
 
 
 



 
 
 



Theory and Statistical Applications of Stochastic Processes 
  



 
 
 



 

Series Editor 
Nikolaos Limnios 

Theory and Statistical 
Applications of Stochastic 

Processes 
 
 

 
 

 

Yuliya Mishura 
Georgiy Shevchenko 
 
 
 
 
 
 
 
 
 
 

  
 



 
 
 
 
 
 

 

 

First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, 
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the  
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the 
undermentioned address: 

ISTE Ltd  John Wiley & Sons, Inc.  
27-37 St George’s Road  111 River Street 
London SW19 4EU Hoboken, NJ 07030 
UK  USA  

www.iste.co.uk  www.wiley.com 

 

© ISTE Ltd 2017 
The rights of Yuliya Mishura and  Georgiy Shevchenko to be identified as the authors of this work have 
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. 

Library of Congress Control Number:  2017953309 
 
British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library  
ISBN 978-1-78630-050-8 



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Part 1. Theory of Stochastic Processes . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Stochastic Processes. General Properties.
Trajectories, Finite-dimensional Distributions . . . . . . . . . . . . . . 3

1.1. Definition of a stochastic process . . . . . . . . . . . . . . . . . . . . . 3

1.2. Trajectories of a stochastic process. Some examples

of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1. Definition of trajectory and some examples . . . . . . . . . . . . . . 5

1.2.2. Trajectory of a stochastic process as

a random element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Finite-dimensional distributions of stochastic

processes: consistency conditions . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1. Definition and properties of finite-dimensional

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2. Consistency conditions . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3. Cylinder sets and generated σ-algebra . . . . . . . . . . . . . . . . . 13

1.3.4. Kolmogorov theorem on the construction of a stochastic

process by the family of probability distributions . . . . . . . . . . . . . . 15

1.4. Properties of σ-algebra generated by cylinder sets.

The notion of σ-algebra generated by a stochastic process . . . . . . . . . . 19



vi Theory and Statistical Applications of Stochastic Processes

Chapter 2. Stochastic Processes with Independent
Increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1. Existence of processes with independent increments

in terms of incremental characteristic functions . . . . . . . . . . . . . . . . 21

2.2. Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1. One-dimensional Wiener process . . . . . . . . . . . . . . . . . . . 24

2.2.2. Independent stochastic processes. Multidimensional

Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3. Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1. Poisson process defined via the existence theorem . . . . . . . . . . 27

2.3.2. Poisson process defined via the distributions

of the increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3. Poisson process as a renewal process . . . . . . . . . . . . . . . . . 30

2.4. Compound Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5. Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1. Wiener process with a drift . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2. Compound Poisson process as a Lévy process . . . . . . . . . . . . 36

2.5.3. Sum of a Wiener process with a drift and

a Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4. Gamma process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.5. Stable Lévy motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.6. Stable Lévy subordinator with stability

parameter α ∈ (0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3. Gaussian Processes. Integration with Respect to
Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Gaussian vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. Theorem of Gaussian representation (theorem on

normal correlation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3. Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4. Examples of Gaussian processes . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1. Wiener process as an example of a Gaussian process . . . . . . . . 46

3.4.2. Fractional Brownian motion . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3. Sub-fractional and bi-fractional Brownian motion . . . . . . . . . . 50

3.4.4. Brownian bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.5. Ornstein–Uhlenbeck process . . . . . . . . . . . . . . . . . . . . . . 51

3.5. Integration of non-random functions with respect

to Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1. General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2. Integration of non-random functions with respect

to the Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.3. Integration w.r.t. the fractional Brownian motion . . . . . . . . . . . 57



Contents vii

3.6. Two-sided Wiener process and fractional Brownian

motion: Mandelbrot–van Ness representation of fractional

Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7. Representation of fractional Brownian motion as the

Wiener integral on the compact integral . . . . . . . . . . . . . . . . . . . . 63

Chapter 4. Construction, Properties and Some Functionals of the
Wiener Process and Fractional Brownian Motion . . . . . . . . . . . . 67

4.1. Construction of a Wiener process on the interval [0, 1] . . . . . . . . . 67

4.2. Construction of a Wiener process on R
+ . . . . . . . . . . . . . . . . . 72

4.3. Nowhere differentiability of the trajectories of

a Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4. Power variation of the Wiener process and of the

fractional Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1. Ergodic theorem for power variations . . . . . . . . . . . . . . . . . 77

4.5. Self-similar stochastic processes . . . . . . . . . . . . . . . . . . . . . . 79

4.5.1. Definition of self-similarity and some examples . . . . . . . . . . . 79

4.5.2. Power variations of self-similar processes

on finite intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5. Martingales and Related Processes . . . . . . . . . . . . . . 85

5.1. Notion of stochastic basis with filtration . . . . . . . . . . . . . . . . . 85

5.2. Notion of (sub-, super-) martingale: elementary

properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3. Examples of (sub-, super-) martingales . . . . . . . . . . . . . . . . . . 87

5.4. Markov moments and stopping times . . . . . . . . . . . . . . . . . . . 90

5.5. Martingales and related processes with discrete time . . . . . . . . . . 96

5.5.1. Upcrossings of the interval and existence

of the limit of submartingale . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.2. Examples of martingales having a limit and of

uniformly and non-uniformly integrable martingales . . . . . . . . . . . . 102

5.5.3. Lévy convergence theorem . . . . . . . . . . . . . . . . . . . . . . . 104

5.5.4. Optional stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.5. Maximal inequalities for (sub-, super-)

martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.6. Doob decomposition for the integrable processes

with discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.7. Quadratic variation and quadratic characteristics:

Burkholder–Davis–Gundy inequalities . . . . . . . . . . . . . . . . . . . . 113

5.5.8. Change of probability measure and Girsanov

theorem for discrete-time processes . . . . . . . . . . . . . . . . . . . . . . 116

5.5.9. Strong law of large numbers for martingales

with discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



viii Theory and Statistical Applications of Stochastic Processes

5.6. Lévy martingale stopped . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7. Martingales with continuous time . . . . . . . . . . . . . . . . . . . . . 127

Chapter 6. Regularity of Trajectories of Stochastic
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1. Continuity in probability and in L2(Ω,F ,P) . . . . . . . . . . . . . . . 131

6.2. Modification of stochastic processes: stochastically

equivalent and indistinguishable processes . . . . . . . . . . . . . . . . . . . 133

6.3. Separable stochastic processes: existence of

separable modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4. Conditions of D-regularity and absence of the

discontinuities of the second kind for stochastic processes . . . . . . . . . . 138

6.4.1. Skorokhod conditions of D-regularity in terms

of three-dimensional distributions . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.2. Conditions of absence of the discontinuities

of the second kind formulated in terms of conditional

probabilities of large increments . . . . . . . . . . . . . . . . . . . . . . . 144

6.5. Conditions of continuity of trajectories of

stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5.1. Kolmogorov conditions of continuity in terms

of two-dimensional distributions . . . . . . . . . . . . . . . . . . . . . . . 148

6.5.2. Hölder continuity of stochastic processes:

a sufficient condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5.3. Conditions of continuity in terms of

conditional probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Chapter 7. Markov and Diffusion Processes . . . . . . . . . . . . . . . . 157

7.1. Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2. Examples of Markov processes . . . . . . . . . . . . . . . . . . . . . . . 163

7.2.1. Discrete-time Markov chain . . . . . . . . . . . . . . . . . . . . . . 163

7.2.2. Continuous-time Markov chain . . . . . . . . . . . . . . . . . . . . 165

7.2.3. Process with independent increments . . . . . . . . . . . . . . . . . 168

7.3. Semigroup resolvent operator and generator related

to the homogeneous Markov process . . . . . . . . . . . . . . . . . . . . . . 168

7.3.1. Semigroup related to Markov process . . . . . . . . . . . . . . . . . 168

7.3.2. Resolvent operator and resolvent equation . . . . . . . . . . . . . . 169

7.3.3. Generator of a semigroup . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4. Definition and basic properties of diffusion process . . . . . . . . . . . 175

7.5. Homogeneous diffusion process. Wiener process

as a diffusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6. Kolmogorov equations for diffusions . . . . . . . . . . . . . . . . . . . 181



Contents ix

Chapter 8. Stochastic Integration . . . . . . . . . . . . . . . . . . . . . . . 187

8.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2. Definition of Itô integral . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.1. Itô integral of Wiener process . . . . . . . . . . . . . . . . . . . . . 195

8.3. Continuity of Itô integral . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.4. Extended Itô integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.5. Itô processes and Itô formula . . . . . . . . . . . . . . . . . . . . . . . . 203

8.6. Multivariate stochastic calculus . . . . . . . . . . . . . . . . . . . . . . 212

8.7. Maximal inequalities for Itô martingales . . . . . . . . . . . . . . . . . 215

8.7.1. Strong law of large numbers for Itô

local martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.8. Lévy martingale characterization of Wiener process . . . . . . . . . . . 220

8.9. Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.10. Itô representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Chapter 9. Stochastic Differential Equations . . . . . . . . . . . . . . . 233

9.1. Definition, solvability conditions, examples . . . . . . . . . . . . . . . 233

9.1.1. Existence and uniqueness of solution . . . . . . . . . . . . . . . . . 234

9.1.2. Some special stochastic differential equations . . . . . . . . . . . . 238

9.2. Properties of solutions to stochastic differential

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9.3. Continuous dependence of solutions on coefficients . . . . . . . . . . . 245

9.4. Weak solutions to stochastic differential equations . . . . . . . . . . . . 247

9.5. Solutions to SDEs as diffusion processes . . . . . . . . . . . . . . . . . 249

9.6. Viability, comparison and positivity of solutions to

stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . . . . 252

9.6.1. Comparison theorem for one-dimensional projections of

stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . . . 257

9.6.2. Non-negativity of solutions to stochastic

differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.7. Feynman–Kac formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.8. Diffusion model of financial markets . . . . . . . . . . . . . . . . . . . 260

9.8.1. Admissible portfolios, arbitrage and equivalent

martingale measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

9.8.2. Contingent claims, pricing and hedging . . . . . . . . . . . . . . . . 266

Part 2. Statistics of Stochastic Processes . . . . . . . . . . . . . . . . . 271

Chapter 10. Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . 273

10.1. Drift and diffusion parameter estimation in the linear

regression model with discrete time . . . . . . . . . . . . . . . . . . . . . . . 273

10.1.1. Drift estimation in the linear regression model

with discrete time in the case when the initial value is known . . . . . . . 274



x Theory and Statistical Applications of Stochastic Processes

10.1.2. Drift estimation in the case when the initial value

is unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.2. Estimation of the diffusion coefficient in a linear

regression model with discrete time . . . . . . . . . . . . . . . . . . . . . . . 277

10.3. Drift and diffusion parameter estimation in the linear

model with continuous time and the Wiener noise . . . . . . . . . . . . . . 278

10.3.1. Drift parameter estimation . . . . . . . . . . . . . . . . . . . . . . 279

10.3.2. Diffusion parameter estimation . . . . . . . . . . . . . . . . . . . 280

10.4. Parameter estimation in linear models with fractional

Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

10.4.1. Estimation of Hurst index . . . . . . . . . . . . . . . . . . . . . . . 281

10.4.2. Estimation of the diffusion parameter . . . . . . . . . . . . . . . . 283

10.5. Drift parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 284

10.6. Drift parameter estimation in the simplest

autoregressive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

10.7. Drift parameters estimation in the homogeneous

diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Chapter 11. Filtering Problem. Kalman-Bucy Filter . . . . . . . . . . . 293

11.1. General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

11.2. Auxiliary properties of the non-observable process . . . . . . . . . . . 294

11.3. What is an optimal filter . . . . . . . . . . . . . . . . . . . . . . . . . . 295

11.4. Representation of an optimal filter via an integral

equation with respect to an observable process . . . . . . . . . . . . . . . . 296

11.5. Integral Wiener-Hopf equation . . . . . . . . . . . . . . . . . . . . . . 299

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369



Preface

This book is concerned with both mathematical theory of stochastic processes and

some theoretical aspects of statistics for stochastic processes. Our general idea was to

combine classic topics of the theory of stochastic processes – measure-theoretic

issues of existence, processes with independent increments, Gaussian processes,

martingales, continuity and related properties of trajectories and Markov properties –

with contemporary subjects – stochastic analysis, stochastic differential equations,

fractional Brownian motion and parameter estimation in diffusion models. A more

detailed exposition of the contents of the book is given in the Introduction.

We aimed to make the presentation of material as self-contained as possible. With

this in mind, we have included several complete proofs, which are often either

omitted from textbooks on stochastic processes or replaced by some informal or

heuristic arguments. For this reason, we have also included some auxiliary materials,

mainly related to different subjects of real analysis and probability theory, in the

comprehensive appendix. However, we could not cover the full scope of the topic, so

a substantial background in calculus, measure theory and probability theory is

required.

The book is based on lecture courses, Theory of stochastic processes, Statistics of
stochastic processes, Stochastic analysis, Stochastic differential equations, Theory of
Markov processes, Generalized processes of fractional Brownian motion and
Diffusion processes, taught regularly in the Mechanics and Mathematics Faculty of

Taras Shevchenko National University of Kyiv and Stochastic differential equations
lecture courses taught at the University of Verona in Spring 2016; Fractional
Brownian motion and related processes: stochastic calculus, statistical applications
and modeling taught in School in Bedlewo in March 2015; Fractional Brownian
motion and related processes taught at Ulm University in June 2015; and a

Fractional Brownian motion in a nutshell mini-course given at the 7th Jagna

International Conference in 2014.



xii Theory and Statistical Applications of Stochastic Processes

The book is targeted at the widest audience: students of mathematical and related

programs, postgraduate students, postdoctoral researchers, lecturers, researchers,

practitioners in the fields concerned with the application of stochastic processes, etc.

The book would be most useful when accompanied by a problem in stochastic

processes; we recommend [GUS 10] as it matches our topics best.

We would like to express our gratitude to everyone who made the creation of this

book possible. In particular, we would like to thank Łukasz Stettner, Professor at the

Department of Probability Theory and Mathematics of Finance, Institute of

Mathematics, Polish Academy of Sciences; Luca Di Persio, Assistant Professor at the

Department of Computer Science at the University of Verona; Evgeny Spodarev,

Professor and Director of the Institute of Stochastics at Ulm University, for their

hospitality while hosting Yuliya Mishura during lecture courses. We would also like

to thank Alexander Kukush, Professor at the Department of Mathematical Analysis

of Taras Shevchenko National University of Kyiv, for proofreading the statistical part

of the manuscript, and Evgeniya Munchak, PhD student at the Department of

Probability, Statistics, and Actuarial Mathematics of Taras Shevchenko National

University of Kyiv, for her help in typesetting the manuscript.

Yuliya MISHURA

Georgiy SHEVCHENKO

September 2017



Introduction

In the world that surrounds us, a lot of events have a random (nondeterministic)

structure. At molecular and subatomic levels, all natural phenomena are random.

Movement of particles in the surrounding environment is accidental. Numerical

characteristics of cosmic radiation and the results of monitoring the effect of ionizing

radiation are random. The majority of economic factors surrounding asset prices on

financial markets vary randomly. Despite efforts to mitigate risk and randomness,

they cannot be completely eliminated. Moreover, in complex systems, it is often

easier to reach an equilibrium state when they are not too tightly controlled.

Summing-up, chance manifests itself in almost everything that surrounds us, and

these manifestations vary over time. Anyone can simulate time-varying randomness

by tossing a coin or rolling a dice repeatedly and recording the results of successive

experiments. (If a physical random number is unavailable, one of the numerous

computer algorithms to generate random numbers can be used.) In view of this

ubiquity of randomness, the theory of probability and stochastic processes has a long

history, despite the fact that the rigorous mathematical notion of probability was

introduced less than a century ago. Let us speak more on this history.

People have perceived randomness since ancient times, for example, gambling

already existed in ancient Egypt before 3000 BC. It is difficult to tell exactly when

systematic attempts to understand randomness began. Probably, the most notable

were those made by the prominent ancient Greek philosopher Epicurus (341–270

BC). Although his views were heavily influenced by Democritus, he attacked

Democritus’ materialism, which was fully deterministic. Epicurus insisted that all

atoms experience some random perturbations in their dynamics. Although modern

physics confirms these ideas, Epicurus himself attributed the randomness to the free

will of atoms. The phenomenon of random detours of atoms was called clinamen
(cognate to inclination) by the Roman poet Lucretius, who had brilliantly exposed

Epicurus’ philosophy in his poem On the Nature of Things.
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Moving closer to present times, let us speak of the times where there was no

theory of stochastic processes, physics was already a well-developed subject, but

there wasn’t any equipment suitable to study objects in sufficiently small microscopic

detail. In 1825, botanist Robert Brown first observed a phenomenon, later called

Brownian motion, which consisted of a chaotic movement of a pollen particle in a

vessel. He could not come up with a model of this system, so just stated that the

behavior is random.

A suitable model for the phenomenon arose only several decades later, in a very

different problem, concerned with the pricing of financial assets traded on a stock

exchange. A French mathematician Louis Bachelier (1870–1946), who aimed to find

a mathematical description of stochastic fluctuations of stock prices, provided a

mathematical model in his thesis “Théorie de la spéculation” [BAC 95], which was

defended at the University of Paris in 1900. The model is, in modern terms, a

stochastic process, which is characterized by the fact that its increments in time, in a

certain statistical sense, are proportional to the square root of the time change; this

“square root” phenomenon had also be observed earlier in physics; Bachelier was the

first to provide a model for it. Loosely speaking, according to Bachelier, the asset

price St at time t is modeled by

St = at+ b
√
tξ,

where a, b are constant coefficients, and ξ is a random variable having Gaussian

distribution.

The work of Bachelier was undervalued, probably due to the fact that applied

mathematics was virtually absent at the time, as well as concise probability theory.

Bachelier spent his further life teaching in different universities in France and never

returned to the topic of his thesis. It was only brought to the spotlight 50 years after

its publication, after the death of Bachelier. Now, Bachelier is considered a precursor

of mathematical finance, and the principal organization in this subject bears his name:

Bachelier Finance Society.

Other works which furthered understanding towards Brownian motion were made

by prominent physicists, Albert Einstein (1879–1955) and Marian Smoluchowski

(1872–1917). Their articles [EIN 05] and [VON 06] explained the phenomenon of

Brownian motion by thermal motion of atoms and molecules. According to this

theory, the molecules of a gas are constantly moving with different speeds in

different directions. If we put a particle, say of pollen which has a small surface area,

inside the gas, then the forces from impacts with different molecules do not

compensate each other. As a result, this Brownian particle will experience a chaotic

movement with velocity and direction changing approximately 1014 times per

second. This gave a physical explanation to the phenomenon observed by the

botanist. It also turned out that a kinetic theory of thermal motion required a
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stochastic process Bt. Einstein and Smoluchowski not only described this stochastic

process, but also found its important probabilistic characteristics.

Only a quarter of a century later, in 1931, Andrey Kolmogorov (1903–1987) laid

the groundwork for probability theory in his pioneering works About the Analytical
Methods of Probability Theory and Foundations of the Theory of Probability [KOL 31,

KOL 77]. This allowed his fellow researcher Aleksandr Khinchin (1894–1859) to give

a definition of stochastic process in his article [KHI 34].

There is an anecdote related to the role of Khinchin in defining a stochastic

process and the origins of the “stochastic” as a synonym for randomness (the original

Greek word means “guessing” and “predicting”). They say that when Khinchin

defined the term “random process”, it did not go well with the Soviet authorities. The

reason is that the notion of random process used by Khinchin contradicted dialectical

materialism (diamat). In diamat, similarly to Democritus’ materialism, all processes

in nature are characterized by totally deterministic development, transformation, etc.,

so the phrase “random process” itself sounded paradoxical. As a result, to avoid dire

consequences (we recall that 1934 was the apogee of Stalin’s Great Terror), Khinchin

had to change the name. After some research, he came up with the term “stochastic”,

from στoχαστική τ έχνη, the Greek title of Ars Conjectandi, a celebrated book by

Jacob Bernoulli (1655–1705) published in 1713, which contains many classic results.

Being popularized later by William Feller [FEL 49] and Joseph Doob [DOO 53], this

became a standard notion in English and German literature. Perhaps paradoxically, in

Russian literature, the term “stochastic processes” did not live for long. The 1956

Russian translation of Doob’s monograph [DOO 53] of this name was entitled

Probabilistic processes, and now the standard name is random process.

An alternative explanation, given, for example, in [DEL 17], attributes the term

“stochastic” to Ladislaus Władysław Bortkiewicz (1868–1931), Russian economist

and statistician, who in his paper, Die Iterationen [BOR 17], defined the term

“stochastic” as “the investigation of empirical varieties, which is based on probability

theory, and, therefore, on the law of large numbers. But stochastic is not simply

probability theory, but above all probability theory and applications”. This meaning

correlates with the one given in Ars Conjectandi by Jacob Bernoulli, so the true

origin of the term probably is somewhere between these two stories. It is also worth

mentioning that Bortkiewicz is known for proving the Poisson approximation
theorem about the convergence of binomial distributions with small parameters to the

Poisson distribution, which he called the law of small numbers.

This historical discussion would be incomplete without mentioning Paul Lévy

(1886–1971), a French mathematician who made many important contributions to

the theory of stochastic processes. Many objects and theorems now bear his name:

Lévy processes, Lévy-Khinchin representation, Lévy representation, etc. Among
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other things, he wrote the first extensive monograph on the (mathematical model of)

Brownian motion [LÉV 65].

Further important progress in probability theory is related to Norbert Wiener

(1894–1964). He was a jack of all trades: a philosopher, a journalist, but the most

important legacy that he left was as a mathematician. In mathematics, his interest was

very broad, from number theory and real analysis, to probability theory and statistics.

Besides many other important contributions, he defined an integral (of a deterministic

function) with respect to the mathematical model of Brownian motion, which now

bears his name: a Wiener process (and the corresponding integral is called a Wiener
integral).

The ideas of Wiener were developed by Kiyoshi Itô (1915–2008), who introduced

an integral of random functions with respect to the Wiener process in [ITÔ 44]. This

lead to the emergence of a broad field of stochastic analysis, a probabilistic

counterpart to real integro-differential calculus. In particular, he defined stochastic
differential equations (the name is self-explanatory), which allowed us to study

diffusion processes, which are natural generalizations of the Wiener process. As with

Lévy, many objects in stochastic analysis are named after Itô: Itô integral, Itô
process, Itô representation, Wiener-Itô decomposition, etc.

An important contribution to the theory of stochastic processes and stochastic

differential equations was made by Ukrainian mathematicians Iosif Gihman

(1918–1985) and more notably by Anatoliy Skorokhod (1930–2011). Their books

[GIH 72, GIK 04a, GIK 04b, GIK 07] are now classical monographs. There are many

things in stochastic analysis named after Skorokhod: Skorokhod integral, Skorokhod
space, Skorokhod representation, etc.

Our book, of course, is not the first book on stochastic processes. They are

described in many other texts, from some of which we have borrowed many ideas

presented here, and we are grateful to their authors for the texts. It is impossible to

mention every single book here, so we cite only few texts of our selection. We

apologize to the authors of many other wonderful texts which we are not able to cite

here.

The extensive treatment of probability theory with all necessary context is

available in the books of P. Billingsley [BIL 95], K.-L. Chung [CHU 79],

O. Kallenberg [KAL 02], L. Koralov and Y. Sinai [KOR 07], M. Loève

[LOÈ 77, LOÈ 78], D. Williams [WIL 91]. It is also worth mentioning the classic

monograph of P. Billingsley [BIL 99] concerned with different kinds of convergence

concepts in probability theory.

For books which describe the theory of stochastic processes in general, we

recommend that the reader looks at the monograph by J. Doob [DOO 53], the

extensive three-volume monograph by I. Gikhman and A. Skorokhod
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[GIK 04a, GIK 04b, GIK 07], the textbooks of Z. Brzezniak and T. Zastawniak

[BRZ 99], K.-L. Chung [CHU 79], G. Lawler [LAW 06], S. Resnick [RES 92],

S. Ross [ROS 96], R. Schilling and L. Partzsch [SCH 14], A. Skorokhod [SKO 65],

J. Zabczyk [ZAB 04]. It is also worth mentioning the book by A. Bulinskiy and

A. Shiryaev [BUL 05], from which we borrowed many ideas; unfortunately, it is only

available in Russian. Martingale theory is well presented in the books of R. Liptser

and A. Shiryaev [LIP 89], J. Jacod and A. Shiryaev [JAC 03], L. Rogers and

D. Williams [ROG 00a], and the classic monograph of D. Revuz and M. Yor

[REV 99]. There are many excellent texts related to different aspects of Lévy

processes, including the books of D. Applebaum [APP 09], K. Sato [SAT 13],

W. Schoutens [SCH 03], and the collection [BAR 01].

Stochastic analysis now stands as an independent subject, so there are many

books covering different aspects of it. The books of K.-L. Chung and D. Williams

[CHU 90], I. Karatzas and S. Shreve [KAR 91], H. McKean [MCK 69], J.-F. Le Gall

[LEG 16], L. Rogers and D. Williams [ROG 00b] cover stochastic analysis in

general, and the monograph of P. Protter [PRO 04] goes much deeper into integration

issues. Stochastic differential equations and diffusion processes are the subject of the

best-selling textbook of B. Øksendal [ØKS 03], and the monographs of N. Ikeda and

S. Watanabe [IKE 89], K. Itô and H. McKean [ITÔ 74], A. Skorokhod [SKO 65], and

D. Strook and S. Varadhan [STR 06]. The ultimate guide to Malliavin calculus is

given by D. Nualart [NUA 06]. Concerning financial applications, stochastic analysis

is presented in the books of T. Björk [BJÖ 04], M. Jeanblanc, M. Yor, and

M. Chesney [JEA 09], A. Shiryaev [SHI 99], and S. Shreve [SHR 04].

Different aspects of statistical methods for stochastic processes are covered by the

books of P. Brockwell and R. Davis [BRO 06], C. Heyde [HEY 97], Y. Kutoyants

[KUT 04], G. Seber and A. Lee [SEB 03].

Finally, fractional Brownian motion, one of the main research interests of the

authors of this book, is covered by the books of F. Biagini et al. [BIA 08], Y. Mishura

[MIS 08], I. Nourdin [NOU 12], D. Nualart [NUA 06], and by lecture notes of

G. Shevchenko [SHE 15].

Our book consists of two parts: the first is concerned with the theory of stochastic

processes and the second with statistical aspects.

In the first chapter, we define the main subjects: stochastic process, trajectory and

finite-dimensional distributions. We discuss the fundamental issues: existence and

construction of a stochastic process, measurability and other essential properties, and

sigma-algebras generated by stochastic processes.

The second chapter is devoted to stochastic processes with independent

increments. A definition is given and simple criteria which provide the existence are
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discussed. We also provide numerous important examples of processes with

independent increments, including Lévy processes, and study their properties.

The third chapter is concerned with a subclass of stochastic processes, arguably

the most important for applications: Gaussian processes. First, we discuss Gaussian

random variables and vectors, and then we give a definition of Gaussian processes.

Furthermore, we give several important examples of Gaussian processes and discuss

their properties. Then, we discuss integration with respect to Gaussian processes and

related topics. Particular attention is given to fractional Brownian motion and Wiener

processes, with discussion of several integral representations of fractional Brownian

motion.

The fourth chapter focuses on some delicate properties of two Gaussian

processes, which are of particular interest for applications: the Wiener process and

fractional Brownian motion. In particular, an explicit construction of the Wiener

process is provided and nowhere differentiability of its trajectories is shown. Having

in mind the question of parameter estimation for stochastic processes, we also

discuss the asymptotic behavior of power variations for the Wiener process and

fractional Brownian motion in this chapter.

In the fifth chapter, we attempted to cover the main topics in the martingale

theory. The main focus is on the discrete time case; however, we also give several

results for stochastic processes. In particular, we discuss the notions of stochastic

basis with filtration and stopping times, limit behavior of martingales, optional

stopping theorem, Doob decomposition, quadratic variations, maximal inequalities

by Doob and Burkholder-Davis-Gundy, and the strong law of large numbers.

The sixth chapter is devoted to properties of trajectories of a stochastic process.

We introduce different notions of continuity as well as important concepts of

separability, indistinguishability and stochastic equivalence, and establish several

sufficient conditions for continuity of trajectories and for absence of discontinuities

of the second kind. To the best of our knowledge, this is the first time that the

different aspects of regularity and continuity are comprehensively discussed and

compared.

The seventh chapter discusses Markov processes. The definition, together with

several important examples, is followed by analytical theory of Markov semigroups.

The chapter is concluded by the investigation of diffusion processes, which serves as

a bridge to stochastic analysis discussed in the following chapters. We provide a

definition and establish important criteria and characterization of diffusion processes.

We pay particular attention to the forward and backward Kolmogorov equations,

which are of great importance for applications.

In the eighth chapter, we give the classical introduction to stochastic integration

theory, which includes the definition and properties of Itô integral, Itô formula,
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multivariate stochastic calculus, maximal inequalities for stochastic integrals,

Girsanov theorem and Itô representation.

The ninth chapter, which closes the theoretical part of the book, is concerned with

stochastic differential equations. We give a definition of stochastic differential

equations and establish the existence and uniqueness of its solution. Several

properties of the solution are established, including integrability, continuous

dependence of the solution on the initial data and on the coefficients of the equation.

Furthermore, we prove that solutions to stochastic differential equations are diffusion

processes and provide a link to partial differential equations, the Feynman-Kac

formula. Finally, we discuss the diffusion model of a financial market, giving notions

of arbitrage, equivalent martingale measure, pricing and hedging of contingent

claims.

The tenth chapter opens the second part of the book, which is devoted to statistical

aspects. It studies the estimation of parameters of stochastic processes in different

scenarios: in a linear regression model with discrete time, in a continuous time linear

model driven by Wiener process, in models with fractional Brownian motions, in a

linear autoregressive model and in homogeneous diffusion models.

In the eleventh chapter, the classic problem of optimal filtering is studied. A

statistical setting is described, then a representation of optimal filter is given as an

integral with respect to an observable process. Finally, the integral Wiener-Hopf

equation is derived, a linear stochastic differential equation for the optimal filter is

derived, and the error of the optimal filter is identified in terms of solution of the

Riccati equation. In the case of constant coefficients, the explicit solutions of these

equations are found.

Auxiliary results, which are referred to in the book, are collected in Appendices

1 and 2. In Appendix 1, we give essential facts from calculus, measure theory and

theory of operators. Appendix 2 contains important facts from probability theory.
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1

Stochastic Processes. General
Properties. Trajectories,

Finite-dimensional Distributions

1.1. Definition of a stochastic process

Let (Ω,F ,P) be a probability space. Here, Ω is a sample space, i.e. a collection of

all possible outcomes or results of the experiment, and F is a σ-field; in other words,

(Ω,F) is a measurable space, and P is a probability measure on F . Let (S,Σ) be

another measurable space with σ-field Σ, and let us consider the functions defined

on the space (Ω,F) and taking their values in (S,Σ). Recall the notion of random

variable.

DEFINITION 1.1.– A random variable on the probability space (Ω,F) with the values

in the measurable space (S,Σ) is a measurable map Ω
ξ→ S , i.e. a map for which the

following condition holds: the pre-image ξ−1(B) of any set B ∈ Σ belongs to F .
Equivalent forms of this definition are: for any B ∈ Σ, we have that

ξ−1(B) ∈ F ,

or, for any B ∈ Σ, we have that

{ω : ξ(ω) ∈ B} ∈ F .

Consider examples of random variables.

1) The number shown by rolling a fair die. Here,

Ω = {ω1, ω2, ω3, ω4, ω5, ω6},F = 2Ω,S = 1, 2, 3, 4, 5, 6,Σ = 2S .

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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2) The price of certain assets on a financial market. Here, (Ω,F) can depend on

the model of the market, and the space S, as a rule, coincides with R+ = [0,+∞).

3) Coordinates of a moving airplane at some moment of time. People use

different coordinate systems to determine the coordinates of the airplane that has

three coordinates at any time. The coordinates are time dependent and random, to

some extent, because they are under the influence of many factors, some of which are

random. Here, S = R
3 for the Cartesian system, or S = R

2 × [0, 2π] for the

cylindrical system, or S = R× [0, π]× [0, 2π] for the spherical system.

Now, we formalize the notion of a stochastic (random) process, defined on

(Ω,F ,P). We will treat a random process as a set of random variables. That said,

introduce the parameter set T with elements t : t ∈ T.

DEFINITION 1.2.– Stochastic process on the probability space (Ω,F ,P),
parameterized by the set T and taking values in the measurable space (S,Σ), is a set
of random variables of the form

Xt = {Xt(ω), t ∈ T, ω ∈ Ω},
where Xt(ω) : T× Ω → S.

Thus, each parameter value t ∈ T is associated with the random variable Xt taking

its value in S. Sometimes, we call S a phase space. The origin of the term comes

from the physical applications of stochastic processes, rather than from the physical

problems which stimulated the development of the theory of stochastic processes to a

large extent.

Here are other common designations of stochastic processes:

X(t), ξ(t), ξt, X = {Xt, t ∈ T}.

The last designation is the best in the sense that it describes the entire process as

a set of the random variables. The definition of a random process can be rewritten as

follows: for any t ∈ T and any set B ∈ Σ

X−1
t (B) ∈ F .

Another form: for any t ∈ T and any set B ∈ Σ

{ω : Xt(ω) ∈ B} ∈ F .

In general, the space S can depend on the value of t, S = St, but, in this book,

space S will be fixed for any fixed stochastic process X = {Xt, t ∈ T}. If S = R,

then the process is called real or real-valued. Additionally, we assume in this case

that Σ = B(R), i.e. (S,Σ) = (R,B(R)), where B(S) is a Borel σ-field on S. If
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S = C, the process is called complex or complex-valued, and if S = R
d, d > 1,

the process is called vector or vector-valued. In this case, (S,Σ) = (C,B(C)) and

(S,Σ) = (Rd,B(Rd)), respectively.

Concerning the parameter set T, as a rule, it is interpreted as a time set. If the time

parameter is continuous, then usually either T = [a, b], or [a,+∞) or R. If the time

parameter is discrete, then usually either T = N = 1, 2, 3, . . ., or T = Z
+ = N ∪ 0 or

T = Z.

The parameter set can be multidimensional, e.g. T = R
m,m > 1. In this case,

we call the process a random field. The parameter set can also be mixed, the so-

called time–space set, because we can consider the processes of the form X(t, x) =
X(t, x, ω), where (t, x) ∈ R+ × R

d. In this case, we interpret t as time and x ∈ R
d

as the coordinate in the space R
d.

There can be more involved cases, e.g. it is possible to consider random measures

μ(t, A, ω), where t ∈ R+, A ∈ B(Rd), or random processes defined on the groups,

whose origin comes from physics. We will not consider in detail the theory of such

processes.

In what follows, we consider the real-valued parameter, i.e. T ⊂ R, so that we can

regard the parameter as time, as described above.

1.2. Trajectories of a stochastic process. Some examples of stochastic
processes

1.2.1. Definition of trajectory and some examples

A stochastic process X = {Xt(ω), t ∈ T, ω ∈ Ω} is a function of two variables,

one of them being a time variable t ∈ T and the other one a sample point (elementary

event) ω ∈ Ω. As mentioned earlier, fixing t ∈ T, we get a random variable Xt(·). In

contrast, fixing ω ∈ Ω and following the values that X·(ω) takes as the function of

parameter t ∈ T, we get a trajectory (path, sample path) of the stochastic process. The

trajectory is a function of t ∈ T and, for any t, it takes its value in S. Changing the

value of ω, we get a set of paths. They are schematically depicted in Figure 1.1.

Let us consider some examples of random processes and draw their trajectories.

First, we recall the concept of independence of random variables.

DEFINITION 1.3.– Random variables {ξα, α ∈ A}, where A is some parameter set,
are called mutually independent if for any finite subset of indices {α1, . . . , αk} ⊂ A
and, for any measurable sets A1, . . . , Ak, we have that

P{ξα1 ∈ A1, . . . , ξαk
∈ Ak} = Πk

i=1P{ξαi ∈ Ai}.
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Figure 1.1. Trajectories of a stochastic process. For a color version of
the figure, see www.iste.co.uk/mishura/stochasticprocesses.zip

1.2.1.1. Random walks

A random walk is a process with discrete time, e.g. we can put T = Z
+. Let

{ξn, n ∈ Z
+} be a family of random variables taking values in R

d, d ≥ 1. Put

Xn =
∑n

i=0 ξi. Stochastic process X = {Xn, n ∈ Z+} is called a random walk in

R
d. In the case where d = 1, we have a random walk in the real line. In general, the

random variables ξi can have arbitrary dependence between them, but the most

developed theory is in the case of random walks with mutually independent and

identically distributed variables {ξn, n ∈ Z
+}. If, additionally, any random variable

ξn takes only two values a and b with respective probabilities P{ξn = a} = p and

P{ξn = b} = q = 1 − p ∈ (0, 1), then we have a Bernoulli random walk. If a = −b
and p = q = 1

2 , then we have a symmetric Bernoulli random walk. The trajectory of

the random walk consists of individual points, and is shown in Figure 1.2.

1.2.1.2. Renewal process

Let {ξn, n ∈ Z
+} be a family of random variables taking positive values with

probability 1. Stochastic process N = {Nt, t ≥ 0} can be defined by the following

formula:

Nt =

{
0, t < ξ1;
sup{n ≥ 1 :

∑n
i=1 ξi ≤ t}, t ≥ ξ1.

Stochastic process N = {Nt, t ≥ 0} is called a renewal process. Trajectories of a

renewal process are step-wise with step 1. The example of the trajectory is represented

in Figure 1.3.
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Figure 1.3. Trajectories of a renewal process

Random variables T1 = ξ1, T2 = ξ1 + ξ2, . . . are called jump times, arrival times

or renewal times of the renewal process. The latter name comes from the fact that

the renewal processes were considered in applied problems related to moments of

failure and replacement of equipment. Intervals [0, T1] and [Tn, Tn+1], n ≥ 1 are

called renewal intervals.

1.2.1.3. Stochastic processes with independent values and those with
independent increments

DEFINITION 1.4.– A stochastic process X = {Xt, t ≥ 0} is called a process with

independent values if the random variables {Xt, t ≥ 0} are mutually independent.
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It will be shown later, in Example 6.1, that the trajectories of processes with

independent values are quite irregular and, for this reason, the processes with

independent values are relatively rarely used to model phenomena in nature,

economics, technics, society, etc.

DEFINITION 1.5.– A stochastic process X = {Xt, t ≥ 0} is called a process with

independent increments, if, for any set of points 0 ≤ t1 < t2 < . . . < tn, the random
variables Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are mutually independent.

Here is an example of a random process with discrete time and independent

increments.

Let X = {Xn, n ∈ Z
+} be a random walk, Xn =

∑n
i=0 ξi, and the random

variables {ξi, i ≥ 0} be mutually independent. Evidently, for any 0 ≤ n1 < n2 <
. . . < nk, the random variables

Xn1 =

n1∑
i=0

ξi, Xn2 −Xn1 =

n2∑
i=n1+1

ξi, . . . , Xnk
−Xnk−1

=

nk∑
i=nk−1+1

ξi

are mutually independent; therefore, X is a process with discrete time and independent

increments. Random processes with continuous time and independent increments are

considered in detail in Chapter 2.

1.2.2. Trajectory of a stochastic process as a random element

Let {Xt, t ∈ T} be a stochastic process with the values in some set S. Introduce

the notation ST = {y = y(t), t ∈ T} for the family of all functions defined on T

and taking values in S. Another notation can be ST = ×t∈TSt, with all St = S or

simply ST = ×t∈TS, which emphasizes that any element from ST is created in such

a way that we take all points from T, assigning a point from S to each of them. For

example, we can consider S [0,∞) or S [0,T ] for any T > 0. Now, the trajectories of a

random process X belong to the set ST. Thus, considering the trajectories as elements

of the set ST, we get the mapping X : Ω → ST, that transforms any element of Ω
into some element of ST. We would like to address the question of the measurability

of this mapping. To this end, we need to find a σ-field ΣT of subsets of ST such that

the mapping X is F-ΣT-measurable, and this σ-field should be the smallest possible.

First, let us prove an auxiliary lemma.

LEMMA 1.1.– Let Q and R be two spaces. Assume that Q is equipped with σ-field
F , and R is equipped with σ-field G, where G is generated by some class K, i.e.
G = σ(K). Then, the mapping f : Q → R is F-G-measurable if and only if it is
F-K-measurable, i.e. for any A ∈ K, the pre-image is f−1(A) ∈ F .
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PROOF.– Necessity is evident. To prove sufficiency, we should check that, in the case

where the pre-images of all sets from K under mapping f belong to F , the pre-images

of all sets from G under mapping f belong to F as well. Introduce the family of sets

K1 = {B ∈ G : f−1(B) ∈ F}.

The properties of pre-images imply that K1 is a σ-field. Indeed,

f−1

( ∞⋃
n=1

Bn

)
=

∞⋃
n=1

f−1(Bn) ∈ F ,

if f−1(Bn) ∈ F ,

f−1(C2 \ C1) = f−1(C2) \ f−1(C1) ∈ F ,

if f−1(C1) ∈ F , i = 1, 2, and f−1(R) = Q ∈ F . It means that K1 ⊃ σ(K) = G,

whence the proof follows. �

Therefore, to characterize the measurability of the trajectories, we must find a

“reasonable” subclass of sets of ST, the inverse images of which belong to F .

DEFINITION 1.6.– Let the point t0 ∈ T and the set A ⊂ S, A ∈ Σ be fixed.
Elementary cylinder with base A over point t0 is the following set from ST:

C(t0, A) = {y = y(t) ∈ ST : y(t0) ∈ A}.

If S = R and A is some interval, then C(t0, A) is represented schematically in

Figure 1.4. Elementary cylinder consists of the functions whose values at point t0
belong to the set A.

Let Kel be the class of elementary cylinders, and Kel = σ(Kel), with the σ-field

being generated by the elementary cylinders.

THEOREM 1.1.– For any stochastic process X = {Xt, t ∈ T}, the mapping X :
Ω → ST, which assigns to any element ω ∈ Ω the corresponding trajectory X(·, ω),
is F–Kel-measurable.

PROOF.– According to lemma 1.1, it is sufficient to check that the mapping X is F–

Kel-measurable. Let the set C(t0, A) ∈ Kel. Then, the pre-image X−1(C(t0, A)) =
{ω ∈ Ω : X(t0, ω) ∈ A} ∈ F , and the theorem is proved. �

COROLLARY 1.1.– The σ-field Kel, generated by the elementary cylinders, is the
smallest σ-field ΣT such that for any stochastic process X , the mapping
ω 
→ {Xt(Ω), t ∈ T} is F-ΣT-measurable.
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Figure 1.4. Trajectories that belong to elementary cylinder.
For a color version of the figure, see

www.iste.co.uk/mishura/stochasticprocesses.zip

1.3. Finite-dimensional distributions of stochastic processes:
consistency conditions

There are two main approaches to characterizing a stochastic process: by the

properties of its trajectories and by some number-valued characteristics, e.g. by

finite-dimensional distributions of the values of the process. Of course, these

approaches are closely related; however, any of them has its own specifics. Now we

shall consider finite-dimensional distributions.

1.3.1. Definition and properties of finite-dimensional distributions

Let X = {Xt, t ∈ T} be a stochastic process taking its values in the measurable

space (S,Σ). For any k ≥ 0, consider the space S(k), that is, a Cartesian product of

S:

S(k) = S × S × . . .× S︸ ︷︷ ︸
k

= ×k
i=1S.

Let the σ-field Σ(k) of measurable sets on S(k) be generated by all products of

measurable sets from Σ.

DEFINITION 1.7.– Finite-dimensional distributions of the process X is a family of
probabilities of the form

P = {P{(Xt1 , Xt2 , . . . , Xtk) ∈ A(k)}, k ≥ 1, ti ∈ T, 1 ≤ i ≤ k,A(k) ∈ Σ(k)}.
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REMARK 1.1.– Often, especially in applied problems, finite-dimensional
distributions are defined as the following probabilities:

P1 = {P{Xt1 ∈ A1, . . . , Xtk ∈ Ak}, k ≥ 1, ti ∈ T, Ai ∈ Σ, 1 ≤ i ≤ k}.
Since we can write

P{Xt1 ∈ A1, . . . , Xtk ∈ Ak} = P
{
(Xt1 , . . . , Xtk) ∈ ×k

i=1Ai

}
,

and ×k
i=1Ai ∈ Σ(k), the following inclusion is evident: P1 ⊂ P. The inclusion

is strict, because the sets of the form ×k
i=1A

(i) do not exhaust Σ(k) unless k = 1.

However, below we give a result where checking some properties for P is equivalent

to checking them for P1.

1.3.2. Consistency conditions

Let π = {l1, . . . , lk} be a permutation of the coordinates {1, . . . , k}, i.e. li are

distinct indices from 1 to k. Denote for A(k) ∈ Σ(k) by π(A(k)) the set obtained from

A(k) by the corresponding permutation of coordinates, e.g.

π
(×k

i=1Ai

)
= ×k

i=1Ali .

Denote also π(Xt1 , . . . , Xtk) = (Xti1
, . . . , Xtik

) the respective permutation of

vector coordinates (Xt1 , . . . , Xtk). Consider several consistency conditions which

finite-dimensional distributions of random processes and the corresponding

characteristic functions satisfy.

Consistency conditions (A):

1) For any 1 ≤ k ≤ l, any points ti ∈ T, 1 ≤ i ≤ l, and any set A(k) ∈ Σ(k)

P{(Xt1 , . . . , Xtk , Xtk+1
, . . . , Xtl) ∈ A(k) × S(l−k)}

= P{(Xt1 , . . . , Xtk) ∈ A(k)}.

2) For any permutation π

P{π(Xt1 , . . . , Xtk) ∈ π(A(k))} = P{(Xt1 , . . . , Xtk) ∈ A(k)}. [1.1]

REMARK 1.2.– Assume now that S = R and consider the characteristic functions that

correspond to the finite-dimensional distributions of stochastic process X . Denote

ψ(λ1, . . . , λk; t1, . . . , tk) = E exp

⎧⎨
⎩i

k∑
j=1

λjXtj

⎫⎬
⎭ ,
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λj ∈ R, tj ∈ T. Evidently, for ψ(λ1, . . . , λk; t1, . . . , tk), consistency conditions can

be formulated as follows.

Consistency conditions (B):

1) For any 1 ≤ k ≤ l and any points ti ∈ T, 1 ≤ i ≤ l, λi ∈ R, 1 ≤ i ≤ k

ψ(λ1, . . . , λk, 0, . . . , 0︸ ︷︷ ︸
l−k

; t1, . . . , tk, tk+1, . . . , tl) = ψ(λ1, . . . , λk; t1, . . . , tk).

2) For any k ≥ 1, λi ∈ R, ti ∈ T, 1 ≤ i ≤ k

ψ(π(λ);π(t)) = ψ(λ1, . . . , λk; t1, . . . , tk),

where π(λ) = (λi1 , . . . , λik), π(t) = (ti1 , . . . , tik).

From now on, we assume that S is a metric space with the metric ρ, and Σ is a σ-

field of Borel sets of S, generated by the metric ρ. We shall use the notation (S, ρ,Σ).
Sometimes, we shall omit notations Σ and ρ yet assuming that they are fixed. Note

that, for any k > 1, the space S(k) is a metric space, where the metric ρk on the space

S(k) is defined by the formula

ρk(x, y) =

k∑
i=1

ρ(xi, yi), [1.2]

and x = (x1, . . . , xk) ∈ S(k), y = (y1, . . . , yk) ∈ S(k). Moreover, we can define

the σ-field Σ(k) of the Borel sets on S(k), generated by the metric ρk. (Note that it

coincides with the σ-field generated by products of Borel sets from S.)

LEMMA 1.2.– Let the metric space (S, ρ,Σ) be separable and let the

finite-dimensional distributions of the process X satisfy the following version of

consistency conditions.

Consistency conditions (A1)

1) For any 1 ≤ k ≤ l, any points ti ∈ T, 1 ≤ i ≤ l and any set A(k) =
×k

i=1Ai, Ai ∈ Σ, the following equality holds

P{Xt1 ∈ A1, . . . , Xtk ∈ Ak, Xtk+1
∈ S, . . . , Xtl ∈ S}

= P{Xt1 ∈ A1, . . . , Xtk ∈ Ak}.
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2) For any permutation π = (i1, . . . , ik),

P{Xti1
∈ Ai1 , . . . , Xtik

∈ Aik} = P{Xt1 ∈ A1, . . . , Xtk ∈ Ak}.

Then the finite-dimensional distributions of the process X satisfy consistency

conditions (A), where Σ(k) is a σ-field of Borel sets of S(k). Therefore, for the

stochastic process with the values in a metric separable space (S,Σ), consistency

conditions for the families of sets P and P1 are fulfilled simultaneously.

PROOF.– The statement follows immediately from theorem A2.2 by noting that both

sides of [1.1] are probability measures, and the sets of the form ×k
i=1Ai, Ai ∈ Σ form

a π-system generating the σ-field Σ(k). �

1.3.3. Cylinder sets and generated σ-algebra

DEFINITION 1.8.– Let {t1, . . . , tk} ⊂ T, the set A(k) ∈ Σ(k). Cylinder set with base
A(k) over the points {t1, . . . , tk} is the set of the form

C(t1, . . . , tk, A
(k)) = {y = y(t) ∈ ST : (y(t1), . . . , y(tk)) ∈ A(k)}.

REMARK 1.3.– If A(k) is a rectangle in S(k) of the form A(k) = ×k
i=1Ai, then

C(t1, . . . , tk, A
(k)) is the intersection of the corresponding elementary cylinders:

C(t1, . . . , tk, A
(k)) = {y = y(t) ∈ ST : y(ti) ∈ Ai, 1 ≤ i ≤ k} =

k⋂
i=1

C(ti, Ai).

Denote by Kcyl the family of all cylinder sets.

LEMMA 1.3.–

1) The family of all cylinder sets Kcyl is an algebra on the space ST.

2) If the set S contains at least two points, and the set T is infinite, then the family

of all cylinder sets is not a σ-algebra.

PROOF.– 1) Let C(t11, . . . , t
1
k, A

(k)) and C(t21, . . . , t
2
m, B(m)) be two cylinder sets,

possibly with different bases and over different sets of points. We write them as

cylinder sets with different bases but over the same set of points, namely over the set

{t1, . . . , tl} = {t11, . . . , t1k} ∪ {t21, . . . , t2m}. Specifically, define projections

p1(x1, . . . , xl) = (xi, ti ∈ {t11, . . . , t1k}), p2(x1, . . . , xl) = (xi, ti ∈ {t21, . . . , t2m}).



14 Theory and Statistical Applications of Stochastic Processes

Then

C
(
t11, . . . , t

1
k, A

(k)
)
= C

(
t1, . . . , tl, p

−1
1 (A(k))

)
,

C
(
t21, . . . , t

2
m, B(m)

)
= C

(
t1, . . . , tl, p

−1
2 (B(m))

)
,

so the set

C
(
t11, . . . , t

1
k, A

(k)
)
∪ C

(
t21, . . . , t

2
m, B(m)

)
= C

(
t1, . . . , tl, p

−1
1 (A(k)) ∪ p−1

2 (B(m))
)

belongs to Kcyl, because

p−1
1 (A(k)) ∪ p−1

2 (B(m)) ∈ Σ(l).

Similarly, the set

C
(
t11, . . . , t

1
k, A

(k)
)
\C

(
t21, . . . , t

2
m, B(m)

)
= C

(
t1, . . . , tl, p

−1
1 (A(k)) \ p−1

2 (B(m))
)

belongs to Kcyl. Finally, for any t0 ∈ T

ST = {y = y(t) : y(t0) ∈ S} ∈ Kcyl,

whence it follows that the family of cylinder sets Kcyl is an algebra on the space ST.

2) Let S contain at least two different points, say, s1 and s2, and let T be infinite.

Then T contains a countable set of points {tn, n ≥ 1}. The set

( ∞⋃
i=1

C(t2i, {s1})
)

∪
( ∞⋃

i=1

C(t2i+1, {s2})
)

is not a cylinder set because it cannot be described in terms of any finite set of points

from T. It means that, in this case, the family of cylinder sets Kcyl is not a σ-field on

the space ST. �

Denote by Kcyl the σ-algebra generated by the family Kcyl of cylinder sets:

Kcyl = σ(Kcyl).
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LEMMA 1.4.– For any k ≥ 1, Kcyl = Kel.

PROOF.– Evidently, σ-algebra Kel = σ(Kel) ⊂ Kcyl = σ(Kcyl), because any

elementary cylinder is a cylinder set. Vice versa, for a fixed subset {t1, . . . , tk} ⊂ T,

define the family

K =
{
B ∈ Σ(k) : C(t1, . . . , tk, B) ∈ Kel

}
.

This is clearly a σ-algebra, which contains sets of the form A1×· · ·×Ak, Ai ∈ Σ,

and therefore, K = Σ(k). Consequently, we have Kel ⊃ Kcyl, whence Kel ⊃ Kcyl, as

required. �

1.3.4. Kolmogorov theorem on the construction of a stochastic process
by the family of probability distributions

If some stochastic process is defined, then we know in particular its

finite-dimensional distributions. We can say that a family of finite-dimensional

distributions corresponds to a stochastic process. Consider now the opposite

question. Namely, let us have a family of probability distributions. Is it possible to

construct a probability space and a stochastic process on this space so that the family

of probability distributions is a family of finite-dimensional distributions of the

constructed process? Let us formulate this problem more precisely.

Let (S, ρ,Σ) be a metric space with Borel σ-field and T be a parameter set, and

consider the family of functions

(
P{t1, . . . , tn, B(n)}, n ≥ 1, ti ∈ T, 1 ≤ i ≤ n,B(n) ∈ Σ(n)

)
, [1.3]

where Σ(n) is a Borel σ-field on S(n). Assume that, for any t1, . . . , tn ∈ T, the

function P{t1, . . . , tn, ·} is a probability measure on Σ(n).

THEOREM 1.2.– [A.N. Kolmogorov] If (S,Σ) is a complete separable metric space
with Borel σ-field Σ, and family [1.3] satisfies consistency conditions (A1), then there
exists a probability space (Ω,F ,P) and stochastic process X = {Xt, t ∈ T} on
this space and with the phase space (S,Σ), for which [1.3] is the family of its finite-
dimensional distributions.

PROOF.– We divide the proof into several steps. Step 1. At first, recall that according

to lemma 1.2, for the separable metric space (S, ρ,Σ) conditions (A) and (A1) are

equivalent and continue to deal with the condition (A). Put Ω = ST, F = Kcyl.
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Recall also that Kcyl = σ(Kcyl), where Kcyl is the algebra of cylinder sets. Let C be

the arbitrary cylinder set, and let it be represented as

C = C(t1, . . . , tn, A
(n)).

Construct the following function defined on the sets of Kcyl:

P′{C} = P{t1, . . . , tn, A(n)}.

Note that, generally speaking, the cylinder set C admits non-unique representation.

In particular, it is possible to rearrange points t1, . . . , tn and to “turn” the base A(n)

accordingly. Moreover, it is possible to append any finite number of points s1, . . . , sm
and replace A(n) with A(n) × S(m). However, consistency conditions guarantee that

P′{C} will not change under these transformations; therefore, function P′{·} on Kcyl

is well defined.

Step 2. Now we want to prove that P′{·} is an additive function on Kcyl. To this

end, consider two disjoint sets

C1 = C
(
t11, . . . , t

1
n, A

(n)
)

and C2 = C
(
t21, . . . , t

2
m, B(m)

)
,

and let {t1, . . . , tl} = {t11, . . . , t1n} ∪ {t21, . . . , t2m}. Defining projection operators

p1(x1, . . . , xl) = (xi, ti ∈ {t11, . . . , t1n}), p2(x1, . . . , xl) = (xi, ti ∈ {t21, . . . , t2m}),
we have

C
(
t11, . . . , t

1
n, A

(n)
)
∪ C

(
t21, . . . , t

2
m, B(m)

)
= C

(
t1, . . . , tl, p

−1
1 (A(n)) ∪ p−1

2 (B(m))
)
.

The bases p−1
1 (A(n)) and p−1

2 (B(m)) are disjoint, since the sets C1 and C2 are, so

it follows from the fact that P{t11, . . . , t1n, ·} is a measure with respect to the sets A(n)

and also from consistency conditions that the following equalities hold:

P{C1 ∪ C2} = P{t1, . . . , tl, p−1
1 (A(n)) ∪ p−1

2 (B(m))}
= P{t1, . . . , tl, p−1

1 (A(n))}+ P{t1, . . . , tl, p−1
2 (B(m))}

= P{t11, . . . , t1n, A(n)}+ P{t21, . . . , t2m, B(m)} = P′{C1}+ P′{C2}.

Step 3. Now we shall prove that P′ is a countably additive function on Kcyl. Let

the sets {C,Cn, n ≥ 1} ⊂ Kcyl, Cn ∩ Ck = ∅ for any n = k, and moreover, let

C =
⋃∞

n=1 Cn. It is sufficient to prove that

P′{C} =
∞∑

n=1

P′{Cn}. [1.4]
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Let us establish [1.4] in the following equivalent form. Denote Dn =
⋃∞

k=n Ck.

Then D1 ⊃ D2 ⊃ . . ., and
⋂∞

n=1 Dn = ∅. Besides this, it follows from the additivity

of P′ on Kcyl that

P′{C} =
n−1∑
k=1

P′{Ck}+ P′{Dn}.

Therefore, in order to prove [1.4], it is sufficient to establish that

lim
n→∞P′{Dn} = 0.

Since the sets Dn do not increase, this limit exists. By contradiction, let

lim
n→∞P′{Dn} = α > 0.

Without any loss of generality, we can assume that the set of points, over which

Dn is defined, is growing with n. Let the points be {t1, . . . , tkn}, and Bn ∈ Σ(kn)

be the base of Dn. In other words, let Dn = C(t1, . . . , tkn , Bn). Taking into account

the fact that S is a completely separable metric space, we get from theorem A1.1 that

the space S(kn) is also a completely separable metric space. Therefore, according to

theorem A1.2, there exists a compact set Kn ∈ Σ(kn), such that Kn ⊆ Bn and

P{t1, . . . , tkn , Bn\Kn) <
α

2n+1
.

Now construct a cylinder set Qn with the base Kn over the points t1, . . . , tkn and

consider the intersection Gn =
⋂n

i=1 Qi. Let Mn be the base of the set Gn. The

sets Gn are non-increasing, and their bases Mn are compact. Indeed, the set Mn is

an intersection of the bases of the sets Qi, 1 ≤ i ≤ n, but in the case where all

of them are presented as the cylinder sets over the points {t1, . . . , tkn}. With such

a record, the initial bases Ki of the sets Qi take the form Ki × S(kn−ki) and thus

remain closed although perhaps no longer compact, while the set Kn is compact. An

intersection of closed sets, one of which is compact, is a compact set as well; therefore,

Mn is a compact set. The fact that Gn are non-increasing means that any element of

Gn+p, p > 0 belongs to Gn. Their bases Mn are non-increasing in the sense that, for

any point (y(t1), . . . , y(tkn+p)) ∈ Mn+p, its “beginning” (y(t1), . . . , y(tkn)) ∈ Mn.

Now let us prove that the sets Gn and consequently Mn are non-empty. Indeed, it

follows from the additivity of P′ that

P′{Dn\Gn} = P′{Dn \
n⋂

i=1

Qi} = P′
{

n⋃
i=1

(Dn \Qi)

}
≤

n∑
i=1

P′ {Dn \Qi}

≤
n∑

i=1

P′{Di \Qi} =
n∑

i=1

P{t1, . . . , tki , Bi \Ki} ≤
∞∑
i=1

α

2i+1
=

α

2
.
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It means that P′{Gn} ≥ α
2 , whence the sets Gn are non-empty. In turn, it means

that Mn = ∅, and we can choose the points (y
(n)
1 , . . . , y

(n)
ln

) ∈ Mn, and moreover, ln

is non-decreasing in n. Take the sequence (y
(n)
1 , . . . , y

(n)
ln

) and consider its

“beginning” (y
(n)
1 , . . . , y

(n)
l1

). As has just been said, the sequence

(y
(n)
1 , . . . , y

(n)
l1

) ∈ M1. Therefore, it contains a convergent subsequence, and then

any sequence {y(n)k , n ≥ 1} for 1 ≤ k ≤ l1 contains a convergent subsequence. Take

(y
(n)
1 , . . . , y

(n)
l2

) ∈ M2; at once, any “column” {y(n)k , n ≥ 1} for 1 ≤ k ≤ l2 contains

a convergent subsequence. Finally, any “column” {y(n)k , n ≥ 1} for k ≥ 1 contains a

convergent subsequence. Denote by y
(0)
k the limit of convergent subsequence

{y(nj)
k , j ≥ 1}. Applying the diagonal method, we can choose, for any n, a

convergent subsequence of vectors

(y
(nj)
1 , y

(nj)
2 , . . . , y

(nj)
kn

) → (y
(0)
1 , y

(0)
2 , . . . , y

(0)
kn

).

Since all the points (y
(nj)
1 , y

(nj)
2 , . . . , y

(nj)
kn

) ∈ Mn and the sets Mn are closed, we

get that (y
(0)
1 , . . . , y

(0)
kn

) ∈ Mn. Now, define a function y = y(t) ∈ ST by the formula

y(tk) = y
(0)
k , k ≥ 1 and define y(t) in an arbitrary manner in the remaining points

from T. Then arbitrary vector (y(t1), . . . , y(tkn)) ∈ Mn; therefore, for any n ≥ 1,

the function y ∈ Gn ⊂ Dn. This means that
⋂∞

n=1 Dn = ∅, which contradicts to

the construction of sets Dn. It means that the assumption limn→∞ P′(Dn) > 0 leads

to the contradiction and so is false. Therefore, P′ is a countably additive function on

Kcyl, and consequently, P′ is a probability measure on the algebra Kcyl.

Step 4. According to the theorem on the extension of the measure from algebra

to generated σ-algebra, there exists the unique probability measure P, that is, the

extension of the measure P′ from Kcyl to Kcyl. Construct a stochastic process X =
{Xt, t ∈ T} on (Ω,F ,P) in the following way (recall that the elements ω ∈ Ω are

presented by functions y ∈ ST):

Xt(ω) = ω(t) := y(t).

We first check that X = {Xt, t ∈ T} is indeed a stochastic process. For any set

A ∈ Σ and for any t0 ∈ T, we have that

X−1
t0 (A) = {ω : Xt0(ω) ∈ A}

= {y = y(t) : y(t0) ∈ A} = C(t0, A) ∈ Kcyl ⊂ Kcyl = F .

Further,

P{(Xt1 , . . . , Xtk) ∈ A(k)} = P{(y(t1), . . . , y(tk)) ∈ A(k)}
= P{C(t1, . . . , tk, A

(k))} = P′{C(t1, . . . , tk, A
(k))} = P{t1, . . . , tk, A(k)}.
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Therefore, X = {Xt, t ∈ T} has the prescribed finite-dimensional distributions.

The theorem is proved. �

In the case where S = R, the Kolmogorov theorem can be formulated as follows.

THEOREM 1.3.– Let a family ψ(λ1, . . . , λk; t1, . . . , tk), k ≥ 1, λj ∈ R, tj ≥ 0 of
characteristic functions satisfy consistency conditions (B). Then there exists a
probability space (Ω,F ,P) and a real-valued stochastic process X = {Xt, t ≥ 0}
for which Eexp{i∑k

j=1 λjXtj} = ψ(λ1, . . . , λk; t1, . . . , tk).

1.4. Properties of σ-algebra generated by cylinder sets. The notion of
σ-algebra generated by a stochastic process

Let T = R+ = [0,+∞), (S,Σ) be a measurable space and X = {Xt, t ∈ T}
be an S-valued stochastic process. Consider the standard σ-algebra Kcyl generated by

cylinder sets, and for any finite or countable set of points, T′ = {tn, n ≥ 1} ⊂ T

forms the algebra Kcyl({tn, n ≥ 1}) of cylinder sets in the following way: A ∈
Kcyl({tn, n ≥ 1}) if and only if there exists a subset {tn1 , . . . , tnk

} ⊂ {tn, n ≥ 1}
and B(k) ∈ Σ(k) such that

A = C ′(tn1 , . . . , tnk
, B(k)) := {y : T′ → S : (y(tn1), . . . , y(tnk

)) ∈ B(k)}.

Consider the generated σ-algebra Kcyl({tn, n ≥ 1}). We shall prove the statement

that describes Kcyl in terms of the countable collections of points from T.

LEMMA 1.5.– The set A ⊂ ST belongs to Kcyl if and only if there exists a sequence
of points {tn, n ≥ 1} ⊂ T and a set B ∈ Kcyl({tn, n ≥ 1}), such that the following
equality holds:

A = C({tn, n ≥ 1}, B) := {y ∈ ST : (y(tn), n ≥ 1) ∈ B}. [1.5]

PROOF.– Let C be any cylinder set from algebra Kcyl,

C = {y ∈ ST : (y(z1), . . . , y(zm)) ∈ B(m) ⊂ S(m)}.

Then C admits the representation [1.5] if we consider the arbitrary sequence of

points {tn, n ≥ 1} such that tn = zn, 1 ≤ n ≤ m and B = A(B(m)). Therefore, if

we denote by K the sets from Kcyl that admit the representation [1.5], then Kcyl ⊂ K.

Let us establish now that K is a σ-algebra. Indeed, ST ∈ K, because we can take an

arbitrary sequence

T
′ = {tn, n ≥ 1} and B = ST

′
:= ×∞

n=1S ∈ Kcyl (T
′) ,
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and get that the set ST has a form ST = {y ∈ ST : (y(tn), n ≥ 1) ∈ B = ST
′},

admitting with evidence the representation [1.5]. Further, if A1, A2 ∈ K, they are

defined over the sequences of points T
1 = {t1n, n ≥ 1} and T

2 = {t2n, n ≥ 1} and

have the bases B1, B2, correspondingly. Then, we can consider these sets as defined

over the same sequence of points, setting S = {t1n, n ≥ 1} ∪ {t2n, n ≥ 1} and

introducing the maps pi : y ∈ SS 
→ y|
Ti ∈ ST

i

, i = 1, 2. Then

Ai = C(S, p−1
i (Bi)), i = 1, 2. The bases p−1

i (Bi), i = 1, 2, are measurable, since

the maps pi, i = 1, 2 are measurable (even continuous in the topology of pointwise

convergence). Therefore,

A1 \A2 = C(S, p−1
1 (B1) \ p−1

2 (B2)) ∈ K.

Similarly, if {Ar, r ≥ 1} ⊂ K, and they are defined over the sequences of points

T
r = {trn, n ≥ 1} and bases Br, r ≥ 1, we can define T

0 =
⋃∞

r=0 T
r and pr : y ∈

ST
0 
→ y|

Tr ∈ ST
r

, r ≥ 1, so that

∞⋃
r=1

Ar = C

(
T
0,

∞⋃
r=1

p−1
r (Br)

)
.

Thus, we have that K is a σ-algebra that contains Kcyl, i.e. K ⊃ Kcyl, but K ⊂
Kcyl by the definition. It means that K = Kcyl, whence the proof follows. �

DEFINITION 1.9.– The σ-algebra, generated by the process X is the family of sets
FX = {X−1(A), A ∈ Kcyl}.

REMARK 1.4.– It follows from the properties of pre-images that for any σ-algebra A,

the family of sets {X−1, A ∈ A} is a σ-algebra; therefore, definition 1.9 is properly

formulated.

LEMMA 1.6.– FX = σ{X−1(A), A ∈ Kcyl}

PROOF.– Denote FX
1 = {X−1(A), A ∈ Kcyl}. On the one hand, since FX is a

σ-algebra and FX contains all pre-images X−1(A) under mapping A ∈ Kcyl, then

FX ⊃ FX
1 . On the other hand, consider FX

1 and note that the mapping X is FX
1 -

Kcyl-measurable; therefore, according to lemma 1.1, the mapping X is FX
1 -Kcyl-

measurable, i.e. X−1(A) ∈ FX
1 for any A ∈ Kcyl. It means that FX

1 ⊃ FX , and the

lemma is proved. �

The following fact is a consequence of lemma 1.4.

COROLLARY 1.2.– The σ-algebra generated by a stochastic process X is the smallest
σ-algebra containing all the sets of the form

{ω ∈ Ω : X(t1, ω) ∈ A1, ..., X(tk, ω) ∈ Ak}, Ai ∈ Σ, ti ∈ T, 1 ≤ i ≤ k, k ≥ 1.



2

Stochastic Processes with
Independent Increments

Throughout this chapter, the phase space S = R or Rd. Therefore, we consider

real-valued or vector-valued stochastic processes. Parameter set is assumed to be

T = [0,+∞).

2.1. Existence of processes with independent increments in terms of
incremental characteristic functions

Recall that, according to definition 1.5, stochastic process X = {Xt, t ≥ 0} is a

process with independent increments if for any n ≥ 1 and for any collection of points

0 ≤ t0 < t1 < . . . < tn, the random variables {Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1}
are mutually independent.

Let X = {Xt, t ≥ 0} be a real-valued stochastic process with independent

increments. Consider the characteristic function of the increment

ϕ(λ; s, t) := E exp{iλ(Xt −Xs)}, 0 ≤ s < t, λ ∈ R.

Evidently, the following equality holds: for any λ ∈ R, 0 ≤ s < u < t

ϕ(λ; s, u)ϕ(λ;u, t) = ϕ(λ; s, t). [2.1]

Now we shall prove that equality [2.1] characterizes, in some sense, stochastic

processes with independent increments. Recall that the function ψ(λ) : R → C is a

characteristic function of some random variable if it is continuous with ψ(0) = 1 and

non-negatively definite, that is, for any k ≥ 1 and any zj ∈ C, λj ∈ R, 1 ≤ j ≤ k,

we have that
∑k

j,r=1 zjzrψ(λj − λr) ≥ 0.
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THEOREM 2.1.– Let us be given arbitrary characteristic function ψ(λ), λ ∈ R, and
a family of characteristic functions

{ϕ(λ; s, t), 0 ≤ s < t < ∞, λ ∈ R},
and let the latter family satisfy equality [2.1]. Then there exists a probability space
(Ω,F ,P) and a stochastic process X = {Xt, t ≥ 0} with independent increments on
this space, for which Eexp{iλX0} = ψ(λ), and Eexp{iλ(Xt −Xs)} = ϕ(λ; s, t).
Moreover, all finite-dimensional distributions of such X are uniquely determined by
ψ and ϕ.

REMARK 2.1.– Condition [2.1] does not imply in general that increments of a

process are independent; moreover, even two increments Xt −Xu and Xu −Xs can

be dependent and still satisfy [2.1]. The above theorem establishes the existence of a

process with independent increments such that the characteristic function of them

satisfies [2.1], but in general there can be other processes with the same incremental

characteristic function.

PROOF.– Let {Yt, t ≥ 0} be a process with independent increments, and ϕ(λ; s, t) =
E exp{iλ(Yt − Ys)}. For any 0 ≤ t0 < t1 < . . . < tn, the following equality holds:

(Yt0 , . . . , Ytn)
tr = A(Yt0 , Yt1 − Yt0 , . . . , Ytn − Ytn−1)

tr,

where matrix A =

⎛
⎜⎜⎜⎝
1 0 0 · · · 0
1 1 0 · · · 0
...

. . .
... . . .

...

1 · · · 1 . . . 1

⎞
⎟⎟⎟⎠ . Denote λ = (λ0, . . . , λn), Y = (Yt0 , . . . , Ytn),

Z = (Yt0 , Yt1 − Yt0 , . . . , Ytn − Ytn−1
) and write

Eexp{i(λ0Yt0 + λ1Yt1 + . . .+ λnYtn)} = Eexp{i(λ, Y )}
= Eexp{i(λ,AZtr

)} = Eexp{i(Atrλ
tr
, Z)}

= Eexp{i((λ0 + . . .+ λn)Y0 + (λ0 + . . .+ λn)(Yt0 − Y0)

+ (λ1 + . . .+ λn)(Yt1 − Yt0) . . .+ (λn−1 + λn)(Ytn−1 − Ytn−2) [2.2]

+ λn(Ytn − Ytn−1))} = ψ(λ0 + . . .+ λn)ϕ(λ0 + . . .+ λn; 0, t0)

× ϕ(λ1 + . . .+ λn; t0, t1) . . . ϕ(λn−1 + λn; tn−1, tn)ϕ(λn; tn−1, tn).

Thus, equality [2.2] is necessary in order for process Y to have independent

increments. Vice versa, if equality [2.2] is satisfied, then the process Y has

independent increments. Now, having the family {ϕ(λ; s, t)} of characteristic
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functions and the initial characteristic function ψ, define the characteristic functions

of finite-dimensional distributions by the formula

ϕ(λ0, . . . , λn; t0, . . . , tn) = ψ(λ0 + . . .+ λn)ϕ(λ0 + . . .+ λn; 0, t0)

× ϕ(λ1 + . . .+ λn; t0, t1) . . . ϕ(λn; tn−1, tn). [2.3]

Let 0 ≤ t0 < t1 < . . . < tn, and π(λ) = (λi1 , . . . , λin) be any permutation. For

the respective permutation π(t) = (ti1 , . . . , tin), put Eexp{i(π(λ), π(t))} =
Eexp{i(λ, t)}. Then the first consistency condition from the couple (B) (section

1.3.2) of the conditions for the characteristic functions is fulfilled. Now verify the

second one. Consider any 1 ≤ k ≤ n and let 0 ≤ t0 < t1 < . . . < tk < t∗k <
tk+1 < . . . < tn. Then

ϕ(λ0, . . . , 0
k+1

, . . . , λn; t0, . . . , tk, t
∗
k, tk+1, . . . , tn)

= ψ(λ0 + . . .+ λn)ϕ(λ0 + . . .+ λn; 0, t0) [2.4]

× ϕ(λ1 + . . .+ λn; t0, t1) . . . ϕ(0 + λk+1 + . . .+ λn, tk, t
∗
k)

× ϕ(λk+1 + . . .+ λn; t
∗
k, tk+1) . . . ϕ(λn; tn−1, tn).

It follows immediately from equality [2.1] that

ϕ(0 + λk+1 + . . .+ λn; tk, t
∗
k)ϕ(λk+1 + . . .+ λn; t

∗
k, tk+1)

= ϕ(λk+1 + . . .+ λn; tk, tk+1).

Therefore, applying formula [6.7], we get that the right-hand side of [2.4] equals

ϕ(λ0, . . . , λn; t0, . . . , tn).

If tn+1 > tn, then ϕ(0; tn, tn+1) = 1. It means that

ϕ(λ0, . . . , λn, 0; t0, . . . , tn, tn+1) = ψ(λ0 + . . .+ λn)

× ϕ(λ0 + . . .+ λn; 0, t0)ϕ(λ1 + . . .+ λn; t0, t1) . . . ϕ(λn; tn−1tn)

× ϕ(0; tn, tn+1) = ϕ(λ0, . . . , λn; t0, . . . , tn, tn+1).

Thus, the second condition of consistency is fulfilled. Hence, by the Kolmogorov

theorem in the form of theorem 1.3, there exists a probability space (Ω,F ,P), and a

stochastic process {Xt, t ≥ 0} on this space, satisfying

Eexp{i(λ0Xt0 + . . .+ λnXtn)} = ϕ(λ0, . . . , λn; t0, . . . , tn).

Then, it follows from [2.2] and [2.3] that X is a process with independent

increments. The theorem is proved. �
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2.2. Wiener process

2.2.1. One-dimensional Wiener process

DEFINITION 2.1.– A real-valued stochastic process W = {Wt, t ≥ 0} is called a
(standard) Wiener process if it satisfies the following three conditions:

1) W0 = 0.

2) The process W has independent increments.

3) Increments Wt−Ws for any 0 ≤ s < t have the Gaussian distribution with zero
mean and variance t− s. In other words, Wt −Ws ∼ N (0, t− s).

REMARK 2.2.– The Wiener process is often called Brownian motion. Sometimes,

especially in the theory of Markov processes, it is supposed that Brownian motion

starts not from 0, but from some other point x ∈ R.

To prove the correctness of definition 2.1, i.e. to prove that such a process exists,

we apply lemma A2.2.

THEOREM 2.2.– Definition 2.1 is valid in the sense that the Wiener process does exist.

PROOF.– According to theorem 2.1, it is sufficient to prove that the family ϕ(λ; s, t)
of characteristic functions of the introduced process satisfies condition [2.1]. To this

end, note that according to lemma A2.2,

ϕ(λ; s, t) = E exp{iλ(Wt −Ws)} = e−λ2(t−s)/2.

Therefore,

ϕ(λ; s, u)ϕ(λ;u, t) = e−λ2(u−s)/2e−λ2(t−u)/2 = e−λ2(t−s)/2 = ϕ(λ; s, t)

for any 0 ≤ s < u < t and λ ∈ R, whence the proof follows. �

Evidently, for any t ≥ 0, EWt = 0. Calculate the covariance function:

Cov(Ws,Wt) = EWsWt = EWs∧tWs∨t

= EWs∧t(Ws∨t −Ws∧t) + EW 2
s∧t = EW 2

s∧t = s ∧ t.

2.2.2. Independent stochastic processes. Multidimensional Wiener
process

Recall the definition of independent collections of sets.



Stochastic Processes with Independent Increments 25

DEFINITION 2.2.– Collections of events Ai, 1 ≤ i ≤ n, are called independent if for
any Ai ∈ Ai, 1 ≤ i ≤ n, the events A1, A2, . . . , An are independent.

Let Xi = {Xi
t , t ∈ T}, 1 ≤ i ≤ n, be stochastic processes taking values in

measurable spaces (Si,Σi). They generate σ-fields F i, as described in section 1.4.

We apply definition 2.2 to define independent stochastic processes.

DEFINITION 2.3.– The stochastic processes Xi, 1 ≤ i ≤ n, are independent if the
generated σ-fields F i, 1 ≤ i ≤ n, are independent.

Recall that a class of sets P is called a π-system if it is closed under intersection,

i.e. for any A,B ∈ P , A ∩B ∈ P .

LEMMA 2.1.– Let σ-fields Ai, 1 ≤ i ≤ n, be generated by π-systems Pi, 1 ≤ i ≤ n,
correspondingly. Then the σ-fields Ai, 1 ≤ i ≤ n, are independent if and only if Pi,
1 ≤ i ≤ n, are independent.

PROOF.– It is enough to show that for any Ai ∈ Ai, 1 ≤ i ≤ n,

P

{
n⋂

i=1

Ai

}
=

n∏
i=1

P{Ai}. [2.5]

Indeed, in that case for any Bi ∈ Ai, 1 ≤ i ≤ n, and any I = {i1, . . . , ik} ⊂
{1, . . . , k}, we can take Ai = Bi, i ∈ I , and Ai = Ω, i /∈ I , to get

P

{⋂
i∈I

Bi

}
= P

{
n⋂

i∈I

Ai

}
=

n∏
i=1

P{Ai} =
∏
i∈I

P{Bi},

which implies the mutual independence of Bi, 1 ≤ i ≤ n.

In turn, equation [2.5] would follow from

P

{
n⋂

i=1

Ai

}
= P{A1}P

{
n⋂

i=2

Ai

}
, A1 ∈ A1, A2 ∈ P2, . . . , An ∈ Pn [2.6]

by applying an inductive argument. For fixed A2 ∈ P2, . . . , An ∈ Pn such that

P {⋂n
i=2 Ai} �= 0, consider the measure

P1{A1} = P

{
A1

∣∣∣∣ n⋂
i=2

Ai

}
=

P {⋂n
i=1 Ai}

P {⋂n
i=2 Ai} , A1 ∈ A1.
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This is a probability measure, which coincides with P on P1. Since P1 is a

π-system, by theorem A2.2, we get [2.6] in the case where P {⋂n
i=2 Ai} �= 0; the

equality is evident whenever P {⋂n
i=2 Ai} = 0. Using the aforementioned inductive

argument, we arrive at the statement. �

LEMMA 2.2.– The stochastic processes Xi, 1 ≤ i ≤ n, are independent if and only
if for any m ≥ 1, {t1, . . . , tm} ⊂ T and sets Bij ∈ Σi, 1 ≤ i ≤ n, 1 ≤ j ≤ m, the
events

{
Xi

t1 ∈ Bi1, . . . , X
i
tm ∈ Bim

}
, 1 ≤ i ≤ n, are independent.

PROOF.– Consider the classes

Pi =
{{

Xi
t1 ∈ A1, . . . , X

i
tk

∈ Ak

} | k ≥ 1, {t1, . . . , tk} ⊂ T, A1, . . . , Ak ∈ Σi

}
for i = 1, . . . , n. These are obviously π-systems. Moreover, they are independent by

assumption. Indeed, for any Pi ∈ Pi, 1 ≤ i ≤ n, we can write

Pi =
{
Xi

ti1
∈ Ai

1, . . . , X
i
ti
k
∈ Ai

ki

}
=

{
Xi

t1 ∈ Bi1, . . . , X
i
tm ∈ Bim

}
,

where {t1, . . . , tm} =
⋃n

i=1

{
ti1, . . . , t

i
ki

}
, Bij = Ai

l if tj = til and Bij = Si

otherwise.

Therefore, by lemma 2.1, the σ-fields Ai = σ(Pi), 1 ≤ i ≤ n, are independent.

Since Ai = F i thanks to corollary 1.2, we get the claim. �

Now, let T = R+ and (S,Σ) = (R,B(R)).

DEFINITION 2.4.– Let (Ω,F ,P) be a probability space, and let m independent
real-valued Wiener processes {Wi(t), t ≥ 0, 1 ≤ i ≤ m} be defined on (Ω,F ,P).
Multidimensional Wiener process is a vector process

W (t) =
(
W1(t),W2(t), ...,Wm(t)

)
, t ≥ 0.

Evidently, vector of expectations is a zero one,

EW (t) =
(
EW1(t), ...,EWm(t)

)
= 0,

and the matrix of covariations has a form Cov(W (t),W (s)) = (t∧ s)Em, where Em

is the identity matrix of size m. For any set A ∈ B(Rm)

P{W (t) ∈ A} = (2πt)−m/2

ˆ
A

exp

{
−|x|2

2t

}
dx,

where |x| = (∑m
i=1 x

2
i

)1/2
, dx = dx1 · · · dxm.
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2.3. Poisson process

There exist at least three different approaches on how to introduce the Poisson

process. The first approach is based on the characterization theorem for the processes

with independent increments and gives a general definition of the (possibly

non-homogeneous) Poisson process with variable intensity. The other two define the

homogeneous Poisson process with constant intensity. Namely, the second approach

determines the Poisson process through the transition probabilities, and this approach

has rich generalizations for processes of other kinds, whereas the third one

determines the Poisson process in a certain sense in a trajectory way, as the renewal

process. In principle, the second and third approaches lead to the same process,

although from different points of view. These three approaches are considered below.

2.3.1. Poisson process defined via the existence theorem

Let m be a σ-finite measure on the σ-field B(R+) of Borel subsets of R+ =
[0,+∞), such that for any interval (s, t] ⊂ R+, m((s, t]) ∈ (0,∞).

DEFINITION 2.5.– A stochastic process N = {Nt, t ≥ 0} is called a Poisson process
with intensity measure m, if it satisfies three conditions:

1) N0 = 0.

2) N is a process with independent increments.

3) The increments Nt − Ns for 0 ≤ s < t have a Poisson distribution with
parameter m((s, t]).

To prove the validity of definition 2.5, we apply lemma A2.4.

THEOREM 2.3.– Definition 2.5 is valid in the sense that the Poisson process does
exist.

PROOF.– According to theorem 2.1, it is sufficient to establish that the family of

characteristic functions ϕ(λ; s, t) satisfies the condition [2.1]. However, according to

lemma A2.4,

ϕ(λ; s, t) = E exp{iλ(Nt −Ns)} = em((s,t])(eiλ−1),

therefore,

ϕ(λ; s, u)ϕ(λ;u, t) = em((s,u])(eiλ−1)em((u,t])(eiλ−1)

= em((s,t])(eiλ−1) = ϕ(λ; s, t)

for any 0 ≤ s < u < t and λ ∈ R, whence the proof follows. �
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REMARK 2.3.– If m((s, t]) = λ(t − s), i.e. the measure m is proportional to the

Lebesgue measure in the real line, then the Poisson process with such intensity

measure is called the homogeneous Poisson process with intensity λ. Otherwise, the

Poisson process is called inhomogeneous. Note also that the phase space of the

Poisson process coincides with Z
+.

2.3.2. Poisson process defined via the distributions of the increments

Now our goal is to characterize the homogeneous Poisson process relying on the

asymptotic behavior of its so-called transition probabilities on the vanishing time

interval. For more detail on the notion of transition probabilities, see Chapter 7.

THEOREM 2.4.– Let N = {Nt, t ≥ 0} be a process with independent increments,
N0 = 0, and N take non-negative integer values. Moreover, assume that, for 0 ≤
s ≤ t,

P{Nt −Ns = 1} = λ(t− s) + o(t− s),

P{Nt −Ns = 0} = 1− λ(t− s) + o(t− s),

and

P{Nt −Ns > 1} = o(t− s)

as t → s+, where λ > 0 is a given number. Then {Nt, t ≥ 0} is a homogeneous
Poisson process with intensity λ.

REMARK 2.4.– It is clear that the third assumption of the above theorem follows from

the first and second assumptions.

PROOF.– Denote p(s, t, k) = P{Nt − Ns = k}, k ∈ Z
+. It follows from the

independence of increments and the law of total probability that, for 0 < Δs < t− s,

we have that

p(s, t, 0) = p(s, s+Δs, 0)p(s+Δs, t, 0) = (1− λΔs)p(s+Δs, t, 0) + o(Δs).

The latter equality implies right-continuity of p(s, t, 0) in s (left-continuity is

established similarly) and leads to the equation

∂p(s, t, 0)

∂s
= λ p(s, t, 0).
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The equation for the left-hand derivative has the same form, whence p(s, t, 0) =
Cte

λs. Since p(t, t, 0) = 1 for t = s, Ct = e−λt, and

p(s, t, 0) = P{Nt −Ns = 0} = e−λ(t−s).

Further, for any k ≥ 1,

p(s, t, k) = p(s, s+Δs, 0)p(s+Δs, t, k)

+ p(s, s+Δs, 1)p(s+Δs, t, k − 1) + o(Δs) [2.7]

as Δs → 0+. It follows from equality [2.7] and the theorem’s conditions that p(s, t, k)
is continuous from the right in s. Continuity from the left is established similarly. Now,

by substituting the value of p(s, s+Δs, k), k ≥ 0 from the theorem’s conditions into

[2.7], we get that

p(s, t, k) = (1− λΔs)p(s+Δs, t, k) + λΔs p(s+Δs, t, k − 1) + o(Δs),

or

p(s, t, k)− p(s+Δs, t, k)

Δs
= −λ p(s+Δs, t, k)

+ λ p(s+Δs, t, k − 1) +
o(Δs)

Δs
. [2.8]

Taking into account the continuity of p(s, t, k) in s, we get that, for Δs → 0+,

equality

−∂p(s, t, k)+
∂s

= −λ p(s, t, k) + λ p(s, t, k − 1)

holds, and the equation for the left-hand derivative will be the same. Hence,

∂p(s, t, k)

∂s
= λ p(s, t, k)− λ p(s, t, k − 1).

Now, for k = 1, we have that
∂p(s,t,1)

∂s = λ p(s, t, 1) − λe−λ(t−s), whence

p(s, t, 1) = e−λ(t−s)λ(t − s). In order to apply induction, we assume that

p(s, t, k − 1) = e−λ(t−s) (λ(t−s))k−1

(k−1)! , and get the equation

∂p(s, t, k)

∂s
= λp(s, t, k)− λe−λ(t−s) (λ(t− s))k−1

(k − 1)!
.
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It follows that p(s, t, k) = e−λ(t−s) (λ(t−s))k

k! , and the step of induction implies

that

P{Nt −Ns = k} = e−λ(t−s) (λ(t− s))k

k!
.

The theorem is proved. �

REMARK 2.5.– It will be shown in the following section that a Poisson process

satisfies the assumptions of theorem 2.4.

2.3.3. Poisson process as a renewal process

Now, let N = {Nt, t ≥ 0} be a homogeneous Poisson process with parameter

λ. It has non-negative integer-valued increments. Generally speaking, the trajectories

of this process can be ill-behaved, but there is a version of the process which has

trajectories continuous from the right with limits from the left; more detail is available

in Chapter 6. Below we will consider this version. Consider the Poisson process as a

renewal process. Let {τi, i ≥ 1} be a sequence of independent random variables, each

of which has exponential distribution with parameter λ > 0, so

P{τi < x} =

{
1− e−λx, x ≥ 0,

0, x = 0.
[2.9]

Let us construct the following renewal process:

Nt =

{
0, t < τ1,

sup{n ≥ 1 :
∑n

i=1 τi ≤ t}, t ≥ τ1.
[2.10]

It is easy to see that N has jumps of size 1 at the points Tn =
∑n

i=1 τi, n ≥ 1,

called arrival times; the variables τn, n ≥ 1, are called inter-arrival times.

THEOREM 2.5.– The stochastic process, constructed by formulas [2.9] and [2.10], is
a homogeneous Poisson process with parameter λ.

PROOF.– It is necessary to prove that the process Nt has independent increments, and

that, for any k ≥ 0 and 0 ≤ s < t,

P{Nt −Ns = k} = e−λ(t−s) (λ(t− s))k

k!
.

We divide the proof into several steps.



Stochastic Processes with Independent Increments 31

Step 1. Prove by induction that, for all x > 0 and k ≥ 1,

P

{
k∑

i=1

τi > x

}
= e−λx

k−1∑
i=0

(λx)i

i!
. [2.11]

Evidently, equality [2.11] holds for k = 1, since P{τ1 > x} = e−λx, x > 0,

according to [2.9]. Assuming that [2.11] holds for k = n, for k = n+ 1, we have the

relations

P

{
n+1∑
i=1

τi > x

}
= P

{
n∑

i=1

τi > x

}
+ P

{
n∑

i=1

τi < x, τn+1 > x−
n∑

i=1

τi

}
[2.12]

= e−λx
n−1∑
i=0

(λx)i

i!
+

ˆ x

0

pn(u)P{τn+1 > x− u}du,

where pn(u) is the probability density function of
∑n

i=1 τi. However, since, for k = n,

the equality [2.11] holds,

pn(u) = λe−λu
n−1∑
i=0

(λu)i

i!
− e−λu

n−2∑
i=0

uiλi+1

i!
= λe−λu (λu)

n−1

(n− 1)!
. [2.13]

Now return to [2.12]:

e−λx
n−1∑
i=0

(λx)i

i!
+

ˆ x

0

λe−λu (λu)
n−1

(n− 1)!
e−λ(x−u)du = e−λx

n∑
i=0

(λx)i

i!
,

i.e. [2.11] holds for k = n+ 1, so for all k ≥ 1.

Step 2. Let us find the distribution of Nt. For any k ≥ 1, according to [2.13], we

have that

P{Nt = k} = P

{
k∑

i=1

τi ≤ t,

k+1∑
i=1

τi > t

}
= P

{
k∑

i=1

τi ≤ t, τk+1 > t−
k∑

i=1

τi

}

=

ˆ t

0

pk(x)P{τk+1 > t− x}dx =

ˆ t

0

λe−λx (λx)
k−1

(k − 1)!
e−λ(t−x)dx = e−λt (λt)

k

k!
.

Finally, for k = 0, P{Nt = 0} = P{τ1 > t} = e−λt.
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Step 3. Calculate the probability P{Nt −Ns = k,Ns = l}, where 0 < s < t, k ≥
1, l ≥ 1. Evidently, it follows from the independency of τi that for k ≥ 2

P{Nt −Ns = k,Ns = l} = P{Nt = k + l, Ns = l}

= P

{
l∑

i=1

τi ≤ s, s <
l+1∑
i=1

τi ≤ t,
k+l∑
i=1

τi ≤ t,
k+l+1∑
i=1

τi > t

}

= P
{ l∑

i=1

τi ≤ s, s−
l∑

i=1

τi < τl+1 ≤ t−
l∑

i=1

τi,

k+l∑
i=l+2

τi ≤ t−
l∑

i=1

τi − τl+1, τk+l+1 > t−
l∑

i=1

τi − τl+1 −
k+l∑

i=l+2

τi

}
[2.14]

=

ˆ s

0

λe−λu (λu)
l−1

(l − 1)!

ˆ t−u

s−u

λe−λx

ˆ t−u−x

0

λe−λz (λz)
k−2

(k − 2)!
e−λ(t−u−x−z)dz dx du

= e−λt

ˆ s

0

λ
(λu)l−1

(l − 1)!

ˆ t−u

s−u

λk (t− u− x)k−1

(k − 1)!
dx du

= e−λt

ˆ s

0

λ
(λu)l−1

(l − 1)!
λk (t− s)k

k!
du = e−λt (λs)

l

l!

λk(t− s)k

k!
.

Now, let k = 1. Then

P{Nt −Ns = 1, Ns = l} = P{Nt = l + 1, Ns = l}

= P

{
l∑

i=1

τi ≤ s, s <
l+1∑
i=1

τi ≤ t, τi+2 ≥ t−
l∑

i=1

τi − τl+1

}
[2.15]

=

ˆ s

0

λe−λu (λu)
l−1

(l − 1)!

ˆ t−u

s−u

λe−λx

ˆ ∞

t−u−x

λe−λzdz dx du

= e−λs (λs)
l

l!
e−λ(t−s)λ(t− s).

Similar to equations [2.14] and [2.15], we can establish this formula for

min(k, l) = 0, whence the proof follows.
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Step 4. Further calculations are performed taking into account [2.14]:

P{Nt −Ns = k} =

∞∑
l=0

P{Nt −Ns = k,Ns = l}

=

∞∑
l=0

e−λt (λs)
l

l!

λk(t− s)k

k!
= e−λ(t−s)λ

k(t− s)k

k!
. [2.16]

Comparing [2.14] with [2.16], we see that the increments Nt−Ns and Ns−N0 are

independent. Independence of arbitrary finite families of increments can be proved in a

similar way. Formula [2.16] justifies that the increments have the Poisson distribution.

The theorem is proved. �

2.4. Compound Poisson process

Let {τi, i ≥ 1} be a sequence of independent identically distributed random

variables (in what follows, we shall use the abbreviated notation iid rv or iid random

variables), N = {Nt, t ≥ 0} be a Poisson process with independent measure

m = m((s, t]) for 0 ≤ s < t, and let the process N not depend on {τi, i ≥ 1}. Since

N takes its values in Z
+, we can form a sum

Xt =

Nt∑
i=1

ξi.

As usual, we put
∑0

i=1 = 0. Process X is called a compound Poisson process
with intensity measure m = m((s, t]) and generating random variables {ξi, i ≥ 1}.

It can also be represented in the following form. Let {τi, i ≥ 1} be the lengths of the

intervals between subsequent jumps of the Poisson process (τ1 is the moment of the

first jump). Then the Poisson process itself can be represented as Nt =
∑∞

i=1 τi≤t,

and the compound Poisson process, in turn, can be represented as

Xt =
∞∑
i=1

ξi τi≤t.

Denote ψ(λ) = E exp{iλξ1}, λ ∈ R. If we denote the cumulative distribution

function of ξ1 by ν = ν(dx), then the characteristic function can be written as ψ(λ) =´
R
eiλxν(dx).

