the membership assertions in the
original ABox A are represented as inclusion axioms in TA involving such new
atomic concepts. However T ∪ TA alone does not suffice to represent faithfully
(w.r.t. the reasoning services we are interested in) the original knowledge base,
because an individual ai in K is represented by the set of instances of Ai in K′. In
order to reduce the satisfiability of K′ to the satisfiability of K, we must be able to
single out, for each Ai , one instance of Ai representative of ai . For this purpose,
we need to include in T ′ a new part, called Taux , which contains inclusion axioms
of the form

Ai � C 
 ∀U.(¬Ai � C).

Intuitively, such axioms say that, if one instance of Ai is also an instance of C ,
then every instance of Ai is an instance of C . Observe that, if we could add an
infinite set of axioms of this form, one for each possible concept of the language
(i.e., an axiom schema), we could safely restrict our attention to models of K′ with
just one instance for every concept Ai , since there would be no way in the logic to
distinguish two instances of Ai one from the other. What is shown by De Giacomo
and Lenzerini [1996] is that in fact we do need only a polynomial number of such
inclusion axioms (as specified by Taux ) in order to be able to identify, for each i ,
an instance of Ai as representative of ai . This allows us to prove that the existence
of a model of K′ implies the existence of a model of K.

9 The syntactic closure of a TBox is the syntactic closure of the concept obtained by internalizing the axioms of
the TBox.
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Theorem 5.18 Knowledge base satisfiability (and hence every standard reasoning
service) in ALCQIreg is ExpTime-complete.

Using a similar approach, De Giacomo and Lenzerini [1994a] and De Gia-
como [1995] extendALCQreg andALCIreg by adding special atomic concepts Aa ,
called nominals, having exactly one single instance a, i.e., the individual they name.
Nominals may occur in concepts exactly as atomic concepts, and hence they con-
stitute one of the most flexible ways to express knowledge about single individuals.

By using nominals we can capture the “one-of” construct, having the form
{a1, . . . , an}, denoting the concept made of exactly the enumerated individu-
als a1, . . . , an .10 We can also capture the “fills” construct, having the form
R : a, denoting those individuals having the individual a as a role filler of R.11

(See [Schaerf, 1994b] and references therein for further discussion on these
constructs.)

Let us denote by ALCQOreg and ALCIOreg the Description Logics result-
ing from adding nominals to ALCQreg and ALCIreg respectively. De Giacomo
and Lenzerini [1994a] and De Giacomo [1995] polynomially reduce satisfiability
in ALCQOreg and ALCIOreg knowledge bases to satisfiability of ALCQreg

and ALCIreg concepts respectively, hence showing decidability and ExpTime-
completeness of reasoning in these logics. ExpTime-completeness does not hold
for ALCQIOreg, i.e., ALCQIreg extended with nominals. Indeed, a result by
Tobies [1999a; 1999b] shows that reasoning in such a logic is NExpTime-hard.
Its decidability remains an open problem.

The notion of nominal introduced above has a correspondent in modal logic
[Prior, 1967; Bull, 1970; Blackburn and Spaan, 1993; Gargov and Goranko, 1993;
Blackburn, 1993]. Nominals have also been studied within the setting of PDLs
[Passy and Tinchev, 1985; Gargov and Passy, 1988; Passy and Tinchev, 1991].
The results for ALCQOreg and ALCIOreg are immediately applicable also in the
setting of PDLs. In particular, the PDL corresponding to ALCQOreg is standard
pdl augmented with nominals and graded modalities (qualified number restric-
tions). It is an extension of deterministic combinatory PDL, dcpdl, which is essen-
tially dpdl augmented with nominals. The decidability of dcpdl is established by
Passy and Tinchev [1985], who also prove that satisfiability can be checked in
nondeterministic double exponential time. This is tightened by the result above
on ExpTime-completeness of ALCQOreg, which says that dcpdl is in fact Exp-
Time-complete, thus closing the previous gap between the upper bound and the
lower bound. The PDL corresponding to ALCIOreg is converse-pdl augmented

10 Actually, nominals and the one-of construct are essentially equivalent, since a name Aa is equivalent to {a} and
{a1, . . . , an} is equivalent to Aa1 � · · · � Aan .

11 The “fills” construct R : a is captured by ∃R.Aa .
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with nominals, which is also called converse combinatory PDL, ccpdl [Passy and
Tinchev, 1991]. Such a logic was not known to be decidable [Passy and Tinchev,
1991]. Hence the results mentioned above allow us to establish the decidability of
ccpdl and to precisely characterize the computational complexity of satisfiability
(and hence of logical implication) as ExpTime-complete.

5.6 Fixpoint constructs

Decidable Description Logics equipped with explicit fixpoint constructs have been
devised in order to model inductive and coinductive data structures such as lists,
streams, trees, etc. [De Giacomo and Lenzerini, 1994d; Schild, 1994; De Giacomo
and Lenzerini, 1997; Calvanese et al., 1999c]. Such logics correspond to extensions
of the propositional µ-calculus [Kozen, 1983; Streett and Emerson, 1989; Vardi,
1998], a variant of PDL with explicit fixpoints that is used to express temporal
properties of reactive and concurrent processes [Stirling, 1996; Emerson, 1996].
Such logics can also be viewed as a well-behaved fragment of first-order logic with
fixpoints [Park, 1970; 1976; Abiteboul et al., 1995].

Here, we concentrate on the Description Logic µALCQI studied by Calvanese
et al. [1999c]. Such a Description Logic is derived from ALCQI by adding
least and greatest fixpoint constructs. The availability of explicit fixpoint con-
structs allows inductive and coinductive concepts to be expressed in a natural
way.

Example 5.19 Consider the concept Tree, representing trees, inductively defined
as follows:

(i) An individual that is an EmptyTree is a Tree.
(ii) If an individual is a Node, has at most one parent, has some children, and all children

are Trees, then such an individual is a Tree.

In other words, Tree is the concept with the smallest extension among those satis-
fying the assertions (i) and (ii). Such a concept is naturally expressed in µALCQI
by making use of the least fixpoint construct µX.C :

Tree ≡ µX.(EmptyTree � (Node �� 1 child− � ∃child.� � ∀child.X )).

Example 5.20 Consider the well-known linear data structure, called stream.
Streams are similar to lists except that, while lists can be considered as finite
sequences of nodes, streams are infinite sequences of nodes. Such a data structure
is captured by the concept Stream, coinductively defined as follows:

(i) An individual that is a Stream, is a Node and has a single successor which is a Stream.
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In other words, Stream is the concept with the largest extension among those
satisfying condition (i). Such a concept is naturally expressed in µALCQI by
making use of the greatest fixpoint construct νX.C :

Stream ≡ νX.(Node �� 1 succ � ∃succ.X ).

Let us now introduce µALCQI formally. We make use of the standard first-
order notions of scope, bound and free occurrences of variables, closed formulae,
etc., treating µ and ν as quantifiers.

The primitive symbols in µALCQI are atomic concepts, (concept) variables,
and atomic roles. Concepts and roles are formed according to the following syntax:

C −→ A | ¬C | C1 � C2 | � n R.C | µX.C | X
R −→ P | P−

where A denotes an atomic concept, P an atomic role, C an arbitrary µALCQI
concept, R an arbitrary µALCQI role (i.e., either an atomic role or the inverse of
an atomic role), n a natural number, and X a variable.

The concept C in µX.C must be syntactically monotone, that is, every free
occurrence of the variable X in C must be in the scope of an even number of
negations [Kozen, 1983]. This restriction guarantees that the concept C denotes a
monotonic operator and hence both the least and the greatest fixpoints exist and are
unique (see later).

In addition to the usual abbreviations used in ALCQI, we introduce the abbre-
viation νX.C for ¬µX.¬C[X/¬X ], where C[X/¬X ] is the concept obtained by
replacing all free occurrences of X by ¬X .

The presence of free variables prevents us from extending the interpretation
function ·I directly to every concept of the logic. For this reason we introduce
valuations. A valuation ρ on an interpretation I is a mapping from variables to
subsets of �I . Given a valuation ρ, we denote by ρ[X/E] the valuation identical
to ρ except that ρ[X/E](X ) = E .

Let I be an interpretation and ρ a valuation on I. We assign meaning to concepts
of the logic by associating to I and ρ an extension function ·Iρ , mapping concepts
to subsets of �I , as follows:

XIρ = ρ(X ) ⊆ �I

AIρ = AI ⊆ �I

(¬C)Iρ = �I \ CIρ
(C1 � C2)

I
ρ = (C1)

I
ρ ∩ (C2)

I
ρ

� n R.CIρ = {s ∈ �I | | {s ′ | (s, s ′) ∈ RI and s ′ ∈ CIρ } | ≥ n}
(µX.C)Iρ =

⋂
{E ⊆ �I | CIρ[X/E] ⊆ E }.
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Observe that CIρ[X/E] can be seen as an operator from subsets E of �I to subsets
of �I , and that, by the syntactic restriction enforced on variables, such an operator
is guaranteed to be monotonic w.r.t. set inclusion. µX.C denotes the least fixpoint
of the operator. Observe also that the semantics assigned to νX.C is

(νX.C)Iρ =
⋃
{E ⊆ �I |E ⊆ CIρ[X/E] }.

Hence νX.C denotes the greatest fixpoint of the operator.
In fact, we are interested in closed concepts, whose extension is independent

of the valuation. For closed concepts we do not need to consider the valuation
explicitly, and hence the notions of concept satisfiability, logical implication, etc.
extend straightforwardly.

Exploiting a recent result on ExpTime decidability of modal µ-calculus
with converse [Vardi, 1998], and exploiting a reduction technique for quali-
fied number restrictions similar to the one presented in Section 5.4, Calvanese
et al. [1999c] have shown that the same complexity boundholds also for reasoning in
µALCQI.

Theorem 5.21 Concept satisfiability (and hence logical implication) inµALCQI
is ExpTime-complete.

For certain applications, variants of µALCQI that allow for mutual fixpoints,
denoting least and greatest solutions ofmutually recursive equations, are of interest
[Schild, 1994;Calvanese et al., 1998c; 1999b].Mutual fixpoints can be re-expressed
by suitably nesting the kind of fixpoints considered here (see, for example, [de
Bakker, 1980; Schild, 1994]). It is interesting to notice that, although the resulting
concept may be exponentially large in the size of the original concept with mutual
fixpoints, the number of (distinct) subconcepts of the resulting concept is polyno-
mially bounded by the size of the original one. By virtue of this observation, and
using the reasoning procedure of Calvanese et al. [1999c], we can strengthen the
above result.

Theorem 5.22 Checking satisfiability of a closed µALCQI concept C can be
done in deterministic exponential time w.r.t. the number of (distinct) subconcepts
of C.

Although µALCQI does not have the rich variety of role constructs of
ALCQIreg, it is actually an extension of ALCQIreg, since any ALCQIreg con-
cept can be expressed in µALCQI using the fixpoint constructs in a suitable way.
To express concepts involving complex role expressions, it suffices to resort to the
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following equivalences:

∃(R1 ◦ R2).C = ∃R1.∃R2.C
∃(R1 � R2).C = ∃R1.C � ∃R2.C

∃R∗.C = µX.(C � ∃R.X )
∃id(D).C = C � D.

Note that, according to such equivalences, we have also that

∀R∗.C = νX.(C � ∀R.X ).

Calvanese et al. [1995] advocate a further construct corresponding to an implicit
form of fixpoint, the so called well-founded concept construct wf (R). Such a con-
struct is used to impose well-foundedness of chains of roles, and thus allows one to
correctly capture inductive structures. Using explicit fixpoints, wf (R) is expressed
as µX.(∀R.X ).

We remark that, in order to gain the ability to express inductively and coin-
ductively defined concepts, it has been proposed to adopt ad hoc semantics for
interpreting knowledge bases, specifically the least fixpoint semantics for ex-
pressing inductive concepts and the greatest fixpoint semantics for expressing
coinductive ones (see Chapter 2 and also [Nebel, 1991; Baader, 1990a; 1991;
Dionne et al., 1992; Küsters, 1998; Buchheit et al., 1998]). Logics equipped with
fixpoint constructs allow statements interpreted according to the least and greatest
fixpoint semantics to be mixed in the same knowledge base [Schild, 1994;
De Giacomo and Lenzerini, 1997], and thus can be viewed as a generalization
of these approaches.

Recently, using techniques based on alternating two-way automata, it has been
shown that the propositional µ-calculus with converse programs remains Exp-
Time-decidable when extended with nominals [Sattler and Vardi, 2001]. This logic
corresponds to a Description Logic which could be called µALCIO.

5.7 Relations of arbitrary arity

A limitation of traditional Description Logics is that only binary relationships
between instances of concepts can be represented, while in some real world sit-
uations it is required to model relationships among more than two objects. Such
relationships can be captured by making use of relations of arbitrary arity instead
of (binary) roles. Various extensions of Description Logics with relations of ar-
bitrary arity have been proposed [Schmolze, 1989; Catarci and Lenzerini, 1993;
DeGiacomo andLenzerini, 1994c; Calvanese et al., 1997; 1998a; Lutz et al., 1999].

We concentrate on the Description LogicDLR [Calvanese et al., 1997; 1998a],
which represents a natural generalization of traditional Description Logics towards
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n-ary relations. The basic elements of DLR are atomic relations and atomic con-
cepts, denoted byP and A respectively. Arbitrary relations, of given arity between 2
and nmax , and arbitrary concepts are formed according to the following syntax:

R −→ �n | P | ($i/n:C) | ¬R | R1 � R2

C −→ �1 | A | ¬C | C1 � C2 | ∃[$i]R | � k [$i]R

where i denotes a component of a relation, i.e., an integer between 1 and nmax , n
denotes the arity of a relation, i.e., an integer between 2 and nmax , and k denotes a
nonnegative integer. Concepts and relations must be well-typed, which means that
only relations of the same arity n can be combined to form expressions of type
R1 � R2 (which inherit the arity n), and i ≤ n whenever i denotes a component of
a relation of arity n.

The semantics of DLR is specified through the usual notion of interpretation
I = (�I, ·I), where the interpretation function ·I assigns to each concept C a
subset CI of �I , and to each relation R of arity n a subset RI of (�I)n , such that
the following conditions are satisfied:

�In ⊆ (�I)n

PI ⊆ �In
(¬R)I = �In \ RI

(R1 � R2)I = RI1 ∩ RI2
($i/n:C)I = {(d1, . . . , dn) ∈ �In | di ∈ CI}

�I1 = �I

AI ⊆ �I

(¬C)I = �I \ CI
(C1 � C2)I = CI1 ∩ CI2
(∃[$i]R)I = {d ∈ �I | ∃(d1, . . . , dn) ∈ RI . di = d}

(� k [$i]R)I = {
d ∈ �I | | {(d1, . . . , dn) ∈ RI1 | di = d |} ≤ k}

where P, R, R1, and R2 have arity n. Observe that �1 denotes the interpretation
domain, while�n , for n > 1, does not denote the n-cartesian product of the domain,
but only a subset of it, that covers all relations of arity n that are introduced. As a
consequence, the “¬” construct on relations expresses difference of relations rather
than complement.

The construct ($i/n:C) denotes all tuples in�n that have an instance of concept
C as their i th component, and therefore represents a kind of selection. Existential
quantification and number restrictions on relations are a natural generalization of
the corresponding constructs using roles. This can be seen by observing that, while
for roles the “direction of traversal” is implicit, for a relation one needs to explicitly
say which component is used to “enter” a tuple and which component is used to
“exit” it.
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DLR is in fact a proper generalization ofALCQI. The traditional DL constructs
can be re-expressed in DLR as follows:

∃P.C as ∃[$1](P � ($2/2:C))
∃P−.C as ∃[$2](P � ($1/2:C))
∀P.C as ¬∃[$1](P � ($2/2:¬C))
∀P−.C as ¬∃[$2](P � ($1/2:¬C))
� k P.C as � k [$1](P � ($2/2:C))
� k P−.C as � k [$2](P � ($1/2:C)).

Observe that the constructs using direct and inverse roles are represented in DLR
by using binary relations and explicitly specifying the direction of traversal.

A TBox inDLR is a finite set of inclusion axioms on both concepts and relations
of the form

C 
 C ′ R 
 R′

whereR andR′ are two relations of the same arity. The notions of an interpretation
satisfying an assertion, and of model of a TBox are defined as usual.

The basic technique used in DLR to reason on relations is reification (see
Subsection 5.4.1), which allows one to reduce logical implication in DLR to logi-
cal implication in ALCQI. Reification for n-ary relations is similar to reification
of roles (see Definition 5.11): a relation of arity n is reified by means of a new
concept and n functional roles f1, . . . , fn . Let theALCQI TBox T ′ be the reified
counterpart of a DLR TBox T . A tuple of a relation R in a model of T is repre-
sented in a model of T ′ by an instance of the concept corresponding to R, which
is linked through f1, . . . , fn respectively to n individuals representing the compo-
nents of the tuple. In this case reification is further used to encode Boolean con-
structs on relations into the corresponding constructs on the concepts representing
relations.

As for reification of roles (see Subsection 5.4.1), performing the reification of
relations requires some care, since the semantics of a relation rules out that there
may be two identical tuples in its extension, i.e., two tuples constituted by the same
components in the same positions. In the reified counterpart, on the other hand,
one cannot explicitly rule out (e.g., by using specific axioms) the existence of two
individuals o1 and o2 “representing” the same tuple, i.e., that are connected through
f1, . . . , fn to exactly the same individuals denoting the components of the tuple. A
model of the reified counterpart T ′ of T in which this situation occurs may not cor-
respond directly to a model of T , since by collapsing the two equivalent individuals
into a tuple, axioms may be violated (e.g., cardinality constraints). However, also
in this case the analog of Theorem 5.12 holds, ensuring that from any model of T ′
one can construct a new one in which no two individuals represent the same tuple.
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Therefore one does not need to take this constraint explicitly into account when
reasoning on the reified counterpart of a knowledge base with relations. Since reifi-
cation is polynomial, from ExpTime-decidability of logical implication inALCQI
(and ExpTime-hardness of logical implication in ALC) we get the following
characterization of the computational complexity of reasoning inDLR [Calvanese
et al., 1997].

Theorem 5.23 Logical implication in DLR is ExpTime-complete.

DLR can be extended to include regular expressions built over projections of
relations on two of their components, thus obtaining DLRreg. Such a logic, which
represents a generalization of ALCQIreg, allows the internalization of a TBox.
ExpTime-decidability (and hence completeness) of DLRreg can again be shown
by exploiting reification of relations and reducing logical implication to concept
satisfiability in ALCQIreg [Calvanese et al., 1998a]. Recently, DLRreg has been
extended to DLRµ, which includes explicit fixpoint constructs on concepts, like
those introduced in Section 5.6. The ExpTime-decidability result extends toDLRµ

as well [Calvanese et al., 1999c].
Recently it has been observed that guarded fragments of first-order logic

[Andréka et al., 1996; Grädel, 1999] (see Subsection 4.2.1), which include n-ary
relations, share with Description Logics the “locality” of quantification. Thismakes
them of interest as extensions of Description Logics with n-ary relations [Grädel,
1998; Lutz et al., 1999]. Such Description Logics are incomparable in expres-
sive power with DLR and its extensions: On the one hand the Description Log-
ics corresponding to guarded fragments allow one to refer, by the use of explicit
variables, to components of relations in a more flexible way than is possible in
DLR. On the other hand such Description Logics lack number restrictions, and
extending themwith number restrictions leads to undecidability of reasoning. Also,
reasoning in the guarded fragments is in general NExpTime-hard [Grädel, 1998;
1999] and thus more difficult than in DLR and its extensions, although PSpace-
complete fragments have been identified [Lutz et al., 1999].

5.7.1 Boolean constructs on roles and role inclusion axioms

Observe also thatDLR (andDLRreg) allows Boolean constructs on relations (with
negation interpreted as difference) as well as relation inclusion axioms R 
 R′.
In fact, DLR (resp. DLRreg) can be viewed as a generalization of ALCQI
(resp.ALCQIreg) extended with Boolean constructs on atomic and inverse atomic
roles. Such extensions of ALCQI were first studied in [De Giacomo and Lenz-
erini, 1994c; De Giacomo, 1995], where logical implication was shown to be
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ExpTime-complete by a reduction toALCQI (resp.ALCQIreg). The logics above
do not allow atomic roles to be combined with inverse roles in Boolean combina-
tions and role inclusion axioms. Tobies [2001a] shows that, for ALCQI extended
with arbitrary Boolean combinations of atomic and inverse atomic roles, logical
implication remains in ExpTime. Note that, in all logics above, negation on roles
is interpreted as difference. For results on the impact of full negation on roles see
[Lutz and Sattler, 2001; Tobies, 2001a].

Horrocks et al. [2000b] investigate reasoning in SHIQ, which is ALCQI ex-
tended with roles that are transitive and with role inclusion axioms on arbitrary
roles (direct, inverse, and transitive). SHIQ does not include reflexive–transitive
closure. However, transitive roles and role inclusions allow a universal role to be
expressed (in a connectedmodel), and hence allowTBoxes to be internalized. Satis-
fiability and logical implication in SHIQ are ExpTime-complete [Tobies, 2001a].
The importance of SHIQ lies in the fact that it is the logic implemented by the
current state-of-the-art DL-based systems (see Chapters 8 and 9).

5.7.2 Structured objects

An alternative way to overcome the limitations that result from the restriction to
binary relationships between concepts, is to consider the interpretation domain as
being constituted by objects with a complex structure, and extend the Description
Logics with constructs that allow one to specify such a structure [De Giacomo
and Lenzerini, 1995]. This approach is in the spirit of object-oriented data models
used in databases [Lecluse and Richard, 1989; Bancilhon and Khoshafian, 1989;
Hull, 1988], and has the advantage, with respect to introducing relationships, that
all aspects of the domain to be modeled can be represented in a uniform way, as
concepts whose instances have certain structures. In particular, objects can either
be unstructured or have the structure of a set or of a tuple. For objects having the
structure of a set a particular role allows one to refer to the members of the set, and
similarly each component of a tuple can be referred to by means of the (implicitly
functional) role that labels it.

In general, reasoning over structured objects can have a very high computational
complexity [Kuper and Vardi, 1993]. However, reasoning over a significant frag-
ment of structuring properties can be reduced in polynomial time to reasoning in
traditionalDescriptionLogics, again by exploiting reification to dealwith tuples and
sets. Thus, for such a fragment, reasoning can be done in ExpTime [De Giacomo
and Lenzerini, 1995]. An important aspect in exploiting Description Logics for
reasoning over structured objects is being able to limit the depth of the structure
of an object to avoid infinite nesting of tuples or sets. This requires the use of a
well-founded construct, which is a restricted form of fixpoint (see Section 5.6).
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5.8 Finite model reasoning

For expressive Description Logics, in particular for those containing inverse
roles and functionality, a TBox may admit only models with an infinite domain
[Cosmadakis et al., 1990; Calvanese et al., 1994]. Similarly, there may be TBoxes
in which a certain concept can be satisfied only in an infinite model. This is illus-
trated in the following example by Calvanese [1996c].

Example 5.24 Consider the TBox

FirstGuard 
 Guard � ∀shields−.⊥
Guard 
 ∃shields � ∀shields.Guard �� 1 shields−.

In a model of this TBox, an instance of FirstGuard can have no shields-predecessor,
while each instance of Guard can have at most one. Therefore, the existence of an
instance of FirstGuard implies the existence of an infinite sequence of instances
of Guard, each one connected through the role shields to the following one. This
means thatFirstGuard can be satisfied in an interpretationwith a domain of arbitrary
cardinality, but not in interpretations with a finite domain.

Note that the TBox above is expressed in a very simple Description Logic, in
particular AL (see Chapter 2) extended with inverse roles and functionality.

A logic is said to have the finite model property if every satisfiable formula of the
logic admits a finite model, i.e., a model with a finite domain. The example above
shows that virtually all Description Logics including functionality, inverse roles,
and TBox axioms (or having the ability to internalize them) lack the finite model
property. The example shows also that to lose the finitemodel property, functionality
in only one direction is sufficient. In fact, it is well known that converse-dpdl, which
corresponds to a fragment of ALCFIreg, lacks the finite model property [Kozen
and Tiuryn, 1990; Vardi and Wolper, 1986].

For all logics that lack the finite model property, reasoning with respect to
unrestricted and finite models are fundamentally different tasks, and this needs
to be taken explicitly into account when devising reasoning procedures. Restricting
reasoning to finite domains is not common in knowledge representation. However,
it is typically of interest in databases, where one assumes that the data available are
always finite [Calvanese et al., 1994; 1999e].

When reasoning w.r.t. finite models, some properties that are essential for the
techniques developed for unrestricted model reasoning in expressive Description
Logics fail. In particular, all reductions exploiting the tree model property (or
similar properties that are based on “unraveling” structures) [Vardi, 1997] cannot
be applied since this property does not hold when only finite models are considered.
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An intuitive justification can be given by observing that, whenever a (finite) model
contains a cycle, the unraveling of such a model into a tree generates an infinite
structure. Therefore alternative techniques have been developed.

In this section, we study decidability and computational complexity of finite
model reasoning over TBoxes expressed in various sublanguages of ALCQI.
Specifically, by using techniques based on reductions to linear programming prob-
lems, we show that finite concept satisfiability w.r.t. to ALUNI TBoxes12 consti-
tuted by inclusion axioms only is ExpTime-complete [Calvanese et al., 1994], and
that finite model reasoning in arbitrary ALCQI TBoxes can be done in determin-
istic double exponential time [Calvanese, 1996a].

5.8.1 Finite model reasoning using linear inequalities

A procedure for finite model reasoning must specifically address the presence of
number restrictions, since it is only in their presence that the finite model property
fails. We discuss a method which is indeed based on an encoding of number restric-
tions into linear inequalities, and which generalizes the one developed by Lenzerini
and Nobili [1990] for the Entity–Relationship model with disjoint classes and rela-
tionships (hence without IS-A). We first describe the idea underlying the reasoning
technique in a simplified case. In the next subsectionwe show how to apply the tech-
nique to various expressive Description Logics [Calvanese and Lenzerini, 1994b;
1994a; Calvanese et al., 1994; Calvanese, 1996a].

Consider an ALNI TBox13 T containing the following axioms: for each pair
of distinct atomic concepts A and A′, an axiom A 
 ¬A′; and for each atomic
role P , an axiom of the form� 
 ∀P.A2 � ∀P−.A1, for some atomic concepts A1

and A2 (not necessarily distinct). Such axioms enforce that in all models of T the
following hold:

P1: The atomic concepts have pairwise disjoint extensions.
P2: Each role is “typed”, which means that its domain is included in the extension of

an atomic concept A1, and its codomain is included in the extension of an atomic
concept A2.

Assume further that the only additional axioms inT are used to impose cardinality
constraints on roles and inverse roles, and are of the form

� 
 �m1 P �� n1 P

� 
 �m2 P
− �� n2 P

−

where m1, n1, m2, and n2 are positive integers with m1 ≤ n1 and m2 ≤ n2.

12 ALUNI is the Description Logic obtained by extending ALUN (see Chapter 2) with inverse roles.
13 ALNI is the Description Logic obtained by extending ALN (see Chapter 2) with inverse roles.
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Due to the fact that properties P1 and P2 hold, the local conditions imposed by
number restrictions on the number of successors of each individual are reflected
into global conditions on the total number of instances of atomic concepts and roles.
Specifically, it is not difficult to see that, for a model I of such a TBox, and for
each P , A1, A2, m1, m2, n1, and n2 as above, the cardinalities of PI , AI1 , and A

I
2

must satisfy the following inequalities:

m1 · |AI1 | ≤ |PI | ≤ n1 · |AI1 |
m2 · |AI2 | ≤ |PI | ≤ n2 · |AI2 |.

On the other hand, consider the system �T of linear inequalities containing for
each atomic role P typed by A1 and A2 the inequalities

m1 ·Var(A1) ≤ Var(P) ≤ n1 ·Var(A1)
m2 ·Var(A2) ≤ Var(P) ≤ n2 ·Var(A2)

(5.1)

where we denote by Var(A) and Var(P) the unknowns, ranging over the non-
negative integers, corresponding to the atomic concept A and the atomic role P
respectively.

It can be shown that, if the only axioms in T are those mentioned above, then
certain non-negative integer solutions of �T (called acceptable solutions) can be
put into correspondencewith finitemodels ofT .More precisely, for each acceptable
solution S, one can construct a model of T in which the cardinality of each concept
or role X is equal to the value assigned by S to Var(X ) [Lenzerini and Nobili, 1990;
Calvanese et al., 1994; Calvanese, 1996c]. Moreover, given �T , it is possible to
verify, in time polynomial in its size, whether it admits an acceptable solution.

This property can be exploited to check finite satisfiability of an atomic concept
A w.r.t. a TBox T as follows:

(i) Construct the system �T of inequalities corresponding to T .
(ii) Add to �T the inequality Var(A) > 0, which enforces that the solutions correspond to

models in which the cardinality of the extension of A is positive.
(iii) Check whether �T admits an acceptable solution.

Observe that for simple TBoxes of the form described above, this method works in
polynomial time, since (i) �T is of size polynomial in the size of T , and can also
be constructed in polynomial time, and (ii) checking the existence of acceptable
solutions of �T can be done in time polynomial in its size. Notice also that the
applicability of the technique heavily relies on conditions P1 and P2, which ensure
that, from an acceptable solution of �T , a model of T can be constructed.
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5.8.2 Finite model reasoning in expressive Description Logics

The method we have presented above is not directly applicable to more complex
languages or TBoxes not respecting the particular form above. In order to extend it
to more general cases wemake use of the following observation: Linear inequalities
capture global constraints on the total number of instances of concepts and roles. So
we have to represent local constraints expressed by number restrictions by means
of global constraints. This can be done only if P1 and the following generalization
of P2 hold:

P′2: For each atomic role P and each concept expression C appearing in T , the domain of
P is either included in the extension ofC or disjoint from it. Similarly for the codomain
of P .

This condition guarantees that, in a model, all instances of a concept “behave” in
the same way, and thus the local constraints represented by number restrictions are
indeed correctly captured by the global constraints represented by the system of
inequalities.

It is possible to enforce conditions P1 and P′2 for expressive Description Logics,
by first transforming the TBox, and then deriving the system of inequalities from the
transformed version. We briefly sketch the technique to decide finite concept sat-
isfiability in ALUNI TBoxes consisting of specializations, i.e., inclusion axioms
in which the concept on the left-hand side is atomic. A detailed account of the
technique and an analysis of its computational complexity has been presented by
Calvanese [1996c].

First of all, it is easy to see that, by introducing at most a linear number of new
atomic concepts and TBox axioms, we can transform the TBox into an equivalent
one in which the nesting of constructs is eliminated. Specifically, in such a TBox
the concept on the right-hand side of an inclusion axiom is of the form L , L1 � L2,
∀R.L , � n R, or � n R, where L is an atomic or negated atomic concept. For
example, given the axiom

A 
 C1 � C2

whereC1 andC2 do not have the form above, we introduce two new atomic concepts
AC1 and AC2 , and replace the axiom above by the following ones:

A 
 AC1 � AC2

AC1 
 C1

AC2 
 C2.

Then, to ensure that conditions P1 and P′2 are satisfied, we use instead of atomic
concepts, sets of atomic concepts, called compoundconcepts14 and insteadof atomic

14 A similar technique, called atomic decomposition there, was used by Ohlbach and Koehler [1999].
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roles, so called compound roles. Each compound role is a triple (P, Ĉ1, Ĉ2) con-
sisting of an atomic role P and two compound concepts Ĉ1 and Ĉ2. Intuitively, the
instances of a compound concept Ĉ are all those individuals of the domain that
are instances of all concepts in Ĉ and are not instances of any concept not in Ĉ .
A compound role (P, Ĉ1, Ĉ2) is interpreted as the restriction of role P to the pairs
whose first component is an instance of Ĉ1 and whose second component is an
instance of Ĉ2.

Thismeans that twodifferent compound concepts have necessarily disjoint exten-
sions, and hence that the property corresponding to P1 holds. The same observation
holds for two different compound roles (P, Ĉ1, Ĉ2) and (P, Ĉ ′1, Ĉ

′
2) that corre-

spond to the same role P . Moreover, for compound roles, the property correspond-
ing to property P2 holds by definition, and, considering that the TBox contains
only specializations and that nesting of constructs has been eliminated, P′2 also
holds.

We first consider the set T ′ of axioms in the TBox that do not involve number
restrictions. Such axioms force certain compound concepts and compound roles to
be inconsistent, i.e., have an empty extension in all interpretations that satisfy T ′.
For example, the axiom A1 
 ¬A2 makes all compound concepts that contain both
A1 and A2 inconsistent. Similarly, the axiom A1 
 ∀P.A2 makes all compound
roles (P, Ĉ1, Ĉ2) such that Ĉ1 contains A1 and Ĉ2 does not contain A2 inconsistent.
Checking whether a given compound concept is inconsistent essentially amounts
to evaluating a propositional formula in a given propositional model (the one corre-
sponding to the compound concept), and hence can be done in time polynomial in
the size of the TBox. Similarly, one can check in time polynomial in the size of the
TBox whether a given compound role is inconsistent. Observe, however, that since
the total number of compound concepts and roles is exponential in the number of
atomic concepts in the TBox, doing the check for all compound concepts and roles
takes in general exponential time.

Once the consistent compound concepts and roles have been determined, we
can introduce for each of them an unknown in the system of inequalities (the
inconsistent compound concepts and roles are discarded). The axioms in the TBox
involving number restrictions are taken into account by encoding them into suitable
linear inequalities. Such inequalities are derived in a way similar to inequalities
(5.1), except that now each inequality involves one unknown corresponding to a
compound concept and a sum of unknowns corresponding to compound roles.

Then, to check finite satisfiability of an atomic concept A, we can add to the
system the inequality

∑

Ĉ⊆2A | A∈Ĉ
Var(Ĉ) ≥ 1
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which forces the extension of A to be nonempty. Again, if the system admits an
acceptable solution, then we can construct from such a solution a finite model of
the TBox in which A is satisfied; if no such solution exists, then A is not finitely
satisfiable. To check finite satisfiability of an arbitrary concept C , we can introduce
a new concept name A, add to the TBox the axiom A 
 C , and then check the
satisfiability of A. Indeed, if A is finitely satisfiable, then so is C . Conversely, if the
original TBox admits a finite model I in which C has a nonempty extension, then
we can simply extend I to A by interpreting A as CI , thus obtaining a finite model
of the TBox plus the additional axiom in which A is satisfied.

The system of inequalities can be effectively constructed in time exponential
in the size of the TBox, and checking for the existence of acceptable solutions is
polynomial in the size of the system [Calvanese et al., 1994; Calvanese, 1996a].
Moreover, since verifying concept satisfiability is alreadyExpTime-hard forTBoxes
consisting of specializations only and expressed in the much simpler language
ALU [Calvanese, 1996b], the above method provides a computationally optimal
reasoning procedure.

Theorem 5.25 Finite concept satisfiability in ALUNI TBoxes consisting of spe-
cializations only is ExpTime-complete.

The method can be extended to decide finite concept satisfiability for a wider
class of TBoxes, in which a negated atomic concept and, more generally, an arbi-
trary Boolean combination of atomic concepts may appear on the left-hand side of
axioms. In particular, this makes it possible to deal also with knowledge bases con-
taining definitions of concepts that are Boolean combinations of atomic concepts,
and to reason on such knowledge bases in deterministic exponential time. Since
ALUNI is not closed under negation, we cannot immediately reduce logical im-
plication to concept satisfiability. However, the technique presented above can be
adapted in specific cases to decide also finite logical implication in deterministic
exponential time [Calvanese, 1996c].

A further extension of the above method can be used to decide logical im-
plication in ALCQI. The technique uses two successive transformations on the
TBox, each of which introduces a worst-case exponential blowup, and a final poly-
nomial encoding into a system of linear inequalities [Calvanese, 1996c; 1996a].

Theorem 5.26 Logical implication w.r.t. finite models in ALCQI can be decided
in worst-case deterministic double exponential time.

For more expressive Description Logics, and in particular for all those Descrip-
tion Logics containing the construct for reflexive–transitive closure of roles, the
decidability of finite model reasoning is still an open problem. Decidability of
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finite model reasoning for C2, i.e., first-order logic with two variables and counting
quantifiers (see also Chapter 4, Section 4.2) was shown recently [Grädel et al.,
1997b]. C2 is a logic that is strictly more expressive than ALCQI TBoxes, since
it allows one, for example, to impose cardinality restrictions on concepts [Baader
et al., 1996] or to use the full negation of a role. However, apart from decidability,
no complexity bound is known for finite model reasoning in C2.

Techniques for finite model reasoning have also been studied in databases. In the
relational model, the interaction between inclusion dependencies and functional
dependencies causes the loss of the finite model property, and finite implication
of dependencies under various assumptions has been investigated by Cosmadakis
et al. [1990]. A method for finite model reasoning has been presented by Calvanese
and Lenzerini [1994b; 1994a] in the context of a semantic and an object-oriented
database model, respectively. The reasoning procedure, which represents a direct
generalization of the one discussed above to relations of arbitrary arity, does not
exploit reification to handle relations (see Section 5.7) but directly encodes the
constraints on them into a system of linear inequalities.

5.9 Undecidability results

Several additional DL constructs besides those discussed in the previous sections
have been proposed in the literature. In this section we present the most important
of these extensions, discussing how they influence decidability, and what modifica-
tions to the reasoning procedures are needed to take them into account. In particular,
we discuss Boolean constructs on roles, variants of role-value-maps or role agree-
ments, and number restrictions on complex roles. Most of these constructs lead to
undecidability of reasoning, if used in an unrestricted way. Roughly speaking, this
is mainly due to the fact that the tree model property is lost [Vardi, 1997].

5.9.1 Boolean constructs on complex roles

In those Description Logics that include regular expressions over roles, such as
ALCQIreg, since regular languages are closed under intersection and complemen-
tation, the intersection of roles and the complement of a role are already expressible,
if we consider them applied to the set of role expressions. Here we consider the
more common approach in PDLs, namely to regard Boolean operators as applied
to the binary relations denoted by complex roles. The logics thus obtained are
more expressive than traditional pdl [Harel, 1984] and reasoning is usually harder.
We notice that the semantics immediately implies that intersection of roles can be
expressed by means of union and complementation.
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Satisfiability in pdl augmented with intersection of arbitrary programs is
decidable in deterministic double exponential time [Danecki, 1984], and so is satis-
fiability inALCreg augmentedwith intersection of complex roles, even though these
logics have neither the tree model nor the finite model property. On the other hand,
satisfiability in pdl augmented with complementation of programs is undecidable
[Harel, 1984], and so is reasoning in ALCreg augmented with complementation of
complex roles. Also, dpdl augmented with intersection of complex roles is highly
undecidable [Harel, 1985; 1986], and since global functionality of roles (which
corresponds to determinism of programs) can be expressed by means of local func-
tionality, the undecidability carries over to ALCF reg augmented with intersection
of roles.

These proofs of undecidability make use of a general technique based on the
reduction from the unbounded tiling (or domino) problem [Berger, 1966; Robinson,
1971], which is the problem of checking whether a quadrant of the integer plane
can be tiled using a finite set of tile type – i.e., square tiles with a color on each
side – in such a way that adjacent tiles have the same color on the sides that
touch.15 We sketch the idea of the proof using the terminology of Description
Logics, instead of that of PDLs. The reduction uses two roles right and up which
are globally functional (i.e., � 1 right, � 1 up) and denote pairs of tiles that are
adjacent in the x and y directions, respectively. By means of intersection of roles,
right and up are constrained to effectively define a two-dimensional grid. This
is achieved by imposing for each point of the grid (i.e., reachable through right

and up) that by following right ◦ up one reaches a point reached also by following
up ◦ right:

∀(right � up)∗.∃((right ◦ up) � (up ◦ right)).

To enforce this condition, the use of intersection of compositions of atomic roles is
essential. Reflexive–transitive closure (i.e., ∀(right � up)∗.C) is then also exploited
to impose the required constraints on all tiles of the grid. Observe that, in the
above reduction, one can use TBox axioms instead of reflexive–transitive closure
to enforce the necessary conditions in every point of the grid.

The question ariseswhether decidability can be preserved if one restricts Boolean
operations to basic roles, i.e., atomic roles and their inverse. This is indeed the case
if complementation of basic roles is used only to express difference of roles, as
demonstrated by the ExpTime decidability of DLR and its extensions, in which
intersection and difference of relations are allowed (see Section 5.7).

15 In fact the reduction is from the �1
1-complete – and thus highly undecidable – recurring tiling problem [Harel,

1986], where one additionally requires that a certain tile occurs infinitely often on the x-axis.
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5.9.2 Role-value-maps

Another construct, which stems from frame systems, and which provides an
additional useful means to specify structural properties of concepts, is the so called
role-value-map [Brachman and Schmolze, 1985], which comes in two forms: An
equality role-value-map, denoted R1 = R2, represents the individuals o such that
the set of individuals that are connected to o via role R1 equals the set of individu-
als connected to o via role R2. The second form of role-value-map is containment
role-value-map, denoted R1 ⊆ R2, whose semantics is defined analogously, using
set inclusion instead of set equality. Using these constructs, one can denote, for
example, by means of owns ◦madein ⊆ livesin the set of all persons that own only
products manufactured in the country they live in.

When role-value-maps are added, the logic loses the tree model property, and
this construct leads immediately to undecidability of reasoning when applied to
role chains (i.e., compositions of atomic roles). ForALCreg, this can be shown by a
reduction from the tiling problem in a similar way to that used in [Harel, 1985] for
dpdl with intersection of roles. In this case, the concept right ◦ up = up ◦ right
involving role-value-map can be used instead of role intersection to define the
constraints on the grid. The proof is slightly more involved than that for dpdl,
since one needs to take into account that the roles right and up are not functional
(while in dpdl all programs/roles are functional). However, undecidability holds
already for concept subsumption (with respect to an empty TBox) in AL (in fact
FL−) augmented with role-value-maps, where the roles involved are compositions
of atomic roles [Schmidt-Schauß, 1989] – see Chapter 3 for the details of the proof.

As for role intersection, in order to show undecidability, it is necessary to
apply role-value-maps to compositions of roles. Indeed, if the application of
role-value-maps is restricted to Boolean combinations of basic roles, it can be
added to ALCQIreg without influencing decidability and worst-case complexity
of reasoning. This follows directly from the decidability results for the extension
with Boolean constructs on atomic and inverse atomic roles (captured by DLR).
Indeed, R1 ⊆ R2 is equivalent to ∀(R1 � ¬R2).⊥, and thus can be expressed using
difference of roles. We observe also that universal and existential role agreements
introduced in [Hanschke, 1992], which allow one to define concepts by posing vari-
ous types of constraints that relate the sets of fillers of two roles, can be expressed by
means of intersection and difference of roles. Thus reasoning in the presence of role
agreements is decidable, provided these constructs are applied only to basic roles.

5.9.3 Number restrictions on complex roles

In ALCFIreg, the use of (qualified) number restrictions is restricted to atomic and
inverse atomic roles, which guarantees that the logic has the tree model property.
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This property is lost, together with decidability, if functional restrictions may be
imposed on arbitrary roles. The reduction to show undecidability is analogous to
the one used for intersection of roles, except that now functionality of a complex role
(i.e., � 1 (right ◦ up) � (up ◦ right)) is used instead of role intersection to define the
grid.

An example of decidable logic that does not have the tree model property is
obtained by allowing the use of role composition (but not transitive closure) inside
number restrictions. Let us denote by N (X ), where X is a subset of {�,�, ◦,− },
unqualified number restrictions on roles that are obtained by applying the role
constructs in X to atomic roles. Let us denote byALCN (X ) the Description Logic
obtained by extendingALC (see Chapter 2) with number restrictions inN (X ). As
shown by Baader and Sattler [1999], concept satisfiability is decidable for the logic
ALCN (◦), even when extended with number restrictions on union and intersection
of role chains of the same length. Notice that decidability for ALCN (◦) holds
only for reasoning on concept expressions and is lost if one considers reasoning
with respect to a TBox (or alternatively adds transitive closure of roles) [Baader and
Sattler, 1999]. Reasoning evenwith respect to the empty TBox is undecidable if one
adds toALCN number restrictions on more complex roles. In particular, this holds
for ALCN (�, ◦) (if no constraints on the lengths of the role chains are imposed)
and forALCN (�, ◦,− ) [Baader and Sattler, 1999]. The reductions again exploit the
tiling problem, and make use of number restrictions on complex roles to simulate
a universal role that is used for imposing local conditions on all points of the grid.

Summing up, we can state that the borderline between decidability and unde-
cidability of reasoning in the presence of number restrictions on complex roles has
been traced quite precisely, although there are still some open problems. E.g., it
is not known whether concept satisfiability in ALCN (�, ◦) is decidable (although
logical implication is undecidable) [Baader and Sattler, 1999].
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Abstract

This chapter considers, on the one hand, extensions of Description Logics by fea-
tures not available in the basic framework, but considered important for using
Description Logics as a modeling language. In particular, it addresses the exten-
sions concerning: concrete domain constraints; modal, epistemic, and temporal
operators; probabilities and fuzzy logic; and defaults.

On the other hand, it considers non-standard inference problems for Description
Logics, i.e., inference problems that – unlike subsumption or instance checking –
are not available in all systems, but have turned out to be useful in applications.
In particular, it addresses the non-standard inference problems: least common
subsumer and most specific concept; unification and matching of concepts; and
rewriting.

6.1 Introduction

Chapter 2 introduces the language ALCN as a prototypical Description Logic,
defines the most important reasoning tasks (like subsumption, instance checking,
etc.), and shows how these tasks can be realized with the help of tableau-based
algorithms. For many applications, the expressive power ofALCN is not sufficient
to express the relevant terminological knowledge of the application domain. Some
of the most important extensions of ALCN by concept and role constructs have
already been briefly introduced in Chapter 2; these and other extensions have then
been treated in more detail in Chapter 5. All these extensions are “classical” in
the sense that their semantics can easily be defined within the model-theoretic
framework introduced in Chapter 2. Although combinations of these constructs
may lead to very expressive Description Logics (the unrestricted combination even
to undecidable ones), all the Description Logics obtained this way can only be used

219



220 F. Baader, R. Küsters, and F. Wolter

to represent time-independent, objective, and certain knowledge. In addition, they
do not allow “built-in data structures” like numerical domains.

The “nonclassical” language extensions considered in the first part of this chap-
ter try to overcome some of these deficiencies. The extension by concrete domains
allows us to integrate numerical and other domains in a schematic way into De-
scription Logics. The extension of Description Logics by modal operators allows
the representation of time-dependent and subjective knowledge (e.g., knowledge
about knowledge and belief of intelligent agents). Description Logics that can ex-
plicitly represent time have also been introduced outside the modal framework.
The extension by epistemic operators provides a model-theoretic semantics for
rules; it can be used to impose “local” closed world assumptions, and to integrate
integrity constraints into Description Logics. In order to represent vague and un-
certain knowledge, different approaches based on probabilistic, possibilistic, and
fuzzy logics have been proposed. Finally, non-monotonic Description Logics are
obtained by the integration of defaults into Description Logics.

When building and maintaining large DL knowledge bases, inference services
like subsumption and satisfiability are very helpful, but in general not quite suffi-
cient for an adequate support of the knowledge engineer. For this reason, some DL
systems (e.g., Classic) provide their users with additional system services, which
can formally be reconstructed as new types of inference problems. In the second
part of this chapter we will motivate and introduce the most prominent of these
“non-standard” inference problems, and try to give an intuition on how they can be
solved.

6.2 Language extensions

The extensions introduced in this section are “nonclassical” in the sense that defin-
ing their semantics is not obvious and requires an extension of the model-theoretic
framework considered until now; for many (but not all) of these extensions, non-
classical logics (such as modal and non-monotonic logics) are employed to provide
the right framework.

6.2.1 Concrete domains

A drawback that all Description Logics introduced until now share is that all the
knowledge must be represented on the abstract logical level. In many applications,
one would like to be able to refer to concrete domains and predefined predicates
on these domains when defining concepts. An example of such a concrete domain
could be the set of nonnegative integers, with predicates such as≥ (greater or equal)
or< (less than). For example, assume that we want to give an adequate definition of
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the conceptWoman. The first idea could be to use the concept descriptionHuman �
Female for this purpose. However, a newborn female baby would probably not be
called a woman, and neither would a three-year-old toddler. Thus, as an additional
property, one could require that a female human being should be old enough (e.g.,
at least 18) to be called a woman. In order to express this property, one would like to
introduce a new (functional) role has-age, and define Woman by an expression of
the formHuman � Female � ∃has-age.≥18. Here≥18 stands for the unary predicate
{n | n ≥ 18} of all nonnegative integers greater than or equal to 18.

Stating such properties directly with reference to a given numerical domain
seems to be easier and more natural than encoding them somehow into abstract
concept expressions. In addition, such a direct representation makes it possible to
use existing reasoners for the concrete domain. For example, we could have also
decided to introduce a new atomic concept AtLeast18 to express the property of
being at least 18 years old. However, if for some reason we also need the property
of being at least 21 years old, we must make sure that the appropriate subsumption
relationship betweenAtLeast18 andAtLeast21 is asserted as well.While this could
still be done by adding appropriate inclusion axioms, it does not appear to be
an elegant solution, and it would still not take care of other relationships, e.g.,
the fact that AtLeast18 � AtMost16 is unsatisfiable. In contrast, an appropriate
reasoner for intervals of nonnegative integers would automatically take care of
these relationships.

The need for such a language extension was already evident to the designers of
early DL systems such asMeson [Edelmann and Owsnicki, 1986; Patel-Schneider
et al., 1990], K-Rep [Mays et al., 1988; 1991a], and Classic [Brachman et al.,
1991; Borgida and Patel-Schneider, 1994]: in addition to abstract individuals, these
systems also allow one to refer to “concrete” individuals such as numbers and
strings. Both the Classic and theK-Rep reasoner can deal correctly with intervals,
whereas in Meson the user had to supply the adequate relationships between the
concrete predicates in a separate hierarchy. All these approaches are, however, ad
hoc in the sense that they are restricted to a specific collection of concrete objects.

In contrast, Baader and Hanschke [1991a] propose a scheme for integrating
(almost) arbitrary concrete domains into Description Logics. This extension was
designed such that

� it still has a formal declarative semantics that is very close to the usual semantics employed
for Description Logics;

� it is possible to combine the tableau-based algorithms available for Description Logics
with existing reasoning algorithms in the concrete domain in order to obtain the appro-
priate algorithms for the extension;

� it provides a scheme for extending Description Logics by various concrete domains rather
than constructing a single ad hoc extension for a specific concrete domain.
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In the following, we will first introduce the original proposal by Baader and
Hanschke, and then describe two extensions of this proposal [Hanschke, 1992;
Haarslev et al., 1999].

6.2.1.1 The family of Description Logics ALC(D)

Before we can define the members of this family of Description Logics, we must
formalize the notion of a concrete domain.

Definition 6.1 A concrete domain D consists of a set �D, the domain of D, and
a set pred(D), the predicate names of D. Each predicate name P ∈ pred(D) is
associated with an arity n, and an n-ary predicate PD ⊆ (�D)n .

Let us illustrate this definition by examples of interesting concrete domains. Let us
start with some numerical ones:

� The concrete domainN , whichwe have employed in our introductory example, has the set
N of all nonnegative integers as its domain, and pred(N ) consists of the binary predicate
names <, ≤, ≥, > and the unary predicate names <n , ≤n , ≥n , >n for n ∈ N, which are
interpreted by predicates on N in the obvious way.

� The concrete domainR has the set R of all real numbers as its domain, and the predicates
ofR are given by formulae that are built by first-order means (i.e., by using Boolean con-
nectives and quantifiers) from equalities and inequalities between integer polynomials in
several indeterminates. For example, x + z2 = y is an equality between the polynomials
p(x, z) = x + z2 and q(y) = y; and x > y is an inequality between very simple poly-
nomials. From these equalities and inequalities one can for instance build the formulae
∃z.(x + z2 = y) and∃z.(x + z2 = y) ∨ (x > y). Thefirst formula yields a predicate name
of arity 2 (since it has two free variables), and it is easy to see that the associated predicate
is {(r, s) | r and s are real numbers and r ≤ s}. Consequently, the predicate associated to
the second formula is {(r, s) | r and s are real numbers} = R× R.

� The concrete domain Z is defined just likeR, with the only difference that �Z is the set
of all integers instead of all real numbers.

In addition to numerical domains, Definition 6.1 also captures more abstract do-
mains:

� A given (fixed) relational database DB can be seen as a concrete domain DB, whose
domain is the set of atomic values occurring in DB, and whose predicates are the relations
that can be defined over DB using a query language (such as SQL).

� One can also consider Allen’s interval calculus [Allen, 1983] as concrete domain IC.
Here�IC consists of time intervals, and the predicates are built fromAllen’s basic interval
relations (such as before, after, . . . ) with the help of Boolean connectives.

� Instead of time intervals one can also consider spatial regions (e.g., in R× R), and use as
predicates Boolean combinations of the basic relations of theRegionConnectionCalculus
RCC-8 [Randell et al., 1992; Bennett, 1997].
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Although the syntax and semantics of Description Logics extended by concrete
domains could be defined with the general notion of a concrete domain introduced
in Definition 6.1, the requirement that the extended language should still have
decidable reasoning problems adds some additional restrictions.

To be able to compute the negation normal form of concepts in the extended
language, we must require that the set of predicate names of the concrete domain
is closed under negation, i.e., if P is an n-ary predicate name in pred(D) then there
has to exist a predicate name Q in pred(D) such that QD = (�D)n \ PD. We will
refer to this predicate name by P . In addition, we need a unary predicate name that
denotes the predicate �D. The domainN from above satisfies these two properties
since, e.g., <n = ≥n and (≥0)N = N.

Let us nowclarifywhat kindof reasoningmechanisms are required in the concrete
domain. Let P1, . . . , Pk be k (not necessarily different) predicate names in pred(D)
of arities n1, . . . , nk . We consider the conjunction

k∧

i=1

Pi (x
(i)).

Here x (i) stands for an ni -tuple (x (i)
1 , . . . , x (i)

ni ) of variables. It is important to note
that neither all variables in one tuple nor those in different tuples are assumed to be
distinct. Such a conjunction is said to be satisfiable iff there exists an assignment of
elements of �D to the variables such that the conjunction becomes true in D. We
will call the problem of deciding satisfiability of finite conjunctions of this form
the satisfiability problem for D.

Definition 6.2 The concrete domain D is called admissible iff (i) the set of its
predicate names is closed under negation and contains a name �D for �D, and
(ii) the satisfiability problem for D is decidable.

With the exception ofZ , all the concrete domains introduced above are admissible.
For example, decidability of the satisfiability problem for R is a consequence of
Tarski’s decidability result for real arithmetic [Tarski, 1951; Collins, 1975]. In
contrast, the undecidability of the satisfiability problem for Z is a consequence of
the undecidability of Hilbert’s 10th problem [Matiyasevich, 1971; Davis, 1973].

In the following, we will take the language ALC as the (prototypical) starting
point of our extension.1 In the following, let D be an arbitrary (but fixed) concrete
domain. The interface between ALC and the concrete domain is inspired by
the agreement construct between chains of functional roles (see Chapter 2,
Subsection 2.4.3). With this construct one can, for example, express the concept

1 All the definitions would, of course, also work for any other concept description language. The approach for
combining the reasoning algorithms will work for many other languages, but not for all of them.



224 F. Baader, R. Küsters, and F. Wolter

of all women whose father and husband are of the same age by the expression
Woman � has-father ◦ has-age .= has-husband ◦ has-age. However, one cannot
express that the husband is even older than the father. This becomes possible if we
take the concrete domain N . Then we can simply write

Woman � ∃(has-father ◦ has-age, has-husband ◦ has-age).<.

More generally, our extension, called ALC(D), will allow us to state that a tuple
of chains of functional roles satisfies a (not necessarily binary) predicate, which is
provided by the concrete domain in question.

Thus, ALC(D) extends ALC in two respects. First, the set of role names is now
assumed to be partitioned into a set of functional roles and a set of ordinary roles.
Both types of roles are allowed to occur in value restrictions and in the existential
quantification construct. In addition, there is a new constructor, called existential
predicate restriction, which is defined by adding to the syntax rules forALC the rule

C, D −→ ∃(u1, . . . , un).P,

where P is an n-ary predicate of D and u1, . . . , un are chains of functional roles.
When considering ALC(D)-ABoxes, one must distinguish between names for ab-
stract and for concrete individuals. Concrete predicates P ∈ pred(D) give rise to
additional ABox assertions of the form P(x1, . . . , xn), where x1, . . . , xn are names
for concrete individuals.

Definition 6.3 An interpretation I for ALC(D) consists of a set �I , the abstract
domain of the interpretation, and an interpretation function. The abstract domain
and the given concrete domain must be disjoint, i.e., �D ∩�I = ∅. As before,
the interpretation function associates with each concept name a subset of �I and
with each ordinary role name a binary relation on �I . The new feature is that the
functional roles are now interpreted by partial functions from �I into �I ∪�D.
If u = f1 ◦ · · · ◦ fn is a chain of functional roles, then uI denotes the composition
f I1 ◦ · · · ◦ f In of the partial functions f I1 , . . . , f In .

The semantics of the usual ALC-constructors is defined as before. In particular,
this means that complex concept descriptions are always interpreted as subsets
of the abstract domain �I . The existential predicate restriction is interpreted as
follows:

(∃(u1, . . . , un).P)I = {x ∈ �I | there exist r1, . . . , rn ∈ �D such that
uI1 (x) = r1, . . . , uIn (x) = rn and (r1, . . . , rn) ∈ PD}.
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Above, we have already seen two examples of concepts of ALC(N ). The fol-
lowing ALC(R)-concepts describe rectangles and squares in R× R:

Rectangle = ∃(x, y, b, h).rectangle-cond,
Square = Rectangle � ∃(b, h).equal,

where the concrete predicates rectangle-cond and equal are defined
as equal(x, y)⇔ x = y and rectangle-cond(x, y, b, h)⇔ b > 0 ∧ h > 0. In
rectangle-cond, the first two arguments are assumed to express the x and y coordi-
nates of the lower left corner of the rectangle, while the third and fourth argument
express the breadth and height of the rectangle.We leave it to the reader to define the
concept “pairs of rectangles” where the first component is a square that is contained
in the second component.

A tableau-based algorithm for deciding consistency of ALC(D)-ABoxes for
admissible D was introduced in [Baader and Hanschke, 1991b]. The algorithm
has an additional rule that treats existential predicate restrictions according to their
semantics. The main new feature is that, in addition to the usual “abstract” clashes,
there may be concrete ones, i.e., one must test whether the given combination of
concrete predicate assertions is non-contradictory. This is the reason why we must
require that the satisfiability problem for D is decidable. As described in [Baader
and Hanschke, 1991b], the algorithm is not in PSpace. Using techniques similar
to the ones employed for ALC it can be shown, however, that the algorithm can
be modified such that it needs only polynomial space [Lutz, 1999b], provided that
the satisfiability procedure for D is in PSpace. In the presence of acyclic TBoxes,
reasoning inALC(D) may becomeNExpTime-hard even for rather simple concrete
domains with a polynomial satisfiability problem [Lutz, 2001b].

This technique of combining a tableau-based algorithm for the Description Log-
ics with a satisfiability procedure for the concrete domain can be extended to
more expressive Description Logics (e.g., ALCN and ALCN with agreements
and disagreements). However, this is not true for arbitrary Description Logics with
tableau-based decision procedures. For example, the technique does not work if
the tableau-based algorithm requires some sort of blocking (see Chapter 2, Sub-
section 2.3.2.4) to ensure termination. Technically, the problem is that concrete
predicates can be used to state properties concerning different individuals in the
ABox, and that blocking, which is concerned only with the properties of a single
individual, cannot take this into account. The main idea underlying an undecid-
ability proof for such a logic is that elements of the concrete domain (e.g., R)
can encode configurations of a Turing machine and that one can define a concrete
predicate stating that one configuration is a direct successor of the other. Finally,
the Description Logic must provide some means of representing sequences of con-
figurations of arbitrary length, which is usually the case for Description Logics
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requiring blocking. More concretely, it was shown in [Baader and Hanschke, 1992]
(by reduction from Post’s correspondence problem) that satisfiability of concepts
becomes undecidable if transitive closure (of a single functional role) is added to
ALC(R). Post’s correspondence problem can also be used to show undecidability
of ALC(R) with general inclusion axioms, although one cannot use exactly the
same reduction as for transitive closure (see [Haarslev et al., 1998] for a similar
reduction). A notable exception to the rule of thumb that concrete domains together
with general inclusion axioms lead to undecidability has recently been shown by
Lutz [2001a], who combines ALC with the concrete domain of rational numbers
with equality and inequality predicates.

6.2.1.2 Predicate restrictions on role chains

The role chains occurring in predicate restrictions of ALC(D) are restricted to
chains of functional roles. In [Hanschke, 1992] this restriction was removed. To be
more precise, the syntax rules for ALC are extended by the two rules

C, D −→ ∃(u1, . . . , un).P | ∀(u1, . . . , un).P,

where P is an n-ary predicate of D and u1, . . . , un are chains of (not necessarily
functional) roles.

In this setting, ordinary roles are also allowed to have fillers in the concrete
domain, i.e., both functional and ordinary roles are interpreted as subsets of
�I × (�I ∪�D). Of course, functional roles must still be be interpreted as partial
functions. The extension of the predicate restrictions is defined as

(∃(u1, . . . , un).P)I = {x ∈ �I | there exist r1, . . . , rn ∈ �D such that
(x, r1) ∈ uI1 , . . . , (x, rn) ∈ uIn and (r1, . . . , rn) ∈ PD},

(∀(u1, . . . , un).P)I = {x ∈ �I | for all r1, . . . , rn: (x, r1) ∈ uI1 , . . . , (x, rn) ∈ uIn
implies (r1, . . . , rn) ∈ PD}.

Using the universal predicate restriction one can, for example, define the concept
of parents all of whose children are younger than 4 by the description

Parent � ∀has-child ◦ has-age. ≤4 .

Hanschke [1992] shows that an extension of the Description Logic we have just in-
troduced still has a decidableABox consistency problem, provided that the concrete
domain D is admissible.

6.2.1.3 Predicate restrictions defining roles

In [Haarslev et al., 1998; 1999], ALC(D) was extended in a different direction:
predicate restrictions can now also be used to define new roles. To be more precise,
if P is a predicate of D of arity n + m, and u1, . . . , un and v1, . . . , vm are chains
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of functional roles, then

∃(u1, . . . , un)(v1, . . . , vm).P

is a complex role. These complex roles may be used both in value restrictions and in
the existential quantification construct. The semantics of complex roles is defined as

(∃(u1, . . . , un)(v1, . . . , vm).P)I =
{(x, y) ∈ �I × �I | there exist r1, . . . , rn, s1, . . . , sm ∈ �D such that

uI1 (x) = r1, . . . , uIn (x) = rn, vI1 (y) = s1, . . . , vIm(y) = sm
and (r1, . . . , rn, s1, . . . , sm) ∈ PD}.

For example, the complex role ∃(has-age)(has-age).> consists of all pairs of
individuals having an age such that the first is older than the second.

Unfortunately, it has turned out that the full logic obtained by this extension
has an undecidable satisfiability problem [Haarslev et al., 1998]. To overcome this
problem, Haarslev et al. [1999] define syntactic restrictions on concepts such that
the restricted language (i) is closed under negation, and (ii) has a decidable ABox
consistency problem. Consequently, the subsumption and the instance problem are
also decidable. The complexity of reasoning in thisDescriptionLogic is investigated
in [Lutz, 2001b]. As in the case of acyclic TBoxes, rather simple concrete domains
can already make reasoning NExpTime-hard.

An approach for integrating arithmetic reasoning into Description Logics that
considerably differs from the concrete domain approach described above was pro-
posed by Ohlbach and Koehler [1999].

6.2.2 Modal extensions

Although the Description Logics discussed so far provide a wide choice of con-
structors, usually they are intended to represent only static knowledge and are not
able to express various dynamic aspects such as time-dependence, beliefs of dif-
ferent agents, obligations, etc. For example, in every standard description language
we can define a concept “good car” as, say, a car with an air-conditioner:

GoodCar ≡ Car � ∃part.Airconditioner. (6.1)

However, we have no means to represent the subtler knowledge that only John
believes (6.1) to be the case, while Mary does not think so:

[John believes](6.1) ∧ ¬[Mary believes](6.1).

Nor can we express the fact that (6.1) holds now, but in the future the notion of a
good car may change (since, for instance, all cars will have air conditioners):

(6.1) ∧ 〈eventually〉 ¬(6.1).
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A way to bridge this gap seems quite clear and will be discussed in this and the
next section: one can simply combine a Description Logic with a suitable modal
language treating belief, temporal, deontic or some other intensional operators.
However, there are a number of parameters that determine the design of a modal
extension of a given Description Logic.
(I) First, modal operators can be applied to different kinds of well-formed ex-

pressions of the Description Logic.
One may apply them only to conceptual and assertional axioms, thereby forming

new axioms of the form

[John believes](GoodCar ≡ Car � ∃part.Airconditioner),

[Mary believes] 〈eventually〉 (Rich(JOHN)).

Modal operators may also be applied to concepts in order to form new ones:

[John believes]expensive

i.e., the concept of all objects John believes to be expensive, or

HumanBeing � ∃child.[Mary believes] 〈eventually〉GoodStudent
i.e., the concept of all human beings with a child that Mary believes will eventually
be a good student. By allowing applications of modal operators to both concepts
and axioms we obtain expressions of the form

[John believes](GoodCar ≡ [Mary believes]GoodCar)

i.e., John believes that a car is good if and only if Mary thinks so.
Finally, one can supplement the options above with modal operators applicable

to roles. For example, using the temporal operator [always] (in future) and the role
loves, we can form the new role [always]loves (which is understood as a relation
between objects x and y that holds if and only if x will always love y) to say

(∃[always]loves.Woman)(JOHN)

i.e., John will always love the very same woman (but perhaps not only her), which
is not the same as ([always]∃loves.Woman)(JOHN).
(II) All these languages are interpreted with the help of the possible worlds se-

mantics, in which the accessibility relations between worlds (or points in time, . . . )
treat the modal operators, and the worlds themselves are Description Logic inter-
pretations.

Theproperties of themodal operators are determinedby the conditionswe impose
on the corresponding accessibility relations. For example, by imposing no condition
at all we obtain what is known as the minimal normal modal logic K – although
of definite theoretical interest, it does not have the properties required to model
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operators like [agent A knows], 〈eventually〉, etc. In the temporal case, depending on
the application domain we may assume time to be linear and discrete (for example,
the usual strict ordering of the natural numbers), or branching, or dense, etc. (see
[Gabbay et al., 1994; van Benthem, 1996]). Moreover, we have the possibility to
work with intervals instead of points in time (see Subsection 6.2.4). In epistemic
logic, transitivity of the accessibility relation for agent A’s knowledgemeanswhat is
called positive introspection (A knows what A knows), euclideanness corresponds
to negative introspection (A knows what A does not know), and reflexivity means
that everything known by A is true; see Subsection 6.2.3 for a formulation of
these principles in terms of Description Logics. For more information and further
references consult [Fagin et al., 1995; Meyer and van der Hoek, 1995].
(III) When connecting worlds – that is, ordinary interpretations of the pure

description language – by accessibility relations, we are faced with the problem of
connecting their objects. Depending on the particular application, we may assume
worlds to have arbitrary domains (the varying domain assumption), or we may
assume that the domain of aworld accessible from aworldw contains the domain of
w (the expanding domain assumption), or that all the worlds share the same domain
(the constant domain assumption); see [van Benthem, 1996] for a discussion in the
context of first-order temporal logic. Consider, for instance, the following axioms:

¬[agent A knows](Unicorn ≡ ⊥),
([agent A knows]¬Unicorn) ≡ �.

The former means that agent A does not know that unicorns do not exist, while
according to the latter, for every existing object, A knows that it is not a unicorn.
Such a situation can be modeled under the expanding domain assumption, but
these two formulas cannot be simultaneously satisfied in a model with constant
domains.
(IV) Finally, one should take into account the difference between global (or

rigid) and local (or flexible) symbols. In our context, the former are the symbols
which have the same extension in every world in the model under consideration,
while the latter are thosewhose interpretation is not fixed. Again the choice between
these depends on the application domain: if the knowledge base is talking about
employees of a company then the name John Smith should probably denote the
same person no matter what world we consider, while President of the company
may refer to different persons in different worlds. For a more detailed discussion
consult, e.g., [Fitting, 1993; Kripke, 1980].

To describe the syntax and semantics more precisely we briefly introduce the
modal extensionLnALC ofALC with n unary modal operators ✷1, . . . ,✷n , and their
duals ✸1, . . . ,✸n .
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Definition 6.4 (Concepts, roles, axioms) Concepts and roles of LnALC are defined
inductively as follows: all concept names are concepts, and if C , D are concepts,
R is a role, and ✸i is a modal operator, then C � D, ¬C , ✸iC , and ∃R.C are
concepts.2 All role names are roles, and if R is a role, then ✷i R and ✸i R are roles.

Let C and D be concepts, R a role, and a, b object names. Then expressions of
the form C ≡ D, R(a, b), and C(a) are axioms. If ϕ and ψ are axioms then so are
✸iϕ, ¬ϕ, and ϕ ∧ ψ .

We remind the reader that models of a propositional modal language are based
on Kripke frames, i.e., structures of the form F = 〈W,✁1, . . . ,✁n〉 in which each
✁i is a binary (accessibility) relation on the set of worlds W . What is going on
inside the worlds is of no importance in the propositional framework (see, e.g.,
[Chagrov and Zakharyaschev, 1997] for more information on propositional modal
logics). Models of LnALC are also constructed on Kripke frames; however, in this
case their worlds come equipped with interpretations of ALC .

Definition 6.5 (model) A model of LnALC based on a frame F = 〈W,✁1, . . . ,✁n〉
is a pair M = 〈F, I 〉 in which I is a function associating with each w ∈ W an
ALC-interpretation

I (w) = 〈�I,w, ·I,w〉.
M has constant domain iff �I (v) = �I (w), for all v,w ∈ W . M has expanding
domains iff �I (v) ⊆ �I (w) whenever v ✁i w, for some i .

Definition 6.6 For a model M = 〈F, I 〉 and a world w in it, the extensions C I,w

and RI,w, and the satisfaction relationw |= ϕ (ϕ an axiom) are defined inductively.
The interesting new steps of the definition are:

(i) x ∈ (✸iC)I,w iff ∃v. v ✄i w and x ∈ C I,v;
(ii) (x, y) ∈ (✸i R)I,w iff ∃v. v ✄i w and (x, y) ∈ RI,v;
(iii) w |= ✸iϕ iff ∃v. v ✄i w and v |= ϕ.

An axiom ϕ (resp. a concept C) is satisfiable in a class of modelsM if there is a
model M ∈M and a world w in M such that w |= ϕ (resp. C I,w �= ∅).

Given a class of framesK, the satisfiability problems for axioms and concepts inK
are themost important reasoning tasks; others are reducible to them (see [Wolter and
Zakharyaschev, 1998; 1999b]). Notice that the satisfiability problem for concepts
is reducible to that for axioms since ¬(C ≡ ⊥) is satisfiable iff C is satisfiable.

2 Note that value restrictions (the modal box operators ✷i ) need not explicitly be included here since they can be
expressed using negation and existential restrictions (the modal diamond operators ✸i ).
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Also, the satisfiability problem for models with expanding or varying domain is
reducible to that for models with constant domain (see [Wolter and Zakharyaschev,
1998]).

We are now going to survey briefly the state of the art in the field. We will restrict
ourselves first tomodal Description Logicswhich are not temporal logics. The latter
will be considered in Subsection 6.2.4. Chronologically, the first investigations
of modal Description Logics are [Laux, 1994; Gräber et al., 1995; Baader and
Laux, 1995; Baader and Ohlbach, 1993; 1995]. The papers [Laux, 1994; Gräber et
al., 1995] construct multi-agent epistemic Description Logics in which the belief
operators apply only to axioms; the accessibility relations are transitive, serial,
and euclidean. The decidability of the satisfiability problem for axioms follows
immediately from the decidability of both the propositional fragment of the logic
and ALC, because in languages without modalized concepts and roles there is no
interaction between the modal operators and role quantification (see [Finger and
Gabbay, 1992]). Baader and Laux [1995] introduce a Description Logic in which
modal operators can be applied to both axioms and concepts (but not to roles); it
is interpreted in models with arbitrary accessibility relations under the expanding
domain assumption. The decidability of the satisfiability problem for axioms is
proved by constructing a complete tableau calculus. This tableau calculus was
modified and extended for checking satisfiability inmodels with constant domain in
[Lutz et al., 2002]. It decides satisfiability in constant domainmodels inNExpTime,
which matches the lower bound established in [Mosurovic and Zakharyaschev,
1999] (see also [Gabbay et al., 2002]).

The papers [Wolter and Zakharyaschev, 1998; 1999a; 1999c; 1999b; Wolter,
2000; Mosurovic and Zakharyaschev, 1999] investigate the decision problem for
various families of modal Description Logics in detail. For example, in [Wolter and
Zakharyaschev, 1999c; 1999b] it is shown that the satisfiability problem for arbitrary
axioms (possibly containing modalized roles) is decidable in the class of all frames
and in the class of polymodal S5-frames – frames in which all accessibility relations
are equivalence relations – based on constant, expanding, and varying domains. It
becomes undecidable, however, if common-knowledge epistemic operators (in the
sense of [Fagin et al., 1995]) are added to the language or if the class of frames
consists of the flow of time 〈N,<〉. In [Wolter and Zakharyaschev, 1999a; 1998] it
is shown that for expressivemodal languages – like logics with common knowledge
operators or Propositional Dynamic Logics – the satisfiability problem for axioms
becomes decidablewhenmodalized roles are not included.Wolter [2000] shows that
the satisfiability problem for concepts interpreted in frames with global (i.e., world-
independent) roles is decidable for expressive modal logics based on ALC while
the satisfiability problem for axioms is undecidable for them. However, even the
complexity of the satisfiability problem for concepts becomes non-elementary for
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these logics [Gabbay et al., 2002]. In fact, for various decidable modal Description
Logics only computationally non-elementary decision procedures are known and
the precise complexity has not yet been determined (consult [Gabbay et al., 2002]
for further results).

The papers [Baader and Ohlbach, 1993; 1995] introduce a multi-dimensional
description language that is even more expressive than LnALC (but without object
names). Roughly, in this approach each dimension (object, time, belief, etc.) is
represented by a set Di (of objects,moments of time, possibleworlds, etc.), concepts
are interpreted as subsets of the cartesian product

∏n
i=1 Di , and roles of dimension i

as binary relations between n-tuples that may differ only in the i th coordinate. One
can quantify over both roles and concepts, in any dimension. Thus, in contrast to
LnALC arbitrarilymany dimensions are considered and no dimension is labeled as the
“modal” or “ALC”-one. This language has turned out to be extremely expressive.
The satisfiability problem for the full language is known to be undecidable and even
for natural fragments no sound and complete reasoning procedures have appeared.
Baader and Ohlbach [1995] provide only a sound satisfiability-checking algorithm
for such a fragment.

6.2.3 Epistemic operators

The systems Classic and Loom make it possible for their users to include proce-
dural rules into knowledge bases (see also Chapter 2, Subsection 2.2.5). Such rules
take the form

C ⇒ D,

whereC and D are concepts. The meaning of a procedural rule is different from the
meaning of an inclusion axiom:whileC 
 D represents conceptual knowledge and
says that – no matter what is known about individuals – the concept D subsumes
C , the rule C ⇒ D represents the incidental fact that “if an individual is known to
be an instance of C , then we can conclude that it is an instance of D”. Consider the
following example: suppose a knowledge base � consists of

GreatLogician 
 Professor, ¬Professor(a).
Obviously we can derive ¬GreatLogician(a) from �. In this representation we
assume a conceptual relation between the terms ‘professor’ and ‘great logician’.
More appropriate, however, seems to be the weaker claim that people who are
known to be great logicians are professors: let �′ be the knowledge base which
results from � when GreatLogician 
 Professor is replaced with

GreatLogician⇒ Professor.
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The assertion ¬GreatLogician(a) turns out not to be derivable from �′. The pro-
cedural explanation for this phenomenon is this: in the knowledge base �′ we
do not find an individual belonging to the concept GreatLogician. Therefore the
rule GreatLogician⇒ Professor does not “fire” and nothing new about the world
is derivable by using it. However, Description Logic is aiming at an extensional
semantics for frame-based systems, hence it would be desirable to have a precise
model-theoretic explanation of the behavior of procedural rules as well.

It turns out that adding an epistemic operator together with a possible worlds se-
mantics interpreting it provides uswith the requiredmodels. Integrating the operator
K – ‘the knowledge base knows that’ – intoALC will allow us to rephrase the rule
GreatLogician⇒ Professor by the inclusion axiom KGreatLogician 
 Professor,
which says that all objects that are known to be great logicians are professors. Ac-
tually, it will turn out that extensions of Description Logics by means of epistemic
operators are useful in other contexts as well. We postpone their discussion until we
have introduced some technical prerequisites. We will follow [Donini et al., 1992b;
1998a], where the extension of ALC by epistemic operators was introduced and
investigated.

Formulated in terms of Subsection 6.2.2,we consider the languageL1
ALC inwhich

the modal operator ✷1 (now denoted byK) can be applied to concepts and roles but
not to axioms. Following [Donini et al., 1998a] we call this language ALCK. The
following principles are assumed to govern the epistemic operator (we formulate
them here for K applied to concepts; the formulation for roles is similar):

� KC 
 C (only true facts are known: if an object is known to be an instance of C , then it
is an instance of C);

� KC 
 KKC (positive introspection: if it is known that an object is an instance of C , then
this is known);

� ¬KC 
 K¬KC (negative introspection: if it is not knownwhether an object is an instance
of C , then this is known).

These principles are valid in all models based on aKripke frameF = 〈W,✁〉 iffF is
an S5-frame, or, equivalently, if ✁ is the universal relation onW , i.e., ✁ = W ×W .
So, we consider frames of the form 〈W,W ×W 〉 only.

We assume also that:

� it is known which object an object name denotes (so, object names are assumed to be
global (or rigid) designators),

� the set of existing objects � is known and countably infinite (so, we adopt the constant
domain assumption).

These assumptions together allow us to simplify the possible worlds semantics
considerably: we can identify the set of worlds W with a set of interpretationsM
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(all having the same countably infinite domain � and the same interpretation of
the object names) and the accessibility relation is implicitly given as the universal
relation onM. Hence, we call any set of interpretationsM satisfying these con-
straints a model (for ALCK) and can define the extensions CI,M and RI,M of a
concept C and a role R in an interpretation I inM as follows:

AI,M = AI for atomic concepts A

PI,M = PI for atomic roles P

(¬C)I,M = � \ CI,M
(C1 � C2)

I,M = CI,M1 ∩ CI,M2

(∃R.C)I,M = {a ∈ � | ∃b. (a, b) ∈ RI,M ∧ b ∈ CI,M}
(KC)I,M =

⋂

J∈M
CJ ,M ( = {a ∈ � | ∀J ∈M. a ∈ CJ ,M})

(KR)I,M =
⋂

J∈M
RJ ,M ( = {(a, b) ∈ � | ∀J ∈M. (a, b) ∈ RJ ,M}).

