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Preface

This book is concerned with both mathematical theory of stochastic processes and
some theoretical aspects of statistics for stochastic processes. Our general idea was to
combine classic topics of the theory of stochastic processes — measure-theoretic
issues of existence, processes with independent increments, Gaussian processes,
martingales, continuity and related properties of trajectories and Markov properties —
with contemporary subjects — stochastic analysis, stochastic differential equations,
fractional Brownian motion and parameter estimation in diffusion models. A more
detailed exposition of the contents of the book is given in the Introduction.

We aimed to make the presentation of material as self-contained as possible. With
this in mind, we have included several complete proofs, which are often either
omitted from textbooks on stochastic processes or replaced by some informal or
heuristic arguments. For this reason, we have also included some auxiliary materials,
mainly related to different subjects of real analysis and probability theory, in the
comprehensive appendix. However, we could not cover the full scope of the topic, so
a substantial background in calculus, measure theory and probability theory is
required.

The book is based on lecture courses, Theory of stochastic processes, Statistics of
stochastic processes, Stochastic analysis, Stochastic differential equations, Theory of
Markov processes, Generalized processes of fractional Brownian motion and
Diffusion processes, taught regularly in the Mechanics and Mathematics Faculty of
Taras Shevchenko National University of Kyiv and Stochastic differential equations
lecture courses taught at the University of Verona in Spring 2016; Fractional
Brownian motion and related processes: stochastic calculus, statistical applications
and modeling taught in School in Bedlewo in March 2015; Fractional Brownian
motion and related processes taught at Ulm University in June 2015; and a
Fractional Brownian motion in a nutshell mini-course given at the 7th Jagna
International Conference in 2014.
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The book is targeted at the widest audience: students of mathematical and related
programs, postgraduate students, postdoctoral researchers, lecturers, researchers,
practitioners in the fields concerned with the application of stochastic processes, etc.
The book would be most useful when accompanied by a problem in stochastic
processes; we recommend [GUS 10] as it matches our topics best.

We would like to express our gratitude to everyone who made the creation of this
book possible. In particular, we would like to thank fukasz Stettner, Professor at the
Department of Probability Theory and Mathematics of Finance, Institute of
Mathematics, Polish Academy of Sciences; Luca Di Persio, Assistant Professor at the
Department of Computer Science at the University of Verona; Evgeny Spodarev,
Professor and Director of the Institute of Stochastics at Ulm University, for their
hospitality while hosting Yuliya Mishura during lecture courses. We would also like
to thank Alexander Kukush, Professor at the Department of Mathematical Analysis
of Taras Shevchenko National University of Kyiv, for proofreading the statistical part
of the manuscript, and Evgeniya Munchak, PhD student at the Department of
Probability, Statistics, and Actuarial Mathematics of Taras Shevchenko National
University of Kyiv, for her help in typesetting the manuscript.

Yuliya MISHURA
Georgiy SHEVCHENKO

September 2017



Introduction

In the world that surrounds us, a lot of events have a random (nondeterministic)
structure. At molecular and subatomic levels, all natural phenomena are random.
Movement of particles in the surrounding environment is accidental. Numerical
characteristics of cosmic radiation and the results of monitoring the effect of ionizing
radiation are random. The majority of economic factors surrounding asset prices on
financial markets vary randomly. Despite efforts to mitigate risk and randomness,
they cannot be completely eliminated. Moreover, in complex systems, it is often
easier to reach an equilibrium state when they are not too tightly controlled.
Summing-up, chance manifests itself in almost everything that surrounds us, and
these manifestations vary over time. Anyone can simulate time-varying randomness
by tossing a coin or rolling a dice repeatedly and recording the results of successive
experiments. (If a physical random number is unavailable, one of the numerous
computer algorithms to generate random numbers can be used.) In view of this
ubiquity of randomness, the theory of probability and stochastic processes has a long
history, despite the fact that the rigorous mathematical notion of probability was
introduced less than a century ago. Let us speak more on this history.

People have perceived randomness since ancient times, for example, gambling
already existed in ancient Egypt before 3000 BC. It is difficult to tell exactly when
systematic attempts to understand randomness began. Probably, the most notable
were those made by the prominent ancient Greek philosopher Epicurus (341-270
BC). Although his views were heavily influenced by Democritus, he attacked
Democritus’ materialism, which was fully deterministic. Epicurus insisted that all
atoms experience some random perturbations in their dynamics. Although modern
physics confirms these ideas, Epicurus himself attributed the randomness to the free
will of atoms. The phenomenon of random detours of atoms was called clinamen
(cognate to inclination) by the Roman poet Lucretius, who had brilliantly exposed
Epicurus’ philosophy in his poem On the Nature of Things.
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Moving closer to present times, let us speak of the times where there was no
theory of stochastic processes, physics was already a well-developed subject, but
there wasn’t any equipment suitable to study objects in sufficiently small microscopic
detail. In 1825, botanist Robert Brown first observed a phenomenon, later called
Brownian motion, which consisted of a chaotic movement of a pollen particle in a
vessel. He could not come up with a model of this system, so just stated that the
behavior is random.

A suitable model for the phenomenon arose only several decades later, in a very
different problem, concerned with the pricing of financial assets traded on a stock
exchange. A French mathematician Louis Bachelier (1870-1946), who aimed to find
a mathematical description of stochastic fluctuations of stock prices, provided a
mathematical model in his thesis “Théorie de la spéculation” [BAC 95], which was
defended at the University of Paris in 1900. The model is, in modern terms, a
stochastic process, which is characterized by the fact that its increments in time, in a
certain statistical sense, are proportional to the square root of the time change; this
“square root” phenomenon had also be observed earlier in physics; Bachelier was the
first to provide a model for it. Loosely speaking, according to Bachelier, the asset
price S; at time ¢ is modeled by

Sy = at + bV,

where a,b are constant coefficients, and & is a random variable having Gaussian
distribution.

The work of Bachelier was undervalued, probably due to the fact that applied
mathematics was virtually absent at the time, as well as concise probability theory.
Bachelier spent his further life teaching in different universities in France and never
returned to the topic of his thesis. It was only brought to the spotlight 50 years after
its publication, after the death of Bachelier. Now, Bachelier is considered a precursor
of mathematical finance, and the principal organization in this subject bears his name:
Bachelier Finance Society.

Other works which furthered understanding towards Brownian motion were made
by prominent physicists, Albert Einstein (1879-1955) and Marian Smoluchowski
(1872-1917). Their articles [EIN 05] and [VON 06] explained the phenomenon of
Brownian motion by thermal motion of atoms and molecules. According to this
theory, the molecules of a gas are constantly moving with different speeds in
different directions. If we put a particle, say of pollen which has a small surface area,
inside the gas, then the forces from impacts with different molecules do not
compensate each other. As a result, this Brownian particle will experience a chaotic
movement with velocity and direction changing approximately 10'* times per
second. This gave a physical explanation to the phenomenon observed by the
botanist. It also turned out that a kinetic theory of thermal motion required a
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stochastic process B;. Einstein and Smoluchowski not only described this stochastic
process, but also found its important probabilistic characteristics.

Only a quarter of a century later, in 1931, Andrey Kolmogorov (1903-1987) laid
the groundwork for probability theory in his pioneering works About the Analytical
Methods of Probability Theory and Foundations of the Theory of Probability [KOL 31,
KOL 77]. This allowed his fellow researcher Aleksandr Khinchin (1894—1859) to give
a definition of stochastic process in his article [KHI 34].

There is an anecdote related to the role of Khinchin in defining a stochastic
process and the origins of the “stochastic” as a synonym for randomness (the original
Greek word means “guessing” and “predicting”). They say that when Khinchin
defined the term “random process”, it did not go well with the Soviet authorities. The
reason is that the notion of random process used by Khinchin contradicted dialectical
materialism (diamat). In diamat, similarly to Democritus’ materialism, all processes
in nature are characterized by totally deterministic development, transformation, etc.,
so the phrase “random process” itself sounded paradoxical. As a result, to avoid dire
consequences (we recall that 1934 was the apogee of Stalin’s Great Terror), Khinchin
had to change the name. After some research, he came up with the term “stochastic”,
from oToxaoTikn TEXYN, the Greek title of Ars Conjectandi, a celebrated book by
Jacob Bernoulli (1655-1705) published in 1713, which contains many classic results.
Being popularized later by William Feller [FEL 49] and Joseph Doob [DOO 53], this
became a standard notion in English and German literature. Perhaps paradoxically, in
Russian literature, the term “stochastic processes” did not live for long. The 1956
Russian translation of Doob’s monograph [DOO 53] of this name was entitled
Probabilistic processes, and now the standard name is random process.

An alternative explanation, given, for example, in [DEL 17], attributes the term
“stochastic” to Ladislaus Wtadystaw Bortkiewicz (1868—1931), Russian economist
and statistician, who in his paper, Die Iterationen [BOR 17], defined the term
“stochastic” as “the investigation of empirical varieties, which is based on probability
theory, and, therefore, on the law of large numbers. But stochastic is not simply
probability theory, but above all probability theory and applications”. This meaning
correlates with the one given in Ars Conjectandi by Jacob Bernoulli, so the true
origin of the term probably is somewhere between these two stories. It is also worth
mentioning that Bortkiewicz is known for proving the Poisson approximation
theorem about the convergence of binomial distributions with small parameters to the
Poisson distribution, which he called the law of small numbers.