THEOREM 2.6.– The characteristic function of the increments of the compound
Poisson process has a form

ψ(λ; s, t) = exp{m((s, t])(ψ(λ)− 1)}

= exp
{
m((s, t])

ˆ
R

(eiλx − 1)ν(dx)
}
. [2.17]
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In particular, the compound Poisson process is a process with independent
increments.

PROOF.– Taking into account the independence of ξi and N , we get

ψ(λ; s, t) = E exp{iλ(Xt −Xs)} = E

⎛
⎝exp

{
iλ
( Nt∑

j=Ns+1

ξi

)}
Nt>Ns

⎞
⎠

+P{Nt = Ns} =
∞∑
k=0

∞∑
l=k+1

Eexp
{
iλ
( l∑

j=k+1

ξi

)}
P{Ns = k,Nt = l}+ em((s,t])

=
∞∑
k=0

∞∑
l=k+1

(ψ(λ))l−kP{Ns = k,Nt −Ns = l − k}+ em((s,t])

=

∞∑
k=0

∞∑
l=k+1

(ψ(λ))l−k (m((0, s]))k

k!
e−m([0,s)) (m((s, t]))l−k

(l − k)!
e−m((s,t]) + em((s,t])

=
∞∑
k=0

e−m([0,s)) (m((0, s]))k

k!

∞∑
j=1

(ψ(λ))je−m((s,t]) (m((s, t]))j

j!
+ em((s,t])

= e−m((s,t])
∞∑
j=0

(ψ(λ)m((s, t]))j

j!
= e−m((s,t])(ψ(λ)−1)

= exp

{
m((s, t])

ˆ
R

(eiλx − 1)ν(dx)

}
.

The theorem is proved. �

REMARK 2.6.– The compound Poisson process has a lot of practical applications. It

can be used as a model for accumulated claims of insurance companies, total revenues

in the queuing theory, etc.

2.5. Lévy processes

Consider now processes with independent increments that contain both the Wiener

and the Poisson components. Let the process under consideration be real-valued. Let

us fix two numbers, a ∈ R and σ ≥ 0, and a measure ν on the Borel σ-field B(R),
such that ν({0}) = 0 and

ˆ
R

(1 ∧ y2)ν(dy) < ∞.
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DEFINITION 2.6.– Stochastic process X = {Xt, t ≥ 0} is called a Lévy process

with characteristics (a, σ, ν) if it satisfies the following three conditions:

1) X0 = 0.

2) X is a process with independent increments.

3) For any 0 ≤ s < t, the characteristic function of the increment Xt −Xs has a
form

ϕ(λ; s, t) = E exp{iλ(Xt −Xs)} = e(t−s)ψ(λ), [2.18]

where the function ψ = ψ(λ) has a form

ψ(λ) = iaλ− 1

2
σ2λ2 +

ˆ
R

(eiλy − 1− iλy 0<|y|<1)ν(dy). [2.19]

It immediately follows from equality [2.18] that

ϕ(λ; s, u)ϕ(λ;u, t) = ϕ(λ; s, t).

It means that such a process with independent increments does exist and is

homogeneous in the sense that ϕ(λ; s, t) depends only on the difference t − s. If

s = 0, it follows from [2.18] that

Eexp{iλXt} = etψ(λ),

where ψ(λ) is defined by the formula [2.19]. The function ψ(λ) is called characteristic

exponent of the Lévy process.

REMARK 2.7.– It turns out that any process with homogeneous independent

increments is a Lévy process in the sense of the definition given above, i.e. the

characteristic function of its increments has necessarily the form [2.19], called the

Lévy–Khintchine representation. For more detail on this topic, see e.g. [SAT 13].

Note also that in the case where σ = 0 and
´
R
(|x| ∧ 1)ν(dx) < ∞, trajectories of

the Lévy process a.s. have a bounded variation on any finite interval. If additionally the

Lévy measure is concentrated on R
+, and a ≥ 0, the trajectories of the corresponding

Lévy process are a.s. non-decreasing. In the latter case, the Lévy process is called a

subordinator.

Consider some particular examples of Lévy processes.



36 Theory and Statistical Applications of Stochastic Processes

2.5.1. Wiener process with a drift

Let ν ≡ 0, a �= 0, σ > 0. Then ψ(λ) = iaλ − 1
2σ

2λ2, and in turn, it follows that

Eexp{iλXt} = et(iaλ−
1
2σ

2λ2). Comparing with [A2.1], we see that Xt has Gaussian

distribution with mean at and variance σ2t. Taking into account that X is a process

with independent increments, we get that X can be represented via a Wiener process

as Xt = at+σWt. Such a process is called a Wiener process with the drift coefficient

a and diffusion (volatility) coefficient σ. Since the Wiener process is symmetric in the

sense that −W is also a Wiener process, it is natural to restrict the coefficient σ to

positive values, which implies that there is no sense in considering negative values of

σ.

2.5.2. Compound Poisson process as a Lévy process

Let σ = 0 and measure ν to be not identically zero. If additionally the measure ν
is finite, i.e. ν(R) < ∞, then both integrals

´
R
(eiλy − 1)ν(dy) and´

R
iλy {0<|y|<1}ν(dy) are finite, and ψ(λ) can be represented in a form

ψ(λ) = iaλ− iλ

ˆ
R

y 0<|y|<1ν(dy) +

ˆ
R

(eiλy − 1)ν(dy).

If we assume additionally that a =
´
R
y 0<|y|<1ν(dy), then

ψ(λ) =

ˆ
R

(eiλy − 1)ν(dy) = ν(R)

ˆ
R

(eiλy − 1)
ν(dy)

ν(R)
. [2.20]

Comparing formula [2.20] with [2.17], we see that X is a compound Poisson

process with intensity measure m((s, t]) = ν(R)(t − s) and generating random

variables {ξi, i ≥ 1} whose distribution is described by P{ξi ≤ x} =
ν((−∞, x])/ν(R).

2.5.3. Sum of a Wiener process with a drift and a Poisson process

Now, let a = σ = 0, the measure ν be concentrated at the point 1 and

ν({1}) = γ > 0. Then ψ(λ) = γ(eiλ − 1) and we get the characteristic function of

the form φ(λ; s.t) = e(t−s)ψ(λ) = eγ(t−s)(eiλ−1), that is, a characteristic function

of the increment of a Poisson process N with intensity γ. Further, if a �= 0, σ > 0,

the measure ν is concentrated at the point 1 and ν(1) = γ > 0, then

ψ(λ) = iaλ − 1
2σ

2λ2 + γ(eiλ − 1), and the process X is a sum of two independent

processes: a Wiener process with a drift, at + σWt, and a Poisson process N with

intensity γ:

Xt = at+ σWt +Nt.
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2.5.4. Gamma process

Recall that the density function of Gamma distribution with parameters α > 0 and

β > 0 has a form

fα,β(x) =
βα

Γ(α)
xα−1 exp {−βx} , x > 0.

The characteristic function has a form

ϕα,β(λ) =

(
1− iλ

β

)−α

.

Consider the Lévy process with a = α(1−e−β)
β , σ = 0 and

ν(dx) = αe−βxx−1
x>0dx. [2.21]

Such Lévy process is called a Gamma process; since the measure ν is concentrated

on the positive half-line, it is a subordinator. Its characteristic exponent equals

ψ(λ) = iaλ+

ˆ
R

(
eiλy − 1− iλy 0<|y|<1

)
ν(dy)

=
iαλ(1− e−β)

β
+

+ α

ˆ ∞

0

(
eiλy − 1− iλy 0<y<1

)
e−βyy−1dy

= α

ˆ ∞

0

(
eiλy − 1

)
e−βyy−1dy.

Therefore, for the Gamma process, we can put a = 0, σ = 0 and

ψ(λ) =
´∞
0

(
eiλx − 1

)
ν(dx) with ν(dx) defined in [2.21].

2.5.5. Stable Lévy motion

For α ∈ (0, 2), a Lévy process is called a (standard) symmetric α-stable Lévy
motion if

EeiλXt = e−t|λ|α , t ≥ 0.

This is a generalization of the Wiener process (which, up to a constant, corresponds

to α = 2) with heavy tails of distribution: its variance is infinite for any α ∈ (0, 2),
and the expectation is infinite for α ∈ (0, 1].
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2.5.6. Stable Lévy subordinator with stability parameter α ∈ (0, 1)

For α ∈ (0, 1), a subordinator X with Lévy measure ν(dx) = α
Γ(1−α)x

−α−1,

x > 0 is called a stable process with stability parameter α. The characteristic exponent

equals ψα(λ) =
´∞
0

(eiλy − 1)ν(dy).

REMARK 2.8.– For more detail concerning Lévy processes, see e.g. books [BAR 01,

SAT 13, SCH 03].



3

Gaussian Processes. Integration with
Respect to Gaussian Processes

3.1. Gaussian vectors

Let m ≥ 1, let and ξ = (ξ1, . . . , ξm) be a random vector.

DEFINITION 3.1.– Vector ξ is called Gaussian if there exists a non-random vector
a = (a1, . . . , am) ∈ R

m and a non-negatively definite symmetric non-random matrix
C = {cik}mi,k=1 such that, for any vector λ = (λ1, . . . , λm) ∈ R

m,

ϕξ(λ) := E exp
{
i(λ, ξ)

}
= exp

{
i(λ, a)− 1

2
(Cλ, λ)

}
, [3.1]

where (x, y) =
∑m

j=1 xjyj stands for the inner product in R
m.

LEMMA 3.1.–

i) Coefficients in the representation [3.1] equal

aj = Eξj and cjk = Cov(ξj , ξk) = E(ξj − aj)(ξk − ak).

ii) Let det C �= 0. Then the coordinates of vector ξ − a are linearly independent.
In this case, the distribution of the vector ξ is non-degenerate, supp ξ = R

m, i.e. the
distribution of ξ has strictly positive density on R

m, and this density equals

pξ(x) = (2π)−
m
2 (det C)−

1
2 exp

{−(C−1(x− a), x− a)
}
, [3.2]

where C−1 is the inverse matrix to C.

Theory and Statistical Applications of Stochastic Processes,
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iii) Let det C = 0. Then coordinates of ξ − a are linearly dependent, the number of
linearly independent coordinates equals m1 := rank C < m and the distribution of
the vector ξ is concentrated on R

m1 .

PROOF.– i) On the one hand, differentiate ϕξ(λ):(
∂

∂λj
ϕξ(λ)

)∣∣∣∣
λ=0

=
∂

∂λj
exp

{
i(λ, a)− 1

2
(Cλ, λ)

}∣∣∣∣
λ=0

= iaj .

On the other hand, it follows from the properties of the characteristic functions

that

∂

∂λj
Eexp

{
i(λ, ξ)

}∣∣∣∣
λ=0

= iEξj ,

whence aj = Eξj . Similarly, differentiating in λj and λk, we get that(
∂2

∂λj∂λk
ϕξ(λ)

)∣∣∣∣
λ=0

= −ajak − cjk,

and, at the same time,(
∂2

∂λj∂λk
Eexp

{
i(λ, ξ)

})∣∣∣∣
λ=0

= −Eξjξk,

whence cjk = Eξjξk − ajak = Cov(ξj , ξk).

ii) Let det C �= 0 (which means that det C > 0). Then the rows of matrix C are

linearly independent, i.e. if
∑m

k=1 βkclk = 0, 1 ≤ l ≤ m, then βk = 0, 1 ≤ k ≤ m.

Assume that coordinates (ξ1−a1, . . . , ξm−am) are linearly dependent, i.e. there exists

vector β = (βk, 1 ≤ k ≤ m), not identically zero, and such that
∑m

k=1 βk(ξk−ak) =
0. Then, for any 1 ≤ l ≤ m,

E

(
m∑

k=1

βk(ξk − ak)(ξl − al)

)
=

m∑
k=1

βkclk = 0,

and we get a contradiction. Therefore, coordinates (ξ1−a1, . . . , ξm−am) are linearly

independent.

In order to prove that the density of non-degenerate distribution has a form [3.2],

it is sufficient to establish that, for any λ ∈ R
m,

J :=

ˆ
Rm

ei(λ,x)pξ(x)dx = exp

{
i(λ, a)− 1

2
(Cλ, λ)

}
,
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or, equivalently, to establish that

(2π)−
m
2 (det C)−

1
2

ˆ
Rm

ei(λ,x)e−(C−1(x−a),x−a)dx =

= exp

{
i(λ, a)− 1

2
(Cλ, λ)

}
. [3.3]

Matrix C is symmetric and non-negatively definite. Then it follows from matrix

theory that there exists an orthogonal matrix B, i.e. BBtr = E (unit matrix) and such

that BtrCB = D, where D is a diagonal matrix of the form D =

⎛⎜⎝d1 · · · 0
...

. . .
...

0 · · · dm

⎞⎟⎠ ,

dj ≥ 0, 1 ≤ j ≤ m. Since det C �= 0, then dj > 0, 1 ≤ j ≤ m. Changing the

variables in the left-hand side of [3.3], x − a = By, and putting λ = Bμ, we get,

taking into account that C−1 = (C−1)tr:

J = (2π)−
m
2 (det C)−

1
2

ˆ
Rm

ei(Bμ,a+By)e−
1
2 (C

−1By,By)dy

= (2π)−
m
2 (det C)−

1
2 ei(λ,a)

ˆ
Rm

ei(Bμ)trBy− 1
2 (C

−1By)trBydy

= (2π)−
m
2 (det C)−

1
2 ei(λ,a)

ˆ
Rm

exp

{
i(μ, y)− 1

2
ytrBtr(C−1)trBy

}
dy

= (2π)−
m
2 (det C)−

1
2 ei(λ,a)

ˆ
Rm

exp

{
i(μ, y)− 1

2
ytrBtrC−1By

}
dy.

Calculate BtrC−1B. Let BtrC−1B = X . Then C−1B = BX , C−1 = BXBtr,

whence CBXBtr = E, or BtrCBXBtr = Btr, whence DXBtr = Btr, or

DX = E. Finally, X = D−1. Therefore,

J = (2π)−
m
2 (det C)−

1
2 ei(λ,a)

ˆ
Rm

exp

{
i(μ, y)− 1

2
ytrD−1y

}
dy

= (2π)−
m
2 (det C)−

1
2 ei(λ,a)

ˆ
Rm

exp

{
i

m∑
k=1

μkyk − 1

2

m∑
k=1

d−1
k y2k

}
dy.
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Note that det C = det D =
∏m

k=1 dk. Therefore,

J = (2π)−
m
2

m∏
k=1

d
− 1

2

k ei(λ,a)
m∏

k=1

ˆ
R

eiλμkyk− 1
2d

−1
k

y2
kdy =

m∏
k=1

eiλkak−
μ2
k
d2
k

2

= exp

{
i(λ, a)− 1

2
μtrDμ

}
= exp

{
i(λ, a)− 1

2
μtrBtrCBμ

}
= exp

{
i(λ, a)− 1

2
(Cλ, λ)

}
.

iii) If det C = 0, then the rows of matrix C are linearly dependent, so that there

exist βl, 1 ≤ l ≤ m such that β = (β1, . . . , βm) �= 0, and
∑m

l=1 βlclk = 0 for

1 ≤ k ≤ m, whence

m∑
k,l=1

βlβkCov(ξl, ξk) = E

(
m∑
l=1

βl(ξl − al)

)2

= 0.

This means that
∑m

l=1 βl(ξl − al) = 0 with β �= 0, and coordinates of ξ − a are

linearly dependent. These reasons clearly demonstrate that the number m1 of linearly

independent coordinates equals rank C and other coordinates are linear combinations

of linearly independent ones, and so the distribution of ξ is concentrated on some

m1-dimensional subspace. �

REMARK 3.1.– Recall that the coordinates of a Gaussian vector are independent (in

standard sense, as the random variables), if and only if they are non-correlated. If

some subsets of coordinates of a random vector are Gaussian, it does not mean that

the vector itself is Gaussian.

3.2. Theorem of Gaussian representation (theorem on normal
correlation)

Consider a Gaussian vector (ξ, ξ1, . . . , ξn). Introduce the σ-field

Fn = σ {ξ1, . . . , ξn}.

THEOREM 3.1.– Theorem on normal correlation. There exist constants d and dj ,
1 ≤ j ≤ n such that

E(ξ|Fn) =
n∑

j=1

djξj + d.

The values of the constants will be specified in the proof of the theorem.
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PROOF.– Denote m = Eξ, mj = Eξj , ξ̃ = ξ − m and ξ̃j = ξj − mj ,

cjk = Eξ̃j ξ̃k = Cov(ξj , ξk), cj = Eξ̃ξ̃j = Cov(ξ, ξj). Without loss of generality, we

can assume that {ξ1, . . . , ξn} are linearly independent. Indeed, let {ξ1, . . . , ξn′} be

linearly independent and {ξn′+1, . . . , ξn} be the linear combinations of

{ξ1, . . . , ξn′}. Then Fn = Fn′ . If we get that E(ξ|Fn′) =
∑n′

j=1 djξj + d, then

E(ξ|Fn) =
∑n

j=1 djξj + d, with dn′+1 = · · · = dn = 0. Therefore, let {ξ1, . . . , ξn}
be linearly independent. In this case, according to lemma 3.1, det C �= 0, where

C = {cjk}nj,k=1 is a covariance matrix. Now, let us find constants {α1, . . . , αn} such

that the centered random variable ξ̃ −∑n
j=1 αj ξ̃j and any of ξ̃j become orthogonal:

E

(
ξ̃ −

n∑
r=1

αr ξ̃r

)
ξ̃j = 0, 1 ≤ j ≤ n.

The latter system of equations is equivalent to the following one:

cj −
n∑

r=1

αrcjr = 0, 1 ≤ j ≤ n.

This system of n linear equations has a non-zero determinant which equals

det C; therefore, it has the unique solution αr = det Cr

det C , where Cr can be obtained

by replacing in C rth column with (C1, . . . , Cn)
tr. Now, ξ̃ − ∑n

j=1 αj ξ̃j is

independent with the vector (ξ̃1, . . . , ξ̃n) because it follows from orthogonality that,

for any (λ, λ1, . . . , λn),

Eexp

⎧⎨⎩iλ

⎛⎝ξ̃ −
n∑

j=1

αj ξ̃j

⎞⎠+ i

n∑
j=1

λj ξ̃j

⎫⎬⎭
= exp

⎧⎪⎨⎪⎩−1

2
λ2E

⎛⎝ξ̃ −
n∑

j=1

αj ξ̃j

⎞⎠2

− 1

2

n∑
j,k=1

λjλkcjk

⎫⎪⎬⎪⎭
= Eexp

⎧⎨⎩iλ

⎛⎝ξ̃ −
n∑

j=1

αj ξ̃j

⎞⎠⎫⎬⎭Eexp

⎧⎨⎩i

n∑
j=1

λj ξ̃j

⎫⎬⎭ .
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Finally, we get

E(ξ|Fn) = E(ξ̃|Fn) +m = E

⎛⎝ ξ̃ −
n∑

j=1

αj ξ̃j

∣∣∣∣∣∣Fn

⎞⎠+

n∑
j=1

αj ξ̃j +m

= E

⎛⎝ξ̃ −
n∑

j=1

αj ξ̃j

⎞⎠+

n∑
j=1

αj ξ̃j +m

=
n∑

j=1

αj ξ̃j +m =
n∑

j=1

αjξj +m+
n∑

j=1

αjmj .

Therefore, d = m +
∑n

j=1 αjmj and dj = αj =
det Cj

det C , and the theorem is

proved. �

3.3. Gaussian processes

Let X = {Xt, t ∈ T} be a real-valued stochastic process.

DEFINITION 3.2.– Stochastic process X is Gaussian if all its finite-dimensional
distributions are Gaussian, i.e. for any m ≥ 1 and any t1, . . . , tm ∈ T random vector
(Xt1 , . . . , Xtm) is Gaussian.

REMARK 3.2.– If only one-dimensional, or one- and two-dimensional distributions

are Gaussian, it does not mean that the process is Gaussian.

Definition 3.2, together with definition 3.1, means that there exist function

{a(t), t ∈ T} and function of two variables {R(t, s), (t, s) ∈ T× T} such that, for

any m ≥ 1 and any λ = (λ1, . . . , λm),

Eexp

⎧⎨⎩i
m∑
j=1

λjXtj

⎫⎬⎭ = exp

⎧⎨⎩i

m∑
j=1

λja(tj)− 1

2

m∑
j,k=1

R(tj , tk)λjλk

⎫⎬⎭ .

It follows from lemma 3.1 that a(t) = EXt (mean function) and R(t, s) = E(Xt−
a(t))(Xs − a(s)) (covariance function). Therefore, function R has the properties:

(R)

i) R(t, s) = R(s, t), (s, t) ∈ T× T;

ii) for any n ≥ 1, any t1, . . . , tn ∈ T and any b1, . . . , bn ∈ R

n∑
j,k=1

R(tj , tk)bjbk ≥ 0.
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Property (i) is evident. To prove (ii), note that

n∑
j,k=1

R(tj , tk)bjbk =
n∑

j,k=1

E(Xtk − a(tk))(Xtj − a(tj))bjbk

= E

⎛⎝ n∑
j=1

bj(Xtj − a(tj))

⎞⎠2

≥ 0.

DEFINITION 3.3.– Function R = R(t, s) : T × T → R is called symmetric and
non-negative definite if it satisfies properties (R), (i) and (ii).

The next theorem states that any real-valued function a = a(t) : T → R and any

real-valued non-negatively definite function R = R(t, s) : T × T → R define some

Gaussian process on T with finite-dimensional distributions defined uniquely.

THEOREM 3.2.– Let us have an arbitrary function a : T → R and a symmetric
non-negative definite function R : T × T → R. Then there exists a probability space
(Ω,F ,P) and a unique in the sense of finite-dimensional distributions Gaussian
process X = {Xt : T×Ω → R}, such that a = a(t) is its mean function: EXt = at,
and R = R(t, s) is its covariance function: E(Xt − a(t))(Xs − a(s)) = R(t, s).

PROOF.– For any n ≥ 1 and t1, . . . , tn ∈ T, let us define the characteristic functions

ψ(λ1, . . . , λn; t1, . . . , tn) = exp

⎧⎨⎩i

n∑
j=1

λja(tj)− 1

2

n∑
j,k=1

λjλkR(tj , tk)

⎫⎬⎭ . [3.4]

Then the consistency conditions (B) are fulfilled. Indeed, for any 1 ≤ l ≤ n and

any points tj ∈ T, 1 ≤ j ≤ n, λj ∈ R, 1 ≤ j ≤ n, we have that

ψ(λ1, . . . , λl, 0, . . . , 0︸ ︷︷ ︸
n−k

; t1, . . . , tl, tl+1, . . . , tn)

= exp

⎧⎨⎩i
l∑

j=1

λja(tj)− 1

2

l∑
j,k=1

λjλkR(tj , tk)

⎫⎬⎭ = ψ(λ1, . . . , λl; t1, . . . , tl),
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so condition (B), 1) holds. Further, for any n ≥ 1, λj ∈ R, tj ∈ T, 1 ≤ j ≤ n and

any permutation π(λ) = (λi1 , . . . , λin) and the corresponding permutation π(t) =
(ti1 , . . . , tin), we have that

ψ(π(λ);π(t)) = exp

⎧⎨⎩i
n∑

j=1

λija(tij )−
1

2

n∑
j,k=1

λijλikR(tij , tik)

⎫⎬⎭
= exp

⎧⎨⎩i
n∑

j=1

λja(tj)− 1

2

n∑
j,k=1

λjλkR(tj , tk)

⎫⎬⎭ = ψ(λ1, . . . , λn; t1, . . . , tn),

so condition (B), 2) holds. Applying the Kolmogorov theorem in the form of theorem

1.3, we get that there exists a probability space (Ω,F ,P) and a stochastic process

X = {Xt : T× Ω → R} for which

ψ(λ1, . . . , λn; t1, . . . , tn) = E exp

⎧⎨⎩i
n∑

j=1

λjXtj

⎫⎬⎭ .

According to [3.4], process X is Gaussian; a = a(t) is its mean function and

R = R(t, s) is its covariance function. Since finite-dimensional distributions of the

Gaussian process are uniquely determined by its mean and covariance function, such

a process is unique in the sense of finite-dimensional distributions. The theorem is

proved. �

3.4. Examples of Gaussian processes

In what follows, we shall consider centered Gaussian processes, i.e. EXt = 0
for any t ∈ T. Any such process is uniquely determined by its covariance function;

therefore, giving an example of the Gaussian process is equivalent to providing an

example of a covariance function.

3.4.1. Wiener process as an example of a Gaussian process

Consider a Wiener process W = {Wt, t ≥ 0} satisfying definition 2.1. Recall that,

for any t ≥ 0, EWt = 0 and the covariance function equals

Cov(Ws,Wt) = EWsWt = s ∧ t.

According to theorem 2.2, the Wiener process does exist; therefore, the function

R(s, t) = s∧ t is non-negative definite, as any covariance function. With this in mind,

consider another definition of a Wiener process.
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DEFINITION 3.4.– Stochastic process W = {Wt, t ≥ 0} is a Wiener process if it
satisfies three assumptions:

1) W is a Gaussian process;

2) EWt = 0, for any t ≥ 0;

3) Cov(Ws,Wt) = s ∧ t, s, t ≥ 0.

THEOREM 3.3.– Definitions 2.1 and 3.4 of the Wiener process are equivalent.

PROOF.– Let the process W satisfy definition 3.4. Then, for any 0 = t0 ≤ t1 <
t2 < . . . < tn, vector (Wt1 ,Wt2 −Wt1 ,Wt3 −Wt2 , . . . ,Wtn −Wtn−1) is Gaussian.

Moreover, for any λ = (λ1, λ2, . . . , λn) ∈ R
n,

Eexp

{
i

n∑
k=1

λk(Wtk −Wtk−1
)

}

= exp

⎧⎨⎩−1

2

n∑
j,k=1

λkλjE
(
(Wtk −Wtk−1

)(Wtj −Wtj−1)
)⎫⎬⎭ [3.5]

= exp

⎧⎨⎩−1

2

n∑
j,k=1

λkλj(tk ∧ tj − tk−1 ∧ tj − tk ∧ tj−1 + tk−1 ∧ tj−1)

⎫⎬⎭
= exp

{
−1

2

n∑
k=1

λ2
k(tk − tk−1)

}
,

because, if e.g. k > j, then tk ∧ tj − tk−1 ∧ tj − tk ∧ tj−1 + tk−1 ∧ tj−1 = tj − tj −
tj−1 + tj−1 = 0. Therefore, it follows from [3.5] that

Eexp

{
i

n∑
k=1

λk(Wtk −Wtk−1
)

}
=

n∏
k=1

Eexp
{
iλk(Wtk −Wtk−1

)
}
,

i.e. the increments (Wt1 ,Wt2 − Wt1 , . . . ,Wtn − Wtn−1) are mutually independent.

Any increment is a Gaussian random variable with E(Wt − Ws) = 0 and E(Wt −
Ws)

2 = t− 2(s ∧ t) + s = t− s, if s ≤ t. Finally, EW 2
0 = 0, so W starts from zero,
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and we get that W satisfies definition 2.1. Conversely, let W satisfy definition 2.1.

Then, for any 0 = t0 ≤ t1 < t2 < . . . < tn and for any λ = (λ1, λ2, . . . , λn) ∈ R
n,

Eexp

{
i

n∑
k=1

λkWtk

}
= Eexp

⎧⎨⎩i
n∑

j=1

(λj + . . .+ λn)(Wtj −Wtj−1)

⎫⎬⎭
= exp

⎧⎨⎩−1

2

n∑
j=1

(λj + . . .+ λn)
2(tj − tj−1)

⎫⎬⎭ [3.6]

= exp

⎧⎨⎩−1

2

n∑
j=1

n∑
k,l=j

λkλl(tj − tj−1)

⎫⎬⎭
= exp

⎧⎨⎩−1

2

n∑
k,l=1

λkλl

k∧l∑
j=1

(tj − tj−1)

⎫⎬⎭ = exp

⎧⎨⎩−1

2

n∑
k,l=1

λkλl tk∧l

⎫⎬⎭ .

Equalities [3.6] mean that {Wt, t ≥ 0} is a Gaussian process with EWt = 0 and

Cov(Wt,Ws) = t ∧ s. The theorem is proved. �

3.4.2. Fractional Brownian motion

Let H ∈ (0, 1).

DEFINITION 3.5.– Fractional Brownian motion with Hurst index H ∈ (0, 1) is a
centered Gaussian process BH =

{
BH

t , t ≥ 0
}

with covariance function

R(t, s) =
1

2

(
t2H + s2H − |t− s|2H)

. [3.7]

THEOREM 3.4.– Formula [3.7] defines a covariance function for any H ∈ (0, 1).

PROOF.– We follow the lines of the proof of proposition 1.6 from [NOU 12]. The

symmetry property of R(t, s) is evident; therefore, we have to prove only that it is

non-negatively definite. To this end, denote

cH =

ˆ ∞

0

(1− e−u2

)u−1−2Hdu,

and observe that, for any x ∈ R,

1

cH

ˆ ∞

0

(1− e−u2x2

)

u1+2H
du =

∣∣∣∣u|x| = y

du = dy
|x|

∣∣∣∣ = 1

cH

ˆ ∞

0

(1− e−y2

)

y1+2H |x|−1−2H

dy

|x| = |x|2H .
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Therefore,

1

2

(
t2H + s2H − |t− s|2H)

=
1

2cH

(ˆ ∞

0

(
1− e−u2s2 + 1− e−u2t2 − 1 + e−u2(t−s)2

)
u−1−2Hdu

)
=

1

2cH

ˆ ∞

0

((
1− e−u2s2

)(
1− e−u2t2

)
+

(
e−u2(t−s)2 − e−u2s2−u2t2

))
u−1−2Hdu

=
1

2cH

ˆ ∞

0

(
1− e−u2s2

)(
1− e−u2t2

)
u−1−2Hdu

+
1

2cH

ˆ ∞

0

(
e−u2s2−u2t2

(
e2u

2ts − 1
))

u−1−2Hdu := I1(t, s) + I2(t, s).

Concerning I1, we can state immediately that, for any n ≥ 1, any λi, 1 ≤ i ≤ n,

and any 0 ≤ t1 < t2 < . . . < tn,

n∑
j,k=1

λjλkI1(tj , tk)

=
1

2cH

n∑
j,k=1

λjλk

ˆ ∞

0

(
1− e−u2t2j

)(
1− e−u2t2k

)
u−1−2Hdu [3.8]

=
1

2cH

⎛⎝ n∑
j=1

λj

ˆ ∞

0

(
1− e−u2t2j

)
u−1−2Hdu

⎞⎠2

≥ 0.

Furthermore, I2(t, s) can be represented as

I2(t, s) =
1

2cH

ˆ ∞

0

∞∑
l=1

e−u2s2−u2t2 (2u
2ts)l

l!
u−1−2Hdu.

Therefore,

n∑
j,k=1

λjλkI2(tj , tk) =
1

2cH

∞∑
l=1

2l
ˆ ∞

0

n∑
j,k=1

λjλke
−u2t2j e−u2t2ktljt

l
ku

−1−2Hdu

=
1

2cH

∞∑
l=1

2l
ˆ ∞

0

⎛⎝ n∑
j=1

λje
−u2t2j tlj

⎞⎠2

u−1−2Hdu ≥ 0. [3.9]
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Proof follows now from [3.8] and [3.9]. �

Let H = 1
2 . Then R(t, s) = 1

2 (t + s − |t − s|) = s ∧ t, so we have the Wiener

process. This means that the Wiener process is a particular case of the fractional

Brownian motion. The properties of fBm are considered in detail in the book

[MIS 08].

3.4.3. Sub-fractional and bi-fractional Brownian motion

Consider some generalizations of fractional Brownian motion

DEFINITION 3.6.– Sub-fractional Brownian motion CH = {CH
t , t ∈ [0, 1]} is a

centered Gaussian process with covariance function

RCH (t, s) = t2H + s2H − 1

2
(|t+ s|2H + |t− s|2H),

H ∈ (0, 1). This process was studied, e.g. in [BOJ 04].

DEFINITION 3.7.– Bi-fractional Brownian motion BH,K = {BH,K
t , t ∈ [0, 1]} is a

centered Gaussian process with covariance function

RBH,K (t, s) =
1

2K

(
(t2H + s2H)K − |t− s|2HK

)
,

H ∈ (0, 1), K ∈ (0, 1). This process was studied, e.g. in [RUS 06].

3.4.4. Brownian bridge

It is interesting that we can construct a Gaussian process that takes the prescribed

values in the endpoints of an interval.

DEFINITION 3.8.– Brownian bridge between points 0 and T in time and points a, b ∈
R is a Gaussian process

B = {Bt, t ∈ [0, T ]}
with

EBt =
1

T
(a(T − t) + bt)

and covariance function

R(t, s) = t ∧ s− ts

T
.
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It turns out that the Brownian bridge can be constructed using a standard Wiener
process W ; we provide one of the possible constructions. Define

Bt = a+Wt +
(b− a−WT )t

T
.

It is clear that B0 = a, BT = b and EBt =
1
T (a(T − t) + bt). Let us calculate

the covariance:

Cov(Bt, Bs) = E
(
Wt − t

T
WT

)(
Ws − s

T
WT

)
= EWtWs − t

T
EWsWT − s

T
EWtWT − ts

T 2
EW 2

T

= t ∧ s− 2ts

T
+

tsT

T 2
= t ∧ s− ts

T
,

as required. For further discussion concerning the Brownian bridge, see section 9.1.2.

3.4.5. Ornstein–Uhlenbeck process

We can consider the Ornstein–Uhlenbeck process defined either on R
+ or on R

(the same as the Wiener process and the fractional Brownian motion, but their two-

sided versions will be considered in detail later, in section 3.6).

DEFINITION 3.9.– One-sided Ornstein–Uhlenbeck process X = {Xt, t ≥ 0} is a
Gaussian process X = {Xt, t ≥ 0} with EXt = x0e

θt and covariance function

R(t, s) =
σ2

2θ
eθt+θs

(
1− e−2θ(t∧s)

)
=

σ2

2θ

(
eθ(t+s) − e−θ|t−s|),

θ ∈ R, t, s ≥ 0.

DEFINITION 3.10.– Two-sided Ornstein–Uhlenbeck process X = {Xt, t ∈ R} is a
Gaussian process with EXt = x0 and R(t, s) = σ2

2θ e
θ(t∨s−t∧s) = −σ2

2θ e
θ|t−s|, θ < 0,

t, s ∈ R.

An explicit construction and properties of Ornstein–Uhlenbeck processes will be

considered in section 9.1.2. Note that the expectation of the two-sided

Ornstein–Uhlenbeck process is constant, and the covariance function depends only

on the difference between t and s. Such processes are called wide-sense stationary.
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3.5. Integration of non-random functions with respect to Gaussian
processes

3.5.1. General approach

Consider a centered Gaussian process X = {Xt, t ≥ 0} with covariance function

R(t, s), (t, s) ∈ R
2
+. Consider a fixed rectangle [0, T ]2.

DEFINITION 3.11.– A function f = f(t) : [0, T ] → R is called elementary if it has a
form

f(t) =

m−1∑
j=0

aj t∈(tj ,tj+1], fj ∈ R,

where {0 = t0 < t1 < · · · < tm = T} is a partition of [0, T ].

DEFINITION 3.12.– Integral I(f,X)([0, T ]) of elementary function f w.r.t. a
Gaussian process X is defined as a sum

I(f,X, [0, T ]) =

ˆ T

0

f(t)dXt :=

m−1∑
j=0

aj(Xtj+1 −Xtj ).

It is evident that, for any elementary function f , the integral
´ T
0
f(t)dXt is a

Gaussian random variable with mean E
´ T
0
f(t)dXt = 0 and variance

E

(ˆ T

0

f(t)dXt

)2

=
m−1∑
j,k=0

ajakR(Δjk) [3.10]

where

R(Δjk) = R(tj+1, tk+1)−R(tj , tk+1)−R(tj+1, tk) +R(tj , tk)

is the rectangular increment of R over the rectangle Δjk = (tj , tj+1] × (tk, tk+1],
j, k = 0, 1, . . . ,m− 1.

Assume that the covariance function R satisfies the following technical

assumption:

(R) The covariance function R is absolutely continuous w.r.t. the Lebesgue

measure λ2 on [0, T ]2, i.e. there exists a function r, integrable w.r.t. the measure λ2

on [0, T ]2 such that, for any s1, s2, t1, t2 ∈ [0, T ] with s1 < t1, s2 < t2,

R(t1, t2)−R(s1, t2)−R(t2, s1) +R(t1, s1) =

ˆ t1

s1

ˆ t2

s2

r(u1, u2)du2 du1.
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We have from [3.10] that for any elementary function f ,

E

(ˆ T

0

f(t)dXt

)2

=

ˆ T

0

ˆ T

0

f(t)f(s)r(t, s)dt ds =: K(f). [3.11]

This motivates the following definition. Denote by L2,r([0, T ]) the class of Borel

functions f : [0, T ] → R for which

ˆ T

0

ˆ T

0

|f(t)||f(s)| |r(t, s)| dt ds < ∞.

so that the integral K(f) =
´ T
0

´ T
0
f(t)f(s)r(t, s)dt ds is well defined.

THEOREM 3.5.– Let f ∈ L2,r([0, T ]). Then there exists a sequence of elementary
functions gn = gn(t), n ≥ 1, t ∈ [0, T ], such that

K(f − gn) ds → 0, n → ∞, [3.12]

and

K(gm − gn) → 0, n,m → ∞, [3.13]

so, by [3.11] the limit of
´ T
0
gn(t)dXt exists in L2(Ω,F ,P), and we can define the

integral
´ T
0
f(t)dXt as a limit of the integrals

´ T
0
gn(t)dXt in L2(Ω,F ,P).

PROOF.– Consider first a simple function of the form

h(t) =
N∑

k=1

ck Ak
(t),

where Ak ∈ B([0, T ]), k = 1, . . . , N . Since the Borel σ-algebra B([0, T ]) is generated

by the semiring of half-open intervals of the form (a, b], then by the Caratheodory

approximation theorem (see [BIL 95, theorem 11.4]), for any ε > 0 and each k =
1, 2, . . . , N , there exist disjoint intervals (ai, bi], i = 1, . . . ,mk, such that

λ1

(
Ak �

mk⋃
i=1

(ai, bi]

)
<

ε

N
.

Then, defining elementary functions

hε(t) =
N∑

k=1

ck

mk∑
i=1

(ai,bi](t),
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we have

λ1({t ∈ [0, T ] : hε(t) �= h(t)}) ≤
N∑

k=1

λ1

(
Ak �

mk⋃
i=1

(ai, bi]

)
< ε.

Consequently, hε
λ1−→ h, ε → 0+. Moreover, |hε(t)| ≤ max1≤k≤N |ck|.

Therefore, by the Lebesgue dominated convergence theorem, we have

K(h− hε) → 0, ε → 0+

and K(hε) → K(h), ε → 0+, so it follows from [3.11] that K(h) ≥ 0 and
√
K(h)

is a seminorm on the set of simple functions.

Now let fn be simple measurable functions, such that, for any t ∈ [0, T ], |fn(t)| ≤
|f(t)| and fn(t) → f(t), n → ∞. Then by the Lebesgue dominated convergence

theorem

K(fn − f) → 0, n → ∞,

and K(fn) → K(f), n → ∞. As mentioned above, it follows that K(f) ≥ 0 and√
K(f) is a seminorm on L2,r([0, T ]). We can then approximate the functions fn in

probability by elementary functions gn so that K(fn − gn) → 0, n → ∞. Then we

get [3.12] and [3.13] by virtue of the triangle inequality. �

REMARK 3.3.– Obviously,
´ T
0
f(t)dXt is a Gaussian random variable with zero

mean and variance K(f).

3.5.2. Integration of non-random functions with respect to the Wiener
process

Let W = {Wt, t ≥ 0} be a Wiener process. Then, on the one hand, we cannot

directly apply theorem 3.5, because the covariance function R(s, t) = s ∧ t is not

absolutely continuous w.r.t. the Lebesgue measure on any rectangle [0, T ]2. Indeed,

consider, for n ≥ 1, 0 = tn0 < tn1 < · · · < tnn = T and note that

R((tnk , t
n
k+1]

2) = R(tnk+1, t
n
k+1)−R(tnk+1, t

n
k )−R(tnk , t

n
k+1) +R(tnk , t

n
k )

= tnk+1 − tnk ,

so

R

( n−1⋃
k=0

(tnk , t
n
k+1]

2

)
=

n−1∑
k=0

(
tnk+1 − tnk

)
= T,
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while

λ2

( n−1⋃
k=0

(tnk , t
n
k+1]

2

)
=

n−1∑
k=0

(
tnk+1 − tnk

)2 ≤ T max
0≤k≤n−1

(
tnk+1 − tnk

)
may be arbitrarily small. On the other hand, the theory of integration of non-random

functions is very simple in this case because the increments in the Wiener process

are independent (non-correlated, orthogonal), and for any elementary function f(t) =∑n−1
j=0 fj t∈(tn

k
,tn

k+1
] we can define

I(f,W, [0, T ]) =
n−1∑
j=0

fj(Wtj+1 −Wtj )

that is a Gaussian r.v. with EI(f,W, [0, T ]) = 0 and E (I(f,W, [0, T ]))
2

=∑n−1
j=0 f2

j Δtj , where Δtj = tj+1 − tj . Now, let f ∈ L2([0, T ], λ1). Then there exists

a sequence f̃n(t) =
∑kn−1

j=0 f̃n,j t∈(tn,j ,tn,j+1] of elementary functions such that´ T
0
|f(t)− f̃n(t)|2dt → 0, n → ∞. Then f̃n is a Cauchy sequence in L2([0, T ]), and

consequently, I(f̃n,W, [0, T ]) is a Cauchy sequence in L2(Ω,F ,P) because

E
(
I(f̃n,W, [0, T ])− I(f̃m,W, [0, T ])

)2

=

ˆ T

0

|f̃n(t)− f̃m(t)|2dt.

Therefore, we can define
´ T
0
f(t)dWt as the limit

ˆ T

0

f(t)dWt = lim
n→∞ I(f̃n,W, [0, T ]) in L2(Ω,F ,P).

THEOREM 3.6.–

1) The integral
´ T
0
f(t)dWt is a Gaussian r.v. with E

´ T
0
f(t)dWt = 0 and

E

(ˆ T

0

f(t)dWt

)2

=

ˆ T

0

f2(t)dt,

or, in other words,∥∥∥∥∥
ˆ T

0

f(t)dWt

∥∥∥∥∥
L2(Ω,F,P)

= ‖f‖L2([0,T ],λ1)

(isometry property).
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2) The integral
´ T
0
f(t)dWt does not depend on the approximating sequence f̃n ={

f̃n(t), t ∈ [0, T ]
}

of elementary functions.

3) Let gn = {gn(t), t ∈ [0, T ]} ∈ L2([0, T ], λ1) and ‖gn − f‖L2([0,T ],λ1)
→ 0 as

n → ∞. Then

ˆ T

0

f(t)dWt = lim
n→∞

ˆ T

0

gn(t)dWt in L2(Ω,F ,P).

4) For any α, β ∈ R and any f, g ∈ L2([0, T ], λ1),

ˆ T

0

(αf(t) + βg(t))dWt = α

ˆ T

0

f(t)dWt + β

ˆ T

0

g(t)dWt.

PROOF.– 1) By definition,
´ T
0
f(t)dWt is a limit in L2(Ω,F ,P) of

I(f̃n,W, [0, T ]) =

kn−1∑
j=0

f̃n,j(Wtn,j+1 −Wtn,j ),

which are Gaussian r.v. with EI(f̃n,W, [0, T ]) = 0 and

E(I(f̃n,W, [0, T ]))2 =

kn−1∑
j=0

f̃2
n,jΔtn,j =

ˆ T

0

f̃2
n(t)dt.

Then it is a weak limit too, so, according to lemma A2.5, we get that
´ T
0
f(t)dWt

is a Gaussian r.v. with zero mean and variance
´ T
0
f2(t)dt.

2) Let g̃n = {g̃n(t), t ∈ [0, T ]} be another sequence of elementary approximating

functions, i.e.

ˆ T

0

|f(t)− g̃n(t)|2dt → 0, n → ∞.

Then

E

∣∣∣∣∣
ˆ T

0

g̃n(t)dWt −
ˆ T

0

f̃n(t)dWt

∣∣∣∣∣
2

=

ˆ T

0

|f̃n(t)− g̃n(t)|2dt → 0, n → ∞,

which means that, in L2(Ω,F ,P),

lim
n→∞

ˆ T

0

g̃n(t)dWt = lim
n→∞

ˆ T

0

f̃n(t)dWt =

ˆ T

0

f(t)dWt.
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3) We can proceed as in the previous section. Indeed, it follows from isometry

property that

E

∣∣∣∣∣
ˆ T

0

f(t)dWt −
ˆ T

0

gn(t)dWt

∣∣∣∣∣
2

=

ˆ T

0

|f(t)− gn(t)|2dt → 0, n → ∞.

4) Let f̃n(t), g̃n(t) be a sequence of elementary functions such that f̃n → f ,

g̃n → g in L2([0, T ], λ1). Then αf̃n(t)+βg̃n(t) is an elementary function that admits

the representation, say,

αf̃n(t) + βg̃n(t) =

kn−1∑
j,k=0

(αck + βdj) t∈Δn,j,k
,

where the intervals Δn,j,k have no common interior points and⋃kn−1
j,k=0 Δn,j,k = [0, T ]. Therefore,

ˆ T

0

(αf̃n(t) + βg̃n(t))dWt = α

kn−1∑
j,k=0

ckΔW (Δn,j,k) + β

kn−1∑
j,k=0

djΔW (Δn,j,k)

= α

ˆ T

0

f̃n(t)dWt + β

ˆ T

0

g̃n(t)dWt.

Further,

ˆ T

0

(αfn(t) + βgn(t))dWt →
ˆ T

0

(αf(t) + βg(t))dWt,

α

ˆ T

0

fn(t)dWt + β

ˆ T

0

gn(t))dWt → α

ˆ T

0

f(t)dWt + β

ˆ T

0

g(t)dWt,

whence the proof follows. �

3.5.3. Integration w.r.t. the fractional Brownian motion

Let BH =
{
BH

t , t ≥ 0
}

be the fractional Brownian motion with Hurst index

H ∈ (
1
2 , 1

)
. We know that R(s, t) = 1

2 (s
2H + t2H − |s − t|2H), and in the case
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H ∈ (
1
2 , 1

)
, for any rectangle Δ = [s1, s2]× [t1, t2], the increment over this rectangle

equals

R(Δ) = R(s2, t2)−R(s1, t2)−R(s2, t1) +R(s1, t1)

=
1

2

(
s2H2 + t2H2 − |s2 − t2|2H − s2H1 − t2H2 + |s1 − t2|2H

−s2H2 − t2H1 + |s2 − t1|2H + s2H1 + t2H1 − |s1 − t1|2H
)

=
1

2

(|s1 − t2|2H + |s2 − t1|2H − |s2 − t2|2H − |s1 − t1|2H
)

= H(2H − 1)

ˆ s2

s1

ˆ t2

t1

|u− v|2H−2du dv ≥ 0.

Therefore, the covariance function R is increasing as a function of two variables,

in the sense that its increment is positive over any rectangle, so it coincides with |R|,
and generates the measure, which we also denote by R, on B([0, T ]2). This measure

is absolutely continuous w.r.t. the Lebesgue measure. Note that ∂2R
∂s∂t > T 2H−2, and

hence, it is separated from zero and we can apply remark 3.3, (ii), and state that

integral
´ T
0
f(s)dBH

s exists for any f ∈ L2([0, T ]
2, R). However, for technical

simplicity, we restrict the class of integrable functions. To be more precise, let us

formulate the following Hardy–Littlewood theorem (see e.g. [SAM 93]).

THEOREM 3.7.– Let 0 < α < 1. Then, for any 1 < p < 1
α and q = p

1−αp , there
exists a constant Cp,q,α such that(ˆ

[0,T ]

( ˆ
[0,T ]

|f(u)||x− u|α−1du
)q

dx

) 1
q

≤ Cp,q,α‖f‖Lp([0,T ],λ1). [3.14]

THEOREM 3.8.– Let function f ∈ L 1
H
([0, T ], λ1). Then

i) f ∈ L2([0, T ]
2, R).

ii) We can define integral
´ T
0
f(s)dBH

s as the limit in L2(Ω,F ,P) of the integrals
of elementary functions, and

´ T
0
f(s)dBH

s is a Gaussian random variable with
E
´ T
0
f(s)dBH

s = 0 and

E

(ˆ T

0

f(s)dBH
s

)2

= H(2H − 1)

ˆ T

0

ˆ T

0

f(s)f(t)|s− t|2H−2dsdt.

iii) Moreover,
´ T
0
f(s)dBH

s is the limit in L2(Ω,F ,P) of the integrals of any
sequence fn of elementary functions such that ‖f − fn‖L 1

H
([0,T ],λ1) → 0 as n → ∞.
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PROOF.– To prove (i), it is enough to prove that any function f ∈ L 1
H
([0, T ], λ1)

belongs to L2([0, T ]
2, R). In turn, it is sufficient to establish that the iterated integral

is finite,

I :=

ˆ
[0,T ]

|f(u)|
(ˆ

[0,T ]

|f(v)||u− v|2H−2dv

)
du < ∞.

Applying theorem 3.7 with α = 2H − 1, p = 1
H and q = p

1−2αp = 1
1−H , we

obtain that

I ≤
(ˆ

[0,T ]

|f(u)| 1
H du

)H(ˆ
[0,T ]

( ˆ
[0,T ]

|f(v)||u− v|2H−1dv
) 1

1−H

du

)1−H

≤ ‖f‖L 1
H

([0,T ],λ1)CH‖f‖L 1
H

([0,T ],λ1) = CH‖f‖2L 1
H

([0,T ],λ1)
, [3.15]

where we have denoted CH = C1/H,1/(1−H),2H−1, for brevity. So, (i) is proved, and

(ii) follows immediately from (i) and theorem 3.5. Now, consider arbitrary sequence

fn of elementary functions such that ‖f − fn‖L 1
H

([0,T ],λ1) → 0, n → ∞. Then,

similar to [3.15], we can get that

E

(ˆ T

0

f(s)dBH
s −

ˆ T

0

fn(s)dB
H
s

)2

≤
ˆ
[0,T ]

|f(u)− fn(u)|
( ˆ

[0,T ]

|f(v)− fn(v)||u− v|2H−2dv

)
du

≤
(ˆ

[0,T ]

|f(u)− fn(u)| 1
H du

)H

×
( ˆ

[0,T ]

( ˆ
[0,T ]

|f(v)− fn(v)||u− v|2H−1dv
) 1

1−H

du

)1−H

≤ ‖f − fn‖L 1
H

([0,T ],λ1)CH‖f − fn‖L 1
H

([0,T ],λ1)

= CH‖f − fn‖2L 1
H

([0,T ],λ1)
→ 0, n → ∞.

Therefore, (iii) is established, and the theorem is proved. �

REMARK 3.4.– Let a function f be continuous, therefore bounded by some constant,

on [0, T ]. Then evidently
´ T
0
f(s)dBH

s exists. Consider any sequence of partitions

with vanishing diameter and the sequence of elementary functions of the form fn(t) =∑kn

k=1 f(t
n
k ) (tn

k
,tn

k+1
]. Being bounded by the same constant, fn tends to f pointwise,

and therefore, in L 1
H
([0, T ], λ1). This means that

´ T
0
f(s)dBH

s = lim
´ T
0
fn(s)dB

H
s

in L2(Ω,F ,P).
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3.6. Two-sided Wiener process and fractional Brownian motion:
Mandelbrot–van Ness representation of fractional Brownian motion

First, construct a two-sided Wiener process.

DEFINITION 3.13.– Two-sided Wiener process W = {Wt, t ∈ R} is a Gaussian
process with EWt = 0 and

EWtWs =

{ |t| ∧ |s|, s · t ≥ 0,
0, s · t < 0.

A two-sided Wiener process can also be characterized as a process with

independent increments, such that W0 = 0 and Wt − Ws ∼ N (0, t − s) for

−∞ < s < t < +∞. It can be constructed explicitly in the following way: let

W 1 =
{
W 1

t , t ≥ 0
}

be a Wiener process, and W 2 =
{
W 2

t , t ≥ 0
}

be a Wiener

process independent of W 1. Then Wt =

{
W 1

t , t ≥ 0,
W 2

−t, t < 0
is a two-sided Wiener

process.

Now we are in a position to construct the so-called Mandelbrot–Van Ness
representation of fractional Brownian motion ([MAN 68]) and to introduce two-sided

fractional Brownian motion. For any H ∈ (0, 1), define the non-random kernel

k+H(t, u) = (t− u)
H− 1

2
+ − (−u)

H− 1
2

+ , −∞ < u < t < +∞,

where we use the notation a+ = a a>0. Moreover, denote the constant

C
(1)
H =

(ˆ ∞

0

(
(1 + x)H− 1

2 − xH− 1
2

)2

dx+
1

2H

)
=

(2H sin(πH)Γ(2H))
1
2

Γ
(
H + 1

2

) ,

whose value was calculated e.g. in [MIS 08]. Now, consider the Wiener integral

BH
t := C

(1)
H

ˆ
R

k+H(t, u)dWu, t ∈ R. [3.16]

Note that the explicit representation of BH
t is a little bit different for t > 0 and

t ≤ 0:

BH
t = C

(1)
H

(ˆ 0

−∞

(
(t− u)H− 1

2 − (−u)H− 1
2

)
dWu +

ˆ t

0

(t− u)H− 1
2 dWu

)
, t > 0,

and

BH
t = C

(1)
H

(ˆ t

−∞

(
(t− u)H− 1

2 − (−u)H− 1
2

)
dWu +

ˆ 0

t

(−u)H− 1
2 dWu

)
, t < 0.
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However, for any t ∈ R, E(BH
t )2 = t2H . Indeed, for t > 0,

E(BH
t )2 = (C

(1)
H )2

(ˆ 0

−∞

(
(t− u)H− 1

2 − (−u)H− 1
2

)2

du+

ˆ t

0

(t− u)2H−1du

)
= (C

(1)
H )2t2H

(ˆ ∞

0

(
(1 + u)H− 1

2 − uH− 1
2

)2

du+
1

2H

)
= 1,

since

ˆ ∞

0

(
(1 + u)H− 1

2 − uH− 1
2

)2

du+
1

2H
=

Γ2(H + 1
2 )

2H sin(πH)Γ(2H)
,

according to [MIS 08]. For t < 0,

E(BH
t )2 = (C

(1)
H )2

(ˆ t

−∞

(
(t− u)H− 1

2 − (−u)H− 1
2

)2

du+

ˆ 0

t

(−u)2H−1du

)

= (C
(1)
H )2|t|2H

(ˆ 1

−∞

(
(−1− z)H− 1

2 − (−z)H− 1
2

)2

dz +
1

2H

)
= (C

(1)
H )2|t|2H

(ˆ ∞

1

(
(z − 1)H− 1

2 − zH− 1
2

)2

dz +
1

2H

)
= (C

(1)
H )2|t|2H

(ˆ ∞

0

(
zH− 1

2 − (z + 1)H− 1
2

)2

dz +
1

2H

)
= |t|2H .

Furthermore, for h > 0, it holds that

BH
s+h −BH

s = C
(1)
H

(ˆ
R

(
k+H(s+ h, u)− k+(s, u)

)
dWu

)
,

and, for 0 < s < s+ h, we have that

E
(
BH

s+h −BH
s

)2
= (C

(1)
H )2

(ˆ s

−∞

(
(s+ h− u)H− 1

2 − (s− u)H− 1
2

)2

du

+

ˆ s+h

s

(s+ h− u)2H−1du

)

= (C
(1)
H )2

(ˆ ∞

0

(
(h+ z)H− 1

2 − zH− 1
2

)2

dz +
h2H

2H

)
= (C

(1)
H )2h2H

(ˆ ∞

0

(
(1 + z)H− 1

2 − zH− 1
2

)2

dz +
1

2H

)
= h2H ,
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while for −∞ < s < s+ h < 0, we have that

E
(
BH

s+h −BH
s

)2
= (C

(1)
H )2

(ˆ s

−∞

(
(s+ h− u)H− 1

2 − (s− u)H− 1
2

)2

du

+

ˆ s+h

s

(
(s+ h− u)2H−1

)2
du

)

= (C
(1)
H )2

(ˆ ∞

0

(
(h+ z)H− 1

2 − zH− 1
2

)2

dz +
h2H

2H

)
= h2H .

The case −∞ < s < 0 < s+ h < ∞ can be considered similarly. Finally, we get

that the Gaussian process BH introduced by the relation [3.16] has zero expectation

and covariance function

EBH
t BH

s =
1

2

(
E(BH

t )2 + E(BH
s )2 − E(BH

t −BH
s )2

)
=

1

2

(|t|2H + |s|2H − |t− s|2H)
.

In connection with the above, we can introduce the following definition.

DEFINITION 3.14.– A two-sided Brownian motion BH =
{
BH

t , t ∈ R
}

is a centered
Gaussian process with the covariance function

EBH
t BH

s =
1

2

(|t|2H + |s|2H − |t− s|2H)
. [3.17]

The above calculations give us the following result.

THEOREM 3.9.– The Mandelbrot–van Ness representation of the form

BH
t =

ˆ
R

k+H(t, u)dWu, t ∈ R, [3.18]

where W = {Wt, t ≥ 0} is a two-sided Wiener process, gives us a two-sided
fractional Brownian motion BH .

REMARK 3.5.–

i) Obviously, one-sided fBm admits representation [3.18] for t ≥ 0.

ii) Principally, it is possible to check that [3.17] is indeed a covariance function

similarly to the verification made in theorem 3.4. However, since we have an explicit

representation [3.18] of fBm, it is not necessary to do so.

iii) It is possible to prove that, for any two-sided fractional Brownian motion BH ,

there exists a two-sided Wiener process W for which [3.18] holds, see also remark

3.6.
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3.7. Representation of fractional Brownian motion as the Wiener integral
on the compact integral

Consider the so-called Molchan–Golosov representation of fBm as the Wiener

integral on the compact integral ([MOL 69a, NOR 99, JOS 06]).

Introduce the kernel

κH(t, s) = cH

[
tH− 1

2 s
1
2−H(t− s)H− 1

2

−
(
H − 1

2

)
s

1
2−H

ˆ t

s

uH− 3
2 (u− s)H− 1

2 du

]
,

where cH =

(
2HΓ( 3

2−H)
Γ(2−2H)Γ(H+ 1

2 )

) 1
2

.

For H > 1
2 , we can integrate by parts and reduce the kernel κH(t, s) to

κH(t, s) =

(
H − 1

2

)
cHs

1
2−H

ˆ t

s

uH− 1
2 (u− s)H− 3

2 du.

THEOREM 3.10.– Let W = {Wt, t ≥ 0} be a Wiener process. Then the stochastic
process

BH
t =

ˆ t

0

κH(t, s)dWs [3.19]

is a fractional Brownian motion.

PROOF.– Consider, for technical simplicity, the case H > 1
2 and for any t > 0 denote

CH = (H − 1
2 )cH . Then we can transform

´ t
0
κ2
H(t, s)ds:

ˆ t

0

κ2
H(t, s)ds = C2

H

ˆ t

0

s1−2H

(ˆ t

s

uH− 1
2 (u− s)H− 3

2 du

)2

ds

= C2
H

ˆ t

0

s1−2H

ˆ t

s

uH− 1
2 (u− s)H− 3

2 du

ˆ t

s

vH− 1
2 (v − s)H− 3

2 dvds

= C2
H

ˆ t

0

ˆ t

0

uH− 1
2 vH− 1

2

ˆ u∧v

0

s1−2H(u− s)H− 3
2 (v − s)H− 3

2 ds du dv.
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According to lemma 2.2 (i) from [NOR 99], for μ > 0, ν > 0, c > 1

ˆ 1

0

tμ−1(1− t)ν−1(c− t)−μ−νdt = c−ν(c− 1)−μB(μ, ν).

In this case, μ−1 = 1−2H , ν−1 = H− 3
2 , so that −ν = 1

2 −H , −μ = 2H−2.

Therefore,

ˆ u∧v

0

s1−2H(u− s)H− 3
2 (v − s)H− 3

2 ds

= (u ∧ v)−1

ˆ 1

0

s1−2H(1− s)H− 3
2

(u ∨ v

u ∧ v
− s

)H− 3
2

ds

= (u ∧ v)−1
(u ∨ v

u ∧ v

) 1
2−H (u ∨ v

u ∧ v
− 1

)2−2H

B

(
2− 2H,H − 1

2

)
.

We can continue with
´ t
0
κ2
H(t, s)ds:

ˆ t

0

κ2
H(t, s)ds = C2

HB

(
2− 2H,H − 1

2

)
×

×
(ˆ t

0

uH− 1
2

ˆ u

0

vH− 1
2 v−1

(u
v

) 1
2−H (u

v
− 1

)2H−2

dv du

+

ˆ t

0

uH− 1
2

ˆ t

u

vH− 1
2u−1

( v

u

) 1
2−H ( v

u
− 1

)2H−2

du dv

)

= C2
HB

(
2− 2H,H − 1

2

)(ˆ t

0

ˆ u

0

(u− v)2H−2dv du

+

ˆ t

0

ˆ t

u

(v − u)2H−2dv du

)

=
C2

HB
(
2− 2H,H − 1

2

)
H(2H − 1)

t2H < ∞.

Therefore, integral BH
t :=

´ t
0
κH(t, s)dWs exists, and so EBH

t = 0. Moreover,

C2
HB

(
2− 2H,H − 1

2

)
H(2H − 1)

=
2HΓ

(
3
2 −H

)
Γ(2− 2H)Γ

(
H − 1

2

) (
H − 1

2

)2
Γ(2− 2H)Γ

(
H + 1

2

)
H(2H − 1)Γ

(
3
2 −H

) = 1,
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so, E(BH
t )2 = t2H . Applying the same transformations, we can calculate the

covariance function. Let t > s, then

EBH
t BH

s = C2
H

ˆ s

0

κ(t, u)κ(s, u)du

= C2
H

ˆ s

0

u1−2H

ˆ t

u

vH− 1
2 (v − u)H− 3

2 dv

ˆ s

u

zH− 1
2 (z − u)H− 3

2 dz du

= C2
H

ˆ t

0

ˆ s

0

vH− 1
2 zH− 1

2

ˆ z∧v

0

u1−2H(v − u)H− 3
2 (z − u)H− 3

2 dz du dv

= C2
H

(ˆ s

0

ˆ s

0

+

ˆ t

s

ˆ s

0

)
= s2H + C2

H

ˆ t

s

ˆ s

0

= s2H

+C2
HB

(
2− 2H,H − 1

2

)ˆ t

s

ˆ s

0

vH− 1
2 zH− 1

2 z−1
(v
z

) 1
2−H (v

z
− 1

)2H−2

dzdv

= s2H +
1

2H(2H − 1)

ˆ t

s

ˆ s

0

(v − z)2H−2dzdv

= s2H +
1

2
(t2H − s2H − (t− s)2H) =

1

2
(s2H + t2H − |t− s|2H).

The case s > t can be considered similarly, and the proof follows. �

REMARK 3.6.– Any fractional Brownian motion admits representation [3.19] with

some Wiener process. Indeed, let F be the Gauss hypergeometric function of

parameters a, b, c and variable z ∈ R defined as

F (a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0

vb−1(1− v)c−b−1(1− vz)−adv,

and C̃H = (Γ(2−2H))
1
2

2HΓ(H+ 1
2 )

1
2 Γ( 3

2−H)
3
2
. It was established, e.g. in [JOS 06], that if we have

the fractional Brownian motion BH = {BH
t , t ≥ 0}, then for any t > 0 the integral

Wt = C̃H

ˆ t

0

(t− s)
1
2−HF

(
1

2
−H,

1

2
−H,

3

2
−H,

s− t

s

)
dBH

s ,

exists and W = {Wt, t ≥ 0} is a Wiener process, according to which BH admits the

representation [3.19].





4

Construction, Properties and Some
Functionals of the Wiener Process and

Fractional Brownian Motion

4.1. Construction of a Wiener process on the interval [0, 1]

Consider interval [0, 1] and the sequences of Haar and Schauder functions on this

interval. Haar functions are constructed as follows:

H0(t) = 1, t ∈ [0, 1]; H1(t) = [ 0, 12 )
(t)− [ 1

2 ,1)
(t);

H2(t) =
√
2
(

[ 0, 14 )
(t)− [ 1

4 ,
1
2 )

(t)
)
;

H3(t) =
√
2
(

[ 1
2 ,

3
4 )

(t)− [ 3
4 ,1)

(t)
)
,

and, in general, we can divide the function into the groups, with functions

H2n−1(t), . . . , H2n−1(t) in the nth group, n ≥ 1, and for 2n−1 ≤ j ≤ 2n − 1

Hj(t) = 2
n−1
2

(
[ 2j−2n

2n , 2j+1−2n

2n ) (t)− [ 2j+1−2n

2n , 2j+2−2n

2n ) (t)
)
.

The functions are depicted in Figure 4.1.

Denote for brevity L2([0, 1]) = L2([0, 1], λ1), where λ1 is the Lebesgue measure

on [0, 1]. Evidently, for any n ≥ 1,

Hn ∈ L2([0, 1]), ‖Hn‖L2([0,1])
= 1 and 〈Hn, Hk〉L2([0,1])

= 0 for n 	= k.

Furthermore, Haar functions create an orthonormal basis in L2([0, 1]). Indeed,

any indicator of dyadic interval
[

k
2n ,

l
2n

)
can be presented as a linear combination of
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Haar functions from nth series, and the family of such indicators is tight in L2([0, 1]).
Therefore, any function f ∈ L2([0, 1]) can be presented as

f(t) =
∞∑

n=0

〈f,Hn〉L2([0,1])
Hn(t),

where

〈f, g〉L2([0,1])
=

ˆ 1

0

f(t)g(t)dt =
∞∑

n=0

〈f,Hn〉L2([0,1])
〈g,Hn〉L2([0,1])

.

��H1ptq

��

t
.
1
2

.
1

.1 ��
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t
.
1
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.
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t
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2n

.2
n´1
2

��
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Figure 4.1. Haar functions

Schauder functions are defined as follows:

Sj(t) =

ˆ t

0

Hj(s)ds =
〈
Hj , [0,t]

〉
L2([0,1])

, t ∈ [0, 1].
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However, a simpler description is as follows:

S0(t) = t; S1(t) = t · 0≤t≤ 1
2
+ (1− t) 1

2≤t≤1;

Sj(t) = 2−
n+1
2 S1(2

n−1t− j + 2n−1), 2n−1 ≤ j ≤ 2n − 1.
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t
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2j´2n`2

2n

.2´
n`1
2

Figure 4.2. Schauder functions

In the ensuing considerations, we need the following two properties of Schauder

functions:

i) For any t ∈ [0, 1], only one function Sj(t) in the nth series, i.e. with some index

2n−1 ≤ j ≤ 2n − 1, is non-zero.

ii) maxt∈[0,1] Sj(t) = 2−
n+1
2 , 2n−1 ≤ j ≤ 2n − 1, n ≥ 1.

Now, we can establish the following result.

THEOREM 4.1.– Stochastic process W = {Wt, t ∈ [0, 1]}, of the form

Wt =
∞∑
k=0

Sk(t)ξk, t ∈ [0, 1], [4.1]

where Sk = {Sk(t), t ∈ [0, 1]} is a sequence of Schauder functions and {ξk, k ≥ 0}
is the sequence of iid N (0, 1) random variables, is a Wiener process. The series [4.1]
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converges uniformly on [0, 1] with probability 1 and for any t ∈ [0, 1] in L2(Ω,F ,P).
The trajectories of W are continuous a.s.

PROOF.– We divide the proof into several steps.

1) First, establish convergence in L2(Ω,F ,P). To this end, observe that for

N > M ≥ 1

E

∣∣∣∣∣
N∑

k=M+1

Sk(t)ξk

∣∣∣∣∣
2

=

N∑
k=M+1

S2
k(t) =

N∑
k=M+1

〈
Hk, [0,t]

〉2 → 0

as M,N → ∞ because

∞∑
k=1

〈
Hk, [0,t]

〉2
=

∥∥
[0,t]

∥∥2

L2([0,1])
= t.

It means that the sequence
∑K

k=1 Sk(t)ξk, K ≥ 1 is a Cauchy sequence in

L2(Ω,F ,P); therefore, it converges in L2(Ω,F ,P), for any t ∈ [0, 1]. Denote by Wt

its limit in L2(Ω,F ,P). Recall that the convergence in L2(Ω,F ,P) implies the

weak convergence of finite-dimensional distributions which in turn is equivalent

to the convergence of the characteristic functions. Therefore, for any

0 = t0 < t1 < . . . < tK and any vector λ = (λ1, . . . , λK),

Eexp

{
i

K∑
k=1

λk(Wtk −Wtk−1
)

}

= lim
M→∞

Eexp

⎧⎨
⎩i

K∑
k=1

λk

M∑
j=1

ξj
〈
Hj , [ tk−1,tk)

〉
L2([0,1])

⎫⎬
⎭

= lim
M→∞

Eexp

⎧⎨
⎩i

M∑
j=1

ξj

(
K∑

k=1

λk

〈
Hj , [ tk−1,tk)

〉
L2([0,1])

)⎫⎬
⎭

= lim
M→∞

exp

⎧⎨
⎩−1

2

M∑
j=1

(
K∑

k=1

λk

〈
Hj , [ tk−1,tk)

〉
L2([0,1])

)2
⎫⎬
⎭

= lim
M→∞

exp

⎧⎨
⎩−1

2

K∑
k,r=1

λkλr

M∑
j=1

〈
Hj , [ tk−1,tk)

〉
L2([0,1])

× 〈
Hj , [ tr−1,tr)

〉
L2([0,1])

⎫⎬
⎭



Construction, Properties and Some Functionals of the Wiener Process 71

= exp

⎧⎨
⎩−1

2

K∑
k,r=1

λkλr

∞∑
j=1

〈
Hj , [ tk−1,tk)

〉
L2([0,1])

× 〈
Hj , [ tr−1,tr)

〉
L2([0,1])

⎫⎬
⎭

= exp

⎧⎨
⎩−1

2

K∑
k,r=1

λkλr

〈
[ tk−1,tk) , [ tr−1,tr)

〉
L2([0,1])

⎫⎬
⎭

= exp

{
−1

2

K∑
k=1

λ2
k(tk − tk−1)

}
.

These equalities can be read as

Eexp

{
i

K∑
k=1

λk(Wtk −Wtk−1
)

}
=

K∏
k=1

Eexp
{
iλk(Wtk −Wtk−1

)
}

=

K∏
k=1

exp

{
−1

2
λ2
k(tk − tk−1)

}
,

and it means that W is a process with independent increments and the increment

Wt −Ws = N (0, t− s). Therefore, W is a Wiener process.

2) Second, prove that the series converges uniformly a.s. Indeed, for any x > 0
and ξ = N (0, 1), we have that

P {|ξ| > x} = 2P {ξ > x} = 2
1√
2π

ˆ ∞

x

e−
y2

2 dy

=

√
2

π

⎛
⎝− e−

y2

2

y

∣∣∣∣∣
∞

x

−
ˆ ∞

x

e−
y2

2

y2
dy

⎞
⎠ ≤

√
2

π

e−
x2

2

x
.

Therefore, for any k ≥ 1 and for {ξj , j ≥ 1} consisting of N (0, 1) random

variables,

P

{
max
1≤j≤k

|ξj | > x

}
≤

k∑
j=1

P {|ξj | > x} ≤ k

√
2

π

exp{−x2

2 }
x

.
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In particular,

P

{
max
1≤j≤k

|ξj | ≥ k
1
3

}
≤ k

2
3

√
2

π
exp

{
−k

2
3

2

}
.

As
∑∞

k=1 k
2
3 exp

{
−k

2
3

2

}
< ∞, we get from the Borel–Cantelli lemma that, for

any ω ∈ Ω
′
, P{Ω′} = 1, there exists k = k(ω) that, for k ≥ k(ω),

max
1≤j≤k

|ξj | ≤ k
1
3 .

Therefore, for N ≥ 1 + log2 k(ω), we have that 2N−1 ≥ k(ω) and, for 2N−1 ≤
j ≤ 2N−1, we have that |ξj | ≤

(
2N − 1

) 1
3 ≤ 2

N
3 . Moreover, for 2N−1 ≤ j ≤ 2N−1

and for any 0 ≤ t ≤ 1, only one Schauder function with such index j is non-zero, and

additionally, it does not exceed 2−
N+1

2 . Finally, for 2N−1 ≥ k(ω), we get the bound

2N−1∑
j=2N−1

Sj(t)|ξj | ≤ 2
N
3 2−

N+1
2 ≤ 2−

N
6 .

The latter inequality implies that

∞∑
j=2N−1

Sj(t)|ξj | ≤ 2−
N
6

1− 2−
N
6

and this upper bound does not depend on t. In turn, it means that the series∑∞
j=1 Sj(t)ξj converges uniformly on [0, 1] and, consequently, the trajectories of W

are continuous a.s. The theorem is proved. �

4.2. Construction of a Wiener process on R
+

Let W0 = {W0(t), t ∈ [0, 1]} be a Wiener process with a.s. continuous

trajectories on [0, 1]. Consider a sequence {Wn = {Wn(t), t ∈ [0, 1]}n ≥ 1} of

independent copies of W (the notion of independent processes was discussed in

section 2.2.2). Define a stochastic process

Wt = W0(t) t∈[0,1) +
∞∑
k=1

(W0(1) + . . .+Wk−1(1) +Wk(t− k)) t∈[k,k+1).

THEOREM 4.2.– Stochastic process W = {Wt, t ≥ 0} is a Wiener process with a.s.
continuous trajectories.
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PROOF.– Consider the points 0 = t0 < t1 < . . . < tN and suppose that

t0, t1, . . . , tn1 ∈ [0, 1), tn1+1, . . . , tn2 ∈ [1, 2),

. . . , tnN+1, . . . , tnN+1
∈ [N − 1, N ].

(The case where some unit intervals between 0 and N do not contain the points

can be considered similarly). Then, for any nk + 1 ≤ p ≤ nk+1 − 1,

Wtp+1 −Wtp = Wk(tp+1 − k)−Wk(tp − k),

therefore, these increments are mutually independent and are independent with any

other increments that belong to the interiors of the intervals [k, k + 1). Furthermore,

the increments between two neighbor points from different intervals have a form

Wk+1(tnk+1+1 − k + 1) +Wk(1)−Wk(tnk
− k)

and they are independent with any other increments of Wk+1 and Wk. The situation

when some neighbor points belong to different but not neighboring intervals is

considered similarly. Therefore, W has independent increments and starts from 0.

Consider 0 ≤ s < t and let s ∈ [k, k + 1), t ∈ [l, l + 1), k < l. Then

Wt −Ws = W0(1) + . . .+Wl−1(1) +Wl(t− l)

− (W0(1) + . . .+Wk−1(1) +Wk(s− k))

= (Wk(1) + . . .+Wl−1(1)) + (Wl(t− l)−Wk(s− k))

and E(Wt −Ws) = 0,

E(Wt −Ws)
2 = E (Wk(1)−Wk(s− k))

2
+ E (Wk+1(1))

2
+ . . .+ E (Wl−1(1))

2

+E (Wl(t− l))
2
= (k + 1− s) + (l − 1− k) + (t− l) = t− s.

Moreover, Wt −Ws is a sum of independent Gaussian variables

(Wk(1)−Wk(s− k)),Wk−1(1), . . . ,Wl+1(1),Wl(t− l),

therefore, it is a Gaussian random variable. It means that W is a Wiener process.

Continuity of the trajectories follows directly from its construction. The theorem is

proved. �
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4.3. Nowhere differentiability of the trajectories of a Wiener process

In the previous section, we established that there exists a Wiener process with

continuous trajectories. However, the trajectories are irregular in the sense that

almost all trajectories have no derivative at any point t ∈ R
+. It is hard to depict such

trajectories since there is no fixed direction of the trajectory at any point. The

approximate form of such a trajectory is shown in Figure 4.3.

��

t

��

Figure 4.3. Wiener process

Sometimes the absence of derivative is argued in the following way. For any t > 0,

E

∣∣∣∣Wt+h −Wt

h

∣∣∣∣
2

=
1

h
→ ∞, as h → 0.

It means that the Wiener process is not differentiable in the so-called mean-square

sense; in other words, it means that the derivative, even if exists, is not square

integrable. To establish non-differentiability of the trajectories, we need more subtle

arguments. The result was originally proved in [PAL 33] by Paley, Wiener and

Zygmund, and then proved in a more simple form in [DVO 61] by Dvoretzky, Erdös

and Kakutani.

THEOREM 4.3.– [Paley–Wiener–Zygmund–Dvoretzky–Erdös–Kakutani] Almost all
trajectories of a Wiener process have everywhere a lower derivative −∞ and upper
derivative +∞, i.e.

P

{
lim inf
h→0

Wt+h −Wt

h
= −∞ and lim sup

h→0

Wt+h −Wt

h
= +∞ for all t ≥ 0

}
= 1.
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REMARK 4.1.– For t = 0, we consider right-hand upper and lower derivatives.

PROOF.– For technical simplicity, we prove only the weaker result:

P

{
lim sup
h→0

∣∣∣∣Wt+h −Wt

h

∣∣∣∣ = +∞ for all t ≥ 0

}
= 1. [4.2]

Relation [4.2] is equivalent to the following one:

P

{
lim inf
h→0

Wt+h −Wt

h
= −∞ or lim sup

h→0

Wt+h −Wt

h
= +∞ for all t ≥ 0

}
= 1.

Introduce the event

B =

{
ω : there exists t ≥ 0 for which lim sup

h→0+

∣∣∣∣Wt+h −Wt

h

∣∣∣∣ < ∞
}
.

Consider any t ≥ 0. Let t ∈ [m,m + 1) for some m ≥ 0. Assume that, for some

ω ∈ B,

lim sup
h→0

|Wt+h −Wt|
h

< ∞.

Then there exists N ∈ N such that for this ω ∈ B

lim sup
h→0

|Wt+h −Wt|
h

≤ N.

Assume that

lim sup
h→0+

|Wt+h −Wt|
h

≤ N

(the case where h ↑ 0 is considered similarly). Then there exists j ≥ 1 such that

t+ 1
j ≤ m+ 1 and for any 0 < h < 1

j |Wt+h −Wt| ≤ Nh.

Now, let n ≥ 1 be such that 4
n ≤ 1

j and let 1 ≤ k ≤ n be such that m + k−1
n ≤

t ≤ m+ k
n . Then t ≤ m+ k+3

n ≤ t+ 1
j and

|Wm+ k+1
n

−Wm+ k
n
| ≤ |Wm+ k+1

n
−Wt|+ |Wm+ k

n
−Wt|

≤ N |m+
k + 1

n
− t|+N |m+

k

n
− t| ≤ N

2

n
+N

1

n
=

3N

n
,

|Wm+ k+2
n

−Wm+ k+1
n

| ≤ |Wm+ k+2
n

−Wt|+ |Wm+ k+1
n

−Wt|

≤ N |m+
k + 2

n
− t|+N |m+

k + 1

n
− t| ≤ N

3

n
+N

2

n
=

5N

n
,
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and similarly,

|Wm+ k+3
n

−Wm+ k+2
n

| ≤ |Wm+ k+3
n

−Wt|+ |Wm+ k+2
n

−Wt|

≤ N |m+
k + 3

n
− t|+N |m+

k + 2

n
− t| ≤ N

4

n
+N

3

n
=

7N

n
.

Introduce the events

BN,k,n,m =

{
ω : |Wm+ k+1

n
−Wm+ k

n
| ≤ 3N

n
, |Wm+ k+2

n
−Wm+ k+1

n
| ≤ 5N

n
,

|Wm+ k+3
n

−Wm+ k+2
n

| ≤ 7N

n

}
.

Then

B ⊆
∞⋃

m=1

∞⋃
N=1

∞⋃
j=1

∞⋂
n=4j

n⋃
k=1

BN,k,n,m.

Taking into account the independence of increments in the Wiener process W that
are included in the event BN,k,n,m, consider

P

⎧⎨
⎩

∞⋂
n=4j

n⋃
k=1

BN,k,n,m

⎫⎬
⎭ ≤ lim inf

n→∞ P

{
n⋃

k=1

BN,k,n,m

}
≤ lim inf

n→∞

n∑
k=1

P
{
BN,k,n,m

}

≤ lim inf
n→∞

n∑
k=1

P

{
|W

m+ k+1
n

−W
m+ k

n
| ≤ 3N

n

}
P

{
|W

m+ k+2
n

−W
m+ k+1

n
| ≤ 5N

n

}

× P

{
|W

m+ k+3
n

−W
m+ k+2

n
| ≤ 7N

n

}

= lim inf
n→∞

n∑
k=1

P

{∣∣∣∣N
(
0,

1

n

)∣∣∣∣ ≤ 3N

n

}
P

{∣∣∣∣N
(
0,

1

n

)∣∣∣∣ ≤ 5N

n

}

× P

{∣∣∣∣N
(
0,

1

n

)∣∣∣∣ ≤ 7N

n

}

≤ lim inf
n→∞ n · P

{∣∣∣∣N
(
0,

1

n

)∣∣∣∣ ≤ 7N

n

}3

= lim inf
n→∞ n ·

( √
n√
2π

ˆ 7N
n

− 7N
n

e−
x2n
2 dx

)3

=
∣∣x√n = y

∣∣ = lim inf
n→∞ n ·

⎛
⎝ 1√

2π

ˆ 7N√
n

− 7N√
n

e−
y2

2 dy

⎞
⎠

3

≤ lim
n→∞n · 1

2π
3
2

(14N)3

n
3
2

= 0.
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Therefore,

P (B) ≤
∞∑

m=1

∞∑
N=1

∞∑
j=1

P

⎧⎨
⎩

∞⋂
n=4j

n⋃
k=1

BN,k,n,m

⎫⎬
⎭ = 0,

and the theorem is proved. �

4.4. Power variation of the Wiener process and of the fractional
Brownian motion

4.4.1. Ergodic theorem for power variations

Let X = {Xt, t ≥ 0} be a stochastic process. Denote for any finite set of points

π = {0 ≤ t1 < t2 < . . . < tn} and p > 0

Var(p)(X,π) =
n−1∑
k=0

∣∣Xtk+1
−Xtk

∣∣p .
First, consider the case where π = πn = {0, 1, . . . , n}.

LEMMA 4.1.– For any H ∈ (0, 1),

lim
n→∞

1

n
Var(p)(BH , πn) = lim

n→∞
1

n

n−1∑
k=0

∣∣BH
k+1 −BH

k

∣∣p =
p

2

2
p
2√
π
Γ
(p
2

)

with probability 1.

PROOF.– At first, note that the fractional Brownian motion with any Hurst index H ∈
(0, 1) has stationary increments (being not stationary itself). Indeed, for any 0 ≤ t1 <
t2 ≤ t2 ≤ t3 < t4 and h > 0

E(BH
t2+h −BH

t1+h)(B
H
t4+h −BH

t3+h)

=
1

2

(
(t2 + h)2H + (t4 + h)2H − |t4 − t2|2H − (t1 + h)2H

− (t4 + h)2H + |t4 − t1|2H − (t2 + h)2H − (t3 + h)2H

+ |t3 − t2|2H + (t1 + h)2H + (t3 + h)2H − |t3 − t1|2H
)

=
1

2

(
(t4 − t1)

2H + (t3 − t2)
2H − (t4 − t2)

2H − (t3 − t1)
2H

)
,
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and the last value does not depend on h. Since, for any k > 1, the common distribution

of (BH
t2+h − BH

t1+h, B
H
t3+h − BH

t2+h, . . . , B
H
tk+h − BH

tk−1+h) depends only on the

covariance matrix

Cij(h) = E(BH
tj+h −BH

tj−1+h)(B
H
tk+h −BH

tk−1+h)

= E(BH
tj −BH

tj−1
)(BH

tk
−BH

tk−1
) = Cij(0),

we get the equality of the distributions:

(BH
t2+h −BH

t1+h, B
H
t3+h −BH

t2+h, . . . , B
H
tk+h −BH

tk−1+h)

d
= (BH

t2 −BH
t1 , B

H
t3 −BH

t2 , . . . , B
H
tk

−BH
tk−1

).

Now, consider the stationary sequence (BH
1 , BH

2 − BH
1 , . . . , BH

n − BH
n−1, . . .).

Using the generalized formula for the power binomial function,

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 + o(x2),

we can calculate the following value of the covariance function:

R(n) := EBH
1 (BH

n −BH
n−1) =

1

2
(1 + n2H − (n− 1)2H − 1− (n− 1)2H

+(n− 2)2H) =
1

2
(n2H + (n− 2)2H − 2(n− 1)2H)

=
1

2
n2H

(
1 +

(
1− 2

n

)2H

− 2

(
1− 1

n

)2H
)

=
1

2
n2H

(
1 + 1− 2H

2

n
+

2H(2H − 1)

2

4

n2
+ o

(
1

n2

)

−2

(
1− 2H

1

n
+

2H(2H − 1)

2

1

n2
+ o

(
1

n2

)))

=
1

2
n2H

(
−4H

n
+

4H

n
+ 4H(2H − 1)

1

n2
− 2H(2H − 1)

1

n2
+ o

(
1

n2

))

=
1

2
n2H2H(2H − 1)

1

n2
+ o

(
1

n2−2H

)
→ 0 as n → ∞.

Therefore, according to theorem A2.15,

lim
n→∞

1

n

n−1∑
k=0

∣∣BH
k+1 −BH

k

∣∣p → E|BH
1 |,

and the proof follows from lemma A2.3. �



Construction, Properties and Some Functionals of the Wiener Process 79

4.5. Self-similar stochastic processes

4.5.1. Definition of self-similarity and some examples

Let X = {Xt, t ≥ 0} and Y = {Yt, t ≥ 0} be two real-valued stochastic

processes. We shall write {Xt} d
= {Yt} if they have the same finite-dimensional

distributions.

DEFINITION 4.1.– We say that the process X is self-similar if, for any a > 0, there
exists b > 0, such that

{Xat} d
= {bXt} . [4.3]

THEOREM 4.4.– Let X = {Xt, t ≥ 0} be a non-trivial stochastically continuous at
zero and self-similar stochastic process. Then there exists a unique H ≥ 0, such that
b in [4.3] has a form b = aH .

PROOF.– Let a > 0 be given and for some t > 0 Xat
d
= bXt. As Xt is non-trivial, b

is uniquely determined by a, so is a function of a, denoted as b(a). Then

Xaa1t
d
= b(a)Xa1t

d
= b(a)b(a1)Xt.

Therefore,

b(aa1) = b(a)b(a1). [4.4]

Now, let a < 1. We have that Xant
d
= (b(a))nXt, while ant → 0+. As X is

stochastically continuous at zero, we conclude that b(a) ≤ 1. Further, b
(

a1

a2

)
= b(a1)

b(a2)

and
b(a1)
b(a2)

≤ 1 for a1 ≤ a2. Therefore, b(a) is a non-decreasing function satisfying

[4.4]. Therefore, b(a) is a power function, b(a) = aH for some H ≥ 0. �

THEOREM 4.5.– Fractional Brownian motion with Hurst index H ∈ (0, 1) is a self-
similar process with b = aH , according to definition 4.1.

PROOF.– For any a > 0 and 0 ≤ t1 < t2,

EBH
at1B

H
at2 =

1

2

(
(at1)

2H + (at2)
2H − |at1 − at2|2H

)
=

1

2
a2H

(
t2H1 + t2H2 − (t2 − t1)

2H
)
= a2HEBH

t1B
H
t2 .
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Therefore, the covariance matrix for vector (BH
at1

, BH
at2

, . . . , BH
atk

) equals the

covariance matrix for (BH
t1 , B

H
t2 , . . . , B

H
tk
), multiplied by a2H , and

Eexp

{
i

n∑
k=1

λkB
H
atk

}
= Eexp

{
i

n∑
k=1

λka
HBH

tk

}
. [4.5]

As the characteristic functions uniquely determine the distribution, the proof

follows immediately from [4.5]. �

4.5.2. Power variations of self-similar processes on finite intervals

Now, consider any p > 0, fix interval [0, T ], introduce the sequence of partitions

πn =

{
Tδk, δk =

k

2n
, 0 ≤ k ≤ 2n

}
,

and let

Var(p)(BH , πn, [0, T ]) :=
2n−1∑
k=0

∣∣∣BH
Tδk+1

−BH
Tδk

∣∣∣p .
Note that according to the self-similarity of fractional Brownian motion

2n−1∑
k=0

∣∣∣BH
Tδk+1

−BH
Tδk

∣∣∣p d
=

(
T

2n

)pH 2n−1∑
k=0

∣∣BH
k+1 −BH

k

∣∣p .
consequently,

2n(pH−1)

T pH

2n−1∑
k=0

∣∣∣BH
Tδk+1

−BH
Tδk

∣∣∣p d
=

1

2n

2n−1∑
k=0

∣∣BH
k+1 −BH

k

∣∣p .
Applying lemma 4.1, we get that

1

2n

2n−1∑
k=0

∣∣BH
k+1 −BH

k

∣∣p → E|BH
1 |p =

(
2p

π

) 1
2

Γ
(p
2

)

in probability. The almost sure convergence can be shown as in proposition 2.1 of

[DOZ 14], so we have the following result.
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THEOREM 4.6.– For any T > 0, p > 0 and H ∈ (0, 1),

2n(pH−1)

T pH
Var(p)(BH , πn, [0, T ]) →

(
2p

π

) 1
2

Γ
(p
2

)
a.s. as n → ∞.

COROLLARY 4.1.–

i) Let p > 1
H . Then

Var(p)(BH , πn, [0, T ]) → 0 a.s. as n → ∞.

Let p < 1
H . Then

Var(p)(BH , πn, [0, T ]) → ∞ a.s. as n → ∞.

Let p = 1
H . Then

Var(
1
H )(BH , πn, [0, T ]) → T as n → ∞.

ii) Let H = 1
2 , p = 2. Then BH = W , a Wiener process, and we have that

2n−1∑
k=0

(
WTδk+1

−WTδk

)2 → T a.s. as n → ∞.

What about non-uniform partitions? Consider any sequence of partitions

πn =
{
0 = t

(n)
0 < t

(n)
1 < . . . < t

(n)
kn

= T
}

such that

|πn| = max
1≤k≤kn

|t(n)k − t
(n)
k−1| → 0.

The ergodic theorem does not work in this case. Consider the Wiener process and

establish at first the convergence of quadratic variations in L2(Ω,F ,P).

THEOREM 4.7.– The sequence of quadratic variations

Sn :=
n−1∑
k=0

(
W

t
(n)

k

−W
t
(n)

k−1

)2

→ T in L2(Ω,F ,P).
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PROOF.– Consider

E(Sn − T )2 = E

(
n−1∑
k=0

(
(ΔWk)

2 −Δtk
))2

,

where

ΔWk = W
t
(n)

k

−W
t
(n)

k−1

, Δtk = t
(n)
k − t

(n)
k−1.

We have that, for k 	= j,

E
(
(ΔWk)

2 −Δtk
) (

(ΔWj)
2 −Δtj

)
= 0,

therefore,

E(Sn − T )2 = E

(
n−1∑
k=0

(
(ΔWk)

2 −Δtk
))2

=
n−1∑
k=0

E
(
(ΔWk)

2 −Δtk
)2

=

n−1∑
k=0

E(ΔWk)
4 − 2

n−1∑
k=0

ΔtkE(ΔWk)
2 +

n−1∑
k=0

(Δtk)
2

= 3

n−1∑
k=0

(Δtk)
2 − 2

n−1∑
k=0

Δtk ·Δtk +

n−1∑
k=0

(Δtk)
2

= 2
n−1∑
k=0

(Δtk)
2 ≤ 2|πn| · T → 0, n → ∞. �

REMARK 4.2.– By using similar calculations, it is easy to prove that, for any p ∈ N,

there exists Cp > 0 such that E(Sn − T )2p ≤ Cp|πn|p. Now, let |πn| = O(n−λ) for

some λ > 0. Then it is possible to prove that Sn → T a.s. as n → ∞. Indeed, for

any ε > 0 and any α > 0, there exists p ∈ N such that |πn|p = O(n−1−α) for some

α > 0. Then the series

∞∑
n=1

P|Sn − T | > ε) ≤ ε−2
∞∑

n=1

E(Sn − T )2p ≤ Cpε
−2

∞∑
n=1

|πn|p

≤ Cpε
−2

∞∑
n=1

n−1−α

converges, and the almost sure convergence follows from the Borel–Cantelli lemma.
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REMARK 4.3.– If for some stochastic process X = {Xt, t ∈ [0, T ]}, for any t ∈
[0, T ] and for any sequence

{
πn(t) = 0 = t

(n)
0 < t

(n)
1 < . . . < t

(n)
kn

= t
}

of partitions

such that |πn(t)| → 0, we have that
∑n−1

k=0

(
X

t
(n)

k

−X
t
(n)

k−1

)2

has a limit [X]t in

probability, then we say that X has a quadratic variation [X] = {[X]t, t ∈ [0, T ]}.

Evidently, [X]t is a non-decreasing process on [0, T ]. Theorem 4.7 states that the

Wiener process W has quadratic variation [W ]t = t, for any t ≥ 0. Using theorem

4.6, it is possible to prove similarly to Theorem 4.7 that, for any H ∈ (
0, 1

2

)
, the

quadratic variation of BH is infinite and, for H ∈ (
1
2 , 1

)
, it equals zero.





5

Martingales and Related Processes

5.1. Notion of stochastic basis with filtration

Consider a probability space (Ω,F ,P). Let a family {Ft, t ≥ 0} of σ-fields satisfy

the following assumptions:

A) i) For any 0 ≤ s < t

Fs ⊂ Ft ⊂ F .

ii) For any t ≥ 0

Ft =
⋂
s>t

Fs (continuity “from the right”).

iii) F0 contains all the sets from F of zero P-measure.

DEFINITION 5.1.– The family {Ft, t ≥ 0} satisfying assumptions (A), is called a
flow of σ-fields, or a filtration.

REMARK 5.1.– We can define filtration for the discrete time: the family {Fn, n ≥ 0}
of σ-fields is called a filtration if, for any 0 ≤ m < n, Fm ⊂ Fn ⊂ F and F0

contain all the sets from F of zero P-measure.

REMARK 5.2.– The notion of filtration reflects the fact that information is increasing

in time: the more time passed, the more events we could observe, and the richer the

corresponding σ-field. Continuity “from the right” means that each σ-field Ft is

sufficiently rich to contain all “future sprouts”, and condition (iii) means the

completeness of all σ-fields.
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Sometimes, the collection (Ω,F , {Ft}t≥0 ,P) or (Ω,F , {Fn}n≥0 ,P) is called a

stochastic basis with filtration.

DEFINITION 5.2.– Stochastic process X = {Xt, t ≥ 0} (X = {Xn, n ≥ 0}) is
said to be adapted to the filtration {Ft}t≥0 ({Fn}n≥0) if, for any t ≥ 0, Xt is Ft-
measurable (for any n ≥ 0, Xn is Fn-measurable).

If we write {Xt,Ft, t ≥ 0}, then it means that X is F-adapted.

REMARK 5.3.– Adaptedness of a stochastic process means that, for any moment

of time, the values of the process “agree” with the information available up to this

moment of time.

Consider also the notion of predictability, but only for discrete-time process.

DEFINITION 5.3.– Let {Fn}n≥0 be a filtration. A stochastic process X =
{Xn, n ≥ 0} is called predictable w.r.t. this filtration if X0 is a constant, and for any
n ≥ 1, Xn is a Fn−1-measurable random variable.