So, KC comprises the set of all objects that are instances of C in every world
regarded as possible.

An ALCK-knowledge base � consists of a set of inclusion axioms and ABox
assertions whose concepts and roles are in ALCK. A model M satisfies � (is a
�-model) iff all inclusion andmembership assertions of� are true in every I ∈M.

So far, we have introduced a rather simple version of the epistemic extensions
of ALC discussed in Subsection 6.2.2. In the present subsection, however, we are
not interested in the satisfiability of epistemic knowledge bases, but in a relation
|= between knowledge bases and assertions such that � |= ϕ iff a knowledge base
knows ϕ under the assumption that “all the knowledge base knows is �”. For
example, if� is empty (the knowledge base knows nothing), then both¬KC(a) and
¬K¬C(a) should bederivable, since the knowledgebase does not knowwhethera is
an instance ofC or not. On the semantic level thismeans that we are not interested in
arbitrary models satisfying� but only in those�-models that refute as manyALC-
assertions as possible. In other words, we consider �-models only with as many
worlds as possible (corresponding to the intuition that more worlds are regarded as
possible if less is known). For example, if � is empty, then the intended models
comprise all interpretations (with a fixed domain and interpretation of the object
names), since all interpretations are regarded as possible by an empty knowledge
base. Here are the precise definitions:

Definition 6.7 An epistemic model for � is a maximal non-empty set of interpre-
tations M satisfying �. The knowledge base � logically implies an assertion ϕ,
written � |= ϕ, if every epistemic modelM for � satisfies ϕ.
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Consequently, |= is a non-monotonic consequence relation: although ∅ |=
(¬KC ∧ ¬K¬C)(a), we haveC(a) |= KC(a). On the propositional level, this type
of reasoning is known as ground non-monotonicS5 (see [Donini et al., 1995; 1997c;
Nardi and Rosati, 1995]).

Reasoning with arbitrary ALCK-knowledge bases has not been investigated. In
fact, all applications considered in the literature require only very small fragments
ofALCK. In what follows, we shall briefly introduce two such fragments and some
of their applications.

6.2.3.1 ALCK as a query language
We first confine ourselves to knowledge bases that are ordinary ALC-ABoxes.
Hence, the epistemic operator K can be used only in queries. Recall that concept
languages can be applied as query languages in a straightforward manner: the an-
swer set of a query consisting of a concept C to a knowledge base � comprises
the set of individuals a with � |= C(a). Queries with epistemic operators enable
us to extract the knowledge which the knowledge base has about its own knowl-
edge. Consider, for example, the knowledge base � = {∃friend.Male(SUSAN)},
which contains incomplete information about Susan. Applications ofK to different
concepts and roles in ∃friend.Male enable us to form a variety of different queries:

� ∃friend.Male; clearly, the answer to this query is {SUSAN}.
� ∃friend.KMale; the answer set is empty, since no known male is a friend of Susan.
� ∃Kfriend.Male; the answer set is empty since we do not find a male individual who is
known to be a friend of Susan.

� K∃friend.Male; the answer set is {SUSAN} since the knowledge base knows that Susan
has a friend who is male.

Observe that, for �′ = �∪ {friend(SUSAN,BOB),Male(BOB)}, the answer set
would consist of SUSAN in all four cases. We refer the reader to [Donini et al.,
1992b; 1998a] for more examples.

Epistemic queries can also be used to formulate integrity constraints. Recall
that integrity constraints can be viewed as epistemic sentences that state what a
knowledge base must know about the world [Reiter, 1990]. For example, suppose
that we want to rule out those knowledge bases that are uncertain about whether
a given course is a course for undergraduates or graduates. This can be expressed
using the query

¬KCourse � (KUndergraduate �KGraduate). (6.2)

A knowledge base satisfies the integrity constraint iff it logically implies the as-
sertion (6.2)(a), for every object name a appearing in it. Observe, by the way,
that the query ¬Course � (Undergraduate � Graduate) has a different meaning:
although ∅ |= (6.2)(a), for all a (corresponding to the intention), ∅ �|= (¬Course �
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(Undergraduate � Graduate))(a). We refer the reader to [Levesque, 1984; Lifs-
chitz, 1991; Reiter, 1990] for a discussion of the use of epistemic queries in general.

What is the computational complexity of querying ALC-ABoxes by means of
ALCK-concepts? The following result is proved in [Donini et al., 1992b; 1998a]:

Theorem 6.8 There is an algorithm for deciding, given anALC-ABox
, an object
name a, and anALCK-concept C, whether
 |= C(a). More precisely, the problem

 |= C(a) is PSpace-complete (w.r.t. the size of C and 
).

Recall that queryingALC-ABoxeswithALC-concepts is PSpace-complete as well
[Hollunder, 1996]. Thus, the additional epistemic operators in queries do not cause
any increase of the computational complexity.

6.2.3.2 Semantics for procedural rules

To capture the meaning of procedural rules as discussed above (and in Chapter 2,
Section 2.2.5), we must admit assertions of the form KC 
 D in the knowledge
base. A rule ABox consists of an ALC-ABox and a set of sentences of the form

KC 
 D,

where C , D are ALC-concepts and C is not equivalent to � (the reason for this
technical condition will be discussed below).

Fortunately, the additional inclusion axioms again do not lead to any increase of
the complexity [Donini et al., 1992b; 1998a].

Theorem 6.9 There is an algorithm for deciding, given a rule ALC-ABox 
, an
object name a, and an ALCK-concept C, whether 
 |= C(a). More precisely, the
problem 
 |= C(a) is PSpace-complete (w.r.t. the size of C and 
).

Observe that this result does not extend to the language with inclusion axioms
of the form KC 
 D, where C is equivalent to �. In this case KC would be
equivalent to� as well, and soKC 
 D would be equivalent to D ≡ �. However,
for knowledge bases with axioms of this type instance checking is known to be
ExpTime-complete [Schild, 1994]. Notice that in applications a rule of the form
� ⇒ C does not make sense.

6.2.3.3 An extension of ALCK
The non-monotonic logic MKNF is an expressive extension of ground non-
monotonic S5, which can simulate in a natural manner Default Logic, Autoepis-
temic Logic, and Circumscription (see [Lifschitz, 1994]). This is achieved by
adding to classical logic not only the operator K (of ground non-monotonic S5)
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but also a second epistemic operator A, which is interpreted in terms of autoepis-
temic assumption. The papers [Donini et al., 1997b; Rosati, 1998] study the corre-
sponding bimodal extension of ALC by means of K and A, called ALCB in what
follows.

We first consider the two operatorsK andA separately: the consequence relation
|= for assertions containing K only is still the one introduced above. On the other
side, for assertions containing A (‘it is assumed that’) only we are interested in
a consequence relation |=AE such that3 � |=AE ϕ iff ϕ belongs to every stable
expansion of �, i.e., iff ϕ belongs to every reasonable theory4 about the world
which a rational agent who assumes only the assertions in� can have. In particular,
it is assumed that agents are capable of introspection. Consider, for example, an
agent assuming precisely � = {AC ≡ �} (‘the set of all objects I assume to be in
C comprises all existing objects’). We still assume that agents know which objects
exist (the constant domain assumption). Hence � can be rephrased as ‘I assume
that all objects belong to C’. Now, according to the autoepistemic approach such
an agent cannot have a coherent theory about the world, for then she would have
to assume as well that C ≡ � from the very beginning.

From the “possible worlds” viewpoint the relation |=AE can be captured as fol-
lows. Firstly, the extension ofALC by A is interpreted in pairs (I,M) in precisely
the same manner as ALCK. However, now we allow that the actual world I is not
inM – corresponding to the idea that assumptions (in contrast to known assertions)
are not always true. Thus we may have (AC)I,M = � but CI,M �= �, which is not
possible for K. The intended models are called AE-models in what follows.

Definition 6.10 An AE-model for a set of assertions � is a set of interpretations
M that satisfies � and such that, for every interpretation I �∈M, � is refuted in
(I,M). Now put � |=AE ϕ iff ϕ is satisfied in all AE-models for �.

So, we do not maximize the set of possible worlds, but we exclude the case that
� is true in an actual world that is not regarded as possible (i.e., is not a member of
M). The consequence relation |=AE is also non-monotonic since ∅ |=AE ¬AC(a)
but C(a) |= AC(a). Observe that |= and |=AE are different: while AC ≡ � has no
AE-models, KC ≡ � has the epistemic model consisting of all interpretations in
which C ≡ �.

How should one interpret the combined language ALCB and define a conse-
quence relation? Following Lifschitz [1994], the intended models (called ALCB-
models) are defined as follows.

3 AE indicates that autoepistemic propositional logic in the sense of [Moore, 1985] is extended here to ALC.
4 In terms of propositional logic a theory T is called reasonable iff the following conditions hold: (0) T is closed

under classical reasoning, (1) if P ∈ T , then AP ∈ T , (2) if P �∈ T , then ¬AP ∈ T .
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Definition 6.11 The ALCB-models for a set of ALCB-assertions � are those
models M satisfying � and the following maximality condition: if a non-empty
set of new worlds N is added to M, K is interpreted in the model M ∪N , and
A is interpreted in the old model M, then � is refuted in some interpretation
from N . Now � logically implies ϕ, in symbols � |= ϕ, iff ϕ is satisfied in every
ALCB-model satisfying �.

Thus, roughly speaking, we still maximize the set of worlds, but now we require
that any larger set of possible worlds contains a world at which � is refuted under
the interpretation of A by means of the original set of possible worlds. But this
corresponds, for the operator A, to the definition of AE-models. Clearly, the new
consequence relation is a conservative extension of the one defined for ALCK
above (and of |=AE as well). Hence using the same symbol for both does not cause
any ambiguity.

The new logic is considerablymore expressive thanALCK. Donini et al. [1997b]
show that Default Logic can be embedded into ALCB more naturally than into
ALCK. They also consider the formalization of integrity constraints in knowledge
bases, which cannot be expressed inALCK, and they discuss how role and concept
closure can be formalized inALCB. Here we confine ourselves to a brief discussion
of the formalization of integrity constraints inALCB. Above we have seen that the
query (6.2) can be used to express the constraint that every course known to the
knowledge base should be known to be for undergraduates or graduates. Sometimes
it is more useful not to formalize integrity constraints as queries, but as part of the
knowledge base (see [Donini et al., 1997b]). However, the addition of constraints
should not change the content of the knowledge base, but just force the knowledge
base to be inconsistent iff the constraint is violated. How can this be achieved in
ALCK? The naive idea is to add the assertion (6.2) ≡ � to the knowledge base
in order to express the constraint. Unfortunately, this does not work: consider the
knowledge base� consisting ofCourse(a), which does not satisfy the integrity con-
straint.However, the knowledgebase obtained from�by adding (6.2) ≡ �does not
tell us that the constraint is violated in � since the extended knowledge base is still
consistent: the setM consisting of all interpretations J (with a fixed domain and
interpretation of a) satisfying aJ ∈ CourseJ ∩ GraduateJ is an epistemic model
for the extended knowledge base. In fact, there is no way to formulate the required
constraint within ALCK. On the other hand, by adding the ALCB-assertion

KCourse 
 AGraduate � AUndergraduate

to �, we obtain a knowledge base without ALCB-models, as required. Note, for
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example, that the model M introduced above is not an ALCB-model for this
knowledge base because any set of worldsN = {I}with I �∈M and aI ∈ CourseI

refutes the maximality condition.
Donini et al. [1997b] present a number of decidability results for reasoning with

ALCB knowledge bases.

6.2.4 Temporal extensions

Temporal extensions are a special form of modal extensions of Description Logics.
However, because of the intended interpretation in flows of time they have a specific
flavor,which is slightly different fromgeneralmodal logic.Chronologically, thefirst
example of a “modalized” Description Logic was the temporal Description Logic
of Schmiedel [1990]. The papers [Bettini, 1997; Artale and Franconi, 1994; 1998]
introduce and investigate variants of Schmiedel’s formalism. The papers mentioned
so far employ an interval-based approach to the semantics of temporal operators.
Point-based temporal Description Logics have been introduced by Schild [1993]
and further investigated by Wolter and Zakharyaschev [1999e].

For simplicity, let us first consider propositional temporal logic and then see how
it can be extended to temporal Description Logic. In what follows we assume that
a flow of time T = 〈T,<〉 consists of a set of points in time T and a precedence
relation < between points in time which is assumed to be a strict linear order. This
corresponds to the intuition that, for any two moments t1, t2 ∈ T , either t1 precedes
t2, t2 precedes t1, or t1 equals t2.

How should one define a satisfiability relation |= between entities in a flowof time
and formulae? There exist (at least) two different ways to select the entities at which
formulas are evaluated: points in time and intervals. While in the first case we are
considering a relation t |= ϕ between time-points t and formulas ϕ, in the second
case we have a relation [u, v] |= ϕ between intervals [u, v] = {z ∈ T | u ≤ z ≤ v},
where u ≤ v, in T and formulae ϕ. Denote by T∗ the set of all intervals in T. Both
point- and interval-based temporal logics are special instances of modal logics:
in the former the worlds of Kripke frames are interpreted as time-points while in
the latter they are interpreted as intervals. Both point- and interval-based temporal
models are easily extended to temporal ALC-models:

Definition 6.12 A point-based temporalALC-modelM = (T, I ) consists of a flow
of time T and a function I which associates with every t ∈ T an interpretation

I (t) = 〈�I,t , ·I,t〉.
An interval-based temporal ALC-model M = 〈T, I 〉 consists of a flow of time T
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and a function I which associates with every interval i ∈ T∗ an interpretation

I (i) = 〈�I,i , ·I,i 〉.

We can now evaluate ALC-concepts and axioms in point- and interval-based
temporal models. For example,

� (M, t) |= Alive(a) iff aI,t ∈ AliveI,t , i.e., a is alive at moment t ,
� (M, i) |= Sleep(a) iff aI,i ∈ SleepI,i , i.e., a is sleeping in the interval i .

We now add temporal operators and quantifiers to ALC, which enable us to relate
different moments and intervals to each other.

For the point-based approach we have discussed appropriate operators already:
we can form the languageL1

ALC and interpret the operator ✷ = ✷1 as ‘always in the
future’. Thus, t |= ✷(C ≡ D) iff t ′ |= C ≡ D for all t ′ > t , (always in the future
of t , C and D are interpreted as the same set), and x ∈ (✸C)I,t iff there exists
t ′ > t such that x ∈ C I,t ′ (eventually x is an instance of C). Often, however, more
expressive temporal operators are required. The operator U (until), for example, is
a binary temporal operator with the following truth-conditions, for all concepts C ,
D and axioms ϕ, ψ :

(i) x ∈ (CUD)I,t iff there exists t ′ > t such that x ∈ DI,t ′ and, for all t ′′ with t < t ′′ < t ′,
x ∈ C I,t ′′ ,

(ii) t |= ϕUψ iff there exists t ′ > t such that t ′ |= ψ and, for all t ′′ with t < t ′′ < t ′, t ′′ |= ϕ.

In this language we can define a mortal as, say, a living being that is alive until it
dies:

Mortal ≡ LivingBeing � (LivingBeing U ✷¬LivingBeing).
This language, interpreted in the flow of time 〈N, <〉, was first considered by

Schild [1993], who showed that the satisfiability problem for concepts (without
modalized or global roles) is decidable. Wolter [2000] proves the decidability for
concepts with global roles (but without modalized roles). However, the complexity
of the decision problem for this language is non-elementary [Gabbay et al., 2002].
Wolter and Zakharyaschev [1999e] prove that even for axioms the satisfiability
problem is decidable, provided that they do not contain modalized or global roles.
Tableau calculi (running in double-exponential time) for the case of expanding and
constant domains were developed in [Sturm and Wolter, 2002; Lutz et al., 2001b].
The satisfiability problem for axioms in the full language with the flow of time
〈N, <〉 is undecidable.

For the interval-based approach we find both languages that extend ALC
by means of temporal operators which are interpreted by accessibility relations
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between intervals [Bettini, 1997] and languages that allow explicit quantification
over intervals [Schmiedel, 1990; Artale and Franconi, 1994; 1998].

We start the discussion with the temporal operators approach. Bettini [1997]
extends the propositional interval-based temporal logic of [Halpern and Shoham,
1991] to ALC (and weaker Description Logics). Thus, given a concept C , we can
now form new concepts like 〈starts〉C and 〈finishes〉C . They are interpreted in
interval-based models 〈T, I 〉 as follows:

� x ∈ (〈starts〉C)I,[u,v] iff ∃t ∈ T . u ≤ t < v ∧ x ∈ C I,[u,t]

(x is an instance of 〈starts〉C in the interval [u, v] iff x is an instance ofC in some interval
starting [u, v]),

� x ∈ (〈finishes〉C)I,[u,v] iff ∃t ∈ T . u < t ≤ v ∧ x ∈ C I,[t,v].

In other words, the modal operators 〈starts〉 and 〈finishes〉 are interpreted in the
standard “possible worlds manner” by means of the accessibility relations ‘starts’
and ‘finishes’, respectively, where (i, j) ∈ starts iff j starts i and (i, j) ∈ finishes
if j finishes i . By adding the converse operators of 〈starts〉 and 〈finishes〉 to the
language, we obtain a language that can express all the thirteen Allen relations
between intervals [Allen, 1983]. Here is a definition of Mortal in this language:

Mortal ≡ LivingBeing � 〈after〉 ¬LivingBeing.
Unfortunately, for the full language based on ALC the satisfiability problem
for concepts is undecidable in all interesting flows of time. This follows from
the fact that propositional interval-based temporal logic is undecidable already
in 〈R,<〉, 〈Q,<〉, 〈N, <〉, etc. (see [Halpern and Shoham, 1991]). However,
there are numerous open decision problems when Description Logics weaker
than ALC and different notions of intervals are considered (see [Bettini, 1997;
Artale and Franconi, 2000; 2001]).

Now, let us consider interval-based temporal extensions of Description Logics
that allow explicit quantification over intervals. Schmiedel [1990] develops an ex-
pressive formalism5 in which we have two quantifiers ✷(i) (‘for all intervals i’)
and ✸(i) (‘there exists an interval i’), where i is a variable ranging over intervals.
The language does not contain negation so that the quantifiers are not mutually
definable. The quantifiers are relativized (alias bounded or guarded) by so-called
time nets, which can, for example, be some relations like starts or finishes between
intervals (metric and granularity constraints are admitted as well). An operator @
specifies the interval at which a concept applies to an object and " denotes a refer-
ence interval. The following concept can be regarded as a definition of the concept
Mortal in Schmiedel’s language:

LivingBeing � (✸(i)(after i ")(¬LivingBeing @ i)).

5 Here and in what follows we use the notation of [Artale and Franconi, 1998].
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Here (after i ") is the time net which relativizes the quantifier ✸(i) by means of
the constraint expressing that i must be after the reference interval denoted by ".
According to this definition, an object x is an instance of Mortal at the reference
interval " iff x is living at " and there exists an interval i that is after ", and at which
x is not living.

Schmiedel [1990] does not address computational problems for his language.
However, it is not difficult to see that, in the presence of negation, this language is
more expressive than that of Bettini [1997] considered above – and thus subsump-
tion is undecidable for all interesting flows of time. The decision problem for the
language without negation appears to be open.

A brief remark concerning the relation between interval-based temporal logic
with and without explicit quantification over intervals is in order. Of course, ex-
plicit quantification provides more expressive power. Using the temporal oper-
ators introduced above, it is not possible to represent relations between more
than two intervals because referring to a fixed reference interval is impossible.
On the other hand, variable-free languages are much closer in spirit to pure
Description Logics and therefore seem to be more natural candidates for temporal-
izations of Description Logics; we refer the reader to [Artale and Franconi, 2000;
2001] for a detailed discussion.

The papers [Artale and Franconi, 1994; 1998] present a number of languages
weaker than Schmiedel’s with a decidable subsumption problem. Among others,
they define a temporal extension of a Description Logic extending ALC with
functional roles. They show decidability of concept subsumption and PSpace-
completeness of satisfiability w.r.t. an empty KB in an unbounded and dense flow
of time. The main reason for the decidability is that the language does not admit
universal quantification over intervals and that the constructors of the underlying
Description Logic cannot be applied to the temporalized part of the language. In
particular, the negation of the underlying Description Logic cannot be used to de-
fine the universal quantifier by means of the existential one. The authors show by
means of a number of examples that their formalism still has enough expressive
power to represent non-trivial actions and plans.

An interesting feature of the subsumption algorithm presented by Artale and
Franconi [1998] is that it consists of two parts: firstly, a normalization procedure
is employed to reduce the subsumption problem for the temporalized Description
Logic to that problem for the pure Description Logic, which can then be solved
with known algorithms [Hollunder and Nutt, 1990].

For a more detailed survey of the state of art in temporal Description Logic we
refer the reader to [Artale and Franconi, 2000; 2001], where one can also find an
introduction to the work of Weida and Litman [1992], who propose a loose hybrid
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integration between Description Logics and constraint networks with the aim of
reasoning about plans.

6.2.5 Representing uncertain and vague knowledge

Description Logics whose semantics is based on classical first-order logic cannot
express vague or uncertain knowledge. To overcome this deficiency, approaches for
integrating probabilistic logic and fuzzy logic into Description Logics have been
proposed. Although both types of approaches assign numerical values to entries
in the knowledge base, they are quite different, not only from a technical point of
view, but also w.r.t. the basic phenomena they are trying to model. We talk about
uncertainty if we deal with propositions that are either true or false, but due to a
lack of information we do not know for certain which is the case. This gives rise
to statements about the probability with which a proposition is assumed to be true.
In contrast, vagueness means that the propositions themselves are only true to a
certain degree. This vagueness is not caused by incomplete knowledge; it is due to
the fact that fuzzy notions, i.e., notions without crisp boundaries (e.g., tall person)
are modeled.

In the following, we will restrict our attention to the probabilistic extensions of
Description Logics introduced in [Heinsohn, 1994; Jaeger, 1994;Koller et al., 1997;
Yelland, 2000] and the fuzzy extensions of Description Logics introduced in [Yen,
1991; Tresp and Molitor, 1998; Straccia, 1998; 2001]. The possibilistic extension
by Hollunder [1994b] can be viewed as lying between these two approaches: possi-
bilistic logic is mainly used tomodel uncertainty, but its formal semantics is defined
in terms of fuzzy sets of interpretations.

6.2.5.1 Probabilistic extensions

Let us first concentrate on how to extend the terminological (TBox) formalism. In
classical Description Logics, one has very restricted means of expressing (and test-
ing for) relationships between concepts. Given two conceptsC and D, subsumption
tells us whether C is contained in D, and the satisfiability test (applied to C � D)
tells us whether C and D are disjoint. Relationships that are in between (e.g., 90%
of all Cs are Ds) can neither be expressed nor be derived.

This deficiency is overcome in [Heinsohn, 1994; Jaeger, 1994] by allowing prob-
abilistic terminological axioms of the form6

P(C |D) = p,

6 Actually, Heinsohn uses a different notation and allows more expressive axioms stating that P(C |D) belongs to
an interval [pl , pu ], where 0 ≤ pl ≤ pu ≤ 1.
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where C, D are concept descriptions and 0 < p < 1 is a real number. Such an
axiom states that the conditional probability for an object known to be in D to
belong to C is p. A given finite interpretation I satisfies P(C |D) = p iff

|(C � D)I |
|DI | = p.

More generally, the formal semantics of the extended language is defined in terms
of probability measures on the set of all concept descriptions (modulo equiv-
alence).

Given a knowledge base P consisting of probabilistic terminological axioms,
the main inference task is then to derive optimal bounds for additional conditional
probabilities. Intuitively,

P |= P(C |D) ∈ [p, q]

iff in all probability measures satisfying P the conditional probability P(C |D) be-
longs to the interval [p, q]. GivenP,C, D, one is interested in finding the maximal
p and minimal q such that P |= P(C |D) ∈ [p, q] is true.

Heinsohn [1994] introduces local inference rules that can be used to derive
bounds for conditional probabilities, but these rules are not complete, that is, in
general they are not sufficient to derive the optimal bounds.

Jaeger [1994] only describes a naive method for computing optimal bounds. A
more sophisticated version of that method reduces the inference problem to a linear
optimization problem. In the following, we will sketch the main idea underlying
this reduction. Assume thatC1, . . . ,Cm are the concept descriptions occurring inP
and P(C |D), and consider all conjunctions D1 � · · · � Dm , where Di is either Ci or
¬Ci . Let A be the set of those conjunctions that are satisfiable. Given a probability
measure on all concept descriptions, the value of this measure on C1, . . . ,Cm is
uniquely determined by the value on A. To be more precise, its value for Ci can
be obtained as the sum of the values for those elements of A that are subsumed by
Ci (i.e., the ones where Ci occurs positively). The idea is to introduce a numeri-
cal variable xt (ranging over the real interval (0, 1)) for each element t ∈ A. For
example, if C1,C2 are two concept names, then A consists of the four elements
t0 = ¬C1 � ¬C2, t1 = ¬C1 � C2, t2 = C1 � ¬C2, and t3 = C1 � C2, for which we
introduce the variables x0, x1, x2, x3, respectively. Thus, the probability associated
with C1 � C2 is x3 and the one for C2 is x1 + x3. Consequently, the probabilistic
terminological axiom P(C1|C2) = 0.7 can be represented by the (linear) constraint
x3 = 0.7(x1 + x3).

We have to find the maximal and minimal values that P(C |D) attains on the set
of values (x0, . . . , xn) satisfying the linear constraints induced by P . The value of
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the function P(C |D) (in terms of the variables xt ) is given by
∑{xt | t ∈ A ∧ t 
 C � D}

∑{xt | t ∈ A ∧ t 
 D} .

Bya simple transformation, this fractional optimization problem can be transformed
into a linear optimization problem [Amarger et al., 1991].

Jaeger [1994] also extends the assertional formalism by allowing probabilistic
assertions of the form

P(C(a)) = p,

whereC is a concept description,a an individual name, and p a real number between
0 and 1. It should be noted that this kind of probabilistic statement is quite different
from the one introduced by the terminological formalism. Whereas probabilistic
terminological axioms state statistical information, which is usually obtained by
observing a large number of objects, probabilistic assertions express a degree of
belief in assertions for specific individuals. The formal semantics of probabilistic
assertions is again defined with the help of probability measures on the set of all
concept descriptions, one for each individual name. Intuitively, the measure for a
tells us for each concept C how likely it is (believed to be) that a belongs to C .

Given a knowledge baseP consisting of probabilistic terminological axioms and
assertions, the main inference task is now to derive optimal bounds for additional
probabilistic assertions. However, if the probabilistic terminological axioms are
supposed to have an impact on this inference problem, the semantics as sketched
so far is not sufficient. In fact, to date there is no connection between the probabil-
ity measure used for the terminological part and the measures for the assertional
part. Intuitively, one wants the measures for the assertional part to “most closely
resemble” the measure for the terminological part, while not violating the proba-
bilistic assertions. Jaeger [1994] uses cross entropy minimization in order to give
a formal meaning to this intuition. To date, there is no algorithm for computing
optimal bounds for P(C(a)), given a knowledge base consisting of probabilistic
terminological axioms and assertions.

The work reported in [Koller et al., 1997], which is restricted to the terminologi-
cal component, has a focus that is quite different from the one in [Heinsohn, 1994;
Jaeger, 1994]. In the latter work, the probabilistic terminological axioms provide
constraints on the set of admissible probability measures. However, these con-
straints may still be satisfied by a large set of distributions, and hence the optimal
interval entailed for the probabilities of interest can be fairly large. In contrast,
Koller et al. [1997] present a framework for the specification of a unique probabil-
ity distribution on the set of all concept descriptions (modulo equivalence). Since
there are infinitely many such descriptions, providing such a (finite) specification
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is a nontrivial task. The basic idea is to specify a distribution on concepts of role-
depth 0, and then to specify how to extend a distribution on concepts of role-depth
n to one on concepts of role-depth n + 1. Koller et al. [1997] employ Bayesian
networks as the basic representation language for the required probabilistic spec-
ifications. The probability P(C) of a concept description C can then be computed
by using inference algorithms developed for Bayesian networks. The complexity
of this computation is linear in the length of C . Under certain restrictions on the
Bayesian networks used in the specification, it is polynomial in the size of that
specification.

Yelland [2000] also combines Bayesian networks and Description Logics. In
contrast to [Koller et al., 1997], thiswork extendsBayesian networks byDL features
rather than the other way round. The Description Logic used in [Yelland, 2000] is
rather inexpressive, but this allows the author to avoid restrictions on the network
that had to be imposed by Koller et al. [1997].

6.2.5.2 Fuzzy extensions

The concepts in Description Logics are interpreted as crisp sets, i.e., an individual
either belongs to the set or not. However, many “real-life” concepts are vague in
the sense that they do not have precisely defined membership criteria. Consider,
for example, the concept of a tall person. It does not make sense to fix an exact
boundary such that persons of height larger than this boundary are tall and others are
not. In fact, what about a person whose height is 1 millimeter below the boundary?
It is more sensible to say that an individual belongs to the concept “tall person”
only to a certain degree n ∈ [0, 1], which depends on the height of the individual.
This is exactly what fuzzy logic allows one to do.

The main idea underlying the fuzzy extensions of Description Logics proposed
in [Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998; 2001] is to leave the syntax
as it is, but to use fuzzy logic for defining the semantics. Thus, an interpretation
now assigns fuzzy sets to concepts and roles, i.e., concept names A are inter-
preted by membership degree functions of the form AI : �I → [0, 1], and role
names R by membership degree functions of the form RI : �I ×�I → [0, 1].
The interpretation of the Boolean operators and the quantifiers must then be
extended from {0, 1} to the interval [0, 1]. Fuzzy logics provide different op-
tions for such an extension. In [Yen, 1991; Tresp and Molitor, 1998; Straccia,
1998; 2001], the usual interpretation of conjunction as minimum, disjunction as
maximum, negation as λx .(1− x), universal quantifier as infimum, and existential
quantifier as supremum is considered. For example,

(∀R.C)I(d) = inf{max{1− RI(d, e),CI(d, e)} | e ∈ �I},
since ∀R.C corresponds to the formula ∀x .(¬R(x, y) ∨ C(y)).
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Tresp and Molitor [1998] also propose an extension of the syntax by so-called
manipulators, which are unary operators that can be applied to concepts. Exam-
ples of manipulators could be “mostly”, “more or less”, or “very”. For example,
if Tall is a concept (standing for the fuzzy set of all tall persons), then VeryTall,
which is obtained by applying the manipulator Very to the concept Tall, is a new
concept (standing for the fuzzy set of all very tall persons). Intuitively, the manipu-
lators modify the membership degree functions of the concepts they are applied to
appropriately. In our example, the membership function for VeryTall should have
its largest values at larger heights than the membership function for Tall. Formally,
the semantics of a manipulators is defined by a function that maps membership
degree functions to membership degree functions. The manipulators considered in
[Tresp and Molitor, 1998] are, however, of a very restricted form.

Lets us now consider what kind of inference problems are of interest in this
context. Yen [1991] considers crisp subsumption of fuzzy concepts, i.e., given
two concepts C, D defined in the fuzzy Description Logic, he is interested in
the question whether CI(d) ≤ DI(d) for all fuzzy interpretations I and d ∈ �I .
Thus, the subsumption relationship itself is not fuzzified. He describes a structural
subsumption algorithm for a rather small fuzzy Description Logic, which is almost
identical to the subsumption algorithm for the corresponding classical Description
Logic. In contrast, Tresp and Molitor [1998] are interested in determining fuzzy
subsumption between fuzzy concepts, i.e., given conceptsC, D, they want to know
to what degreeC is a subset of D. In [Straccia, 1998; 2001] and [Molitor and Tresp,
2000], also ABoxes are considered, where the ABox assertions are equipped with a
degree. In this context one wants to find out to what degree other assertions follow
from the ABox.

Both [Straccia, 1998; 2001] and [Tresp and Molitor, 1998] contain complete
algorithms for solving these inference problems in the respective fuzzy extension of
ALC. Although both algorithms are extensions of the usual tableau-based algorithm
forALC, they differ considerably. For example, the algorithm in [Tresp andMolitor,
1998] introduces numerical variables for the degrees, and produces a linear opti-
mization problem, which must be solved in place of the usual clash test. In contrast,
Straccia deals with the membership degrees within his tableau-based algorithm.

6.2.6 Extensions by default rules

In Description Logics, inclusion axioms of the form C 
 D are interpreted as
universal statements, i.e., all instances of C also belong to D. The same is true
for inferred subsumption relationships. In commonsense reasoning, however, one
often wants to state and infer relationships that are only “normally” true, but may
have exceptions. The most prominent example from the non-monotonic reasoning
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community is the statement that all birds fly; but of course penguins and other
non-flying birds are exceptions. Allowing such default statements has a strong
impact both on the semantics and the reasoning capabilities of Description Logics.
Instead of basing the semantics on classical first-order logic, one must employ a
non-monotonic logic [Ginsberg, 1987]. In fact, conclusions drawn from a given
knowledge base with defaults may ultimately turn out to be false when additional
knowledge is added, and thus must be withdrawn.

Since most of the classical Description Logics can be seen as fragments of
first-order predicate logic, an obvious approach for extending Description Logics
by non-monotonic reasoning capabilities is to take one of the well-known non-
monotonic logics, and restrict the first-order version of this logic to the Description
Logic in question. This approach was employed in [Baader and Hollunder, 1995a],
where Reiter’s default logic [Reiter, 1980] is integrated into Description Logics. In
addition to terminological axioms in the TBox and assertions in the ABox, Baader
and Hollunder allow terminological defaults of the form

C(x) : D(x)

E(x)
,

where C, D, E are concept descriptions (viewed as first-order formulae with one
free variable x). Intuitively, such a default rule can be applied to an ABox individual
a, i.e., E(a) is added to the current set of beliefs, if its prerequisite C(a) is already
believed for this individual and its justification D(a) is consistent with the set of
beliefs. Formally, the consequences of a terminological default theory (consisting
of a TBox, an ABox, and a set of terminological defaults) are definedwith reference
to the notion of an extension, which is a set of deductively closed first-order for-
mulae defined by a fixpoint construction (see [Reiter, 1980]). In general, a default
theory may have more than one extension, or even no extension. Depending on
whether one wants to employ skeptical or credulous reasoning, an assertion F(a)
is a consequence of a default theory iff it is in all extensions or if it is in at least one
extension of the theory.

It should be noted that in this setting the application of default rules is re-
stricted to individuals explicitly present in the ABox.7 For example, assume
that the ABox consists of the fact that Tom has a child that is a doctor, i.e.,
A = {(∃has-child.Doctor)(TOM)}, and that by default we assume that doctors are
usually rich:

Doctor(x) : Rich(x)

Rich(x)
.

7 This agrees with the semantics given to (monotonic) rules in Description Logics (see Subsection 6.2.3 and
Chapter 2, Subsection 2.2.5).
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Intuitively, one might expect that (∃has-child.Rich)(TOM) is a default conse-
quence of this terminological default theory. However, since the ABox does not
contain a name for Tom’s child, the default cannot be applied to this “implicit”
individual, and thus one cannot conclude that Tom has a rich child by default.
Baader and Hollunder [1995a] give two reasons that justify restricting the appli-
cation of defaults to explicit individuals. From a semantic point of view, adapting
Reiter’s treatment of implicit individuals via skolemization is quite unsatisfactory,
since semantically equivalent (but syntactically different) ABoxes may lead to dif-
ferent default consequences. From the algorithmic point of view, the application
of defaults to implicit individuals is problematic since it may lead to an undecid-
able default consequence relation, even though the Description Logic employed is
decidable. In contrast, the restriction of default application to explicit individuals
ensures that reasoning in terminological default theories stays decidable whenever
reasoning in the underlying Description Logic is decidable.

A major drawback, which terminological default logic inherits from general
default logic, is that it does not take precedence of more specific defaults over more
general ones into account. For example, assume that we have a default that says
that doctors are usually rich, and another one that says that general practitioners are
usually not rich, and that classification shows that general practitioners are doctors.
Intuitively, for any general practitioner the more specific second default should be
preferred, which means that there should be only one default extension, in which
the general practitioner is not rich. However, in default logic the second default has
no priority over the first one, which means that one also gets a second extension
where the general practitioner is rich. This behavior has already been criticized
in the general context of default logic, but it is all the more problematic in the
terminological case where the emphasis lies on the hierarchical organization of
concepts. To overcome this problem, Baader and Hollunder [1995b] first define a
prioritized version ofReiter’s default logic,where priorities are given by an arbitrary
partial order on defaults. In the terminological case, the priority is induced by the
subsumption relationship between prerequisites of defaults. A similar approach is
proposed in [Straccia, 1993], with the main difference that in that paper the defaults
also influence the priority order. In addition, Straccia also allows defaults of the form

A(x) ∧ r (x, y) : C(y)

C(y)
,

where A is an atomic concept, r a role name, and C a concept description. Such a
default can, for example, be used to say that usually a child of a doctor is again a
doctor.

A quite different proposal for how to treat defaults in Description Logics can be
found in [Quantz and Royer, 1992]. There, preference semantics [Shoham, 1987]



250 F. Baader, R. Küsters, and F. Wolter

is employed to define the semantics of default assertions C ❀ D, which are in-
tuitively interpreted as saying: “whenever an object is an instance of C , it is also
an instance of D, unless this is in conflict with other knowledge”. Though on this
intuitive level themeaning of the defaultC ❀ D coincides with that of the termino-
logical default C(x) : D(x)/D(x), the formal semantics (and thus also the default
consequences) differ significantly. The semantics proposed by Quantz and Royer
is based on a preference relation on models, which tries to minimize the excep-
tions to defaults while maximizing the number of defaults that have been fired. In
contrast to the work mentioned above, Quantz and Royer do not restrict reasoning
with defaults to the derivation of concept assertions of the form C(a). They also
consider default subsumption between concepts. However, default subsumption is
reduced to reasoning about individuals. The subsumption relationship C 
 D fol-
lows by default from the knowledge base iff the knowledge base extended by C(a)
implies D(a) by default, where a is a new individual name. Designing reasoning
methods for such a model-based approach to non-monotonic reasoning is rather
hard. Quantz and Royer only provide some ideas for how to obtain a sound but
incomplete procedure.

Default subsumption is also considered in [Padgham and Zhang, 1993], where
non-monotonic inheritance networks [Horty et al., 1987] are extended in the di-
rection of Description Logics, though the Description Logic employed is of a very
limited expressive power.

6.3 Non-standard inference problems

All DL systems provide their users with standard inference services like computing
the subsumption hierarchy and testing ABox consistency. In some applications it
has turned out, however, that these services are not quite sufficient for providing
an optimal support when building and maintaining large DL knowledge bases. For
this reason, some DL systems (e.g., Classic) provide their users with additional
system services, which can formally be reconstructed as new types of inference
problems.

First, the standard inferences can be applied after a new concept has been de-
fined to find out whether the concept is non-contradictory or whether its place
in the taxonomy coincides with the intuition of the knowledge engineer; how-
ever, these inferences do not directly support the process of actually defining the
new concept. To overcome this problem, the non-standard inference services of
computing the least common subsumer and the most specific concept have been
proposed.

Second, if a knowledge base is maintained by different knowledge engineers, one
needs support for detecting multiple definitions of the same intuitive concept. Since
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different knowledge engineers might use different names for the “same” primitive
concept, the standard equivalence test may not be adequate to check whether
different descriptions refer to the same notion. The non-standard inference service
unification of concept descriptions tackles this problem by allowing concept names
to be replaced by appropriate concept descriptions before testing for equivalence.
Matching is a special case of unification, which has, for example, been used for
pruning irrelevant parts of large concept descriptions before displaying them to
the user.

Third, and very abstractly speaking, rewriting of concept descriptions allows one
to transform a given concept description C into a “better” description D, which
satisfies certain optimality criteria (e.g., small size) and is in a certain relationship
(e.g., equivalence or subsumption) with the original description C .

Before describing the different non-standard inferences in more detail, we start
with some general remarks on how these new problems have until now been tackled
in the literature. An overview of the state of the art in this field and detailed proofs
of several of the results mentioned below can be found in [Küsters, 2001].

6.3.1 Techniques for solving non-standard inferences – a general remark

Approaches for solving the new inference problems are usually based on an ap-
propriate characterization of subsumption, which can be used to obtain a structural
subsumption algorithm. First, the concept descriptions are turned into a certain
normal form, in which implicit facts have been made explicit. Second, the structure
of the normal forms is compared appropriately. This is one of the reasons why most
of the results on non-standard inferences are restricted to languages that can be
treated by structural subsumption algorithms.

One can distinguish two kinds of normal forms proposed in the literature. In
one approach, called language-based approach in the sequel, the normal form of
a concept description is given in terms of certain finite or regular sets of words
over the alphabet of all role names. Then, subsumption can be characterized via the
inclusion of these sets (see Chapter 2, Subsection 2.3.3.2). The second approach,
called graph-based in the following, turns concept descriptions into so-called de-
scription graphs. Here, subsumption of concept descriptions is characterized via
the existence of certain homomorphisms between the corresponding description
graphs. The structural subsumption algorithm introduced in Chapter 2, Subsec-
tion 2.3.1, can be represented in this way (although this was not explicitly done in
Chapter 2).

For the sublanguageALN of Classic, the graph-based approach can be seen as
a special implementation of the language-based approach [Baader et al., 1998a].
In general, however, either the language-based or the graph-based approach may
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turn out to be more appropriate, depending on the Description Logic under con-
sideration. On the one hand, the language-based approach is particularly useful
for characterizing subsumption between cyclic concept descriptions, i.e., descrip-
tions defined by means of cyclic terminologies in FL0 andALN [Baader, 1996b;
Küsters, 1998]. On the other hand, the graph-based approach can be employed to
handle fullClassic [Borgida and Patel-Schneider, 1994] as well asALE [Baader et
al., 1999b], which extends FL0 by primitive negation and existential restrictions.
Although Borgida and Patel-Schneider did not explicitly characterize subsump-
tion in terms of homomorphisms between description graphs, their subsumption
algorithm does in fact check for the existence of an appropriate homomorphism.

The known approaches for solving non-standard inference problems are usually
based on one of the two approaches for characterizing subsumption, depending on
the Description Logic of choice. In the sequel, we will give an idea of how to solve
the inference problems by mainly looking at the language-based approach for the
Description Logic FL0. We will also briefly comment on how to treat extensions
of FL0.

6.3.2 Least common subsumer and most specific concept

Intuitively, the least common subsumer of a given collection of concept descriptions
is a description that represents the properties that all the elements of the collection
have in common. More formally, it is the most specific concept description that
subsumes the given descriptions:

Definition 6.13 Let L be a description language. A concept description E of L
is the least common subsumer (lcs) of the concept descriptions C1, . . . ,Cn in L
(lcs(C1, . . . ,Cn) for short) iff it satisfies

(i) Ci 
 E for all i = 1, . . . , n, and
(ii) E is the leastL-concept description satisfying (i), i.e., if E ′ is anL-concept description

satisfying Ci 
 E ′ for all i = 1, . . . , n, then E 
 E ′.

As an easy consequence of this definition, the lcs is unique up to equivalence.
In fact, if E1 and E2 are both least common subsumers of the same collection of
concepts, then E1 
 E2 (since E2 satisfies (i) and E1 is the least concept description
satisfying (i)). The subsumption relationship E2 
 E1 can be derived analogously.
It should be noted, however, that the lcs need not always exist. This can have
two different reasons: (a) there may be several subsumption incomparable minimal
concept descriptions satisfying (i) of the definition; (b) theremay be an infinite chain
of more and more specific descriptions satisfying (i). It is easy to see, however, that
for Description Logics allowing conjunction of descriptions (a) cannot occur.
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The lcs was first introduced by Cohen et al. [1992] as a new inference task that
is useful for a number of different reasons. First, finding the most specific concept
that generalizes a set of examples is a common operation in inductive learning,
called learning from examples. Cohen and Hirsh [1994a] as well as Frazier and
Pitt [1994] investigate the learnability of sublanguages of Classic with regard to
the PAC learning model proposed by Valiant [1984]. The lcs-computation is used
as a subprocedure in their learning algorithms. Experimental results concerning the
learnability of concepts based on computing the lcs can be found in [Cohen and
Hirsh, 1994b].

Another motivation for considering the lcs is to use it as an alternative to disjunc-
tion. The idea is to replace disjunctions likeC1 � · · · � Cn by the lcs ofC1, . . . ,Cn .
In [Cohen et al., 1992; Borgida and Etherington, 1989], this operation is called
knowledge base vivification. Although, in general, the lcs is not equivalent to the
corresponding disjunction, it is the best approximation of the disjunctive concept
within the available Description Logic. The use of such an approximation is moti-
vated by the fact that, inmany cases, addingdisjunctionwould increase the complex-
ity of reasoning. Observe that, if the Description Logic already allows disjunction,
we have lcs(C1, . . . ,Cn) ≡ C1 � · · · � Cn . In particular, this means that, for such
Description Logics, the lcs is not really of interest.

Finally, as proposed in [Baader and Küsters, 1998; Baader et al., 1999b], the
lcs operation can be used to support the “bottom-up” construction of DL knowl-
edge bases. In contrast to the usual “top-down” approach, where the knowledge
engineer first defines the terminology of the application domain in the TBox and
then uses this terminology when describing individuals in the ABox, the “bottom-
up” approach proceeds as follows. The knowledge engineer first specifies some
“typical” examples of a concept to be defined using individuals in the ABox.
Then, in a second step, these individuals are generalized to their most specific
concept, i.e., a concept description that (i) has all the individuals as instances,
and (ii) is the most specific description satisfying property (i). Finally, the knowl-
edge engineer inspects and possibly modifies the concept description obtained this
way.

Let us now define themost specific concept of an ABox individual in more detail.

Definition 6.14 A concept description E in some description language L is the
most specific concept (msc) of the individuals a1, . . . , an defined in an ABox A
(msc(a1, . . . , an) for short) iff

(i) A |= E(ai ) for all i = 1, . . . , n, and
(ii) E is the least concept satisfying (i), i.e., if E ′ is an L-concept description satisfying

A |= E ′(ai ) for all i = 1, . . . , n, then E 
 E ′.
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The task of computing the msc can be split into two subtasks: computing the most
specific concept of a single individual, and computing the least common subsumer
of a given finite number of concepts. In fact, it is easy to see that msc(a1, . . . , an) ≡
lcs(msc(a1), . . . ,msc(an)).

6.3.2.1 Computing the lcs and the msc

We will now give an intuition on how to compute the lcs for the Description Logic
FL0 and an extension, and briefly comment on the problems that arise when con-
sidering the msc. As mentioned above, the first step towards an algorithm for
computing the lcs is to characterize subsumption of concept descriptions. For the
Description LogicFL0, wewill present such a characterization using the language-
based approach.

The normal form of FL0-concept descriptions employed in the language-based
approach is the so-called concept-centered normal form (CCNF), which has already
been introduced in Chapter 2, Subsection 2.3.3.2. For example, using the equiva-
lence ∀R.(C � D) ≡ ∀R.C � ∀R.D and commutativity of concept conjunction, the
FL0-concept description C = ∀R.(∀S.A � ∀R.B) � ∀S.∀S.A can be transformed
into CCNF as follows:

C ≡ ∀R.∀S.A � ∀S.∀S.A � ∀R.∀R.B
≡ ∀{RS, SS}.A � ∀{RR}.B.

Recall that ∀{RS, SS}.A has been introduced in Chapter 2, Subsection 2.3.3.2 as an
abbreviation for ∀R.∀S.A � ∀S.∀S.A. Similarly, ∀{RR}.B abbreviates ∀R.∀R.B.

In general, if NC is a finite set of atomic concepts and NR is a finite set of role
names, then the CCNF of a concept C built using only these names is of the form

C ≡ �
A∈NC

∀UA.A,

where UA is a finite set of words over the alphabet of role names, i.e., UA ⊆ N ∗R .
Note that ∀∅.A represents the universal concept�, and ∀{ε}.A for the empty word
ε is equivalent to A.

If the CCNF of D is�A∈NC ∀VA.A, then subsumption of C by D can be charac-
terized as follows:

Proposition 6.15 C 
 D iff VA ⊆ UA for all A ∈ NC.

As an easy consequence, we obtain

Corollary 6.16 lcs(C, D) ≡ �A∈NC ∀(UA ∩ VA).A.
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By Proposition 6.15, this concept description obviously subsumes C and D.
Moreover, UA ∩ VA is the largest set contained in both UA and VA, and thus
�A∈NC ∀(UA ∩ VA).A is in fact the least concept subsuming both C and D.

As an example consider the conceptC specified above and D ≡ ∀{RS, RR}.A �
∀{RR, SR}.B. Then, lcs(C, D) ≡ ∀{RS}.A � ∀{RR}.B.

For Description Logics extending FL0 by constructs that can express unsatisfi-
able concepts, like⊥, the language-based approach can still be applied. However, in
order to characterize subsumption, we need to consider certain infinite regular lan-
guages instead of finite ones. The reason is that⊥ is subsumed by an infinite number
of concept descriptions. For example, although ∀{R, RSR}.⊥ 
 ∀{RR}.⊥, we do
not have V⊥ = {RR} ⊆ {R, RSR} =: U⊥. However, we know that ∀{R}.⊥ is sub-
sumed by ∀{Rw}.⊥ for any word w of the alphabet NR . Consequently, we must
use U⊥·N ∗R = {vw | v ∈ U⊥ and w ∈ N ∗R} in place of U⊥ in the inclusion test. For
this reason, the lcs must also be described in terms of possibly infinite regular lan-
guages. As a simple example, consider the concept descriptions C ≡ ∀{R, SR}.⊥
and D ≡ ∀{RS, S}.⊥. Then,

lcs(C, D) ≡ ∀({R, SR}·N ∗R ∩ {RS, S}·N ∗R).⊥
≡ ∀({RS, SR}·N ∗R).⊥
≡ ∀{RS, SR}.⊥.

Adetailed description of how to compute the lcs inALN , which extendsFL0 by
⊥, atomic complement, and number restrictions, is given in [Baader and Küsters,
1998]. Moreover, Baader and Küsters investigate cyclic ALN -concept descrip-
tions, which are defined in terms of cyclic terminologies with greatest fixpoint
semantics. In this context, the languages UA introduced above can be arbitrary
regular languages (see also Chapter 2, Subsection 2.3.3.2).

Cyclic descriptions become necessary if one wants to guarantee the existence of
the msc. Consider, for example, the ABox consisting only of the assertion R(a, a).
Then, we know that msc(a) 
 ∀R. · · · ∀R.(� 1 R) for arbitrarily deep nesting of
value restrictions. Baader and Küsters show that there does not exist an acyclic
ALN -concept description presenting the msc of a. However, the msc of indi-
viduals described in ALN -ABoxes can always be represented by a cyclic ALN -
concept description. In our example,msc(a) can be represented by the concept A de-
fined by A ≡ (= 1 R) � ∀R.A, if this definition is interpreted with greatest fixpoint
semantics.

Using the graph-based approach, the lcs can be computed for the Description
Logic that extends FL0 by the same-as construct [Cohen and Hirsh, 1994a;
Frazier and Pitt, 1994; Küsters and Borgida, 2001], for the language ALE , which
extends FL0 by full existential quantification and primitive negation [Baader
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et al., 1999b], and for the language ALEN , which extends ALE by number
restrictions [Küsters and Molitor, 2001b]. On the one hand, it is not clear how to
handle these languages with the language-based approach. On the other hand, up
to now the graph-based approach cannot deal with cyclic concept descriptions,
which are needed for computing the msc. Consequently, for the extensions of FL0

treated with the help of the graph-based approach, the msc can currently only be
approximated [Cohen and Hirsh, 1994b; Küsters and Molitor, 2001a].

6.3.3 Unification and matching

Unification andmatching are non-standard inferences that allowus to replace certain
concept names by concept descriptions before testing for equivalence or subsump-
tion. This capability turns out to be useful when maintaining (large) knowledge
bases. In this subsection, we will first introduce unification and matching and men-
tion the main motivations for considering these new inference tasks. We will then
review the results available in the literature, and give an intuition on how unification
problems in the small language FL0 can be solved.

6.3.3.1 Unification

Unification of concepts was first introduced by Baader and Narendran [1998],
motivated by the following application problem. If several knowledge engineers are
involved in defining new concepts, and if this knowledge acquisition process takes
rather long (several years), it happens that the same (intuitive) concept is introduced
several times, often with slightly differing descriptions. Testing for equivalence of
concepts is not always sufficient to find out whether, for a given concept description,
there already exists another concept description in the knowledge base describing
the same notion. As an example, let us ask whether the following twoFL0-concept
descriptions might denote the same (intuitive) concept.

∀has-child.∀has-child.Rich � ∀has-child.Rmr,

Acr � ∀has-child.Acr � ∀has-child.∀has-spouse.Rich.
The answer is yes, since replacing the concept name Rmr by the description Rich �
∀has-spouse.Rich and Acr by ∀has-child.Rich yields the descriptions

∀has-child.∀has-child.Rich � ∀has-child.(Rich � ∀has-spouse.Rich),
∀has-child.Rich � ∀has-child.∀has-child.Rich � ∀has-child.∀has-spouse.Rich,

which are obviously equivalent. Thus, under the assumption that Rmr stands for
“Rich and married rich” and Acr for “All children are rich”, we can conclude that
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both descriptions are meant to express the concept “All grandchildren are rich and
all children are rich and married rich”.

A substitution of concept descriptions for concept names that makes two concept
descriptionsC, D equivalent is called a unifier ofC and D. Of course, before testing
for unifiability, onemust decidewhich of the concept names the unifier is allowed to
replace. These names are then called concept variables to distinguish them from the
usual concept names, which cannot be replaced. In the above example, the strange
acronyms Acr and Rmr were considered to be variables, whereas Rich was treated
as a (non-replaceable) concept name. Concept descriptions containing variables
are called concept patterns. More precisely, FL0-concept patterns are defined by
means of the following syntax rules:

C, D −→ X | A | ∀R.C | C � D
where X stands for concept variables.

Now, a substitution in FL0 is a mapping from the concept variables into the
set of FL0-concept descriptions. An example is the substitution {Rmr 0→ Rich �
∀has-spouse.Rich, Acr 0→ ∀has-child.Rich} used in our example. The application
of a substitution can be extended from variables to FL0-concept patterns in the
usual way (as exemplified above).

Definition 6.17 Let C, D be FL0-concept patterns. Then, a substitution σ is a
unifier of the unification problem C ≡? D iff σ (C) ≡ σ (D).

Of course, it is not necessarily the case that concept descriptions that are unifiable
in this way are really meant to represent the same notion. A unifiability test can,
however, suggest to the knowledge engineer possible candidate descriptions.

6.3.3.2 Matching

Matching can be seen as a special case of unification, where one of the two ex-
pressions to be unified does not contain variables [Baader and Narendran, 1998;
2001]. Thus, a matching problem is of the form C ≡? D where C is a concept
description and D a concept pattern. A substitution σ is a matcher of this problem
iff C ≡ σ (D).

Borgida and McGuinness [1996] have introduced a different notion of matching,
whichwecallmatchingmodulo subsumption to distinguish it frommatchingmodulo
equivalence, as introduced above. A matching problem modulo subsumption is of
the form C 
? D, where C is a concept description and D is a concept pattern.
Such a problem asks for a substitution σ such that C 
 σ (D).
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Since σ is a solution of C 
? D iff σ solves C ≡? C � D, matching modulo
subsumption can be reduced to matching modulo equivalence, and thus to unifica-
tion. However, in the context of matching modulo subsumption, one is interested
in finding “minimal” solutions of C 
? D, i.e., σ should satisfy the property that
there does not exist another substitution δ such thatC 
 δ(D) � σ (D). In addition,
Baader et al. [1999a] introduce side conditions of the form X 
 E and X � E ,
with X a variable and E a concept pattern, to further restrict possible substitutions
for the variables occurring in the matching problem.

The original reason for introducing matching modulo equivalence was (i) to
help filter out unimportant aspects of complicated concepts appearing in large
knowledge bases, and (ii) to specify patterns for explaining proofs carried out
by Description Logic systems [McGuinness and Borgida, 1995]. For example,
matching the concept pattern

D = ∀research-interests.X
against the description

C = ∀pets.Cat � ∀research-interests.AI � ∀hobbies.Gardening
yields the minimal matcher σ = {X 0→ AI}, and thus finds the scientific interest
described in the concept, filtering out the other aspects described by C .

Another motivation for matching as well as unification can be found in the area
of integrating data or knowledge base schemas represented in some Description
Logic. An integrated schema can be viewed as the union of the local schemas along
with some interschema assertions satisfying certain conditions. Finding such inter-
schema assertions can be supported by solving matching or unification problems.
Borgida and Küsters [2000] propose a formal framework for schema integration,
and provide initial theoretical as well as experimental results concerning this ap-
plication of unification and matching.

6.3.3.3 Results on matching and unification

As with computing the lcs, the algorithms for matching that can be found in the
literature follow either the language-based or the graph-based approach. Matching
modulo subsumption for a description language containing most of the constructs
available in Classic has been considered in [Borgida and McGuinness, 1996].
Borgida and McGuinness describe a polynomial-time matching algorithm, which
follows the graph-based approach. However, this algorithm cannot be applied to
arbitrary patterns, and it is not complete. Using the language-based approach, com-
plete and polynomial-time algorithms formatchingmodulo equivalence andmatch-
ing modulo subsumption in FL0 were presented in [Baader and Narendran, 1998;
2001]. This result was extended to the languageALN by Baader et al. [1999a] and
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its extension ALN reg by the role constructors union, composition, and transitive
closure byKüsters [2001]. Baader et al. [2001] considermatching under side condi-
tions inmore detail. Basically, subsumption conditions of the form X 
 E leave the
complexity of matching in ALN polynomial, whereas strict subsumption condi-
tions X � E cause np-hardness. Matching inALE based on the characterization of
subsumption by homomorphism between graphs has been investigated in [Baader
and Küsters, 2000]. It is shown that matching modulo equivalence is np-complete,
and that appropriate matchers can be computed in exponential time. Finally, com-
plete algorithms for matching in Classic are provided by Küsters [2001].

For unification, the only results available to date are for the small Description
LogicFL0 and its extensionFLreg by the role constructors union, composition, and
transitive closure. In [Baader and Narendran, 1998; 2001] it is shown that deciding
unifiability of FL0-patterns is an ExpTime-complete problem, and in [Baader and
Küsters, 2001] this result is extended to FLreg. In the remainder of this subsection,
we will try to give a flavor of how to solve unification problems in FL0.

As an immediate consequence of Proposition 6.15, equivalence of FL0-concept
descriptions C = �A∈NC ∀UA.A and D = �A∈NC ∀VA.A in CCNF can be charac-
terized as follows:

C ≡ D iff UA = VA for all A ∈ NC . (6.3)

This fact can be used to turnFL0-unification problems into certain formal language
equations, which then can be solved using tree automata.

Let us illustrate this by the example from Subsection 6.3.3.1. There, we consid-
ered the unification problem8

∀{cc}.R � ∀{c}.X ≡? ∀{ε, c}.Y � ∀{cs}.R.
As an easy consequence of (6.3), a substitution σ of the form

{X 0→ ∀UX .R, Y 0→ ∀UY .R},
whereUX ,UY are sets of words over the alphabet {c, s}, is a unifier of this problem
iff the assignment X = UX and Y = UY solves the formal language equation

{cc} ∪ {c}·X = {cs} ∪ {ε, c}·Y.
For example, the unifier {X 0→ R � ∀s.R, Y 0→ ∀c.R} corresponds to the solution
X = {ε, s}, Y = {c} of the above formal language equation. In general, unification
problems correspond to systems of formal language equations of the form

S0 ∪ S1·X1 ∪ · · · ∪ Sn·Xn = T0 ∪ T1·X1 ∪ · · · ∪ Tn·Xn,
8 To increase readability, has-spouse is replaced by s, has-child by c, Rich by R, and Rmr,Acr by the variables
X, Y . In addition, we have already transformed the patterns into their CCNF.
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where the Si , Ti are given finite sets of words and the Xi are variables ranging
over finite sets of words. In [Baader and Narendran, 1998; 2001] it is shown that
solvability of such a system of equations can be reduced (in exponential time)
to the emptiness problem for automata on finite trees. This yields an ExpTime-
decision procedure for unification in FL0. For unification in FLreg, the Si , Ti are
regular languages, and to test the equation for solvability onemust employ automata
working on infinite trees.

6.3.4 Concept rewriting

A general framework for rewriting concepts using terminologies has been proposed
in Baader et al. [2000]. Assume thatL1,L2, andL3 are three description languages,
and let C be an L1-concept description and T an L2-TBox. We are interested in
rewriting (i.e., transforming) C into an L3-concept description D such that C and
D are in a certain relationship (e.g., equivalence, subsumption w.r.t. T ) and such
that D satisfies certain optimality criteria (e.g., being of minimal size).

This very general framework has several interesting instances. In the following,
we will discuss the three most promising ones.

The first instance is the translation of concept descriptions from one Descrip-
tion Logic into another. Here, we assume that L1 and L3 are different description
languages, and that the TBox T is empty. By trying to rewrite an L1-concept C
into an equivalent L3-concept D, one can find out whether C is expressible in L3.
In many cases, such an exact rewriting may not exist. In this case, one can try to
approximate C by an L3-concept from above (below), i.e., find a minimal (maxi-
mal) concept description D in L3 such C 
 D (D 
 C). An inference service that
can compute such rewritings could, for example, support the transfer of knowledge
bases between different systems. First results in this direction for the case where
L1 is ALC and L3 is ALE can be found in [Brandt et al., 2001].

The second instance comes from the database area, where the problem of rewrit-
ing queries using views is a well-known research topic [Beeri et al., 1997]. The aim
is to optimize the runtime of queries by using cached views, which allows one to
minimize the (more expensive) access to source relations. In the context of the above
framework, views can be regarded as TBox definitions and queries as concept de-
scriptions. Beeri et al. [1997] investigate the instance where L1 = L2 = ALCNR
and L3 = {�,�}. More precisely, they are interested in maximally contained total
rewritings, i.e., D should be subsumed by C , contain only concept names defined
in the TBox, and be a maximal concept (w.r.t. subsumption) satisfying these prop-
erties. They show that such a rewriting is computable (whenever it exists).

The third instance of the general framework, which was first proposed in [Baader
and Molitor, 1999], tries to increase the readability of large concept descriptions
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by using concepts defined in a TBox. The motivation comes from the experi-
ences made with non-standard inferences (like lcs, msc and matching) in ap-
plications. The concept descriptions produced by these services are usually un-
folded (i.e., do not use defined names), and are thus often very large and hard to
read and comprehend. Therefore, one is interested in automatically generating
an equivalent concept description of minimal length that employs the concept
names defined in the underlying terminology. Referring to the framework, one
thus considers the case where L = L1 = L2 = L3 and the TBox is nonempty.
For a given concept description C and a TBox T in L one is interested in
an L-concept description D (containing concept names defined in T ) such
that C ≡T D and the size of D is minimal. Rewriting in this sense has been
investigated for the languages ALN and ALE [Baader and Molitor, 1999;
Baader et al., 2000]. Rewritings can be computed by a nondeterministic poly-
nomial algorithm that uses an oracle for deciding subsumption. The corresponding
decision problem (i.e., the question whether there exists a rewriting of size ≤ k for
a given number k) is np-hard for both languages.
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Abstract

A DL-based knowledge representation system is more than an inference engine for
a particular Description Logic. A knowledge representation system must provide a
number of services to human users, including presentation of the information stored
in the system in a manner palatable to users and justification of the inferences
performed by the system. If human users cannot understand what the system is
doing, then the development of knowledge bases is made much more difficult or
even impossible. A knowledge representation systemmust also provide a number of
services to application programs, including access to the basic information stored in
the system but also including access to the machinations of the system. If programs
cannot easily access and manipulate the information stored in the system, then the
development of applications is made much more difficult or even impossible.

7.1 Introduction

A DL-based knowledge representation system does not live in a vacuum. It has
to be prepared to interact with several sorts of other entities. One class of entities
consists of human users who develop knowledge bases using the system. If the
system cannot effectively interact with these users then it will be difficult to create
knowledge bases in the system, and the system will not be used. Another class
of entities consists of programs that use the services of the system to provide
information to support applications. If the system cannot effectively interact with
these programs then it will be difficult to create applications using the system, and
the system will not be used.

However, before one can talk about effective interaction, there has to be basic
interaction between the knowledge representation system and applications or users.
This basic interaction has to do with the mechanics of telling information to the
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system and retrieving information from it. At this level the system just maintains
what it was told and responds to the queries by running an inference procedure for
the logic it implements.

The basic interface is not sufficient for effective access to the system. On the
application side there is need for a treatment of exceptional conditions, wider in-
terface to applications, remote interfaces, and concurrent access, among others.
There is also need for responsive reaction by the system. On the human side there
is need for better presentation of the results of queries, particularly the suppression
of irrelevant detail; explanation of the inferences performed by the system; better
support for the creation of large DL knowledge bases, particularly by several people
working in collaboration.

Even if all the above are present in a system, it will still not be complete. There
is also a need to have effective information about the system widely available. This
information has to be in various forms, including the obvious user manuals, but
also including interactive tutorials and demonstration systems.

A system that does not include all of the above services is not a complete knowl-
edge representation system.

Our discussion of the services that need to be provided will mostly be described
in terms of an arbitrary DL knowledge representation system. However, some of
our examples will be given in the context of theClassic family of knowledge repre-
sentation systems developed at AT&T [Borgida et al., 1989; Brachman et al., 1991;
Patel-Schneider et al., 1991], as Classic has had the longest-lived and most
extensive industrial application history of any DL knowledge representation
system. The Classic application that we will refer to the most is the config-
uration of transmissions equipment – an application developed within AT&T
[Wright et al., 1993; McGuinness et al., 1995; McGuinness and Wright, 1998b;
McGuinness et al., 1998].

In a typical configuration problem, a user is interested in entering a small number
of constraints and obtaining a complete, correct, and consistent parts list. Given a
configuration application’s domain knowledge and the base DL inference system,
the application can determine if the user’s constraints are consistent. It can then
calculate the deductive closure of the user-stated knowledge and the background
domain knowledge to generate a more complete description of the final parts list.
For example, in a home theater demonstration configuration system [McGuinness
et al., 1995], user input is solicited on the quality a user is willing to pay for and the
typical use (audio only, home theater only, or combination), and then the application
deduces all applicable consequences. This typically generates descriptions for 6–20
subcomponents which restrict properties such as price range, television diagonal,
power rating, etc. A user might then inspect any of the individual components pos-
sibly adding further requirements to it which may, in turn, cause further constraints
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to appear on other components of the system. Also, a user may ask the system to
“complete” the configuration task, completely specifying each component so that
a parts list is generated and an order may be completed.

This home theater configurator example is fairly simple but it is motivated
by real-world application uses in configuring very large pieces of transmission
equipment where objects may have thousands of parts and subparts and one
decision can easily have hundreds of ramifications. It was complicated appli-
cations such as these that drove our work on access to information. More in-
formation can be found on Description Logics for configuration in this book
in Chapter 12. Another example application that drove our work on informa-
tion access and presentation needs was a simple DL backend system support-
ing knowledge-enhanced search for the web called FindUR [McGuinness, 1998;
McGuinness et al., 1997] which is also described in Chapter 14.

7.2 Basic access

Basic access to a DL knowledge base consists of simple mechanisms to create
DL knowledge bases and to query them. The foundational aspects of this basic
interaction have been well-studied. For example, Levesque [1984] proposed that
the basic interface to any knowledge representation system consist of two kinds
of interactions – one to tell information to the system and one to ask whether
information follows from what was previously told to the system.

Many frame-oriented knowledge representation systems embody such distinc-
tions, such as theGeneric Frame Protocol [Chaudhri et al., 1997], andOKBC (Open
Knowledge Base Connectivity) [Chaudhri et al., 1998a]. In the DL community,
this basic interaction was standardized into an interface specification that defined a
number of Tell&Ask operations that a DL knowledge representation system should
implement [Patel-Schneider and Swartout, 1993]. This specification is commonly
known as the Krss specification.1 The description of a minimal DL knowledge
representation system interface given here will generally follow this Krss spec-
ification. The Krss specification incorporates the DFKI standardized syntax and
semantics [Baader et al., 1991]. Examples given here follow the syntax of Chap-
ter 2, for the abstract syntax, and the syntax of Krss for a Lisp-like syntax that can
actually be used from within a computer.

One problemwith defining a Tell&Ask interface for a DL knowledge representa-
tion system is that even a minimal interface depends on the expressive power of the
logic. As an example, if the Description Logic implemented by the system does not

1 The Krss specification also incorporates a number of operations that fall under the advanced interface that will
be discussed later.
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Table 7.1. Syntax and semantics of making definitions.

Program Syntax Abstract Syntax Semantics

(define-concept CN C) CN ≡ C CN I = CI

(define-primitive-concept CN C) CN 
 C CN I ⊆ CI

(define-role RN R) RN ≡ R RN I = RI

(define-primitive-role RN R) RN 
 R RN I ⊆ RI

(define-attribute AN A) AN ≡ A AN I = AI

(define-primitive-attribute AN R) AN 
 R AN I ⊆ RI

Table 7.2. Inclusion syntax and semantics.

Program Syntax Abstract Syntax Semantics

(included C D) C 
 D CI ⊆ DI

include individuals then of course there is no need to include any facilities for
making statements about individuals. To overcome this difficulty this chapter will
describe the interfaces required for a system that implements a typical Description
Logic with both concepts and individuals.

Such a system has to have a method for creating a terminology of concepts. A
syntax for creating such a terminology, taken directly from the Krss specification,
is given in Table 7.1. A terminological knowledge base, or TBox, is then a set of
such definitions perhaps with the condition that every concept, role, and attribute
name has at most one definition. There may also be the side condition that there
are no recursive definitions.

Some representation systems may have other definitions allowable or other re-
strictions. For example, some systems allow the definition of transitive roles, via a
define-transitive-role definition. Other systems prohibit non-primitive roles.

If the underlying Description Logic allows recursive definitions, then it may be
easier to provide an even more basic interface to define concepts. Table 7.2 shows
a minimal interface for a system that employs arbitrary concept inclusions as its
means of defining concepts.

If the system incorporates individual reasoning, then it has to have a mechanism
for adding information about these individuals. One such method is via the asser-
tions in Table 7.3. An assertional knowledge base, or ABox, is then a set of such
assertions.

Once information has been told to the system, there has to be a mechanism for
determining what follows from this information. A minimal mechanism for this is
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Table 7.3. Assertion syntax and semantics.

Program Syntax Abstract Syntax Semantics

(instance IN C) IN ∈ C IN I ∈ CI
(related IN I R) 〈IN , I 〉 ∈ R 〈IN I , I I〉 ∈ RI

Table 7.4. Query syntax and semantics.

Query Meaning

(concept-subsumes? C1 C2) CI1 ⊆ CI2
(role-subsumes? R1 R2) RI1 ⊆ RI2
(individual-instance? IN C) IN I ∈ CI
(individual-related? IN I R) 〈IN I , I I〉 ∈ RI

Table 7.5. Taxonomy retrieval syntax.

(concept-descendants C)

(concept-children C)

(concept-ancestors C)

(concept-parents C)

(concept-instances C)

(concept-direct-instances C)

(role-descendants R)

(role-children R)

(role-ancestors R)

(role-parents R)

(individual-types IN)

(individual-direct-types IN)

(individual-fillers IN R)

via a set of queries, such as those given in Table 7.4. The system answers a quary
by determining if the meaning of the query is implied by the information that has
been told to the system.

The interface described above is sufficient for determining the contents of a
knowledge base but only in the theoretical sense. For reasonable access to the
information in a knowledge base a richer interface is required. One part of this richer
access even really belongs in the basic interface, namely retrievals of taxonomy
information. The interface in Table 7.5 provides a simple interface to the taxonomy
information implicit in a DL knowledge base. The meaning of the calls should be
obvious from their description, except perhaps the “-direct-” versions, which
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Table 7.6. UnTell syntax.

(undefine-concept CN)

(undefine-role RN)

(undefine-attribute AN)

(un-tell-instance IN C)

(un-tell-related IN I R)

return the concepts, individuals, or roles that are directly related to the query, i.e.,
that have no intervening concept or role.

Another basic service that is missing from above interface is the ability to remove
information from the knowledge base. This is not the ability to perform arbitrary
changes to the implicit information represented by the knowledge base. Instead it is
just the ability to “un-tell” information that had been previously told to the system.
A basic interface for this purpose is given in Table 7.6. There may be restrictions on
what can be un-told, such as requiring that concepts that are currently mentioned
in the definition of other concepts cannot be removed from the knowledge base.

7.3 Advanced application access

The basic interface described above provides only minimal access to a DL knowl-
edge base. Effective access requires a number of augmentations to the basic inter-
face.

One of the most important augmentations has to do with defining a complete
application programming interface (API). The basic interface assumes that the
system is implemented in a language like Lisp, where there is a simple way of
creating descriptions and other values for the various operations and there is a
mechanism for returning values of any type. This was acceptable when systems
and applications were all implemented in Lisp, but this is no longer the case.

A complete API must then provide a syntax for creating all the types of values
that need to be passed to the representation system. Further, it needs to provide or
define mechanisms for returning values, particularly compound values such as the
sets of concepts that are returned by the taxonomic retrieval operations.

7.3.1 Efficiency

Because the operations of the representation system may represent the largest re-
source consumption of an application, it is often necessary to know how expensive
various operations of the system may be. For example, it is often necessary to know
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the usual resource consumption of the most frequently called operations of the
knowledge representation system or those operations that are called at critical time
in the operation of the whole system.

The Classic family has been particularly aggressive in ensuring that queries to
the system are fast, working under the assumption that themost common operations
are queries. Most queries in Classic are simply retrievals of data stored by the
system, asClassic responds to the addition of knowledge by computing most of its
consequences. Further, the performance of the addition of knowledge to the system
is optimized over the retraction or change of knowledge.
Classic achieves these characteristics of fastest queries, fast additions, and

slower retractions and changes by retaining data structures that record the current
set of consequences and also record, on a fairly granular level, which knowledge
affects other knowledge. This is not full truth-maintenance data, which would be
prohibitively expensive to compute (and store), but is just enough to make additions
cheap. It also serves to make retractions and changes somewhat cheaper than they
otherwise would be, but this effect is much less than the gain in speed of adding
knowledge.

7.3.2 Wide application programming interface

In the vast majority of applications, the knowledge representation system has to
serve as a tightly integrated component of a much larger overall system. For this
to be workable, the knowledge representation system must provide a full-featured
interface for the use of the rest of the system.

The NeoClassic system, which is programmed in C++, and is designed to be
part of a larger C++ program, provides a very wide application programming inter-
face. In addition to the above interface, there is a large interface that lets the rest of
the system receive and process the actual data structures used inside NeoClassic
to represent knowledge, but without allowing these structures to be modified out-
side of NeoClassic.2 This interface allows much faster access to the knowledge
stored by NeoClassic, as many accesses just retrieve fields from a data structure.
Further, direct access to data structures allows the rest of the system to keep track
of knowledge from NeoClassic without having to keep track of a “name” for the
knowledge querying using this name. (In fact, it is in this way possible to dispense
with any notion of querying by name.)

There are also ways to obtain the data structures that are used byNeoClassic for
other purposes, including explanation. We have used this facility to write graphical
user interfaces to present explanations and other information.

2 Of course, as C++ does not have an inviolable type system, there are mechanisms to modify these structures. It
is just that any well-typed access cannot.
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An additional interface that is provided by both Lisp Classic and NeoClassic
is a notification mechanism, or hooks. This mechanism allows programmers to
write functions that are called when particular changes are made in the knowledge
stored in the system or when the system infers new knowledge from other knowl-
edge. Hooks for the retraction of knowledge from the system are also provided.
These hooks allow, among other things, the creation of a graphical user interface
that mirrors (some portion or view of) the knowledge stored in the representation
system.

Others in the knowledge representation community have recognized the need
for common APIs, (e.g., the Generic Frame Protocol [Chaudhri et al., 1997] and
the Open Knowledge Base Connectivity [Chaudhri et al., 1998a]). Some systems
embrace the notion of loading many different forms of knowledge bases and accept
wrapper specifications for other source formats and APIs. For example, Ontolin-
gua has implemented capability for loading a number of formats includingClassic,
OKBC, ANSI KIF, KIF 3.0, CML, CLIPS, Ontolingua, Protégé, Snark, and
DAML+OIL. It also provides the ability to dump frames in multiple formats such
as OKBC, Classic, CLOS, CML, Ontolingua, and DAML+OIL and it has also
been made interoperable with at least two reasoners including one in Lisp and one
in Java.

7.3.3 Remote and concurrent access

The standard computing environment is becoming more and more distributed. If a
DL knowledge representation system is to be part of this environment it must allow
effective remote access. There are several mechanisms for allowing remote access,
including applications that run on the same machine as the DL knowledge repre-
sentation system but themselves provide a remote access mechanism. Examples of
such applications are the wines [Brachman et al., 1991] and stereo configuration
demonstration systems [McGuinness et al., 1995] mentioned later in this chapter.

TheDLknowledge representation system itself can also directly provide a remote
access mechanism. This can be as simple as providing the system with a pipe-like
interfacewhere clients can send a sequence of commands to the system from remote
machines, and receive responses via the same pipe. NeoClassic provides this sort
of simple remote access mechanism.

A more complicated remote access mechanism would be to provide a CORBA
interface to the system. This kind of accesswas proposed byBechhofer et al. [1999].
Their interface gives a CORBA layering around a Tell&Ask interface. Providing a
wider CORBA access to DL knowledge representation systems, such as providing
CORBA access to the actual data structures of the system, is more difficult, as the
CORBA mechanism for dealing with recursive objects is annoying. Nevertheless,
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an effective remote access mechanism should provide the same functionality as is
desired for local access.

If remote access to a DL knowledge representation system is provided, then the
issue of concurrent access becomes vital. (This is not to say that concurrent access
is not of interest if the system does not allow remote access.) The interesting issues
with respect to concurrent access involve simultaneous access to the same repository
of knowledge. Most of the issues with respect to concurrent access are the same
as concurrent access to databases, including locking and providing transactions.
In fact, there have been informal proposals to use a database system to store the
information in a DL knowledge representation system like Classic just so as to
piggyback on the facilities for concurrent access provided by the database system.

The remote interface proposal mentioned above provides a limited form of trans-
actions, basically allowing clients to batch up a collection of updates to a knowledge
base and apply them all at once as an atomic transaction. This interface, however,
does not provide any mechanism to abort transactions or to provide a local view of
the knowledge base during the execution of a transaction.

At least one other knowledge representation system has dealt with the notion
of concurrent access by leveraging the notion of sessions. Ontolingua allows
users to log into a particular session that may already be opened by a previous
user. All users logged into the same session see the same version of the knowledge
base. A more sophisticated approach to concurrent access and knowledge base
editing is embodied in OntoBuilder [Das et al., 2001]. In this system, users can
not only do something similar to sharing a session, but the implementation also
facilitates collaboration through dialog with other users currently signed on to the
same ontology and allows locking of concepts for updates.

7.3.4 Platforms

Another important access aspect concerns the platforms on which the knowledge
representation system runs. This encompasses not only the machines and operating
systems, but also the language in which the system is written (if it is visible), the
version of the libraries that the system uses, and the mechanism for linking to the
system.Many applications have needs for a particular operating systemor language,
and cannot utilize tools not available in this context.