This historical discussion would be incomplete without mentioning Paul Lévy
(1886-1971), a French mathematician who made many important contributions to
the theory of stochastic processes. Many objects and theorems now bear his name:
Lévy processes, Lévy-Khinchin representation, Lévy representation, etc. Among
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other things, he wrote the first extensive monograph on the (mathematical model of)
Brownian motion [LEV 65].

Further important progress in probability theory is related to Norbert Wiener
(1894-1964). He was a jack of all trades: a philosopher, a journalist, but the most
important legacy that he left was as a mathematician. In mathematics, his interest was
very broad, from number theory and real analysis, to probability theory and statistics.
Besides many other important contributions, he defined an integral (of a deterministic
function) with respect to the mathematical model of Brownian motion, which now
bears his name: a Wiener process (and the corresponding integral is called a Wiener
integral).

The ideas of Wiener were developed by Kiyoshi Itd (1915-2008), who introduced
an integral of random functions with respect to the Wiener process in [ITO 44]. This
lead to the emergence of a broad field of stochastic analysis, a probabilistic
counterpart to real integro-differential calculus. In particular, he defined stochastic
differential equations (the name is self-explanatory), which allowed us to study
diffusion processes, which are natural generalizations of the Wiener process. As with
Lévy, many objects in stochastic analysis are named after Itd: [It6 integral, Ito
process, Ito representation, Wiener-It6 decomposition, etc.

An important contribution to the theory of stochastic processes and stochastic
differential equations was made by Ukrainian mathematicians losif Gihman
(1918-1985) and more notably by Anatoliy Skorokhod (1930-2011). Their books
[GIH 72, GIK 04a, GIK 04b, GIK 07] are now classical monographs. There are many
things in stochastic analysis named after Skorokhod: Skorokhod integral, Skorokhod
space, Skorokhod representation, etc.

Our book, of course, is not the first book on stochastic processes. They are
described in many other texts, from some of which we have borrowed many ideas
presented here, and we are grateful to their authors for the texts. It is impossible to
mention every single book here, so we cite only few texts of our selection. We
apologize to the authors of many other wonderful texts which we are not able to cite
here.

The extensive treatment of probability theory with all necessary context is
available in the books of P. Billingsley [BIL95], K.-L. Chung [CHU 79],
O. Kallenberg [KAL 02], L. Koralov and Y. Sinai [KORO07], M. Loeve
[LOE 77, LOE 78], D. Williams [WIL 91]. It is also worth mentioning the classic
monograph of P. Billingsley [BIL 99] concerned with different kinds of convergence
concepts in probability theory.

For books which describe the theory of stochastic processes in general, we
recommend that the reader looks at the monograph by J. Doob [DOO 53], the
extensive three-volume monograph by 1. Gikhman and A. Skorokhod
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[GIK 04a, GIK 04b, GIK 07], the textbooks of Z. Brzezniak and T. Zastawniak
[BRZ 99], K.-L. Chung [CHU 79], G. Lawler [LAW 06], S. Resnick [RES 92],
S. Ross [ROS 96], R. Schilling and L. Partzsch [SCH 14], A. Skorokhod [SKO 65],
J. Zabczyk [ZAB 04]. It is also worth mentioning the book by A. Bulinskiy and
A. Shiryaev [BUL 05], from which we borrowed many ideas; unfortunately, it is only
available in Russian. Martingale theory is well presented in the books of R. Liptser
and A. Shiryaev [LIP 89], J. Jacod and A. Shiryaev [JAC 03], L. Rogers and
D. Williams [ROG 00a], and the classic monograph of D. Revuz and M. Yor
[REV 99]. There are many excellent texts related to different aspects of Lévy
processes, including the books of D. Applebaum [APP 09], K. Sato [SAT 13],
W. Schoutens [SCH 03], and the collection [BAR 01].

Stochastic analysis now stands as an independent subject, so there are many
books covering different aspects of it. The books of K.-L. Chung and D. Williams
[CHU 90], I. Karatzas and S. Shreve [KAR 91], H. McKean [MCK 69], J.-F. Le Gall
[LEG 16], L. Rogers and D. Williams [ROG 00b] cover stochastic analysis in
general, and the monograph of P. Protter [PRO 04] goes much deeper into integration
issues. Stochastic differential equations and diffusion processes are the subject of the
best-selling textbook of B. @ksendal [PKS 03], and the monographs of N. Tkeda and
S. Watanabe [IKE 89], K. It6 and H. McKean [ITC) 741, A. Skorokhod [SKO 65], and
D. Strook and S. Varadhan [STR 06]. The ultimate guide to Malliavin calculus is
given by D. Nualart [NUA 06]. Concerning financial applications, stochastic analysis
is presented in the books of T. Bjork [BJO 04], M. Jeanblanc, M. Yor, and
M. Chesney [JEA 09], A. Shiryaev [SHI 99], and S. Shreve [SHR 04].

Different aspects of statistical methods for stochastic processes are covered by the
books of P. Brockwell and R. Davis [BRO 06], C. Heyde [HEY 97], Y. Kutoyants
[KUT 04], G. Seber and A. Lee [SEB 03].

Finally, fractional Brownian motion, one of the main research interests of the
authors of this book, is covered by the books of F. Biagini ef al. [BIA 08], Y. Mishura
[MIS 08], I. Nourdin [NOU 12], D. Nualart [NUA 06], and by lecture notes of
G. Shevchenko [SHE 15].

Our book consists of two parts: the first is concerned with the theory of stochastic
processes and the second with statistical aspects.

In the first chapter, we define the main subjects: stochastic process, trajectory and
finite-dimensional distributions. We discuss the fundamental issues: existence and
construction of a stochastic process, measurability and other essential properties, and
sigma-algebras generated by stochastic processes.

The second chapter is devoted to stochastic processes with independent
increments. A definition is given and simple criteria which provide the existence are
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discussed. We also provide numerous important examples of processes with
independent increments, including Lévy processes, and study their properties.

The third chapter is concerned with a subclass of stochastic processes, arguably
the most important for applications: Gaussian processes. First, we discuss Gaussian
random variables and vectors, and then we give a definition of Gaussian processes.
Furthermore, we give several important examples of Gaussian processes and discuss
their properties. Then, we discuss integration with respect to Gaussian processes and
related topics. Particular attention is given to fractional Brownian motion and Wiener
processes, with discussion of several integral representations of fractional Brownian
motion.

The fourth chapter focuses on some delicate properties of two Gaussian
processes, which are of particular interest for applications: the Wiener process and
fractional Brownian motion. In particular, an explicit construction of the Wiener
process is provided and nowhere differentiability of its trajectories is shown. Having
in mind the question of parameter estimation for stochastic processes, we also
discuss the asymptotic behavior of power variations for the Wiener process and
fractional Brownian motion in this chapter.

In the fifth chapter, we attempted to cover the main topics in the martingale
theory. The main focus is on the discrete time case; however, we also give several
results for stochastic processes. In particular, we discuss the notions of stochastic
basis with filtration and stopping times, limit behavior of martingales, optional
stopping theorem, Doob decomposition, quadratic variations, maximal inequalities
by Doob and Burkholder-Davis-Gundy, and the strong law of large numbers.

The sixth chapter is devoted to properties of trajectories of a stochastic process.
We introduce different notions of continuity as well as important concepts of
separability, indistinguishability and stochastic equivalence, and establish several
sufficient conditions for continuity of trajectories and for absence of discontinuities
of the second kind. To the best of our knowledge, this is the first time that the
different aspects of regularity and continuity are comprehensively discussed and
compared.

The seventh chapter discusses Markov processes. The definition, together with
several important examples, is followed by analytical theory of Markov semigroups.
The chapter is concluded by the investigation of diffusion processes, which serves as
a bridge to stochastic analysis discussed in the following chapters. We provide a
definition and establish important criteria and characterization of diffusion processes.
We pay particular attention to the forward and backward Kolmogorov equations,
which are of great importance for applications.

In the eighth chapter, we give the classical introduction to stochastic integration
theory, which includes the definition and properties of Itd integral, It6 formula,
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multivariate stochastic calculus, maximal inequalities for stochastic integrals,
Girsanov theorem and It6 representation.

The ninth chapter, which closes the theoretical part of the book, is concerned with
stochastic differential equations. We give a definition of stochastic differential
equations and establish the existence and uniqueness of its solution. Several
properties of the solution are established, including integrability, continuous
dependence of the solution on the initial data and on the coefficients of the equation.
Furthermore, we prove that solutions to stochastic differential equations are diffusion
processes and provide a link to partial differential equations, the Feynman-Kac
formula. Finally, we discuss the diffusion model of a financial market, giving notions
of arbitrage, equivalent martingale measure, pricing and hedging of contingent
claims.

The tenth chapter opens the second part of the book, which is devoted to statistical
aspects. It studies the estimation of parameters of stochastic processes in different
scenarios: in a linear regression model with discrete time, in a continuous time linear
model driven by Wiener process, in models with fractional Brownian motions, in a
linear autoregressive model and in homogeneous diffusion models.