Throughout this chapter, we consider the phase spaces S = R or Rd, d > 1.

REMARK 5.4.– Let X = {Xt, t ≥ 0} be a stochastic process. Similarly to definition

1.9, we can define σ-algebra FX
t generated by the process X restricted to the interval

[0, t]. According to corollary 1.2, σ-algebra FX
t is the smallest σ-algebra containing

the sets {ω ∈ Ω : X(t1, ω) ∈ A1, . . . , X(tk, ω) ∈ Ak}, Ai ⊂ R, Ai ∈ B(R), ti ≤
t, 1 ≤ i ≤ k. We denote it by FX

t = σ {Xs, s ≤ t} and say that
{FX

t

}
t≥0

is a

natural filtration generated by process X . Any stochastic process is adapted to its

natural filtration. Moreover, if X is adapted to {Ft}t≥0, then FX
t ⊂ Ft for t ≥ 0.

5.2. Notion of (sub-, super-) martingale: elementary properties

Let T be a set with a linear order. It can be R
+ or Z

+ = N ∪ {0}. Let(
Ω,F , {Ft}t∈T

,P
)

be a stochastic basis with filtration.

DEFINITION 5.4.– A stochastic process {Xt, t ∈ T} is said to be a martingale w.r.t. a
filtration {Ft}t∈T

if it satisfies the following three conditions.

i) For any t ∈ T, the random variable Xt ∈ L1(Ω,F ,P) (this means that the
process X is integrable on T).

ii) For any t ∈ T, Xt is Ft-measurable, so the process X is {Ft}t∈T
-adapted.

iii) For any s, t ∈ T such that s ≤ t, it holds that E(Xt|Fs) = Xs P-a.s.
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If we change in condition (iii) the sign = for ≥ and obtain E(Xt|Fs) ≥ Xs P-a.s.

for any s ≤ t, we get the definition of a submartingale; if E(Xt|Fs) ≤ Xs P-a.s.

for any s ≤ t, s, t ∈ T, then we have a supermartingale. A vector process is called

(sub-, super-) martingale if the corresponding property has each of its components.

Evidently, any martingale is a (sub-, super) martingale. If X is a submartingale, then

−X is a supermartingale and vice versa.

LEMMA 5.1.–

1) Each (sub-, super-) martingale has the same property w.r.t. its natural filtration.

2) Property (iii) is equivalent to the following one: for any s ≤ t, s, t ∈ T E(Xt −
Xs|Fs) = 0 (≥ 0, ≤ 0 for (sub-, super) martingales).

3) If T = Z
+, then property (iii) is equivalent to the following one: for any n ≥ 0

E(Xn+1|Fn) = Xn or, that is the same, E(Xn+1 −Xn|Fn) = 0.

PROOF.– 1) Let {Xt,Ft, t ∈ T} be a martingale. (Sub- and supermartingales can be

considered similarly.) Then Xt is FX
t -measurable for any t ∈ T, and E(Xt|FX

s ) =
E(E(Xt|Fs)|FX

s ) = E(Xs|FX
s ) = Xs, because FX

t ⊂ Ft, as it was mentioned in

remark 5.4.

Statement 2) is evident, and to establish 3), we only need to prove that if

E(Xn+1|Fn) = Xn, then {Xn,Fn, n ≥ 0} is a martingale. However, in this case,

for any n > m

E(Xn|Fm) = E(E(Xn|Fn−1)|Fm) = E(Xn−1|Fm) = . . . = E(Xm+1|Fm) = Xm.

�

REMARK 5.5.–

i) It is very easy to check that EXs = c, if X is a martingale and EXs increases

(decreases) if X is a submartingale (supermartingale).

ii) Let {ξn,Fn, n ≥ 1} be a sequence of integrable random variables for which

E{ξn|Fn−1} = 0, n ≥ 1. We say that the sequence is a martingale difference, or

forms a martingale difference. Obviously, a stochastic process {Xn,Fn, n ≥ 0}, is a

martingale if and only if {Xn −Xn−1,Fn, n ≥ 1} is a martingale difference.

5.3. Examples of (sub-, super-) martingales

EXAMPLE 5.1.– (Random walk). Let {ξi, i ≥ 0} be a sequence of integrable
independent random variables. Consider Xn =

∑n
i=0 ξi, Fn = σ {ξi, 0 ≤ i ≤ n} =

σ {Xi, 0 ≤ i ≤ n}. Then

E(Xn+1|Fn) = E

(
n∑

i=0

ξi + ξn+1|Fn

)
=

n∑
i=0

ξi + Eξn+1 = Xn + Eξn+1.
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Therefore, in the case where Eξi = 0, i ≥ 0, {Xn,Fn, n ≥ 0} is a martingale, if
Eξi ≥ 0 (≤ 0), i ≥ 0, then we have a sub- (super-) martingale with discrete time.

EXAMPLE 5.2.– (Process with independent increments). Let {Xt,Ft, t ≥ 0} be an
integrable process with independent increments, EXt = at. Then

E(Xt −Xs|Fs) = EXt − EXs = at − as.

Therefore, X is a martingale if at = a, i.e. the same for any t ≥ 0, and X is
a sub- (super-) martingale if at is increasing (decreasing) in t. In particular, Wiener
process W is a martingale w.r.t. a natural filtration. Further, let N = {Nt, t ≥ 0} be a
homogeneous Poisson process with parameter λ (recall that λ > 0). Then ENt = λt,
therefore N is a submartingale, and a compensated Poisson process Nt − λt is a
martingale w.r.t. a natural filtration. In general, we see that the process Y , where
Yt = Xt − at, is a martingale w.r.t. a natural filtration.

EXAMPLE 5.3.– (Multiplicative martingale). Let {ξi, i ≥ 1} be a sequence of
bounded random variables. Consider the process Xn = X0

∏n
i=1(1 + ξi), where

X0 �= 0 is a constant. Let Fn = FX
n . Then

E(Xn+1|FX
n ) = XnE(1 + ξn+1|FX

n ) = Xn(1 + E(ξn+1|FX
n )).

We see that
{
Xn,FX

n , n ≥ 0
}

is a martingale (so-called multiplicative

martingale) if and only if E
{
ξn+1|FX

n

}
= 0, n ≥ 0, so that ξi, i ≥ 1 create a

martingale difference, see remark 5.5.

EXAMPLE 5.4.– (Likelihood ratio as a martingale). Let interval [0, T ] be fixed, and(
Ω,F , {Ft}t∈[0,T ] ,P

)
be a stochastic basis with filtration. Let Q � P be another

probability measure on (Ω,F). Consider the restriction of measures P and Q on Ft

and denote them by Pt and Qt, respectively. Evidently, Qt � Pt. Denote by

Xt = E

(
dQ

dP

∣∣∣∣Ft

)
=

dQt

dPt

the corresponding Radon–Nikodym derivative that is also called likelihood ratio or
density process. Then, for any event A ∈ Fs, s ≤ t, we have thatˆ

A

dQt

dPt
dP =

ˆ
A

dQt

dPt
dPt = Qt(A) = Qs(A) =

ˆ
A

dQs

dPs
dPs =

ˆ
A

dQs

dPs
dP. [5.1]

Taking into account that, for any t ≥ 0, dQt

dPt
is Ft-measurable, we get from [5.1]

that E
(

dQt

dPt

∣∣∣Fs

)
= dQs

dPs
. As a by-product, we get that dQt

dPt
= E

(
dQ
dP

∣∣∣Ft

)
. Indeed,

similarly to [5.1], for any A ∈ Ft,ˆ
A

dQt

dPt
dP = Qt(A) = Q(A) =

ˆ
A

dQ

dP
dP.
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Of course, we can consider the discrete time as well and conclude that for Q � P

E
(

dQ
dP

∣∣∣Fn

)
= dQn

dPn
is a martingale w.r.t. the corresponding discrete-time filtration.

EXAMPLE 5.5.– (Geometric Brownian motion). Let W = {Wt,Ft, t ≥ 0} be a
Wiener process, Xt = exp {at+ σWt} , a ∈ R, σ > 0. Process X is called a
geometric Brownian motion. Taking into account the independence of the increments
of Wiener process on non-overlapping intervals, we get that

E(Xt|Fs) = E (exp {as+ σWs} exp {a(t− s) + σ(Wt −Ws)} |Fs)

= Xs exp {a(t− s)}Eexp {σ(Wt −Ws)}

= Xs exp {a(t− s)} exp
{
1

2
σ2(t− s)

}
.

Therefore,

the process X is a

⎧⎪⎨⎪⎩
martingale if a+ 1

2σ
2 = 0;

submartingale if a+ 1
2σ

2 ≥ 0;
supermartingale if a+ 1

2σ
2 ≤ 0.

EXAMPLE 5.6.– (Martingale transformation). Consider an arbitrary martingale
X = {Xn,Fn, n ≥ 0} and a bounded process ϕ = {ϕn, n ≥ 1}, predictable w.r.t.
the same filtration, with zero initial value, ϕ0 = 0. Create an integral sum of the form
Sn =

∑n−1
k=0 ϕk(Xk+1 −Xk), S0 = 0. Then S is an integrable adapted process, and

E(Sn − Sn−1|Fn−1) = ϕnE(Xn −Xn−1|Fn−1) = 0.

Therefore, S is a martingale. It is called a martingale transformation of martingale
X .

EXAMPLE 5.7.– (Lévy martingale). Let ξ be an integrable random variable on
some probability space and {Ft}t∈T be any filtration with arbitrary linearly ordered
parameter set T on this probability space. Then X = {Xt = E(ξ|Ft)} creates a
martingale that is called the Lévy martingale.

THEOREM 5.1.–

1) Let {Xt,Ft, t ≥ 0} be a martingale, f = f(x) : R → R be a convex function,
and E|f(Xt)| < ∞ for any t ≥ 0. Then {f(Xt),Ft, t ≥ 0} is a submartingale.

2) Let {Xt,Ft, t ≥ 0} be a submartingale, f = f(x) : R → R be a convex
increasing function, and E|f(Xt)| < ∞ for any t ≥ 0. Then {f(Xt),Ft, t ≥ 0} is a
submartingale.
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PROOF.– 1) Evidently, f(Xt) is a Ft-adapted and integrable process. Furthermore, it

follows from Jensen’s inequality for convex functions that, for any 0 ≤ s ≤ t,

E(f(Xt)|Fs) ≥ f(E(Xt|Fs)) = f(Xs).

2) Similar to the previous statement, f(Xt) is a Ft-adapted and integrable process.

Furthermore, for any 0 ≤ s ≤ t,

E(f(Xt)|Fs) ≥ f(E(Xt|Fs)) = f(Xs),

since E(Xt|Fs) ≥ Xs, and function f is increasing. �

EXAMPLE 5.8.–

i) Obviously, functions f(x) = x2, f(x) = |x|, f(x) = e−x are convex. Therefore,
if {Xt,Ft, t ≥ 0} is a martingale, then |X| = {|Xt|,Ft, t ≥ 0} is a submartingale.
If Eexp{−Xt} < ∞ for any t ≥ 0, then exp{−X} = {exp{−Xt},Ft, t ≥ 0} is a
submartingale. If X is a square-integrable martingale, then X2 =

{
X2

t ,Ft, t ≥ 0
}

is a submartingale. Further, functions f(x) = (x−K)+, where K ≥ 0 is a constant,
and f(x) = ex, are convex and increasing. Therefore, if X is a submartingale, then
(X − K)+ = {(Xt −K)+,Ft, t ≥ 0} is a submartingale. If X is a submartingale
and EeXt < ∞ for any t > 0, then eX =

{
eXt ,Ft, t ≥ 0

}
is a submartingale.

ii) Let X be a non-negative martingale, a > 0, f(x) = x ∧ a. Note that f is
a concave function, and (−X) is a non-positive martingale. Additionally, f(x) =
−(x ∧ a) is a bounded convex function in the range of X; therefore, −(X ∧ a) is a
submartingale whence X ∧ a is a supermartingale. Obviously, we can consider any
non-negative bounded concave function and conclude as above.

5.4. Markov moments and stopping times

Let T = R
+ or Z+,

(
Ω,F , {Ft}t∈T

,P
)

be a stochastic basis with filtration.

DEFINITION 5.5.–

1) Random variable τ = τ(ω) : Ω → T∪ {+∞} is called Markov moment if, for
any t ∈ T, the event {ω : τ(ω) ≤ t} ∈ Ft.

2) Markov moment τ = τ(ω) is called a stopping time if τ < ∞ a.s.

3) The σ-algebra generated by the Markov moment τ is the class of events

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ∈ T} .

DEFINITION 5.6.– The Markov moment τ = τ(ω) is called predictable if there exists
a sequence {τn, n ≥ 1} of Markov moments, such that
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i) τn(ω) is an increasing sequence a.s. and limn→∞ τn(ω) = τ(ω) a.s.

ii) For any n ≥ 1, it follows that τn(ω) < τ(ω) a.s. on the set {τ(ω) > 0}.

Sometimes, it is said that the sequence τn(ω) described above predicts the Markov

moment τ .

Now we can consider the general definition of predictable σ-algebra and

predictable stochastic process.

DEFINITION 5.7.– A σ-algebra is called predictable on T × Ω if it is generated by
random intervals [τ, σ) := {(t, ω) : τ(ω) ≤ t < σ(ω)}, where τ and σ are
predictable Markov moments.

DEFINITION 5.8.– A real-valued stochastic process X on a stochastic basis
(Ω,F , {Ft}t∈T

,P) with filtration is said to be predictable if the mapping
X : T× Ω → R is measurable with respect to the predictable σ-algebra on T× Ω.

REMARK 5.6.– Note that, in discrete time, we cannot define predictable Markov

moments because, in this case, conditions {τn < τ} on {τ > 0} and τn → τ
contradict each other.

Stochastic process X = {Xt, t ≥ 0}, whose trajectories are a.s. left-continuous at

any point t > 0 and continuous from the right at zero, is predictable w.r.t. the natural

filtration. In particular, the process with a.s. continuous trajectories is predictable. For

the proof, see e.g. theorem 7.2.4 and corollary 7.2.6 from [COH 15].

Introduce the notion of the process with càdlàg trajectories. It means “continue

à droite avec des limites à gauche” in French, and English abbreviation is “corlol”,

“continuous on the right and with the limits on the left”. See also definition A1.4,

part (2).

DEFINITION 5.9.– Stochastic process has a.s. càdlàg trajectories, or simply is càdlàg
on some interval [0, T ], if with probability 1 its trajectories are continuous from the
right and have the left limit at any interior point, and the trajectory is continuous from
the right at the origin and is continuous from the left at T .

EXAMPLE 5.9.– Consider the examples of Markov moments for discrete and
continuous time.

i) Let X = {Xn,Fn, n ≥ 0} be a real-valued process. Then, for any
set A ∈ B(R), a random variable τ = inf {n ≥ 0 : Xn ∈ A} is a
Markov moment because, for any k ≥ 0, the event {ω ∈ Ω : τ(ω) ≤ k} =

{X0 ∈ A} ∪
(⋃k

i=1 {X0 /∈ A, . . . ,Xi−1 /∈ A,Xi ∈ A}
)

and any event

{X0 /∈ A, . . . ,Xi−1 /∈ A,Xi ∈ A} ∈ Fi ⊂ Fk.
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ii) Let X = {Xt,Ft, t ≥ 0} be a real-valued right-continuous process with
continuous time. In addition, let A ∈ B(R) be an open set. Then τ =
inf {t ≥ 0 : Xt ∈ A} is a Markov moment. Indeed, in this case, the set Ac = R \A is
closed and

{τ > t} = {Xs /∈ A, s ∈ [0, t]} = {Xs ∈ Ac, s ∈ [0, t]}

=

∞⋂
n=1

{
X kt

2n
∈ Ac, 0 ≤ k ≤ 2n

}
,

and this event belongs to Ft, whence {τ ≤ t} = Ω \ {τ > t} ∈ Ft.

iii) Let A ∈ B(R) be a closed set, and process X be continuous. Then τ =
inf {t ≥ 0 : Xt ∈ A} is a Markov moment. Indeed, the event

{τ ≤ t} =

{
inf
n≥1

inf
0≤k≤2n

inf
y∈A

|X kt
2n

− y| = 0

}
∈ Ft.

REMARK 5.7.– The last two examples can be significantly generalized. Namely, if

X is a right-continuous adapted process, and A ∈ B(R), then the hitting time of A,

τA = inf{t ≥ 0 : Xt ∈ A}, is a stopping time, and this is the so-called Debut
theorem, see [DEL 78, theorem 50].

THEOREM 5.2.–

1) In the case T = R+, a random variable τ : Ω → [0,+∞] is a Markov moment
if and only if, for any t ∈ R+, {τ < t} ∈ Ft.

2) If τ is a Markov moment, then for any non-decreasing f : T ∪ {+∞} → T ∪
{+∞} such that f(t) ≥ t for any t ∈ T, f(τ) is a Markov moment.

3) Let σ and τ be Markov moments. Then σ+ τ , σ∧ τ , σ∨ τ are Markov moments.

4) Let {τk, k ≥ 1} be Markov moments. Then
∑∞

k=1 τk, supk≥1 τk, infk≥1 τk,
lim supk→∞ τk, lim infk→∞ τk are Markov moments.

PROOF.– 1) For necessity, note that {{} τ < t} =
⋃

n ≥ 1 {τn ≤ t− 1/n} ∈ Ft.

For sufficiency, note that, for any n ≥ 1, {τ ≤ t} =
⋂

k≥n {τ < t+ 1/k} ∈ Ft+1/n.

Therefore, {τ ≤ t} ∈ ⋂n≥1 Ft+1/n = Ft by the right-continuity of filtration.

2) Clearly, for any t ∈ T, there exists some g(t) ≤ t such that either

{ω : f(τ) ≤ t} = {ω : τ ≤ g(t)} ∈ Ft
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or

{ω : f(τ) ≤ t} = {ω : τ < g(t)} ∈ Ft.

3) Consider the case T = R
+ (the discrete time case is similar, but simpler) and

random variable σ + τ . For any t > 0, define a sequence of random variables

σn =
∑∞

k=0
t(k+1)

2n σ∈
[

tk
2n ,

t(k+1)
2n

) . Clearly, σn → σ, n → ∞, and by (2), these are

Markov moments. Then

{ω : σ + τ ≥ t} =

∞⋂
n=1

{ω : σn + τ ≥ t}

=
∞⋂

n=1

((
2n−1⋃
k=0

{
ω : σn =

t(k + 1)

2n
, τ ≥ t− t(k + 1)

2n

})
∪ {σn > t}

)
∈ Ft.

Therefore, {ω : σ + τ < t} = Ω \ {σ + τ ≥ t} ∈ Ft, so by (1), σ+τ is a stopping

time. Further,

{ω : σ ∧ τ ≤ t} = {ω : σ ≤ t} ∪ {ω : τ ≤ t} ∈ Ft,

{ω : σ ∨ τ ≤ t} = {ω : σ ≤ t} ∩ {ω : τ ≤ t} ∈ Ft,

so σ ∧ τ , σ ∨ τ are stopping times.

4) For any t ≥ 0,{
ω : sup

n≥1
τn ≤ t

}
=
⋂
n≥1

{τn ≤ t} and

{
ω : inf

n≥1
τn < t

}
=
⋃
n≥1

{τn < t} ,

whence, with the help of (1), supn≥1 τn and infn≥1 τn are Markov moments. Since

lim supn→∞ τn = infn≥1 supk≥n τk and lim infn→∞ τn = supn≥1 infk≥n τk, these

are Markov moments too. �

THEOREM 5.3.–

1) Let τ be a Markov moment and let the collection of sets Fτ be defined according
to definition 5.5, (3). Then Fτ is indeed a σ-algebra and τ is a Fτ -measurable random
variable.

2) If T = R+, then A ∈ Fτ if and only if for any t ∈ T, A ∩ {τ < t} ∈ Ft.

3) Let σ ≤ τ be two Markov moments. Then Fσ ⊂ Fτ .

4) For any two Markov moments σ and τ , Fσ∧τ = Fσ ∩ Fτ .

5) For any sequence of stopping times {τn, n ≥ 1}, Finfn≥1 τn =
⋂

n≥1 Fτn .
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6) Let σ and τ be two Markov moments. Then the events {σ = τ}, {σ ≤ τ}, and
{σ < τ} belong to Fσ∧τ .

7) Let {Xt,Ft, t ∈ T} be an adapted stochastic process and τ be a Markov
moment. In the case where T = R+, let also X be right-continuous. Then Xτ is
Fτ -measurable.

PROOF.– 1) Let {An, n ≥ 1} be the events from Fτ . This means that for any t > 0
and any n ≥ 1, {ω : τ(ω) ≤ t} ∩ An ∈ Ft. Then {ω : τ(ω) ≤ t} ∩ (

⋃∞
n=1 An) =⋃∞

n=1 ({ω : τ(ω) ≤ t} ∩An) ∈ Ft. Therefore,
⋃∞

n=1 An ∈ Fτ . Similarly, we can

prove that, for any A,B ∈ Fτ , A\B ∈ Fτ as well. Evidently, Ω ∈ Fτ because, for

any t > 0, Ω ∩ {τ ≤ t} = {τ ≤ t} ∈ Ft. Therefore, Fτ is a σ-algebra.

Further, for any t ≥ 0, the event {τ ≤ t} ∈ Fτ because, for any other s ≥
0, {τ ≤ t} ∩ {τ ≤ s} = {τ ≤ t ∧ s} ∈ Ft∧s ⊂ Fs. Then, for any interval (u, t],
the event {τ ∈ (u, t]} = {τ ≤ t} \ {τ ≤ u} ∈ Fτ . As the Borel σ-field B(R+) is

generated by the intervals (u, t], 0 ≤ u ≤ t, we get from lemma 1.1 that for any Borel

set A ∈ B(R+) τ−1(A) = {ω : τ(ω) ∈ A} ∈ Ft. It means that τ is Fτ -measurable.

2) For any t ∈ T, A ∈ Fτ , we have

A ∩ {τ < t} = A ∩
⎛⎝⋃

n≥1

{τ ≤ t− 1/n}
⎞⎠

=
⋃
n≥1

(
A ∩ {τ ≤ t− 1/n} ) ∈ Ft,

which implies the necessity. Concerning the sufficiency, let A be such that A∩{τ < s}
for any s ∈ T. Then, for any t ∈ T and n ≥ 1,

A ∩ {τ ≤ t} = A ∩
⎛⎝⋂

k≥n

{τ < t+ 1/k}
⎞⎠

=
⋂
k≥n

(
A ∩ {τ < t+ 1/k}) ∈ Ft+1/n.

Therefore, A ∩ {τ ≤ t} ∈ ⋂n≥1 Ft+1/n. In view of the right-continuity of the

filtration, this means A ∩ {τ ≤ t} ∈ Ft, so A ∈ Fτ .

3) Consider the Markov moments σ and τ such that σ ≤ τ a.s. Let A ∈ Fσ . This

means that, for any t ≥ 0, A ∩ {σ ≤ t} ∈ Ft. Now, A ∩ {τ ≤ t} = A ∩ {σ ≤ t} ∩
{τ ≤ t} is an intersection of A ∩ {σ ≤ t} and {τ ≤ t} and both events belong to Ft,

so A ∩ {τ ≤ t} ∈ Ft and A ∈ Ft. This means that Fσ ⊂ Fτ .
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4) It follows from (2) that Fσ∧τ ⊂ Fσ and Fσ∧τ ⊂ Fτ , so that Fσ∧τ ⊂ Fτ ∩Fσ .

Further, let event A ∈ Fτ ∩Fσ. Then A ∈ Fτ and A ∈ Fσ . Therefore, A∩{σ ≤ t} ∈
Ft and A ∩ {τ ≤ t} ∈ Ft. Consider A ∩ {σ ∧ τ ≤ t} = A ∩ ({σ ≤ t} ∪ {τ ≤ t}) =
(A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) ∈ Ft. This means that A ∈ Fσ∧τ . Therefore, Fσ ∩
Fτ ⊂ Fσ∧τ .

5) From (3), by induction we have that, for any m ≥ 1, Fmin1≤n≤m τn =⋂m
n=1 Fτn . Using (3), we get

Finfn≥1 τn ⊂ Fmin1≤n≤m τn =
m⋂

n=1

Fτn

for every m ≥ 1, whence Finfn≥1 τn ⊂ ⋂n≥1 Fτn .

Vice versa, take any A ∈ ⋂n≥1 Fτn and t ∈ T. Noting that τ := infn≥1 τn =
limm→∞ min1≤n≤m τn, we can write

A ∩ {τ < t} = A ∩
⎛⎝⋃

k≥1

⋂
m≥k

{
min

1≤n≤m
τn < t

}⎞⎠
=
⋃
k≥1

⋂
m≥k

A ∩
{

min
1≤n≤m

τn < t

}
.

From (2) and the above argument, we have that A ∩ {min1≤n≤m τn < t} ∈ Ft,

so A ∩ {τ < t} ∈ Ft. Using (2) again, we get A ∈ Fτ .

6) We prove this for T = R+; in the case of discrete time, the proofs are similar,

but simpler. For any t ∈ T, let Tt be a countable subset of T∩ (0, t] containing t. Then

{σ < τ} ∩ {τ ≤ t} =
⋃
s∈Tt

{σ < s} ∩ {τ ∈ (s, t]} ∈ Ft,

so {σ < τ} ∈ Fτ . Further,

{σ < τ} ∩ {σ ≤ t} =
⋃
s∈Tt

{σ ≤ s} ∩ {τ > s} ∈ Ft,

so {σ < τ} ∈ Fσ. As a result, {σ < τ} ∈ Fτ ∩ Fσ = Fτ∧σ. Therefore,

{τ ≤ σ} = Ω \ {σ < τ} ∈ Fτ∧σ. By symmetry, {σ ≤ τ} ∈ Fτ∧σ. Therefore,

{τ = σ} = {σ ≤ τ} ∩ {τ ≤ σ} ∈ Fτ∧σ.
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7) Similar to (6), we show this only in the case of continuous time; the discrete

time case is simpler. It is enough to prove that for any open set U , {Xτ ∈ U} ∈ Fτ .

For any t ∈ T, due to the right-continuity of X ,

{Xτ ∈ U} ∩ {τ < t} =
⋃
s∈Q

τ<s<t

⋂
u∈Q

τ<u<s

{Xu ∈ U} ∩ {τ < t}

=
⋃

s∈Q,s<t

⋂
u∈Q,u<s

( {Xu ∈ U} ∩ {τ < u} ) ∪ {τ ≥ u} .

As X is adapted, for any u < t,
( {Xu ∈ U} ∩ {τ < u} ) ∪ {τ ≥ u} ∈ Fu ⊂ Ft.

Thus, we get {Xτ ∈ U} ∩ {τ < t} ∈ Ft, so by (2), {Xτ ∈ U} ∈ Fτ , as required. �

5.5. Martingales and related processes with discrete time

In this section, we concentrate on the discrete-time martingale processes. This

specific field is much simpler than the corresponding field for continuous-time

processes. However, it allows us to clarify and understand the main properties of

martingales.

5.5.1. Upcrossings of the interval and existence of the limit of
submartingale

Let X = {Xn, n ≥ 0} be a stochastic process and a < b, [a, b] ⊂ R be a fixed

interval. Define the following Markov moments

τ1 = inf {n ≥ 0 : Xn ≤ a} , τ2 = inf {n > τ1 : Xn ≥ b} ,
τ3 = inf {n > τ2 : Xn ≤ a} , τ4 = inf {n > τ3 : Xn ≥ b} ,

· · ·
τ2k−1 = inf {n > τ2k−2 : Xn ≤ a} , τ2k = inf {n > τ2k−1 : Xn ≥ b} .

If the corresponding jth event does not hold on some ω ∈ Ω, we put τj(ω) = ∞.

DEFINITION 5.10.– We say that the process X has k ≥ 1 upcrossings of the interval
[a, b] on the time interval [0, N ] if τ2k ≤ N < τ2k+2. In the case where τ2 > N , we
say that the number of upcrossings equals zero (see Figure 5.1).

REMARK 5.8.–

1) The number of downcrossings of the interval can be defined in a similar way,

and all subsequent theories can be based on the number of downcrossings.
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2) Evidently, for stochastic process X , the number of up- (down-) crossings is a

random variable.

��

n

��
Xn

a ´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´

b ´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´

.

..τ1

.

.τ2..

.

..τ3

.

.τ4..

.

..τ5

2

1

Figure 5.1. Upcrossings

Denote by kN,X([a, b]) = kN,X([a, b])(ω) the number of upcrossings of the

interval [a, b] on the time interval [0, N ] defined for the process X .

THEOREM 5.4.– Let X − {Xn,Fn, n ≥ 0} be a submartingale. Then

EkN,X([a, b]) ≤ E(XN − a)+

b− a
.

PROOF.– First, note that the process Y = {Yn,Fn, n ≥ 0}, where Yn = (Xn − a)+

is a non-negative submartingale. Further, note that kN,X([a, b]) = kN,Y ([0, b − a])
(see Figure 5.2).

Now, denote χi = τ2k+1≤i<τ2k+2 for some k≥0. Then the event

{χi = 1} =
∞⋃
k=0

({τ2k+1 ≤ i} \ {τ2k+2 ≤ i}) ∈ Fi.

The next inequality is the key point of the proof:

(b− a)kN,Y ([0, b− a]) ≤
N−1∑
i=0

(Yi+1 − Yi)χi.



98 Theory and Statistical Applications of Stochastic Processes

.
0

��
n

��

Xn

a ´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´

b ´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´

Yn

b ´ a .........................................................................................................

.

..
τ1
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.
τ2
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.
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τ3

.

.

.
τ4
..

.

..
τ5

Figure 5.2. kN,X([a, b]) = kN,Y ([0, b− a]). For a color version of the
figure, see www.iste.co.uk/mishura/stochasticprocesses.zip

Note, for better understanding, that the latter inequality holds for two reasons:

first, any subsequent non-zero series of summands in the right-hand side is equal or

overcomes b − a, since Yτ2k+1
= 0 and Yτ2k+2

≥ b − a, and also the right-hand side

can contain an “additional” non-zero group of summands, in the case where, for all

k ≥ 0, we have that N − 1 �= τ2k+2, but this group equals YN−1 − Yτ2k+1
= YN−1

and is non-negative due to our replacement of X with non-negative Y . Therefore,

(b− a)EkN,Y ([0, b− a]) ≤
N−1∑
i=0

E(Yi+1 − Yi)χi

=

N−1∑
i=0

E(E(Yi+1 − Yi|Fi)χi) ≤
N−1∑
i=0

E(Yi+1 − Yi) ≤ EYN = E(XN − a)+,

whence the proof follows. �

Consider a submartingale X = {Xn,Fn, n ≥ 0}. When does there exist a limit

limn→∞ Xn, at least in some sense? Theorems 5.5 and 5.6 give a partial answer to

this question.

THEOREM 5.5.– Let supn≥0 E|Xn| < ∞. Then there exists X∞ = limn→∞ Xn a.s.
and E|X∞| ≤ supn≥0 E|Xn|, so that X∞ ∈ L1(Ω,F ,P).

PROOF.– Let

A =
{
ω ∈ Ω : lim

n→∞Xn does not exist
}
=

{
ω ∈ Ω : lim sup

n→∞
Xn > lim inf

n→∞ Xn

}
.
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As both lim supn→∞ Xn and lim infn→∞ Xn are random variables, we have that

A ∈ F . Moreover, A =
⋃

q2>q1,q1,q2∈Q
Aq1,q2 , where

Aq1,q2 =

{
lim sup
n→∞

Xn > q2 > q1 > lim inf
n→∞ Xn

}
,

and Q is the set of rational numbers. Consider any event Aq1,q2 and introduce the limit

of non-decreasing sequence:

k∞,X([a, b])(ω) = lim
N→∞

kN,X([a, b])(ω).

If ω ∈ Aq1,q2 , then k∞,X([q1, q2])(ω) = +∞. However, it follows from the

Lebesgue monotone convergence theorem that Ek∞,X([q1, q2]) = limN→∞
EkN,X([q1, q2]), and it follows from theorem 5.4 that

EkN,X([q1, q2]) ≤ E(XN − q1)
+

q2 − q1
≤ E|XN |+ |q1|

q2 − q1
,

whence

Ek∞,X([q1, q2]) ≤ lim sup
N→∞

E|XN |+ |q1|
q2 − q1

≤ supn≥0 E|XN |+ |q1|
q2 − q1

< ∞.

It means that k∞,X([q1, q2]) < ∞ a.s., and consequently P{Aq1,q2} = 0. Finally,

P{A} = 0 and limn→∞ Xn exists a.s. The second statement is the direct consequence

of Fatou’s lemma:

E|X∞| = E lim
n→∞ |Xn| = E lim inf

n→∞ |Xn| ≤ lim inf
n→∞ E|Xn| ≤ sup

n≥0
E|Xn|. �

THEOREM 5.6.– Let {Xn,Fn, n ≥ 0} be a martingale and let, for some p > 1,

sup
n≥0

E|Xn|p < ∞.

Then there exists a limit limn→∞ Xn =: X∞ a.s. and in Lp(Ω,F ,P).

PROOF.– Existence of a.s. limit X∞ = limn→∞ Xn follows from theorem 5.5.

Therefore,

|Xn −X∞|p → 0 [5.2]

a.s. as n → ∞. Moreover, by Fatou’s lemma, E|X∞|p ≤ lim infn→∞ E|Xn|p < ∞.

Let us establish that E|Xn − X∞|p → 0, n → ∞. First, by theorem A2.5, the
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sequence {Xn, n ≥ 0} is uniformly integrable; therefore, by theorem A2.4

E|Xn −X∞| → 0, n → ∞.

Consequently, for any k ≥ 0 and m > k,

E|Xk − E(X∞|Fk)| = E |E(Xm|Fk)− E(X∞|Fk)|
≤ E|Xm −X∞| → 0, m → ∞.

Therefore, E(X∞|Fk) = Xk a.s. for any k ≥ 0. By Jensen’s inequality, for any

a,C > 0,

sup
n≥0

E|Xn|p |Xn|≥C = sup
n≥0

E|E(X∞|Fn)|p |Xn|≥C

≤ sup
n≥0

E
(
E(|X∞|p|Fn) |Xn|≥C

) ≤ sup
n≥0

E
(|X∞|p |Xn|≥C

)
≤ sup

n≥0
apP {|Xn| ≥ C}+ E|X∞|p |X∞|≥a

≤ sup
n≥0

ap

Cp
E|Xn|p + E|X∞|p |X∞|≥a,

whence

lim
C→∞

sup
n≥0

E|Xn|p |Xn|≥C ≤ E|X∞|p |X∞|≥a,

and letting a → ∞, we get that

lim
C→∞

sup
n≥0

E|Xn|p |Xn|≥C = 0.

It means that the sequence {|Xn|p, n ≥ 0} is uniformly integrable and now the

proof follows from the relation [5.2] and theorem A2.4. �

How to formulate a similar result for p = 1? We see from the proof of

theorem 5.6 that such results are closely connected to the uniform integrability

property. This connection is demonstrated by the following result as well.

THEOREM 5.7.– Let X = {Xn,Fn, n ≥ 1} be a martingale. Then the following
statements are equivalent.

i) Martingale X is uniformly integrable.
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ii) supn≥1 E|Xn| < ∞ (consequently, there exists X∞ = limn→∞ Xn a.s.) and

Xn = E(X∞|Fn) a.s.

iii) There exists limn→∞ Xn in L1(Ω,F ,P) (then there exists X∞ defined at point
(ii) and the limit in L1(Ω,F ,P) coincides with X∞ a.s.).

iv) Xn = E(X|Fn) a.s. for some integrable random variable X (then there exists
X∞ defined at point (ii) and X = X∞ a.s.).

PROOF.– (i) ⇒ (ii). Indeed, according to theorem A2.4, for any uniformly integrable

sequence {Xn, n ≥ 0}, we have that supn≥1 E|Xn| < ∞. Then the existence of the

random variable X∞ that is, a limit with probability 1 of Xn, X∞ = limn→∞ Xn,

follows from theorem 5.5. Moreover, uniform integrability implies that

E|Xn −X∞| → 0

as n → ∞, and, for any m > k,

E|Xk − E(X∞|Fk)| = E|E(Xm|Fk)− E(X∞|Fk)| ≤ E|Xm −X∞| → 0 [5.3]

as m → ∞. Therefore, we get that Xk = E(X∞|Fk) a.s.

(ii) ⇒ (iii). Consider

E|Xn| |Xn|≥C = E|E(X∞|Fn)| |Xn|≥C ≤ E(E(|X∞||Fn)) |Xn|≥C [5.4]

= E|X∞| |Xn|≥C ≤ aP {|Xn| ≥ C}+ E|X∞| |X∞|≥a [5.5]

≤ a

C
E|Xn|+ E|X∞| |X∞|≥a, [5.6]

whence

lim
C→∞

sup
n≥1

E|Xn| |Xn|≥C ≤ E|X∞| |X∞|≥a → 0 as a → ∞.

This means that limC→∞ supn≥1 E|Xn| |Xn|≥C = 0, and {Xn, n ≥ 1} is a

uniformly integrable sequence. Then E|Xn − X∞| → 0, n → ∞ according to

theorem A2.4.

(iii) ⇒ (iv). Let E|Xn −X| → 0 as n → ∞. Then, similarly to [5.3],

E|Xk − E(X|Fk)| = E|E(Xm|Fk)− E(X|Fk)| ≤ E|Xm −X| → 0
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as m → ∞, and Xk = E(X|Fk) a.s. Moreover, it follows from convergence in

L1(Ω,F ,P) that the sequence is bounded in this space, whence supn≥1 E|Xn| < ∞;

therefore, there exists X∞ defined at point (ii) and then obviously the limit X in

L1(Ω,F ,P) coincides with X∞ a.s.

(iv) ⇒ (i). Similar to [5.4], consider

E|Xn| |Xn|≥C = E|E(X|Fn)| |Xn|≥C ≤ E(E(|X||Fn) |Xn|≥C)

= E|X| |Xn|≥C ≤ aP {|Xn| ≥ C}+ E|X| |X|≥a

≤ a

C
E|Xn|+ E|X| |X|≥a,

whence

lim
C→∞

sup
n≥1

E|Xn| |Xn|≥C ≤ E|X| |X|≥a → 0 as a → ∞.

This means that limC→∞ supn≥1 E|Xn| |Xn|≥C = 0, and {Xn, n ≥ 1} is a

uniformly integrable sequence. From these reasons, the existence of X∞ = X a.s.

follows immediately. �

5.5.2. Examples of martingales having a limit and of uniformly and non-
uniformly integrable martingales

EXAMPLE 5.10.– Consider a sequence of independent random variables {ξn, n ≥ 1}
such that |ξn| < 1 and Eξn = 0. Define a stochastic process and the corresponding
σ-fields:

X0 = x0 > 0, Xn = x0

n∏
k=1

(1 + ξk), n ≥ 1,

F0 = {∅,Ω} , Fn = σ {ξ1, . . . , ξn} = σ {X1, . . . , Xn} , n ≥ 1.

Then {Xn,Fn, n ≥ 1} is a martingale, Xn > 0 a.s., and EXn = x0, n ≥ 1.
Therefore, supn≥0 E|Xn| = supn≥0 EXn = x0, which means that there exists a limit
X∞ = limn→∞ Xn = x0

∏∞
k=1(1 + ξk) a.s. Further,

E|Xn −X∞| = x0E

∣∣∣∣∣
∞∏
k=1

(1 + ξk)−
n∏

k=1

(1 + ξk)

∣∣∣∣∣
= x0E

n∏
k=1

(1 + ξk)E

∣∣∣∣∣
∞∏

k=n+1

(1 + ξk)− 1

∣∣∣∣∣ = x0E

∣∣∣∣∣
∞∏

k=n+1

(1 + ξk)− 1

∣∣∣∣∣ .
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For any m > n,

m∏
k=n+1

(1 + ξk)− 1 =
m∏

k=n+1

(1 + ξk)−
m−1∏

k=n+1

(1 + ξk) +
m−1∏

k=n+1

(1 + ξk)

−
m−2∏

k=n+1

(1 + ξk) + . . .+ (1 + ξk)− 1

=
m∑

j=n+1

(
j∏

k=n+1

(1 + ξk)−
j−1∏

k=n+1

(1 + ξk)

)
=

m∑
j=n+1

j−1∏
k=n+1

(1 + ξk)ξj ,

where
∏n

k=n+1 = 1. Therefore,

E

∣∣∣∣∣
m∏

k=n+1

(1 + ξk)− 1

∣∣∣∣∣ ≤
m∑

j=n+1

E

j−1∏
k=n+1

(1 + ξk)E|ξj | =
m∑

j=n+1

E|ξj |,

whence

E

∣∣∣∣∣
m∑

k=n+1

(1 + ξk)− 1

∣∣∣∣∣ ≤
∞∑

k=n+1

E|ξk|.

This means that if the series
∑∞

k=1 E|ξk| converges, then E|Xn − X∞| → 0,
n → ∞ and according to theorem A2.4, {Xn, n ≥ 0} is a uniformly integrable
martingale. For example, if we put ξk = ηkak, where ηk are iid random variables,
series

∑∞
k=1 |ak| converges, and |ηkak| < 1, then

∑∞
k=1 E|ξk| = E|η1

|∑∞
k=1 |ak| < ∞. As an example of non-uniformly integrable martingale, consider

the simplest case where ξk = ± 1
2 with P

{
ξk = ± 1

2

}
= 1

2 , {ξk, k ≥ 0} are
independent. Then {Xn, n ≥ 0} is a martingale, Xn > 0 a.s. and EXn = x0,
whence the limit X∞ = x0

∏∞
k=1(1 + ξk) exists. We can identify X∞ via the strong

law of large numbers. Indeed, {log(1 + ξk), k ≥ 1} is a sequence of bounded iid
random variables with

E log(1 + ξk) =
1

2
log

1

2
+

1

2
log

3

2
=

1

2
log

3

4
< 0.

According to SLLN,∑n
k=1 log(1 + ξk)

n
→ E log(1 + ξ1) =

1

2
log

3

4
< 0

a.s. This means that
∑n

k=1 log(1+ξk) → −∞ a.s. and consequently
∏n

k=1(1+ξk) →
0 a.s. Therefore, X∞ = 0. However, EXn = x0 � EX∞ = 0, which means that
{Xn, n ≥ 0} is not a uniformly integrable martingale.

EXAMPLE 5.11.– Consider a model of population dynamics with discrete time,
called a Halton–Watson process. Let some population develop in such a way: at the
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initial moment n = 0, we have an integer number ξ0 ≥ 0 of individuals. Each initial
individual generates a random integer number ξ

(1)
i ∈ N ∪ {0} of individuals in the

next generation, 1 ≤ i ≤ ξ0 and so on. In nth generation, under the condition that it
is not degenerated, we have ξn of individuals, and ξn =

∑ξn−1

i=1 ξ
(n)
i . Denote∑0

i=1 = 0. Assume that all random variables
{
ξ
(n)
i , n ≥ 1, i ≥ 1

}
are mutually

independent and Eξ
(n)
i = μn. Denote Fn = σ

{
ξ1, . . . , ξn, ξ

(k)
i , i ≥ 1, 1 ≤ k ≤ n

}
.

Then it follows from the Fubini theorem that

E(ξn|Fn−1) = E

( ∞∑
i=1

ξ
(n)
i i≤ξn−1 |Fn−1

)

=
∞∑
i=1

E
(
ξ
(n)
i i≤ξn−1 |Fn−1

)
=

∞∑
i=1

i≤ξn−1Eξ
(n)
i = μnξn−1.

Denote Xn = ξn
μ1μ2...μn

. Then {Xn,Fn, n ≥ 1} is a non-negative martingale,
EXn = ξ0. Therefore, there exists a limit

X∞ := lim
n→∞Xn = lim

n→∞ ξn

n∏
k=1

μ−1
k , a.s.

The dynamics of population depends on {μk, k ≥ 1}. If μk = μ < 1, then
μ−nξn → X∞ whence ξn → 0 a.s. and the population asymptotically degenerates.
If, e.g. μk = 1 + 1

k , then
∏n

k=1

(
1 + 1

k

) → ∞, n → ∞. However, we cannot
conclude that ξn → ∞ a.s. because it can be X∞ = 0. The same doubtful situation
is in the case where μ ≥ 1. To study the asymptotic behavior of population in these
cases, more advanced methods from the theory of branching processes should be
involved, see e.g. [HAC 07]. Obviously, in the case μk = μ < 1, we conclude that
{Xn, n ≥ 1} is not a uniformly integrable martingale.

5.5.3. Lévy convergence theorem

Now we apply the martingale methods to establish a useful result concerning the

convergence of conditional expectations.

THEOREM 5.8.– Let X be an integrable random variable and let the sequence of
σ-fields G1 ⊂ G2 ⊂ . . . ⊂ Gn . . . ⊂ F create a filtration. Denote

G∞ = σ

( ∞⋃
n=1

Gn

)
.

Then E(X|Gn) → E(X|G∞) a.s. as n → ∞.
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PROOF.– Introduce the sequence Xn = E(X|Gn). Then E(X|Gn−1) = Xn−1, i.e.

{Xn,Gn, n ≥ 1} is a martingale. Moreover, according to theorem 5.7, {Xn,Gn, n ≥
1} is a uniformly integrable martingale. Therefore, there exists a limit

X∞ = lim
n→∞Xn = lim

n→∞E(X|Gn) a.s.

Further, it follows from uniform integrability and theorem A2.4 that, for any set

A ∈ Gn,

ˆ
A

X∞dP = lim
m→∞

ˆ
A

XmdP = lim
m→∞

ˆ
A

E(X|Gm)dP =

ˆ
A

XdP,

because, for m > n,
´
A
E(X|Gm)dP =

´
A
XdP. Therefore,

ˆ
A

X∞dP =

ˆ
A

XdP [5.7]

for any A ∈ Fn, n ≥ 1. The left-hand and right-hand sides of [5.7] are the finite

measures coinciding on the algebra
⋃∞

n=1 Fn. They can be uniquely extended to the

measure on F∞; therefore, [5.7] is valid for any A ∈ F∞. This means that for any

A ∈ G∞
ˆ
A

X∞dP =

ˆ
A

XdP =

ˆ
A

E(X|G∞)dP. [5.8]

Note that X∞ as the limit of Xn is F∞-measurable. Then it follows immediately

from [5.8] that X∞ = E(X|G∞) a.s., and the proof follows. �

5.5.4. Optional stopping

Consider a process X = {Xn,Fn, n ≥ 0} with discrete time. The next result

shows that (sub-, super-) martingale property preserves under random stopping, if you

stop in a reasonable way. This result is called “Doob’s theorem on optional stopping”,

or “Doob’s optional stopping theorem”. We formulate it in the following way.

THEOREM 5.9.– Let X = {Xn,Fn, n ≥ 0} be an integrable stochastic process with
discrete time. Then the following statements are equivalent:

1) X is a (sub-,super-) Fn-martingale.

2) For any bounded stopping time τ and any stopping time σ

E(Xτ |Fσ)(≥,≤) = Xτ∧σ. [5.9]
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3) For any bounded stopping times σ ≤ τ

EXτ (≥,≤) = EXσ.

PROOF.– Consider a submartingale; (super-) martingales are considered similarly.

1) ⇒ 2). Let τ be a bounded stopping time, τ ≤ N . Then Xτ is an integrable

random variable, because

E|Xτ | =
N∑

k=1

E|Xτ | τ=k ≤
N∑

k=1

E|Xk| < ∞.

Additionally, Xτ∧σ = Xτ∧σ∧N and according to theorem 5.8, which can be

applied with GN = Fσ∧N and G∞ = Fσ , we have that a.s.

E(Xτ |Fσ∧N ) → E(Xτ |Fσ), N → ∞.

Furthermore, it follows from theorem 5.3 that for σN = σ ∧N

E(Xτ |FσN ) = E(Xτ∨σN τ≥σN |FσN ) + E(Xτ∧σN τ<σN |FσN )

= E(Xτ∨σN
|FσN

) τ≥σN
+Xτ∧σN τ<σN

.
[5.10]

It follows immediately from [5.10], that in order to prove [5.9], it is enough to

prove that, for two bounded stopping times ν and �, such that � ≤ ν ≤ N , we have

that E(Xν |F�) ≥ X�. Consider any event A ∈ F�. Then

ˆ
A

E(Xν |F�)dP =

ˆ
A

XνdP =

N∑
k=1

ˆ
A∩{�=k}

XνdP =

N∑
k=1

ˆ
A∩{�=k,ν≥k}

X�dP.

Therefore, it is sufficient to prove that

ˆ
A∩{�=k,ν≥k}

XνdP ≥
ˆ
A∩{�=k,ν≥k}

XkdP. [5.11]

However,

ˆ
A∩{�=k,ν≥k}

XkdP =

ˆ
A∩{�=k,ν=k}

XνdP +

ˆ
A∩{�=k}∩{ν>k}

XkdP

≤
ˆ
A∩{�=k,ν=k}

XνdP +

ˆ
A∩{�=k}∩{ν>k}

E(Xk+1|Fk)dP.

[5.12]
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Since the event A ∩ {� = k} ∩ {ν > k} ∈ Fk, we can continue as follows:

ˆ
A∩{�=k}∩{ν>k}

E(Xk+1|Fk)dP =

ˆ
A∩{�=k}∩{ν>k}

Xk+1dP

=

ˆ
A∩{�=k}∩{ν=k+1}

XνdP +

ˆ
A∩{�=k}∩{ν>k+1}

Xk+1dP

≤
ˆ
A∩{�=k}∩{ν=k+1}

XνdP +

ˆ
A∩{�=k}∩{ν>k+1}

E(Xk+2|Fk+1)dP

[5.13]

=

ˆ
A∩{�=k}∩{ν=k+1}

XνdP +

ˆ
A∩{�=k}∩{ν>k+1}

Xk+2dP

≤ . . . ≤
ˆ
A∩{�=k}∩{ν=k+1}

XνdP +

ˆ
A∩{�=k}∩{ν=k+2}

XνdP

+ . . .+

ˆ
A∩{�=k}∩{ν=N}

XNdP =

ˆ
A∩{�=k}∩{ν>k}

XνdP.

Combining [5.12] and [5.13], we get [5.11].

2) ⇒ 3). For σ ≤ τ , σ ∧ τ = σ, so E(Xτ |Fσ) = Xσ. Taking expectation, we

get 3).

3) ⇒ 1). Let 0 ≤ n < N , the event A ∈ Fn, and put τ = N a.s. while σ =
n A +N Ac . Then, for any 0 ≤ l ≤ N , we have that the event

{σ ≤ l} =

⎧⎪⎨⎪⎩
∅, l < n,

A n ≤ l < N ∈ Fl,

Ω, l = N.

so that σ is a bounded stopping time. Therefore,

EXσ ≤ EXN ,

or, that is equivalent,

EXn A + EXN Ac ≤ EXN ,

EXn A ≤ EXN A. [5.14]

Inequality [5.14] means that E(XN |Fn) ≥ Xn. �
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5.5.5. Maximal inequalities for (sub-, super-) martingales

An explicit calculation of maximum probabilities, i.e. probabilities of the form

P {max0≤i≤N Xi ≥ a}, P {max0≤i≤N |Xi| ≥ a} or P
{
supi≥0 |Xi| ≥ a

}
are, as a

rule, impossible even for processes with discrete time. For processes with continuous

time, the situation can be characterized as even more involved. Even the reasonable

upper and lower bounds for such probabilities are often not easy to find. However, for

(sub-, super-) martingales, we can get the reasonable and applicable upper bounds for

such probabilities.

THEOREM 5.10.– 1) Let {Xn,Fn, n ≥ 0} be a submartingale. Then

i) For any a > 0 and N ∈ N,

P

{
max

0≤n≤N
Xn ≥ a

}
≤ E

(
XN max0≤n≤N Xn≥a

)
a

≤ EX+
N

a
;

ii) For any a > 0,

P

{
min

0≤n≤N
Xn ≤ −a

}
≤ E

(
XN min0≤n≤N Xn>−a

)− EX0

a
≤ EX+

N − EX0

a
.

2) Let {Xn,Fn, n ≥ 0} be a supermartingale. Then

P

{
max

0≤n≤N
Xn ≥ a

}
≤ EX0 + EX−

N

a
≤ 2E|XN |

a
.

PROOF.– 1), i) Let τ = inf {n ≥ 0 : Xn ≥ a} ∧ N . Then τ ≤ N , τ is a bounded

stopping time; therefore, EXτ ≤ EXN . Furthermore, let A =
{
sup0≤n≤N Xn ≥ a

}
.

Then Xτ Ac = XN Ac , and

EXτ = EXτ A + EXτ Ac ≥ aP{A}+ EXN Ac ,

whence

aP{A} ≤ EXN − EXN Ac = EXN A = E
(
XN max0≤n≤N Xn≥a

) ≤ EX+
N ;

ii) Similarly, let σ = inf {n ≥ 0 : Xn ≤ −a} ∧ N . Let

B = {min0≤n≤N Xn ≤ −a}. Then

EX0 ≤ EXσ B + EXσ Bc ≤ −aP{B}+ EXN Bc ,
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whence

P{B} ≤ EXN Bc − EX0

a
≤ EX+

N − EX0

a
.

Note that EX+
N ≥ EXN ≥ EX0.

2) Let τ and A be the same as in 1), (i). Then the following relations hold:

XN Ac = (X+
N −X−

N ) Ac ≥ −X−
N Ac , and

EX0 ≥ EXτ = EXτ A + EXN Ac ≥ aP{A} − EX−
N .

Therefore,

P{A} ≤ EX0 + EX−
N

a
≤ 2E|XN |

a
. �

From this point for a random process {Xn, n ≥ 0}, we denote

X∗
N = max

0≤n≤N
|Xn|

the running maximum of the absolute value of X . Observe that for a non-negative

process X , X∗
n = max0≤k≤n Xk.

REMARK 5.9.– Let {Xn,Fn, n ≥ 0} be a non-negative supermartingale. Then

EX−
N = 0; therefore, it follows from theorem 5.10 2) that for any a > 0 and any

N ≥ 0,

P {X∗
N ≥ a} ≤ EX0

a
.

THEOREM 5.11.– Let {Xn,Fn, n ≥ 0} be a martingale. Then, for any p ≥ 1, any
a > 0 and any N ≥ 0,

P {X∗
N ≥ a} ≤ E|XN |p

ap
.

PROOF.– The statement is evident in the case where E|XN |p = ∞. Now, let

E|XN |p < ∞. Then {|Xn|p,Fn, 0 ≤ n ≤ N} is a submartingale, since for p ≥ 1
f(x) = |x|p is a convex function. Therefore, according to theorem 5.10, 1), (i)

P {X∗
N ≥ a} = P

{(
X∗

N

)p ≥ ap
} ≤ E|XN |p

ap
. �

THEOREM 5.12.– Let {Xn,Fn, n ≥ 0} be a martingale or non-negative
submartingale. Then
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1) For any p > 1 and any N ≥ 0,

E
(
X∗

N

)p ≤
(

p

p− 1

)p

E|XN |p, [5.15]

or, in other words,

‖X∗
N‖Lp(Ω,F,P) ≤

p

p− 1
‖XN‖Lp(Ω,F,P) .

2) For any N ≥ 0,

EX∗
N ≤ 2(1 + E(|XN | log+ |XN |)),

where, for any a > 0, log+ a = (log a) a>1 = log(a ∨ 1).

PROOF.– 1) If X is a martingale, then {|Xn|, n ≥ 0} is a non-negative submartingale.

Therefore, it is sufficient to establish [5.15] only for a non-negative submartingale Xn.

Evidently, it is sufficient to consider the case where EXp
N < ∞. In this case, EXp

n <
∞ for any 0 ≤ n ≤ N , because Xp

n is a submartingale, and max0≤n≤N EXp
n <

EXp
N < ∞. Therefore,

E(X∗
N )p ≤

N∑
n=1

EXp
n < ∞.

Now, let FN (x) be the cumulative distribution function of X∗
N . Then, applying

theorem 5.10, 1), (i), integrating by parts and applying the Fubini theorem and the

Hölder inequality, we get the following relations

E(X∗
N )p =

ˆ ∞

0

zpdFN (z) = p

ˆ ∞

0

zp−1(1− FN (z))dz

= p

ˆ ∞

0

zp−1P {X∗
N ≥ z} dz ≤ p

ˆ ∞

0

zp−1EXN

z
X∗

N
≥zdz

[5.16]

= pE

(
XN

ˆ ∞

0

zp−2
X∗

N
≥zdz

)
= pE

(
XN

ˆ X∗
N

0

zp−2dz

)

=
p

p− 1
E
(
XN (X∗

N )p−1
) ≤ p

p− 1
(EXp

N )
1
p (E(X∗

N )p)
p−1
p .

Dividing left- and right-hand sides of [5.16] by (E(X∗
N )p)

p−1
p < ∞, we get the

desired inequality.
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2) Let p = 1. Then it follows from theorem 5.10 that for any a > 0 and N ≥ 0

P {X∗
N ≥ 2a} ≤ E

(
XN X∗

N
≥2a

)
2a

≤ E (XN XN≥a)

2a
+

aP {X∗
N ≥ 2a}
2a

=
E(XN XN≥a)

2a
+

1

2
P {X∗

N ≥ 2a} ,

whence

P {X∗
N ≥ 2a} ≤ 1

a
E (XN XN≥a) .

Now, let GN (x) = P {X∗
N ≥ 2x}. Then, again integrating by parts, we get that

E

(
X∗

N

2
− 1

)+

=

ˆ ∞

0

(x− 1)+dGN (x) =

ˆ ∞

1

(x− 1)dGN (x)

=

ˆ ∞

1

(1−GN (x))dx ≤
ˆ ∞

1

1

x
E (XN XN≥x) dx = E

(
XN

ˆ XN∨1

1

1

x
dx

)
= E(XN (log(XN ∨ 1))) = E

(
XN log+ XN

)
.

Therefore,

EX∗
N ≤ 2

E (X∗
N − 2)

2
+ 2

≤ 2E

(
X∗

N

2
− 1

)+

+ 2 ≤ 2E
(
XN log+ XN

)
+ 2. �

5.5.6. Doob decomposition for the integrable processes with discrete
time

THEOREM 5.13.– Let X = {Xn,Fn, n ≥ 0} be an integrable process with discrete
time. Then there exists a unique decomposition

Xn = Mn +An, n ≥ 0, [5.17]

where M = {Mn,Fn, n ≥ 0} is a martingale, A0 = 0, A = {An, n ≥ 1} is a
predictable process, i.e. An is a Fn−1-measurable random variable for any n ≥ 1.

PROOF.– Put

A0 = 0, A1 −A0 = E(X1 −X0|F0),

A2 −A1 = E(X2 −X1|F1), . . . , An −An−1 = E(Xn −Xn−1|Fn−1), . . .
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Then it is very easy to see that An is a Fn−1-measurable random variable.

Moreover, An are integrable by definition of conditional expectation. Now, put

Mn = Xn −An. Then Mn is a Fn-measurable integrable random variable, and

E(Mn −Mn−1|Fn−1) = E(Xn −Xn−1 − E(Xn −Xn−1|Fn−1)|Fn−1)

= E(Xn −Xn−1|Fn−1)− E(Xn −Xn−1|Fn−1) = 0.

Therefore, {Mn,Fn, n ≥ 1} is a martingale, and the existence of decomposition

[5.17] is established. To prove the uniqueness, assume that Xn = M
′
n+A

′
n is another

decomposition, where M
′

is a martingale, A
′

is predictable and A
′
0 = 0. Then, for

any n ≥ 1, Mn −M
′
n = A

′
n −An, so the difference Mn −M

′
n is Fn−1-measurable,

n ≥ 1. Consider conditional expectation E(Mn−M
′
n|Fn−1). It equals Mn−1−M

′
n−1

because Mn −M
′
n is a martingale and simultaneously it equals Mn −M

′
n due to the

Fn−1-measurability of Mn −M
′
n. Therefore,

Mn −M
′
n = Mn−1 −M

′
n−1 = . . . = M0 −M

′
0

= X0 −A0 − (X0 −A
′
0) = 0,

whence Mn −M
′
n a.s. and An −A

′
n = 0 a.s. Uniqueness is proved. �

EXAMPLE 5.12.–

1) Let X = {Xn,Fn, n ≥ 0} be a submartingale. Then, in its Doob decomposition,
An − An−1 = E(Xn − Xn−1|Fn−1) ≥ 0. This means that A is a non-decreasing
and, consequently, non-negative process. Obviously, in the case where X is a
supermartingale, A is a non-positive and non-increasing process.

2) Let M = {Mn,Fn, n ≥ 0} be a square-integrable martingale. Then M2 ={
M2

n,Fn, n ≥ 0
}

is a submartingale. Consider its Doob decomposition. Put A0 = 0,

An −An−1 = E(M2
n −M2

n−1|Fn−1) = E((Mn−1 +ΔMn)
2 −M2

n−1|Fn−1)

= E(2Mn−1ΔMn + (ΔMn)
2|Fn−1) = E((ΔMn)

2|Fn−1),

where ΔMn = Mn −Mn−1. Therefore,

An =
n∑

k=1

E((ΔMk)
2|Fk−1). [5.18]

We shall consider this process in the next section.
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5.5.7. Quadratic variation and quadratic characteristics: Burkholder–
Davis–Gundy inequalities

Let X = {Xn, n ≥ 0} be a stochastic process. Denote ΔXn = Xn − Xn−1,

n ≥ 1.

DEFINITION 5.11.– Quadratic variation of the process X is a stochastic process of
the form

[X]0 = 0, [X]n =
n∑

i=1

(ΔXi)
2, n ≥ 1.

Obviously, [X] is a non-negative and non-decreasing process, adapted to the same

filtration as X .

The next result is called the Burkholder–Davis–Gundy inequality. More precisely,

the result for p > 1 belongs to Burkholder and Gundy, and for p = 1 it was proved by

Davis.

THEOREM 5.14.– Let M = {Mn,Fn, n ≥ 0} be a martingale with M0 = 0. Then,
for any p ≥ 1, there exist the constants cp > 0, Cp > 0 such that, for any n ≥ 1,

cpE[M ]
p
2
n ≤ E max

0≤k≤n
|Mk|p ≤ CpE[M ]

p
2
n . [5.19]

PROOF.– During this proof, we denote by cp and Cp different constants depending

only on p.

i) Let p > 1. We shall use the Khinchin inequality of the following form: let

{an, n ≥ 0} be a sequence of real numbers such that
∑∞

n=0 a
2
n < ∞ and {ξn, n ≥ 0}

are a sequence of iid symmetric Bernoulli random variables with P {ξn = ±1} = 1
2 .

Then, for any p > 0, there exist such constants cp and Cp, such that

cp

( ∞∑
n=0

a2n

) p
2

≤ E

∣∣∣∣∣
∞∑

n=0

anξn

∣∣∣∣∣
p

≤ Cp

( ∞∑
n=0

a2n

) p
2

. [5.20]

Now, consider the sequence {rn(t), n ≥ 0, t ∈ [0, 1]} of Rademacher functions,

i.e. rn(t) = ±1 for any n ≥ 0, t ∈ [0, 1],
´ 1
0
rn(t)dt = 0 and

ˆ 1

0

rn(t)rm(t)dt = δnm := n=m.

The Rademacher function can be defined as rn(t)=sign(sin(2nπt)), n ≥ 0. They

can be considered as independent r.v., if we put (Ω,F ,P) = ([0, 1],B[0, 1], λ1). Now,



114 Theory and Statistical Applications of Stochastic Processes

for any t ∈ [0, 1], consider the following sequence of martingale transformations:

S0(t) = 0,

Sn(t) =

n∑
k=1

rk(t)(Mk −Mk−1), n ≥ 1.

Then {Sn(t),Fn, n ≥ 0} is a martingale for any t ∈ [0, 1]. Moreover, if we

similarly transform Sn(t), we get Mn, because

n∑
k=1

rk(t)(Sk(t)− Sk−1(t)) =

n∑
k=1

r2k(t)(Mk −Mk−1) = Mn, n ≥ 1.

It follows immediately from theorem A2.17 that, for any p > 1,

E|Mn|p ≤ CpE|Sn(t)|p ≤ C2
pE|Mn|p, n ≥ 1, t ∈ [0, 1],

where Cp depends only on p but not on n, t and M .

According to Khinchin’s inequality [5.20],

cp[M ]p/2n ≤
ˆ 1

0

|Sn(s)|pds ≤ Cp[M ]p/2n for any n ≥ 1. [5.21]

Taking expectation of all sides of [5.21], we get that

cpE[M ]p/2n ≤ E|Mn|p ≤ CpE[M ]p/2n . [5.22]

Since p > 1, it follows from inequality [5.15] that

E(M∗
n)

p ≤
(

p

p− 1

)p

E|Mn|p, [5.23]

and the proof follows from [5.22] and [5.23].

ii) Now, let p = 1. Consider the Davis decomposition of martingale M , i.e. Mn =
M ′

n +M ′′
n . Its components satisfy evident inequalities:

M∗
n ≤ (M ′)∗n + (M ′′)∗n ≤ (M ′)∗n +

n∑
k=1

|ΔM ′′
k |, [5.24]

and

[M ′]1/2n ≤ [M ]1/2n + [M ′′]1/2n ≤ [M ]1/2n +

n∑
k=1

|ΔM ′′
k |. [5.25]
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According to lemma A2.7, [A2.34] and [5.25],

E(M ′)∗n ≤ 3E[M ′]1/2n + E(ΔM)∗n ≤ 3E[M ]1/2n + E

n∑
k=1

|ΔM ′′
k |+ E[M ]1/2n , [5.26]

and it follows from [A2.36] that

E
n∑

k=1

|ΔM ′′
k | ≤ 4E(ΔM)∗n ≤ 4E[M ]1/2n . [5.27]

Summarizing, we get that E(M ′)∗n ≤ 8E[M ]
1/2
n and E(M ′′)∗n ≤ 4E[M ]

1/2
n .

Therefore, it follows from [5.24]–[5.26] and the last relations that

EM∗
n ≤ E(M ′)∗n + E(M ′′)∗n ≤ 8E[M ]1/2n + 4E[M ]1/2n ≤ 12E[M ]1/2n .

This means that the right-hand side of [5.19] holds for p = 1 with the constant

C1 = 12. To get the left-hand side, we again use the Davis decomposition. This

implies that

[M ]1/2n ≤ [M ′]1/2n + [M ′′]1/2n ≤ [M ′]1/2n +
n∑

k=1

|ΔM ′′
k |, [5.28]

(M ′)∗n ≤ M∗
n + (M ′′)∗n ≤ M∗

n +
n∑

k=1

|ΔM ′′
k |.

According to lemma A2.7, [A2.34], [A2.36] and the last inequality,

E[M ′]1/2n ≤ 3E(M ′)∗n + 4E(ΔM)∗n ≤ 3E(M ′)∗n + 8EM∗
n

≤ 11EM∗
n + 3E

n∑
k=1

|ΔM ′′
k | ≤ 11EM∗

n + 12E(ΔM)∗n ≤ 35EM∗
n.

[5.29]

Substituting [5.29] and [5.27] into [5.28] and taking expectation, we get the left-

hand side of [5.22] for p = 1 with c1 = 1/39. �

REMARK 5.10.– Denote [M ] = limn→∞[M ]n, M
∗ = supk≥0 |Mk|. Then it follows

immediately from [5.19] that for the same martingale as in theorem 5.14 and any

p ≥ 1, there exists constants cp > 0, Cp > 0, such that

cpE[M ]p/2 ≤ E(M∗)p ≤ CpE[M ]p/2.

Now let M = {Mn,Fn, n ≥ 0} be a square-integrable martingale. Consider the

process of the form [5.18].
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DEFINITION 5.12.– A process 〈M〉n =
∑n

k=1 E((ΔMk)
2|Fk−1) is called a

quadratic characteristic of martingale M it follows.

It follows from example 5.12, 2) that 〈M〉 is a predictable process in the Doob

decomposition of submartingale M2. However, 〈M〉 is also a predictable process in

the Doob decomposition of the quadratic variation, which is established in the

following lemma.

LEMMA 5.2.– The Doob decomposition of [M ] has a form

[M ]n = Nn + 〈M〉n , n ≥ 0,

where N = {Nn, n ≥ 0} is a martingale.

PROOF.– The proof immediately follows from the formula An − An−1 = E(Xn −
Xn−1|Fn−1) in the Doob decomposition. Indeed, now Xn = [M ]n, Xn − Xn−1 =
[M ]n − [M ]n−1 = (ΔMn)

2, and An − An−1 = E((ΔMn)
2|Fn−1), so that An =

〈M〉n, n ≥ 0. �

REMARK 5.11.– Quadratic characteristic 〈M〉 is also called a dual predictable
projection of the quadratic variation [M ].

The next result is, to some extent, similar to the Burkholder–Davis–Gundy

inequality; however, the reader should pay attention that its different parts hold for

different values of p and take place simultaneously only for p = 2. We omit the proof

of this result.

THEOREM 5.15.– Let M = {Mn,Fn, n ≥ 0} be a square integrable martingale,
M0 = 0.

1) For any p ∈ (0, 2], there exists a constant Cp, such that, for any N ≥ 0,

E(M∗
N )p ≤ CpE 〈M〉p/2N ;

2) For any p ≥ 2, there exists a constant cp, such that, for any N ≥ 0,

cpE 〈M〉p/2N ≤ E(M∗
N )p.

5.5.8. Change of probability measure and Girsanov theorem for discrete-
time processes

Let (Ω,F ,P) be a probability space. Recall the notion of the equivalent

probability measure (this notion is stronger than the notion of absolutely continuous
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probability measures, but we do not go into the details of absolutely continuous

probability measures now).

DEFINITION 5.13.– Probability measure P̃ on (Ω,F) is equivalent to measure P

(P̃ ∼ P) if for any set A ∈ F P{A} = 0 if and only if P̃{A} = 0.

According to the Radon–Nikodym theorem, for P̃ ∼ P, there exists a non-negative

integrable random variable dP̃
dP , such that, for any B ∈ F

P̃{B} =

ˆ
B

dP̃

dP
(ω)P{dω}.

Moreover, dP̃
dP > 0 a.s., dP̃

dP =
(

dP

dP̃

)−1

and EdP̃
dP = 1. We can state also that, for

any positive a.s. random variable η, such that Eη = 1, the measure P̃{B} defined as

P̃{B} =
´
B
ηdP is equivalent to P: P̃ ∼ P. Therefore, any random variable η > 0

with Eη = 1 defines the new equivalent probability measure.

Now, let us have a stochastic basis with filtration (Ω,F , {Fn}n≥0 ,P) and let P̃ ∼
P. Then, according to example 5.4,

{
E
(

dP̃
dP

∣∣∣Fn

)
, n ≥ 0

}
is a martingale. Now our

goal is to find the representation of this martingale and to study the transformation of

a martingale by changing a probability measure to an equivalent one.

THEOREM 5.16.– Let the probability measures be equivalent, P̃ ∼ P. Then there
exists a P-martingale X = {Xn,Fn, n ≥ 0} with initial value X0 = 1 and
increments ΔXn+1 = Xn+1 − Xn > −1 a.s., for any n ≥ 0, such that the

martingale Yn := E
(

dP̃
dP

∣∣∣Fn

)
admits the representation

Y0 = 1, Yn =
n∏

k=1

(1 + ΔXk), n ≥ 1. [5.30]

PROOF.– Put X0 = 1 and let

Xk+1 = Xk +
Yk+1 − Yk

Yk
, k ≥ 0. [5.31]

Then ΔXk+1 = Yk+1

Yk
− 1 > −1 a.s. because Yk > 0 for any k ≥ 0. Let us

show that X is a martingale. Obviously, it is adapted to the filtration {Fn, n ≥ 0}.

Integrability can be established by induction: X0 = 1 is integrable, and if Xk is

integrable, then

E|Xk+1| ≤ E|Xk|+ 1 + E

∣∣∣∣Yk+1

Yk

∣∣∣∣ = E|Xk|+ 1 + E
Yk+1

Yk
.
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Since Y is positive with probability 1 process, E
(

Yk+1

Yk

∣∣∣Fk

)
is well defined and,

moreover, it equals 1
Yk

E (Yk+1|Fk) = 1. Therefore, EYk+1

Yk
= 1, and E|Xk+1| ≤

E|Xk| + 2, i.e. Xk+1 is integrable. Now, martingale property of X follows from the

relation

E(Xk+1|Fk) = Xk + E

(
Yk+1 − Yk

Yk

∣∣∣∣Fk

)
= Xk +

1

Yk
E (Yk+1 − Yk|Fk) = Xk.

Finally, [5.31] implies that Yk+1 = Yk(1 + ΔXk+1), and we get [5.30]. �

THEOREM 5.17.– Let P̃ ∼ P. An adapted process M̃ is a P̃-martingale if and only if
the process M̃ · Y is a P-martingale, where Y =

{
Yn = E

(
dP̃
dP |F̃n

)
, n ≥ 0

}
.

PROOF.– Denote E
P̃

expectation w.r.t. a measure P̃. First, note that

E
P̃
|M̃n| = E

dP̃

dP
|M̃n| = E

(
E

(
dP̃

dP

∣∣∣∣∣ F̃n

)
|M̃n|

)
= EYn|M̃n|,

therefore, M̃ is P̃-integrable if and only if M̃ · Y is P-integrable. Now, we use the

following relation for conditional expectations w.r.t. different probability measures:

for any non-negative r.v. ξ and G ⊂ F ,

E
P̃
(ξ|G) =

E
(

dP̃
dPξ
∣∣∣G)

E
(

dP̃
dP

∣∣∣G) .

According to this relation,

E
P̃
(M̃n+1|Fn) =

E
(

dP̃
dPM̃n+1

∣∣∣Fn

)
E
(

dP̃
dP

∣∣∣Fn

)

=
E
(
E
(

dP̃
dPM̃n+1

∣∣∣Fn+1

)∣∣∣Fn

)
E
(

dP̃
dP

∣∣∣Fn

) =
E(Yn+1M̃n+1|Fn)

Yn
.

Therefore, E
P̃
(M̃n+1|Fn) = M̃n if and only if E(Yn+1M̃n+1|Fn) = YnM̃n,

whence the proof follows. �

The next result is called the Girsanov theorem for discrete-time processes (the

Girsanov theorem for continuous-time processes is considered in section 8.9).
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THEOREM 5.18.– (Transformation of martingale under transformation of
probability measure) Let Z = {Zn,Fn, 1 ≤ n ≤ N} be an integrable process with
Doob decomposition

Zn = Mn +An, n ≥ 0, 0 ≤ n ≤ N,

where M = {Mn,Fn, 0 ≤ n ≤ N} is a square-integrable martingale, A0 = 0 and
A = {An,Fn, 1 ≤ n ≤ N} is a predictable process. Let the random variables

ΔXn := − ΔAnΔMn

E ((ΔMn)2|Fn−1)
, 1 ≤ n ≤ N

be bounded, and ΔXn > −1 a.s. Then the process Z is a martingale w.r.t. an
equivalent probability measure P̃, such that

dP̃

dP
=

N∏
k=1

(1 + ΔXk). [5.32]

PROOF.– Define P̃ by relation [5.32]. Then dP̃
dP > 0 a.s. and EdP̃

dP = E
∑N

k=1(1 +
ΔXk) = 1, because

E(1 + ΔXk|Fk−1) = 1 +
ΔAkE(ΔMk|Fk−1)

E((ΔMk)2|Fk−1)
= 1.

Therefore, P̃ ∼ P. Further, according to theorem 5.17, we need to check that

Zn · Yn := Zn · E
(

dP̃
dP

∣∣∣Fn

)
is a P-martingale. To this end, we evaluate

E(Zn+1Yn+1|Fn) = E

(
Zn+1 · E

(
dP̃

dP

∣∣∣∣∣Fn+1

)∣∣∣∣∣Fn

)

= E

(
(Mn+1 +An+1)

n+1∏
k=1

(1 + ΔXk)|Fn

)

=

n∏
k=1

(1 + ΔXk) (E(Mn+1(1 + ΔXn+1)|Fn)

+An+1E(1 + ΔXn+1|Fn)) [5.33]

= Yn (Mn + E(Mn+1ΔXn+1|Fn) +An+1)

= Yn

(
Mn −ΔAn+1

E(Mn+1ΔMn+1|Fn)

E((ΔMn+1)2|Fn)
+An+1

)
= Yn

(
Mn −ΔAn+1

E((ΔMn+1)
2|Fn)

E((ΔMn+1)2|Fn)
+An+1

)
= Yn(Mn +An) = Yn · Zn.
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Here, we use the fact that, for the square integrable martingale, the following

expectation vanishes: E(MnΔMn+1|Fn) = 0. The proof follows from [5.33]. �

5.5.9. Strong law of large numbers for martingales with discrete time

We assume that a stochastic basis (Ω,F , {Fn}n≥0 ,P) is fixed and all processes

are adapted to this basis. Let X = {Xn, n ≥ 0} be a stochastic process. Denote by

X∞ = limn→∞ Xn and {X →} the set where this limit exists. Write A ⊂ B a.s. if

P{A\B} = 0. Introduce the notation for stopped process: for a Markov moment τ
and random process X = {Xn, n ≥ 0}, we denote Xτ = {Xn∧τ , n ≥ 0}.

LEMMA 5.3.– Let Y = {Yn, n ≥ 0} and Z = {Zn, n ≥ 0} be two processes with
discrete time. Let, for any a > 0, P {Zτa →} = 1, where τa = inf{n > 0 : |Yn| ≥ a}.
Then {

sup
n≥0

|Yn| < ∞
}

⊂ {Z →} a.s.

PROOF.– For any n ∈ N, we have that

P {Z �→, τn = ∞} = P {Zτn �→, τn = ∞} = 0.

Therefore,

P

⎧⎨⎩Z →,
⋃
n≥0

{τn = ∞}
⎫⎬⎭ = 0.

Now,{
sup
k≥0

|Yk| < ∞
}

=
⋃
n≥0

{τn = ∞}

=

⎛⎝⋃
n≥0

{τn = ∞, Z →}
⎞⎠ ∪

⎛⎝⋃
n≥0

{τn = ∞, Z �→}
⎞⎠ ⊂ {Z →} a.s.,

whence the proof follows. �

Now, let X = {Xn,Fn, n ≥ 0} be a non-negative and non-decreasing integrable

process, X0 = 0, X = M +A its Doob decomposition.

THEOREM 5.19.– We have that {A∞ < ∞} ⊂ {X∞ < ∞} a.s.

PROOF.– Recall that A is a non-negative and non-decreasing process as well.
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i) Assume that E (Aτ −Aτ−1) τ<∞ < ∞ for any Markov moment τ . Define

τa = inf {n ≥ 1 : An ≥ a}, a > 0. Then

EAτa = E (Aτa−1 +ΔAτa τa<∞) ≤ a+ EΔAτa τa<∞ < ∞.

Further, since X and A are non-integrable and non-decreasing, it follows from the

Lebesgue monotone convergence theorem that

EXτa = lim
n→∞EXτa∧n, EAτa = lim

n→∞EAτa∧n < ∞.

Moreover, it follows from Doob’s optional stopping theorem that EMτa∧n = 0.

Therefore,

0 = lim
n→∞EMτa∧n = lim

n→∞E (Xτa∧n −Aτa∧n)

= lim
n→∞ (EXτa∧n − EAτa∧n) = EXτa − EAτa ,

whence EXτa = EAτa < ∞. In turn, it means that P {Xτa < ∞} = 1, and

P {Xτa →} = 1. Now we can apply lemma 5.3 with Z = X and Y = A, getting that{
sup
n≥0

An < ∞
}

= {A∞ < ∞} ⊂ {X →} = {X∞ < ∞} a.s.

ii) Consider the general case. Define two increasing processes with zero initial

values, A
(1)
0 = A

(2)
0 = 0, having the form

A(1)
n =

n∑
k=1

ΔAk>1ΔAk, and A(2)
n =

n∑
k=1

ΔAk≤1ΔAk.

Evidently, A
(1)
n and A

(2)
n are predictable components in the Doob decomposition

of the process

X(1)
n =

n∑
k=1

ΔAk>1ΔXk, and X(2)
n =

n∑
k=1

ΔAk≤1ΔXk.

Moreover, ΔA2
k ≤ 1 for any k ≥ 1. Applying arguments from (i), we get that{

A(2)
∞ < ∞

}
⊂
{
X(2)

∞ < ∞
}

a.s.
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Further,

A(1)
∞ =

∞∑
k=1

ΔAk>1ΔAk, and X(1)
∞ =

∞∑
k=1

ΔAk>1ΔXk.

Therefore,{
A(1)

∞ < ∞
}
⊂
{ ∞∑

k=1

ΔAk>1 < ∞
}

⊂
{ ∞∑

k=1

ΔAk>1ΔXk < ∞
}

=
{
X(1)

∞ < ∞
}
.

Finally,

{A∞ < ∞} =
{
A(1)

∞ < ∞
}
∩
{
A(2)

∞ < ∞
}

⊂
{
X(1)

∞ < ∞
}
∩
{
X(2)

∞ < ∞
}
= {X∞ < ∞} . �

Let M = {Mn, n ≥ 0} be a square-integrable martingale and L = {Ln, n ≥ 0}
be a predictable integrable non-decreasing and non-negative process, both of them

starting from zero, M0 = 0 and L0 = 0. We say that the pair (M,L) satisfies the

strong law of large numbers (SLLN) if Mn

Ln
→ 0 a.s. as n → ∞. In general, the set, on

which limn→∞ Mn

Ln
= 0, will be denoted as {M

L → 0}. Denote Un =
∑n

k=1
ΔMk

1+Lk
,

n ≥ 1, U0 = 0.

THEOREM 5.20.– The following relation holds:

{L∞ = ∞} ∩ {U →} ⊂
{
M

L
→ 0

}
a.s.

PROOF.– For any n ≥ 1,

n∑
k=1

(1 + Lk)(Uk − Uk−1) =
n∑

k=1

(1 + Lk)
ΔMk

1 + Lk
= Mn, [5.34]

and evidently, the sets {L∞ = ∞} ∩ {M
L → 0

}
and {L∞ = ∞} ∩

{
M

1+L → 0
}

coincide. Therefore, it is enough to prove that

{L∞ = ∞} ∩ {U →} ⊂
{

M

1 + L
→ 0

}
a.s.
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To this end, note that, for any n ≥ 1, according to [5.34],

(1 + Ln)Un =
n∑

k=1

((1 + Lk)Uk − (1 + Lk−1)Uk−1)

=

n∑
k=1

(1 + Lk)(Uk − Uk−1) +
n∑

k=1

Uk−1(Lk − Lk−1)

= Mn +
n∑

k=1

Uk−1(Lk − Lk−1),

and

LnUn =
n∑

k=1

Lk(Uk − Uk−1) +
n∑

k=1

Uk−1(Lk − Lk−1).

This means that

Mn

1 + Ln
= Un −

∑n
k=1 Uk−1(Lk − Lk−1)

1 + Ln

=
Un + LnUn −∑n

k=1 Uk−1(Lk − Lk−1)

1 + Ln
.

Evidently, {L∞ = ∞} ∩ {U →} ⊂
{

U
1+L → 0

}
. Consider

∣∣∣∣∣LnUn −
n∑

k=1

Uk−1(Lk − Lk−1)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

(Un − Uk−1)(Lk − Lk−1)

∣∣∣∣∣ .
For any ε > 0 on the set {U →}, there exists a number n(ε, ω), such that

|U∞ − Un| < ε for n > n(ε, ω).

Therefore, for n > n(ε, ω),∣∣∣∣∣
n∑

k=1

(Un − Uk−1)(Lk − Lk−1)

∣∣∣∣∣ ≤
n(ε,ω)∑
k=1

|Un − Uk−1|(Lk − Lk−1)

+

n∑
k=n(ε,ω)+1

(|U∞ − Un|+ |U∞ − Uk−1|)(Lk − Lk−1)

≤ 2 max
1≤k≤n

|Uk|Ln(ε,ω) + 2ε · Ln,
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whence on the set {U →} ∩ {L∞ = ∞},

lim
n→∞

|LnUn −∑n
k=1 Uk−1(Lk − Lk−1)|
1 + Ln

≤ lim
n→∞

(
2max1≤k≤n |Uk|Ln(ε,ω)

1 + Ln
+ 2ε

Ln

1 + Ln

)
≤ 2ε.

Since ε > 0 was chosen arbitrary, we get the proof. �

THEOREM 5.21.– Let M = {Mn, n ≥ 0} be a square-integrable martingale, and
〈M〉n =

∑n
k=1 E((ΔMk)

2|Fk−1) be its quadratic characteristic. Let 〈M〉∞ = ∞
a.s. Then the pair (M, 〈M〉) satisfies SLLN, i.e.

Mn

〈M〉n
→ 0 a.s. as n → ∞.

PROOF.– Note that, for any n ≥ 1,

n∑
k=1

E((ΔMk)
2|Fk−1)

(1 + 〈M〉k)2
≤

n∑
k=1

E((ΔMk)
2|Fk−1)

(1 + 〈M〉k)(1 + 〈M〉k−1)

=
n∑

k=1

〈M〉k − 〈M〉k−1

(1 + 〈M〉k)(1 + 〈M〉k−1)
= 1− 1

1 + 〈M〉n
≤ 1.

According to theorem 5.20, it is sufficient to prove that the process

Un =
∑n

k=1
ΔMk

1+〈M〉k converges a.s. Process U is a square-integrable martingale with

quadratic characteristics

〈U〉n =

n∑
k=1

E((ΔMk)
2|Fk−1)

(1 + 〈M〉k)2
≤ 1,

as we established above. According to Burkholder–Davis–Gundy inequality (theorem

5.14),

E sup
n≥0

|Un| ≤ CE 〈U〉1/2∞ ≤ C,

whence the proof follows. �

THEOREM 5.22.– Let M = {Mn, n ≥ 0} be a square-integrable martingale,
M0 = 0. Then

{〈M〉∞ < ∞} ⊂ {M →} a.s.
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PROOF.– i) Let EΔ 〈M〉τ τ<∞ < ∞ for any Markov moment τ . Then

E 〈M〉τa ≤ a+ EΔ 〈M〉τa τa<∞ < ∞ for τa = inf {n ≥ 1 : 〈M〉n ≥ a} .

According to Burkholder–Davis–Gundy inequality which can be applied to

Markov moments as well,

E sup
0≤n≤τa

|Mn| ≤ CE 〈M〉1/2τa
< ∞,

i.e. sup0≤n≤τa |Mn| < ∞ a.s. Now we apply lemma 5.3 and get that

{〈M〉∞ < ∞} =

{
sup
n≥0

〈M〉n < ∞
}

⊂ {M →} .

ii) In general, consider the expansion M = M (1) +M (2), where

M (1)
n =

n∑
k=1

Δ〈M〉k>1ΔMk, M (2)
n =

n∑
k=1

Δ〈M〉k≤1ΔMk.

Both M (1) and M (2) are square-integrable martingales,〈
M (1)

〉
n
=

n∑
k=1

Δ〈M〉k>1E((ΔMk)
2|Fk−1) =

n∑
k=1

Δ〈M〉k>1Δ 〈M〉k ,

〈
M (2)

〉
n
=

n∑
k=1

Δ〈M〉k≤1Δ 〈M〉k .

We can apply (i) to
〈
M (2)

〉
and get that

{〈
M (2)

〉
∞ < ∞} ⊂ {

M (2) →}.

Further,{〈
M (1)

〉
∞

< ∞
}
⊂
{ ∞∑

k=1

Δ〈M〉k>1 < ∞
}

⊂
{ ∞∑

k=1

Δ〈M〉k>1Δ 〈M〉k < ∞
}

=
{
M (1)

∞ = ∞
}
.

Now we conclude as in theorem 5.19. �

REMARK 5.12.– Concerning the strong law of large numbers for the martingale-type

processes with continuous time, see section 8.7.1.
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5.6. Lévy martingale stopped

Now we formulate two results that are true both for discrete- and continuous-time

uniformly integrable martingales.

THEOREM 5.23.– Let X be an integrable random variable, let {Ft}t≥0 be a flow of
σ-fields satisfying assumptions (A) and let martingale Xt = E(X|Ft). Then, for any
stopping time τ , Xτ = E(X|Fτ ) a.s.

PROOF.– First, consider discrete stopping times τn =
∑∞

k=0
k+1
2n {τ∈[ k

2n , k+1
2n )}.

Then, according to theorem 5.3, 4), for any number k ≥ 0 and any event A ∈ Fτn ,

the event A ∩ {τn = k
2n } ∈ Fτn∧ k

2n
. Therefore,

ˆ
A∩{τn= k

2n }
E(X|Fτn)dP =

ˆ
A∩{τn= k

2n }
XdP

=

ˆ
A∩{τn= k

2n }
E(X|F k

2n
)dP [5.35]

=

ˆ
A∩{τn= k

2n }
X k

2n
dP =

ˆ
A∩{τn= k

2n }
XτndP.

Since Xτn is Fτn -measurable, we get from the definition of conditional

expectation and [5.35] that E(X|Fτn) = Xτn . Furthermore, note that according to

corollary 5.1.9 from [COH 15], martingale Xt has a càdlàg modification. Now, let

n → ∞. Then τn → τ+, therefore, Xτn → Xτ . Apply theorem 5.8 which states that

E(ξ|Gn) → E(ξ|G) when E|ξ| < ∞ and σ-algebras Gn increase and

G = σ (
⋃∞

k=1 Gk). Then E(X|Fτn) → E(X|Fτ ), and the proof follows. �

THEOREM 5.24.– Let σ and τ be two stopping times and Y be an integrable random
variable. Then

E(E(Y |Fτ )|Fσ) = E(E(Y |Fσ)|Fτ ) = E(Y |Fτ∧σ).

PROOF.– Without loss of generality, we can assume that Y ≥ 0. For any n,m >
0, introduce bounded stopping times τn = τ ∧ n and σm = σ ∧ m. Consider the

martingale Xt = E(Y |Ft). Then, according to Doob’s optional stopping theorem,

we have that E(Xτn |Fσm) = Xτn∧σm . Furthermore, applying theorem 5.23, we can

rewrite the last equality as

E(E(Y |Fτn)|Fσm) = E(Y |Fτn∧σm).

Let n be fixed, m → ∞. Apply theorem 5.8 which supplies that E(Y |Fτn∧σm) →
E(Y |Fτn∧σ) a.s. Further, E(Y |Fτn) is an integrable random variable; therefore, by
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the same theorem, we have that E(E(Y |Fτn)|Fσm) → E(E(Y |Fτn)|Fσ), m → ∞.

Therefore, we get that

E(E(Y |Fτn)|Fσ) = E(Y |Fτn∧σ).

Similarly, E(Y |Fτn∧σ) → E(Y |Fτ∧σ), and E(Y |Fτn) → E(Y |Fτ ) as n → ∞.

Therefore, in order to finalize the proof, it is sufficient to establish that the random

variables {ξn = E(Y |Fτn), n ≥ 1} are uniformly integrable. Now, for any b > 0 and

C > 0,

ˆ
{ξn≥C}

ξndP = E(Y ξn≥C) ≤ bP {ξn ≥ C}+ E(Y Y≥b) ≤ b

C
Eξn

+E(Y Y≥b) ≤ b

C
EY + E(Y Y≥b).

For any fixed ε > 0, choose b > 0, such that E(Y Y≥b) ≤ ε
2 . Then choose

C > 0, such that b
CEY < ε

2 , and get that limC→∞ supn≥1

´
{ξn≥C} ξndP ≤ ε. Since

ε > 0 is arbitrary, we get that

lim
C→∞

sup
n≥1

ˆ
{ξn≥C}

ξndP = 0

which means that {ξn, n ≥ 1} are uniformly integrable. Therefore,

lim
n→∞E(E(Y |Fτ∧n)|Fσ) = E(E(Y |Fτ )|Fσ) = E(Y |Fτ∧σ). �

5.7. Martingales with continuous time

Let us consider the case of continuous-time parameter, i.e. the parameter set T

is either R+ or [0, T ] with some T > 0. Many of the results for martingales with

discrete time are also valid for the continuous-time case. We will prove only those

results which will be important in the proceeding. We start with optional stopping

theorem.

THEOREM 5.25.– Let X = {Xt, t ∈} be an integrable right-continuous stochastic
process. Then the following statements are equivalent:

1) X is a Ft-martingale.

2) For any bounded stopping time τ and any stopping time σ,

E(Xτ | Fσ) = Xτ∧σ.
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3) For any bounded stopping times σ ≤ τ ,

EXτ = EXσ.

PROOF.– The implication 2) ⇒ 1) is obvious: for arbitrary 0 ≤ s < t, we can set

σ = s and τ = t, getting E(Xt|Fs) = Xs, as needed.

To show 3) ⇒ 2), first assume that σ ≤ τ ≤ T with some non-random T . For any

A ∈ Fσ, define σA = σ A + T Ac and τA = τ A + T Ac . For any t ∈ [0, T ), we

have {σA ≤ t} = A ∩ {σ ≤ t} ∈ Ft by the definition of stopping time; for t ≥ T ,

{σA ≤ t} = Ω ∈ Ft, so σA is a stopping time. Similarly, τA is a stopping time;

moreover, σA ≤ τA, so EXσA = EXτA , equivalently, EXσ A = EXτ A. Since by

theorem 5.2, Xσ is Fσ-measurable, we have from the last equality E(Xτ | Fσ) = Xσ

by the definition of conditional expectation.

In general, we have

E(Xτ | Fσ) = E(Xτ τ<σ | Fσ) + E(Xτ τ≥σ | Fσ).

Since the process Xt t<σ is adapted and right-continuous, we have

E(Xτ τ<σ | Fσ) = Xτ τ<σ [5.36]

by virtue of theorem 5.2. Moreover, from the previous section, E(Xτ∨σ | Fσ) = Xσ .

Since {τ ≥ σ} ∈ Fσ by theorem 5.2, we have E(Xτ∨σ τ≥σ | Fσ) = Xσ τ≥σ .

Adding this to [5.36], we get E(Xτ | Fσ) = Xτ∧σ .

It remains to prove 1) ⇒ 3). For any bounded stopping times σ ≤ τ , consider their

discrete approximations τn = fn(τ), σn = fn(σ) with fn(t) =
∑∞

k=1
k
n ( k−1

n , kn ](t).

Evidently, these are bounded stopping times with σn ≤ τn. Further, σn ≤ τn, σn ≥ σ,

τn → τ , and σn → σ, τn → τ , n → ∞. Since
{
Xk/n, k ≥ 1

}
is a martingale with

a discrete-time parameter, it follows from theorem 5.9 that EXτn = EXσn . Thanks

to the right-continuity, Xσn → Xσ and Xτn → Xτ , n → ∞. Therefore, in order

to prove that EXτ = EXσ , it suffices to show that the sequences {Xτn , n ≥ 1} and

{Xσn , n ≥ 1} are uniformly integrable. We have τn ≤ T , and
{
Xk/n, k ≥ 1

}
is a

martingale with discrete time, so by theorem 5.9, Xτn = E(XT | Fτn). Therefore,

for any C > 0,

E(Xτn Xτn≥C) = E(XT Xτn≥C).
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Moreover, by the Jensen inequality,

sup
n≥1

P {Xτn ≥ C} ≤ sup
n≥1

P {|Xτn | ≥ C}

≤ 1

C
sup
n≥1

E |Xτn | ≤
1

C
E |XT | → 0, C → ∞.

Therefore,

sup
n≥1

E(Xτn Xτn≥C) = sup
n≥1

E(XT Xτn≥C) → 0, C → ∞.