Some Description Logics likeClassic have been made available on a reasonable
number of platforms. The underlying language of a member of the Classic family
is visible, not just because of the API which is, of necessity, language-specific, but
also because programmers can write functions to extend the expressive power of
the system, and these functions have to be written in the underlying language of
the system.
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Classic is currently available in two different languages: Lisp and C++. The C++
member is the more recent, and the reimplementation used C++ precisely to make
Classic available for a larger number of applications. This was done even though
C++ is not the ideal language in which to write a representation system.

The members of the Classic family have also been written in a platform-
independent manner. This has required not using some of the nicer capabili-
ties of the underlying language or of particular operating systems. For example,
NeoClassic does not use C++ exceptions, partly because few C++ compilers
supported this extension to the language. Lisp-Classic runs on various Lisp im-
plementations and on various operating systems, including most versions of Unix,
MacOS, and Windows. NeoClassic runs under four C++ compilers and on both
Unix and Windows NT.

With the influence of the web andmore distributed development environments, it
may be expected that more Description Logics may be made available on multiple
platforms and may be integrated into more hybrid environments. One example of
another knowledge representation system that found a need to do this is the Chi-
maera Ontology Evolution Environment [McGuinness et al., 2000b]. This system
has been connected to Ontolingua for ontology editing and simple inference, a
Lisp-based reasoner for some diagnostics, and a hybrid Java-based reasoning en-
vironment that supports both first-order logic reasoning as well as special-purpose
reasoning for the DAML+OIL Description Logic.

7.4 Advanced human access

7.4.1 Explanation

Many research areas which focus on deductive systems (such as expert systems
and theorem proving) have determined that explanation modules are required for
even simple deductive systems to be usable by people other than their designers.
Description Logics have at least as great a need for explanation as other deductive
systems since they typically provide similar inferences to those found in other
fields and also support added inferences particular to Description Logics. They
provide a wide array of inferences [Borgida, 1992b] which can be strung together
to provide complicated chains of inferences. Thus conclusionsmaybepuzzling even
to experts in Description Logics when application domains are unfamiliar or when
chains of inference are long. Additionally, naive users may require explanations for
deductions which may appear simple to knowledgeable users. Both sets of needs
became evident in work on a family of configuration applications and necessitated
an automatic explanation facility.
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The main inference in Description Logics is subsumption – determining when
membership in one class necessitates membership in another class. For example,
Person is subsumed by Mammal since anything that is a member of the class
Person must be a member of the class Mammal. Almost every inference in
Description Logics can be rewritten using subsumption relationships and thus
subsumption explanation forms the foundation of an explanationmodule [McGuin-
ness and Borgida, 1995].

Although subsumption in most implemented Description Logics is calculated
procedurally, it is preferable to provide a declarative presentation of the deduc-
tions because a procedural trace typically is very long and is littered with details
of the implementation. A declarative explanation mechanism which relies on a
proof-theoretic representation of deductions may be used as a framework. Such a
mechanism has been specified [McGuinness, 1996] and implemented for Classic
and later specified for ALN [Baader et al., 1999a].

All the inferences in a DL system can be represented declaratively by proof rules
which state some (optional) antecedent conditions and deduce some consequent
relationship. The subsumption rules may be written so that they have a single
subsumption relationship in the denominator. For example, if Person is subsumed
by Mammal, then it follows that something that has all of its children restricted
to be Persons must be subsumed by something that has all of its children restricted
to beMammals. This can bewrittenmore generally (withC representingPerson, D
representing Mammal, and R representing child) as the ∀ restriction rule below:

All restriction
1 C 
 D

1 ∀R.C 
 ∀R.D .

Using a set of proof rules that represent DL inferences, it is possible to give a
declarative explanation of subsumption conclusions in terms of proof rule applica-
tions and appropriate antecedent conditions. This basic foundation can be applied
to all of the inferences in Description Logics, including all of the inferences for
handling constraint propagation and other individual inferences. There is a wealth
of techniques that one can employ to make this basic approach more manageable
and meaningful for users [McGuinness and Borgida, 1995; McGuinness, 1996].

Expressive DL-based systems may require a large number of proof rules. If one
is interested in limiting both explanation implementation work and also the size of
explanations, it is be beneficial to prune the number of inferences to be explained.
In one configuration family of applications [McGuinness and Wright, 1998b] the
help desk logs were analyzed to determine the most frequent questions that related
to explanation. These inferences included inheritance (if A is an instance of B
and B is a subclass of C , then A “inherits” all the properties of C), propagation
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(if A fills a role R on B, and B is an instance of something which is known to
restrict all of its fillers for the R role to be instances of D, then A is an instance
of D), rule firing (if a is an instance of E and E has a rule associated with it that
says that anything that is an E must also be an F , then a is an instance of F),
and contradiction detection (e.g., I cannot be an instance of something that has at
least 3 children and at most 2 children). In the initial development version, expla-
nation was only provided for these inferences in an effort to minimize development
costs, resulting in a quite useful explanation mechanism with much less effort
than a full explanation system. (The two current implementations of explanation in
Classic contain complete explanation.) One demonstration system [McGuinness
et al., 1995] incorporates special handling for the most heavily used inferences pro-
viding natural language templates for presentations of explanations aimed at lay
people.

7.4.2 Error handling

Since one common usage of deductive systems is for contradiction detection, han-
dling error reporting and explanation is critical to usability. This usage is com-
mon in applications where object descriptions can easily become over-constrained.
For example, in the home theater system application, one could generate a non-
contradictory request for a high quality stereo system that costs under a certain
amount. The description could later become inconsistent as more information is
added. For example, a required high quality, expensive speaker set could violate
a low total price constraint. Understanding evolving contradictions such as this
challenges many users and leads them to request special error explanation sup-
port. Informal studies with internal users and external academic users indicate that
adequate error support is crucial to the usability of the system.

Error handling could be viewed simply as a special case of inference where the
conclusion is that some object is found to be described by a special concept typically
called bottom or nothing. For example, a concept is incoherent if it has conflicting
bounds on some role:

Bounds Conflict
1 C 
 (�m r ) 1 C 
 (� n r ) n < m

1 C 
 ⊥ .

If an explanation system is already implemented to explain proof-theoretic infer-
ence rules, then explaining error conditions is almost a special case of explaining
any inference. There are two issues that are worth noting, however. The first is
that information added to one object in the knowledge base may cause another
object to become inconsistent. In fact, information about one object may impact
another series of objects before a contradiction is discovered at some distant point
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along an inference chain. Typical DL systems require consistent knowledge bases;
thus whenever they discover a contradiction, they use some form of truth main-
tenance to revert to a consistent state of knowledge, removing conclusions that
depend on the information removed from the knowledge base. Thus, it is possi-
ble, if not typical, for an error condition to depend upon some conclusion that
was later removed. A simple minded explanation based solely on information that
is currently in the knowledge base would not be able to refer to these removed
conclusions. Thus, any explanation system capable of explaining errors will need
access to the inconsistent state of the knowledge base as well as to its current
state.

Because of the added complexity resulting from the distinction between the cur-
rent (consistent) state and the inconsistent state of the knowledge base and because
of the importance of error explanation, we believe system designers will want to
support special handling of error conditions. For example, in a number of situations
surveyed, users typically asked for explanations of a particular object property or
relationships between objects. Under error conditions, users had more trouble iden-
tifying an appropriate query to ask. This suggests that special error support should
be introduced. In Classic, for example, an automatic error explanation option is
generated upon contradiction detection. This way the user requires no knowledge
(other than the error explanation command name) in order to ask for help.

Another issue of importance to error handling is the completeness or incomplete-
ness of the system. If a system is incomplete then it may miss deductions. Thus, it
is possible that an object is inconsistent—if all of the logically implied deductions
were to be made—but, because the system is incomplete, it misses some of these
deductions and thus the object remains consistent in the knowledge base. In order
for users to be able to use a system that is incomplete, they may need to be able
to explain not only error deductions but deductions that were missed because of
incomplete reasoning. An approach that completes the reasoning with respect to a
particular aspect of an object is described in [McGuinness, 1996, Chapter 5]. Given
the completed information, the system can then explain missed deductions.

7.4.3 Pruning

If a knowledge representation system makes it easy to generate and reason with
complicated objects, users may find naive object presentations to be much too
complex to handle. In order to make a system more usable, there needs to be some
way of limiting the amount of information presented about complicated objects. For
example, in the stereo demonstration application, a typical stereo systemdescription
may generate four pages of printout. The information contained in the description
may be clearly meaningful information such as price ranges andmodel numbers for
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components but it may also contain descriptions of where the component might be
displayed in the rack and which superconcepts are related to the object. In certain
contexts it is desirable to print just model numbers and prices, and in other contexts
it is desirable to print price ranges of components.We believe it is critical to provide
support for encodingdomain independent anddomaindependent informationwhich
can be used along with contextual information to determine what information to
print or explain. As one example, we consider some of the knowledge bases written
for the DARPA High Performance Knowledge Base project. This project includes
a very general upper level ontology with many slots defined on many of the classes.
Most objects in the system inherit a large number of slots from upper ontology
classes and it is not uncommon for normalized objects to have hundreds of slots
associated with them even though they only have a couple of properties defined on
them in the local knowledge bases.

Knowledge representation systems faced with information overload need to take
some approach to filtering. One of the simplest approaches allows a specification
on roles concerning whether they should be displayed on objects or not. This may
work for homogeneous knowledge bases where role information is uniformly inter-
esting or uninteresting. Our experience is, however, that context needs to be taken
into account in more heterogeneous knowledge base applications. One example
implementation that allows context and domain dependent information to be con-
sidered along with domain independent information is implemented in Classic. A
meta-language is defined for describing what is interesting to either print or explain
on a class by class basis. Any subclass or instance of the class will then inherit the
meta-description and thus will inherit “interestingness” properties from its parent
classes. The meta-language essentially captures the expressive power of the base
Description Logic with some carefully chosen epistemic operators to allow contex-
tual information (such as known fillers or closed roles) to impact decisions on what
to print.

The meta-language has been used to reduce object presentation and explanation
by an order of magnitude in at least one application [McGuinness et al., 1995]. This
reduction was required for the application to be able to include object presentation.
The algorithms of the basic approach are included in [McGuinness, 1996]; the
theory of a generalized approach is presented in [Borgida and McGuinness, 1996]
and further analyzed in [Baader et al., 1999a].

7.4.4 Knowledge acquisition

If an application is expected to have a long life-cycle, then acquisition and main-
tenance of knowledge become major issues for usability. There are two kinds of
knowledge acquisition which are worth considering: (i) acquisition of additional
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knowledge once a knowledge base is in place, and (ii) acquisition of original do-
main knowledge. A complete environment will address both concerns; however,
the original acquisition of knowledge is a much more general and difficult problem
and, conveniently enough, is not the activity that many users will find themselves
doing repeatedly while maintaining a project.

We observe that with knowledge of the domain and appropriate analysis of
evolution, it is possible to build a knowledge evolution environment suitable for
non-experts to use for extending knowledge bases. One such project considered the
evolution support environment for configurators. The specific domain and usage
patternswere analyzed, and itwas found that only certain classes had newsubclasses
added to them as product knowledge evolved. It was also found that instances were
typically populated in particular patterns.A special purpose interfacewas developed
for a family of configurators that exploited these findings and supported new config-
urator application development by non-experts [McGuinness and Wright, 1998b].
Also, in related work, Gil and Melz [1996] have analyzed planning-based uses of
another DL-based system that systematically supports knowledge base evolution
with respect to the known plan usage.

A more general problem that does not rely on domain or reasoning knowl-
edge has been addressed in the editor work [Paley et al., 1997] for the general
frame protocol and also in editor work for collaborative generation and mainte-
nance of ontologies by non-experts in the Collaborative Topic Builder component
of FindUR [McGuinness, 1998] and recently in Chimaera work [McGuinness
et al., 2000b] for merging, analyzing, and maintaining ontologies. The general
work, of course, is broader yet shallower with respect to reasoning implications.
In the FindUR collaborative topic builder environment, simple hierarchies of node
names (with role filler and value restriction information) are used to support query
expansion to providemore intelligentweb searching. In order to deploy this broadly,
a web-based distributed ontology editor was required to allow non-experts to in-
put, modify, and maintain background ontologies. The basic functionality for this
interface follows the same requirements specified in Section 7.2 although this par-
ticular implementation limited some of the interface specifications according to
expected usage patterns. For example, in the medical deployments [McGuinness,
1999] of FindUR, it was expected that all of the roles that were to be used had
been defined and thus pulldown lists of these roles were hardcoded into the inter-
face and new role specification was not one of the exposed functionalities in the
GUI. FindUR also allows importing of seed ontologies and supports contradiction
detection from ontology input. Chimaera’s environment takes the analysis task to
a much more detailed level and it provides a number of different ways of detect-
ing not only explicit contradictions but also possible contradictions and possible
term merges.
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7.5 Other technical concerns

The computer science concerns that affect the suitability of a knowledge represen-
tation system have to do with the behavior of the system as a computer program
or routine, ignoring its status as a representer of knowledge. The most-studied as-
pect of this collection of concerns has to do with the computational analysis of the
basic algorithms embodied in the system, in particular their worst-case complexity.
Because this worst-case complexity has been so well studied, we will not say any-
thing about it further, except to state that it is important in determining the suitability
of a knowledge representation system for particular task, notably tasks that need a
performance guarantee.

7.6 Public relations concerns

Researchers sometimes underestimate the varied public relations aspects involved
with making a system usable. Barriers to usability come in many forms: potential
users who are unaware of a system’s existence will not use it; potential users who
do not understand how a system can meet the their needs are unlikely to use it;
potential users who do not have enough understanding to visualize an abstract
solution to their problem using a new system are unlikely to depend on the new
system over tools they understand and can predict; and finally potential users who
have a limited set of approved tools which does not include the new system are
unlikely go to the effort of getting the new system approved for their internal use. In
order to address these issues, DL systemdesigners need to deviseways tomake their
systems known to likely users, educate those users about the possible uses, provide
support for teaching users how to use them for some standard and leverageable
uses, and either obtain approval for their systems or provide ammunition for users
to gain approval.

In experiences with Classic, the following tools have been employed to over-
come the above stated barriers to usability.

Beyond the standard research papers, users demand usage guidelines aimed at
non-PhD researchers. A paper that provides a running (executable) example on
how to use the system is most desirable: an example is [Brachman et al., 1991].
That paper also tries to provide guidance on when a DL-based system might be
useful, what its limitations are, and how one might go about using one in a simple
application. That paper was used as the basis of a tutorial on building ontologies
in other knowledge representation systems including Protégé and Ontolingua
[Noy and McGuinness, 2000].

A demonstration system is also of great utility as it helps users understand a
simple reasoning paradigm and provides a prototyping domain for showing off
novel functionality which exploits the strengths of the underlying system. In the
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Classic project a number of demonstration systems were developed, including
a simple application that captures “typical” reasoning patterns in an accessible
domain. This one system has been used in dozens of universities as a pedagogical
tool and test system. While this application was appropriate for many students, an
applicationmore closely resembling some actual applicationswas needed to (i) give
moremeaningful demonstrations internally and to (ii) provide concrete suggestions
of new functionality that developers might consider using in their applications.
This led to a more complex application with a fairly serious graphical interface
[McGuinness et al., 1995]. Both of these applications have been adapted for the
web.3 It was only when a demonstration system that was clearly isomorphic to the
developer’s applications was available that there could be effective providing of
clear descriptions and implemented examples of the functionality that we believed
should be incorporated into development applications.

Interactive courses are also of benefit in training potential users in how to use a
DL-based knowledge representation system. Several courses [McGuinness et al.,
1994; Abrahams et al., 1996] on how to use Classic have been developed, in-
cluding one from a university for course use, which includes a set of five running
assignments to help students gain experience using the system. Other general DL
courses can be found on the DL web site at http://www.dl.kr.org/.

For a system to be used in the business community, it has to satisfy their demand
for common standard implementation languages, reasonable support, and standard
platform toolkits. Some DL implementations, such as Classic, attempted to meet
this need by providing an implementation in C while still maintaining the Lisp
research version. This later proved problematic to maintain and the decision was
made to provide an implementation in C++ that was to meet both developers’ and
implementers’ needs. Interestingly enough, years later, it is the Lisp version that
appears to be most heavily used. More details of the evolution of the usability of
that system can be found in [Brachman et al., 1999].

7.7 Summary

Although a knowledge representation systemmust have sufficient expressive power
and appropriate computational complexity to be considered for use in applications,
there are many other issues that also determine whether it will be used. These
issues involve access to the knowledge stored in the system, such as explanation
and presentation of the knowledge, other technical issues, such as efficiency and
programming interfaces, and non-technical issues, such as publicity and demos. If
these issues are not addressed appropriately, a knowledge representation system
will not be used in real applications.

3 The web version of the wines demonstration system was provided by Chris Welty and is available at
http://untangle.cs.vassar.edu/wine-demo/index.html.
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Description Logic Systems
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Abstract

This chapter discusses implemented DL systems that have played or play an im-
portant role in the field. It first presents several earlier systems that, although not
based onDescription Logics, have provided important ideas. These systems include
Kl-One, Krypton, Nikl, and Kandor. Then, successor systems are described
by classifying them along the characteristics discussed in the previous chap-
ters, addressing the following systems: Classic (“almost” complete, fast); Back,
Loom (expressive, incomplete);Kris,Crack (expressive, complete). Finally, a new
optimized generation of very expressive but sound and complete DL systems is
also introduced. In particular, we focus on the systems Dlp, Fact, and Racer and
explain what they can and cannot do.

8.1 New light through old windows?

In this chapter a description of the goals behind the development of different DL
systems is given from a historical perspective. The description of DL systems
allows important insights into the development of the knowledge representation
research field as a whole. The design decisions behind the well-known systems
which we discuss in this chapter not only reflect the trends in different knowledge
representation research areas but also characterize the point of view on knowledge
representation that different researchers advocate. The chapter discusses general
capabilities of the systems and gives an analysis of the main language features and
design decisions behind system architectures. The analysis of current systems in
the light of a historical perspective might lead to new ideas for the development of
even more powerful DL systems in the future. References to previous descriptions
of DL systems (e.g., in [MacGregor, 1991a;Woods and Schmolze, 1992; Horrocks,
1997a]) or publications onDL theory that also contain discussions aboutDLsystems
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(e.g., [Patel-Schneider, 1987a; Nebel, 1990a; Schmidt, 1991]) are included where
appropriate. For references to other systems not mentioned here see also [Woods
and Schmolze, 1992] and [Nebel, 1990b, pp. 46f., pp. 63f.].

Basic concept and role constructors have already been introduced in Chapter 2
(see also the Appendix for a summary of syntax and semantics of DL construc-
tors). However, before starting the discussion about DL systems it is appropriate
to introduce some notation for language constructors in order to keep this chapter
self-contained. It is assumed that the reader is familiar with the basic Description
LogicsAL andALC. In a similar way as in Chapter 2, further language features are
indicated by different letters. The letterN is used for simple number restrictions and
the letterQ is used for qualified number restrictions.H is used for role hierarchies
with multiple parents whereas h is used for role hierarchies with single inheritance
only. In some languages, no role hierarchies but role conjunctions are provided.
Role conjunctions are indicated with the letterR in the following. In addition, the
abbreviations F and f are used for features with and without equality for feature
chains (i.e., agreements), respectively. The index R+ is used to indicate support for
transitive roles. Language constructors for an extensional specification of concepts
using nominals (or individuals) are denoted by the letters O and B (see Chapter 2
or the Appendix for details). If inverse roles are supported by a DL system, this is
indicated either by a superscript −1 or by the letter I. The latter variant is used in
order to allow a convenient pronunciation of the DL language.

8.2 The first generation

Inspired by research on human cognitive behavior, proposals for knowledge repre-
sentation languages were first discussed in the late 1960s. For example, [Quillian,
1967] is one of the first publications of the languages called “semantic networks”
(see also [Quillian, 1968]). Originally, semantic network formalisms were seen as
alternatives to first-order logic. In a similar spirit, [Minsky, 1981] introduced the
initial notion of a frame system. The motivation of these representation formalisms
was to mimic human reasoning in the sense of achieving “cognitive adequacy”.
Thus, the idea was to support problem solving with appropriate representation
structures that somehow “resemble” representation structures assumed in human
information processing. The exploitation of inheritance was a predominant idea in
frame systems. The specification of knowledge bases should be simple and the use
of the representation structures should be intuitive (“epistemological adequacy”).
However, as pointed out by [Woods, 1975], it was not at all simple to specify what
an inference system was supposed to actually compute. The late 1970s saw initial
research on the relation of frame systems and first-order logic [Hayes, 1977; 1979]
which revealed that some aspects of frame-based systems can be considered as
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special “instantiations” of first-order reasoning. Hayes argued that frame-based
reasoning was not an entirely new way of knowledge representation with particular
advantages over first-order reasoning. Specific features of frame systems beyond
first-order reasoning (e.g., defaults) were not very well understood at that time. The
consequence of these publications was that many researchers no longer considered
frame systems and semantic network systems as possible alternatives to logic-based
approaches.

The criticisms of early frame systems and semantic network formalisms stimu-
lated research on the development of mathematical structures and techniques for
defining the semantics of representational constructs supported by different rep-
resentation languages. For instance, in early frame systems there was no clear
distinction between constructs for representing “generic” knowledge about sets of
individuals and knowledge about “specific” individuals. Furthermore, frames were
often used as data structures in procedural programs. For these programs a formal
specification of what they were expected to compute was rarely provided. Rather
than interpreting frame structures as data structures, [Woods, 1975] suggested
using a formal semantics to clearly specify what is to be computed by inference
algorithms.

Kl-One

Inspired by critics such as [Woods, 1975], Brachman started to develop a
new representation system (called Kl-One) that inherently included the notion
of inferring implicit knowledge from given declarations [Brachman, 1977b; 1979].
Although the initial approach was not logic-based,Kl-One started the era of logic-
based representation systems which can be used to formalize application problems
as inference problems over the constructs supported by the representation language.
One of the prevailing inference patterns is centered around inheritance [Brachman,
1983]. The final report on the Kl-One language is published in [Brachman and
Schmolze, 1985].

One of the core ideas behindKl-One as a representation language for the “epis-
temological level” resulted from problems with languages offering built-in primi-
tives for general representation purposes (e.g., CD theory [Schank, 1975]). Rather
than providing general built-in primitives, in Kl-One, for a specific representation
problem a set of adequate primitives was defined by the user. The primitives were
denoted by so-called concept names. The next idea was to use concept-forming op-
erators to build new concepts from basic concepts. These compound concepts were
also referred to as “concepts”, “concept terms” or “concept descriptions”. Generic
concepts were intended to denote classes of individuals and individual concepts
were intended to denote individuals (see also [Nebel, 1990a, p. 42]). Individuals
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were related by so-called roleswhich, in turn, could be primitive roles (role names)
or roles described with role constructors [Brachman and Schmolze, 1985].

In Kl-One, concepts and roles are the building blocks for representational pur-
poses. The main idea behind concepts and concept constructors in Kl-One is that
the meaning of a concept is derived only from the meaning of its superconcepts
and other restrictions associated with a concept [Brachman and Schmolze, 1985].
A Kl-One generic concept consists of a set of superconcept names, a set of role
descriptions, and a set of structural descriptions [Patel-Schneider, 1987a, pp. 58f.].1

Roles can be viewed as potential relationships between an individual of a certain
class and other individuals in the world [Nebel, 1990a, p. 42].

Role descriptions could be either restrictions or differentiations. The former
restricted the class of permitted fillers (value restrictions) or the number of fillers
(number restrictions). Role differentiations were used to describe a subrole with
possible value or number restrictions. So-called structural descriptions were used
to state relationships between the fillers of roles (see also [Patel-Schneider, 1987a,
pp. 58f.]). Descriptions for individual concepts consisted simply of a set of values
for roles plus a set of generic concepts. Individual conceptswere seen as instances of
these generic concepts, i.e., an individual concept had to satisfy all restrictions (and
differentiations) inherited by the generic concepts. On the other hand, individual
concepts were also subsumed by their generic concepts. However, the semantics of
individuals was never completely worked out (see [Schmolze and Brachman, 1982,
pp. 23–31] cited after [Nebel, 1990a, p. 64]).

The representation structures offered by Kl-One were similar to those of-
fered by semantic networks or frames. Although, initially, the structures offered
by Kl-One were called “structural inheritance networks” [Brachman, 1977b;
1979], in [Brachman and Levesque, 1984] the authors talk of “frame structures”.2

In accordance with [Nebel, 1990a, p. 45] we argue that in contrast to, e.g., CD
theory [Schank, 1975], providing a (large) set of primitive representation structures
(names) for all kinds of representation purposes was not the development goal of
Kl-One. As Nebel points out [Nebel, 1990a, p. 45], more important and unique
to Kl-One is the core idea of proving ways to specify concept definitions, i.e., the
ability to let a knowledge engineer declare the relation of “high-level concepts” to
“lower-level primitives”.

1 Note that, inKl-One-like languages, there are specific syntactic constructs for specifying superconcepts. These
specific constructs are no longer present in logic-based concept languages of the 1990s.

2 There are large differences between frame systems and DL systems: if for i the restriction ∀R.C holds, and we
set i into relation to j via the role R, then every Kl-One-based system concludes that j is an instance of C .
In standard frame-based systems, j can only be set into relation to i via R if it is already known that j is an
instance of C . Otherwise, in frame systems at least a warning is issued or even an error is signaled.
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A concept definition was an assignment of a (unique) name to a concept term.
In Kl-One the well-known distinction between the two kinds of concept defi-
nitions, definitions with necessary and sufficient conditions and definitions with
only necessary conditions (so-called primitive definitions), was investigated for
knowledge representation purposes for the first time.3 In the original approach no
cycles were allowed in the set of concept definitions.4 The most important con-
sequence of the introduction of concept definitions with necessary and sufficient
conditions was that reasoning about the relationships between concepts became
important. In Kl-One there is still the notion of a “told subsumer” syntactically
being explicitly mentioned in a list of so-called superconcepts but, according to
the semantics, there are also additional computed subsumers which are concept
names (direct subsumers or direct superconcepts). Note that inferences in Kl-One
were based on the open-world assumption. Hence, unlike frame systems, where the
names as superconcepts are always given explicitly, Kl-One introduced the idea
that the set of direct superconcepts (i.e., concept names) for a given concept must be
inferred.

Direct superconcept–subconcept relationships (also called parent–children rela-
tionships) are dependent on the concept terms used in the definitions of a TBox.
In particular, the notion of defined concepts (with necessary and sufficient condi-
tions) led to the idea of classifying a TBox. The idea was to compute the sub-
sumption hierarchy (sometimes also called “inheritance hierarchy”) of parents
and children for each concept name mentioned in a TBox during a so-called
classification process. The intention was that a model for a specific application
domain could be verified by a knowledge engineer based on the subsumption
hierarchy. Considering the subsumption hierarchy, i.e., the lattice of direct su-
perconcepts, the idea was also that concept terms could be automatically “in-
serted” between named concepts in the hierarchy. Hence, concept terms could
be set into relation to “pre-defined” concept names (and, indirectly, other concept
terms). This feature has been used in many projects for implementing application
functionality.

The first development of an algorithm for computing the subsumption hierarchy
of a TBox (the “classifier”) is described in [Schmolze and Lipkis, 1983]. Another
inference component called “realizer” computes for each individualmentioned in an
ABox themost specific atomic concepts (or concept names) of which the individual

3 In the literature, some authors use the word “definition” as a synonym for concept terms themselves (e.g.,
[Schmidt, 1991], see also [Woods, 1991, p. 65]). In this case, “primitive” conceptswith only necessary conditions
were introduced with a specific marker to be used in concept terms.

4 The semantics of cycles was analyzed in [Baader, 1990b; 1991; Nebel, 1990a; 1991]. The so-called descriptive
semantics providedmany advantages over so-called fixed point semantics. For details see [Nebel, 1990a]. One of
the first publications of an expressive Description Logic supporting cyclic axioms with a descriptive semantics
and a sound and complete calculus is [Buchheit et al., 1993a]. Cyclic axioms are usually not considered as
concept definitions.
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is an instance.One of the first algorithms for computing the realization of anABox is
described in [Mark, 1982]. InitialKl-One systems were implemented in Interlisp
[Lipkis, 1982] and Smalltalk [Fikes, 1982]. The Consul project [Kaczmarek et al.,
1986] was one of the first projects in which classifier and realizer inference services
were exploited.

First investigations about defaults and exceptions were published in [Brachman,
1985]. Nowadays, the semantical theory of defaults in Description Logics is much
clearer, see [Baader and Hollunder, 1992; 1993; Baader and Schlechta, 1993;
Padgham and Zhang, 1993; Padgham and Nebel, 1993; Baader and Hollunder,
1995a; 1995b; Donini et al., 1997b].

At the first Kl-One workshop [Schmolze and Brachman, 1982] it became clear
that the informal specification of the semantics of Kl-One concept and role con-
structors led to serious problems. The development of the classifier [Schmolze
and Lipkis, 1983] was based on the intuitive meaning of the Kl-One formalism
[Nebel, 1990a, p. 46]. Attempts to logically reconstruct the representation con-
structs, e.g., [Schmolze and Israel, 1983; Israel and Brachman, 1984], resulted in a
deeper understanding of the formalism. Given the formal semantics, implemented
algorithms for classification and realization were shown to be incomplete. Later
investigations revealed that Kl-One (with the formal semantics given in the logi-
cal reconstruction approaches) is undecidable (e.g., this holds for the combination
of conjunction, value restrictions and role-value-maps [Schmidt-Schauß, 1989]).
In [Brachman and Levesque, 1984] the first thoughts about tractability of sub-
sumption for sublanguages are discussed. Terminological reasoning with concept
definitions even for sublanguages with low expressiveness were shown to be in-
herently intractable in the worst case [Nebel, 1990b, p. 28, pp. 71f.]. Proposals
for a semantics based on many-valued logics (e.g., [Patel-Schneider, 1986; 1987a;
1987b; 1989a]) ensure tractable algorithms concerning concept consistency rea-
soning but also result in a weak expressiveness: many intuitive inferences are not
sanctioned by this semantics (see also [Nebel, 1990a]).

Another result of [Schmolze and Brachman, 1982] was that the semantics of
individual concepts was not quite clear (e.g., concerning coreference and unique
name assumption). Thus, at the first Kl-One workshop [Schmolze and Brachman,
1982], the notions of a hybrid reasoning system consisting of a TBox (a set of
concept definitions) and an ABox (a set of assertions concerning individuals) were
made more precise. The change of the view on Kl-One spelled out in [Schmolze
and Brachman, 1982, pp. 8–17] (see also [Nebel, 1990a, p. 46]) can be summarized
as follows: It is not the names of representation structures that are important but the
functionality, i.e., the declaration and inference services which the system provides.
It was first pointed out that inferences have to be formally defined based on the
semantics of the representation formalism. This view led to the development of the
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functional view of knowledge representation as pursued with the development of
the system Krypton.

Krypton

The knowledge representation system Krypton [Brachman et al., 1983a; 1983b;
1985] can be seen as the first attempt at defining a new language of the Kl-One
family with a formal, Tarskian semantics. Furthermore, the goal was to overcome
the problems with individual concepts in Kl-One [Nebel, 1990a, p. 63]. The hy-
brid representation approach with a TBox and an ABox was first implemented in
the Krypton system (see also [MacGregor, 1991a, p. 391]). As in Kl-One, the
distinction between primitive and defined concepts and the computation of themost
specific atomic concepts which instantiate individuals is one of the core ideas of
Krypton.
Krypton offered a concept language with low expressiveness. While the initial

approach [Brachman et al., 1983b] was too expressive to be tractable (see also
[MacGregor, 1991a, p. 390]), in a revised version [Brachman et al., 1985] the
concept constructors of Krypton were defined as conjunction, value restrictions
and role chains. Thus, subsumption checking was polynomial [Patel-Schneider,
1987a, p. 75]. For the ABox a full-fledged resolution-based FOPL theorem prover
[Stickel, 1982] was proposed, i.e., the ABox reasoner ofKryptonwas incomplete.
Another perspective is thatKrypton started with a first-order logic theorem prover
and augmented it with a special-purpose inference system for terminological rea-
soning to cut out some of the combinatorial search [Vilain, 1985]. Krypton can
be regarded as one of the first efforts in combining knowledge representation and
theorem-proving techniques but was not used for industrial applications [Nebel,
1990a, pp. 63f.].

Rather than dealing with specific representation structures and operations on
them,Krypton offers a so-called “functional approach”. Using the interface func-
tions “tell” and “ask”, a knowledge base can be defined and queries can be answered
about it. In this sense, a “functional approach” means that a formal representation
system does not necessarily have to maintain, for instance, frame structures, the
subsumption hierarchy, or even an ABox as a graph structure. If, for internal imple-
mentation purposes, graph structures are indeed used, they are nevertheless hidden
from the user in order to avoid “procedural” operations being carried out with
internal record structures. Arbitrary procedural operations are usually not related
to the semantics of the representation formalism, so that, in this case, it is hard
to characterize what is actually represented and what is computed as solutions to
inference problems. Thus, the focus of Krypton was not on the structures to be
maintained by the system but was centered around the question about what the
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system should do for the user, i.e., what services should be made available. In other
publications this idea was described as the “knowledge level” [Newell, 1982]. In
Krypton, inference services for concept terms are checks for concept consistency,
disjointness, and subsumption. For a TBox, the most specific subsumers (parent–
children relation) can be computed, whereas for an ABox, consistency, instance
checking, realization (direct types) and instance retrieval are offered as inference
services. Krypton pioneered the idea that the user should only know, at some
level not dependent on implementation details, what questions the system is ca-
pable of answering and what operations are permitted that allow new information
to be provided to it. For instance, it is not important how the association between
an individual and a certain role filler is actually represented in terms of memory
arrangements (called the symbol level). What counted for the underlying imple-
mentation was what operations must be supported in order to answer queries at the
semantical level. This view about Kl-One-based representation systems was one
of the major achievements of the Krypton project.

Nikl , Penni , Kl-Two

At the same time as Krypton, the knowledge representation system Nikl was
developed as a successor of Kl-One. Nikl was a New Implementation of Kl-
One [Schmolze and Israel, 1983; Schmolze, 1985; Schmolze and Mark, 1991]. As
discussed in [Kaczmarek et al., 1986], in Nikl, roles are also ordered with respect
to subsumption (see also [Schmidt, 1991, p. 13]).

The assertional components of Kl-One were initially discarded in the Nikl
system (see the Nikl user guide [Robins, 1986]). Compared to the initial Kl-One
implementation, the algorithms in theNikl classifier were faster in the average case
because “obvious” information was exploited to a larger degree (see [MacGregor,
1988, p. 405] or [MacGregor, 1991a, p. 392]). However, the subsumption algorithm
of Nikl was incomplete and it was hard to characterize which inferences were
omitted [Schmolze and Israel, 1983] (see also [Patel-Schneider, 1987a, p. 74]).

Later, an assertional reasoning component was added with the system Penni
which is based on RUP [McAllester, 1982]. The resulting system was called Kl-
Two [Vilain, 1985] (see also [Schmidt, 1991, p. 15]). In Kl-Two a propositional
reasoner with equality (the Penni subsystem) was augmented with a so-called
quantificational reasoning component (the Nikl subsystem). For the propositional
part in the Penni component, incremental additions and retractions were supported
due to the facilities provided by RUP. However, as shown in [Patel-Schneider,
1989b] the concept language of Nikl contained concept and role constructs that
rendered the satisfiability problem for Nikl concept terms undecidable (see also
[Schmidt-Schauß, 1989]).
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Concerning hybrid reasoning, i.e., the systematic integration of TBox and ABox
reasoning, there were shortcomings as well. Because in RUP different constants
do not necessarily denote different objects, the unique name assumption was not
built into the assertional component Penni. Thus, number restrictions imposed by
Nikl concepts often did not have the intended effects concerning hybrid reasoning.
Other sources of incompleteness were pointed out (see also the analysis of “in-
ferential gaps” in [Nebel, 1990a, pp. 63f.]). The research on the Kl-Two system
demonstrated that hybrid reasoning is not just a matter of integrating reasoning sub-
systems at the software level. Hybrid reasoning requires a dedicated architecture
implementing a sound and complete calculus which, in turn, can be developed only
after a deep analysis of the semantics of the representation constructs. Neverthe-
less, the principal idea of exploiting subsumption information for resolution-based
first-order reasoning has been integrated into many theorem-proving systems.

Kandor

Research on Kandor [Patel-Schneider, 1984] was influenced by the Krypton
architecture and the performance problems of the Nikl approach. The goal of
Kandor was to increase the expressive power of the terminological representation
component in such a way that an efficient subsumption algorithm could be de-
veloped. Basically, Kandor supported conjunction, value restriction and number
restrictions as concept-forming operators. In minimum number restrictions, range-
restricted roles could be used (hence, qualified minimum number restrictions were
allowed, see also [Patel-Schneider, 1987a, p. 76]). In order to provide effective infer-
ence algorithms (e.g., for information retrieval scenarios) in the Kandor approach
the expressiveness of the assertional component was cut down to a representation
system comparable to a database (without revision mechanisms). Subsumption in
Kandor was shown to be conp-complete (see [Nebel, 1988] and [Nebel, 1990a,
p. 90] for details). The initially proposed subsumption algorithm with polynomial
runtime must have been incomplete.
Kandor was called a frame-based system (which might be reasonable because

of the expressiveness offered by the ABox language). A frame in Kandor was
essentially a specification of conditions for describing how an individual can be
an instance of it (in terms of superframes and restrictions). Kandor supported
defined frames and primitive frames in the spirit of Kl-One. The system adopted
the “small interfaces” approach of Krypton, i.e., models were built using the
declaration interface (tell interface), and application services were realized with the
query interface (ask interface). Although called a frame system, frames were not
treated as record structures to be manipulated by procedural programs. The authors
of Kandor argued for a small knowledge representation system that could be used
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as part of larger systems with different subcomponents. The main achievement of
Kandor was the introduction of a small-can-be-beautiful approach which, finally,
led to the design of the system Classicwhich will be discussed in detail in the next
section.

8.3 Second generation Description Logic systems

Whereas the prototypical implementations of first generation systems were used
to study knowledge representation problems, second generation DL systems have
been more extensively used in serious applications. The implementations discussed
in this section are not only not prototypes but are much more stable. In addition,
since the beginning of the 1990s, the systems have been called DL systems. We
first discuss systems for (almost) tractable languages based on (almost) complete
algorithms and investigate systems for expressive Description Logics afterwards.

Classic

ThebasicClassic systemsupported the logicALNFh−1 withTBoxes andABoxes
plus facilities for dealing with numbers [Borgida et al., 1989].We use the lowercase
letter h to indicate that Classic supports role inclusion but not role conjunction,
i.e., Classic supports “single-inheritance” role hierarchies. Classic is available
for research purposes. Implementation languages for Classic are CommonLisp
[Steele, 1990] and C. The interfaces are described in [Resnick et al., 1995]. Full
Classic also contained the concept constructorsO andB for referring to individuals
in concept terms.

Subsumption in full Classic was initially assumed to be polynomial [Borgida
et al., 1989]. Problems with individuals in full Classic were recognized in [Patel-
Schneider et al., 1991]. At the same time, subsumption in Classic was shown to
be conp complete [Lenzerini and Schaerf, 1991]. In the modified semantics for
the concept constructors O and B (see [Borgida and Patel-Schneider, 1994]) the
interpretation function maps individuals in concept terms to disjoint sets of domain
objects. With this semantics concerning individuals the inference algorithms of
the Classic system could be shown to be complete [Borgida and Patel-Schneider,
1994]. However, given the non-standard semantics for the concept constructors
O and B, the same effect can be achieved with existential quantifications and
disjunctions w.r.t. atomic concepts:5 For each individual I a new atomic concept AI
can be introduced. Note that atomic concepts are also mapped to sets of individuals.
Additionally, since Classic imposes the unique name assumption, a set of axioms

5 Note that these concept constructors are not directly provided by Classic.
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ensures that the new atomic concepts are disjoint. Now every term of the form
∃R.I can be replaced by ∃R.AI . Terms of the form {I1, . . . , In} can be replaced by
AI1 � · · · � AIn . In an ABox, for each individual I a concept assertion is added to
ensure that the individual is an instance of the associated atomic concept AI . Thus,
only in anABox, can a real coreference between roles be enforced. On the one hand,
we can call theClassic system “almost” complete. “Almost” refers to non-standard
semantics w.r.t. individuals being supported by current system implementations.
On the other hand, the transformation makes clear that in Classic nevertheless a
limited kind of disjunction (with concept names for which no definitions exist) can
be expressed while retaining polynomial inference algorithms.

The recommended techniques for knowledge-based system development with
Classic are outlined in [Brachman et al., 1991]. As Brachman [Brachman, 1992,
p. 256] points out, a tractable Description Logic does not guarantee that a system
is useful in practice. Therefore, the Classic system was also carefully designed
to meet practical requirements and to guarantee predictable system behavior. The
context in which the system was expected to be used required that many queries
were given to knowledge bases which rarely changed. The architectural design of
Classic supports a precomputation of index structures such that queries can be
answered quickly (mostly by simple storage retrieval). The architecture is made
possible by a careful selection of the concept and role constructors for the DL
language. Inference services for the Description Logic supported byClassic can be
implemented by transforming concept expressions into a normal form (“structural
subsumption”). Once the normal form is computed, queries can be answered by
inspecting the data structures used to encode the normal form. It should be noted
that, in Classic, retraction of told information is possible but not optimized.

Another facility offered by Classic is a rule system. Rules are applied to indi-
viduals explicitly named in the ABox. Furthermore, rules are applied in a forward-
chaining way. Basically, a rule has a precondition (a concept) and a conclusion
(also a concept). If it can be shown that an individual mentioned in the ABox is an
instance of the precondition concept, a concept assertion for stating the member-
ship of the individual in the conclusion concept is added to the ABox. In order to
provide support for modeling, the rule base is statically checked for inconsistencies.
For instance, if there are two rules whose preconditions subsume each other, the
conclusions must not be disjoint.

Furthermore, Classic provides simple support for closed-world reasoning
([Resnick et al., 1995], see also [Weida, 1996]). Closing a role for an individual
means adding an appropriate maximum number restriction for the role. The max-
imum number of fillers is restricted to the largest integer such that the minimum
number restriction with this integer (and the corresponding role) is entailed by
the knowledge base. The problem with role closing is that in combination with
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rules, the exact sequence of several closing operations determines what actu-
ally holds in the resulting ABox. These and other problems concerning different
closing operations have to be considered with default reasoning as the theoretical
background [Baader and Hollunder, 1995a; 1995b; Donini et al., 1997b; Rosati,
1998]. For a specific approach concerning the integration of defaults into the
Classic system see also [Wahlöf, 1996; Lambrix et al., 1998].
Classic is one of the first systems that provided support for incorporating infer-

ences over other domains. Consistency and subsumption checking for expressions
of another domain (e.g., the reals) can be integrated into the Classic system via
an extension interface [Borgida et al., 1996]. Classic was one of the first DL
systems designed with respect to users who are not experts in DL theory. An im-
portant lesson learned by the Classic approach and its applications was the impor-
tance of explanation and output pruning facilities [McGuinness and Borgida, 1995;
McGuinness, 1996; Borgida and McGuinness, 1996]. Moreover, Classic was the
first system capable of supporting some reasonable form of error reporting [Brach-
man, 1992]. However, in the current state of the art there is hardly an adequate
measure for the quality of these indispensable services [Brachman, 1992, p. 253].

Although Classic was a very successful DL modeling environment, the low
expressiveness of the Classic Description Logic made it hard to use the system
in many kinds of applications. In many cases, users wanted more expressiveness
[Patel-Schneider et al., 1990]. In the following sections we discuss systems for
(more) expressive Description Logics. As can be expected, increases in expres-
siveness came at a certain price. The predictability of the behavior of Classic in
terms of performance could not be reached by systems implementing complete al-
gorithms for more expressive DLs. On the other hand, incomplete algorithms have
the problem that results computed by a system cannot be trusted in general. Thus,
the complete–incomplete debate for expressive DL systems started at the end of
the 1980s and the beginning of the 1990s. First, we describe the systems Loom and
Back, which are based on incomplete algorithms. Afterwards, initial research on
DL systems based on complete algorithms is summarized with a discussion of the
systems Kris and Crack.

Loom

The Loom architecture [MacGregor and Bates, 1987; MacGregor, 1991b] offers
TBox and ABox reasoning facilities for a Description Logic that can be character-
ized by the name ALCQRIFO plus additional constructs for dealing with real
numbers (see also [Brill, 1994] or [Horrocks, 1997a, p. 43]). Loom is based on
Kl-One, i.e., concept definitions with necessary or with necessary and sufficient
conditions play an important role in domain modeling with Loom. It should be
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emphasized that truth maintenance facilities for revision were built into the Loom
architecture right from the beginning and have influenced the design of the whole
system [MacGregor, 1988; MacGregor and Brill, 1992]. While the first Loom ver-
sions were based on Description Logics [MacGregor and Brill, 1992], in later
versions an attempt was made to develop a “description classifier for the Predicate
Calculus” [MacGregor, 1994]. For instance, facilities for dealing with definitions
for relations were added. The current version of Loom is implemented inCommon-
Lisp and is available for research purposes. A new system (called PowerLoom) for
CommonLisp as well as C and Java-based platforms can be licensed as well.

A distinguishing design goal of Loom was the incorporation of an expressive
query language for retrieving ABox individuals. Another design goal of Loom
was to support rule-based programming [Yen et al., 1991b; 1991a; MacGregor
and Burstein, 1991]. Based on the rule system, it is possible to specify additional
necessary conditions for individuals which (i) are explicitly mentioned in the ABox
and (ii) are derived to be instances of a certain defined concept. The additional
necessary conditions are called “implications” in Loom [MacGregor, 1988]. The
additional necessary conditions specified by rules are not exploited, for instance, for
TBox reasoning. Note that an “implication” A→ B stated by a Loom rule does not
mean that ¬B → ¬A holds, i.e., rule-based “implications” are not to be confused
with true logical implications as provided by generalized concept inclusions that
are now standard in newer systems (see below).

In order to meet the performance requirements of the applications for which
Loom was developed (e.g., natural language and image interpretation), incomplete
algorithms for concept consistency and subsumption are implemented. Concerning
ABox reasoning,Loom applications required specific strategies to avoid the compu-
tation of unused results. Rather than employing the usual forward-chaining strategy
of computing the most specific atomic concepts of which the ABox individuals are
instances,Loom uses a scheme that considers the queries being posed to the system.
Thus, backward-chaining strategies for query answering are used in the implementa-
tion [MacGregor andBrill, 1992].However, for the rule system, it is important to de-
tect whether an individual is an instance of a concept that is used as a precondition of
a rule. In this case, forward-chaining techniques are exploited [MacGregor, 1991b;
MacGregor and Brill, 1992]. The combination of forward-chaining and backward-
chaining inferences can be specified for a certain application problem by “marking”
concepts accordingly. The user can control the inference process by these means
but is also responsible for estimating the effects of these declarations.

The arguments for the Loom approach can be summarized as follows: The in-
tractability of the representation language can hardly be avoided if the require-
ments of users are to be fulfilled. Therefore, the idea is to support the features in
one system rather than as a set of application-specific ad hoc supplements (“Where
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resides the scruffiness?” [MacGregor, 1991a, p. 396]). Obviously, incompleteness
is no problem as long as the answers of the inference system are interpreted in the
right way (i.e., “no” answers should not be trusted). Several researchers argued that
there is always the inherent danger that non-expert users either do not know this or
might not recognize this as a potential danger (cf. the work on complete systems
[Baader and Hollunder, 1991a; 1991b] discussed below). However, if a combina-
torial explosion occurs in a complete algorithm, in practice, no result is available at
all. Concerning incomplete algorithms for decidableDescription Logics, arguments
similar to those for other modeling environments based on first-order logic can be
mentioned: If, in a certain application, concept terms are checked for consistency
and combinatorial explosions occur in complete algorithms, incomplete algorithms
at least might provide some support, e.g., for building a TBox. Just signaling a
timeout during the execution of a complete algorithm that runs into a combinato-
rial explosion might result in less information. In this case, an incomplete algo-
rithm might succeed in finding at least some inconsistencies. Note however, that in
modern inference system technologies supporting complete reasoning, incomplete
reasoners are used as “preprocessors” in order to speed up inferences (see the next
chapter).
Loom supports different kinds of individuals (classified instances, light instances,

CLOS instances). For different kinds of instances different levels of inference
services are supported, e.g., for classified instances, the set of most specific atomic
concepts of which the classified individual is an instance is computed once new
assertions are specified. Thus, for classified instances, the rule-based forward-
chaining engine is triggered, possibly adding new assertions to an ABox (for details
see [MacGregor and Brill, 1992]).

A problem with the Loom approach is that from a user perspective it is hard to
characterize the source of the incompleteness of the Loom reasoning algorithms
(see the discussion in [Horrocks, 1997a, p. 42]). Although the inference techniques
used in Loom are characterized in [MacGregor, 1991b, p. 90], once a system is
incomplete there is no adequate measure for the “quality of service” in terms of an
implementation-independent characterization. For instance, in Classic the char-
acterization of the incompleteness of the inference system concerning individual
reasoning was given in terms of a weak semantics for the offered representation
constructs (see above). It should be noted that specifying the incompleteness on the
semantic level is by no means a trivial task. Not only incompleteness issues are
important in this context. For instance, the theoretical background for giving a se-
mantics for rule-based computations was only investigated recently [Donini et al.,
1992b; 1994a; 1998a].

Incomplete reasoning facilities might lead to unexpected behavior. We demon-
strate by an example that incomplete inference algorithms can have effects in
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situations a user might not be aware of. Loom also supports closed-world rea-
soning. The strategy for closing a role for an individual is to count the number
of known role fillers. However, in addition to the individuals explicitly mentioned
in the ABox, existential quantifications and minimum number restrictions have to
be considered. Assuming too few of these individuals might result in an inconsis-
tency. This is demonstrated by a simple knowledge base examplewith the following
ABox: {(∃R.A � ∃R.B � ∃R.C)(i), R(i, j)}. Let us assume that in the TBox there
exist axioms such that A is implicitly declared as disjoint from both concepts, B
and C . In the Loom system, specific reasoning techniques (e.g., a technique called
“conditioning” [MacGregor, 1991b]) are implemented to compute the number of
necessary fillers. Closing the role R for i by adding (≤ 1 R)(i) makes the ABox
inconsistent. However, since Loom is incomplete, it might be the case that the dis-
jointness of A and B as well as A and C is not detected and, therefore, too few
fillers are assumed to exist in the closing process. Thus, the added maximum num-
ber restriction might be too restrictive, i.e., the system is unsound if closed-world
reasoning is employed. Note that the semantic basis of automatic closing of roles
as offered by Loom is hard to characterize for expressive representation languages.
Obviously, closing the role R for i with (≤ 2 R)(i) might be a candidate. However,
closing the role R for i with (≤ 3 R)(i) might also be possible. In this case we have
more individuals but with less specific constraints.

Back and Flex

Research on Back (Berlin Advanced Computational Knowledge representation
system) started in 1985, approximately at the same time as work on the Loom
systemwas initiated.Backwas also called a knowledge representation environment
[Quantz and Kindermann, 1990; Peltason, 1991; Hoppe et al., 1993].

The Description Logic of the initialBack system can be calledALQR−1. There
was also support for reasoning with numbers and attribute sets. Research on the
inference algorithms for the basic Back language stimulated the development of
theoretical results on the complexity of concept consistency reasoning (e.g., [Nebel,
1988; 1990a]) and the semantics of cycles [Nebel, 1991]. Additionally, not only
was terminological reasoning considered but an investigation was made into the
development of a hybrid architecture consisting of a TBox and an ABox. Issues
of integration and balancing in hybrid knowledge representation systems, namely
balanced expressiveness and tight coupling in hybrid systems, were analyzed in
[Nebel and von Luck, 1987; 1988]. Research on the Back system helped to shape
the current view on balanced representation schemeswith TBox andABox. In order
to provide an hybrid representation language, Back was one of the first systems in
which TBox concept terms could also be used in an ABox to assert, e.g., disjunctive
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information about individuals. In addition, distinct individuals were assumed to
denote distinct objects. Hence, the number of role fillers could be counted and
compared against number restrictions (this was also done in Krypton as pointed
out by [Woods and Schmolze, 1992, p. 165]). The algorithms used in Back for
instance checking and instance retrieval are described in [Nebel and vonLuck, 1987;
1988; Kindermann and Randi, 1990]. In general, the discussion of the problems of
incomplete algorithms that was sketched in the account of Loom also applies to the
Back system because the inference algorithms used in Back are also known to be
incomplete.

In order to provide a knowledge representation environment, the Back architec-
ture was designed to support incremental additions to the ABox. Back was one
of the first attempts to implement algorithms for reasoning about retractions of
ABox assertions. Back supported retraction of told information, also called literal
retraction [Nebel, 1990a; Kindermann, 1992]. This is also supported in the Loom
system. ABox assertions can be retrieved from a database by automatically com-
puting SQL queries [Schmiedel, 1993]. For the applications considered in theBack
project, reasoning about time was important. Therefore, an integration of temporal
reasoning and terminological reasoning was investigated by several project mem-
bers. Investigations into how to incorporate temporal reasoning into terminological
reasoning are reported in [Schmiedel, 1988; 1990; Schild, 1993; Fischer, 1992;
Neuwirth, 1993].

In the successor system Flex [Quantz et al., 1995], incomplete algorithms were
implemented for the Description Logic ALCQRIFO. Additionally, reasoning
about equations and inequalities concerning integers was supported. Furthermore,
the Flex system served as a testbed for investigating so-called weighted defaults
[Quantz and Royer, 1992]. The initial implementation of Flex was developed in
Prolog. Flex++ was a reimplementation in C++. The implementation was faster,
but for application knowledge bases the performance was not sufficient. Appro-
priate optimization techniques (see the next chapter) had not been investigated
in the context of Description Logics at the time of the development of the Flex
implementation.

In general, it is quite difficult to compare different systems and knowledge rep-
resentation environments because the services being offered and the representation
languages are not standardized (see [Patel-Schneider and Swartout, 1993] for a
proposal on standardizing representation languages and inference services). Expe-
riences with system implementations indicated that either limited expressiveness
or incompleteness of reasoning could possibly lead to problems in applications.
Therefore, other researchers investigated the implementation of systems based on
sound and complete algorithms (published at the end of the 1980s and beginning
of the 1990s). One can consider [Schmidt-Schauß and Smolka, 1991] as a starting
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point of this development (see also [Donini et al., 1991a]). Based on tableau calculi,
practical DL implementations were developed. We discuss the architectures of the
systems Kris and Crack.

Kris

The development of sound and complete reasoning systems for more expressive
Description Logics started at the end of the 1980s. One of the main develop-
ments in this direction was the system Kris. The approach of Kris was to im-
plement sound and complete algorithms for an expressive Description Logic
and to develop optimization techniques for TBox reasoning so that, in prac-
tice, reasonable performance could be expected. The Description Logic of Kris
is ALCNF [Baader and Hollunder, 1991a; 1991b]. As an addition, Kris pro-
vides enumerated types (O operator) and an experimental interface for reasoning
about so-called concrete domains [Baader and Hanschke, 1991a; 1991b; 1992]
(e.g., linear inequalities over the reals). Role conjunctions were supported with
a prototype implementation. The focus of the work in the Kris project was on
TBox classification. Nevertheless, Kris was one of the first systems also support-
ing sound and complete ABox reasoning in expressive Description Logics. Even
multiple ABoxes could be handled. The implementation language of Kris was
CommonLisp (see [Hollunder et al., 1991] for a User’s Guide and [Achilles et al.,
1991] for a description of the graphical user interface).

The idea behind optimizing TBox classification was to exploit “obvious” infor-
mation concerning “told” superconcepts and primitive concepts. In many concept
definitions of application knowledge bases the right-hand side is a conjunction with
concept names and concept terms. The conjuncts which are concept names on the
right-hand side are defined as the “told” subsumers. Another important point was
to avoid recomputation of subsumption relations found in preceding computation
steps. Thus, caching and propagation techniques were implemented. The idea was
that information can be propagated in the subsumption lattice such that expensive
subsumption tests canbe avoidedwherepossible.Kriswas thefirst system forwhich
systematic empirical tests were carried out. The algorithms evaluated in [Baader
et al., 1992b; 1994] are still in use in modern DL systems (see below). Extensions
such as defaults were investigated as well (see also [Baader and Hollunder, 1992;
1993; Hollunder, 1994a]) but have not been implemented in Kris.

Although the benchmarks considered in [Baader et al., 1994] revealed that the
performance of Kris for TBox reasoning was comparable to that of other systems
of that time, the more or less direct implementation of nondeterministic tableau
algorithms that were developed for proving the decidability of problems in the field
of theoretical computer science with chronological backtracking as in Kris led to
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performance problems for many applications. One of the main results of the Kris
project was that sound and complete inference algorithms are an important starting
point for research on optimized sound and complete algorithms for practical system
development.

Crack

One of the main research goals of the system Crack was to implement sound and
complete algorithms for dealing with inferences about individuals in concept terms.
Rather than providing a non-standard semantics as in Classic (individuals are
mapped onto sets of domain objects), inCrack, individuals aremapped to elements
of the domain. Thus, coreferences also have to be considered in concept terms.
Crack supports the Description Logic ALCRIFO [Bresciani et al., 1995]. The
implementation of Crack is based on CommonLisp. Crack provided a web
interface.

In a similar way as inKris, obvious information is exploited in the architecture to
some extent but, nevertheless,Crack is a direct implementation of the tableau rules
of the underlying calculus. At the beginning of the 1990s it became clear that sound
and complete reasoning is needed formanyapplications but the inference techniques
employed, which had been developed for (manually) deriving decidability results,
e.g., with tableau algorithms, were not suited for direct implementation. Thus, it
was realized that there is a long way to go from a decidability proof to a working
system that has good performance in the average case.

Other systems

The list of systems we have discussed in this chapter is certainly incomplete. The
large number of projects involved in the development of knowledge representation
systems shows the importance of this area. Usually DL systems are built around a
core engine which is a consistency checker. However, there are other services to
be supplied which are also important to make the systems usable in larger applica-
tion projects. We present an overview of some additional systems with interesting
features developed at the beginning of the 1990s.

Among other points, the graphical manipulation of representations was inves-
tigated in the Sb-One project [Allgayer, 1990; Kobsa, 1991b; 1991a]. The im-
plementation language was CommonLisp. Techniques for graphical interfaces to
support knowledge base development with Sb-One are described in [Kalmes, 1988;
1990] (see also [Abrett and Burstein, 1987] for a description of theKreme system).
Furthermore, in Sb-One the use of contexts (also called partitions) was explored
for user modeling applications in natural language generation.
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Another important point for DL inference systems is persistence and transaction
management.We have already discussed theBack approach [Schmiedel, 1993] (see
also [Borgida, 1995]). Additional investigations were also made with the K-Rep
system [Mays et al., 1991a; 1991b].

Summary: standard inference services of Description Logics systems

Before discussing successors of the second generation systems presented in this
section it is appropriate to summarize the main inference problems that are now as-
sumed as standard for DL systems. The inference services provided by DL systems
for concept consistency and TBox reasoning can be summarized as follows:

� Concept consistency (w.r.t. a TBox).
� Concept subsumption (w.r.t. a TBox).
� Another important inference service for practical knowledge representation is to check
whether a certain concept name is inconsistentw.r.t. a TBox.Usually, inconsistent concept
names are the consequence of modeling errors. Checking the consistency of all concept
names mentioned in a TBox without computing the parents and children is called a TBox
coherence check.

� The problem of computing the most specific concept names mentioned in a TBox that
subsume a certain concept is known as computing the parents of a concept. The children
are the most general concept names mentioned in a TBox that are subsumed by a certain
concept. We use the name concept ancestors (concept descendants) for the transitive
closure of the parents (children) relation. The computation of the parents and children of
every concept name is also called classification of the TBox. This inference is needed to
build a hierarchy of concept names w.r.t. specificity and is known as TBox classification.

If a system supports ABox reasoning, the following inference services are provided:

� ABox consistency (w.r.t. a TBox).
� Instance checking w.r.t. a TBox and an ABox.
� The most specific concept names mentioned in a TBox T of which an individual is an
instance are called the direct types of the individual w.r.t. a TBox and an ABox.

� The retrieval inference problem is to find all individuals mentioned in an ABox that are
an instance of a given concept C w.r.t. a TBox.

� The set of fillers of a role R for an individual i w.r.t. a TBox T and an ABoxA is defined
as {x | (T ,A) |= (i, x) : R} where (T ,A) |= ax means that all models of T and A are
also models of ax .

� The set of roles between two individuals i and j w.r.t. a knowledge base (T ,A) is defined
as {R | (T ,A) |= (i, j) : R}.
In many DL systems, there are some auxiliary queries supported: retrieval of the

concept names or individuals mentioned in a knowledge base, retrieval of the set of
roles, retrieval of the role parents and children (defined analogously to the concept
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parents and children, see above), retrieval of the set of individuals in the domain
and in the range of a role, etc. As we have discussed in this section, DL systems of
the second generation offer most if not all of these inference services. An exception
is a language for specifying retrieval queries that goes beyond the simple retrieval
inference problem mentioned above (see e.g., the discussion about Loom).

8.4 The next generation: Fact, Dlp and Racer

The declarative nature of DL modeling is even more important when problems
are treated for which languages are required that are no longer tractable. In-
spired by theoretical advances—e.g., for handling number restrictions, role con-
junctions, generalized concept inclusions and cyclic axioms with descriptive se-
mantics (ALCNR [Buchheit et al., 1993a]); transitive roles (ALCR+ [Sattler,
1996]); role hierarchies and features (ALCH fR+ [Horrocks, 1998b]); and inverse
roles, qualified number restrictions, and role hierarchies (SHIQ [Horrocks et al.,
1999] also calledALCQHI R+ , pronounced ALC-choir)—the development of an-
other generation of sound and complete DL systems was started at the end of the
1990s.

Fact

Initially, research on practical implementations of DL systems for expressive
Description Logics started with a focus on concept and TBox reasoning. How-
ever, rather than directly implementing the tableau calculus used for the the-
oretical decidability proofs and complexity analyses, a rigorous investigation
into methods for informed search was made for developing the next genera-
tion of DL systems. In particular, average-case optimization techniques have
been investigated with the system Fact ([Horrocks, 1997a; 1998b; Horrocks
and Patel-Schneider, 1999] see also the subsequent chapter for details). At the
time of this writing, two versions of Fact are available. One version supports
TBox reasoning for the Description Logic ALCH fR+ [Horrocks, 1997a; 1998b].
Furthermore, a newer version of Fact also supports TBox reasoning with inverse
roles and qualified number restrictions (SHIQ [Horrocks, 1999; Horrocks et al.,
1999]). At the time of this writing, Fact does not support ABoxes.

It was the Fact system that first demonstrated the usefulness of expressive De-
scription Logics for developing practical applications. It was shown that, although
runtime behavior can be exponential in the worst case, in practical contexts, op-
timization techniques can be found that prevent a DL system from running into
combinatorial explosion. Nevertheless, the algorithms are still sound and com-
plete. Indeed, after several years of experience with less expressive systems such
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as Classic, research on Fact stimulated many research activities for developing
optimized DL system implementations for expressive Description Logics.

The system Fact is implemented in CommonLisp and can be downloaded
with source code for research purposes. A CORBA interface guarantees seamless
integration into network-aware applications. Various input formats are suppor-
ted by Fact (e.g., for XML-based notations of TBoxes). The graphical inter-
face OilEd for developing TBoxes in the spirit of frame systems is described in
[Bechhofer et al., 2001b].

Dlp

Based on similar techniques to Fact, the system Dlp utilizes extended techniques
for optimizations [Horrocks and Patel-Schneider, 1998c; 1998d; Patel-Schneider,
1999]. Dlp supports concept consistency reasoning for the Description Logic
ALCN reg . From a modal logic perspective, ALCN reg can also be called Propo-
sitional Dynamic Logic (PDL) with a restricted form of graded modalities, i.e.,
simple number restrictions.
Dlp has succeeded in many performance competitions [Horrocks, 1998a;

Horrocks and Patel-Schneider, 1998c; Patel-Schneider, 1999]. It was shown that
tableau-based approaches can be implemented such that the performance for
satisfiability testing for ALC or modal logic Km is comparable to traditional
approaches used in the community [Giunchiglia and Sebastiani, 1996b;Giunchiglia
et al., 1999].

However, in the current version of Dlp TBox classification is not provided as an
inference service. In particular, no generalized concept inclusions and no TBoxes
with forward references are supported (i.e., algorithms for dealing with generalized
concept inclusions are not implemented in Dlp). ABoxes are not supported either.
Dlp is implemented in SML.

Racer

For many applications, besides concept consistency and TBox reasoning, ABox
reasoning is also important. Calculi for ABox consistency have been presented for
the above-mentioned representation constructs:ALCNR [Buchheit et al., 1993b],
ALCNHR+ [Haarslev and Möller, 2000], ALCQHI R+ (SHIQ) [Horrocks
et al., 2000c]. Based on theoretical results, a practical implementation of ABox
calculi was developed with the full TBox and ABox DL system Racer [Haarslev
andMöller, 1999; 2001e].Racer supports all optimization techniques that are incor-
porated into Fact. Some new optimization techniques investigated with the Racer
system (e.g., for dealing with number restrictions and ABoxes) are mentioned in
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the next chapter. In Racer, the unique name assumption for ABox individuals is
imposed. In order to demonstrate the usefulness of DL systems for practical ap-
plications, high performance reasoning for large TBoxes is discussed in [Haarslev
and Möller, 2001c].

Initial versions of the Racer system supported the logic ALCNHR+ . In later
versions reasoning was extended to ABox reasoning with the logic ALCQHI R+
(SHIQ). In addition, Racer supports concrete domains without so-called feature
chains (see [Baader and Hanschke, 1991a] and the discussion of the Kris system).
In particular, predicates representing linear inequalities about the reals are handled
by Racer (see [Haarslev et al., 2001; Haarslev and Möller, 2001b] for details).
Racer dynamically selects appropriate optimization techniques based on a static

analysis of input TBoxes, ABoxes and queries. As a distinguishing feature, which
is important for many applications, it should also bementioned thatRacer supports
multiple TBoxes and ABoxes (see also the Kris system). Assertions can be added
to ABoxes after queries have been answered. In addition, for instance, Racer also
provides support for retraction of assertions.
Racer can be downloaded for research purposes as a server program for standard

operating systemswith no additional licenses. A socket-based network versionwith
Java interface is available. The implementation language ofRacer isCommonLisp.

8.5 Lessons learned

Considering the evolving technology of DL systems it becomes clear that since the
end of the 1990s there has been an enormous interest in DL reasoning systems. This
is demonstrated by the quite large number of system implementations. Currently,
all modern DL systems are based on sound and complete algorithms. Thus, system
developers can really rely on all answers computed by a DL system. This positive
trend has been initiated by the development of optimization techniques that ensure
stable runtimes for average-case inputs for real-world problems even if the worst-
case complexity is exponential (see also below). The trend has been initiated by the
landmark system Fact.

The original idea of the Tell&Ask interface ofKrypton is still realized inmodern
systems. However, at the time of this writing, the systems support only some kind
of batch-oriented behavior. A knowledge base (TBox and ABox) is passed to the
systems (tell interface). Afterwards, queries can be answered (ask interface). But,
no incremental additions to the knowledge base are possible after the first query is
answered. The difficulty is that complex transformations on the knowledge bases
are necessary in order to compute an internal representation that can be used for
relatively fast query answering (see the discussion on optimization techniques in
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subsequent chapters). The price to pay is that algorithms for appropriately handling
incremental additions to a knowledge base are not yet known. Other features, e.g.,
explanation facilities, retraction, etc., still have to be developed for expressive DLs
as well.

As a second and quite important lesson one can see that Description Logics with
more expressiveness and sound and complete algorithms impose a different view in
modeling. Concept definitions as known from, for instance, Classic are no longer
the central modeling device if generalized concept inclusions (representing cyclic
implications or equalities) are available.6

A third lesson we can learn from considering DL systems and their develop-
ment is that speed depends much more on the expressiveness of the Description
Logic than it does on the implementation language. What really counts is the set
of optimization strategies, the implementation of index data structures and the
selection of clever heuristics. There are first attempts at providing a distributed
implementation of a DL system. However, performance problems in network com-
munication lead to server-based solutions, i.e., a knowledge base is being processed
at a single workstation computer (but may be accessed from different clients).
Benchmark generators and standardized application knowledge bases are used
for metering system performance. Thus, different system implementations can be
compared.

With Racer we have discussed a state-of-the-art DL system that also supports
ABoxes and concrete domains. However, only simple query languages are cur-
rently available. For Description Logics without inverse roles and number restric-
tions (i.e., ALCH fR+), Tessaris [2001] developed the basic techniques for sup-
porting the so-called conjunctive queries in DL systems. However, for Description
Logics as expressive as SHIQ much less is known from an implementation
standpoint.

Another lesson is that the development of techniques for practically incorporat-
ing facilities for the representation of space and time into Description Logics is
still an open issue. The necessity of a semantics-based integration of temporal and
terminological reasoning has been emphasized in first investigations in the Back
project. However, early approaches (e.g., [Schmiedel, 1990]) have been shown to be
undecidable [Halpern and Shoham, 1991; Schild, 1993]. In the context of planning,
the opportunities of an integrated environment combining temporal and termino-
logical reasoning were clearly demonstrated with the RHET system [Allen, 1991].
It has been shown that spatial reasoning (e.g., about topological relations) induces
non-obvious subsumption relationships between concepts [Haarslev et al., 1998;

6 Nevertheless, Description Logics can still be called object-based representation formalisms, although there are
some approaches to deal with n-ary relations [Schmolze, 1989; Calvanese et al., 1998d] as well.
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1999]. Thework presented in [Artale et al., 2001] demonstrates that the decidability
barrier is reached if temporal operators are integrated into expressive Description
Logics. Nevertheless, [Artale et al., 2001] identify a fragment that allows a limited
kind of practical modeling. Initial experiments concerning an implementation of
a Description Logic that supports operators for linear time temporal reasoning are
discussed in [Günsel and Wittmann, 2001].
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Implementation and Optimization Techniques

IAN HORROCKS

Abstract

This chapter will discuss the implementation of the reasoning services which form
the core of DL-based knowledge representation systems. To be useful in realis-
tic applications, such systems need both expressive logics and fast reasoners. As
expressive logics inevitably have high worst-case complexities, this can only be
achieved by employing highly optimized implementations of suitable reasoning al-
gorithms. Systems based on such implementations have demonstrated that they can
perform well with problems that occur in realistic applications, including problems
where unoptimized reasoning is hopelessly intractable.

9.1 Introduction

The usefulness of Description Logics in applications has been hindered by the basic
conflict between expressiveness and tractability. Realistic applications typically re-
quire both expressive logics, with inevitably high worst-case complexities for their
decision procedures, and acceptable performance from the reasoning services. Al-
though the definition of acceptablemay varywidely from application to application,
early experiments with Description Logics indicated that, in practice, performance
was a serious problem, even for logics with relatively limited expressive powers
[Heinsohn et al., 1992].

On the other hand, theoretical work has continued to extend our understand-
ing of the boundaries of decidability in Description Logics, and has led to the
development of sound and complete reasoning algorithms for much more expres-
sive logics. The expressive power of these logics goes a long way towards ad-
dressing the criticisms leveled at Description Logics in traditional applications
such as ontological engineering [Doyle and Patil, 1991] and is sufficient to sug-
gest that they could be useful in several exciting new application domains, for
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example reasoning about database schemas and queries [Calvanese et al., 1998f;
1998a] and providing reasoning support for the so-called Semantic Web [Decker
et al., 2000; Bechhofer et al., 2001b]. However, the worst-case complexity of their
decision procedures is invariably (at least) exponential with respect to problem
size.

This high worst-case complexity initially led to the conjecture that expressive
Description Logics might be of limited practical applicability [Buchheit et al.,
1993c]. However, although the theoretical complexity results are discouraging,
empirical analyses of real applications have shown that the kinds of construct
which lead to worst-case intractability rarely occur in practice [Nebel, 1990b;
Heinsohn et al., 1994; Speel et al., 1995], and experiments with the Kris system
showed that applying some simple optimization techniques could lead to a signif-
icant improvement in the empirical performance of a DL system [Baader et al.,
1992a]. More recently the Fact, Dlp and Racer systems have demonstrated that,
evenwith very expressive logics, highly optimized implementations can provide ac-
ceptable performance in realistic applications [Horrocks and Patel-Schneider, 1999;
Haarslev and Möller, 2001c].1

In this chapter we will study the implementation of DL systems, examining in
detail the wide range of optimization techniques that can be used to improve perfor-
mance. Some of the techniques that will be discussed are completely independent of
the logical language supported by the Description Logic and the kind of algorithm
used for reasoning; many others would be applicable to a wide range of languages
and implementation styles, particularly those using search-based algorithms. How-
ever, the detailed descriptions of implementation and optimization techniques will
assume, for the most part, reasoning in an expressive DL based on a sound and
complete tableau algorithm.

9.1.1 Performance analysis

Before designing and implementing a DL-based knowledge representation system,
the implementor should be clear about the goals that they are trying to meet and
against which the performance of the system will ultimately be measured. In this
chapter it will be assumed that the primary goal is utility in realistic applications,
and that this will normally be assessed by empirical analysis.

Unfortunately, as DL systems with very expressive logics have only recently
become available [Horrocks, 1998a; Patel-Schneider, 1998; Haarslev and Möller,
2001e], there are very fewapplications that can be used as a source for test data.2 One

1 It should be pointed out that experience in this area is still relatively limited.
2 This situation is changing rapidly, however, with the increasing use of Description Logics in database and

ontology applications.
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application that has been able to provide such data is the European Galen project,
part ofwhich has involved the construction of a largeDLknowledge base describing
medical terminology [Rector et al., 1993]. Reasoning performance with respect to
this knowledge base has been used for comparing DL systems [Horrocks and Patel-
Schneider, 1998b], and we will often refer to it when assessing the effectiveness of
optimization techniques.

As few other suitable knowledge bases are available, the testing of DL systems
has often been supplemented with the use of randomly generated or hand crafted
test data [Giunchiglia and Sebastiani, 1996b; Heuerding and Schwendimann, 1996;
Horrocks and Patel-Schneider, 1998b; Massacci, 1999; Donini and Massacci,
2000]. In many cases the data was originally developed for testing propositional
modal logics, and has been adapted for use with Description Logics by taking ad-
vantage of the well-known correspondence between the two formalisms [Schild,
1991]. Tests using this kind of data, in particular the test suites from the Tableaux’98
comparison of modal logic theorem provers [Balsiger and Heuerding, 1998] and
the DL’98 comparison of DL systems [Horrocks and Patel-Schneider, 1998b], will
also be referred to in assessments of optimization techniques.

9.2 Preliminaries

This section will introduce the syntax and semantics of Description Logics (full
details of which can be found in Chapter 2) and discuss the reasoning services
which would form the core of a DL-based knowledge representation system. It will
also discuss how, through the use of unfolding and internalization, these reasoning
services can often be reduced to the problem of determining the satisfiability of a
single concept.

9.2.1 Syntax and semantics

Description Logics are formalisms that support the logical description of concepts
and roles. Arbitrary concept and role descriptions (from now on referred to simply
as concepts and roles) are constructed from atomic concept and role names using
a variety of concept- and role-forming operators, the range of which is dependent
on the particular logic. In the following discussion we will use C and D to denote
arbitrary concepts, R and S to denote arbitrary roles, A and P to denote atomic
concept and role names, and n to denote a nonnegative integer.

For concepts, the available operators usually include some or all of the standard
logical connectives, conjunction (denoted �), disjunction (denoted �) and negation
(denoted ¬). In addition, the universal concept top (denoted �, and equivalent to
A � ¬A) and the incoherent concept bottom (denoted⊥, and equivalent to A � ¬A)
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are often pre-defined.Other commonly supported operators include restricted forms
of quantification called existential role restrictions (denoted ∃R.C) and universal
role restrictions (denoted ∀R.C). Some Description Logics also support qualified
number restrictions (denoted� n .PC and� n .PC), operators that place cardinality
restrictions on the roles relating instances of a concept to instances of some other
concept.Cardinality restrictions are often limited to the forms� n .P� and� n .P�,
when they are called unqualified number restrictions, or simply number restrictions,
and are often abbreviated to� n P and� nP. The roles that can appear in cardinality
restriction concepts are usually restricted to being atomic, as allowing arbitrary roles
in such concepts is known to lead to undecidability [Baader and Sattler, 1996b].

Role-forming operators may also be supported, and in some very expressive
logics roles can be regular expressions formed using union (denoted �), compo-
sition (denoted ◦), reflexive-transitive closure (denoted ∗) and identity operators
(denoted id ), possibly augmented with the inverse (also known as converse) opera-
tor (denoted −) [De Giacomo and Lenzerini, 1996]. In most implemented systems,
however, roles are restricted to being atomic names.

Concepts and roles are given a standard Tarski-style model-theoretic semantics,
theirmeaning being given by an interpretation I = (�I,I ), where�I is the domain
(a set) and I is an interpretation function. Full details of both syntax and semantics
can be found in Chapter 2.

In general, a DL knowledge base (KB) consists of a set T of terminological
axioms, and a set A of assertional axioms. The axioms in T state facts about
concepts and roleswhile those inA state facts about individual instances of concepts
and roles. As in this chapter we will mostly be concerned with terminological
reasoning, that is reasoning about concepts and roles, a KB will usually be taken
to consist only of the terminological component T .

A terminological KB T usually consists of a set of axioms of the form C 
 D
andC ≡ D, whereC and D are concepts. An interpretation I satisfies T if for every
axiom (C 
 D) ∈ T , CI ⊆ DI , and for every axiom (C ≡ D) ∈ T , CI = DI ; T
is satisfiable if there exists some non-empty interpretation that satisfies it. Note that
T can, without loss of generality, be restricted to contain only inclusion axioms or
only equality axioms, as the two forms can be reduced one to the other using the
following equivalences:

C 
 D ⇐⇒ � ≡ D � ¬C
C ≡ D ⇐⇒ C 
 D and D 
 C.

AconceptC is subsumed by a concept Dwith respect toT (writtenT |= C 
 D)
ifCI ⊆ DI in every interpretation I that satisfies T , a conceptC is satisfiablewith
respect to T (written T |= C �
 ⊥) if CI �= ∅ in some I that satisfies T , and a
concept C is unsatisfiable (not satisfiable) with respect to T (written T |= ¬C) if
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CI = ∅ in every I that satisfies T . Subsumption and (un)satisfiability are closely
related. If T |= C 
 D, then in all interpretations I that satisfy T , CI ⊆ DI and
so CI ∩ (¬D)I = ∅. Conversely, if C is not satisfiable with respect to T , then in
all I that satisfy T , CI = ∅ and so CI ⊆ ⊥I . Subsumption and (un)satisfiability
can thus be reduced one to the other using the following equivalences:

T |= C 
 D ⇐⇒ T |= ¬(C � ¬D)

T |= ¬C ⇐⇒ T |= C 
 ⊥.