In the eleventh chapter, the classic problem of optimal filtering is studied. A
statistical setting is described, then a representation of optimal filter is given as an
integral with respect to an observable process. Finally, the integral Wiener-Hopf
equation is derived, a linear stochastic differential equation for the optimal filter is
derived, and the error of the optimal filter is identified in terms of solution of the
Riccati equation. In the case of constant coefficients, the explicit solutions of these
equations are found.

Aucxiliary results, which are referred to in the book, are collected in Appendices
1 and 2. In Appendix 1, we give essential facts from calculus, measure theory and
theory of operators. Appendix 2 contains important facts from probability theory.
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Stochastic Processes. General
Properties. Trajectories,
Finite-dimensional Distributions

1.1. Definition of a stochastic process

Let (€2, F, P) be a probability space. Here, € is a sample space, i.e. a collection of
all possible outcomes or results of the experiment, and F is a o-field; in other words,
(Q,F) is a measurable space, and P is a probability measure on F. Let (S,X) be
another measurable space with o-field 3, and let us consider the functions defined
on the space (€2, F) and taking their values in (S,X). Recall the notion of random
variable.

DEFINITION 1.1.— A random variable on the probability space (), F) with the values

in the measurable space (S,Y) is a measurable map ) 5 S, i.e. a map for which the
following condition holds: the pre-image £~*(B) of any set B € X belongs to F.
Equivalent forms of this definition are: for any B € 3, we have that

¢H(B) €T,
or, for any B € X, we have that
{w:€&(w) e B} e F.
Consider examples of random variables.
1) The number shown by rolling a fair die. Here,

Q= {W17WQ7W37W4,W5,W6},.F = 2958 = 1a253747576a Y= 28'

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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2) The price of certain assets on a financial market. Here, (€2, ) can depend on
the model of the market, and the space S, as a rule, coincides with R = [0, +00).

3) Coordinates of a moving airplane at some moment of time. People use
different coordinate systems to determine the coordinates of the airplane that has
three coordinates at any time. The coordinates are time dependent and random, to
some extent, because they are under the influence of many factors, some of which are
random. Here, S = R? for the Cartesian system, or S = R? x [0,27] for the
cylindrical system, or S = R x [0, 7] x [0, 27] for the spherical system.

Now, we formalize the notion of a stochastic (random) process, defined on
(Q,F,P). We will treat a random process as a set of random variables. That said,
introduce the parameter set T with elements ¢ : ¢ € T.

DEFINITION 1.2.—  Stochastic process on the probability space (Q,F,P),
parameterized by the set T and taking values in the measurable space (S,X), is a set
of random variables of the form

X ={Xi(w),t € T,w € Q},

where Xi(w) : T x 2 — S.

Thus, each parameter value ¢ € T is associated with the random variable X, taking
its value in S. Sometimes, we call S a phase space. The origin of the term comes
from the physical applications of stochastic processes, rather than from the physical

problems which stimulated the development of the theory of stochastic processes to a
large extent.

Here are other common designations of stochastic processes:
X(t)a f(t)a gta X = {Xtat € T}
The last designation is the best in the sense that it describes the entire process as

a set of the random variables. The definition of a random process can be rewritten as
follows: for any ¢t € T and any set B € X

X YB)e F.
Another form: for any ¢t € T and any set B € X
{w: Xi(w) € B} € F.
In general, the space S can depend on the value of t, S = S, but, in this book,
space S will be fixed for any fixed stochastic process X = {X;,t € T} If S = R,

then the process is called real or real-valued. Additionally, we assume in this case
that ¥ = B(R), i.e. (§,%) = (R, B(R)), where B(S) is a Borel o-field on S. If
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S = C, the process is called complex or complex-valued, and if S = Rd, d > 1,
the process is called vector or vector-valued. In this case, (S,X) = (C,B(C)) and
(S, %) = (R, B(R?)), respectively.

Concerning the parameter set T, as a rule, it is interpreted as a time set. If the time
parameter is continuous, then usually either T = [a, b], or [a, +00) or R. If the time
parameter is discrete, then usually either T=N=1,2,3,...,orT=Z* =NUOor
T =7Z.

The parameter set can be multidimensional, e.g. T = R™ m > 1. In this case,
we call the process a random field. The parameter set can also be mixed, the so-
called time—space set, because we can consider the processes of the form X (¢,z) =
X(t,z,w), where (t,7) € Ry x R% In this case, we interpret ¢ as time and v € R?
as the coordinate in the space R¢.

There can be more involved cases, e.g. it is possible to consider random measures
p(t, A,w), where t € R, A € B(R?), or random processes defined on the groups,
whose origin comes from physics. We will not consider in detail the theory of such
processes.

In what follows, we consider the real-valued parameter, i.e. T C R, so that we can
regard the parameter as time, as described above.

1.2. Trajectories of a stochastic process. Some examples of stochastic
processes

1.2.1. Definition of trajectory and some examples

A stochastic process X = {X;(w),t € T,w € Q} is a function of two variables,
one of them being a time variable ¢ € T and the other one a sample point (elementary
event) w € ). As mentioned earlier, fixing ¢ € T, we get a random variable X;(-). In
contrast, fixing w € € and following the values that X (w) takes as the function of
parameter ¢t € T, we get a trajectory (path, sample path) of the stochastic process. The
trajectory is a function of ¢ € T and, for any ¢, it takes its value in S. Changing the
value of w, we get a set of paths. They are schematically depicted in Figure 1.1.

Let us consider some examples of random processes and draw their trajectories.
First, we recall the concept of independence of random variables.

DEFINITION 1.3.— Random variables {&,,a € A}, where A is some parameter set,
are called mutually independent if for any finite subset of indices {1, ...,ap} C A
and, for any measurable sets A1, . .., Ag, we have that

P{,, € A1,... 60, € A} =TI | P{&,, € Ai}.
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Figure 1.1. Trajectories of a stochastic process. For a color version of
the figure, see www.iste.co.uk/mishura/stochasticprocesses.zip

1.2.1.1. Random walks

A random walk is a process with discrete time, e.g. we can put T = ZT. Let
{&n,m € Z*} be a family of random variables taking values in R¢,d > 1. Put
X, = Y i, &- Stochastic process X = {X,,,n € Z, } is called a random walk in
R, In the case where d = 1, we have a random walk in the real line. In general, the
random variables £; can have arbitrary dependence between them, but the most
developed theory is in the case of random walks with mutually independent and
identically distributed variables {&,,,n € ZT}. If, additionally, any random variable
&, takes only two values a and b with respective probabilities P{{,, = a} = p and
P{&, =b} =q¢=1-p € (0,1), then we have a Bernoulli random walk. If a = —b
andp=q = %, then we have a symmetric Bernoulli random walk. The trajectory of
the random walk consists of individual points, and is shown in Figure 1.2.

1.2.1.2. Renewal process

Let {£,,n € ZT} be a family of random variables taking positive values with
probability 1. Stochastic process N = {N;,t > 0} can be defined by the following
formula:

N, — 0,t <&
P sup{n > 1: 300 & <tht>&.

Stochastic process N = {N, t > 0} is called a renewal process. Trajectories of a
renewal process are step-wise with step 1. The example of the trajectory is represented
in Figure 1.3.
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Figure 1.2. Trajectories of a random walk
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Figure 1.3. Trajectories of a renewal process

Random variables T} = &1,7T» = &1 + &o, . . . are called jump times, arrival times
or renewal times of the renewal process. The latter name comes from the fact that
the renewal processes were considered in applied problems related to moments of
failure and replacement of equipment. Intervals [0,74] and [T}, T;,4+1],m > 1 are
called renewal intervals.

1.2.1.3. Stochastic processes with independent values and those with
independent increments

DEFINITION 1.4.— A stochastic process X = {X,t > 0} is called a process with
independent values if the random variables { X, t > 0} are mutually independent.
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It will be shown later, in Example 6.1, that the trajectories of processes with
independent values are quite irregular and, for this reason, the processes with
independent values are relatively rarely used to model phenomena in nature,
economics, technics, society, etc.

DEFINITION 1.5.— A stochastic process X = {X;,t > 0} is called a process with
independent increments, if, for any set of points 0 < t1 < to < ... < t,, the random
variables X¢,, X, — X4, ..., Xy, — Xy, , are mutually independent.

Here is an example of a random process with discrete time and independent
increments.

Let X = {X,,,n € Z*} be a random walk, X,, = > &, and the random
variables {&;,7 > 0} be mutually independent. Evidently, for any 0 < n; < ng <
... < ny, the random variables

no

ni Tk
Xn1 = Zfl? Xn2 _an = Z Sireros Xnk _Xnk71 - Z &i
=0

i=ni+1 i=np_1+1

are mutually independent; therefore, X is a process with discrete time and independent
increments. Random processes with continuous time and independent increments are
considered in detail in Chapter 2.