Similarly,

sup
n≥1

E(−Xτn Xτn≤−C) → 0, C → ∞,

yielding the required uniform integrability. The one of {Xσn , n ≥ 1} is shown

similarly, concluding the proof. �

Let us now address the maximal inequalities. For T ≥ 0, denote

X∗
T = sup

t∈[0,T ]

|Xt|

the running maximum of the absolute value of X .

THEOREM 5.26.– Let {Xt, t ≥ 0} be a right-continuous martingale.

1) For any p ≥ 1, a > 0 and T ≥ 0,

P {X∗
T ≥ a} ≤ E|XT |p

ap
.

2) For any p > 1 and any T ≥ 0,

E
(
X∗

T

)p ≤
(

p

p− 1

)p

E|XT |p.

3) For any T ≥ 0,

EX∗
T ≤ 2

(
1 + E(|XT | log+ |XT |)

)
,

where, for any a > 0, log+ a = (log a) a>1 = log(a ∨ 1).
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PROOF.– For n ≥ 1, consider a uniform partition Πn = {tnk = kT/2n, 0 ≤ k ≤ 2n}
of [0, T ]. Due to right continuity, X∗

T = limn→∞ maxt∈Πn |Xt|.

1) The sequence maxt∈Πn |Xt| increases, so {X∗
T > b} is the union of increasing

events {maxt∈Πn |Xt| > b}. Due to continuity of probability,

P {X∗
T > b} = lim

n→∞P

{
max
t∈Πn

|Xt| > b

}
.

The process {Xt, t ∈ Πn} is a martingale with discrete time, so by theorem 5.11,

P

{
max
t∈Πn

|Xt| > b

}
≤ E |XT |

bp
.

Consequently,

P {X∗
T > b} ≤ E |XT |

bp
.

Setting b = a−1/k and letting k → ∞, we get in view of continuity of probability

P {X∗
T ≥ a} ≤ E |XT |

ap
.

2) Similar to 1), using theorem 5.12, we have for any n ≥ 1

Emax
t∈Πn

|Xt|p ≤
(

p

p− 1

)p

E|XT |p.

By the Fatou lemma,

E
(
X∗

T

)p
= E lim inf

n→∞ max
t∈Πn

|Xt|p ≤ lim inf
n→∞ Emax

t∈Πn

|Xt|p ≤
(

p

p− 1

)p

E|XT |p.

The last statement is proved similarly. �



6

Regularity of Trajectories of
Stochastic Processes

6.1. Continuity in probability and in L2(Ω,F ,P)

Let T = R+, X = {Xt, t ∈ R+} be a real-valued stochastic process. We can

consider its restriction on some interval [0, T ], or some other subset T′ ⊂ R+, if

necessary. If we restrict X on some subset T′ ⊂ R+, we suppose that T′ consists of

limit points.

DEFINITION 6.1.–

1) Stochastic process X is continuous in probability (stochastically continuous) at
a point t0 ∈ R+ if Xt → Xt0 in probability as t → t0.

2) Stochastic process X is continuous in probability (stochastically continuous) on
the subset T ⊂ R+ if it is continuous in probability at any point t ∈ T

′.

LEMMA 6.1.– Let X = {Xt, t ∈ [0, T ]} be continuous in probability on [0, T ]. Then,
for any ε > 0,

lim
δ→0+

sup
|t−s|≤δ
t,s∈[0,T ]

P {|Xs −Xt| ≥ ε} = 0.

PROOF.– Let ε > 0 be fixed. Denote

Pδ := sup
|t−s|≤δ
t,s∈[0,T ]

P {|Xs −Xt| ≥ ε} .

Theory and Statistical Applications of Stochastic Processes,
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As Pδ is non-decreasing in δ, limδ→0+ Pδ exists. Assume that

limδ→0+ Pδ = α > 0. According to the definition of supremum, there exist two

sequences, {tn, sn, n ≥ 1}, such that |tn − sn| ≤ 1
n , tn, sn ∈ [0, T ], and

P {|Xsn −Xtn | ≥ ε} ≥ α

2
.

Consider a convergent subsequence tnk
→ t0 ∈ [0, T ], which exists since the

closed bounded set [0, T ] ⊂ R is compact. Then snk
→ t0, k → ∞, and

P
{
|Xt0 −Xtnk

| ≥ ε
2

}
≥ α

4 or P
{
|Xt0 −Xsnk

| ≥ ε
2

}
≥ α

4 for any k ≥ 1, which

contradicts to continuity in probability of X at point t0. �

REMARK 6.1.–

i) Lemma 6.1 is valid for any compact subset T′ ⊂ R+ consisting of limit points.

ii) Let X be continuous on [0, T ], so that its trajectories are a.s. continuous. Then,

for any t0 ∈ [0, T ], we have that Xt → Xt0 a.s. as t → t0; therefore, X is continuous

in probability. However, the inverse statement fails. As an example, consider Ω =
[0, 1], T = 1, F = B([0, 1]) a σ-algebra of the Borel sets, P = λ1, the Lebesgue

measure on F . Let Xt(ω) = t=ω. Then all trajectories of X are discontinuous. More

precisely, they have a discontinuity at the point t = ω. However, for any 0 < ε < 1

P {|Xt −Xs| ≥ ε} = P {Xt = 1, Xs = 0}+ P {Xt = 0, Xs = 1}
≤ λ1({t}) + λ1({s}) = 0.

LEMMA 6.2.– Let the stochastic process X be continuous in probability on [0, T ].
Then

lim
C→∞

sup
t∈[0,T ]

P {|Xt| ≥ C} = 0.

PROOF.– As ρC := supt∈[0,T ] P {|Xt| ≥ C} is non-increasing in C > 0, the limit

limC→∞ ρC exists. Suppose that limC→∞ ρC = α > 0. Then, according to the

definition of supremum, there exists a sequence {tn, n ≥ 1} ⊂ [0, T ], such that

P {|Xtn | ≥ n} ≥ α

2
.

Consider a convergent subsequence tnk
→ t0 ∈ [0, T ]. Then

α

2
≤ P

{
|Xtnk

| ≥ nk

}
≤ P

{
|Xtnk

−Xt0 | ≥
nk

2

}
+ P

{
|Xt0 | ≥

nk

2

}
→ 0,

as k → ∞, and we get a contradiction. �
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REMARK 6.2.– Lemma 6.2 holds if we replace interval [0, T ] with any compact

subset T′ ⊂ R+. For completeness, we give an example of the process, which is not

stochastically continuous at any point.

EXAMPLE 6.1.– Let X = {Xt, t ∈ R+} be a stochastic process with independent
values, i.e. the random variables {Xt, t ∈ R+} are mutually independent. Assume
that Xt are identically distributed and their distribution is non-degenerate. Then the
process X is not stochastically continuous at any point t ∈ R+. Indeed, for any t > 0
(t = 0 can be treated similarly) and any s ≥ 0

P {|Xt −Xs| ≥ ε} = P {Xs ≥ Xt + ε}+ P {Xs ≤ Xt − ε} [6.1]

=

ˆ
R

(
1− F (x+ ε−)

)
dF (x) +

ˆ
R

F (x− ε)dF (x),

where F is the cumulative distribution function of Xt. We see that the right-hand side
of [6.1] is strictly positive if F is not degenerate, and it does not depend on t and s;
therefore, it does not converge to 0 as s → t.

DEFINITION 6.2.–

1) Stochastic process X = {Xt, t ∈ R+}, such that EX2
t < ∞ for any t ∈ R+, is

continuous in L2(Ω,F ,P) (mean-square continuous) at the point t0 ∈ R+ if E|Xt −
Xt0 |2 → 0 as t → t0.

2) Stochastic process X is continuous in L2(Ω,F ,P) on some T
′ ⊂ R+ if it is

continuous in L2(Ω,F ,P) at any point t ∈ T
′.

Obviously, a stochastic process X continuous on T
′ in L2(Ω,F ,P) is continuous

on this set in probability.

6.2. Modification of stochastic processes: stochastically equivalent and
indistinguishable processes

Let X = {Xt, t ∈ T} and Y = {Yt, t ∈ T} be two stochastic processes defined

on the same parametric set and on the same probability space.

DEFINITION 6.3.– Processes X and Y are stochastically equivalent if for any t ∈ T

P {Xt = Yt} = 1.

DEFINITION 6.4.– If X and Y are stochastically equivalent, we say that Y is a
modification of X (and vice versa, X is a modification of Y ).

DEFINITION 6.5.– Processes X and Y are indistinguishable if

P {Xt = Yt ∀t ∈ T} = 1.
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Obviously,

P {Xt = Yt, ∀t ∈ T} = P

{⋂
t∈T

{Xt = Yt}
}

≤ P {Xt = Yt} for any t ∈ T.

Therefore, any indistinguishable processes are stochastically equivalent.

Indistinguishability means that X and Y have the same trajectories X·(ω) = Y·(ω),
ω ∈ Ω′ where P{Ω′}=1. It means that X and Y coincide, up to a negligible set. Vice

versa, stochastic equivalence, generally speaking, does not imply indistinguishability,

as shown in the following example.

EXAMPLE 6.2.– Let Ω = T = [0, 1], F = B([0, 1]), P = λ1 (the Lebesgue measure
on B([0, 1])), Xt ≡ 0, t ∈ [0, 1], Yt = t=ω. Then P {Xt = Yt, t ∈ [0, 1]} = 0 since
the set {ω ∈ Ω : Xt = Yt, t ∈ [0, 1]} is empty. However

P {Xt = Yt} = P {t 
= ω} = 1− P {t = ω} = 1− λ1({t}) = 1,

from which X and Y are stochastically equivalent.

Under some additional assumptions, we may deduce indistinguishability from

stochastic equivalence, as formulated in the following theorem.

THEOREM 6.1.– Let X and Y be stochastically equivalent processes.

1) If T is at most countable, then X and Y are indistinguishable.

2) If X and Y are right-continuous, then they are indistinguishable.

REMARK 6.3.– The second conclusion also holds for left-continuous processes.

PROOF.– 1) Since

{Xt = Yt ∀t ∈ T} =
⋂
t∈T

{Xt = Yt}

is at most a countable intersection of sets of probability 1, it has probability 1 as well.

2) Let T′ ⊂ T be a countable set, which is dense everywhere in T. Also let T′′ be

the set of right limit points of T, i.e. points t ∈ T for which there exists a sequence

{tn, n ≥ 1} ⊂ T∩(t,+∞) with tn → t, n → ∞. The set T\T′′ is at most countable,

since each of its points has a right neighborhood containing no other points from

T \ T′′. Thanks to right-continuity,

{Xt = Yt ∀t ∈ T} = {Xt = Yt ∀t ∈ T
′} ∩ {Xt = Yt ∀t ∈ T \ T′′} .
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By 1),

P {Xt = Yt ∀t ∈ T
′} = P {Xt = Yt ∀t ∈ T \ T′′} = 1,

whence the statement follows. �

6.3. Separable stochastic processes: existence of separable
modification

Separability of stochastic processes is an important property that helps to

establish regularity properties of its trajectories, like continuity or absence of

second-kind discontinuities.

Assume that the set T consists of its limit points, and that (Ω,F ,P) is a complete

probability space.

DEFINITION 6.6.– A real-valued stochastic process X = {Xt, t ∈ T} is separable on
T if there exists a set Φ ⊂ Ω, Φ ∈ F , such that P{Φ} = 0, and a countable subset
M ⊂ T, dense in T, such that for any ω ∈ Ω\Φ and any t ∈ T,

Xt(ω) ∈
[
lim inf
s→t,s∈M

Xs(ω), lim sup
s→t,s∈M

Xs(ω)

]
.

The countable dense set M ∈ T is called a separant of T. Separability is a rather

weak property; in a sense, any “reasonable” real-valued stochastic process has a

separable modification.

THEOREM 6.2.– Let X = {Xt, t ∈ T} be a real-valued stochastically continuous
process and T be a separable set. Then there exists a separable process
Y = {Yt, t ∈ T} taking values in the extended phase space R = [−∞,∞] and
stochastically equivalent to X , wherein any countable dense set M ⊂ T can serve as
a separant.

PROOF.– Define the process Y as follows. Let M be any separant; then for any t ∈ M
put Yt := Xt. For t ∈ T\M and ω ∈ Ω, such that

Xt(ω) ∈
[
lim inf
s→t,s∈M

Xs(ω), lim sup
s→t,s∈M

Xs(ω)

]
,

we put Yt(ω) := Xt(ω). For any t ∈ T\M and for any ω ∈ Ω, such that

Xt(ω) /∈
[
lim inf
s→t,s∈M

Xs(ω), lim sup
s→t,s∈M

Xs(ω)

]
,
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we put Yt(ω) := lim sups→t,s∈M Xs(ω). Alternatively, it is possible to put Yt(ω) :=
lim infs→t,s∈M Xs(ω). Note that both conventions can lead to the expansion of phase

space, since the limits can be infinite.

Now the rest of the proof is divided into several steps.

i) Let us prove that Y = {Yt, t ∈ T} is a stochastic process. In this connection, it

is necessary to establish that, for any t ∈ T, Yt is a random variable. It is evident for

t ∈ M . Further, for t ∈ T\M

Xt(ω) := lim sup
s→t,s∈M

Xs(ω) = inf
m≥1

sup
|s−t|≤ 1

m
s∈M

Xs(ω)

is a random variable, and similarly

Xt(ω) := lim inf
s→t,s∈M

Xs(ω)

is a random variable. Therefore, if we denote for any t ∈ T

At :=

{
ω ∈ Ω : Xt(ω) ∈

[
lim inf
s→t,s∈M

Xs(ω), lim sup
s→t,s∈M

Xs(ω)

]}
,

then for t ∈ T\M

At =
{
ω ∈ Ω : Xt(ω) ≤ Xt(ω) ≤ Xt(ω)

} ∈ F .

Therefore, Yt(ω) = Xt(ω) At + Xt(ω) Ac
t

is a random variable for any t ∈
T\M .

ii) The process Y is a separable process. Indeed, for t ∈ T\M
Yt(ω) ∈

[
Xt(ω), Xt(ω)

]
, but Xt(ω) and Xt(ω) are defined by the values of X and

M , and on M , X coincides with Y . Therefore, for t ∈ T\M

Yt(ω) ∈
[
lim inf
s→t,s∈M

Ys(ω), lim sup
s→t,s∈M

Ys(ω)

]
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for any ω ∈ Ω. Now let t ∈ M . Then we have

P

{
Yt(ω) /∈

[
lim inf
s→t,s∈M

Ys(ω), lim sup
s→t,s∈M

Ys(ω)

]}
= P{Ac

t}

= P

{
Xt(ω) /∈

[
lim inf
s→t,s∈M

Xs(ω), lim sup
s→t,s∈M

Xs(ω)

]}

= P

{
lim inf
s→t,s∈M

|Xs −Xt| > 0

}

= P

{ ⋃
m≥1

⋃
l≥1

⋂
|s−t|≤ 1

l ,s∈M

{
|Xs −Xt| ≥ 1

m

}}
[6.2]

≤
∞∑

m=1

lim
l→∞

P

{ ⋂
|s−t|≤ 1

l ,s∈M

{
|Xs −Xt| ≥ 1

m

}}

≤
∞∑

m=1

lim
l→∞

inf
|s−t|≤ 1

l
s∈M

P

{
|Xs −Xt| ≥ 1

m

}

≤
∞∑

m=1

lim
s→t
s∈M

P

{
|Xs −Xt| ≥ 1

m

}
= 0,

since X is a stochastically continuous process. Denote Φ =
⋃

t∈M Ac
t . Then P{Φ} =

0 and for any ω ∈ Ω\Φ and any t ∈ T

Yt(ω) ∈
[
lim inf
s→t,s∈M

Ys(ω), lim sup
s→t,s∈M

Ys(ω)

]
,

from which Y is a separable process.

iii) The process Y is stochastically equivalent to X . Indeed, for any t ∈ M and

any ω ∈ Ω, Xt = Yt. For t ∈ T\M , we have that

P {Xt 
= Yt} = P
{
ω ∈ Ω : Xt(ω) /∈ [X(ω), Xt(ω)

]}
= 0

because this equality was proved in [6.2] for t ∈ M , but the proof is based on the fact

that X is stochastically continuous at point t and irrespective of whether t belongs to

M or T\M . �
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6.4. Conditions of D-regularity and absence of the discontinuities of the
second kind for stochastic processes

The notion of D-regularity of the function is introduced in section A1.4, where

the criteria of D-regularity are formulated in terms of the modulus of continuity Δd.

The notion of function without discontinuities of the second kind is well known, and

in section A1.4, the criteria for a function to have no discontinuities of the second

kind is formulated in terms of ε-oscillations. Note that obviously the property to be

D-regular is stronger than to have no discontinuities of the second kind. In this

section, we consider first the Skorokhod conditions of D-regularity of the trajectories

of the stochastic process in terms of three-dimensional distributions and the

conditions for the process to have no discontinuities of the second kind in terms of

conditional probabilities of the big increments.

6.4.1. Skorokhod conditions of D-regularity in terms of three-
dimensional distributions

Now our goal is to consider the sufficient conditions for the D-regularity of a

stochastic process, which means that its trajectories have no discontinuities of the

second kind and, at any point, have at least one of the one-sided limits. First, we prove

an auxiliary result. Let the interval [0, T ] be fixed.

THEOREM 6.3.– Let X = {Xt, t ∈ [0, T ]} be a real-valued separable stochastically
continuous process, satisfying the condition: there exists a strictly positive
non-decreasing function g(h) and a function q(C, h), h ≥ 0, such that, for any
0 ≤ h ≤ t ≤ T − h and any C > 0

P {min(|Xt+h −Xt|, |Xt −Xt−h|) > Cg(h)} ≤ q(C, h),

and G(0) < ∞, Q(1, C) < ∞. Define

δn =
T

2n
, G(n) =

∞∑
k=n

g (δk) , Q(n,C) :=

∞∑
k=n

2kq (C, δk) .

Then, for any ε > 0

i) P

{
sup

0≤s≤t≤T
|Xt −Xs| > ε

}
≤ P

{
|XT −X0| > εg(T )

2G(0)

}
+Q

(
ε

2G(0)

)
.

ii) P

{
Δ1

d(X, [0, T ], ε) > 2CG

([
log2

T

2ε

])}
≤ Q

([
log2

T

2ε

]
, C

)
,

where

Δ1
d(X, [0, T ], ε) = sup

0≤t1<t2<t3≤T,
t3−t1<ε

min(|Xt2 −Xt1 |, |Xt3 −Xt2 |).
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REMARK 6.4.– Compare the modulus Δ1
d(X, [0, T ], ε), which is just introduced, with

the modulus Δd(X, [0, T ], ε) introduced in [A1.4]. We see that the latter also contains

the values of the increments in the left and right ends of the interval [0, T ].

PROOF.– Define tnk = kδn, k = 0, 1, . . . , 2n.

i) Introduce the following events. Let

An,k =
{
ω ∈ Ω :

∣∣Xtn
k+1

−Xtn
k

∣∣ ≤ Cg (δn)
}
, n ≥ 0, 0 ≤ k ≤ 2n − 1,

Bn,k = An,k−1 ∪An,k, n ≥ 1, 1 ≤ k ≤ 2n−1,

Dn =
∞⋂

m=n

2m−1⋂
k=1

Bmk, D0 = D1 ∩A0,0. [6.3]

Since X is a separable stochastically continuous process, we can consider any

dense countable set, e.g. the set M = {tnk , n ≥ 0, 0 ≤ k ≤ 2n}, as a separant. Recall

that for the set A we denote its complement in the whole space by Ac, which is Ω now,

so that Ac = Ω \A. Note that P {Bc
nk} ≤ q (C, δn), and therefore,

P {Dc
n} ≤

∞∑
m=n

2m−1∑
k=1

P {Bc
mk} ≤

∞∑
m=n

2mq (C, δm) = Q(n,C),

and

P {Dc
0} ≤ P

{
Ac

0,0

}
+ P {Dc

1} ≤ P {|XT −X0| > Cg(T )}+Q(1, C). [6.4]

Let the event D0 hold. Then A0,0 holds, so that |XT − X0| ≤ Cg(T ), and B1,1

holds so that at least one of the two events holds:

|XT −Xδ1 | ≤ Cg (δ1) or |Xδ1 −X0| ≤ Cg (δ1) .

Then it follows from triangle inequality that in any case

|Xδ1 −X0| ≤ Cg (T ) + Cg (δ1) , and |XT −Xδ1 | ≤ Cg (T ) + Cg (δ1) .

Now we shall apply induction. Assume that D0 holds and suppose that the

inequality

∣∣Xtn
k
−Xtn

j

∣∣ ≤ Cg (T ) + 2C
n∑

k=1

g (δk) [6.5]
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is true for some n ≥ 1 any k, j = 0, 1, . . . , 2n. Let us establish the same inequality

for n+ 1. Let, e.g. k and j be even numbers: k = 2k1, j = 2j1. Then it follows from

[6.5] that

∣∣∣Xtn+1
2k1

−Xtn+1
2j1

∣∣∣ = ∣∣∣Xtn
k1

−Xtn
j1

∣∣∣ ≤ Cg(T ) + 2C

n∑
k=1

g (δk) . [6.6]

Now, let k and j be odd numbers: k = 2k1 + 1, j = 2j1 + 1 (the cases where one

of the numbers is even and another is odd can be considered similarly). Then k and j
are situated between two even numbers: 2k1 < k < 2k1 + 2 and 2j1 < j < 2j1 + 2,

and it follows that Bn+1,2k1+2 and Bn,j1+1 hold, i.e.

∣∣∣Xtn+1
2k1+2

−Xtn+1
2k1+1

∣∣∣ ≤ Cg (δn+1) or
∣∣∣Xtn+1

2k1+1
−Xtn+1

2k1

∣∣∣ ≤ Cg (δn+1)

holds, and

∣∣∣Xtn+1
2j1+2

−Xtn+1
2j1+1

∣∣∣ ≤ Cg (δn+1) or
∣∣∣Xtn+1

2j1+1
−Xtn+1

2j1

∣∣∣ ≤ Cg (δn+1)

holds. Let, e.g.

∣∣∣Xtn+1
2k1+1

−Xtn+1
2k1

∣∣∣ ≤ Cg (δn+1)

and ∣∣∣Xtn+1
2j1+2

−Xtn+1
2j1+1

∣∣∣ ≤ Cg (δn+1) .

Then∣∣∣Xtn+1
2k1+1

−Xtn+1
2j1+1

∣∣∣ ≤ ∣∣∣Xtn+1
2k1+1

−Xtn+1
2k1

∣∣∣+ ∣∣∣Xtn+1
2j1+1

−Xtn+1
2j1+2

∣∣∣
+
∣∣∣Xtn

k1
−Xtn

j1+1

∣∣∣ ≤ Cg(T ) + 2C

n∑
k=1

g (δk) + 2Cg (δn+1) .

Therefore, we prove [6.5] for all n ≥ 0. It means that, for ω ∈ D0,

∣∣∣Xtn+1
2k1

−Xtn+1
2j1

∣∣∣ ≤ 2CG(0), [6.7]



Regularity of Trajectories of Stochastic Processes 141

and it follows from separability of X that for any 0 ≤ s < t ≤ T |Xt − Xs| ≤
2CG(0) for ω ∈ D0. Now, for any ε > 0, put C = ε

2G(0) . Then it follows from [6.4]

that

P

{
sup

0≤s<t≤T
|Xt −Xs| > ε

}
≤ P{Dc

0} ≤ P

{
|XT −X0| > εg(T )

2G(0)

}

+Q

(
1,

ε

2G(0)

)
.

ii) Set n =
[
log2

T
ε

]
so that ε ≤ δn and fix some i ∈ {1, . . . , 2n − 1} temporarily.

Denote Mm = {tmk , k = 0, . . . , 2m}, m ≥ 1. Let us prove by induction that, for any

ω ∈ Dn and any m ≥ n, there exists σm ∈ [tni−1, t
n
i+1) ∩Mm, such that

max
tn
i−1

≤t≤σm, t∈Mm

∣∣Xtn
i−1

−Xt

∣∣ ≤ C
m∑

k=n

g (δk) , [6.8]

max
σm<t≤tn

i+1
, t∈Mm

∣∣Xt −Xtn
i+1

∣∣ ≤ C

m∑
k=n

g (δk) , [6.9]

and σm is non-decreasing in m.

Let m = n. For ω ∈ Dn∣∣Xtn
i+1

−Xtn
i

∣∣ ≤ Cg (δn)

or ∣∣Xtn
i
−Xtn

i−1

∣∣ ≤ Cg (δn) .

In the first case, we can choose σn = tni−1, and, in the second case, σn = tni ; if

both inequalities hold, the choice can be tni−1 or tni .

Let σm be already chosen. For ω ∈ Dn,∣∣Xσm+δm+1 −Xσm

∣∣ ≤ Cg (δm+1)

or ∣∣Xσm+δm+1 −Xσm+δm

∣∣ ≤ Cg (δm+1) .

In the first case, we can choose σm+1 = σm + δm+1, and, in the second case,

σm+1 = σm; if both inequalities hold, the choice of these two values is arbitrary.
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Denote σ = limm→∞ σm and recall that M =
⋃

m Mm. Then we have from [6.8]

and [6.9]

sup
tn
i−1

≤t<σ,t∈M

∣∣Xtn
i−1

−Xt

∣∣ ≤ CG(n)

and

sup
σ<t≤tn

i+1
,t∈M

∣∣Xt −Xtn
i+1

∣∣ ≤ CG(n).

However, if σ ∈ M so that σ = tm0
j for some m0, we can say more than that.

Namely, two situations are possible.

1) There exists m1 such that σm = σ for all m ≥ m1. In this case, equation [6.8]

yields

sup
tn
i−1

≤t≤σ,t∈M

∣∣Xtn
i−1

−Xt

∣∣ ≤ CG(n). [6.10]

2) For any m ≥ 0, σm < σ. Then, for m > m0, σm + δm ≤ σ. Therefore, for

m > m0, we get from equation [6.9] that

max
σ≤t≤tn

i+1
,t∈Mm

∣∣Xt −Xtn
i+1

∣∣ ≤ CG(n).

By letting m → ∞, we get

sup
σ≤t≤tn

i+1
,t∈M

∣∣Xt −Xtn
i+1

∣∣ ≤ CG(n). [6.11]

Now let t1, t2, t3 ∈ M , tni−1 ≤ t1 < t2 < t3 ≤ tni+1. If t2 > σ, then from [6.11]∣∣Xt2 −Xt3

∣∣ ≤ 2CG(n), and for t2 < σ
∣∣Xt1 −Xt2

∣∣ ≤ 2CG(n). Finally, for t2 = σ,

which means that σ ∈ M , as explained above, either [6.10] or [6.11] holds. Hence,

we get either
∣∣Xt1 −Xt2

∣∣ ≤ 2CG(n) or
∣∣Xt2 −Xt3

∣∣ ≤ 2CG(n) respectively.

Since ε ≤ δn, for any t1, t2, t3 ∈ M satisfying t1 < t2 < t3 ≤ t1 + ε, there exists

i ∈ {1, . . . , 2n−1} such that tni−1 ≤ t1 < t2 < t3 ≤ tni+1. From the above paragraph,

we have

min
(|Xt2 −Xt1 |, |Xt3 −Xt2 |

) ≤ 2CG(n)

for any ω ∈ Dn. Since X is a separable process, there then exists Φ ∈ F such that

P{Φ} = 0 and for any ω ∈ Dn\Φ

Δ1
ε := sup

0≤t1<t2<t3≤t1+ε
min

(|Xt2 −Xt1 |, |Xt3 −Xt2 |
) ≤ 2CG(n).
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Therefore,

P
{
Δ1

ε > 2CG(n)
} ≤ P{Dc

n} ≤ Q(n,C),

as required. �

THEOREM 6.4.– Suppose that conditions of theorem 6.3 hold. Then with probability
1 the process X is D-regular, i.e. it has no discontinuities of the second kind, and
moreover, for each t ∈ (0, T ), it is left- or right-continuous at t, i.e. X(t−) = X(t)
or X(t−) = X(t), and X(0+) = X(0), X(T−) = X(T ).

PROOF.– Using the notation of the proof of theorem 6.3, we will show that X is D-

regular for ω ∈ D :=
⋃∞

n=1 Dn, where Dn were introduced in [6.3]. The assertion

will then follow since P{Dc} = limn→∞ P{Dc
n} ≤ lim supn→∞ Q(n,C) = 0.

It follows from the proof of theorem 6.3 (ii) that if ε ∈ (δn+1, δn], then

Δ1
d(X, [0, T ], ε) ≤ 2CG(n) on Dn. Since G(n) → 0 as n → ∞, we get that

Δ1
d(X, [0, T ], ε) → 0 as ε → 0 on the event D.

To apply theorem A1.9, we need to show that

sup
0≤t≤ε

|Xt −X0| → 0 and sup
T−ε≤t≤T

|Xt −XT | → 0, ε → 0,

on the event D. We will show only the first convergence, the second one being similar.

From the proof of theorem 6.3 (ii) it follows that, for any n ≥ 1 and ω ∈ Dn, there

exists σ(n) ∈ [0, 2δn] such that

sup
0≤t<σ(n)

|Xt −X0| ≤ CG(n)

and

sup
σ(n)<t≤2δn

|Xt −X2δn | ≤ CG(n). [6.12]

Define D′
n = {ω ∈ Dn : σ(n) > 0},

D′ = lim
n→∞D′

n = {ω ∈ D : σ(n) > 0 for infinitely many n} .

Clearly, sup0≤t≤ε |Xt −X0| ≤ CG(n) on D′
n for any ε < σ(n), hence

lim
ε→0

sup
0≤t≤ε

|Xt −X0| ≤ CG(n)
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on D′
n. Using that G(n) → 0, n → ∞, we get that

lim
ε→0

sup
0≤t≤ε

|Xt −X0| = 0 [6.13]

on D′. On the other hand, if ω ∈ D \ D′, then there exists n0, such that σn = 0 for

all n ≥ n0. Then from [6.12]

sup
0<t1<t2≤2δn

|Xt1 −Xt2 | ≤ 2CG(n)

for n ≥ n0, which obviously implies that there exists the limit limt→0+ Xt. Thanks

to stochastic continuity, this limit is equal to X0, but then [6.12] yields

sup
0≤t≤2δn

|Xt −X2δn | ≤ CG(n),

whence

sup
0≤t1<t2≤2δn

|Xt1 −Xt2 | ≤ 2CG(n)

for all n ≥ n0 on D \D′. Setting t1 = 0 and combining this with [6.13], we get

lim
ε→0

sup
0≤t≤ε

|Xt −X0| = 0

on D, as claimed. As a result, limε→0 Δd(X, [0, T ], ε) = 0 on D, so the statement

follows from theorem A1.9. �

6.4.2. Conditions of absence of the discontinuities of the second kind
formulated in terms of conditional probabilities of large increments

In this section, consider a complete probability space (Ω,F ,P). Recall that the

completeness means the following: for any A ∈ F with P{A} = 0 and any B ⊂ A,

we have that B ∈ F , and consequently, P{B} = 0. Furthermore, consider stochastic

basis with filtration
(
Ω,F , {Ft}t≥0 ,P

)
constructed on (Ω,F ,P) and assume that

this basis is complete, i.e. F0 contains all P-zero sets of F . Consider a stochastic

process X = {Xt,Ft, t ≥ 0} adapted to the filtration mentioned above. For any ε > 0
and 0 ≤ s < t, consider a conditional probability P {|Xt −Xs| ≥ ε|Fs} (we call

it the conditional probability of a big increment). It is a bounded random variable;

therefore, for any interval [a, b] ⊂ R+, and any Ω′ ∈ F with P{Ω′} = 1, we can

consider

α (ε, δ,Ω′, [a, b]) = sup
ω∈Ω′

sup
a≤s<t≤(s+δ)∧b

P {|Xt −Xs| ≥ ε | Fs} .
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Let

α (ε, δ, [a, b]) = inf
Ω′:P{Ω′}=1

α (ε, δ,Ω′, [a, b]) .

Note that both α (ε, δ,Ω′, [a, b]) and α (ε, δ, [a, b]) are real numbers between 0 and

1. According to the definition of infimum, there exists a sequence {Ω′
n, n ≥ 1}, such

that P {Ω′
n} = 1 and α (ε, δ,Ω′

n, [a, b]) → α (ε, δ, [a, b]). If we put Ω′
0 =

⋃∞
n=1 Ω

′
n,

then

α (ε, δ,Ω′
0, [a, b]) ≤ lim

n→∞α (ε, δ,Ω′
n, [a, b]) ,

therefore, α (ε, δ, [a, b]) = α (ε, δ,Ω′
0, [a, b]).

Now establish the auxiliary result. Let a ≤ t1 < t2 < . . . < tn ≤ b be any

finite number of points. Denote π = {t1, . . . , tn} and introduce the following events:

Ak(ε, π) = {ω ∈ Ω : X has at least k ε-oscillations on the set π} .

LEMMA 6.3.– The following upper bound holds:

P
{
Ak(ε, π) | Fa

} ≤
(
2α
(ε
4
, b− a, [a, b]

))k
a.s. [6.14]

REMARK 6.5.– Since the conditional probability P {|Xt −Xs| ≥ ε | Fs} for each s
and t is defined up to a set of zero probability, then the expression α(ε, δ,Ω′, [a, b]) is

defined non-uniquely. Moreover, since the supremum in its definition is taken over an

uncountable collection, the non-uniqueness is essential: the union of exceptional sets

of zero probability can even be equal to whole Ω. Consequently, α(ε, δ, [a, b]) is also

defined non-uniquely. Nevertheless, all results that follow are valid for any choice of

α(ε, δ, [a, b]).

PROOF.– 1) Consider the case k = 1 and introduce the events

Al =
{
|Xti −Xa| < ε

2
, 1 ≤ i ≤ l − 1, |Xtl −Xa| > ε

2

}
,

Bl =
{
|Xtl −Xb| ≥ ε

4

}
, Cl = Al ∩Bl, 1 ≤ l ≤ n, B0 =

{
|Xb −Xa| ≥ ε

4

}
.

The events Al, consequently Cl, are disjoint, and A1(ε, π) ⊂ (
⋃n

l=1 Cl) ∪ B0.

Indeed, if the trajectory of X has at least one ε-oscillation on π, then one of Al
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happens, and if, at the same time, Bl does not happen, then

|Xb −Xa| ≥ |Xtl −Xa| − |Xb −Xtl | ≥ ε
4 , i.e. B0 happens. Therefore,

P
{
A1(ε, π)|Fa

} ≤ P {B0|Fa}+
n∑

l=1

P {Cl|Fa}

= P
{
|Xb −Xa| ≥ ε

4
|Fa

}
+

n∑
l=1

E ( Al
E ( Bl

|Ftl) |Fa)

≤ α
(ε
4
, b− a, [a, b]

)
+

n∑
l=1

E
(

Al
α
(ε
4
, b− a, [a, b]

)
|Fa

)

≤ α
(ε
4
, b− a, [a, b]

)(
1 +

n∑
l=1

P{Al|Fa}
)

≤ 2α
(ε
4
, b− a, [a, b]

)
.

2) Now we can apply induction. Assume that [6.14] is checked for some k − 1.

Introduce the event

Dl = {on the set {t1, . . . , tl} the trajectory of X has at least k − 1

ε-oscillations, while on the set {t1, . . . , tl−1} the number of

ε-oscillations is less than k − 1} .

The events Dl, 1 ≤ l ≤ n are disjoint,
⋃n

l=1 Dl = Ak−1(ε, π) ⊃ Ak(ε, π).

Now, let Ak(ε, π) ∩ Dl hold. Then on the set {tl, tl+1, . . . , tn}, we have at least

one ε-oscillation. Therefore, Ak(ε, π) =
⋃n

l=1

(
Dl ∩Ak(ε, π)

) ⊂ ⋃n
l=1(Dl ∩ El),

where

El = {on the set {tl, tl+1, . . . , tn} the trajectory of X

has at least one ε-oscillation}.

Note that P {El|Ftl} ≤ 2α
(
ε
4 , b− tl, [tl, b]

) ≤ 2α
(
ε
4 , b− a, [a, b]

)
. Therefore,

applying induction, we get

P
{
Ak(ε, π)|Fa

} ≤
n∑

l=1

P {Dl ∩ El|Fa}

=

n∑
l=1

E ( Dl
E ( El

|Ftl) |Fa) =

n∑
l=1

E ( Dl
P {El|Ftl} |Fa)
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≤ 2α
(ε
4
, b− a, [a, b]

)
P

{
n⋃

l=1

Dl|Fa

}

= 2α
(ε
4
, b− a, [a, b]

)
P
{
Ak−1(ε, π)|Fa

}
≤
(
2α
(ε
4
, b− a, [a, b]

))k
. �

THEOREM 6.5.– Let the stochastic process X = {Xt,Ft, t ≥ 0} be separable and
for some T > 0 and any ε > 0 limδ→0+ α(ε, δ, [0, T ]) = 0. Then X has no
discontinuities of the second kind on the interval [0, T ].

PROOF.– Denote by M ⊂ [0, T ] the separant of the process X . Since M is countable,

it can be presented as M =
⋃∞

n=1 Mn, where Mn are increasing finite sets. Let ε > 0
be fixed. We can choose m ∈ N in such a way that 2α

(
ε
4 ,

T
m , [0, T ]

)
= α < 1. Since

α(ε, δ, ·) increases when the interval increase, 2α
(

ε
4 ,

T
m ,
[
(k−1)T

m , kT
m

])
≤ α for any

1 ≤ k ≤ m. Therefore, according to lemma 6.3,

P

{
Ak

(
ε,Mn ∩

[
(k − 1)T

m
,
kT

m

])∣∣∣∣F (k−1)T
m

}
≤ αk. [6.15]

Denote

A∞(ε, T̃) =
{

the trajectory of X has an infinite number of ε-oscillations on T̃

}
.

Then for a separable process

A∞(ε, [a, b]) = A∞(ε,M ∩ [a, b]) =
∞⋂
r=1

Ar(ε,M ∩ [a, b]),

and the events Ar(ε,M ∩ [a, b]) are decreasing in r; therefore,

P

{
A∞

(
ε,

[
(k − 1)T

m
,
kT

m

])∣∣∣∣F (k−1)T
m

}
[6.16]

≤ lim
r→∞P

{
Ar

(
ε,M ∩

[
(k − 1)T

m
,
kT

m

])∣∣∣∣F (k−1)T
m

}
.

Further,

Ar

(
ε,M ∩

[
(k − 1)T

m
,
kT

m

])
=

∞⋃
n=1

Ar

(
ε,Mn ∩

[
(k − 1)T

m
,
kT

m

])
,
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and the events Ar
(
ε,Mn ∩

[
(k−1)T

m , kT
m

])
are increasing in n, hence, using [6.15],

P

{
Ar

(
ε,M ∩

[
(k − 1)T

m
,
kT

m

])∣∣∣∣F (k−1)T
m

}
[6.17]

= lim
n→∞P

{
Ar

(
ε,Mn ∩

[
(k − 1)T

m
,
kT

m

])∣∣∣∣F (k−1)T
m

}
≤ αr.

It follows from [6.16] and [6.17] that P
{
A∞
(
ε,
[
(k−1)T

m , kT
m

])∣∣∣F (k−1)T
m

}
= 0,

from which P
{
A∞
(
ε,
[
(k−1)T

m , kT
m

])}
= 0 for any 1 ≤ k ≤ m, and

P {A∞ (ε, [0, T ])} ≤
m∑

k=1

P

{
A∞
(
ε,

[
(k − 1)T

m
,
kT

m

])}
= 0 for any ε > 0.

The proof now follows from theorem A1.8. �

COROLLARY 6.1.– Let X = {Xt, t ∈ [0, T ]} be a separable continuous in probability
stochastic process with independent increments. Then it has no discontinuities of the
second kind.

PROOF.– Calculate α(ε, δ) for any ε > 0. Owing to independent increments, it equals

α(ε, δ) = sup
ω∈Ω0,

0≤s<t≤(s+δ)∧T

P {|Xt −Xs| ≥ ε | Fs}

= sup
0≤s<t≤(s+δ)∧T

P {|Xt −Xs| ≥ ε}

and this value tends to 0 as δ → 0+ according to lemma 6.1. �

6.5. Conditions of continuity of trajectories of stochastic processes

6.5.1. Kolmogorov conditions of continuity in terms of two-dimensional
distributions

Similarly to theorem 6.4 and in the same notations, we can formulate and prove

the following result.

THEOREM 6.6.– Let X = {Xt, t ∈ [0, T ]} be a real-valued separable stochastic
process satisfying the condition: there exists a strictly positive non-decreasing
function g(h) and a function q(C, h), h ≥ 0, such that for any 0 ≤ h ≤ t ≤ T − h
and C > 0,

P {|Xt+h −Xt| > Cg(h)} ≤ q(C, h),
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and

G(0) =
∞∑

n=0

g (δn) < ∞, Q(C) =
∞∑

n=1

2nq (C, δn) < ∞.

Then

i) for any ε > 0

P

{
sup

0≤s≤t≤T
|Xt −Xs| > ε

}
≤ Q

(
ε

2G(0)

)
;

ii) P

{
Δc(X, [0, T ], ε) > 2CG

([
log2

T

2ε

])}
≤ Q

([
log2

T

2ε

]
, C

)
,

where

G(n) =

∞∑
k=n

g (δk) , Q(n,C) =

∞∑
k=n

2kq (C, δk) .

PROOF.– As before, denote tnk = kδn, k = 0, 1, . . . , 2n and consider the events

An,k =

{
ω ∈ Ω :

∣∣∣Xtn
k+1

−Xtn
k

∣∣∣ ≤ Cg

(
T

2n

)}
, n ≥ 0, 0 ≤ k ≤ 2n − 1

and let

Dn =
∞⋂

m=n

2m−1⋂
k=0

Am,k.

Then, for any ω ∈ D0 and any n ≥ 0, 0 ≤ j < k ≤ 2n,∣∣∣Xtn
k
−Xtn

j

∣∣∣ ≤ 2CG(0)

which can be proved similarly to [6.7]. It follows from separability of the process X
that, for ω ∈ D0, |Xt −Xs| ≤ 2CG(0), and

P

{
sup

0≤s≤t≤T
|Xt −Xs| > 2CG(0)

}
≤ P {Dc

0} ,

whence

P

{
sup

0≤s≤t≤T
|Xt −Xs| ≥ ε

}
≤

∞∑
n=0

2n−1∑
k=0

q

(
ε

2G(0)
, δn

)
= Q

(
ε

2G(0)

)
.
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Let ε > 0, n =
[
log2

T
ε

]
, so that ε ≤ T

2n , and let ω ∈ Dn. Then
∣∣∣Xtn

k+1
−Xtn

k

∣∣∣ <
Cg (δn). Assume that for some m > n, |k − j| ≤ 2m−n

∣∣∣Xtm
k
−Xtm

j

∣∣∣ ≤ 2C
m∑

k=n

g (δk) .

Then for m+1 and |k− j| ≤ 2m+1−n such that k > j, k = 2k1 +1, j = 2j1 +1
we have that |k1 − 1− j1| ≤ 2m−n, therefore∣∣∣Xtm+1

k
−Xtm+1

j

∣∣∣ ≤ ∣∣∣Xtm+1
k

−Xtm+1
k1+1

∣∣∣+ ∣∣∣Xtm+1
k1−1

−Xtm
j

∣∣∣
+
∣∣∣Xtm+1

2j1

−Xtm+1
2j1+1

∣∣∣ ≤ 2g (δm) + 2C

m∑
k=n

g (δk) ≤ 2CG(n).

Other points tm+1
k and tm+1

j are considered similarly. Finally, we get that, for any

tmk , tmj , m ≥ n, such that |k − j|δm ≤ δn

∣∣∣Xtm
k
−Xtm

j

∣∣∣ ≤ 2C
∞∑

k=n

g (δk) = 2CG(n).

Since X is separable, we get that, for 0 < ε ≤ δn and |s− t| ≤ ε,

|Xt −Xs| ≤ 2CG(n) on Dn. [6.18]

It means that

P

⎧⎪⎨⎪⎩ sup
|t−s|≤ε

0≤s<t≤T

|Xt −Xs| ≥ 2CG(n)

⎫⎪⎬⎪⎭ ≤ P {Dc
n} ≤ Q(n,C),

as required. �

The next result is an obvious corollary of theorem 6.6. It can be proved similarly

to theorem 6.4 but much simpler.

THEOREM 6.7.– Under the conditions of theorem 6.6, the process X is continuous
on [0, T ].

THEOREM 6.8.– (Kolmogorov–Chentsov) Let X = {Xt, t ∈ [0, T ]} be a separable
stochastic process satisfying the assumption: there exist constants K > 0, α > 0 and
β > 0, such that

E|Xt −Xs|α ≤ K|t− s|1+β , 0 ≤ s < t ≤ T. [6.19]
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Then X is a continuous process.

PROOF.– Let g(h) = hβ1/α, where 0 < β1 < β. Then

G(m) =
∞∑

k=m

(δk)
β1/α =

T β1/α
(
1
2

)β1m/α

1− ( 12)β1/α
= C1(δm)

β1
α ,

P {|Xt −Xt+h| ≥ Cg(h)} ≤ C−α [g(h)]
−α

E |Xt+h −Xt|α

≤ C−αKh−β1h1+β = C−αKh1+β−β1 .

Therefore, we can put q(C, h) = KC−αh1+β−β1 . In this case,

∞∑
n=0

g(δn) =
∞∑

n=0

(
T

2n

)β1/α

< ∞,

and

∞∑
n=0

2ng(C, δn) =

∞∑
n=0

KC−α2n (δn)
1+β−β1

= KC−αT 1+β−β1

∞∑
n=0

2−n(β−β1) < ∞,

and the proof follows from theorem 6.7. �

REMARK 6.6.– Theorems 6.7 and 6.8 can be reformulated in such a way that a

stochastic process, satisfying their assumptions except the assumption of separability,

has a continuous modification. From now on assume that we consider a separable

modification of any process X .

REMARK 6.7.– Condition E|Xt − Xs|β ≤ C|t − s| does not supply the continuity

of X . Indeed, if X is a homogeneous Poisson process with parameter λ, then, for any

k ∈ N,

E|Xt −Xs|k =

∞∑
l=0

lke−λ|t−s| (λ|t− s|)l
l!

≤ λ|t− s|
∞∑
l=1

lk−1 (λ|t− s|)l−1

(l − 1)!

= λ|t− s|
∞∑
l=0

(l + 1)k−1 (λ|t− s|)l
l!

≤ C|t− s|,

however, almost all trajectories of the Poisson process have jumps on R
+.
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REMARK 6.8.– Let X = {Xt, t ∈ [0, T ]} be a Gaussian process with zero mean and

covariance function R(s, t). Then

E(Xt −Xs)
2 = R(t, t)− 2R(s, t) +R(s, s).

According to the formula for higher moments of Gaussian distribution, if ξ ∼
N (0, σ2), then Eξ2k = Ckσ

k, where k ∈ N, Ck are some constants depending only

on k. Therefore,

E(Xt −Xs)
2 = Ck (R(t, t)− 2R(s, t) +R(s, s))

k
, k ∈ N.

Assume that there exist C > 0 and γ > 0 such that, for any s, t ∈ [0, T ],

R(t, t)− 2R(s, t) +R(s, s) ≤ C|t− s|γ . [6.20]

Then, for k > j−1, we have that

E(Xt −Xs)
2k ≤ CkC

k|t− s|γk.
It means that X is a continuous process.

In particular, let X be a Gaussian process with zero mean and E(Xt − Xs)
2 =

R(|t−s|), where R : R+ → R+ is some function (such processes are called processes
with stationary increments). If R(x) ≤ Cxγ , x ∈ [0, T ], then X is a continuous

process.

Consider some examples.

EXAMPLE 6.3.– Let X = W be a Wiener process. Then E|Wt − Ws|2 = |t − s|,
so W is a process with stationary increments with R(x) = x and W is a continuous
process on any [0, T ].

EXAMPLE 6.4.– Let X = BH be a fractional Brownian motion with Hurst index
H ∈ (0, 1). Then

E|BH
t −BH

s |2 = t2H − 2 · 1
2

(
t2H + s2H − |t− s|2H)+ s2H = |t− s|2H .

Therefore, BH is a process with stationary increments, R(x) = x2H , and BH is a
continuous process.

6.5.2. Hölder continuity of stochastic processes: a sufficient condition

Recall that function f : [0, T ] → R is said to be Hölder continuous of order

0 < α ≤ 1 if there exists C > 0, such that, for any s, t ∈ [0, T ],

|f(t)− f(s)| ≤ C|t− s|α.
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Obviously, if f is Hölder continuous of some order α ∈ (0, 1) on [0, T ], then it is

Hölder continuous of any order β ∈ (0, α) on this interval.

DEFINITION 6.7.– Function f : [0, T ] → R is Hölder continuous up to order α ∈
(0, 1) on [0, T ] if it is Hölder continuous of any order β ∈ (0, α).

THEOREM 6.9.– Let stochastic process X = {Xt, t ∈ [0, T ]} be separable and satisfy
condition [6.19]. Then a.s. its trajectories are Hölder continuous up to order β/α.

PROOF.– Let us attentively check the proof of theorem 6.8. It follows from [6.18] that

for 0 < ε ≤ T
2n , and |s− t| ≤ ε

|Xt −Xs| ≤ 2CG(n) = 2C

∞∑
k=n

(δk)
β1/α ≤ 2C

(δn)
β1/α

1− (δn)β1/α

≤ 4C (δn)
β1/α for n > log2

(
T · 2 α

β1

)
, and for ω ∈ Dn.

Furthermore,

∞∑
n=1

P {Dc
n} ≤

∞∑
n=1

2nQ(n,C) < ∞.

Therefore, it follows from the Borel–Cantelli lemma that, for any ω ∈ Ω′ with

P{Ω′} = 1, there exists n0 = n0(ω) > log2(T · 2β1/α), such that, for n ≥ n0(ω),

|Xt −Xs| ≤ 4C (δn)
β1/α , for |t− s| ≤ δn.

Then, for any t, s ∈ [0, T ], such that |t− s| ≥ δn0(ω), the distance |t− s| does not

exceed T = 2n0(ω) · δn0(ω), whence

|Xt −Xs| ≤ 2n0(ω)·(δn0(ω))
β1/α

,

and for |t− s| ∈ [δn+1, δn] for n ≥ n0(ω)

|Xt −Xs| ≤ 4C (δn)
β1/α ≤ 4C (δn+1)

β1/α · 2β1/α ≤ C2|t− s|β1/α,

and the proof follows. �

In particular, let X be a Gaussian process with zero mean, stationary increments,

and let E(Xt −Xs)
2 = R(|t− s|). If R(x) ≤ Cxγ , x ∈ [0, T ], then, for any p ∈ N,

E|Xt −Xs|2p ≤ Cp|t − s|γp; therefore, X is Hölder continuous up to order γ
2 − 1

2p

for any p ≥ 1, i.e. it is Hölder continuous up to order γ
2 . Consider some examples.
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EXAMPLE 6.5.– Let X = W be a Wiener process. Then E|Wt−Ws|2 = |t−s|, so γ =
1 and W is Hölder continuous up to order 1

2 . It means that there exists Ω′ ⊂ Ω such
that P{Ω′} = 1 and for any ω ∈ Ω′, any δ > 0 and any T > 0, there exists a constant
C = C(T, ω, δ), such that, for any s, t ∈ [0, T ], |Wt −Ws| ≤ C(T, ω, δ)|t− s| 12−δ.

EXAMPLE 6.6.– Let X = BH be a fractional Brownian motion with Hurst index
H ∈ (0, 1). Then

E|BH
t −BH

s |2 = |t− s|2H .

Therefore, γ = 2H and BH are Hölder continuous up to order H . It means that
there exists Ω′ ⊂ Ω, such that P{Ω′} = 1 and for any ω ∈ Ω′, any δ > 0 and any
T > 0, there exists a constant C = C(T, ω, δ), such that, for any s, t ∈ [0, T ],

|BH
t −BH

s | ≤ C(T, ω, δ)|t− s|H−δ.

Of course, these reasons do not deny that W and BH have smoother trajectories;
however, it can be established that the statements above concerning their Hölder
properties are sharp.

6.5.3. Conditions of continuity in terms of conditional probabilities

THEOREM 6.10.– Consider the interval [0, T ] and sequence of partitions

πn =
{
0 = tn0 < . . . < tnkn

= T
}
.

Denote |πn| = max1≤k≤kn(t
n
k − tnk−1). Let X = {Xt, t ∈ [0, T ]} be a separable

stochastic process without discontinuities of second kind, such that, for any sequence
{πn, n ≥ 1} of partitions with |πn| → 0 as n → ∞ and any ε > 0,

kn∑
k=1

P
{∣∣Xtn

k
−Xtn

k−1

∣∣ ≥ ε
}
→ 0 as n → ∞. [6.21]

Then the process X is continuous, i.e. it has a.s. continuous trajectories on [0, T ].

PROOF.– For any ε > 0, denote by νε the number of points t ∈ (0, T ) for which

Xt+ 
= Xt− and let νnε be the number of points tkn, for which
∣∣∣Xtn

k
−Xtn

k−1

∣∣∣ > ε
2 .

Then νε ≤ limn→∞ inf νnε , while

Eνnε = E

kn∑
k=1

∣∣∣Xtn
k
−Xtn

k−1

∣∣∣≥ ε
2

=

kn∑
k=1

P
{∣∣∣Xtn

k
−Xtn

k−1

∣∣∣ ≥ ε

2

}
.

It follows from the Fatou lemma and the theorem assumptions that

Eνε ≤ E lim inf
n→∞ νnε ≤ lim inf

n→∞ Eνnε = 0.
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Therefore, νε = 0 with probability 1 for any ε > 0. It means that Xt+ = Xt−,

t ∈ (0, T ) with probability 1. Then it follows from separability of X that Xt =
Xt+ = Xt−, t ∈ (0, T ) with probability 1. Moreover, it follows from separability of

X on [0, T ] that X0 = X0+ and XT = XT− with probability 1. It means that X is

continuous on [0, T ]. �

THEOREM 6.11.– Let a process X = {Xt, t ∈ [0, T ]} be separable and, for any
ε > 0, limδ→0+

α(ε,δ,[0,T ])
δ = 0. Then the process X is continuous on [0, T ].

PROOF.– Under the theorem’s condition limδ→0+ α(ε, δ, [0, T ]) = 0. Therefore, X
has no discontinuities of the second kind according to theorem 6.5. Consequently,

it is sufficient to check condition [6.21]. Consider a sequence of partitions πn with

|πn| → 0 as n → ∞. Note that

P
{∣∣∣Xtn

k
−Xtn

k−1

∣∣∣ ≥ ε
}
≤ E

⎛⎝ ∣∣∣Xtn
k
−Xtn

k−1

∣∣∣≥ε

⎞⎠
= E

⎛⎝E

⎛⎝ ∣∣∣Xtn
k
−Xtn

k−1

∣∣∣≥ε
|Ftn

k−1

⎞⎠⎞⎠ = E
(
P
{∣∣∣Xtn

k
−Xtn

k−1

∣∣∣ ≥ ε|Ftn
k−1

})
≤ α(ε, tnk − tnk−1, [t

n
k , t

n
k−1]) ≤ α(ε, tnk − tnk−1, [0, T ]),

we conclude that

kn∑
k=1

P
{∣∣∣Xtn

k
−Xtn

k−1

∣∣∣ ≥ ε
}
≤

kn∑
k=1

(tnk − tnk−1)
α(ε, tnk − tnk−1, [0, T ])

tnk − tnk−1

≤ max
1≤k≤n

α(ε, tnk − tnk−1, [0, T ])

tnk − tnk−1

· T ≤ sup
0<γ≤|πn|

α(ε, γ, [0, T ])

γ
· T.

[6.22]

Therefore, it follows from the definition of lim sup and [6.22] that

lim
n→∞

kn∑
k=1

P
{∣∣∣Xtn

k
−Xtn

k−1

∣∣∣ ≥ ε
}
≤ lim sup

δ→0+

α(ε, δ, [0, T ])

δ
· T = 0. �
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Markov and Diffusion Processes

7.1. Markov property

Consider a complete probability space (Ω,F ,P) and a parameter set T ⊂ R,

playing the role of time.

DEFINITION 7.1.– A stochastic process {Xt, t ∈ T} in (S,Σ) is called a Markov

process if for any s, t ∈ T, s < t and any A ∈ Σ

P {Xt ∈ A | Fs} = P {Xt ∈ A | Xs} [7.1]

almost surely, where Ft = FX
t = σ {Xs, s ≤ t, s ∈ T} is the natural filtration of X .

Equation [7.1], called the Markov property, is the absence of memory: it means

that the probability distribution of future values of the process depends only on its

current value but not on the path which led to this value. In other words, conditionally

on the current state of the process, its future values are independent of its past values.

PROPOSITION 7.1.– The stochastic process X is Markov if and only if for any n ≥ 1,
any s1, s2, . . . , sn, t ∈ T with s1 < s2 < · · · < sn < t and any A ∈ Σ

P {Xt ∈ A | Xs1 , Xs2 , . . . , Xsn} = P {Xt ∈ A | Xsn} [7.2]

almost surely.

PROOF.– Let X be a Markov process. Then, for any n ≥ 1, any s1, s2, . . . , sn, t ∈ T

with s1 < s2 < · · · < sn < t and any A ∈ Σ, it follows from the properties of

conditional expectation that

P {Xt ∈ A | Xs1 , Xs2 , . . . , Xsn} = E
(
P {Xt ∈ A | Fsn} | Xs1 , Xs2 , . . . , Xsn

)
= E

(
P {Xt ∈ A | Xsn} | Xs1 , Xs2 , . . . , Xsn

)
= P {Xt ∈ A | Xsn} .

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Vice versa, let [7.2] hold. Fix some s, t ∈ T with s < t. When P{Xt ∈ A} = 0,

equation [7.1] is obvious, since both its sides are zero almost surely. So assume that

A ∈ Σ is such that K := P{Xt ∈ A} > 0. Denote

η = P{Xt ∈ A | Xs}

and consider set functions

Q1(B) =
1

K
E( Xt∈A B), Q2(B) =

1

K
E(η B), B ∈ Fs.

It is obvious that Q1 is a probability measure and it follows from the tower property

of conditional expectation that Eη = P{Xt ∈ A} = K, so Q2 is a probability

measure too. Now for B of the form

B = {(Xs1 , . . . , Xsn) ∈ D} , n ≥ 1, s1 < · · · < sn ≤ s,D ∈ Σ(n), [7.3]

we have, thanks to equation [7.2], that E( Xt∈A B) = E(η B), whence Q1(B) =
Q2(B). The sets of the form [7.3] form a π-system and generate Fs, so we get from

theorem A2.2 that Q1(B) = Q2(B); hence, E( Xt∈A B) = E(η B) for all B ∈ Fs.

Since η is Fs-measurable, the latter equality means that

η = E( Xt∈A | Fs) = P{Xt ∈ A | Fs},

as required. �

Assume further that the state space (S,Σ) is a Polish space, i.e. a separable

complete metric space with Borel σ-algebra. By theorem A2.6 and remark A2.2, we

can write

P {Xt ∈ A | Xs} = P (s,Xs, t, A), [7.4]

where the function P (s, x, t, A) is measurable in x for any fixed s, t, A. Moreover,

by theorem A2.12, a regular conditional distribution exists, so we can assume without

any loss of generality that P (s, x, t, A) is a measure as a function of A for any fixed

s, t, x. Further, using theorem A2.3, we find that for any bounded measurable function

g : S → R,

E (g(Xt) | Fs) =

ˆ
S
g(y)P (s,Xs, t, dy) [7.5]
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almost surely. Therefore, using the tower property of conditional expectation, we can

write for any s, u, t ∈ T with s < u < t and any A ∈ Σ

P (s,Xs, t, A) = P {X(t) ∈ A | Fs} = E(P {Xt ∈ A | Fu} | Fs)

= E (P (u,Xu, t, A) | Fs) =

ˆ
S
P (u, y, t, A)P (s,Xs, u, dy)

almost surely. This is equivalent to saying that

P (s, x, t, A) =

ˆ
S
P (u, y, t, A)P (s, x, u, dy) [7.6]

for all x ∈ S except some set N such that P{Xs ∈ N} = 0. This equation, called the

Chapman–Kolmogorov equation, motivates the following definition, where we denote

T
2< =

{
(s, t) ∈ T

2 : s < t
}

.

DEFINITION 7.2.– A transition probability function is a function P : T2<×S×Σ →
R such that:

1) P (s, x, t, A) is measurable in x;

2) as a function of A, P (s, x, t, A) is a probability measure;

3) equation [7.6] holds for all (s, t) ∈ T
2<, x ∈ S , A ∈ Σ.

A function Q : S × Σ, such that Q(x,A) is measurable in x and a probability

measure in A, is called a transition kernel, stochastic kernel or Markov kernel.
Alternative names for transition probability function are transition probability and

Markov transition probability (function).

It is natural and convenient to define the “zero-time” transition probabilities as

P (t, x, t, A) = δx(A) := A(x).

With this extension, equations [7.4] and [7.6] obviously hold when some of the

parameters s, u, t coincide.

DEFINITION 7.3.– A Markov process X is said to have the transition probability
function P , or the transition probability function P is said to correspond to X , if
equation [7.4] is satisfied for any (s, t) ∈ T

2< and A ∈ Σ almost surely.

If a Markov process X has transition probability function P , then, appealing as

before to theorem A2.3, [7.5] holds for any bounded measurable function g. Vice

versa, substituting an indicator function into [7.5] leads to [7.4], so [7.5] can be

regarded as an alternative definition of the fact that P corresponds to X .
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The discussion preceding Definition 7.2 shows that to each Markov process

corresponds a function, which satisfies [7.6] for almost all x ∈ S with respect to the

distribution of Xs, so it is in this sense almost a transition probability function. It

turns out that for a Markov process taking values in a complete separable metric

space, there exists a genuine transition probability function, i.e. one that satisfies

[7.6] for any (s, t) ∈ T
2<, A ∈ Σ and all x ∈ S; this was proved by Kuznetsov

[KUZ 84]. The converse is not always the case: not all transition probability

functions have Markov processes corresponding to them.

EXAMPLE 7.1.– Let T = Z, S = N, Σ = 2N. Define for integer s ≤ t, x ∈ N, A ⊂ N

P (s, x, t, A) = A(x+ t− s).

This function is easily seen to be a transition probability. Assume that a corresponding
Markov process {Xt, t ∈ Z} exists. Note that

P{Xs+1 ∈ A | Xs = x} = P (s, x, s+ 1, A) = A(x+ 1),

so the underlying evolution is deterministic: the process simply increases its value by
1 on each step. In particular, thanks to the law of total probability, for every n ≥ 2,

P{Xt+1 = n} =
∞∑
k=1

P{Xt+1 = n | Xt = k}P{Xt = k} [7.7]

= P{Xt+1 = n | Xt = n− 1}P{Xt = n− 1} = P{Xt = n− 1},

and P{Xt+1 = 1} = 0. Obviously, P{X0 = m} > 0 for some m ∈ N. From [7.8],
we get

P{X0 = m) = P{X−1 = m− 1} = P{X−2 = m− 2} = · · · = P{X1−m = 1} = 0,

a contradiction.

Nevertheless, if there is a “starting point”, then the corresponding process exists.

THEOREM 7.1.– Assume that T has a minimal element t0 and P is a transition
probability function. Then, for any probability distribution μ on (S,Σ), there exists
a Markov process X such that P is its transition probability function and Xt0 has
distribution μ. Moreover, finite-dimensional distributions of the Markov process X
are uniquely determined by μ and P .

PROOF.– Let us start with the second statement, at the same time determining the

finite-dimensional distributions of X . For arbitrary integer n ≥ 2, let A1, . . . , An ∈ Σ
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and t1, . . . , tn ∈ T be such that t1 < · · · < tn. Denote Ik = Xtk
∈Ak

, k = 1, . . . , n,

and write, using the Markov property and [7.5],

P {Xt1 ∈ A1, . . . , Xtn ∈ An} = E
(
E
(
I1 · · · In | Ftn−1

))
= E

(
I1 · · · In−1 E

(
In | Ftn−1

))
= E

(
I1 · · · In−1 E

(
In | Xtn−1

))
= E

(
I1 · · · In−1P

(
tn−1, Xtn−1 , tn, An

))
= E

(
I1 · · · In−2 E

(
In−1P

(
tn−1, Xtn−1

, tn, An

) | Ftn−2

))
= E

(
I1 · · · In−2 E

(
In−1P

(
tn−1, Xtn−1 , tn, An

) | X(tn−2)
))

= E

(
I1 · · · In−2

ˆ
An−1

P
(
tn−1, yn−1, tn, An

)
P
(
tn−2, Xtn−2 , tn−1, dyn−1

))
.

Repeating this chain of reasoning and noting for better appearance that

P
(
tn−1, yn−1, tn, An

)
=

ˆ
An

P
(
tn−1, yn−1, tn, dyn

)
,

we get

P

(
Xt1 ∈ A1, . . . , Xtn ∈ An

)
= E

(ˆ
A1

ˆ
A2

· · ·
ˆ
An

( n∏
k=2

P
(
tk−1, yk−1, tk, dyk

))
P
(
t0, Xt0 , t1, dy1

))

=

ˆ
S

ˆ
A1

ˆ
A2

· · ·
ˆ
An

( n∏
k=1

P
(
tk−1, yk−1, tk, dyk

))
μ(dy0), [7.8]

which implies the uniqueness.

On the other hand, given a transition probability function P and an initial

distribution μ, we can define finite-dimensional distributions through [7.8]. This is

easily seen to be a consistent family, so thanks to theorem 1.2, there exists a

stochastic process {Xt, t ∈ T} such that its finite-dimensional distributions are given

by [7.8]. Moreover, it follows immediately from [7.8] that the distribution of Xt0 is

μ. Therefore, it remains to check that X is a Markov process with transition

probability function P .

To this end, first observe from [7.8] that for any s ∈ T, B ∈ Σ,

P
{
Xs ∈ B

}
=

ˆ
S
P (t0, y0, s, B)μ(dy0).
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By using theorem A2.3, we get

Ef(Xs) =

ˆ
S

ˆ
S
f(y)P (t0, y0, s, dy)μ(dy0)

for any bounded measurable function f . Therefore, using [7.8] again, for any t ∈ T,

t > T and A,B ∈ Σ, we have

P
{
Xs ∈ B,Xt ∈ A

}
=

ˆ
S

ˆ
B

P (s, y1, t, A)P (t0, y0, s, dy1)μ(dy0)

= E ( Xs∈BP (s,Xs, t, A)) .

whence [7.4] follows. Similarly, from [7.8], for any n ≥ 2, t1 < · · · < tn and

A1, . . . , An ∈ Σ,

P
{
Xt1 ∈ A1, . . . , Xtn ∈ An

}
=

ˆ
S

ˆ
A1

· · ·
ˆ
An−1

P
(
tn−1, yn−1, tn, An

)( n−1∏
k=1

P
(
tk−1, yk−1, tk, dyk

))
μ(dy0)

= E

(
n−1∏
k=1

Xtk
∈Ak

P
(
tn−1, Xtn−1

, tn, An

))
,

whence

P
{
Xtn ∈ An | Xt1 , . . . , Xtn−1

}
= P

(
tn−1, Xtn−1 , tn, An

)
almost surely. In particular, P

{
Xtn ∈ An | Xt1 , . . . , Xtn−1

}
is σ(Xtn−1)-

measurable, whence by the properties of conditional expectation,

P
{
Xtn ∈ An | Xtn−1

}
= E

(
P
{
Xtn ∈ An | Xt1 , . . . , Xtn−1

} | Xtn−1

)
= P

{
Xtn ∈ An | Xt1 , . . . , Xtn−1

}
,

which yields the Markov property, since t1, . . . , tn and An are arbitrary. �

In the case where (S,Σ) = (Rd,B(Rd)), if the transition probability P , as a

function of A, has a density p with respect to the Lebesgue measure, i.e.

P (s, x, t, A) =

ˆ
A

p(s, x, t, y)dy,

then p is called a transition probability density. The Chapman–Kolmogorov equation

[7.6] can be rewritten with the help of the Fubini theorem asˆ
A

p(s, x, t, y)dy =

ˆ
Rd

ˆ
A

p(u, z, t, y)dy p(s, x, u, z)dz

=

ˆ
A

ˆ
Rd

p(s, x, u, z)p(u, z, t, y)dz dy.
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Since this is true for any A ∈ Σ, we get

p(s, x, t, y) =

ˆ
Rd

p(s, x, u, z)p(u, z, t, y)dz [7.9]

for almost all y ∈ R
d.

An important particular case is where the transition probability depends only on

the distance between time instances.

DEFINITION 7.4.– A transition probability function P is homogeneous if for all
s1, t1, s2, t2 ∈ T with t2 − s2 = t1 − s1 > 0 and any x ∈ S , A ∈ Σ,

P (s1, x, t1, A) = P (s2, x, t2, A).

A Markov process is homogeneous if it has a homogeneous transition probability
function.

A homogeneous transition probability function may be regarded as a function of

three arguments, i.e. P (s, x, t, A) = P (t− s, x,A), equivalently, P (s, x, s+ t, A) =
P (t, x, A). Then, the Chapman–Kolmogorov equation may be rewritten as

P (t+ s, x,A) =

ˆ
S
P (t, y, A)P (s, x, dy). [7.10]

If S = R
d and the transition probability density exists, then we can write the

following homogeneous version of the Chapman–Kolmogorov equation for densities:

p(t+ s, x, y) =

ˆ
Rd

p(s, x, z)p(t, y, z)dz [7.11]

for almost all y ∈ R
d.

7.2. Examples of Markov processes

7.2.1. Discrete-time Markov chain

Let the state space S be finite or countable, Σ = 2S and the parameter set be

the set of non-negative integers: T = {0, 1, 2 . . . }. In this case, a Markov process

{Xt, t ∈ T} = {Xn, n ≥ 0} is called a (discrete-time) Markov chain. Without loss of

generality, we can assume that S = {1, 2, . . . , N} or S = N.
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It is not hard to see that in this case the Markov property can be reformulated as

follows: for any n > m ≥ 0 and x0, x1, . . . , xm, x ∈ S such that P{Xm = xm} > 0,

P
{
Xn = x | X0 = x0, X1 = x1, . . . , Xm = xm

}
= P

{
Xn = x | Xm = xm

}
.

For any i, j ∈ S such that P {Xm = j} > 0, define the transition probabilities

pij(m,n) = P
{
Xn = j | Xm = i

}
;

for definiteness set pij(m,n) = i=j if P {Xm = j} = 0. These probabilities form a

matrix (of infinite size if S = N), called the transition probability matrix (or simply

the transition matrix) of X:

P (m,n) =
(
pij(m,n)

)
i,j∈S .

The transition probability function is now easily seen to be

P (m, i, n,A) =
∑
j∈A

pij(m,n),

so, setting in [7.6] x = i, s = m, t = n, u = l, A = {j}, we get

pij(m,n) =
∑
k∈S

pik(m, l)pkj(l, n).

Thus, in the Markov chain setting, the Chapman–Kolmogorov equation turns into

matrix multiplication

P (m,n) = P (m, l)P (l, n).

In particular, transition probabilities can be expressed in terms of one-step

transition probabilities

P (m,n) =
n−1∏
k=m

P (k, k + 1). [7.12]

If P (m,n) is a function of n − m, then the corresponding Markov chain is

homogeneous; this is equivalent to saying that the one-step transition probabilities

are independent of time: pij(m,m+ 1) = pij , i, j ∈ S , so

P (m,m+ 1) = P = {pij}i,j∈S , m ≥ 0.
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Then, the n-step transition matrix, thanks to [7.12], is a power of the one-step

transition matrix P (m,m+ n) = Pn.

Finally, it is worth mentioning that the term “Markov chain” is often used for

a homogeneous Markov chain, while a general one is called a time-inhomogeneous
Markov chain.

7.2.2. Continuous-time Markov chain

Consider a generalization of the previous situation: the state space is again finite

or countable, but the parameter set T = R+. Let X be a Markov process. As above,

the transition probability function can be written as a matrix

P (s, t) = (pij(t, s))i,j∈S ,

where pij(s, t) = P
{
Xt = j | Xs = i

}
if P {Xs = i} > 0 and pij(s, t) = i=j

otherwise. Then, the Chapman–Kolmogorov equation reads

P (s, t) = P (s, u)P (u, t)

for all t ≥ u ≥ s ≥ 0. In the present case of continuous time argument, this is the

so-called cocycle property.

Let us now turn to the homogeneous case where

P (s, t) = Pt−s =
(
pij(t− s)

)
i,j∈S ,

so

Ps+t = PsPt. [7.13]

Together with the “initial condition” P0 = I , the identity matrix, this equation

resembles properties of an exponential function and gives the idea that

Pt = etA :=

∞∑
n=0

tn

n!
An,

the matrix exponential. We will show this under the additional assumptions that S is

finite and that the transition probabilities are continuous. The matrix A in this

representation is called the generator matrix.
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PROPOSITION 7.2.– Let S be finite and the transition probability matrix Pt be
continuous at t = 0, i.e. Pt → I , t → 0+. Then, for each i, j ∈ S , the limit
aij := limt→0+ t−1(pij(t) − δij) exists, and Pt = etA, t ≥ 0, where
A =

(
aij

)
ij∈S = limt→0+ t−1(Pt − I).

PROOF.– It follows from the continuity at 0 and [7.13] that Pt is continuous on R+.

Then, we can integrate it elementwise, moreover,

St :=
1

t

ˆ t

0

Psds → I, t → 0 + .

In particular, detSt → 1, t → 0+, so there exists ε > 0 such that St is invertible

for any t ∈ (0, ε). Taking some a ∈ (0, ε) and using [7.13], we get for any h > 0

Vh = PhSa = Ph

ˆ a

0

Ptdt =

ˆ a

0

Pt+hdt =

ˆ h+a

h

Ptdt.

Thanks to the continuity of Pt if the right-hand side of the last equation is

continuously differentiable in h, then the left-hand side is differentiable as well; in

particular, it is differentiable at zero. Therefore, Ph = VhS
−1
a is differentiable at zero

as well, which implies the existence of the matrix A.

From [7.13], we have

1

s
(Pt+s − Pt) =

1

s
(Ps − I)Pt → APt, s → 0+,

so we get the differential equation

d

dt
Pt = APt, t ≥ 0,

or, in integral form,

Pt = I +

ˆ t

0

APsds, t ≥ 0.

Then, we can write

Pt = I +

ˆ t

0

A

(
I +

ˆ s

0

APudu

)
ds = I + tA+

ˆ t

0

ˆ s

0

A2Pudu ds

= I + tA+

ˆ t

0

ˆ s

0

A2

(
I +

ˆ v

0

APvdv

)
du ds

= I + tA+
t2

2
A2 +

ˆ t

0

ˆ s

0

ˆ u

0

A3Pvdv du ds.



Markov and Diffusion Processes 167

Continuing this line of reasoning, we get

Pt = I + I + tA+
t2

2
A2 + · · ·+ tn

n!
An +Rn,t,

where

Rn,t =

ˆ t

0

ˆ t1

0

. . .

ˆ tn

0

An+1Ptn+1dtn+1dtn . . . dt1.

It is easy to see that the elements of Rn,t do not exceed (ta∗ |S|)n+1/(n + 1)!,
where a∗ = maxi,j∈S ai,j . Therefore, Rn,t vanishes as n → ∞, so letting n → ∞,

we get Pt = etA. �

Assume further that the conditions of proposition 7.2 are fulfilled.

Let us now describe the evolution of X . It follows from our assumptions that

pii(t) → 1 for each t ∈ S , which means that X is stochastically continuous.

Therefore, by theorem 6.2, it has a separable modification, so we will assume that X
is separable. Denote λi = −aii, i ∈ S . Let us identify the distribution of the exit time

τ = inf{t ≥ 0 : Xt �= i} given that X0 = i. Note that

{τ > t} = {Xs = i ∀s ∈ [0, t]}. Let tnk = tk/n, k = 0, 1, . . . , n. Then, thanks to the

separability of X ,

P{τ > t | X0 = i} = lim
n→∞P

{
Xtn

k
= i ∀k = 0, 1, . . . , n | X0 = i

}
= lim

n→∞

n∏
k=1

P
{
Xtn

k
= i | Xtn

k−1
= i

}
= lim

n→∞ pii(t/n)
n

= exp
{

lim
n→∞n log pii(t/n)

}
= exp

{
lim
n→∞n

(
pii(t/n)− 1

)}
= e−λit,

so τ has an exponential distribution with parameter λi. Further, to identify the

distribution of the value of Xt after jump, we observe that for j �= i, the probability

P
{
Xt+s = j | Xt+s �= i,Xt = i

}
is independent of t and is equal to

pij(s)

1− pii(s)
,

which converges to qij := aij/λi as s → 0+. Consequently, independently of where

the jump occurs, the distribution of the value Xτ+ after the jump is

P
{
Xτ+ = j | X0 = i

}
= qij , j ∈ S \ {i} .
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Summing up, the behavior of the continuous-time Markov chain X is as follows.

It spends an exponential time at state i and then switches to another state according to

probabilities qij . The sequence of values of X is a discrete-time homogeneous Markov

chain with one-step transition probability matrix Q =
(
qij

)
i,j∈S , where qii = 0 for

all i ∈ S; this is the so-called embedded Markov chain. Such behavior is close to that

of the Poisson process (see section 2.3.3).

7.2.3. Process with independent increments

Assume that S = R
d and that the process {Xt, t ∈ T} in S has independent

increments. Then, for any s, t ∈ T with s < t and any A ∈ B(Rd),

P
{
X(t) ∈ A | Fs

}
= P

{
Xt −Xs ∈ A−Xs | Fs

}
= P

{
Xt −Xs ∈ A− x

}
Xs=x

[7.14]

almost surely, since Xs is Fs-measurable and Xt − Xs is independent of Fs; here,

A − x := {y − x, y ∈ A}. Noting that the last term in [7.14] is a function of Xs, we

establish the Markov property of X .

In particular, any Lévy process is a homogeneous Markov process.

7.3. Semigroup resolvent operator and generator related to the
homogeneous Markov process

Let S be a complete separable metric space, Σ = B(S) be the Borel σ-field and

X = {Xt, t ≥ 0} be a homogeneous Markov process with transition probability

function P (t, x, A), t ≥ 0, x ∈ S , A ∈ Σ. Since P (t, x, ·) is a probability measure in

A ∈ Σ, for any bounded measurable function f : S → R, we can define the integral

Ttf(x) =

ˆ
S
f(y)P (t, x, dy), t > 0. [7.15]

7.3.1. Semigroup related to Markov process

Denote B(S) the space of bounded measurable functions f : S → R with the

norm ‖f‖ = supx∈S |f(x)|. Formula [7.15] defines the operator Tt : B(S) → B(S).
Indeed,

‖Ttf‖ ≤ sup
x∈S

|Ttf(x)| ≤ ‖f‖
ˆ
S
P (t, x, dy) = ‖f‖ . [7.16]
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The operator Tt is obviously linear on B(S) and the relation [7.16] means that

‖Tt‖ = supf∈B(S) ‖Ttf‖ ≤ 1 (for the definition of the operator norm, see

section A1.7).

Moreover, if we put f ≡ 1, then ‖Ttf‖ = 1. It means that ‖Tt‖ = 1 for any t > 0.

Defining

T0f(x) = f(x), [7.17]

we get a family of linear isometric operators {Tt, t ≥ 0} : B(S) → B(S). With the

general definition of semigroup from section A1.7, we can prove the following result.

THEOREM 7.2.– The family of operators {Tt, t ≥ 0} defined by the relations [7.15],
[7.17] is a semigroup.

PROOF.– We should check only semigroup equation [A1.6], but it follows

immediately from the Chapman–Kolmogorov equation, because for any f ∈ B(S)
and t, s ≥ 0, the Fubini theorem and [7.16] imply that

Tt+sf(x) =

ˆ
S
f(y)P (t+ s, x, dy) =

ˆ
S
f(y)

ˆ
S
P (t, z, dy)P (s, x, dz)

=

ˆ
S
P (s, x, dz)

ˆ
S
f(y)P (t, z, dy) =

ˆ
S
Ttf(z)P (s, x, dz) = Tt(Tsf)(x). �

The semigroup Tt is called a Markov semigroup.

7.3.2. Resolvent operator and resolvent equation

Let {Tt, t ≥ 0} be a semigroup defined by relations [7.15] and [7.17]. Consider

the Laplace transform of the following form: for any λ > 0 and f ∈ B(S), let

Rλf(x) =

ˆ ∞

0

e−λtTtf(x)dt. [7.18]

Operators {Rλ, λ > 0} form a family of resolvent operators of the semigroup Tt.

LEMMA 7.1.– The family {Rλ, λ > 0} defined by relation [7.18] consists of bounded
linear operators from B(S) to B(S), and ‖Rλ‖ = λ−1.

PROOF.– Let us estimate ‖Rλ‖. We have that

|Rλf(x)| ≤
ˆ ∞

0

e−λt|Ttf(x)|dt ≤
ˆ ∞

0

e−λt sup
x∈S

|Ttf(x)|dt

≤ ‖f‖
ˆ ∞

0

e−λtdt = λ−1 ‖f‖ ,
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whence Rλ : B(S) → B(S) and ‖Rλ‖ ≤ λ−1. Let f = 1. Then,

Rλ (x) =
´∞
0

e−λtdt = 1
λ , whence ‖Rλ‖ = 1

λ . Linear property is evident. �

THEOREM 7.3.– (Resolvent equation). For any λ > 0, μ > 0, we have the following
operator equation:

Rλ −Rμ = (μ− λ)RλRμ = (λ− μ)RμRλ. [7.19]

PROOF.– For any f ∈ B(S), x ∈ S and λ, μ > 0, λ �= μ, we can apply the Fubini

theorem and theorem A1.14 to get the following equality:

Rλf(x)−Rμf(x) =

ˆ ∞

0

(e−λt − e−μt)Ttf(x)dt

=

ˆ ∞

0

e−λt(1− e−(μ−λ)t)Ttf(x)dt

=

ˆ ∞

0

e−λt

ˆ t

0

e−(μ−λ)s ds Ttf(x) dt (μ− λ)

= (μ− λ)

ˆ ∞

0

e−(μ−λ)s

(ˆ ∞

s

e−λtTtf(x) dt

)
ds

= (μ− λ)

ˆ ∞

0

e−(μ−λ)s

(ˆ ∞

0

e−λ(s+u)Ts+uf(x) du

)
ds

= (μ− λ)

ˆ ∞

0

e−μsTs

(ˆ ∞

0

e−λuTuf(x) du

)
ds

= (μ− λ)

ˆ ∞

0

e−μsTs(Rλf(x))ds = (μ− λ)RμRλf(x). �

REMARK 7.1.– In the theory of linear operators, the resolvent operator traditionally

is defined in the following way. Let Z be some linear normed space and A : Z → Z

be a bounded linear operator. Denote

RA =
{
λ ∈ R : (A− λI)−1 exists as a linear bounded operator from Z to Z

}
the resolvent set of A. Define R̃λ = (A − λI)−1, λ ∈ RA the resolvent operator of

A. Now, let λ, μ ∈ RA. Then

R̃λ − R̃μ = (A− λI)−1 − (A− μI)−1

= (A− λI)−1(I − (A− λI)(A− μI)−1) [7.20]

= (A− λI)−1(I − (A− μI)(A− μI)−1 − (μ− λ)(A− μI)−1)

= (λ− μ)(A− λI)−1(A− μI) = (λ− μ)R̃λR̃μ.
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Equation [7.20] differs from [7.19] only in sign. Therefore, for Rλ = −R̃λ =
(λI − A)−1, we get equation [7.19]. This leads to the idea of looking for an operator

for Rλ from equation [7.18] as a resolvent operator. This idea will be realized with the

notion of generator, which generalizes that from section 7.2.2. However, at first, we

establish some auxiliary results.

LEMMA 7.2.– For any t > 0, λ > 0 and f ∈ B(S),

TtRλf −Rλf = (eλt − 1)Rλf − eλt
ˆ t

0

Tsfe
−λsds. [7.21]

PROOF.– Because of theorem A1.14, we can write

TtRλf = Tt

ˆ ∞

0

e−λsTsfds =

ˆ ∞

0

e−λsTt+sfds

=

ˆ ∞

t

e−λ(u−t)Tufdu = eλt
ˆ ∞

t

e−λuTufdu

= eλt
(
Rλf −

ˆ t

0

e−λuTufdu

)

= Rλf + (eλt − 1)Rλf − eλt
ˆ t

0

e−λuTufdu,

as required. �

7.3.3. Generator of a semigroup

The general definition of the generator of a semigroup is given in section A1.7. We

can consider a particular case of a Markov semigroup Tt to transition probability via

[7.15].

DEFINITION 7.5.– Let {Tt, t ≥ 0} be defined by [7.15] and [7.17]. The generator A
of the semigroup Tt is the operator

Af(x) = lim
t↓0

Ttf(x)− f(x)

t

whenever the limit exists in the norm ‖·‖ on the space B(S) : ‖g‖ = supx∈S |g(x)|.
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Denote DA the domain of the operator A. Sometimes A is called the infinitesimal
operator of the semigroup Tt.

By theorem A1.13, for any t ≥ 0 and f ∈ DA,

d

dt
Ttf = ATtf

and

d

dt
Ttf = TtAf. [7.22]

These are so-called forward and backward Kolmogorov equations for the Markov

semigroup {Tt, t ≥ 0}.

THEOREM 7.4.–

i) B0(S) is the subspace in B(S) and for any s > 0 Ts : B0(S) → B0(S).
ii) For any f ∈ B0(S),

lim
λ↑∞

‖λRλf − f‖ = 0.

iii) For any f ∈ B0(S),

ARλf = λRλf − f.

iv) For any f ∈ DA,

RλAf = λRλf − f.

PROOF.– i) Obviously, B0(S) is a linear set. Further, let {fn, n ≥ 1} ∈ B0(S) and

‖fn − f‖ → 0 as n → ∞, f ∈ B(S). Then

‖Ttf − f‖ ≤ ‖Ttfn − fn‖+ ‖Ttfn − Ttf‖+ ‖fn − f‖
≤ ‖Ttfn − fn‖+ 2 ‖fn − f‖ .

Therefore, for any n ≥ 1,

lim sup
t↓0

‖Ttf − f‖ ≤ lim sup
t↓0

‖Ttfn − fn‖+ 2 ‖fn − f‖ = 2 ‖fn − f‖ . [7.23]
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Taking limits as n → ∞ in the left- and right-hand sides of [7.23], we get that

lim
t↓0

‖Ttf − f‖ = 0.

Now, let f ∈ B0(S). Then, for any s ≤ 0,

lim
t↓0

‖TtTsf − Tsf‖ = lim
t↓0

‖TsTtf − Tsf‖ ≤ lim
t↓0

‖Ttf − f‖ = 0.

Therefore, Tsf ∈ B0(S).

ii) Let f ∈ B0(S). Then, for any λ > 0,

λRλf − f = λ

ˆ ∞

0

e−λt(Ttf − f)dt =

ˆ ∞

0

e−u
(
Tu/λf − f

)
du.

Therefore,

‖λRλf − f‖ ≤
ˆ ∞

0

e−u
∥∥Tu/λf − f

∥∥ du.
For any u ≥ 0,

∥∥Tu/λf − f
∥∥ → 0 as λ → ∞. Additionally, there exists an

integrable dominant 2e−u ‖f‖. Therefore, the Lebesgue dominated convergence

theorem supplies that
´∞
0

e−u
∥∥Tu/λf − f

∥∥ du → 0, and obviously

‖λRλf − f‖ → 0, λ → +∞.

iii) Let f ∈ B0(S). Then, it follows from [7.21] that

TtRλf −Rλf

t
=

eλt − 1

t
Rλ − eλt

1

t

ˆ t

0

Tsfe
−λsds.

Now, let t ↓ 0. Then, the real-number multiplier eλt−1
t → λ. Furthermore,∥∥∥∥1t

ˆ t

0

Tsfe
−λsds− f

∥∥∥∥
=

∥∥∥∥1t
ˆ t

0

Tsfe
−λsds− 1

t

ˆ t

0

e−λsds · f +

(
1− e−λt

λt
− 1

)
f

∥∥∥∥
=

∥∥∥∥ˆ t

0

(Tsf − f)
1− e−λs

t
ds

∥∥∥∥+
|1− e−λt − λt|

λt
‖f‖

≤ λ

ˆ t

0

‖Tsf − f‖ s

t
ds+

|1− e−y − y|
y

‖f‖ ,
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where y = λt ↓ 0 as t ↓ 0. Further,

ˆ t

0

‖Tsf − f‖ s

t
ds ≤

ˆ t

0

‖Tsf − f‖ ds ≤ 2 ‖f‖ t → 0

as t ↓ 0, and by the L’Hôpital rule,

lim
y↓0

1− e−y − y

y
= lim

y↓0
(e−y − 1) = 0.

Therefore,∥∥∥∥1t
ˆ t

0

e−λsTsfds− f

∥∥∥∥ → 0 as t ↓ 0,

and

ARλf = lim
t↓0

TtRλf −Rλf

t
= λRλf − f,

as required.

iv) Let f ∈ D(A). Then

RλAf =

ˆ ∞

0

e−λtTtAfdt =

ˆ ∞

0

e−λtTt

(
lim
s↓0

Tsf − f

s

)
dt

=

ˆ ∞

0

e−λt lim
s↓0

Tt+sf − Ttf

s
dt.

To swap the integral and the limit sign in the last expression, we only need to check

that e−λt 1
s (Tt+sf − Ttf) admits an integrable dominant independent of s. Thanks to

equation [7.22], Ts+tf − Ttf =
´ t+s

t
TuAfdu, and

‖Ts+tf − Ttf‖
s

≤ ‖Af‖ .

Therefore, the integrable dominant is e−λt ‖Af‖, whence we get that

RλAf = lim
s↓0

ˆ ∞

0

e−λtTs+tf − Ttf

s
dt

= lim
s↓0

1

s

(
eλs
ˆ ∞

s

e−λuTufdλ du−
ˆ ∞

0

e−λtTtfdt

)
= lim

s↓0
1

s

(
(eλs − 1)

ˆ ∞

0

Tufdu− eλs
ˆ s

0

e−λuTufdu

)
= λRλf − f. �



Markov and Diffusion Processes 175

REMARK 7.2.– It follows from (iii) that Rλ : B0(S) → DA. The operator Rλ is a

bijection between B0(S) and DA. Indeed, if Rλf = 0, then it follows from (iii) that

f = 0. Also, any g ∈ DA can be represented as g = Rλf with f ∈ B0(S) if we put

f = λg − Ag. The only question is why Ag ∈ B0(S). It is true because g ∈ DA ⊂
B0(S), Ttg ∈ DA ⊂ B0(S), Ttg − g ∈ B0(S) and Ag = limt↓0 Ttg−g

t ∈ B0(S)
because this limit exists and B0(S) is a closed set. Then, it follows from (iii) and (iv)

of theorem 7.4 that Rλ = (λI −A)−1.

7.4. Definition and basic properties of diffusion process

As the name suggests, a diffusion process is a mathematical model for the

physical phenomenon of diffusion. In physics, diffusion can be understood either at a

macroscopic level as a movement of substance from a region with high concentration

to a region with low concentration or at a microscopic level as a chaotic movement of

an individual particle, say, of a gas, which results from its interaction with other

particles. We are interested in this second notion, which in its simplest form is the

celebrated Brownian motion (mathematically modeled by the Wiener process).

Let the state space be a finite-dimensional Euclidean space: S = R
d, and the

parameter set be non-negative half-line: T = R+.

Denote by B(x, r) =
{
y ∈ R

d : |y − x| ≤ r
}

the ball of radius r centered at x,

with B(x, r)c = R
d\B(x, r) its complement. Also, let (x, y) denote the inner product

in R
dand Md the set of symmetric non-negative matrices of size d.

DEFINITION 7.6.– A continuous Markov process X with the transition probability P
is called a diffusion process if there exist measurable functions a : R+ × R

d → R
d

and σ : R+ × R
d → Md such that for all ε > 0, t ∈ R+, x, z ∈ R

d,

lim
h→0+

1

h
P
(
t, x, t+ h,B(x, ε)c

)
= 0, [7.24]

lim
h→0+

1

h

ˆ
B(x,ε)

(y − x)P (t, x, t+ h, dy) = a(t, x), [7.25]

lim
h→0+

1

h

ˆ
B(x,ε)

(
y − x, z

)2
P (t, x, t+ h, dy) =

(
σ(t, x)z, z

)
. [7.26]

The functions a and b are called the drift coefficient and the diffusion matrix,
respectively.

The drift coefficient plays the role of local average speed of a particle, the

deterministic part of evolution. The diffusion matrix, which corresponds to the

stochastic part of evolution, measures the amplitude of noise, namely, for z ∈ R
d
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with ‖z‖ = 1, the expression
(
σ(t, x)z, z

)
dt is the variance of the infinitesimal

displacement projected to z.

REMARK 7.3.– It follows from [7.26] that for any z1, z2 ∈ R
d,

1

h

ˆ
B(x,ε)

(
y − x, z1

)(
y − x, z2

)
P (t, x, t+ h, dy) =

(
σ(t, x)z1, z2

)
. [7.27]

Indeed, both sides of this equality are symmetric bilinear forms as functions of

z1, z2, so [7.26] implies [7.27] through the polarization identity: for any symmetric

bilinear function f ,

f(z1, z2) =
1

4

(
f(z1 + z2, z1 + z2)− f(z1 − z2, z1 − z2)

)
.

Let us give simpler sufficient conditions for a diffusion process, which are often

easier to check.

PROPOSITION 7.3.– Assume that for some δ > 0 and any z ∈ R
d, the following

conditions hold:

lim
h→0+

1

h

ˆ
Rd

|y − x|2+δP (t, x, t+ h, dy) = 0,

lim
h→0+

1

h

ˆ
Rd

(y − x)P (t, x, t+ h, dy) = a(t, x),

lim
h→0+

1

h

ˆ
Rd

(
y − x, z

)2
P (t, x, t+ h, dy) =

(
σ(t, x)z, z

)
,

where a : R+ → R
d and σ : R+ → Md are measurable functions. Then, X is a

diffusion process with drift a(t, x) and diffusion matrix σ(t, x).

PROOF.– For any ε > 0, by the Markov inequality

1

h
P
(
t, x, t+ h,B(x, ε)c

) ≤ 1

hε2+δ

ˆ
Rd

|y − x|2+δP (t, x, t+ h, dy) → 0, h → 0 + .

Further,

1

h

ˆ
B(x,ε)

(y − x)P (t, x, t+ h, dy)

=
1

h

ˆ
Rd

(y − x)P (t, x, t+ h, dy)− 1

h

ˆ
B(x,ε)c

(y − x)P (t, x, t+ h, dy)

=: I1(h) + I2(h).
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By our assumption, I1(h) → a(t, x), h → 0+. Also

|I2(h)| ≤ 1

h

ˆ
B(x,ε)c

|y − x|P (t, x, t+ h, dy)

≤ 1

hε1+δ

ˆ
B(x,ε)c

|y − x|P (t, x, t+ h, dy)

≤ 1

hε1+δ

ˆ
Rd

|y − x|P (t, x, t+ h, dy) → 0, h → 0 + .

Therefore,

lim
h→0+

1

h

ˆ
B(x,ε)

(y − x)P (t, x, t+ h, dy) = a(t, x).