In some Description Logics T can also contain axioms that define a set of transi-
tive roles R+ and/or a subsumption partial ordering on roles [Horrocks and Sattler,
1999]. An axiom R ∈ R+ states that R is a transitive role while an axiom R 
 S
states that R is subsumed by S. An interpretation I satisfies the axiom R ∈ R+
if RI is transitively closed (i.e., (RI)+ = RI), and it satisfies the axiom R 
 S if
RI ⊆ SI .

9.2.2 Reasoning services

Terminological reasoning in a DL-based knowledge representation system is
based on determining subsumption relationships with respect to the axioms in
a KB. As well as answering specific subsumption and satisfiability queries, it
is often useful to compute and store (usually in the form of a directed acyclic
graph) the subsumption partial ordering of all the concept names appearing in
the KB, a procedure known as classifying the KB [Patel-Schneider and Swartout,
1993]. Some systems may also be capable of dealing with assertional axioms,
those concerning instances of concepts and roles, and performing reasoning tasks
such as realization (determining the concepts instantiated by a given individual)
and retrieval (determining the set of individuals that instantiate a given concept)
[Baader et al., 1991]. However, we will mostly concentrate on terminological
reasoning because it has been more widely used in DL applications. Moreover,
given a sufficiently expressive Description Logic, assertional reasoning can be
reduced to terminological reasoning [De Giacomo and Lenzerini, 1996].

In practice, many systems use subsumption-testing algorithms that are not ca-
pable of determining subsumption relationships with respect to an arbitrary KB.
Instead, they restrict the kinds of axiom that can appear in the KB so that
dependency-eliminating substitutions (known as unfolding) can be performed prior
to evaluating subsumption relationships. These restrictions require that all axioms
are unique, acyclic definitions. An axiom is called a definition of A if it is of the
form A 
 D or A ≡ D, where A is an atomic name, it is unique if the KB contains
no other definition of A, and it is acyclic if D does not refer either directly or
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indirectly (via other axioms) to A. A KB that satisfies these restrictions will be
called an unfoldable KB.

Definitions of the formA 
 D are sometimes called primitive or necessary, as D
specifies a necessary condition for instances ofA, while those of the formA ≡ D are
sometimes callednon-primitiveornecessary and sufficient as D specifies conditions
that are both necessary and sufficient for instances of A. In order to distinguish
non-definitional axioms, they are often called general axioms [Buchheit et al.,
1993a]. Restricting the KB to definition axioms makes reasoning much easier,
but significantly reduces the expressive power of the DL. However, even with an
unrestricted (or general) KB, definition axioms and unfolding are still useful ideas,
as they can be used to optimize the reasoning procedures (see Section 9.4.3).

9.2.3 Unfolding

Given an unfoldable KB T , and a concept C whose satisfiability is to be tested
with respect to T , it is possible to eliminate from C all concept names occurring
in T using a recursive substitution procedure called unfolding. The satisfiability of
the resulting concept is independent of the axioms in T and can therefore be tested
using a decision procedure that is only capable of determining the satisfiability of
a single concept (or equivalently, the satisfiability of a concept with respect to an
empty KB).

For a non-primitive concept name A, defined in T by an axiom A ≡ D, the
procedure is simply to replace A with D wherever it occurs in C , and then to
recursively unfold D. For a primitive concept name A, defined in T by an axiom
A 
 D, the procedure is slightly more complex. Wherever A occurs in C it is
replaced with the concept A′ � D, where A′ is a new concept name not occurring
in T or C , and D is then recursively unfolded. The concept A′ represents the
“primitiveness” of A—the unspecified characteristics that differentiate it from D.
Wewill useUnfold(C, T ) to denote the conceptC unfolded with respect to a KB T .

Adecisionprocedure that tries tofind a satisfying interpretationI for the unfolded
concept can now be used, as any such interpretation will also satisfy T . This can
easily be shown by applying the unfolding procedure to all of the concepts forming
the right-hand side of axioms in T , so that they are constructed entirely from
concept names that are not defined in T , and are thus independent of the other
axioms in T . The interpretation of each defined concept in T can then be taken to
be the interpretation of the unfolded right-hand side concept, as given by I and the
semantics of the concept and role forming operators.

Subsumption reasoning can bemade independent of T using the same technique.
Given two concepts C and D, determining if C is subsumed by D with respect to
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T is the same as determining if Unfold(C, T ) is subsumed by Unfold(D, T ) with
respect to an empty KB:

T |= C 
 D ⇐⇒ ∅ |= Unfold(C, T ) 
 Unfold(D, T ).

Unfolding would not be possible, in general, if the axioms in T were not unique
acyclic definitions. If T contained multiple definition axioms for some concept
A, for example {(A ≡ C), (A ≡ D)} ⊆ T , then it would not be possible to make
a substitution for A that preserved the meaning of both axioms. If T contained
cyclic axioms, for example (A 
 ∃R.A) ∈ T , then trying to unfold A would lead
to non-termination. If T contained general axioms, for example ∃R.C 
 D, then
it could not be guaranteed that an interpretation satisfying the unfolded concept
would also satisfy these axioms.

9.2.4 Internalization

While it is possible to design an algorithm capable of reasoning with respect to
a general KB [Buchheit et al., 1993a], with more expressive logics, in particular
those allowing the definition of a universal role, a procedure called internalization
can be used to reduce the problem to that of determining the satisfiability of a single
concept [Baader, 1991]. A truly universal role is one whose interpretation includes
every pair of elements in the domain of interpretation (i.e., �I ×�I). However, a
role U is universal w.r.t. a terminology T if it is defined such that U is transitively
closed and P 
 U for all role names P occurring in T . For a logic that supports the
union and transitive reflexive closure role-forming operators, this can be achieved
simply by taking U to be

(P1 � · · · � Pn � P−1 � · · · � P−n )
∗,

where P1, . . . ,Pn are all the roles names occurring in T . For a logic that supports
transitively closed roles and role inclusion axioms, this can be achieved by adding
the axioms

(U ∈ R+), (P1 
 U ), . . . , (Pn 
 U ), (P−1 
 U ), . . . , (P−n 
 U )

to T , where P1, . . . ,Pn are all the roles names occurring in T and U is a new role
name not occurring in T . Note that in either case, the inverse role components are
only required if the logic supports the inverse role operator.

The concept axioms in T can be reduced to axioms of the form� 
 C using the
equivalences:

A ≡ B ⇐⇒ � 
 (A � ¬B) � (¬A � B)

A 
 B ⇐⇒ � 
 ¬A � B.
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These axioms can then be conjoined to give a single axiom � 
 C , where

C = �
(Ai≡Bi )∈T

((Ai � ¬Bi ) � (¬Ai � Bi )) � �
(A j
Bj )∈T

(¬A j � Bj ).

Because the interpretation of � is equal to the domain (�I = �I), this axiom
states that every element in the domainmust satisfyC .When testing the satisfiability
of a concept D with respect to T , this constraint on possible interpretations can
be imposed by testing the satisfiability of D � C � ∀U.C (or simply D � ∀U.C
in the case where U is transitively reflexively closed). This relies on the fact that
satisfiable DL concepts always have an interpretation in which every element is
connected to every other element by some sequence of roles (the collapsed model
property) [Schild, 1991].

9.3 Subsumption-testing algorithms

The use of unfolding and internalization means that, in most cases, terminological
reasoning in a DL-based Knowledge Representation System can be reduced to
subsumption or satisfiability reasoning. There are several algorithmic techniques
for computing subsumption relationships, but they divide into two main families:
structural and logical.

9.3.1 Structural subsumption algorithms

Structural algorithms were used in early DL systems such as Kl-One [Brachman
and Schmolze, 1985], Nikl [Kaczmarek et al., 1986] and Krypton [Brachman
et al., 1983a], and are still used in systems such as Classic [Patel-Schneider et al.,
1991], Loom [MacGregor, 1991b] andGrail [Rector et al., 1997]. To determine if
one concept subsumes another, structural algorithms simply compare the (normal-
ized) syntactic structure of the two concepts (see Chapter 2).

Although such algorithms can be quite efficient [Borgida and Patel-Schneider,
1994; Heinsohn et al., 1994], they have several disadvantages.

� Perhaps the most important disadvantage of this type of algorithm is that while it is
generally easy to demonstrate the soundness of the structural inference rules (they will
never infer an invalid subsumption relationship), they are usually incomplete (they may
fail to infer all valid subsumption relationships).

� It is difficult to extend structural algorithms in order to deal with more expressive logics,
in particular those supporting general negation, or to reason with respect to an arbitrary
KB. This lack of expressive power makes the DL system of limited value in traditional
ontological engineering applications [Doyle and Patil, 1991], and completely useless in
database schema reasoning applications [Calvanese et al., 1998f].
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� Although accepting some degree of incompleteness is one way of improving the perfor-
mance of a DL reasoner, the performance of incomplete reasoners is highly dependent
on the degree of incompleteness, and this is notoriously difficult to quantify [Borgida,
1992a].

9.3.2 Logical algorithms

These kinds of algorithm use a refutation-style proof: C is subsumed by D if it can
be shown that the existence of an individual x that is in the extension ofC (x ∈ CI)
but not in the extension of D (x /∈ DI) is logically inconsistent. As we have seen
in Subsection 9.2.2, this corresponds to testing the logical (un)satisfiability of the
concept C � ¬D (i.e., C 
 D iff C � ¬D is not satisfiable). Note that forming this
concept obviously relies on having full negation in the logic.

Various techniques can be used to test the logical satisfiability of a concept.
One obvious possibility is to exploit an existing reasoner. For example, the
LogicsWorkbench [Balsiger et al., 1996], a general-purpose propositional modal
logic reasoning system, could be used simply by exploiting the well-known corre-
spondences between description and modal logics [Schild, 1991]. First-order logic
theorem provers can also be used via appropriate traslations of Description Logics
intofirst-order logic. Examples of this approach can be seen in systemsdeveloped by
Hustadt and Schmidt [1997], using the Spass theorem prover, and Paramasivam and
Plaisted [1998], using the CLIN-S theorem prover. An existing reasoner could also
be used as a component of a more powerful system, as in Ksat/*Sat [Giunchiglia
and Sebastiani, 1996a; Giunchiglia et al., 2002], where a propositional satisfiability
(SAT) tester is used as the key component of a propositional modal satisfiability
reasoner.

There are advantages and disadvantages to the “re-use” approach. On the positive
side, it should be much easier to build a system based on an existing reasoner, and
performance can be maximized by using a state-of-the-art implementation such
as Spass (a highly optimized first-order theorem prover) or the highly optimized
SAT testing algorithms used in Ksat and *Sat (the use of a specialized SAT tester
allows *Sat to outperform other systems on classes of problem that emphasize
propositional reasoning). The translation (into first-order logic) approach has also
been shown to be able to deal with a wide range of expressive Description Logics,
in particular those with complex role-forming operators such as negation or identity
[Hustadt and Schmidt, 2000].

On the negative side, it may be difficult to extend the reasoner to deal with more
expressive logics, or to add optimizations that take advantage of specific features
of the Description Logic, without reimplementing the reasoner (as has been done,
for example, in more recent versions of the *Sat system).
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Most, if not all, implemented DL systems based on logical reasoning have used
custom designed tableau decision procedures. These algorithms try to prove that
D subsumes C by starting with a single individual satisfying C � ¬D, and demon-
strating that any attempt to extend this into a complete interpretation (using a set
of tableau expansion rules) will lead to a logical contradiction. If a complete and
non-contradictory interpretation is found, then this represents a counterexample (an
interpretation in which some element of the domain is in CI but not in DI) that
disproves the conjectured subsumption relationship.

This approach has many advantages and has dominated recent DL research:

� It has a sound theoretical basis in first-order logic [Hollunder et al., 1990].
� It can be relatively easily adapted to allow for a range of logical languages by changing
the set of tableau expansion rules [Hollunder et al., 1990; Bresciani et al., 1995].

� It can be adapted to deal with very expressive logics, and to reason with respect to an
arbitrary KB, by using more sophisticated control mechanisms to ensure termination
[Baader, 1991; Buchheit et al., 1993c; Sattler, 1996].

� It has been shown to be optimal for a number of DL languages, in the sense that the
worst-case complexity of the algorithm is no worse than the known complexity of the
satisfiability problem for the logic [Hollunder et al., 1990].

In the remainder of this chapter, detailed descriptions of implementation and
optimization techniques will assume the use of a tableau decision procedure. How-
ever, many of the techniques are independent of the subsumption-testing algorithm
or could easily be adapted to most logic-based methods. The reverse is also true,
and several of the described techniques have been adapted from other logical deci-
sion procedures, in particular those that try to optimize the search used to deal with
non-determinism.

9.3.2.1 Tableau algorithms

Tableau algorithms try to prove the satisfiability of a concept D by constructing a
model, an interpretation I in which DI is not empty. A tableau is a graphwhich rep-
resents such amodel, with nodes corresponding to individuals (elements of�I) and
edges corresponding to relationships between individuals (elements of �I ×�I).

A typical algorithm will start with a single individual satisfying D and try to
construct a tableau, or some structure from which a tableau can be constructed,
by inferring the existence of additional individuals or of additional constraints
on individuals. The inference mechanism consists of applying a set of expansion
rules which correspond to the logical constructs of the language, and the algorithm
terminates either when the structure is complete (no further inferences are possible)
or when obvious contradictions have been revealed. Non-determinism is dealt with
by searching different possible expansions: the concept is unsatisfiable if every
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�-rule if 1. (C �D) ∈ L(x)
2. {C,D} � L(x)

then L(x) −→ L(x) ∪ {C,D}
�-rule if 1. (C �D) ∈ L(x)

2. {C,D} ∩ L(x) = ∅
then either L(x) −→ L(x) ∪ {C}

or L(x) −→ L(x) ∪ {D}
∃-rule if 1. ∃R.C ∈ L(x)

2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)
then create a new node y and edge 〈x, y〉

with L(y) = {C} and L(〈x, y〉) = R

∀-rule if 1. ∀R.C ∈ L(x)
2. there is some y s.t. (〈x, y〉) = R and C /∈ L(y)

then

Fig. 9.1. Tableau expansion rules for ALC.

expansion leads to a contradiction and is satisfiable if any possible expansion leads
to the discovery of a complete non-contradictory structure.

Theoretical presentations of tableau algorithms use a variety of notational styles
including constraints [Hollunder et al., 1990], prefixes [De Giacomo andMassacci,
1996] and labeled graphs [Sattler, 1996]. We will use the labeled graph notation as
it has an obvious correspondence with standard implementation techniques. In its
basic form, this notation describes the construction of a directed graph (usually a
tree) in which each node x is labeled with a set of concepts (L(x) = {C1, . . . ,Cn}),
and each edge 〈x, y〉 is labeled with a role (L(〈x, y〉) = R). When a concept C is
in the label of a node x (C ∈ L(x)), it represents a model in which the individual
corresponding with x is in the interpretation ofC . When an edge 〈x, y〉 is labeled R
(L(〈x, y〉) = R), it represents a model in which the tuple corresponding with 〈x, y〉
is in the interpretation of R. A node y is called an R-successor of a node x if there
is an edge 〈x, y〉 labeled R, x is called the predecessor of y if y is an R-successor
of x , and x is called an ancestor of y if x is the predecessor of y or there exists some
node z such that z is the predecessor of y and x is an ancestor of z. A contradiction
or clash is detected when {C,¬C} ⊆ L(x) for some concept C and some node x .

To test the satisfiability of a concept D, a basic algorithm initializes a tree to
contain a single node x (called the root node) with L(x) = {D}, and then expands
the tree by applying rules that either extend node labels or add new leaf nodes. A
set of expansion rules for theALC Description Logic is shown in Figure 9.1, where
C and D are concepts, and R is a role. Note that:

� Concepts are assumed to be in negation normal form, that is with negations only
applying to concept names. ArbitraryALC concepts can be converted to negation normal
form by pushing negations inwards using a combination of De Morgan’s laws and the
equivalences ¬(∃R.C)⇐⇒ (∀R.¬C) and ¬(∀R.C)⇐⇒ (∃R.¬C). This procedure
can be extended to more expressive logics by using additional equivalences such as
¬(� n R)⇐⇒ (� (n + 1)R).

L(y) L(y) ∪ {C}
L
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� Disjunctive concepts (C � D) ∈ L(x) give rise to non-deterministic expansion. In
practice this is usually dealt with by search: trying each possible expansion in turn until
a fully expanded and clash-free tree is found, or all possibilities have been shown to
lead to contradictions. In more expressive logics other constructs, such as maximum
number restrictions (� n R), also lead to non-deterministic expansion. Searching non-
deterministic expansions is the main cause of intractability in tableau subsumption testing
algorithms.

� Existential role restriction concepts ∃R.C ∈ L(x) cause the creation of new R-successor
nodes, and universal role restriction concepts ∀R.C ∈ L(x) extend the labels of
R-successor nodes.

The tree is fully expanded when none of the expansion rules can be applied.
If a fully expanded and clash-free tree can be found, then the algorithm returns
satisfiable; otherwise it returns unsatisfiable.

More expressive logics may require several extensions to this basic formalism.
For example, with logics that include both role inclusion axioms and some form of
cardinality restriction, it may be necessary to label edges with sets of role names
instead of a single role name [Horrocks, 1998b]. It may also be necessary to add
cycle detection (often called blocking) to the preconditions of some of the inference
rules in order to guarantee termination [Buchheit et al., 1993a; Baader et al., 1996],
the general idea being to stop the expansion of a branch whenever the same node
label recurs in the branch. Blocking can also lead to amore complex correspondence
between the structure created by the algorithm and a model of a satisfiable concept,
as the model may contain cycles or even be infinite [Horrocks and Sattler, 1999].

9.4 Theory versus practice

So far, what we have seen is typical of theoretical presentations of tableau-based
decision procedures. Such a presentation is sufficient for soundness and complete-
ness proofs, and is an essential starting point for the implementation of a reliable
subsumption-testing algorithm. However, there often remains a considerable gap
between the theoretical algorithm and an actual implementation. Additional points
which may need to be considered are:

� the efficiency of the algorithm, in the theoretical (worst-case) sense;
� the efficiency of the algorithm, in a practical (typical-case) sense;
� how to use the algorithm for reasoning with unfoldable, general and cyclical KBs;
� optimizing the (implementation of the) algorithm to improve the typical-case perfor-
mance.

In the remainder of this section we will consider the first three points, while in
the following section wewill consider implementation and optimization techniques
in detail.
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∃∀-rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)
3. neither the �-rule nor the �-rule is applicable to L(x)

then create a new node y and edge 〈x, y〉
with L(y) = {C} ∪ {D | ∀R.D ∈ L(x)} and L(〈x, y〉) = R

Fig. 9.2. Combined ∃∀-rule for ALC.

9.4.1 Worst-case complexity

When considering an implementation, it is sensible to start with an algorithm that
is known to be theoretically efficient, even if the implementation subsequently
departs from the theory to some extent. Theoretically efficient is taken to mean
that the complexity of the algorithm is equal to the complexity of the satisfiability
problem for the logic, where this is known, or at least that consideration has been
given to the worst-case complexity of the algorithm. This is not always the case, as
the algorithm may have been designed to facilitate a soundness and completeness
proof, with little consideration having been given to worst-case complexity, much
less implementation.

Apart from establishing an upper bound for the “hardness” of the problem, stud-
ies of theoretical complexity can suggest useful implementation techniques. For
example, a study of the complexity of the satisfiability problem for ALC concepts
with respect to a general KB has demonstrated that caching of intermediate results
is required in order to stay in ExpTime [Donini et al., 1996a], while studying the
complexity of the satisfiability problem for SIN concepts has shown that a more
sophisticated labeling and blocking strategy can be used in order to stay in PSpace
[Horrocks et al., 1999].

One theoretically derived technique that is widely used in practice is the trace
technique. This is a method for minimizing the amount of space used by the
algorithm to store the tableau expansion tree. The idea is to impose an ordering on
the application of expansion rules so that local propositional reasoning (finding a
clash-free expansion of conjunctions and disjunctions using the �-rule and �-rule)
is completed before new nodes are created using the ∃-rule. A successor created by
an application of the ∃-rule, and any possible applications of the ∀-rule, can then be
treated as an independent subproblem that returns either satisfiable or unsatisfiable,
and the space used to solve it can be re-used in solving the next subproblem. A node
x returns satisfiable if there is a clash-free propositional solution for which any and
all subproblems return satisfiable; otherwise it returns unsatisfiable. In algorithms
where the trace technique can be used, the ∀-rule is often incorporated in the ∃-rule,
giving a single rule as shown in Figure 9.2.

Apart from minimizing space usage, the trace technique is generally viewed as
a sensible way of organizing the expansion and the flow of control within the algo-
rithm. Ordering the expansion in this way may also be required by some blocking
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strategies [Buchheit et al., 1993a], although in some cases it is possible to use a
more efficient subset blocking technique that is independent of the ordering [Baader
et al., 1996].

The trace technique relies on the fact that node labels are not affected by the
expansion of their successors. This is no longer true when the logic includes inverse
roles, because universal value restrictions in the label of a successor of a node x can
augmentL(x). This could invalidate the existing propositional solution forL(x), or
invalidate previously computed solutions to subproblems in other successor nodes.
For example, if

L(x) = {∃R.C, ∃S.(∀S−.(∀R.¬C))},
then x is obviously unsatisfiable as expanding ∃S.(∀S−.(∀R.¬C)) will add ∀R.¬C
to L(x), meaning that x must have an R-successor whose label contains both C
and ¬C . The contradiction would not be discovered if the R-successor required by
∃R.C ∈ L(x) were generated first, found to be satisfiable and then deleted from the
tree in order to save space.

The development of a PSpace algorithm for the SIN logic has shown that a
modified version of the trace technique can still be used with logics that include
inverse roles [Horrocks et al., 1999]. However, the modification requires that the
propositional solution and all subproblems are re-computed whenever the label of
a node is augmented by the expansion of a universal value restriction in the label
of one of its successors.

9.4.2 Typical-case complexity

Although useful practical techniques can be derived from the study of theoretical
algorithms, it should be borne in mind that minimizing worst-case complexity may
require the use of techniques that clearly would not be sensible in typical cases.
This is because the kinds of pathological problem that would lead to worst-case
behavior do not seem to occur in realistic applications. In particular, the amount of
space used by algorithms does not seem to be a practical problem, whereas the time
taken for the computation certainly is. For example, in experiments with the Fact
system using the DL’98 test suite, available memory (200Mb) was never exhausted
in spite of the fact that some single computations required hundreds of seconds of
CPU time [Horrocks and Patel-Schneider, 1998b]. In other experiments using the
Galen KB, computations were run for tens of thousands of seconds of CPU time
without exhausting available memory.

In view of these considerations, techniques that save space by recomputing are
unlikely to be of practical value. The modified trace technique used in the PSpace
SIN algorithm (see Section 9.4.1), for example, is probably not of practical value.
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However, the more sophisticated labeling and blocking strategy, which allows the
establishment of a polynomial bound on the length of branches, could be used not
only in an implementation of the SIN algorithm, but also in implementations of
more expressive logics where other considerations mean that the PSpace result no
longer holds [Horrocks et al., 1999].

In practice, the poor performance of tableau algorithms is due to non-determinism
in the expansion rules (for example the �-rule), and the resulting search of different
possible expansions. This is often treated in a very cursory manner in theoretical
presentations. For soundness and completeness it is enough to prove that the search
will always find a solution if one exists, and that it will always terminate. For
worst-case complexity, an upper bound on the size of the search space is all that is
required. As this upper bound is invariably exponential with respect to the size of the
problem, exploring the whole search space would inevitably lead to intractability
for all but the smallest problems. When implementing an algorithm it is therefore
vital to give much more careful consideration to non-deterministic expansion, in
particular how to reduce the size of the search space and how to explore it in an
efficient manner. Many of the optimizations discussed in subsequent sections will
be aimed at doing this, for example by using absorption to localize non-determinism
in the KB, dependency directed backtracking to prune the search tree, heuristics to
guide the search, and caching to avoid repetitive search.

9.4.3 Reasoning with a knowledge base

One area in which the theory and practice diverge significantly is that of reasoning
with respect to the axioms in a KB. This problem is rarely considered in detail: with
less expressive logics the KB is usually restricted to being unfoldable, while with
more expressive logics, all axioms can be treated as general axioms and dealt
with via internalization. In either case it is sufficient to consider an algorithm that
tests the satisfiability of a single concept, usually in negation normal form.

In practice, it is muchmore efficient to retain the structure of theKB for as long as
possible, and to take advantage of it during subsumption/satisfiability testing. One
way in which this can be done is to use lazy unfolding – only unfolding concepts
as required by the progress of the subsumption or satisfiability testing algorithm
[Baader et al., 1992a]. With a tableau algorithm, this means that a defined concept
A is only unfolded when it occurs in a node label. For example, if T contains
the non-primitive definition axiom A ≡ C , and the �-rule is applied to a concept
(A � D) ∈ L(x) so that A and D are added to L(x), then at this point A can be
unfolded by replacing it with C .

Used in this way, lazy unfolding already has the advantage that it avoids
unnecessary unfolding of irrelevant subconcepts, either because a contradiction
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is discovered without fully expanding the tree, or because a non-deterministic
expansion choice leads to a complete and clash-free tree. However, a much greater
increase in efficiency can be achieved if, instead of replacing concept names with
their definitions, names are retained when their definitions are added. This is be-
cause the discovery of a clash between concept names can avoid expansion of their
definitions [Baader et al., 1992a].

In general, lazy unfolding can be described as additional tableau expansion rules,
defined as follows.

U1-rule if 1. A ∈ L(x) and (A ≡ C) ∈ T
2. C /∈ L(x)

then L(x) −→ L(x) ∪ {C}
U2-rule if 1. ¬A ∈ L(x) and (A ≡ C) ∈ T

2. ¬C /∈ L(x)
then L(x) −→ L(x) ∪ {¬C}

U3-rule if 1. A ∈ L(x) and (A 
 C) ∈ T
2. C /∈ L(x)

then L(x) −→ L(x) ∪ {C}.

The U1-rule and U2-rule reflect the symmetry of the equality relation in the non-
primitive definition A ≡ C , which is equivalent to A 
 C and ¬A 
 ¬C . The
U3-rule on the other hand reflects the asymmetry of the subsumption relation in the
primitive definition A 
 C .

Treating all the axioms in the KB as general axioms, and dealing with them
via internalization, is also highly inefficient. For example, if T contains an axiom
A 
 C , where A is a concept name not appearing on the left-hand side of any other
axiom, then it is easy to deal with the axiom using the lazy unfolding technique,
simply adding C to the label of any node in which A appears. Treating all axioms
as general axioms would be equivalent to applying the following additional tableau
expansion rules:

I1-rule if 1. (C ≡ D) ∈ T
2. (D � ¬C) /∈ L(x)

then L(x) −→ L(x) ∪ {(D � ¬C)}
I2-rule if 1. (C ≡ D) ∈ T

2. (¬D � C) /∈ L(x)
then L(x) −→ L(x) ∪ {(¬D � C)}

I3-rule if 1. (C 
 D) ∈ T
2. (D � ¬C) /∈ L(x)

then L(x) −→ L(x) ∪ {(D � ¬C)}.
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With (A 
 C) ∈ T , this would result in the disjunction (C � ¬A) being added to
the label of every node, leading to non-deterministic expansion and search, themain
cause of empirical intractability.

The solution to this problem is to divide the KB into two components, an
unfoldable part Tu and a general part Tg, such that Tg = T \ Tu , and Tu contains
unique, acyclic, definition axioms. This is easily achieved, e.g., by initializing Tu
to ∅ (which is obviously unfoldable), then for each axiom X in T , adding X to Tu
if Tu ∪ X is still unfoldable, and adding X to Tg otherwise.3 It is then possible to
use lazy unfolding to deal with Tu , and internalization to deal with Tg.

Given that the satisfiability-testing algorithm includes some sort of cycle
checking, such as blocking, then it is even possible to be a little less conserva-
tive with respect to the definition of Tu by allowing it to contain cyclic primitive
definition axioms, for example axioms of the form A 
 ∃R.A. Lazy unfolding
will ensure that AI ⊆ ∃R.AI by adding ∃R.A to every node containing A, while
blocking will take care of the non-termination problem that such an axiom would
otherwise cause [Horrocks, 1997b]. Moreover, multiple primitive definitions for
a single name can be added to Tu , or equivalently merged into a single definition
using the equivalence

(A 
 C1), . . . , (A 
 Cn) ⇐⇒ A 
 (C1 � · · · � Cn).

However, if Tu contains a non-primitive definition axiom A ≡ C , then it cannot
contain any other definitions for A, because this would be equivalent to allowing
general axioms in Tu . For example, given a general axiom C 
 D, this could be
added to Tu as A 
 D and A ≡ C , where A is a new name not appearing in T .
Moreover, certain kinds of non-primitive cycles cannot be allowed as they can be
used to constrain possible models a way that would not be reflected by unfolding.
For example, if (A ≡ ¬A) ∈ T for some concept name A, then the domain of all
valid interpretations of T must be empty, and T |= C 
 D for all concepts C and
D [Horrocks and Tobies, 2000].

9.5 Optimization techniques

The Kris system demonstrated that by taking a well-designed tableau algorithm,
and applying some reasonable implementation and optimization techniques (such
as lazy expansion), it is possible to obtain a tableau-based DL system that behaves
reasonably well in typical cases, and compares favorably with systems based on
structural algorithms [Baader et al., 1992a]. However, this kind of system is still
much too slow to be usable in many realistic applications. Fortunately, it is possible

3 Note that the result may depend on the order in which the axioms in T are processed.
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to achieve dramatic improvements in typical-case performance by using a wider
range of optimization techniques.

As DL systems are often used to classify a KB, a hierarchy of optimization
techniques is naturally suggested based on the stage of the classification process at
which they can be applied.

(i) Pre-processing optimizations that try to modify the KB so that classification and sub-
sumption testing are easier.

(ii) Partial ordering optimizations that try to minimize the number of subsumption tests
required in order to classify the KB.

(iii) Subsumption optimizations that try to avoid performing a potentially expensive satis-
fiability test, usually by substituting a cheaper test.

(iv) Satisfiability optimizations that try to improve the typical-case performance of the
underlying satisfiability tester.

9.5.1 Pre-processing optimizations

The axioms that constitute a DL KB may have been generated by a human knowl-
edge engineer, as is typically the case in ontological engineering applications, or
be the result of some automated mapping from another formalism, as is typically
the case in DB schema and query reasoning applications. In either case it is un-
likely that a great deal of consideration was given to facilitating the subsequent
reasoning procedures; the KB may, for example, contain considerable redundancy
and may make unnecessary use of general axioms. As we have seen, general ax-
ioms are costly to reason with due to the high degree of non-determinism that they
introduce.

It is, therefore, useful to preprocess theKB, applying a range of syntactic simplifi-
cations andmanipulations. The first of these, normalization, tries to simplify theKB
by identifying syntactic equivalences, contradictions and tautologies. The second,
absorption, tries to eliminate general axioms by augmenting definition axioms.

9.5.1.1 Normalization

In realistic KBs, at least those manually constructed, large and complex concepts
are seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex. The lazy unfolding technique
described above can use this structure to provide more rapid detection of con-
tradictions.

The effectiveness of lazy unfolding is greatly increased if a contradiction
between two concepts can be detected whenever one is syntactically equivalent
to the negation of the other; for example, we would like to discover a direct contra-
diction between (C � D) and (¬D � ¬C). This can be achieved by transforming
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Norm(A) = A for atomic concept name A

Norm(¬C) = Simp(¬Norm(C))
Norm(C1 � . . . �Cn) = Simp(�{Norm(C1)} ∪ . . . ∪ {Norm(Cn)})
Norm(C1 � . . . �Cn) = Norm(¬(¬C1 � . . . � ¬Cn))

Norm(∀R.C) = Simp(∀R.Norm(C))
Norm(∃R.C) = Norm(¬∀R.¬C)

Simp(A) = A for atomic concept name A

Simp(¬C) =



⊥ if C = &
& if C = ⊥
Simp(D) if C = ¬D
¬C otherwise

Simp(�S) =




⊥ if ⊥ ∈ S
⊥ if {C,¬C} ⊆ S
& if S = ∅
Simp(S \ {&}) if & ∈ S
Simp(�P ∪ S \ {�{P}}) if �{P} ∈ S
�S otherwise

Simp(∀R.C) =
{
& if C = &
R.C otherwise

Fig. 9.3. Normalization and simplification functions for ALC.

all concepts into a syntactic normal form, and by directly detecting contradictions
caused by non-atomic concepts as well as those caused by concept names.

In Description Logics there is often redundancy in the set of concept-forming
operators. In particular, logics with full negation often provide pairs of operators,
either one of which can be eliminated in favor of the other by using negation.
Conjunction and disjunction operators are an example of such a pair, and one can be
eliminated in favor of the other using De Morgan’s laws. In syntactic normal form,
all concepts are transformed so that only one of each such pair appears in the KB
(it does not matter which of the two is chosen, the important thing is uniformity).
In ALC, for example, all concepts could be transformed into (possibly negated)
value restrictions, conjunctions and atomic concept names, with (¬D � ¬C) being
transformed into ¬(D � C). An important refinement is to treat conjunctions as
sets (written �{C1, . . . ,Cn}) so that reordering or repeating the conjuncts does not
affect equivalence; for example, (D � C) would be normalized as �{C, D}.4 Nor-
malization can also include a range of simplifications so that syntactically obvious
contradictions and tautologies are detected; for example, ∃R.⊥ could be simplified
to ⊥.

Figure 9.3 describes normalization and simplification functions Norm and Simp

for ALC. These can be extended to deal with more expressive logics by adding
appropriate normalizations (and possibly additional simplifications). For example,
number restrictions can be dealt with by adding the normalizationsNorm(� n R) =
¬� (n + 1)R and Norm(� nR) = � nR, and the simplification Simp(� 0R) = �.

4 Sorting the elements in conjuctions, and eliminating duplicates, achieves the same result.
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Normalized and simplified concepts may not be in negation normal form, but
they can be dealt with by treating them exactly like their non-negated counterparts.
For example,¬�{C, D} can be treated as (¬C � ¬D) and¬∀R.C can be treated as
∃R.¬C . In the remainder of this chapter we will use both forms interchangeably,
choosing whichever is most convenient.

Additional simplifications would clearly be possible. For example, ∀R.C �
∀R.D could be simplified to ∀R.Norm(C � D). Which simplifications it is sen-
sible to perform is an implementation decision that may depend on a cost-benefit
analysis with respect to some particular application. Empirically, simplification
seems to be more effective with mechanically generated KBs and satisfiability
problems, in particular those where the number of different roles is very small.
With this kind of problem it is quite common for satisfiability tests to be greatly
simplified, or even completely avoided, by simplifying part or all of the concept
to either � or ⊥. In the benchmark tests used for the Tableaux’98 comparison
of modal logic theorem provers, for example, some classes of problem can be
completely solved via this mechanism [Heuerding and Schwendimann, 1996;
Balsiger and Heuerding, 1998].

If the subsumption-testing algorithm is to derive maximum benefit from normal-
ization, it is important that it directly detect contradictions caused by non-atomic
concepts as well as those caused by concept names; for example the occurrence
of both �{C, D} and ¬�{C, D} in a node label should be detected as a contra-
diction without the need for further expansion. This can be achieved by replacing
all equivalent (identically encoded) non-atomic concepts C in the KB with a new
atomic concept name A, and adding the axiom A ≡ C to the KB. For example,
all occurrences of �{C, D} in a KB could be replaced with CD, and the axiom
CD ≡ �{C, D} added to the KB.

It is necessary to distinguish these newly introduced system names from user
names appearing in the original KB, as system names need not be classified (indeed,
it would be very confusing for the user if they were). In practice, it is often more
convenient to avoid this problem by using pointer or object identifiers to refer to
concepts, with the same identifier always being associatedwith equivalent concepts.
A contradiction is then detected whenever a pointer/identifier and its negation occur
in a node label.

The advantages of the normalization and simplification procedure are:

� It is easy to implement and could be used with most logics and algorithms.
� Subsumption/satisfiability problems can often be simplified, and sometimes even com-
pletely avoided, by detecting syntactically obvious satisfiability and unsatisfiability.

� It complements lazy unfolding and improves early clash detection.
� The elimination of redundancies and the sharing of syntactically equivalent structures
may lead to the KB being more compactly stored.
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C1 C2 D C1 D C2

C D1 D2 C D1 and C D2

Fig. 9.4. Axiom equivalences used in absorption.

The disadvantages are:

� The overhead involved in the procedure, although this is relatively small.
� For very unstructured KBs there may be no benefit, and it might even slightly increase
the size of the KB.

9.5.1.2 Absorption

As we have seen in Section 9.4.3, general axioms are costly to reason with due to
the high degree of non-determinism that they introduce. With a tableau algorithm,
a disjunction is added to the label of each node for each general axiom in the KB.
This leads to an exponential increase in the search space as the number of nodes
and axioms increases. For example, with 10 nodes and a KB containing 10 general
axioms there are already 100 disjunctions, and they can be non-deterministically
expanded in 2100 different ways. For a KB containing large numbers of general
axioms (there are 1,214 in the Galen medical terminology KB) this can degrade
performance to the extent that subsumption testing is effectively non-terminating.

It therefore makes sense to eliminate general axioms from the KB whenever
possible. Absorption is a technique that tries to do this by absorbing them into
primitive definition axioms. The basic idea is that a general axiom of the form
C 
 D, where C may be a non-atomic concept, is manipulated (using the equiva-
lences in Figure 9.4) so that it has the form of a primitive definition A 
 D′, where
A is an atomic concept name. This axiom can then be merged into an existing prim-
itive definition A 
 C ′ to give A 
 C ′ � D′. For example, an axiom stating that all
three-sided geometric figures (i.e., triangles) also have three angles

geometric-figure � ∃angles.three 
 ∃sides.three
could be transformed into an axiom stating that all geometric figures either have
three sides or do not have three angles

geometric-figure 
 ∃sides.three � ¬∃angles.three
and then absorbed into the primitive definition of geometric figure (geometric-

figure 
 figure) to give

geometric-figure 
 figure � (∃sides.three � ¬∃angles.three).
Given aKBdivided into an unfoldable part Tu and a general part Tg, the following

procedure can be used to try to absorb the axioms from Tg into primitive definitions
in Tu . First a set T ′g is initialized to be empty, and any axioms (C ≡ D) ∈ Tg are
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replaced with an equivalent pair of axioms C 
 D and ¬C 
 ¬D. Then for each
axiom (C 
 D) ∈ Tg:
(i) Initialize a set G = {¬D,C}, representing the axiom in the form � 
 ¬�{¬D,C}

(i.e., � 
 D � ¬C).
(ii) If for some A ∈ G there is a primitive definition axiom (A 
 C) ∈ Tu , then absorb the

general axiom into the primitive definition axiom so that it becomes

A 
 �{C,¬�(G \ {A})},
and exit.

(iii) If for some A ∈ G there is an axiom (A ≡ D) ∈ Tu , then replace A ∈ G with D

G −→ {D} ∪G \ {A},
and return to step (ii).

(iv) If for some ¬A ∈ G there is an axiom (A ≡ D) ∈ Tu , then replace ¬A ∈ G with ¬D
G −→ {¬D} ∪G \ {¬A},

and return to step (ii).
(v) If there is someC ∈ G such thatC is of the form�S, thenuse associativity to simplifyG

G −→ S ∪G \ {�S},
and return to step (ii).

(vi) If there is some C ∈ G such that C is of the form ¬�S, then for every D ∈ S try to
absorb (recursively)

{¬D} ∪G \ {¬�S},
and exit.

(vii) Otherwise, the axiom could not be absorbed, so add ¬�G to T ′g
T ′g −→ T ′g ∪ ¬�G,

and exit.

Note that this procedure allows parts of axioms to be absorbed. For example, given
axioms (A 
 D1) ∈ Tu and (A � ∃R.C 
 D2) ∈ Tg, then the general axiom would
be partly absorbed into the definition axiom to give (A 
 (D1 � D2)) ∈ Tu , leaving
a smaller general axiom (¬�{¬D2, ∃R.C}) ∈ Tg.

When this procedure has been applied to all the axioms in Tg, then T ′g represents
those (parts of) axioms that could not be absorbed. The axioms in T ′g are already
in the form � 
 C , so that �T ′g is the concept that must be added to every node
in the tableau expansion. This can be done using a universal role, as described in
Subsection 9.2.4, although in practice it may be simpler just to add the concept to
the label of each newly created node.
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The absorption process is clearly non-deterministic. In the first place, there may
be more than one way to divide T into unfoldable and general parts. For example,
if T contains multiple non-primitive definitions for some concept A, then one of
them must be selected as a definition in Tu while the rest are treated as general
axioms in Tg. Moreover, the absorption procedure itself is non-deterministic as G
may contain more than one primitive concept name into which the axiom could
be absorbed. For example, in the case where {A1,A2} = G, and there are two
primitive definition axioms A1 
 C and A2 
 D in Tu , then the axiom could be
absorbed either into the definition of A1 to give A1 
 C � ¬�{A2} (equivalent to
A1 
 C � ¬A2) or into the definition of A2 to give A2 
 C � ¬�{A1} (equivalent
to A2 
 C � ¬A1).

It would obviously be sensible to choose the “best” absorption (the one that
maximized empirical tractability), but it is not clear how to do this—in fact it is
not even clear how to define “best” in this context [Horrocks and Tobies, 2000].
If T contains more than one definition axiom for a given concept name, then
empirical evidence suggests that efficiency is improved by retaining as many non-
primitive definition axioms inTu as possible. Another intuitively obvious possibility
is to preferentially absorb into the definition axiom of the most specific primitive
concept, although this only helps in the case that A1 
 A2 or A2 
 A1. Other more
sophisticated schemes might be possible, but have yet to be investigated.

The advantages of absorption are:

� It can lead to a dramatic improvement in performance. For example, without absorption,
satisfiability of the Galen KB (i.e., the satisfiability of �) could not be proved by either
FactorDlp, even after severalweeks ofCPU time.After absorption, the problembecomes
so trivial that the CPU time required is hard to measure.

� It is logic and algorithm independent.

The disadvantage is the overhead required for the pre-processing, although this is
generally small compared to classification times. However, the procedure described
is almost certainly suboptimal, and trying tofind anoptimal absorptionmaybemuch
more costly.

9.5.2 Optimizing classification

DL systems are often used to classify a KB, that is to compute a partial ordering or
hierarchy of named concepts in the KB based on the subsumption relationship. As
subsumption testing is always potentially costly, it is important to ensure that the
classification process uses the smallest possible number of tests. Minimizing the
number of subsumption tests required to classify a concept in the concept hierarchy
can be treated as an abstract order-theoretic problem which is independent of the
ordering relation. However, some additional optimization can be achieved by using
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the structure of concepts to reveal obvious subsumption relationships and to control
the order in which concepts are added to the hierarchy (where this is possible).

The concept hierarchy is usually represented by a directed acyclic graph where
nodes are labeled with sets of concept names (because multiple concept names
may be logically equivalent), and edges correspondwith subsumption relationships.
The subsumption relation is both transitive and reflexive, so a classified concept A
subsumes a classified concept B if either:

(i) both A and B are in the label of some node x , or
(ii) A is in the label of some node x , there is an edge 〈x, y〉 in the graph, and the concept(s)

in the label of node y subsume B.

It will be assumed that the hierarchy always contains a top node (a node whose
label includes�) and a bottom node (a node whose label includes⊥) such that the
top node subsumes the bottom node. If the KB is unsatisfiable then the hierarchy
will consist of a single node whose label includes both � and ⊥.

Algorithms based on traversal of the concept hierarchy can be used to minimize
the number of tests required in order to add a new concept [Baader et al., 1992a].
The idea is to compute a concept’s subsumers by searching down the hierarchy
from the top node (the top search phase) and its subsumees by searching up the
hierarchy from the bottom node (the bottom search phase).

When classifying a concept A, the top search takes advantage of the transitivity
of the subsumption relation by propagating failed results down the hierarchy. It
concludes, without performing a subsumption test, that if A is not subsumed by B,
then it cannot be subsumed by any other concept that is subsumed by B:

T �|= A 
 B and T |= B′ 
B implies T �|= A 
 B′.

Tomaximize the effect of this strategy, a modified breadth-first search is used [Ellis,
1992] which ensures that a test to discover if B subsumes A is never performed
until it has been established that A is subsumed by all of the concepts known to
subsume B.

The bottom search uses a corresponding technique, testing if A subsumes B only
when A is already known to subsume all those concepts that are subsumed by B.
Information from the top search is also used by confining the bottom search to those
concepts which are subsumed by all of A’s subsumers.

This abstract partial ordering technique can be enhanced by taking advantage of
the structure of concepts and the axioms in the KB. If the KB contains an axiom
A 
 C or A ≡ C , then C is said to be a told subsumer of A. If C is a conjunctive
concept (C1 � · · · � Cn), then from the structural subsumption relationship

D 
 (C1 � · · · � Cn) implies D 
 C1 and . . . and D 
 Cn
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it is possible to conclude that C1, . . . ,Cn are also told subsumers of A. Moreover,
due to the transitivity of the subsumption relation, any told subsumers ofC1, . . . ,Cn
are also told subsumers of A. Before classifying A, all of its told subsumers which
have already been classified, and all their subsumers, can be marked as subsumers
of A; subsumption tests with respect to these concepts are therefore rendered un-
necessary. This idea can be extended in the obvious way to take advantage of a
structural subsumption relationship with respect to disjunctive concepts,

(C1 � · · · � Cn) 
 D implies C1 
 D and . . . and Cn 
 D.

If the KB contains an axiom A ≡ C and C is a disjunctive concept (C1 � · · · � Cn),
then A is a told subsumer of C1, . . . ,Cn .

To maximize the effect of the told subsumer optimization, concepts should be
classified in definition order. This means that a concept A is not classified until all
of its told subsumers have been classified. When classifying an unfoldable KB, this
ordering can be exploited by omitting the bottom search phase for primitive concept
names and assuming that they only subsume (concepts equivalent to) ⊥. This is
possible because, with an unfoldable KB, a primitive concept can only subsume
concepts for which it is a told subsumer. Therefore, as concepts are classified
in definition order, a primitive concept will always be classified before any of
the concepts that it subsumes. This additional optimization cannot be used with
a general KB because, in the presence of general axioms, it can no longer be
guaranteed that a primitive concept will only subsume concepts for which it is a
told subsumer. For example, given a KB T such that

T = {A 
 ∃R.C, ∃R.C 
 B},
then B is not a told subsumer of A, and A may be classified first. However, when
B is classified the bottom search phase will discover that it subsumes A due to the
axiom ∃R.C 
 B.

The advantages of the enhanced traversal classification method are:

� It can significantly reduce the number of subsumption tests required in order to classify
a KB [Baader et al., 1992a].

� It is logic and (subsumption) algorithm independent.

There appear to be few disadvantages to this method, and it is used (in some
form) in most implemented DL systems.

9.5.3 Optimizing subsumption testing

The classification optimizations described in Subsection 9.5.2 help to reduce the
number of subsumption tests that are performed when classifying a KB, and the
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Fig. 9.5. Joining expansion trees for A and ¬B.

combination of normalization, simplification and lazy unfolding facilitates the
detection of “obvious” subsumption relationships by allowing unsatisfiability to
be rapidly demonstrated. However, detecting “obvious” non-subsumption (satis-
fiability) is more difficult for tableau algorithms. This is unfortunate as concept
hierarchies from realistic applications are typically broad, shallow and tree-like.
The top search phase of classifying a new concept A in such a hierarchy will there-
fore result in several subsumption tests being performed at each node,most ofwhich
are likely to fail. These failed tests could be very costly (if, for example, proving
the satisfiability of A is a hard problem), and they could also be very repetitive.

This problem can be tackled by trying to use cached results from previous tableau
tests to prove non-subsumption without performing a new satisfiability test. For
example, given two concepts A and B defined by the axioms

A ≡ C � ∃R1.C1 � ∃R2.C2, and

B ≡ ¬D � ∀R3.¬C3,

then A is not subsumed by B if the concept A � ¬B is satisfiable. If tableau
expansion trees for A and ¬B have already been cached, then the satisfiability
of the conjunction can be demonstrated by a tree consisting of the trees for A and
¬B joined at their root nodes, as shown in Figure 9.5 (note that¬B ≡ D � ∃R3.C3).

Given two fully expanded and clash-free tableau expansion trees T1 and T2

representingmodels of (satisfiable) conceptsA and¬B respectively, the tree created
by joining T1 and T2 at their root nodes is a fully expanded and clash-free tree
representing a model of A � ¬B provided that the union of the root node labels
does not contain a clash and that no tableau expansion rules are applicable to the
new tree. For most logics, this can be ascertained by examining the labels of the
root nodes and the labels of the edges connecting them with their successors. With
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the ALC logic for example, if x1 and x2 are the two root nodes, then the new tree
will be fully expanded and clash-free provided that

(i) the union of the root node labels does not contain an immediate contradiction, i.e., there
is no C such that {C,¬C} ⊆ L(x1) ∪ L(x2), and

(ii) there is no interaction between value restrictions in the label of one root node and edges
connecting the other root node with its successors that might make the ∀-rule applicable
to the joined tree, i.e., there is no R such that ∀R.C ∈ L(x1) and T2 has an edge 〈x2, y〉
withL(〈x2, y〉) = R, or ∀R.C ∈ L(x2) andT1 has an edge 〈x1, y〉withL(〈x1, y〉) = R.

With more expressive logics it may be necessary to consider other interactions that
could lead to the application of tableau expansion rules. With a logic that included
number restrictions, for example, it would be necessary to check that these could
not be violated by the root node successors in the joined tree.

It would be possible to join trees in a wider range of cases by examining the
potential interactions in more detail. For example, a value restriction ∀R.C ∈ L(x1)
and an R labeled edge 〈x2, y〉would notmake the∀-rule applicable to the joined tree
ifC ∈ L(x2). However, considering only root nodes and edges provides a relatively
fast test and reduces the storage required by the cache. Both the time required
by the test and the size of the cache can be reduced even further by only storing
relevant components of the root node labels and edges from the fully expanded and
clash-free tree that demonstrates the satisfiability of a concept. In the case ofALC,
the relevant components from a tree demonstrating the satisfiability of a concept
A are the set of (possibly negated) atomic concept names in the root node label
(denoted Lc(A)), the set of role names in value restrictions in the root node label
(denoted L∀(A)), and the set of role names labeling edges connecting the root node
with its successors (denoted L∃(A)).5 These components can be cached as a triple
(Lc(A),L∀(A),L∃(A)).

When testing if A is subsumed by B, the algorithm can now proceed as follows.

(i) If any of (Lc(A),L∀(A),L∃(A)), (Lc(¬A),L∀(¬A),L∃(¬A)), (Lc(B),L∀(B), L∃(B))
or (Lc(¬B),L∀(¬B),L∃(¬B)) are not in the cache, then perform the appropriate
satisfiability tests and update the cache accordingly. In the case where a concept C
is unsatisfiable, Lc(C) = {⊥} and Lc(¬C) = {�}.

(ii) Conclude that A 
 B (A � ¬B is not satisfiable) if Lc(A) = {⊥} or Lc(B) = {�}.
(iii) Conclude that A �
 B (A � ¬B is satisfiable) if

(a) Lc(A) = {�} and Lc(B) �= {�}, or
(b) Lc(A) �= {⊥} and Lc(B) = {⊥}, or
(c) L∀(A) � L∃(B) = ∅, L∀(B) � L∃(A) = ∅, ⊥ /∈ Lc(A) ∪ Lc(B), and there is no C

such that {C,¬C} ⊆ Lc(A) ∪ Lc(B).

5 Consideration can be limited to atomic concept names because expanded conjunction and disjunction concepts
are no longer relevant to the validity of the tree, and are only retained in order to facilitate early clash detection.
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(iv) Otherwise perform a satisfiability test on A � ¬B, concluding that A 
 B if it is not
satisfiable and that A �
 B if it is satisfiable.

When a concept A is added to the hierarchy, this procedure will result in
satisfiability tests immediately being performed for both A and ¬A. During the
subsequent top search phase, at each node x in the hierarchy such that some
C ∈ L(x) subsumes A, it will be necessary to perform a subsumption test for each
subsumee node y (unless some of them can be avoided by the classification opti-
mizations discussed in Subsection 9.5.2). Typically only one of these subsumption
tests will lead to a full satisfiability test being performed, the rest being shown to be
obvious non-subsumptions using the cached partial trees. Moreover, the satisfiabil-
ity test that is performedwill often be an “obvious” subsumption, andunsatisfiability
will rapidly be demonstrated.

The optimization is less useful during the bottom search phase as nodes in the
concept hierarchy are typically connected to only one subsuming node. The excep-
tion to this is the bottom (⊥) node, which may be connected to a very large number
of subsuming nodes. Again, most of the subsumption tests that would be required
by these nodes can be avoided by demonstrating non-subsumption using cached
partial trees.

The caching technique can be extended in order to avoid the construction
of obviously satisfiable and unsatisfiable subtrees during tableau expansion. For
example, if some leaf node x is about to be expanded, and L(x) = {A}, unfolding
and expanding L(x) is clearly unnecessary if A is already known to be either satis-
fiable (i.e., (Lc(A),L∀(A),L∃(A)) is in the cache andLc(A) �= {⊥}) or unsatisfiable
(i.e., (Lc(A),L∀(A),L∃(A)) is in the cache and Lc(A) = {⊥}).

This idea can be further extended by caching (when required) partial trees for
all the syntactically distinct concepts discovered by the normalization and simpli-
fication process, and trying to join cached partial trees for all the concepts in a
leaf node’s label before starting the expansion process. For example, with the logic
ALC and a node x such that

L(x) = {C1, . . . ,Cn},

x is unsatisfiable if for some 1 � i � n, Lc(Ci ) = {⊥}, and x is satisfiable if for all
1 ≤ i ≤ n and i < j ≤ n,

(i) L∀(Ci ) � L∃(C j ) = ∅,
(ii) L∃(Ci ) � L∀(C j ) = ∅, and
(iii) there is no C such that {C,¬C} ⊆ Lc(Ci ) ∪ Lc(C j ).

As before, additional interactions may need to be considered with more expres-
sive logics. Moreover, with logics that support inverse roles, the effect that the
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subtree might have on its predecessor must also be considered. For example, if x is
an R-successor of some node y, and R− ∈ L∀(Ci ) for one of the Ci ∈ L(x), then
the expanded L(x) represented by the cached partial trees would contain a value
restriction of the form ∀R−.D that could augment L(y).

The advantages of caching partial tableau expansion trees are:

� When classifying a realistic KB, most satisfiability tests can be avoided. For example, the
number of satisfiability tests performed by the Fact system when classifying the Galen
KB is reduced from 122,695 to 23,492, a factor of over 80%.

� Without caching, some of the most costly satisfiability tests are repeated (with minor
variations) many times. The time saving due to caching is therefore even greater than the
saving in satisfiability tests.

The disadvantages are:

� The overhead of performing satisfiability tests on individual concepts and their negations
in order to generate the partial trees that are cached.

� The overhead of storing the partial trees. This is not too serious a problem as the number
of trees cached is equal to the number of named concepts in the KB (or the number of
syntactically distinct concepts if caching is used in subproblems).

� The overhead of determining if the cached partial trees can be merged, which is wasted
if they cannot be.

� Its main use is when classifying a KB, or otherwise performing many similar satisfiability
tests. It is of limited value when performing single tests.

9.5.4 Optimizing satisfiability testing

In spite of the various techniques outlined in the preceding sections, at some point
the DL system will be forced to perform a “real” subsumption test, which for a
tableau-based system means testing the satisfiability of a concept. For expressive
logics, such tests can be very costly. However, a range of optimizations can be
applied that dramatically improve performance in typical cases. Most of these are
aimed at reducing the size of the search space explored by the algorithm as a result
of applying non-deterministic tableau expansion rules.

9.5.4.1 Semantic branching search

Standard tableau algorithms use a search technique based on syntactic branching.
When expanding the label of a node x , syntactic branching works by choosing
an unexpanded disjunction (C1 � · · · � Cn) in L(x) and searching the different
models obtained by adding each of the disjuncts C1, . . . , Cn to L(x) [Giunchiglia
and Sebastiani, 1996b]. As the alternative branches of the search tree are not dis-
joint, there is nothing to prevent the recurrence of an unsatisfiable disjunct in dif-
ferent branches. The resulting wasted expansion could be costly if discovering the
unsatisfiability requires the solution of a complex subproblem. For example, tableau
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Fig. 9.6. Syntactic branching search.

expansion of a node x , where {(A � B), (A � C)} ⊆ L(x) and A is an unsatisfiable
concept, could lead to the search pattern shown in Figure 9.6, in which the unsat-
isfiability of L(x) ∪ A must be demonstrated twice.

This problem can be dealt with by using a semantic branching technique adapted
from the Davis–Putnam–Logemann–Loveland procedure (DPLL) commonly used
to solve propositional satisfiability (SAT) problems [Davis andPutnam, 1960;Davis
et al., 1962; Freeman, 1996].6 Instead of choosing an unexpanded disjunction in
L(x), a single disjunct D is chosen from one of the unexpanded disjunctions in
L(x). The two possible subtrees obtained by adding either D or ¬D to L(x) are
then searched. Because the two subtrees are strictly disjoint, there is no possibility
of wasted search as in syntactic branching. Note that the order in which the two
branches are explored is irrelevant from a theoretical viewpoint, but may offer
further optimization possibilities (see Section 9.5.4.4).

The advantages of semantic branching search are:

� A great deal is known about the implementation and optimization of the DPLL algorithm.
In particular, both local simplification (see Subsection 9.5.4.2) and heuristic guided search
(see Subsection 9.5.4.4) can be used to try tominimize the size of the search tree (although
it should be noted that both these techniques can also be adapted for use with syntactic
branching search).

� It can be highly effective with some problems, particularly randomly generated problems
[Horrocks and Patel-Schneider, 1999].

The disadvantages are:

� It is possible that performance could be degraded by adding the negated disjunct in the
second branch of the search tree, for example if the disjunct is a very large or complex
concept. However this does not seem to be a serious problem in practice, with semantic
branching rarely exhibiting significantly worse performance than syntactic branching.

� Its effectiveness is problem dependent. It is most effective with randomly generated
problems, particularly those that are over-constrained (likely to be unsatisfiable). It is
also effective with some of the hand crafted problems from the Tableaux’98 benchmark
suite. However, it appears to be of little benefit when classifying realistic KBs [Horrocks
and Patel-Schneider, 1998a].

6 An alternative solution is to enhance syntactic branching with “no-good” lists in order to avoid reselecting a
known unsatisfiable disjunct [Donini and Massacci, 2000].
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Fig. 9.7. Semantic branching search.

9.5.4.2 Local simplification

Local simplification is another technique used to reduce the size of the search
space resulting from the application of non-deterministic expansion rules. Before
any non-deterministic expansion of a node label L(x) is performed, disjunctions in
L(x) are examined, and if possible simplified. The simplification most commonly
used (although by no means the only one possible) is to deterministically expand
disjunctions in L(x) that present only one expansion possibility and to detect a
clash when a disjunction inL(x) has no expansion possibilities. This simplification
has been called Boolean constraint propagation (BCP) [Freeman, 1995]. In effect,
the inference rules

¬C1, . . . ,¬Cn,C1 � · · · � Cn � D
D

and
C1, . . . ,Cn,¬C1 � · · · � ¬Cn � D

D

are being used to simplify the conjunctive concept represented by L(x).
For example, given a node x such that

{(C � (D1 � D2)), (¬D1 � ¬D2 � C),¬C} ⊆ L(x),

BCP deterministically expands the disjunction (C � (D1 � D2)), adding (D1 � D2)
to L(x), because ¬C ∈ L(x). The deterministic expansion of (D1 � D2) adds both
D1 and D2 toL(x), allowing BCP to identify (¬D1 � ¬D2 � C) as a clash (without
any branching having occurred), because {D1, D2,¬C} ⊆ L(x).

BCP simplification is usually described as an integral part of SAT-based algo-
rithms [Giunchiglia and Sebastiani, 1996a], but it can also be used with syntactic
branching. However, it is more effective with semantic branching as the negated
concepts introduced by failed branches can result in additional simplifications. Tak-
ing the above example of {(A � B), (A � C)} ⊆ L(x), adding ¬A to L(x) allows
BCP to deterministically expand both of the disjunctions using the simplifications
(A � B) ∧ ¬A⇒ B and (A � C) ∧ ¬A⇒ C . The reduced search space resulting
from the combination of semantic branching and BCP is shown in Figure 9.7.

The advantages of local simplification are:

� It is applicable to a wide range of logics and algorithms.
� It can never increase the size of the search space.



9 Implementation and Optimization Techniques 337

�

�

�

R

L(x) ∪ {C1} (x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A 	 B),¬A,A,B}

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A 	B),¬A,A,B}
R

�

�

�
L(x) ∪ {Cn-1}

clash clash clash . . . clash

x x

x

x

L

Fig. 9.8. Thrashing in backtracking search.

The disadvantages are:

� It may be costly to perform without using complex data structures [Freeman, 1995].
� Its effectiveness is relatively limited and problem dependent. It is most effective with
randomly generated problems, particularly those that are over-constrained [Horrocks and
Patel-Schneider, 1998a].

9.5.4.3 Dependency directed backtracking

Inherent unsatisfiability concealed in subproblems can lead to large amounts of
unproductive backtracking search, sometimes called thrashing. The problem is
exacerbated when blocking is used to guarantee termination, because blocking
may require that subproblems only be explored after all other forms of expansion
have been performed. For example, expanding a node x (using semantic branching),
where

L(x) = {(C1 � D1), . . . , (Cn � Dn), ∃R.(A � B),∀R.¬A},
could lead to the fruitless exploration of 2n possible R-successors of x before the in-
herent unsatisfiability is discovered (note that ifL(x) simply included ∃R.A instead
of ∃R.(A � B), then the inherent unsatisfiability would have been detected imme-
diately due to the normalization of ∃R.A as ¬∀R.¬A). The search tree resulting
from the tableau expansion is illustrated in Figure 9.8.

This problem can be addressed by identifying the causes of clashes, and using
this information to prune or restructure the search space – a technique known as
dependency directed backtracking. The form most commonly used in practice,
called backjumping, is adapted from a technique that has been used in solving
constraint satisfiability problems [Baker, 1995] (a similar technique was also used
in the Harp theorem prover [Oppacher and Suen, 1988]). Backjumping works



338 I. Horrocks

by labeling each concept in a node label and each role in an edge label with a
dependency set indicating the branching points on which it depends. A concept
C ∈ L(x) depends on a branching point if C was added to L(x) at the branching
point or if C depends on another concept D (or role R), and D (or R) depends on
the branching point. A concept C ∈ L(x) depends on a concept D (or role R) when
C was added to L(x) by the application of a deterministic expansion rule that used
D (or R); a role R = L(〈x, y〉) depends on a concept D when 〈x, y〉 was labeled
R by the application of a deterministic expansion rule that used D. For example, if
A ∈ L(y) was derived from the expansion of ∀R.A ∈ L(x), then A ∈ L(y) depends
on both ∀R.A ∈ L(x) and R = L(〈x, y〉).

Labeling roles with dependency sets can be avoided in algorithms where a
combined ∃∀-rule is used, as the dependency sets for concepts in the label of
the new node can be derived in a single step. On the other hand, more com-
plex algorithms and optimization techniques may lead to more complex depen-
dencies. For example, if Cn ∈ L(x) was derived from a BCP simplification of
{(C1 � · · · � Cn),¬C1, . . . ,¬Cn−1} ⊆ L(x), then it depends on the disjunction
(C1 � · · · � Cn) and all of ¬C1, . . . ,¬Cn−1.

When a clash is discovered, the dependency sets of the clashing concepts can
be used to identify the most recent branching point where exploring the other
branch might alleviate the cause of the clash. It is then possible to jump back
over intervening branching points without exploring any alternative branches.
Again, more complex algorithms and optimizations may lead to more com-
plex dependencies. For example, if the clash results from a BCP simplification
of {(C1 � · · · � Cn),¬C1, . . . ,¬Cn} ⊆ L(x), then it depends on the disjunction
(C1 � · · · � Cn) and all of ¬C1, . . . ,¬Cn .

When testing the satisfiability of a concept C , the dependency set of C ∈ L(x)
is initialized to ∅ (the empty set) and a branching depth counter b is initialized
to 1. The search algorithm then proceeds as follows:

(i) Perform deterministic expansion, setting the dependency set of each concept added to
a node label and each role assigned to an edge label to the union of the dependency sets
of the concepts and roles on which they depend.
(a) If a clash is discovered, then return the union of the dependency sets of the clashing

concepts.
(b) If a clash-free expansion is discovered, then return {0}.

(ii) Branch on a concept D ∈ L(y), trying first L(y) ∪ {D} and then L(y) ∪ {¬D}.
(a) Add D to L(y) with a dependency set {b}, and increment b.
(b) Set D1 to the dependency set returned by a recursive call to the search algorithm,

and decrement b.
(c) If b /∈ D1, then return D1 without exploring the second branch.
(d) If b ∈ D1, then add¬D toL(y) with a dependency setD1 \ {b} and return to step (i).
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Fig. 9.9. Pruning the search using backjumping.

If the search returns {0}, then a successful expansion was discovered and the al-
gorithm returns “satisfiable”, otherwise all possible expansions led to a clash and
“unsatisfiable” is returned.

Let us consider the earlier example and suppose that ∃R.(A � B) has a depen-
dency set Di , ∀R.¬A has a dependency set D j and b = k (meaning that there have
already been k − 1 branching points in the search tree). Note that the largest values
in Di and D j must be less than k, as neither concept can depend on a branching
point that has not yet been reached.

At the kth branching point, C1 is added to L(x) with a dependency set {k} and
b is incremented. The search continues in the same way until the (k + n − 1)th
branching point, when Cn is added to L(x) with a dependency set {k + n − 1}.
Next, ∃R.(A � B) is deterministically expanded, generating an R-successor y with
R = 〈x, y〉 labeledDi and (A � B) ∈ L(y) labeledDi . Finally, ∀R.¬A is determin-
istically expanded, adding ¬A to L(y) with a label Di ∪ D j (because it depends on
both ∀R.¬A ∈ L(x) and R = 〈x, y〉).

The expansion now continues with L(y), and (A � B) is deterministically ex-
panded, adding A and B to L(y), both labeled Di . This results in a clash as
{A,¬A} ⊆ L(y), and the set Di ∪ Di ∪ D j = Di ∪ D j (the union of the depen-
dency sets from the two clashing concepts) is returned. The algorithm will then
backtrack through each of the preceding n branching points without exploring the
second branches, because in each case b /∈ Di ∪ D j (remember that the largest val-
ues in Di and D j are less than k), and will continue to backtrack until it reaches the
branching point equal to the maximum value in Di ∪ D j (if Di = D j = ∅, then the
algorithm will backtrack through all branching points and return “unsatisfiable”).
Figure 9.9 illustrates the pruned search tree, with the number of R-successors
explored being reduced by 2n − 1.
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Backjumping can also be used with syntactic branching, but the procedure is
slightly more complex as there may be more than two possible choices at a given
branching point, and the dependency set of the disjunction being expandedmust also
be taken into account.When expanding a disjunction of size nwith a dependency set
Dd , the first n − 1 disjuncts are treated like the first branch in the semantic branching
algorithm, an immediate backtrack occurring if the recursive search discovers a
clash that does not depend on b. If each of these branches returns a dependency
set Di such that b ∈ Di , then the nth disjunct is added with a dependency set
(D1 ∪ · · · ∪ Dn−1 ∪ Dd) \ b.

The advantages of backjumping are

� It can lead to a dramatic reduction in the size of the search tree and thus a huge performance
improvement. For example, when trying to classify the Galen model using either Fact
or Dlp with backjumping disabled, single satisfiability tests were encountered that could
not be solved even after several weeks of CPU time.

� The size of the search space can never be increased.

The disadvantage is the overhead of propagating and storing the dependency sets.
The storage overhead can be alleviated to some extent by using a pointer-based
implementation so that propagating a dependency set only requires the copying of
a pointer. A simpler scheme using single maximal dependency values instead of
sets would also be possible, but some dependency information would be lost and
this could lead to less efficient pruning of the search tree.

9.5.4.4 Heuristic guided search

Heuristic techniques can be used to guide the search in a way that tries to minimize
the size of the search tree.Amethod that iswidelyused inDPLLSATalgorithms is to
branch on the disjunct that has theMaximumnumber ofOccurrences in disjunctions
ofMinimumSize – thewell-knownMOMSheuristic [Freeman, 1995]. By choosing
a disjunct that occurs frequently in small disjunctions, the MOMS heuristic tries
to maximize the effect of BCP. For example, if the label of a node x contains
the unexpanded disjunctions C � D1, . . . ,C � Dn , then branching on C leads to
their deterministic expansion in a single step: when C is added to L(x), no further
expansion of the disjunctions is required (they are all fully expanded) and when¬C
is added to L(x), BCP will expand all of the disjunctions, causing D1, . . . , Dn to
be added to L(x). Branching first on any of D1, . . . , Dn , on the other hand, would
only cause a single disjunction to be expanded.

The MOMS value for a candidate concept C is computed simply by counting
the number of times C or its negation occur in minimally sized disjunctions. There
are several variants of this heuristic, including the heuristic from [Jeroslow and
Wang, 1990]. The Jeroslow–Wang heuristic considers all occurrences of a disjunct,
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weighting them according to the size of the disjunction in which they occur. The
heuristic then selects the disjunct with the highest overall weighting, again with the
objective of maximizing the effect of BCP and reducing the size of the search tree.

When a disjunct C has been selected from the disjunctions in L(x), a BCP max-
imizing heuristic can also be used to determine the order in which the two possible
branches, L(x) ∪ {C} and L(x) ∪ {¬C}, are explored. This is done by separat-
ing the two components of the heuristic weighting contributed by occurrences of
C and ¬C , trying L(x) ∪ {C} first if C made the smallest contribution, and trying
L(x) ∪ {¬C}first otherwise. The intention is to prune the search tree bymaximizing
BCP in the first branch.

Unfortunately,MOMS-style heuristics can interact adverselywith the backjump-
ing optimization because they do not take dependency information into account.
This was first discovered in the Fact system, when it was noticed that usingMOMS
heuristic often led to much worse performance. The cause of this phenomenon
turned out to be the fact that, without the heuristic, the data structures used in
the implementation naturally led to “older” disjunctions (those dependent on ear-
lier branching points) being expanded before “newer” ones, and this led to more
effective pruning if a clash was discovered. Using the heuristic disturbed this or-
dering and reduced the effectiveness of backjumping [Horrocks, 1997b].

Moreover, MOMS-style heuristics are of little value themselves in DL systems
because they rely for their effectiveness on finding the same disjuncts recurring
in multiple unexpanded disjunctions: this is likely in hard propositional problems,
where the disjuncts are propositional variables, and where the number of different
variables is usually small compared to the number of disjunctive clauses (otherwise
problemswould, in general, be trivially satisfiable); it is unlikely in concept satisfia-
bility problems, where the disjuncts are (possibly non-atomic) concepts, and where
the number of different concepts is usually large compared to the number of disjunc-
tive clauses. As a result, these heuristics will often discover that all disjuncts have
similar or equal priorities, and the guidance they provide is not particularly useful.

An alternative strategy is to employ an oldest-first heuristic that tries to max-
imize the effectiveness of backjumping by using dependency sets to guide the
expansion [Horrocks and Patel-Schneider, 1999]. When choosing a disjunct on
which to branch, the heuristic first selects those disjunctions that depend on the least
recent branching points (i.e., those with minimal maximum values in their depen-
dency sets), and then selects a disjunct from one of these disjunctions. This can be
combined with the use of a BCP maximizing heuristic, such as the Jeroslow–Wang
heuristic, to select the disjunct from amongst the selected disjunctions.

Although the BCP and backjumpingmaximizing heuristics described above have
been designed with semantic branching in mind they can also be used with syn-
tactic branching. The oldest-first heuristic actually selects disjunctions rather than
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disjuncts, and is thus a natural candidate for a syntactic branching heuristic. BCP
maximizing heuristics could also be adapted for use with syntactic branching, for
example by first evaluating theweighting of each disjunct and then selecting the dis-
junctionwhose disjuncts have the highest average,median ormaximumweightings.

The oldest-first heuristic can also be used to advantage when selecting the order
in which existential role restrictions, and the labels of the R-successors which they
generate, are expanded. One possible technique is to use the heuristic to select an
unexpanded existential role restriction ∃R.C from the label of a node x , apply the
∃-rule and the ∀-rule as necessary, and expand the label of resulting R-successor.
If the expansion results in a clash, then the algorithm will backtrack; if it does not,
then continue selecting and expanding existential role restrictions from L(x) until
it is fully expanded. A better technique is to first apply the ∃-rule and the ∀-rule
exhaustively, creating a set of successor nodes. The order in which to expand these
successors can then be based on the minimal maximum values in the dependency
sets of all the concepts in their label, some of which may be due to universal role
restrictions in L(x).

The advantages of using heuristics are

� They can be used to complement other optimizations. The MOMS and Jeroslow–Wang
heuristics, for example, are designed to increase the effectiveness of BCP while the
oldest-first heuristic is designed to increase the effectiveness of backjumping.

� They can be selected and tuned to take advantage of the kinds of problem that are to be
solved (if this is known). The BCP maximization heuristics, for example, are generally
quite effective with large randomly generated and hand crafted problems, whereas the
oldest-first heuristic seems to be more effective when classifying realistic KBs.

The disadvantages are

� They can add a significant overhead as the heuristic functionmay be expensive to evaluate
and may need to be re-evaluated at each branching point.

� They may not improve performance, and may significantly degrade it.
– Heuristics can interact adversely with other optimizations, as was the case with the

MOMS heuristic and backjumping in the Fact system.
– When they work badly, heuristics can increase the frequency with which pathological

worst cases can be expected to occur. For example, with problems that are highly
disjunctive but relatively under-constrained, using a BCPmaximizing heuristic to select
highly constraining disjuncts can force backtracking search to be performed whenmost
random branching choices would lead rapidly to a clash-free expansion.

– The cost of computing the heuristic function can outweigh the benefit (if any).
� Heuristics designed to work well with purely proposition reasoning, such as the BCP
maximizing heuristics, may not be particularly effective with Description Logics, where
much of the reasoning is modal (it involves roles and subproblems). There has been little
work on finding good heuristics for modal reasoning problems.
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9.5.4.5 Caching satisfiability status

During a satisfiability check there may be many successor nodes created. Some of
these nodes can be very similar, particularly as the labels of the R-successors for a
node x each contain the same concepts derived from the universal role restrictions
in L(x). Considerable time can thus be spent re-computing the satisfiability of
nodes that have the same label. As the satisfiability algorithm only needs to know
whether a node is satisfiable or not, this time is wasted. Moreover, when classifying
a KB, similar satisfiability tests may be performed many times, and may provide
further opportunities for the re-use of satisfiability results for node labels if these
are retained across multiple concept satisfiability tests.

If the expansion of existential value restrictions in the label of a node x is delayed
until all other expansionpossibilities havebeen exhausted (as in the trace technique),
then as each existential role restriction ∃R.C is expanded it is possible to generate
the complete set of concepts that constitute the initial label of the R-successor; this
will consist of C plus all the concepts derived from universal role restrictions in
L(x).7 If there exists another node with the same set of initial concepts, then the two
nodes will have the same satisfiability status. Work need be done only on one of the
two nodes, potentially saving a considerable amount of processing, as not only is
the work at one of the nodes saved, but also the work at any of the successors of this
node.

Care must be taken when using caching in conjunction with blocking as the
satisfiability status of blocked nodes is not completely determined but is simply
taken to be equal to that of the blocking node. Another problem with caching is
that the dependency information required for backjumping cannot be effectively
calculated for nodes that are found to be unsatisfiable as a result of a cache lookup.
Although the set of concepts in the initial label of such a node is the same as that of
the expanded node whose (un)satisfiability status has been cached, the dependency
sets attached to the concepts that made up the two labels may not be the same.
However, a weaker form of backjumping can still be performed by taking the
dependency set of the unsatisfiable node to be the union of the dependency sets
from the concepts in its label.

A general procedure for using cachingwhen expanding a node x can be described
as follows.

(i) Exhaustively perform all local expansions, backtracking as required, until only
existential value restrictions (if any) remain to be expanded.

(ii) If there are no unexpanded existential value restrictions in L(x), then return the
satisfiability status satisfiable to the predecessor node.

7 This ordering is used in the trace technique to minimize space usage, and may be useful or even required for
effective blocking.
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(iii) Select (heuristically) an unexpanded existential role restriction from L(x), expanding
it and any applicable universal role restrictions to create a new node y with an initial
label L(y) (or create all such nodes and heuristically select the order in which they are
to be examined).

(iv) If y is blocked, then its satisfiability status S is directly determined by the algorithm
(normally satisfiable, but may depend on the kind of cycle that has been detected
[Baader, 1991]).
(a) If S = satisfiable, then return to step (ii) without expanding L(y).
(b) If S = unsatisfiable, then backtrack without expanding L(y). The dependency set

will need to be determined by the blocking algorithm.
(v) If a set equal to L(y) is found in the cache, then retrieve the associated satisfiability

status S (this is called a cache “hit”).
(a) If S = satisfiable, then return to step (ii) without expanding L(y).
(b) If S = unsatisfiable, then backtrack without expanding L(y), taking the depen-

dency set to be the union of the dependency sets attached to the concepts in L(y).
(vi) If a set equal to L(y) is not found in the cache, then set L = L(y) and expand L(y) in

order to determine its satisfiability status S.
(a) If S = satisfiable and there is no descendant z of y that is blocked by an ancestor

x ′ of y, then add L to the cache with satisfiability status S and return to step (ii).
(b) If S = satisfiable and there is a descendant z of y that is blocked by an ancestor x ′

of y, then return to step (ii) without updating the cache.
(c) If S = unsatisfiable, then add L to the cache with satisfiability status S and back-

track, taking the dependency set to be the one returned by the expansion of L(y).

The problem of combining caching and blocking can be dealt with in a more
sophisticated way by allowing the cached satisfiability status of a node to assume
values such as “unknown”. These values can be updated as the expansion progresses
and the satisfiability status of blocking nodes is determined. Such a strategy is
implemented in the Dlp system.

A further refinement is to use subset and superset instead of equality when
retreiving satisfiability status from the cache: if L(x) is satisfiable, then clearly
any L(y) ⊆ L(x) is also satisfiable, and if L(x) is unsatisfiable, then clearly any
L(y) ⊇ L(x) is also unsatisfiable [Hoffmann and Koehler, 1999; Giunchiglia and
Tacchella, 2000]. However, using subsets and supersets significantly increases the
complexity of the cache, and it is not yet clear if the performance cost of this added
complexity will be justified by the possible increase in cache hits.

The advantages of caching the satisfiability status are:

� It can be highly effectivewith someproblems, particularly thosewith a repetitive structure.
For example, the Dlp system has been used to demonstrate that some of the problem sets
from the Tableaux’98 benchmark suite are trivial when caching is used (all problemswere
solved in less than0.1 s and therewas little evidenceof increasingdifficultywith increasing
problem size). Without caching, the same problems demonstrated a clearly exponential
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growth in solution time with increasing problem size, and the system was unable to
solve the larger problems within the 100 s time limit imposed in the test [Horrocks and
Patel-Schneider, 1999].