1.2.2. Trajectory of a stochastic process as a random element

Let {X;,t € T} be a stochastic process with the values in some set S. Introduce
the notation ST = {y = y(t), ¢t € T} for the family of all functions defined on T
and taking values in S. Another notation can be ST = x;c1S;, with all S; = S or
simply ST = x 75, which emphasizes that any element from ST is created in such
a way that we take all points from T, assigning a point from S to each of them. For
example, we can consider S or SI%T] for any T' > 0. Now, the trajectories of a
random process X belong to the set S™. Thus, considering the trajectories as elements
of the set ST, we get the mapping X : Q — ST, that transforms any element of
into some element of ST. We would like to address the question of the measurability
of this mapping. To this end, we need to find a o-field =T of subsets of ST such that
the mapping X is F-XT-measurable, and this o-field should be the smallest possible.
First, let us prove an auxiliary lemma.

LEMMA 1.1— Let Q and R be two spaces. Assume that Q is equipped with o-field
F, and R is equipped with o-field G, where G is generated by some class K, i.e.
G = o(K). Then, the mapping f : Q — R is F-G-measurable if and only if it is
F-K-measurable, i.e. for any A € K, the pre-image is f ~1(A) € F.
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PROOF.— Necessity is evident. To prove sufficiency, we should check that, in the case
where the pre-images of all sets from K under mapping f belong to F, the pre-images
of all sets from G under mapping f belong to F as well. Introduce the family of sets

Ky={BegG:f!(B)eF}.

The properties of pre-images imply that K is a o-field. Indeed,

fil (U Bn) = Ufil(Bn)e}—a

iff_l(Bn) e F,
FTHCN\Cy) = fF7H(Co) \ f7H(Ch) € F,

if f71(Cy) € F,i=1,2,and f~}(R) = Q € F. It means that K; D o(K) =G,
whence the proof follows. O

Therefore, to characterize the measurability of the trajectories, we must find a
“reasonable” subclass of sets of ST, the inverse images of which belong to F.

DEFINITION 1.6.— Let the point ty € T and the set A C S, A € X be fixed.
Elementary cylinder with base A over point t, is the following set from S™ :

Clto, A) = {y = y(t) € " : y(to) € A}.

If S = R and A is some interval, then C(¢q, A) is represented schematically in
Figure 1.4. Elementary cylinder consists of the functions whose values at point %,
belong to the set A.

Let K,; be the class of elementary cylinders, and K.; = o(K,;), with the o-field
being generated by the elementary cylinders.

THEOREM 1.1~ For any stochastic process X = {Xy,t € T}, the mapping X :
Q — ST, which assigns to any element w € Q) the corresponding trajectory X (-,w),
is F-IKg;-measurable.

PROOF.— According to lemma 1.1, it is sufficient to check that the mapping X is F—
K.;-measurable. Let the set C(ty, A) € K,;. Then, the pre-image X ~1(C(ty, A)) =
{we Q: X(ty,w) € A} € F, and the theorem is proved. O

COROLLARY 1.1.— The o-field K.;, generated by the elementary cylinders, is the

smallest o-field X7 such that for any stochastic process X, the mapping
w s {X4(Q),t € T} is F-XT-measurable.
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Figure 1.4. Trajectories that belong to elementary cylinder.
For a color version of the figure, see
www.iste.co.uk/mishura/stochasticprocesses.zip

1.3. Finite-dimensional distributions of stochastic processes:
consistency conditions

There are two main approaches to characterizing a stochastic process: by the
properties of its trajectories and by some number-valued characteristics, e.g. by
finite-dimensional distributions of the values of the process. Of course, these
approaches are closely related; however, any of them has its own specifics. Now we
shall consider finite-dimensional distributions.

1.3.1. Definition and properties of finite-dimensional distributions

Let X = {X;,t € T} be a stochastic process taking its values in the measurable
space (S, ). For any k > 0, consider the space S (*), that is, a Cartesian product of
S:

SF =8xSx...x8=xk8.
~———
k

Let the o-field ©(*) of measurable sets on S(*) be generated by all products of
measurable sets from 3.

DEFINITION 1.7.— Finite-dimensional distributions of the process X is a family of
probabilities of the form

P={P{(X:,X1,,..., Xs,) € AP} k> 1,t; e T,1 <i <k, A® ¢ 0y,
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REMARK 1.1.—  Often, especially in applied problems, finite-dimensional
distributions are defined as the following probabilities:

P, = {P{th S Al,...,th S Ak},k‘ >1,t;, €T, A, €3,1<i< k‘}
Since we can write
P{X;, € A1,.... Xy, € A} =P{(Xy,,..., Xp,) € X[ 14},

and >< 14, € (%), the following inclusion is evident: P; C P. The inclusion
is strlct because the sets of the form x%_; A do not exhaust £(*) unless k& = 1.
However, below we give a result where checking some properties for P is equivalent
to checking them for P;.

1.3.2. Consistency conditions

Let 7 = {l1,...,l;} be a permutation of the coordinates {1,...,k}, i.e. [; are
distinct indices from 1 to k. Denote for A*) € $(¥) by (A(*)) the set obtained from
A by the corresponding permutation of coordinates, e.g.

k k
T (x5 As) = X A
Denote also m(X¢,,..., Xy, ) = (X, ,..., Xy, ) the respective permutation of
vector coordinates (X, ,..., Xy, ). Consider several consistency conditions which

finite-dimensional distributions of random processes and the corresponding
characteristic functions satisfy.

Consistency conditions (A):

1)Forany 1 < k <[, any points t; € T, 1 < i < [, and any set A(¥) ¢ ¥(¥)
P{(Xtrs oy Xigr Xtprs - r Xpy) € AW x SU=RY
=P{(X,,,..., X, ) e A®}

2) For any permutation 7

P{n(X,,...,X;) € n(A¥)} = P{(Xy,,..., Xy, ) € AP}, [1.1]

REMARK 1.2.— Assume now that S = R and consider the characteristic functions that
correspond to the finite-dimensional distributions of stochastic process X. Denote

V(A1 Aeste, ..o tk) = Eexp ZAXt ,
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Aj € R, t; € T. Evidently, for ¢»(A\1,..., Ag;t1, ..., k), consistency conditions can
be formulated as follows.

Consistency conditions (B):

1) Forany 1 < k <landanypointst; € T,1 <: <[, N\, e R, 1 <<k

w(Ala"w)\k‘an",O;tlv'"atkvtk-‘rla"'atl) :w(Ala"'aAk;tla"'vtk)'
———
-k

2)Forany k> 1,\, e Rjt; e T,1 <<k

’(/)(TF(X),W(%)) = w()\l,...,)\k;tl,...,tk),

wherew(X) = ()\i17"'7>\ik)7ﬂ-(t) = (til,...,tik).

From now on, we assume that S is a metric space with the metric p, and X is a o-
field of Borel sets of S, generated by the metric p. We shall use the notation (S, p, ¥).
Sometimes, we shall omit notations ¥ and p yet assuming that they are fixed. Note
that, for any k > 1, the space S(¥) is a metric space, where the metric p;, on the space
S is defined by the formula

k
p(@y) =Y plwi,vi), [1.2]

i—1
and z = (x1,...,2) € S® y = (y1,...,y1) € S*). Moreover, we can define

the o-field (%) of the Borel sets on S*), generated by the metric pj. (Note that it
coincides with the o-field generated by products of Borel sets from S.)

LEMMA 1.2.— Let the metric space (S,p,X) be separable and let the
finite-dimensional distributions of the process X satisfy the following version of
consistency conditions.

Consistency conditions (A1)

I)Forany 1 < k < [, any points t; € T, 1 < ¢ < [ and any set AR =
xk_| A;, A; € %, the following equality holds

P{X;, € A,.... Xy, € A, Xy, ., €S,..., Xy, €S}
= P{th S Al,...,th S Ak}
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2) For any permutation 7 = (i1, ...,1x),

P{XtH GAil,...,th EAik}:P{th EAl,...,th EAk}

i

Then the finite-dimensional distributions of the process X satisfy consistency
conditions (A), where ©(*) is a o-field of Borel sets of S(*). Therefore, for the
stochastic process with the values in a metric separable space (S,X), consistency
conditions for the families of sets P and P; are fulfilled simultaneously.

PROOF.— The statement follows immediately from theorem A2.2 by noting that both
sides of [1.1] are probability measures, and the sets of the form x%_, A;, A; € X form
a m-system generating the o-field ©(%). g

1.3.3. Cylinder sets and generated c-algebra

DEFINITION 1.8.— Let {t1,...,t;} C T, the set A*) € X.(*)_ Cylinder set with base
A®) over the points {t1, ...t} is the set of the form

Olty, ..t A = {y = y(t) € ST : (y(tr),...,y(ty)) € AP},

REMARK 1.3.— If A®) is a rectangle in S*) of the form A®F) = xk_ | A;, then
C(ty,...,tr, A®)) is the intersection of the corresponding elementary cylinders:

k
=1

Denote by K., the family of all cylinder sets.

LEMMA 1.3.—
1) The family of all cylinder sets K, is an algebra on the space ST.

2) If the set S contains at least two points, and the set T is infinite, then the family
of all cylinder sets is not a o-algebra.