Similarly, for any z ∈ R
d, we have

lim
h→0+

1

h

ˆ
B(x,ε)

(
y − x, z

)2
P (t, x, t+ h, dy) =

(
σ(t, x)z, z

)
,

as required. �

Now we are going to obtain an alternative definition of diffusion process, which is

often used as a principal definition. Introduce the second-order differential operator

Ltf(x) =
d∑

i=1

ai(t, x)
∂

∂xi
f(x) +

1

2

d∑
i,j=1

σij(t, x)
∂2

∂xi∂xj
f(x)

=
(
a(t, x), Dxf(x)

)
+

1

2
tr
(
σ(t, x)D2

xxf(x)
)
, f ∈ C2

b (R
d),

where C2
b (R

d) denotes the set of twice-continuously differentiable bounded functions

with bounded derivatives of first and second orders.

THEOREM 7.5.– A continuous Markov process X is a diffusion process if and only if
for any f ∈ C2

b (R
d) and all t ∈ R

+, x ∈ R
d

1

h

ˆ
Rd

(
f(y)− f(x)

)
P (t, x, t+ h, dy) → Ltf(x), h → 0 + . [7.28]
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PROOF.– First, assume that X is a diffusion process. Take any f ∈ C2
b (R

d) and write

for ε > 0

1

h

ˆ
Rd

(
f(y)− f(x)

)
P (t, x, t+ h, dy)

=

(ˆ
B(x,ε)

+

ˆ
B(x,ε)c

)(
f(y)− f(x)

)
P (t, x, t+ h, dy)

=: I1(h) + I2(h).

Thanks to [7.24]:

|I2(ε)| ≤ 1

h

ˆ
B(x,ε)c

|f(y)− f(x)|P (t, x, y, dy)

≤ 2

h
sup
z∈Rd

|f(z)|P (
t, x, t+ h,B(x, ε)c

) → 0, h → 0 + .

Further, write for y ∈ B(x, ε), using the Taylor formula,

f(y)− f(x) = (Dxf(x), y − x) +
1

2

((
D2

xxf(x)
)
(y − x), y − x

)
+R(x, y),

where |R(x, y)| ≤ c(ε) |y − x|2 and c(ε) → 0, ε → 0+. Then

I2(h) =
1

h
Dxf(x) ·

ˆ
B(x,ε)

(y − x)P (t, x, t+ h, dy)

+
1

2h

ˆ
B(x,ε)

((
D2

xxf(x)
)
(y − x), y − x

)
P (t, x, t+ h, dy)

+
1

h

ˆ
B(x,ε)

R(y)P (t, x, t+ h, dy) =: I21(h) + I22(h) + I23(h).

By [7.25],

I21(h) → a(t, x), h → 0+;

by [7.27],

I22(h) =
1

2h

d∑
i,j=1

∂2

∂xi∂xj
f(x)

ˆ
B(x,ε)

(yi − xi)(yj − xj)P (t, x, t+ h, dy)

−→ 1

2

d∑
i,j=1

∂2

∂xi∂xj
f(x)σij(t, x) =

1

2
tr
(
σ(t, x)D2

xxf(x)
)
, h → 0 + .
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Further,

|I23(h)| ≤ c(ε)
1

h

ˆ
B(x,ε)

|y − x|2P (t, x, t+ h, dy),

and from [7.27], we obtain

lim
h→0+

1

h

ˆ
B(x,ε)

|y − x|2P (t, x, t+ h, dy) = trσ(t, x),

whence

lim sup
h→0+

|I2(h)− Ltf(x)| = lim sup
h→0+

|I23(h)| ≤ c(ε)trσ(t, x) ≤ c(ε)trσ(t, x).

By letting ε → 0+, we arrive at the necessary part of the statement.

Concerning the sufficiency part, to prove [7.24], we consider for fixed x ∈ R
d a

non-negative function f ∈ C2
b (R

d) such that f vanishes at x together with its first-

and second-order derivatives, and f(y) = 1 for y /∈ B(x, ε). Then, using [7.28], we

have

1

h
P (t, x, t+ h,B(x, ε)c) ≤ 1

h

ˆ
Rd

(f(y)− f(x))P (t, x, y, dy) → Ltf(x), h → 0 + .

Further, for each i = 1, . . . , d, we consider a function g ∈ C2
b (R

d) such that

g(y) = yi, y ∈ B(x, ε). Then

1

h

ˆ
B(x,ε)

(xi − yi)P (t, x, t+ h, dy)

=
1

h

( ˆ
Rd

−
ˆ
B(x,ε)c

)
g(x)P (t, x, t+ h, dy) → Ltg(x) = ai(t, x), h → 0+,

where the second integral vanishes thanks to the already proved [7.24]. This

establishes [7.25], and [7.26] is shown similarly. �

7.5. Homogeneous diffusion process. Wiener process as a diffusion
process

DEFINITION 7.7.– A diffusion process X is called homogeneous if it is a
homogeneous Markov process.

We can formulate an equivalent definition by adjusting definition 7.6 accordingly.
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DEFINITION 7.8.– A process X with the transition probability P is called a
homogeneous diffusion process if there exist measurable functions a : Rd → R

d and
σ : Rd → Md such that for all ε > 0, x, z ∈ R

d,

lim
h→0+

1

h
P
(
h, x,B(x, r)c

)
= 0,

lim
h→0+

1

h

ˆ
B(x,ε)

(y − x)P (h, x, dy) = a(x),

lim
h→0+

1

h

ˆ
B(x,ε)

(
y − x, z

)2
P (h, x, dy) =

(
σ(x)z, z

)
.

[7.29]

We see that the drift and the diffusion matrix of a homogeneous diffusion process

are functions of x only, i.e. a(t, x) = a(x), σ(t, x) = σ(x). The operator L is also

time independent now:

Lf(x) = (
a(x), Dxf(x)

)
+

1

2
tr
(
σ(x)D2

xxf(x)
)
, f ∈ C2

b (R
d).

Let us formulate a homogeneous counterpart of theorem 7.5.

THEOREM 7.6.– A homogeneous Markov process X is a diffusion process if and only
if for any f ∈ C2

b (R
d) and all x ∈ R

d,

1

h

ˆ
Rd

(
f(y)− f(x)

)
P (h, x, dy) → Lf(x), h → 0 + . [7.30]

In the left-hand side of [7.30], we have exactly

1

h

(
Thf(x)− f(x)

)
,

where

Ttf(x) =

ˆ
Rd

f(x)P (t, x, dy)

is the Markov semigroup corresponding to X; assume that the process X is Feller, i.e.

the semigroup Tt is strongly continuous on Cb(R
d). Then, theorem 7.5 states that L

is the generator of this semigroup.

Let us now consider the standard Wiener process W = {Wt, t ≥ 0} in R
d. It has

independent increments, so it is a Markov process, as shown above. Since the
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increment Wt − Ws has the normal distribution N (0, (t − s)Ed), the transition

probability density is the density of that distribution, i.e.

p(s, x, t, y) = p(t− s, x, y) =
1(

2π(t− s)
)d/2 exp

{
− (x− y)2

2(t− s)

}
.

Let us check the assumptions of proposition 7.3:

1

h

ˆ
Rd

|x− y|2+δp(h, x, y)dy =
1

h
E|Wh|2+δ = Cδh

δ/2 → 0, h → 0+,

1

h

ˆ
Rd

(x− y)p(h, x, y) =
1

h
EWh = 0,

1

h

ˆ
Rd

(
x− y, z

)2
p(h, x, y) =

1

h
E
(
Wh, z

)2
= |z|2 .

As a result, W is a diffusion process with zero drift, which means that the evolution

is purely random, and an identity diffusion matrix, which means that the process is

isotropic, i.e. its properties are the same in all directions. The generator of the Wiener

process is

LW f(x) =
1

2

n∑
i=1

∂2

∂x2
i

f(x) =:
1

2
Δf(x),

the Laplace operator times 1/2. Conversely, if X is a diffusion process with zero drift

and a unit diffusion matrix, then X is a Wiener process; this follows from the unique

solvability of the Kolmogorov equation, which is the subject of the following section.

7.6. Kolmogorov equations for diffusions

Recall that Kolmogorov equations for a general homogeneous Markov process are

d

dt
Ttf(x) = ATtf(x) (backward),

d

dt
Ttf(x) = TtAf(x) (forward).

For diffusion processes, A = L is a differential operator, so the Kolmogorov

equations are partial differential equations. Let us give precise formulations.
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For T ⊂ R+, we will say that u ∈ C0,2(T × R
d) if it is continuous and has

continuous derivatives ∂
∂xi

u(t, x), ∂2

∂xi∂xj
u(t, x), i, j = 1, . . . , d, on T× R

d; we will

also denote by Cb(R
d) the set of bounded continuous functions.

THEOREM 7.7.– Let a homogeneous diffusion process X have continuous drift a(x)
and diffusion matrix σ(x). Also, let g ∈ Cb(R) be such that the function

u(t, x) =

ˆ
Rd

g(y)P (T − t, x, dy)

belongs to C0,2([0, T ) × R
d) for some T > 0. Then, u satisfies the backward

Kolmogorov equation

∂

∂t
u(t, x) + Lu(t, x) = 0, t ∈ [0, T ), x ∈ R

d. [7.31]

REMARK 7.4.– The formulation is designed to conform with the inhomogeneous case,

where we can define

u(t, x) =

ˆ
Rd

g(y)P (t, x, T, dy),

and show, under the same assumptions, that ∂
∂tu(t, x) + Ltu(t, x) = 0. In addition to

those assumptions, if u is continuous at point T , then it is a classical solution to the

Cauchy problem

∂

∂t
u(t, x) + Ltu(t, x) = 0, t ∈ [0, T ), x ∈ R

d

u(T, x) = g(x).

Now the term “backward” becomes clear: this equation describes an evolution of

systems backwards in time, starting from time T .

PROOF.– Note from the Chapman–Kolmogorov equation [7.10] that

u(t, x) =

ˆ
Rd

f(y)P (T − t, x, dy) =

ˆ
Rd

f(y)

ˆ
Rd

P (h, x, dz)P (T − t− h, z, dy)

=

ˆ
Rd

ˆ
Rd

f(y)P (T − t− h, z, dy)P (h, x, dz) =

ˆ
Rd

u(t+ h, z)P (h, x, dz),

so by theorem 7.6, taking into account that
´
Rd P (h, x, dy) = 1,

1

h

(
u(t, x)− u(t+ h, x)

)
=

1

h

ˆ
Rd

(
u(t+ h, y)− u(t+ h, x)

)
P (h, x, dy)

= Lu(t+ h, x) + o(1).
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It is clear from its proof that the remainder term depends on the moduli of

continuity of the second derivatives of u(t + h, ·) in a small neighborhood of x.

Therefore, in view of the continuity of those derivatives and of Lu(·, x), we arrive at

∂+
∂t

u(t, x) = −Lu(t, x),

where
∂+

∂t denotes the right derivative. Since the right-hand side of the last equality is

continuous in t, the left-hand side is continuous as well, so u is continuously

differentiable in t and

∂

∂t
u(t, x) = −Lu(t, x),

as required. �

Now assume that there exists the transition probability density p(t, x, y), i.e.

P (t, x, A) =

ˆ
A

p(t, x, y)dy.

Then, for any T > t > 0 and g ∈ Cb(R
d),

ˆ
Rd

g(y)P (T − t, x, dy) =

ˆ
Rd

p(T − t, x, y)g(y)dy,

so in view of theorem 7.5, p, as a function of t, x, y, is a fundamental solution of

[7.31]. This gives a good chance that p is itself a solution to this equation. Let us

formulate the corresponding result.

THEOREM 7.8.– We assume that the diffusion process X has a transition probability
density p satisfying [7.11] for all s, t ∈ R

+ and x, y ∈ R
d. Let also for any y ∈ R

d,
p(·, ·, y) ∈ C0,2((0,∞) × R

d) and p(t, x, y) is bounded in x. Then, for any t ∈ R
+

and x, y ∈ R
d, p satisfies the backward Kolmogorov equation

∂

∂t
p(t, x, y) = Lxp(t, x, y). [7.32]

REMARK 7.5.– The symbol Lx is used to emphasize the fact that the operator L acts

on p(t, x, y) with respect to the argument x. The reason for the sign change is that we

now write the equation for p(t, x, y), not for p(T − t, x, y) as in theorem 7.7.

PROOF.– Using [7.9], we write for some T > 0, s ∈ (0, T ), and u > 0,

u(s, x) := p(T − s+ u, x, y) =

ˆ
Rd

p(T − s, x, z)p(u, z, y)dz.
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Denoting g(z) = p(u, z, y), we get from theorem 7.7 that

∂

∂s
u(s, x) + Lu(s, x) = 0,

which transforms into [7.32] by the variable change t = T − s+ u. �

Let us now turn to the forward Kolmogorov equation. Let μ be a σ-finite measure

on R
d. If it is a probability measure, then it can be understood as the probabilistic

distribution of initial condition X(0) of the underlying diffusion process and we are

interested in the evolution of the distribution of X(t). More generally, we can think

of μ as initial distribution (in the physical sense) of some substance, which further

diffuses according to the drift and the diffusion matrix, and we are interested in the

evolution of this mass in time:

μt(A) =

ˆ
Rd

P (t, x, A)μ(dx).

If μ and P have densities m and p, respectively, we can also look at the evolution

of densities

v(t, y) =

ˆ
Rd

p(t, x, y)m(x)dx. [7.33]

In contrast to the “backward evolution” considered before, in general, this

expression can be ill-defined even for good m, say, continuous and bounded. Further,

we study this evolution.

Assume that the drift coefficient a is continuously differentiable, the diffusion

matrix b is twice continuously differentiable and consider the adjoint to the L
operator:

L∗m(x) = −
n∑

i=1

∂

∂xi

(
ai(x)m(x)

)
+

1

2

n∑
i=1

∂2

∂xi∂xj

(
σij(x)m(x)

)
.

THEOREM 7.9.– Let a ∈ C1(Rd), σ ∈ C2(Rd) and the convergence in [7.29] be
uniform in x.

1) If the transition probability density p(t, x, y) has continuous derivatives
∂
∂tp(t, x, y) and ∂2

∂yi∂yj
p(t, x, y), i, j = 1, . . . , d, then it satisfies the forward

Kolmogorov equation

∂

∂t
p(t, x, y) = L∗

yp(t, x, y).
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2) Let the transition probability density p(t, x, y) have continuous derivative
∂
∂tp(t, x, y), and m be such that the function defined by [7.33] has continuous
derivatives ∂

∂tv(t, y) and ∂2

∂yi∂yj
v(t, y), i, j = 1, . . . , d, and ∂

∂tv(t, y) =´
Rd m(x) ∂

∂tp(t, x, y)dx. Then, v satisfies the forward Kolmogorov equation

∂

∂t
v(t, y) = L∗v(t, y).

PROOF.– Take arbitrary f ∈ C2
fin(R

d), i.e. a twice continuously differentiable

function with compact support. We will first argue that f is in the domain of the

infinitesimal generator L. Indeed, inspecting the proof of theorem 7.5, we have

1

h

ˆ
Rd

(
f(y)− f(x)

)
P (h, x, dy) = Lf(x) + o(1), h → 0+,

where the remainder term depends on sup |f |, the moduli of continuity of second

derivatives of f and the speed of convergence in [7.29]. It then follows from the

assumption of the theorem that the convergence

1

h

ˆ
Rd

(
f(y)− f(x)

)
P (h, x, dy) → Lf(x), h → 0+,

is uniform. Therefore, f is indeed in the domain of L and

d

dt
Ttf = TtLf.

Rewriting in terms of the transition probability density,

∂

∂t

ˆ
Rd

p(t, x, y)f(y)dy =

ˆ
Rd

p(t, x, y)Lf(y)dy

Since f has bounded support and ∂
∂tp(t, x, y) is continuous, we have

∂

∂t

ˆ
Rd

p(t, x, y)f(y)dy =

ˆ
Rd

f(y)
∂

∂t
p(t, x, y)dy.

Recall that

Lf(y) =
d∑

i=1

ai(y)
∂

∂yi
f(y) +

1

2

d∑
i,j=1

σij(y)
∂2

∂yi∂yj
f(y),
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so
ˆ
Rd

p(t, x, y)Lf(y)dy =

d∑
i=1

ˆ
Rd

p(t, x, y)ai(y)
∂

∂yi
f(y)dy

+
1

2

d∑
i,j=1

ˆ
Rd

p(t, x, y)σij(y)
∂2

∂yi∂yj
f(y)dy.

Integrating by parts with respect to yi and recalling that f has compact support,

we get

ˆ
Rd

p(t, x, y)ai(y)
∂

∂yi
f(y)dy = −

ˆ
Rd

f(y)
∂

∂yi

(
p(t, x, y)ai(y)

)
dy.

Similarly,

ˆ
Rd

p(t, x, y)σij(y)
∂2

∂yi∂yj
f(y)dy =

ˆ
Rd

f(y)
∂2

∂yi∂yj

(
p(t, x, y)σij(y)

)
dy.

Therefore,

ˆ
Rd

f(y)
∂

∂t
p(t, x, y)dy = −

d∑
i=1

ˆ
Rd

f(y)
∂

∂yi

(
p(t, x, y)ai(y)

)
dy

+
1

2

d∑
i,j=1

ˆ
Rd

f(y)
∂2

∂yi∂yj

(
p(t, x, y)σij(y)

)
dy =

ˆ
Rd

f(y)L∗
yp(t, x, y)dy.

From the arbitrariness of f and continuity of p, we get the first statement. The

second statement is proved in the same way. �

REMARK 7.6.– A distribution μ (not necessarily probabilistic) is called invariant for

a diffusion process X if the evolution of X does not alter it, i.e. μt = μ. If an invariant

distribution has a density m, then in view of invariance:

m(y) =

ˆ
Rd

p(t, x, y)m(x)dx,

so the function v defined by [7.33] is independent of t, namely v(t, x) = m(x).
Consequently, if all assumptions of theorem 7.9 are satisfied, then this density solves

a second-order ordinary differential equation

L∗m(x) = 0.

For the Wiener process, this transforms to Δm(x) = 0. The only positive

function solving this equation is constant, so all invariant measures are proportional

to the Lebesgue measure; in particular, for the Wiener process, there is no invariant

probability distribution.
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Stochastic Integration

8.1. Motivation

Consider a dynamical system with state space R
d, which evolves under the

influence of external forces. The dynamics of such a system can be described by a

system of differential equations (or simply a differential equation in R
d)

Ẋ(t) = f(X(t)), t ≥ 0,

where X is the current state of the system, Ẋ denotes the time derivative and

f : Rd → R
d is the function measuring the external influence at the point x. This is a

very popular mathematical model to describe a deterministic evolution. However, as

it was mentioned in the Introduction, no evolution can be totally deterministic. The

simplest model of perturbation is perhaps the white noise, η(t), a collection of

independent identically distributed random variables indexed by time t ≥ 0. A

slightly more advanced idea, which leads to a much greater versatility of models, is

to allow the amplitude of noise to depend on the state of the system, which leads to

the following equation modeling a behavior of a random dynamical system:

Ẋ(t) = f(X(t)) + g(X(t))η(t), t ≥ 0, [8.1]

where g is a deterministic function measuring the amplitude of noise and η is the

white noise. Depending on the particular application, there can be different choices of

distribution for η, but the most popular model is Gaussian white noise. Now comes

the bad news: if we assume that η(t) are independent Gaussian random variables

N (0, σ2), then η, as a function of t, is a very ill-behaved object: the integral
´ T
0
η(t)dt

is not well defined. Indeed, if it were, by lemma A2.5, its value would be a Gaussian
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random variable; in particular, it would be square integrable. However, by the Fubini

theorem,

E

(ˆ T

0

η(s)ds

)2

=

ˆ T

0

ˆ T

0

Eη(t)η(s)dt ds = 0, [8.2]

whence
´ T
0
η(t)dt = 0 almost surely, which is absurd. So even in the simple case

where f ≡ 0 and g ≡ 1, it is hard to say what X is. The most feasible way is to

assume the independence only for variables which are on distance at least ε and to let

ε → 0. If the variance of η is bounded, then through an argument similar to [8.2], we

arrive at the boring conclusion X(t) = X(0). This means that in order to get a non-

trivial evolution, the variance should be unbounded. Therefore, taking into account the

independence, we arrive at the following desired covariance:

E
(
η(t)η(s)

)
= δ(t− s),

where δ = δ(x) is the so-called Dirac delta function, which vanishes for x �= 0 but

integrates to 1. Such rather misty discussion may scare off some mathematical purists,

but not physicists. Moreover, surprisingly, it has, in a sense, much better properties

than the white noise with finite variance. Let us return to the simple case f ≡ 0 and

g ≡ 1, where the solution can be written “explicitly” as

X(t) = X(0) +

ˆ t

0

η(s)ds =: X(0) +H(t).

To identify the integral, note that EH(t) = E
´ t
0
η(s)ds =

´ t
0
Eη(s)ds = 0 and

for s ≤ t,

E
(
H(s)H(t)

)
= E

(ˆ s

0

η(u)du

ˆ t

0

η(v)dv

)
=

ˆ s

0

ˆ t

0

E
(
η(u)η(v)

)
dv du

=

ˆ s

0

ˆ t

0

δ(u− v)dv du =

ˆ s

0

du = s.

Thanks to symmetry,

E
(
H(s)H(t)

)
= t ∧ s,

the covariance function of standard Wiener process W . Substituting this into [8.1], we

get

Ẋ(t) = f(X(t)) + g(X(t))Ẇ (t), t ≥ 0.
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However, we know from theorem 4.3 that the Wiener process is nowhere

differentiable. Nevertheless, we can write this equation in an integral form

X(t) = X(0) +

ˆ t

0

f(X(s))ds+

ˆ t

0

g(X(s))dW (s). [8.3]

Now it boils down to defining an integral with respect to W . This was already

discussed in section 4.3, but for deterministic integrands. The following chapter will

be devoted to the construction of such an integral for random integrands and to the

investigation of its properties.

8.2. Definition of Itô integral

Let (Ω,F , {Ft, t ≥ 0},P) be a stochastic basis with the filtration satisfying

standard assumptions from section 5.1. We assume that {W (t), t ≥ 0} is a Wiener

process on this basis, which means that W is adapted to the filtration {Ft, t ≥ 0} and

for any t > s ≥ 0 the increment W (t)−W (s) is independent of Fs.

REMARK 8.1.– We may restrict ourselves to the case where Ft = FW
t , i.e. the

filtration is generated by the Wiener process, then the latter assumption is clearly

satisfied. However, this filtration might not satisfy the standard assumptions from

section 5.1 (e.g. F0 is trivial, since W0 = 0). However, this is not the only reason to

consider integration in a more general setting. Much more important is the necessity

of considering multi-dimensional integrals later.

In order to define the class of admissible integrands, we need to recall a notion of

progressively measurable process.

DEFINITION 8.1.– Let T ⊂ R
+ be a parametric set. A stochastic process {X(t), t ∈

T} with values in a measurable space (S,Σ) is called progressively measurable if for
any t > 0 and B ∈ Σ

{(s, ω) ∈ (T ∩ [0, t])× Ω : X(s, ω) ∈ B} ∈ Ft ⊗ B([0, t]),
where B([0, t]) is the Borel σ-algebra on [0, t].

REMARK 8.2.– In layman’s terms, a progressively measurable process is an adapted

process jointly measurable in (t, ω). Measurability in t is now important, as otherwise

it is impossible to define even the deterministic integral
´
X(t)dt.

It is worth mentioning, see e.g. [DEL 78, theorem 39], that an adapted measurable
process (i.e. such that the map X : R+ × Ω → S is measurable) has a progressively

measurable modification. So, in a sense, the above “layman’s” definition turns out to

be quite close to reality.



190 Theory and Statistical Applications of Stochastic Processes

Now, for a, b ∈ R
+, a < b, we introduce the class H2([a, b]) of real-valued

processes {ξ(t), t ∈ [a, b]} such that:

– ξ is progressively measurable;

– ‖ξ‖2H2([a,b])
:=
´ b
a
Eξ(t)2dt < ∞.

Provided that we identify indistinguishable processes, this space can be regarded as

a Banach or even Hilbert space. Because of the progressive measurability requirement,

there are some hidden rocks on this path, for example, when proving completeness.

We put aside this subtle matter, referring an interested reader to [DEL 78].

It is natural to include to H2([a, b]) also the processes defined on a larger interval,

so that, in particular, H2([a, b]) ⊂ H2([c, d]) whenever [a, b] ⊂ [c, d].

The construction of integral will follow the same scheme that was used for the

Wiener integral. Let us first consider simple processes of the form

η(t) =
n∑

k=1

αk [ak,bk)(t), [8.4]

where n ≥ 1 is an integer, a ≤ ak < bk ≤ b are some real numbers and αk is an

Fak
-measurable square-integrable random variable. Clearly, η ∈ H2([a, b]). Define

Itô integral, or stochastic integral, of η with respect to W as

ˆ b

a

η(t)dW (t) =
n∑

k=1

αk

(
W (bk)−W (ak)

)
.

For notation simplicity, we will also denote

I(η,W, [a, b]) = I(η, [a, b]) =

ˆ b

a

η(t)dWt.

It is evident that the value of the integral does not depend on the particular

representation [8.4] of a simple process.

Further, we establish several properties of the Itô integral.

THEOREM 8.1.– Let η, ζ be simple processes in H([a, b]). Then, the following
properties are true:

1) I(η + ζ, [a, b]) = I(η, [a, b]) + I(ζ, [a, b]);

2) For any c ∈ R, I(cη, [a, b]) = cI(η, [a, b]);
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3) For any c ∈ (a, b), I(η, [a, b]) = I(η, [a, c]) + I(η, [c, b]);

4) EI(η, [a, b]) = 0. Moreover, {I(η, [a, t]), t ∈ [a, b]} is a martingale;

5) EI(η, [a, b])2 = ‖η‖2H2([a,b])
=
´ b
a
Eη(t)2dt;

6) E
(
I(η, [a, b])I(ζ, [a, b]) | Fa

)
=
´ b
a
E(η(t)ζ(t) | Fa)dt, in particular:

〈η, ζ〉H2([a,b]) := E
(
I(η, [a, b])I(ζ, [a, b])

)
=

ˆ b

a

E(η(t)ζ(t))dt.

REMARK 8.3.– Properties 1 and 2 mean that I is a linear operator on the set of

simple functions. Properties 4 and 5 are counterparts of the corresponding properties

of Wiener integral. However, note that in contrast to the latter, in general, Itô integral

does not have Gaussian distribution.

Property 5 is the so-called Itô isometry: it says that I maps the family of simple

functions (as a subspace of H2([a, b])) isometrically into a subspace of

square-integrable random variables. This property will be crucial in extending I to

the whole H2([a, b]).

PROOF.– Properties 1–3 are obvious from the definition.

To prove 4, assume that η is given by [8.4] and consider the conditional

expectation:

E(I(η, [a, b]) | Fa) =

n∑
k=1

E
(
αk

(
W (bk)−W (ak)

) | Fa

)
=

n∑
k=1

E
(
αkE

((
W (bk)−W (ak)

) | Fak

) | Fa

)
= 0,

where we have used that αk is Fak
-measurable and W (bk) −W (ak) is independent

of Fak
. It follows that EI(η, [a, b]) = 0. Further, for any t ∈ (a, b):

E(I(η, [a, b]) | Ft) = E(I(η, [a, t]) | Ft) + E(I(η, [t, b]) | Ft) = I(η, [a, t]), [8.5]

since I(η, [a, t]) is clearly Ft-measurable and E(I(η, [t, b]) | Ft) = 0. This implies

the martingale property.

To prove 6 (5 would follow), first note that the both sides of equality are linear in

η and ζ, so it is enough to prove it in the case where η(t) = α1 [a1,b1)(t),
ζ(t) = α2 [a2,b2)(t), where αi is Fai -measurable, i = 1, 2. In turn, when splitting
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the intervals, if necessary, into smaller parts and using the linearity again, it is

sufficient to consider the cases [a1, b1) = [a2, b2) and [a1, b1) ∩ [a2, b2) = ∅. In the

first case, recalling that W (b1)−W (a1) is independent of Fa1 , we get

E
(
I(η, [a, b])I(ζ, [a, b]) | Fa

)
= E

(
α1α2

(
W (b1)−W (a1)

)2 | Fa

)
= E

(
α1α2E

((
W (b1)−W (a1)

)2 | Fa1

) | Fa

)
= E

(
α1α2(b1 − a1) | Fa

)
= (b1 − a1)E

(
α1α2 | Fa

)
=

ˆ b

a

E
(
η(t)ζ(t) | Fa

)
dt.

In the second case, assuming that a2 > b1, we have that α1

(
W (b1) −W (a1)

)
α2

is Fa2-measurable, while W (b2)−W (a2) is independent of Fa2 , so

E
(
I(η, [a, b])I(ζ, [a, b]) | Fa

)
= E

(
α1

(
W (b1)−W (a1)

)
α2

(
W (b2)−W (a2)

) | Fa

)
= E

(
α1

(
W (b1)−W (a1)

)
α2 E

(
W (b2)−W (a2) | Fa2

) | Fa

)
= 0

=

ˆ b

a

E
(
η(t)ζ(t) | Fa

)
dt.

This establishes the first equality; the second follows from the tower property of

conditional expectation. �

To extend the definition from simple functions to the whole space, we need the

following approximation result.

LEMMA 8.1.– Let ξ ∈ H2([a, b]). Then, there exists a sequence {ηn, n ≥ 1} of simple
processes such that

‖ξ − ηn‖H2([a,b])
→ 0, n → ∞.

PROOF.– It is evident that we can approximate an element of H2([a, b]) by bounded

functions (e.g. by truncation), so it is enough to prove the lemma in the case where

supt∈[a,b],ω∈Ω |ξ(t, ω)| < ∞.

Define a smooth approximation of ξ:

ξε(t) = ε−1

ˆ t

(t−ε)∨a

ξ(s)ds, t ∈ [a, b].
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Due to boundedness, ξε ∈ H2([a, b]). Moreover, from theorem A1.4, we have that´ b
a

(
ξ(t) − ξε(t)

)2
dt → 0, ε → 0+, for any ω ∈ Ω. Then, the bounded convergence

theorem implies

‖ξ − ξε‖H2([a,b])
→ 0, ε → 0 + . [8.6]

Now define for integer N ≥ 1, tNk = a+ (b− a)k/N , k = 0, . . . , n and

ξε,N (t) =

N∑
k=1

ξε(t
N
k−1) [tN

k−1
,tN

k
)(t), t ∈ [a, b].

Due to the continuity of ξε,

|ξε,N (t)− ξε(t)| ≤ sup
u,s∈[a,b]

|u−s|≤(b−a)/N

|ξε(u)− ξε(s)| → 0, N → ∞.

Moreover, |ξε,N (t)− ξε(t)| ≤ 2 supt∈[a,b],ω∈Ω |ξ(t, ω)|, so the bounded

convergence theorem gives ‖ξε − ξε,N‖H2([a,b])
→ 0, N → ∞. Since ξε,N is a

simple process, we get the desired approximation, with ηn equal to ξε,N with

appropriate ε and N , through [8.6] and the triangle inequality. �

With this at hand, the extension is done in a standard manner. Namely, if

{ηn, n ≥ 1} is a sequence of simple processes converging in H2([a, b]) to

ξ ∈ H2([a, b]), then, due to the isometry property, the sequence {I(ηn, [a, b]), n ≥ 1}
is a Cauchy sequence in L2(Ω). Then, it has a limit in L2(Ω), which justifies the

following definition.

DEFINITION 8.2.– For ξ ∈ H2([a, b]), Itô integral of ξ with respect to the Wiener
process is the limit

I(ξ, [a, b]) =

ˆ b

a

ξ(t)dW (t) = lim
n→∞ I(ηn, [a, b]) [8.7]

in L2(Ω), where {ηn, n ≥ 1} is a sequence of simple processes in H2([a, b]) such that
‖ξ − ηn‖H2([a,b])

→ 0, n → ∞.

It is clear from such a definition that the integral is defined modulo P-null sets.

Moreover, the limit does not depend on the approximating sequence. Indeed, if

{ζn, n ≥ 1} is another approximating sequence, then

lim
n→∞E

(
I(ηn, [a, b])− I(ζn, [a, b])

)2
= lim

n→∞ ‖ηn − ζn‖2H2([a,b])
= 0,

so the limits coincide.
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The properties of the Itô integral defined by [8.7] are essentially the same as for

simple functions. For completeness, we give them in full.

THEOREM 8.2.– Let η, ζ ∈ H2([a, b]).

1) I(η + ζ, [a, b]) = I(η, [a, b]) + I(ζ, [a, b]) almost surely;

2) For any c ∈ R, I(cη, [a, b]) = cI(η, [a, b]) almost surely;

3) For any c ∈ (a, b), I(η, [a, b]) = I(η, [a, c]) + I(η, [c, b]) almost surely;

4) EI(η, [a, b]) = 0. Moreover, {I(η, [a, t]), t ∈ [a, b]} is a martingale;

5) EI(η, [a, b])2 = ‖η‖2H2([a,b])
=
´ b
a
Eη(t)2dt (Itô isometry). Moreover, the

process

M(t) = I(η, [a, t])2 −
ˆ t

a

η(s)2ds, t ∈ [a, b],

is a martingale;

6) E
(
I(η, [a, b])I(ζ, [a, b])

)
= 〈η, ζ〉H2([a,b]).

PROOF.– Let {ηn, n ≥ 1} and {ζn, n ≥ 1} be sequences of simple processes

converging in H2([a, b]) to η and ζ, respectively.

To prove 1 and 2, note that ηn + ζn and cηn converge in H2([a, b]) to η + ζ and

cη, respectively, whence the properties follow from those for simple functions.

Property 3 follows from 1, since clearly I(η, [a, t]) = I(η [a,t), [a, b]) and

I(η, [t, b]) = I(η [t,b], [a, b]).

To prove property 4, first observe that

E
(
E(I(η, [a, b]) | Ft)− E(I(ηn, [a, b]) | Ft)

)2
≤ E

(
I(η, [a, b])− I(ηn, [a, b])

)2
= ‖η − ηn‖2H2([a,b])

for any t ∈ [a, b], so E(I(ηn, [a, b]) | Ft) → E(I(η, [a, b]) | Ft), n → ∞, in L2(Ω).
On the other hand, by [8.5], E(I(ηn, [a, b]) | Ft) = I(ηn, [a, t]) → I(η, [a, t]), n →
∞, since ‖η − ηn‖H2([a,t])

≤ ‖η − ηn‖H2([a,b])
→ 0, n → ∞, whence

E(I(ηn, [a, b]) | Ft) → I(η, [a, t]), n → ∞,

in L2(Ω). Therefore, for any t ∈ [a, b]:

E(I(η, [a, b]) | Ft) = I(η, [a, t])

almost surely, implying the martingale property.
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The isometric property follows from that for simple functions through the

Minkowski inequalities:∣∣∣(EI(η, [a, b])2)1/2 − (
EI(ηn, [a, b])

2
)1/2∣∣∣

≤
(
E
(
I(η, [a, b])− I(ηn, [a, b])

)2)1/2

= ‖η − ηn‖H2([a,b])
;∣∣∣‖η‖H2([a,b])

− ‖ηn‖H2([a,b])

∣∣∣ ≤ ‖η − ηn‖H2([a,b])
.

Let us now show the martingale property for M . Let t ∈ [a, b]. From theorem 8.1,

we have

E
(
I(η, [t, b])2 | Ft

)
= E

(ˆ b

t

η(s)2ds
∣∣∣Ft

)
,

whence

E(M(b) | Ft) = E
((

I(ξ, [a, t]) + I(ξ, [t, b])
)2 ∣∣Ft

)
−
ˆ t

a

ξ(s)2ds− E

(ˆ b

t

ξ(s)2ds
∣∣∣Ft

)

= I(ξ, [a, t])2 + 2I(ξ, [a, t])E
(
I(ξ, [t, b])

∣∣Ft

)− ˆ t

a

ξ(s)2ds = M(t),

since E
(
I(ξ, [t, b])

∣∣Ft

)
= 0.

The last property can be shown similarly to the isometric property or can be

deduced from the latter by using the polarization identities. �

8.2.1. Itô integral of Wiener process

Let us compute the integral

I(W, [0, T ]) =

ˆ T

0

W (t)dW (t).

To this end, we have to approximate W by simple processes. The simplest way is

probably to consider for n ≥ 1 a uniform partition tnk = kT/n, k = 0, . . . , n, and

to set

ηn(t) =
n∑

k=1

W (tnk−1) [tn
k−1

,tn
k
)(t).
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Then

‖ηn −W‖2H2([0,T ]) =
n∑

k=1

ˆ tnk

tn
k−1

E
(
W (t)−W (tnk−1)

)2
dt

=

n∑
k=1

ˆ tnk

tn
k−1

(t− tnk−1)dt =
1

2

n∑
k=1

(tnk − tnk−1)
2 =

T 2

2n
→ 0, n → ∞,

so I(W, [0, T ]) = limn→∞ I(ηn, [0, T ]) in L2(Ω). Denote Δn
kW = W (tnk )−

W (tnk−1) and write

2I(ηn, [0, T ]) = 2
n∑

k=1

W (tnk−1)Δ
n
kW

=

n∑
k=1

W (tnk−1)Δ
n
kW +

n∑
k=1

W (tnk )Δ
n
kW −

n∑
k=1

(
Δn

kW
)2

=
n∑

k=1

(
W (tnk )

2 −W (tnk−1)
2
)− n∑

k=1

(
Δn

kW
)2

= W (tnn)
2 −

n∑
k=1

(
Δn

kW
)2

= W (T )2 −
n∑

k=1

(
Δn

kW )
)2
.

Consider

E

( n∑
k=1

(
Δn

kW
)2 − T

)2

= E

( n∑
k=1

((
Δn

kW
)2 − E

(
Δn

kW
)2))2

=
n∑

k=1

E
((

Δn
kW

)2 − E
(
Δn

kW
)2)2

=
n∑

k=1

2(tnk − tnk−1)
2

=
2T 2

n
→ 0, n → ∞.

Consequently,
∑n

k=1

(
Δn

kW
)2 → T , n → ∞, in L2(Ω), whence

ˆ T

0

W (t)dW (t) =
1

2

(
W (T )2 − T

)
,

not W (T )2/2, as some might have expected. (Note that the answer W (T )2/2 is

impossible, as the Itô integral has zero mean.)
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8.3. Continuity of Itô integral

Let {ξ(t), t ≥ 0} be an adapted process such that ξ ∈ H2([0, t]) for any t > 0;

then for each 0 ≤ s ≤ t, the Itô integral

I(ξ, [s, t]) =

ˆ t

s

ξ(u)dW (u)

is well defined. However, we have seen above that the definition is up to sets of

probability zero. These exceptional sets can be different for different values of s and

t, so the integral may have some deficiencies as a function of s and t. For example,

for any fixed ω ∈ Ω, it might happen that I(ξ, [s, u]) + I(ξ, [u, t]) �= I(ξ, [s, t]) for

the majority of values s ≤ u ≤ t, which is not a desired behavior.

For this reason, we will establish the existence of a nice modification of the Itô

integral.

THEOREM 8.3.– Let {ξ(t), t ≥ 0} be such that ξ ∈ H2([0, t]) for any t > 0. Then,

there exists a modification {I(s, t), 0 ≤ s ≤ t} of
{´ t

s
ξudWu, 0 ≤ s ≤ t

}
such that:

– I is a continuous function of s and t,

– for all 0 ≤ s ≤ u ≤ t,

I(s, t) = I(s, u) + I(u, t).

PROOF.– Since the Wiener process has a continuous modification, we will assume

that this is continuous.

Let us first construct a continuous modification {I(t), t ≥ 0} of {I(ξ, [0, t]), t ≥
0}. Note that it is enough to construct a continuous modification IN on [0, N ] for each

integer N ≥ 1. Indeed, once this is done, for any N2 > N1, the equality IN1(q) =
IN2(q) holds almost surely for all q ∈ [0, N1] ∩Q, hence

P{ΩN1,N2
} := P{IN1

(t) = IN2
(t) for all t ∈ [0, N1]} = 1.

Then, P
{⋂

1≤N1<N2
ΩN1,N2

}
= 1, as the intersection is taken over a countable

set of indices. Therefore, setting I(t) =
∑∞

N=1 IN (t) [N−1,N)(t) for

ω ∈ ⋂
1≤N1<N2

ΩN1,N2 and I(t) = 0 otherwise yields the desired modification

continuous on R+.

Now let N ≥ 1 be fixed and {ηn, n ≥ 1} be a sequence of simple processes such

that ‖ξ − ηn‖H2([0,N ]) → 0, n → ∞. Then there is a subsequence {ηnk
, k ≥ 1} such

that
∥∥ηnk

− ηnk+1

∥∥
H2([0,N ])

≤ 2−2k for any k ≥ 1. The process

Mk(t) = I(ηnk
− ηnk+1

, [0, t])
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is a martingale; moreover, it is easy to check from the definition of the Itô integral for

simple functions that Mk is continuous in t. Hence, using theorem 5.26, we get

P

{
sup

t∈[0,N ]

|Mk(t)| ≥ 2−k

}
≤ 22kEMk(N)2

= 22k
∥∥ηnk

− ηnk+1

∥∥2
H2([0,N ])

≤ 2−2k.

Observe that, by definition, Jn(t) = I(ηn, [0, t]) is continuous in t for each n ≥ 1.

Thanks to linearity of Itô integral, the last inequality can be rewritten as

P

{
sup

t∈[0,N ]

∣∣Jnk
(t)− Jnk+1

(t)
∣∣ ≥ 2−k

}
≤ 2−2k.

Then, the Borel–Cantelli lemma implies that with probability 1, there exists some

k0 = k0(ω) such that supt∈[0,N ]

∣∣Jnk
(t)− Jnk+1

(t)
∣∣ < 2−k for all k ≥ k0.

Therefore, the event

A :=

{ ∞∑
k=1

sup
t∈[0,N ]

∣∣Jnk
(t)− Jnk+1

(t)
∣∣ < ∞

}

has probability 1. It is easy to see that the sequence {Ink
, k ≥ 1} is a Cauchy sequence

in C[0, N ] with respect to the uniform norm for ω ∈ A. Therefore, for each ω ∈ A,

there exists a continuous process {I(t), t ∈ [0, N ]} such that Jnk
→ I in C[0, N ].

Set I(t) = 0 for ω ∈ Ω \ A. To conclude, we need to show for any t ∈ [0, N ] that

I(t) = I(ξ, [0, t]) almost surely. Since ‖ξ − ηnk
‖H2([0,t])

→ 0, k → ∞, we have that

Jnk
(t) → I(ξ, [0, t]) in L2(Ω). Therefore, there is a subsequence converging almost

surely. However, we also know that Jnk
(t) → I(t), k → ∞ almost surely. Hence,

I(t) = I(ξ, [0, t]) almost surely, which yields the desired continuous modification of

I(ξ, [0, t]).

Now set I(s, t) = I(t)− I(s). Then, I(s, t) is continuous as well, and

I(s, t) = I(ξ, [0, t])− I(ξ, [0, s]) = I(ξ, [s, t])

almost surely thanks to the additivity property of Itô integral. Therefore, I(s, t) is a

modification of I(ξ, [s, t]), as required. �

REMARK 8.4.– In the following, we will always assume that the Itô integral is additive

(i.e. I(ξ, [s, u]) + I(ξ, [u, t]) = I(ξ, [s, t]) for all 0 ≤ s ≤ u ≤ t) and continuous. We

should be careful here, as the exceptional set may depend on the integrand. However,

since we will always be dealing with at most countable families of functions, we are

on the safe side with this assumption.
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8.4. Extended Itô integral

It turns out that the Itô integral can be naturally extended to a larger class of

integrands. In order to proceed, we need to prove the “locality” property of the Itô

integral, which will also be useful in the sequel.

THEOREM 8.4.– Let ξ ∈ H2([0, T ]). Then, for any stopping time τ ,
ξ [0,τ ] ∈ H2([0, T ]) and

ˆ T

0

ξ(t) [0,τ ](t)dW (t) =

ˆ τ∧T

0

ξ(t)dW (t)

almost surely.

REMARK 8.5.– The right-hand side of this formula should be understood as

I(ξ, [0, t])|t=τ∧T .

The formula is not true when τ is not a stopping time; moreover, its left-hand side is

not well defined in general.

PROOF.– It is clear that
∥∥ξ [0,τ ]

∥∥
H2([0,T ])

≤ ‖ξ‖H2([0,T ]) < ∞, so we need to show

the progressive measurability. The process ξ is progressively measurable, so it suffices

to show that [0,τ ] is. For any x ∈ (0, 1],

Ax :=
{
(ω, s) ∈ Ω× [0, t] : [0,τ ](s) < x

}
= {(ω, s) ∈ Ω× [0, t] : τ(ω) > s}

=
⋃

q∈(0,t)∩Q

{ω ∈ Ω : τ(ω) > q} × (q, t] ∈ Ft ⊗ B([0, t]),

since {ω ∈ Ω : τ(ω) > q} ∈ Fq ⊂ Ft. For x ≤ 0, Ax = ∅ and for x > 1, Ax =
Ω× [0, t]. As a result, [0,τ ] is progressively measurable.

To prove the desired equality, start by observing that

ξ(t) [0,τ ](t) = ξ(t) [0,τ∧T ](t), t ∈ [0, T ],

so I(ξ [0,τ ], [0, T ]) = I(ξ [0,τ∧T ], [0, T ]). Therefore, we can assume that τ takes

values in [0, T ].

Let us first consider a situation where the integrand is a simple process of the form

η(t) =
n∑

k=1

αk [tk−1,tk)(t),
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where t0 = 0 < t1 < · · · < tn−1 < tn = T , αk is Ftk−1
-measurable, and τ takes

values from the set {t0, t1, . . . , tn}. Then,

η(t) [0,τ)(t) =

n∑
k=1

αk [tk−1,tk)(t) [0,τ)(t) =

n∑
k=1

α′
k [tk−1,tk)(t),

where α′
k = αk τ>tk−1

is Ftk−1
-measurable, since τ is a stopping time. By the

definition of the Itô integral,

ˆ T

0

η(t) [0,τ)(t)dW (t) =

n∑
k=1

α′
k

(
W (tk)−W (tk−1)

)
=

n∑
k=1

αk

(
W (tk)−W (tk−1)

)
τ>tk−1

=

n∑
k=1

αk

(
W (tk)−W (tk−1)

) n∑
j=k

τ=tj

=
n∑

j=1

(
j∑

k=1

αk

(
W (tk)−W (tk−1)

))
τ=tj

=
n∑

j=1

(ˆ tj

0

η(t)dW (t)

)
τ=tj =

ˆ τ

0

η(t)dW (t).

Now consider dyadic partitions tnk = k2−nT , k = 0, . . . , 2n and let

τ ∈ {tmk , k = 0, . . . , 2m} for fixed m ≥ 1. Take arbitrary ξ ∈ H2([0, T ]) and

approximate it by processes of the form

ηn(t) =

2n∑
k=1

αn
k [tn

k−1
,tn

k
)(t),

where αn
k is Ftn

k−1
-measurable so that ‖ξ − ηn‖H2([0,T ]) → 0, n → ∞. For any

n ≥ m, we have

ˆ T

0

ηn(t) [0,τ)(t)dW (t) =

ˆ τ

0

ηn(t)dW (t)

=
m∑
j=1

(ˆ tj

0

ηn(t)dW (t)

)
τ=tj .
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Since for each j = 1, . . . ,m we have I(ηn, [0, tj ]) → I(ξ, [0, tj ]), n → ∞, in

L2(Ω), it follows that

ˆ T

0

ηn(t) [0,τ)(t)dW (t) →
m∑
j=1

(ˆ tj

0

ξ(t)dW (t)

)
τ=tj

=

ˆ τ

0

ξ(t)dW (t), n → ∞,

in L2(Ω). On the other hand, the obvious fact
∥∥ηn [0,τ) − ξ [0,τ ]

∥∥
H2([0,T ])

→ 0,

n → ∞, implies that I(ηn [0,τ), [0, T ]) → I(ξ [0,τ ], [0, T ]), n → ∞, in L2(Ω),

yielding
´ τ
0
ξ(t)dW (t) =

´ T
0
ξ(t) [0,τ ](t)dW (t) almost surely. Since τ ≤ T , this is

the desired equality.

Finally, let ξ ∈ H2([0, T ]) and the stopping time τ ≤ T be arbitrary. Define for

n ≥ 1 τn =
∑2n

k=1 t
n
k (tn

k−1
,tn

k
](τ). By theorem 5.2, this discretized version of τ is a

stopping time, too. From the previous paragraph, for each n ≥ 1,

ˆ T

0

ξ(t) [0,τn](t)dW (t) =

ˆ τn

0

ξ(t)dW (t).

Since τn → τ , n → ∞, the dominated convergence theorem yields∥∥ξ [0,τ ] − ξ [0,τn]

∥∥
H2([0,T ])

→ 0, n → ∞,

so I(ξ [0,τn], [0, T ]) → I(ξ [0,τ ], [0, T ]), n → ∞, in L2(Ω). On the other hand,

I(ξ [0,τn], [0, T ]) → ´ τ
0
ξ(t)dW (t), n → ∞, due to continuity of the Itô integral.

The proof is now complete. �

Now let ξ = {ξ(t), t ∈ [0, T ]} be a progressively measurable process such that

ˆ T

0

ξ(t)2dt < ∞ almost surely.

We will denote the class of such processes by H([0, T ]); clearly, H2([0, T ]) ⊂
H([0, T ]). Define

τn = inf

{
t ≥ 0 :

ˆ t

0

ξ(s)2ds ≥ n

}
∧ T, n ≥ 1.

Obviously, this is a sequence of stopping times increasing to T almost surely. The

processes ξn(t) = ξ(t) [0,τn](t), n ≥ 1, belong to H2([0, T ]). Moreover, for any

m ≥ n ≥ 1, ξn(t) = ξm(t) [0,τn], so by theorem 8.4, I(ξn, [0, t]) = I(ξm, [0, t])
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almost surely on the set {τn ≥ t}. In particular, I(ξn, [0, T ]) = I(ξm, [0, T ]) almost

surely on Ωn :=
{´ T

0
ξ(s)2dt ≤ n

}
for any m ≥ n. Hence, it is easy to deduce the

existence of a random variable I such that I = I(ξn, [0, T ]) almost surely on Ωn for

any n ≥ 1. The value of this random variable is, quite naturally, called the extended
Itô integral of ξ with respect to W . From theorem 8.4 it follows that I = I(ξ, [0, t])
almost surely if ξ ∈ H2([0, T ]). Therefore, this is indeed an extension of the Itô

integral. For this reason, we will use the same notation for extended Itô integral:

I(ξ, [0, t]) =

ˆ T

0

ξ(t)dW (t) := I;

it will always be clear from the context which definition is used, i.e. whether ξ ∈
H2([0, T ]) or not. However, the extended Itô integral loses some of the properties of

the usual Itô integral. For instance, it does not have zero mean in general; moreover,

the mean is not guaranteed to exist. For convenience, we gather all the properties

which are preserved; they immediately follow from theorem 8.2. The statement below

is for arbitrary interval [a, b]; the definition is modified obviously.

THEOREM 8.5.– Let ξ, η ∈ H([a, b]). Then:

1) I(ξ + η, [a, b]) = I(ξ, [a, b]) + I(η, [a, b]) almost surely;

2) For any c ∈ R, I(cξ, [a, b]) = cI(ξ, [a, b]) almost surely;

3) For any c ∈ (a, b), I(ξ, [a, b]) = I(ξ, [a, c]) + I(η, [c, b]) almost surely;

4) There exists a continuous modification of {I(ξ, [a, t]), t ∈ [a, b]};

5) For any stopping time τ with values in [a, b],
´ b
a
ξ(t) [a,τ ](t)dWt =´ τ

a
ξ(t)dWt.

We conclude this section by showing the continuity of the extended Itô integral

with respect to the integrand.

THEOREM 8.6.– Let {ξn, n ≥ 1} be a sequence of processes in H([0, T ]) such that´ T
0
|ξn(t)− ξ(t)|2 dt P−→ 0, n → ∞. Then,

sup
t∈[0,T ]

|I(ξn, [0, T ])− I(ξ, [0, T ])| P−→ 0, n → ∞.

PROOF.– Due to linearity, it is sufficient to prove the statement for ξ = 0. Define for

fixed ε > 0, τn,ε = inf
{
t ≥ 0 :

´ t
0
ξn(s)

2ds ≥ ε3
}
∧T and ξn,ε(t) = ξn(t) t≤τn,ε .
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We have that I(ξn, [0, t]) = I(ξn,ε, [0, t]), t ∈ [0, T ], on An,ε :={´ T
0
ξn(t)

2dt < ε3
}

; moreover, P{An,ε} → 1, n → ∞. By theorem 5.26,

P
{

sup
t∈[0,T ]

|I(ξn,ε, [0, T ])| ≥ ε
} ≤ 1

ε2

ˆ T

0

E |ξn,ε(t)|2 dt ≤ ε.

Consequently,

P
{|I(ξn, [0, T ])| ≥ ε

} ≤ P
{

sup
t∈[0,T ]

|I(ξn,ε, [0, T ])| ≥ ε
}
+ P{Ac

n,ε}

≤ ε+ P{Ac
n,ε},

whence:

lim sup
n→∞

P
{|I(ξn, [0, T ])| ≥ ε

} ≤ ε,

and the statement follows due to the arbitrariness of ε. �

8.5. Itô processes and Itô formula

DEFINITION 8.3.– A process X = {X(t), t ∈ [a, b]} is called an Itô process if it
admits the representation:

X(t) = X(a) +

ˆ t

a

α(s)ds+

ˆ t

a

β(s)dW (s) [8.8]

almost surely for all t ∈ [a, b], where X(a) is an Fa-measurable random variable and
α and β are progressively measurable processes such that

´ b
a

(|α(t)|+ β(t)2
)
dt <

∞ almost surely. The expression

dX(t) := α(t)dt+ β(t)dW (t)

is called the stochastic differential of X .

In other words, Itô processes are sums of indefinite Lebesgue and Itô integrals.

These processes are adapted and, as we know from the previous section, have a

continuous modification; we will assume that they are continuous.

THEOREM 8.7.– Let Xi and i = 1, 2 be Itô processes on [a, b]. Then, for any c1, c2 ∈
R, c1X1 + c2X2 is an Itô process with

d
(
c1X1(t) + c2X2(t)

)
= c1dX1(t) + c2dX2(t),

where the linear combination of differentials is defined in an obvious way.
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PROOF.– Follows straightforwardly from the linearity of the Itô integral. �

As we have seen in section 8.2.1, dW (t)2 �= 2W (t)dW (t), so we should not

expect in general that dF (X(t)) = F ′(X(t))dX(t), as in the deterministic case. The

change of variable formula for Itô integral, called Itô formula, involves an extra term

with second derivative; this is a subject of the following theorem.

THEOREM 8.8.– Let {X(t), t ∈ [a, b]} be an Itô process with dX(t) = α(t)dt +
β(t)dW (t) and F ∈ C1,2([a, b]×R). Then, {F (t,X(t)), t ∈ [a, b]} is an Itô process
with

dF (t,X(t)) =
∂

∂t
F (t,X(t))dt+

∂

∂x
F (t,X(t))dX(t)

+
1

2

∂2

∂x2
F (t,X(t))β(t)2dt

=

(
∂

∂t
F (t,X(t)) +

∂

∂x
F (t,X(t))α(t) +

1

2

∂2

∂x2
F (t,X(t))β(t)2

)
dt

+
∂

∂x
F (t,X(t))β(t)dW (t).

First, we need a lemma on behavior of sums of weighted squares of increments of

Itô integral.

LEMMA 8.2.– Let β ∈ H([a, b]), {Y (t), t ∈ [a, b]} be a continuous process and
{a = tn0 < t1n < · · · < tnn = b, n ≥ 1} be a sequence of partitions, with the mesh
going to zero: max1≤k≤n |tnk − tnk−1| → 0, n → ∞. Then,

n∑
k=1

Ytn
k

(ˆ tnk

tn
k−1

β(s)dW (s)

)2

P−→
ˆ b

a

Y (t)β(t)2dt, n → ∞.

PROOF.– To avoid cumbersome notation, denote tk = tnk , k = 0, . . . , n. Let us first

consider the case where β ∈ H2([a, b]), Y ≡ 1. Let {βn, n ≥ 1} be a sequence of

simple processes from H2([a, b]) such that for any n ≥ 1, βn is constant on each

interval [tk−1, tk), and ‖β − βn‖H2([a,b])
→ 0, n → ∞; the existence of such

sequence is proved similarly to lemma 8.1. For any x, y ∈ R and θ > 0, we have the

following simple inequality:∣∣x2 − y2
∣∣ ≤ |2x(x− y)|+ |x− y|2 ≤ θx2 + (1 + θ−1)|x− y|2.



Stochastic Integration 205

Hence, setting θn = ‖β − βn‖H2([a,b])
,

ˆ b

a

E
∣∣β(s)2 − βn(s)

2
∣∣ ds ≤ θn

ˆ b

a

Eβ(s)2ds

+ (1 + θ−1
n )

ˆ b

a

E (β(s)− βn(s))
2
ds [8.9]

= ‖β − βn‖H2([a,b])

(
‖β‖2H2([a,b])

+ ‖β − βn‖H2([a,b])
+ 1

)
→ 0, n → ∞;

in other words, β2
n → β2 in L1([a, b] × Ω); therefore, the sequence

{
β2
n, n ≥ 1

}
is uniformly integrable in L1([a, b] × Ω). Similarly, we obtain with the help of Itô

isometry

E

∣∣∣∣∣∣
n∑

k=1

(ˆ tk

tk−1

β(s)dW (s)

)2

−
n∑

k=1

(ˆ tk

tk−1

βn(s)dW (s)

)2
∣∣∣∣∣∣

≤ θn

n∑
k=1

E

(ˆ tk

tk−1

β(s)dW (s)

)2

+ (1 + θ−1
n )

n∑
k=1

E

(ˆ tk

tk−1

(β(s)− βn(s)) dW (s)

)2

= ‖β − βn‖H2([a,b])

(
‖β‖2H2([a,b])

+ ‖β − βn‖H2([a,b])
+ 1

)
→ 0, n → ∞.

As a result,

n∑
k=1

(ˆ tk

tk−1

β(s)dW (s)

)2

−
n∑

k=1

(ˆ tk

tk−1

βn(s)dW (s)

)2

P−→ 0, n → ∞. [8.10]

Take A > 0 and write

n∑
k=1

(ˆ tk

tk−1

βn(s)dW (s)

)2

=

n∑
k=1

βn(tk−1)
2(ΔkW )2

=
n∑

k=1

βn(tk−1)
2 |βn(tk−1)|≤A(ΔkW )2 [8.11]

+

n∑
k=1

βn(tk−1)
2 |βn(tk−1)|>A(ΔkW )2,
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where ΔkW = W (tk) −W (tk−1). Denoting γn
k = βn(tk−1)

2 |βn(tk−1)|≤A, Δk =
tk − tk−1,

E

(
n∑

k=1

γn
k

(
(ΔkW )2 −Δk

))2

=
n∑

k=1

n∑
l=1

E
(
γn
k

(
(ΔkW )2 −Δk

)
γn
l

(
(ΔlW )2 −Δl

))
.

Note that for k < l,

E
(
γn
k

(
(ΔkW )2 −Δk

)
γn
l

(
(ΔlW )2 −Δl

))
= E

(
γn
k

(
(ΔkW )2 −Δk

)
γn
l E

((
(ΔlW )2 −Δl

) | Ftl−1

))
= 0,

since γn
k

(
(ΔkW )2 −Δk

)
γn
l is Ftl−1

-measurable and
(
(ΔlW )2 −Δl

)
is

independent of Ftl−1
and centered. Therefore,

E

(
n∑

k=1

γn
k

(
(ΔkW )2 −Δk

))2

=
n∑

k=1

E
(
(γn

k )
2
(
(ΔkW )2 −Δk

)2)

≤ A2
n∑

k=1

E
((

(ΔkW )2 −Δk

)2)
= 2A2

n∑
k=1

Δ2
k

≤ 2A2(b− a) max
1≤k≤n

Δk → 0, n → ∞.

Therefore,

n∑
k=1

γn
k (ΔkW )2 −

n∑
k=1

γn
kΔk

P−→ 0, n → ∞. [8.12]

Further,

sup
n≥1

E

(
n∑

k=1

βn(tk−1)
2 |βn(tk−1)|>A(ΔkW )2

)

= sup
n≥1

n∑
k=1

E
(
βn(tk−1)

2 |βn(tk−1)|>A

)
Δk [8.13]

= sup
n≥1

ˆ b

a

E
(
βn(s)

2 |βn(s)|>A

)
ds → 0, A → ∞,
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Due to uniform integrability. Similarly,

sup
n≥1

E

∣∣∣∣∣
ˆ t

0

βn(s)
2ds−

n∑
k=1

γn
kΔk

∣∣∣∣∣ = sup
n≥1

E

∣∣∣∣ˆ t

0

βn(s)
2ds

−
ˆ b

a

βn(s)
2 |βn(s)|≤Ads

∣∣∣∣∣ [8.14]

= sup
n≥1

ˆ b

a

E
(
βn(s)

2 |βn(s)|>A

)
ds → 0, A → ∞.

Combining [8.11]–[8.14], we get

n∑
k=1

(ˆ tk

tk−1

βn(s)dW (s)

)2

−
ˆ t

0

βn(s)
2ds

P−→ 0, n → ∞.

Recalling [8.9] and [8.14], we get

n∑
k=1

(ˆ tk

tk−1

β(s)dW (s)

)2

−
ˆ t

0

β(s)2ds
P−→ 0, n → ∞,

as required in this case.

By linearity, we get the statement in the case where β ∈ H2([a, b]), Y is a simple

process, which, through a standard approximation argument, gives the statement for a

continuous Y .

Finally, for β ∈ H([a, b]), define τN = inf
{
t ≥ a :

´ t
a
β(s)2ds ≥ N

}
∧ b and set

βN (t) = β(t) t≤τN so that βN ∈ H2([a, b]), N ≥ 1. Then,

n∑
k=1

Y (tnk )

(ˆ tnk

tn
k−1

βN (s)dW (s)

)2

P−→
ˆ b

a

Y (t)βN (t)2dt, n → ∞.

The required statement then follows from the observation that β ≡ βN on{´ b
a
β(s)2ds < N

}
, and these events increase, as N → ∞, to an almost sure

event. �

PROOF (Proof of theorem 8.8).– We need to show that

F (t,X(t)) = F (a,X(a)) +

ˆ t

a

(
∂

∂t
F (s,X(s)) +

∂

∂x
F (s,X(s))α(s)

+
1

2

∂2

∂x2
F (s,X(s))β(s)2

)
ds+

ˆ t

a

∂

∂x
F (s,X(s))β(s)dW (s)

[8.15]
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almost surely for all t ∈ [a, b]. As both sides of the equality are continuous processes,

it is enough to show this (almost sure) equality for any fixed t ∈ [a, b], see theorem

6.1.

Let us first assume that β ∈ H2([a, b]) and F ∈ C∞([a, b] × R
2), compactly

supported. We fix some t ∈ [a, b], take arbitrary n ≥ 1, set δn = (t − a)/n and

consider the uniform partition of [a, t]: tk = a+ kδn, k = 0, . . . , n. We write

F (t,X(t))− F (a,X(a)) =

n∑
k=1

(
F (tk, X(tk))− F (tk−1, X(tk−1))

)
.

We have

F (tk, X(tk))− F (tk−1, X(tk))

=
∂

∂t
F (tk−1, X(tk))δn +

1

2

∂2

∂t2
F (θk, X(tk))δ

2
n

=
∂

∂t
F (tk−1, X(tk−1))δn

+
∂2

∂t ∂x
F (tk−1, νk)

(
X(tk)−X(tk−1)

)
δn +

1

2

∂2

∂t2
F (θ,X(tk))δ

2
n

and

F (tk−1, X(tk))− F (tk−1, X(tk−1))

=
∂

∂x
F (tk−1, X(tk−1))

(
X(tk)−X(tk−1)

)
+

1

2

∂2

∂x2
F (tk−1, X(tk−1))

(
X(tk)−X(tk−1)

)2
+

1

6

∂3

∂x3
F (tk−1, μk)

(
X(tk)−X(tk−1)

)3
.

As a result,

F (tk, X(tk))− F (tk−1, X(tk))

=
∂

∂t
F (tk−1, X(tk−1))δn +

∂

∂x
F (tk−1, X(tk−1))

(
X(tk)−X(tk−1)

)
+

1

2

∂2

∂x2
F (tk−1, X(tk−1))

(
X(tk)−X(tk−1)

)2
+Rn,k,

where, thanks to our assumptions, the remaining term admits the estimate

|Rn,k| ≤ C
(
δ2n + δn

∣∣X(tk)−X(tk−1)
∣∣+ ∣∣X(tk)−X(tk−1)

∣∣3) [8.16]
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with constant independent of k, n. Summing up, we have

F (t,X(t))− F (a,X(a)) = S1,n + S2,n +
1

2
S3,n +Rn,

where

S1,n =

n∑
k=1

∂

∂t
F (tk−1, X(tk−1))δn, Rn =

n∑
k=1

Rn,k

S2,n =
n∑

k=1

∂

∂x
F (tk−1, X(tk−1))

(
X(tk)−X(tk−1)

)
,

S3,n =

n∑
k=1

∂2

∂x2
F (tk−1, X(tk−1))

(
X(tk)−X(tk−1)

)2
.

First,∣∣∣∣S1,n −
ˆ t

a

∂

∂t
F (s,X(s))ds

∣∣∣∣
≤

n∑
k=1

ˆ tk

tk−1

∣∣∣∣ ∂∂tF (tk−1, X(tk−1))− ∂

∂t
F (s,X(s))

∣∣∣∣ ds [8.17]

≤ (t− a) sup
s,u∈[a,t]
|s−u|≤δn

∣∣∣∣ ∂∂tF (u,X(u))− ∂

∂t
F (s,X(s))

∣∣∣∣ → 0, n → ∞,

due to uniform continuity of F and continuity of X . To study the terms S2,n and S3,n,

we write

X(tk)−X(tk−1) = Ik + Jk,

where Ik =
´ tk
tk−1

α(s)ds, Jk =
´ tk
tk−1

β(s)dW (s).

Similarly to [8.2],

n∑
k=1

∂

∂x
F (tk−1, X(tk−1))Ik →

ˆ t

a

∂

∂x
F (s,X(s))α(s)ds, n → ∞.

Defining ηn(s) = β(s)
∑n

k=1
∂
∂xF (tk−1, X(tk−1)) [tk−1,tk)(s), we have

n∑
k=1

∂

∂x
F (tk−1, X(tk−1))Jk =

ˆ t

a

ηn(s)dW (s),
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and by virtue of Itô’s isometry,

E

(ˆ t

a

ηn(s)dW (s)−
ˆ t

a

F (s,X(s))β(s)dW (s)

)2

= E

(ˆ t

a

(
ηn(s)− F (s,X(s))β(s)

)
dW (s)

)2

=

ˆ t

a

E
(
ηn(s)− F (s,X(s))β(s)

)2
ds ≤

ˆ t

a

E
(
D2

nβ(s)
2
)
ds,

where

Dn = sup
s,u∈[a,t]
|s−u|≤δn

∣∣∣∣ ∂∂xF (u,X(u))− ∂

∂x
F (s,X(s))

∣∣∣∣ .
As above, Dn → 0, n → ∞. Moreover, Dn ≤ 2 sups∈[a,b],x∈R

∣∣ ∂
∂xF (s, x)

∣∣, so

by the dominated convergence theorem

E

(ˆ t

a

ηn(s)dW (s)−
ˆ t

a

F (s,X(s))β(s)dW (s)

)2

→ 0, n → ∞,

whence

n∑
k=1

∂

∂x
F (tk−1, X(tk−1))Jk

P−→
ˆ t

a

F (s,X(s))β(s)dW (s), n → ∞.

Consequently,

S2,n
P−→
ˆ t

a

∂

∂x
F (s,X(s))α(s)ds+

ˆ t

a

F (s,X(s))β(s)dW (s), n → ∞.

Further, consider

S3,n =
1

2

n∑
k=1

∂2

∂x2
F (tk−1, X(tk−1))

(
I2k + 2IkJk + J2

k

)
.

Thanks to boundedness of ∂2

∂x2F ,∣∣∣∣∣
n∑

k=1

∂2

∂x2
F (tk−1, X(tk−1))

(
I2k + 2IkJk

)∣∣∣∣∣
≤ C

(
max

1≤k≤n
|Ik|+ max

1≤k≤n
|Jk|

) n∑
k=1

Ik

≤ C

(
max

1≤k≤n
|Ik|+ max

1≤k≤n
|Jk|

)ˆ t

a

|α(s)| ds.
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The last expression vanishes, since by continuity of Lebesgue and Itô integrals,

max1≤k≤n |Ik|+max1≤k≤n |Jk| → 0, n → ∞, almost surely. By lemma 8.2,

n∑
k=1

∂2

∂x2
F (tk−1, X(tk−1))J

2
k

P−→
ˆ t

a

∂2

∂x2
F (s,X(s))β(s)2ds, n → ∞.

Summing up, we have

S3,n
P−→
ˆ t

a

∂2

∂x2
F (s,X(s))β(s)2ds, n → ∞.

Finally, by [8.16],

n∑
k=1

|Rn,k| ≤ C

(
1

n
+ max

k=1,...,n

∣∣X(tk)−X(tk−1)
∣∣(1 + n∑

k=1

(
X(tk)−X(tk−1)

)2))
.

Similarly to S3,n,

n∑
k=1

(
X(tk)−X(tk−1)

)2 P−→
ˆ t

a

β(s)2ds, n → ∞,

and thanks to continuity, maxk=1,...,n

∣∣X(tk) − X(tk−1)
∣∣ → 0, n → ∞, almost

surely. Therefore, Rn
P−→ 0, n → ∞, which finishes the proof for the current case.

Let us now turn to the general case, i.e. where β ∈ H([a, b]) and

F ∈ C1,2([a, b] × R). Take arbitrary N ≥ 1 and consider a sequence of compactly

supported functions Fn ∈ C1,2([a, b] × R) such that Fn → F , ∂
∂tFn → ∂

∂tF ,
∂
∂xFn → ∂

∂xF , ∂2

∂x2Fn → ∂2

∂x2F , n → ∞, uniformly on [a, b] × [−N,N ]. Define

also τN = inf
{
t ≥ a :

´ t
a
β(s)2ds+ |X(t)| ≥ N

}
∧ b, αN (t) = α(t) t≤τN ,

βN (t) = β(t) t≤τN and XN (t) = X(a) +
´ t
a
αN (s)ds +

´ t
a
βN (s)dW (s). We

write the Itô formula for Fn(t,XN (t)):

Fn(t,XN (t)) = Fn(a,X(a)) +

ˆ t

a

(
∂

∂t
Fn(s,XN (s))

+
∂

∂x
Fn(s,XN (s))αN (s)

+
1

2

∂2

∂x2
Fn(s,XN (s))βN (s)2

)
ds

+

ˆ t

a

∂

∂x
Fn(s,XN (s))βN (s)dW (s)
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almost surely. Since |XN (t)| ≤ N for t ∈ [a, b] and in view of uniform convergence

of Fn together with its derivatives to F , we get

F (t,XN (t)) = F (a,X(a)) +

ˆ t

a

(
∂

∂t
F (s,XN (s)) +

∂

∂x
F (s,XN (s))αN (s)

+
1

2

∂2

∂x2
F (s,XN (s))βN (s)2

)
ds+

ˆ t

a

∂

∂x
F (s,XN (s))βN (s)dW (s)

almost surely. This coincides with [8.15] on
{´ b

a
β(t)2dt+ supt∈[a,b] |X(t)| ≤ N

}
.

Since these events increase as N → ∞ to an almost sure event, we arrive at [8.15]. �

8.6. Multivariate stochastic calculus

The definition of Itô integral can be extended straightforwardly to the

multi-dimensional case. Specifically, let
{
W (t) =

(
W1(t), . . . ,Wk(t)

)
, t ≥ 0

}
be a

standard Wiener process in R
k, i.e. its coordinates are independent standard Wiener

processes in R. As before, we assume that W is adapted to the filtration {Ft, t ≥ 0}
and for any 0 ≤ s < t the increment W (t) − W (s) is independent of Fs. For a

matrix-valued process {ξ(t) = (ξij(t), i = 1, . . . , d, j = 1, . . . , k)} such that

ξij ∈ H([a, b]) for any i = 1, . . . , d, j = 1, . . . , k, we will understand

I(ξ, [a, b]) =
´ b
a
ξ(s)dW (s) as an R

d-valued process with ith coordinate equal to

Ii(ξ, [a, b]) =
k∑

j=1

ˆ b

a

ξij(t)dWj(t).

In particular, for an R
k-valued process

{
η(t) =

(
η1(t), . . . , ηk(t)

)
, t ≥ 0

}
with

ηi ∈ H([a, b]), i = 1, . . . , k, we define

I(η, [a, b]) =

ˆ b

a

(
η(t), dW (t)

)
=

k∑
i=1

ˆ b

a

ηi(t)dWi(t).

As before, (x, y) denotes the inner product. The meaning of |x| will depend on the

context: it is the absolute value of a number, Euclidean norm of a vector or a matrix

(square root of the sum of squares of elements).
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The multi-dimensional version of Itô integral has the same properties as its scalar

counterpart; in particular, if ξ ∈ H2([a, b]) (which means that all its elements are in

H2([a, b])), then

EI(ξ(t), [a, b]) = 0,

E |I(ξ(t), [a, b])|2 =

ˆ b

a

E |ξ(t)|2 dt.

The definition of the Itô process is carried over to several dimensions in a

straightforward way: it is a process of the form

X(t) = X(a) +

ˆ t

a

α(s)ds+

ˆ t

a

β(s)dW (s), t ∈ [a, b] [8.18]

where X(a) is an Fa-measurable random vector in R
d, and α and β are progressively

measurable processes with values in R
d and R

d×k, respectively, such that
´ b
a

( |α(t)|+
|β(t)|2 )dt < ∞ almost surely. Equation [8.18] can be written coordinatewise:

Xi(t) = Xi(a) +

ˆ t

a

αi(s)ds+
k∑

j=1

ˆ t

a

βij(s)dWj(s), t ∈ [a, b], i = 1, . . . , d.

Similarly to the scalar case, the expression dX(t) = α(t)dt+β(t)dW (t) is called

the stochastic differential of X .

There are no difficulties in generalizing the Itô formula, except notational ones.

Let F = F (t, x) : [a, b] × R
d → R be continuously differentiable with respect to t

and twice continuously differentiable with respect to x. Then, for X given by [8.18],

F (t,X(t)) is an Itô process with

dF (t,X(t)) =
∂

∂t
F (t,X(t))dt+

d∑
i=1

∂

∂xi
F (t,X(t))αi(t)dt

+
d∑

i=1

∂

∂xi
F (t,X(t))

k∑
j=1

βij(t)dWj(t)

+
1

2

d∑
i,l=1

∂2

∂xixj
F (t,X(t))

k∑
j=1

βij(t)βlj(t)dt.
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To avoid cumbersome expressions, we will use a shorter form:

dF (t,X(t)) =
∂

∂t
F (t,X(t))dt+

(
DxF (t,X(t)), α(t)

)
dt

+DxF (t,X(t))β(t)dW (t) +
1

2
tr
(
ββ�(t)D2

xxF (t,X(t))
)
dt,

where DxF (t, x) =
(

∂
∂x1

F (t, x), . . . , ∂
∂xd

F (t, x)
)

is the vector of first derivatives

and D2
xxF (t, x) =

(
∂2

∂xixl
F (t, x)

)d

i,l=1
is the matrix of second derivatives.

REMARK 8.6.– Informally, the Itô formula can be written as

dF (t,X(t)) =
∂

∂t
F (t,X(t))dt+

(
DxF (t,X(t)), dX(t)

)
+

1

2

(
D2

xxF (t,X(t))dX(t), dX(t)
)
,

where we use the following rules of multiplying differentials:

dt dt = dt dWi(t) = dWi(t) dWl(t) = 0

for i �= l and

dWi(t) dWi(t) = dt.

EXAMPLE 8.1.– One of the important particular cases of the Itô formula is the
formula for differential of product. Let Xi and i = 1, 2 be Itô processes on [a, b] with

dXi(t) = αi(t)dt+
k∑

j=1

βij(t)dWj(t), i = 1, 2.

Then, the product X1X2 is an Itô process, and

d
(
X1(t)X2(t)

)
= X1(t)dX2(t) +X2(t)dX1(t) +

k∑
j=1

β1j(t)β2j(t)dt

= X1(t)dX2(t) +X2(t)dX1(t) + d[X1, X2]t. [8.19]

The process [X1, X2]t =
∑k

j=1

´ t
a
β1j(s)β2j(s)ds is called covariation of the

processes X1 and X2. The above formula simplifies when one of the processes has
usual differential. Let, for example, X2 be absolutely continuous, that is, dX2(t) =
α2(t)dt. Then,

d
(
X1(t)X2(t)

)
= X1(t)dX2(t) +X2(t)dX1(t), [8.20]

which coincides with the usual formula for differential of product.
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8.7. Maximal inequalities for Itô martingales

In this section, we consider maximal inequalities for Itô local martingales, i.e. Itô

processes of the form M(t) =
´ t
0
ξ(s)dW (s), t ∈ [0, T ], where ξ(t) ∈ H([0, T ]).

Consider a sequence of partitions {0 = tn0 < t1n < · · · < tnn = T, n ≥ 1}, with the

mesh going to zero. Then, it follows from lemma 8.2 that

n∑
k=1

(
M(tnk )−M(tnk−1)

)2 P−→
ˆ T

0

ξ(t)2dt, n → ∞.

Thus, the process [M ]t :=
´ t
0
ξ(s)2ds is a natural generalization of quadratic

variation process to a continuous parameter case.

THEOREM 8.9.– For each p > 0, there exist positive cp, Cp such that for any
progressively measurable {ξt, t ∈ [0, T ]} with

´ T
0
ξ(t)2dt < ∞ almost surely

cpE[M ]
p/2
T ≤ E sup

t∈[0,T ]

|M(t)|p ≤ CpE[M ]
p/2
T , [8.21]

where M(t) =
´ t
0
ξ(s)dW (s) and [M ]t =

´ t
0
ξ(s)2ds.

REMARK 8.7.– For p ≥ 1, inequality [8.21] is often referred to as the

Burkholder–Davis–Gundy inequality (for p = 1, this is the Davis inequality, for

p > 1, the Burkholder–Gundy inequality). Similar inequalities for martingales with

discrete parameter were discussed in section 5.5.7.

REMARK 8.8.– It is worth mentioning that the same assertion holds when T is a

stopping time: after setting M̃(t) = M(t) t≤T and using theorem 8.4, this boils

down to the case of non-random T .

PROOF.– Take any N ≥ 1 and denote

τN = inf

{
t ≥ 0 :

ˆ t

0

ξ(s)2ds+ |M(t)| ≥ N

}
∧ T,

MN (t) = M(t ∧ τN ), M∗
N (T ) = supt∈[0,T ] |MN (t)|, ξN (t) = ξ(t) [0,t](τN ). By

theorem 8.4, MN (t) =
´ t
0
ξN (s)dW (s) and MN is a continuous martingale.

We first prove the right inequality in [8.21]. Let p ≥ 2. By theorem 5.26,

EM∗
N (T )p ≤ CpE |MN (T )|p .
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Using the Itô formula,

E |MN (T )|p = pE

(ˆ T

0

|MN (t)|p−1
signMN (t) ξN (t) dW (t)

)

+
1

2
p(p− 1)E

(ˆ T

0

|MN (t)|p−2
ξN (t)2dt

)

=
1

2
p(p− 1)E

(ˆ T

0

|MN (t)|p−2
d[MN ]t

)

≤ 1

2
p(p− 1)E

(
M∗

N (T )p−2[MN ]T
)
.

If p = 2, we arrive at

EM∗
N (T )2 ≤ C2E[MN ]T ≤ C2E[M ]T .

If p > 2, using the Hölder inequality with q = p/(p− 2), we get

EM∗
N (T )p ≤ Cp (EM

∗
N (T )p)

1/q
(
E[MN ]

p/2
T

)2/p

,

whence

EM∗
N (T )p ≤ CpE[MN ]

p/2
T ≤ CpE[M ]

p/2
T .

Letting N → ∞ and using the Fatou lemma, we obtain the right inequality in

[8.21].

Now let p < 2. Define αN (t) = ξN (t)[MN ]
p/4−1/2
t [MN ]t>0,

AN (t) =
´ t
0
αN (s)dW (s), A∗

N (T ) = supt∈[0,T ] |AN (t)|. Then, AN is a martingale

and

EAN (T )2 = E

(ˆ T

0

ξN (t)2[MN ]
p/2−1
t [MN ]t>0dt

)

= E

(ˆ T

0

[MN ]
p/2−1
t [MN ]t>0d[MN ]t

)
=

2

p
E[MN ]

p/2
T .
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On the other hand, by the Itô formula,

AN (t)[MN ]
1/2−p/4
t =

ˆ t

0

αN (s)[MN ]1/2−p/4
s dW (s)

+

ˆ t

0

AN (s)d[MN ]1/2−p/4
s

= MN (t) +

ˆ t

0

AN (s)d[MN ]1/2−p/4
s ,

whence

M∗
N (T ) ≤ 2A∗

N (T )[MN ]
1/2−p/4
T .

Thus, using the Hölder inequality with q = 2/(2− p) and theorem 5.26, we arrive

at

EM∗
N (T )p ≤ 2pE

(
A∗

N (T )p [MN ]
p(1/2−p/4)
T

)
≤ 2p

(
EA∗

N (T )2
)2/p (

E[MN ]
pq(1/2−p/4)
T

)1/q

≤ Cp

(
EAN (T )2

)2/p (
E[MN ]

p/2
T

)1/q

= CpE[MN ]
p/2
T .

Hence, as above, we derive the required inequality by letting N → ∞.

To prove the left inequality, use the Itô formula again:

MN (T )2 = 2

ˆ T

0

MN (t)ξN (t)dW (t) + [MN ]T ,

getting

E[MN ]
p/2
T ≤ Cp

⎛⎝E |MN (T )|p + E

∣∣∣∣∣
ˆ T

0

MN (t)ξN (t)dW (t)

∣∣∣∣∣
p/2

⎞⎠
≤ Cp

⎛⎝EM∗
N (T )p + E

(ˆ T

0

MN (t)2d[MN ]t

)p/4
⎞⎠

≤ Cp

(
EM∗

N (T )p + EM∗
N (T )p/2[MN ]

p/4
T

)
≤ Cp

(
EM∗

N (T )p +
(
E (M∗

N (T )p) · E
(
[MN ]

p/2
T

))1/2
)
,
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whence it follows that

E[MN ]
p/2
T ≤ CpEM

∗
N (T )p ≤ E sup

t∈[0,T ]

|M(t)|p .

As before, letting N → ∞ leads to the desired conclusion. �

8.7.1. Strong law of large numbers for Itô local martingales

As an application of the maximal inequalities, we will show a strong law of large

numbers for Itô martingales, which is of great importance in statistics of stochastic

processes.

Let {X(t), t ≥ 0} be a one-dimensional Itô martingale, i.e.

X(t) = X(0) +

ˆ t

0

ξ(s)dW (s), t ≥ 0,

where ξ ∈ H([0, t]) for each t > 0. Recall that the quadratic variation of X is

[X]t =
´ t
0
ξ(s)2ds. Obviously, this is a non-decreasing process, so there exists the

limit limT→∞[X]T ∈ [0,+∞].

THEOREM 8.10.– For any Itô local martingale {X(t), t ≥ 0},

X(T )

[X]T
→ 0, T → ∞,

for almost all ω ∈ {limT→∞[X]T = +∞}.

PROOF.– Set Tn = inf {t ≥ 0 : [X]t ≥ 2n}, n ≥ 1. We have that Tn → +∞, n → ∞
and Tn < +∞ on A := {limT→∞[X]T = +∞}.

For any T > 0, we define

Mn(T ) = sup
Tn∧T≤t<Tn+1∧T

|X(t)|2
[X]2t

,

and Mn(T ) = 0 if T ≤ Tn. We estimate

Mn(T ) ≤ 21−2n

(
|X(Tn ∧ T )|2 + sup

Tn∧T≤t<Tn+1∧T
|X(t)−X(Tn ∧ t)|2

)

≤ 21−2n

(
|X(Tn ∧ T )|2 + sup

t∈[0,T ]

|X(Tn+1 ∧ t)−X(Tn ∧ t)|2
)
.
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It follows easily from theorem 8.4 that

X(Tn+1 ∧ t)−X(Tn ∧ t) =

ˆ t

0

ξn(s)dW (s),

where ξn(s) = ξ(s) Tn≤s≤Tn+1 . Therefore, by theorem 8.9, we have

E

(
sup

t∈[0,T ]

|X(Tn+1 ∧ t)−X(Tn ∧ t)|2
)

≤ E

ˆ T

0

ξn(t)
2dt ≤ 2n+1.

Also, from theorem 8.4 and the Itô isometry,

E |X(Tn ∧ T )|2 =

ˆ T

0

E
(
ξ(t)2 t≤Tn

)
dt ≤ 2n.

Collecting the estimates, we get

EMn(T ) ≤ 21−2n(2n+1 + 2n) ≤ 23−n.

Therefore,

E
(

sup
Tn≤t<Tn+1

|X(t)|2
[X]2t

A

)
≤ EMn(T ) ≤ 23−n.

Hence

E
( ∞∑

n=1

sup
Tn≤t<Tn+1

|X(t)|2
[X]2t

A

)
=

∞∑
n=1

E
(

sup
Tn≤t<Tn+1

|X(t)|2
[X]2t

A

)
< ∞.

In particular,

sup
Tn≤t<Tn+1

|X(t)|2
[X]2t

A → 0, n → ∞,

almost surely. Consequently, |X(t)|/[X]t → 0, t → ∞, for almost all ω ∈ A, as

claimed. �
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8.8. Lévy martingale characterization of Wiener process

As we know, the standard Wiener process W is a martingale with quadratic

characteristics t, i.e. W 2
t − t is a martingale, too. It turns out that this statement can

be reversed. The reverse statement is called the Lévy martingale characterization (or

simply the Lévy characterization) of the Wiener process; we formulate its

multi-dimensional version.

THEOREM 8.11.– Let {X(t), t ≥ 0} be a continuous process in R
d such that:

– for any i = 1, . . . , d, Xi is a martingale;

– for any i, j = 1, . . . , d, Xi(t)Xj(t)− δijt, t ≥ 0, is a martingale.

Then, X is a standard Wiener process in R
d.

REMARK 8.9.– The continuity assumption cannot be omitted: the compensated

Poisson process N(t)− t, t ≥ 0, is easily seen to satisfy both conditions.

We start by proving some analogue of the Itô formula.

LEMMA 8.3.– Let X satisfy the assumptions of theorem 8.11 and f ∈ C3(Rd) be
bounded together with its derivatives up to the third order. Then, for any 0 ≤ s ≤ t,

E(f(X(t)) | Fs) = f(X(s)) +
1

2

ˆ t

s

d∑
i=1

E

(
∂2

∂x2
i

f(X(u))

∣∣∣∣ Fs

)
du.

PROOF.– For n ≥ 1, we denote δn = (t − s)/n and consider a uniform partition

{tnk = s+ kδn, k = 0, . . . , n} of [s, t]. We fix arbitrary ε > 0 and define wn(u) =
supv∈[u−δn,u] |X(v) −X(u)|, u ∈ [s + δn, t], τn,ε = inf{u ≥ s : wn(u) ≥ ε} ∧ t.
The continuity of X implies

τn,ε → t, n → ∞. [8.22]

We write

E(f(X(t)) | Fs)− f(X(s)) = E(f(X(t))− f(X(τn,ε)) | Fs)

+E(f(X(τn,ε)) | Fs)− f(X(s)).

Taking into account [8.22] and the boundedness of f , we get

E(f(X(t))− f(X(τn,ε)) | Fs) → 0, n → ∞,
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almost surely. Further, we denote tnk,ε = tnk ∧ τn,ε, Δn
k,εXi = Xi(t

n
k )−Xi(t

n
k−1) and

write, using the Taylor formula,

E(f(X(τn,ε)) | Fs)− f(X(s)) =

n∑
k=1

E(f(X(tnk,ε))− f(X(tnk−1,ε)) | Fs)

=
n∑

k=1

E

(
d∑

i=1

∂

∂xi
f(X(tnk−1,ε))Δ

n
k,εXi

∣∣∣ Fs

)

+
1

2

n∑
k=1

E

⎛⎝ d∑
i,j=1

∂2

∂xi∂xj
f(X(tnk−1,ε))Δ

n
k,εXiΔ

n
k,εXj

∣∣∣ Fs

⎞⎠
+
1

6

n∑
k=1

E

⎛⎝ d∑
i,j,l=1

∂3

∂xi∂xj∂xl
f(θk)Δ

n
k,εXiΔ

n
k,εXjΔ

n
k,εXl

∣∣∣ Fs

⎞⎠
=: Sn

1 + Sn
2 + Sn

3 ,

where θk are some points in R
d between X(tnk−1,ε) and X(tnk,ε), k = 1, . . . , n. Note

that for any k = 0, 1, . . . , n, tnk,ε is a bounded stopping time. Since X is a continuous

martingale, from theorem 5.25, we have

Sn
1 = E

(
∂

∂xi
f(X(tnk−1,ε))E

(
Δn

k,εXi | Ftn
k−1,ε

) ∣∣∣ Fs

)
= 0.

Further,

Sn
2 =

1

2

n∑
k=1

d∑
i,j=1

E

(
∂2

∂xixj
f(X(tnk−1,ε))E

(
Δn

k,εXiΔ
n
k,εXj | Ftn

k−1,ε

) ∣∣∣ Fs

)
.[8.23]

Since Xi(t)Xj(t)− δijt is a martingale, we have

Xi(t
n
k−1,ε)Xj(t

n
k−1,ε)− δijt

n
k−1,ε = E

(
Xi(t

n
k,ε)Xj(t

n
k,ε)− δijt

n
k,ε | Ftn

k−1,ε

)
= E

((
Xi(t

n
k−1,ε) + Δn

k,εXi

) (
Xj(t

n
k−1,ε) + Δn

k,εXj

)− δijt
n
k,ε | Ftn

k−1,ε

)
= Xi(t

n
k−1,ε)Xj(t

n
k−1,ε) +Xi(t

n
k−1,ε)E

(
Δn

k,εXj | Ftn
k−1,ε

)
+Xj(t

n
k−1,ε)E

(
Δn

k,εXi | Ftn
k−1,ε

)
+ E

(
Δn

k,εXiΔ
n
k,εXj − δijt

n
k,ε | Ftn

k−1,ε

)
= Xi(t

n
k−1,ε)Xj(t

n
k−1,ε) + E

(
Δn

k,εXiΔ
n
k,εXj − δijt

n
k,ε | Ftn

k−1,ε

)
,
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whence

E
(
Δn

k,εXiΔ
n
k,εXj | Ftn

k−1,ε

)
= δijE

(
tnk,ε − tnk−1,ε | Ftn

k−1,ε

)
. [8.24]

Substituting this into [8.23], we get

Sn
2 =

1

2
E

(
n∑

k=1

d∑
i=1

∂2

∂x2
i

f(X(tnk−1,ε))E
(
tnk,ε − tnk−1,ε | Ftn

k−1,ε

) ∣∣∣ Fs

)
.

In view of [8.22], the expression under expectation is equal to

n∑
k=1

d∑
i=1

∂2

∂x2
i

f(X(tnk−1,ε))δn

for all n large enough, which converges, thanks to the continuity of X , to

ˆ t

s

d∑
i=1

∂2

∂x2
i

f(X(u))du

as n → ∞. Moreover, that expression is bounded by assumption, so the dominated

convergence theorem yields

Sn
2 → E

(ˆ t

s

d∑
i=1

∂2

∂x2
i

f(X(u))du

∣∣∣∣ Fs

)

=

ˆ t

s

d∑
i=1

E

(
∂2

∂x2
i

f(X(u))

∣∣∣∣ Fs

)
du, n → ∞.

Recalling that
∣∣∣Δn

k,εXl

∣∣∣ ≤ ε and the third derivatives are bounded, we estimate

|Sn
3 | ≤ Cε

n∑
k=1

E

⎛⎝ d∑
i,j=1

∣∣Δn
k,εXiΔ

n
k,εXj

∣∣ ∣∣∣ Fs

⎞⎠
≤ Cε

2

n∑
k=1

E

⎛⎝ d∑
i,j=1

((
Δn

k,εXi

)2
+

(
Δn

k,εXj

)2) ∣∣∣ Fs

⎞⎠
= Cdε

n∑
k=1

E

(
d∑

i=1

(
Δn

k,εXi

)2 ∣∣∣ Fs

)

= Cdε
n∑

k=1

E
(
tnk,ε − tnk−1,ε | Fs

) ≤ Cd(t− s)ε,

where we have used [8.24].
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Collecting our findings and letting n → ∞, we arrive at∣∣∣∣∣E(f(X(t)) | Fs)− f(X(s))− 1

2

ˆ t

s

d∑
i=1

E

(
∂2

∂x2
i

f(X(u))
∣∣∣Fs

)
du

∣∣∣∣∣
≤ Cd(t− s)ε.

Since ε is arbitrary, the statement follows. �

PROOF (Proof of theorem 8.11).– Take any λ ∈ R
d, s ∈ [0, T ] and use lemma 8.3 to

derive that

f(t) := E
(
ei(λ,X(t)) | Fs

)
= ei(λ,X(s))

+
1

2

ˆ t

s

d∑
k=1

(iλk)
2E

(
ei(λ,X(u))

∣∣∣Fs

)
du

= ei(λ,X(s)) − |λ|2
2

ˆ t

s

f(u)du, t ∈ [s, T ].

Solving this equation for f , we obtain

f(t) = ei(λ,X(s))−|λ|2(t−s)/2, t ∈ [s, T ],

whence

E
(
ei(λ,X(t)−X(s)) | Fs

)
= e−|λ|2(t−s)/2,

which shows that for any t ∈ [s, T ], the increment X(t) − X(s) is independent of

Fs and has the normal distribution N (0, (t− s)Ed), where Ed is the identity matrix.

Consequently, X is a standard Wiener process in R
d. �

8.9. Girsanov theorem

In section 5.5.8 we discussed how to turn a stochastic process with discrete time

into a martingale. This section studies a similar question for continuous time.

However, in contrast to general setting, considered in discrete time situation, here we

address the particular case of the Wiener process and related processes.

Let
{
W (t) =

(
W1(t), . . . ,Wk(t)

)
, t ≥ 0

}
be a standard Wiener process in R

k

and
{
h(t) =

(
h1(t), . . . , hk(t)

)}
be an R

k-valued process in H([0, T ]), i.e.
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´ T
0
hi(t)

2dt < ∞ for i = 1, . . . , k. We are interested in a measure Q such that the

Wiener process with drift

Wh(t) = W (t) +

ˆ t

0

h(s)ds, t ∈ [0, T ]

is a Wiener process under Q.

We start by studying the martingale property of the so-called stochastic
exponential (or Doléans–Dade exponential)

Eh(t) = exp

{ˆ t

0

(
h(s), dW (s)

)− 1

2

ˆ t

0

|h(s)|2 ds
}
.

THEOREM 8.12.– Let h ∈ H([0, T ]) be such that

E Eh(T ) = 1. [8.25]

Then,
{Eh(t), t ∈ [0, T ]

}
is a martingale.