� It can be effective with both single satisfiability tests and across multiple tests (as in KB
classification).

� It can be effective with both satisfiable and unsatisfiable problems, unlike many other
optimization techniques that are primarily aimed at speeding up the detection of unsatis-
fiability.

The disadvantages are:

� Retaining node labels and their satisfiability status throughout a satisfiability test (or
longer, if the results are to be used in later satisfiability tests) involves a storage overhead.
As the maximum number of different possible node labels is exponential in the number
of different concepts, this overhead could be prohibitive, and it may be necessary to
implement a mechanism for clearing some or all of the cache. However, experiments
with caching in the Dlp system suggest that this is unlikely to be a problem in realistic
applications [Horrocks and Patel-Schneider, 1999].

� The adverse interaction with dependency directed backtracking can degrade performance
in some circumstances.

� Its effectiveness is problem dependent, and (as might be expected) is most evident with
artificial problems having a repetitive structure. It is highly effective with some of the
hand crafted problems from the Tableaux’98 benchmark suite, it is less effective with
realistic classification problems, and it is almost completely ineffective with randomly
generated problems [Horrocks and Patel-Schneider, 1999].

� The technique described depends on the logic having the property that the satisfiability
of a node is completely determined by its initial label set. Extending the technique to
logics that do not have this property, for example those which support inverse roles, may
involve a considerable increase in both complexity and storage requirements.

9.6 Discussion

To be useful in realistic applications, DL systems need both expressive logics and
fast reasoners. Procedures for deciding subsumption (or equivalently satisfiability)
in such logics have discouragingly high worst-case complexities, normally
exponential with respect to problem size. In spite of this, implemented DL systems
have demonstrated that acceptable performance can be achieved with the kinds of
problem that typically occur in realistic applications.

This performance has been achieved through the use of optimization techniques,
a wide variety of which have been studied in this chapter. These techniques can
operate at every level of aDLsystem; they can simplify theKB, reduce thenumber of
subsumption tests required to classify it, replace tableau subsumption tests with less
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costly tests, and reduce the size of the search space resulting from non-deterministic
tableau expansion.Amongst themost effective of these optimizations are absorption
and backjumping; both have the desirable properties that they impose a very small
additional overhead, can dramatically improve typical case performance, and hardly
ever degrade performance (to any significant extent). Other widely applicable op-
timizations include enhanced traversal, normalization, lazy unfolding, semantic
branching and local simplification; their effects are less general and less dramatic,
but they too impose low overheads and rarely degrade performance. Various forms
of caching can also be highly effective, but they do impose a significant additional
overhead in terms of memory usage, and can sometimes degrade performance.
Finally, heuristic techniques, at least those currently available, are not particularly
effective and can often degrade performance.

Several exciting new application areas are opening up for very expressive
Description Logics, in particular reasoning about database schemata and queries,
and providing reasoning support for the Semantic Web. These applications require
logics even more expressive than those implemented in existing systems, in par-
ticular logics that include both inverse roles and number restrictions, as well as
reasoning with general axioms. The challenge for DL implementors is to demon-
strate that highly optimized reasoners can provide acceptable performance even for
these logics. This may require the extension and refinement of existing techniques,
or even the development of completely new ones.

One promising possibility is to use a more sophisticated form of dependency
directed backtracking, called dynamic backtracking [Ginsberg, 1993], that pre-
serves asmuchwork as possible while backtracking to the source of a contradiction.
Another useful approach, indicative of the increasing maturity of existing imple-
mentations, is to focus onproblematical constructors and devisemethods for dealing
with themmore efficiently. Good examples of this can be seen in theRacer system,
where significant improvements in performance have been achieved by using more
sophisticated techniques to deal with domain and range constraints on roles (see
Chapter 2 for an explanation of these constructs) and qualified number restrictions
[Haarslev and Möller, 2001c; 2001d; 2001a].

Finally, it should be re-emphasized that, given the immutability of theoretical
complexity, no (complete) implementation can guarantee to provide good perfor-
mance in all cases. The objective of optimized implementations is to provide ac-
ceptable performance in typical applications and, as the definition of “acceptable”
and “typical” will always be application dependent, their effectiveness can only be
assessed by empirical testing. Hopefully, the new generation of highly optimized
DL systems will demonstrate their effectiveness by finding more widespread use
in applications than did their predecessors.
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Conceptual Modeling with Description Logics

ALEX BORGIDA
RONALD J. BRACHMAN

Abstract

The purpose of the chapter is to help someone familiar with DLs to understand the
issues involved in developing an ontology for some universe of discourse, which is
to become a conceptual model or knowledge base represented and reasoned about
using Description Logics.

We briefly review the purposes and history of conceptual modeling, and then use
the domain of a university library to illustrate an approach to conceptual modeling
that combines general ideas of object-centered modeling with a look at special
modeling/ontological problems, and DL-specific solutions to them.

Among the ontological issues considered are the nature of individuals, con-
cept specialization, non-binary relationships, materialization, aspects of part-whole
relationships, and epistemic aspects of individual knowledge.

10.1 Background

Informationmodeling is concernedwith the construction of computer-based symbol
structures that model some part of the real world.We refer to such symbol structures
as information bases, generalizing the term from related terms inComputer Science,
such as databases and knowledge bases. Moreover, we shall refer to the part of
a real world being modeled by an information base as its universe of discourse
(UofD). The information base is checked for consistency, and sometimes queried
and updated through special-purpose languages. As with all models, the advantage
of information models is that they abstract away irrelevant details, and allow more
efficient examination of both the current, as well as past and projected future states
of the UofD.

An information model is built up using some language, and this language
influences (more or less subtly) the kinds of details that are considered. For
example, early information models (e.g., relational data models) were built on
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conventional programming notions such as records, and as a result focused on the
implementation aspects of the information being captured, as opposed to the repre-
sentational aspects.Conceptualmodelsoffermore expressive facilities formodeling
applications directly and naturally [Hammer and McLeod, 1981], and for structur-
ing information bases. These languages provide semantic terms for modeling an
application, such as entity and relationship (or even activity, agent and goal), as
well as means for organizing information.

Conceptual models play an important part in a variety of areas. The following is
a brief summary of these areas, as reviewed in [Mylopoulos, 1998]:

� Artificial intelligence programs turned out to require the representation of a great deal of
human knowledge in order to act “intelligently”. As a result, they relied on conceptual
models built up using knowledge representation languages, such as semantic networks –
directed graphs labeled with natural language identifiers. DLs are the historical descen-
dants of attempts to formalize semantic networks.

� The design of database systems was seen to have as an important initial phase the con-
struction of a “conceptual level schema”, which determined the information needs of the
users, and which was eventually converted to a physical implementation schema. Chen’s
Entity–Relationship model [Chen, 1976], and later semantic data models [Hull and King,
1987], were the result of efforts in this direction.

� More generally, the development of all software has an initial requirements acquisition
stage, which nowadays is seen to consist of a requirements model that describes the
relationship of the proposed system and its environment. The environment in this case is
likely to be a conceptual model.

� Independently, the object-oriented software community has also proposed viewing soft-
ware components (classes/objects) as models of real-world entities. This was evident
in the features of Simula, the first object-oriented programming language, and became
a cornerstone of most object-oriented techniques, including the current leader, UML
[Rumbaugh et al., 1998].

One interesting aspect of conceptual modeling in the database context has
been the identification of a number of abstraction mechanisms that support the
development of large models by abstracting details initially, and then introducing
them in a stepwise and systematic manner. Among the important abstractions are
the following:

� thinking of objects as wholes, not just a collection of their attributes/components
(“aggregation”);

� abstracting away the detailed differences between individuals, so that a class can represent
the commonalities (“classification”1);

� abstracting the commonalities of several classes into a superclass (“generalization”).

1 This term is used in a completely different way than in DL terminology, where it refers to the DL-KBMS
service of finding the lowest subsumers of a concept or individual.
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An important claim regarding the benefits of abstraction in conceptual modeling
is that it results in a structured informationmodel, which is easier to build andmain-
tain. Interestingly, Description Logics further this goal by supporting the automatic
classification of concepts with respect to others, thereby revealing generalizations
that may not have been recognized by the modeler.

10.2 Elementary Description Logic modeling

Most conceptual models, including Description Logics, subscribe to an object-
centered view of the world. Thus, their ontology includes notions like individual
objects, which are associatedwith each other through (usually binary) relationships,
and which are grouped into classes. In this chapter we use freely the notation and
concrete syntax of Description Logics (see Appendix), and extend it with additional
constructs that make it more suitable for modeling.

In the domain of a university library, we might encounter a particular person,
GIANNI, or a particular book, BOOK23. Most of the information about the state
of the world is captured by the interrelationships between individuals, such as
GIANNI having borrowed BOOK23. Binary relationships are modeled directly
in Description Logics using roles and attributes: either GIANNI is a filler of the
lentTo role for BOOK23, or BOOK23 is the filler of the hasBorrowed role for
GIANNI. Note that lentTo and hasBorrowed are converse relationships, and this
should be captured in a model, since frequently one wants to access information
about associations in either direction. In Description Logics, this is accomplished
using the role constructor inverse:

hasBorrowed ≡ (inverse lentTo).

Note that in order to avoid inadvertent errors during modeling due to confusion
between a role and its converse, or between a role and the kind of values filling
it, one heuristic is to use a natural language name that is asymmetric, and adopt
the convention that the relationship R(a, b) should be read as “a R b”; therefore
in the above case lentTo(BOOK23,GIANNI) reads “BOOK23 lentTo GIANNI,”
while lentTo(GIANNI,BOOK23) reads “GIANNI lentTo BOOK23”, which makes
it clear that the first, but not the second, is the proper way to use the role lentTo

in the model. On the other hand, loan would be a poor choice of a role identi-
fier because one could equally well imagine loan as a role of books or of per-
sons, so that neither loan(GIANNI,BOOK23) nor loan(BOOK23,GIANNI) “reads”
properly.

In addition, it is always important to distinguish functional relationships, like
lentTo (a book can be loaned to at most one borrower at any time) from
non-functional ones, like hasBorrowed. This is done most cleanly if the
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particular Description Logic being used allows the declaration of functional re-
lationships, sometimes called “attributes” or “features”. Attributes themselves
come in two flavors: total and partial. Thus lentTo is a partial attribute because
a book can only be loaned to one person, but may not be on loan at some
point of time; on the other hand, every book has to have an isbnNr. It is im-
portant to check which interpretation of attributes is offered by the particular
Description Logic being used. In the rest of this chapter we assume that attributes
are total, and the concept constructor the will be used as an abbreviation, so
that (the p C) is equivalent to the conjunction of (all p C), (at-most 1 p) and
(at-least 1 p).

Individuals are grouped into classes; for example, Book might be a natural class
in our domain. Classes usually abstract out common properties of their instances,
e.g., every book in the library has a call number. Classes are modeled by concepts in
Description Logics, and usually the common properties are expressed as subsump-
tion axioms about the concept. These conditions usually involve superconcepts, as
well as the kinds of values that can fill roles, and limits on the number of (various
kinds of) role fillers. By design, these are exactly the kinds of things that can be
expressed using DL constructors:

/* Books are materials, whose callNr is an integer */

Book 
 (and Material

(the callNr Integer)

. . . ).

As mentioned in earlier chapters, one of the fundamental properties of Descrip-
tion Logics is support for the distinction between primitive/atomic concepts – for
which instances can only be declared explicitly – and defined concepts –which offer
necessary and sufficient conditions for membership. So, for example, we can dis-
tinguish the notion of “borrower” as someone who can borrow a book (an approved
customer of the library)

/* Borrower is previously declared as a primitive concept.

Here it is indicated what restrictions on borrowing are in force for this concept */

Borrower 
 (all hasBorrowed Book)

from the notion of “borrower” as someone who has actually borrowed a book from
the library

/* Borrower is defined as someone who has borrowed books */

Borrower ≡ (and (all hasBorrowed Book)

(at-least 1 hasBorrowed)).
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We now turn to a variety ofmore subtle issues that arisewhenmodeling a domain.
Almost all of these issues arise independently of the modeling language used; what
we emphasize here is the range of possible solutions in the DL framework.

10.3 Individuals in the world

Some individuals are quite concrete, like a particular person, Gianni, or a particular
copy of a book. Some are more abstract, like the subject matter covered by a book.
The important property of most individuals is that they have an identity, which
allows them to be distinguished from one another and to be counted.

Modeling of individuals is therefore made easier if they have unique identifiers.
Unfortunately, this may not always be the case. For example, if one sees on a
bookshelf two brand new copies of a book, which may not be distinguishable by
any property known to us, one can still say that they are different copies of the book.
In information management systems, and sometimes in the real world, this leads
us to devise some kind of “extrinsic” identification scheme. For example, books
on the library shelf are assigned a copy number. In this paper, as in object-oriented
software systems, we will tend to assign arbitrary internal identifiers to objects,
such as GIANNI or BOOK23.

The following examples concerning books show that what constitutes a relevant
individual in a UofD depends very much on what we want to do with the infor-
mation. In a domain concerning literature courses, one might consider something
like Dickens’ HARD-TIMES as the kind of individual appearing on an assigned
reading list. For an Internet book-seller interface, it is necessary to consider a more
concrete level of modeling – that of book editions, since these may have different
prices. Finally, in a library, we need to keep track of actual physical book copies.

In the last two cases, one must then decide whether to model books (as opposed
to editions or copies) as individuals, or as concepts that have the other kinds of
individuals as instances. A general heuristic is that if we expect certain notions to
be counted, then they must be modeled as individuals. Another heuristic is that
notions that do not have an inception time are usually modeled as concepts.

Modeling of the particular kind of relationship that exists, for example, between
a book and its editions is further examined in Subsection 10.7.2.

10.3.1 Values vs. objects

It is important to distinguish what we may call individual objects, such as GIANNI,
from values, such as integers, strings, lists, tuples, etc. The former have an associated
intrinsic and immutable identity, and need to be created in the knowledge base.
The later are “eternal” mathematical abstractions, whose identity is determined by
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some procedure usually involving the structure of the individual. For example, the
two strings “abc” and “abc” are the same individual value because they have the
same sequence of characters; similarly for dates, such as 1925/12/20, which can be
considered as 3-tuples.

Many Description Logics only support reasoning with objects, in which case
composite values such as dates need to be modeled as objects with attributes for
day, month and year. The danger here is that, for example, multiple date individu-
als can be created with the same attribute values, in which case they are treated as
distinct for the purposes of counting and identity checking, resulting in reasoning
anomalies. Implemented Description Logics such as Classic support values from
the underlying programming language (so-called “host values”), and relatively sim-
ple concept hierarchies over them. Others, such asALC(D) [Baader and Hanschke,
1991a] and SHOQ(D) [Horrocks and Sattler, 2001] allow attributes to have values
from so-called “concrete domains”, which can contain entirely new kinds of val-
ues. These concrete domains are required to have their own, independent reasoners,
which are then coupled with the DL reasoner.

Equally desirable would be mathematical types such as sets, bags, sequences,
and tuples, as supported by modern programming languages and certain semantic
data models.

Currently, only the highly expressive DLR languages support notions such as
n-tuples and recursive fixed-point structures, from which one can build lists, trees,
etc. Even here, one can only provide the description of concepts (“list of Persons”),
as opposed to the specification of individuals (“the list [GIANNI,ANNA]”).

10.3.2 Individuals vs. references to them

It is important to distinguish an individual from various references to it: Gianni vs.
“the person whose first name is the 6-letter string “Gianni” vs. “the borrower with
library card number 32245” vs. “the chairman of the PsychologyDepartment”. This
distinction becomes crucial when we express relationships: there is a difference
between relating two objects and relating their names, because we usually want
objects to remain related, even if names are changed. Thus “GIANNI hasBorrowed
BOOK25” is different from “card-holder number 32245 hasBorrowed BOOK25”,
because if Gianni gets a new card (after losing his old one, say), then the relationship
between Gianni and the book is lost. So, in general, one should always deal with
the individual objects, unless there is a bijection between a class of objects and a
class of referents to them, and this bijection is universal (it always exists) and is
unchanging.2 Kent [1979] has eloquently argued the importance of these issues in

2 Such bijections are exactly the “keys” used in the database context.
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record-based database systems, and shows that in the real world such bijections are
much rarer than assumed. For example, Neumann [1992] reports that the same US
social security number (the prototypical identifier for persons in the USA) has been
issued to two people, who even have the same name and birth-date!

Conversely, in some cases one wants to state relationships between intensional
references, rather than specific objects. For example, we might want to say that,
in general, the director of the library is the head of the book selection committee
(COMMITTEE3). If Gianni happens to be the current director of the NBU library,
then asserting headOf(GIANNI,COMMITTEE3) is improper because, for example,
ifGianni steps down as director, according to the abovemodel hewould still be com-
mittee chair. One needs the ability to use unnamed expressions as arguments of rela-
tionships, along the lines of the predicate logic expressionheadOf(directorOf(NBU-
LIBRARY),COMMITTEE3).

In Description Logics, intensional referents can be expressed as roles that are
applied to individuals. (The roles may often be complex chains, resulting from the
composition of atomic roles, as in “the zipCode of the address of the lentTo”.)
Assuming that we use the notation NBU-LIBRARY.director to refer to the filler
of the director role for the NBU-LIBRARY individual, the above relationship is
actually stated as “NBU-LIBRARY.director is identical to COMMITTEE3.head”.
The concept constructor same-as, indicating that two chains of roles have the same
value, is used to express exactly such relationships, so the above situation might
be modeled, naively, using the concept (same-as director head). The problem is
that we need a single individual of which to assert this property, yet it is libraries
that have directors while committees have heads. In such situations, in Description
Logics one must find or create some chain of attributes relating the two individuals
NBU-LIBRARY and COMMITTEE3. The natural relationship in this case is the
attribute hasBookSelectionCommittee. Therefore the appropriate way of modeling
this situation is

/* NBU-LIBRARY has book selection committee COMMITTEE3 */

hasBookSelectionCommittee(NBU-LIBRARY, COMMITTEE3)

/* NBU-LIBRARY.director equals

NBU-LIBRARY.hasBookSelectionCommittee.head */

(same-as director (hasBookSelectionCommittee ◦ head))(NBU-LIBRARY).

10.4 Concepts

For the university library, some obvious classes of individuals include people, insti-
tutions, the material that can be loaned by the library, the staff, dates, library cards,
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and fines. These classes are normally modeled using atomic/primitive concepts in
Description Logics.

It may be worth noting that in Description Logics the same individual may be an
instance of multiple classes, without one being necessarily a subclass of another:
some book might be an instance of both hardcover and science books. This is in
contrast with many other object-oriented software systems, where one is forced to
create a special subclass for this notion, in order to guarantee a unique “minimal”
class for every individual. However, this is not a modeling principle – it is an
implementation obstacle.

10.4.1 Essential vs. incidental properties of concepts

As explained in the earlier example involving the two possiblemeanings for the term
“borrower”, an important feature of Description Logics is the ability to distinguish
primitive from defined concepts, where the latter have necessary and sufficient
conditions for concept membership.

For example, BookOnLoan might naturally be defined as

/* A book is on loan if it is borrowed by someone */

BookOnLoan ≡ (and Book (at-least 1 lentTo)).

Suppose that we also want to require that only hardcover books can be loaned out.
There seem to be two options for modeling this:

/* Option 1 — being hardcover is part of the definition */

BookOnLoan ≡ (and Book

(at-least 1 lentTo)

(fills binding ’hardcover))

/* Option 2 — being hardcover is an additional necessary condition */

BookOnLoan ≡ (and Book (at-least 1 lentTo))

BookOnLoan 
 (fills binding ’hardcover).

The first approach is not quite right because being hardcover is an incidental
property of books on loan, albeit one universally shared by all such objects. Among
other things, this means that if the system is to recognize some individual book as
being on loan, it is enough to know that it has been lent to someone – one does not
also need to know it is hardcover. Hence the second modeling option is the right
one, since one can actually deduce that a book on loan is hardcover, if this was not
known ahead of time.
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The distinction between definitional and incidental properties is also important if
we consider the taskof classifying concepts into a taxonomy, since it has been argued
that the taxonomy should not depend on contingent facts. This suggests that inciden-
tal properties, even universal inclusion assertions like the one for hardcover books in
Option 2 above, should appear in the ABox, not the TBox defining the terminology.

Another subtle problem arises when there are multiple sufficient conditions for a
concept. For example, suppose we associated a due date with books on loan (in the
physical world, this might be recorded as a date stamped in the back of the book).
Then encountering a book with a due date in the future would rightly classify it as
a book on loan. If we model the due date as an attribute of books, which has a value
only as long as the date is in the future, then we would represent this situation as

(and Book (at-least 1 dueDate)) 
 BookOnLoan

and, of course, requiring books on loan to have a due date would lead to

BookOnLoan 
 (at-least 1 dueDate).

We thus have multiple sufficient conditions for being a book on loan, although one
of them appears to be the primary definition.

10.4.2 Reified concepts and meta-roles

In some cases it seems natural to associate information with an entire concept,
rather than with each of its individual instances. One situation where this arises is in
capturing aggregate information, such as the count of current individual instances of
the concept, or the average value of their attributes. In the library example, attributes
such as numberOfBooks and mostRequestedBooks would fall into this category.

In some object-oriented systems this can be modeled directly because classes
are themselves objects, and as such are instances of meta-classes and have meta-
properties. Currently, Description Logics do not have a facility to treat classes as
objects. One must therefore create a separate “meta-individual” that is related to
the concept by some naming convention, for example. In our example, we would
create the individual BOOK-CLASS-OBJECT, and then attach the information
regarding numberOfBooks, mostRequestedBooks, etc., as roles of this individual.
In theClassic system, given a named concept, this meta-individual can be retrieved
using a special, new knowledge base operation.

10.4.3 Concepts dependent on relationships

The following interesting modeling problem arises in many situations: some
concepts, such as Book, stand on their own. Others, such as Borrower, rely on the



358 A. Borgida and R. J. Brachman

implied existence of some relation/event (e.g., lending), which has a second argu-
ment, and fromwhich their meaning is derived. It is important to discern this second
category of concepts, and explicitly introduce the corresponding binary relationship
in the model. In the data modeling literature (e.g., [Albano et al., 1993]) categories
of this second type, such as Borrower, are called “roles”, but to avoid confusion
with DL roles, we will call them “relationship-roles”. The modeling of these will
be considered further in Subsection 10.7.1.

10.5 Subconcepts

For many of the above concepts, there are specialized subconcepts representing
subsets of individuals that are also of interest. For example, the concept Material

(referring to the holdings of libraries) could have specializations Book, Journal,
Videotape, etc. In turn,Bookmay have subconceptsMonograph,EditedCollection,
Proceedings, etc.3 AndBorrowersmay be Institutions or Individuals, with the latter
being divided into Faculty, Student, Staff.

There are a number of special aspects of the subclass relationship that should be
modeled in order to properly capture the semantics of the UofD.

10.5.1 Disjointness of subconcepts

In many cases, subclasses are disjoint from each other. For example, Book and
Journal are disjoint subclasses of Material. In Description Logics that support
negation, this is modeled by adding the complement of one concept to the necessary
properties of the other concept:

Book 
 not Journal

Often, entire collections of subclasses are disjoint.4 For this purpose, some
Description Logics provide the ability to describe disjointness by naming a dis-
criminator, and a special declaration operation for primitive subclasses. For exam-
ple, one might discriminate between various kinds of material on the basis of the
medium as follows:

Print 
 (disjointPrim Material in group medium with discriminant paper)
Video 
 (disjointPrim Material in group medium with discriminant light)
Audio 
 (disjointPrim Material in group medium with discriminant sound)

3 For this section, we will think of the material to be loaned as physical individuals that can be carried out the
door of the library, so to speak.

4 This is especially the case at the top of the subclass hierarchy: Person, Material, etc.
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At the same time, one might discriminate between different kinds of material on
the basis of the format:

Book 
 (disjointPrim Material in group format with discriminant book)
Journal 
 (disjointPrim Material in group format with discriminant journal)

. . .

Two points are worth making here: (i) the advantage of a syntax based on dis-
criminators is that it avoids the multiplicative effect of having to state disjointness
for every pair of disjoint concepts; (ii) as in the above example, it is important to
allow during modeling for multiple groups of disjoint subconcepts for the same
concept.

10.5.2 Covering by subconcepts

In addition to disjointness, it is natural to consider whether some set of subclasses
fully covers the superclass. For example, we might want to say that Circulating
material must be either short-term or long-term.

For Description Logics that support concept disjunction, this is easy:

Circulating 
 (or ShortTerm LongTerm).

Note that sinceShortTerm, in turn, hasCirculating as a superclass, the possibility
arises of modeling Circulating as a definition:

Circulating ≡ (or ShortTerm LongTerm).

However, this approach is not available for languages like Classic, which avoid
disjunction in order to gain tractable reasoning. We discuss in the next section
an approach to the problem based on subconcept definitions and enumerated
values.

10.5.3 Defined vs. primitive subconcepts

In the case of material that is either circulating or non-circulating, the name of
the second class provides a hint: after introducing Material and Circulating as
primitives, NonCirculating should be defined:

Circulating 
 Material

NonCirculating ≡ (and Material (not Circulating)).
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In this case, the Description Logic can deduce both the disjointness of Circu-

lating and NonCirculating, and the fact that Material is the union of Circulat-
ing and NonCirculating, without having stated anything explicitly about either.
This shows clearly the power of a reasoning system that is capable of supporting
definitions.

By joining covering and disjointness one gets the partitioning of a class by some
group of subclasses. In some Description Logics – those supporting the constructor
one-of – it is possible to simulate the effect of declaring concepts as partitioned
into subconcepts through the use of a special attribute. For example, we could add
the attribute format to Books, with an enumerated set of possible values:

Book 
 (the format (one-of ’monograph ’journal ’editedCollection))

and then define the corresponding subclasses:

Monograph ≡ (and Book (fills format ’monograph))

Journal ≡ (and Book (fills format ’journal))

EditedCollection ≡ (and Book (fills format ’editedCollection)).

These concepts will be disjoint because format can have at most one value, and
they cover the original class Book, because format must have (at least) one value
from among the set enumerated.

10.5.4 Dynamics of (sub)concept membership

When changes in the model are allowed, there is a distinction between concepts
that represent inherent properties of objects that do not change over time (called
“rigid” in [Guarino and Welty, 2000]) such as Book, and concepts that represent
more transient properties, such asMisplacedBook. Note that while it is possible for
a transient property to be a subconcept of rigid one, the converse does not make
sense.

StandardDescriptionLogics have not developedmodeling tools for issues involv-
ing the dynamics of theworld, and hence usually cannot represent such distinctions.
Description Logics extended with the notion of time, such as [Artale and Franconi,
1998], are of course well suited to express them.

10.5.5 The structure of the subconcept hierarchy

Recent work by Guarino and Welty (e.g., [Guarino and Welty, 2000]) has presented
several interesting ontological dimensions alongwhich a concept can be positioned.



10 Conceptual Modeling with Description Logics 361

The dimensions are related to many of the topics we discuss elsewhere in
this chapter, including the existence or absence of criteria for identifying
individuals (Section 10.3), the rigid vs. non-rigid nature of concept membership
(Subsection 10.5.4), the nature of the part-whole relationship (Subsection 10.7.3),
and aspects resembling relationship roles (Subsection 10.7.1).

The significance of these dimensions is that they can be used to both clarify
the intended meaning of concepts in an ontology, and to better organize the tax-
onomy of primitive concepts. The conditions for proper taxonomies are based on
observations such as “a concept some of whose current instances may cease to
be instances at some point in the future (e.g., Student) cannot subsume a concept
whose membership cannot change (e.g., Person).”

We refer the reader to the original paper for further details.

10.6 Modeling relationships

As mentioned earlier, binary relationships are modeled in Description Logics using
roles and attributes. Just aswith subclasses, there are a number of special constraints
that are frequently expressed about relationships: cardinality constraints state the
minimum and maximum number of objects that can be related via a role; domain
constraints state the kinds of objects that can be related via a role; and inverse
relationships between roles need to be recorded. For example, a book has exactly
one title, which is a string, and exactly one call number, which is some value that
depends on the cataloging technique used. On the other hand, there may be zero or
more authors for a book:

Book 
 (and (the title String)

(the callNr MaterialIdentifier)

(all author Person)).

As mentioned in Section 10.2, we can use the attribute lentTo to model when
someone borrows a book:

Book 
 (all lentTo Borrower).

Suppose we also want to record that the material in the library may be on
loan, available or missing. This can be modeled by adding appropriate roles to the
library:

Library 
 (and (all hasOnLoan Material)

(all hasAvailable Material)

(all hasMissing Material)).
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In such a case we would like to say that these roles are non-overlapping. This
could be accomplished through the use of a concept constructor non-overlapping,
syntactically similar to same-as: (non-overlapping hasOnLoan hasAvailable).
However, if only one library is involved, it would be better to model the situation
using an appropriate subclass of Material, such as MissingMaterial, because we
already have tools for modeling disjointness of subclasses, and reasoning with
them is not inherently hard as is the case of general constructors such as same-as
and non-overlapping.

10.6.1 Reified relationships

It is sometimes useful to be able to give “properties of properties”. For example,
when some material is lent to a borrower, it is useful to record on what date the loan
took place and when the material is due back. In the Entity–Relationship approach
this would be modeled by the creation of a relationship class, called Loan, which
would have attributes onLoan, lentTo, as well as lentOn and dueOn, describing the
loan. This can be thought of as the reification of the relationship, and results in the
following DL class specification:

Loan 
 (and (the lentTo Borrower)

(the onLoan Material)

(the lentOn Date)

(the dueOn Date)

(the NrOfRenewals (max 3))).

Unless the DL supports n-ary relations, reified relationships become essential
when modeling associations that involve more than two objects, as would be the
case, for example, if we had several libraries (or branches), and wewanted to record
from which library the loan was made.

Reified relationships have the disadvantage of requiring the modeler to distin-
guish somehow the subset of attributes determining the relationship R(a, b, . . .)
from those qualifying it. In the above case, we may imagine that Loan represents
a binary relationship Loan(Borrower,Material) between lentTo and onLoan (in
which case lentOn is there just to qualify the relation); alternatively, we may inter-
pret Loan as a ternary relationship Loan(Borrower,Material,Date) between lentTo,
onLoan and lentOn. The former records loans (a borrower may have a book at most
once) while the latter records the history of loans. The notion of “keys/unique iden-
tifiers” from databases, as adapted to Description Logics [Borgida and Weddell,
1997] can be used for this task, by marking the collection of attributes that describe
the relationship as a key.
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We remark that the DLR Description Logic can express n-ary relationships
directly, so it does not require reification for this purpose.

10.6.2 Role hierarchies

Inmany applications, two roles on the same conceptmay be related by the constraint
that every filler of the first rolemust be a filler of the second role. For example, in the
library domain, the fillers of the role hasOnShortTermLoan, recording a borrower’s
materials that need to be returned within a week, are also fillers of hasBorrowed,
recording all the materials borrowed (this would be true by definition). Similarly,
the editorInChief of a journal would be included in its editorialStaff.

One of the important features of frame knowledge representation schemes, and
Description Logics in particular, is that they encourage the modeler to think of
roles as first-class citizens. This includes support for the notion of a role taxonomy
(subroles). This is all the more reasonable, since once we reify a relationship, we
would be allowed to create subconcepts of it at will.

As a result, the above kinds of constraints on the containment of role fillers
can be modeled through the use of role hierarchies—a notion supported by most
Description Logics, at least for primitive roles:

hasOnShortTermLoan 
 hasBorrowed.

10.7 Modeling ontological aspects of relationships

The material in this section deals with some special kinds of relationships and
approaches to modeling them. The cognoscenti will recognize these as issues re-
lated to the ontological aspects of a UofD (constructs relating to the essence of ob-
jects), as opposed to epistemological aspects (constructs relating to the structure of
objects), which are captured by notions such as InstanceOf and IS-A. The kinds
of relationships to be discussed below do however occur relatively frequently, and
pose difficulties to the uninitiated.

10.7.1 Relationship roles

A subtle, but important, distinction can be drawn between objects that may
participate in a relationship (the domain restrictions on the role) and the objects
that actually do take part in one or more relationships. For example, the objects
participating in a lending relationship can be said to be playing certain “roles”:
LentObject and Borrower. It was exactly this second meaning of borrower – as
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a relationship role – that was contrasted with the original meaning of “potential
borrower” in our example of Section 10.2.

Description Logics allow one to define the relationship roles associated with a
relationship. In the case when the relationship is modeled by a regular DL role,
such as borrowedBy, we can define lent objects as ones that are being borrowed,
and borrowers as objects that are the values of borrowedBy:

LentObject ≡ (at-least 1 borrowedBy)

Borrower ≡ (at-least 1 (inverse borrowedBy)).

In the case of the reified Loan relationship, the definition of these classes would be

LentObject ≡ (at-least 1 (inverse onLoan))

Borrower ≡ (at-least 1 (inverse lentTo)).

10.7.2 Materialization

There is a family of situations whose modeling is complicated by the fact that
several concepts can be referred to by the same natural language term. For ex-
ample, one might say “Shakespeare wrote ‘Hamlet’,” “The ‘Hamlet’ in London
this season is a success,” and “‘Hamlet’ was canceled tonight.” But there is a
difference between the abstract notion of the play ‘Hamlet’, various stagings of
the play, and particular performances. Other familiar distinctions of this kind in-
clude the difference between an airline flight (“Air France flight 25 from Paris to
London”) and a particular “instance” of it – the one that will leave on May 24,
2002. Failure to model such differences can result in the same kind of problem
that arises with any other form of ambiguity – inappropriate use in a context. So
one can only buy tickets to play performances, but theatrical awards are given to
stagings.

In each of these cases there is a relationship between a general notion
(e.g., play staging) and 0-to-N more specific notions (e.g., performance of that
play staging), which has been called materialization, and was investigated in
[Pirotte et al., 1994].

Let us first model some information that we would like to capture in the library
domain:

/* Books have information about authors, etc. */

Book 
 (and . . .

(all hasAuthors Person)
(the hasTitle String))
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/* Editions of books are related to the book (in a way yet to be specified)

but have their own roles too */

BookEdition 
 (and . . .

(the publishedBy PublishingCompany)

(the isbnNr IsbnNumber)

(the format (one-of ’printed ’audio)))

/* Book copies are related to book editions, and in turn have their own roles */

BookCopy 
 (and . . .

(the callNr CallNumber)

(the atBranch LibraryBranch)).

There are several alternative ways of proceeding with the modeling of such a
UofD.

Since objects in each of these classes are seen to naturally have attributes like
hasTitle, it is tempting to think of BookCopy as being a subclass of BookEdition
so that this attribute is inherited. However, this would mean that each individual
instance of BookCopy is a separate BookEdition, which seems wrong.

If we are not committed to modeling separate individual instances of each of
these concepts, it is possible to combine their description into a single concept that
records all the relevant information. So, for example, we could defineBooks to have
all the attributes of the three concepts above, and thus really refer to book copies.
(But see below.)

Finally, according to the results in [Pirotte et al., 1994], a more appropriate
approach is to view each edition of a book as determining a subclass of BookCopy.
Each of these subclasses can then be viewed as an instance of BookEdition, for
which it provides so-called “meta-roles.” Materialization is the combination of
these ideas.

The materialization relationship can be modeled in Description Logics by a role
materializationOf, connecting in our case book editions and books, and book copies
and book editions. However, this sounds very unnatural when read out loud, so a
better approach may be to create subroles of the general role materializationOf.
This means that the above model would be completed by adding the following
assertions

/* editionOf is a kind of materialization relationship */

editionOf 
 materializationOf

/* Book editions are materializations of books */

BookEdition 
 (the editionOf Book)
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/* copyOf is a kind of materialization relationship */

copyOf 
 materializationOf

/* Book copies are materializations of book editions */

BookCopy 
 (the copyOf BookEdition).

Often, the properties of the more abstract concept are inherited by the material-
ization. For example, the book edition, and then the book copy, has the same title
and author as the book. In Description Logics, this relationships can be expressed
by identifying the appropriate attribute values on the general and the materialized
object:

BookEdition 
 (same-as hasTitle (editionOf ◦ hasTitle)).

Several additional kinds of relationships between attributes of an object and its
materialization are identified in [Pirotte et al., 1994], but they are rather unclear
and cannot be represented in Description Logics. Probably the most interesting
is the case when an attribute of the more general concept has no correspondent
on materialized individuals. For example, though a book edition may reasonably
record the date when it was first and last printed, it seems very questionable to say
that a book copy has a last printing date.

This looks like a case of meta-roles of the kind mentioned earlier. The main
importance is that if one wants to have in the model attributes such as firstPrinting,
then one cannot “melt” objects (book editions) into their various materializations
(book copies), and is forced to model them separately.

10.7.3 Part–whole aggregation

The part–whole relationship distinguishes roles of a book such as its chapters, from
others such as its publisher. There is a long history of discussions concerning this
topic, with [Artale et al., 1996b] being an excellent and comprehensive survey that
considers, among other things, a variety of DL solutions to the problem.We present
here some interesting observations.

Cognitive scientists have distinguished a variety of part-whole relationships,
whose mixture has caused apparent paradoxes; according to one hypothesis these
can be distinguished by differentiating three kinds of wholes – complexes, col-
lections and masses – with parts called components, members and quantities re-
spectively; furthermore parts can be portions (sharing intrinsic properties with the
whole) and segments. Most physical objects, like book copies, are complexes of



10 Conceptual Modeling with Description Logics 367

their parts (e.g., pages), but in the book domain we also find uses for collections in
modeling books that are anthologies of other literary pieces.

In addition, one can qualify the nature of two aspects of the relationship between
parts and wholes:

� Existence: Awholemay depend on particular individual(s) for its continued existence and
identity, as in the case when the part is irreplaceable (e.g., a book must have an author);
or it may depend generically on a class of parts (e.g., a book copy must have a cover).
Conversely, the part may depend on the whole for its existence (e.g., the chapter of a
book). Finally, a part may belong exclusively to only one whole or it might be shared.

� Properties: Properties may be “inherited” from the whole to the part (e.g., ownedBy) or
from the part to the whole (e.g., isDefective).

At the very least, the above provides a checklist of issues to consider whenever
a part–whole relationship is encountered during modeling.

In the realm of Description Logics, Sattler [1995] offers an approach to dealing
with these topics, exploiting various role-forming operators such as role hierarchies,
role inverse, and transitive closure to capture the semantics of aggregation.

Specifically, special roles are introduced for the different kinds of part–whole
relationships mentioned above: hasDComponent, hasDMember, hasDSegment,
hasDQuantity, hasDStuff, hasDIngredient, where “D” stands for “direct”. One
then defines more complex relationships from these primitives:

hasComponent ≡ (transitive-closure
(orrole hasDComponent (hasDMember ◦ hasDComponent)))

hasPart ≡ (orrole hasComponent hasMember . . .)

indicating that members of collections of components are also components, and
that hasPart is the union of the various subkinds of relationships.

Let us concentrate here on the component-of relationship, which is probably the
one most frequently encountered in practical applications. We shall consider the
table of contents of a book as an exemplar of a component attribute.

One idea is to declare attributes and roles that represent components
(e.g., tableOfContents) as specializations of hasDComponent. This allows us to
distinguish such component roles from other roles, like lentTo and publisher.

Obviously, the inverses of such roles provide access from a part to its containing
whole:

isDComponentOf ≡ (inverse hasDComponent)

hasTableOfContents ≡ (inverse contentsOf).

Turning to “existence” constraints, a book (but not a copy of a book!) depends
on the existence of its specific table of contents, and conversely. Although we
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can specify that a book must have table of contents, as with earlier “dynamic”
aspects (such as (im)mutable class membership) standard Description Logics are
not currently equipped to express constraints stating that an attribute value cannot
change.

To model the fact that each table of contents belongs exclusively to one book,
we can use qualified number restrictions

TableOfContents 
 (the contentsOf Book).

Finally, the inheritance of properties (e.g., isDefective) across component-like
attributes is modeled using constructs such as same-as, which relate attribute/role
chains set-theoretically, in the same manner as shown with materialization:

Book 
 (same-as isDefective (hasTableOfContents ◦ isDefective)).

Note however that several of these representations require quite expressive lan-
guage constructs, whose combination may result in a language for which subsump-
tion is undecidable.

10.7.4 General constraints

Inmanymodeling exercises onewill encounter general constraints that characterize
valid states of the world. For example, the dueDate of a book must be later than
the lentOn date.

Except for a few cases involving identity of attribute paths, these constraints will
not be expressible in standard Description Logics, due to their limited expressive
power. Several widely distributed systems, such as Classic and Loom, offer “es-
cape hatches”—concept constructors that allow one to describe sets of individuals
using some very powerful language, such as a programming language (Classic’s
test-concepts) or some variant of first-order logic (Loom’s assertions). These
concept definitions are usually opaque as far as concept-level reasoning is con-
cerned, because the system cannot guarantee correctness for such an expressive
formalism. However, these concepts can have an impact as far as the ABox rea-
soning is concerned, since the latter resembles a logical model, and therefore we
can do relatively simple “evaluation” as a way of recognizing individuals. Thus, in
Classic, the test-concept (test date-after (dueDate lentOn)) would invoke the
date-after function on the dueDate and lentOn attributes of an individual object,
and check that the first is temporally after the second, thus classifying individuals,
or detecting errors in the ABox.

More general than these procedural extensions are DL systems that are
extensible in the sense that a “knowledge language engineer” can add new
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concept constructors, and extend the implementation in a principled way. For
example, if we wanted to deal with dates and durations (clearly a desirable
feature for libraries), we would want to be able to compare dates, add dura-
tions to dates, etc. General approaches to extending Description Logics have
been described, among others, in [Baader and Hanschke, 1991b; Borgida, 1999;
Horrocks and Sattler, 2001].

10.7.5 Views and contexts

Although the initial goal is usually to provide a single model of the UofD, it turns
out to be very important to preserve the various “views” of the information seen by
different stake-holders and participants. For example, a book that is in the library
(and by definition, this would mean that it has no value for the lentTo role) is of
interest to the staff, for example to help find it; for this, it may have a role location,
which might specify some shelf or sorting area; this attribute may be attached to
the MaterialInLibrary concept.

On the other hand, a view of Material called MaterialOnLoan (which requires a
lentTo role value), would be a natural place to keep information about dueDate and
nrOfRenewals – attributes that would normally appear on the relationship itself.
This view is of particular interest to the borrower, but also the staff in charge of
sending overdue notices.

Incidentally, the above pattern of replacing a binary relationship having attributes
by two views can be applied any time one of the participants in the relationship is
restricted to appear in at most one tuple (e.g., every book can be loaned to at most
one borrower).

10.8 A conceptual modeling methodology

The world of object-oriented software development has produced a vast literature
on methodologies (e.g., [Shlaer and Mellor, 1988]) for identifying objects, classes,
methods, etc., for a particular application. Instead of considering this voluminous
material here, we will recapitulate some of the issues raised above by extending
the outline of a simple DL knowledge engineering methodology first presented
in [Brachman et al., 1991]. The reader is referred to that article for more details,
including a long worked-out example.

We present the main steps of modeling, with suggestions for refinements to
be accomplished in later passes; this is in order to avoid the modeler becoming
overwhelmed by details:

� Identify the individuals one can encounter in the UofD. Revisit this later considering
issues such as materialization and values.
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� Enumerate concepts that group these values.
� Distinguish independent concepts from relationship-roles.
� Develop a taxonomy of concepts. Revisit this later considering issues such as disjointness
and covering for subconcepts.

� Identify any individuals (usually enumerated values) that are of interest in all states of
the world in this UofD.

� Systematically search for part–whole relationships between objects, creating roles for
them. Later, make them subroles of the categories of roles mentioned in Section 10.7.3.

� Identify other “properties” of objects, and then general relationships in which objects
participate.

� Determine local constraints involving roles such as cardinality limits and value restric-
tions. Elaborate any concepts introduced as value restrictions.

� Determine more general constraints on relationships, such as those that can be mod-
eled by subroles or same-as. (The latter often correspond to “inheritance” across some
relationship other than IS-A, and have been mentioned in several places earlier.)

� Distinguish essential from incidental properties of concepts, as well as primitive from
defined concepts.

� Consider properties of concepts such as rigidity, identifiers, etc., and use the tech-
niques of [Guarino and Welty, 2000] to simplify and realign the taxonomy of primitive
concepts.

10.9 The ABox: modeling specific states of the world

So far, we have concentrated on describing the conceptual model at the level of
concepts. In some applications we may want to use our system to keep models of
specific states of the world – somewhat like a database. As discussed in Chapter 2,
this involves stating for each specific individual zero or more fillers for its attributes
and roles, and asserting membership in zero or more concepts (primitive, but also
possibly defined).

One of the challenging aspects of modeling the state of the world with Descrip-
tion Logics is remembering that unlike databases, DL systems do not make the
closed-world assumption. Thus, in contrast with standard databases, if some rela-
tionship is not known to hold, it is not assumed to be false.

One consequence of this is that any question about the membership of an in-
dividual in a concept, or its relationship to another individual, has three pos-
sible answers: definitely yes, definitely no, or unknown. The positive side of
this is that it allows the modeling of states with partial information: one can
model that BOOK22 is an instance of Book, and hence has exactly one filler for
isbnNr, yet not know what that value is. Chapter 12 shows how this feature has
been exploited in developing a family of DL applications for configuring various
devices.
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Another consequence of the above stance is that in some cases individuals are not
recognized as satisfying definitions when one might expect them to. For example,
suppose we only know that hasAuthor relates BOOK22 to SHAKESPEARE, who
in turn is known to be an instance of Englishman. This, by itself, is not enough to
classify BOOK22 as an instance of concept (all hasAuthor Englishman); we
must also know that there are no other possible fillers for BOOK22’s hasAuthor
role – i.e., that BOOK22 is an instance of (at-most 1 hasAuthor) – be-
fore we can try to answer definitively whether BOOK22 is an instance of
(all hasAuthor Englishman). Even in this case, if the answer is not ‘yes’, we may
get ‘no’ or ‘maybe’.

A final consequence of not making the closed-world assumption is that there
is a clear distinction between the state of the world (out there) and our (system’s)
knowledge of it. This is reflected by the terminology used above (e.g., “wemust also
know there are no other possible fillers”). As a result, inmodeling a domain onemay
find it necessary to specify concepts that involve the state of our knowledge base,
rather than the state of the world. For example, we might want to find out exactly
which books in the KB are not known to have a ISBN number. The description
(and Book (at-most 0 isbnNr))will not do the job, because the second constraint
would conflict with one of the the necessary conditions of Book, which is that it
must have have exactly one isbnNr. What is happening here is that the at-most 1
constraint concerns the state of the world, while the at-most 0 condition involves
theKB’s knowledge of theworld. To deal with this, we need some form of epistemic
operator, so we can define the concept

UnknownIsbnBook ≡ (and Book (at-most 0 (known isbnNr))).

The general problem of adding an epistemic operator to Description Logics is con-
sidered in [Donini et al., 1998a], but this is not available in currently implemented
Description Logics. A “hack” would be to introduce for such roles a subrole, whose
identifier indicates its epistemic nature:

knownToHaveAuthor 
 hasAuthor

and then be sure to assert fillers only about the “known” variant. Unfortunately,
there is no way to tell a Description Logic that such roles automatically have the
“closed-world assumption”.

10.10 Conclusions

There are a wide variety of sources that discuss the application of object-oriented
approaches to modeling a domain. The same principles apply to conceptual



372 A. Borgida and R. J. Brachman

modeling in general. For this reason, we have concentrated here on some of the
more subtle ontological issues that arise during modeling, and the different ways
in which these can be encoded in Description Logics. In some cases the issues
examined were suggested by features of Description Logics themselves.

In the process, we covered most of the kinds of questions that would have to
be addressed while modeling something like the library domain, and uncovered
some of the strengths and also some of the weaknesses of Description Logics
in representing this conceptual model. The latter include difficulty in representing
(structured) values, constraints related to the dynamic aspects of the domain, certain
forms of “inheritance” (e.g., formaterialization), andmeta-information. Thesewere
balanced by the multitude of features dealing with primitive and defined concepts,
necessary and sufficient conditions for concept specification, and the treatment of
roles as first-class citizens in subclasses and composition.

Probably the biggest problem in developing an appropriate conceptual model
for a domain is that of testing it for correctness and completeness. The former
is supported by the reasoning and explanation facilities provided by Description
Logics. The latter, as usual, is much more difficult to achieve.
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Software Engineering

CHRISTOPHER A. WELTY

Abstract

This chapter reviews the application of Description Logics to software engineering,
following a steady evolution of DL-based systems used to support the program
understanding process for programmers involved in software maintenance.

11.1 Introduction

One of the first large applications of Description Logics was in the area of software
engineering. In software, programmers andmaintainers of large systems are plagued
with information overload. These systems are typically over a million lines of code,
some approach fifty million. The size of the workforce dedicated to maintaining
these enormous systems is often over a thousand. In addition, turnover is quite high,
as is the training investment required to make someone a productive member of
the team. This seems, on the surface, to be a problem crying out for a knowledge-
based solution, but understanding precisely how Description Logics can play a
role requires understanding the basic problems of software engineering “in the
large”.

11.2 Background

The three principal software maintenance tasks are pro-active (testing), reactive
(debugging), and enhancement. Central to effective performance of these tasks
is understanding the software. In the 1980s, cognitive studies of programmers
involved in program understanding [Soloway et al., 1987] revealed two things:

(i) Programmers typically solve problems by realizing “plans” in their programs. This
seems to tie the notion of program understanding to plan recognition [Soloway et al.,
1986].
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(ii) Delocalized plans (plans which are not implemented in localized regions of code) are
a serious impediment to plan recognition, for both humans and automated methods
[Soloway and Letovsky, 1986].

While these observations were interesting, the studies from which they were
derived were slightly flawed from the industrial perspective described above: the
subjects of these studies were almost exclusively students working alone with small
domain-independent programs (i.e., sorting, searching, etc.). It was not clear how
these results applied to experienced programmers working in teams with huge
domain-specific programs.

An ambitious effort launched by AT&T [Brachman et al., 1990] attempted to
address this problem by studying maintainers of a large software system, and mea-
suring the time they spent performing different categories of tasks.What they found
was a bit startling: up to 60% of the time was spent performing simple searches
across the entire software system. A part of what was termed discovery, and as
pointed out later in [Welty, 1997], the need for these searches was the result of the
delocalization not only of plans in software, but of information in general; informa-
tion amaintainer needs to understand a section of code is frequently not found in the
vicinity of that section of code, but may be before or after in the file, in a different
file, in a different directory, etc. For a large software system whose source code is
spread out over a large number of files in a deep and complex directory structure,
finding something as simple as, e.g., the definition of a datatype, with tools such as
find (the Unix program that runs another program on all files recursively down a
directory structure) and grep (the Unix program that searches files for strings) was
both difficult and time-consuming.

Another more comprehensive study was performed by MCC around the same
time [Curtis et al., 1988], which concluded, among other things, that a prerequisite
to understanding the software is understanding the domain in which the software
operates and is a part – if you don’t knowwhat a “dial tone” is, you can’t be expected
to debug the code that generates a dial tone.

11.3 Lassie

In an attempt to have a direct impact on the maintenance group, the researchers
at AT&T developed the notion of a Software Information System (SIS) [Brachman
et al., 1990]. An SIS is basically an information system which treats the software
system source code itself as data, and stores relationships that can provide the
information maintainers frequently search for during discovery.

The first SIS, Lassie [Devanbu et al., 1991], was developed to assist the
understanding of AT&T’s Definity 75/85 software system. Influenced by their
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own study and that of MCC, it contained two components: a domain model and a
code model.

The code model was implemented with a simple ontology of source code ele-
ments, shown in Figure 11.1, which was derived empirically from the basic kinds of
searches maintainers performed. The knowledge base (the actual assertions about
individual functions, files, datatypes, etc.) was populated automatically from the
source code.

The domain model was reverse engineered from the code and contact with the
domain experts, and contained knowledge about the telephony domain, i.e. the
things the software system dealt with. These included entities such as telephones,
microphones, cables, cable-trunks, etc. A sample of the ontology is shown in
Figure 11.2.
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One of the most interesting aspects of this work, and perhaps the most signif-
icant from the perspective of exploring Description Logics, is an analysis of the
differences between these two models. The code model was founded on a very sim-
ple ontology, containing perhaps twenty concepts, and was populated with a large
number of individuals, on the order of thousands (at least one for each file, datatype,
function, and variable in the system). The domain model had a large and complex
ontology, containing perhaps two hundred concepts, but very few individuals.

The reason for this difference was that the trivial searches that characterized
software discovery were performed for two reasons:

(i) Discovering specific information about the software, e.g., what is the datatype of the
variable dial-tone?

(ii) Discovering specific information about the domain, e.g., what is a dial tone?

In case (i), the maintainer requires specific information about the software, and
thus raw data that represents that information is required. For example, by far the
most common question asked during discovery is, “Where is this variable used?”
[Welty, 1997]. Normally, a maintainer would grep for the variable in the rest of
the code to find the answers to this question, and as if this didn’t take enough time
and effort, the results would have to be pruned by hand to remove various kinds of
“semantic noise” such as:

(i) variables with longer names that include the desired variable name
(ii) names of functions that include the desired variable name
(iii) comments that include the variable name
(iv) other non-variable string matches.

In this particular case, the amount of semantic noise was quite high as a result
of mandated naming conventions whose intent was to make the source code easier
to understand (semantic noise, also known as false positives, is a general problem
with string-based search methods, and will be discussed further in Chapter 14).

The SIS code model immediately solved these problems by identifying “vari-
able” as a semantic category (as well as file, function, etc. See Figure 11.1). This
meant, quite simply, that where a string search for places in which e.g., the variable
error-value was used might yield such unwanted results as: compute-error-
value, display-error-value-result-code, error-value-lookup-table,
etc., limiting the search to variables would remove up to 80% of the noise.

In addition to trivially being able to restrict searches to specific categories, other
information that could be extracted automatically was mined from the code. For
variables, it is simple to automatically determine:

� the file it was defined in
� each function in which the variable was used.
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In addition, for each function, information was extracted regarding the file it was
defined in. From this, a simple inference could be made as follows:

Variable ≡ ∀usedInFile.File � ∀usedInFunction.Function �
usedInFile = usedInFunction ◦ definedInFile.

In other words, if a function uses a variable then the variable is used in the file that
function is defined in; this produces all the locations where the variable is used.
In this manner, the Lassie system augmented the basic data in a number of ways
through inference.

A similar and nearly as common maintenance task was, e.g., after modifying
a function, searching for all the places that function is used to see if the changes
affect other sections of the code. Information about what functions call others (i.e.,
the call graph) was also kept in the code model, and an expression similar to the
one in the example above can be used to derive all the files in which a function is
called.

The codemodel alonewas able to simplify several of the common discovery tasks
maintainers experienced during code modification, but as suggested in case (ii) of
the reasons for engaging in discovery listed above, there are other reasons for a
maintainer to be searching through the code. For these cases, in which domain
information is the desired result of a search, a robust description of the domain is
required, and was provided by the domain model (see Figure 11.2).

For example, a maintainer may want to know what kinds of actions a user of the
system can take by themselves. To answer this question from the code – the usual
approach before Lassie– would be quite difficult. One method might be to grep
through the code for the string “user” – hoping of course that the documentation
is up to date or consistent with respect to user actions. Clearly the semantic noise
would be quite high in such a case.

Another approach might be to start with a piece of code the maintainer is familiar
with, and draw some clues from that for where to look next. The point here is that,
whereas for code-model queries the goal is quite specific, domain-oriented queries
are not, and imply a lot of time browsing, searching for new ideas, etc. The code is
organized around specific functions, not around specific domain concepts, and of
course multiple “views” of the code are not supported.

To address this type of need, theLassiedomainmodel expressedknowledge about
the domain of telephony. It presented numerous key concepts that let maintainers
view the knowledge in the code in a variety of different ways. The domain model
was mostly terminological, since it was a description of the things that the software
could do. An action concept, such as “generating a dial tone” was a description of
the action, whereas an individual would be an actual action of generating a dial tone
at some fixed time. These individuals did not normally exist in the domain model,
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except as examples. The concept would roughly be

GenerateDialToneAction ≡ Action � ∀initiatedBy.LatBox �
∀follows.OffHookAction �
∀recipient.LocalPhone �� 1 hasConnection.

In other words, a “generate dial tone action” is an action that is initiated by a
local telephone service following an “off hook action.” The recipient of the prod-
uct of the action (the dial tone) is a phone for which a connection has been
allocated.

Other domain concepts described things that the software reacted to, such as

OffHookAction ≡ Action � ∀initiatedBy.User �� 0 follows �
∀recipient.LatBox � ∀activates.AllocateConnectionAction.

In other words, an “off hook action” is an action that is initiated by a user (more
commonly the result of pressing a button these days than lifting the receiver off the
hook). It follows no previous action, and the recipient of the product of the action is
the local telephone service (on which the software is running). The action activates
a search for a connection.

Returning to the randomly chosen example above, the maintainer looking for all
actions that can be initiated by a user would simply enter a query such as

Action � ∀initiatedBy.User
and the system would find all the concepts subsumed by that expression. Lassie
contained a facility for defining new domain concepts identified by maintainers
during discovery, and adding them to the domain model by simply assigning them
a name (e.g., USER-ACTION in this example).

While these two models independently solved existing problems, it soon became
clear that integrating the two models was an important requirement. Using the
tool exposed the fact that most domain queries were followed by code queries.
For example, after exploring the domain model to discover the significance of a
“connect action”, the maintainer will typically ask, “What are the functions that
implement it?” In addition, classifying software components by their relevance in
the domain was viewed to be a very significant bit of functionality, as this permitted
components to be found and retrieved with this information – something that was
not previously possible.

This integration between the two models made it possible to use subsumption to
find different software objects. For example, all functions that implement connect
actions would be

Function � ConnectAction.
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Variables used in functions that implement user actions would be

Variable � ∀usedInFunction.UserAction.
The Lassie system underwent steady development for several years at AT&T,

and was shown to cut down on the time maintainers spent in discovery. In order to
further improve the process, it was observed that:

� The connection between the domain and code models needed to be made by hand. This
was time-consuming to create, and difficult to maintain since the domain model changed
over time as new features were added to the software system. Maintainers began to lose
faith in the domain model, as a result, and usage deteriorated.

� The code model, though extremely simple, was used far more frequently than the domain
model, and became an important part of every maintainer’s tool set. It did not, however
eliminate the searches maintainers made, and therefore did not completely replace find
and grep.

11.4 CodeBase

Because the code model proved quite useful and easy to maintain, the demand for
it began to increase. This introduced two problems for the Lassie SIS:

� Like all DL-systems, it was based on main memory. The software contained many thou-
sands of functions, variables, and files. More importantly, the complexity of the function
call graph, variable usage graph, and location maps, exceeded one million. It was not
possible to store this amount of information in main memory of any computer at that
time.

� The natural language interface, while simple and easy to understand, did not facilitate
using the system quickly. One still had to compose a proper query and type it in. If the
result of one query were to be used in another, the maintainer had to re-type the name(s)
of the concepts or individuals involved. Increased usage demanded a better user interface.

TheCodeBase system [Selfridge and Heineman, 1994] offered solutions to both
of these problems. Perhaps themost significant achievementwas the development of
a system for off-line storage of individuals. The relatively small code-model TBox
was always kept in memory, but individuals were kept on a disk, in a technique
similar to virtual memory. The difference was in the heuristics used for predicting
what portions of the ABox to pre-load.

Whereas a virtual memory system normally uses heuristics based on temporal
or spatial proximity, for a knowledge base like Lassie, this was not relevant. The
location of an individual in physical memory was no indication of its relevance to
other individuals near it in physical memory.

The heuristics for virtual memory are based on the empirical observation that
when one location is accessed, it is probable that the next access will be to a nearby
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location in memory. The Lassie developers observed that, in a DL ABox, when an
individual is accessed it is probable that the next access will be to one of its role
fillers, or to objects along some role path from the accessed individual. Because a
role may have many fillers, and because an individual may have many roles, there
is no way to arrange the individuals in memory so that the normal virtual memory
heuristics will be efficient.
CodeBase also provided numerous graphical tools for viewing and browsing the

information in the knowledge base. While this is less significant from the general
perspective of Description Logics, it is important from the standpoint of developing
knowledge-based systems. One must never forget that these systems interact with
people, and can not be considered as viable systems unless the human is “in the
loop”.

11.5 CSIS and CBMS

Development of Lassie was eventually halted by the trivestiture of AT&T in 1995.
Research into software information systems did not stop, however, and Description
Logics have played an important role in this continued development.

Two issues were brought to light by the Lassie system:

� The deterioration of the domain model over time was another manifestation of the classic
software documentation problem: the same information being stored in different ways.
The code model stayed relevant because it was automatically generated from the only
thing that had to be maintained: the software. It did not, therefore, need to be maintained
separately to remain accurate. The documentation and the domain model were different
representations of the knowledge that was, perhaps implicitly, in the code. These repre-
sentations always lagged the “real” one, since they had to be maintained independently.

� The delocalization of information in software, which is the central obstacle to code
understanding, required new ways of viewing the code. Looking at code on the screen,
analogously to the heuristics for operating system virtual memories, is inherently two-
dimensional. It does not allow relationships between code-level entities to be viewed, or
localized.

The first step in determining how to address these problems was to perform
further studies of programmers involved in discovery to gain more detailed insight
into specifically what they were doing. One such study, in this case of programmers
maintaining a moderate-sized object-oriented software system, found that the most
common high level queries were:

(i) Where is this variable modified?
(ii) What are the available slots and methods on this instance?
(iii) What is the datatype of this variable or function?
(iv) What are the superclasses of this class?
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(v) What does this function return?
(vi) Does this function have side-effects?
(vii) Is this datatype used?

Clearly, to provide answers to questions like these requires far more fine-grained
information about the software than simply the locations of the definitions. Further-
more, this study confirmed that object-oriented languages actually increase under-
standing problems by delocalizing much more information than their imperative
predecessors [Huitt and Wilde, 1992]. Inheritance, in particular, spreads method
and slot (instance variable) declarations up the class hierarchy, making it harder to
find answers to questions about class composition, among other things.

These issues spurred research intoComprehensive Software Information Systems
[Welty, 1995], which soon became Code-Based Management Systems. The idea of
CBMS was to define the most precise level of granularity of representation needed
to have complete knowledge of the software system in the knowledge base. In other
words, to have the knowledge-based representation be the artifact that ismaintained.

From a DL perspective, such a comprehensive representation of software in a
knowledge base required the ability to deal with large amounts of information
efficiently. In addition, such a deep representation made it possible for a wide range
of inferences that were well-suited for subsumption reasoning.

A CBMS is based on a full-scale parse of the code to construct an abstract syntax
tree (AST), which is basically the parse tree. The AST has all the information of the
source code, such that the source code can be completely generated from the AST.
TheAST is augmentedwith semantic information that can be derived automatically
from the syntax. In C++, for example, we know that the left side of an assignment
operator is the variable to be changed, and the right side is the new value.

The ability to represent everything in the code requires a deeper ontology of
code-level software elements than the original Lassie ontology, that includes state-
ments, blocks, conditions, etc. In fact, every syntactic element of the programming
language is in the ontology. A simplified ontology for an object-oriented language
is shown in Figure 11.3.

In addition to these concepts representing the syntactic elements of the source
language, roles were use to relate instances of these concepts to each other for
control flow, data flow, call graphs, etc. For example, take the following C++ code
fragment:

void group_deliver (

MAIL_MESSAGE message,

GROUP group)

{ LIST members;

members = get_members(group);
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Fig. 11.3. A simplified code-level ontology.

while (! empty(members)) {

ind_deliver(message,car(members));

members = cdr(members);

}

}

The CBMS representation of that fragment is shown in Figure 11.4. Note that
Figure 11.4 shows only the ABox corresponding to the small code fragment, and
that role fillers are shown as binary relations.

With an interface that showed individuals in the code representation with
role fillers displayed as hypertext links (see [Welty, 1996a]), this ontology
alone localizes far more information than the standard text view of software dis-
played in an editor window. Again, an editor window localizes only the control
flow information; a maintainer looking, e.g., at the code fragment shown above,
only sees the text. The lines are arranged in roughly control-flow order.

Using a CBMS representation, a maintainer’s view is focused on a particular
object, such as the assignment statement on the first line of the function. This view
would be:
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Fig. 11.4. A CBMS representation of the code fragment.

ASSIGNMENT-STATEMENT-23:

implementation-of: {FUNCTION-03: group_deliver}

next: {WHILE-STATEMENT-14}

changes: {LOCAL-VARIABLE-16: members}

new-value: {FUNCTION-INVOCATION-34: get-members(group)}

In this kind of view, anything in {. . . } is a hypertext link to a similar description
of the individual named in the link, and localization takes on a new meaning:
the number of hypertext links a desired piece of information is from the current
context (individual being viewed). For example, information about control flow is
accessible through a chain ofnext links, but in addition, information about data flow
is accessible through the new-value link, about the function being implemented,
about the variable being used, etc.

Another advantage of the CBMS approach is that reasoning can be employed
to augment the data and automate the localization of even more information. In
existing work in Classic, three types of reasoning were employed:

Role inverses. Every role in the ontology has an inverse, and this provides a
tremendous amount of simple bookkeeping information useful to maintainers.
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In the example above, the changes role is filled through parsing with mem-

bers, and the inverse relationship, that the variable members is changedBy
ASSIGNMENT-STATEMENT-23, is added as well. The power of this simple in-
ference can not be understated. Studies showed that this was the most useful
kind of information the system provided, as it answered the most common
question asked by maintainers.

Path tracing. Manyuseful pieces of informationwere a few clicks away, butwould
be more useful if brought within one click (i.e., one link). A simple set of
forward chaining “filler” rules in Classic are capable of handling this. For ex-
ample, it is also useful to know within which functions a variable is changed.
Without inference, the maintainer must click on the changedBy role for a
variable to get to the statement that changes it (or statements), and then must
click on the implementationOf role for the statement to get to the function.
Instead, with “path-tracing rules”, we can fill the changedInFunction role au-
tomatically with all the values from the path (changedBy implementationOf ).
Thus in our example we can conclude that members is changedInFunction
group deliver.

Subsumption. With subsumption reasoning, membership in a number of useful
classes can be inferred for individuals representing pieces of the code. For
example, the concept GlobalAssignmentStatement is defined:

GlobalAssignmentStatement ≡ AssignmentStatement �
∀changes.GlobalVariable

which allows all the assignment statements that modify global variables to be
identified.

The most compelling result that came out of the CBMS work so far has been
the automatic detection of side-effects, answering the sixth most commonly asked
question. This detection was not originally believed to be possible. To simplify the
discussion, we assume a pure object-oriented language without pointers or call-by-
reference parameters. The latter can be handled in a similar way, the former is still
believed to be undecidable.

There can be two kinds of direct side-effects in a method: a change to a global
variable, and any sort of output. A third kind of side-effect is a call to a method
that has a side-effect. In this case, the side-effect does not actually occur within the
callingmethod, yet a side-effectwill occurwhen the callingmethod itself is invoked,
so it can be important to discover it. A change to a global variable occurs whenever
that variable appears in an assignment statement as the variable to be changed.

The CBMS ontology contains a fairly simple extension which can automatically
detect side-effects on global variables and calls tomethodswith side-effects. Output
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Fig. 11.5. The side-effect ontology.

methods must be specifically identified as such in order that calls to them may be
recognized. This is not really a problem, since output functions are generally part
of a support library which would be provided to any developer. The extension
begins with a new part of the code-level ontology, shown in Figure 11.5. This new
ontology of primitive concepts fits under the SoftwareThing concept. Next, any
individual of GlobalAssignmentStatement (defined above) is a side-effect – an
AssignmentSideEffect.

In order to put individuals ofAssignmentSideEffect into the side-effect ontology
shown in Figure 11.5, a forward chaining rule is added:

AssignmentSideEffect ⇒ DirectSideEffect.

This rule is required because if the relationship it specifies were part of the defined
concept, being a direct side-effect would become a sufficient condition for recog-
nizing assignment side-effects, and they would never be found automatically. In
other words, the rule says “once an assignment side-effect is recognized, it should
be also be classified as a direct side-effect”, whereas putting direct side-effect after
assignment in the defined concept definition would say, “An assignment side-effect
must already be known to be a direct side-effect to be recognized”. The latter is not
productive.

At this point we can classify all assignments that change global variables as
assignment side-effects and direct side-effects. The next addition is a set
of roles that will help identify the methods that contain these side-effects:
hasDirectSideEffect, its inverse directSideEffectOf, and their role parents
hasSideEffect and SideEffectOf. With these roles defined, a path-tracing rule is
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added for DirectSideEffect that says directSideEffectOf = implementationOf. In
other words, the directSideEffectOf role should be filled with the value in the
implementationOf role of the assignment. Through the role hierarchy, this also
adds the SideEffectOf role, and through the inverse, the individual of Method that
fills this role gets the hasDirectSideEffect and hasSideEffect roles pointing back
to the assignment.

With these inverse roles filled in,we can create a newdefined concept to recognize
methods with side-effects:

MethodWithSideEffects ≡ Method �� 1 hasSideEffects

and a more specific one for methods with direct side-effects:

MethodWithDirectSideEffects ≡ Method �� 1 hasDirectSideEffects.

Note that the second concept will automatically be classified under the first. Now,
as a result of the rules that added the hasSideEffect links, every method that has
in its implementation a slot assignment side-effect will have at least one filler in
its hasDirectSideEffects role, and will be classified as a method with direct side-
effects.

The next case is detecting indirect side-effects, which first requires recognizing
invocations of methods that have side-effects (in object-oriented terms, a method
invocation is a message):

MessageSideEffect ≡ Message � ∀callMethod.MethodWithSideEffects.

Individuals of this new concept can be recognized since allmethodswith side-effects
have been found with the previous two defined concepts. A simple forward chaining
rule then links these message side-effects back into the side-effect ontology:

MessageSideEffect ⇒ IndirectSideEffect.

Next we define two more roles: hasIndirectSideEffect and its inverse
indirectSideEffectOf, and make them children of hasSideEffect and SideEffectOf,
respectively. Once these roles have been defined, and the message side-effects have
been found, we can identify all the methods that have them in a similar manner
to assignment side-effects. First, create a path-tracing rule for IndirectSideEffect:
indirectSideEffectOf = implementationOfwhichwill fill in roles. Nowwe identify
all these methods with indirect side-effects with the concept

MethodWithIndirectSideEffects ≡ Method �� 1 hasIndirectSideEffects

The final step is simply to link methods with side-effects into the side-effect ontol-
ogy with one last forward chaining rule:

MethodWithSideEffects ⇒ SideEffectThing
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The addition of this rule basically creates the side-effect ontology shown in
Figure 11.5.

Not only do these definitions identify functions with side-effects, but they also
lead a maintainer directly to the side-effect itself. The point here, from a software
understanding perspective, is that subsumption makes it possible to localize infor-
mation that otherwise would be difficult (or at least time-consuming) to discover.

The inferences for finding side-effects are clearly very deep, yet the developer or
maintainer need not be aware of them. All these side-effect inferences come with
no extra work by the developer or maintainer at all. In fact, answers to all of the
top questions asked by maintainers during discovery can be localized to within one
link, therefore one mouse click in the simple hypertext interface described.
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Configuration

DEBORAH L. McGUINNESS

Abstract

Description Logics are used to solve a wide variety of problems, with configuration
applications being some of the largest and longest-lived. There is concrete, commer-
cial evidence that shows that DL-based configurators have been successfully fielded
for over a decade. Additionally, it appears that configuration applications have a
number of characteristics that make them well-suited to DL-based solutions. This
chapter will introduce the problem of configuration, describe some requirements
of configuration applications that make them candidates for DL-based solutions,
show examples of these requirements in a configuration example, and introduce the
largest and longest-lived family of DL-based configurators.

12.1 Introduction

In order to solve a configuration problem, a configurator (human or machine) must
find a set of components that fit together to solve the problem specification. Typi-
cally, that means the answer will be a parts list that contains a set of components
that work together and that the system comprising the components meets the spec-
ification. This task can be relatively simple, such as choosing stereo components in
order to create a home stereo system. The problem can also be extremely complex,
such as choosing the thousands of components that must work together in order to
build complicated telecommunications equipment such as cross-connect devices or
switches.

One important factor thatmakes configuration challenging is thatmaking a choice
for one component typically generates constraints on other components as well. For
example, a customer who chooses a receiver that only supports up to four speakers
may not conveniently support a surround sound system with a subwoofer (since
this would require more than four speakers).

388
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Configuration continues to have strong interest in the academic and commercial
communities. It has been a prominent area in artificial intelligence at least since
the R1/XCON [McDermott, 1982] work on configuring computer systems. Since
then, many configuration systems have been built in domains including commu-
nication networks, trucks, cars, operating systems, buildings, furniture layout, and
even wine properties to match a meal description. Today, there are active mailing
lists, workshops and conferences (such as the configuration workshops at ECAI-
2002 [ECAI, 2002] IJCAI 2001 [Soininen et al., 2001], AAAI’99 [Faltings et al.,
1999], and the Fall Symposium Workshop on Configuration [Faltings and Freuder,
1996]), special issues of journals (such as IEEE Intelligent Systems [Faltings and
Freuder, 1998] and Artificial Intelligence for Engineering Design, Analysis and
Manufacturing [Darr et al., 1998]), and research groups at a number of universi-
ties and companies. Approaches include constraints, expert systems, model-based
reasoning, and case-based reasoning as well as Description Logics.

Configuration is an important and growing commercial concern. There are a
number of companies dedicated to configuration such as Trilogy, Calico, etc. Other
companies in broader markets such as the enterprise integration software compa-
nies, Baan and SAP, have a major emphasis in configuration. Companies that sell
complicated products, such as computers, are providing their own configurators
(e.g., the Dell personal computer online configurators). There are spinoff compa-
nies of general configuration companies that are aiming at particular domain areas,
such as PCOrder (a spinoff of Trilogy focusing on personal computer configura-
tion). There are also some domain-oriented companies that include configuration as
a major component such as CarsDirect’s configuration of United States consumer
car orders.

Although the commercial configuration market may appear to be a recent event
since it has been exploding recently, it does have at least a decade of history.
Trilogy, for example, one of the earlier companies focusing primarily on con-
figuration, was founded in 1989. Forrester Research reports that the configura-
tion market was valued at eight billion dollars in 1997 and it predicts that the
market will grow to 327 billion in 2002. Configuration is also seen as impor-
tant by companies not originally classifying themselves as “configuration compa-
nies”. In a study of fifty eCommerce executives from top firms in the business-
to-business and business-to-consumer space, Forrester Research found that search
and configurators were considered the two tools most critical for customer support
[Koetzle et al., 2001].

The DL community has been addressing configuration needs for over a decade
as well. Owsnicki-Klewe [1988] presented a view of configuration as a consistency
maintenance task for Description Logics and AT&T independently began work
in 1988 on its family of configurators for telecommunications equipment [Wright
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et al., 1993; McGuinness et al., 1995; McGuinness and Wright, 1998b; 1998a].
Similarly Ford Motor Company has had a DL-based configurator [Rychtyckyj,
1996] in the field for over 10 years. Others in the DL area have explored Description
Logics for configuration as well, e.g., [Buchheit et al., 1994c; Kessel et al., 1995].

12.2 Configuration description and requirements

In this chapter, we will be considering large-scale configuration problems. If one
only has a small number of constraints to satisfy and a small number of possible
component choices, then any somewhat reasonable solution will work. If however
the final product is complicated and there are thousands of choices and constraints,
then there is more need for a well-suited solution. We will consider the generic
configuration problem where there is a complex artifact being assembled from
components. Potentially the components have subcomponents, and thus the artifact
may bemodular or hierarchical in nature.Also, each of the components typically has
a number of properties, such as power restrictions, connections to other components,
etc., and thus components may be tightly interconnected. If one looks at modern
configuration descriptions [Fleischanderl et al., 1998; Juengst and Heinrich, 1998],
one can see only large, interconnected, tightly constrained, complex systems.

The input description for the configuration problems we will consider will be
a specification of a complex, probably highly interconnected system. The input
should be able to be entered incrementally by a user as well as being able to be
uploaded from sales programs. The input specification may be:

� incomplete
� ambiguous
� incrementally evolving
� granular to different levels of specificity
� inconsistent
� entered in any arbitrary order
� interconnected
� nested with complex structure.

The output for the system, in its simplest form, will be some kind of parts list.
The parts list may be organized hierarchically so that there is a parts list of high
level components (such as bays in switching systems or speaker sets in home theater
systems) as well as a detailed parts list of the individual components. In this chapter,
we will only address configuration and not the related area of parts layout.

The output of the system should be:

� correct
� complete
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� consistent (with respect to other parts, preferences, pre-existing components in the cus-
tomer’s environment)

� modifiable
� understandable / explainable
� capable of being queried
� interconnected and interoperable with related data.

The configurator needs to accept the problem input along with any previously
entered domain information concerning valid configurations. It must then check the
constraints it has (calculating the constraints that are implicit in the input data from
the input and background information) in order to start building a parts list. It may
find that a complete and correct parts list may not be built from the given input. In
actuality, it is common for the problem specification to be either overconstrained
(i.e., contain a contradiction such as “I want a pair of speakers that is of the highest
quality available yet I do not want to paymore than fifty dollars for them”) or under-
constrained (i.e., “I want to buy a high quality stereo system”). In the first case, the
configurator needs to identify the source of the conflicting information and deter-
mine (probably alongwith user input) which conflicting constraint(s) to relax. In the
second case, the configurator needs either to solicit more specific information from
the user, or to generate a list of possible configurations, or both. If the configurator
makes arbitrary choices for the user (e.g., it chooses some receiver for the stereo
system yet there were many possible choices), then it needs to make it possible for
the user to change the arbitrary choices and also to find out which choices were
arbitrary and which choices were mandated by constraints. Additionally it needs to
let the user enter partial additional input that would further constrain the choices.

The configurator also needs to accept information from multiple data sources.
There will be a number of databases with which a configurator may need to interact.
Typically, there will be databases of parts and prices, other databases of parts
and availability, and possibly many other databases with user information or just
information about different product families. It is likely that information (such as
pricing and availability) will change frequently. Also, there will be information
concerning what parts are compatible together and how the choice of one part
constrains the choices of other parts. These might be considered the configuration
rules. Although these rules might not change on a frequent basis, modifications are
typically necessary. The rules may come from multiple sources as well. They may
need to be imported from many different source languages and they may need to
be input by people who have no training in computer science, let alone knowledge
representation systems.

Finally, the system may be long-lived and thus require support and maintenance.
It may be necessary to staff a help desk to help users of the system. The customer
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service representatives may know very little about any one individual product about
which they are answering questions (because they are supporting a large number
of products). The technical staff maintaining the individual configurator may not
include people who originally built the system, and over time, it may not even
include people who know much about the product (although they may be quite
capable of researching the product if necessary). Also, the technical staff may need
to generate new configurators for updated or similar products.

We might summarize the requirements from the input, output, and core config-
urator requirements starting from the requirements presented in one configurator
family of applications [McGuinness and Wright, 1998b] and augmenting them
slightly here. A solution methodology should have the following properties:

� object-oriented modeling
� rule representation, organization, and triggering
� active inference and knowledge completion
� explanation, product training, and help desk support
� ability to handle incrementally evolving specifications
� extensible schemas
� reasoning mechanisms that handle incomplete or ambiguous information
� inconsistency detection, error handling, and retraction
� modularity
� maintainability.