PROOF.— 1) Let C(t},...,th, A®)) and C(¢3,...,t2,, B"™) be two cylinder sets,
possibly with different bases and over different sets of points. We write them as
cylinder sets with different bases but over the same set of points, namely over the set

{t1,..., i} ={ti,..., t. y U{t3, ..., 12 }. Specifically, define projections

pr(xy,...,20) = (x4,t; € {t%,---,tllg}),p2<$1,---,37l) = (x;,t; € {t%,...,t?n}).
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Then
c (t}, . ,t}C,A(’“)) =C (tl, . ,tz,pfl(A(k))) ;
c (tf, . ,tEn,B<m>) =C (tl, . ,tz,pgl(B(m))) 7

so the set

C (t%,-..,t}g,A(k)) ucC (t%,... £2 B(m))

»Ym

= C (ti st (AD) U Ry (B™))
belongs to K, because
it (A®) upy ' (BM) e 5O,
Similarly, the set
c (t}, . ,t,lwA(k)) \C (t%, . ,tfn,B<m))
= O (st (AW \py (B
belongs to K. Finally, for any ¢t € T
8" ={y=y(t) : y(to) € S} € Koy,

whence it follows that the family of cylinder sets K is an algebra on the space ST.

2) Let S contain at least two different points, say, s; and s3, and let T be infinite.
Then T contains a countable set of points {t,,,n > 1}. The set

(U C(t2, {51})> U (U C(tait, {52})>

is not a cylinder set because it cannot be described in terms of any finite set of points
from T. It means that, in this case, the family of cylinder sets K, is not a o-field on
the space S™. 0

Denote by K.,; the o-algebra generated by the family K.,; of cylinder sets:
Kcyl = U(Kcyl)-
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LEMMA 1.4.— Forany k > 1, K.y = K.

PROOF.— Evidently, o-algebra K.; = o(Ko) C Ky = 0(Key), because any
elementary cylinder is a cylinder set. Vice versa, for a fixed subset {t1,...,t;} C T,
define the family

K= {Be s® . C(ty, ... ty, B) eKel}.

This is clearly a o-algebra, which contains sets of the form Ay x - - - x Ay, A; € 3,
and therefore, K = 2(F), Consequently, we have K¢; D K.y, whence K¢ D Ky, as
required. d

1.3.4. Kolmogorov theorem on the construction of a stochastic process
by the family of probability distributions

If some stochastic process is defined, then we know in particular its
finite-dimensional distributions. We can say that a family of finite-dimensional
distributions corresponds to a stochastic process. Consider now the opposite
question. Namely, let us have a family of probability distributions. Is it possible to
construct a probability space and a stochastic process on this space so that the family
of probability distributions is a family of finite-dimensional distributions of the
constructed process? Let us formulate this problem more precisely.

Let (S, p,X) be a metric space with Borel o-field and T be a parameter set, and
consider the family of functions

(P{tl, ot B™Y > 1t €T, 1<i<n, B™ e z<n>) : [1.3]

where (™ is a Borel o-field on S(™). Assume that, for any ty,...,t, € T, the
function P{¢1,...,%,, -} is a probability measure on x),

THEOREM 1.2.— [A.N. Kolmogorov] If (S,X) is a complete separable metric space
with Borel o-field 3, and family [1.3] satisfies consistency conditions (A1), then there
exists a probability space (0, F,P) and stochastic process X = {X;,t € T} on
this space and with the phase space (S,Y), for which [1.3] is the family of its finite-
dimensional distributions.

PROOF.— We divide the proof into several steps. Step 1. At first, recall that according
to lemma 1.2, for the separable metric space (S, p, ¥) conditions (A) and (A1) are
equivalent and continue to deal with the condition (A4). Put @ = ST, F = K.
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Recall also that K.,; = 0 (K1), where Ky, is the algebra of cylinder sets. Let C' be
the arbitrary cylinder set, and let it be represented as

C=0C(ty,... tn, AM).
Construct the following function defined on the sets of Ky;:
P'{C} = P{t1,... t,, AM}.

Note that, generally speaking, the cylinder set C' admits non-unique representation.
In particular, it is possible to rearrange points t1, ..., ¢, and to “turn” the base A("™)
accordingly. Moreover, it is possible to append any finite number of points s1, . .., Sm,
and replace A with A(™ x S(™) However, consistency conditions guarantee that
P’{C} will not change under these transformations; therefore, function P'{-} on K,
is well defined.

Step 2. Now we want to prove that P’{-} is an additive function on K,;. To this
end, consider two disjoint sets

Ci=C (t}7 . J}L,A(”)) and Cy = C (t%, . ,t?n,BW) ,

and let {t1,...,t;} = {ti,...,t1} U {¢3,...,42,}. Defining projection operators

pl(ifl,...,fl,'l) = (l’i,ti € {t},...7t}l}),p2(x1,...,xl) = (xi,ti S {t%,t%n}),
we have

(A e (i, 2, B™)

=C (tl, ot pr HA™) Upgl(B(’”))) .

The bases p; ' (A™)) and p, ! (B(™)) are disjoint, since the sets C; and Cy are, so
it follows from the fact that P{t}, ... t. -} is a measure with respect to the sets A(")
and also from consistency conditions that the following equalities hold:

P{Cl @] CQ} = P{tl, R ,tl,p;1<A(n)) U p;l(B(m))}
=P{t1,....t;,p7 (A"} + P{t1,..., t;,p; {(B™)}
=P{t!, ...t AMDY L P2, 12 B} = P{C} + P{Cy).
Step 3. Now we shall prove that P’ is a countably additive function on K.,;. Let

the sets {C,Cp,n > 1} C K¢y, Cp, N Cy, = 0 for any n # k, and moreover, let
C =, C,.Itis sufficient to prove that

P'{C} = ip’{cn}. [1.4]
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Let us establish [1.4] in the following equivalent form. Denote D,, = U;O:n Ck.
Then Dy D Dy D ..., and (,—, D,, = 0. Besides this, it follows from the additivity
of P’ on K that

n—1

P{C} =Y P{Cy} +P'{Dn}.

Therefore, in order to prove [1.4], it is sufficient to establish that

lim P'{D,} =0.

n—oo

Since the sets D,, do not increase, this limit exists. By contradiction, let

. /
nlgroloP {Dn} =a>0.

Without any loss of generality, we can assume that the set of points, over which
D,, is defined, is growing with n. Let the points be {t,...,t; }, and B, € %(Fn)
be the base of D,,. In other words, let D,, = C(t1,...,tx,, By). Taking into account
the fact that S is a completely separable metric space, we get from theorem A1.1 that
the space S*») is also a completely separable metric space. Therefore, according to
theorem A1.2, there exists a compact set K,, € 2 (k) such that K,, C B,, and

P{t1,...,tg, , B \Kp) <

(0%
2n+1'

Now construct a cylinder set (),, with the base K, over the points ¢1,...,tx, and
consider the intersection G,, = ﬂ?zl Q;. Let M, be the base of the set G,,. The
sets (G, are non-increasing, and their bases M,, are compact. Indeed, the set M, is
an intersection of the bases of the sets ;, 1 < ¢ < n, but in the case where all
of them are presented as the cylinder sets over the points {¢1,...,%x, }. With such
a record, the initial bases K; of the sets @); take the form K, x Skn=ki) and thus
remain closed although perhaps no longer compact, while the set K, is compact. An
intersection of closed sets, one of which is compact, is a compact set as well; therefore,
M, is a compact set. The fact that GG,, are non-increasing means that any element of
Grntp,p > 0 belongs to G,,. Their bases M,, are non-increasing in the sense that, for
any point (y(t1),...,y(tk,,,)) € Myyp, its “beginning” (y(t1),...,y(tr,)) € Mp.
Now let us prove that the sets G, and consequently M,, are non-empty. Indeed, it
follows from the additivity of P’ that

P/{Dn\Gn} = P/{Dn \ ﬂ Qz} =P {U(Dn \Qz)} < ZP/ {Dn \ Qz}

n n o N
<Y PPN Q=3 Pt i BAKF S S0 =S
=t =1 i=1
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It means that P'{G,} > &, whence the sets G,, are non-empty. In turn, it means

that M, # (), and we can choose the points (y%m7 o 7yl(:)) € M,,, and moreover, [,,

is non-decreasing in n. Take the sequence (ygn), . ,yl(:)) and consider its
“beginning” (ygn), ey yl(ln)). As has just been said, the sequence
(ygn), e ,yl(ln)) € M,. Therefore, it contains a convergent subsequence, and then
any sequence {y,(cn), n > 1} for 1 < k < Iy contains a convergent subsequence. Take
(yi"), ... ,yl(:)) € Moy; at once, any “column” {y,(cn), n > 1} for 1 < k < I3 contains
a convergent subsequence. Finally, any “column” {y,(cn), n > 1} for k > 1 contains a

convergent subsequence. Denote by y,(co) the limit of convergent subsequence

{yl(cnj), j > 1}. Applying the diagonal method, we can choose, for any n, a

convergent subsequence of vectors

n; n; N 0 0 0
",y )7---,y;(€,,j)) = ).