REMARK 8.10.– Since Eh(0) = 1, it is obvious that [8.25] is also necessary for Eh to

be a martingale.

PROOF.– Define τN =
{
t ≥ 0 : Eh(t) +

´ t
0
|h(s)|2ds > N

}
∧ T ; due to the

continuity of the Itô integral, τN → T , N → ∞, almost surely. Therefore, setting

hN (t) = h(t) t≤τN for N ≥ 1, we have EhN

(t) → Eh(t), N → ∞, almost surely

by virtue of theorem 8.4.

By the Itô formula,

dEhN

(t) = EhN

(t)

⎛⎝(
hN (t), dW (t)

)− 1

2

∣∣hN (t)
∣∣2 dt+ 1

2

k∑
j=1

hN
j (t)2dt

⎞⎠
= EhN

(t)
(
hN (t), dW (t)

)
.

Since
´ T
0
EhN

(t)2
∣∣hN (t)

∣∣2 dt ≤ N3, we get that EhN

(t) is a martingale. Then,

the Fatou lemma for conditional expectations yields for any t ∈ [0, T ]

Eh(t) = lim inf
N→∞

Eh(t) = lim inf
N→∞

E
(EhN

(T )
∣∣Ft

)
≥ E

(
lim inf
N→∞

EhN

(T )
∣∣∣Ft

)
= E(Eh(T ) | Ft).
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By integrating, we get

E Eh(t) ≥ E Eh(T ) = 1.

Similarly,

E Eh(t) ≤ E Eh(0) = 1.

This means that all the above inequalities must be equalities, consequently,

Eh(t) = lim inf
N→∞

Eh(t) = E(Eh(T ) | Ft)

a.s., whence the martingale property follows. �

There are a number of sufficient conditions supplying [8.25]. The most popular

one is the Novikov condition, which is the subject of the following theorem.

THEOREM 8.13.– Let h ∈ H([0, T ]) be such that

Eexp

{
1

2

ˆ T

0

|h(t)|2 dt
}

< ∞. [8.26]

Then, [8.25] holds true.

PROOF.– Let
{
hN , N ≥ 1

}
be a sequence of bounded processes from H2([0, T ]) such

that
∣∣hN (t)

∣∣ ≤ |h(t)| for all N ≥ 1, t ∈ [0, T ] and
∥∥hN − h

∥∥
H2([0,T ])

→ 0, N → ∞
(e.g. we may take the sequence constructed in the proof of previous theorem).

Let us consider a ∈ (0, 1). Thanks to properties of Itô processes, EahN

(T ) →
Eah(T ), N → ∞, in probability. Using the same reasoning as in the previous theorem,

we have E EahN

(T ) = 1. Moreover, by the Hölder inequality,

E EahN

(T ) = E exp

{ˆ T

0

a
(
hN (t), dW (t)

)− 1

2

ˆ T

0

a2
∣∣hN (t)

∣∣2 dt}

= E

(
EhN

(T )a · exp
{
a− a2

2

ˆ T

0

∣∣hN (t)
∣∣2 dt})

≤
(
E EhN

(T )
)a

·
(
Eexp

{
a

2

ˆ T

0

∣∣hN (t)
∣∣2 dt})1−a

[8.27]

≤
(
Eexp

{
1

2

ˆ T

0

|h(t)|2 dt
})1−a

.
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Therefore, the sequence
{
EahN

(T ), N ≥ 1
}

is uniformly integrable, whence

E Eah(T ) = lim
N→∞

E EahN

(T ) = 1.

Further, similarly to [8.13],

1 = E Eah(T ) ≤ (
E Eh(T )

)a ·(Eexp

{
a

2

ˆ T

0

|h(t)|2 dt
})1−a

,

whence, letting a → 1, we get E Eh(T ) ≥ 1. Recalling from the proof of the previous

theorem that E Eh(T ) ≤ 1, we arrive at the statement. �

Finally, let us prove the Girsanov theorem in continuous time.

THEOREM 8.14.– Let h ∈ H([0, T ]) be such that [8.26] holds. We define the
probability measure Q by

dQ

dP
= E−h(T ).

Then, the process

Wh(t) = W (t) +

ˆ t

0

h(s)ds, t ∈ [0, T ],

is a Wiener process on (Ω,F , {Ft, t ∈ [0, T ]} ,Q).

REMARK 8.11.– The stochastic exponential

E−h(T ) = exp

{
−
ˆ T

0

(
h(t), dW (t)

)− 1

2

ˆ T

0

|h(t)|2 ds
}

is sometimes called the Girsanov density corresponding to the drift term h. Note that

the Novikov condition is the same for h and −h, so theorem 8.13 supplies that

E E−h(T ) = 1, i.e. it is indeed a density of probability measure under this

assumption. Another important observation is that [8.25] suffices for theorem 8.14 to

hold true; the proof of this fact is beyond the scope of this book.

PROOF.– Clearly, Wh is adapted to the filtration {Ft}, so it is enough to show that for

any s, t ∈ [0, T ] with s < t, the increment Wh(t)−Wh(s) is independent of Fs and

has the normal distribution N (0, (t − s)Ek) with respect to the measure Q. To this

end, consider the conditional characteristic function

EQ
(
e(λ,W

h(t)−Wh(s))
∣∣ Fs

)
=

E
(
e(λ,W

h(t)−Wh(s))E−h(T )
∣∣ Fs

)
E
(E−h(T )

∣∣ Fs

) , λ ∈ R
k.
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By theorem 8.12, E
(E−h(T )

∣∣ Fs

)
= E−h(s) and

E
(
e(λ,W

h(t)−Wh(s))E−h(T )
∣∣ Fs

)
= E

(
e(λ,W

h(t)−Wh(s))E
(E−h(T )

∣∣ Ft

) ∣∣ Fs

)
= E

(
e(λ,W

h(t)−Wh(s))E−h(t)
∣∣ Fs

)
= E−h(s) E

(
exp

{ˆ t

s

(
g(u), dW (u)

)
+

ˆ t

s

f(u)du

} ∣∣∣ Fs

)
almost surely, where g(u) = iλ − h(u), f(u) = i

(
λ, h(u)

) − 1
2 |h(u)|2. It is easy

to see that f(u) = |g(u)|2 − |λ|2/2 and that g satisfies the Novikov condition [8.26],

so E(Eg(t) | Fs) = Eg(s) almost surely (despite g being complex-valued, the proof

needs just minor modification, as the imaginary part of g is constant). Therefore,

E

(
exp

{ˆ t

s

(
g(u), dW (u)

)
+

ˆ t

s

f(u)du

} ∣∣∣ Fs

)
= E

( Eg(t)

Eg(s)
e−|λ|2(t−s)/2

∣∣∣ Fs

)
= e−|λ|2(t−s)/2.

Combining our findings, we get

EQ
(
e(λ,W

h(t)−Wh(s))
∣∣ Fs

)
= e−|λ|2(t−s)/2,

which shows that the increment Wh(t) − Wh(s) is independent of Fs and has the

normal distribution N (0, (t− s)Ek) with respect to the measure Q. �

As an immediate consequence, we obtain a result on the change of measure,

turning an Itô process into a martingale. This is of great importance for financial

modeling (see section 9.8).

COROLLARY 8.1.– Let X be an Itô process in R
d with

dX(t) = α(t)dt+ β(t)dW (t), t ∈ [0, T ],

where α is an R
d-valued progressively measurable process and β is a bounded R

d×k-
valued progressively measurable process. Assume that there exist some R

k-valued
processes h ∈ H([0, T ]) such that [8.26] holds and α(t) = β(t)h(t) almost surely for
any t ∈ [0, T ]. Then, {X(t), t ∈ [0, T ]} is a martingale with respect to the measure Q
with density

dQ

dP
= E−h(T ).

REMARK 8.12.– In the one-dimensional case, where k = d = 1, we have h(t) =
α(t)/β(t) provided that β is non-zero.
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PROOF.– By assumption, we can rewrite the stochastic differential of X in the form

dX(t) = β(t)
(
h(t)dt+ dW (t)

)
= β(t)dW h(t).

By theorem 8.14, W h(t) is a Wiener process with respect to Q. Since β is bounded,

it follows that {X(t), t ∈ [0, T ]} is a martingale with respect to Q. �

8.10. Itô representation

Let, as in the previous section, W be a standard Wiener process in R
k. We will

discuss the representation of random variables in the form

X = C +

ˆ T

0

(
ξ(s), dW (s)

)
= C +

k∑
i=1

ˆ T

0

ξi(s)dWi(s)

with ξi ∈ H2([0, T ]), i = 1, . . . , k, C ∈ R. Since the Itô integral is centered, we must

have C = EX in this representation.

Such representations play an important role in applications, most notably in

mathematical modeling of financial markets, where they are related to replicating

portfolios for contingent claims (see section 9.8 for details). The following result,

establishing the existence and uniqueness of such a representation, called Itô
representation, is thus of significant importance. Denote by

{FW
t , t ∈ [0, T ]

}
the

augmented natural filtration of the Wiener process W .

THEOREM 8.15.– For any FW
T -measurable random variable X with EX2 < ∞,

there exists a unique (up to modification) R
k-valued process ξ, progressively

measurable with respect to
{FW

t , t ∈ [0, T ]
}

such that
´ T
0
E|ξ(t)|2dt < ∞ and the

following representation holds:

X = EX +

ˆ T

0

(
ξ(s), dW (s)

)
. [8.28]

PROOF.– The uniqueness follows immediately from the Itô isometry.

Denote by HW
2 the set of R

k-valued process ξ, progressively measurable with

respect to
{FW

t , t ∈ [0, T ]
}

, with ‖ξ‖2HW
2

:=
´ T
0
E|ξ(t)|2dt < ∞. Similarly to

H2([0, T ]), this normed space is complete. Let also I be the set of square integrable

FW
T -measurable random variables representable in the form [8.28]. It is evident that

I is a linear subset of L2(Ω). Let us show that it is closed. Take any sequence

{Xn, n ≥ 1} ⊂ I such that E(Xn − X0)
2 → 0, n → ∞, for some X0 ∈ L2(Ω).

Then, it follows from Hölder’s inequality that EXn → EX0, n → ∞. Writing now
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the Itô representation Xn = EXn + I(ξn, [0, T ]), we get that the sequence

{I(ξn, [0, T ]), n ≥ 1} is a Cauchy sequence in L2(Ω). Therefore, thanks to the Itô

isometry, the sequence {ξn, n ≥ 1} is a Cauchy sequence in HW
2 . Since this space is

complete, there exists some ξ ∈ HW
2 such that ξn → ξ, n → ∞, in HW

2 . Using the

Itô isometry again, we obtain I(ξn, [0, T ]) → I(ξ, [0, T ]), n → ∞, whence

X0 = EX0 + I(ξ, [0, T ]). As a result, I is closed in L2(Ω).

For a deterministic function h : [0, T ] → R
k with

´ T
0
|h(t)|2 dt < ∞ consider the

process

E ih(t) = exp

{
i

ˆ t

0

(
h(s), dW (s)

)
+

1

2

ˆ t

0

|h(s)|2 ds
}
.

This is exactly the same stochastic exponential studied in section 8.9; despite it

involving complex quantities, we can treat it similarly. That is, we can use the Itô

formula, which easily generalizes to complex-valued functions, to get

dE ih(t) = E ih(t)

⎛⎝i
(
h(t), dW (t)

)
+

1

2
|h(t)|2 dt+ 1

2

k∑
j=1

(ihj(t))
2
dt

⎞⎠
= iE ih(t)

(
h(t), dW (t)

)
.

In particular,

E ih(T ) = 1 + i

ˆ T

0

E ih(t)
(
h(t), dW (t)

)
. [8.29]

Since
{E ih(t)h(t), t ∈ [0, T ]

}
is progressively measurable with respect to the

natural filtration {FW
t , t ∈ [0, T ]} of the Wiener process and

ˆ T

0

E
∣∣E ih(t)h(t)

∣∣2 dt ≤ ˆ T

0

|h(t)|2 dt · exp
{ˆ T

0

|h(t)|2 dt
}

< ∞,

we get Re E ih(T ) ∈ I and Im E ih(T ) ∈ I. By linearity, I contains variables of the

form sin (h(t),W (t)), cos (h(t),W (t)). Taking h piecewise constant, we get that for

any n ≥ 1 and any t1, . . . , tn ∈ [0, T ], I contains all trigonometric polynomials of

Wi(t1), . . . ,Wi(tn), i = 1, . . . , k. By theorem A1.5, the set of such polynomials is

dense in the space of square-integrable random variables of the form

F (W (t1), . . . ,W (tn)), so they belong to I as well. In particular,

A(W (t1), . . . ,W (tn)) ∈ I for any A ∈ B(Rn), n ≥ 1 and t1, . . . , tn ∈ [0, T ].
Hence, similarly to theorem A2.3, we get that I = L2(Ω,FW

T ), as needed. �
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The left-hand side of [8.28] is a martingale, as a function of T . Thus, as a corollary

to theorem 8.15, we get the so-called martingale representation.

THEOREM 8.16.– For any FW -martingale {M(t), t ∈ [0, T ]} with EM(T )2 < ∞,
there exists a unique (up to modification) R

k-valued process ξ, progressively
measurable with respect to

{FW
t , t ∈ [0, T ]

}
, satisfying

´ T
0
E|ξ(t)|2dt < ∞ and

such that

M(t) = M(0) +

ˆ t

0

(
ξ(s), dW (s)

)
almost surely for each t ∈ [0, T ].

PROOF.– Follow from theorem 8.15 by setting X = M(T ) and taking the conditional

expectation with respect to FW
t . �

Theorem 8.15 asserts only existence of some integrand in Itô representation, and

gives almost no idea how this integrand can be found. In some cases, the answer can be

given in terms of the stochastic derivative (or Malliavin derivative). We will give only

basic information; the details may be found in [NUA 06]. For technical simplicity,

we will treat only the case k = 1; the generalization to the multi-dimensional case is

straightforward.

We call an FW
T -measurable random variable X cylindrical if it can be represented

in the form X = f
(
W (t1), . . . ,W (tn)

)
for some ti ∈ [0, T ], 1 ≤ i ≤ n, and

infinitely differentiable compactly supported function f . The stochastic derivative of

X is the stochastic process

DtX =

n∑
i=1

∂

∂xi
f ′
i

(
W (t1), . . . ,W (tn)

)
[0,ti](t), t ∈ [0, T ];

we will consider it as an element of H2([0, T ]). In particular, the indistinguishable

processes will be identified. We define the following norm:

‖X‖2D1,2
= EX2 +

ˆ T

0

E(DtX)2 dt.

The space D1,2 ⊂ L2(Ω) is defined as a completion of the set of cylindrical random

variables with respect to the norm ‖·‖D1,2
. It can be checked that the operator D is

closable, so it admits a unique extension to D1,2.

The following properties of the stochastic derivatives can be checked easily from

this definition:

– linearity: Dt(aX + bY ) = aDtX + bDtY , a, b ∈ R, X,Y ∈ D1,2;
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– product rule: Dt(XY ) = XDtY + Y DtX if X,Y,XY ∈ D1,2;

– chain rule: for any X1, . . . , Xm ∈ D1,2 and any function h ∈ C1(Rm) of at

most linear growth,

Dth(X1, . . . , Xm) =

m∑
i=1

∂

∂xi
h(X1, . . . , Xk)DtXk.

For elements of D1,2, it is possible to write the Itô representation explicitly in

terms of stochastic derivative via the so-called Clark–Ocone formula (also called

Clark formula or Clark–Ocone–Haussmann formula by some authors).

THEOREM 8.17.– For any X ∈ D1,2,

X = EX +

ˆ T

0

E(DtX | FW
t )dW (t) [8.30]

almost surely.

PROOF.– The set J of variables from D1,2 satisfying [8.30] is clearly linear. Further,

let {Xn, n ≥ 1} ⊂ J and ‖Xn −X0‖D1,2
→ 0, n → ∞. Then, by Jensen’s

inequality, EXn → EX0 and

ˆ t

0

E
(
E(DtXn | FW

t )− E(DtX0 | FW
t )

)2
dt → 0

as n → ∞. Thanks to Itô’s isometry,

ˆ T

0

E(DtXn | FW
t )dW (t) →

ˆ T

0

E(DtX0 | FW
t )dW (t), n → ∞.

Therefore, X0 satisfies [8.30] as well, so J is closed in D1,2.

Equation [8.29] establishes [8.30] for the variables E ih(T ); therefore, by linearity,

J contains all trigonometric polynomials of values of W taken at different points.

Taking for granted (a not-so-trivial fact) that the set of such polynomials is dense in

D1,2, we get that J = D1,2, as claimed. �

As a corollary, we have the following stochastic integration by parts formula. It

may be used to define an extension of the Itô integral to non-adapted (anticipative)

integrands, which is called Skorokhod integral; for more information, see [NUA 06].
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COROLLARY 8.2.– Assume that X ∈ D
1,2 and ξ is progressively measurable with

respect to
{FW

t , t ∈ [0, T ]
}

process, satisfying
´ T
0
E|ξ(t)|2dt < ∞. Then,

E

(
X

ˆ T

0

ξ(t)dW (t)

)
=

ˆ T

0

E
(
ξ(t)DtX

)
dt.

PROOF.– Using theorem 8.17,

E

(
X

ˆ T

0

ξ(t)dW (t)

)

= E

((
EX +

ˆ T

0

E(DtX | FW
t )dW (t)

) ˆ T

0

ξ(t)dW (t)

)

=

ˆ T

0

E
(
E(DtX | FW

t )ξ(t)
)
dt =

ˆ T

0

E(ξt DtX)dt,

where we have used the FW
t -measurability of ξt and property 6 from theorem 8.2. �



9

Stochastic Differential Equations

9.1. Definition, solvability conditions, examples

As explained in section 8.1, the main reason for stochastic integration lies in the

necessity of modeling dynamical systems with randomness. This is done through

stochastic differential equations, which are the main object of this chapter.

To keep things simpler, we will consider a finite interval [0, T ]; in the case of whole

half-line [0,+∞), only marginal changes are needed. Let (Ω,F , {Ft, t ∈ [0, T ]},P)
be a stochastic basis and W be a standard R

k-valued Wiener process on this basis.

Assume that we have deterministic functions a : [0, T ] × R
d → R

d and b : [0, T ] ×
R

d → R
d×k, which serve as coefficients for the equation, and an R

d-valued F0-

measurable random variable X(0), serving as an initial condition for the equation.

The corresponding stochastic differential equation is

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), t ∈ [0, T ], [9.1]

with the initial condition X(0). It may be written in coordinate form as

dXi(t) = ai(t,X(t))dt+
k∑

j=1

bij(t,X(t))dWj(t), t ∈ [0, T ], i = 1, . . . , d,

so it is in fact a system of (stochastic differential) equations. Nevertheless, we will

follow the tradition, calling it an equation. It is worth mentioning the similarity of this

equation and [8.3], obtained by heuristic reasoning. The functions a and b are called

the drift and diffusion coefficients, respectively.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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DEFINITION 9.1.– A (strong) solution to equation [9.1] is an Itô process
{X(t), t ≥ 0} in R

d such that its stochastic differential satisfies [9.1]. In other
words, it is a progressively measurable process satisfying

X(t) = X(0) +

ˆ t

0

a(s,X(s))dt+

ˆ t

0

σ(s,X(s))dW (s), t ≥ 0, [9.2]

almost surely for any t ∈ [0, T ].

Since we have agreed on assuming Itô processes to be continuous, the same

agreement will be in force for solutions of stochastic differential equations.

9.1.1. Existence and uniqueness of solution

Let us turn now to the question of the solvability of stochastic differential

equations. We will assume that the coefficients a, b are measurable and satisfy the

following conditions with some non-random constant K > 0:

– linear growth: for any t ∈ [0, T ], x ∈ R
d

|a(t, x)|+ |b(t, x)| ≤ K(1 + |x|). [9.3]

– Lipschitz continuity: for any t ∈ [0, T ], x, y ∈ R
d

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K |x− y| . [9.4]

As in the previous section, |·| denotes absolute value, vector norm or matrix norm,

depending on the context. We will also use the symbol C for a generic constant; its

value might change between lines.

We start with a result establishing a priori estimates for the solution.

THEOREM 9.1.– Let X be a solution to equation [9.1] satisfying [9.3] with square-
integrable initial condition: E|X(0)|2 < ∞. Then,

E sup
t∈[0,T ]

|X(t)|2 ≤ C
(
1 + E|X(0)|2)

with constant C depending only on K and T .

REMARK 9.1.– The assumption of square integrability of X(0) is not essential and

is made just for technical simplicity. It is possible to prove a similar estimate for

conditional expectation:

E

(
sup

t∈[0,T ]

|X(t)|2
∣∣∣∣F0

)
≤ C

(
1 + |X(0)|2),

which is sufficient for further development.
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PROOF.– We denote

X∗(t) = sup
s∈[0,t]

|X(s)|

and set τN = inf {t ≥ 0 : X∗(t) ≥ N} ∧ T , N ≥ 1. We estimate

X∗(t) ≤ |X(0)|+ sup
s∈[0,t]

ˆ s

0

|a(u,X(u))| du+ sup
s∈[0,t]

∣∣∣∣ˆ s

0

b(u,X(u))dW (u)

∣∣∣∣
≤ |X(0)|+K

ˆ t

0

(
1 + |X(u)| )du+ sup

s∈[0,t]

∣∣∣∣ˆ s

0

b(u,X(u))dW (u)

∣∣∣∣
≤ |X(0)|+KT +K

ˆ t

0

X∗(u)du+ sup
s∈[0,t]

∣∣∣∣ˆ s

0

b(u,X(u))dW (u)

∣∣∣∣ ,
whence

EX∗(t ∧ τN )2 ≤ 4

(
E |X(0)|2 +K2T 2 +K2E

(ˆ t∧τN

0

X∗(u)du
)2

+ E sup
s∈[0,t]

∣∣∣∣ˆ s∧τN

0

b(u,X(u))dW (u)

∣∣∣∣2
)
.

Using the Cauchy–Schwarz inequality, we get(ˆ t∧τN

0

X∗(u)du
)2

≤
(ˆ t

0

X∗(u ∧ τN )du

)2

≤ t

ˆ t

0

X∗(u ∧ τN )2du.

Theorem 8.9 through [8.4] implies

E sup
s∈[0,t]

∣∣∣∣ˆ s∧τN

0

b(u,X(u))dW (u)

∣∣∣∣2

= E sup
s∈[0,t]

∣∣∣∣ˆ s

0

b(u,X(u)) u≤τNdW (u)

∣∣∣∣2 ≤ E

(ˆ t

0

|b(u,X(u))|2 u≤τNdu

]

≤ 2K2

ˆ t

0

E
((
1 + |X(u)|2) u≤τN

)
du ≤ C

(
1 +

ˆ t

0

EX∗(u ∧ τN )2du

)
.

Combining these estimates, we get

EX∗(t ∧ τN )2 ≤ C

(
1 + E |X(0)|2 +

ˆ t

0

EX∗(u ∧ τN )2du

)
,
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whence by theorem A1.12,

EX∗(T ∧ τN )2 ≤ C
(
1 + E |X(0)|2

)
.

The proof is concluded by letting N → ∞, noting that X∗(T ) < ∞ thanks to

continuity, and appealing to the Fatou lemma. �

With the a priori estimates at hand, we are now in a position to prove the result

about the unique solvability of a stochastic differential equation.

THEOREM 9.2.– Let the coefficients of equation [9.1] satisfy [9.3], [9.4] and X(0)
be such that E|X(0)|2 < ∞. Then, the equation has a unique solution X . Moreover,
X ∈ H2([0, T ]).

PROOF.– The idea is to use the Banach fixed-point theorem. Take some λ > 0 (to be

chosen later) and introduce the norm

‖Y ‖2λ :=

ˆ T

0

e−λtE|Y (t)|2dt, Y ∈ H2([0, T ]).

It is easy to see that e−λT ‖Y ‖2H2([0,T ]) ≤ ‖Y ‖2λ ≤ ‖Y ‖2H2([0,T ]), so this norm is

equivalent to ‖·‖H2([0,T ]); however, this will not play a crucial role in our argument.

For Y ∈ H2([0, T ]), we define the process F (Y ) by

F (Y )(t) = X(0) +

ˆ t

0

a(s, Y (s))ds+

ˆ t

0

b(s, Y (s))dW (s), t ∈ [0, T ].

Our first aim is to show that F (Y ) ∈ H2([0, T ]). Using the Cauchy–Schwarz

inequality and the Itô isometry, we estimate

E|F (Y )(t)|2 ≤ 3

(
E|X(0)|2 + E

∣∣∣∣ˆ t

0

a(s, Y (s))ds

∣∣∣∣2

+ E

∣∣∣∣ˆ t

0

b(s, Y (s))dW (s)

∣∣∣∣2
)

≤ 3

(
E|X(0)|2 + tE

ˆ t

0

|a(s, Y (s))|2ds+ E

ˆ t

0

|b(s, Y (s))|2ds
)

≤ C

(
1 +

ˆ t

0

E(1 + |Y (s)|2)ds
)

≤ C(1 + ‖Y ‖2H2([0,T ])).
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Hence, ‖F (Y )‖2H2([0,T ]) < ∞, as announced.

Similarly, for Y ′, Y ′′ ∈ H2([0, T ]),

E|F (Y ′)(t)− F (Y ′′)(t)|2 ≤ 2

(
E

∣∣∣∣ˆ t

0

(
a(s, Y ′(s))− a(s, Y ′′(s))

)
ds

∣∣∣∣2

+ E

∣∣∣∣ˆ t

0

(
b(s, Y ′(s))− b(s, Y ′′(s))

)
dW (s)

∣∣∣∣2
)

≤ 2

(
tE

ˆ t

0

|a(s, Y ′(s))− a(s, Y ′′(s))|2 ds

+ E

ˆ t

0

|b(s, Y ′(s))− b(s, Y ′′(s))|2 ds
)

≤ 2K2(T + 1)

ˆ t

0

E |Y ′(s)− Y ′′(s)|2 ds.

Therefore,

‖F (Y ′)− F (Y ′′)‖2λ ≤ 2K2(T + 1)

ˆ T

0

e−λt

ˆ t

0

E |Y ′(s)− Y ′′(s)|2 ds dt

= 2K2(T + 1)

ˆ T

0

E |Y ′(s)− Y ′′(s)|2
ˆ T

s

e−λtdt ds

≤ 2K2(T + 1)

λ

ˆ T

0

e−λsE |Y ′(s)− Y ′′(s)|2 ds = 2K2(T + 1)

λ
‖Y ′ − Y ′′‖2λ .

Setting λ = 4K2(T + 1), we get that F is a contractive map on H2([0, T ]) with

respect to ‖·‖λ. Therefore, by the Banach fixed-point theorem, there exists a unique

process X ∈ H2([0, T ]) satisfying X = F (X) and thus solving [9.1]. It remains to

note that, thanks to theorem 9.1, any solution to [9.1] must belong to H2([0, T ]). �

REMARK 9.2.– A similar existence and uniqueness result may be shown for an

equation with random coefficients. Specifically, let the coefficients

a : [0, T ]×R
d ×Ω → R

d and b : [0, T ]×R
d ×Ω → R

d×k be “adapted” in the sense

that for any progressively measurable process Y = {Y (t), t ∈ [0, T ]} the processes

{a(t, Y (t, ω), ω), t ∈ [0, T ]} and {b(t, Y (t, ω), ω), t ∈ [0, T ]} are also progressively

measurable. Then, assuming that [9.3] and [9.4] hold with non-random constant K,

the corresponding stochastic differential equation has a unique solution. The linear

growth assumption [9.3] may be further relaxed to the requirement that´ T
0
E
( |a(t, 0)|2 + |b(t, 0)|2 )dt < ∞ or even that

´ T
0

( |a(t, 0)|+ |b(t, 0)|2 )dt < ∞
almost surely; however, in the latter case, the proof will be more involved.
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9.1.2. Some special stochastic differential equations

Itô process. An Itô process with dX(t) = a(t)dt + b(t)dW (t) may be viewed as

a solution to a stochastic differential equation with coefficients independent of x.

Linear equation. Let d = k = 1 and a(t, x) = μ(t)x, b(t, x) = σ(t)x be linear.

The functions α and β may be non-deterministic or, more precisely, progressively

measurable processes with
´ T
0

(|μ(t)|+ σ(t)2
)
dt < ∞. The corresponding equation

reads

dX(t) = X(t)
(
μ(t)dt+ σ(t)dW (t)

)
. [9.5]

In the deterministic case, this can be solved by dividing over X(t) and noting that
dX(t)
X(t) = d(log |X(t)|). This will not work in the stochastic case, as the chain rule (Itô

formula) is different. However, the Itô formula is the correct approach, as we can write

(not bothering for the moment about non-differentiability of log |x| at 0)

d log |X(t)| = dX(t)

X(t)
+

1

2
· −1

X(t)2
σ(t)2X(t)2dt

=
(
μ(t)− σ(t)2

2

)
dt+ σ(t)dW (t),

thus obtaining, as in the previous example, an equation with coefficients independent

of x. Clearly, this is solved by

log |X(t)| = log |X(0)|+
ˆ t

0

(
μ(s)− σ(s)2

2

)
ds+

ˆ t

0

σ(s)dW (s),

whence, thanks to continuity

X(t) = X(0) exp

{ˆ t

0

(
μ(s)− σ(s)2

2

)
ds+

ˆ t

0

σ(s)dW (s)

}
. [9.6]

We can apply the Itô formula to prove that the process given by [9.6] solves [9.5].

In the case of constant μ and σ, the solution is further simplified to

X(t) = X(0)e(μ−
σ2

2 )t+σW (t);

such a process is called a geometric Brownian motion.

In the case where k > 1, a formula similar to [9.6] is valid, with σ(t)2 replaced by

|σ(t)|2. However, for d > 1, there is no hope, in general, to get such a nice expression.
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See also the discussion in section 9.8 concerning the diffusion model of financial

markets, where linear stochastic differential equations arise.

Semi-linear equation. Consider now a scalar (i.e. d = k = 1) equation, called the

Langevin equation:

dX(t) = θ
(
X(t)− μ

)
dt+ σ dW (t), [9.7]

where θ, μ and σ are fixed parameters. As in the previous example, it is possible to

consider time-dependent (even random) coefficients with minimal changes, but we

will stick to the simplest situation, which is already sufficiently enlightening.

In a deterministic setting, an equation like [9.7] is usually solved using the

variation of constants. Fortunately, this is also possible in the stochastic setting

without any substantial difference. That said, the solution to a homogeneous version

dZ(t) = θZ(t) of [9.7] is Z(t) = Ceθt. Letting the constant C vary, we look for a

solution to [9.7] in the form X(t) = C(t)eθt. Since eθt has the usual differential,

differentiation of the product does not differ from the deterministic setting:

dX(t) = θC(t)eθtdt+ eθtdC(t) = θX(t)dt+ eθtdC(t).

Substituting this into [9.7] yields

eθtdC(t) = −θμ dt+ σ dW (t),

whence, noting that C(0) = X(0),

C(t) = X(0)− μ+ μe−θt + σ

ˆ t

0

e−θsdW (s).

As a result,

X(t) = μ+ (X(0)− μ)eθt + σ

ˆ t

0

eθ(t−s)dW (s).

This Gaussian process is called the Ornstein–Uhlenbeck process. It is often

considered only for θ < 0. In this case, it is easy to see that the mean of X converges

to μ and the variance to σ2

2θ . Therefore, in the long run, the process tends to oscillate

around μ, which is called the mean-reverting property. This property is of particular

interest in financial mathematics, where the Ornstein–Uhlenbeck process is used to

model interest rates and stochastic volatility; this is the so-called Vasicek model.

If the initial condition is X(0) = 0, then the resulting process is the one-sided

Ornstein–Uhlenbeck process from Definition 3.9; if X(0) is a random variable
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having the Gaussian distribution N (μ, σ2

2θ ), then the resulting process coincides on

the positive half-line with the two-sided Ornstein–Uhlenbeck process from

Definition 3.10.

Brownian bridge. Consider again a scalar equation

dX(t) = − X(t)

T − t
dt+ dW (t), t ∈ [0, T ),

with the initial condition X(0) = 0. Despite the fact that its drift coefficient does not

satisfy [9.3] and [9.4] near T , it still does satisfy these assumptions on [0, T ′] for any

T ′ ∈ (0, T ), which implies that a unique solution on [0, T ) exists. Let us look at the

differential of X(t)/(T − t). By the product differentiation rule [8.20],

d

(
X(t)

T − t

)
=

X(t)

(T − t)2
dt− X(t)

(T − t)2
dt+

1

T − t
dW (t), t ∈ [0, T ),

whence

X(t) = (T − t)

ˆ t

0

1

T − u
dW (u), t ∈ [0, T ).

Thanks to the results of section 3.5, this is a centered Gaussian process with the

covariance

EX(t)X(s) = (T − t)(T − s)E

(ˆ t

0

1

T − u
dW (u)

ˆ s

0

1

T − u
dW (u)

)
= (T − t)(T − s)

ˆ s

0

1

(T − u)2
du

= (T − t)(T − s)

(
1

T − s
− 1

T

)
= s− ts

T
, s ≤ t.

In view of symmetry,

E
(
X(t)X(s)

)
= t ∧ s− ts

T
, t, s ∈ [0, T ),

so X is the Brownian bridge between points 0 and T in time and points 0 and 0 in

space, considered in section 3.4.4; in particular, we can define X(T ) = 0.



Stochastic Differential Equations 241

9.2. Properties of solutions to stochastic differential equations

As mentioned previously, a solution to stochastic differential equation [9.1] is

continuous and square integrable. Let us derive some further properties. We will

always assume that [9.3] and [9.4] are satisfied.

THEOREM 9.3.– Let E |X(0)|2p < ∞ for some p ≥ 1. Then

E sup
t∈[0,T ]

|X(t)|2p ≤ C
(
1 + E|X(0)|2p)

and for any t, s ∈ [0, T ]

E|X(t)−X(s)|2p ≤ C |t− s|p (1 + E|X(0)|2p)
with constant C depending only on K, T , and p.

PROOF.– The first inequality is derived similarly to theorem 9.1: we define X∗(t) =
sups∈[0,t] |X(s)|, τN = inf {t ≥ 0 : X∗(t) ≥ N} ∧ T , N ≥ 1 and estimate

EX∗(t ∧ τN )2p ≤ 4p−1

(
E |X(0)|2p +K2pT 2p +K2pE

(ˆ t

0

X∗(u ∧ τN )du

)2p

+ E sup
s∈[0,t]

∣∣∣∣ˆ s

0

b(u,X(u)) τN≤udW (u)

∣∣∣∣2p
)
.

The Hölder inequality gives

(ˆ t

0

X∗(u ∧ τN )du

)2p

≤ t2p−1

ˆ t

0

X∗(u ∧ τN )2pdu.

Using theorem 8.9 and Hölder inequalities, we get

E sup
s∈[0,t]

∣∣∣∣ˆ s

0

b(u,X(u)) u≤τNdW (u)

∣∣∣∣2p

≤ E

(ˆ t

0

|b(u,X(u))|2 u≤τNdu

)p

≤ Kptp−1

ˆ t

0

E
((

1 + |X(u)|)2p u≤τN

)
du

≤ C

(
1 +

ˆ t

0

EX∗(u ∧ τN )2pdu

)
.
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Summing up, we obtain

EX∗(t ∧ τN )2p ≤ C

(
1 + E |X(0)|2p +

ˆ t

0

EX∗(u ∧ τN )2pdu

)
,

which, as in theorem 9.1, leads to the first inequality through the application of the

Grönwall and Fatou lemmas.

The second inequality is proved similarly using the Hölder inequality and

theorem 8.9:

E|X(t)−X(s)|2p ≤ 22p−1

(
E

∣∣∣∣ˆ t

s

a(u,X(u))du

∣∣∣∣2p

+ E

∣∣∣∣ˆ t

s

b(u,X(u))dW (u)

∣∣∣∣2p
)

≤ C

(
(t− s)2p−1E

ˆ t

s

|a(u,X(u))|2p du+ E

(ˆ t

s

|b(u,X(u))|2 du
)p

)

≤ C

(
(t− s)2p−1

ˆ t

s

E
(
1 + |X(u)|2p

)
du

+ (t− s)p−1

ˆ t

s

E
(
1 + |X(u)|2p

)
du

)
≤ C|t− s|p sup

u∈[0,T ]

E |X(u)|2p ≤ C |t− s|p (1 + E|X(0)|2p) . �

Further, we will focus on the regularity of the solution with respect to the initial

data. Consider equation [9.1] on a smaller interval:

dX(s) = a(s,X(s))ds+ b(s,X(s))dW (s), s ∈ [t, T ],

with a non-random initial condition X(t) = x ∈ R
d. We denote the unique solution

of this equation by Xt,x = {Xt,x(s), s ∈ [t, T ]}.

THEOREM 9.4.– 1) For any t′, t′′ ∈ [0, T ], x ∈ R
d, p ≥ 1,

E sup
s∈[t′∨t′′,T ]

∣∣Xt′,x(s)−Xt′′,x(s)
∣∣2p ≤ C |t′ − t′′|p (1 + |x|2p )

with constant C depending only on K, T and p.

2) For any t ∈ [0, T ], x′, x′′ ∈ R
d, p ≥ 1,

E sup
s∈[t,T ]

∣∣Xt,x′(s)−Xt,x′′(s)
∣∣2p ≤ C |x′ − x′′|2p

with constant C depending only on K, T and p.
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PROOF.– 1) Assume without any loss of generality that t′ ≤ t′′ and denote Δ(t) =
sups∈[t′′,t] |Xt′,x(s)−Xt′′,x(s)|, t ∈ [t′′, T ]. We have

EΔ(t′′)2p = E |Xx,t′(t
′′)− x|2p

= E |Xx,t′(t
′′)−Xx,t′(t

′)|2 ≤ C|t′ − t′′|p (1 + |x|2p)
by theorem 9.3 and

EΔ(t)2p ≤ 32p−1

(
E |Xx,t′(t

′′)− x|2p

+ E sup
s∈[t′′,t]

∣∣∣∣ˆ s

t′′

(
a(u,Xt′,x(u))− a(u,Xt′′,x(u))

)
du

∣∣∣∣2p

+E sup
s∈[t′′,t]

∣∣∣∣ˆ s

t′′

(
b(u,Xt′,x(u))− b(u,Xt′′,x(u))

)
dW (u)

∣∣∣∣2p
)

≤ C

(
|t′ − t′′|p (1 + |x|2p)

+ E

ˆ t

t′′
|a(u,Xt′,x(u))− a(u,Xt′′,x(u))|2p du

+ E

ˆ t

t′′
|b(u,Xt′,x(u))− b(u,Xt′′,x(u))|2p du

)

C

(
|t′ − t′′|p (1 + |x|2p)+ ˆ t

t′′
E |Xt′,x(u)−Xt′′,x(u)|2p du

)

≤ C

(
|t′ − t′′|p (1 + |x|2p)+ ˆ t

t′′
EΔ(u)2pdu

)
for any t ∈ [t′′, T ]. Applying the Grönwall lemma, we arrive at the desired inequality.

2) Similarly, denoting Δ1(s) = supu∈[t,s] |Xt,x′(u)−Xt,x′′(u)| so that Δ1(t) =
|x′ − x′′|, we get

EΔ1(s)
2p ≤ C

(
|x′ − x′′|2p +

ˆ s

t

EΔ1(u)
2pdu

)
and conclude by using the Grönwall lemma. �

This statement allows us to deduce the existence of a modification of Xt,x(s),
jointly continuous in t, x, s. We give the formulation below, omitting the proof, which

uses the same idea as that of theorem 6.9.
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THEOREM 9.5.– There exists a modification of {Xt,x(s), x ∈ R
d, 0 ≤ t ≤ s ≤ T},

jointly continuous in t, x, s. Moreover, for any α ∈ (0, 1/2) and β ∈ (0, 1), this
modification satisfies

|Xt′,x′(s′)−Xt′′,x′′(s′′)| ≤ C(R,ω)
(
|t′ − t′′|α + |s′ − s′′|α + |x′ − x′′|β

)
for any R > 0, x′, x′′ ∈ R

d such that |x′| ≤ R, |x′′| < R and t′, t′′, s′, s′′ ∈ [0, T ]
such that t′ ∨ t′′ ≤ s′ ∧ s′′. In other words, this modification is Hölder continuous of
an order up to 1/2 in t, s and locally Hölder continuous of an order up to 1 in x.

Let us now turn to the Markov property, discussed previously in Chapter 7. In

layman’s terms, it means that the future evolution of a process is independent, given

the present state, of its past. In the context of stochastic differential equations, it means

that if we use the state as some moment of a solution to the stochastic differential

equation as an initial condition at that moment, then we will reproduce its future path.

Similarly to above, for t ∈ [0, T ] and an Ft-measurable random vector ξ in R
d, let

Xt,ξ denote the solution to dX(s) = a(s,X(s))ds + b(s,X(s))dW (s), s ∈ [t, T ],
with X(t) = ξ.

THEOREM 9.6.– For any s ∈ [t, T ],

Xt,X0,x(t)(s) = X0,x(s)

almost surely.

REMARK 9.3.– It is possible to prove a similar result when t = τ is a stopping

time. This requires a lot of technical work: proving the existence of a version of Xt,x,

jointly measurable in all variables, including ω, and proving the substitution rule for

the Itô integral:
´ b
a
f(ζ, t)dW (t) =

´ b
a
f(x, t)dW (t)|x=ζ for Fa-measurable variable

ζ. To avoid these technicalities, we establish only the simplest version of the Markov

property, as stated above.

PROOF.– From the definition of X0,x, we have

X0,x(u) = x+

ˆ u

0

a(z,X0,x(z))dz +

ˆ u

0

b(z,X0,x(x))dW (z), u ∈ [0, T ].

Substituting t and s ≥ t for u, and subtracting, we get

X0,x(s) = X0,x(t) +

ˆ s

t

a(z,X0,x(z))dz +

ˆ s

t

b(z,X0,x(x))dW (z), s ∈ [t, T ],

which exactly means that X0,X0,x(t)(s) = X0,x(s), s ∈ [t, T ]. �
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9.3. Continuous dependence of solutions on coefficients

It is not rare that we have to consider not a single stochastic differential equation,

but a whole family of such equations, with coefficients depending on parameter. Most

notably, this manifests in modeling, where we have to calibrate a model so that it

better describes the reality. In such cases, we have to ensure that small changes in

parameters will not lead to a significant change in the behavior of a model. In this

section, we study this important question of the continuous dependence of a modeled

process on parameters for stochastic differential equations.

Consider a sequence of stochastic differential equations, indexed by integer n ≥ 1:

dXn(t) = an(t,Xn(t))dt+ bn(t,Xn(t))dW (t), t ∈ [0, T ], [9.8]

with the initial condition Xn(0); as before, the coefficients an : [0, T ] × R
d → R

d

and bn : [0, T ]× R
d → R

d×k are jointly measurable, and the initial condition Xn(0)
is an F0-measurable random variable.

Let the coefficients an, bn satisfy assumptions [9.3] and [9.4] with a constant K
independent of n, i.e. for any n ≥ 1, t ∈ [0, T ], x, y ∈ R

d we have

|an(t, x)|+ |bn(t, x)| ≤ K(1 + |x|),
|an(t, x)− an(t, y)|+ |bn(t, x)− bn(t, y)| ≤ K |x− y| . [9.9]

For simplicity, we will assume that the initial conditions are square integrable,

i.e. E|Xn(0)|2 < ∞, n ≥ 1. Then, thanks to theorem 9.2, each of the stochastic

differential equations [9.8] has a unique solution.

Further, assume pointwise convergence of the coefficients: for all t ∈ [0, T ], x ∈
R

d,

an(t, x) → a(t, x), bn(t, x) → b(t, x), n → ∞, [9.10]

and the mean-square convergence of initial conditions:

Xn(0)
L2(Ω)−→ X(0), n → ∞. [9.11]

Note that a, b satisfy [9.9] as well, so the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), t ∈ [0, T ], [9.12]

with the initial condition X(0) has a unique solution.
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THEOREM 9.7.– Assume [9.9]–[9.11]. Then, the solutions of equations [9.8] converge
to that of [9.12]; moreover,

E sup
t∈[0,T ]

|Xn(t)−X(t)|2 → 0, n → ∞.

PROOF.– Denote Δn(t) = E sups∈[0,t] |Xn(s)−X(s)|2 and estimate

Δn(t) ≤ 3

(
E |Xn(0)−X(0)|2

+ E sup
s∈[0,t]

∣∣∣∣ˆ s

0

(
an(u,Xn(u))− a(u,X(u))

)
du

∣∣∣∣2 [9.13]

+E sup
s∈[0,t]

∣∣∣∣ˆ s

0

(
bn(u,Xn(u))− b(u,X(u))

)
dW (u)

∣∣∣∣2
)
.

Using theorem 8.9, we have

E sup
s∈[0,t]

∣∣∣∣ˆ s

0

(
bn(u,Xn(u))− b(u,X(u))

)
dW (u)

∣∣∣∣2

≤ C

ˆ t

0

E
∣∣bn(u,Xn(u))− b(u,X(u))

∣∣2du
≤ C

ˆ t

0

E
∣∣bn(u,Xn(u))− bn(u,X(u))

∣∣2du
+C

ˆ t

0

E
∣∣bn(u,X(u))− b(u,X(u))

∣∣2du
≤ C

ˆ t

0

E
∣∣Xn(u)−X(u)

∣∣2du+ C

ˆ t

0

E
∣∣bn(u,X(u))− b(u,X(u))

∣∣2du
≤ C

ˆ t

0

Δn(u)du+ C

ˆ t

0

E
∣∣bn(u,X(u))− b(u,X(u))

∣∣2du.
Similarly, using the Cauchy–Schwarz inequality, we have

E sup
s∈[0,t]

∣∣∣∣ˆ s

0

(
an(u,Xn(u))− a(u,X(u))

)
du

∣∣∣∣2

≤ C

ˆ t

0

Δn(u)du+ C

ˆ t

0

E
∣∣an(u,X(u))− a(u,X(u))

∣∣2du.
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Substituting these two inequalities into [9.7] and using the Grönwall lemma, we

get

Δn(T ) ≤ C

(
E |Xn(0)−X(0)|2

+

ˆ T

0

E
(∣∣an(u,X(u))− a(u,X(u))

∣∣2 + ∣∣bn(u,X(u))− b(u,X(u))
∣∣2) du

)
.

The first term on the right-hand side converges to zero as n → ∞; in the second

term, the expression under expectation vanishes and is bounded, thanks to [9.9] and

[9.10], by 16K2(1 + supt∈[0,T ] |X(t)|2), which is integrable by theorem 9.1.

Therefore, we get Δn(T ) → 0, n → ∞, as required. �

9.4. Weak solutions to stochastic differential equations

Let a : [0, T ] × R
d → R

d and b : [0, T ] × R
d → R

d×k be some measurable

functions and W be a standard Wiener process in R
k. Consider a stochastic

differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), t ∈ [0, T ], [9.14]

with F0-measurable initial condition X(0).

DEFINITION 9.2.– A weak solution to stochastic differential equation [9.14] is a
triple, consisting of:

– a stochastic basis (Ω′,F ′, {F ′
t, t ≥ 0},P′);

– a Wiener process W ′ on this basis;

– an adapted process {X ′(t), t ∈ [0, T ]} on this basis such that X ′(0) d
= X(0)

and

dX ′(t) = a(t,X ′(t))dt+ b(t,X ′(t))dW ′(t), t ∈ [0, T ].

The difference from the notion of strong solution is that the former is constructed

for a given Wiener process; in fact, a strong solution is a function of initial conditions

and the path of the underlying Wiener process. In contrast, a weak solution is

constructed for some Wiener process and in general it is not measurable with respect

to this Wiener process. The following classical example illustrates the difference

between the notions quite well.
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EXAMPLE 9.1.– Consider the following scalar stochastic differential equation, called
the Tanaka equation:

dX(t) = sign X(t)dW (t) [9.15]

with the initial condition X(0) = 0; here, we denote signx = x≥0 − x<0 to avoid
zero values. Now take a standard Wiener process {B(t), t ≥ 0} on some stochastic
basis. Define

W ′(t) =
ˆ t

0

sign B(t)dB(t).

It can be seen that W ′(t) is a standard Wiener process on the same stochastic
basis (the simplest argument comes through the Lévy characterization theorem; see
section 8.8). Since

dW ′(t) = sign B(t)dB(t),

we have

dB(t) = sign B(t)dW ′(t),

so B(t), accompanied by the corresponding stochastic basis and the Wiener process
W ′, is a weak solution to [9.15]. Moreover, −B(t) is a weak solution too, since

d
(−B(t)

)
= sign

(−B(t)
)
dW ′(t).

Therefore, there are at least two solutions corresponding to the same Wiener
process W ′; in such a case, we say that pathwise uniqueness fails for the equation.
As a result, there can be no strong solution, see e.g. [CHE 01]. It is also worth
mentioning that in this example, the Wiener process W ′ is expressed as a function of
the solution B, but not vice versa.

EXAMPLE 9.2.– As a contrasting example, we can consider a scalar equation

dX(t) = σ(X(t))dW (t), t ≥ 0,

with X(0) = 0, where σ(x) = σ+ x≥0 + σ− x<0 and σ+, σ− > 0. This equation
has a unique strong solution by the Nakao theorem, see e.g. [JEA 09, theorem 1.5.5.1
(iii)]. Therefore, we see a remarkable phenomenon: the properties of the equations
are very different when σ+ and σ− have the same sign, as here, and when they have
different signs, as in the previous example.

The concept of weak solution is important because in many situations (for some

examples, see sections 9.7 and 9.8), we need to consider only some functionals of a

solution to stochastic differential equations. Then, it is irrelevant whether the solution

is given for the particular underlying Wiener process. What matters is the probabilistic

distribution of the solution, which will be unique under weaker assumptions than those

required for the existence of strong solutions.
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One of the useful tools to construct weak solutions is the Girsanov theorem (see

section 8.9).

THEOREM 9.8.– Let X be a weak solution to [9.14]. Let also measurable functions
c : [0, T ] × R

d → R
d and d : [0, T ] × R

k → R
d be such that c(t, x) = b(t, x)d(t, x)

for all t ∈ [0, T ], x ∈ R
d and

Eexp

{
1

2

ˆ T

0

|d(t,X(t))|2 dt
}

< ∞.

Then, the stochastic differential equation

dY (t) =
(
a(t, Y (t)) + c(t, Y (t))

)
dt+ b(t, Y (t))dW (t)

with the initial condition Y (0) = X(0) has a weak solution given by the triple
(Ω,F , {Ft, t ∈ [0, T ]},Q),

W ′(t) = W (t)−
ˆ t

0

d(s,X(s))ds, t ∈ [0, T ],

and {X(t), t ∈ [0, T ]}, where the probability measure Q is given by

dQ

dP
= exp

{ˆ T

0

(
d(t,X(t)), dW (t)

)− 1

2

ˆ T

0

|d(t,X(t))|2 dt
}
.

PROOF.– By theorem 8.14, W ′ is a Wiener process under Q. Moreover, similarly to

the proof of theorem 8.13, it can be shown that

E

(
dQ

dP

∣∣∣F0

)
= 1

almost surely. As a result, Q|F0 = P|F0 , in particular, X(0) has the same distribution

under Q as under P. Finally, it follows from assumptions that

dX(t) =
(
a(t,X(t)) + c(t,X(t))

)
dt− c(t,X(t))dt+ b(t,X(t))dW (t)

=
(
a(t,X(t)) + c(t,X(t))

)
dt− b(t,X(t))d(t,X(t))dt+ b(t,X(t))dW (t)

=
(
a(t,X(t)) + c(t,X(t))

)
dt+ b(t,X(t))dW ′(t),

thus concluding the proof. �

9.5. Solutions to SDEs as diffusion processes

Consider a stochastic differential equation in R
d

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) [9.16]
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where the coefficients a : [0, T ]×R
d → R

d and b : [0, T ]×R
d → R

d×k are continuous

and satisfy the assumptions [9.3] and [9.4]. Assuming that the solution is a measurable

function of initial condition, we get from theorem 9.6 that X is a Markov process. It

turns out to be a diffusion process.

THEOREM 9.9.– Under the above assumptions, the solution X to [9.16] is a diffusion
process with drift a(t, x) and diffusion matrix σ(t, x) = b(t, x)b(t, x)	.

PROOF.– We are going to check the conditions of proposition 7.3. Denote by Xs,x(t)
the solution to [9.16] with the initial condition X(s) = x. By definition, the transition

probability is P (s, x, t, A) = P{Xs,x(t) ∈ A}. Then, by theorem 9.3,

ˆ
Rd

|y − x|4P (s, x, s+ h, dy) = E |Xs,x(s+ h)− x|4

≤ Ch2(1 + |x|4) = o(h), h → 0+,

whence the first assumption of proposition 7.3 follows. Further,
ˆ
R3

(y − x)P (s, x, s+ h, dy) = E (Xs,x(s+ h)− x)

= E

(ˆ s+h

s

a(u,Xs,x(u))du+

ˆ s+h

s

b(u,Xs,x(u))dW (u)

)

= E

ˆ s+h

s

a(u,Xs,x(u))du.

Therefore, using the continuity of a,∣∣∣∣ 1h
ˆ
R3

(y − x)P (s, x, s+ h, dy)− a(s, x)

∣∣∣∣
=

∣∣∣∣∣ 1hE
ˆ s+h

s

a(u,Xs,x(u))du− a(s, x)

∣∣∣∣∣
≤ 1

h

∣∣∣∣∣E
ˆ s+h

s

(
a(u,Xs,x(u))− a(u, x)

)
du

∣∣∣∣∣
≤ 1

h

ˆ s+h

s

E |a(u,Xs,x(u))− a(u, x)| du+
1

h

ˆ s+h

s

|a(u, x)− a(s, x)| du

≤ C

h

ˆ s+h

s

E |Xs,x(u)− x| du+ sup
u∈[s,s+h]

|a(u, x)− a(s, x)|
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≤ C

h

ˆ s+h

s

|u− s|1/2 du+ sup
u∈[s,s+h]

|a(u, x)− a(s, x)|

≤ Ch1/2 + sup
u∈[s,s+h]

|a(u, x)− a(s, x)| → 0, h → 0+,

which is the second assumption of proposition 7.3. Concerning the third one, for any

z ∈ R
d,

ˆ
R3

(y − x, z)2P (s, x, s+ h, dy) = E
(
Xs,x(s+ h)− x, z

)2
= E(I1(h) + I2(h))

2
= EI1(h)

2 + EI2(h)
2 + 2E (I1(h)I2(h)) ,

where

I1(h) =

ˆ s+h

s

(
a(u,Xs,x(u)), z

)
du,

I2(h) =

ˆ s+h

s

(
b(u,Xs,x(u))dW (u), z

)
.

By the Cauchy–Schwarz inequality,

EI1(h)
2 ≤ h

ˆ s+h

s

E
(
a(u,Xs,x(u)), z

)2
du

≤ C|z|2h
ˆ s+h

s

E
(
1 + |Xs,x(u)|2

)
du ≤ C|z|2h2 = o(h), h → 0 + .

Thanks to the Itô isometry,

EI2(h)
2 = E

(ˆ s+h

s

(
b(u,Xs,x(u))

	z, dW (u)
))2

≤
ˆ s+h

s

E
∣∣b	(u,Xs,x(u))z

∣∣2 du.
Similarly to the proof of the second assumption of proposition 7.3, using the

continuity of b,

1

h
I2(h) →

∣∣b(s, x)	z∣∣2 =
(
b(s, x)b(s, x)	z, z

)
=

(
σ(s, x)z, z

)
.
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Finally,

1

h
|E (I1(h)I2(h))| ≤

(
1

h
E
(
I1(h)

2
) · 1

h
E
(
I2(h)

2
))1/2

→ 0, h → 0 + .

This gives

1

h

ˆ
R3

(y − x, z)2P (s, x, s+ h, dy) → (
σ(s, x)z, z

)
, h → 0+,

finishing the proof. �

9.6. Viability, comparison and positivity of solutions to stochastic
differential equations

Consider a stochastic differential equation in R
d

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), t ≥ 0, [9.17]

where the coefficients a : R+ × R
d → R

d and b : R+ × R
d → R

d×k satisfy

assumptions [9.3] and [9.4], and W is a Wiener process in R
k. As shown in

section 9.5, it is a diffusion process with generator

Ltf(x) =
d∑

i=1

ai(t, x)
∂

∂xi
f(x) +

1

2

d∑
i,j=1

m∑
k=1

bik(t, x)bjk(t, x)
∂2

∂xi∂xj
f(x)

=
(
a(t, x), Dxf(x)

)
+

1

2
tr
(
b(t, x)b(t, x)	D2

xxf(x)
)
, f ∈ C2(Rd).

In this section, we first address the question of the viability of process X in some

subset of Rd.

DEFINITION 9.3.– Solution X to [9.17] is called viable in a set A ⊂ R
d if P{X(t) ∈

A for all t ≥ 0} = 1 provided that X(0) ∈ A almost surely.

Let ϕ : R
d → R, ϕ ∈ C2(Rd) be a function such that Dxϕ(x) �= 0 when

ϕ(x) = 0. Assume that the set

A = {x : ϕ(x) ≥ 0}

is non-empty and denote ∂A = {x : ϕ(x) = 0} its boundary.
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THEOREM 9.10.– Assume the following conditions:

1) for any t ≥ 0, x ∈ ∂A,

Ltϕ(x) ≥ 0;

2) for any t ≥ 0, x ∈ ∂A,

β(t, x) := b(t, x)	Dxϕ(x) = 0.

Then, X is viable in A.

REMARK 9.4.– It is well known that the gradient Dxϕ(x) is a vector orthogonal to

the hypersurface ∂A = {ϕ(x) = 0}. Therefore, the second assumption means that

near the boundary of the set A, the process diffuses mainly in directions along the

boundary; there is no diffusion toward the boundary (and hence there is viability).

We start by establishing some auxiliary results.

LEMMA 9.1.– For x ∈ R
d, let z(x) be one of the closest points to x points from ∂A,

i.e. such that ϕ(z(x)) = 0 (it exists since the set ∂A is closed). Then, for any R > 0,
there exists CR > 0 such that

|x− z(x)| ≤ CR |ϕ(x)|
for all x ∈ R

d with |x| ≤ R.

PROOF.– Let us choose arbitrary a ∈ ∂A. Clearly, |x − z(x)| ≤ |x − a| ≤ |R| + |a|
when |x| ≤ R. In particular, the points z(x) lie in some bounded set when |x| ≤ R.

The point z(x) is a minimizer of |x − y|2 given that ϕ(x) = 0. Therefore, from

the Lagrange multiplier method, we know that either Dxϕ(z(x)) = 0 (which is

impossible by our assumption) or Dy|y − x|2∣∣
y=z(x)

= 2(z(x) − x) is collinear to

Dxϕ(z(x)). Using this collinearity, by Taylor’s formula, we have

ϕ(x) = ϕ(z(x)) + (Dxϕ(z(x)), x− z(x)) +R(x)|x− z(x)|2

= ±|Dxϕ(z(x))| · |x− z(x)|+R(x)|x− z(x)|2, [9.18]

where R(x) is bounded since ϕ ∈ C2(Rd) and x, z(x) are bounded.

Now assume the contrary and let, for each n ≥ 1, xn ∈ R
d be such that |xn| ≤ R

and |xn − z(xn)| ≥ nϕ(xn) > 0. Since {xn, n ≥ 1} is bounded, there exists a

convergent subsequence; without any loss of generality, let xn → x0, n → ∞. As

|xn − zn(x)| is bounded, we must have ϕ(x0) = 0; therefore, z(xn) → x0, n → ∞.

Thus, from [9.18], we have

0 = lim
n→∞

|ϕ(xn)|
|xn − z(xn)| = lim

n→∞
∣∣Dxϕ(z(xn))±R(xn)|xn − z(xn)|

∣∣
= |Dxϕ(x0)|,
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contradicting the assumption that Dxϕ(x0) �= 0. �

LEMMA 9.2.– Assume the following:

1) for any t ≥ 0, x ∈ ∂A,

Ltϕ(x) > 0;

2) for any t ≥ 0, x ∈ ∂A,

b(t, x)	Dxϕ(x) = 0.

If τ is a bounded stopping time such that X(τ) ∈ A and X(τ) is bounded, then
there exists a stopping time θ > τ a.s. such that X(t) ∈ A for all t ∈ [τ, θ].

PROOF.– If ω /∈ B := {X(τ) ∈ ∂A}, then define θ1 = inf {t ≥ τ : X(t) ∈ ∂A} ∧
(τ + 1), thanks to the continuity of X , θ1 > τ .

Now let ω ∈ B. Fix some positive R > |X(τ)| and define stopping times

τ ′ = inf {s ≥ τ : Lsϕ(X(s)) < 0} , τR = min {s ≥ τ : |X(s)| ≥ R} .

As usual, we suppose that a stopping time equals ∞ if the corresponding set is

empty. In view of continuity, τ ′ > τ and τR > τ almost surely on B.

For any non-random u ≥ τ put θu = u ∧ τ ′ ∧ τR and apply the Itô formula to the

process ϕ(X(·)):

ϕ(X(θu)) B =

ˆ θu

τ

(
Lsϕ(X(s))ds+

(
Dxϕ(X(s)), b(s,X(s))dW (s)

))
B .

Since X is bounded on [τ, θu], the above Itô integral has zero expectation given

Fτ , so

E(ϕ(X(t)) B) = E

(ˆ θu

τ

Lsϕ(X(s))ds B

)
.

For a non-negative function ψ ∈ C(R) such that
´
R
ψ(x)dx = 1 and ψ(x) = 0,

x /∈ [0, 1], we define

ψn(x) = n

ˆ |x|

0

ˆ y

0

ψ(nz)dz dy.
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Obviously, ψn(x) ↑ |x| as n → ∞ and |ψ′
n(x)| ≤ 1, n ≥ 1.

Applying the Itô formula to ψn(ϕ(X(·))), we get

ψn(ϕ(X(θu))) B =

ˆ θu

τ

ψ′
n(ϕ(X(s)))Lsϕ(X(s))ds B

+

ˆ θu

τ

ψ′
n(ϕ(X(s)))

(
β(s,X(s)), dW (s)

)
B

+
1

2

ˆ θu

τ

ψ′′
n(ϕ(X(s))) |β(s,X(s))|2 ds B ,

whence

E (ψn(ϕ(X(θu))) B) = E

(ˆ θu

0

ψ′
n(ϕ(X(s)))Lsϕ(X(s))ds B

)

+
1

2
E

(ˆ θu

τ

ψ′′
n(ϕ(X(s))) |β(s,X(s))|2 ds B

)
.

[9.19]

Recall that Lsϕ(Xs) ≥ 0 for s < θu, and |ψ′
n(x)| ≤ 1, so the first term in the

right-hand side of [9.19] does not exceed E
(´ θu

0
Lsϕ(X(s))ds B

)
. We will prove

now that the second term vanishes.

Let z(x) be one of the closest points to x points from ∂A. For |x| ≤ R,

|β(s, x)| = |β(s, x)− β(s, z(x))|

≤ ∣∣b(s, x)	(Dxϕ(x)−Dxϕ(z(x))
)∣∣+ ∣∣∣(b(s, x)− b(s, z(x))

)	
Dxϕ(z(x))

∣∣∣
≤ CR

( |x− z(x)|+ |x− z(x)| ) ≤ CR |x− z(x)| .

Therefore, using lemma 9.1 and recalling that θu ≤ τ + u, we have

E

(ˆ θu

τ

ψ′′
n(ϕ(X(s))) |β(s,X(s))|2 ds B

)

≤ CRnE

(ˆ θu

τ

ψ(nϕ(X(s)))ϕ(X(s))2

)
ds

=
CR

n
E

(ˆ θu

τ

ψ(nϕ(X(s)))
(
ϕ(X(s))

)2
ds

)

≤ CRu

n
sup
x∈R

x2ψ(x) → 0, n → ∞.
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Taking n → ∞, we get from [9.19],

E (|ϕ(X(θu))| B) ≤ lim inf
n→∞ E (ψn(ϕ(X(θu))) B)

≤ E

(ˆ θu

0

Lsϕ(X(s))ds B

)
= E (ϕ(X(θu)) B) ,

and hence, ϕ(X(θu)) ≥ 0 almost surely on B. Since θu = u ∧ τ ′ ∧ τR and u is

arbitrary, we get the desired claim with θ = θu B + θ1 Bc > τ almost surely. �

PROOF (Proof of theorem 9.10).– Let X(0) ∈ A. It is enough to prove that P(X(t) ∈
A) = 1 for all t ≥ 0. Indeed, this would imply P

(
X(t) ∈ A for all t ∈ R+ ∩Q

)
= 1,

yielding P
{
X(t) ∈ A for all t ≥ 0

}
= 1 thanks to the closedness of A and the

continuity of X .

First assume that Ltϕ(x) > 0 for all t ≥ 0, x ∈ ∂A.

Define τA = inf {s ≥ 0 : X(s) /∈ A}. Since X is continuous, we have X(τA) ∈
A whenever τA < ∞. Assume that P{τA < ∞} > 0. Thanks to the continuity

of the probability measure, there exist some r > 0 and t > 0 such that P{τA ≤
t, |X(τA)| < r} > 0. Therefore, defining τ = τA ∧ t ∧ inf {t ≥ 0 : |X(t)| ≥ r}, we

have P{τA ≤ τ} > 0. Applying lemma 9.2, we get the existence of θ > τ such that

X(t) ∈ A, t ∈ [τ, θ], almost surely, which contradicts the definition of τA and the fact

that P{τA ≤ τ} > 0.

Now we prove the statement in its original form. Let {an(t, x), n ≥ 1} be a

sequence of coefficients such that for all t ≥ 0, x, y ∈ R
d |an(t, x)| ≤ C(1 + |x|),

|an(t, x)− an(t, y)| ≤ C |x− y|, n ≥ 1, an(t, x) → a(t, x), n → ∞ and

Ln
t ϕ(x) :=

(
an(t, x), Dxϕ(x)

)
+

1

2
tr
(
b(t, x)b(t, x)	D2

xxϕ(x)
)
> 0.

We can take, for example, an(t, x) = a(t, x) + n−1Dxϕ(x)G(x) with a positive

smooth function G : Rd → R, which does not vanish on ∂A and decays on infinity

sufficiently rapidly so that Dxϕ(x)G(x) is bounded together with its derivative.

Let Xn be the solution of

dXn(t) = an(t,Xn(t))dt+ b(t,Xn(t))dW (t), t ≥ 0, [9.20]

with the initial condition Xn(0) = X(0). From theorem 9.7, we have

sup
t∈[0,T ]

|Xn(t)−X(t)| P−→ 0, n → ∞.

We have shown P{Xn(t) ∈ A for all t ≥ 0} = 1, whence P{X(t) ∈ A for all

t ≥ 0} = 1 thanks to the convergence of Xn to X and the closedness of A. �
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9.6.1. Comparison theorem for one-dimensional projections of
stochastic differential equations

Let us now formulate a stochastic version of a comparison theorem. While we

formulate it in a multi-dimensional setting, it is basically about a pathwise comparison

in one-dimensional cases (hence the name of this section).

Let Xi, i = 1, 2, be solutions to stochastic differential equations

dXi(t) = ai(t,Xi(t))dt+ bi(t,Xi(t))dW (t), t ≥ 0,

where the coefficients ai, i = 1, 2, and b satisfy the assumptions [9.3] of linear growth

and [9.4] of Lipschitz continuity; the initial conditions Xi(0) = (Xi
1(0), . . . , X

i
d(0)),

i = 1, 2, are F0-measurable random vectors. Fix some l ∈ {1, . . . , d} (which will be

the index of the coordinate we compare).

THEOREM 9.11.– Assume that

1) X1
l (0) ≤ X2

l (0) almost surely;

2) for any t ≥ 0 and any x1, x2 ∈ R
d such that x1

l = x2
l , a1l (t, x

1) ≤ a2l (t, x
2);

3) for any j = 1, . . . , k, the coefficients b1jl and b2jl coincide and depend only on
the lth coordinate of x, i.e. there exists some bjl : R+×R → R such that for any t ≥ 0
and any x ∈ R

d, b1jl(t, x) = b2jl(t, x) = bjl(t, xl).

Then, P{X1
l (t) ≤ X2

l (t), t ≥ 0} = 1.

PROOF.– Consider the process

X(t) = (X1(t), X2(t)) ∈ R
2d =

{
(x1, x2) : x1, x2 ∈ R

d
}

and set ϕ(x) = x2
l − x1

l . Then, in the notation of theorem 9.10, we have

A =
{
x ∈ R

2d : x1
l ≤ x2

l

}
, ∂A =

{
x ∈ R

2d : x1
l = x2

l

}
and

Ltϕ(x) =
(
a2(t, x1)− a1(t, x2), Dxϕ(x)

)
.

Further, the diffusion coefficient of X is

b̃ =

(
b1(t, x1)

b2(t, x2)

)
,

so b̃(t, x)	Dxϕ(x) =
(
b2lj(t, x

2) − b1lj(t, x
1), j = 1, . . . , d

)
. By the assumption,

X0 = (X1(0), X2(0)) ∈ A almost surely, Ltϕ(x) ≥ 0 and b̃(t, x)	Dxϕ(x) = 0 for

x ∈ ∂A. Thus, we get the desired statement from theorem 9.10. �
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9.6.2. Non-negativity of solutions to stochastic differential equations

Non-negativity is an important feature in modeling. For example, the prices of

ordinary stocks cannot be negative in view of limited liability, which in layman’s terms

means that an investor in stock of some company has no liability for the misfortunes

of the company. Therefore, it is important to establish the non-negativity criteria.

Consider again equation [9.17] and assume that its coefficients satisfy the existence

and uniqueness assumptions [9.3], [9.4]. Let S ⊂ {1, . . . , d} be a fixed non-empty set

of coordinates. We are interested in the non-negativity of Xi, i ∈ S, which is exactly

the viability in the set A =
{
x = (x1, . . . , xd) ∈ R

d : xi ≥ 0
}

.

THEOREM 9.12.– Let the following hold:

1) Xi(0) ≥ 0, i ∈ S;

2) if x ∈ R
d is such that xi = 0 for some i ∈ S and xl ≥ 0 for any l ∈ S then

ai(t, x) ≥ 0 and b(t, x) = 0.

Then, P{Xi(t) ≥ 0 for all i ∈ S and t ≥ 0} = 1.

PROOF.– Let fi(x) = |x| i∈S + x i/∈S , i = 1, . . . , d, x ∈ R. Consider the equation

dX̃(t) = ã(t, X̃(t))dt+ b̃(t, X̃(t))dW (t), t ≥ 0,

with the initial condition X̃(0) = X(0), where

ã(t, x) = a
(
t, f1(x1), . . . , fd(xd)

)
, b̃(t, x) = b

(
t, f1(x1), . . . , fd(xd)

)
.

For arbitrary i ∈ S , it is easy to check that ã and b̃ satisfy the assumptions of

theorem 9.10 with ϕ(x) = xi. Therefore, X̃(t) is viable in each Ai = {xi ≥ 0},

i ∈ S, so P(X̃i(t) ≥ 0 for all i ∈ S and t ≥ 0) = 1. Hence, X̃(t) solves [9.17] and,

by uniqueness, we obtain P{X(t) = X̃(t), t ≥ 0} = 1, as claimed. �

9.7. Feynman–Kac formula

This section is devoted to the remarkable connection between solutions of

stochastic differential equations and those of partial differential equations. Let

a : [0, T ] × R
d → R

d and σ : [0, T ] × R
d → R

d×d be continuous functions. For

t ∈ [0, T ], consider a second-order partial differential operator

Ltf(x) =
d∑

i=1

ai(t, x)
∂

∂xi
f(x) +

1

2

d∑
i,j=1

σij(t, x)
∂2

∂xi∂xj
f(x)

=
(
a(t, x), Dxf(x)

)
+

1

2
tr
(
σ(t, x)D2

xxf(x)
)
, f ∈ C2(Rd),
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which is the infinitesimal generator of a diffusion process with drift a(t, x) and

diffusion matrix σ(t, x). Under the assumption that σ(t, x) is non-negatively definite,

Lt is of parabolic type. Consider the boundary value problem

∂

∂t
u(t, x) + Ltu(t, x)− r(t, x)u(t, x) + f(t, x) = 0, t ∈ [0, T ), x ∈ R

d

u(T, x) = g(x), x ∈ R
d, [9.21]

for a backward parabolic partial differential equation; here, r, f : [0, T ] × R
d → R

and g : Rd → R are some continuous functions. In order to associate this equation to

a probabilistic object, note that Lt resembles a generator of a diffusion process.

Indeed, the non-negativity of σ(t, x) implies that there exists some d × d-matrix

b(t, x) with σ(t, x) = b(t, x)b(t, x)	, for example, we may use the so-called

Cholesky decomposition of σ(t, x); we will assume that b is continuous as well.

Consider a stochastic differential equation

dX(s) = a(s,X(s))dt+ b(s,X(s))dW (s), s ∈ [t, T ], [9.22]

with the initial condition X(t) = x. Assume that it has a weak solution, which we

denote by Xt,x; for notational simplicity, we will use usual symbols for the stochastic

basis and the Wiener process corresponding to this solution.

The following theorem establishes a probabilistic representation of a solution to

[9.21] as a functional of a solution to [9.22]. This representation is called the

Feynman–Kac formula.

THEOREM 9.13.– Assume that a, b satisfy the linear growth assumption [9.3], f, g
satisfy a quadratic growth assumption |f(t, x)| + |g(x)| ≤ C(1 + |x|2) for all t ∈
[0, T ], x ∈ R

d and r is bounded from below. Let u ∈ C1,2([0, T )×R
d)∩C([0, T ]×R

d)
be a solution to [9.21] such that u(t, x) ≤ C(1 + |x|2) for all t ∈ [0, T ], x ∈ R

d.
Then, for all t ∈ [0, T ], x ∈ R

d,

u(t, x) = E

(ˆ T

t

ν(t, s)f(s,Xt,x(s))ds+ ν(t, T )g(Xt,x(T ))

)
, [9.23]

where ν(t, s) = exp
{− ´ s

t
r(u,Xt,x(u))du

}
, s ∈ [t, T ].

REMARK 9.5.– The term ν(t, s) frequently plays a role of discounting factor, which

explains the negative sign used above.
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REMARK 9.6.– The terminal condition g is often non-differentiable; for example, in

financial mathematics, g(x) = (xi − K)+ may be used. This explains why u is

assumed to be differentiable only on [0, T ). Also it is well known that, in general, a

solution to [9.21] is not unique but there are some rapidly growing extraneous

solutions, that is why the quadratic growth assumption on u is imposed.

PROOF.– Take any T ′ ∈ (t, T ) and write by the Itô formula

ν(t, T ′)u(T ′, Xt,x(T
′)) = ν(t, t)u(t,Xt,x(t))

+

ˆ T ′

t

ν(t, s)

(
∂

∂t
u(s,Xt,x(s)) + Ltu(s,Xt,x(s))

−r(s,Xt,x(s))u(s,Xt,x(s))) ds

+

ˆ T ′

t

ν(t, s)
(
Dxu(s,Xt,x(s)), b(s,Xt,x(s))dW (s)

)
= u(t, x)−

ˆ T ′

t

ν(t, s)f(s,Xt,x(s))ds

+

ˆ T ′

t

ν(t, s)
(
Dxu(s,Xt,x(s)), b(s,Xt,x(s))dW (s)

)
.

We can assume that the integrand in the Itô integral is bounded, otherwise a

standard localization argument may be used. Then, taking expectations,

u(t, x) = E

(ˆ T ′

t

ν(t, s)f(s,Xt,x(s))ds+ ν(t, T ′)u(T ′, Xt,x(T
′))

)
.

Thanks to our assumptions, the expression under expectation is up to constant

bounded by sups∈[t,T ] |Xt,x(s)|2, which is integrable by theorem 9.1 (the latter

clearly holds for weak solutions as well). Therefore, using the dominated

convergence theorem and the terminal condition u(T, x) = g(x), we arrive at [9.23]

as T ′ → T−. �

9.8. Diffusion model of financial markets

Consider the following continuous time financial market model. Let T > 0 be

a finite time horizon and (Ω,F , {Ft, t ∈ [0, T ]} ,P) be a stochastic basis. Here, the

filtration {Ft, t ∈ [0, T ]} is interpreted as the information flow: at each time t ∈ [0, T ],
Ft is the information available to the market up to this time. For convenience, we will

assume that F0 is trivial, i.e. it contains only P-null sets and their complements.
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There are d + 1 traded assets in our model: a bond (bank account) and d risky

assets, stocks. Concerning the bond, we assume that it has the following dynamics:

S0(t) = exp

{ˆ t

0

r(s)ds

}
, t ∈ [0, T ],

where the progressively measurable bounded process r(s) ≥ 0 is the instantaneous

interest rate. The progressive measurability requirement implies that S0 is locally
riskless: at each moment, there is a complete knowledge of its immediate return. The

risky assets are assumed to have diffusion dynamics driven by a d-dimensional

standard Wiener process W . The coincidence of dimension is in a sense a

non-redundancy assumptions: each risky asset has its own source of randomness

(possibly correlated with our sources). Precisely, the dynamics are

dSi(t) = μi(t)Si(t)dt+
d∑

j=1

σij(t)Si(t)dWj(t), t ∈ [0, T ], i = 1, . . . , d, [9.24]

where μ and σ are bounded progressively measurable processes in R
d and d × d,

respectively. The drift term μ plays the role of a deterministic trend in the price

evolution, while the diffusion term σ describes the stochastic part of the evolution,

which is called volatility. The presence of the Wiener process makes the immediate

return on a stock unpredictable, thus the term “risky asset”.

We will assume that σ is non-singular, again for non-redundancy reasons. Using

the Itô formula, we can see that the process

Si(t) = Si(0) exp

⎧⎨⎩
ˆ t

0

(
μi(t)− 1

2

d∑
j=1

σij(s)
2

)
ds+

d∑
j=1

ˆ t

0

σij(s)dWj(s)

⎫⎬⎭
solves [9.24]. Therefore, the stock prices are positive provided that their initial prices

are also positive.

For brevity, the vector of risky asset prices will be denoted by S(t) = (S1(t), . . . ,

Sd(t)), and equation [9.24] can be abbreviated as

dS(t) = S(t) ∗ (μ(t)dt+ σ(t)dW (t)
)
, t ∈ [0, T ],

where ∗ is the coordinatewise product of vectors. The whole vector of asset prices will

be denoted by S(t) = (S0(t), S(t)) = (S0(t), S1(t), . . . , Sd(t)).
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A portfolio, or strategy, is a progressively measurable process

γ(t) = (γ0(t), γ1(t), . . . , γd(t)), t ∈ [0, T ],

where γi(t) denotes the quantity of ith asset in the portfolio. The progressive

measurability of the portfolio means that investor’s decisions at time t are based only

on information available to the market at that time (in other words, trading based on

insider information about future price changes is prohibited). There can be negative

numbers in the portfolio: for the bond, this means borrowing money, for a stock, its

short sale.

The value, or wealth, of the portfolio at time t ∈ [0, T ] is the total price of assets

in the portfolio, i.e.

Cγ(t) =
(
γ(t), S(t)

)
=

d∑
i=0

γk(t)Sk(t).

It is important to distinguish portfolios which are conservative in the sense that

they do not use external money and there is no money going outside them. Such

portfolios are called self-financing (or self-financed). The changes in the capital of

such portfolios are only due to changes in the asset prices, not due to some external

inflows or outflows of capital; this leads to the following equation:

dCγ(t) =
(
γ(t), dS(t)

)
, t ∈ [0, T ].

For many reasons, it is convenient to deal with discounted values using the bond

S0 as a numéraire. Namely, we define discounted price processes as

Xi(t) = Si(t)/S0(t), t ∈ [0, T ], i = 1, . . . , d. The corresponding dynamics are

dXi(t) = Xi(t)
(
μi(t)− r(t))dt+

d∑
j=1

σij(t)dWj(t)
)
, t ∈ [0, T ], i = 1, . . . , d.

Denoting by 1 the vector of ones, we can abbreviate the last system as

dX(t) = X(t) ∗ ((μi(t)− r(t)1)dt+ σ(t)dW (t)
)
, t ∈ [0, T ].

This is often expressed in terms of the so-called risk premium process λ(t) =
σ(t)−1(μi(t)− r(t)1):

dX(t) = X(t) ∗ σ(t)(λ(t) dt+ dW (t)
)
, t ∈ [0, T ].

In the case where d = 1, λ(t) = (μ(t)− r(t))/σ(t) is the Sharpe ratio, a popular

tool to measure the performance of a risky investment.



Stochastic Differential Equations 263

The discounted value of a portfolio is

V γ(t) = Cγ(t)/S0(t) = γ0(t) +
(
γ(t), X(t)

)
, t ∈ [0, T ],

where γ(t) = (γ1(t), . . . , γd(t)) is the risky component of the portfolio.

In the following, we will only consider self-financing portfolios. With this at hand,

the discounted value satisfies

dV γ(t) =
(
γ(t), dX(t)

)
, t ∈ [0, T ],

equivalently,

V γ(t) = V γ(0) +

ˆ t

0

(
γ(s), dX(s)

)
, t ∈ [0, T ]. [9.25]

Hence, the amount of bond in the portfolio can be determined from its risky

component and the initial capital:

γ0(t) = V γ(0) +

ˆ t

0

(
γ(s), dX(s)

)− (
γ(t), X(t)

)
, t ∈ [0, T ]. [9.26]

9.8.1. Admissible portfolios, arbitrage and equivalent martingale
measure

So far, we have not imposed any restrictions on the portfolio except its

adaptedness. In reality, we cannot trade arbitrary amounts of bonds and stocks, and

the price will certainly depend on the amount traded. Reflecting all possible

restrictions and transaction costs in a model would be impossible but we can consider

some well-behaved portfolios. Note that in order to write formulas like [9.25], we

already have to assume a certain integrability of the portfolio. There are many other

possible sets of restrictions (see [SHI 99, BJÖ 04] for more information). We take

one of the simplest assumptions: that the discounted capital is bounded from below.

This can be interpreted as a fixed credit line provided by a broker.

DEFINITION 9.4.– A portfolio γ is admissible if
´ T
0
|γ(t)|2 dt < ∞ almost surely (so

that the integral in [9.25] is well defined), and there exists some non-random constant
a ∈ R such that

V γ(t) ≥ a, t ∈ [0, T ],

almost surely.
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Next, we define the fundamental notion of arbitrage.

DEFINITION 9.5.– An arbitrage opportunity is an admissible portfolio γ with

V γ(0) ≤ 0, V γ(T ) ≥ 0 almost surely and P(V γ(T ) > 0) > 0.

The market model is called arbitrage-free if there are no arbitrage opportunities.

In layman’s terms, an arbitrage opportunity is a possibility to make a certain profit

without any risk, a “free lunch”. In real markets, arbitrage opportunities are possible

(and some financial companies have special departments to hunt for them) but they

quickly disappear due to increasing demand for arbitrage positions.

There is a well-known “martingale” betting strategy in a game, where we can put a

stake on some outcome, like flipping tails with a fair coin: we can double the bet in the

case of loss and exit the game in the case of win. This strategy guarantees the gambler

his initial bet provided that he has unbounded capital at his disposal. However, if we

limit possible losses, as in definition 9.4, then the arbitrage opportunity will no longer

be available.

This means that the non-arbitrage property depends on the definition of the

admissible portfolio used. In [BJÖ 04, SHI 99] we can find discussions of different

notions of arbitrage.

Let us move on to another important concept of financial mathematics.

DEFINITION 9.6.– A measure Q on (Ω,F) is an equivalent martingale measure if
Q ∼ P and the discounted price process {X(t), t ∈ [0, T ]} is a Q-martingale, i.e.

EQ(Xi(t) | Fs) = Xi(s)

almost surely for all s ≤ t ≤ T , i = 1, . . . , d.

It turns out that the existence of an equivalent martingale measure is closely related

to the absence of arbitrage. We first prove the martingale property for the discounted

value of an admissible portfolio.

THEOREM 9.14.– Let Q be an equivalent martingale measure. Then for any
admissible portfolio γ, the discounted capital process {V γ(t), t ∈ [0, T ]} is a
Q-supermartingale.

PROOF.– Similarly to the proof of lemma 8.1, it can be shown that there is a sequence

of simple processes of the form

γn(t) =

kn∑
k=1

γn
k [tn

k−1
,tn

k
)(t), t ∈ [0, T ], n ≥ 1



Stochastic Differential Equations 265

where γn
k is an Ftn

k−1
-measurable random vector in R

d such that

ˆ T

0

|γn(t)− γ(t)|2 dt → 0, n → ∞,

almost surely.

Consider now the corresponding self-financing portfolios with the initial capital

V γ(0). Then

V γn

(t) = V γ(0) +

kn∑
k=1

(
γn
k , X(tnk ∧ t)−X(tnk−1 ∧ t)

)
is a Q-martingale. Indeed, each summand is easily seen to be a martingale thanks to

the Q-martingale property of X . On the other hand, in view of the boundedness of μ,

r and σ, we have from theorem 8.6

sup
t∈[0,T ]

∣∣∣V γn

(t)− V γ(t)
∣∣∣ P−→ 0, n → ∞.

Therefore, defining τn = inf
{
t ≥ 0 :

∣∣V γn

(t)− V γ(t)
∣∣ ≥ 1

} ∧ T and

γ̃n(t) = γn(t) t≤τn and considering the corresponding self-financing portfolios

with the initial capital V γ(0), we have

sup
t∈[0,T ]

∣∣∣V γ̃n

(t)− V γ(t)
∣∣∣ P−→ 0, n → ∞.

Extracting, if necessary, a subsequence, we can assume that the convergence is

almost sure. For every t ∈ [0, T ], we have V γ(t) ≥ a with some a ∈ R, so it follows

from the definition of γ̃n that V γ̃n

(t) ≥ a − 1, t ∈ [0, T ]. Therefore, using the

martingale property of V γ̃n

and the Fatou lemma (which can be used thanks to the

boundedness from below), we have for any s < t ≤ T ,

V γ(s) = lim inf
n→∞ V γ̃n

(s) = lim inf
n→∞ EQ

(
V γ̃n

(t) | Fs

)
≥ EQ

(
lim inf
n→∞ V γ̃n

(t) | Fs

)
= EQ (V γ(t) | Fs) ,

which is the desired supermartingale property. �

The following fact is a simplified version of the so-called first fundamental
theorem of asset pricing relating the absence of arbitrage to the existence of a

martingale measure.
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THEOREM 9.15.– If there exists an equivalent martingale measure, then the market
model is arbitrage-free.

PROOF.– Let Q be the equivalent martingale measure, and an admissible portfolio γ be

such that V γ(0) ≤ 0 and P(V γ(T ) ≥ 0) = 1. Since Q ∼ P, also Q(V γ(T ) ≥ 0) = 1.

However, by the previous theorem, V γ(T ) is a Q-supermartingale, therefore

EQV γ(T ) ≤ V γ(0)

a.s., whence Q(V γ(T ) = 0) = 1. The equivalence of measures then implies

P(V γ(T ) = 0) = 1, so there are indeed no arbitrage opportunities. �

REMARK 9.7.– In some cases, the statement of theorem 9.15 may be reverted; see

[BJÖ 04, SHI 99] for details.

A sufficient condition for the existence of an equivalent martingale measure is

given by the Girsanov theorem.

THEOREM 9.16.– Let the risk-premium process λ satisfy

Eexp

{
1

2

ˆ T

0

|λ(t)|2 dt
}

< ∞.

Then, the measure Q defined by

dQ

dP
= exp

{
−
ˆ T

0

(
λ(t), dW (t)

)− 1

2

ˆ T

0

|λ(t)|2 dt
}

is an equivalent martingale measure. Consequently, the market model is arbitrage-
free.

PROOF.– Arguing as in the proof of corollary 8.1, we get

X(t) = X(0) +

ˆ t

0

X(s) ∗ σ(s)dWλ(s), t ∈ [0, T ], [9.27]

and Wλ is a Wiener process with respect to Q. From theorem 9.3 applied to equation

[9.27], it follows that EQ supt∈[0,T ] |X(t)|2 < ∞, so the integrand in [9.27] is square

integrable. Thus, X is a Q-martingale. �

9.8.2. Contingent claims, pricing and hedging

The bond S0 and stocks S1, . . . , Sd are usually called primary (financial) assets to

distinguish them from other instruments traded in the market: options, futures, swaps,
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warrants, etc. We will consider only instruments maturing at time T and paying some

random quantity, which is called payoff of the claim. For brevity, we will identify

contingent claims with their payoffs.

DEFINITION 9.7.– A contingent claim is a non-negative FT -measurable random
variable C. The contingent claim is called a derivative of primary assets
S0, S1, . . . , Sd if it pays an amount depending on the primary assets, i.e.
C ∈ σ

(
S(t), t ∈ [0, T ]

)
. A European claim, or European option, is a derivative

depending only on the ultimate prices, i.e. C = f(S0(T ), S1(T ) . . . , Sd(T )); here, f
is called the payoff function of the claim.

EXAMPLE 9.3.– A European call option with strike price K and the maturity date T
on the unit of stock Sk is a contract which gives its buyer (holder of the option) the
right to buy the designated (here, unit) amount of the underlying asset (here, Sk) at the
moment T for the agreed price K. Note that it is up to the holder to decide whether he
would use this right, exercising the option at time T to buy the stock (in which case the
option writer has the obligation to sell the stock). It is natural to assume that the holder
acts rationally, exercising the option if and only if its current price Sk(T ) exceeds the
strike price K. The virtual profit of the option holder in this situation, called in the

money, is Sk(T ) −K, the amount he would realize from selling the stock at current
price. When Sk(T ) < K, the option is useless (out of the money), since the holder
can buy the underlying asset cheaper. Thus, the amount Ccall = (Sk(T ) − K)+ =
max(Sk(T ) − K, 0) is naturally identified with the payoff of the option. Moreover,
very often an option is cash-settled, i.e. the amount Ccall is paid to the holder instead
of delivery of the asset; sometimes the delivery is even impossible, as the underlying
asset is a stock index or interest rate.

EXAMPLE 9.4.– Similarly, a European put option gives its holder the right to sell
the underlying asset at time T for the strike price K. The corresponding payoff is
Cput = (K − Sk(T ))

+.

EXAMPLE 9.5.– An exchange option allows one to exchange a unit of asset Sk at
time T for K units of asset Sj . Its payoff is (Sk(T ) − KSj(T ))

+. It is often called
a Margrabe option, named after William Margrabe, who derived the formula for its
price in a simple diffusion model.

EXAMPLE 9.6.– A basket option is written on a portfolio of assets. Say, an option
allowing one to buy a portfolio containing ai of asset Si, i = 1, . . . , d, for a strike

price K has payoff
(∑d

i=1 aiSi(T )
)+

. Options on stock indices are examples of
basket options. Basket options are also called rainbow options; the latter allow
negative weights ai so that, for example, the exchange option is a rainbow option
with ak = 1, aj = −K, ai = 0, i �= j, k.
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EXAMPLE 9.7.– The payoff of Asian derivative security depends on the average price
Ak(T ) = 1

T

´ T
0
Sk(t)dt of some asset Sk over time interval [0, T ]. Therefore, the

payoff of Asian security depends on the whole trajectory of the price process, not
only on the terminal value, as that of a European option. Such financial instruments
are thus called path dependent. Examples of Asian options: average price call option
paying (Ak(T ) −K)+, average price put paying (K − Ak(T ))

+, average strike call

paying (Sk(T )−Ak(T ))
+.

EXAMPLE 9.8.– Another class of path-dependent options are so-called lookback

options depending on the minimum price mk(T ) = mint∈[0,T ] Sk(t) and/or
maximum price mk(T ) = mint∈[0,T ] Sk(t) of asset Sk. One example is the fixed

strike lookback call option with payoff (Mk(T ) − K)+. It can be interpreted as a
European call option, where the maturity t ∈ [0, T ] is chosen retrospectively at time
T . A floating strike lookback call has the payoff (Mk(T )− Sk(T ))

+. Other examples
are barrier options, where the payoff is void if the price of the underlying asset hits
(for knock-in options) or does not hit (for knock-out options) the prescribed barrier.
Depending on the position of the barrier, there are up and down options. There is
also the call/put ambivalence, which gives in total eight types of barrier options. For
example, up-and-in call option pays (Sk(T ) − K)+ Mk(T )≥H , down-and-out put,
(K − Sk(T ))

+
mk(T )>L.

Pricing contingent claims is a fundamental task of financial mathematics; there are

numerous approaches based on different concepts. The most established of them is the

arbitrage pricing theory, which we briefly describe here.

Let us start with the case where a contingent claim is a final value of some

portfolio.

DEFINITION 9.8.– A contingent claim C is attainable (or marketable) if
C = Cγ(T ) =

(
γ(T ), S(T )

)
for some admissible portfolio γ, called a replicating

portfolio. The initial capital of the replicating portfolio is called a fair price of C:
π(C) = Cγ(0).

One claim can be replicated by different portfolios, and a priori there can be

several fair prices. When there are no arbitrage opportunities in the market model, the

price is normally unique, and this is the so-called law of one price. We will prove it

under the additional assumption that there exists an equivalent martingale measure.

THEOREM 9.17.– Let there exist an equivalent martingale measure Q. Then, every
attainable contingent claim C has a unique fair price. Moreover, it is equal to the
discounted expected value with respect to Q:

π(C) = EQ C

S0(T )
.
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PROOF.– Let γ be a replicating portfolio for C. By theorem 9.14, the discounted

capital V γ of γ is a Q-martingale; therefore,

EQ C

S0(T )
= EQV γ(T ) = V γ(0) = π(C),

as claimed. �

The second conclusion of this theorem allows us to extend the definition of fair

prices to a larger class of contingent claims. We denote by P the set of all equivalent

martingale measures.

DEFINITION 9.9.– A fair price of contingent claim C is a finite discounted expected
value of C with respect to an equivalent martingale measure, that is, an element of

Π(C) =

{
EQ C

S0(T )

∣∣∣∣ Q ∈ P ,EQ C

S0(T )
< ∞

}
.

For an attainable claim, Π(C) = {π(C)}, provided that an equivalent martingale

measure exists; for a non-attainable claim, this set is usually non-empty and is an open

interval. We will prove that each fair price is non-arbitrage.

THEOREM 9.18.– Any π ∈ Π(C) is a non-arbitrage price for C, i.e. there exists a
non-negative adapted process {Sd+1(t), t ∈ [0, T ]} such that Sd+1(0) = π,
Sd+1(T ) = C, and the extended model with traded assets S0, S1, . . . , Sd, Sd+1 is
arbitrage-free.

PROOF.– By definition, π = EQ
(
C/S0(T )

)
for some Q ∈ P . We define

Sd+1(t) = S0(t) E
Q

(
C

S0(T )

∣∣∣Ft

)
, t ∈ [0, T ]. [9.28]

Then, Sd+1(0) = π, Sd+1(T ) = C, and it is easy to see from [9.28] that Q is an

equivalent martingale measure in the extended market. Then, the extended model is

arbitrage-free thanks to theorem 9.15. �
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10

Parameter Estimation

In this chapter, we consider the simplest models consisting of the drift (regular)

component and the diffusion (non-regular) component. We propose different

estimators of unknown scaling parameters of the models under consideration and

study their strong consistency. Recall the definition of strong consistency for discrete

time and continuous time observations.