This list of needs represents those inmany complicated reasoning tasks.Although
we could argue that this general architecture and approach is more broadly applica-
ble, wewill limit our discussion to configuration applications. In the next set of sub-
sections, we will describe each of these needs with respect to the task of configuring
a stereo system (based on the configurator demobyAT&T[McGuinness et al., 1995;
1998] and mention how the DL-based solution met the need.When useful or neces-
sary, we will mention how the need was addressed in the larger Prose configurator
family.

In the stereo configuration application, the goal was to require the user to enter
a small number of constraints concerning the end system and generate a complete,
correct, and consistent parts list. Although the system would accept a large set
of constraints as input as well, the goal was to reduce the user’s task and thus
require minimal input. The system used the user input along with its extensive do-
main knowledge and parts information to determine if the user’s input specification
was consistent. It used the underlying theorem prover within the DL system to
compute the deductive closure of the input and generated a more complete input
description. User input was solicited on the system quality (high, medium, or low
with associated price ranges) and the typical use (audio only, home theater only,
or combination), and then the application deduced applicable consequences. This
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typically generated descriptions for 6–20 subcomponents which restrict properties
such as price range, television diagonal, power rating, etc. A user might then in-
spect any of the individual components possibly adding further requirements to
it which may, in turn, cause further constraints to appear on other components
of the system. Also, a user may ask the system to “complete” the configuration
task (even if the user specification was incomplete), completely specifying each
component so that a parts list is generated and an order may be completed. An on-
line demonstration of the web configurator application is available at Stanford
(http://www.ksl.stanford.edu/people/dlm/dls/stereo-demo/) and a
number of examples are available in the extended online version of the IJCAI
paper [McGuinness et al., 1995] available at: http://www.research.att.com/
sw/tools/classic/tm/ijcai-95-with-scenario.html.

This application is convenient for illustrating our points since it is small and in a
broadly understandable domain. It is potentially more interesting than some simple
pedagogical examples since it was developed as an application that had representa-
tion and reasoning requirements that were isomorphic to the needs observed in the
Prose family [Wright et al., 1993; McGuinness and Wright, 1998b] of configura-
tors. The examples in this paper can be seen in more detail in [McGuinness et al.,
1995; 1998].

12.2.1 Object-oriented modeling

A system that is being configured may be viewed as a structured object composed
of smaller objects. Even our simple example domain of stereo equipment presents
a natural hierarchy of concept descriptions and instances that have a number of
properties. We have a top level node like ElectricalThing and then have subclasses
of that node such as HomeTheaterSystem and StereoOrVideoComponent. Fur-
ther, subclasses of StereoOrVideoEquipment might include Receiver, Speaker,
and Television. Any particular term may have properties associated with it. For
example, a Television might have a property called diagonal (that must be filled
with a positive integer), another called price (that must be filled with a monetary
value), a repairHistory (that must be filled with one of the following values: {BAD,
OK, GOOD}), a manufacturer (that must be filled with a company), and a height,
width, and depth (all of which must be filled with a positive number). All of the
properties might have cardinality requirements on them. For example, there must
be at least one manufacturer (although possibly more than one manufacturer), there
must be exactly one filler for the diagonal role, etc.

In the simple examples so far, we have seen a need for number (cardinality)
restrictions, value restrictions (choosing the type of a filler for a role), roles,
and class hierarchies. Further we should note in the description that the objects
are compositional. The value restriction on the manufacturer role is naturally
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determined to be a company. Companies themselves might have further proper-
ties like headquarter locations, CEOs, etc. A user might subsequently want to
choose speakers made by companies in the United States and televisions made by
companies headquartered in Japan.

It is argued more extensively elsewhere [McGuinness and Wright, 1998a] and
in this book in Chapter 10 that Description Logics are convenient modeling tools
for such objects. We can show a simple example of this diagrammatically where a
HomeTheaterSystem inherits a price role with a value restriction ofMonetaryUnit.
We might also have a particular HomeTheaterSystem named MY-HTS that is
the system we will be building through the example. It will also have a price

role with some unknown value at the moment. We might also have a subclass of
HomeTheaterSystem called HighQualSystem. In our simple example, this might
be defined simply as a home theater system that costs at least 6000 dollars. In a
Description Logic system, once MY-HTS contains either a price that is over 6000,
or contains a partial description such as “a minimum price of 8000 dollars” that
restricts the price to be greater than 6000, then it can be recognized to be an instance
of aHighQualSystem. This kind of automatic recognition and organization of terms
based on their definitions is a convenience for organizing and maintaining partial
descriptions and is arguably one reason that Description Logics are thought to
be particularly useful for modeling and maintenance of applications that require
object-oriented models.

12.2.2 Rule representation

A knowledge base that contains information about active deductions will contain
some sort of rules. Typical large configuration systems will contain many rules.
Also, these rules may change frequently. It is reported that 40% of the rules in
R1 changed yearly. Thus, support for modeling, organizing, and later, maintaining
the rules will be important in large configuration systems. A simple rule may take
the form of “If something is an A, then it is a B”. For example, if something
is a HighQualSystem, then its television is a HighQualTelevision (which has a
minimum price and diagonal value), its speakers are HighQualSpeakers (which
have minimum price restrictions), etc. In fact, in our stereo demo, there are dozens
of rules that fire once a system is determined to be a HighQualSystem. If the
minimum price restriction were ever removed from the specification requirement,
we would want the results of those rules retracted automatically (unless the same
results could be deduced in other ways as well).

A DL-based system can support modeling of rules described above in a hier-
archical fashion. Rules can be associated at what ever level of the hierarchy is
appropriate. Thus, we might associate minimum price and diagonal for televisions
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at the level of aHighQualSystem and we might associate repair-history restrictions
with another concept such as HighReliabilitySystem. If we just wanted to have this
kind of simple rule encoding, we would not need to use a separate mechanism. If
one has an encoding scheme that includes negation and disjunction (or some other
way of encoding an “if–then” rule), as do most of the modern Description Logic
languages, then one does not need to introduce a separate rule notion. For example,
one might encode a simple if–then relationship such as (or (not HighReliabil-

itySystem) GoodRepairHistory). This states that either something is not a high
reliability system or it has a good repair history, which is typically viewed as equiv-
alent to “if something is a high reliability system, then it has a good repair history”.

The Description Logic that this example was encoded in (Classic [Borgida
et al., 1989; Brachman et al., 1991; Patel-Schneider et al., 1991; McGuinness
and Patel-Schneider, 1998]) had a rather limited set of constructors and also had
the simple rules introduced above and also more sophisticated rules such as those
which compute role values based on context. In some configuration applications
of this Description Logic, the more sophisticated rules in combination with other
constructors have encoded expressive rule-based reasoning, and in fact many of
the rules in those configuration system required Classic’s more sophisticated rule
representation system. The examples we have seen in this chapter only use a simple
form of if–then rules. For a more detailed discussion of how powerful these rules
can be in practice, see [Borgida et al., 1996].

Description logics are not required of course in order to capture rule represen-
tation and reasoning; this example simply shows that they can be a convenient
technique for capturing rules and reasoning with them.

12.2.3 Active inference

Description logics deduce logical consequences of information and are thus said to
provide active inference. In fact, one of the typical patterns of inference observed
in many DL-based configuration systems includes:

� asserting new information about an existing term
� recognizing that the updated term is an instance of a class
� firing a rule on the term that is associated with the class
� propagating information from the updated term to related terms.

For example, let’s considerMY-HTS again. Let it have a hasTelevision slot filled
with a particular television TV-11. Once it is asserted that the user is willing to
pay more than 8000 dollars for this system, it is recognized to be an instance of the
HighQualSystem. The rules associated with that concept fire and now it becomes
an instance of something that has a television diagonal minimum of 50 inches
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(or possibly a high definition television with a smaller diagonal) and a television
price of a minimum of 1000 dollars. These restrictions are propagated onto TV-11.

This kind of deduction chain comprises over 50% of the inferences that are done
in the stereo configurator example. In this manner, users only need to specify a
small number of restrictions on their system and they can have a large number of
deductions performed for them.

It should be noted that this particular example configuratorwas built on aDescrip-
tion Logic that did not contain default reasoning. Some Description Logics have
been expanded to include default reasoning (i.e., if it is not known to be otherwise,
use the default rule) [Padgham and Zhang, 1993; Baader and Hollunder, 1995a;
Quantz and Royer, 1992]. For example, if a manufacturer has not been specified
for a television, use Sony as the manufacturer. If the underlying formalism had had
a default representation, this would have been used.

As the demonstration system was encoded, the stereo configurator used two sets
of concepts on which to hang rules: a concept for all provably correct rules (such as
power compatibility) and another concept for the default rules, called a “guidance”
concept (for more subjective rules such as minimum prices). The deployed configu-
rators on which this system was based actually used defaults as completion – at a
particular point in the specification input process, if information is unknown, then
“complete” it using the “default” or subjective rules [McGuinness and Wright,
1998b]. This provided one very simple method of implementing a kind of “default”
as completion that can be viewed as one of the simplest forms of default reasoning.

12.2.4 Explanation

Customer help desk staff need to be able to help users understand potentially every-
thing about a configuration specification and the final parts list. In fact, the Prose
family of configurators faced extinction had it not been able to respond with a full
explanation capability. It was evident that consumers needed to be able to find out
why some particular part was in their final system, why it had the particular value
restrictions it did, what the possible alternatives were, and from what portion of
the specification this information had been derived. In this simple example, a cus-
tomer might want to find out why the television in the final system costs over 1000
dollars or why it has a particular minimum diagonal requirement. The explanation
would be that a high quality system was requested and high quality systems in-
clude a suggested minimum diagonal size and a minimum price on their television
components.

The demonstration system allows customers to point to particular compo-
nents and ask questions about everything that has been deduced about them.
It also anticipates the most common explanation questions that users ask and
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provides pulldown menus containing explanation question that were dynamically
generated based on the item a user was pointing to and that a user could just
click on to ask quickly. An extensive explanation foundation was designed for
the underlying DL-based system in order to support that [McGuinness, 1996;
McGuinness andBorgida, 1995]. The explanation systemprovides a proof-theoretic
foundation for explaining any deduction in terms of proof rules and arguments. It
also provides an automatic followup capability that generates the questions that
would lead to this inference being deducible. The followup question generation was
found to be needed since user studies showed that users wanted fairly simple expla-
nations along with the capability to ask followup questions. Further studies found
that users appreciated help in generating syntactically correct followup questions
that made sense given the previous question that was asked. The followup questions
were automatically generated from the model-theoretic form of the explanation.

The basic explanation structure was originally done for a normalize–compare
DL-based system but has since been used as the foundation for a tableau-based De-
scription Logic [Borgida et al., 1999] and also a model-elimination theorem prover
in an implementation of the ATP and JTP theorem proving systems at Stanford
University.

Explanation in general is one of the strengths of Description Logics as opposed
to some of the other configuration approaches. It may be much more difficult to
explain a line of reasoning in a typical constraint-based approach than it is to filter
and prune an inference-rule-based theorem prover such as a DL prover. Filtering
object presentations and explanations in Description Logic has also been addressed
in [McGuinness, 1996; Borgida andMcGuinness, 1996; Baader et al., 1999a]. Also,
it has been argued elsewhere [McGuinness and Patel-Schneider, 1998; Brachman
et al., 1999] that explanation is a requirement for many kinds of applications, but is
particularly important for configuration systems [McGuinness and Wright, 1998a].

Recent work has been done in constraint-based approaches that starts to address
explanation in constraint-based configurators. While progress is being made, the
more interesting constraint-based explanation systems [Freuder et al., 2001] utilize
extensive domain specific information and are not generic solutions to the problem
of understanding explanations.

12.2.5 Evolving specifications

In many common configuration scenarios, a user begins with an incomplete set of
specifications for an end product. Configuration applications built to support users
should take input of the known specifications (in an order that is convenient for the
user and not just an order convenient for the program), and then solicit remaining
required input.



398 D. L. McGuinness

A configurator system should allow mixed initiative input, where the user may
input the specifications the user is aware of at a particular time and the system should
request input that it needs tomeet a task. Description Logics can allow users to input
descriptions of end products or individual components at any time. For example, in
the home theater system, a user could specify information about the entire system –
such as a requirement for the entire system to be high quality – and also could
specify information about any of the particular components that was known at
a particular time. The user might, for example, prefer to buy a particular model
television or might want to set a diagonal size and a number of other constraints on
the television, but might not know anything at the moment about the restrictions on
the DVD player.

A user interface, such as the one depicted in the stereo example, allowed a user to
choose components from dropdown menus. The dropdown menus were generated
on the fly in order to take into account all of the information that the system currently
had about a component. This was used as a query to the database of all components
thatmet that specification. Thus, the userwas kept from choosingmany components
that would be incompatible with the system that was configured to date.

The user could also browse the current configuration and delete any requirements
that were stated. (The user was not allowed to delete requirements that were in-
ferred, but was allowed to ask how a particular requirement was deduced, thereby
discovering the source of that requirement.) Once a requirement was deleted, then
new dropdown menus were generated to include components that met the current
set of specifications instead of the previous set.

This architecture provides a great deal of flexibility for incrementally evolving
(sometimes non-monotonically evolving) specifications. It worked well to provide
users with menus of choices that were recalculated as needed, with updated com-
ponent lists that met the current specifications that were stated or implied about any
component.

For example, if a user specified a high quality stereo system and then decided
to choose an amplifier for the system, the configurator would only present options
for amplifiers that had been determined to be of high quality. Description Logics
are not the only modeling scheme that supports evolving specifications, but this
section attempts to point out that they can be used rather easily to support evolving
configuration specifications.

12.2.6 Extensible schemas

Many configuration applications find that information about components is contin-
ually updated. It is not always the case that only the simple data about components
is updated but sometimes properties of the components change or new properties
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are discovered after an application has been encoded. Thus, it becomes impor-
tant to work with a schema or a description of a component that can be updated.
For example, in our home theater application, when we began development, DVD
players were not in the consumer market. It later became common for home theater
systems to include DVD players, and thus our schema needed to be extended with
the new class—DVDPlayer—as well as with roles that were appropriate for DVD
players.

This need for updatable and configurable schemas is sometimes a requirement
for design. For example, in AT&T evaluation of software, one criterion is extensible
schemas. Our experience in the deployed Prose and Questar configurator family
was that products were extended often in practice.

12.2.7 Reasoning for incomplete information

Many configuration specifications are almost by necessity incomplete when input
initially. In large systems, it may be common for one person who may be an expert
in one area to input specifications for that area while another person who is an
expert in another area may update the specification later. For example, in a two-
person household, one person may be much more literate in audio quality and
thus may input the requirements for speakers, while the others may have more
interest and knowledge in video displays and thus may input specifications for the
television (along with its input and output requirements). It may be important to
allow specification to be done across multiple sessions as well.

One would not want a configurator that could not make deductions until all
of the input requirements had been presented. For example, in the stereo system,
one would want a configurator that could infer the implications of the speaker
restrictions on say minimum power requirements for the amplifier, even though the
television specifications had not been input yet.

Description Logics have been demonstrated to be useful at determining logical
consequences of information even when that information is incomplete. They can
also be used to determine information that is still required. For example, they can
determine that two speakers need to be input as parts in the parts list before the
configuration can be considered complete. Thus, it is not enough to say that two
high quality main speakers are required but the parts list actually needs to have the
actual speakers chosen before the job is considered complete.

In the home theater application, there was a one-pane display dedicated to show-
ing which final component choices still remained before a configuration could be
considered completed. The display could be used to view the current parts already
implied and/or chosen along with the other components yet to be chosen. The other
components could be clicked on to obtain the current description of the component
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so that a user could view what had been derived to date about that component.
The application allowed a user to save a partial specification of a configuration for
further requirements to be input at another point. The application also allowed a
user to “complete” the configuration at any point that would force the system to
make consistent decisions for remaining underconstrained components. The user
could also inspect individual component choices and click on them and see a pull-
down menu list of alternative choices that the system could have made. The user
could also click on the component and view a description of the constraints that
the application had determined must hold for that component. The description of
the component was what was used to query the knowledge base about compo-
nents that would fit the characteristics. The description could also be passed along
to another user (or another application) so that it could see what constraints had
been deduced so far and then have that other user (or application) either add new
constraints or make the ultimate product choice, thereby facilitating collaborative
configuration.

12.2.8 Inconsistency detection

Configuration applications should minimize the chances for users to generate in-
consistent specifications. The stereo configurator, for example, uses the information
that can be deduced about any particular component in order to form a query to the
database about possible components. This greatly limits the chances that a user may
choose a component in their system that will cause an inconsistent specification to
result. The deployed application did not take a greater step, however, before choos-
ing to put a component on a pulldown list. It did not make the hypothetical choice
of the component for the user and then check to see if the remaining components
that were still unspecified could be completed with a component in the database.
(Of course, this would be an exponential search with the remaining components
yet to be specified.) Thus the deployed example could still allow a user to generate
an inconsistent specification – the application just made it more difficult for this
to happen. The back end reasoning system was required to determine when an
incremental specification became inconsistent.

Sometimes users of other deployed configurators generate a large set of con-
straints and want to input them into other (connected) configuration applications.
Thus one additional requirement on a user friendly configurator (that is expected
to interact with other configuration applications) is for the reasoner to take input
constraints and determine if they are inconsistent. The Prose configurator family,
for example, supported batch input of requirements with consistency checking.

Reasoners may choose different methods of handling inconsistencies. A require-
ment for a configuration system is that the underlying reasoner must be able to
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identify the inconsistency and notify the user. A helpful reasoner will also support
users by allowing them to ask how the inconsistency was deduced. The reasoner
could also give users the option to “roll back” the specification to the last consis-
tent state. For example, the Classic knowledge representation system required its
information to be consistent, and thus once an inconsistency was detected, it dis-
allowed the last statement that generated the inconsistency (maintaining a separate
error state for debugging support) and then rolled back to the last consistent state.
This was common for early DL-based systems. Today, however, Description Logics
do not necessarily require consistent axioms to function. They may allow a set of
inconsistent axioms to be input and then configurators can be built that utilize the
Description Logic to identify if a description is satisfiable. This model of allowing
inconsistent input with a user-identified checkpoint may be a model that supports
collaboration and web-oriented development most naturally.

12.2.9 Modularity

In large systems, it is important to allow multiple people to work on specifications
in what appears to be a simultaneous environment. In Prose for example, care was
taken to design a set of classes and roles that a number of developers could use.
Multiple users were then allowed to work on specifications of different portions of
the configuration information simultaneously, with previously defined upper level
classes and roles for their use in specifying more specific classes. When the users
were finished with their particular component descriptions, loads were done to see
if the different portions interacted. This model of individual users being in charge
of specific portions of the ontology while possibly one chief ontologist is in charge
of the upper level ontology is not uncommon. Cycorp, for example, publishes its
upper level ontology which is maintained by a core Cycorp group while many
other people develop more specialized mid-level ontologies. VerticalNet also has
a number of ontologies with many different authors of specific ontologies that use
an upper level ontology that is maintained by a core ontology team. Description
Logics can be used to support such modeling, with Prose being an example of one
such development.

Another notion of modularity support can be considered with environmen-
tal support features. Some systems such as OntoBuilder [Das et al., 2001] at
VerticalNet have been built to support multiple users working on the same portion
of an ontology in a more integrated manner. VerticalNet’s system allows users to
be notified if someone is modifying a portion of the ontology that they are using.
While OntoBuilder does not have a DL back end, its input language is quite
similar to OIL [Fensel et al., 2001] and thus it is not a hard task to imagine that an
OntoBuilder-like system could be integrated with today’s DL systems.
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12.2.10 Maintainability

Once systems are used for a long time period or are used enough so that they require
support from someone other than their original author, maintainability becomes an
issue. We have used examples from the stereo configurator for all of the other
sections, but in this section we will draw from our experience with the Prose–
Questar family of configurators. The stereo configurator has been up on the web
for some years, yet it has not had many maintenance requirements because it is a
demonstration system that is not updated when new stereo information becomes
available. However, deployed configurators typically have help desk support and
require data (and sometimes schema) updates.

There are at least three components of maintenance that require some thought
when planning a configurator:

� product data updates
� product specification updates
� help desk support.

The first is the simplest. Typically, product data requires updates over time. Sim-
ple things like prices and availability need updating and sometimes small updates
are made with revisions. Typically, this kind of information is not hard to update—
someone who does not know much about the encoding can typically find a way
to do things such as updating price fields in many applications, whether they are
DL-based or not. Description Logics support this requirement since they are aimed
at working with incomplete information (e.g., Subsection 12.2.7), and thus updates
from incomplete to more complete information are natural for DL-based systems to
handle. Similarly, an object-oriented modeling scheme may make updates simpler,
but this area alone would not be enough to drive a potential user to a DL-based
approach.

The second issue of updates to product specification might be viewed by a
database designer as a schema update. This kind of information is typically more
challenging to update in applications since it requires product specification descrip-
tions and not just simple, data changes. It could be simple, requiring say a change
to the range of a field; for example, possibly an age range may move from 18–65 to
18–70. Similarly, a business that used to accept only US currency may now
accept other currencies, such as euros, requiring updates to the price field value
restriction. More complicated product specification updates may be done when
new components become available (thus requiring someone to model the new
components and their features). These types of specification updates are facilitated
in Description Logics by the kinds of features that we noted in Subsections 12.2.6,
12.2.5, 12.2.1, and 12.2.9.
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The third issue of help desk support has been noted as a strength of DL-based
systems. One of the goals with the Prose configurator systems was to allow the
help desk personnel to appear to perform at a level above the amount of training
they had on individual products. The enabling infrastructure toolset was to provide
information to the help desk staff at the time they needed it in real time (instead
of requiring them to have been previously trained on products so that they could
answer questions from knowledge that they had learned instead of from knowledge
that they could look up on demand).

The tools were to allow them to explain any of the deductions that the system
made when customers called in asking why something was (or was not) in their
configuration and also allowed them to answer questions about why configurations
were (or were not) valid. This was most facilitated by the functionality described
in Subsection 12.2.4 but also by others such as Subsection 12.2.8. Similarly, they
could answer hypothetical questions such as “what would happen if I chose com-
ponent X instead of component Y in my configuration?” The goal was to meet
individual customer needs without requiring engineering support to answer such
questions. Our claim is that it is a combination of the strengths of Description
Logics as discussed in the previous sections that helps support maintainability of
the applications and in fact, helps support maintainability by people who have not
taken classes in Description Logics or knowledge representation.

12.3 The Prose and Questar family of configurators

The longest-lived and most prolific family of DL-based configurators has been the
Prose and Questar product line [Wright et al., 1993; McGuinness and Wright,
1998b]. AT&T began development on configuration problems in 1988 in response
to business requests for help in the streamlining of the Engineer, Furnish, and Install
process. The goal in the process is to solicit a specification request from the customer
through the sales process, and then engineer a solution that can be “furnished” and
of course manufactured and delivered to the customer in a timely and cost effective
manner. The initial goals of the project were to decrease the time from specification
to installation and to minimize the impact of contradictions in the specifications
and mistakes in the engineering. The initial configurator was built for a fiber optic
transmission system (the FT Series G) although the initial deployment was for a
digital cross-connect system (the DACS IV-2000).

The initial configurator was successful enough that a family of configurators
was built around it. The history of the project proceeded from a research involve-
ment to one of development. AT&T’s research division collaborated with develop-
ers in order to build the initial system. Researchers helped generate and critique
the initial conceptual models and programming effort. Developers generated the
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initial system but with interactive assistance from research. As the product evolved,
project needs emerged for developer independence and an environment was
produced that allowed domain knowledgeable people to input configuration rules in
a language that was comfortable to them. Developers had the lead responsibility; in
the initial deployment they had the assistance of research but in the second through
seventeenth system they required little assistance from research for either genera-
tion or maintenance of individual configurators. As the development environment
evolved, the developers saw much less of the DL back end – essentially the DL
back end verified input and deduced conclusions and was otherwise hidden behind
the interface of the system.

There are a few points worth noting about this family of applications. First,
the configurator family has shown longevity with some configurators deployed a
decade after work began. Second, the majority of the generation and maintenance
of the configurators was done by people who knew very little about Description
Logics (thus showing empirical evidence that applications do not require PhDs in
Description Logics to build and maintain them). An evolution interface was devel-
oped by domain literate developers aimed at users who knew the products but did
not know Description Logics or sometimes computer science at all. This interface
allowed users both to maintain configurators and also to generate new configurators
in the same product family. Third, there is a consensus that the DL-based approach
both facilitates conceptual modeling (e.g., [McGuinness and Wright, 1998b]), and
also makes maintenance much easier. Ford Motor Company has also stated similar
findings with its long-lived DL-based configurator applications.

12.4 Summary

We have introduced the problem of configuration, describing briefly the nature of
the problem and why many communities consider it important. We have described
properties inherent in the problem that make it an area for which onemight consider
DL-based approaches.We have provided examples of all of properties in the setting
of a stereo configurator, mentioning how a DL-based approach was used to solve
the problem. We made parallel connections to the much larger configurators used
for telecommunications equipment that also included the same issues and had
DL-based solutions.

We have also introduced the largest family of DL-based configurators – the
Prose–Questar family of systems (noting also that at least one other commercial
configurator at Ford Motor Company also has a similar life-span and a similar
Description Logic-based approach). We observe that the Prose–Questar config-
urator family has been in continuous use for over a decade and has configured
billions of dollars of equipment. We finally note that the commercial configuration
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examples with long histories state that the DL approach has alleviated the problems
of conceptual modeling and configurator maintenance. Additionally, we speculate
that this general architecture that meets the list of configuration needs might also
be used in problem areas with similar needs.
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Medical Informatics

ALAN RECTOR

Abstract

Description Logics and related formalisms are being applied in at least five
applications in medical informatics – terminology, intelligent user interfaces, de-
cision support and semantic indexing, language technology, and systems integra-
tion. Important issues include size, complexity, connectivity, and the wide range
of granularity required – medical terminologies require on the order of 250,000
concepts, some involving a dozen or more conjuncts with deep nesting; the na-
ture of anatomy and physiology is that everything connects to everything else; and
notions to be represented range from psychology to molecular biology. Technical
issues for expressivity have focused on problems of part–whole relations and the
need to provide “frame-like” functionality – i.e., the ability to determine efficiently
what can sensibly be said about any particular concept and means of handling at
least limited cases of defaults with exceptions. There are also significant problems
with “semantic normalization” and “clinical pragmatics” because understanding
medical notions often depends on implicit knowledge and some notions defy easy
logical formulation. The two best known efforts – OpenGalen and Snomed-rt –
both use idiosyncratic Description Logics with generally limited expressivity but
specialized extensions to cope with issues around part–whole and other transitive
relations. There is also a conflict between the needs for re-use and the requirement
for easy understandability by domain expert authors. OpenGalen has coped with
this conflict by introducing a layered architecture with a high level “Intermediate
Representation” which insulates authors from the details of the Description Logic,
which is treated as an “assembly language” rather than the primary medium for
expressing the ontology.

406
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13.1 Background and history

13.1.1 Knowledge representation in medical applications

Description Logics and related frame-based and conceptual graph formalisms are
being applied in at least five applications in medical informatics:

� Terminology development and, more broadly, the representation of information in health
records.

� Intelligent user interfaces.
� Decision support and semantic indexing.
� Semantics-oriented natural language processing.
� Semantic integration of information systems.

The seminal early work in the use of Description Logics in medical applica-
tions focused on the dilemma between expressiveness and tractability. Doyle and
Patil [1991] attempted to apply Nikl to medical vocabulary and came to the firm
conclusion that theNiklTBox language was too restrictive to be useful for this pur-
pose.More explicitly they despaired of users accepting the restrictions ofminimally
expressive TBox languages and predicted that users would find “work-arounds”
which defeated the logical rigor which was their raison d’être. A first attempt at a
more appropriate representation was made by Jang and Patil [1989].

However, as providing a standard controlled medical vocabulary came to be
seen as one of the central issues of medical informatics, some researchers saw
“compositional systems” as the only plausible route forward. The perceived urgency
of the task motivated “pragmatic” approaches. Masarie et al. [1991] used a large
frame-based AI environment to produce an “interlingua” linking three of the then
current terminologies in one of the exploratory projects to what became the Unified
Medical Language System [Evans, 1987].

Although the US National Library of Medicine chose to use lexical methods to
crossmap existing terminologies rather than to developMasarie’s approach to a log-
ical interlingua, the project gave rise indirectly to the CANON group who became
strong advocates of formal representations inmedical terminologies [Cimino, 1994;
Evans et al., 1994]. A special issue of the American Journal of Medical Informatics
(volume 1, issue 3) summarised the material from its seminal workshop.

The CANON group brought together several other strands of then current work:

� The Medical Entities Dictionary developed by Cimino et al. [1989] as a large semantic
network.

� The relatedGalen [Rector et al., 1993;Rector andNowlan, 1994] andPen&Pad [Nowlan
et al., 1991a; 1991b; Nowlan and Rector, 1991] programs from Europe.

� A series of projects on the use of Sowa’s conceptual graphs for representing medical
vocabularies, the best known of which is the one by Campbell et al. [1994] but the series
includes also work by Bell et al. [1994].
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In addition, the group interacted with more linguistic work by Friedman
et al. [1994] and Sager et al. [1994] which, along with Tuttle [1994], served as
a contrast and a reality check.

There have been two large scale outcomes of this work:

� The Snomed-Reference Terminology (Snomed-rt) and Snomed-Clinical Terms
(Snomed-ct) projects under the College of American Pathologists,1 which seek to pro-
duce a terminology all of whose concepts are represented in a subset ofKrss and formally
classified, and which were released at the end of 2000 [Spackman et al., 1997]. A further
cooperation with the UK Clinical Terms project is to produce an international version to
be released in 2002.2

� OpenGalen, which seeks to produce a reference ontology in a specialized Description
Logic for use in developing and managing other terminologies and indexing knowledge
required for decision support, user interfaces and other knowledge management tasks.3

In addition there have been a number of projects on language processing
in medicine which have included significant work on formal knowledge rep-
resentation, particularly the work by Hahn using Loom [Hahn et al., 1999a;
1999c], which has produced a range of large scale results in both language en-
gineering and ontologies proper, and by Zweigenbaum using a specially restricted
frame representation in a similar way [Zweigenbaum et al., 1995]. Another impor-
tant task is the indexing and retrieval ofmedical literature,which has been addressed
by McGuinness [1999].

Applications of ontologies within medicine, not based on Description Logics,
include the work by Musen [1998] on re-usable problem solving methods and
ontology driven knowledge acquisition in the Protégé project which, at least so far,
has specifically not used a Description Logic or other formal basis for its ontology,
but rather based its ontologies around the OKBC and DAML standards. As these
standards are converging with Description Logics in OIL and DAML+OIL [Fensel
et al., 2001; Horrocks and Patel-Schneider, 2001], convergence with Protégé is
under active discussion.

Stefannelli and Schreiber likewise have produced a body of work based around
adaptations of the KADS architecture using ontologies as the basis for intelligent
systems and agent architectures [Schreiber et al., 1993; Vanheijst et al., 1995;
Falasconi et al., 1997].

Another major effort on knowledge representation in medicine is the Digital
Anatomist project [Rosse et al., 1998; Agoncillo et al., 1999; Mejino and Rosse,
1999], which currently does not use a Description Logic but which represents a
benchmark for a comprehensive, carefully curated and validated knowledge base

1 http://www.snomed.org/
2 http://www.coding.nhsia.nhs.uk/
3 http://www.opengalen.org
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based on carefully analyzed ontological commitments and distinctions manifest in
a meticulously defined hierarchy of high level concepts such as “organ”, “tissue”,
etc. It poses a challenge to any system aspiring to a comprehensive representation
of medical knowledge.

13.1.2 The medical environment

Behind most of these applications is the aspiration to re-use clinical data – either
to integrate systems, to link patient records to decision support and knowledge
management, or to re-use information collected in the course of patient care for
management, remuneration, quality assurance or research.

There has been a widespread move to greater integration and to “Electronic Pa-
tient Records” (EPRs), also known variously as “Computer based Patient Records”
(CPRs) or (CBPRs). The goal behind these moves is threefold:

� To improve patient care through providing better information on current patients, warn-
ings, and decision support to healthcare professionals – e.g., to be able to identify patients’
knownproblems and treatments,warn of potential drug interactions and contraindications,
or suggest management based on established guidelines.

� To capture improved information for planning and management within healthcare insti-
tutions by re-using information collected at the point of care for all secondary functions –
e.g., to re-use diagnosis and treatment information collected during patient care for sta-
tistical reporting, quality assurance, and remuneration.

� To integrate the disparate information systems typical of most healthcare institutions.

Major reports justifying electronic patient records have been issued, amongst
others, the Institute ofMedicine [Dick and Steen, 1991], theComputer based Patient
Record Institute (CPRI), and theUKNationalHealth Service [NHSNationalHealth
Service Executive, 1998]. This pressure is increasing with moves to greater clinical
accountability and concern with clinical errors [Kohn et al., 2000]. That every
patient should have an electronic medical record is now government policy in a
number of western countries, including the UK and US.

Despite the widespread use of management, billing, and laboratory systems in
medicine, the vast majority of the information required for such medical records
currently exists only as unstructured narrative text. Capturing more of this infor-
mation in structured form is a central task of medical informatics. The absence of
a standard “controlled vocabulary” or “coding system” is seen as a major barrier
to this task [Sittig, 1994] while its presence is a key to its success [Rossi Mori and
Consorti, 1999]. Hence several countries have mandated, or will soon mandate,
standard terminologies for use in medical records.

However,most existing terminologies or “coding systems” aremono-hierarchical
classifications developed either for public health reporting (the International
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Classification of Diseases—ICD) or bibliographic retrieval (the Medical Subject
Headings – MeSH). They are much too coarse grained for recording care of in-
dividual patients. Attempts to extend them to make them finer grained have run
into combinatorial explosions with some systems now running to over 250,000
“terms” which are beyond manual maintenance. Their structure is largely implicit,
and writing software to use them is therefore problematic. An alternative faceted
system, Snomed-International, has existed for some time, but has no strong seman-
tics defining the relationships amongst the facets and has always been considered
difficult to use outside its origin in Pathology – both because of its unfamiliar struc-
ture and an organization which reflects its origins in pathology and often does not
cater for the needs of other medical specialities.

The US National Library of Medicine has mounted a major program to tame this
chaos in its Unified Medical Language System (UMLS) which cross maps, insofar
as possible, all of the general and special purpose vocabularies [Lindberg et al.,
1993]. It has developed into a massive (15 Gb) cross reference and cataloging sys-
tem.4 However, although cross referenced, theUnifiedMedical Language System is
fundamentally limited by the nature of the underlying systems which it cross maps.
It itself provides only a minimal amount of additional semantic information – less
than 200 categories in a loose semantic network.

Hence the hope by various researchers that DL-based ontologies can provide a
better solution for at least some of the problems of terminology, decision support,
language processing and integration.

13.2 Example applications

13.2.1 Description Logics in terminology development and “coding”

13.2.1.1 Snomed-rt : tightly coupled development and pre-coordination

Snomed-rt is a cooperative enterprise between the College of American Pathol-
ogists and Kaiser Permanente, a large health maintenance organization. It has
re-represented in a subset of Krss the information in the Snomed-International.
In a first approximation, the Snomed facets for anatomy, morphology, function,
etc. have been turned into roles, hasTopography, hasMorphology, etc. [Campbell
et al., 1998]. The initial mechanical translation has then been re-modeled in place
by domain experts using a set of tools with a highly developed change management
mechanism [Campbell, 1998]. The development methodology has placed a high
emphasis on achieving repeatability of domain experts’ results, and made exten-
sive use of lexical tools to suggest additional relationships which are implied by the

4 http://umlsks.nlm.nih.gov/
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rubrics but may not be explicitly present in the faceted representation; for example
the term “retinal vasculitis” was correctly related to “eye” but not to “vasculi-
tis” (inflammation of the blood vessels) in early versions of Snomed-International
[Campbell et al., 1996]

The first released version consists of a pre-enumerated set of 180,000 or more
disease and procedure codes, each defined in an ontology represented in Krss and
classified accordingly into an acyclic directed graph. The intention appears to be a
standard pre-coordinated (i.e., pre-defined) set of concepts and associated terms to
be presented and used in a form analogous that of traditional hierarchical coding
schemes.

Recently a collaboration has been formed between Snomed-rt and the UK
Clinical Terms (Read Codes) project to produce a combined product which is
aimed at being a standard English controlled vocabulary for medicine. Details have
not yet been announced, but it is assumed that the form will be closely related to
that of Snomed-rt.

The ontology used is relatively shallow, including under ten roles in its pre-
release version, and avoiding embedded expressions wherever possible. However,
the standard semantics ofKrsshas been enhancedby the inclusion of right-identities
to cater for part–whole relations (see Subsection 13.3.2).
Snomed-rt itself includes no tools or transformations for data entry or for other

applications involving dynamic post-coordination. However, a range of tools based
on Snomed-rt, including the authoring suite, is available from the company that
supplies the development tools (Apelon5), which are descended in part fromK-Rep,
a DL-style KR system used in many of the early experiments which led up to the
project [Mays et al., 1991a; 1996].

13.2.1.2 Galen : loosely coupled development and post-coordination

Galen is the result of a series of European Commission funded projects and its
ontologies and specifications as well as some of the tools are available in open
source form from http://www.opengalen.org/.

The Galen tools are designed for loosely coupled development, and the on-
tology is aimed primarily at post-coordinated applications, such as intelligent
user interfaces, and tools to empower users to adapt core terminologies to their
specific needs. It is based around the idea of a dynamic “terminology server”
rather than an enumerated table of pre-coordinated terms [Nowlan et al., 1994;
Rector et al., 1995a], although there is a limited set of commonconcepts pre-defined.

An important feature of Galen is the clean separation of functions within the
server architecture:

5 http://www.apelon.com/
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� logical representation in the Description Logic;
� language generation and text recognition;
� mapping to and from existing coding systems;
� indexing of non-terminological information;
� additional calculations such as unit and coordinate transformations.

Galen’s ontology was created de novo but with close reference to the standard
classifications, particularly the International Classification of Diseases. It uses the
Grail Description Logic [Rector et al., 1997] whose core includes the subset of
operations of the Krss used by Snomed-rt, including transitive roles, with the
addition of inverse roles and role subsumption. (See Section 13.3.2.2 for a further
discussion of transitive roles and related issues.) In addition Grail provides a
construct “sanctioning”, analogous to slot definitions in frame systems or function
signatures in object-oriented systems,which supports answering queries of the form
“what can be said about this?”. Grail is implemented using a graph comparison
algorithmwhich, although known to be incomplete, has still proved to be extremely
useful in practice.
Galen’s most distinctive feature is the use in authoring tools for domain experts

of a much simplified “intermediate representation” which is then translated into the
Description Logic, which is relegated to the status of an “assembly language” (see
Subsection 13.5.1 below).

The Galen project has also devoted much effort to mapping to existing coding
systems – a more complex task than is at first apparent because of the idiosyncratic
construction of the target schemes. Each code in such schemes is mapped to the
disjunction of one or more Galen concepts. A Galen concept is taken as being
mapped to themost specific codemapped to a subsuming concept, and conversely, a
code is mapped to all thoseGalen concepts subsumed by its mapping except those
subsumed by a more specific mapping. This mechanism deals with almost all of
the complex sets of exclusions and inclusions in the International Classification of
Diseases – e.g., “Hypertension excluding hypertension in pregnancy” is coped with
automatically simply by mapping to the general concept “Hypertension”, because
there is a mapping to a specific concept “Hypertension in pregnancy” which will
cause it, and its descendants, to be excluded automatically. In the very few cases
where conflicts occur they are resolved by separate exception-handling tables.

A similar mechanism provides a surrogate for inheritance with exceptions as a
means of indexing information ranging from triggers for decision support rules to
data entry forms and user interface specifications. Any information may be labeled
and attached to the ontology, and the server provides operations to retrieve the set
of all the values “inherited”. The Galen server makes no attempt to reduce the set
to a single value; if required this is a matter for the client application.
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13.2.2 Description Logics and language processing

13.2.2.1 Language analysis and information extraction

Most medical information originates and is stored as natural language text. Medical
texts present classic “sublanguages” with peculiarities of vocabulary and syntax.
Many utterances are telegraphic or highly elliptical, and cannot be easily parsed
without semantic knowledge. These features seem natural to combine with lex-
icalized grammars in which most or all syntactic information is stored with the
lexical item rather than in a separate grammar, e.g., Tree-Adjoining Grammars
(TAG) [Joshi, 1994], Lexical-Functional Grammar, and Combinatory Categorical
Grammar (CCG) [Steedman, 1996].6

Hahn’s work on medSyndicate [Hahn et al., 1999a], provides a detailed ex-
ample using a specially constructed ontology in Loom. The medSyndicate ar-
chitecture features close coupling of the ontology (“Domain knowledge base”)
with the parser and extensive use of learning techniques to deepen and extend
both the ontology and the grammar. It uses the integrity conditions, and concep-
tual constraints, and cardinality restrictions in the ontology to reduce ambiguity
and select plausible interpretations. It makes use of knowledge within the ontol-
ogy to complete ellipses within the original text – e.g., to know that the connec-
tion between a gland and its product is “secretes”. It also makes extensive use of
partonomic information using a unique approach discussed in Subsection 13.3.2.3
below.

Rassinoux and Baud have used the Galen ontology to augment a strongly
semantic approach likewise to constrain ambiguous or incomplete parsings
[Baud et al., 1993; Rassinoux, 1998]. Zweigenbaum has used a restricted applica-
tion specific ontology to similar purpose [Zweigenbaum et al., 1995].

Ceusters, by contrast, attempted to use natural language processing to understand
the text attached to codes (the “rubrics”) to build and make mappings to theGalen
ontology. Ceusters’workwas based on a range of pre-existing tools and experienced
significant difficulty because of serious differences in the information-processing-
oriented ontology developed byGalen and the language-oriented ontologieswhich
underlay his tools. For example, the distinctions between location and part–whole
relations and the distinctions amongst different part–whole relations have no direct
linguistic counterpart. An adaptation of theGalen Intermediate representation was
used to bridge this gap, but with only partial success [Ceusters and Spyns, 1997;
Ceusters, 1998; Ceusters et al., 1999].

6 However, it should be noted that the classic medical natural language work, the Linguistic String Project
[Sager et al., 1987; 1994], while it makes extensive use of semantics, makes no use of ontologies or related
mechanisms.
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13.2.2.2 Language generation, user interfaces, and quality assurance

Any ontology intended for use by domain experts presents a problem of quality
assurance, or curation, by those experts. Any post-coordinated use of an ontology
also presents a serious problem for the user interface – standard DL expressions
are not acceptable for most uses by most domain experts. Even if they are simpli-
fied to an “intermediate representation” or transformed to conceptual graphs, the
complexity is too great for most domain experts to take in quickly.

One way to make such expressions accessible to users is to generate language ex-
pressions from them. Not only are the language expressions more readable, they are
usually much more compact.Galen has found language generation to be essential
in virtually all applications involving post-coordination including most approaches
to independent quality assurance of the ontology.

One of the major applications ofGalen technology has been by the French gov-
ernment to produce unambiguous definitions for their new national classification
of surgical procedures. Curiously, in this application, the usual language gener-
ation goals of concise idiomatic expression do not apply. The value of the tech-
nique is its pedantic, but completely unambiguous, presentation of the underlying
formal definitions. Once the definitions are agreed and quality assured, idiomatic
“preferred terms” can be composed manually where required [Baud et al., 1997;
Rodrigues et al., 1997].

13.2.3 Decision support, indexing, and re-usable ontologies
for problem solving

Many decision support methodologies, notably Musen’s Protégé and Aeón [Tu
et al., 1995; Musen et al., 1996; Musen, 1998; Grosso et al., 1999] and Stefanelli’s
Games [Schreiber et al., 1993; Vanheijst et al., 1995; Falasconi et al., 1997], are
based around the existence of a domain ontology, but in general the ontologies are
constructed specifically for one application and have proved less re-usable than
the problem-solving methods they support. Both use ontologies primarily as frame
systems.

A more specific use of the classification reasoning in Description Logics is pro-
vided by Galen’s work on drug ontologies carried out in collaboration with the
Prodigy project on computerized guidelines for prescribing in UK general prac-
tice [Johnson et al., 2000]. Traditional classifications for diseases and drugs have
only a single axis of generalization which conflates several different criteria. For
example, standard drug classifications conflate indication (e.g., for “treatment of
asthma”), molecular effects (e.g., “stimulates alpha adrenergic receptors”), phys-
iological effects (e.g., “dilates the airways”) and chemical structure. As result,
even simple generalizations such as “steroids reduce inflammation” are difficult to
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operationalize using the classification because various steroids may be classified
in many different ways – under anti-asthmatic drugs, topical skin preparations,
anti-rheumatic drugs, etc.

Separating the conflated axes and then using them as the basis of formal descrip-
tions which can be classified by a Description Logic offers a potential solution.
After early prototype demonstrations [Solomon and Heathfield, 1994], Galen is
now being used to construct an ontology of drugs and related conditions to be used
as part of the Prodigy project, a system of protocols for prescribing for patients
with chronic diseases which is being developed by the UK Department of Health
[Solomon et al., 1999; Wroe et al., 2000]. Experience to date suggests that the
ontology provides efficiently precise indexing at the varying levels of granularity
required and can provide a framework for the necessary default reasoning via the
mechanisms described in Subsection 13.2.1.1 for coding. Further evaluation awaits
the next phase of the project.

13.2.4 Intelligent data entry

Data capture is the largest single barrier to greater information use in healthcare.
Galen developed from the Pen&Pad project [Nowlan et al., 1991a; 1991b] which
aimed to improve user interfaces for healthcare professionals and which placed
particular emphasis on data entry by attempting to construct forms which would
capture most, if not all, of the information currently recorded as narrative text.

The ontology provides two services in Pen&Pad – both related to the question
“What can be sensibly said in this situation?”:

� Indicating how a given concept could be refined by modifiers.
� Indexing the form associated with each starting concept – often a disease or a symptom.
Each such formmay contain numerous subforms allowing further refinement of a concept
or inclusion of further less common signs and symptoms.

The total number of forms required to provide a clinical interface is very large –
certainly hundreds of thousands and possibly more. The goal of the system is to
assemble forms dynamically from the indexed “recipes” in such a way that it would
fail soft – i.e., that forms for important frequently encountered situations could be
highly tailored at a very fine granularity whereas rarely encountered areas could
be served by a form related only to the broad class of condition. In its commercial
version, ClinergyTM, a knowledge base of under 10,000 concepts and a similar
number of auxiliary facts and forms specifications covered essentially all data
entry for British general practice – a task requiring several hundreds of thousands
of forms.7

7 See http://www.galen-organisation.com/furthertut.html for further information.
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Related systems were developed by Poon and Fagan [1994] and Lussier
et al. [1992]. using conceptual graph representations of Snomed-International.

13.2.5 Integration

Amajor ostensible goal for common terminologies inmedicine is system integration
[Evans et al., 1994; Rector et al., 1995b; Spackman et al., 1997]. While specialized
terminology systems are being used in a few places as part of an enterprise wide
effort at integration [Rocha et al., 1993; 1994; Cimino et al., 1998], ontologies
based on Description Logics have yet to be demonstrated convincingly in this
context. Much of the reason for this is the sheer scale and coverage required for
such mediation tasks.

13.3 Technical issues in medical ontologies

13.3.1 Issues of scaling

13.3.1.1 Size

The fundamental issue in any medical ontology intended to capture clinical termi-
nology is scale. The smallest useful medical terminologies contain on the order of
10,000 concepts; “comprehensive” terminologies require on the order of 250,000
or more concepts. The OpenGalen model of basic anatomy alone contains over
5000 concepts, the model of surgical procedures some 15,000. Snomed-rt cur-
rently has some 180,000 concepts, and the combined Clinical Terms (Read Codes)
Snomed-ct expects to have substantially more. The Unified Medical Language
System has issued nearly a million “Unique Concept Identifiers” with over a mil-
lion lexical variants.

13.3.1.2 Connectivity

Medical ontologies are notoriously highly connected. Most medical concepts de-
pend on anatomy, and every anatomical structure is ultimately connected to every
other, at least trivially, by virtue of being part of the body. The causal and func-
tional interrelationships are of similar density. Snomed-rt reduces connectivity by
omitting inverses. Grail supports role inverses and transitive roles, but Galen’s
ontology explicitly avoids expressions of the form “A which is part of B which has
part C”, for which the classifier is known to be incomplete. It is not known whether
complete and decidable reasoning for a Description Logic including role transi-
tivity and inverses is practical for a large scale comprehensive medical ontology:
some form of heuristic constraint on the depth or computational resources used for
individual inferences may prove necessary.
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13.3.1.3 Range of granularity or organization

Common medical notions span the range from the molecular to the physiological
to the behavioural. To form a truly re-usable framework for medical knowledge
representation, the ontology needs to encompass concepts such as “substances
which cause mood change and tremor by binding to specific receptor sites”. If
the promise of “genomics” is to be realized, this may soon need to be extended to
include concepts which add “. . . by stimulating the expression of a genetic sequence
homologous to some specified allele in some reference source”.

13.3.1.4 Complexity of concepts to be represented

The areas of medicine most resistant to traditional manual terminologies and there-
fore most ripe for formal representation tend to include very complicated concepts.
For example, a not untypical surgical procedure rubric to be represented might be
“Removal of the gall bladder using an endoscope inserted via an abdominal inci-
sion” or “Fixation of fracture of the femur by means of insertion of pins”. More
complex rubrics may go on for several lines in their natural language formulation.
The full expansion in a Description Logic may include several dozen conjuncts
nested five or six levels deep. This complexity is not an academic artifact; these are
the categories used to determine payment, quality of outcome, and prognosis.

13.3.1.5 How much to represent – detail of the ontology

Snomed-rt has a relatively simple ontology with less than ten roles. The Galen
ontology is relatively complex, with some fifty roles, including seven differ-
ent partonomic roles, and sharp distinctions between two-dimensional and three-
dimensional objects. TheDigital Anatomist appears to be a representation of similar
complexity to Galen’s anatomical representation. At the extreme, Gangemi et al.
[1996] have produced a high level ontology which claims strong philosophical
grounding but is yet more elaborate. How much of this complexity is required for
which purposes is still not established.

13.3.2 Issues of expressivity: part–whole relations

13.3.2.1 Transitivity and anatomy

A large fraction of all medical terminology is based on anatomy and dependent
on part–whole relations. “Fracture of foot” must be classified as “trauma to lower
extremity”, “repair of the aortic valve” must be classified as an “operation on
heart”, etc.

Conflation of part–whole and IS-A relations is ubiquitous in informal clinical
classifications and thesauri [Rector, 1998]. In general this works because for the
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key locative attributes it is, in general, true that a disease of the part is a disease of
the whole and a procedure on a part is a procedure on the whole. This is closely
related to Cyc’s TRANSFERS-THRO notion and to some frame systems’ notion
of inheritance of certain slots via relations other than IS-A.

13.3.2.2 Galen’s specialisedBy axioms and Snomed-rt’s
right identity axioms

All medical ontologies must face this problem in one way or another. Galen
allows axioms equivalent to R ◦ S 
 R (R specialisedBy S in Grail notation).
Snomed-rt allows the declaration that S is a right identity for R, which appears to
be equivalent [Spackman, 2000].

Hence if R is hasLocation and S is isPartOf, then

∃hasLocation.(∃isPartOf.Heart) 
 ∃hasLocation.Heart
where hasLocation is the relation used to link lesions and diseases to anatomy.
Given axioms such as that

AorticValve 
 ∃isPartOf.Heart,
the required inferences that lesions of the aortic valve are lesions of the heart follows,
i.e., it can be inferred that

∃hasLocation.AorticValve 
 ∃hasLocation.Heart.
There are, in practice, a variety of other situations in which this construct seems
essential, for example to say that the “risk of a syndrome involving a disease” is
subsumed by a “risk of the disease itself”.
Galen also makes extensive use of the implication of such axioms for the in-

verse roles, i.e., S− ◦ R− 
 R−. For example, let S be isSubProcessOf and R be
isActedOnBy, then S− and R− are hasSubprocess and actsOn respectively. The
implication of such an axiom for the inverse roles then allows us to express the rule
that surgical procedures can be said to act on all those structures acted on by their
subprocedures, e.g.:

∃hasSubprocess.(∃actsOn.FemoralArtery) 
 ∃actsOn.FemoralArtery.

This is a practical example. The femoral artery is the usual route by which the
heart is catheterized. Without such inferred subsumptions, cardiac catheteriza-
tion would not be found as a target for the procedure – e.g., by a decision
support system seeking to identify possible causes of damage to the femoral
artery. Numerous parts of the classification of surgical procedures depend on such
inferences.
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The Grail language allows chains of such axioms, which can imply complex
paths. Such axioms also interact strongly with the role hierarchy. Re-representing
these paths as regular expressions of roles taking into account the role hierarchy is
a current topic of research.

13.3.2.3 The “triples” approach

Hahn et al. [1999c; 1999b] have developed an alternative representation for parto-
nomic relations basedonwhat theyhave termed“SEP-triples”,which capturesmuch
partonomic reasoning within a framework compatible with the standard ALC De-
scriptionLogic. In theSEP-triple formulation, each anatomical part X is represented
by a parent concept Xs , and two subsumed concepts Xe and X p. Xe represents the
entity as a whole, and X p the concept of its parts. For all parts Y of X , X p subsumes
Ys , and since Ys subsumes both Ye and Yp, both the entire part Ye and all of its parts
Yp are subsumed by the parts of X .

Yp 
 Ys 
 X p 
 Xs
X p 
 ∃anatomicalPartOf.Xe.

This captures the transitive relation, i.e., that any part of Y is a part of X .
For invariant anatomical relations, a separate existentially qualified role called

hasAnatomicalPart links Xe to Ye.

Xe 
 ∃hasAnatomicalPart.Ye.

This scheme allows Hahn to capture the notion that something is always part of the
whole if it is present, but that it may not necessarily be present (e.g., that it may
have been removed or be congenitally absent) – this is achieved by omitting the
third axiom.

This allows inferences such as that a disease of a part must be a disease of the
whole structure (s) node, but not of the whole taken as in its entirety (e) node.
By careful selection of which of the three members of an SEP-triple is used in
an assertion, it appears to be possible to be selective about which properties are
“inherited”. For example: “diseases of parts are diseases of thewhole”, but “surfaces
of parts are not surfaces of thewhole”. Hence inHahn’s schema, “surface of” should
always refer to an entity (e) node representing the entire object, whereas diseases
should refer to the structure (s) node representing the complex of the entire object
and all of its parts.

Detailed comparison of the expressiveness of SEP-triples with Snomed-rt’s
right identities and Galen’s specialisedBy axioms is not yet known. However,
the scheme presents a number of advantages and is relatively easy to implement
with existing classifier technology.
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13.3.2.4 Construct not implemented in any major medical ontology

Padgham and Lambrix [1994] point out a number of other potential patterns for
relationships between parts andwholes ofwhich at least one is potentially important
for anatomical reasoning but not implemented in any current Description Logic.
This formalizes the pattern that from “the hand is part of the arm” we may infer
that “the skin of the hand is a part of the skin of the arm”. One way to capture the
essence of this notion formally would be to allow axioms of the formR ◦ S 
 S ◦ R
so that we have

isLayerOf ◦ isPartOf 
 isPartOf ◦ isLayerOf,
from which may be inferred, for example,

∃isLayerOf.(∃isPartOf.Arm) 
 ∃isPartOf.(∃isLayerOf.Arm).

The Galen ontology makes the necessary distinctions between different parto-
nomic relations but the Grail language does not implement this inference.

13.3.3 Other issues of expressivity

Both Galen and Snomed-rt use Description Logics with a very limited range of
core constructors – usually only existential quantification and conjunction. Both
even exclude conjunctions of primitives. Neither uses universal quantification in
its constructors, although Grail’s “sanctioning” mechanism provides constraints
which serve some of the same functions [Rector et al., 1997]. (Hahn uses Loom,
but exploits only a limited subset of the concept language.) On the other hand,
both include constructs for transitive relations as described above. Two other issues
deserve mention.

13.3.3.1 Negation

NeitherGalen norSnomed-rt uses negation, at least in the subset of theDLused in
the ontology itself. This reflects real questions about the appropriate interpretation
of negative statements in clinical records. In the context of medical records, there
needs to be a clear differentiation at all levels between “false” and “not done”
or “unknown”. Galen simulates some of the effects in the ontology by the use of
“modalities” such as “presence/absence” and “done/not-done” [Rector and Rogers,
2001; Rector et al., 2002].

13.3.3.2 General inclusion axioms

Galen makes extensive use of a subset of general inclusion axioms – i.e., axioms
which state that one defined concept is classified under another concept. In Galen
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the subsuming term is restricted to be a conjunction of existentially qualified con-
structed concepts. Galen uses such expressions for two purposes:

� To indicate which structures, states and processes are normal, abnormal but harmless, or
pathological, i.e., to be treated as “diseases”. In many cases it is the presence of specific
modifiers which implies that a structure or process is “pathological”.

� To bridge levels of granularity and add implied meaning, e.g., to indicate that “ulcer of
stomach” really occurs in the “lining of the stomach” or to cope with normalization as
discussed in Subsection 13.4.2.2.

ManyDescriptionLogics have explicitly disallowedgeneral inclusion axiomsbe-
cause of the difficulty of devising suitable algorithms and worries about intractabil-
ity. However, motivated byGalen, Horrocks has shown effective optimizations for
Description Logics including general inclusion axioms. Furthermore, he has shown
that all such axioms inGalen are of a particular form which can be transformed so
as to be “absorbed” within term definitions, and therefore reasoned with relatively
efficiently [Horrocks and Rector, 1996; Horrocks et al., 1996; Horrocks, 1997b;
1998b].

13.3.4 Frame-like behavior

The use of Description Logics in both decision support and data entry systems
stemmed from the use of frame systems to manage default inheritance and identify
the slots relevant to a particular object. Neither is easy to implement directly in
Description Logics. Both are particularly important in medical applications. Be-
cause of their size and variability, exhaustivemanual enumeration of cases is neither
practical initially nor maintainable.

13.3.4.1 Defaults and indexing

A major function of an ontology in a decision support system is to index informa-
tion. However, the natural representation for a domain expert of this indexing is
usually in terms of generalizations with exceptions. For example drug indications,
interactions and side effects are all almost invariably expressed as general princi-
ples plus exceptions (chemical structure, biochemical and physiological actions can
usually be treated as being indefeasible). To require all statements to be indefeasible
in the domain users’ environment drastically limits its usability and usefulness.
Galen’s approach is to attach “extrinsic” statements to the ontology and provide

operations in the server which deliver all potential most specific candidates as
described in Subsection 13.2.1.2. Experience has shown that if the ontology is
well constructed, the incidence of conflict is small and almost always represents a
real requirement for additional information. Often this information is application
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specific – how seriously a drug’s side effects should be viewed in a given situation,
for example, or which of several minor variant codes matches the World Health
Organization’s detailed coding criteria – and not appropriate to a re-usable ontology.

It has been suggested that similar behavior could be achieved by “compiling” all
defaults at the user level to explicit exclusions in the underlying Description Logic.
A practical demonstration of this approach on a large scale in the medical field has
yet to be seen.

13.3.4.2 Available “slots”: “what is it reasonable to say?”

Galen’s original approach was to represent “all and only what it is medically
sensible to say”. Pen&Pad (as well as non-medical uses of Grail such as the
BioInformatics project Tambis [Baker et al., 1998]) depends on assembling data
entry forms and queries dynamically. The total number of potential forms is vastly
greater than could be enumerated individually. Both applications depend on being
able to determine which roles are “sensibly” applicable to a particular concept.
Grail’s sanctioning mechanism provides this information directly, but there is no
direct way to form such a query within a standard DL framework. How best to
address this issue remains a topic for research.

A key part of the Galen experience in this regard is that only part of this “sanc-
tioning” information is re-usable. In the original Pen&Pad application, changes to
the user interface were made by changing the underlying ontology. In Galen, and
in the commercial version of Pen&Pad, ClinergyTM, changing the re-usable ontol-
ogy to fit an application specific requirement was unacceptable, so an additional
layer of “perspectives” was interposed between the ontology itself and applications.
This layered architecture now seems essential to many applications of ontologies
which aspire to be re-usable.

13.4 Ontological issues in medical ontologies

13.4.1 Normative statements and abnormalities

Congenital and other deformities present a major difficulty to clinical knowledge
representations, because they require that statements which would otherwise be
absolute be made somehow contingent and that an extremely wide variety of
statements be permitted in exceptional circumstances. They also require drawing
distinctions that seem odd. Even in a thalidomide patient with an absent left arm,
we still need to be able to make statements about the left arm. Hence physical and
potential presence must somehow be distinguished.

Likewise, in determining what it is “sensible” to say, congenital anomalies make
a nonsense of the usual constraints. For example, most patients have their heart on
their left side, three lobes to their right lung, and two lobes to their left.Most patients
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have a “right middle lobe” but no “left middle lobe” of the lung. However, a small
percentage of patients reverse the pattern. The anomaly is not always complete,
so many combinations of abnormalities are possible. Doctors tend to be highly
intolerant of being presented with options such as “left middle lobe” in normal
circumstances. Unfortunately, they are equally intolerant of the inability to express
the notion of a “left middle lobe” in that small number (31%) of cases where it
is needed. Taken individually, such anomalies are rare. Taken collectively, they are
surprisingly common, i.e., a significant percentage of all patients are atypical in
one respect or another.

13.4.2 Clinical pragmatics

13.4.2.1 Conventional idioms

As in any language, many terms or phrases have conventional meanings differ-
ent from their literal interpretation. Such differences are not always immediately
obvious. A typical example is “endocrine surgery” which it might seem natural
to define as “surgery on an endocrine organ”. However, procedures on both the
male and female reproductive organs are normally excluded, even though no doc-
tor would dispute that they are endocrine organs. Similarly, “heart valve” might
naively be defined as a “structure in the heart with valvular function”, but this
includes numerous embryonic and sometimes congenitally deformed structures
as well as the four “major valves” which serve the four “great vessels” enter-
ing and leaving the heart. Much of the effort of formulating a satisfactory med-
ical ontology goes into reconciling such conventional usages with their apparent
meaning.

13.4.2.2 Normalization and implied information

Manymedical notions, particularly of actions and procedures, carry strong implica-
tions about their purpose. O’Neil’s classic example illustrates this problem [O’Neil
et al., 1995; Brown et al., 1998]. A common procedure to treat hip fractures is
“insertion of pins in the femur”. The only reason to insert pins in the femur is to
“fixate” a fracture, and the operation is expected to be classified under both “inser-
tion of pins” and “procedures to fixate fractures of long bones”. Should the ontology
contain axioms to extend the procedure definition automatically by adding “. . . to
fixate fracture of femur”? If so, should the procedure be “fixation of fracture of
femur by means of insertion of pins in the femur” or “insertion of pins in order to
fixate fracture of femur”? Ordinarily such “qua-induced” duals are distinct – e.g.,
the “infection caused by a virus” is very different from the “virus caused by an in-
fection”. In these cases, two or more logically distinct possible representations are
clinically equivalent. Most systems cope with this situation by imposing external
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“guidelines” on domain expert authors to normalize such expressions to one form
or the other, but the problem is far from solved.

13.4.3 Semantic normalization and level of intent

Consider the problem of what constitutes a “surgical procedure”. It is easy to agree
that all surgical procedures are constituted by an “act” on some “thing” which
either is, or is located in, an anatomical structure. It is less easy to agree on what
constitutes an “act”when there is a hierarchy ofmotivations: for example, “inserting
pins to fixate a fracture of a long bone” or “destruction of a polyp by cautery” or
“removal of a polyp (by excision)”. Furthermore, important classifications hang on
notions of motivation such as “palliative surgery” versus “corrective surgery”. In
addition, some systems wish to be able to record operations just as “correction of
X”without describing the exact “act”, while others wish to record “insertion of pins
in fractured bone” without recording that the purpose is fixation. To address this
problem withinGalen, Rossi Mori et al. [1997] proposed a classification into four
levels:

L4 clinical goal (palliation, cure);
L3 physiological goal: (correction, destruction, . . . );
L2 primary surgical method (excision, insertion, lysis, . . . );
L1 low level surgical act (cutting, cautery, . . . ).

It is tempting to believe that a list of concepts in each category could be agreed,
so that resolution could be done automatically. However, at least within theGalen
project, intuitions and requirements clashed sufficiently to make this difficult. For
example, “cautery” can sometimes be a low level act or sometimes a primary
method. This ambiguity is dealt with in the formal ontology by having separate
concepts for “simple cautery” and “removal by cauterization”, and by care in for-
mulating the intermediate representation (see Subsection 13.5.1). However, achiev-
ing consistent usage amongst a range of authors with different applications requires
vigilance and careful quality assurance.

13.5 Architectures: terminology servers, views, and change management

13.5.1 Intermediate representations and views: Galen ’s layered architecture

There is an inevitable conflict between the need for an ontology to be re-usable
and the requirement that it be easily understood by the domain experts who must
author and maintain it. Snomed-rt addresses this problem by keeping the ontol-
ogy relatively simple. Galen addresses this problem by placing an “intermediate
representation” and views (“perspectives”) between the re-usable ontology and
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user-oriented applications [Rector et al., 1999; 2001]. The intermediate represen-
tation and perspective layers in the architecture hide complexities irrelevant to the
current application from domain experts and other users. It also allows for varia-
tions amongst domain experts in the vocabulary, structure, and – critically for an
international project – language. In this layered architecture, the DL ontology is
effectively reduced to a role analogous to that of an assembly language program.
Using an intermediate representation both allows loose coupling amongst authors
and simplifies the authoring task.

Within theGalen project, use of an intermediate representation reduced training
time for new authors from months to days. It also drastically reduced the time
required centrally to harmonize the work of different authors so that the resulting
classification would pass an agreed quality assurance. Prior to the introduction
of the intermediate representation, central harmonization had consumed over fifty
percent of the effort; following introduction of the intermediate representation this
dropped to less than ten percent. This is a major saving given that the knowledge
engineers required for central harmonization take a year or more to train fully. The
experience of developing the drug ontology in Prodigy (see Subsection 13.2.3)
has been roughly comparable. In addition, in the drug ontology, the use of the
intermediate representation has allowed the quality assurance experts to participate
directly in correcting the authored ontology – something which would be entirely
impractical in its expanded formulation in the Description Logic.

13.5.2 Learning vs. building

Given the scale of medical ontologies, it would obviously be attractive to use
learning techniques for at least some of their construction. Hahn et al. [1999a] are
focusing on using language plus the structure of the Unified Medical Language
System as a major source for inducing their ontology. Campbell et al. [1998] have
outlined a strategy which makes use of lexical “suggestions” to guide manual
modeling as part of the Snomed-rt methodology. Galen has experimented with
various linguistic techniques but so far with limited success [Ceusters et al., 1999].

13.5.3 Version and change management

Any medical ontology for general use must be a living developing structure. There
are both clinical and technical issues to be dealt with. Campbell et al. [1996] have
developed a tightly coupled methodology for change management in conjunction
with Snomed-rt, while Oliver et al. [1999] and Cimino [1996] have discussed the
issues of changes in medical vocabulary.
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13.6 Discussion: key lessons from medical ontologies

Medicine is big and complicated. It has a long tradition of controlled vocabularies
and coding systems. Developing re-usablemedical ontologies presents at least three
major classes of issue to the DL community:

� Developing implementations which scale.
� Developing architectures which reconcile the needs of users for simplicity with the formal
constraints required for tractability and the ontological richness required for re-use.

� Developing formalisms expressive enough to cope with constructs of particular concern
to medicine, particularly part–whole relations but also other spatio-temporal constructs
such as adjacency.

Perhaps most critically, medicine poses the challenge of presenting DL notations
in forms which users can use to meet real problems – whether in representation of
medical records, indexing of information for decision support, or supporting user
interfaces and natural language processing.
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Abstract

It has long been realized that the web could benefit from having its content under-
standable and available in a machine processable form, and it is widely agreed that
ontologies will play a key role in providing much enabling infrastructure to achieve
this goal. In this chapter we review briefly a selected history of Description Logics
in web-based information systems, and the more recent developments related to
OIL, DAML+OIL and the Semantic Web. OIL and DAML+OIL are ontology lan-
guages specifically designed for use on the web; they exploit existing web standards
(XML, RDF and RDFS), adding the formal rigor of a Description Logic and the
ontological primitives of object-oriented and frame-based systems.

14.1 Background and history

The research world as well as the general public are unified in their agreement
that the web would benefit from some structure and explicit semantics for at least
some of its content. Numerous companies exist today whose entire business model
is based on providing some semblance of structure and conceptual search (e.g.,
yellow pages and search).

To paraphraseMilne [1928], “Providing structure is one of the things Description
Logics do best!”. In this chapter we review briefly the history of Description Logics
inweb-based information systems, and themore recent developments related toOIL
(the Ontology Inference Layer), DAML (the DARPA Agent Markup Language),
DAML+OIL and the Semantic Web.

The web has been a compelling place for research activity in the last few
years, and as we cannot cover all the many efforts we will choose a few exem-
plar efforts that illustrate some of the key issues related to Description Logics on
the web.

427
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14.1.1 Untangle

The relationship between hypertext and semantic networks has long been realized,
but one of the earliest DL systems to realize this relationship was the Untangle
system [Welty and Jenkins, 2000], a DL system for representing bibliographic
(card-catalog) information. The Untangle project began as a bit of exploratory
research in using Description Logics for digital libraries [Welty, 1994], but out of
sheer temporal coincidence with the rise of the web, a web interface was added and
the first web-based Description Logic system was born.

The original Untangle web interface was developed in 1994 [Welty, 1996a],
and combined Lisp-Classic and theCommonLispHypermedia Server (CL-HTTP)
[Mallery, 1994] to implement a hypertext view of the ABox and TBox semantic
networks, and used nested bullet lists to view the concept taxonomy, with in-page
cross references for concepts having multiple parents. The interface was interesting
in some respects as a tool to visualizeDL and semantic network information, though
this aspect was never fully developed.

The research in the Untangle project was to apply Description Logics to prob-
lems in digital libraries, specifically the classification and retrieval of card catalog
information. In the early days of DL applications, researchers scoured the world
for taxonomies. One place with well-developed taxonomies is library subject clas-
sifications schemes, such as the Dewey Decimal System. The Untangle project
sought to utilize Description Logics to formally represent the established and well-
documented processes by which books are classified by subject, with the goal of
providing a tool to improve accuracy and increase the throughput of classification.
The promise of digital libraries clearly seemed to imply that the entirely human-
based system of subject classification would become backlogged and a hindrance
to publication.

While the main contribution of the work was actually in the area of digital
library ontologies, it had several useful implications for Description Logics. For
conceptual modeling, the system made clear the very practical uses for primitive
and defined concepts as basic ontological notions. Primitive concepts can be used
in a model to represent classes of individuals that users are expected to be able to
classify naturally. Defined concepts can be used in a model to represent subclasses
of the primitive ones that the system will be able to classify if needed. For example,
in libraries we expect a librarian to be responsible for recognizing the difference
between a book and a journal. Such a distinction is trivial. On the other hand,
they are not responsible for classifying a biography (though they can, of course): a
biography is simply a book whose subject is a person.

As the World Wide Web (WWW) became the primary means of dissemination
of computer science research, the goals of the Untangle project shifted in 1995
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to cataloging and classifying pages on the web [Welty, 1996b], which was viewed
as a massive and unstructured digital library [Welty, 1998]. A similar project began
at roughly that time at AT&T, whose goal was to utilize Classic to represent a
taxonomy of web bookmarks. While never published, this early work by Tom Kirk
was part of the informationmanifold project [Levy et al., 1995]. Kirk’s visualization
tools were also used internally to provide additional visualization support to the
Classic system.

This new work exposed some of the limitations of using Description Logics
for modeling [Welty, 1998]. One must trade off utilizing automated support for
subsumption with the need to reify the concepts themselves. For example, the
work started with the motivation that library classification schemes were well-
developed taxonomies that would be appropriate for use in Description Log-
ics. To utilize the power of subsumption reasoning, the elements of the subject
taxonomy must obviously be concepts. Some subjects, however, are also use-
ful to consider as individuals. For example, Ernest Hemingway is a person, an
author of several books, and therefore best represented as an individual. Hem-
ingway is also, however, the subject of his (many) biographies, and therefore
he must be represented as a concept in the subject taxonomy. This is a simple
example of precisely the kind of representation that is difficult for a Descrip-
tion Logic, without inventing some special-purpose “hack”. Similar notions have
also been reported in the knowledge engineering community [Wielinga et al.,
2001].

14.1.2 FindUR

Another early project using Description Logics for the webwas the FindUR system
at AT&T. FindUR [McGuinness, 1998; McGuinness et al., 1997] was an excellent
example of picking “low hanging fruit” for Description Logic applications. The
basic notion of FindUR was query expansion,1 that is, taking synonyms or
hyponyms (more specific terms) and including them in the input terms, thereby
expanding the query.

Information retrieval, especially as it is available on the web, rates itself by two
independent criteria, precision and recall. Precision refers to the ratio of desired to
undesired pages returned by a search, and recall refers to the ratio of desired pages
missed to the total number of desired pages. Alternate terms for these notions are
false positives and false negatives.

1 Sometimes other correlated terms are also used in query expansion. In a later piece of work [Rousset, 1999b],
similar because it considered aDL-based approach for query expansion, more of the formal issues are addressed
in evaluating the soundness and completeness of a particular approach. There have also been others who have
considered DL approaches (or DL-inspired approaches) to retrieval, for example [Meghini et al., 1997].
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One of the main causes of false negatives in statistically-based keyword searches
is the use of synonymous or hyponymous search terms. For example, on the (then)
AT&T Bell Labs research site, short project descriptions existed about Description
Logics. These never referred to the phrase “artificial intelligence”. Thus, a search
for the general topic “artificial intelligence” would miss the DL project pages even
though Description Logics is a subarea of artificial intelligence. If the page referred
to “AI” instead of “artificial intelligence” precisely, a keyword search would also
miss this clear reference to the same thing. This is a well-recognized failure of
shallow surface search techniques that significantly impacts recall.

The FindUR system represented a simple background knowledge base contain-
ing mostly thesaurus information built in a Description Logic (Classic) using the
most basic notions of Wordnet (synsets and hyper/hyponyms) [Miller, 1995]. Con-
cepts corresponding to sets of synonyms (synsets) were arranged in a taxonomy.
These synsets also contained an informal list of related terms. Site specific search
engines (built on Verity – a commercial search engine) were hooked up to the
knowledge base. Any search term would first be checked in the knowledge base,
and if it was contained in any synset, a new query would be constructed consisting
of the disjunction of all the synonymous terms, as well as all the more specific
terms (hyponyms).

The background knowledge was represented in Classic, but the Description
Logic was not itself part of the on-line system. Instead, the information used
by the search engine was statically generated on a regular basis and used to populate
the search engine. The true power of using a Description Logic as the substrate for
the knowledge base was realized mainly in the maintenance task. The Description
Logic allowed the maintainer of the knowledge base to maintain some amount of
consistency, such as discovering cycles in the taxonomy and disjoint synsets. These
simple constraints proved effective tools for maintaining the knowledge since the
knowledge itself was very simple.

The FindUR systemwas deployed on the web to support the AT&T research web
site and a number of other application areas. Although the initial deployments were
as very simple query expansion, some later deployments included more structure.
For example, theFindUR applications on newspaper sites and calendar applications
(such as the Summit calendar2) included searches that could specify a date range,
date ordered returns, and a few other search areas including region or topic area.
These searches included use of meta-tagging information on dates, location, topics,
sometimes author, etc. This functioned as a structured search similar in nature to
the later developed SHOE Search [Heflin and Hendler, 2001] for the semantic
web, and was also similar to what Forrester reported as being required for search

2 http://www.quintillion.com/summit/calendar/
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that would support eCommerce [Hagen et al., 1999]. The FindUR applications for
medical information retrieval [McGuinness, 1999] also includedmore sophisticated
mechanisms that allowed users to search in order of quality of study method used
(such as randomized control trial study). Applications of FindUR ranged in the
end to include very simple query expansion, such as those deployed on WorldNet
and Quintillion (see Directory Westfield3), as well as more complicated markup
searches such as those on the AT&T competitive intelligence site and the P-CHIP
primary care literature search.

14.1.3 From SGML to the Semantic Web

Independently of Description Logics, and dating back to the mid 1980s, researchers
in other areas of digital libraries were using SGML4 (Standard GeneralizedMarkup
Language) as a tool to mark up a variety of elements of electronic texts, such as
identifying the characters in novels, cities, etc., in order to differentiate them in
search. For example, a reference to Washington the person in some text may appear
as <person>Washington</person> whereas a reference to the US state may
be <state>Washington</state>. See, for example, the 1986 Text Encoding
Initiative [Mylonas and Renear, 1999]. Clearly, a search tool capable of recognizing
these tags would be more precise when searching for “Washington the person”.
This work may be viewed as establishing some of the ground work for the vision
of the Semantic Web that Tim Berners-Lee and colleagues have more recently
popularized.

As the SGML communities proceeded in their efforts to create large reposito-
ries of “semantically” marked-up electronic documents, research in using these
growing resources sprang up in the database and DL communities, with some early
results making it clear that Description Logics were powerful tools for handling
semistructured data [Calvanese et al., 1998c; 1999d].

In the mid 1990s, work in SGML gained some attention mainly because HTML5

(HyperText Markup Language) was an SGML technology, and it became clear that
the same sort of “semantic” markup (as opposed to “rendering” markup) could be
applied to web pages, with the same potential gains. The main syntax specification
properties of SGMLwere combined with the text-rendering properties of HTML to
generate XML6 (Extensible Markup Language), and with it came the promise of a
new sort of web, a web in which “meta-data” would become the primary consumer
of bandwidth. These connections made it reasonable to consider the existing work
on semi-structured data in Description Logics a web application.

3 http://www.ataclick.com/westfield/
4 http://www.w3.org/MarkUp/SGML/
5 http://www.w3.org/MarkUp/
6 http://www.w3.org/XML/
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In an attempt to prevent the web community from repeating the same mistakes
made in knowledge representation in the 1970s, in particular using informal “pic-
ture” systems with no understood semantics and without decidable reasoning, the
DL community became very active in offering languages for the new semantic web.
The communitywas alreadywell-positioned to influence the future of semanticweb
standards, due in part to (a) the strong history that Description Logics bring, with
well-researched and articulated languages providing clear semantics (as well as
complexity analyses), (b) the existing work on the web described here, including
web applications like Untangle and FindUR, and (c) DL languages designed for
web use such as OIL.

14.2 Enabling the semantic web: DAML

The web, while wildly successful in growth, may be viewed as being limited by its
reliance on languages like HTML that are focused on presentation of information
(i.e., text formatting). Languages such as XML do add some support for capturing
the meaning of terms (instead of simply how to render a term in a browser), but
it is widely perceived that more is needed. The DARPA Agent Markup Language
(DAML) program7 was one of the programs initiated in order to provide the foun-
dation for the next generation of the web which, it is anticipated, will increasingly
utilize agents and programs rather than relying so heavily on human interpretation
of web information [Hendler and McGuinness, 2000]. In order for this evolution to
occur, agents and programs must understand how to interact with information and
services available on the web. They must understand what the information means
that they are manipulating and also must understand what services can be provided
from applications. Thus, meaning of information and services must be captured.
Languages and environments existing today are making a start at providing the
required infrastructure. The DAML program exists in order to provide funding for
research on languages, tools, and techniques for making the web machine under-
standable.