Since all the points (y§"1 ) yénj o, y,(cn-')

get that (ygo), e 71‘/1(31)) € M,,. Now, define a function y = y(t) € ST by the formula

n7 ) € M,, and the sets M, are closed, we
y(ty) = y,go), k > 1 and define y(t) in an arbitrary manner in the remaining points
from T. Then arbitrary vector (y(t1),...,y(tk,)) € My; therefore, for any n > 1,
the function y € G, C D,,. This means that ()., D,, # 0, which contradicts to
the construction of sets D,,. It means that the assumption lim,,_, o, P’(D,,) > 0 leads
to the contradiction and so is false. Therefore, P’ is a countably additive function on
Ky, and consequently, P’ is a probability measure on the algebra K.

Step 4. According to the theorem on the extension of the measure from algebra
to generated o-algebra, there exists the unique probability measure P, that is, the
extension of the measure P’ from K, to K.,;. Construct a stochastic process X =
{X¢,t € T} on (2, F,P) in the following way (recall that the elements w € ) are
presented by functions y € ST):

Xi(w) = w(t) = y(1).

We first check that X = {X;,t € T} is indeed a stochastic process. For any set
A € ¥ and for any tg € T, we have that

Xt_ol(A) ={w: Xy, (w) € A}
={y=vy(t) :y(to) € A} = C(to, A) € Keyy C Koy = F.

Further,
P{(Xt17 s ath) € A(k)} = P{<y<tl>7 s >y<tk)) € A(k)}
=P{C(t1,...,tx, AP} = P{C(t1,... tg, A¥)} = P{ty,... 1, AP},
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Therefore, X = {X;,t € T} has the prescribed finite-dimensional distributions.
The theorem is proved. g

In the case where S = R, the Kolmogorov theorem can be formulated as follows.

THEOREM 1.3.— Let a family Y(A1,..., Akst1, ..., t), k > 1A € Rjt; > 0of
characteristic functions satisfy consistency conditions (B). Then there exists a
probability space (Q, F,P) and a real-valued stochastic process X = {X;,t > 0}

for which Eexp{i 35, Xy} =91, At - ).

1.4. Properties of os-algebra generated by cylinder sets. The notion of
o-algebra generated by a stochastic process

Let T = Ry = [0,4+00), (S,X) be a measurable space and X = {X;,t € T}
be an S-valued stochastic process. Consider the standard o-algebra K.,; generated by
cylinder sets, and for any finite or countable set of points, T/ = {¢,,n > 1} C T
forms the algebra K., ({t,,n > 1}) of cylinder sets in the following way: A €
Keyi({tn,n > 1}) if and only if there exists a subset {t,,,...,tn, } C {tn,n > 1}
and B®) € $(*) such that

A=C"(tpys- - tn, BP) ={y T = S: (y(tn,),--.,y(tn,)) € B®Y.

Consider the generated o-algebra K, ({¢,,n > 1}). We shall prove the statement
that describes K.,; in terms of the countable collections of points from T.

LEMMA 1.5.— The set A C ST belongs to Ky if and only if there exists a sequence
of points {t,,n > 1} C T and a set B € K¢y ({tn,n > 1}), such that the following
equality holds:

A=C({tn,n>1},B):={ycS": (y(t,),n > 1) € B}. [1.5]
PROOF.— Let C' be any cylinder set from algebra K.,
C={yeS": (yz),...,y(zm)) € B™ c S},
Then C' admits the representation [1.5] if we consider the arbitrary sequence of
points {t,,,n > 1} such that ¢, = z,,1 <n <mand B = A(B(™). Therefore, if
we denote by K the sets from K,; that admit the representation [1.5], then K.,; C K.

Let us establish now that K is a o-algebra. Indeed, ST € K, because we can take an
arbitrary sequence

T = {t,,n > 1} and B = 8" := x22,8 € K, (T),
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and get that the set ST has a form ST = {y € ST : (y(t,),n>1) € B = ST},
admitting with evidence the representation [1.5]. Further, if A;, A2 € K, they are
defined over the sequences of points T* = {t. n > 1} and T? = {t2,n > 1} and

have the bases B, Bs, correspondingly. Then, we can consider these sets as defined

over the same sequence of points, setting S = {tL,n > 1} U {t2,n > 1} and

introducing the maps p; : y € S — Yl € ST, i = 1,2. Then
A = C(S,pi_l(Bi)), 1 = 1,2. The bases pi_l(Bi), 1 = 1,2, are measurable, since
the maps p;, ¢ = 1,2 are measurable (even continuous in the topology of pointwise
convergence). Therefore,

A\ Ay = C(S,p7 1(B1) \ p; ' (B2)) € K.

Similarly, if {A,,r > 1} C K, and they are defined over the sequences of points
TTO: {tr,n > 1};‘ and bases B,.,r > 1, we can define T° = Uf’;o T" and p, : y €
ST = ylp. € ST, r > 1, s0 that

QAT = C(To,gp;l(&)).

Thus, we have that K is a o-algebra that contains Ky, i.e. K D K.y, but K C
K.y by the definition. It means that K = K,;, whence the proof follows. O

DEFINITION 1.9.— The o-algebra, generated by the process X is the family of sets
FX ={X"YA),A €Ky}

REMARK 1.4.— It follows from the properties of pre-images that for any o-algebra A,
the family of sets {X !, A € A} is a o-algebra; therefore, definition 1.9 is properly
formulated.

LEMMA 1.6.—- F¥X =o{X"1(A),A € K.,i}

PROOF.— Denote ;¥ = {X"1(A),A € K.y} On the one hand, since F¥ is a
o-algebra and 7 contains all pre-images X ~'(A) under mapping A € K.y, then
FX > FiX. On the other hand, consider F;* and note that the mapping X is F;*-
K., i-measurable; therefore, according to lemma 1.1, the mapping X is F;*-Key;-
measurable, i.e. X 1(A4) € F{* for any A € K.y It means that ;¥ O F~, and the
lemma is proved. d

The following fact is a consequence of lemma 1.4.

COROLLARY 1.2.— The o-algebra generated by a stochastic process X is the smallest
o-algebra containing all the sets of the form

{weQ: X(t,w) € Ay, ..., X(tg,w) € A}, A €5,6, €T, 1 <i <k, k> 1.
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Stochastic Processes with
Independent Increments

Throughout this chapter, the phase space S = R or R%. Therefore, we consider
real-valued or vector-valued stochastic processes. Parameter set is assumed to be
T = [0, +00).

2.1. Existence of processes with independent increments in terms of
incremental characteristic functions

Recall that, according to definition 1.5, stochastic process X = {X;,¢ > 0} is a
process with independent increments if for any n > 1 and for any collection of points
0<ty<t;<...<ty,the random variables {X;,, Xy, — X¢y,..., Xt, — X4, 1}
are mutually independent.

Let X = {X;,t > 0} be a real-valued stochastic process with independent
increments. Consider the characteristic function of the increment

o(A;s,t) := Eexp{iA(X; — X5)},0<s<t,AeR.
Evidently, the following equality holds: forany A e R0 <s <u <t

PN s, u)p(Asu,t) = p(A;s, ). [2.1]

Now we shall prove that equality [2.1] characterizes, in some sense, stochastic
processes with independent increments. Recall that the function ¥)(A) : R — Cis a
characteristic function of some random variable if it is continuous with ¢(0) = 1 and
non-negatively definite, that is, forany k¥ > l and any z; € C,\; e R, 1 < j <k,
we have that Z;TZI 2iZpp(Aj — Ar) > 0.

Theory and Statistical Applications of Stochastic Processes,
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© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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THEOREM 2.1.— Let us be given arbitrary characteristic function (), A € R, and
a family of characteristic functions

{p(X;8,1),0 < s <t <o0,\€R},

and let the latter family satisfy equality [2.1]. Then there exists a probability space
(Q, F,P) and a stochastic process X = {X,t > 0} with independent increments on
this space, for which E exp{iAXo} = (\), and Eexp{i\(X: — X5)} = ¢(A; s, 1).
Moreover, all finite-dimensional distributions of such X are uniquely determined by
¥ and .

REMARK 2.1.— Condition [2.1] does not imply in general that increments of a
process are independent; moreover, even two increments X; — X, and X,, — X can
be dependent and still satisfy [2.1]. The above theorem establishes the existence of a
process with independent increments such that the characteristic function of them
satisfies [2.1], but in general there can be other processes with the same incremental
characteristic function.

PROOF.— Let {Y;,¢ > 0} be a process with independent increments, and ¢ (A; s,t) =
Eexp{i\(Y; — Y5)}. Forany 0 < tg < t; < ... < tp, the following equality holds:

(}fto,...,}/tn)tr = A(Y%Oa}/tl - Y%oa"w}/tn - Ytnq)”:

100---0
110---0 _ —

where matrix A = | . . .| -Denote A = (Ag,..., A\n), Y = (Y-, Y2, ),
1---1...1

Z =", Y1, — Yi,..., Yy, =Y, ) and write

Eexp{i(AY:, + MYi, 4+ ... + A\Yi )} = Eexp{i(},Y)}

= Eexp{i(\, AZ'"")} = Eexp{i(A" X", Z)}

=Eexp{i((Ao+ ...+ \)Yo + Ao+ ...+ ) (Yz, — Y0)
+ M+ )Y Y At A (Ye L, — Y L) [22]
T2 (Ye, = Yi, DY =9%Ao+ -+ An)o(Ao + . + Ans 0, t0)
X (A1 4. Ansto, t1) oo @M1 F A tn—1,tn)(An; tno1,tn).