DEFINITION 10.1.–

i) An estimator Ŷn of the unknown real-valued parameter Y , constructed by the
finite number {Y1, . . . , Yn} of observations is called strongly consistent if Ŷn → Y
a.s. as n → ∞.

ii) An estimator Ŷt of the unknown real-valued parameter Y , constructed from the
observations {Ys, 0 ≤ s ≤ t} is called strongly consistent if Ŷt → Y a.s. as t → ∞.

10.1. Drift and diffusion parameter estimation in the linear regression
model with discrete time

Consider the linear regression model of the form

Xn = X0 + θbn +Rn, n ≥ 1,

where {bn, n ≥ 1} is a known sequence of real numbers, not all of them being equal to

zero, X0 ∈ R and θ ∈ R are the parameters to be estimated, θbn is a drift component

(in other words, regular part, or signal), and {Rn, n ≥ 1} is a sequence of random

variables that is treated as the diffusion component (in other words, irregular part,

or noise). Initial value X0 is also called an intercept term and θ is called a slope
parameter. Throughout the section, we assume that the noise is centered, i.e. ERn = 0,

n ≥ 1.
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10.1.1. Drift estimation in the linear regression model with discrete time
in the case when the initial value is known

Assume that X0 ∈ R is known. Consider two estimators of the parameter θ ∈ R

constructed by the observations {X0, X1, . . . , Xn}. One of them can be constructed

under the additional assumption that bn �= 0, n ≥ 1, and has the form θ̂
(1)
n = Xn

bn

(the estimator constructed from the last observation). Another one, θ̂
(2)
n , is the least

squares estimator (LSE). To construct the LSE, we consider ΔXn = Xn − Xn−1,

n ≥ 1, and minimize the quadratic form
∑n

i=1(ΔXi − θbi)
2 in θ ∈ R, getting

θ̂
(2)
n =

∑n

i=1
ΔXibi∑n

i=1
b2
i

. These estimators admit, respectively, stochastic representations

of the form

θ̂(1)n = θ +
Rn

bn
and θ̂(2)n = θ +

∑n
i=1 εibi∑n
i=1 b

2
i

,

where εi = Ri −Ri−1, i ≥ 1.

Evidently, both estimators are unbiased, that is Eθ̂
(1)
n = Eθ̂

(2)
n = θ. Their

consistency properties depend on both the properties of the drift {bn, n ≥ 1} and the

noise {Rn, n ≥ 1}, as well as on the relationship between them.

THEOREM 10.1.–

1) Let {εn, n ≥ 1} be a sequence of iid random variables, E|ε1| < ∞ and |bn| ≥
bn for some b > 0 and for all n ≥ n0, where n0 ∈ N is some integer number. Then
the estimator θ̂(1)n is strongly consistent as n → ∞.

2) Let {εn, n ≥ 1} be a sequence of independent random variables, εn ∈
L2(Ω,F ,P), n ≥ 1, and

∑∞
n=1

Eε2n
n2 < ∞. Let |bn| ≥ bn for some b > 0 and

for all n ≥ n0, where n0 ∈ N is some integer number. Then the estimator θ̂
(1)
n is

strongly consistent as n → ∞.

3) Let {εn, n ≥ 1} be a sequence of iid random variables, εn ∈ Lp(Ω,F ,P), n ≥
1, for some 1 < p < 2. Let |bn| ≥ bn1/p for some b > 0 and for all n ≥ n0, where
n0 ∈ N is some integer number. Then the estimator θ̂(1)n is strongly consistent.

Theorem 10.1 is an immediate consequence of theorems A2.18, A2.19 and A2.20

from section A2.7.

EXAMPLE 10.1.– The simplest illustrations of the assumptions of theorem 10.1 are as
follows, respectively:

1) εn ∼ N(0, 1) are iid random variables, bn = n;
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2) εn are independent random variables with Eε2i ≤ Ci1−δ for some 0 < δ < 1,

bn = n. In this case,
∑∞

n=1
Eε2n
n2 ≤ C

∑∞
n=1

n1−δ

n2 < ∞.

3) εn are iid random variables with E|εi|3/2 < ∞, bn = n2/3.

In the next theorem, we use the class Ψ of functions introduced in section A2.7.

THEOREM 10.2.– Let {εn, n ≥ 1} be a sequence of centered orthogonal random
variables from L2(Ω,F ,P). The estimator θ̂(1)n is strongly consistent under either of
two the assumptions:

1) {|bn|, n ≥ 1} is a non-decreasing sequence, |bn| → ∞ as n → ∞, and∑∞
n=1

Eε2n
b2n

log2 n < ∞.

2) |bn| ≥ bn for some b > 0 and n ≥ n0, and
∑n

i=1 Eε
2
i = O

(
n2

ψ(n) log2 n

)
for

some ψ ∈ Ψ.

PROOF.– These statements follow immediately from theorems A2.21 and A2.22. �

EXAMPLE 10.2.–

1) Let Eε2n ≤ c, bn = n
1
2+α for some α > 0 and for n ≥ 1, and εn be centered and

uncorrelated (for example, independent). Then
∑∞

n=1
Eε2n
b2n

log2 n ≤ c
∑∞

n=1
log2 n
n1+2α <

∞, therefore, Rn

bn
=

∑n

i=1
εi

n
1
2
+α

→ 0 a.s. as n → ∞, and θ̂
(1)
n is strongly consistent.

2) Let Eε2n ≤ cnα for some α ∈ (0, 1) for n ≥ 1, and {εn, n ≥ 1} as above, be
centered and uncorrelated, bn = n. Then for ψ(x) = xβ ∈ Ψ, 0 < β < 1 − α we
have that

n∑
i=1

Eε2i ≤ cnα+1 ≤ cn2−β = O

(
n2

ψ(n) log2 n

)
,

and Rn

bn
= Rn

n → 0 a.s.

Now consider the cases of martingale and stationary sequences.

THEOREM 10.3.– Let {Rn,Fn, n ≥ 1} be a square-integrable martingale, Fn =
σ {ε1, . . . , εn} = σ {R1, . . . , Rn}, n ≥ 1, F0 = {∅,Ω}.

1) Under any assumption 1) or 2) from theorem 10.2 it holds that θ̂(1)n is strongly
consistent.
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2) Let
∑n

i=1 E(ε
2
i |Fi−1) → ∞, n → ∞ and there exists a random variable ξ > 0

such that
∑n

i=1 E(ε
2
i |Fi−1) ≤ ξ|bn|, n ≥ n0. Then θ̂

(1)
n is strongly consistent.

PROOF.– The first statement follows from the orthogonality of εi: if Rn is

Fn-martingale, then for i > k,

Eεiεk = E(E(εi|Fk)εk) = E(E(Ri −Ri−1|Fk)εk) = 0.

Therefore, we can apply theorem 10.2. The second statement follows from SLLN

for martingales, theorem 5.21:∣∣∣∣Rn

bn

∣∣∣∣ = |Rn|
〈R〉n

· 〈R〉n
|bn| ≤ |Rn|

〈R〉n
· ξ → 0

a.s. if

〈R〉n =

n∑
i=1

E(ε2i |Fi−1) → ∞

as n → ∞. �

THEOREM 10.4.– Let {εi, i ≥ 1} be a stationary Gaussian sequence and Eε0εn → 0

as n → ∞. Also, let |bn| ≥ bn for b > 0 and n ≥ n0. Then θ̂
(1)
n is strongly consistent.

PROOF.– Convergence
∣∣∣Rn

bn

∣∣∣ = |Rn|
n · n

|bn| → 0 a.s. follows immediately from theorem

A2.15. �

Conditions of strong consistency of θ̂
(2)
n can be formulated in a similar way if

we replace εn for εnΔbn and the condition |bn| ≥ bn, n ≥ n0 for the condition∑n
i=1(Δbi)

2 ≥ bn, n ≥ n0. In the case when bn = n, assumptions supplying strong

consistency of θ̂
(1)
n and θ̂

(2)
n coincide as well as the corresponding examples.

REMARK 10.1.– Let the sequence bn, n ≥ 1, be non-negative and non-decreasing.

Assume that the limit Δ := limn→∞ Δbn exists and Δ ∈ (0,+∞). Then it follows

from the Stolz-Cèsaro theorem that

lim
n→∞

∑n
i=1(Δbi)

2

n
= lim

n→∞Δbn = Δ,

and

lim
n→∞

bn
n

= lim
n→∞Δbn = Δ,

which means that both conditions hold:
∑n

i=1(Δbi)
2 ≥ bn, n ≥ n0 and |bn| ≥

bn, n ≥ n0.
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10.1.2. Drift estimation in the case when the initial value is unknown

Assume that both X0 ∈ R and θ ∈ R are unknown parameters to be estimated.

Consider the LSE estimator of the parameters (X0, θ) constructed by the observations

{X1, . . . , Xn}. In this case, we should minimize the quadratic form
∑n

i=1(ΔXi −
θbi)

2 in (X0, θ) ∈ R
2, obtaining

X̂0 = X1 − θ̂nb1, θ̂n =

∑n
i=1 ΔXibi∑n

i=1 b
2
i

,

or, finally,

X̂0 = X1 −
∑n

i=1 ΔXibi∑n
i=1 b

2
i

b1, θ̂n =

∑n
i=1 ΔXibi∑n

i=1 b
2
i

.

Strong consistency of these estimators is studied in the same way as that of θ̂
(2)
n .

REMARK 10.2.– The LSE for the multidimensional linear regression scheme is treated

in detail in the book [SEB 03].

10.2. Estimation of the diffusion coefficient in a linear regression model
with discrete time

Consider the model of the form

Xn = X0 + bn + σRn, n ≥ 1

where X0 ∈ R, {bn, n ≥ 1} is a sequence of real numbers, {Rn, n ≥ 1} is a sequence

of random variables of the form Rn =
∑n

i=1 εi, where {εi, i ≥ 1} are independent

centered random variables, and σ > 0 is a parameter to be estimated. In order to

estimate σ, we define the differences ΔXn = Xn − Xn−1 = Δbn + σεn, where

Δbn = bn − bn−1 and εn = Rn −Rn−1, and construct an estimator of the form

(σ̂)2n =

∑n
i=1(ΔXi)

2

n
=

∑n
i=1(Δbi)

2

n
+

2σ
∑n

i=1 εiΔbi
n

+
σ2
∑n

i=1 ε
2
i

n
.

THEOREM 10.5.– Let the following conditions hold: εi are iid random variables,
εi ∈ L2(Ω,F ,P), i ≥ 1, and∑n

i=1(Δbi)
2

n
→ b, as n → ∞, [10.1]

where b ≥ 0 is some constant. Then (σ̂)2n → σ2Eε21 + b a.s. as n → ∞.
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PROOF.– If εi are iid random variables with Eε21 < ∞, then by the version of SLLN

formulated in theorem A2.18,

∑n

i=1
ε2i

n → Eε21 a.s. as n → ∞. Moreover, εiΔbi are

independent centered random variables with
∑∞

i=1
Eε2i (Δbi)

2

i2 = Eε21
∑∞

i=1
(Δbi)

2

i2 .

Further, under condition [10.1], there exists n0 ∈ N such that for all n ≥ n0 it holds

that

n∑
i=1

(Δbi)
2 ≤ (b+ 1)n.

Therefore, for such n that 2n+1 ≥ n0, the following inequalities hold:

2n+1∑
i=2n

(Δbi)
2

i2
≤ 2−2n

2n+1∑
i=1

(Δbi)
2 ≤ 2−2n(b+ 1)2n+1 ≤ 2(b+ 1)2−n.

It means that the series
∑∞

i=1
(Δbi)

2

i2 converges. Therefore, according to the version

of SLLN formulated in theorem A2.19,

∑∞
i=1

εiΔbi

n → 0 a.s. as n → ∞, and the proof

follows. �

REMARK 10.3.–

i) Let Δbn → b as n → ∞. Then

∑n

i=1
(Δbi)

2

n → b as n → ∞, according

to the Stolz-Cesáro theorem, and it follows as in the proof of theorem 10.5 that∑∞
i=1

(Δbi)
2

i2 < ∞. In this case theorem 10.5 holds.

ii) Let bn = n. Then condition [10.1] and consequently theorem 10.5 hold with

b = 1.

10.3. Drift and diffusion parameter estimation in the linear model with
continuous time and the Wiener noise

Consider the model of the form

Xt = X0 + θf(t) + σWt,

where X0 ∈ R is a known initial value, θ ∈ R, σ > 0 are parameters, f = f(t) is

a positive measurable function that we assume to know, and W = {Wt, t ≥ 0} is a

Wiener process. As before, θ is called a drift parameter, while σ is called a diffusion

parameter.
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10.3.1. Drift parameter estimation

We suppose that Xt is observable for all t ≥ 0, and propose two estimators for θ
constructed by its observations on the interval [0, T ], assuming that σ > 0 is known.

The first one is the estimator constructed by the last observation, it has a form

θ̂
(1)
T = XT

f(T ) . The second one is the least square estimator (LSE) constructed under

additional assumption f ∈ C(1)(R+) and f ′ does not equal to zero identically, as a

result of minimization of the quadratic form that can be formally written as´ T
0
(dXs − θf ′(s)ds)2. Finally, the estimator has a form

θ̂
(2)
T =

´ T
0
f ′(s)dXs´ T

0
(f ′(s))2ds

.

THEOREM 10.6.–

i) Let there exist t0 ≥ 0 and C > 0 such that |f(t)| ≥ Ct for all t ≥ t0. Then θ̂
(1)
T

is a strongly consistent estimator of θ.

ii) Let f ∈ C(1)(R+), and
´ T
0
(f ′(s))2ds → ∞ as T → ∞. Then θ̂

(2)
T is a strongly

consistent estimator of θ.

PROOF.– i) According to SLLN for martingales with continuous time (theorem 8.10),
WT

T → 0 a.s. as T → ∞, whence the proof of (i) follows.

ii) Note that

θ̂
(2)
T = θ +

´ T
0
f ′(s)dWs´ T

0
(f ′(s))2ds

.

Due to condition (ii), we can apply SLLN here as well for martingales with

continuous time, according to which
´ T
0

f ′(s)dWs´ T
0
(f ′(s))2ds

→ 0 a.s. as T → ∞. Hence, the

proof follows. �

REMARK 10.4.– The conditions (i) and (ii) are not completely overlapping. For

example, let f(t) = |f1(t)| + t, where the function f1 is nowhere differentiable.

Then we can not apply θ̂
(2)
T , however, θ̂

(1)
T works. Conversely, let f(t) =

√
t t≥1.

Then
´∞
0

(f ′(s))2ds = 1
4

´∞
1

ds
s = +∞, so θ̂

(2)
T works, but WT√

T
∼ N (0, 1), therefore

WT√
T

does not converge to zero as T → ∞.
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REMARK 10.5.– As is established in theorem A2.23, WT

Tα → 0 a.s. as T → ∞ for

any α > 1
2 . Therefore, condition (i) can be relaxed to |f(t)| ≥ Ctα for some C > 0,

α > 1
2 and all t ≥ t0 > 0.

10.3.2. Diffusion parameter estimation

In order to estimate σ assuming θ to be known, we use the properties of quadratic

variation of the Wiener process. Namely, we fix some T > 0 and consider the

equidistant partition of [0, T ], e.g. πn =
{

Tk
n = t

(n)
k , 0 ≤ k ≤ n

}
. According to

remark 4.2,
∑n

k=1(Wt
(n)

k

− W
t
(n)

k−1

)2 → T a.s. as n → ∞. Therefore, we can

formulate and prove the following result.

THEOREM 10.7.– Let for any T > 0, f ∈ C([0, T ])∩BV ([0, T ]). Then the estimator

(σ̂)2T,n :=
n∑

k=1

(X
t
(n)

k

−X
t
(n)

k−1

)2 → σ2T a.s. as n → ∞,

i.e.,
(σ̂)2T,n

T → σ2 a.s. as n → ∞.

PROOF.– We have that

(σ̂)2T,n =
n∑

k=1

(
θ
[
f
t
(n)

k

− f
t
(n)

k−1

]
+ σ
(
W

t
(n)

k

−W
t
(n)

k−1

)2)
.

Denote Δfk = f
t
(n)

k

− f
t
(n)

k−1

and ΔWk = W
t
(n)

k

−W
t
(n)

k−1

. Then

(σ̂)2T,n = θ2
n∑

k=1

(Δfk)
2 + 2θσ

n∑
k=1

ΔfkΔWk + σ2
n∑

k=1

(ΔWk)
2.

As we mentioned before,
∑n

k=1(ΔWk)
2 → T a.s. as n → ∞. Since

f ∈ C([0, T ]) ∩BV ([0, T ]), we can conclude that

n∑
k=1

(Δfk)
2 ≤ max

1≤k≤n
|Δfk|

n∑
k=1

|Δfk| ≤ max
1≤k≤n

|Δfk|Var[a,b]f → 0, n → ∞,

(see also theorem A1.11), and similarly∣∣∣∣∣
n∑

k=1

ΔfkΔWk

∣∣∣∣∣ ≤ max
1≤k≤n

|ΔWk|Var[a,b]f → 0, a.s. as n → ∞,

and hence the proof follows. �

REMARK 10.6.– Some related properties of functions of bounded variation are

considered in section A1.5.
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10.4. Parameter estimation in linear models with fractional Brownian
motion

Consider a model

Xt = X0 + θf(t) + σBH
t , t ≥ 0, [10.2]

where X0 ∈ R, f ∈ C(1)(R), σ > 0 and θ ∈ R are the parameters to be estimated,

BH =
{
BH

t , t ≥ 0
}

is a fractional Brownian motion with Hurst index H ∈ (0, 1).

10.4.1. Estimation of Hurst index

Assume that the index H ∈ (0, 1) is unknown. Fix any T > 0 and suppose that

the process X is observable on [0, T ]. Consider a sequence of uniform partitions

πn =

{
Tδk, δ

(n)
k =

k

2n
, 0 ≤ k ≤ 2n

}
, n ≥ 1. [10.3]

According to theorem 4.6, for any H ∈ (0, 1)

2n(2H−1)

T 2H

2n∑
k=1

(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)2

→ 2√
π

a.s. as n → ∞. [10.4]

Replacing n with 2n, we get from [10.4] that

22n(2H−1)

T 2H

22n∑
k=1

(
BH

Tδ
(2n)

k

−BH

Tδ
(2n)

k−1

)2

→ 2√
π

a.s. as n → ∞. [10.5]

Dividing the left-hand side of [10.5] by the left-hand side of [10.4], we get that

2n(2H−1)

∑22n

k=1

(
BH

Tδ
(2n)

k

−BH

Tδ
(2n)

k−1

)2

∑2n

k=1

(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)2 → 1 a.s. as n → ∞. [10.6]

Denote

RT,n(B
H) =

∑22n

k=1

(
BH

Tδ
(2n)

k

−BH

Tδ
(2n)

k−1

)2

∑2n

k=1

(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)2 . [10.7]
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Then it follows from [10.6] that

log2 RT,n(B
H) + n(2H − 1) → 0, a.s., or

− log2 RT,n(B
H)

2n
+

1

2
→ H a.s. as n → ∞. [10.8]

Now, let RT,n(X) be the right-hand side of [10.7], where we substitute X instead

of BH . Taking [10.8] into account, we can prove the following result.

THEOREM 10.8.– For any T > 0

ĤT,n := − log2 RT,n(X)

2n
+

1

2

is a strongly consistent estimator of H .

PROOF.– It is sufficient to prove that

rn =
log2 RT,n(X)

2n
− log2 RT,n(B

H)

2n
→ 0 a.s. as n → ∞.

However, rn = 1
2n log2

RT,n(X)
RT,n(BH)

, and

Rn(X) =

∑22n

k=1

(
X

Tδ
(2n)

k

−X
Tδ

(2n)

k−1

)2
∑2n

k=1

(
X

Tδ
(n)

k

−X
Tδ

(n)

k−1

)2 =

⎡⎣22n∑
k=1

θ2
(
f
Tδ

(2n)

k

− f
Tδ

(2n)

k−1

)2

+2θσ
22n∑
k=1

(
f
Tδ

(2n)

k

− f
Tδ

(2n)

k−1

)(
BH

Tδ
(2n)

k

−BH

Tδ
(2n)

k−1

)

+σ2
22n∑
k=1

(
BH

Tδ
(2n)

k

−BH

Tδ
(2n)

k−1

)2
⎤⎦[ 2n∑

k=1

θ2
(
f
Tδ

(n)

k

− f
Tδ

(n)

k−1

)2

+2θσ
2n∑
k=1

(
f
Tδ

(n)

k

− f
Tδ

(n)

k−1

)(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)

+σ2
2n∑
k=1

(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)2
]−1

.
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According to theorem 10.8 and remark A1.1,

lim
n→∞

2n∑
k=1

(
f
Tδ

(n)

k

− f
Tδ

(n)

k−1

)2
= 0, and

lim
n→∞

2n∑
k=1

(
f
Tδ

(n)

k

− f
Tδ

(n)

k−1

)(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)
= 0 a.s. [10.9]

The same is true if we replace n in [10.9] for 2n. Therefore
RT,n(X)
RT,n(BH)

→ 1 a.s. as

n → ∞ and consequently rn → 0 a.s. as n → ∞. �

10.4.2. Estimation of the diffusion parameter

Consider the model [10.2] in which we assume the Hurst parameter H ∈ (0, 1)
to be known. Let us estimate the parameter σ > 0. Consider the sequence [10.3] of

uniform partitions of [0, T ].

THEOREM 10.9.– For any T > 0 and for any H ∈ (0, 1),

(σ̂)
2
H,T,n :=

2n(2H−1)
√
π

2T 2H

2n∑
k=1

(
X

Tδ
(n)

k

−X
Tδ

(n)

k−1

)2
is a strongly consistent estimator of σ2.

PROOF.– We start with evident equality

(σ̂)
2
H,T,n =

2n(2H−1)
√
π

2T 2H

(
2n∑
k=1

(
f
Tδ

(n)

k

− f
Tδ

(n)

k−1

)2

+2
2n∑
k=1

(
f
Tδ

(n)

k

− f
Tδ

(n)

k−1

)(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)
[10.10]

+σ2
2n∑
k=1

(
B

Tδ
(n)

k

−B
Tδ

(n)

k−1

)2)
.

Let us analyze the asymptotic behavior of all terms in the right-hand side of

[10.10]. Denote Cf = max0≤t≤T |f ′(t)|. Then

2n(2H−1)
2n∑
k=1

(
f
Tδ

(n)

k

− f
Tδ

(n)

k−1

)2
≤ C2

f2
n(2H−1)2n

(
T

2n

)2

= C2
fT

222nH−n+n−2n = C2
fT

222n(H−1) → 0 as n → ∞.

[10.11]
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To estimate the middle term, recall that for any ω ∈ Ω′ with P{Ω′} = 1 and for

any 0 < δ < H there exists such C(ω, T, δ) that |BH
t −BH

s | ≤ C(ω, T, δ)|t− s|H−δ

for any 0 ≤ s, t ≤ T (see example 6.5). Therefore, for any ω ∈ Ω′

Sn(ω) := 2n(2H−1)
2n∑
k=1

∣∣∣fTδ
(n)

k

− f
Tδ

(n)

k−1

∣∣∣ ∣∣∣∣BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

∣∣∣∣
≤ 2n(2H−1)2nCf

T

2n
C(ω, T, δ)

(
T

2n

)H−δ

[10.12]

= CfC(ω, T, δ)T 1+H−δ22Hn−n+n−n−nH+nδ

= CfC(ω, T, δ)T 1+H−δ2(H−1)n+nδ.

Choosing 0 < δ < H ∧ (1 −H) we get that Sn(ω) → 0 a.s. as n → ∞. Finally,

it follows from [10.10]–[10.12] that

2n(2H−1)
√
π

2T 2H
σ2

2n∑
k=1

(
BH

Tδ
(n)

k

−BH

Tδ
(n)

k−1

)2

→ σ2 a.s. as n → ∞,

and hence the proof follows. �

10.5. Drift parameter estimation

Consider the model [10.2] in which we assume the Hurst parameter H ∈ (0, 1) to

be known. The Diffusion parameter σ > 0 is also assumed to be known, and we can

simply put σ = 1. And so, let us estimate the parameter θ ∈ R in the model

Xt = X0 + θf(t) +BH
t , t ≥ 0,

where f ∈ C(1)(R). Note that both integrals
´ t
0
(t − s)

1
2−Hs

1
2−Hf ′(s)ds and´ t

0
(t − s)

1
2−Hs

1
2−HdBH

s are well defined, and moreover, the process MH
t =

C ′
H

´ t
0
(t − s)

1
2−Hs

1
2−HdBH

s is a continuous martingale with quadratic variation

[MH ]t = t2−2H , see section A2.8. Therefore, we can consider the process Y H
t =

θFH
t + MH

t , where Y H
t = C ′

H

´ t
0
(t − s)

1
2−Hs

1
2−HdXs and FH

t = C ′
H´ t

0
(t− s)

1
2−Hs

1
2−Hf ′(s)ds.

THEOREM 10.10.–

i) Let there exist t0 > 0 such that |FH
t | ≥ Ct2−2H for some C > 0 and any t ≥ t0.

Then θ̂
(1)
T =

Y H
T

FH
T

is a strongly consistent estimator of θ.



Parameter Estimation 285

ii) Let there exist t0 > 0 and δ > 0 such that |f(t)| ≥ CtH+δ , for some C > 0

and any t ≥ t0. Then θ̂
(2)
T = XT

f(T ) , considered for T ≥ t0, is a strongly consistent
estimator of θ.

PROOF.– i) Obviously,
Y H
T

FH
T

= θ +
MH

T

FH
T

, and the proof immediately follows from the

SLLN for martingales.

ii) In this case θ̂2T = X0

f(T )+θ+
BH

T

f(T ) , and the proof follows from theorem A2.24.�

10.6. Drift parameter estimation in the simplest autoregressive model

Consider the linear autoregressive model of the form

Xn = θXn−1 + εn, n ≥ 1. [10.13]

Assume that {εn, n ≥ 1} are i.i.d. N (0, 1)-random variables representing the

noise, θ ∈ R is a parameter to be estimated. The values {X0, X1, . . . , Xn, . . .} are

assumed to be observable, X0 ∈ R. And so, our goal is to construct the statistics that

will be an estimator of θ, based on the observations {Xk, k ≥ 1}.

For this purpose, we construct the least square estimator, which minimizes the

value
∑n

i=1(Xi − θXi−1)
2. A minimum value is achieved at the point

θ̂n =

∑n

i=1
XiXi−1∑n

i=1
X2

i−1

. To establish the asymptotic properties of θ̂n, we need the

following lemma.

LEMMA 10.1.– For any θ ∈ R it holds that
∑n

i=1 X
2
i−1 → ∞ a.s. as n → ∞.

PROOF.– a) Let θ > 1. Note that Xn = θnX0 + θn−1ε1 + . . .+ θεn−1 + εn. Further,

it follows from the Cauchy-Schwartz inequality that

n∑
i=1

X2
i−1 ≥ (

∑n
i=1 Xi−1)

2

n
.

Therefore, for any λ > 0

E exp

{
−λ

n∑
i=1

X2
i−1

}
≤ Eexp

⎧⎨⎩−λ

n

(
n∑

i=1

Xi−1

)2
⎫⎬⎭ .
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Denote

mn = E
n∑

i=1

Xi−1 =
n∑

i=1

θi−1X0 =
θn − 1

θ − 1
X0,

and

σ2
n = E

(
n∑

i=1

Xi−1 −mn

)2

.

Since εi are pairwise uncorrelated, we get that

σ2
n = E

(
ε1

θn−1 − 1

θ − 1
+ ε2

θn−2 − 1

θ − 1
+ . . .+ εn−1

)2

= (θ − 1)−2((θn−1 − 1)2 + (θn−2 − 1)2 + . . .+ (θ − 1)2)

= (θ − 1)−2(θ2(n−1) + θ2(n−2)

+ . . .+ θ2 − 2θn−1 − 2θn−2 − . . .− 2θ + n− 1) [10.14]

= (θ − 1)−2

(
θ2n − 1

θ2 − 1
− 2

θn − 1

θ − 1
+ n

)
= (θ − 1)−3

(
θ2n − 1

θ + 1
− 2(θn − 1) + n(θ − 1)

)
.

Now, on one hand, it follows from [10.14] that σn = O(θn) as n → ∞. On the

other hand, if we have a N (mn, σ
2
n)-random variable ξn, then

Eexp

{
−λ

n
ξ2n

}
=
(√

2πσn

)−1
ˆ
R

e
− λ

nx2− (x−mn)2

2σ2
n dx

≤
√

n

2λ
σ−1
n

ˆ
R

e−
λx2

n√
2π
√

n
2λ

dx =

√
n

2λ
σ−1
n .

Therefore, Eexp
{
−λ

n (
∑n

i=1 Xi−1)
2
}
→ 0 as n → ∞, and consequently

Eexp

{
−λ

n∑
i=1

X2
i−1

}
→ 0

as n → ∞ for any λ > 0. Since
∑n

i=1 X
2
i−1 is a non-decreasing sequence, we have

from lemma A2.10 that
∑n

i=1 X
2
i−1 → ∞ a.s. as n → ∞.
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b) Let θ = 1. Then

Xn = X0 +

n∑
k=1

εk, mn = E

n∑
i=1

Xi−1 = nX0,

σ2
n = E

(
n∑

i=1

Xi−1 − nX0

)2

= E

(
n∑

i=1

(
i−1∑
k=1

εk

))2

= E

(
i−1∑
k=1

εk(n− k)

)2

=
n−1∑
k=1

(n− k)2 =
n−1∑
j=1

j2 =
(n− 1)n(2n− 1)

6
= O(n3), as n → ∞,

and we can conclude as in (a) because
√
nσ−1

n → 0 as n → ∞.

c) Let θ < −1. In this case σn = O(|θ|n), therefore as in (a),
√
nσ−1

n → 0 as

n → ∞ and hence we get the statement.

d) Let θ = −1. Then

Xn = (−1)nX0 +
n∑

k=1

(−1)n−kεk,

therefore

(−1)nXn = X0 +
n∑

k=1

(−1)kεk.

Operating with Yn := (−1)nXn instead of Xn and εk = (−1)kεk instead of εk,

we get that their moments mn = nX0 and

σ2
n = E

(
n−1∑
k=1

(−1)kεk(n− k)

)2

=
n−1∑
k=1

(n− k)2 = O(n3) as n → ∞.

Additionally,
∑n

i=1 X
2
i−1 =

∑n
i=1 Y

2
i−1, and we can conclude as in (b).

e) Finally, let θ ∈ (−1, 1). Then

n∑
i=0

X2
i = X2

0 + θ2
n−1∑
i=0

X2
i + 2θ

n−1∑
i=0

Xiεi+1 +
n∑

i=1

ε2i . [10.15]
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Denote Mn =
∑n−1

i=0 Xiεi+1. This is square-integrable martingale (more

precisely, Mn has the moments of any order), and

〈M〉n =
n−1∑
i=0

E
(
(Xiεi+1)

2|Fi

)
=

n−1∑
i=1

X2
i .

According to theorem 5.22 {〈M〉∞ < ∞} ⊂ {M →}. For such ω ∈ Ω, where

〈M〉∞ < ∞, we can pass to the limit as n → ∞ in [10.15] and get the equality

〈M〉∞ = X2
0 + θ2 〈M〉∞ + 2θM∞ + lim

n→∞

n∑
i=1

ε2i ,

or

(1− θ2) 〈M〉∞ = X2
0 + 2θM∞ + lim

n→∞

n∑
i=1

ε2i . [10.16]

Now, note that according to the strong law of large numbers,∑n
i=1 ε

2
i

n
→ Eε21 = 1 a.s.,

which means that
∑n

i=1 ε
2
i → ∞ a.s. It means that [10.16] is contradictory, which

means in turn that the probability of the event {〈M〉∞ < ∞} is zero and hence the

proof follows. �

THEOREM 10.11.– The estimator

θ̂n =

∑n
i=1 XiXi−1∑n
i=1 X

2
i−1

is a strongly consistent estimator of parameter θ in the linear regression scheme
[10.13].

PROOF.– We can transform θ̂n as

θ̂n = θ +

∑n
i=1 Xi−1εi∑n
i=1 X

2
i−1

.

Denote by Mn martingale Mn =
∑n

i=1 Xi−1εi. Then its quadratic characteristics

equal 〈M〉n =
∑n

i=1 X
2
i−1. As it follows from lemma 10.1, 〈M〉∞ = ∞ a.s. Then

it follows from the strong law of large numbers for martingales (theorem 5.21) that
Mn

〈M〉n → 0 as n → ∞ with probability 1, and hence the proof follows. �
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REMARK 10.7.– An autoregressive scheme [10.13] is a particular case of

autoregressive-moving-average (ARMA) models of the form

Xn =

p∑
i=1

θn−iXn−i +

p∑
i=1

ϕn−iεn−i + εn,

which are treated in detail within the framework of time series analysis, see [BRO 06]

for example.

10.7. Drift parameters estimation in the homogeneous diffusion model

Consider the diffusion process X = {Xt, t ≥ 0} which is a solution to the

stochastic differential equation with homogeneous, i.e. not depending on t,
coefficients:

dXt = θ0a(Xt)dt+ b(Xt)dWt. [10.17]

We assume that X|t=0 = X0 ∈ R is non-random, coefficients a, b : R → R

are measurable functions, b(x) > 0 for all x ∈ R, W = {Wt, t ≥ 0} is a Wiener

process, θ0 ∈ R is an unknown drift parameter to be estimated. We also assume that

the SDE [10.17] has a unique strong solution Xt, t ≥ 0. It follows from theorem 9.2

that the existence and uniqueness of a strong solution is supplied in a homogeneous

case by the Lipschitz condition: (A) there exists K > 0 such that for any x, y ∈ R

|a(x)−a(y)|+|b(x)−b(y)| ≤ K|x−y|, since in a homogeneous case it implies linear

growth condition. Let us construct a maximum likelihood estimator of θ. To this end

we test the hypothesis Hθ0 : θ = θ0 against the alternative H0 : θ = 0. The measure

that corresponds to Hθ0 is Pθ0 , the measure that corresponds to H0 is P0, up to our

notation.

Let us transform the right-hand side of [10.17] as follows: dXt = b(Xt)[
θ a(Xt)
b(Xt)

dt+ dWt

]
. And so, under H0 the process Wt + θ

´ t
0

a(Xs)
b(Xs)

ds is a new

Wiener process W̃t, so that W̃t = Wt + θ
´ t
0

a(Xs)
b(Xs)

ds. According to the Girsanov

theorem,

dP0

dPθ0

∣∣∣∣
FT

= exp

{
−θ0

ˆ T

0

a(Xs)

b(Xs)
dWs − 1

2
θ20

ˆ t

0

a2(Xs)

b2(Xs)
ds

}
.
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Since we are interested in the true value θ0 of an unknown parameter, we consider

the inverse likelihood function dP0

dPθ0

∣∣∣
FT

and get that

dPθ0

dP0

∣∣∣∣
FT

= exp

{
θ0

ˆ T

0

a(Xs)

b(Xs)
dWs +

1

2
θ20

ˆ T

0

a2(Xs)

b2(Xs)
ds

}

= exp

{
θ0

ˆ T

0

a(Xs)

b2(Xs)
dXs − 1

2
θ20

ˆ T

0

a2(Xs)

b2(Xs)
ds

}
. [10.18]

Obviously, the following condition is needed for the right-hand side of [10.18] to

be well-defined.

(B) for any T > 0,
´ T
0

a2(Xs)
b2(Xs)

ds < ∞ a.s.

THEOREM 10.12.– Let the conditions (A) and (B) hold. Then the maximum
likelihood function for the estimation of parameter θ0 has a form

θ̂T :=

(ˆ T

0

a2(Xs)

b2(Xs)
ds

)−1 ˆ T

0

a(Xs)

b2(Xs)
dXs. [10.19]

PROOF.– As we have just established, the likelihood ratio for the equivalent measures

P0 is presented by the right-hand side [10.18]. To maximize it, we take the quadratic

in θ0 function

θ0

ˆ T

0

a(Xs)

b2(Xs)
dXs − 1

2
θ20

ˆ T

0

a2(Xs)

b2(Xs)
ds,

obtaining that the maximum is achieved in θ̂T , represented by the right-hand side of

[10.19]. �

Now consider the denominator of θ̂T ,
´ T
0

a2(Xs)
b2(Xs)

ds. Its asymptotic behavior is

based on the following result from [MIS 14]. Since the proof of this result involves

some notions (local time, recurrent and transient diffusion processes) which are

beyond the scope of the present book, we omit it.

THEOREM 10.13.– Let the following conditions hold: (A), (B) and (C) function
b(x) �= 0 for all x ∈ R, function a(x) is not identically zero, functions 1

b2(x) , a2(x)
b2(x)

and a2(x)
b4(x) are locally integrable, i.e. integrals
ˆ
[−N,N ]

b−2(x)dx,

ˆ
[−N,N ]

a2(x)b−2(x)dx and
ˆ
[−N,N ]

a2(x)b−4(x)dx

exist for any N > 0. Then
´∞
0

a2(Xs)
b2(Xs)

ds = +∞ a.s.
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Taking into account this theorem, we can establish our main result.

THEOREM 10.14.– Let the condition (A), (B) and (C) hold. Then

θ̂T =

(
θ20

ˆ T

0

a2(Xs)

b2(Xs)
ds

)−1 ˆ T

0

a(Xs)

b2(Xs)
dXs

is a strongly consistent estimator of the unknown drift parameter θ0.

PROOF.– Let us present θ̂T as

θ̂T = θ0 +

´ T
0

a(Xs)
b(Xs)

dWs´ T
0

a2(Xs)
b2(Xs)

ds
.

Under condition (B) the process Mt =
´ t
0

a(Xs)
b(Xs)

dWs is a local martingale with

quadratic variation [M ]t =
´ t
0

a2(Xs)
b2(Xs)

ds.

According to condition (C) and theorem 10.13,
´ T
0

a2(Xs)
b2(Xs)

ds → ∞ a.s. as T →
∞. Therefore, the proof follows from the SLLN for local martingales with continuous

time, established in theorem 8.10. �

EXAMPLE 10.3.– Consider the Langevin equation with the unknown drift parameter

dXt = θXtdt+ dWt, t ≥ 0.

In this case, coefficient a(x) = x is not identically zero, b(x) = 1 �= 0, conditions

(B) and (C) obviously are fulfilled. It means that

ˆ ∞

0

a2(Xs)

b2(Xs)
ds =

ˆ ∞

0

X2
sds = +∞ a.s.,

therefore the maximum likelihood estimator θ̂T =
(´ T

0
X2

sds
)−1 ´ T

0
XsdXs is a

strongly consistent estimator of θ. Another more particular approach involving the

calculation of the Laplace transform

Eexp

{
−
ˆ T

0

X2
sds

}

=

(
e−θT

√
2 + θ2√

θ2 + 2 cosh(T
√
θ2 + 2)− θ sinh(T

√
θ2 + 2)

) 1
2

,

which evidently tends to zero as T → ∞ implying that
´ T
0
X2

sds → ∞ a.s. as T →
∞, was considered in [LIP 01].
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Filtering Problem. Kalman-Bucy Filter

We considered the problem of the construction of an optimal filter in the linear two-

dimensional partially observed Gaussian model and reduced it to the solution of two

equations, one of them being a Riccati differential equation and the other one being a

linear stochastic differential equation. For technical simplicity, we consider the proofs

only for the case where the initial equations have constant coefficients; however, final

formulas are presented for the general case when the coefficients depend on time.

11.1. General setting

Let (Ω,F , {Ft}t≥0 ,P) be a complete probability space with filtration. Also, let

W (t) = (W1(t),W2(t)) be a two-dimensional Wiener process, i.e. Wiener processes

W1 and W2 are independent.

Consider a two-dimensional Gaussian process (X1, X2) = {(X1(t), X2(t)),
0 ≤ t ≤ T}, which is a unique solution of the following system of stochastic

differential equations{
dX1(t) = a(t)X1(t)dt+ b(t)dW1(t),

dX2(t) = A(t)X1(t)dt+B(t)dW2(t),

where a,A : R+ → R, b, B : R+ → R
+, X1(0) = x1 ∈ R, X2(0) = x2 ∈ R. The

coefficients will be assumed to satisfy

ˆ T

0

|a(t)|dt+
ˆ T

0

|A(t)|dt+
ˆ T

0

b2(t)dt+

ˆ T

0

B2(t)dt < ∞. [11.1]

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Note that the equation for X1 is the Langevin equation, so that X1 is the Ornstein-

Uhlenbeck process. We assume that X1 is a non-observable process which can be

interpreted as the input signal, while X2 is observable and can be interpreted as the

output signal.

11.2. Auxiliary properties of the non-observable process

From now on, we consider a model with constant coefficients, that is,{
dX1(t) = aX1(t)dt+ b dW1(t),

dX2(t) = AX1(t)dt+B dW2(t).
[11.2]

Let us study in more detail the non-observable process X1(t), which can be

presented in the integral form as follows:

X1(t) = x1 + a

ˆ t

0

X1(s)ds+ bW1(t). [11.3]

It is an Ornstein-Uhlenbeck process, the unique solution of Langevin equation

[11.3]. It can be presented as follows:

X1(t) = x1e
at + beat

ˆ t

0

e−audW1(u).

Evidently, EX1(t) = x1e
at and EX1(t) = 0, t ≥ 0 if x1 = 0. In the latter

case EX2(t) = x2. Further, the covariance K(t, s) of X1 is equal to the following

expression:

K(t, s) =
b2

2a

(
ea(t+s) − ea|t−s|

)
,

see sections 3.4.5 and 9.1.2.

If x1 = 0, then

K(t, s) =
b2

2a

(
ea(t+s) − ea|t−s|

)
. [11.4]

Function K(t, s) is continuous and consequently bounded on any rectangle [0, T ]2.

Moreover, it is differentiable on the interval [s, T ] (at the point s, the right derivative

is considered) for any s ∈ [0, T ] and

∂K(t, s)

∂t
= aK(t, s), t ∈ [s, T ]. [11.5]
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11.3. What is an optimal filter

The Kalman-Bucy problem of optimal linear filtering is the following: recall that

we assume the process X1 to be not observable, while the process X2 is observable.

The problem is to reconstruct (to estimate and to filter) X1 in an optimal way by

the observations of X2. More exactly, if we wish to be non-anticipative, we want to

reconstruct X1(t) by the observations of {X2(s), 0 ≤ s ≤ t}. Obviously, X1(t) has

the moments of any order. Furthermore, if we wish to be within the framework of

L2-theory then the goal is to find such X̂1(t) that

E
(
X(t)− X̂1(t)

)2

= inf
ξ∈L2(Ω,FX2

t ,P)

E(X(t)− ξ)2, [11.6]

where
{
FX2

t , t ∈ [0, T ]
}

is the filtration generated by X2.

LEMMA 11.1.– Random variable X̂1(t) := E(X1(t)|FX2
t ) is the optimal estimator

of X1(t) in the sense of equation [11.6]. More exactly,

E
(
X(t)− E(X1(t)|FX2

t )
)2

= min
ξ∈L2(Ω,FX2

t ,P)

E(X(t)− ξ)2.

PROOF.– Indeed, for any ζ ∈ L2(Ω,FX2
t ,P)

E(X1(t)− ζ)2 = E
(
X1(t)− X̂1(t)− ζ + X̂1(t)

)2

= E
(
X1(t)− X̂1(t)

)2

+ 2E
(
X1(t)− X̂1(t)

)(
ζ − X̂1(t)

)
+ E

(
X̂1(t)− ζ

)2

.

Further,

E
(
X1(t)− X̂1(t)

)(
ζ − X̂1(t)

)
= E

((
ζ − X̂1(t)

)
E
(
X1(t)− X̂1(t)|FX2

t

))
= E

((
ζ − X̂1(t)

)(
E
(
X1(t)|FX2

t

)
− X̂1(t)

))
= 0.

Therefore,

E(X1(t)− ζ)2 = E(X1(t)− X̂1(t))
2 + E(X̂1(t)− ζ)2 ≥ E(X1(t)− X̂1(t))

2

with the equality achieved at the unique point ζ = X̂1(t), and hence the proof

follows. �
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And so, we know what an optimal filter is at the point t: it is equal to X̂1(t) =

E(X1(t)|FX2
t ). Now our goal is to present X̂1(t) in terms of the observable process

X2.

11.4. Representation of an optimal filter via an integral equation with
respect to an observable process

Now we present X̂1(t) as the integral w.r.t. observable Gaussian process

{X2(s), 0 ≤ s ≤ t} with some non-random kernel.

For technical simplicity, assume from now on that x1 = 0 so that EX1(t) = 0 (see

section 11.2).

LEMMA 11.2.– There exists a kernel G = G(t, s) : [s, T ]× [0, T ] → R such that for
any t ∈ [0, T ]

´ t
0
G2(t, s)ds < ∞, and the optimal filter X̂1(t) admits the

representation

X̂1(t) =

ˆ t

0

G(t, s)dX2(s), t ∈ [0, T ].

REMARK 11.1.– Integral
´ t
0
G(t, s)dX2(s) can be decomposed as follows:

ˆ t

0

G(t, s)dX2(s) = A

ˆ t

0

G(t, s)X1(s)ds+B

ˆ t

0

G(t, s)dW2(s),

and both integrals exist under condition
´ t
0
G2(t, s)ds < ∞.

PROOF.– Let us fix any t ∈ [0, T ] and consider the sequence of dyadic partitions

πn =
{
tδ

(n)
k , 0 ≤ k ≤ 2n, δ

(n)
k = k

2n

}
, n ≥ 1. Consider the Gaussian vector{

X1(t), X2(tδ
(n)
1 )−X2, X2(tδ

(n)
2 )−X2(tδ

(n)
1 ), . . . , X2(tδ

(n)
k )−X2(tδ

(n)
k−1), . . . ,

X2(t)−X2(tδ
(n)
2n )

}
, and denote the sequence of σ-fields

F (n)
t = σ

{
X2(tδ

(n)
1 ), X2(tδ

(n)
2 )−X2(tδ

(n)
1 ), . . . , X2(t)−X2(tδ

(n)
2n )

}
.

Note that under condition x1 = 0 we have that EX2(t) = x2; therefore,

E(X2(tδ
(n)
k )−X2(tδ

(n)
k−1)) = 0, 1 ≤ k ≤ 2n.

According to the theorem on normal correlation (theorem 3.1), we have the

representation

E(X1(t)|F (n)
t ) =

n∑
k=1

α
(n)
k (t)

(
X2(tδ

(n)
k )−X2(tδ

(n)
k−1)

)
. [11.7]
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In this relation, coefficients αk(t) are non-random and depend both on point t and

the number k. Also, they depend on partition πn. Further, note that σ-fields F (n)
t are

non-decreasing: F (1)
t ⊂ F (2)

t ⊂ . . . ⊂ F (n)
t ⊂ . . . , and FX2

t = σ
{⋃∞

n=1 F (n)
t

}
.

Therefore, according to the Lévy convergence theorem (theorem 5.8)

E(X1(t)|F (n)
t ) → E(X1(t)|FX2

t ) a.s. as n → ∞. [11.8]

Moreover, since X1(t) is a Gaussian random variable, it has moments of any

order, consequently, the sequence of random variables
{
E(X1(t)|F (n)

t ), n ≥ 1
}

is

uniformly integrable. Now, denote Gn(t, s) = α
(n)
k (t) for s ∈ [tδ

(n)
k−1, tδ

(n)
k ). We can

rewrite the representation [11.7] as follows:

E(X1(t)|F (n)
t ) =

ˆ t

0

Gn(t, s)dX2(s). [11.9]

It follows from [11.8] and uniform integrability that

E(X1(t)|F (n)
t ) → E(X1(t)|FX2

t ) in L2(Ω,F ,P) as n → ∞. [11.10]

In turn, this means that the integrals
´ t
0
Gn(t, s)dX2(s) in the right-hand side of

[11.9] create a Cauchy sequence in L2(Ω,F ,P), so that

E

(ˆ t

0

(Gn(t, s)−Gm(t, s))dX2(s)

)2

→ 0 as m,n → ∞.

Let us transform the latter expectation in the following manner:

E

(ˆ t

0

(Gn(t, s)−Gm(t, s))dX2(s)

)2

= A2E

(ˆ t

0

(Gn(t, s)−Gm(t, s))X1(s)ds

)2

+ 2AB E

(ˆ t

0

(Gn(t, s)−Gm(t, s))X1(s)ds

ˆ t

0

(Gn(t, s) [11.11]

−Gm(t, s))dW2(s))

+B2E

(ˆ t

0

(Gn(t, s)−Gm(t, s))dW2(s)

)2

.
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Since the process X1 does not depend on W2, we get that

E

ˆ t

0

(Gn(t, s)−Gm(t, s))X1(s)ds

ˆ t

0

(Gn(t, s)−Gm(t, s))dW2(s)

= E

ˆ t

0

(Gn(t, s)−Gm(t, s))X1(s)ds · E
ˆ t

0

(Gn(t, s)

−Gm(t, s))dW2(s)

= E

ˆ t

0

(Gn(t, s)−Gm(t, s))X1(s)ds · 0 = 0. [11.12]

Moreover, it follows from the isometry property that

E

(ˆ t

0

(Gn(t, s)−Gm(t, s))dW2(s)

)2

=

ˆ t

0

(Gn(t, s)−Gm(t, s))2ds. [11.13]

Substituting [11.12] and [11.13] into [11.11], we get that

E

(ˆ t

0

(Gn(t, s)−Gm(t, s))dX2(s)

)2

= A2E

(ˆ t

0

(Gn(t, s)−Gm(t, s))X1(s)ds

)2

+B2

ˆ t

0

(Gn(t, s)−Gm(t, s))2ds → 0 as m,n → ∞.

For the last term, this means that it tends to zero as m,n → ∞; therefore, Gn(t, ·)
is a Cauchy sequence in L2([0, t], λ1) where there exists a function G(t, s) such that

Gn(t, ·) → G(t, ·) in L2([0, t], λ1) as n → ∞. Since the value EX2
1 (s) is bounded on

[0, T ],

E

(ˆ t

0

(Gn(t, s)−G(t, s))X1(s)ds

)2

≤
ˆ t

0

(Gn(t, s)−G(t, s))2ds · E
ˆ t

0

X2
1 (s)ds → 0 as n → ∞.
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Finally, we get from the previous relations that

ˆ t

0

Gn(t, s)dX2(s) = A

ˆ t

0

Gn(t, s)X1(s)ds+B

ˆ t

0

Gn(t, s)dW2(s) →

→
ˆ t

0

G(t, s)dX2(s) in L2(Ω,F ,P) as n → ∞.

[11.14]

It follows from [11.9], [11.10] and [11.14] that

E(X1(t)|FX2
t ) =

ˆ t

0

G(t, s)dX2(s),

and the theorem is proved. �

REMARK 11.2.– It is reasonable to consider E(Xt−X̂t)
2 as the error in the solution of

the problem of optimal filtering. In what follows, we shall use the notations mt = X̂t

and σ2
t = E(Xt −mt)

2.

11.5. Integral Wiener-Hopf equation

Now we establish integral equation for the kernel G(t, s).

LEMMA 11.3.– The kernel G(t, s) : [s, T ] × [0, T ] → R from lemma 11.2 satisfies
for any t ∈ [0, T ] the following integral Wiener-Hopf equation:

AK(t, u) = A2

ˆ t

0

G(t, s)K(s, u)ds+B2G(t, u). [11.15]

PROOF.– Note that for any t ∈ [0, T ]∣∣∣∣ˆ t

0

G(t, s)K(s, u)ds

∣∣∣∣ ≤ max
0≤u, s≤t

|K(s, u)|
ˆ t

0

|G(t, s)|ds < ∞,

since K is a continuous bounded kernel on [0, T ]2, and G(t, ·) ∈ L2([0, t], λ1). For

any t ∈ [0, T ] consider a measurable bounded function f(t, s) and define the integral

ˆ t

0

f(t, s)dX2(s) = A

ˆ t

0

f(t, s)X1(s)ds+B

ˆ t

0

f(t, s)dW2(s).

Evidently two latter integrals are square-integrable, and we can consider the

following expectation:

E(X1(t)− X̂1(t))

ˆ t

0

f(t, s)dX2(s).
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Note that this expectation equals zero:

E(X1(t)− X̂1(t))

ˆ t

0

f(t, s)dX2(s)

= E
(
E(X1(t)− X̂1(t))|FX2

t

) ˆ t

0

f(t, s)dX2(s) [11.16]

= E(X̂1(t)− X̂1(t))

ˆ t

0

f(t, s)dX2(s) = 0.

At the same time, the left-hand side of [11.16] can be rewritten as follows:

0 = EX1(t)

ˆ t

0

f(t, s)dX2(s)− E

ˆ t

0

G(t, s)dX2(s)

ˆ t

0

f(t, s)dX2(s)

= AEX1(t)

ˆ t

0

f(t, s)X1(s)ds+BEX1(t)

ˆ t

0

f(t, s)dW2(s)

− E

(
A

ˆ t

0

G(t, s)X1(s)ds+B

ˆ t

0

G(t, s)dW2(s)

)
×

×
(
A

ˆ t

0

f(t, s)X1(s)ds+B

ˆ t

0

f(t, s)dW2(s)

)
. [11.17]

Taking into account independence of the processes X1 and W2, we get that

EX1(t)

ˆ t

0

f(t, s)dW2(s) = EX2(t) E

ˆ t

0

f(t, s)dW2(s) = 0,

and similarly the following expectations equal zero:

E

ˆ t

0

G(t, s)X1(s)ds

ˆ t

0

f(t, s)dW2(s) = 0

and

E

ˆ t

0

G(t, s)dW2(s)

ˆ t

0

f(t, s)X1(s)ds = 0.
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So, we get from [11.17] that

0 = AE

ˆ t

0

f(t, s)X1(t)X1(s)ds

−A2E

ˆ t

0

ˆ t

0

G(t, u)f(t, s)X1(s)X1(u)dsdu

−B2

ˆ t

0

G(t, s)f(t, s)ds = A

ˆ t

0

f(t, s)K(t, s)ds [11.18]

−A2

ˆ t

0

f(t, s)

ˆ t

0

G(t, u)K(s, u)duds−B2

ˆ t

0

f(t, s)G(t, s)ds

=

ˆ t

0

f(t, s)

[
AK(t, s)−A2

ˆ t

0

G(t, u)K(s, u)du−B2G(t, s)

]
ds.

Since the bounded measurable function f is arbitrary, we can get from [11.18] by

standard approximation methods that

AK(t, s)−A2

ˆ t

0

G(t, u)K(s, u)du−B2G(t, s) = 0,

and the proof follows. �

LEMMA 11.4.– For any t ∈ [0, T ], equation [11.15] has a unique solution G =
G(t, s) in the space L2([0, t], λ1), and this solution satisfies the relations

G(s, s) =
A

B2
σ2
s , G(t, s) = g(t, s)G(s, s) =

A

B2
σ2
sG(s, s), and

∂g(t, s)

∂t
=

(
a− A2

B2
σ2
t

)
g(t, s), g(s, s) = 1. [11.19]

PROOF.– i) Let Gi(t, s), i = 1, 2 be two solutions of [11.15] in the space

L2([0, t], λ1). For their difference ΔG(t, s) = G1(t, s) − G2(t, s) we have the

equation

A2

ˆ t

0

ΔG(t, s)K(s, u)ds+B2ΔG(t, u) = 0. [11.20]

Multiply [11.20] by ΔG(t, u) and integrate from 0 to t:

A2

ˆ t

0

ˆ t

0

ΔG(t, u)ΔG(t, s)K(s, u)dsdu+B2

ˆ t

0

Δ2
G(t, u)du = 0.
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Note that the kernel K(s, u) is non-negatively definite, as any covariance function:

ˆ t

0

ˆ t

0

ΔG(t, u)ΔG(t, s)K(s, u)dsdu = E

(ˆ t

0

ΔG(t, u)X1(s)ds

)2

≥ 0.

Therefore,

ˆ t

0

Δ2
G(t, u)du = 0,

where

ΔG(t, u) = 0, 0 ≤ u ≤ t, a.e. w.r.t. λ1.

And so, we proved the uniqueness of the solution of [11.15] in the space

L2([0, t], λ1) for all t ∈ [0, T ].

ii) Note that the function σ is bounded on [0, T ]. Indeed, it follows from [11.4] that

σ2
t = E

(
X1(t)− E((X1(t)|FX2

t )
)2

≤ 2EX2
1 (t) + 2E

(
E(X1(t)|FX2

t )
)2

≤ 4EX2
1 (t) = K(t, t) =

b2

2a

(
e2at − 1

) ≤ b2

2|a|
(
e2|a|T − 1

)
.

Therefore, equation [11.19] has the unique solution of the form

g(t, s) = exp

{ˆ t

s

(
a− A2

B2
σ2
u

)
du

}
.

iii) It follows from Wiener-Hopf equation [11.15] that

AK(t, t) = A2

ˆ t

0

G(t, s)K(s, t)ds+B2G(t, t).

Therefore,

B2G(t, t) = AK(t, t)−A2

ˆ t

0

G(t, s)K(s, t)ds

= AEX2
1 (t)−A2E

ˆ t

0

G(t, s)X1(t)X1(s)ds

= AEX1(t)

(
X1(t)−A

ˆ t

0

G(t, s)X1(s)ds

)
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= AEX1(t)

(
X1(t)−A

ˆ t

0

G(t, s)X1(s)ds−B

ˆ t

0

G(t, s)dW2(s)

)
= AEX1(t)

(
X1(t)−

ˆ t

0

G(t, s)dX2(s)

)
= AEX1(t)

(
X1(t)− X̂1(t)

)
.

Further,

EX̂1(t)
(
X1(t)− X̂1(t)

)
= E

(
X̂1(t)E

(
X1(t)− X̂1(t)|FX2

t

))
= E

(
X̂1(t)

(
X̂1(t)− X̂1(t)

))
= 0.

Therefore,

B2G(t, t) = AE
(
X1(t)− X̂1(t)

)2

= Aσ2
t . [11.21]

iv) Assume that G(t, s) is a.e. differentiable in t. If we find such a solution of

[11.15] and it is in the space L2([0, t], λ1) for all t ∈ [0, T ], then it will be the unique

solution, due to (i). Under this assumption, we can differentiate left- and right-hand

sides of [11.15] in t:

A
∂K(t, u)

∂t
= A2G(t, t)K(t, u) +A2

ˆ t

0

∂G(t, s)

∂t
K(s, u)ds+B2 ∂G(t, u)

∂t
.

Substituting
∂K(t,u)

∂t from [11.5] and G(t, t) from [11.21], we get

aAK(t, u) =
A3

B2
σ2
tK(t, u) +A2

ˆ t

0

∂G(t, s)

∂t
K(s, u)ds+B2 ∂G(t, u)

∂t
. [11.22]

Now we substitute the value of K(t, u) from [11.15] into [11.22] and obtain that

a

(
A2

ˆ t

0

G(t, s)K(s, u)ds+B2G(t, u)

)
=

A2

B2
σ2
t

(
A2

ˆ t

0

G(t, s)K(s, u)ds+B2G(t, u)

)
+A2

ˆ t

0

∂G(t, s)

∂t
K(s, u)ds+B2 ∂G(t, u)

∂t
,
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or

A2

ˆ t

0

(
aG(t, s)− A2

B2
σ2
tG(t, s)− ∂G(t, s)

∂t

)
K(s, u)ds

+B2

(
aG(t, u)− A2

B2
σ2
tG(t, u)− ∂G(t, u)

∂t

)
= 0.

[11.23]

Equality [11.23] means that any function G satisfying equation

∂G(t, s)

∂t
=

(
a− A2

B2
σ2
t

)
G(t, u) [11.24]

transforms [11.23] into identity; therefore said function G satisfies equation [11.15].

However, as was stated in (i), [11.15] can have only one solution. Therefore, this

unique solution satisfies [11.24]. Denote g(t, s) = G(t,s)
G(s,s) . Then, g(s, s) = 1 and

∂g(t, s)

∂t
=

∂G(t, s)

∂t
· 1

G(s, s)
=

(
a− A2

B2
σ2
t

)
g(t, s).

Lemma is proved. �

REMARK 11.3.– As it was mentioned before, function g(t, s) has a form

g(t, s) = exp

{ˆ t

s

(
a− A2

B2
σ2
u

)
du

}
.

This means, in particular, that

g(t, s) =
g(t, 0)

g(s, 0)
.

THEOREM 11.1.– The process mt = X̂t = E
(
Xt|FX2

t

)
is the unique solution of the

stochastic differential equation

dmt =

(
a− A2

B2
σ2
t

)
mtdt+

A

B2
σ2
t dX2(t), [11.25]

while σ2
t satisfies Riccati equation

(σ2
t )

′ = b2 + 2aσ2
t −

A2

B2
(σ2

t )
2, m0 = σ2

0 = 0. [11.26]
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PROOF.– i) Taking into account remark 11.3, we get the relations

mt =

ˆ t

0

G(t, s)dX2(s) =

ˆ t

0

g(t, s)G(s, s)dX2(s)

=

ˆ t

0

g(t, 0)

g(s, 0)
G(s, s)dX2(s) =

A

B2
g(t, 0)

ˆ t

0

σ2
s

g(s, 0)
dX2(s).

Applying Itô formula to the product of g(t, 0) and
´ t
0

σ2
s

g(s,0)dX2(s), we get

dmt =
A

B2

dg(t, 0)

dt

ˆ t

0

σ2
s

g(s, 0)
dX2(s)dt+

A

B2

g(t, 0)

g(t, 0)
σ2
t dX2(t)

=
A

B2

(
a− A2

B2
σ2
t

)
g(t, 0)

ˆ t

0

σ2
s

g(s, 0)
dX2(s)dt+

A

B2
σ2
t dX2(t)

=
A

B2

(
a− A2

B2
σ2
t

)ˆ t

0

g(t, s)σ2
sdX2(s)dt+

A

B2
σ2
t dX2(t)

=

(
a− A2

B2
σ2
t

) ˆ t

0

G(t, s)dX2(s)dt+
A

B2
σ2
t dX2(t)

=

(
a− A2

B2
σ2
t

)
mtdt+

A

B2
σ2
t dX2(t).

And so, we get equation [11.25] for mt.

ii) In order to get [11.26], we denote Rt = X1(t) − mt, so that ER2
t = σ2

t , and

write dRt as

dRt = dX1(t)− dmt

= aX1(t)dt+ bdW1(t)−
(
a− A2

B2
σ2
t

)
mtdt

− A2

B2
σ2
tX1(t)dt− A

B
σ2
t dW2(t)

= a(X1(t)−mt)dt− A2

B2
σ2
t (X1(t)−mt)dt

+ bdW1(t)− A

B
σ2
t dW2(t)

=

(
a− A2

B2
σ2
t

)
Rtdt+ bdW1(t)− A

B
σ2
t dW2(t).
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Therefore, due to the independence of the processes W1 and W2, their mutual

quadratic characteristics are equal to zero, and

dR2
t = 2RtdRt +

(
b2 +

A2

B2
σ2
t

)
dt

= 2

(
a− A2

B2
σ2
t

)
R2

tdt+Rt

(
bdW1(t)− A

B
σ2
t dW2(t)

)
+

(
b2 +

A2

B2
(σ2

t )
2

)
dt,

where

R2
t = 2a

ˆ t

0

R2
sds− 2

A2

B2

ˆ t

0

σ2
sR

2
sds+ b

ˆ t

0

RsdW1(s)

− A

B

ˆ t

0

σ2
sRsdW2(s) +

ˆ t

0

(
b2 +

A2

B2
(σ2

s)
2

)
ds. [11.27]

Taking expectation of both sides of [11.27], we get

ER2
t = 2a

ˆ t

0

ER2
sds− 2

A2

B2

ˆ t

0

σ2
sER

2
sds+

ˆ t

0

(
b2 +

A2

B2
(σ2

s)
2

)
ds,

or

σ2
t = b2t+ 2a

ˆ t

0

σ2
sds−

A2

B2

ˆ t

0

(σ2
s)

2ds,

and we get equation [11.26]. �

REMARK 11.4.– Consider the so-called innovation process Zt = B−1X2(t)−
A
B

´ t
0
mudu. It is FX2

t -adapted and

E
(
Zt − Zs|FX2

s

)
= E

(
A

B

ˆ t

0

X1(u)du+W2(t)−W2(t)

−A

B

ˆ t

s

mudu|FX2
s

)
=

A

B
E

(ˆ t

s

E
(
X1(u)|FX2

u

)
du

−
ˆ t

s

E
(
X1(u)|FX2

u

)
du|FX2

s

)
= 0.
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Thus, Zt is FX2
t -martingale. Furthermore, Z is a continuous process, it is square-

integrable martingale, and 〈Z〉t = [Z]t = [W2]t = t. According to the one-parameter

version of the Lévy representation theorem (theorem 8.11), Zt is the FW2
t -Wiener

process. Now, let f = f(t, s) : [s, T ]× [0, T ] → R be a bounded measurable function.

Then

E(X1(t)−mt)

ˆ t

0

f(t, s)dZs = 0.

It follows from the one-parameter version of the Itô representation theorem

(theorem 8.15) that there exists a measurable function m(t, s) : [s, T ] × [0, T ] → R

such that
´ t
0
m2(t, s)ds < ∞ and mt =

´ t
0
m(t, s)dZs. Therefore,

EX1(t)

ˆ t

0

f(t, s)dZs =

ˆ t

0

m(t, s)f(t, s)ds. [11.28]

Since

Zt =
A

B

ˆ t

0

X1(u)du− A

B

ˆ t

0

mudu+W2(t),

the left-hand side of [11.28] can be rewritten as follows:

EX1(t)

(ˆ t

0

f(t, s)dZs

)
=

A

B
EX1(t)

ˆ t

0

f(t, u)X1(u)du

− A

B
EX1(t)

ˆ t

0

f(t, u)mudu+ EX1(t)

ˆ t

0

f(t, u)dW2(u)

=
A

B

ˆ t

0

f(t, u)EX1(t)(X1(u)−mu)du,

because it follows from the independence of the processes X1 and W2 that

EX1(t)
´ t
0
f(t, u)dW2(u) = 0. Further, X1(t) = eat

´ t
0
e−audW1(u), therefore,

E(X1(t)|Fs) = eat
ˆ s

0

e−audW1(u) = ea(t−s)X1(s)

for any s ≤ t, and for any u ≤ t

EX1(t)(X1(u)−mu) = E (E(X1(t)|Fu)) (X1(u)−mu)

= ea(t−u)EX1(u)(X1(u)−mu)

= ea(t−u)E(X1(u)−mu)
2 = ea(t−u)σ2

u.
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This means that [11.28] can be rewritten as follows:

A

B

ˆ t

0

f(t, u)ea(t−u)σ2
udu =

ˆ t

0

m(t, u)f(t, u)du.

Since f is arbitrary, we get that

m(t, u) =
A

B
ea(t−u)σ2

u,

and

mt =

ˆ t

0

m(t, u)dZu =
A

B
eat
ˆ t

0

e−auσ2
udZu

=
A

B
eat
ˆ t

0

e−auσ2
u

(
1

B
dX2(u)− A

B
mudu

)
. [11.29]

Now we can apply to mt the Itô formula for the product of two processes and get

that

dmt = amtdt+
A

B2
σ2
t dX2(t)− A2

B2
σ2
tmtdt,

and this formula coincides with [11.25].

REMARK 11.5.– Denote k = A2/B2,

y1 =
1

k

(
a+

√
a2 + kb2

)
, y2 =

1

k

(
a−

√
a2 + kb2

)
and

c = (y1 − y2)
−1 =

k

2
√
a2 + kb2

.

Then the solution of Riccati equation with zero initial condition has the following

form: ∣∣∣∣y − y1
y − y2

∣∣∣∣ = −y1
y2

ex/c.

Furthermore, equation [11.29] has the following unique solution

mt =
A

B2

ˆ t

0

σ2
s exp

{ˆ s

0

(
kσ2

u − a
)
du

}
dX2(s) · exp

{ˆ t

0

(
a− kσ2

s

)
ds

}
.
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For a general scheme,

dX1(t) = a(t)X1(t)dt+ b(t)dW1(t),

dX2(t) = A(t)X1(t)dt+B(t)dW2(t),

X1(0) ∈ R, X2(0) ∈ R

with non-random measurable functions a(t), b(t), A(t) and B(t) satisfying [11.1]; all

previous calculations can be repeated with evident modifications to get the following

result.

THEOREM 11.2.– Let
´ T
0
A2(t)dt < ∞ and |B(t)| ≥ B > 0. Then

mt = E
(
X1(t)|FX2

t

)
and σ2

t = E(X1(t)−mt)
2 satisfy the following system of

equations:

dmt =

(
a(t)− A2(t)

B2(t)
σ2
t

)
mtdt+

A(t)

B2(t)
σ2
t dX2(t),

(σ2
t )

′ = b(t) + 2a(t)σ2
t −

A2(t)

B2(t)
(σ2

t )
2,

m0 = X1(0), σ2
0 = 0.
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Appendix 1

Selected Facts from Calculus, Measure
Theory and the Theory of Operators

A1.1. Some facts from the theory of metric spaces

Let (S, ρ) be a metric space.

DEFINITION A1.1.– The set A ⊂ S is called compact if any sequence {xn, n ≥ 1}
from A has a convergence subsequence.

According to the Hausdorff criteria, in a complete metric space, the set A is

compact if and only if any ε-covering of A by open balls of radius ε > 0 has a finite

sub-covering. We shall denote by B(a, r) = {x ∈ S : ρ(x, a) < ε} and

B(a, r) = {x ∈ S : ρ(x, a) ≤ ε} open and closed balls, respectively. Recall that the

set A ⊂ S is closed if it contains all limit points and is open if any point a ∈ A
admits an open ball B(a, ε) ⊂ A for some ε > 0.

THEOREM A1.1.– Let (S, ρ) be a complete separable metric space. Then, the space
(S(k), ρk) is also a complete separable metric space, where

S(k) = S × . . .× S︸ ︷︷ ︸
k

,

and ρk is defined by [1.2].

PROOF.– Let M ⊂ S be a countable separant, i.e. for any ε > 0 and any x ∈ S there

exists x(ε) ∈ M such that ρ(x, x(ε)) < ε. Consider the set M (k) = M × . . .×M︸ ︷︷ ︸
k

.
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Let ε > 0 be fixed. For any x(k) = (x1, . . . , xk) ∈ S(k), where xi ∈ S for 1 ≤ i ≤ k,

we can find xi

(
ε
k

)
∈ M . Then,

ρk(x
(k), xk

( ε
k

)
) < ε,

where xk
(
ε
k

)
=
(
x1

(
ε
k

)
, . . . , xk

(
ε
k

))
. Evidently, M (k) is countable, and we can

understand that M (k) is separable. Now, let x
(k)
n be a Cauchy sequence in S(k), i.e.

ρk(x
(k)
n , x

(k)
m ) → 0 as n,m → ∞. Then obviously any coordinate x

(k)
n,i is a Cauchy

sequence in metric ρ for any 1 ≤ i ≤ k. Therefore, x
(k)
n,i → x

(k)
i , where x

(k)
i ∈ S in

metric ρ, when x
(k)
n → x(k) = (x

(k)
1 , . . . , x

(k)
k ) in metric ρk. �

THEOREM A1.2.– Let (S, ρ,Σ) be a complete separable metric space with Borel σ-
field Σ, and let P be a probability measure on Σ. Then, for any ε > 0 and any A ∈ Σ,
there exists a compact set K ⊂ A such that P{A \K} < ε.

PROOF.– Any probability measure on Σ is regular, that is, for any A ∈ Σ,

P{A} = sup {P{C} : C ⊂ A,C closed} = inf {P{O} : O ⊃ A,O open} .

Therefore assume that A is closed. In this case, we can consider A as a complete

separable metric subspace of S. Let MA = {ai, i ≥ 1} be a countable dense subset

of A. Then for any δ > 0,
⋃∞

k=1(B(ak, δ) ∩ A) = A. Therefore,

μ(A) = limn→∞ P {⋃∞
k=1(B(ak, δ) ∩A)} for any δ > 0. Let ε > 0. Then for any

m ≥ 1 there exists nm ≥ 1 such that

P

{
nm⋃
k=1

(
B

(
ak,

1

m

)
∩A

)}
> μ(A)− ε · 2−m.

Let K =
⋂∞

m=1

⋃nm

k=1

(
B
(
ak,

1
m

)
∩A
)
. Then K is closed and for any δ > 0

K ⊂
nm⋃
k=1

(
B

(
ak,

1

m

)
∩A

)
⊂

nm⋃
k=1

B(ak, δ)

for m > 1
δ . Therefore K is compact. Moreover,

P{A \K} = P

{ ∞⋃
m=1

A\
nm⋃
k=1

(
B

(
ak,

1

m

)
∩A

)}

≤
∞∑

m=1

P

{
A\

nm⋃
k=1

(
B

(
ak,

1

m

)
∩A

)}
<

∞∑
m=1

ε · 2−m = ε. �
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A1.2. Marcinkiewicz interpolation theorem

Let r > 1. Consider the map T from Lr(Ω,F ,P) into Lr(Ω,F ,P).

DEFINITION A1.2.– The map T is called subadditive if for any ξ, η ∈ Lr(Ω,F ,P)

|T (ξ + η)(ω)| ≤ |T (ξ)(ω)|+ |T (η)(ω)|.

THEOREM A1.3.– Let T : Lr(Ω,F ,P) → Lr(Ω,F ,P) be subadditive, and for any
κ > 0 and ξ ∈ Lr(Ω,F ,P)

P {T (ξ)(ω) > x} ≤
(
C1 ‖ξ‖L1(Ω,F,P)

x

)
∧
(
C2 ‖ξ‖rLr(Ω,F,P)

xr

)
. [A1.1]

Then for any 1 < p < r

‖T (ξ)‖Lp(Ω,F,P) ≤ Cp ‖ξ‖Lp(Ω,F,P) ,

where C1, C2, Cp are some constants, Cp depends on C1, C2, p and r.

PROOF.– Let ξ ∈ Lr(Ω,F ,P) and x > 0 be fixed. Denote ξ1 and ξ2 as the random

variables ξ1 = ξ |ξ|>x and ξ2 = ξ |ξ|≤x. It follows from subadditivity and [A1.1]

that

G(x) := P {ω : |T (ξ)(ω)| > x} ≤ P
{
ω : |T (ξ1)(ω)| >

x

2

}
+ P

{
ω : |T (ξ2)(ω)| >

x

2

}
≤ 2C1

x
E(|ξ| |ξ|>x) +

2rC2

xr
E(|ξ|r |ξ|≤x).

Furthermore, for any 1 < p < r

‖T (ξ)‖pLp(Ω,F,P) = −
ˆ ∞

0

x−pdG(x) = p

ˆ ∞

0

xp−1G(x)dx

≤ 2C1p

ˆ ∞

0

xp−2E(|ξ| |ξ|>x)dx+ 2rC2p

ˆ ∞

0

xp−r−1E(|ξ|r |ξ|≤x)dx

= 2C1pE

(
|ξ|
ˆ ∞

0

xp−2
x<|ξ|dx

)
+ 2rC2pE

(
|ξ|r
ˆ ∞

0

xp−r−1
x≥|ξ|dx

)

= 2C1pE

(
|ξ|
ˆ |ξ|

0

xp−2dx

)
+ 2rC2pE

(
|ξ|r
ˆ ∞

|ξ|
xp−r−1dx

)

=
2C1p

p− 1
E|ξ|p + 2rC2p

r − p
E|ξ|p = (Cp)

pE|ξ|p,

where Cp =
(

2C1p
p−1 + 2rC2p

r−p

)1/p
. �
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A1.3. Approximation of integrable functions

Let f : R → R be a (Borel) measurable function and p ≥ 1 be a fixed real number.

Define

‖f‖p :=

(ˆ
R

|f(t)|p dt
)1/p

and

Lp(R) =
{
f : R → R

∣∣∣ f is measurable and ‖f‖p < ∞
}
.

This is a linear space and ‖·‖p is a seminorm.

Call a function h : R → R elementary if it has a form

h(t) =
m∑
j=1

cj [aj ,bj)(t),

where aj , bj , cj , j = 1, . . . ,m are some real numbers where aj < bj .

PROPOSITION A1.1.– The set of elementary functions is dense in Lp(R), i.e. for any
f ∈ Lp(R) and any δ > 0 there exists an elementary function h such that ‖f − h‖p <
δ.

PROOF.– Define for n ≥ 1

ϕn(x) =
n2∑
k=1

k

n

(
[ kn , k+1

n )(x)− [− k+1
n ,− k

n )(x)
)
, x ∈ R.

Then |ϕn(x)| ≤ |x|, x ∈ R, and ϕn(x) → x, n → ∞. Therefore, defining gn(t) =
ϕn(f(t)) → f(t), t ∈ R, we have |gn(t)| ≤ |f(t)|, and gn(t) = ϕn(f(t)) → f(t),
n → ∞. Hence, by the dominated convergence theorem, ‖f − gn‖p → 0, n → ∞,

so there exists N ≥ 1 such that ‖f − gN‖p < δ/2.

Denote

Ak =

{
t ∈ R : f(t) ∈

[
k

N
,
k + 1

N

)}
, A−k

=

{
t ∈ R : f(t) ∈

[
−k + 1

N
,− k

N

)}
, k = 1, . . . , N2,
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so that

gN (t) =
N2∑
k=1

k

N

(
Ak

(t)− A−k
(t)
)
.

The sets Ak and A−k are measurable. Moreover, they have finite measure, as

otherwise
´
R
|gN (t)|p dt would be infinite. Since the Borel σ-algebra B(R) is

generated by the semiring of half-open intervals of the form [a, b), then by the

Caratheodory approximation theorem (see [BIL 95, theorem 11.4]), for any

k = 1, 2, . . . , N2 there exist disjoint intervals [ai, bi), i = 1, . . . ,mk, such that

λ1

(
Ak �

mk⋃
i=1

[ai, bi)

)
<

δp

(4N)p+2
,

and disjoint intervals [a′i, b
′
i), i = 1, . . . ,m′

k, such that

λ1

(
A−k �

m′
k⋃

i=1

[a′i, b
′
i)

)
<

δp

(4N)p+2
.

Define elementary function

h(t) =
N2∑
k=1

k

N2

( mk∑
i=1

[ai,bi)(t)−
m′

k∑
i=1

[a′
i
,b′

i
)(t)

)
.

Then

λ1({t ∈ R : h(t) �= gN (t)})

≤
N2∑
k=1

⎛⎝λ1

(
Ak �

mk⋃
i=1

[ai, bi)

)
+ λ1

(
A−k �

m′
k⋃

i=1

[a′i, b
′
i)

)⎞⎠
<

N2∑
k=1

δp

22p+1Np+2
<

δp

(4N)p
.

Therefore, taking into account that |gN (t)| ≤ N and |h(t)| ≤ N , we get

‖gN − h‖p ≤
(ˆ

{t∈R:h(t) �=gN (t)}

(
|gN (t)|+ |h(t)|

)p
dt

)1/p

≤ 2N · λ1({t ∈ R : h(t) �= gN (t)})1/p < 2N · δ

4N
=

δ

2
.
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Using the triangle inequality, we obtain ‖f − h‖p ≤ ‖f − gN‖p+‖gN − h‖p < δ,

as required. �

PROPOSITION A1.2.– The set Cfin(R) of compactly supported continuous functions
is dense in Lp(R), i.e. for any f ∈ Lp(R) and any δ > 0, there exists a function
g ∈ Cfin(R) such that ‖f − g‖p < δ.

PROOF.– Using proposition A1.1, it is enough to prove the statement for elementary

functions. In turn, by the triangle inequality, it suffices to prove it for indicator

functions of the form h(t) = [a,b)(t), a, b ∈ R, a < b. Defining

hn(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, t ∈ [a, b− 1

n ],

n(t− a), t ∈ [a− 1
n , a),

n(b− t), t ∈ (b− 1
n , b],

0, t /∈ [a− 1
n , b],

we have hn ∈ C(R) and hn(t) → [a,b)(t), n → ∞. Moreover, |hn(t)| ≤ [a−1,b](t);
so, by the dominated convergence theorem ‖hn − h‖p → 0, n → ∞, the statement

follows. �

It turns out that one may construct a continuous function, which approximates

f ∈ Lp(R), explicitly. Namely, define for ε > 0

fε(t) =
1

ε

ˆ t

t−ε

f(x)dx, t ∈ R.

THEOREM A1.4.– For any f ∈ Lp(R), fε ∈ Lp(R) and ‖f − fε‖p → 0, ε → 0+.

PROOF.– By Jensen’s inequality,

‖fε‖pp =

ˆ
R

∣∣∣∣1ε
ˆ t

t−ε

f(x)dx

∣∣∣∣p dt ≤ ˆ
R

1

ε

ˆ t

t−ε

|f(x)|p dx dt

=

ˆ
R

1

ε
|f(x)|p

ˆ x+ε

x

dt dx =

ˆ
R

|f(x)|p dx = ‖f‖pp < ∞, [A1.2]

so fε ∈ Lp(R). Further, fix some δ > 0 and take g ∈ Cfin(R) such that ‖f − g‖p <
δ. Then, using the triangle inequality,

‖f − fε‖p ≤ ‖f − g‖p + ‖g − gε‖p + ‖gε − fε‖p . [A1.3]

Similarly to [A1.2], ‖gε − fε‖p ≤ ‖f − g‖ < δ. Further, thanks to continuity,

gε(t) → g(t), ε → 0+, for any t ∈ R. Moreover, if f(x) = 0, x /∈ [−T, T ], then

|g(t)| ≤ maxx∈[−T,T ] g(x) [−T−1,T+1](t) for any ε ∈ (0, 1). Thus, by the dominated



Appendix 1 319

convergence theorem, ‖g − gε‖p → 0, ε → 0+. Hence, we obtain the following

relation from [A1.3]

lim sup
ε→0+

‖f − fε‖p ≤ 2δ.

Letting δ → 0+, we arrive at the statement. �

PROOF.– We will also need an approximation result with respect to the arbitrary

probability measure μ on R
d. It can be understood as the distribution of a random

vector ζ in R
d. One can define the spaces of integrable functions w.r.t. μ in the same

way as for the Lebesgue measure, viz.

L(Rd, μ) =

{
f : Rd → R

∣∣∣∣ ˆ
Rd

|f(x)|p μ(dx) = E |f(ζ)|p < ∞
}
.

Call a function g : Rd → R a trigonometric polynomial if it has a form

g(t) =
n∑

k=0

(
ak cos(θ

k, t) + bk sin(θ
k, t)
)
, t ∈ R

d,

where ak, bk ∈ R, θk ∈ R
d.

THEOREM A1.5.– The set of trigonometric polynomials is dense in Lp(R, μ), i.e. for
any f ∈ Lp(R, μ) and any δ > 0 there exists a trigonometric polynomial g such that
E |f(ζ)− g(ζ)|p < δ.

PROOF.– Similar to theorem A1.4, the set Cfin(R
d) is dense in Lp(R

d, μ), and so it

is enough to consider the case where f is a continuous compactly supported function.

Evidently, we can assume that the support of f is in [−R,R]d, where R is sufficiently

large.

Consider the set T of trigonometric polynomials of the form

g(t) = a0 +
n∑

θ1,...,θd=1

(
ak cos

π(θ, t)

R
+ bk sin

π(θ, t)

R

)

with some n ≥ 1, ak, bk ∈ R. These are 2R-periodic functions in each variable, and

so they can be understood as functions on a d-dimensional torus Td := [−R,R]d

(where endpoints −R and R of the segment [−R,R] are identified). The set T is an

algebra (a linear set closed under multiplication) and it separates the points of Td: for

any points t1 �= t2 in Td there is a function g ∈ T , such that g(t1) �= g(t2).
Moreover, f ∈ C(Td), since f vanishes on the boundary of Td. Therefore, by the
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Stone-Weierstrass theorem, for any ε ∈ (0, 1) there is some g ∈ T with

supt∈Td
|f(t)− g(t)| < ε. Then

E |f(ζ)− g(ζ)|p = E
(
|f(ζ)− g(ζ)|p [−R,R]d(ζ)

)
+ E
(
|g(ζ)|p Rd\[−R,R]d(ζ)

)
≤ εp + sup

t∈Rd

|g(t)|P
{
ζ ∈ R

d \ [−R,R]d
}
.

Thanks to 2R-periodicity of g,

sup
t∈Rd

|g(t)| = sup
t∈[−R,R]d

|g(t)| ≤ sup
t∈[−R,R]d

|f(t)|+ ε < sup
t∈Rd

|f(t)|+ 1.

By continuity of probability, P
{
ζ ∈ R

d \ [−R,R]d
}

→ 0, R → +∞.

Consequently, E |f(ζ)− g(ζ)|p can be made arbitrarily small, which concludes the

proof. �

A1.4. Moduli of continuity

Let f : [a, b] → R be a measurable function.

DEFINITION A1.3.–

1) Function f is continuous at the point t0 ∈ (a, b) if for any ε > 0 there exists
δ > 0 such that for t ∈ (t0 − δ, t0 + δ)∩ [a, b] |f(t)− f(t0)| < ε. Or, in other words,
limt↑t0 f(t) = limt→t0+ f(t) = f(t0).

2) Function f is continuous on [a, b] if it is continuous at any point t ∈ (a, b)
and limt→a+ f(t) = f(a), limt↑b f(t) = f(b). We denote C([a, b]) as the space of
continuous functions on [a, b]

3) Function f is uniformly continuous on [a, b] if for any ε > 0, there exists δ > 0,
such that for any t1, t2 ∈ [a, b] such that |t1−t2| < δ, we have that |f(t1)−f(t2)| < ε.

Introduce the following modulus of continuity

Δc(f, [a, b], δ) = sup
|t1−t2|<δ,
t1,t2∈[a,b]

|f(t1)− f(t2)|.

THEOREM A1.6.– Cantor-Heine theorem on uniform continuity. Function
f : [a, b] → R is continuous on [a, b] if and only if it is uniformly continuous on [a, b].
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The next result immediately follows from the definition of a uniformly continuous

function and the Cantor-Heine theorem on uniform continuity.

THEOREM A1.7.– Function f : [a, b] → R is continuous on [a, b] if and only if

lim
δ→0

Δc(f, [a, b], δ) = 0.

DEFINITION A1.4.–

1) Function f : [a, b] → R has no discontinuities of the second kind on [a, b] if there
exist limits limt↑t0 f(t) =: f(t0−) limt→t0+ f(t) = f(t0+) at any point t ∈ (a, b)
and there exist limits limt→a+ f(t) and limt→b− f(t).

2) Function f : [a, b] → R is D-regular on [a, b] if it has no discontinuities of the
second kind on [a, b] and at any point t ∈ (a, b)

f(t) = f(t−) or f(t) = f(t+),

and f(a+) = f(a), f(b−) = f(b).

3) Function f : [a, b] → R is a càdlàg function if it has no discontinuities of the
second kind, is continuous from the right at any point t ∈ [a, b) and continuous from
the left at point b.

4) Function f : [a, b] → R has on [a, b] at least k ε-oscillations if there exists points
{t0, t1, . . . , tk} ⊂ [a, b] such that |f(ti)− f(ti−1)| ≥ ε, 1 ≤ i ≤ k.

THEOREM A1.8.– Function f : [a, b] → R has no discontinuities of the second kind
on [a, b] if and only if it has for any ε > 0 only a finite number of ε-oscillations.

PROOF.– ⇒ Let function f have no discontinuities of the second kind on [a, b].
Assume that for some ε > 0, we have an infinite number of ε-oscillations, so that we

have an infinite (one- or two-sided) sequence of points such that

|f(ti) − f(ti−1)| ≥ ε. Let, for example, the sequence be two-sided,

a ≤ . . . < t−k < t−k+1 < . . . < t−1 < t0 < t1 < . . . < tk < tk+1 < . . . ≤ b, and

|f(ti) − f(ti−1)| ≥ ε for any i ∈ Z. Then t−k → t−+ ∈ [a, b] and tk ↑ t+ ∈ [a, b].
This means that the limits f(t−+) and f(t+−) do not exist, which is a contradiction.

In the case of a one-sided sequence, for example, the sequence of the form

a ≤ t0 < t1 < . . . < tk < tk+1 < . . . ≤ b can be considered similarly.

⇐ Let us assume that for any ε > 0 we have only a finite number of ε-oscillations.

Fix some ε > 0, consider any point t0 ∈ (a, b) (points a and b can be considered

similarly), and consider any increasing sequence t1 < t2 < . . . < tn < . . . < t0 such
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that tn ↑ t0, n → ∞. Then, there exists a number n0 ∈ N such that |f(t)−f(tn0)| < ε
for tn0 < t < t0. Then, for any m,n > n0 we have that

|f(tm)− f(tn)| ≤ |f(tm)− f(tn0)|+ |f(tm)− f(tn0)| < 2ε.

It means that f(tn), n ≥ 1 is a Cauchy sequence, and therefore there exists a limit

f(t0−). Existence of f(t0+) can be proved similarly. �

Introduce the following moduli of continuity

Δd(f, [a, b], δ) = sup
a≤t≤a+δ

|f(t)− f(0)|+ sup
b−δ≤t≤b

|f(t)− f(b)|

+ sup
a≤t1<t2<t3≤b,

t3−t1≤δ

min
(
|f(t2)− f(t1)|, |f(t3)− f(t2)|

)
.

[A1.4]

THEOREM A1.9.– The following conditions are equivalent:

i) function f : [a, b] → R is D-regular on [a, b].

ii) limδ→0 Δd(f, [a, b], δ) = 0.

PROOF.– Let function f be D-regular on [a, b]. Then, it has a right-hand limit at point

a, therefore,

sup
a<t1<t2≤a+δ

|f(t2)− f(t1)| → 0

as δ → 0. Similarly, f has a left-hand limit at point b. Therefore,

sup
b−δ≤t1<t2<b

|f(t2)− f(t1)| → 0

as δ → 0. Assume that

Δd(f, [a, b], δ) → β > 0 as δ → 0

(the limit exists because Δd(f, [a, b], δ) is nondecreasing in δ). It means that there

exist three sequences a ≤ t
(n)
1 < t

(n)
2 < t

(n)
3 ≤ b, t

(n)
2 − t

(n)
1 < 1

n , t
(n)
3 − t

(n)
2 < 1

n

such that |f(t(n)3 ) − f(t
(n)
2 )| ≥ β

2 , |f(t(n)2 ) − f(t
(n)
1 )| ≥ β

2 . If we take convergent

subsequence t
(nk)
1 , tnk

1 → t0, say, then t
(nk)
i → t0, i = 2, 3. Assume that t0 ∈ (a, b).

And then, for an infinite number of nk there can be one of the following possibilities:

t
(nk)
1 ↑ t0, t

(nk)
2 ↑ t0, or t

(nk)
1 ↑ t0, t

(nk)
2 = t0, t

(nk)
3 → t0+, or t

(nk)
2 → t0+,

t
(nk)
3 → t0+. In the first case |f(t(nk)

2 ) − f(t
(nk)
1 )| → 0 because f has the limit
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f(t0−), in the third case |f(t(nk)
3 ) − f(t

(nk)
2 )| → 0 because f has the limit f(t0+),

and in second case |f(t(nk)
2 )− f(t

(nk)
1 )| = |f(t(nk)

1 )− f(t0)| → 0 if f(t0) = f(t0−)

and |f(t(nk)
3 ) − f(t

(nk)
2 )| = |f(t(nk)

3 ) − f(t0)| → 0 if f(t0) = f(t0+). We get

contradiction which means that f satisfies (ii).

Let f satisfy (ii). Then, f has right-hand limit at point a and has left-hand limit at

point b. Consider any point t0 ∈ (a, b). Then,

sup
a∨(t0−δ)≤t1<t2<t3≤(t0+δ)∧b

(min(|f(t2)− f(t1)|, |f(t3)− f(t2)|)) → 0 as δ → 0.

Therefore, if we take any sequences a ∨ (t0 − 1
n ) ≤ t

(n)
1 < t

(n)
2 = t0 < t

(n)
3 ≤

(t0 + 1
n ) ∧ b, we get that either there exists a subsequence {nk, k ≥ 1} such that

|f(t0) − f(t
(nk)
1 )| → 0 which means that f is continuous at t0 from the left, or

|f(t(nk)
3 ) − f(t0)| → 0 which means that f is continuous at t0 from the right. Let f

be continuous at t0 from the left. Then, if we take any sequence a∨ (t0− 1
n ) ≤ t

(n)
1 <

t
(n)
2 < t

(n)
3 ≤ (t0 +

1
n ) ∧ b, for example, t

(n)
1 < t0 < t

(n)
2 < t

(n)
3 , then either there

exists subsequence {nk, k ≥ 1} such that |f(t(nk)
2 )−f(t

(nk)
1 )| → 0 which means that

f is continuous at t0, or |f(t(nk)
3 )− f(t

(nk)
2 )| → 0 which means that f has right-hand

limit at t0. The case when f is continuous at t0 from the right is considered similarly.�

A1.5. Functions of bounded variation

Consider the measurable function f : [a, b] → R and any partition π([a, b]) =
{a = t0 < t1 < . . . < tn = T}.

DEFINITION A1.5.– Function f has bounded variation on the interval [a, b] if
Var[a,b]f = supπ[a,b]

∑n
k=1 |f(tk) − f(tk−)| < ∞. In this case, we write

f ∈ BV ([a, b]) and its total variation on [a, b] equals Var[a,b]f .

THEOREM A1.10.– Let f ∈ BV ([a, b]). Then, it can be decomposed as ft = f+
t −

f−
t , where both functions f± are non-decreasing on [a, b].

PROOF.– We can put f+
t = Var[a,t](f), t ∈ [a, b]. Then, it is easy to see that both

functions f+ and f− = f+ − f are non-decreasing. �

THEOREM A1.11.– Let f ∈ C([a, b]) ∩ BV ([a, b]). Create a sequence of partitions

πn([a, b]) =
{
a = t

(n)
0 < t

(n)
1 < . . . < t

(n)
kn

= b
}

. If |πn| = max1≤k≤kn |t(n)k −

t
(n)
k−1| → 0, n → ∞, then for any p > 1

∑kn

k=1

∣∣∣ft(n)

k

− f
t
(n)

k−1

∣∣∣p as n → ∞.
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PROOF.– We have a very simple upper bound:

kn∑
k=1

∣∣∣ft(n)

k

− f
t
(n)

k−1

∣∣∣p ≤ max
1≤k≤kn

∣∣∣ft(n)

k

− f
t
(n)

k−1

∣∣∣p−1
kn∑
k=1

∣∣∣f (n)
tk

− f
(n)
tk−1

∣∣∣
≤ max

1≤k≤kn

∣∣∣ft(n)

k

− f
t
(n)

k−1

∣∣∣Var[a,b]f → 0 as n → ∞,

where we applied the Cantor-Heine theorem in the last relation. �

REMARK A1.1.– By similar calculations we can obtain the following result: let f ∈
BV[a,b], g ∈ C[a, b]. Then for any sequence (πn, n ≥ 1) of partitions with |πn| → 0,

n → ∞, we have that

lim
n→∞

kn∑
k=1

(
f
t
(n)

k

− f
t
(n)

k−1

)(
g
t
(n)

k

− g
t
(n)

k−1

)
= 0.

A1.6. Grönwall inequality

The following simple inequality, called the Grönwall inequality, or the Grönwall-

Bellman lemma (it was formulated by Grönwall in a differential form; the integral

form below was shown by Bellman) is a very efficient tool to study both deterministic

and stochastic differential equations.