The groundwork for the DAML program was being laid in 1999 with the ap-
proval for the broad area announcement in November and a web semantics lan-
guage workshop in December. A strawman language proposal effort was begun out
of that work and the major initial emphasis began with a web-centric view. A web-
oriented strawman proposal was worked on but not widely announced. One of the
early widely-distributed contributions of theDAML program wasDAML-ONT 8 –
a proposal for an ontology language for the web [Hendler and McGuinness, 2000;
McGuinness et al., 2002]. This language began with the requirement to build on

7 http://www.daml.org/
8 http://www.daml.org/2000/10/daml-ont.html
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the best practice in web languages of the time and took the strawman proposal as
the motivating starting point. That meant beginning with XML, RDF9 (Resource
Description Framework), and RDFS10 (RDF Schema). These languages were not
expressive enough to capture the meaning required to support machine understand-
ability, however, so one requirement was additional expressive power. The goal
in choosing the language elements was to include the commonly used modeling
primitives fromobject-oriented systems and frame-based systems. Finally, the com-
munity recognized the importance of a strong formal foundation for the language.
Description Logics as a field has had a long history of providing a formal foundation
for a family of frame languages. DL languages add constructors into a language
only after researchers specify and analyze the meaning of the terms and their com-
putational effect on systems built to reason with them. The DAML community
wanted to include the strong formal foundations of Description Logics in order to
provide a web language that could be understood and extended.

The initial DAML web ontology language (DAML-ONT) was released publicly
in October 2000. While the language design attempted to meet all of the design
goals, beginning with the web-centric vision and later incorporating some DL
aspects, the decision was made that a timely release of the initial language was
more critical than a timely integration of a DL language with the web language.
Thus the initial release focused more on the goals of web language compatibility
and the inclusion of mainstream object-oriented and frame system constructors.
Although some notions of DL languages and systems were integrated, the major
integration happened in the next language release (DAML+OIL).

Another important effort began at about the same time (in 1999) and produced
a distributed language specification prior11 to DAML-ONT called OIL. The aims
of OIL’s developers were similar to those of the DAML group, i.e., to provide
a foundation for the next generation of the web. Their initial objective was to
create a web ontology language that combined the formal rigor of a Description
Logic with the ontological primitives of object-oriented and frame-based systems.
Like DAML-ONT, OIL had an RDFS-based syntax (as well as an XML syntax).
However, the developers ofOIL placed a stronger emphasis on formal foundations,
and the language was explicitly designed so that its semantics could be specified
via a mapping to the Description Logic SHIQ [Fensel et al., 2001; Horrocks et al.,
1999].

It became obvious to both groups that their objectives could best be served by
combining their efforts, the result being the merging of DAML-ONT and OIL to

9 http://www.w3.org/RDF/
10 http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
11 Presentations of the language were made, for example, at the Dagstuhl Seminar on Semantics for the Web –

see http://www.semanticweb.org/events/dagstuhl2000/.
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produceDAML+OIL. Themerged language has a formal (model-theoretic) seman-
tics that provides machine and human understandability, an axiomatization [Fikes
and McGuinness, 2001] that provides machine operationalization with a specifica-
tion of valid inference “rules” in the form of axioms, and a reconciliation of the
language constructors from the two languages.

14.3 OIL and DAML+OIL

14.3.1 OIL

The OIL language is designed to combine frame-like modeling primitives with
the increased (in some respects) expressive power, formal rigor and automated
reasoning services of an expressive Description Logic [Fensel et al., 2000]. OIL
also comes “web enabled” by having both XML and RDFS based serializations
(as well as a formally specified “human readable” form, which we will use here).
The frame structure ofOIL is based on XOL [Karp et al., 1999], an XML serializa-
tion of the OKBC-like knowledgemodel (a simplified version of OKBC) [Chaudhri
et al., 1998b]. In these languages classes (concepts) are described by frames, whose
main components consist of a list of superclasses and a list of slot-filler pairs. A slot
corresponds to a role in a Description Logic, and a slot-filler pair corresponds to
either a value restriction (a concept of the form ∀R.C) or an existential quantifica-
tion (a concept of the form ∃R.C) – one of the criticisms leveled at frame languages
is that they are often unclear as to exactly which of these is intended by a slot-filler
pair.
OIL extends this basic frame syntax so that it can capture the full power of an

expressive Description Logic. These extensions include:

� Arbitrary Boolean combinations of classes (called class expressions) can be formed, and
used anywhere that a class name can be used. In particular, class expressions can be used
as slot fillers, whereas in typical frame languages slot fillers are restricted to being class
(or individual) names.

� A slot-filler pair (called a slot constraint) can itself be treated as a class: it can be used
anywhere that a class name can be used, and can be combined with other classes in class
expressions.

� Class definitions (frames) have an (optional) additional field that specifies whether the
class definition is primitive (a subsumption axiom) or non-primitive (an equivalence
axiom). If omitted, this defaults to primitive.

� Different types of slot constraint are provided, specifying value restriction, existential
quantification and various kinds of cardinality constraint.12

12 Some frame languages also provide this feature, referring to such slot constraints as facets [Chaudhri et al.,
1998b; Grosso et al., 1999].
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� Global slot definitions are extended to allow the specification of superslots (subsuming
slots) and of properties such as transitive and symmetrical.

� Unlike many frame languages, OIL has no restriction on the ordering of class and slot
definitions, so classes and slots can be used before they are “defined”. This means that
OIL ontologies can contain cycles.

� In addition to standard class definitions (frames), which can be seen as DL axioms of the
form CN 
 C and CN ≡ C where CN is a concept name,OIL also provides axioms for
asserting disjointness, equivalence and coverings with respect to class expressions. This
is equivalent to providing general inclusion (or equivalence) axioms, i.e., axioms of the
form C 
 D (C ≡ D), where both C and D may be non-atomic concepts.

Many of these points are standard for a Description Logic (e.g., treating ∀R.C and
∃R.C as classes), but are novel for a frame language.
OIL is also more restrictive than typical frame languages in some respects. In

particular, it does not support collection types other than sets (e.g., lists or bags), and
it does not support the specificationof default fillers. These restrictions are necessary
in order to maintain the formal properties of the language (e.g., monotonicity) and
the correspondence with Description Logics (see Chapter 2).

In order to allow users to choose the expressive power appropriate to their ap-
plication, and to allow for future extensions, a layered family of OIL languages
has been described. The base layer, called “Core OIL” [Bechhofer et al., 2000],
is a cut-down version of the language that closely corresponds with RDFS (i.e.,
it includes only class and slot inclusion axioms, and slot range and domain con-
straints13). The standard language, as described here, is called “StandardOIL”, and
when extended with ABox axioms (i.e., the ability to assert that individuals and
tuples are, respectively, instances of classes and slots), is called “Instance OIL”.
Finally, “Heavy OIL” is the name given to a further layer that will include as yet
unspecified language extensions.

We will only consider Standard OIL in this chapter: Core OIL is too weak to be
of much interest, HeavyOIL has yet to be specified, and InstanceOIL adds nothing
but ABox axioms. Moreover, it is unclear if adding ABox axioms to OIL would
be particularly useful as RDF already provides the means to assert relationships
between (pairs of)web resources and the slots and classes defined inOILontologies.

Figure 14.1 illustrates an OIL ontology (using the human readable serialization)
corresponding to an example terminology from Chapter 2. The structure of the
language will be described in detail in Subsection 14.3.1.1. A full specification
of OIL, including DTDs for the XML and RDFS serializations, can be found in
[Horrocks et al., 2000a] and on the OIL web site.14

13 Constraining the range (resp. domain) of a slot SN to class C is equivalent to a DL axiom of the form
� 
 ∀SN .C (resp. ∃SN .� 
 C).

14 http://www.ontoknowledge.org/oil/



436 I. Horrocks, D. L. McGuinness, and C. Welty

name “Family”
documentation “Example ontology describing family relationships”
definitions

slot-def hasChild
inverse isChildOf

class-def defined Woman
subclass-of Person Female

class-def defined Man
subclass-of Person not Woman

class-def defined Mother
subclass-of Woman
slot-constraint hasChild
has-value Person

class-def defined Father
subclass-of Man
slot-constraint hasChild
has-value Person

class-def defined Parent
subclass-of or Father Mother

class-def defined Grandmother
subclass-of Mother
slot-constraint hasChild
has-value Parent

class-def defined MotherWithManyChildren
subclass-of Mother
slot-constraint hasChild
min-cardinality 3

class-def defined MotherWithoutDaughter
subclass-of Mother
slot-constraint hasChild
value-type not Woman

Fig. 14.1. OIL “family” ontology.

14.3.1.1 OIL syntax and semantics

OIL can be seen as a syntactic variant of the Description Logic SHIQ [Horrocks
et al., 1999] extendedwith simple concrete datatypes [Baader andHanschke, 1991a;
Horrocks and Sattler, 2001]; we will call this DL SHIQ(D). Rather than providing
the usual model-theoretic semantics, OIL defines a translation σ (·) that maps an
OIL ontology into an equivalent SHIQ(D) terminology. From this mapping, OIL
derives both a clear semantics and a means to exploit the reasoning services of DL
systems such as Fact [Horrocks, 1998b] and Racer [Haarslev and Möller, 2001e]
that implement (most of) SHIQ(D).

The translation is quite straightforward and follows directly from the syntax
and informal specification of OIL. The single exception is in the treatment of
OIL’s one-of constructor. This is not treated like the DL one-of constructor
described in Chapter 2, but is mapped to a disjunction of specially introduced
disjoint primitive concepts corresponding to the individual names in the one-of
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construct, i.e., individuals are treated as primitive concepts, and there is an implicit
unique name assumption. This was a pragmatic decision based on the fact that
reasoning with individuals in concept descriptions is known to be of very high
complexity (for a Description Logic as expressive asOIL), and is beyond the scope
of any implementedDL system – in fact a practical algorithm for such a Description
Logic has yet to be described [Horrocks and Sattler, 2001]. This treatment of the
one-of constructor is not without precedent in DL systems: a similar approach
was taken in the Classic system [Borgida and Patel-Schneider, 1994].

An OIL ontology consists of a container followed by a list of definitions. The
container consists of Dublin Core compliant documentation fields specifying, e.g.,
the title and subject of the ontology. It is ignored by the translation, and will not be
considered here. Definitions can be either class definitions, axioms, slot definitions
or import statements, the latter simply specifying (by URI) other ontologies whose
definitions should be teated as being lexically included in the current one. We will,
therefore, treat anOIL ontology as a list A1, . . . , An , where each Ai is either a class
definition, an axiom or a slot definition. This list of definitions/axioms is translated
into a SHIQ(D) terminology T (a set of axioms) as follows:

σ (A1, . . . , An) = {σ (A1), . . . , σ (An)} ∪
⋃

1≤ j<m

⋃

j<k≤m
{Pj 
 ¬Pk}

where i1, . . . , im are the individuals used in the ontology, and Pi is the SHIQ(D)
primitive concept used to represent i .

Class definitions An OIL class definition (class-def) consists of an optional
keyword K followed by a class name CN , an optional documentation string, and a
class description D. If K = primitive, or if K is omitted, then the class definition
corresponds to a DL axiom of the form CN 
 D. If K = defined, then the class
definition corresponds to a DL axiom of the form CN ≡ D.

A class description consists of an optional subclass-of component, with
a list of one or more class expressions, followed by a list of zero or more
slot-constraints. Each slot constraint can specify a list of constraints that
apply to the given slot, e.g., value restrictions and existential quantifications. The
set of class expressions and slot constraints is treated as an implicit conjunction.

The complete mapping fromOIL class definitions to SHIQ(D) axioms is given
in Figure 14.2, where CN is a class or concept name and C is a class expression.

Slot constraints A slot-constraint consists of a slot name followed by a list
of one or more constraints that apply to the slot. A constraint can be either:

� A has-value constraint with a list of one or more class-expressions or datatype
expressions.
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OIL SHIQ(D)
class-def (primitive | defined) CN CN (# | ≡) &
subclass-of C1 . . . Cn � σ(C1) � . . . � σ(Cn)
slot-constraint1 � σ(slot-constraint1)
...

...
slot-constraintm σ(slot-constraintm)

Fig. 14.2. OIL to SHIQ(D) mapping (class definitions).

OIL SHIQ(D)
slot-constraint SN &

has-value C1 . . . Cn � ∃SN .σ(C1) � . . . � ∃SN .σ(Cn)
value-type C1 . . . Cn � ∀SN .σ(C1) � . . . � ∀SN .σ(Cn)
max-cardinality n C ��n SN .σ(C)
min-cardinality n C

n C
��n SN .σ(C)

cardinality ��n SN .σ(C) ��n SN .σ(C)
has-filler i1 . . . dn SN .σ(one-of i1) . . . SN .σ(equal dn)

Fig. 14.3. OIL to SHIQ(D) mapping (slot constraints).

� A value-type constraint with a list of one or more class-expressions or datatype
expressions.

� A max-cardinality, min-cardinality or cardinality constraint with a
non-negative integer followed (optionally) by either a class expression or a datatype
expression.

� A has-filler constraint with a list of one or more individual names or data values.

OILhas-value andvalue-type constraints correspond toDLexistential quan-
tifications and value restrictions respectively.OIL cardinality constraints corre-
spond to DL qualified number restrictions, where the qualifying concept is taken to
be � if the class expression is omitted. In order to maintain the decidability of the
language, cardinality constraints can only be applied to simple slots, a simple slot
being one that is neither transitive nor has any transitive subslots [Horrocks et al.,
1999] (note that the transitivity of a slot can be inferred, e.g., from the fact that the
inverse of the slot is a transitive slot). AnOIL has-filler constraint is equivalent
to a set of has-value constraints where each individual i is transformed into a
class expression of the form one-of i and each data value d is transformed into a
datatype of the form equal d .

The complete mapping fromOIL slot constraints to SHIQ(D) concepts is given
in Figure 14.3, where SN is a slot or role name, C is a class expression or datatype,
i is an individual and d is a data value (i.e., a string or an integer).

Class expressions One of the key features of OIL is that, in contrast to standard
frame languages, class expressions are used instead of class names, e.g., in the
list of superclasses, or in slot constraints. A class expression is either a class name
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OIL SHIQ(D)
top &
thing &
bottom ⊥
and C1 . . . Cn σ(C1) � . . . � σ(Cn)
or C1 . . . Cn σ(C1) � . . . � σ(Cn)
not C ¬σ(C)
one-of i1 . . . in Pi1

. . . Pin

Fig. 14.4. OIL to SHIQ(D) mapping (class expressions).

CN , an enumerated class, a slot-constraint, a conjunction of class expressions
(written and C1 . . .Cn), a disjunction of class expressions (written or C1 . . .Cn) or
a negated class expression (written not C).

The class names top, thing and bottom have pre-defined interpretations: top
and thing are interpreted as themost general class (�), while bottom is interpreted
as the inconsistent class (⊥). Note that top and bottom can just be considered
as abbreviations for the class expressions (or C (not C)) and (and (C not C))
respectively (for some arbitrary class C).

An enumerated class consists of a list of individual names, written
one-of i1. . . in . As already noted, this is not treated like the DL one-of con-
structor described in Chapter 2, but is mapped to a disjunction of disjoint primitive
concepts corresponding to the individual names.

The complete mapping from OIL class expressions to SHIQ(D) concepts is
given in Figure 14.4, where C is a class expression, i is an individual and Pi is the
primitive concept corresponding to the individual i .

Datatypes In OIL slot constraints, datatypes and values can be used as well as or
instead of class expressions and individuals. Datatypes can be either integer (i.e.,
the entire range of integer values), string (i.e., the entire range of string values),
a subrange defined by a unary predicate such as less-than 10 or a Boolean
combination of datatypes [Horrocks and Sattler, 2001].

The complete mapping from OIL datatypes to SHIQ(D) concepts is given in
Figure 14.5, where d is a data value (an integer or a string), C is a datatype and �d

(resp. �d , >d , <d) is a unary predicate that returns true for all integers greater than
or equal to (resp. less than or equal to, greater than, less than) d .

Axioms In addition to class definitions, OIL includes four kinds of axiom:

disjoint C1 . . .Cn asserts that the class expressionsC1, . . . ,Cn are pairwise dis-
joint.

covered C by C1 . . .Cn asserts that the class expressionC is covered (subsumed)
by the union of class expressions C1, . . . ,Cn .
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OIL SHIQ(D)
min d �d

max d �d

greater-than d >d

less-than d <d

equal d �d ��d

range d1 d2 �d1 ��d2

and C1 . . . Cn σ(C1) � . . . � σ(Cn)
or C1 . . . Cn σ(C1) � . . . � σ(Cn)
not C σ(C)

Fig. 14.5. OIL to SHIQ(D) mapping (datatypes).

OIL SHIQ(D)
disjoint C1 . . . Cn σ(C1) # ¬(σ(C2) � . . . � σ(Cn))

...
σ(Cn−1) # ¬σ(Cn)

covered C by C1 . . . Cn σ(C) # σ(C1) � . . . � σ(Cn)
disjoint-covered C by C1 . . . Cn σ(C) # σ(C1) � . . . � σ(Cn)

σ(C1) # ¬(σ(C2) � . . . � σ(Cn))
...
σ(Cn−1) # ¬σ(Cn)

equivalent C1 . . . Cn σ(C1) σ(C2), . . . , σ(Cn 1) σ(Cn)

Fig. 14.6. OIL to SHIQ(D) mapping (axioms).

disjoint-covered C by C1 . . .Cn asserts that the class expression C is
covered (subsumed) by the union of class expressions C1, . . . ,Cn , and that
C1, . . . ,Cn are pairwise disjoint.

equivalent C1 . . .Cn asserts that the class expressionsC1, . . . ,Cn are equivalent.

The complete mapping from OIL axioms to SHIQ(D) axioms is given in
Figure 14.6, where C is a class expression.

Slot definitions An OIL slot definition (slot-def) consists of a slot name SN
followed by an optional documentation string and a slot description. A slot descrip-
tion consists of an optional subslot-of component, with a list of one or more slot
names, followed by a list of zero or more global slot constraints (e.g., domain and
range constraints) and properties (e.g., transitive and functional).

The complete mapping from OIL slot definitions to SHIQ(D) axioms is given
in Figure 14.7, where SN and RN are slot or role names, C is a class expression
and R+ is the set of SHIQ(D) transitive role names.

The mapping from OIL to SHIQ(D) has now been fully specified and we
can illustrate, in Figure 14.8, the SHIQ(D) ontology corresponding to the OIL
ontology from Figure 14.1.



14 Digital Libraries and Web-Based Information Systems 441

OIL SHIQ(D)
slot-def SN
subslot-of RN 1 . . .RN n SN # RN 1, . . . ,SN # RN n

domain C1 . . . Cn ∃SN .& # σ(C1) � . . . � σ(Cn)
range C1 . . . Cn & # ∀SN .σ(C1) � . . . � σ(Cn)
inverse RN SN− # RN , RN− # SN
properties transitive SN ∈ R+

properties symmetric SN # SN−, SN− # SN
properties functional 1 SN

Fig. 14.7. OIL to SHIQ(D) mapping (slot definitions).

hasChild isChildOf

isChildOf− # hasChild

Woman ≡ Person � Female

Man ≡ Person � ¬Woman

Mother ≡ Woman � ∃hasChild.Person
Father ≡ Man � ∃hasChild.Person
Parent ≡ Father �Mother

Grandmother ≡ Mother � ∃hasChild.Parent
MotherWithManyChildren ≡ Mother �� 3 hasChild
MotherWithoutDaughter Mother hasChild. Woman

Fig. 14.8. SHIQ(D) equivalent of the “family” ontology.

14.3.1.2 XML and RDFS serializations for OIL

The above language description uses OIL’s “human readable” serialization. This
aids readability, but is not suitable for publishing ontologies on the web. For this
purpose OIL is also provided with both XML and RDFS serializations.
OIL’s XML serialization directly corresponds with the human readable form:

Figure 14.9 illustrates theXML serialization of a fragment of the “family” ontology.
A full specification and XML DTD can found in [Horrocks et al., 2000a].

The RDFS serialization is more interesting as it uses the features of RDFS both
to capture as much as possible of OIL ontologies and to define a “meta-ontology”
describing the structure of the OIL language itself. Figure 14.10 shows part of the
RDFS description of OIL. The second and third lines contain XML namespace
definitions that make the external RDF and RDFS definitions available for local
use by preceding them with rdf: and rdfs: respectively. There then follows a
“meta-ontology” describing (part of) the structure of OIL slot constraints.

The “meta-ontology” defines hasPropertyRestriction as an instance
of RDFS ConstraintProperty15 that connects an RDFS class (the prop-
erty’s domain) to an OIL property restriction (the property’s range).
A PropertyRestriction (slot constraint) is then defined as a kind of
ClassExpression, with HasValue (an existential quantification) being a kind

15 Property is the RDF name for a binary relation like a slot or role.
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<ontology>

<ontology-definitions>

<slot-def>

<slot name="hasChild"/>

<inverse>

<slot name="isChildOf"/>

</inverse>

</slot-def>

<class-def type="defined">

<class name="Woman"/>

<subclass-of>

<class name="Person"/>

<class name="Female"/>

</subclass-of>

</class-def>

<class-def type="defined">

<class name="Man"/>

<subclass-of>

<class name="Person"/>

<NOT>

<class name="Woman"/>

</NOT>

</subclass-of>

</class-def>

<class-def type="defined">

<class name="Mother"/>

<subclass-of>

<class name="Woman"/>

</subclass-of>

<slot-constraint>

<slot name="hasChild"/>

<has-value>

<class name="Person"/>

</has-value>

</slot-constraint>

</class-def>

</ontology-definitions>

</ontology>

Fig. 14.9. OIL XML serialization.

of PropertyRestriction. Properties onProperty and toClass are then de-
fined as “meta-slots” of PropertyRestriction whose fillers will be the name of
the property (slot) to be restricted and the restriction class expression. The complete
description of OIL in RDFS, as well as a more detailed description of RDF and
RDFS, can be found in [Horrocks et al., 2000a].

Figure 14.11 illustrates the RDFS serialization of a fragment of the “family”
ontology.Note thatmost of the ontology consists of standardRDFS. For example, in
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<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Property rdf:ID="hasPropertyRestriction">

<rdf:type rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#ConstraintProperty"/>

<rdfs:domain rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#Class"/>

<rdfs:range rdf:resource="#PropertyRestriction"/>

</rdf:Property>

<rdfs:Class rdf:ID="PropertyRestriction">

<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdfs:Class>

<rdfs:Class rdf:ID="HasValue">

<rdfs:subClassOf rdf:resource="#PropertyRestriction"/>

</rdfs:Class>

<rdf:Property rdf:ID="onProperty">

<rdfs:domain rdf:resource="#PropertyRestriction"/>

<rdfs:range rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdf:Property rdf:ID="toClass">

<rdfs:domain rdf:resource="#PropertyRestriction"/>

<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

</rdf:RDF>

Fig. 14.10. Part of the definition of OIL in RDFS.

the definition ofWomanRDFS is used to specify that it is asubClassOfbothPerson
and Female. AdditionalOIL specific vocabulary is only used where necessary, e.g.,
to specify that Woman is a defined class. The advantage of this is that much of the
ontology’s meaning would still be accessible to software that was “RDFS aware”
but not “OIL aware”.

14.3.2 DAML+OIL

DAML+OIL is similar to OIL in many respects, but is more tightly integrated with
RDFS, which provides the only specification of the language and its only serializa-
tion. While the dependence on RDFS has some advantages in terms of the re-use of
existing RDFS infrastructure and the portability of DAML+OIL ontologies, using
RDFS to completely define the structure ofDAML+OIL is quite difficult as, unlike
XML, RDFS is not designed for the precise specification of syntactic structure. For
example, there is no way in RDFS to state that a restriction (slot constraint) should
consist of exactly one property (slot) and one class.
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<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:oil="http://www.ontoknolwedge.org/oil/rdfschema">

<rdf:Property rdf:ID="hasChild">

<oil:inverseRelationOf rdf:resource="#isChildOf"/>

</rdf:Property>

<rdf:Property rdf:ID="isChildOf"/>

<rdfs:Class rdf:ID="Woman">

<rdf:type rdf:resource=

"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#Person"/>

<rdfs:subClassOf rdf:resource="#Female"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Man">

<rdf:type rdf:resource=

"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#Person"/>

<rdfs:subClassOf>

<oil:Not>

<oil:hasOperand rdf:resource="#Woman"/>

</oil:Not>

</rdfs:subClassOf>

</rdfs:Class>

<rdfs:Class rdf:ID="Mother">

<rdf:type rdf:resource=

"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#Woman"/>

<oil:hasPropertyRestriction>

<oil:HasValue>

<oil:onProperty rdf:resource="#hasChild"/>

<oil:toClass rdf:resource="#Person"/>

</oil:HasValue>

</oil:hasPropertyRestriction>

</rdfs:Class>

</rdf:RDF>

Fig. 14.11. OIL RDFS serialization.

The solution to this problem adopted by DAML+OIL is to define the semantic
of the language in such a way that it gives a meaning to any (parts of) ontologies
that conform to the RDFS specification, including “strange” constructs such as
slot constraints with multiple slots and classes. This is made easier by the fact
that, unlike OIL, the semantics of DAML+OIL is directly defined in both a model-
theoretic and an axiomatic form (using KIF [Genesereth and Fikes, 1992]). The
meaning given to strange constructs may, however, include strange “side effects”.
For example, in the case of a slot constraint with multiple slots and classes, the
semantics interprets this in the same way as a conjunction of all the constraints
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that would result from taking the cross product of the specified slots and classes,
but with the added (and possibly unexpected) effect that all these slot constraints
must have the same interpretation (i.e., are equivalent). Although OIL’s RDFS-
based syntax would seem to be susceptible to the same difficulties, in the case of
OIL there does not seem to be an assumption that any ontology conforming to the
RDFS meta-description would be a valid OIL ontology – presumably ontologies
containing unexpected usages of the meta-properties would be rejected by OIL
processors as the semantics does not specify how these could be translated into
SHIQ(D).
DAML+OIL’s dependence on RDFS also has consequences for the decidability

of the language. In OIL, the language specification states that the slots used in
cardinality constraints can only be applied to simple slots (slots that are neither
transitive nor have transitive subslots). There is no way to capture this constraint
in RDFS (although the language specification does include a warning about the
problem), so DAML+OIL is theoretically undecidable. In practice, however, this
may not be a very serious problem as it would be easy for a DAML+OIL proces-
sor to detect the occurrence of such a constraint and warn the user of the conse-
quences.

Another effect of DAML+OIL’s tight integration with RDFS is that the frame
structure ofOIL’s syntax is much less evident: aDAML+OIL ontology is more DL-
like in that it consists largely of a relatively unstructured collection of subsumption
and equality axioms. This can make it more difficult to use DAML+OIL with
frame-based tools such as Protégé [Grosso et al., 1999] or OilEd [Bechhofer
et al., 2001b] because the axioms may be susceptible to many different frame-like
groupings [Bechhofer et al., 2001a].

From the point of view of language constructs, the differences between OIL and
DAML+OIL are relatively trivial. Although there is some difference in “keyword”
vocabulary, there is usually a one-to-one mapping of constructors, and in the cases
where the constructors are not completely equivalent, simple translations are pos-
sible. For example, DAML+OIL restrictions (slot constraints) use has-class and
to-classwhereOIL uses ValueType and HasValue, and whileDAML+OIL has
no direct equivalent to OIL’s covering axioms, the same effects can be achieved
using a combination of (disjoint) union and subClass. The similarities can clearly
be seen in Figure 14.12, which illustrates the DAML+OIL version of the “family”
ontology fragment from Figure 14.9.

The treatment of individuals in DAML+OIL is, however, very different from
that in OIL. In the first place, DAML+OIL relies wholly on RDF for ABox as-
sertions, i.e., axioms asserting the type (class) of an individual or a relationship
between a pair of individuals. In the second place, DAML+OIL treats individu-
als occurring in the ontology (in oneOf constructs or has-Value restrictions) as
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<daml:ObjectProperty rdf:ID="hasChild">

<daml:inverseOf rdf:resource="#isChildOf"/>

</daml:ObjectProperty>

<daml:Class rdf:ID="Woman">

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Person"/>

<daml:Class rdf:about="#Female"/>

</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="Man">

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Person"/>

<daml:Class>

<daml:complementOf rdf:resource="#Woman"/>

</daml:Class>

</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="Mother">

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Woman"/>

<daml:Restriction>

<daml:onProperty rdf:resource="#hasChild"/>

<daml:hasClass rdf:resource="#Person"/>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

Fig. 14.12. DAML+OIL ontology serialization.

true individuals (i.e., interpreted as single elements in the domain of discourse)
and not as primitive concepts as is the case in OIL (see Chapter 2). Moreover,
there is no unique name assumption: in DAML+OIL it is possible to explicitly
assert that two individuals are the same or different, or to leave their relationship
unspecified.

This treatment of individuals is very powerful, and justifies intuitive inferences
that would not be valid forOIL, e.g., that persons all of whose countries of residence
are Italy are kinds of person that have at most one country of residence:

Person � ∀residence.{Italy} 
 � 1 residence.

Unfortunately, the combination of individuals with inverse roles is so powerful
that no “practical” decision procedure (for satisfiability/subsumption) is currently
known, and there is no implemented system that can provide sound and complete
reasoning for the whole DAML+OIL language. In the absence of inverse roles,
however, a tableau algorithm has been devised [Horrocks and Sattler, 2001], and
in the absence of individuals DAML+OIL ontologies can exploit implemented DL
systems via a translation into SHIQ similar to the one described forOIL. It would,
of course, also be possible to translate DAML+OIL ontologies into SHIQ using
the disjoint primitive concept interpretation of individuals adopted by OIL, but in
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this case reasoning with individuals would not be sound and complete with respect
to the semantics of the language.

14.3.2.1 DAML+OIL datatypes

The initial release of DAML+OIL did not include any specification of datatypes.
However, in the March 2001 release,16 the language was extended with arbitrary
datatypes from the XML Schema type system,17 which can be used in restrictions
(slot constraints) and range constraints. As in SHOQ(D) [Horrocks and Sattler,
2001], a clean separation is maintained between instances of “object” classes (de-
fined using the ontology language) and instances of datatypes (defined using the
XML Schema type system). In particular, it is assumed that the domain of interpre-
tation of object classes is disjoint from the domain of interpretation of datatypes,
so that an instance of an object class (e.g., the individual Italy) can never have the
same interpretation as a value of a datatype (e.g., the integer 5), and that the set of
object properties (which map individuals to individuals) is disjoint from the set of
datatype properties (which map individuals to datatype values).

The disjointness of object and datatype domains was motivated by both philo-
sophical and pragmatic considerations:

� Datatypes are considered to be already sufficiently structured by the built-in predicates,
and it is, therefore, not appropriate to form new classes of datatype values using the
ontology language [Hollunder and Baader, 1991b].

� The simplicity and compactness of the ontology language are not compromised – even
enumerating all the XML Schema datatypes would add greatly to its complexity, while
adding a theory for each datatype, even if it were possible, would lead to a language of
monumental proportions.

� The semantic integrity of the language is not compromised – defining theories for all the
XML Schema datatypes would be difficult or impossible without extending the language
in directions whose semantics may be difficult to capture in the existing framework.

� The “implementability” of the language is not compromised – a hybrid reasoner can easily
be implemented by combining a reasoner for the “object” language with one capable
of deciding satisfiability questions with respect to conjunctions of (possibly negated)
datatypes [Horrocks and Sattler, 2001].

Froma theoretical point of view, this designmeans that the ontology language can
specify constraints on data values, but as data values can never be instances of object
classes they cannot apply additional constraints to elements of the object domain.
This allows the type system to be extended without having any impact on the
object class (ontology) language, and vice versa. Similarly, reasoning components
can be independently developed and trivially combined to give a hybrid reasoner

16 http://www.daml.org/2001/03/daml+oil-index.html
17 http://www.w3.org/TR/xmlschema-2/#typesystem
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whose properties are determined by those of the two components; in particular, the
combined reasoner will be sound and complete if both components are sound and
complete.

From a practical point of view, DAML+OIL implementations can choose to
support some or all of the XML Schema datatypes. For supported datatypes, they
can either implement their own type checker/validater or rely on some external
component (non-supported datatypes could be either trapped as an error or ignored).
The job of a type checker/validater is simply to take zero or more data values and
one or more datatypes, and determine if there exists any data value that is equal to
every one of the specified data values and is an instance of every one of the specified
datatypes.

14.4 Summary

It has long been realized that the web would benefit from more structure, and it is
widely agreed that ontologies will play a key role in providing this structure. De-
scription Logics havemade important contributions to research in this area, ranging
from formal foundations and early web applications through to the development of
DL-based languages designed to facilitate the development and deployment of web
ontologies. OIL and its successor DAML+OIL are two such ontology languages,
specifically designed for use on theweb; they exploit existingweb standards (XML,
RDF andRDFS), adding the formal rigor of a Description Logic and the ontological
primitives of object-oriented and frame-based systems.

This combination of features has proved very attractive, and DAML+OIL has
already been widely adopted. At the time of writing, the DAML ontology li-
brary contains over 175 ontologies, and DAML crawlers have found millions of
DAML+OILmarkup statements in documents. Possibly more important, however,
is that some major projects have committed themselves to encoding their ontolo-
gies inDAML+OIL. This has been particularly evident in the bio-ontology domain,
where the Bio-Ontology Consortium has specified DAML+OIL as their ontology
exchange language, and theGeneOntology [TheGeneOntologyConsortium, 2000]
is being migrated toDAML+OIL in a project partially funded by GlaxoSmithKline
Pharmaceuticals in cooperation with the Gene Ontology Consortium.

There has also been significant progress in the development of tools support-
ing DAML+OIL. Several DAML+OIL ontology editors are now available includ-
ing Manchester University’s OilEd (which incorporates reasoning support from
the Fact system) [Bechhofer et al., 2001b], Protégé [Grosso et al., 1999] and
OntoEdit [Staab and Maedche, 2000]. At Stanford University, a combination
of Ontolingua, Chimaera and JTP (Java Theorem Prover) is being used to
provide editing, evolution, maintenance, and reasoning services for DAML+OIL
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ontologies [McGuinness et al., 2000b; 2000a]. Commercial endeavors are also sup-
porting DAML+OIL. Network Inference Limited, for example, have developed a
DAML+OIL reasoning engine based on their own implementation of aDL reasoner.

What of the future? The development of the semantic web, and of web on-
tology languages, presents many opportunities and challenges for DL research.
A “practical” (satisfiability/subsumption) algorithm for the full DAML+OIL lan-
guage has yet to be developed, and even for OIL, it is not yet clear that sound
and complete DL reasoners can provide adequate performance for typical web ap-
plications. It is also unclear how a DL system would cope with the very large
ABoxes that could result from the use of ontologies to add semantic markup
to (large numbers of) web pages. DL researchers are also beginning to address
new inference problems that may be important in providing reasoning services
for the semantic web, e.g., querying [Rousset, 1999a; Calvanese et al., 1999a;
Horrocks and Tessaris, 2000], matching [Baader et al., 1999a] and computing least
common subsumers and most specific concepts [Cohen et al., 1992; Baader and
Küsters, 1998; Baader et al., 1999b].

Finally, the developers of both OIL and DAML+OIL always understood that a
single language would not be adequate for all semantic web applications – OIL
even gave a name (Heavy OIL) to an as yet undefined extension of the language
– and extensions up to (at least) full first-order logic are already being discussed.
Clearly, most of these extended languages will be undecidable. DL research can,
however, still make important contributions, e.g., by investigating the boundaries of
decidability, identifying decidable subsets of extended languages and developing
decision procedures.DL implementations can also play a key role, both as reasoning
engines for the core language and as efficient components of hybrid reasoners
dealing with a variety of language extensions.
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Natural Language Processing

ENRICO FRANCONI

Abstract

In most natural language processing applications, Description Logics have been
used to encode in a knowledge base some syntactic, semantic, and pragmatic ele-
ments needed to drive the semantic interpretation and the natural language genera-
tion processes. More recently, Description Logics have been used to fully charac-
terize the semantic issues involved in the interpretation phase. In this chapter the
various proposals that have appeared in the literature about the use of Description
Logics for natural language processing will be analyzed.

15.1 Introduction

Since the early days of the Kl-One system, one of the main applications of De-
scription Logics has been for semantic interpretation in natural language processing
[Brachman et al., 1979]. Semantic interpretation is the derivation process from the
syntactic analysis of an utterance to its logical form—intended here as the repre-
sentation of its literal deep and context-dependent meaning. Typically, Description
Logics have been used to encode in a knowledge base both syntactic and seman-
tic elements needed to drive the semantic interpretation process. One part of the
knowledge base constitutes the lexical semantics knowledge, relating words and
their syntactic properties to concept structures, while the other part describes the
contextual and domain knowledge, giving a deep meaning to concepts. By devel-
oping this idea further, a considerable part of the research effort has been devoted
to the development of linguistically motivated ontologies, i.e., large knowledge
bases where both concepts closely related to lexemes and domain concepts coexist.
Logical forms and various kinds of internal semantics representations based on
Description Logics may also provide the basis for further computational process-
ing such as representing common meanings in machine translation applications,
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generating coherent text starting from its semantic content, answering database
queries, and dialog management.

After a big success in the 1980s and the beginning of the 1990s (see, e.g., the
collection of papers in [Sowa, 1991]), the interest of the applied computational
linguistic community in Description Logics began to drop, as did its interest in
well-founded theories on syntax or semantics. At the time of writing this chapter,
there is no major applied project in natural language processing making use of
Description Logics. This is due to the positive achievements in real applications
of the systems based on shallow analysis and statistical approaches to semantics,
initiated by the applications in the message understanding area.

In this chapter the basic uses of Description Logics for natural language process-
ing will be analyzed, together with a little bit of history, and the role of Description
Logics in the current state of the art in computational linguistics will be pointed out.
Obviously, space constraintswill lead to several omissions and over-simplifications.

15.2 Semantic interpretation

In order to understand the role of Description Logics in semantic interpretation, let
us first introduce a general setting for the process of deriving a logical form of an
utterance.

A basic property of a logical form as a semantic representation of a natural
language constituent—such as a noun phrase (NP) or a verb phrase (VP)—is com-
positionality, i.e., the semantic representation of a constituent is a function of the
semantic interpretation of its subconstituents. Thus, a close correspondence be-
tween syntactic structure and logical form is allowed. In this way, a parser working
according to some grammar rules can incrementally build up the semantic inter-
pretation of an utterance using the corresponding lexical semantic rules of logical
composition—specifying how the logical terms associated to the subconstituents
are to be combined in order to give the formula for the constituent. Thus, each lex-
eme has an associated (possibly complex) logical term,which forms its contribution
to the meaning of the utterance it is part of.

In the context of such a formalism, an effective semantic lexical discrimination
process could be carried out during parsing, by cutting out the exponential factor
due to the explicit treatment all the possible derivations. Semantically implausible
interpretations can be discarded, by checking—whenever the parser tries to build a
constituent—the inconsistency of the logical form compositionally obtained at that
stage. This leaves out many syntactically plausible but semantically implausible
interpretations. Such a discrimination step is highly effective in restricted domain
applications, where knowledge of the world considerably reduces the number of
possible models. Clearly, the more the contextual and domain knowledge is taken
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into consideration when evaluating a logical form, the more effective is the dis-
crimination process. Thus, consistency checking of logical forms plays the role of
a generalized selectional restrictions mechanism.

But what is the relationship between a syntactic constituent and its range of pos-
sible lexical semantic contributions? The conceptual content of a lexeme should
convey both the lexical relations—such as, for example, synonymy, hyponymy,
incompatibility—and the subcategorization information about the expected argu-
ments (aka complements) of the lexical entry. For example the verb paint may
be conceptualized as an event having an agent thematic role corresponding to the
subject syntactic argument, with a specified selectional restriction being the con-
cept animate. It is important to distinguish the syntactic information—such as the
lexical relations and the subcategorization frame constraining the complements to
have specific syntactic structures—from the semantic information—such as the
thematic roles and their selectional restrictions. A semantic lexical entry will spec-
ify the appropriate mappings between the syntactic structure of the lexeme and the
conceptual information.

The situation is, of course, a bit more complex, since, for example, there is
no direct obvious conceptual content to lexemes belonging to particular syntac-
tic categories like adjectives or adverbs. Moreover there is a distinction between
complements (which are considered as internal arguments) and adjuncts (which
are considered as modifiers). It is outside the scope of this chapter to analyze the
correspondence between syntax and semantics and its compositional nature (see,
e.g., [Jackendoff, 1990; Pustejovsky, 1988]).

For example, the sentence “A painter paints a fresco” involves the concepts
Painter, Fresco, and Paint, where the concept Paint has two thematic roles as-
sociated to it, an agent and a goal, with the concepts Animate and Inanimate as
respective selectional restrictions. Moreover, the conceptualizations should include
the facts that a Painter is a subconcept of Animate, a Fresco is a subconcept of
Inanimate, and the concepts Animate and Inanimate are disjoint. This information
is enough, for example, to validate the above sentence, while it would discard as
semantically implausible the sentence “A fresco paints a painter”. This conceptu-
alization and its relationship with the lexical knowledge can be encoded in a DL
knowledge base.

Many studies have been done about building a good DL knowledge base for nat-
ural language processing (also called ontology) [Bateman, 1990; Hovy and Knight,
1993; Knight and Luk, 1994; Bateman et al., 1995]—see also Chapter 14. A good
linguistically motivated ontology ought to be partitioned into a language-dependent
but domain-independent part (the upper model) and a language-independent but
domain-dependent part (the domain model)—but this result is theoretically very
hard to achieve [Bateman, 1990; Lang, 1991]. A good linguistically motivated
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ontology should be used both for semantic interpretation and for natural language
generation (see Section 15.4). The conceptualization in the ontology should be at a
level of granularity which may depend on the application: if selectional restrictions
are too specific, disambiguation is achieved, but probably many correct sentences
will be rejected (e.g., the sentences involving some form of metaphor, type shifting,
or metonymy); if selectional restrictions are too general, the opposite problem may
appear. In principle, a good linguistically motivated ontology should be abstract,
large-scale, reusable. However, these goals are very hard to achieve since they con-
flict with the practical need to implement effective and discriminating ontologies
in specialized domains.

The ideas just sketched form the theoretical background of any application
of Description Logics for semantic interpretation, since the early works where
Kl-One was involved [Bobrow and Webber, 1980; Sondheimer et al., 1984;
Brachman and Schmolze, 1985; Jacobs, 1991]. Every realized system relies on
the so-called multilevel semantics architecture [Lavelli et al., 1992], where a se-
quence of processing phases is distinguished:

� Lexical discrimination: whenever the parser tries to build a constituent, the consistency
of the semantic part of such a constituent is checked. In parallel, a first logical form is
built up—where references and quantifier scoping are still ambiguous—expressing the
meaning of the sentence in the most specialized way with respect to the semantic lexicon
and the background knowledge. Heuristics is applied to the minimal form in order to
obtain a preferential ordering of the semantically consistent but still lexically ambiguous
interpretations.

� Anaphora and quantifier scoping resolution: the semantically plausible referents for lin-
guistic expressions such as definite NPs, pronouns and deictic references are identified,
and the scope of quantifiers is resolved by making explicit the different unambiguous
interpretations. Syntax-based heuristics are used to cut down the various derivations to a
unique unambiguous one.

� Contextual interpretation: decides how to react in a given dialogic situation, considering
the type of request, the context, and the model of the user interest. It makes use of
knowledge about the speech acts, the dialog and the user model.

It has to be emphasized that all the approaches aim at deriving a unique un-
ambiguous logical form. For this purpose, the logical form is treated as a mere
compositionally obtained data structure on which to operate ad hoc algorithms for
solving ambiguities, with the support of the information represented in the knowl-
edge base. There is no attempt to give a logic-based semantics to the “logical form”
during the disambiguation phases. The role of Description Logics is thus limited to
serving a lexically motivated knowledge base, which is used for building the logical
form. Some approaches purport to represent the logical form itself as DL assertions,
but in fact they use it just as a support for somehow computing the real logical form.
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Section 15.3 will discuss the few DL-based well-founded approaches, where the
whole semantic interpretation process has been given a logical foundation.

A number of recent important projects involvingDescription Logics for semantic
interpretation are listed below.

� The Janus system [Weischedel, 1989], where the consistency check of the selectional
restrictions was implemented as a double up-and-down subsumption check.

� The Xtra system [Allgayer et al., 1989], proposing a clear distinction between the do-
main independent linguistically motivated part of the knowledge base (called Functional-
Semantic Structure, FSS), and the domain-dependent part (called Conceptual Knowledge
Base, CKB) modeling the knowledge of an underlying expert system.

� The Pracma project [Fehrer et al., 1994], in which an expressive Description Logic has
been studied to support special inferences such as probabilistic reasoning, non-monotonic
reasoning, and abductive reasoning.

� The Lilog project [Herzog and Rollinger, 1991], funded by IBM, a very ambitious
research project for studying the logical foundations of the semantics of natural language,
with an emphasis on computational aspects. The project belongs to the category of projects
where the whole semantic interpretation process has been given a logical foundation—by
means of a sorted first-order logic. However, the role of Description Logics is again just
as a knowledge server during the various interpretation and disambiguation phases.

� The AlFresco system, a multi-modal dialog prototype for the exploration of fourteenth
century Italian painters and frescoes [Stock et al., 1991; 1993], and the natural
language interface for the concierge of the system Maia, a mobile robot with intelligent
capabilitiesin the domain of office activities [Samek-Lodovici and Strapparava, 1990;
Lavelli et al., 1992; Franconi, 1994]. These systems are characterized by the presence of
natural language dialogs, so that logical form becomes central to conveying the meaning
for the evolving behavior of the system.

� The Verbmobil project [Wahlster, 2000], a large speech-to-speech translation project,
with translations in to German, English, and Japanese. In Verbmobil, the role of
Description Logics is limited to the off-line pre-computation of a taxonomy of concepts
with thematic roles and selectional restrictions, which are then used by ad hoc rules
during the runtime disambiguation phase.

� The Ford Direct Labor Management System (DLMS) [Rychtyckyj, 1996; 1999]
is one of the few industrial level examples of a DL-based application involving natural
language. DLMS utilizes a DL knowledge base in a fairly standard way to build the
semantic interpretation of process sheets—natural language documents containing
specific information about work instructions—and to generate from them structured
descriptions of the parts and the tools required for allocating labor at the car plant floor.

15.3 Reasoning with the logical form

Traditionally, the logical form has been considered in computational linguistics as
only representing the literal—i.e., context independent—meaning of an utterance,



15 Natural Language Processing 455

as clearly distinguished from the representation of the surface syntactic constituent
structure, and from a deeper semantic representation, which is a function of dis-
course context and world knowledge. Thus, the logical form plays in these cases
an intermediate role between syntax and the deep semantics, and it is therefore not
intended to fully contain the meaning in context of the utterance. Moreover, quite
often a further distinction is introduced between quasi logical forms—i.e., literal
under-specified semantic representations—and proper logical forms—i.e., literal
unambiguous derivations.

The reasons for separating the literal under-specified, the literal unambiguous,
and the deep meaning representations are mainly pragmatic rather than theoretical.
Pure linguists would say that any sentence has just one unambiguous meaning, and
that any ambiguity is introduced by under-constraining the interpretation process—
e.g., by not adequately considering the context knowledge. In such a case, they
would speak of different possible ending paths in the derivation (i.e., interpreta-
tion) process, each one of them being again unambiguous. Clearly, this approach is
infeasible from a computational point of view: first, because the number of deriva-
tions might combinatorially increase; and secondly because the interdependencies
among the derivations are lost.

On the other hand, computational linguists consider ambiguities as part of the
meaning of utterances, with the ultimate goal of being able to reason with such
under-specified expressions, in order to increase compactness in the representation
and efficiency in the processing. Allen [1993] argues that

. . . one of the crucial issues facing future natural language systems is the develop-
ment of knowledge representation formalisms that can effectively handle ambiguity.

We can identify twomain approaches. The classical computational approaches—
like the ones described above—rely on the modularity of the semantic analysis
process—the multilevel semantics architecture—starting from the under-specified
representation and ending up with an unambiguous and context-dependent rep-
resentation. The semantics-oriented approaches usually propose a very expressive
logical language—possiblywith an expressivity greater than first-order logic—with
the goal of giving a clear semantics tomanynatural language phenomena, and in par-
ticular to ambiguities andunder-specification.Ambiguities canbe roughly classified
as follows: lexical ambiguities introduced by, e.g., prepositions, nouns, and verbs;
structural ambiguities such as PP-attachment ambiguities—involving prepositional
phrases; referential ambiguities such as quantification scoping and anaphora.

A disadvantage of the first approach is that there are no solid formal grounds
for the proper use of the logical form, and in particular for the treatment of am-
biguity, so that operations on the logical form are often based on heuristics and
ad hoc procedures. This can be justified by the fact that reasoning on logical forms
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including—among other things—domain knowledge, incomplete and ambiguous
terms, unsolved references, and under-specified quantifications, is considered a
hard computational task. Computational linguists have devised structural process-
ing techniques based on syntax, selectional restrictions, case grammars, and struc-
tured information such as frames and type hierarchies—carefully trying to avoid
or to drastically reduce the inclusion in the computational machinery of logical
inference mechanisms for treating ambiguities. Of course, these techniques often
need ad hocmechanismswhen such ambiguities come into play. The computational
approach is an example of “knowledge representation as engineering”.

On the other hand, a number of recent works in applying Description Logics to
natural language processing ([Quantz, 1995; Franconi, 1996; Ludwig et al., 2000])
are getting closer to a semantics-oriented approach, but they follow a minimalist
conceptualization, and they emphasize the computational aspects. Instead of trying
to solve sophisticated semantic problems of natural language, they try to logically
reconstruct some basic issues in a general way, which is compositional, homoge-
neous, principled, and interesting from an applicative point of view. The main idea
of these approaches is to take logical forms seriously: they represent not only the
literal meaning of the fragment but also lexical ambiguities, represent unresolved
referents via variables and equality, interpret plural entities and (generalized) quan-
tifiers, and are linked to a rich theory of the domain. To that end, an expressive
logical language should have a proper reasoning mechanism, and nonetheless be
compositional.

In this section an abstract overview will be given by means of examples, in such
a way that, we believe, common ideas will be captured.

Let us first try to understand how a logical form can be characterized in terms
of proper logical constructs. It is observed that, assuming the widely accepted
Davidsonian view on eventualities, natural language phrases—such as a NP or a
VP—explicitly introduce discourse referents stating the existence of individuals or
events of the domain model. Introduced referents are represented as existentially
quantified variables. The possibility of having variables and constants allows for
the representation of referential ambiguities. This is the basis of most works on
logical formalizations of the logical form.

For example, the NP A fresco of Giotto might be given the logical form

∃b. Fresco(b) ∧ of(b,GIOTTO)

while the NP A fresco painted by Giotto might be given the logical form

∃b, e. Fresco(b) ∧ Paint(e) ∧ agent(e,GIOTTO) ∧ goal(e, b). (15.1)

As we have pointed out above, consistency checking of a (partial) logical form
corresponding to a constituent may help in the semantic discrimination process.
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Thus, in a restricted application domain, we would like to discard a sentence like
A fresco paints Giotto, since its logical form

∃b, e. Fresco(b) ∧ Paint(e) ∧ agent(e, b) ∧ goal(e,GIOTTO)

would be inconsistent with respect to a general domain theory of frescoes and
animate things that we could attach to the lexicon:

∀x, y. Paint(x)→ (agent(x, y)→ Animate(y))
∀x . Animate(x)→ ¬Inanimate(x)
∀x . Fresco(x)→ Inanimate(x).

Such an axiomatic theory plays the role of meaning postulates for the predicates
appearing in the logical form; they can be also considered as a set of predicate level
axioms. Using a DL-based formalism, this will be written as the following theory:

Paint 
 ∀agent.Animate

Animate 
 ¬Inanimate

Fresco 
 Inanimate.

This is the place where Description Logics play a formal role as general domain
theories representing the basic ontological properties of common-sense domain
knowledge.

Let us consider the deep meaning of A fresco of Giotto. The NP is ambiguous
(at least) with respect to the two readings A fresco painted by Giotto and A fresco
owned by Giotto. We could reformulate the ambiguous logical form, by enumer-
ating the unambiguous derivations, i.e., by disjoining the logical forms of the two
readings. However, it is infeasible to explicitly enumerate all the (exponentially
large) number of readings; moreover, this would not add any information to the
logical form. Note however that traditional computational approaches purport to
always find a unique unambiguous representation for the final logical form, based
on syntactically and contextually motivated heuristics; in this case, the enumeration
will be the basis for an ad hoc preferential ordering. If the logical form is written
instead as

∃b. Fresco(b) ∧ (paintedBy � ownedBy)(b,GIOTTO) (15.2)

then each of the two readings clearly entails this ambiguous (or, better, under-
specified) representation. Of course, the use of an explicit disjunction to encode
the ambiguity requires a particular treatment of the natural language negation,
which cannot be represented as a classical negation in the logical form. In fact,
derivations from the ambiguous content are independent traces and, for example,De
Morgan’s law would not hold anymore. The treatment of natural language negation
has never been considered in DL-based approaches. So, we assume the logical form
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to be always positive; of course, this is not necessary for the DL-based domain
theory.

In this way, the lexicon—which can be considered as an associated theory—may
contain a meaning postulate for the relation of:

∀x, y. of(x, y)↔ paintedBy(x, y) ∨ ownedBy(x, y)

which can be rewritten using Description Logics as

of ≡ paintedBy � ownedBy.

Moreover, if one writes reification axioms (see [Franconi and Rabito, 1994]) of the
kind

∀x, y. paintedBy(y, x)↔ ∃z. Paint(z) ∧ agent(z, x) ∧ goal(z, y)

then the logical form (15.1) with the explicit event also entails the ambiguous
representation (15.2). In Description Logics, this would be written as

paintedBy ≡ goal−|Paint ◦ agent.
The ambiguity of A fresco of Giotto can be monotonically refined later on in the
dialog by uttering, e.g., either Giotto painted the fresco in Siena or Giotto sold his
fresco. The refinement process is monotonic, since it is not necessary to revise the
knowledge asserted by means of the logical form (15.2).

Lexical ambiguities of nouns can also be represented, as in the example The
pilot was out—where pilot can be a small flame used to start a furnace, or a person
who flies airplanes. The sentence He was on the toilet monotonically refines the
previous one, because the pronoun hemay refer only to a person, thus excluding the
reading with flame. Of course, in order to make possible such a reasoning by cases,
axioms at the predicate level having negation and, more generally, partitioning
capabilities have to be added to the theory—specifying and reducing the possible
models:

Pilot ≡ Flame � Aviator

Flame 
 Process

Aviator 
 Human

Human 
 Animate

Animate � Process 
 ⊥.

Verb ambiguity is also captured in the same manner. For example, it is possible
to rule out the sentence The door opens the door, given the two senses of open
as “cause to open”—transitive, with an animate agent—and “become open”—
intransitive. According to these two senses, both the constituents “The door opens”
and “opens the door” are consistent, but the whole sentence is inconsistent.
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Talking briefly about structural ambiguities, a general theory of common-sense
knowledge will allow only for one interpretation of Giotto paints the fresco with
a brush where the PP attaches to the painting event—“paints with a brush”—
ruling out the interpretation “the fresco representing a brush”. An early detection
of the semantic inconsistency solving the PP-attachment problem is very important
in practical applications, since the non-deterministic choice among the different
interpretations is usually left to the parser. Thus, the parser does not need to compute
a combinatorial number of derivations. Clearly, any metaphoric aspect of language
is excluded in these approaches.

Following a semantics-oriented approach as sketched in this section,
Quantz [1993; 1995] proposes a preferential DL-based approach to disambigua-
tion in natural language processing. He gives a particular emphasis to the problem
of anaphora resolution, showing that an adequate disambiguation strategy has to
be based on factors which take globally into account heterogeneous information
(e.g., from syntax, semantics, domain knowledge) and yield preferenceswith vary-
ing degrees of relevance. For this purpose, Quantz introduced and developed a
sound and complete proof theory for a preferential Description Logic, including
a non-monotonic extension with weighted defaults. In his approach, a DL theory
comprises syntactic, semantic, domain, and pragmatic knowledge, which globally
contributes to the preferential disambiguation process, following the proposal by
[Hobbs et al., 1993].

Franconi [1996] proposes a formalism based on expressive Description Logics
complemented with the ability to express logical forms as conjunctive queries
[Calvanese et al., 1998a], i.e., formulae in the conjunctive existential fragment of
first-order logic. The formalism allows for both under-specified semantic repre-
sentations and encapsulation of contextual and domain knowledge in the form of
meaning postulates. In particular, lexical ambiguities, structural ambiguities, and
quantification scoping ambiguities [Franconi, 1993] are considered, and an ac-
count of the structure of events and processes in terms of tense and aspect is given
[Franconi et al., 1993; 1994]. It is shown how to apply this logic for lexical dis-
crimination based on semantic knowledge.

Ludwig et al. [2000] present a modified version of Discourse Representation
Theory (DRT) and show that its Discourse Representation Structures (DRSs) may
be expressed as assertional statements in a Description Logic. This allows lexical
discrimination during the parsing process based on the domain model. In order to
capture situations where the available information is insufficient to characterize the
meaning of an utterance, a partial logic (called first-order ionic logic) is introduced
to represent and reason with the logical form. The approach combines in an ele-
gant way linguistic and contextual semantics—both represented in the DL domain
model.
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15.4 Knowledge-based natural language generation

In the previous sections an architecture for semantic interpretation was introduced,
where Description Logics were used to build a knowledge base with lexical and
conceptual information. The knowledge base encodes the necessary data for build-
ing the logical form from the analysis of some natural language text. In this
section we mention another task which makes use of the same body of knowl-
edge expressed in a DL-based ontology, but with the dual goal of generating a
coherent (multi-sentential) natural language text, starting from an abstract non-
linguistic specification of its meaning. Examples are in the context of dialogs
(see, e.g., [Stock et al., 1991; 1993]), of natural language instructions (see, e.g.,
[Moore and Paris, 1993; Di Eugenio, 1994; 1998; Paris and Vander Linden, 1996a;
1996b]), of language translation (see, e.g., [Dorr, 1992; Dorr and Voss, 1993;
1995; Knight et al., 1995; Quantz and Schmitz, 1994; Wahlster, 2000]), or of
multimedia presentations (see, e.g., [Wahlster et al., 1993; André and Rist, 1995;
André et al., 1996]).

The lexical and conceptual knowledge base classifier is the main driving compo-
nent for the algorithms used to solve the problem of lexical choice, i.e., the task of
choosing an appropriate target language term in generating text from an underlying
logical form [Dorr et al., 1994; Stede, 1999]. The lexicalization problem is a non-
trivial one, since it is possible to have alternative lexical choices covering various
(overlapping) parts of the content representation—a translation divergence—or it
may be necessary to change the conveyed information content in order to find a
viable lexical choice—a translation mismatch. The problem is usually solved by
using ad hoc algorithms which make use of the classifier for determining which
lexical units can potentially be used to express parts of the logical form representing
the content.

The choice and the realization of the most appropriate verbalization should
be made in the context of the previous utterances (in the case of a dialog),
of the surrounding environment (in the case of multimedia presentation), and
of the overall goal of the ongoing communicative act. For these tasks, it is
not enough to have an underlying representation of the content of the text to
be generated, but a pragmatic aspect has to be considered as well. The prag-
matic knowledge about the rhetorical interrelationships which occur among the
various parts of the broader linguistic and extra-linguistic context of the com-
munication is needed to generate a coherent presentation in agreement with
its communicative goals. In other words, on the one hand there is the con-
tent to be presented, on the other hand there is the style of its presentation
which should use the most appropriate linguistic expressions to convey the
message.



15 Natural Language Processing 461

In order to generate a text satisfying the communicative goals and the coherence
requirements, a planning algorithm is used to generate an overall structured text
(or discourse) strategy, giving the general shape of the text. Using the lexical and
conceptual information in the knowledge base, the planner—by taking into account
the grammar of the target language—converts the text plans into a specialized
unambiguous representation of the semantic and syntactic information necessary
to select the appropriate target language terms [Moore and Paris, 1993; Paris and
Vander Linden, 1996b].
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Abstract

In contrast to the relatively complex information that can be expressed in DL
ABoxes (which we might call knowledge or information), databases and other
sources such as files, semistructured data, and the World Wide Web provide rather
simpler data, which must however be managed effectively. This chapter surveys
the major classes of application of Description Logics and their reasoning facil-
ities to the issues of data management, including: (i) expressing the conceptual
domain model/ontology of the data source, (ii) integrating multiple data sources,
and (iii) expressing and evaluating queries. In each case we utilize the standard
properties of Description Logics, such as the ability to express ontologies at a level
closer to that of human conceptualization (e.g., representing conceptual schemas),
determining consistency of descriptions (e.g., determining if a query or the inte-
gration of some schemas is consistent), and automatically classifying descriptions
that are definitions (e.g., queries are really definitions, so we can classify them and
determine subsumption between them).

16.1 Introduction

According to [ElMasri and Navathe, 1994], a database is a coherent collection
of related data, which have some “inherent meaning”. Databases are similar to
knowledge bases because they are usually used to maintain models of some
universe of discourse (UofD). Of course, the purpose of such computer mod-
els is to support end-users in finding out things about the world, and therefore
it is important to maintain an up-to-date and error-free model. The main differ-
ence between databases and knowledge bases is that while the former concen-
trate on manipulating large and persistent models of relatively simple data, the
latter provide more support for inference – finding answers about the model
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which had not been explicitly told to it – and involve fewer but more complex
data.

Following the functional view of knowledge bases advocated by Levesque, we
expect a number of operations that can be applied to the KB, such as define,
tell, and ask. Each of these operations involves one or more languages, such as
the schema/constraint language, the update language, the query language and the
answer language. In an earlier paper surveying the application ofDescriptionLogics
to data management [Borgida, 1995], it has been argued that Description Logics
offer advantages for each of these languages, as well as the internal processing of
queries.

We begin by providing a review of the important notions involving databases,
their development and use, in preparation for examining the application of Descrip-
tion Logics in these tasks.

First, one needs to describe the UofD about which the database will be knowl-
edgeable. This is a form of requirements specification, which is normally under-
taken using some high-level language, because the requirements will have to be
understandable both to end-users and implementors, so they can agree on the goals.
In databases, the best known such language is the Entity-Relationship (ER) data
model,1 but many other so-called semantic modeling languages have been pro-
posed [Hull and King, 1987]. The ER data model will be described in considerable
detail and precision in Section 16.2; for now, suffice it to say that it views the world
as populated by entities, which are related to each other by n-ary relationships,
and are described by attributes having atomic values. Note that a semantic model
may be concerned with the UofD as well as the data to be stored in the computer,
and consists of mostly time-invariant generic information (e.g., “every department
has exactly one manager”) as opposed to specific facts (e.g., “Edna manages the
shipping department”). The semantic model introduces the terms to be used in talk-
ing about the domain, and captures their meaning by their interrelationships and
constraints on them.

From this generic description of the UofD, the database designer develops a log-
ical schema, describing the structure of data stored in the database, including the
data types, interconnections, and constraints that must hold. Different data models
are used for this purpose, but the relational data model has become the logical
model of choice. While in the semantic modeling phase the emphasis was on a
natural and direct mapping to the UofD, in this case the driving force is the exis-
tence of large software systems called Database Management Systems (DBMSs),
which support the management of the data in the model. For example, the rela-
tional data model views data as being stored in the form of tables/relations, with

1 The term “data model” refers to a language or set of concepts for describing a class of databases.
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rows/tuples containing primitive data types (e.g., integers, strings). In this case, the
schema contains, among other things, the name of each table, with its columns and
their datatype. For example, table Supplies may have columns for the material, the
supplier, the recipient, as well as the shipment date and the amount of material
supplied. Relational DBMSs require that each table be given a subset of attributes
(called a “key”) which uniquely identifies each tuple. DBMSs may offer additional
ways to capture integrity constraints – assertions distinguishing valid from invalid
states of the data.

More recently,Object-Oriented DBMSs have been developed. These support the
management of persistent objects with intrinsic identity, which can be related to
(collections of) other objects, not just atomic values. Such OO-DBMSs can be
used, among other things, for providing persistence for object-oriented languages.
Object-oriented languages and databases also support the notion of “method” or
procedure attached to a class, as well as implementation encapsulation, but these
aspects will not be considered in this chapter.

The database is used of course to store facts about the (current) state of the
world. Databases make the so-called “closed world assumption”, which states
that a fact is false unless it has been explicitly stated as true. This assumption
works well, with the restriction that the database represents only a very lim-
ited form of partial information. In particular, databases do not allow the repre-
sentation of disjunctive information, and support only a very limited form of ex-
istential quantification: if there is no information about an attribute, it is given the
null value.

In order to provide access to the data stored in databases, DBMSs support a
variety of query languages – languages for specifying declaratively what data is
to be retrieved. For relational databases, SQL is the practical query language of
choice. However, from the theoretical point of view, first-order logic formulae with
free variables are a much more elegant form, based on the observation that tables
can be viewed as predicates. For example,

∃m, d1, d2. supplies(′intel′, r,m, d1) ∧ supplies(′intel′, r,m, d2) ∧ (d2 �= d1)

would be asking for recipients (values of the free variable r ) who had received from
′intel′ shipments of the same material (m) on different dates (d1, d2).

Query languages of varying expressive power can be obtained by restrict-
ing or extending the above “standard”. For example, the so-called “conjunctive”
or “select–join–project” queries only allow formulas with existential quantifiers
and conjunction, while Datalog is a query language that permits the use of
intermediate tables derived using Horn rules, and thereby supports recursion
[Ullman, 1988]. For example, if we want to describe when one company depends
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on another through a chain of suppliers, we could state the rules2

dependsOn(x, y) ← supplies(x, y,m, d).

dependsOn(x, y) ← supplies(x, z,m, d, a) ∧ dependsOn(z, y,m2, d2, a2).

In manyDBMSs, the result of a query is another structure of the kind found in the
schema (e.g., relational queries return tables as answers). In some situations, either
because a query is asked frequently or becausewewant to restrict the access of some
users to a subset of the database, a query can be named, in which case it is called a
view. If a view is materialized, then its value is stored rather than re-computed on
demand, and it is kept correct after every update to the basic database.

The DBMS performs a number of hidden functions, insulating users from
the considerable details of the physical level. For example, the DBMS places the
incoming data physically onto storage media, and provides data structures and
other information that permits efficient access to certain data at some later point
of time. In particular, given a query, the DBMS attempts to optimize the time
in which it is answered by looking at access structures available and statistical
information, and using the ability to reformulate queries into other, equivalent
ones.

Over time, additional, more complex kinds of databases and DBMSs have ap-
peared. For example, distributed databases keep information at a variety of sites
connected by networks (e.g., so that data might be closer to where it is used most
frequently). Note however that the user is unaware of this detail, and perceives a
single database. Heterogeneous and federated databases are collections of indepen-
dent databaseswhich choose to share information but aremaintained autonomously.
Users may even be interested in obtaining information from all kinds of sources,
including non-databases such as files, etc. In such situations, a significant problem
is relating the logical schemas at the various sites in order to provide a schema that
can be presented to the user. The rest of the chapter is devoted to showing a variety
of roles that Description Logics (and reasoning with them) can play in database
management. In particular, in Section 16.2 we take a detailed look at their use in
semantic/conceptual modeling. We then examine the possible uses of Description
Logics in querying and query processing in Section 16.3, while in Section 16.4
we will consider the utility of Description Logics in providing integrated access to
multiple information sources. We summarize the material in Section 16.5.

16.2 Data models and Description Logics

Recall that a “data model” is essentially a language or set of concepts for
describing a class of certain kinds of databases. This section attempts to answer

2 Variables appearing only on the right hand side of “→” are assumed to be existentially quantified.
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some questions about the relationship between data models and Description
Logics:

What are some examples of such relationships? First, we will consider in de-
tail the translation of Entity-Relationship models into knowledge bases ex-
pressed in theDLRDescriptionLogic. InSubsection16.2.5,wewill consider
more cursorily several other data models, such as OODB and semistructured
data.

How are relationships established? The answer is by (i) formalizing the data
model (ER in this case), (ii) choosing an appropriateDescriptionLogic (DLR
in this case), (iii) defining a translation function from the former to the latter,
and (iv) proving that this translation is “information-preserving” (not done
here, but detailed in [Calvanese et al., 1999e]).

What benefits can be derived from having established relationships? Most
significant is the use of automated DL reasoning services to support the
development and maintenance of correct models (Subsection 16.2.4). In
addition, since Description Logics are often more expressive, it is possible
to suggest extensions to database data models that allow further information
about the structure of the data to be captured (Subsection 16.2.3).

16.2.1 The Entity-Relationship model

In order to talk about the relationship between the Entity-Relationship (ER) model
and Description Logics, it is necessary first to introduce the reader to the ER data
model (see also Subsection 4.3.1 and Chapter 10). ER is the most widespread
semantic data model, and it has become a standard, extensively used in the design
phase of commercial applications. The ER model was introduced in [Chen, 1976],
with minor variants and extensions proposed over the years (e.g., [Teorey, 1989;
Batini et al., 1992; Thalheim, 1992; 1993]).

The basic elements of the ER model are entities, relationships, and attributes.
An entity set (or simply entity) denotes a set of objects, called its instances, that
have common properties. Elementary properties are modeled through attributes,
whose values belong to one of several pre-defined domains, such as Integer,
String, or Boolean. Properties that are due to relations to other entities are modeled
through the participation of the entity in relationships. A relationship set (or simply
relation) denotes a set of tuples (also called its instances), each of which repre-
sents an association among a different combination of instances of the entities that
participate in the relationship. Since each entity can participate in a relationship
more than once (e.g., a company can be the recipient or sender in a “supply” rela-
tionship), the notion of ER-role is introduced to represent such a participation,
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Fig. 16.1. Example of an ER schema.

and a distinguishing identifier within the relationship is assigned to it. The
arity of a relationship is the number of its ER-roles. We assume that, for each
relationship of arity n, the identifiers 1, . . . , n are assigned to the roles of the
relationship.

An entity B is said to be a specialization or IS-A of another entity A, if all the
instances of B are also instances of A. Relationships can be similarly related by
IS-A. This induces an inheritance of the attributes of an entity to its subentities, and
of the roles of a relationship to its subroles. The ER schema produced as a result of
ER modeling is usually represented in a graphical notation, which is particularly
useful for an easy visualization of the data dependencies. In the commonly accepted
notation, entities are represented as boxes, whereas relationships are represented
as diamonds. An attribute is shown as a circle attached to the entity for which
it is defined. ER-roles are graphically depicted by connecting the relationship
to the participating entities, and labeling the edges with the corresponding role
identifier. An IS-A relation between two entities is denoted by an arrow from the
more specific to the more general entity (analogously for IS-A relations between
two relationships). Cardinality constraints can be attached to an ER-role in order
to restrict the number of times each instance of an entity is allowed to participate
via that ER-role in instances of the relationship.

Such constraints can be used to specify both existence dependencies and func-
tionality of relations [Cosmadakis and Kanellakis, 1986]. They are often used only
in a restricted form, where the minimum cardinality is either 0 or 1 and the max-
imum cardinality is either 1 or ∞. Cardinality constraints in the form considered
here have already been introduced in [Abrial, 1974], and subsequently studied in
[Grant and Minker, 1984; Lenzerini and Nobili, 1990; Ferg, 1991; Ye et al., 1994;
Thalheim, 1992; Calvanese and Lenzerini, 1994b].

An example of an ER schema is reported in Figure 16.1. Such a schema mod-
els information, handled by an enterprise, about contracts between customers and
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departments for services, and about registration of customers at departments. Some
customers may be registered at “promotion departments”.

For the purpose of relating the ERmodel to Description Logics it is better to have
a more formal description, which also abstracts out the most important common
characteristics present in the different variants.

An ER schema S is constructed starting from pairwise disjoint sets of entity
symbols, relationship symbols, ER-role symbols, attribute symbols, and domain
symbols. Each domain symbol D has an associated predefined basic domain DBD ,
and we assume the basic domains to be pairwise disjoint. For each entity symbol, a
set of attribute symbols is defined, and to each such attribute a uniquedomain symbol
is associated. A relationship symbol of arity n has n associated ER-role symbols,
each with an associated entity symbol, and defines a relationship between these
entities.We assume that each ER-role symbol belongs to a unique relationship, thus
determining also a unique entity. The cardinality constraints are represented by two
functions cminS , from ER-role symbols to nonnegative integers, and cmaxS , from
ER-role symbols to positive integers union the special symbol ∞. IS-A relations
between entities and between relationships are modeled by means of a binary
relation  S . We do not need to make any special assumption on the form of  S ,
such as acyclicity or injectivity.

The semantics of an ER schema can be given by specifying which database states
are consistent with the information structure represented by the schema. Formally,
a database state B corresponding to an ER schema S is constituted by a nonempty
finite set �B, assumed to be disjoint from all basic domains, and a function ·B that
maps

� every domain symbol D to the corresponding basic domain DBD ,
� every entity E to a subset EB of �B,
� every attribute A to a set AB ⊆ �B ×⋃

D∈DS D
BD , and

� every relationship R to a set RB of labeled tuples over �B.

A labeled tuple over a domain �B is a function from a set of ER-roles to �B.
The labeled tuple T that maps ER-role Ui to oi , for i ∈ {1, . . . , n}, is denoted
〈U1: o1, . . . ,Un: on〉. We also write T [Ui ] to denote oi , and call it theUi-component
of T . The elements of EB, AB, and RB are called instances of E , A, and R respec-
tively.

A database state is considered acceptable if it satisfies all integrity constraints
that are part of the schema. This is captured by the notion of legal database state.
A database state B is legal for an ER schema S, if it satisfies the following condi-
tions:

� For each pair of entities E1, E2 with E1  S E2, we have EB1 ⊆ EB2 .
� For each pair of relationships R1, R2 with R1  S R2, we have RB1 ⊆ RB2 .
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� For each entity E , if E has an attribute A with domain D, then for each instance e ∈ EB
there is exactly one element a ∈ AB with e as first component, and the second component
of a is an element of DBD .

� For each relationship R of arity n between entities E1, . . . , En , to which R is con-
nected by means of ER-roles U1, . . . ,Un respectively, all instances of R are of the form
〈U1: e1, . . . ,Un: en〉, where ei ∈ EBi , i ∈ {1, . . . , n}.

� For each ER-role U of relationship R associated with entity E , and for each instance e
of E , we have

cminS (U ) ≤ |{r ∈ RB | r [U ] = e}| ≤ cmaxS (U ).

16.2.2 Transforming Entity-Relationship schemas
into DLR knowledge bases

In order to represent ER schemas in terms of DL knowledge bases, we make use
of the Description Logic DLR, which has been formally introduced in Chapter 5.
We recall here the syntax ofDLR, which is a natural generalization of Description
Logics to n-ary relations: in particular, atomic relations, of given arity between 2
and nmax , belong to the basic elements ofDLR, and, besides concept expressions,
arbitrary relation expressions can be formed, according to the following syntax:

R := �n | P | ($i/n:C) | ¬R | R1 � R2

C := �1 | A | ¬C | C1 � C2 | ∃[$i]R | � k [$i]R

where P and R denote respectively atomic and arbitrary relations, i denotes com-
ponents of relations, i.e., integers between 1 and nmax , n denotes the arity of a
relation, i.e., an integer between 2 and nmax , and k denotes a nonnegative integer. In
what follows, we abbreviate ($i/n:C) by ($i :C) when n is clear from the context.
Moreover, we use the following abbreviations:

∀[$i]R for ¬∃[$i]¬R,

� (k + 1) [$i]R for ¬(� k [$i]R),

= k [$i]R for (� (k + 1) [$i]R) � (� k [$i]R).

In DLR, n-ary relations are interpreted as sets of tuples of arity n, and the DLR
constructs generalize those of traditional Description Logics. In particular, besides
the Boolean constructs on concepts and relations, the construct ($i/n:C) denotes
all tuples of arity n in which the i th component is an instance of concept C , and
thus represents a unary selection. The construct ∃[$i]R denotes all objects that
participate as the i th component in a tuple of relation R, and thus represents a
unary projection. Finally � k [$i]R is a generalization of number restrictions to
n-ary relations. We refer to Chapter 5, Section 5.7, for the formal semantics of the
DLR constructs.
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We now show that the semantics of the ER model can be captured in DLR by
defining a translation φ from ER schemas to DLR knowledge bases, and then
establishing a correspondence between legal database states and models of the
derived knowledge base. In the following, for each relationship R of arity n in S,
we denote by µR a mapping from the set of ER-roles associated with R to the
integers 1, . . . , n.

The knowledge base φ(S) derived from an ER schema S is defined as follows:

� The set of atomic concepts of φ(S) consists of the set of entity and domain symbols in
S.3

� The set of atomic relations of φ(S) is obtained from the set of relationship and attribute
symbols in S. More specifically:
– each symbol R in S, denoting a relation of arity n, is mapped into a symbol PR in φ(S),

denoting a relation of arity n.
– each attribute symbol A in S is mapped into a symbol PA in φ(S), denoting a relation

of arity 2. Thus, each instance of the relation PA is a tuple such that its first component
corresponds to an entity, while the second component denotes an element of the concept
corresponding to the attribute domain.

� The set of inclusion axioms of φ(S) consists of the following elements:
– for each pair of entities E1, E2 such that E1  S E2, the inclusion axiom

E1 
 E2

– for each pair of relationships R1, R2 such that R1  S R2, the inclusion axiom

PR1 
 PR2

– for each attribute A with domain D of an entity E , the inclusion axiom

E 
 (∀[$1](PA � ($2: D))) � = 1 [$1]PA

– for each relationship R of arity n with ER-roles U1, . . . ,Un in which each Ui is asso-
ciated with the entity Ei , the inclusion axiom

PR 
 ($µR(U1): E1) � · · · � ($µR(Un): En)

– for each ER-role U of relationship R associated with entity E , with cardinality con-
straints m = cminS (U ) and n = cmaxS (U ),
❜ if m �= 0, the inclusion axiom

E 
 �m [$µR(U )]PR
❜ if n �= ∞, the inclusion axiom

E 
 � n [$µR(U )]PR .

Based on the results presented in [Calvanese et al., 1999e], the correctness of
the translation presented above can be formally proved. More specifically; let S be

3 For the sake of simplicity, we model domains of ER schemas as concepts in DLR.
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an ER schema. Then, there is a one-to-one correspondence between legal database
states of S and models of the DLR knowledge base φ(S). For example, an entity
E can be populated in a legal database state for S if and only if φ(S) admits a
model in which E has a nonempty extension. This allows us to exploit reasoning
techniques developed for the logic DLR in order to reason on ER schemas.

For example, by applying the translation presented above to the ER schema in
Figure 16.1, presented earlier, we obtain the following DLR knowledge base:

CONTRACT 
 ($1:Client) � ($2:Service) � ($3:Department)

REG−AT 
 ($1:Client) � ($2:Department)

PROMOTION 
 REG−AT � ($2:PrDept)

Department 
 ∀[$1](LOCATION � ($2:String)) � = 1 [$1]LOCATION

PrDept 
 Department.