Thus, equality [2.2] is necessary in order for process Y to have independent
increments. Vice versa, if equality [2.2] is satisfied, then the process Y has
independent increments. Now, having the family {@();s,t)} of characteristic
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functions and the initial characteristic function 1, define the characteristic functions
of finite-dimensional distributions by the formula

<p(/\03--~7>\n;t0a---7tn) :w()\0++)\n)<p()\0++)\n707t0)

X 90()\1 —|—+An,t0,t1)(p()\n,tn_1,tn) [23]
Let 0 <t <ty <...<tn,and w(X) = (Xi,...,A;,) be any permutation. For
the respective permutation 7(f) = (t;,,...,t;, ), put Eexp{i(w(\),n(f))} =

Eexp{i(\,%)}. Then the first consistency condition from the couple (B) (section
1.3.2) of the conditions for the characteristic functions is fulfilled. Now verify the
second one. Consider any 1 < k < nandlet0 < ¢y < t; < ... <t < tf <
tk+1 < ... <tn. Then

@(AO,...,kgl,...,/\n;to,...,tk,t’,;,tk+1,...,tn)

=Yoo+ ...+ A)p(ho+ ...+ Ap;0,%0) [2.4]
X AL F -+ Anitortr) 00+ Nt + o+ A b, 1)
X Ayt + oo At thrn) - 0(Anstn1,tn)-

It follows immediately from equality [2.1] that
00+ Agy1 + ...+ )\n;tk,t;;)(p()\k+1 + oo At tet)
= @(Mkt1 + oo+ A ths tr).

Therefore, applying formula [6.7], we get that the right-hand side of [2.4] equals

(A0 -5 Anstoy -y tn)-
If t,, 11 > tp, then ©(0;ty,, tp1) = 1. It means that
©(A0y s Any 050, oty tng1) = V(Ao + ...+ An)
X Ao+ -+ A3 0,t0) (A + ..o+ Ansto, t1) - - oA t—1tn)
X (05t tngr1) = ©(A0s -« s Ans oy e o vy by tng1)-
Thus, the second condition of consistency is fulfilled. Hence, by the Kolmogorov

theorem in the form of theorem 1.3, there exists a probability space (2, 7, P), and a
stochastic process { X¢,t > 0} on this space, satisfying

Eexp{i(AoXt, + ...+ M Xt ) =0(Noy s Anitoy ooy tn).

Then, it follows from [2.2] and [2.3] that X is a process with independent
increments. The theorem is proved. O
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2.2. Wiener process
2.2.1. One-dimensional Wiener process

DEFINITION 2.1.— A real-valued stochastic process W = {Wy,t > 0} is called a
(standard) Wiener process if it satisfies the following three conditions:

1) Wy = 0.
2) The process W has independent increments.

3) Increments Wy — W for any 0 < s < t have the Gaussian distribution with zero
mean and variance t — s. In other words, Wy — W ~ N (0,t — s).

REMARK 2.2.— The Wiener process is often called Brownian motion. Sometimes,
especially in the theory of Markov processes, it is supposed that Brownian motion
starts not from 0, but from some other point x € R.

To prove the correctness of definition 2.1, i.e. to prove that such a process exists,
we apply lemma A2.2.

THEOREM 2.2.— Definition 2.1 is valid in the sense that the Wiener process does exist.
PROOF.— According to theorem 2.1, it is sufficient to prove that the family ¢ (A; s, t)

of characteristic functions of the introduced process satisfies condition [2.1]. To this
end, note that according to lemma A2.2,

o(\; s, t) = Eexp{iA(W; — W)} = e N (t=9)/2,
Therefore,
(A s, u)p(Nu,t) = e (Wm9)/2g= N (t-u)/2 — =N (t=8)/2 - o(A; s, )
forany 0 < s < u < tand A € R, whence the proof follows. O

Evidently, for any ¢ > 0, EW, = 0. Calculate the covariance function:

COV(W57 Wt) =EWW; = EWn:Wsve
=EWni(Weve — Wone) +EWZ, =EWZ,, = sAt.

2.2.2. Independent stochastic processes. Multidimensional Wiener
process

Recall the definition of independent collections of sets.
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DEFINITION 2.2.— Collections of events A;, 1 < i < n, are called independent if for
any A; € A;, 1 <1< n, the events Ay, As, ..., A, are independent.

Let X* = {X},t € T}, 1 < i < n, be stochastic processes taking values in
measurable spaces (S;,Y;). They generate o-fields F¢, as described in section 1.4.

We apply definition 2.2 to define independent stochastic processes.

DEFINITION 2.3.— The stochastic processes X;, 1 < 1 < n, are independent if the
generated o-fields F*, 1 < i < n, are independent.

Recall that a class of sets P is called a m-system if it is closed under intersection,
ie.forany A, BeP,ANB € P.

LEMMA 2.1.— Let o-fields A;, 1 < i < n, be generated by w-systems P;, 1 < i <mn,
correspondingly. Then the o-fields A;, 1 < i < n, are independent if and only if P;,

1 <1 < n, are independent.

PROOF.— It is enough to show that forany 4; € A;,1 <i < n,

P{ﬁAi} = ﬁP{AZ«}. [2.5]

Indeed, in that case for any B; € A;, 1 < i < n,andany I = {iy,...,ix} C
{1,...,k}, wecantake A; = B;,i € I,and A; = Q, i ¢ I, to get

P{ﬂ&} :P{ﬂf“} ~IPtas = [TPin.
iel i€l i=1 i€l
which implies the mutual independence of B;, 1 <17 < n.
In turn, equation [2.5] would follow from
P{ﬂAi} = P{A,;}P {ﬂAZ} VAL €A, Ay €Ps, .. Ay €P,  [2.6]
i=1 i=2

by applying an inductive argument. For fixed A, € Ps,..., A, € P, such that
P {N, A;} # 0, consider the measure

P {4} =P {A1 ﬁAl} _ PN A A €A

- P{NL A



26  Theory and Statistical Applications of Stochastic Processes

This is a probability measure, which coincides with P on P;. Since P; is a
m-system, by theorem A2.2, we get [2.6] in the case where P {(!_, A;} # 0; the
equality is evident whenever P {(._, A;} = 0. Using the aforementioned inductive
argument, we arrive at the statement. O

LEMMA 2.2.— The stochastic processes X', 1 < i < n, are independent if and only
ifforanym > 1, {t1,...,ty} C Tandsets B;j € ¥, 1 <i<n, 1< j <m, the
events {X € Bi1,... ,XZ € Bzm} 1 <1 < n, are independent.

PROOF.— Consider the classes
P; = {{thl € Al,...,Xtik S Ak} ‘ k> 1,{t1,...7tk~} C T,Al,...,Ak S Ez}

for i = 1,...,n. These are obviously m-systems. Moreover, they are independent by
assumption. Indeed, for any P; € P;, 1 < i < n, we can write

P={X} €Al X, €A} ={X] €Bu,. . X

tm

€ Bim} )

where {tl,...,tm} = U?:l {tll,,tfcb}, Bij = A; if tj = t; and Bij = Sz
otherwise.

Therefore, by lemma 2.1, the o-fields A; = o(P;), 1 < i < n, are independent.
Since A; = F* thanks to corollary 1.2, we get the claim. U

Now, let T = R and (S, %) = (R, B(R)).
DEFINITION 2.4~ Let (2, F,P) be a probability space, and let m independent

real-valued Wiener processes {W;(t),t > 0,1 < i < m} be defined on (Q, F,P).
Multidimensional Wiener process is a vector process

W(t) = (Wi(t), Wa(t), ..., W (1)), t > 0.
Evidently, vector of expectations is a zero one,
EW(t) = (EW;(t), ..., EW,, (1)) =0,

and the matrix of covariations has a form Cov(W (t), W (s)) = (t A s) Ey, where E,,
is the identity matrix of size m. For any set A € B(R™)

P{W(t) € A} = (27rt)m/2/Aexp{|x|2}dx,

2t

where |z| = (X%, @ )1/2 dr =dxq - day,
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2.3. Poisson process

There exist at least three different approaches on how to introduce the Poisson
process. The first approach is based on the characterization theorem for the processes
with independent increments and gives a general definition of the (possibly
non-homogeneous) Poisson process with variable intensity. The other two define the
homogeneous Poisson process with constant intensity. Namely, the second approach
determines the Poisson process through the transition probabilities, and this approach
has rich generalizations for processes of other kinds, whereas the third one
determines the Poisson process in a certain sense in a trajectory way, as the renewal
process. In principle, the second and third approaches lead to the same process,
although from different points of view. These three approaches are considered below.

2.3.1. Poisson process defined via the existence theorem

Let m be a o-finite measure on the o-field B(R) of Borel subsets of R, =
[0, 4+00), such that for any interval (s,¢] C Ry, m((s,¢]) € (0, 00).

DEFINITION 2.5.— A stochastic process N = {N,t > 0} is called a Poisson process
with intensity measure m, if it satisfies three conditions:

1) Ny = 0.
2) N is a process with independent increments.