THEOREM A1.12.– Let a function f : [0, T ] → R
+ be integrable such that

f(t) ≤ a+ b

ˆ t

0

f(s)ds, t ∈ [0, T ]. [A1.5]

Then the function f admits an estimate

f(t) ≤ aebt, t ∈ [0, T ].

PROOF.– Repeatedly plugging the inequality for f into [A1.5], we get

f(t) ≤ a+ b

ˆ t

0

(
a+ b

ˆ s

0

f(u)du

)
ds = a+ abt+

ˆ t

0

f(u)

ˆ t

u

ds du

= a(1 + bt) +

ˆ t

0

f(u)(t− u)du

≤ a
(
1 + bt+

(bt)2

2

)
+

ˆ t

0

(t− v)2

2
f(v)dv
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≤ · · · ≤ a

n∑
k=0

(bt)k

k!
+

ˆ t

0

(t− z)n

n!
f(z)dz.

Estimate

ˆ t

0

(t− z)n

n!
f(z)dz ≤ Tn

n!

ˆ t

0

f(z)dz → 0, n → ∞.

Therefore, letting n → ∞, we get

f(t) ≤ a

∞∑
k=0

(bt)k

k!
= aebt. �

REMARK A1.2.– The Grönwall inequality should be applied carefully: one should

ensure a priori that the function f in question is integrable, as any function f such

that
´ t
0
f(s)ds = +∞, t ∈ (0, T ], clearly satisfies [A1.5].

REMARK A1.3.– It can be shown similarly that if a non-negative function f satisfies

f(t) ≤ a +
´ t
0
b(s)f(s)ds, t ∈ [0, T ], for some non-negative integrable function b

such that bf is integrable as well, then

f(t) ≤ ae
´ t
0
b(s)ds, t ∈ [0, T ].

A1.7. Normed spaces, linear operators and semigroups

In this section, we present some basic notions and basic statements from operator

theory without proofs.

DEFINITION A1.6.– The set Z is called a (real) linear space if for any x, y ∈ Z,
x+ y ∈ Z, and for any x ∈ Z, α ∈ R αx ∈ Z, and the following properties hold:

1) ∀x, y ∈ Z x+ y = y + x;

2) ∀x, y, z ∈ Z x+ (y + z) = (x+ y) + z;

3) there exists the unique zero element 0 ∈ Z such that for any z ∈ Z z+ = z;

4) ∀z ∈ Z, there exists the unique (−z) ∈ Z such that z + (−z) = 0;

5) ∀α, β ∈ R ∀z ∈ Z α(βz) = (αβ)z and (α+ β)z = αz + βz;

6) 1 · z = z;

7) ∀α ∈ R, ∀x, y ∈ Z α(x+ y) = αx+ αy.
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DEFINITION A1.7.– Let Z be a real linear space. A function z ∈ Z → ‖z‖ ≥ 0 is
called a norm, if it satisfies the following conditions:

1) ‖z‖ = 0 ⇔ z = 0;

2) ∀α ∈ R and ∀z ∈ Z ‖αz‖ = |α| ‖z‖;

3) ∀x, y ∈ Z ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A linear space with norm is called a linear normed space.

DEFINITION A1.8.– A set Z̃ ⊂ Z is closed if it contains all limit points, i.e. for any
‖zn − z‖ → 0, zn ∈ Z̃, n ≥ 1 we have that z ∈ Z̃. A linear closed set Z̃ ⊂ Z is
called a subspace.

DEFINITION A1.9.– Let Z1 and Z2 be two linear normed spaces with norms ‖·‖1 and
‖·‖2, respectively. The map A : Z1 → Z2 is called

i) a linear operator if ∀x, y ∈ Z1 and ∀α, β ∈ R A(αx+ βy) = αAx+ βAy;

ii) a continuous operator if for any xn, n ≥ 1, x ∈ Z such that ‖xn − x‖1 → 0 as
n → ∞ we have that ‖Axn −Ax‖2 → 0.

iii) a bounded operator, if there exists C > 0 such that ∀z ∈ Z1 ‖Az‖2 ≤ C ‖z‖2 .

LEMMA A1.1.–

1) A linear operator A : Z1 → Z2 is bounded if and only if it is continuous.

2) ‖A‖ :=
‖Az‖2
‖z‖1

= sup
z∈Z1,‖z‖1≤1

‖Az‖2

= inf {C > 0 : ∀z ∈ Z1 ‖Az‖2 ≤ C ‖z‖1} ,

and ‖A‖ < ∞ if and only if A is a bounded operator.

The number ‖A‖ is called a norm of the linear bounded operator A.

DEFINITION A1.10.– The family of linear bounded operators {Tt, t ≥ 0} : Z →
Z, where Z is a normed linear space, is called a semigroup, if T0 = I (identical
operator), and for any t, s ≥ 0

Tt+s = TtTs(= TsTt). [A1.6]

DEFINITION A1.11.– Operator

Ax = lim
t→0+

Ttx− x

t
,
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defined on such x ∈ Z for which the limit exists in norm of the space Z is called a
generator (infinitesimal operator) of semigroup {Tt, t ≥ 0}.

Denote DA the domain of A.

THEOREM A1.13.–

1) Generator A is a closed linear operator from DA into Z, i.e. if xn → x in the
norm of Z, xn ∈ DA, n ≥ 1, and Axn → y in the norm of Z, then y ∈ DA and
y = Ax.

2) For any t ≥ 0 and z ∈ DA

dTtz

dt
= ATtz = TtAz,

where dTt

dt

∣∣
t=0

is understood as the right-hand side derivable.

3) For any 0 ≤ s ≤ t and z ∈ DA

Ttz − Tsz =

ˆ t

s

ATuz du =

ˆ t

s

TuAz du.

The next theorem states that the linear bounded operator can be added under the

sign of the integral and removed from the sign of the integral.

THEOREM A1.14.– Let us have a linear bounded operator B : Z → Z and let
{Pt, t ≥ 0} be such family of linear bounded operators that

´∞
0

Ptdt exists as the
limit of Riemann sums, in the sense that

ˆ ∞

0

Ptdt = lim
n→∞

kn∑
k=1

P
t
(n)

k

Δt
(n)
k+1

for any sequence of partitions

πn = {0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
kn

}

such that t(n)kn
→ ∞ and |πn| → 0 as n → ∞, and let

´∞
0

‖Pt‖ dt < ∞. Then
B
´∞
0

Ptdt =
´∞
0

BPtdt.

PROOF.– If condition
´∞
0

‖Pt‖ dt < ∞ is fulfilled the sums {∑BPtn
k
Δt

(n)
k , n ≥ 1}

create a Cauchy sequence and therefore
´∞
0

BPtdt is also a limit of the Riemann

sums, in the same sense. And then, the proof follows immediately from two
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observations: first, the linear operator can be added and removed from the sign of any

sum, in particular

B
(∑

P
t
(n)

k

Δt
(n)
k+1

)
=
∑

BP
t
(n)

k

Δt
(n)
k+1, [A1.7]

and second, the linear bounded operator is continuous and therefore we can go to the

limit in [A1.7]. �



Appendix 2

Selected Facts from Probability
Theory and Auxiliary Computations

for Stochastic Processes

A2.1. Families of sets and monotone class theorems

Consider families of subsets of some universal set Ω.

DEFINITION A2.1.– A non-empty family P of sets is called a π-system if it is closed
under an intersection, i.e. for any A,B ∈ P , A ∩B ∈ P .

DEFINITION A2.2.– A family L of sets is called a λ-system if it satisfies the following
conditions:

1) Ω ∈ L;

2) if A,B ∈ L and A ⊂ B, then B \A ∈ L;

3) if {An, n ≥ 1} ⊂ L are such that for any n ≥ 1, An ⊂ An+1, then⋃
n≥1 An ∈ L.

REMARK A2.1.– λ-systems are also called d-systems and Dynkin systems, named

after Eugene Dynkin, who introduced them. It is easy to see that the following

conditions are equivalent to the definition of a λ-system:

1) Ω ∈ L;

2) if A ∈ L, then Ac := Ω \A ∈ L;

3) if {An, n ≥ 1} ⊂ L are disjoint, then
⋃

n≥1 An ∈ L.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Recall also that a family F is called σ-algebra (or a σ-field) if it satisfies

1) Ω ∈ F ;

2) if A ∈ F , then Ω \A ∈ F ;

3) if {An, n ≥ 1} ⊂ F , then
⋃

n≥1 An ∈ F .

LEMMA A2.1.– A family F is a σ-algebra if and only if it is a π-system and a λ-
system.

PROOF.– A σ-algebra is clearly a π-system and a λ-system, and so we only need to

prove sufficiency. The first two conditions from the definition of σ-algebra coincide

with those from the equivalent definition of a λ-system. For any A,B ∈ F , A ∪B =
(Ac ∩ Bc)c ∈ F , therefore, F is closed under taking finite unions. Consequently, for

any {An, n ≥ 1} ⊂ F , we have Un :=
⋃n

k=1 Ak ∈ F and Un ⊂ Un+1, n ≥ 1, and

so
⋃

n≥1 An =
⋃

n≥1 Un ∈ F . �

For any family C ⊂ 2Ω, denote

λ(C) =
⋂

λ-system L⊃C
L

the smallest λ-system which contains C. Recall also that σ(C) is the smallest σ-algebra

containing C.

THEOREM A2.1.– (Dynkin’s π-λ theorem) For any π-system P ,

λ(P) = σ(P).

In particular, if L ⊃ P is a λ-system, then L ⊃ σ(P).

PROOF.– Since any σ-algebra is a λ-system, we have λ(P) ⊂ σ(P). Thanks to

lemma A2.1, to prove the opposite inclusion, we need to show that λ(P) is a

π-system. Define the class

L′ = {A ∈ λ(P) | for any B ∈ P , A ∩B ∈ λ(P)} .

Obviously, P ⊂ L′. Let us check that L′ is a λ-system. Obviously, Ω ∈ L. If

A1, A2 ∈ L′ are such that A1 ⊂ A2, then for any B ∈ P , Ai ∩ B ∈ λ(P), i = 1, 2
and A1 ∩B ⊂ A2 ∩B, so

(A2 \A1) ∩B = (A2 ∩B) \ (A1 ∩B) ∈ λ(P).
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Consequently, A2 \ A1 ∈ L′. Further, if {An, n ≥ 1} ⊂ L′ are such that for any

n ≥ 1, An ⊂ An+1, then for any B ∈ P and any n ≥ 1, An ∩ B ∈ λ(P) and

An ∩B ⊂ An+1 ∩B, so

(⋃
n≥1

An

)
∩B =

⋃
n≥1

(An ∩B) ∈ λ(P).

As a result,
⋃

n≥1 An ∈ L′, which shows that L′ is indeed a λ-system. Since

L′ ⊃ P , we have L′ = λ(P). With this at hand, the same argument shows that

{A ∈ λ(P) | for any B ∈ λ(P), A ∩B ∈ λ(P)} = λ(P),

hence, λ(P) is a π-system, as required. �

As an immediate corollary, we have the following result.

THEOREM A2.2.– Let P and Q be two probability measures defined on some σ-
algebra F . If P{A} = Q{A} for any set A ∈ P , and A is a π-system, then P{A} =
Q{A} for any A ∈ σ(P).

PROOF.– Define

G = {A ∈ F | P{A} = Q{A}} .

It follows easily from the properties of probability measures that G is a λ-system.

Also G ⊃ P by assumption, and so G ⊃ λ(P). The statement then follows from

theorem A2.1. �

Theorem A2.2 is a very efficient tool to prove equality of probability measures, as

it assumes merely that P is closed under intersections. An even more powerful result

is its functional counterpart. It is often called a functional monotone class theorem
due to the fact that general measure-theoretic results of this kind are concerned with

monotone classes.

THEOREM A2.3.– Let P be a π-system, and a family F of real-valued functions
defined on Ω satisfy

i) for any A ∈ P , A ∈ F;

ii) ∈ F, where (x) ≡ 1;

iii) F is linear, i.e. for any f1, f2 ∈ F and a1, a2 ∈ R, a1f1 + a2f2 ∈ F;

iv) if {fn, n ≥ 1} ⊂ F is such that 0 ≤ fn(x) ≤ fn+1(x), n ≥ 1, x ∈ Ω, fn(x) →
f(x), n → ∞, and f is bounded, then f ∈ F.
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Then F contains all bounded σ(P)-B(R)-measurable functions.

PROOF.– Consider first the family

F = {A ∈ σ(P) | A ∈ F} .

The condition (i) means that F ⊃ P , and the conditions (ii)–(iv) immediately

imply that F is a λ-system. Therefore, by theorem A2.1, F ⊃ σ(P). By linearity,

F contains all simple F-measurable functions. Since all bounded non-negative F-

B(R)-measurable functions are limits of increasing sequences of simple functions,

they belong to F as well. Finally, any bounded F-B(R)-measurable function f is

a difference of two bounded non-negative F-B(R)-measurable functions, e.g. f =
f+ − f−, and so by linearity f ∈ F, as required. �

A2.2. Some calculations related to Gaussian and Poisson distributions

In spite of the fact that the following result is well known, its proof is interesting

by itself; therefore, we present it here.

LEMMA A2.2.– Let a random variable ξ have Gaussian distribution with Eξ = m
and Var ξ = σ2, i.e., ξ ∼ N (m,σ2). Then its characteristic function has a form: for
any λ ∈ R

Eexp{iλξ} = exp

{
iλm− λ2σ2

2

}
. [A2.1]

PROOF.– The following equalities are evident:

Eexp{iλξ} =
1

σ
√
2π

ˆ
R

exp{iλx} exp
{
− (x−m)2

2σ2

}
dx.

Now, iλx− (x−m)2

2σ2 = − 1
2σ2

(
x− (m+ iλσ2)

)2
+ iλm− λ2σ2

2 . Therefore,

Eexp{iλξ} = exp

{
iλm− λ2σ2

2

}
1

σ
√
2π

ˆ
R

exp

{
− (x− (m+ iλσ2))2

2σ2

}
dx.

It remains to prove that

1

σ
√
2π

ˆ
R

exp

{
− (x− (m+ iλσ2))2

2σ2

}
dx = 1.
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To this end, we note that

ˆ
R

exp

{
− (x− (m+ iλσ2))2

2σ2

}
dx =

ˆ +∞+iλσ2

−∞−iλσ2

e−
y2

2σ2 dy, [A2.2]

where integration in the last integral is over a straight line 0x′ in the complex plane,

parallel to 0x. Define a closed contour KR, as is shown in Figure A2.1.

��

Ox

��

Ox1

��

.

´λσ2

.

R ´ iλσ2

.
R

.

´R ´ iλσ2

.
´R

Figure A2.1. Parallel axes and contour of integration

Since the function p(y) = e−
y2

2σ2 is analytic in the complex plane, we have that

ˆ
KR

e−
y2

2σ2 dy = 0.

Therefore,

ˆ R−iλσ2

−R−iλσ2

e−
y2

2σ2 dy =

ˆ R

−R

e−
y2

2σ2 dy

+

ˆ 0

−λσ2

e−
(−R+iy)2

2σ2 dy −
ˆ 0

−λσ2

e−
(R+iy)2

2σ2 dy. [A2.3]

The last two integrals in [A2.3] obviously vanish as R → ∞. So,

ˆ +∞−iλσ2

−∞−iλσ2

e−
y2

2σ2 dy =

ˆ +∞

−∞
e−

y2

2σ2 dy = σ
√
2π. [A2.4]

Now the equality [A2.1], and consequently the statement of the lemma, follow

from [A2.2] and [A2.4]. �
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LEMMA A2.3.– Let ξ ∼ N (0, 1). Then,

E|ξ|p =

(
2p

π

) 1
2

Γ

(
p+ 1

2

)
for any p > 0.

PROOF.– Evidently,

E|ξ|p =
1√
2π

ˆ
R

|x|pe− x2

2 dx =

√
2

π

ˆ ∞

0

xpe−
x2

2 dx

=
2

p
2√
π

ˆ ∞

0

y
p−1
2 e−ydy =

2
p
2√
π
Γ

(
p+ 1

2

)
. �

LEMMA A2.4.– Let the random variable ξ have a Poisson distribution with parameter
λ > 0. Then its characteristic function has a form: for any β ∈ R

Eexp{iβξ} = eλ(e
iβ−1).

PROOF.– Indeed,

Eexp{iβξ} =

∞∑
n=0

eiβnP{ξ = n} =

∞∑
n=0

eiβne−λλ
n

n!

= e−λ
∞∑

n=0

(λeiβ)n

n!
= e−λeλe

iβ

= eλ(e
iβ−1). �

DEFINITION A2.3.– Let {ξn, n ≥ 1, ξ} be random variables with cumulative
distribution functions {Fn, n ≥ 1}, F respectively. We say that ξn weakly converges

to ξ as n → ∞, with the notation ξn
W−→ ξ, if for any point x where F is continuous,

we have that Fn(x) → F (x), n → ∞.

Equivalent definitions of weak convergence and properties of weakly convergent

random variables are described in detail in [BIL 99]. We mention here only that the

weak convergence of the random variables is equivalent to the convergence of their

characteristic functions, more precisely, to the point-wise convergence ϕn(λ) → ϕ(λ)
at any point λ ∈ R.

LEMMA A2.5.–

1) Let {ξn, n ≥ 1} be a sequence of Gaussian random variables with Eξn = mn

and Varξn = σ2
n > 0. Let mn → m and σ2

n → σ2 ∈ (0,∞). Then ξn
W−→ ξ, where ξ

is a Gaussian r.v. with Eξ = m and Var ξ = σ2.
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2) Let {ξn, n ≥ 1} be a sequence of Gaussian random variables with Eξn = mn

and Var ξn = σ2
n. Also, let ξn

W−→ ξ, n → ∞. Then there exist limits limn→∞ mn =:
m, limn→∞ σn =: σ and ξ = N (m,σ2).

PROOF.– 1) Consider

Eexp {iλξn} = exp

{
iλmn − 1

2
λ2σ2

n

}
→ exp

{
iλm− 1

2
λ2σ2

}
, n → ∞,

for any λ ∈ R. Since the convergence of characteristic functions at every point λ ∈ R

is equivalent to the weak convergence of random variables, we get that ξn
W−→ ξ =

N (m,σ2), n → ∞.

2) We first show that the sequences {mn, n ≥ 1} and {σn, n ≥ 1} are bounded.

Denote F and Fn, n ≥ 1, the cumulative distribution functions of ξ and ξn, n ≥ 1,

respectively. Let a, b be points of continuity of the cumulative distribution function F ,

such that F (a) < 1/3, F (b) > 2/3. By the definition of weak convergence, Fn(a) →
F (a) and Fn(b) → F (b), n → ∞, so there exists some n0 ≥ 1 such that for all

n ≥ n0, Fn(a) < 1/3 and Fn(b) > 2/3. Since ξn = N (mn, σ
2
n), we have Fn(a) =

Φ((a − mn)/σn) < 1/3 for n ≥ n0, where Φ is the standard normal cumulative

distribution function. Hence a−mn < σnΦ
−1(1/3), so mn > a−σnΦ

−1(1/3) ≥ a.

Similarly,

mn < b− σnΦ
−1(2/3) ≤ b, n ≥ n0, [A2.5]

which implies the boundedness of {mn, n ≥ 1}. Further, from [A2.5] we have

σn <
b−mn

Φ−1(2/3)
,

so {σn, n ≥ 1} is bounded as well.

Now let
{
(mnk

, σ2
nk
), k ≥ 1

}
be a subsequence of

{
(mn, σ

2
n), n ≥ 1

}
such that

(mnk
, σ2

nk
) → (m,σ2), k → ∞. It follows from 1) and uniqueness of weak limit

that ξ = N (m,σ2). Moreover, appealing again to the uniqueness of weak limit, each

convergent subsequence of
{
(mn, σ

2
n), n ≥ 1

}
must converge to (m,σ2), which

means that (mn, σ
2
n) itself converges to (m,σ2), concluding the proof. �

A2.3. Notion and properties of the uniform integrability

DEFINITION A2.4.– A family of random variables {Xt, t ∈ T} is uniformly
integrable if

lim
C→∞

sup
t∈T

E|Xt| |Xt|≥C = 0.
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THEOREM A2.4.– Let the family {Xn, n ≥ 1} be uniformly integrable. Then,

1) supn≥1 E|Xn| < ∞;

2) If additionally Xn → X∞ in probability, then E|Xn −X∞| → 0, n → ∞;

3) If Xn → X∞, n → ∞ in probability, E|Xn − X∞| → 0, n → ∞, and
{Xn, X∞} ∈ L1(Ω,F ,P), then {Xn, n ≥ 0} is uniformly integrable.

PROOF.– 1) Obviously,

sup
n≥1

E|Xn| ≤ C + sup
n≥1

E|Xn| |Xn|≥C .

Choosing C0 > 0 such that supn≥1 E|Xn| |Xn|≥C0
≤ 1, we get that

supn≥1 E|Xn| ≤ C0 + 1.

2) It is clear that E|X∞| ≤ lim supn→∞ E|Xn| < ∞ by Fatou’s lemma. And

then, for any 0 < ε < C

E|Xn −X∞| ≤ ε+ CP {|Xn −X∞| > ε}
+ E|Xn −X∞| |Xn−X∞|>C . [A2.6]

Consider the last term and bound it from above as follows:

An,C := E|Xn −X∞| |Xn−X∞|>C ≤ E|Xn|
(

|Xn|>C
2
+ |X∞|>C

2

)
+ E|X∞|

(
|Xn|>C

2
+ |X∞|>C

2

)
.

We know that

sup
n≥1

E|Xn| |Xn|>C
2
→ 0, C → ∞ [A2.7]

and

E|X∞| |X∞|>C
2
→ 0, C → ∞. [A2.8]

Now,

sup
n≥1

E|Xn| |X∞|>C
2
≤ bP

{
|X∞| > C

2

}
+ sup

n≥1
E|Xn| |Xn|≥b

→ sup
n≥1

E|Xn| |Xn|≥b as C → ∞.
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Choosing b > 0 such that

sup
n≥1

E|Xn| |Xn|≥b < ε,

we get that

lim
C→∞

sup
n≥1

E|X∞| |Xn|>C
2
< ε, [A2.9]

for any ε > 0, whence this limit is zero. Finally,

E|X∞| |Xn|>C
2
≤ bP

{
|Xn| > C

2

}
+ E|X∞| |X∞|>b

≤ 2b

C
E|Xn|+ E|X∞| |X∞|≥b → E|X∞| |X∞|≥b as C → ∞.

Choosing any ε > 0 and then b > 0 sufficiently large so that E|X∞| |X∞|≥b < ε,

we get that

E|X∞| |Xn|≥C
2
< ε.

Combining [A2.7]–[A2.9], we get that limC→∞ supn≥0 An,C = 0. Returning to

[A2.6], note that

lim
n→∞E|Xn −X∞| ≤ ε+ sup

n≥1
An,C .

Therefore, letting C → ∞ and then ε → 0, we get the proof.

3) Let Xn
P−→ X∞, n → ∞, E|Xn − X∞| → 0 and {Xn, n ≥ 1, X∞} ∈

L1(Ω,F ,P).

Choose n0 ∈ N such that for n ≥ n0, E|Xn −X∞| < ε. Then,

sup
n≥0

E|Xn| |Xn|≥C ≤ max
0≤n≤n0

E|Xn| |Xn|≥C + sup
n≥n0

E|Xn −X∞|

+ sup
n≥n0

E|X∞| |Xn|≥C .

Now, choose C > 0 such that max0≤n≤n0 E|Xn| |Xn|≥C < ε. Then,

sup
n≥0

E|Xn| |Xn|≥C ≤ 2ε+ b sup
n≥0

P {|Xn| ≥ C}+ E|X∞| |X∞|>b

≤ 2ε+
b

C
sup
n≥0

E|Xn|+ E|X∞| |X∞|>b.
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Since E|Xn − X∞| → 0, then supn≥0 E|Xn| < ∞. Therefore, we can choose

b > 0 such that E|X∞| |X∞>b| < ε and we can choose C > 0 such that
b
C supn≥0 En|Xn| < ε. Finally, we get that supn≥0 E|Xn| |Xn|≥C ≤ 4ε, and the

proof follows. �

The following theorem is a criterion for uniform integrability; it is usually used as

a simple sufficient condition.

THEOREM A2.5.– (de la Vallée-Poussin) A family {Xt, t ∈ T} is uniformly
integrable if and only if there exists a non-decreasing function V : R+ → R+ such
that V (x)/x → ∞, x → ∞, and supt∈T

EV (Xt) < ∞.

PROOF.– Necessity. Let {Cn, n ≥ 1} be such that supt∈T
E
(|Xt| |Xt|≥Cn

) ≤ 2−n;

without loss of generality we can assume that Cn+1 > Cn for all n ≥ 1. Setting

V (x) = x
∑∞

n=1 n [Cn,Cn+1)(x), we have for any t ∈ T,

EV (Xt) =
∞∑

n=1

nE
(|Xt| [Cn,Cn+1)(Xt)

) ≤ ∞∑
n=1

n2−n,

so supt∈T
EV (Xt) ≤

∑∞
n=1 n2

−n < ∞, as required.

Sufficiency. It follows from V (x)/x → +∞, x → ∞, that

m(C) := sup
x≥C

x

V (x)
→ 0, C → ∞,

so

sup
t∈T

E
(|Xt| |Xt|≥C

) ≤ sup
t∈T

m(C)E
(
V (|Xt|) |Xt|≥C

)
≤ m(C) sup

t∈T

EV (|Xt|) → 0, C → ∞. �

A2.4. Measurability, conditional expectation and conditional probability

A2.4.1. Measurability with respect to a generated σ-field

Let (Ω,F) and (S,Σ) be measurable spaces and ξ : Ω → S be measurable. Recall

that the σ-field generated by ξ is defined as σ(ξ) =
{
ξ−1(A), A ∈ Σ

}
.

THEOREM A2.6.– A random variable η : Ω → R is σ(X)-B(R)-measurable if and
only if there exists a Σ-B(R)-measurable function h : S → R such that η = h ◦ ξ, i.e.
η(ω) = h(ξ(ω)) for all ω ∈ Ω.

PROOF.– Let first η be simple, i.e. η(ω) =
∑k

i=1 ai Ai(ω), where the numbers

ai ∈ R are distinct, and Ai ∈ F . The σ(X)-B(R)-measurability of η implies that for
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any i, Ai = η−1({ai}) ∈ σ(X), and so there exists some Bi ∈ B(R) such that

Ai = ξ−1(Bi). Therefore, η = h ◦ ξ with h =
∑k

i=1 ai Bi
.

Let now η be arbitrary σ(X)-B(R)-measurable function. There exists a sequence

{ηn, n ≥ 1} of simple σ(X)-B(R)-measurable functions such that ηn(ω) → η(ω),
n → ∞, for any ω ∈ Ω. As we have shown already, there are some

Σ-B(R)-measurable functions hn : S → R such that ηn = hn ◦ ξ. The set

B =
{
x ∈ S : the limit lim

n→∞hn(x) exists
}
∈ Σ,

and the limit of measurable functions is measurable, therefore the function

h(x) =

{
limn→∞ hn(x), x ∈ B,

0, x /∈ B,

is Σ-B(R)-measurable. Since, clearly, h ◦ ξ = η, the proof is complete. �

REMARK A2.2.– It is known that any complete separable metric space (X ,B(X )) is

Borel-isomorphic to a Borel subset B ∈ B(R), i.e. there exists a measurable bijection

f : X → B, such that its inverse is measurable as well. Consequently, theorem A2.6 is

valid for any complete separable metric space in place of R. More detail on this matter

is available in [KAL 02].

A2.4.2. Conditional expectation

Let (Ω,F ,P) be a complete probability space, and G ⊂ F be a sub-σ-field.

DEFINITION A2.5.– Let ξ be an integrable random variable, i.e. E|ξ| < ∞. An
integrable random variable η is called a conditional expectation with respect to G if it
satisfies

– E(ξ | G) is G-measurable.

– For any set A ∈ G
ˆ
A

ξ dP =

ˆ
A

η dP,

or, equivalently,

E(ξ A) = E(η A).
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The conditional expectation is denoted by E(ξ | G).

THEOREM A2.7.– For any integrable random variable ξ, its conditional expectation
E(ξ | G) exists. Moreover, it is unique up to a set of measure zero.

PROOF.– Define a set function

M{A} = E(ξ A) =

ˆ
A

ξ dP, A ∈ G.

Due to the properties of Lebesgue integral, this is a σ-finite signed measure on G,

absolutely continuous with respect to P. Therefore, it has a Radon-Nikodym derivative

η =
dM

dP
,

i.e. a G-measurable random variable η such that for any A ∈ G,

M(A) =

ˆ
A

η dP,

which establishes the existence.

Further, if η′ = E(ξ | G) is another conditional expectation, define B = {η′ > η}.

Thanks to G-measurability, B ∈ G; therefore,

E(η′ B) = E(ξ B) = E(η B).

Obviously, η′ B ≥ η B , and so the above equality implies P{η′ B = η B} = 1,

when P{η′ > η} = 0. Similarly, P{η′ < η} = 0, yielding the uniqueness. �

For the sake of brevity, through the end of this section, equations and inequalities

concerning random variables are understood in the almost sure sense without

additional notice.

THEOREM A2.8.– Let ξ, ζ be integrable random variables. Then the following
properties hold.

i) If ξ ≤ ζ, then E(ξ | G) ≤ E(ζ | G).
ii) If ξ is G-measurable, then E(ξ | G) = ξ.

iii) (Locality) if ξ = ζ on some set A ∈ G, then E(ξ | G) = E(ζ | G) on A.

iv) (Linearity) for any a, b ∈ R, E(aξ + bζ | G) = aE(ξ | G) + bE(ζ | G).
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v) If ξ is independent of G (i.e. events A and {ξ ∈ B} are independent for any
A ∈ G, B ∈ B(R)), then E(ξ | G) = Eξ; in particular,

E(ξ | {∅,Ω}) = Eξ.

vi) (Tower properties) if H ⊂ G is a sub-σ-field, then

E(E(ξ | G) | H) = E(E(ξ | H) | G) = E(ξ | H).

in particular, taking H = {∅,Ω}

E(E(ξ | G) | H) = E(E(ξ | G)) = Eξ.

vii) If ξ is G-measurable and bounded, then E(ξη | G) = ξE(η | G).
viii) (Jensen’s inequality) if f : R → R is a convex function, and f(ξ) is integrable,

then

f(E(ξ | G)) ≤ E(f(ξ) | G).

PROOF.– Properties (i)–(iii) follow immediately from definition.

Concerning (iv), for any A ∈ G,

E
((
aE(ξ | G) + bE(ζ | G)) A

)
= aE (E(ξ | G) A) + bE (E(ζ | G) A)

= aE (ξ A) + bE (ζ A) = E ((aξ + bζ) A) ,

whence by definition we get aE(ξ | G) + bE(ζ | G) = E(aξ + bζ | G).
For (v), write for any A ∈ G, in view of independence,

E(ξ A) = Eξ · E A = E
(
(Eξ) A

)
,

so Eξ = E(ξ | G).
Further, for H ⊂ G, E(E(ξ | H) | G) = E(ξ | H) follows from the

H-measurability, and hence, G-measurability of E(ξ | H). To establish another tower

property, write for arbitrary A ∈ H
E(E(E(ξ | G) | H) A) = E(E(ξ | G) A) = E(ξ A),

since A ∈ G, so E(E(ξ | G) | H) = E(ξ | H).

To prove (vii), we need to show that for any A ∈ G,

E(ξE(η | G) A) = E(ξη A). [A2.10]
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For fixed η and A, let F be the family of G-measurable functions ξ satisfying

[A2.10]. From (iii), we have E(η B | G) = E(η | G) B , so B ∈ F. Due to linearity

of expectation, F is linear. Finally, if ξ is bounded and ξn ∈ F such that 0 ≤ ξn ≤
ξn+1, and ξn → ξ, n → ∞, then by the dominated convergence theorem

E(ξE(η | G) A) = lim
n→∞E(ξnE(η | G) A) = lim

n→∞E(ξnη A) = E(ξη A),

which means that ξ ∈ F. Using theorem A2.3, we get that F contains all bounded

G-measurable variables, finishing the proof. �

THEOREM A2.9.– Let {ξn, n ≥ 1} be a sequence of random variables and η be an
integrable random variable such that |ξn| ≤ η for all n ≥ 1. Then

1) if ξn → ξ, n → ∞, almost surely, then E(ξn | G) → E(ξ | G), n → ∞, almost
surely;

2) if ξn
P−→ ξ, n → ∞, then E(ξn | G) P−→ E(ξ | G), n → ∞.

PROOF.– Let first ξn → ξ, n → ∞, almost surely. Then ζk = supk≥n |ξk − ξ| → 0,

n → ∞, almost surely. By Jensen’s inequality,

|E(ξn | G)− E(ξ | G)| ≤ E(|ξn − ξ| | G) ≤ E(ζn | G). [A2.11]

Since the sequence {ζn, n ≥ 1} is non-increasing, the conditional expectations

E(ζn | G) are non-increasing as well, so there exists some limit ζ = limn→∞ E(ζn |
G). By the Lebesgue-dominated convergence theorem, for any A ∈ G,

E(ζ A) = lim
n→∞E (E(ζn | G) A) = lim

n→∞E (ζn A) = 0,

which implies that η = 0 almost surely in view of its G-measurability. As a result,

E(ξn | G) → E(ξ | G), n → ∞,

almost surely.

To prove the second statement, write from [A2.11] and the tower property of

conditional expectation

E
(|E(ξn | G)− E(ξ | G)|) ≤ E(|ξn − ξ|) → 0, n → ∞,

by the dominated convergence theorem. This means that E(ξn | G) → E(ξ | G),
n → ∞, in L1(Ω,F ,P), consequently, in probability. �
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A2.4.3. Conditional probability

Let, as above, (Ω,F ,P) be a complete probability space, and G ⊂ F be a sub-σ-

field.

DEFINITION A2.6.– The conditional probability with respect to G is

P{A | G} = E( A | G), A ∈ F .

From the properties of conditional expectation it follows that P{A | G} ≥ 0
a.s. P{Ω | G} = 1 a.s. Also for any disjoint A1, A2, . . . we get from linearity and

theorem A2.9 that

P

{ ⋃
n≥1

An

∣∣∣∣G
}

= E

( ⋃
n≥1

An

∣∣∣G) = lim
N→∞

E

( ⋃N

n=1
An

∣∣∣G)

= lim
N→∞

E

(
N∑

n=1

An

∣∣∣∣G
)

= lim
N→∞

N∑
n=1

E
(

An

∣∣G) =∑
n≥1

P{An | G}

almost surely. However, the zero-probability event may depend on the sequence of

events, and so the countable additivity of P{An | G} may fail even for every ω ∈ Ω.

However, one might be able to adjust conditional probabilities of individual sets in

order to make it countably additive. This motivates the following definition.

DEFINITION A2.7.– The function PG : F × Ω → R is called a regular conditional

probability with respect to G if

– for any A ∈ F , PG(A,ω) = P{A | G}(ω) almost surely;

– for any ω ∈ Ω, PG(·, ω) is a probability measure on F .

A regular conditional probability allows us to compute the expectation as the usual

Lebesgue integral.

THEOREM A2.10.– Let PG be a regular conditional probability relation with respect
to G. And then, for any integrable ξ,

E(ξ | G)(ω) =
ˆ
Ω

ξ(ω′)PG(dω′, ω) [A2.12]

almost surely.

PROOF.– Consider the family F of integrable random variables ξ that satisfy [A2.12]

almost surely. By the definition of regular conditional probability, A ∈ F for any

A. Also, F is linear and, due to the Lebesgue-dominated convergence theorem and
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theorem A2.9, is closed under taking limits of dominated sequences. Arguing as in

the proof of theorem A2.3, we get that F contains all integrable random variables. �

DEFINITION A2.8.– Let ξ : Ω → R be a random variable. A regular conditional

distribution of ξ with respect to G is a function Pξ|G : B(R)× Ω → R such that

– for any A ∈ B(R), Pξ|G(B,ω) = P{ξ ∈ B | G}(ω) almost surely;

– for any ω ∈ Ω, Pξ|G(·, ω) is a probability measure on B(R).

A regular conditional cumulative distribution function of ξ with respect to G is a
function Fξ|G : R× Ω → R such that

– for any x ∈ R, Fξ|G(x, ω) = P{ξ ≤ x | G}(ω) almost surely;

– for any ω ∈ Ω, Fξ|G(·, ω) is a cumulative distribution function on B(R).

THEOREM A2.11.– Let ξ : Ω → R be a random variable. If Pξ|G is a regular
conditional distribution of ξ with respect to G, then Fξ|G(x, ω) = Pξ|G((−∞, x], ω)
is a regular conditional cumulative distribution function of ξ with respect to G. Vice
versa, if Fξ|G(x, ω) is a regular conditional cumulative distribution function of ξ with
respect to G, then the Lebesgue-Stieltjes measure Pξ|G(·, ω) generated by Fξ|G(·, ω)
is a regular conditional distribution of ξ with respect to G. If, additionally, ξ is
integrable, then

E(ξ | G)(ω) =
ˆ
R

xPξ|G(dx, ω) =
ˆ
R

xFξ|G(dx, ω)

almost surely.

PROOF.– The first statement is obvious. To prove the second, consider the family A
of Borel sets A satisfying

Pξ|G(A,ω) = P{ξ ∈ A | G}(ω)

almost surely. Since Fξ|G is a regular conditional cumulative distribution function of

ξ, we have (−∞, x] ∈ A for all x ∈ R. Furthermore, from the properties of

conditional expectation and of probability measure it follows that A is a λ-system.

Since the intervals (−∞, x] form a π-system P , by theorem A2.1,

A ⊃ σ(P) = B(R).

The third statement is proved similarly to theorem A2.10. �

THEOREM A2.12.– For any random variable ξ, a regular conditional distribution of
ξ with respect to G exists.
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PROOF.– By theorem A2.11, it suffices to show the existence of a regular conditional

distribution function. Let F (q, ω) = P{ξ ≤ q}, q ∈ Q. Define

Ω+ =

{
lim

n→+∞F (n, ω) = 1

}
, Ω− =

{
lim

n→−∞F (n, ω) = 0

}
,

Ωq1,q2 = {F (q1, ω) ≤ F (q2, ω)} , q1, q2 ∈ Q, q1 < q2,

Ωq =

⎧⎨
⎩ lim

r→q
r∈Q,r>q

F (r, ω) = F (q, ω)

⎫⎬
⎭ , q ∈ Q.

From theorem A2.9 it follows that P{Ω+} = P{Ω−} = P{Ωq} = 1 for all q ∈ Q,

from theorem A2.8, that P{Ωq1,q2} = 1 for all rational q1 < q2. Set

Ω′ = Ω+ ∩ Ω− ∩
( ⋂

q∈Q

Ωq

)
∩
( ⋂

q1,q2∈Q

q1<q2

Ωq1,q2

)

and

Fξ|G(x, ω) =

{
infq≥x,q∈Q F (q, ω), ω ∈ Ω′

[0,+∞)(x), ω /∈ Ω′.

It is easy to see that Fξ|G is a cumulative distribution function. From theorem A2.9

it follows that for any x ∈ R,

Fξ|G(x, ω) = lim
q→x

q∈Q,q≥x

P{ξ ≤ q | G} = P{ξ ≤ x | G}

almost surely, concluding the proof. �

REMARK A2.3.– As it was mentioned in remark A2.2, any separable metric space is

Borel isomorphic to a Borel subset of R. Therefore, the above theorem is also valid

for a random variable taking values in a separable metric space.

A2.5. Stationary sequences and ergodic theorems

Consider the probability space (Ω,F ,P). Let F be a measurable transformation

(Ω,F) in (Ω,F). For any A ∈ F denote F−1A the pre-image of A transformation F .

DEFINITION A2.9.– Transformation F preserves measure P if for any A ∈ F

P{F−1A} = P{A}.
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A set A is called F -invariant if P
{
(F−1A)�A

}
= 0. It follows from the

properties of pre-images that the family G of invariant sets is a σ-field.

For k ∈ N we denote F k the kth power of transformation F .

THEOREM A2.13.– (Ergodic Birkhoff–Khinchin theorem) Let F be a measurable
transformation (Ω,F) into (Ω,F) preserving measure P. Also let ξ(ω) be an
integrable random variable. Then, there exists a limit with probability 1,

lim
n→∞

1

n

n−1∑
k=0

ξ(F kω) = ξ(ω),

where ξ = E(ξ | G), and where G is a σ-field of invariant sets.

DEFINITION A2.10.– Probability measure P is said to be ergodic for transformation
F , if any F -invariant set has probability measure 0 or 1.

DEFINITION A2.11.– Stochastic process X = {Xt, t ∈ T}, where T = Z
+ or R+,

is called stationary (in the narrow sense) if for any t1, t2, . . . , tn ∈ T and h > 0 such
that t1 + h, t2 + h, . . . , tn + h ∈ T

(Xt1+h, Xt2+h, . . . , Xtn+h)
d
= (Xt1 , Xt2 , . . . , Xtn) ,

where d
= means the equality in distribution.

DEFINITION A2.12.– Square-integrable real-valued process X = {Xt, t ∈ T} is
called stationary (in the wide sense) if EXt = m (some constant value), and

EXtXs = EXt+hXs+h for any s, t, s+ h, t+ h ∈ T, h > 0.

REMARK A2.4.– If X is stationary in the wide sense, then its covariance function

r(s, t) := E(Xs − EXs)(Xt − EXt) = E(X0 −m)(Xt−s −m).

Therefore, we can introduce the function R(t) = r(0, t) so that R(t) = E(Xs −
m)(Xt+s −m) for any t, s, t+ s ∈ T.

REMARK A2.5.– Let the process X = {Xt, t ∈ T} be Gaussian. Since

finite-dimensional distributions are uniquely determined by the mean EXt and the

covariance function r(t, s) = E(Xs − EXs)(Xt − EXt), the wide-sense and the

narrow-sense stationarities of X are equivalent. Thus, we shall call the Gaussian

process X stationary if EXt = m and r(t, s) = r(t + h, s + h),
t, s, t+ h, s+ h ∈ T.
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Let us return to the ergodic theorem. Consider a Gaussian stationary sequence

X = {Xn, n ≥ 0}. We can consider it on the canonical probability space (Ω,F ,P),
where Ω = R

N, F = Kcyl, the σ-algebra of cylinder sets. In this case Xn(ω) = ω(n),
and we can consider the transformation F : RN → R

N, which is the unit time shift,

ω(n) → ω(n + 1), and so F k if the shift ω(n) → ω(n + k). The stationarity of the

process is reflected in the invariance of P with respect to F , i.e. PF−1 = P.

Assume that the measure P on (RN,Kcyl) has a mixing property in the following

form: for any A,B ∈ Kcyl with P{B} > 0,

lim
n→∞P

{
F−nA | B} = P{A}. [A2.13]

LEMMA A2.6.– If condition [A2.13] holds, then probability measure P is ergodic for
transformation F .

PROOF.– Let C be an F -invariant set with P{C} �= 0. Then, we put A = B = C in

[A2.13] and get that

lim
n→∞P

{
F−nA | B} = lim

n→∞P
{
F−nC | C} = P {C | C} = P {C} .

But P {C | C} = 1, so P{C} = 1, as required. �

Now let F preserve the measure P.

THEOREM A2.14.– Probability measure is F -ergodic if and only if for any integrable
random variable ξ

lim
n→∞

1

n

n−1∑
k=0

ξ(F kω) = Eξ. [A2.14]

PROOF.– Necessity. Let probability measure P be F -ergodic. Since F preserves P, it

follows from Birkhoff-Khinchin theorem that

lim
n→∞

1

n

n−1∑
k=0

ξ(F kω) = ξ(ω),

Eξ(ω) = Eξ(ω). Since the random variable ξ(ω) is F -invariant, symmetric difference

of the sets

F−1
{
ω : ξ(ω) < x

}
=
{
ω : ξ(Fω) < x

}
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and
{
ω : ξ(ω) < x

}
has P-measure 0 for any x ∈ R. This means that any set{

ω : ξ(ω) < x
}

is F -invariant therefore it follows from ergodicity of P that

P
{
ω : ξ(ω) < x

}
= 0 otherwise 1. This means that ξ is a constant, and from

Birkhoff-Khinchin theorem ξ = Eξ.

Sufficiency. Let [A2.14] hold, and substitute ξ(ω) = A(ω) for some event A.

Then,

lim
n→∞

n−1∑
k=0

A(F
kω) = P{A}.

Now, assume that there exists F -invariant set B with 0 < P{B} < 1. Then,

the sets B, FB, F 2B, . . . differ from each other on the sets of P-measure 0, and

consequently

1

n

n−1∑
k=0

A(F
kω) = A(ω)

and is not a constant. The obtained contradiction implies that P is ergodic for the

transformation F . �

Now, let X = {Xn, n ≥ 0} be a Gaussian stationary sequence, EXn = m,

E(X0 −m)(Xn −m) = R(n).

THEOREM A2.15.– If R(n) → 0 as n → ∞, then limn→∞ 1
n

∑n−1
k=0 Xk = m a.s.

PROOF.– According to lemma A2.6 and theorem A2.13, it is sufficient to establish the

mixing condition [A2.13].

Equality [A2.13] is a partial case of the following equality

lim
n→∞EYnη = EY0Eη, [A2.15]

where Yn = ξ(Fnω), and ξ, η are square-integrable random variables. To prove

[A2.15], it is sufficient to establish that for bounded functions f(x1, . . . , xp) and

g(x1, . . . , xp), for any p ≥ 1

Ef(Xn, . . . , Xn+p)g(X0, . . . , Xp) → Ef(X0, . . . , Xp)g(X0, . . . , Xp), [A2.16]
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and then apply the approximation procedure. Establish [A2.16] for p = 1; for p > 1
the proof is similar. For technical simplicity, let m = 0. We have that the joint density

of Xn and X0 equals

pn,0(x, y) =
1

2π
√
D

exp

{
−1

2

(
R(0)

D
(x2 + y2)− 2R(n)

D
xy

)}

→ 1

2πR(0)
exp

{
−1

2

x2

R(0)
− 1

2

y2

R(0)

}
,

[A2.17]

where D = R2(0) − R2(n). It follows from [A2.17] that pn,0(x, y) → p0(x)p0(y),
when [A2.16] follows for p = 1. �

A2.6. Auxiliary martingale inequalities and decompositions

THEOREM A2.16.– (Krickeberg decomposition for martingales) Let
X = {Xn,Fn, n ≥ 0} be a martingale with supn≥0 E|Xn| < ∞. Then X can be
decomposed as follows:

Xn = X ′
n −X

′′
n , [A2.18]

where X ′ and X
′′

are non-negative martingales and

sup
n≥0

E|Xn| ≤ EX ′
n + EX

′′
n = EX ′

0 + EX
′′
0 .

PROOF.– Condition supn≥0 E|Xn| < ∞ together with theorem 5.5 supplies

existence of the limit X∞ = limn→∞ Xn a.s. and E|X∞| < ∞, while

Xn = E(X∞|Fn) according to theorem 5.7. If we decompose X∞ = X+
∞ − X−

∞,

then X+
∞ and X−

∞ are integrable random variables, Xn = E(X+
∞|Fn)− E(X−

∞|Fn),
and X ′

n = E(X+
∞|Fn), X

′′
n = E(X−

∞|Fn) both are non-negative martingales.

Therefore, we have decomposition [A2.18]. Moreover,

E|Xn| ≤ E|X ′
n|+ E|X ′′

n | = EX ′
n + EX

′′
n = EX ′

0 + EX
′′
0

= EX+
∞ +X−

∞ = E|X∞|,
and the proof follows. �

REMARK A2.6.– We can apply a similar reasoning to the martingale

X = {Xn,Fn, 0 ≤ n ≤ N} and get the same decomposition but with XN instead of

X∞. We shall say that such a decomposition is obtained with respect to the moment

N .

THEOREM A2.17.– Let {Xn, n ≥ 0} be a martingale, {ϕn, n ≥ 1} be a predictable
process, ϕ0 = 0, and |ϕn| ≤ 1 a.s. Consider the martingale transformation of the
following form: SX

0 = 0, SX
n =

∑n
k=1 ϕk(Xk −Xk−1), n ≥ 1. Then
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i) For any n ≥ 1 and any λ > 0

λP

{
max

0≤k≤n

∣∣SX
k

∣∣ > λ

}
≤ 22 max

0≤k≤n
E|Xk|. [A2.19]

ii) For any n ≥ 1 and p ≥ 1

E
∣∣SX

n

∣∣p ≤ cpE|Xn|p, [A2.20]

where cp depends only on p and does not depend on n.

PROOF.– i) Let X be a non-negative martingale. Consider the non-negative bounded

supermartingale Zn = Xn ∧ λ, λ > 0 (see example 5.8, (ii)). Since Zk and Xk,

1 ≤ k ≤ n, coincide on the set {ω : max0≤k≤n Xk ≤ λ}, we have that

λP

{
max

0≤k≤n
|SX

k | > λ

}
≤ λP

{
max

0≤k≤n
Xk > λ

}
+ λP

{
max

0≤k≤n
|SZ

k | > λ

}
.

According to remark 5.9,

λP

{
max

0≤k≤n
|Xk| > λ

}
≤ EX0. [A2.21]

Further, SZ
n is a supermartingale as an integral transformation of a

supermartingale. Consider the Doob decomposition of Z: Zn = Mn −An, where M
is a martingale, and A is a non-decreasing predictable bounded process with A0 = 0.

Note that consequently, A and M are non-negative processes with bounded

increments,

An −An−1 = −E(Zn − Zn−1|Fn−1) ≤ 2λ.

So, all processes involved are square integrable. Furthermore,

SZ
n = SM

n − SA
n , and |SA

n | ≤
n∑

k=1

|ϕk|(Ak −Ak−1) ≤ An.

Therefore, max0≤k≤n |SZ
k | ≤ max0≤k≤n |SM

k |+An, and for any α ∈ (0, 1)

λP

{
max

0≤k≤n
|SZ

k | > λ

}
≤ λP {An > αλ}+ λP

{
max

0≤k≤n
|SM

k | > (1− α)λ

}
.
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Let α = 1
2 . Since EAn = EMn − EZn ≤ EMn = EM0 we have that

λP

{
An >

λ

2

}
≤ 2EM0 = 2EZ0 ≤ 2EX0. [A2.22]

Further, since M is a square integrable martingale, SM is a square integrable

martingale as well. Therefore, according to theorem 5.11,

λP

{
max

0≤k≤n

∣∣SM
k

∣∣ > λ

2

}
≤ 4

λ
E
∣∣SM

n

∣∣2 ,
and

E|SM
n |2 = E

n−1∑
k=0

ϕ2
k(Mk+1 −Mk)

2 ≤ E[M ]n.

Note that

E(Mk+1 −Mk)
2 = E(Zk+1 − Zk)

2 + 2E(Zk+1 − Zk)(Ak+1 −Ak)

+E(Ak+1 −Ak)
2 = E(Zk+1 − Zk)

2 − E(Ak+1 −Ak)
2,

because

E(Zk+1 − Zk)(Ak+1 −Ak) = E (E(Zk+1 − Zk)|Fk) (Ak+1 −Ak)

= −E(Ak+1 −Ak)
2.

So,

E|SM
n |2 ≤ E[Z]n − E[A]n ≤ E[Z]n.

Furthermore,

(Zk − Zk−1)
2 = Z2

k − Z2
k−1 + 2Zk−1(Zk−1 − Zk),

therefore,

E[Z]n ≤ EZ2
n + 2

n−1∑
k=1

E (Zk−1E(Zk−1 − Zk|Fk−1))

= EZ2
n + 2

n−1∑
k=1

EZk−1(Ak −Ak−1) ≤ 2λE(Zn +An) [A2.23]

= 2λEMn = 2λEM0 = 2λEZ0 ≤ 2λEX0.
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Finally, we get from [A2.21]–[A2.23] that for any λ > 0

λP

{
max

0≤k≤n
|SX

k | > λ

}
≤ EX0 + 2EX0 + 8EX0 = 11EX0.

Therefore, for non-negative martingales we have proved a stronger result than

[A2.19], namely, with constant 11 instead of 22.

Now, let X be an arbitrary martingale, and let Xn = X ′
n −X

′′
n be its Krickeberg

decomposition constructed with respect to the moment N (theorem A2.16 and remark

A2.6). Then E|Xn| = EX ′
n + EX

′′
n = EX ′

0 + EX
′′
0 , and

λP

{
max

0≤k≤n
|SX

k | > λ

}
≤ λP

{
max

0≤k≤n
|SX′

k | > λ

2

}

+ λP

{
max

0≤k≤n
|SX

′′

k | > λ

2

}

≤ 22(EX ′
0 + EX

′′
0 ) = 22E|Xn| ≤ 22 sup

0≤k≤n
E|Xk|.

ii) Now we use the Marcinkiewicz interpolation theorem (theorem A2.3). Assume

that the right-hand side of [A2.20] is bounded in n ≥ 1. Then, X is a uniformly

integrable martingale and Xn = E(X∞|Fn) (see theorem 5.7). Denote by Tn(X∞)
the transformation of the form Tn(X∞) = SX

n with some fixed predictable process

{ϕk, k ≥ 1}, ϕ0 = 0, |ϕk| ≤ 1, k ≥ 1 a.s. Then Tn is a linear, and consequently,

sub-additive transformation. Moreover, note that {|Xk|, k ≥ 1} is a submartingale,

therefore E|X∞| ≥ E|Xk|, k ≥ 1. Then, it follows from [A2.19] that

P {|Tn(X∞)| > λ} ≤ 1

λ
E|X∞|.

Furthermore,

P {|Tn(X∞)| > λ} ≤ 1

λ2
E|Tn(X∞)|2 =

1

λ2
E|SX

n |2

=
1

λ2
E

n∑
k=1

ϕ2
k(Xk −Xk−1)

2 ≤ 1

λ2
E

n∑
k=1

(Xk −Xk−1)
2 ≤ 1

λ2
EX2

n.

This means that all assumptions of theorem A2.3 are fulfilled with C1 = 22 and

C2 = 1, and it follows that the inequality [A2.20] holds for any 1 < p ≤ 2. Now

consider p > 2. Let p−1 + q−1 = 1. Then 1 < q < 2, consequently, for any random

variable η

E|X∞Tn(η)| ≤
(
E|X∞|p)1/p(E|Tn(η)|q

)1/q
≤ Cq

(
E|X∞|p)1/p(E|η|q)1/q. [A2.24]
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Further, assume that E|X∞Tn(η)| < ∞. Then for Xk = E(X∞|Fk) and Yk =
E(η|Fk) we have that

E(X∞Tn(η)) = E

(
X∞

n∑
k=1

ϕk(Yk − Yk−1)

)

= E

(
Xn

n∑
k=1

ϕk(Yk − Yk−1)

)
=

n∑
k=1

EϕkXk(Yk − Yk−1)

=

n∑
k=1

(EϕkXkη − EϕkXkYk−1) =

n∑
k=1

(EϕkXkη − EϕkXk−1Yk−1)

=

n∑
k=1

(EϕkXkη − EϕkXk−1η) =
n∑

k=1

Eϕk(Xk −Xk−1)η

= E(Tn(X∞)η). [A2.25]

We get from [A2.24] and [A2.25] that

|E(Tn(X∞)η)| ≤ Cq

(
E|X∞|p)1/p(E|η|q)1/q. [A2.26]

Therefore, taking supremum over η with E|η|q = 1 in both sides of [A2.26], we

get

sup
η:E|η|q=1

|E(Tn(X∞)η)| ≤ Cq

(
E|X∞|p)1/p. [A2.27]

It follows from lemma A2.6 that

sup
η:E|η|q=1

∣∣E(Tn(X∞)η
)∣∣ = (E|Tn(X∞)|p)1/p. [A2.28]

The proof follows now from [A2.27] and [A2.28]. �

For any process X and any n ≥ 0 denote X∗
n := max0≤k≤n |Xk|.

LEMMA A2.7.– Let M = {Mn,Fn, n ≥ 0} be a martingale, for which |Mn+1 −
Mn| ≤ Qn, where Qn is a Fn-measurable random variable, n ≥ 1. Then, for any
n ≥ 1

E[M ]1/2n ≤ 3E max
0≤k≤n

|Mk|+ E max
0≤k≤n

Qk = 3E|Mn|∗ + EQ∗
n, [A2.29]
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E max
0≤k≤n

|Mk| ≤ 3E[M ]1/2n + E max
0≤k≤n

Qk = 3E[M ]1/2n + EQ∗
n. [A2.30]

PROOF.– We only prove [A2.29], and [A2.30] is proved similarly. Denote for any

x > 0

τx = inf {n ≥ 0 : |Mn|+Qn > x} .

Then on the set {ω : τx(ω) > k} we have that |Mτx∧k| = |Mk| ≤ x, and on the

set {ω : τx(ω) = k} we have that

|Mk| ≤ |Mk−1|+ |Mk −Mk−1| ≤ |Mk−1|+Wk−1 ≤ x.

Therefore, on the set {ω : τx > 0} we have for any k ≥ 1 that

|Mτx∧k| ≤ x. [A2.31]

Obviously, we can estimate the following probability from above:

P
{
[M ]n > x2

} ≤ P {τx ≤ n}+ P
{
τx > n, [M ]n > x2

}
.

Now, on one hand,

P {τx ≤ n} = P

{
max

0≤k≤n
(|Mk|+Wk) > x

}
,

and on the other hand, it follows from Doob’s optional theorem that

E
(
Mk∧τx

∣∣F(k−1)∧τx

)
= M(k−1)∧τx .

Therefore,

P
{
τx > n, [M ]n > x2

} ≤ P
{
τx > n, [M ]τx∧n > x2

}
≤ x−2E τx>n[M ]τx∧n ≤ x−2E τx>0[M ]τx∧n

= x−2E τx>0

τx∧n∑
k=1

(Mk −Mk−1)
2

= x−2E τx>0

n∑
k=1

(Mk∧τx − (M(k−1)∧τx)
2

= x−2E τx>0

n∑
k=1

(M2
k∧τx − 2Mk∧τxM(k−1)∧τx +M2

(k−1)∧τx
)

≤ x−2E τx>0M
2
n∧τx ≤ x−2E(|Mn∧τx | ∧ x)2 ≤ x−2E(( max

0≤k≤n
|Mk|) ∧ x)2,
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where the inequality |Mn∧τx | ≤ |Mn∧τx | ∧ x follows from [A2.31].

Therefore, if we set 0 · ∞ = 0, then

E[M ]1/2n =

ˆ ∞

0

P
{
[M ]n > x2

}
dx

≤
ˆ ∞

0

P

{
max

0≤k≤n
(|Mk|+Qk) > x

}
dx+ E

ˆ ∞

0

max
0≤k≤n

(|Mk| ∧ x)2

x2
dx

≤ E max
0≤k≤n

|Mk|+ E max
0≤k≤n

Qk + E

ˆ M∗
n

0

dx+ E

ˆ ∞

M∗
n

(M∗
n)

2

x2
dx

≤ EM∗
n + EQ∗

n + EM∗
n + E

(
(M∗

n)
2 · (M∗

n)
−1
)
= 3EM∗

n + EQ∗
n. �

Now we introduce the Davis decomposition of the martingale. As before, we use

the notation (ΔM)∗n := max1≤k≤n |Mk −Mk−1|,

n := |ΔMn|≤2(ΔM)∗
n−1

, n := − n.

Let M = {Mn,Fn, n ≥ 0} be a martingale, M0 = 0.

DEFINITION A2.13.– The Davis decomposition of a martingale M is a
decomposition of the form

Mn = M ′
n +M

′′
n , [A2.32]

where

M ′
0 = 0, ΔM ′

n = M ′
n −M ′

n−1 = Q′
n − E(Q′

n|Fn−1),

Q′
n = ΔMn n, M

′′
0 = 0, ΔM

′′
n = M

′′
n −M

′′
n−1 [A2.33]

= Q
′′
n + E(Q′

n|Fn−1), Q
′′
n = ΔMn n.

Note that, consequently, M ′
n and M

′′
n in the decomposition [A2.32] are

martingales.

LEMMA A2.8.– The components of the decomposition admit the following upper
bounds:

|ΔM ′
n| ≤ 4(ΔM)∗n−1, [A2.34]
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n∑
k=1

|ΔM
′′
k | ≤

n∑
k=1

|Q′′
k |+

n∑
k=1

E
(|Q′′

k |
∣∣Fk−1

)

≤ 2(ΔM)∗n +
n∑

k=1

E
(|Q′′

k |
∣∣Fk−1

)
. [A2.35]

It follows from [A2.35] that

E
n∑

k=1

|ΔM
′′
k | ≤ 4E(ΔM)∗n. [A2.36]

PROOF.– The upper bound [A2.34] immediately follows from [A2.32] and [A2.33]

because |Q′
n| ≤ 2(ΔM)∗n−1. Further, E(Q′

n|Fn−1) = −E(Q
′′
n|Fn−1), whence the

first inequality in [A2.35] follows. The second inequality can be checked as follows:

on the set
{|ΔMn| > 2(ΔM)∗n−1

}
we have that

|ΔMn|+ 2(ΔM)∗n−1 ≤ 2|ΔMn| ≤ 2(ΔM)∗n.

Therefore,

|Q′′
n| = |ΔMn| ΔMn>2(ΔM)∗

n−1
≤ 2
(
(ΔM)∗n − (ΔM)∗n−1

)
,

and

n∑
k=1

|Q′′
k | ≤ 2(ΔM)∗n. [A2.37]

Inequality [A2.36] is a straightforward consequence of [A2.35] and [A2.37]. �

A2.7. Strong laws of large numbers

In this section, we formulate different conditions for the classical strong law of

large numbers (SLLN), i.e. SLLN for the sequences of random variables. We consider

a sequence {Xn, n ≥ 1} of random variables, Xn ∈ L1(Ω,F ,P) and EXn = 0,

n ≥ 1 (centered random variables). Denote Sn =
∑n

i=1 Xi, n ≥ 1. The first result is

a standard SLLN for iid sequence; we formulate it without centering assumption.

THEOREM A2.18.– Let {Xn, n ≥ 1} be an iid sequence, Xn ∈ L1(Ω,F ,P), EXn =
m, n ≥ 1. Then

Sn

n
→ m a.s. as n → ∞.
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The following result was proved by Kolmogorov [KOL 30].

THEOREM A2.19.– Let {Xn, n ≥ 1} be a sequence of independent random
variables, EXn = 0, Xn ∈ L2(Ω,F ,P), n ≥ 1. If

∑∞
n=1

EX2
n

n2 < ∞, then Sn

n → 0
a.s. as n → ∞.

Now, consider the Marcinkiewicz-Zygmund result ([LOÈ 78]), generalized in the

paper [KOR 14].

THEOREM A2.20.– Let {Xn, n ≥ 1} be pairwise independent identically distributed
centered random variables such that E|X1|p < ∞, for some 1 < p < 2, then

Sn

n1/p
→ 0 a.s. as n → ∞.

Denote Ψ the class of functions ψ : R+ → R+\{0}, such that ψ(x) is non-

decreasing on [x0,+∞) for some x0 > 0, and
∑∞

n=1
1

nϕ(n) < ∞. The examples of

ψ ∈ Ψ are ψ(x) = xδ , ψ(x) = (log x)1+δ , δ > 0.

Also, recall the notion of orthogonality: we say that the random variables

{Xn, n ≥ 1} are orthogonal (uncorrelated), if Xn ∈ L2(Ω,F ,P) and

E ((Xi − EXi)(Xj − EXj)) = 0 for i �= j.

The next two results generalize SLLN to orthogonal random variables. The first

result is one of the forms of Rademacher-Menchov theorem ([RAD 22, MEN 23]).

THEOREM A2.21.– Let {Xn, n ≥ 1} be a sequence of centered uncorrelated random
variables, {an, n ≥ 1} be a non-decreasing sequence, an > 0, an → ∞, n → ∞,
and

∞∑
n=1

EX2
n

a2n
log2 n < ∞.

Then Sn

an
→ 0 a.s. as n → ∞.

The second result is another form of SLLN for uncorrelated random variables. It

was proved by V.V. Petrov [PET 75].

THEOREM A2.22.– Let {Xn, n ≥ 1} be a sequence of centered uncorrelated random

variables. If
∑n

i=1 EX
2
i = O

(
n2

ψ(n) log2 n

)
for some function ψ ∈ Ψ, then Sn

n → 0
a.s. as n → ∞.



358 Theory and Statistical Applications of Stochastic Processes

A2.8. Fundamental martingale related to fractional Brownian motion

Our goal is to transform fractional Brownian motion with the help of some singular

kernel in order to get a martingale. For this purpose consider the kernel

lH(t, s) = C ′
Hs

1
2−H(t− s)

1
2−H

0<s<t,

where C ′
H =

(
Γ(3−2H)

2HΓ( 3
2−H)3Γ( 1

2+H)

) 1
2

. For technical simplicity, let H ∈ ( 12 , 1). Then,

by using the equality
ˆ 1

0

t−μ(1− t)−μ|x− t|2μ−1dt = B(μ, 1− μ),

for any μ ∈ (0, 1), x ∈ (0, 1) (see, for example, [NOR 99, lemma 2.2]), and denoting

α = H − 1
2 , we obtain that for any t > 0

E

∣∣∣∣
ˆ t

0

lH(t, s)dBH
s

∣∣∣∣
2

=
(
C ′

H

)2
2Hα

ˆ t

0

ˆ t

0

(t− u)−α(t− s)−αu−αs−α|u− s|2α−1du ds

= t1−2α
(
C ′

H

)2
2Hα

ˆ 1

0

u−α(1− u)−α [A2.38]

(ˆ 1

0

(1− s)−αs−α|u− s|2α−1ds

)
du

= t1−2α
(
C ′

H

)2
2HαB(α, 1− α)B(1− α, 1− α)

= t1−2αΓ(2− 2α)Γ(α)Γ(1− α)3

Γ(1− α)3Γ(α)Γ(2− 2α)
= t1−2α < ∞.

Therefore, the integral
´ t
0
lH(t, s)dBH

s is well defined. Further, similarly to

[A2.39], for any 0 < t < t′, we obtain that

E

ˆ t

0

lH(t, s)dBH
s

ˆ t′

0

lH(t′, s)dBH
s

=
(
C ′

H

)2
2Hα

ˆ t

0

(t− u)−αu−α

(ˆ t′

0

(t′ − s)−αs−α|u− s|2α−1ds

)
du [A2.39]

=
(
C ′

H

)2
2Hαt1−2αB(α, 1− α)B(1− α, 1− α) = t1−2α.
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Evidently,
´ t
0
lH(t, s)dBH

s is a centered Gaussian process. Moreover, from [A2.9],

we obtain that for any 0 < u < t ≤ u′ < t′

E

(ˆ t′

0

lH(t′, s)dBH
s −

ˆ u′

0

lH(u′, s)dBH
s

)

×
(ˆ t

0

lH(t, s)dBH
s −

ˆ u

0

lH(u, s)dBH
s

)
= 0.

Thus, the increments of
´ t
0
lH(t, s)dBH

s are uncorrelated, and hence independent.

It follows that MH
t :=

´ t
0
lH(t, s)dBH

s is a Gaussian martingale w.r.t. its natural

filtration

FH
t := σ

{
MH

u , 0 ≤ u ≤ t
}
.

Furthermore, we have that for any 0 ≤ s ≤ t and H > 1
2

E
(
MH

t −MH
s

)2
= t2−2H − s2−2H ≤ (t− s)2−2H

whence MH is a continuous process, see remark 6.8. Its quadratic variation coincides

with quadratic characteristics and both equal
[
MH

]
t
= t2−2H . The process MH is

called the Molchan martingale, or the fundamental martingale, since it was considered

originally in the papers [MOL 69a, MOL 69b]. See also [NOR 99, MIS 08].

A2.9. Asymptotic behavior of the weighted Wiener process and
fractional Brownian motion

THEOREM A2.23.– Let δ > 0. Then, WT

T 1/2+δ → 0 a.s. as T → ∞.

PROOF.– Consider any sequence {Tn, n ≥ 1} such that Tn+1 > Tn and Tn → ∞ as

n → ∞. Then it follows from the martingale property of the Wiener process that for

any γ > 0

P

{
sup

Tn≤t≤Tn+1

|Wt|
t1/2+δ

>
1

nγ

}
≤ P

{
sup

Tn≤t≤Tn+1

|Wt| > T
1/2+δ
n

nγ

}

≤ P

{
sup

0≤t≤Tn+1

|Wt| > T
1/2+δ
n

nγ

}
≤ n2γ

T 1+2δ
n

Tn+1.
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Now our goal is to choose Tn and γ so that the series S =
∑∞

n=1
n2γ

T 1+2δ
n

Tn+1

converges. This will be the case if we choose γ = 1, Tn = nη and η > 3
2δ . Then

n2γ

T 2α
n

Tn+1 = n2−(1+2δ)η(n+ 1)η ≤ 2ηn2−δη,

and 2 − 2δη < −1, therefore the series S converges. And then it follows from the

Borel-Cantelli lemma that for any ω ∈ Ω′, P{Ω′} = 1, there exists n0 = n0(ω) such

that for any n ≥ n0

sup
t≥Tn

|Wt|
t1/2+δ

= max
k≥n

sup
Tk≤t≤Tk+1

|Wt|
t1/2+δ

≤ 1

n
,

which means that supt≥nη
|Wt|
tα ≤ 1

n . The last statement implies the convergence
WT

T 1/2+δ → 0, T → ∞ a.s. �

Now we can prove a similar result concerning the asymptotic behavior of fractional

Brownian motion.

THEOREM A2.24.– For any δ > 0
BH

t

tH+δ → 0 a.s. as t → ∞.

PROOF.– According to theorem 1.10.3 from [MIS 08], for any p > 0,

C
(H)
p := E sup0≤t≤1

∣∣BH
t

∣∣p < +∞. Taking this into account, together with

self-similarly of BH , we get that for any n ≥ 1 and δ > 0

P

{
sup

n≤t≤n+1

∣∣BH
t

∣∣
tH+δ

>
1

nγ

}
≤ P

{
sup

n≤t≤n+1

∣∣BH
t

∣∣ ≥ nH+δ

nγ

}

= P

{
sup

n
n+1≤t≤1

∣∣BH
t

∣∣ ≥ nH+δ

(n+ 1)Hnγ

}
≤
(
1 +

1

n

)pH (
nγ−δ

)p
E sup

0≤t≤1

∣∣BH
t

∣∣p
≤ C(H)

p np(γ−δ).

Choose γ = δ
2 and p > 2

δ . Then

∞∑
n=1

P

{
sup

n≤t≤n+1

|BH
t |

tH+δ
>

1

nγ

}
≤

∞∑
n=1

C(H)
p n− pδ

2 < ∞.

By the Borel-Cantelli lemma, for ω ∈ Ω′, P{Ω′} = 1 there exists n0(ω) such that

for n ≥ n0(ω)

sup
n≤t≤n+1

|BH
t |

tH+δ
≤ 1

nδ/2
, or sup

n≤t<∞

|BH
t |

tH+δ
≤ 1

nδ/2
,

and hence the proof follows. �
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A2.10. Miscellaneous

LEMMA A2.9.– Let {ξn, n ≥ 0} and {ζn, n ≥ 0} be two sequences of random

variables, and {ξn} d
= {ζn}. Then ξn → ξ0, n → ∞ a.s. ⇐⇒ ζn → ζ0, n → ∞ a.s.

PROOF.– We have two following equalities for the events:

{ξn → ξ0} =
∞⋂

m=1

∞⋃
n=1

∞⋂
k=n

{
|ξk − ξ0| < 1

m

}
,

{ζn → ζ0} =
∞⋂

m=1

∞⋃
n=1

∞⋂
k=n

{
|ζk − ζ0| < 1

m

}
.

Therefore,

P {ξn → ξ0} = lim
m→∞P

{ ∞⋃
n=1

∞⋂
k=n

{
|ξk − ξ0| < 1

m

}}

= lim
m→∞ lim

n→∞P

{ ∞⋂
k=n

{
|ξk − ξ0| < 1

m

}}

= lim
m→∞ lim

n→∞ lim
N→∞

P

{
N⋂

k=n

{
|ξk − ξ0| < 1

m

}}

= lim
m→∞ lim

n→∞ lim
N→∞

P

{
N⋂

k=n

{
|ζk − ζ0| < 1

m

}}
= P {ζn → ζ0} . �

LEMMA A2.10.– Let {ξn, n ≥ 1} be a non-decreasing (non-increasing) sequence of

random variables. If ξn
P→ ∞ (ξn

P→ 0) as n → ∞, then ξn → ∞ with probability 1
(ξn → 0 with probability 1) as n → ∞.

PROOF.– Consider only non-decreasing sequences, and non-increasing are

considered similarly. Since ξn
P→ ∞, for any K ≥ 1 there exists n(K) ≥ 1 such that

P
{
ξn(K) ≤ K

} ≤ 2−K . Then it follows from the Borel-Cantelli lemma that

ξn(K) → ∞ a.s. as K → ∞, and then it follows, from the fact that ξn is

non-decreasing, that ξn → ∞ a.s. as n → ∞. �

LEMMA A2.11.– Let ξ ∈ Lp(Ω,F ,P), 1
p + 1

q = 1, 1 < p < ∞. Then,

sup
η:E|η|q=1

E|ξη| = (E|ξ|p)1/p.
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PROOF.– Without loss of generality assume that E|ξ|p > 0. It follows from the Hölder

inequality that for any η with E|η|q = 1 that

E|ξη| ≤ (E|ξ|p)1/p(E|η|q)1/q =
(
E|ξ|p)1/p.

Now, substitute η = |ξ|p−1

(E|ξ|p)1/q . Taking into account the equality (p− 1)q = p, we

get that

E|η|q = E

( |ξ|(p−1)q

E|ξ|p
)

=
E|ξ|p
E|ξ|p = 1.

Further,

E|ξη| = E|ξ|p
(E|ξ|p)1/q =

(
E|ξ|p)1/p,

and the proof follows. �
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[BRZ 99] BRZEŹNIAK Z., ZASTAWNIAK T., Basic Stochastic Processes. A Course through
Exercises, Springer-Verlag London, Ltd., London, 1999.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 



364 Theory and Statistical Applications of Stochastic Processes

[BUL 05] BULINSKIY A.V., SHIRYAEV A.N., Theory of Stochastic Processes, Fizmatlit,

Moscow, 2005.

[CHE 01] CHERNY A.S., “On the uniqueness in law and the pathwise uniqueness for

stochastic differential equations”, Theory of Probability and Its Applications, vol. 46, no. 3,

pp. 406–419, 2001.

[CHU 79] CHUNG K.L., Elementary Probability theory with Stochastic Processes, 3rd

edition, Springer-Verlag, New York-Heidelberg, 1979.

[CHU 90] CHUNG K.L., WILLIAMS R.J., Introduction to Stochastic Integration, 2nd edition,

Birkhäuser Boston, Inc., Boston, 1990.

[COH 15] COHEN S.N., ELLIOTT R.J., Stochastic Calculus and Applications, 2nd edition,

Birkhäuser/Springer, New York, 2015.

[DEL 78] DELLACHERIE C., MEYER P.-A., Probabilities and Potential, North-Holland

Publishing Co., Amsterdam-New York, 1978.

[DEL 17] DEL MORAL P., PENEV S., Stochastic Processes. From Applications to Theory,

CRC Press, Boca Raton, 2017.

[DOO 53] DOOB J.L., Stochastic Processes, John Wiley & Sons, Inc., New York, 1953.

[DVO 61] DVORETZKY A., ERDÖS P., KAKUTANI S., “Nonincrease everywhere of

the Brownian motion process”, Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, vol. II, pp. 103–116, 1961.

[DOZ 15] DOZZI M., MISHURA Y., SHEVCHENKO G., “Asymptotic behavior of mixed power

variations and statistical estimation in mixed models”, Stat. Inference Stoch. Process. vol.

18, no. 2, pp. 151–175, 2015

[EIN 05] EINSTEIN A., “Über die von der molekularkinetischen Theorie der Wärme

geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Annalen der
Physik, vol. 322, no. 8, pp. 549–560, 1905.

[FEL 49] FELLER W., “On the theory of stochastic processes, with particular reference to

applications”, Proceedings of the Berkeley Symposium on Mathematical Statistics and
Probability, 1945, 1946, pp. 403–432, 1949.

[GIH 72] GIHMAN I.I., SKOROHOD A.V., Stochastic Differential Equations, Springer-Verlag,

New York-Heidelberg, 1972.

[GIK 04a] GIKHMAN I.I., SKOROKHOD A.V., The Theory of Stochastic Processes. I,
Springer-Verlag, Berlin, 2004.

[GIK 04b] GIKHMAN I.I., SKOROKHOD A.V., The Theory of Stochastic Processes. II,
Springer-Verlag, Berlin, 2004.

[GIK 07] GIKHMAN I.I., SKOROKHOD A.V., The Theory of Stochastic Processes. III,
Springer, Berlin, 2007.

[GUS 10] GUSAK D., KUKUSH A., KULIK A. et al., Theory of Stochastic Processes. With
Applications to Financial Mathematics and Risk Theory, Springer, New York, 2010.

[GUS 15] GUSHCHIN A.A., Stochastic Calculus for Quantitative Finance, ISTE Press

Elsevier Ltd, Oxford, 2015.



Bibliography 365

[HAC 07] HACCOU P., JAGERS P., VATUTIN V.A., Branching Processes: Variation, Growth,
and Extinction of Populations, Cambridge University Press, Cambridge, 2007.

[HEY 97] HEYDE C.C., Quasi-likelihood and Its Application, Springer-Verlag, New York,

1997.

[IKE 89] IKEDA N., WATANABE S., Stochastic Differential Equations and Diffusion
Processes, 2nd edition, North-Holland Publishing Co., Amsterdam, 1989.

[ITÔ 44] ITÔ K., “Stochastic integral”, Proceedings of the Imperial Academy Tokyo, vol. 20,

pp. 519–524, 1944.

[ITÔ 74] ITÔ K., MCKEAN H.P., Diffusion Processes and their Sample Paths, 2nd edition,

Springer-Verlag, Berlin-New York, 1974.

[JAC 03] JACOD J., SHIRYAEV A.N., Limit Theorems for Stochastic Processes, 2nd edition,

Springer-Verlag, Berlin, 2003.

[JEA 09] JEANBLANC M., YOR M., CHESNEY M., Mathematical Methods for Financial
Markets, Springer Finance, Springer, London, 2009.

[JOS 06] JOST C., “Transformation formulas for fractional Brownian motion”, Stochastic
Processes and their Applications, vol. 116, no. 10, pp. 1341–1357, 2006.

[KAL 02] KALLENBERG O., Foundations of Modern Probability, 2nd edition, Springer-

Verlag, New York, 2002.

[KAR 91] KARATZAS I., SHREVE S.E., Brownian Motion and Stochastic Calculus, 2nd

edition, Springer-Verlag, New York, 1991.

[KHI 34] KHINTCHINE A., “Korrelationstheorie der stationären stochastischen Prozesse”,

Mathematische Annalen, vol. 109, no. 1, pp. 604–615, 1934.

[KOL 30] KOLMOGOROV A., “Sur la loi forte des grands nombres”, Comptes Rendus de
l’Académie des Sciences, vol. 191, pp. 910–912, 1930.

[KOL 31] KOLMOGOROV A., “Über die analytischen Methoden in der

Wahrscheinlichkeitsrechnung”, Mathematische Annalen, vol. 104, no. 1, pp. 415–458,

1931.

[KOL 77] KOLMOGOROV A., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-

Verlag, Berlin, New York, 1977, Reprint of the 1933 original.

[KOR 07] KORALOV L.B., SINAI Y.G., Theory of Probability and Random Processes, 2nd

edition, Springer, Berlin, 2007.

[KOR 14] KORCHEVSKY V., “Marcinkiewicz–Zygmund Strong Law of Large Numbers for

Pairwise iid Random Variables”, arXiv preprint arXiv:1404.7454, 2014.

[KUT 04] KUTOYANTS Y.A., Statistical Inference for Ergodic Diffusion Processes, Springer-

Verlag London, Ltd, London, 2004.

[KUZ 84] KUZNETSOV S.E., “Inhomogeneous Markov processes”, Journal of Soviet
Mathematics, vol. 25, no. 5, pp. 1380–1498, 1984.

[LAW 06] LAWLER G.F., Introduction to Stochastic Processes, 2nd edition, Chapman &

Hall/CRC, Boca Raton, 2006.



366 Theory and Statistical Applications of Stochastic Processes

[LEG 16] LE GALL J.-F., Brownian motion, martingales, and stochastic calculus, Springer,

Cham, 2016.

[LÉV 65] LÉVY P., Processus stochastiques et mouvement brownien. Suivi d’une note de M.
Loève, 2ème édition revue et augmentée, Gauthier-Villars & Cie, Paris, 1965.

[LIP 89] LIPTSER R.S., SHIRYAYEV A.N., Theory of Martingales, Kluwer Academic

Publishers, Dordrecht, 1989.

[LIP 01] LIPTSER R.S., SHIRYAEV A.N., Statistics of Random Processes I. General Theory,

Springer-Verlag, Berlin, 2001.

[LOÈ 77] LOÈVE M., Probability Theory. I, 4th edition, Springer-Verlag, New York-

Heidelberg, 1977.

[LOÈ 78] LOÈVE M., Probability Theory. II, 4th edition, Springer-Verlag, New York-

Heidelberg, 1978.

[MAN 68] MANDELBROT B.B., VAN NESS J.W., “Fractional Brownian motions, fractional

noises and applications”, SIAM Review, vol. 10, pp. 422–437, 1968.

[MCK 69] MCKEAN JR H.P., Stochastic Integrals, Academic Press, New York-London, 1969.

[MEN 23] MENCHOFF D., “Sur les séries de fonctions orthogonales. (Première Partie. La

convergence.)”, Fundamenta Mathematicae, vol. 4, pp. 82–105, 1923.

[MIS 08] MISHURA Y., Stochastic calculus for fractional Brownian motion and related
processes, Springer-Verlag, Berlin, 2008.

[MIS 14] MISHURA Y., “Standard maximum likelihood drift parameter estimator in the

homogeneous diffusion model is always strongly consistent”, Statistics & Probability
Letters, vol. 86, pp. 24–29, 2014.

[MOL 69a] MOLCHAN G.M., “Gaussian processes with spectra which are asymptotically

equivalent to a power of λ”, Theory of Probability and Its Applications, vol. 14, no. 3,

pp. 530–532, 1969.

[MOL 69b] MOLCHAN G.M., GOLOSOV J.I., “Gaussian stationary processes with

asymptotic power spectrum”, Soviet Mathematics. Doklady, vol. 10, pp. 134–137, 1969.

[NOR 99] NORROS I., VALKEILA E., VIRTAMO J., “An elementary approach to a Girsanov

formula and other analytical results on fractional Brownian motions”, Bernoulli, vol. 5,

no. 4, pp. 571–587, 1999.

[NOU 12] NOURDIN I., Selected Aspects of Fractional Brownian Motion, Springer, Milan;

Bocconi University Press, Milan, 2012.

[NUA 06] NUALART D., The Malliavin Calculus and Related Topics, 2nd edition, Springer-

Verlag, Berlin, 2006.

[ØKS 03] ØKSENDAL B., Stochastic Differential Equations. An Introduction with
Applications, 6th edition, Springer, Berlin, 2003.

[PAL 33] PALEY R.E.A.C., WIENER N., ZYGMUND A., “Notes on random functions”,

Mathematische Zeitschrift, vol. 37, no. 1, pp. 647–668, 1933.



Bibliography 367

[PET 75] PETROV V.V., Sums of Independent Random Variables, Springer-Verlag, New York-

Heidelberg, 1975.

[PRO 04] PROTTER P.E., Stochastic Integration and Differential Equations, 2nd edition,

Springer, Berlin, 2004.

[RAD 22] RADEMACHER H., “Einige Sätze über Reihen von allgemeinen

Orthogonalfunktionen”, Mathematische Annalen, vol. 87, nos. 1–2, pp. 112–138,

1922.

[RES 92] RESNICK S., Adventures in Stochastic Processes, Birkhäuser Boston, Inc., Boston,

1992.

[REV 99] REVUZ D., YOR M., Continuous Martingales and Brownian Motion, 3rd edition,

Springer-Verlag, Berlin, 1999.

[ROG 00a] ROGERS L.C.G., WILLIAMS D., Diffusions, Markov Processes, and Martingales,
vol. 1, Foundations, Cambridge University Press, Cambridge, 2000.

[ROG 00b] ROGERS L.C.G., WILLIAMS D., Diffusions, Markov Processes, and Martingales,
vol. 2, Itô calculus, Cambridge University Press, Cambridge, 2000.

[ROS 96] ROSS S.M., Stochastic Processes, John Wiley & Sons, Inc., New York, 1996.

[RUS 06] RUSSO F., TUDOR C.A., “On bifractional Brownian motion”, Stochastic Processes
and their Applications, vol. 116, no. 5, pp. 830–856, 2006.

[SAM 93] SAMKO S.G., KILBAS A.A., MARICHEV O.I., Fractional Integrals and
Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon,

1993.

[SAT 13] SATO K., Lévy Processes and Infinitely Divisible Distributions, Cambridge

University Press, Cambridge, 2013.

[SCH 03] SCHOUTENS W., Lévy Processes in Finance: Pricing Financial Derivatives, Wiley,

New York, 2003.

[SCH 14] SCHILLING R.L., PARTZSCH L., Brownian Motion. An Introduction to Stochastic
Processes, 2nd edition, De Gruyter, Berlin, 2014.

[SEB 03] SEBER G.A.F., LEE A.J., Linear Regression Analysis, 2nd edition, John Wiley &

Sons, Hoboken, 2003.

[SHE 15] SHEVCHENKO G., “Fractional Brownian motion in a nutshell”, Analysis of
Fractional Stochastic Processes, International Journal of Modern Physics: Conference
Series, vol. 36, pp. 1560002 (16 pages), 2015.

[SHI 99] SHIRYAEV A.N., Essentials of Stochastic Finance. Facts, Models, Theory, World

Scientific Publishing Co., Inc., River Edge, 1999.

[SHR 04] SHREVE S.E., Stochastic Calculus for Finance. II. Continuous-Time Models,

Springer-Verlag, New York, 2004.

[SKO 65] SKOROKHOD A.V., Studies in the Theory of Random Processes, Addison-Wesley

Publishing Co., Inc., Reading, 1965.



368 Theory and Statistical Applications of Stochastic Processes

[STR 06] STROOCK D.W., VARADHAN S. R.S., Multidimensional Diffusion Processes,

Springer-Verlag, Berlin, 2006.

[VON 06] VON SMOLUCHOWSKI M., “Zur kinetischen theorie der brownschen

molekularbewegung und der suspensionen”, Annalen der Physik, vol. 326, no. 14,

pp. 756–780, Wiley Online Library, 1906.

[WIL 91] WILLIAMS D., Probability with Martingales, Cambridge University Press,

Cambridge, 1991.

[ZAB 04] ZABCZYK J., Topics in Stochastic Processes, Scuola Normale Superiore, Pisa, 2004.



Index

A, B, C

adapted stochastic process, 86

arbitrage opportunity, 264

backward Kolmogorov equation, 172

bi-fractional Brownian motion, 50

Brownian

bi-fractional, 50

bridge, 50, 240

fractional, 48, 152

geometric, 89, 238

motion, 24, 175

sub-fractional, 50

càdlàg, 91, 321

call option, 267

compact set, 313

compound Poisson process, 33, 36

conditional

expectation, 339

probability, 343

regular, 343

consistency conditions, 11

in terms of characteristic function, 12

contingent claim, 267

attainable, 268

continuity

Hölder, 152

in L2(Ω,F ,P), 133

in probability, 131

of operator, 326

stochastic, 131

uniform, 320

covariance function, 44

cylinder set, 13

elementary, 9

D, E

decomposition

Davis, 355

Doob, 111

Krickerberg, 349

diffusion coefficient, 233

estimator, 277

for fractional Brownian motion,

283

diffusion

homogeneous, 179

matrix, 175

model of financial market, 261

process, 175, 250

Doléans–Dade exponential, 224

Doob decomposition, 111

Doob’s inequality, 129

drift, 175, 233

estimation, 273

estimator, 279

consistency, 274, 280

for fractional Brownian motion,

284

in homogeneous diffusion model,
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dual predictable projection, 116

elementary function, 52

equation

backward parabolic, 259

Chapman–Kolmogorov, 159, 165

Kolmogorov, 182

Langevin, 239, 293

resolvent, 170

Riccati, 304

stochastic differential, 233

Tanaka, 248

Wiener–Hopf, 299

equivalent martingale measure, 264

existence, 266

equivalent probability measure, 117

estimator

strongly consistent, 273

European option, 267

F, G

fair price, 269

filtering problem, 293

filtration, 85

natural, 86

finite-dimensional distributions, 11

formula

Clark–Ocone, 231

Feynman–Kac, 259

Itô, 204

stochastic integration by parts, 232

forward Kolmogorov equation, 172

fractional Brownian motion, 48

continuity, 152

estimation, 281

Hölder continuity, 154

two-sided, 62

function

càdlàg, 321

continuous, 320

covariance, 44

D-regular, 321

elementary, 52

Haar, 67

mean, 44

measure-preserving, 345

of bounded variation, 323

payoff, 267

Rademacher, 113

Schauder, 68

transition probability, 159

Gaussian

distribution, 332

process, 44

vector, 39

generator, 165, 171, 252, 326

diffusion process, 180

geometric Brownian motion, 89, 238

Girsanov density, 226

Grönwall inequality, 324

H, I, K

Hölder continuity, 152

Haar function, 67

hitting time, 92

Hurst index, 48

estimator, 281

consistency, 282

independent

collections of events, 25

random variables, 5

stochastic processes, 25

indistinguishability, 133

inequality

Burkholder–Davis–Gundy, 113, 215

Grönwall, 324

Hardy–Littlewood, 58

Khinchin, 114

Marcinkiewicz interpolation, 315

infinitesimal

generator, 259

operator, 180, 326

integral

Itô, 190

stochastic, 190

Wiener, 55

with respect to a Gaussian process, 52

with respect to fractional Brownian

motion, 57

Itô formula, 204

Itô integral, 190, 193

continuity, 197

with respect to integrand, 202

extended, 202

locality property, 199
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multidimensional, 212

Itô isometry, 191

Itô process, 203, 238

multidimensional, 213

Itô representation, 228

Kalman–Bucy filter, 295

Kolmogorov equation

backward, 172, 182

diffusion, 182

forward, 172, 184

Krickerberg decomposition, 349

L, M, N

λ-system, 329

Langevin equation, 293

law of one price, 268

least squares estimator, 274

Lévy

characteristic exponent, 35

martingale, 89

process, 35, 168

linear

normed space, 325

operator, 326

Mandelbrot–Van Ness representation, 62

Markov chain, 163

continuous-time, 165

Markov

existence, 160

homogeneous, 163

moment, 90

process, 157

Markov semigroup, 169

generator, 171

martingale, 86

Lévy, 89

maximal inequality, 109, 129

Molchan, 359

multiplicative, 88

optional stopping, 105, 127

quadratic characteristics, 116

uniformly integrable, 100

with continuous time, 127

with discrete time, 96

martingale

difference, 87

representation, 230

transformation, 89

mean function, 44

measure-preserving transformation, 345

modification, 133

Molchan martingale, 359

natural filtration, 86

non-arbitrage price, 269

norm, 325

Novikov condition, 225

numéraire, 262

O, P

operator

bounded, 326

continuous, 326

infinitesimal, 172, 326

linear, 326

resolvent, 169

semigroup, 326

optimal filter, 295

Wiener–Hopf equation, 299

Ornstein–Uhlenbeck process, 51, 239, 293

payoff function, 267

π-system, 25, 329

Poisson process, 27, 36

compound, 33, 36

homogeneous, 28

polarization identity, 176

portfolio, 262

admissible, 263

arbitrage, 264

discounted value, 263

replicating, 268

self-financing, 262

value, 262

probability measure

equivalent, 117

equivalent martingale, 264

ergodic, 347

probability space, 3, 85

process

diffusion, 175, 250

Feller, 180

Gamma, 37

Gaussian, 44

Halton–Watson, 103

Itô, 203
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Lévy, 35

Markov, 157

Ornstein–Uhlen, 293

Ornstein–Uhlenbeck, 51, 239

Poisson, 27, 36

compound, 33

renewal, 6, 30

risk premium, 262

simple, 190

stationary, 346

stochastic, 4

Wiener, 24, 152

progressive measurability, 189

put option, 267

Q, R, S

quadratic

characteristics, 116

variation, 113

dual predictable projection, 116

Radon–Nikodym derivative, 117

random

dynamical system, 187

variable, 3

walk, 6, 87

renewal process, 6, 30

replicating portfolio, 268

representation

Itô, 228

Lévy-Khinchin, 35

Mandelbrot–Van Ness, 62

martingale, 230

Molchan–Golosov, 63

resolvent operator, 169

risk premium, 262

sample

path, 5

space, 3

Schauder function, 68

self-similarity, 79

semigroup, 326

generator, 171

Markov, 169

separant, 135

Sharpe ratio, 262

stable

Lévy motion, 37

Lévy subordinator, 38

stationary process, 346

stochastic

basis, 86

continuity, 131

derivative, 230

differential, 203, 213

of product, 214

stochastic differential equation, 233

filtering, 294

generator, 252

linear, 238

solution, 234

a priori estimates, 234

comparison, 257

continuous dependence on

coefficients, 245

diffusion property, 250

existence and uniqueness, 236

Markov property, 244

moments, 241

non-negativity, 258
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data, 242

strong, 234

viability, 252

weak, 247

Tanaka, 248

stochastic

equivalence, 133

exponential, 224

process, 4

D-regular, 143

adapted, 86, 189

continuous, 150

continuous in probability, 131

finite-dimensional distributions, 11

generated σ-algebra, 19

indistinguishable, 133

Markov, 157

modification, 133

predictable, 91

progressively measurable, 189

self-similar, 79

separable, 135

stochastically equivalent, 133
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with independent increments, 8,

21, 88, 168

with independent values, 7, 133

with stationary increments, 152

without discontinuities of second

kind, 147

stopping time, 90

strategy, 262

strike price, 267

strong law of large numbers, 122, 356

for Itô martingales, 218

for martingales, 124

Marcinkiewicz–Zygmund, 357

sub-fractional Brownian motion, 50

submartingale, 87

existence of limit, 98

maximal inequality, 108, 109

subordinator, 35

stable Lévy, 38

subspace, 326

supermartingale, 87

maximal inequality, 108

T, U, W

theorem

Birkhoff–Khinchine, 346

Cantor–Heine on uniform coninuity,

320

de la Vallée–Poussin, 338

Doob’s optional stopping, 105, 127

Dynkin’s π-λ, 330

ergodic, 346

for power variations, 77

functional monotone class, 331

Girsanov, 118, 226, 266

Hardy–Littlewood, 58

Kolmogorov’s on the existence of

stochastic process, 15

Kolmogorov–Chentsov, 150

Lévy characterization, 220

Lévy convergence, 104

Marcinkewicz interpolation, 315

Marcinkiewicz–Zygmund, 357

time parameter, 5

trajectory, 5

càdlàg, 91

transition probability function, 159

homogeneous, 163

uniform integrability, 100, 335

de la Vallée–Poussin criterion, 338

wealth, 262

white noise, 187

Wiener process, 24, 46

continuity, 69, 152

diffusion property, 181

explicit construction, 67

Hölder continuity, 154

Lévy characterization, 220

multidimensional, 26

nowhere differentiability, 74

two-sided, 60

with a drift, 36
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