16.2.3 Additions to the Entity-Relationship model

The ER model does not provide several features which would prove useful in order
to represent complex dependencies between data. On the other hand, the richness
of constructs that is typical of Description Logics, and the correspondence between
the two formalisms established in the previous subsection, makes it possible to
add such constructs to the basic model and take them fully into account when
reasoning on a schema. We provide several examples of useful additions to the
basic ER Model that arise as a natural consequence of the correspondence with the
Description Logic DLR. We also consider a feature of the original ER Model that
appears to force DLR itself to be extended.

� Arbitrary Boolean constructs on entities. The only direct relationship between entities
that can be expressed in the basic ER model is the IS-A relation. A common extension is
by so-called generalization hierarchies (see e.g., [Batini et al., 1992]), which allow one
to express that the extension of an entity should be the disjoint union of the extensions
of other entities. Such construct can easily be translated by making use of union and
negation of DLR.

� Refinement of properties along an IS-Ahierarchy.Another important extension that should
be considered is the ability to specify more complex forms of refinement of properties
of entities along IS-A hierarchies, than the mere addition of attributes. This is already
an essential feature of the more recent object-oriented models. In particular, cardinality
constraints could be refined by restricting the range of values, and the participation in
relationships can be restricted. One may require for specific instances of an entity that
the objects they are related to via a certain relationship belong to a more specific entity
than the one directly associated to the ER-role. Such forms of constraints can be naturally
expressed in DLR by making use of universal quantification over relations.
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� Definitions of classes by means of complex properties. In the ER model (and more gener-
ally in semantic data models) one can specify only necessary conditions that the instances
of entities (or more generally classes) must satisfy. This means that in a database that
conforms to the schema one cannot deduce that a certain object is an instance of an
entity unless this fact is explicitly stated. When modeling a complex domain, however,
in order to capture more precisely the intended semantics, one would like to be able to
define classes of objects through necessary and sufficient conditions, or even to state just
sufficient conditions for an object to be an instance of a class. The former correspond in
fact to views, which are important parts of database schemas. By using the different types
of axioms of DLR, necessary and sufficient (and even just sufficient) conditions can be
easily imposed and become part of the schema.

� Key constraints. Because of their utility in physical database design, even the original
ER model allowed the specification of key attributes/roles. Extending Description Logics
with key constraints (roles which uniquely identify objects) has been the subject of several
investigations [Borgida and Weddell, 1997]. In particular, Calvanese et al. [2000b] have
shown that reasoning aboutDLR augmented by key constraints can be performedwithout
increasing the worst-case computational complexity.

� Temporal constraints. Recent efforts in the conceptual modeling community have been
devoted to properly capturing time-varying information, and several proposals of tem-
porally enhanced Entity-Relationship (ER) exist. [Artale and Franconi, 1999; 2001;
Artale et al., 2001] provide a DL-based logical formalization of the various properties
that characterize and extend different temporal ER models which are found in literature.
In particular, [Artale et al., 2001] define the Description Logic DLRUS , an extension of
DLR with temporal constructs, and study decidability and complexity of reasoning in
such a logic.

16.2.4 Reasoning about Entity-Relationship schemas

Providing a formalization of the ER schema in terms of the logic DLR allows
several forms of reasoning on the ER schema to be supported. Typical reasoning
tasks at the conceptual level supporting the designer of an ER schema S (see
[Calvanese et al., 1998e]) include:

� Entity satisfiability, i.e., whether for every concept C , S admits a model in which it
has a nonempty extension. If C must always have an empty extension then there is an
inconsistency in its specification, or at the very least the concept is inappropriately named
since it is a synonym for “EmptyEntity”.

� Relation satisfiability, i.e., whether S admits a model in which a certain relation has a
nonempty extension. (Similar to the above.)

� Consistency of the ER schema, i.e., whether S admits a finite model. Without this, there
is no database that satisfies the schema, which indicates that the totality of the defini-
tions is inconsistent or requires an infinite model, which is a clear sign of incorrectness.
Ideally, the reasoning systemcouldprovide explanations [McGuinness andBorgida, 1995;
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Borgida et al., 2000] for the source of inconsistencies, which could focus the search for
modifications.

� Redundancy of the ER schema. Various forms of redundancy in the ER schema can be
detected: e.g., if A, B are entities and both A 
 B and B 
 A hold, we can conclude that
one of the entities is redundant.

� Stronger constraints on relationship roles. The concept and relationship specifications
may combine to yield stronger cardinality or domain constraints than those explicitly
specified by the designer. (The simplest example is when we permit (multiple) inheri-
tance.)

� Entity subsumption, i.e.,whether the extensionof one concept B is a subset of the extension
of another concept A in every model of S. This property suggests that the designer check
for the possible omission of an explicit IS-A relationship between B and A. Alternatively,
if conceptually all B’s are not supposed to be A’s, then something is wrong in the rest of
the schema, since it is forcing an undesired conclusion.

� Relation subsumption, i.e., whether the extension of one relation is a subset of the exten-
sion of another relation in every model of S. (Similar to the above.)

Ideas such as the ones above have been been pursued, for example, within the
DWQ European Project [Bouzeghoub et al., 1999], where the DL system Fact
[Horrocks, 1998b] has been successfully used as reasoning tool supporting the
analysis and the integration of diverse database conceptual schemas [Franconi and
Ng, 2000].

16.2.5 Description Logics and other data models

Several other investigations have been carried out on the relationships between
Description Logics and database models:

� [Bergamaschi and Nebel, 1994; Artale et al., 1996a; Calvanese et al., 1999e] provide
formal models of object-oriented DBMSs using Description Logics.

� [Borgida et al., 1989; Beck et al., 1989; Bergamaschi and Sartori, 1992] introduce se-
mantic data models based directly on Description Logics, which are different from ER
and previous database semantic data models.

� More generally, class-based knowledge representation schemes, such as semantic net-
works, conceptual structures and frames [Lehmann, 1992; Sowa, 1991] have been con-
sidered as database models, or as ways to enrich the deductive capabilities of data models.
These are related to Description Logics as suggested in Chapter 4.

A recent important development in the field of data management has been the
need to represent data whose structure is less rigid and strict than that held in con-
ventional databases. Such semistructured data are important in many application
areas, such as web information systems, biological databases, and digital libraries.
Semistructured data is neither raw text, nor strictly typed as in conventional database
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systems [Abiteboul, 1997]. In many recent formalisms, semistructured data is mod-
eled by graphs with labeled edges, where the label keeps information on both the
values and the schema of the data. Many authors have noticed that this model co-
incides with the ontology of Description Logics, where roles correspond to edges.
In [Calvanese et al., 1998c] it is shown that expressive Description Logics can not
only capture semistructured data schemas, but can also add the ability to express
several new kinds of constraints. The same kind of investigation has been carried
out in [Calvanese et al., 1999d] for the case of the XML language, which is cur-
rently a very popular formalism for semistructured data on the web (see Chapter 4,
Subsection 4.3.3 for more details).

16.3 Description Logics and database querying

We have seen that descriptions can be used to present the schema of a database. For
example, to emulate object-oriented databases, classes are equated with primitive
concepts, while type restrictions on attributes are presented as necessary conditions
that apply to these primitive classes in the form of role restrictions. In addition,
certain integrity constraints can be expressed as rules of the form “if C then D”, or
axioms C 
 D. On the other hand, since a concept description provides necessary
and sufficient conditions for objects to satisfy it, it is natural to treat it as a query.
So, in systems likeClassic [Borgida et al., 1989] andCandide [Beck et al., 1989],
we have a unification of two traditionally distinct languages: the data definition and
data manipulation languages.

16.3.1 Description Logics as query languages

Once the query is viewed as a concept description, we can perform the standard
operations on it. For example, the query description can be compared to the in-
consistent description. If they are equivalent, this is almost surely a mistake on the
part of the user – who would want to ask a query that never returns an object?
The most likely reason for this is that the person asking the query is unfamiliar
with the application domain. Since the query can be quite complex, and the schema
quite large, a really helpful system would then assist the user in understanding the
problem by isolating the specific parts of the query and of the schema that are
responsible for the contradiction. Such a tool can be built on top of explanation
facilities available for certain Description Logics [McGuinness and Borgida, 1995;
Borgida et al., 2000].

More generally, in situations where the query returns no individuals in the cur-
rent database, it has been argued that the query is “not interesting”, and should
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be generalized until a non-empty answer set is returned. As suggested by Anwar
et al. [1992], this relaxation can be performed using the semilattice of descrip-
tions provided by the subsumption relationship, which can guide the systematic
weakening of terms in the query.

The query can be classified with respect to the concepts in the schema. This can
be used to help users pose queries in an unfamiliar domain, as follows: if the answer
set contains unwanted values, the immediate subsumers and subsumees of the query
reveal other potentially relevant concepts (and, through subsumption assertions in
the schema, roles as well) which the user may want to use for restricting the query.
The result is a process of query specification by iterative refinement introduced by
Tou et al. [1982].

Queries can also be classified with respect to each other into a subsumption
hierarchy. In an environment where several people are asking exploratory questions
about the data over a long period of time (e.g., data mining by humans), it is very
useful to have the questions organized so that the results of previous related queries
can be reviewed [Brachman et al., 1992]. This prevents duplication of effort and,
again, helps the user to pose queries that are more precise.

Unfortunately, in exchange for a more expressive description of the schema,
Description Logics pay the price of a weaker query language than usual: queries
can only return subsets of existing objects, rather than creating new objects (as in
standard SQL databases); furthermore, the selection conditions are rather limited.
In fact, it has been shown [Borgida, 1996] that even themost expressive Description
Logics discussed in the literature until recently, could only express a variant of the
“3-variable” subset of formulae of first-order logic – i.e., formulae that only use 3
variables, although allowing numeric quantifiers, like “exists at least n”.

Given the expressive limitations of DL concepts alone as queries, it is reasonable
to consider extending standard queries (in Datalog) with Description Logics. Two
different approaches have been pursued: In one, inspired by the work of Aı̈t-Kaci
and Nasr [1986] on Login, and exemplified by the AL-log language [Donini
et al., 1998b], descriptions are used essentially as type constraints on variables
appearing in Horn clauses. In this case, a crucial condition is that concept and
role names form a disjoint set from the relations used in expressing rules. The
second approach, exemplified by the Carin language [Levy and Rousset, 1996;
1998], treats concepts and roles as ordinary unary and binary predicates that can
also appear in query atoms. This is significant because it allows for the first time
conjunctive queries to be expressed over DL databases/Aboxes.

A second important distinction is between recursive and non-recursive Datalog
queries. For the non-recursive case (which covers a large portion of practically
useful queries), it seems possible to combine some expressive decidableDescription
Logics with Datalog, while keeping query answering and even reasoning on queries
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decidable (see Section 16.4). For the recursive case, undecidability arises sooner,
but some studies have identified suitable restrictions on the DL language and/or on
the form of Datalog rules, for preserving decidability of query answering.

Consider first AL-log. In the rule

happy(x) ← marriedTo(x, y) ∧ employedBy(y, z)
& Person(x) ∧ Person(y) ∧ StartUp(z)

the tests after the ampersand & are for concept membership, while those before it
are for n-ary relations, as in relational databases. The processing of such queries
is complicated by the fact that the DL “type database” may contain disjunction or
be otherwise incomplete. Instead of the standard answers, one gets a “conditional
result”, with a side condition c describing necessary DL constraints on the variables
in the query. For example, for the above query one might get as answer

happy(ANNA) if Person(ANNA)

in a database containing

marriedTo(ANNA, JOE), employedBy(JOE, IBM),Person(JOE),StartUp(IBM).

Donini et al. [1998b] establish that answering queries in recursive AL-log is
decidable in the case when the Description Logic used is ALC. The framework of
AL-log is further extended in [Rosati, 1999] to the case of disjunctive Datalog,
i.e., Datalog with negation as failure in rule bodies and disjunction in the head of
rules.

TheCarin approach ismore general, but this increase in expressive power comes
at a price: for general Datalog rules, the query answering problem is now undecid-
able as soon as one allows ∀R.C or � n R as concept constructors. (These appear in
most Description Logics.) However, if Datalog rules are restricted to avoid recur-
sion, then query answering is decidable even for the ALCNR Description Logic.
Numerous other results circumscribing the cases when query processing is decid-
able may be found in [Levy and Rousset, 1998].

16.3.2 Query optimization

In the case when queries can be classified (as when they are descriptions or when
the query implication problem is decidable), classification of queries has been
proposed as a technique for query processing and optimization. In [Beck et al.,
1989], queries are classified with respect to schema concepts; if the query concept
Q is classified below concept C , then only instances of C need to be checked
whether they satisfy the full query. Of course, in this classification process one uses
the axioms describing the schema of the database.
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If the answers to previous queries are cached, then the query concepts can be left
in the classification hierarchy, together with the other concepts in the schema. The
result is a simple form of the query optimization technique known as “query an-
swering using cached views”: find the most specific views V that subsume the
query Q; check only the individual instances of V (which, recall, are locally
available) to see if they satisfy the query. Potentially, this could provide con-
siderable savings, especially when gathering information from multiple sites, for
example.

Buchheit et al. [1994b] elaborate on this by using a more powerful query lan-
guage. In particular, in order to achieve the expressiveness of full first-order logic,
expressing a query is viewed as a two-phase process: as much of the query as pos-
sible is written in the “query Description Logic” (yielding the so-called “structural
part”), and the remainder of the query is written as a constraint in a first-order logic
notation (yielding the so-called “dirty part”). For example, the following query asks
for students whose advisor is the same as their committee chair and at least 5 years
older than the student:

QueryClass QueryStudent isa Student with
derived
I1 : advisor: Prof
I2 : committee.(chair: Thing)

where I1= I2 constraint forall s/QueryStudent (s.age + 5 < s.advisor.age).

In this case, assuming that cached views have only structural conditions, the
query is classified using only its own structural conditions. Thereafter, only
the instances of the view are tested using both the structural and dirty parts of
the query.

Finally, Bergamaschi et al. [1997] have investigated the use ofDescriptionLogics
in optimizing query evaluation in object-oriented DBMSs by eliminating redundant
terms. This is accomplished by first expanding the query as much as possible using
the information in the schema; for example, subsumption is used to test when the
antecedent of a rule can be applied to the query (subsumes it) so that its consequent
can be added to it. By repeatedly applying this process, an expanded query is
obtained. Then, all the query subterms that subsume the rest of the query (and
are therefore redundant) are eliminated one by one. The result is a semantically
equivalent description/query which may be more concise than the original one;
hence it may have fewer tests to evaluate. Furthermore, the new expanded query
may be classified further down the pre-existing class/view hierarchy, providing
more efficient query evaluation, using the query classification technique described
earlier. These are forms of so-called “semantic query optimization”.
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An issue related to efficient processing of large numbers of individuals is the
situation where the user needs to query the conceptual model for DL instances,
while the data is presented in a relational database, say. In other words, we need
to obtain the proper ABox instances of the DL query (which involves concepts
and roles) from the database. The main problem is that processing hundreds of
thousands of individuals is not feasible with DL technology because in each case
we try to perform complex inferences. However, most of the data in the database is
very straightforward, and the corresponding individuals do not generate new infer-
ences. The solution proposed in [Borgida and Brachman, 1993] is to associate with
the primitive concepts (resp. roles) of the DL knowledge base unary (resp. binary)
view tables defined over the DBMS. One can then automatically translate complex
descriptions into complex SQL queries over these views. The important effect is
that one gets the full benefit of DBMS optimization for the SQL query, and if only
a few values satisfy the query, then only a few DL individuals need to be created.
For example, for a primitive DL class Student, we might take the values appearing
in the enrollee column of relational table Enrollment R, and use this subset of the
Person R table to generate appropriate individuals in a special view Student R,
which has only one column. (The generation of unique identifiers for these indi-
viduals is in itself a research issue.) Similarly, for example, one would generate a
two-column view visitor R corresponding to the role visitor. Complex descriptions
over Student and visitor are then translated algorithmically into SQL queries over
the corresponding views. Additional optimizations turn out to be necessary to deal
properly with multiple queries and functional roles [Borgida and Brachman, 1993].

16.4 Data integration

Integrating different data sources is one of the fundamental problems faced in the
last decades by the database community [Batini et al., 1986]. Generally speaking,
the goal of a data integration system is to provide a uniform interface to various data
sources [Levy, 2000], so as to enable users to focus on specifying what they want.
As a result, the data integration system frees the users from tasks such as finding
the relevant data sources, interacting with each source in isolation, and selecting,
cleaning, and combining data from multiple sources.

The design of a data integration system is a very complex task, which comprises
several different aspects. Our goal in this section is to discuss the use of Description
Logics in two important aspects, namely:

� The specification of the content of the various data sources.
� The process of computing the answer to queries posed to the data integration system,
based on the specification of the sources.
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16.4.1 Specifying the content of data sources

The typical architecture of a data integration system allows one to explicitly model
data and information needs – i.e., a specification of the data that the system provides
to the user – at various levels:

� The conceptual level contains a conceptual representation of the sources and of the rec-
onciled integrated data, together with an explicit declarative account of the relationships
among their components.

� The logical level contains a representation of the sources in terms of a logical data model.

The conceptual level As we have seen before, the conceptual level contains a
formal description of the concepts, the relationships between concepts, and the
information requirements that the integration application has to deal with. The
key feature of this level is that such a description is independent of any system
consideration, and is oriented towards the goal of expressing the semantics of the
application. In particular, we distinguish among the following elements:

� The Enterprise Conceptual Schema is a representation of the global concepts and rela-
tionships that are of interest to the application. It corresponds roughly to the notion of
global conceptual schema in the traditional approaches to schema integration and to the
notion of world view, as introduced in [Levy et al., 1995; Kirk et al., 1995].

� For an information source S, the Source Conceptual Schema of S is a conceptual repre-
sentation of the data residing in S.

� The term Domain Conceptual Schema is used to denote the union of both the Enterprise
Conceptual Schema and the various Source Conceptual Schemas, plus possible inter-
schema relationships [Catarci and Lenzerini, 1993].

We have seen in Section 16.2 that Description Logics are very well suited for
data modeling at the conceptual level, so it comes as no surprise that Description
Logics have also been used in data integration projects to represent Source and
Enterprise Conceptual Schemas [Catarci and Lenzerini, 1993; Arens et al., 1993;
1996;Levy et al., 1995;Goasdoue et al., 2000]. In this section, following [Calvanese
et al., 1998e], we will continue to use theDLRDL for specifying these conceptual
schemas.

As stated above, the Domain Conceptual Schema contains inter-schema rela-
tionships. In particular, since the sources are of interest in the system, integration
does not simply mean producing the Enterprise Conceptual Schema, but rather
being able to establish the correct interdependencies both between the Source Con-
ceptual Schemas and the Enterprise Conceptual Schema, and between the various
Source Conceptual Schemas.

To specify inter-schema relationships, we make use of the special kinds of
assertions available inDL reasoning. In particular, following [Catarci andLenzerini,
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1993], one can use assertions of the following forms:

Li 
ext L j
Li 
int L j

where Li and L j are expressions of different schemas. In particular, Li and L j
are either two relation expressions of the same arity, or two concept expressions.
Intuitively, the first assertion states that Li is extensionally included in L j , which
means that every object that satisfies the expression Li in source i also satisfies the
expression L j in source j . For example, if the designer knows that the set of students
stored in source 1 is a subset of those stored in source 2, then this knowledge is
captured by the inter-schema assertion

Student1 
ext Student2.

The second assertion states that the concept denoted by the expression Li in
source i is a subconcept of the one denoted by the expression L j in source j ,
which means that every object in source i satisfying Li also satisfies L j in source
j , provided that it does appear in source j . For example, if the designer knows that
the concept of student in source 1 is a subconcept of person in source 2, then s/he
can use the inter-schema assertion

Student1 
int Person2.

It is worth noting that the possibility of reasoning about DLR schemas allows
sophisticated forms of reasoning on inter-schema assertions, e.g., for inferring those
extensional relationships between concepts that are implied by the knowledge on
the intensional interdependencies. More details about these forms of reasoning can
be found in [Catarci and Lenzerini, 1993; Calvanese et al., 1998e].

The logical level The logical level provides a description of the logical content
of each source, called the Source Schema. Typically, a Source Schema is provided
in terms of a set of relations using the relational logical model of data. So-called
wrappers can be used to hide how the source actually stores its data, the data model
it adopts, etc., and present the source as a set of relations.

The link between the logical representation of a source and the Domain Concep-
tual Schema can be specified in two different ways.

� According to the so-called global-as-view approach, a query over the source relations
is associated to each concept in the Domain Conceptual Schema. Every such concept is
thus seen as a view over the sources.

� In the alternative local-as-view approach, one associates with each source relation a query
that describes its content in terms of the Domain Conceptual Schema. In other words,
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the logical content of a source relation is described in terms of a view over the Domain
Conceptual Schema.

In [Levy, 2000], it is argued that the local-as-view approach has several advantages,
and we will follow this approach in the rest of the chapter.

To describe the content of the sources through views, one needs a notion of query
such as the union of conjunctive queries over the Domain Conceptual Schema.
Specifically, a source relation is described in terms of a query of the form

q(5x) ← conj1(5x, 5y1) ∨ · · · ∨ conjm(5x, 5ym)
where:

� The head q(5x) defines the schema of the relation in terms of a name, and the number of
columns.

� The body describes the content of the relation in terms of theDomain Conceptual Schema.

In [Calvanese et al., 2001c], conji (5x, 5yi ) is a conjunction of atoms, and 5x, 5yi are
all the variables appearing in the conjunct (we use 5x to denote a tuple of variables
x1, . . . , xn , for some n). Each atom is of the form E(t), R(5t), or A(t, t ′), where 5t, t ,
and t ′ are variables in 5x, 5yi or constants, and E , R, and A are respectively entities,
relationships, and attributes appearing in the Domain Conceptual Schema.

The semantics of queries is as follows. Given a database that satisfies the Do-
main Conceptual Schema, a query q of arity n is interpreted as the set of n-tuples
(d1, . . . , dn), with each di an object of the database, such that, when substituting
each di for xi , the formula

∃5y1.conj1(5x, 5y1) ∨ · · · ∨ ∃5ym .conjm(5x, 5ym)
evaluates to true.

Analogously to the case of the conceptual level, it is interesting to perform several
reasoning tasks on the DL representation of the sources, for example for inferring
redundancies and/or inconsistencies among data stored in different sources. Since
queries that include atoms from the Conceptual Schema are more expressive, new
algorithms are required to answer the following problems:

� Query containment. Given two queries q1 and q2 (of the same arity n), check whether
q1 is contained in q2, i.e., check whether the set of tuples denoted by q1 is contained
in the set of tuples denoted by q2 in every database satisfying the Conceptual Schema.
Papers that contain results relating to this question include [Levy and Rousset, 1998;
Calvanese et al., 1998a; Goasdoue and Rousset, 2000].

� Query consistency. Check whether a query q over the Conceptual Schema is consistent,
i.e., check whether there exists a database satisfying the Conceptual Schema in which the
set of tuples denoted by q is not empty.



482 A. Borgida, M. Lenzerini, and R. Rosati

� Query disjointness. Check whether two queries q1 and q2 (of the same arity) over the
Conceptual Schema are disjoint, i.e., check whether the intersection of the set of tuples
denoted by q1 and the set of tuples denoted by q2 is empty, in every database satisfying
the Conceptual Schema.

16.4.2 Query answering

Theultimate goal of a data integration system is to allow the user to pose queries over
the global view, and to answer the queries by accessing the sources in a transparent
way. The mechanism for answering queries differs depending on the approach
adopted for specifying the sources. The possibility of reasoning about queries can
provide useful support in both the global-as-view and the local-as-view approaches.
As in the previous subsection, here we focus on the local-as-view approach, that is
the one in which query answering is most complex.

In the local-as-view approach, relations at the sources are modeled as views
over the virtual database represented by the Domain Conceptual Schema. Since the
database is virtual, in order to answer a query Q formulated over the Domain Con-
ceptual Schema, we can only use the source views. In other words, query processing
cannot simply be done by looking at a set of relations, as in traditional databases,
but requires reasoning on both the form of the query, and the content of the source
views. This motivates the idea that query answering in data integration becomes the
problem of view-based query processing. There are two approaches to view-based
query processing, called query rewriting and query answering, respectively.

In the former approach, we are given a query Q and a set of view definitions, and
the goal is to reformulate the query into an equivalent expression that refers only
to the views available, and provides the answer to Q.

In the latter approach, besides Q and the view definitions, we also take into
account the extensions of the views, and the goal is to compute the set of tuples
that are implied by these extensions, i.e., the set of tuples t such that t satisfies Q
in all the databases that are consistent with the views.

Notice the difference between the two approaches. In query rewriting, query
processing is divided in two steps, where the first re-expresses the query in terms
of a given query language over the alphabet of the view names, and the second
step evaluates the rewriting over the view extensions. In query answering, we do
not pose any limit on query processing, and the only goal is to exploit all possible
information, including view extensions, to compute the answer to the query.

View-based query processing has been extensively investigated by the database
community [Levy, 2000]. Only recently has the problem been studied for the case
where the Domain Conceptual Schema is expressed in Description Logics. For
example, [Baader et al., 2000] addresses the problem of rewriting queries that
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are concepts in terms of concepts in the conceptual schema. Query rewriting for
more general queries (e.g., ones involving conjunctions of atoms) has been studied
in [Beeri et al., 1997; Levy and Rousset, 1998; Goasdoue et al., 2000; Calvanese
et al., 2001c], in somecases taking into consideration complex constraints expressed
in Description Logic as part of the Conceptual Schema. One issue that must be
addressed here is that the original query Q may not be rewritable as an expression
over the views because of limitations of the language for combining views. In this
case, one must find heuristic best-effort approximations. Another issue is finding a
minimum-cost rewriting (e.g., by eliminating unnecessary lookups in some of the
views).

Finally, we mention that Goasdoue et al. [2000] describe an implemented infor-
mation integration system, which uses a combination of global-as-view and limited
local-as-view approaches applied to the ALN DL and non-recursive Horn rules.

Among the pioneering attempts at solving the query answering problem is the In-
formationManifold system [Levy et al., 1996; 1995], which has detailed algorithms
for query rewriting. In the context of heterogeneous databases, Mena et al. [2000]
propose that each source has its own conceptual schema/ontology expressed in a
Description Logic, and these are interrelated by adding “hyponym” (subsumption)
relationships between concepts in each. (This is reminiscent of the approach in
[Catarci and Lenzerini, 1993].) One of the interesting features of this system is that
it takes seriously the approximations resulting from the fact that some queries may
not be expressible in terms of the combined ontologies. Among others, they study
the notions of “precision” and “accuracy” of recall to quantify this approximation.A
solution to the query answering approach is presented in [Calvanese et al., 2000a],
which, among other things, illustrates the relationship between view-based query
answering and ABox reasoning in Description Logics.

16.5 Conclusions

We have reviewed a number of ways in which Description Logics can be useful in
the development and utilization of databases.

Probably the most successful applications are in areas where the conceptual
model of the UofD is required. This includes the initial development stage, as well
as access to heterogeneous data sources.

Concerning the initial conceptual modeling: First, Description Logics are pow-
erful enough to capture the domain semantics represented by various entity–
relationship data models, as well as other data models introduced in the database
literature. In fact, with most Description Logics, one can represent additional con-
straints. Second, because Description Logics have a clear semantics, the meaning
of the DL model is unambiguous and precise. Third, not only can information be
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represented, but it can also be reasoned with: one can look for inconsistent
class/entity definitions (ones that cannot have any individual instances) and more
generally, one can check for the consistency of the entire model. Both of these are
signs to the developer that there aremodeling errors. Arguably, it is this third aspect,
concerning reasoning with the model, that is the greatest advantage of DL models.

DL descriptions can be viewed as necessary and sufficient conditions, and hence
as queries (or views!) for a database. Description Logics are somewhat less success-
ful in this regard (at least in their pure form), because they have limited expressive
power compared to the standard calculi known from relational databases, and be-
cause they cannot generate new objects – only select subsets of existing objects.

However, if one accepts a Description Logic as a data model, then DL queries
can be classified with respect to schema concepts and previous queries, supporting
query by refinement and data exploration. The subsumption relationship can also
be used for semantic query optimization.

Combining Description Logics with Datalog rules, or at least supporting con-
junctive queries from concepts, is a promising way to obtain a more expressive
query language. The evaluation of the resulting queries appears to be decidable
with a wide range of Description Logics if the rules are not recursive. The addi-
tion of recursion appears to lead to undecidability relatively quickly. However, full
recursion is not an necessity for practical applications, such as information inte-
gration, so further research in the possible combinations of Description Logics and
Datalog restrictions is warranted.

The ability to represent the semantics of a UofD is also the reason why De-
scription Logics are useful in situations where information is to be integrated from
various sources, such as heterogeneous or federated databases. It is widely agreed
that the integration needs to be achieved at the conceptual level. The Description
Logic can be used to define the ontology of each site, and then these ontologies
are inter-related; alternatively, a global ontology is specified, and then the sites are
described as views over it.
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Description Logic Terminology

FRANZ BAADER

Abstract

The purpose of this appendix is to introduce (in a compact manner) the syntax and
semantics of themost prominentDLs occurring in this handbook.More information
and explanations as well as some less familiar Description Logics can be found in
the respective chapters. For DL constructors whose semantics cannot be described
in a compact manner, we will only introduce the syntax and refer the reader to
the respective chapter for the semantics. Following Chapter 2 on basic Description
Logics, we will first introduce the basic Description Logic AL, and then describe
several of its extensions. Thereby, we will also fix the notation employed in this
handbook. Finally, wewill comment on the naming schemes for Description Logics
that are employed in the literature and in this handbook.

A.1 Notational conventions

Before starting with the definitions, let us introduce some notational conventions.
The letters A, B will often be used for atomic concepts, and C, D for concept de-
scriptions. For roles, we often use the letters R, S, and for functional roles (features,
attributes) the letters f, g. Nonnegative integers (in number restrictions) are often
denoted by n,m, and individuals by a, b. In all cases, we may also use subscripts.
This convention is followed when defining syntax and semantics and in abstract
examples. In concrete examples, the following conventions are used: concept names
start with an uppercase letter followed by lowercase letters (e.g., Human, Male),
role names (also functional ones) start with a lowercase letter (e.g., hasChild,
marriedTo), and individual names are all uppercase (e.g., CHARLES, MARY).

A.2 Syntax and semantics of common Description Logics

In this section, we introduce the standard concept and role constructors as well as
knowledge bases. For more information see Chapter 2.
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A.2.1 Concept and role descriptions

Elementary descriptions are atomic concepts and atomic roles (also called concept
names and role names). Complex descriptions can be built from them inductively
with concept constructors and role constructors. Concept descriptions in AL are
formed according to the following syntax rule:

C, D −→ A | (atomic concept)
� | (universal concept, top concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C � D | (intersection)
∀R.C | (value restriction)
∃R.� (limited existential quantification).

Following our convention, A denotes an atomic concept and C, D denote concept
descriptions. The role R is atomic since AL does not provide role constructors.

An interpretation I consists of a non-empty set �I (the domain of the inter-
pretation) and an interpretation function, which assigns to every atomic concept
A a set AI ⊆ �I and to every atomic role R a binary relation RI ⊆ �I ×�I .
The interpretation function is extended to concept descriptions by the following
inductive definitions:

�I = �I

⊥I = ∅
¬AI = �I \ AI

(C � D)I = CI ∩ DI
(∀R.C)I = {a ∈ �I | ∀b. (a, b) ∈ RI → b ∈ CI}
(∃R.�)I = {a ∈ �I | ∃b. (a, b) ∈ RI}.

There are several possibilities for extendingAL in order to obtain a more expres-
sive Description Logic. The three most prominent are adding additional concept
constructors, adding role constructors, and formulating restrictions on role inter-
pretations. Below, we start with the third possibility, since we need to refer to
restrictions on roles when defining certain concept constructors. For these exten-
sions, we also introduce a naming scheme. Basically, each extension is assigned
a letter or symbol. For concept constructors, the letters/symbols are written after
the startingAL, for role constructors, we write the letters/symbols as superscripts,
and for restrictions on the interpretation of roles as subscripts. As an example, the
Description Logic ALCQ−1

R+ extends AL with the concept constructors negation
(C) and qualified number restrictions (Q), the role constructor inverse (−1), and the
restriction that some roles are transitive (R+).
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Restrictions on role interpretations

These restrictions force the interpretations of roles to satisfy certain properties,
such as functionality and transitivity. We consider these two prominent examples
in more detail. Others would be symmetry or connections between different roles.1

(i) Functional roles. Here one considers a subset NF of the set of role names NR ; its
elements are called features. An interpretation must map features f to functional bi-
nary relations f I ⊆ �I ×�I , i.e., relations satisfying ∀a, b, c. f I (a, b) ∧ f I (a, c)→
b = c. Sometimes functional relations are viewed as partial functions, and thus one
writes f I (a) = b rather than f I (a, b).AL extended with features is denoted byAL f .

(ii) Transitive roles.Here one considers a subset NR+ of NR . Role names R ∈ NR+ are called
transitive roles. An interpretationmustmap transitive roles R ∈ NR+ to transitive binary
relations RI ⊆ �I ×�I . AL extended with transitive roles is denoted by ALR+ .

Concept constructors

Concept constructors take concept and/or role descriptions and transform them into
more complex concept descriptions. Table A.1 shows the syntax and semantics of
common concept constructors. In order to have them all in one place, we also repeat
the ones from AL, minus atomic negation and limited existential quantification
since they are special cases of negation and existential quantification.

Some explanatory remarks are in order. The symbols u1, u2 in the agreement con-
structor stand for chains of functional roles, i.e., u1 = f1 . . . fm and u2 = g1 . . . gn
where n,m ≥ 0 and the fi , g j are features. The semantics of such a chain is
given by the composition of the partial functions interpreting its components, i.e.,
uI1 (a) = f Im (. . . f I1 (a) . . .). Nominals (or individuals) in concept expressions are
interpreted as singleton sets, consisting of one element of the domain. We assume
that names for individuals come from a name space disjoint from the set of concept
and role names. Since role-value-maps cause undecidability and thus are no longer
used in DL systems, there is no special symbol for them in the last column of
Table A.1.

Many DL systems employ a Lisp-like concrete syntax. Table A.2 introduces this
syntax and gives a translation into the abstract syntax introduced in Table A.1.

Role constructors

Role constructors take role and/or concept descriptions and transform them into
more complex role descriptions. Table A.3 shows the syntax and semantics of
common role constructors.

1 One could also count role hierarchies as imposing such restrictions. Here we will, however, treat role hierarchies
in the context of knowledge bases.
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Table A.1. Some Description Logic concept constructors.

Name Syntax Semantics Symbol

Top � �I AL
Bottom ⊥ ∅ AL
Intersection C � D CI ∩ DI AL
Union R � S CI ∪ DI U
Negation ¬C �I \ CI C
Value

restriction ∀R.C {a ∈ �I | ∀b. (a, b) ∈ RI → b ∈ CI} AL
Existential

quant. ∃R.C {a ∈ �I | ∃b. (a, b) ∈ RI ∧ b ∈ CI} E
Unqualified � n R {a ∈ �I | |{b ∈ �I | (a, b) ∈ RI}| ≥ n}
number � n R {a ∈ �I | |{b ∈ �I | (a, b) ∈ RI}| ≤ n} N
restriction = n R {a ∈ �I | |{b ∈ �I | (a, b) ∈ RI}| = n}
Qualified � n R.C {a ∈ �I | |{b ∈ �I | (a, b) ∈ RI ∧ b ∈ CI}| ≥ n}
number � n R.C {a ∈ �I | |{b ∈ �I | (a, b) ∈ RI ∧ b ∈ CI}| ≤ n} Q
restriction = n R.C {a ∈ �I | |{b ∈ �I | (a, b) ∈ RI ∧ b ∈ CI}| = n}
Role-value- R ⊆ S {a ∈ �I | ∀b.(a, b) ∈ RI → (a, b) ∈ SI}
map R = S {a ∈ �I | ∀b.(a, b) ∈ RI ↔ (a, b) ∈ SI}
Agreement and u1

.= u2 {a ∈ �I | ∃b ∈ �I . uI1 (a) = b = uI2 (a)} F
disagreement u1 � .= u2 {a ∈ �I | ∃b1, b2 ∈ �I . uI1 (a) = b1 �= b2 = uI2 (a)}
Nominal I I I ⊆ �I with |I I | = 1 O

The symbol ◦ denotes the usual composition of binary relations, i.e.,

RI ◦ SI = {(a, c) | ∃b. (a, b) ∈ RI ∧ (b, c) ∈ SI}.
Iterated composition is denoted in the form (RI)n . To be more precise,

(RI)0 = {(d, d) | d ∈ �I} and (RI)n+1 = (RI)n ◦ RI .
Transitive and reflexive-transitive closure are the only constructors among the ones
introduced so far that cannot be expressed in first-order predicate logic.

The Lisp-like concrete syntax for role constructors can be found in Table A.4.

A.2.2 Knowledge bases

A DL knowledge base usually consists of a set of terminological axioms (often
called a TBox) and a set of assertional axioms or assertions (often called an
ABox). The syntax and semantics of these axioms can be found in Table A.5. An
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Table A.2. Concrete syntax of concept constructors.

Name Concrete syntax Abstract syntax

Top TOP �
Bottom BOTTOM ⊥
Intersection (and C1 . . . Cn) C1 � · · · � Cn
Union (or C1 . . . Cn) C1 � · · · � Cn
Negation (not C) ¬C
Value restriction (all R C) ∀R.C
Limited existential quantification (some R) ∃R.�
Existential quantification (some R C) ∃R.C
At-least number restriction (at-least n R) � n R

At-most number restriction (at-most n R) � n R

Exact number restriction (exactly n R) = n R
Qualified at-least restriction (at-least n R C) � n R.C

Qualified at-most restriction (at-most n R C) � n R.C

Qualified exact restriction (exactly n R C) = n R.C
Same-as, agreement (same-as u1 u2) u1

.= u2

Role-value-map (subset R1 R2) R1 ⊆ R2

Role fillers (fillers R I1 . . . In) ∃R.I1 � · · · � ∃R.In
One-of (one-of I1 . . . In) I1 � · · · � In

Table A.3. Some Description Logic role constructors.

Name Syntax Semantics Symbol

Universal role U �I ×�I U
Intersection R � S RI ∩ SI �
Union R � S RI ∪ SI �
Complement ¬R �I ×�I \ RI ¬
Inverse R− {(b, a) ∈ �I ×�I | (a, b) ∈ RI} −1
Composition R ◦ S RI ◦ SI ◦
Transitive closure R+

⋃
n≥1(R

I )n +
Reflexive-transitive closure R∗

⋃
n≥0(R

I )n ∗
Role restriction R|C RI ∩ (�I × CI ) r
Identity id (C) {(d, d) | d ∈ CI} id



490 F. Baader

Table A.4. Concrete syntax of role constructors.

Name Concrete syntax Abstract syntax

Universal role top U

Intersection (and R1 · · · Rn) R1 � · · · � Rn
Union (or R1 · · · Rn) R1 � · · · � Rn
Complement (not R) ¬R
Inverse (inverse R) R−

Composition (compose R1 · · · Rn) R1 ◦ · · · ◦ Rn
Transitive closure (transitive-closure R) R+

Reflexive–transitive closure (reflexive-transitive-closure R) R∗

Role restriction (restrict R C) R|C
Identity (identity C) id (C)

Table A.5. Terminological and assertional axioms.

Name Syntax Semantics

Concept inclusion C 
 D CI ⊆ DI

Role inclusion R 
 S RI ⊆ SI

Concept equality C ≡ D CI = DI

Role equality R ≡ S RI = SI

Concept assertion C(a) aI ∈ CI
Role assertion R(a, b) (aI , bI ) ∈ RI

interpretation I is called a model of an axiom if it satisfies the statement in the last
column of the table.

An equality whose left-hand side is an atomic concept (role) is called a concept
(role) definition. A finite set of definitions is called a terminology or TBox if the
definitions are unambiguous, i.e., no atomic concept occurs more than once as left-
hand side. Axioms of the form C 
 D for a complex description C are often called
general inclusion axioms. A set of axioms of the form R 
 Swhere both R and S are
atomic is called a role hierarchy. Such a hierarchy obviously imposes restrictions
on the interpretation of roles. Thus, the fact that the knowledge base may contain
a role hierarchy is sometimes indicated by appending a subscriptH to the name of
the Description Logic (see “Restrictions on role interpretations” above).

The concrete Lisp-like syntax in Table A.6 distinguishes between terminolog-
ical axioms with atomic concepts as left-hand sides and the more general ones.
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Table A.6. Concrete syntax of axioms.

Name Concrete syntax Abstract syntax

Concept definition (define-concept A C) A ≡ C

Primitive concept introduction (define-primitive-concept A C) A 
 C

General inclusion axiom (implies C D) C 
 D

Role definition (define-role R S) R ≡ S

Primitive role introduction (define-primitive-role R S) R 
 S

Concept assertion (instance a C) C(a)

Role assertion (related a b R) R(a, b)

Following the convention mentioned at the beginning of this appendix, A denotes
an atomic concept, and R denotes an atomic role.

A.3 Additional constructors

Here we mention some of the additional constructors that occur somewhere in
the handbook. For most of them, the semantics cannot be described in a compact
manner, and thus we refer to the respective chapter for details.

A.3.1 Concept and role constructors

Many additional constructors are introduced in Chapter 6. In Description Logics
with concrete domains one can use concrete predicates to constrain fillers of feature
chains, similarly to the use of the equality predicate in feature agreements. For
example, if hasAge is a feature and ≥18 the unary concrete predicate consisting of
all nonnegative integers greater than or equal to 18, then ∃hasAge.≥18 describes
the individuals whose age is greater than or equal to 18. In general, an existential
predicate restriction is of the form

∃(u1, . . . , un).P,

where P is an n-ary predicate of the underlying concrete domain and u1, . . . , un
are feature chains. One can also use concrete domain predicates to define new roles.
For example, ∃(hasAge)(hasAge).> consists of all pairs of individuals having an
age such that the first individual is older than the second one. The general form of
such a complex role is

∃(u1, . . . , un)(v1, . . . , vm).P,
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where P is an (n + m)-ary predicate of the underlying concrete domain and
u1, . . . , un , and v1, . . . , vm are feature chains.

In modal extensions of Description Logics, one can apply modal operators to
concepts and/or roles, i.e., if ✷ is such a modal operator, C is a concept, and R is
a role, then

✷C and ✷R

are a concept and a role, respectively. Similarly, one can also use diamond operators
✸ to obtain new concepts and roles. A special such modal operator is the epistemic
operatorK, which can be used to talk about things that are known to the knowledge
base.

Chapter 5 introduces several additional constructors. Least and greatest fixpoint
semantics for cyclic terminologies (seeChapter 2) canbegeneralized by introducing
fixpoint constructors directly into the description language. Let X be a concept name
and C a concept description containing the name X . Then

µX.C and νX.C

are new concept descriptions respectively obtained by applying the least and the
greatest fixpoint constructor to C . To ensure that the least and the greatest fixpoint
exist, one must restrict C to be syntactically monotonic, i.e., every occurrence of
X in C must be in the scope of an even number of complement operators. For
example, given an interpretation ManI of Man and hasChildI of hasChild, the
concept νMomo.(Man � ∀hasChild.Momo) looks for the greatest interpretation
MomoI of Momo such that MomoI = (Man � ∀hasChild.Momo)I . It is easy to
see that this is the set of all men having only male offspring (see Chapter 2 for the
corresponding example with a cyclic TBox).

Chapter 5 also considers the Description Logic DLR, in which the restriction
to at most binary predicates is no longer enforced. If R is an n-ary predicate,
i ∈ {1, . . . , n}, and k is a nonnegative integer, then

∃[$i]R
denotes the concept collecting those individuals that occur as the i th component in
some tuple of R, and

� k [$i]R

denotes the concept collecting those individualsd forwhich the predicateR contains
at most k tuples whose i th component is d. Conversely, if C is a concept, n a
nonnegative integer, and i ∈ {1, . . . , n}, then

($i/n : C)
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denotes the n-ary predicate consisting of the tuples whose i th component belongs
to C . The Description LogicDLR also allows Boolean operators on both concepts
and predicates.2

A.3.2 Axioms

In addition to the semantics for terminological axioms introduced above, Chapter 2
also considers fixpoint semantics for cyclic TBoxes.

Chapter 6 introduces several ways of extending the terminological and the as-
sertional component of a DL system. In Description Logics with concrete domains
one can use concrete predicates also in the ABox in assertions of the form

P(x1, . . . , xn),

where P is an n-ary predicate of the underlying concrete domain and x1, . . . , xn
are names for concrete individuals.

In some modal extensions of Description Logics, one can apply modal and
Boolean operators also to terminological and assertional axioms: ifϕ,ψ are axioms,
then so are

ϕ ∧ ψ, ¬ϕ, ✷ϕ.

In probabilistic extensions of Description Logics, one can use probabilistic ter-
minological axioms of the form

P(C |D) = p,

which state that the conditional probability for an object known to be in D to belong
to C is p.

The integration of Reiter’s default logic into Description Logics yields termino-
logical defaults of the form

C(x) : D(x)

E(x)
,

where C, D, E are concept descriptions (viewed as first-order formulae with one
free variable x). Intuitively, such a default rule can be applied to an ABox individual
a, i.e., E(a) is added to the current set of beliefs, if its prerequisite C(a) is already
believed for this individual and its justification D(a) is consistent with the set of
beliefs.
Rules of the form

C ⇒ E

2 Note, however, that negation on predicates has a non-standard semantics (see Chapter 5 for details).
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(as introduced in Chapter 2) can be seen as a special case of terminological defaults
where the justification is empty. Their intuitive meaning is: “if an individual is
known to be an instance of C , then add the information that it is also an instance
of E .”

A.4 A note on the naming scheme for Description Logics

In Section A.2 we have introduced a naming scheme for Description Logics, which
extends the naming scheme for the AL-family introduced in Chapter 2 by writing
letters/symbols for role constructors as superscripts, and for restrictions on the
interpretation of roles as subscripts. The reason was that this yields a consistent
naming scheme, which distinguishes typographically between the three different
possibilities for extending the expressive power of AL.

In the literature, and also in this handbook, other naming schemes are employed
as well. One reason for this, in addition to the fact that such schemes have evolved
over time, is that it is very hard to pronounce a name like ALCQ−1

R+ . We will here
point out the most prominent such naming schemes.

The historically first scheme is the one for the AL-family introduced in
Chapter 2, and extended in this appendix. However, in the literature the typograph-
ical distinction between role constructors, concept constructors, and restrictions on
the interpretation of roles is usually not made. For example, many papers use I to
denote inverse of roles,R to denote intersection of roles, andH to denote role hier-
archies. Thus, ALCRI denotes the extension of ALC by intersection and inverse
of roles, and ALCH denotes the extension of ALC by role hierarchies. In some
cases, the letter F , which we have employed to express the presence of feature
agreements and disagreements, is used with a different meaning. Its presence states
that number restrictions of the form � 1 R can be used to express functionality of
roles.3 The subscript “trans” (or “reg”) is often employed to express the presence
of union, composition, and transitive closure of roles (sometimes also including the
identity role). The Greek letter µ in front of a language name, as in µALC, usually
indicates the extension of this Description Logic by fixpoint operators.

All members of theAL-family includeAL as a sublanguage. In some cases one
does not want all the constructors ofAL to be present in the language. The Descrip-
tion Logic FL− is obtained from AL by disallowing atomic negation, and FL0 is
obtained from FL− by, additionally, disallowing limited existential quantification.
If these languages are extended by other constructors, one can indicate this in a
way analogous to extensions ofAL. For example, FL−U denotes the extension of
FL− by union of concepts.

3 Unlike the restriction of R to be functional, which we express with a subscript f , this allows local functionality
statements, i.e., R is functional at a certain place, but may be non-functional at other places.
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All the Description Logics mentioned so far contain the concept constructors
intersection and value restriction as a common core. Description Logics that allow
intersection of concepts and existential quantification (but not value restriction) are
collected in the EL-family. The only constructors available in EL are intersection
of concepts and existential quantification. Extensions of EL are again obtained by
adding appropriate letters/symbols.

In order to avoid very long names for expressive Description Logics, the abbre-
viation S has been introduced for ALCR+ , i.e., the Description Logic that extends
ALC by transitive roles. Prominent members of the S-family are SIN (which ex-
tends ALCR+ with number restrictions and inverse roles), SHIF (which extends
ALCR+ with role hierarchies, inverse roles, and number restrictions of the form
�1 R), and SHIQ (which extendsALCR+ with role hierarchies, inverse roles, and
qualified number restrictions). Actually, the Description Logics SIN , SHIF , and
SHIQ are somewhat less expressive than indicated by their name since the use of
roles in number restrictions is restricted: roles that have a transitive subrole must
not occur in number restrictions.

The Description Logic DLR mentioned in the previous section also gives rise
to a family of Description Logics, with members like DLRreg , which extends
DLR with union, composition, and transitive closure of binary relations obtained
as projections of n-ary predicates onto two of their components.
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[Grädel, 1998] Erich Grädel. Guarded fragments of first-order logic: A perspective for
new Description Logics? In Proc. of the 1998 Description Logic Workshop (DL’98).
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.
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[Haarslev and Möller, 2001c] Volker Haarslev and Ralf Möller. High performance
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Logic with concrete domains and role-forming predicates. J. of Logic and
Computation, 9(3):351–384, 1999.

[Haarslev et al., 2001] Volker Haarslev, Ralf Möller, and Michael Wessel. The
Description Logic ALCNHR+ extended with concrete domains: A practically
motivated approach. In Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2001), pages 29–44, 2001.

[Hagen et al., 1999] Paul Hagen, David Weisman, Harley Manning, and Randy Souza.
Guided search for eCommerce. In The Forrester Report. Cambridge, MA, January
1999.

[Hahn et al., 1999a] U. Hahn, M. Romacker, and S. Schulz. How knowledge drives
understanding—matching medical ontologies with the needs of medical language
processing. AI Magazine, 15(1):25–52, 1999.

[Hahn et al., 1999b] Udo Hahn, Stefan Schulz, and Martin Romacker. Part-whole
reasoning: a case study in medical ontology engineering. IEEE Intelligent Systems,
14(5):59–67, 1999.

[Hahn et al., 1999c] Udo Hahn, Stefan Schulz, and Martin Romacker. Partonomic
reasoning as taxonomic reasoning in medicine. In Proc. of the 16th Nat. Conf. on
Artificial Intelligence (AAAI’99), pages 271–276, 1999.

[Halpern and Moses, 1992] Joseph Y. Halpern and Yoram Moses. A guide to
completeness and complexity for modal logics of knowledge and belief. Artificial
Intelligence, 54:319–379, 1992.

[Halpern and Shoham, 1991] Joseph Y. Halpern and Yoav Shoham. A propositional
modal logic of time intervals. J. of the ACM, 38:935–962, 1991.

[Hammer and McLeod, 1981] Michael Hammer and Dennis McLeod. Database
description with SDM: A semantic database model. ACM Trans. on Database
Systems, 6(3):351–386, 1981.

[Hanschke, 1992] Philipp Hanschke. Specifying role interaction in concept languages. In
Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR’92), pages 318–329. Morgan Kaufmann, Los Altos, 1992.



520 Bibliography

[Harel, 1984] David Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume II, pages 497–604. D. Reidel Publishing
Company, 1984.

[Harel, 1985] David Harel. Recurring dominoes: Making the highly undecidable highly
understandable. Ann. of Discrete Mathematics, 24:51–72, 1985.

[Harel, 1986] David Harel. Effective transformations of infinite trees, with applications to
high undecidability, dominoes, and fairness. J. of the ACM, 33(1):224–248, 1986.

[Harel et al., 2000] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The
MIT Press, 2000.

[Hayes, 1977] Patrick J. Hayes. In defense of logic. In Proc. of the 5th Int. Joint Conf. on
Artificial Intelligence (IJCAI’77), pages 559–565, 1977. A longer version appeared
in The Psychology of Computer Vision (1975). Republished in [Brachman and
Levesque, 1985].

[Hayes, 1979] Patrick J. Hayes. The logic of frames. In D. Metzing, editor, Frame
Conceptions and Text Understanding, pages 46–61. Walter de Gruyter and Co., 1979.
Republished in [Brachman and Levesque, 1985].

[Heflin and Hendler, 2001] Jeff Heflin and James Hendler. A portrait of the semantic web
in action. IEEE Intelligent Systems, 16(2):54–59, 2001.

[Heinsohn, 1994] Jochen Heinsohn. Probabilistic Description Logics. In Ramon Lopez
de Mantaras and David Poole, editors, Proc. of the 10th Conf. on Uncertainty in
Artificial Intelligence, pages 311–318, Seattle, Washington, 1994. Morgan
Kaufmann, Los Altos.

[Heinsohn et al., 1992] Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel, and
Hans-Jürgen Profitlich. An empirical analysis of terminological representation
systems. In Proc. of the 10th Nat. Conf. on Artificial Intelligence (AAAI’92), pages
767–773. AAAI Press/The MIT Press, 1992.

[Heinsohn et al., 1994] Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel, and
Hans-Jürgen Profitlich. An empirical analysis of terminological representation
systems. Artificial Intelligence, 68:367–397, 1994.

[Hemaspaandra, 1999] Edith Hemaspaandra. The complexity of poor man’s logic. In
J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema, editors, Essays Dedicated to
Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam University
Press, 1999.

[Hendler and McGuinness, 2000] James Hendler and Deborah L. McGuinness. The darpa
agent markup language. IEEE Intelligent Systems, 15(6):67–73, 2000.

[Herzog and Rollinger, 1991] O. Herzog and C. R. Rollinger, editors. Text Understanding
in LILOG. Springer, 1991.

[Heuerding and Schwendimann, 1996] A. Heuerding and S. Schwendimann. A
benchmark method for the propositional modal logics K, KT, and S4. Technical
report IAM-96-015, University of Bern, Switzerland, 1996.

[Hobbs et al., 1993] J. R. Hobbs, M. Stickel, D. Appelt, and P. Martin. Interpretation as
abduction. Artificial Intelligence, 63:69–142, 1993.

[Hoffmann and Koehler, 1999] Jörg Hoffmann and Jana Koehler. A new method to index
and query sets. In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence
(IJCAI’99), pages 462–467, 1999.

[Hollunder, 1990] Bernhard Hollunder. Hybrid inferences in KL-ONE-based knowledge
representation systems. In Proc. of the German. Workshop on Artificial Intelligence,
pages 38–47. Springer, 1990.

[Hollunder, 1994a] Bernhard Hollunder. Algorithmic Foundations of Terminological
Knowledge Representation Systems. PhD thesis, University of Saarbrücken,
Department of Computer Science, 1994.



Bibliography 521

[Hollunder, 1994b] Bernhard Hollunder. An alternative proof method for possibilistic
logic and its application to terminological logics. In Ramon Lopez de Mantaras and
David Poole, editors, Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence,
pages 327–335, Seattle, Washington, 1994. Morgan Kaufmann, Los Altos.

[Hollunder, 1996] Bernhard Hollunder. Consistency checking reduced to satisfiability of
concepts in terminological systems. Ann. of Mathematics and Artificial Intelligence,
18(2–4):133–157, 1996.

[Hollunder and Baader, 1991a] Bernhard Hollunder and Franz Baader. Qualifying number
restrictions in concept languages. Technical Report RR-91-03, Deutsches
Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern (Germany),
1991. An abridged version appeared in Proc. of the 2nd Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’91).

[Hollunder and Baader, 1991b] Bernhard Hollunder and Franz Baader. Qualifying number
restrictions in concept languages. In Proc. of the 2nd Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’91), pages 335–346, 1991.

[Hollunder and Nutt, 1990] Bernhard Hollunder and Werner Nutt. Subsumption
algorithms for concept languages. Technical Report RR-90-04, Deutsches
Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern (Germany),
1990.

[Hollunder et al., 1990] Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß.
Subsumption algorithms for concept description languages. In Proc. of the 9th Eur.
Conf. on Artificial Intelligence (ECAI’90), pages 348–353, London (United
Kingdom), 1990. Pitman.

[Hollunder et al., 1991] Berhnard Hollunder, Armin Laux, Hans-Jürgen Profitlich, and
T. Trenz. KRIS-manual. Technical report, Deutsches Forschungszentrum für
Künstliche Intelligenz (DFKI), 1991.

[Hoppe et al., 1993] Thomas Hoppe, Carsten Kindermann, Joachim Quantz, Albrecht
Schmiedel, and Martin Fischer. BACK V5: Tutorial and manual. KIT-Report 100,
Fachbereich Informatik, Technische Universität Berlin, Berlin (Germany), 1993.

[Horrocks, 1997a] Ian Horrocks. Optimisation techniques for expressive Description
Logics. Technical Report UMCS-97-2-1, University of Manchester, Department of
Computer Science, 1997.

[Horrocks, 1997b] Ian Horrocks. Optimising Tableaux Decision Procedures for
Description Logics. PhD thesis, University of Manchester, 1997.

[Horrocks, 1998a] Ian Horrocks. The FaCT system. In Harrie de Swart, editor,
Proc. of the 2nd Int. Conf. on Analytic Tableaux and Related Methods
(TABLEAUX’98), volume 1397 of Lecture Notes in Artificial Intelligence, pages
307–312. Springer, 1998.

[Horrocks, 1998b] Ian Horrocks. Using an expressive Description Logic: FaCT or fiction?
In Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’98), pages 636–647, 1998.

[Horrocks, 1999] Ian Horrocks. FaCT and iFaCT. In Proc. of the 1999 Description Logic
Workshop (DL’99), pages 133–135. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-22/, 1999.

[Horrocks and Patel-Schneider, 1998a] Ian Horrocks and Peter F. Patel-Schneider.
Comparing subsumption optimizations. In Proc. of the 1998 Description Logic
Workshop (DL’98), pages 90–94. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/, 1998.

[Horrocks and Patel-Schneider, 1998b] Ian Horrocks and Peter F. Patel-Schneider. DL
systems comparison. In Proc. of the 1998 Description Logic Workshop (DL’98),



522 Bibliography

pages 55–57. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/, 1998.

[Horrocks and Patel-Schneider, 1998c] Ian Horrocks and Peter F. Patel-Schneider. FaCT
and DLP: Automated reasoning with analytic tableaux and related methods. In Proc.
of the 2nd Int. Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98),
pages 27–30, 1998.

[Horrocks and Patel-Schneider, 1998d] Ian Horrocks and Peter F. Patel-Schneider.
Optimising propositional modal satisfiability for Description Logic subsumption. In
Proc. of the 4th Int. Conf. on Artificial Intelligence and Symbolic Computation
(AISC’98), 1998.

[Horrocks and Patel-Schneider, 1999] Ian Horrocks and Peter F. Patel-Schneider.
Optimizing Description Logic subsumption. J. of Logic and Computation,
9(3):267–293, 1999.

[Horrocks and Patel-Schneider, 2001] Ian Horrocks and Peter F. Patel-Schneider. The
generation of DAML+OIL. In Proc. of the 2001 Description Logic Workshop
(DL 2001), pages 30–35. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-49/, 2001.

[Horrocks and Rector, 1996] Ian Horrocks and Alan Rector. Using a Description Logic
with concept inclusions. In Proc. of the 1996 Description Logic Workshop (DL’96),
number WS-96-05 in AAAI Technical Report, pages 132–135. AAAI Press/The
MIT Press, 1996.

[Horrocks and Sattler, 1999] Ian Horrocks and Ulrike Sattler. A Description Logic with
transitive and inverse roles and role hierarchies. J. of Logic and Computation,
9(3):385–410, 1999.

[Horrocks and Sattler, 2001] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the
SHOQ(D) Description Logic. In Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), pages 199–204, 2001.

[Horrocks and Tessaris, 2000] Ian Horrocks and Sergio Tessaris. A conjunctive query
language for Description Logic ABoxes. In Proc. of the 17th Nat. Conf. on Artificial
Intelligence (AAAI 2000), pages 399–404, 2000.

[Horrocks and Tobies, 2000] Ian Horrocks and Stephan Tobies. Reasoning with axioms:
Theory and practice. In Proc. of the 7th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2000), pages 285–296, 2000.

[Horrocks et al., 1996] Ian Horrocks, Alan Rector, and Carole Goble. A description
logic based schema for the classification of medical data. In Proc. of the 3rd Int.
Workshop on Knowledge Representation meets Databases (KRDB’96),
pages 24–28. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-4/, 1996.

[Horrocks et al., 1999] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical
reasoning for expressive Description Logics. In Harald Ganzinger, David McAllester,
and Andrei Voronkov, editors, Proc. of the 6th Int. Conf. on Logic for Programming
and Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial
Intelligence, pages 161–180. Springer, 1999.

[Horrocks et al., 2000a] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann,
C. Goble, F. van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL: The
Ontology Inference Layer. Technical Report IR-479, Vrije Universiteit Amsterdam,
Faculty of Sciences, September 2000.

[Horrocks et al., 2000b] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical
reasoning for very expressive Description Logics. J. of the Interest Group in Pure
and Applied Logic, 8(3):239–264, 2000.



Bibliography 523

[Horrocks et al., 2000c] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with
individuals for the Description Logic SHIQ. In David McAllester, editor, Proc. of
the 17th Int. Conf. on Automated Deduction (CADE 2000), volume 1831 of Lecture
Notes in Computer Science, pages 482–496. Springer, 2000.

[Horty et al., 1987] J. F. Horty, R. H. Thomason, and D. S. Touretzky. A skeptical theory
of inheritance in nonmonotonic semantic networks. In Proc. of the 6th Nat. Conf. on
Artificial Intelligence (AAAI’87), pages 358–363, 1987.

[Hovy and Knight, 1993] E. H. Hovy and K. Knight. Motivation for shared ontologies: An
example from the Pangloss collaboration. In Proc. of the IJCAI’93 Workshop on
Knowledge Sharing and Information Interchange, 1993.

[Huitt and Wilde, 1992] R. Huitt and N. Wilde. Maintenance support for object-oriented
programs. IEEE Trans. on Software Engineering, 18(12), 1992.

[Hull, 1988] Richard Hull. A survey of theoretical research on typed complex database
objects. In J. Paredaens, editor, Databases, pages 193–256. Academic Press, 1988.

[Hull and King, 1987] R. B. Hull and R. King. Semantic database modelling: Survey,
applications and research issues. ACM Computing Surveys, 19(3):201–260,
September 1987.

[Hustadt and Schmidt, 1997] Ulrich Hustadt and Renate A. Schmidt. On evaluating
decision procedures for modal logic. In Proc. of the 15th Int. Joint Conf. on Artificial
Intelligence (IJCAI’97), pages 202–207, 1997.

[Hustadt and Schmidt, 2000] Ulrich Hustadt and Renate A. Schmidt. Issues of
decidability for Description Logics in the framework of resolution. In R. Caferra and
G. Salzer, editors, Automated Deduction in Classical and Non-Classical Logics,
volume 1761 of Lecture Notes in Artificial Intelligence, pages 191–205. Springer,
2000.

[Israel and Brachman, 1984] David J. Israel and Ronald J. Brachman. Some remarks on
the semantics of representation languages. In M. L. Brodie, J. Mylopoulos, and J. W.
Schmidt, editors, On Conceptual Modeling: Perspectives from Artificial Intelligence
Databases and Programming Languages. Springer, 1984.

[Jackendoff, 1990] Ray Jackendoff. Semantic Structures. Current Studies in Linguistics
Series. The MIT Press, 1990.

[Jacobs, 1991] Paul S. Jacobs. Integrating language and meaning in structured inheritance
networks. In [Sowa 1991], pages 527–542.

[Jacobson et al., 1998] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified
Modeling Language User Guide. Addison Wesley Publ. Co., Reading,
Massachussetts, 1998.

[Jaeger, 1994] Manfred Jaeger. Probabilistic reasoning in terminological logics. In Pietro
Torasso, Jon Doyle, and Erik Sandewall, editors, Proc. of the 4th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR’94), pages 305–316,
1994.

[Jang and Patil, 1989] Y. Jang and R. Patil. KOLA: A knowledge organisation language.
In Proc. of the 13th Annual Symposium on Computer Applications in Medical Care
(SCAMC’89), pages 71–75, 1989.

[Jeroslow and Wang, 1990] R. Jeroslow and J. Wang. Solving propositional satisfiability
problems. Ann. of Mathematics and Artificial Intelligence, 1:167–187, 1990.

[Johnson, 1990] D. S. Johnson. A catalog of complexity classes. In Handbook of
Theoretical Computer Science, volume A, chapter 2. Elsevier Science Publishers
(North-Holland), Amsterdam, 1990.

[Johnson et al., 2000] P. D. Johnson, S. Tu, N. Booth, B. Sugden, and I. Purves. Using
scenarios in chronic disease management guidelines for primary care. In Proc.



524 Bibliography

of the American Medical Informatics Society Annual Fall Symposium, pages
389–393, 2000.

[Joshi, 1994] Aravind K. Joshi. Introduction to special issue on tree-adjoining grammars.
Computational Intelligence, 10(4):vii–xv, 1994.

[Juengst and Heinrich, 1998] Werner E. Juengst and Michael Heinrich. Using resource
balancing to configure modular systems. IEEE Intelligent Systems, pages 50–58,
1998.

[Kaczmarek et al., 1986] Thomas S. Kaczmarek, Raymond Bates, and Gabriel Robins.
Recent developments in NIKL. In Proc. of the 5th Nat. Conf. on Artificial
Intelligence (AAAI’86), pages 978–985, 1986.

[Kalmes, 1988] J. Kalmes. SB-Graph user manual. Technical Report SFB 314, Memo
Nr. 30, Universität des Saarlandes, Fachbereich Informatik, Saarbrücken (Germany),
1988.

[Kalmes, 1990] J. Kalmes. SB-Graph. Technical Report SFB 314, Memo Nr. 44,
Universität des Saarlandes, Fachbereich Informatik, Saarbrücken (Germany), 1990.
In German.

[Karp, 1992] Peter D. Karp. The design space of knowledge representation systems.
Technical Report SRI AI Technical Note 520, SRI International, Menlo Park
(CA, USA), 1992.

[Karp et al., 1999] P. D. Karp, V. K. Chaudhri, and J. Thomere. XOL: An XML-based
ontology exchange language.

[Kent, 1979] William Kent. Limitations of record-base information models. ACM Trans.
on Database Systems, 4(1):107–131, 1979.

[Kerdiles and Salvat, 1997] Gwen Kerdiles and Eric Salvat. A sound and complete CG
proof procedure combining projections with analytic tableaux. In D. Lukose,
H. Delugach, M. Keeler, L. Searle, and J. Sowa, editors, Proc. of the
5th Int. Conf. on Conceptual Structures (ICCS’97), volume 1257 of Lecture Notes in
Computer Science, pages 371–385. Springer, 1997.

[Kessel et al., 1995] T. Kessel, F. Rousselot, M. Schlick, and O. Stern. Use of DL within
the framework of DBMS. In Proc. of the 2nd Int. Workshop on Knowledge
Representation meets Databases (KRDB’95). CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-2/, 1995.

[Kim, 1990] Won Kim. Introduction to Object-Oriented Databases. The MIT Press,
1990.

[Kim and Lochovsky, 1989] Won Kim and Frederick H. Lochovsky, editors.
Object-Oriented Concepts, Databases, and Applications. ACM Press and Addison
Wesley, New York (USA), 1989.

[Kindermann, 1992] Carsten Kindermann. Retraction of object descriptions in BACK.
KIT-Report 105, Fachbereich Informatik, Technische Universität Berlin, Berlin
(Germany), 1992.

[Kindermann and Randi, 1990] C. Kindermann and P. Randi. Object recognition and
retrieval in the BACK system. KIT-Report 86, Fachbereich Informatik, Technische
Universität Berlin, Berlin (Germany), 1990.

[Kirk et al., 1995] Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava.
The Information Manifold. In Proceedings of the AAAI 1995 Spring Symp. on
Information Gathering from Heterogeneous, Distributed Enviroments, pages
85–91, 1995.

[Knight and Luk, 1994] K. Knight and S. Luk. Building a large knowledge base for
machine translation. In Proc. of the 12th Nat. Conf. on Artificial Intelligence
(AAAI’94), 1994.



Bibliography 525

[Knight et al., 1995] K. Knight, I. Chander, M. Haines, V. Hatzivassiloglou, E. Hovy,
M. Iida, S. K. Luk, R. Whitney, and K. Yamada. Filling knowledge gaps in a
broad-coverage machine translation system. In Proc. of the 14th Int. Joint Conf. on
Artificial Intelligence (IJCAI’95), pages 1390–1396, 1995.

[Kobsa, 1991a] Alfred Kobsa. First experiences with the SB-ONE knowledge
representation workbench in natural-language applications. SIGART Bull.,
2(3):70–76, 1991.

[Kobsa, 1991b] Alfred Kobsa. Utilizing knowledge: The components of the SB-ONE
knowledge representation workbench. In [Sowa 1991], pages 457–486.

[Koetzle et al., 2001] Laura Koetzle, Paul Hagen, Hillary Drohan, and Moira Dorsey.
Smarter sales of complex goods. In The Forrester Report. Cambridge, MA,
September 2001.

[Kohn et al., 2000] L. T. Kohn, J. M. Corrigan, and M. S. Donaldson, editors. To Err is
Human: Building a Safer Health System. National Academy Press, 2000.

[Koller et al., 1997] Daphne Koller, Alon Levy, and Avi Pfeffer. P-CLASSIC:
A tractable probabilistic Description Logic. In Proc. of the 14th Nat. Conf. on
Artificial Intelligence (AAAI’97), pages 390–397. AAAI Press/The MIT Press,
1997.

[Kozen, 1983] Dexter Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[Kozen and Tiuryn, 1990] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science—Formal Models and
Semantics, pages 789–840. Elsevier Science Publishers (North-Holland),
Amsterdam, 1990.

[Kripke, 1980] S. Kripke. Naming and Necessity. Harvard University Press, 1980.
[Kuper and Vardi, 1993] Gabriel M. Kuper and Moshe Y. Vardi. On the complexity of

queries in the logical data model. Theoretical Computer Science, 116:33–58,
1993.

[Kurtonina and de Rijke, 1997] Natasha Kurtonina and Maarten de Rijke. Classifying
Description Logics. In Proc. of the 1997 Description Logic Workshop (DL’97),
pages 49–53, 1997.
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A see atomic concept
C see concept
C1 � C2 see intersection of concepts
C1 ⇒ C2 see trigger rule
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C1 ≡T C2 see equivalent w.r.t. TBox
C1 
 C2 see inclusion axiom
C1 
T C2 see subsumption
C1 � C2 see union of concepts
C(a) see concept assertion
�I see interpretation domain
f see feature chain
f1

.= f2 see agreement
f1 � .= f2 see disagreement
id (R) see role identity
µX.C see least fixpoint operator
νX.C see greatest fixpoint operator
P see atomic role
P see atomic relation
R see role
R see relation of arbitrary arity
R∗ see reflexive–transitive closure of roles
R+ see transitive closure of roles
R− see inverse role
R1 = R2 see equality role-value-map
R1 ⊆ R2 see containment role-value-map
R1 � R2 see intersection of roles
R1 � R2 see intersection of relations
R1 ◦ R2 see composition of roles
R1 ≡ R2 see equality axiom
R1 
 R2 see inclusion axiom
R1 � R2 see union of roles
R1 � R2 see union of relations
R|C see role restriction
R(a1, a2) see role assertion
T |= C1 ≡ C2 see equivalent w.r.t. TBox
T |= C1 
 C2 see subsumption
($i/n:C) see selection on relations
� k [$i]R, � k [$i]R see

number restriction on relations
� n R see at-least restriction

� n R.C , � n R.C see qualified number restriction
� n R see at-most restriction
⊥ see bottom concept
∀R.C see value restriction
¬A see atomic negation
¬C see complement of concepts
¬R see complement of roles
¬R see difference of relations
∃R.C see full existential quantification
∃R.� see limited existential quantification
∃[$i]R see existential quantification on relations
� see top concept
2+2-sat 131
2ATA see two-way alternating tree automaton

A

ABox 12, 46, 60, 197, 370
absorption 326
acceptable solution 211
accessibility relation 38, 154, 228

between intervals 240
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reflexive and transitive 154
transitive 159
transitive, serial, and euclidean 231
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access to knowledge bases
advanced application 270
basic 267
concurrent access 273
data structure 271
notification 272
remote access 272

action-guarded fragment 160
acyclic TBox 52, 54, 87, 121
admissible concrete domain 223
advanced application access 270
AE-model 237
agent 154
agreement 95, 217, 283
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complexity with axioms 121
complexity with restricted axioms 122
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complexity 110
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complexity 114
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complexity 193
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complexity 186
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complexity 115
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complexity 197
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complexity 186
ALCtrans

complexity 117
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complexity 107
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complexity 115
AL family 48, 49
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AL-log 475
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complexity with restricted axioms 122
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complexity 115
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complexity 110
ALNI 210
Alternating Polynomial Space 118
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AND–OR-graph accessibility 118
approximation 253, 256, 260
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assertion 46

concept see concept assertion
inequality see inequality assertion
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probabilistic see probabilistic assertion
role see role assertion

AT&T 389, 392, 399
at-least restriction 49
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negation 47
relation 205
role 6, 47

ATP 397
attribute 94, 161, 167, 352
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axiom schema instantiation 193
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backjumping 337
backtracking search 337
base interpretation 52
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BCP see Boolean constraint propagation
belief operator 228
Beth’s Definability Theorem 54
blocking 86, 317, 318, 337, 343
Boolean constraint propagation 336, 340
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bottom-up approach 253
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breadth first search 329
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C2 75, 92, 93, 151, 215
caching 318, 320, 331, 333, 343
Candide 474
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Carin 475
CarsDirect 389
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CCNF see concept-centered normal form
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Chimaera 274, 448
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class-based formalism 36
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closed-world semantics 60, 68
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of algorithm 74, 78, 82
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composition of roles 91, 180, 216
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role 213

computational complexity 10
concept 46, 138
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complement see complement of concepts
conjunction see intersection of concepts
constructor 47
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disjointness see disjointness of concepts
disjunction see union of concepts
intersection see intersection of concepts
language 3
necessary condition 356
negation see complement of concepts
partial condition 357
pattern 257
reified see reified concept
type 144
union see union of concepts
variable 257

concept-centered normal form 89, 254
conceptual graph 37, 143

simple see simple conceptual graph
conceptual model 350
conceptual modeling 465
concrete domain 34, 222
concurrent access to knowledge bases 273
configuration 24, 266, 275, 388
conformance 173
conjunction

of concepts see intersection of concepts
of roles see intersection of roles

connected model property 184
conp-hardness

in FL 101
consistency 66, 85

of knowledge base see knowledge base consistency
consistent

ABox see consistency
set of ABoxes 80

constant domain assumption 229, 237
constraint satisfiability 337
containment role-value-map 94, 123
converse-dpdl 183, 187
converse-pdl 182, 193
counting quantifier 75, 150
Crack 299

Cyc 418
cycle see cyclic TBox
cyclic TBox 52, 88, 121

D

DAML 408, 427, 432
DAML+OIL 408, 434, 443
DAML-ONT 432, 433
DAML ontology library 448
DARPA Agent Markup Language see DAML
data

complexity 128
integration 478
mining 27
model

object-oriented see object-oriented data model
semantic see semantic data model
semistructured see semistructured data model

structure
access 271
inductive and coinductive 201

database 28, 462
Datalog 464, 475, 484
default logic 31, 238
default rule 32, 247
defined

concept 52, 286
subconcept 359

definition 13, 51, 311
necessary see specialization
necessary and sufficient see definition
non-primitive see definition
order 330
primitive see specialization

definitorial 52, 53, 54
Dell 389
dependency set 338
description language 47
Description Logic courses 281
descriptive semantics 54, 88, 151, 181
deterministic-converse-pdl see converse-dpdl
deterministic program 158
difference of relations 205, 205, 469
Digital Anatomist 408, 417
digital library 26
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discovery software 374, 376
disjoint union model property 195
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of concepts 62
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of concepts see union of concepts
of roles see union of roles

DLMS 454
Dlp 302, 307
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complexity 207
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DOM see Document Object Model
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of interpretation see interpretation domain
domino problem see tiling problem
dpdl 183
DPLL 335
DTD see XML DTD
DWQ 473
dynamic backtracking 346

E

E see full existential quantification
edge
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subclass–superclass see subclass–superclass edge
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content see XML element content
type see XML element type

enhanced traversal 330
entity 162, 466
Entity–Relationship

model 161, 463, 466
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epistemic
interpretation 72
logic 32, 229
model 73, 234
modeling 371
operator 71, 232, 371
query 235

equality see equality axiom
equality axiom 51
equality role-value-map 94, 122
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equivalent

concepts 48
sets of axioms 51
w.r.t. TBox 62
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error handling 276
essential property 356
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existential predicate restriction 224
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expanding domain assumption 229
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explanation 274, 276, 396
ExpTime-hardness
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extension

function 202
of interpretation 52

extensional knowledge 12

F

F see agreement, disagreement
Fact 166, 301, 307, 341, 436, 448
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feature 94, 283, 301, 352

chain 95, 283
fills 61, 200
FindUR 267, 279, 429
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finite model

property 76, 92, 165
reasoning 166, 210

finite tree 260
first-order predicate logic 50
Fischer–Ladner closure 183, 189
fixpoint

construct see fixpoint operator
in the guarded fragment 160
model 56
mutual see mutual fixpoint
operator 88, 135, 155, 172, 173, 201
semantics 54, 156, 172, 204

greatest see greatest fixpoint semantics
least see least fixpoint semantics
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complexity 100, 115
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complexity 112
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complexity 111
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complexity 112
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complexity 110
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complexity 102
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flow of time 239
Ford 390
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functional

approach to Knowledge Representation 12
dependency 165
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restriction 186
role 94
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Description Logic 33, 246
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graph-based approach 251
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operator see fixpoint operator
semantics 56, 90, 204, 255
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Harp 337
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system 19
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ICD 410
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value 353

inductive learning 34
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Information Manifold 483
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by default 139
network 5
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complexity 132

integrity constraint 32, 235, 238
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canonical see canonical interpretation
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function 48
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interval-based temporal model see temporal model
inverse role 37, 91, 147, 150, 152, 159, 180, 301, 319,
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Janus 454
Java Theorem Prover 448
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operator 71

K4m 159
KADS 408
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frame 159, 230, 233
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Krypton 288, 313
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L2 75, 149, 151
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language-based approach 251
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lazy unfolding 320, 323
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least fixpoint 56, 202

operator see fixpoint operator
semantics 56, 173, 204

legal database state 168, 468
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logic of knowledge and belief 31
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modulo subsumption 257
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meta-role 357
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modalized Description Logic 227
modal logic 31, 38, 75, 153, 227
model

epistemic see epistemic model
fixpoint see fixpoint model
of ABox 60
of concept 62
of terminological axioms 51

model checking 69
modeling methodology 369
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monotone terminology 57
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msc see most specific concept
µALCQ 173
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complexity 203
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multi-modal logic 154
mutual fixpoint 203
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natural language processing 28, 450
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lexical choice 460
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semantic interpretation 450, 451

necessary and sufficient definition see definition
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negation
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of roles see complement of roles

negation normal form 78, 190, 223, 316, 325
negative introspection 229, 233
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network-based structure 2, 4
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