3) The increments Ny — Ny for 0 < s < t have a Poisson distribution with
parameter m((s, t]).

To prove the validity of definition 2.5, we apply lemma A2.4.

THEOREM 2.3.— Definition 2.5 is valid in the sense that the Poisson process does
exist.

PROOF.— According to theorem 2.1, it is sufficient to establish that the family of
characteristic functions ¢(\; s, t) satisfies the condition [2.1]. However, according to
lemma A2.4,

©(A;s,t) = Eexp{iA(N; — Ny)} = em((s’t])(eikil),
therefore,
o\ s, 0) (N u, t) = em((suDE? 1) gm((wt)(e ~1)
= (&= = (x5 )

forany 0 < s < u < tand A € R, whence the proof follows. O
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REMARK 2.3.— If m((s,t]) = A(t — s), i.e. the measure m is proportional to the
Lebesgue measure in the real line, then the Poisson process with such intensity
measure is called the homogeneous Poisson process with intensity \. Otherwise, the
Poisson process is called inhomogeneous. Note also that the phase space of the
Poisson process coincides with ZT.

2.3.2. Poisson process defined via the distributions of the increments

Now our goal is to characterize the homogeneous Poisson process relying on the
asymptotic behavior of its so-called transition probabilities on the vanishing time
interval. For more detail on the notion of transition probabilities, see Chapter 7.

THEOREM 2.4.— Let N = {Ny,t > 0} be a process with independent increments,
No = 0, and N take non-negative integer values. Moreover, assume that, for 0 <
s <t

P{N; — Ny =1} = A\t — s5) + o(t — s),

P{N; = N; =0} =1-= X\t —35)+o(t —s),

and
P{N; — Ns > 1} =o(t — s)

ast — s+, where X\ > 0 is a given number. Then {Ny,t > 0} is a homogeneous
Poisson process with intensity \.

REMARK 2.4.— Itis clear that the third assumption of the above theorem follows from
the first and second assumptions.

PROOF.— Denote p(s,t,k) = P{N; — Ny = k}, k € Z*. It follows from the
independence of increments and the law of total probability that, for 0 < As <t — s,
we have that

(s,6,0) = p(s,s + As,0)p(s + As, t,0) = (1 — AAS)p(s + As, t,0) + o(As).

The latter equality implies right-continuity of p(s,t¢,0) in s (left-continuity is
established similarly) and leads to the equation

dp(s,t,0)

95 = Ap(s,t,0).
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The equation for the left-hand derivative has the same form, whence p(s,¢,0) =
Cie®. Since p(t,t,0) = 1 fort = s, C; = e, and

p(s,t,0) =P{N, — N, = 0} = e 2=%),

Further, for any £ > 1,

p(s,t, k) = p(s,s + As,0)p(s + As, t, k)
+p(s,s+ As,1)p(s+ As,t, k — 1) + o(As) [2.7]
as As — 0+. It follows from equality [2.7] and the theorem’s conditions that p(s, ¢, k)

is continuous from the right in s. Continuity from the left is established similarly. Now,
by substituting the value of p(s, s + As, k), k > 0 from the theorem’s conditions into

[2.7], we get that

p(s,t, k) = (1 — MAs)p(s + As, t, k) + Msp(s + As, t,k — 1) + o(As),

or

p(S,t, k) *p(S + AS,t, k)

_— A
As Ap(s+ As,t, k)

O(AS)'

As [2.8]

+Ap(s+ As, t,k—1)+

Taking into account the continuity of p(s,t, k) in s, we get that, for As — 0+,
equality

_%@57’:% = —Ap(s,t, k) + Ap(s, b,k — 1)

holds, and the equation for the left-hand derivative will be the same. Hence,

op(s,t, k
% Ap(s,t, k) — Ap(s,t, k — 1).
s
Now, for k = 1, we have that (Stl) = Ap(s,t,1) — Ae %) whence
p(s,t,1) = e M=\t — 5). In order to apply induction, we assume that
k—1

p(s,t,k—1) = e*A(t*S)%, and get the equation

p(s,t, k) Ao~ A=) (At —s) !

= Mp(s,t, k) —

ds (k- 1)
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It follows that p(s,t, k) = e‘A(t_S)W, and the step of induction implies
that

Cat—s) At = )"
P{N, — N, = k} = e )T'

The theorem is proved. g

REMARK 2.5— It will be shown in the following section that a Poisson process
satisfies the assumptions of theorem 2.4.

2.3.3. Poisson process as a renewal process

Now, let N = {N, ¢ > 0} be a homogeneous Poisson process with parameter
A. It has non-negative integer-valued increments. Generally speaking, the trajectories
of this process can be ill-behaved, but there is a version of the process which has
trajectories continuous from the right with limits from the left; more detail is available
in Chapter 6. Below we will consider this version. Consider the Poisson process as a
renewal process. Let {7;,7 > 1} be a sequence of independent random variables, each
of which has exponential distribution with parameter A > 0, so

1—e >0,

P{r;, <z} = {0 P [2.9]

Let us construct the following renewal process:

t
Nt [2.10]
supfn>1:> " 7 <t} t>m.

It is easy to see that N has jumps of size 1 at the points T}, = > 1" | 7, n > 1,
called arrival times; the variables 7,,, n > 1, are called inter-arrival times.

THEOREM 2.5.— The stochastic process, constructed by formulas [2.9] and [2.10], is
a homogeneous Poisson process with parameter \.

PROOF.— It is necessary to prove that the process IV; has independent increments, and
that, forany £ > 0and 0 < s < ¢,

a(t—sg) (At —s k
P{N; — N, =k} = e YAt =9 o g

We divide the proof into several steps.
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Step 1. Prove by induction that, for all z > O and & > 1,

k k-1 ()i
P{Zn>x} :e_’\””ZT. [2.11]
=1 1=0 '

Evidently, equality [2.11] holds for k¥ = 1, since P{r; > z} = ™, = > 0,
according to [2.9]. Assuming that [2.11] holds for & = n, for K = n + 1, we have the
relations

n+1 n n n
P{Zn >x} :P{Zn >$}+P{Z7'i <X, Thi1 >x_ZTi}
=1 i=1 i=1 i=1

[2.12]

n—1 P T
_ AT ()‘x)7
=e E a +/0 P (WP{T41 > & — uldu,

=0

where pj, (u) is the probability density function of ) ;" | 7,. However, since, for k = n,
the equality [2.11] holds,

n—1 i n—2 iyir n—1
palu) = re e 3" )’ -xe Yy - AZ,, = Aem%. [2.13]
i=0 i=0 ’ T

Now return to [2.12]:

n—1 i T _ n i
-z (Ax)l / —Au ()\u)n ! —A(z—u) _ Az (Ax)l
e iEZO = + ; Ae 7(71 ~ ) e du=e ;:O T

i.e. [2.11] holds for k =n + 1,so forall £ > 1.

Step 2. Let us find the distribution of N;. For any £ > 1, according to [2.13], we
have that

k k+1 k k
P{N, =k} =P {Zn <ty mi> t} = P{Zﬂ' = 6Ty > tzﬂ}
i1 i=1 i=1 =1

t ¢ Ax)k—1 (At)F
— [ pu(@)P oldr — e Q) ey gy e AT
A pr(x)P{mp41 >t — a}dx /0 e =1 e de=e o

Finally, for k = 0, P{N; = 0} = P{r; >t} = ™.
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Step 3. Calculate the probability P{N; — N, = k, Ny = [}, where 0 < s < t,k >
1,1 > 1. Evidently, it follows from the 1ndependency of 7; that for k > 2

P{N,— N, =k N, =1} =P{N, =k+1,N, =1}

141 k+1 k4141
— {anss<2ﬂ§t2ﬂ§t Z 7'7>t}
l l l
:P{ZTz‘§575—ZTi<Tl+1§t_ZTia
i=1 i=1 i=1

k+1 k+1
Z T <t—ZT1—Tl+1,Tk+l+1 >t—ZTZ—Tl+1 Z Ti} [2.14]
=142 =142
s A -1 t—u t—u—x A k—2
— / )\e—ku( ’LL) / )\e—k$ / )\e—/\z ( Z) e—k(t—u—:v—z)dz dr du
0 l— 1)' s—u 0 (k - 2)'

(
_ So(Qw)tt o (t—u— xRt
R >/H'“Wd”“

(
_e [0 =9t e QN )
= [ e ~

e

I—1)! ! - Il !

Now, let £ = 1. Then

P{N, - N,=1,N, =1} =P{N, =1+1,N, =1}

+1
_P{ZT,<Ss<zn<tn+2>t—zn—n+l} [2.15]

s A -1 t—u i o]
:/ )\e_’\“( u) / )\e_’\“‘/ e dzdx du
0 (l - 1)' s—u t—u—zx

l
—\s (/\;) ef)\(tfs))\(t _ S).

=€

Similar to equations [2.14] and [2.15], we can establish this formula for
min(k, 1) = 0, whence the proof follows.
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Step 4. Further calculations are performed taking into account [2.14]:

P{N; — No=k} =) P{N;— N, =k, N, =1}
=0

B S PRVIES P L

il k! N k! [2.16]

=0

Comparing [2.14] with [2.16], we see that the increments N; — N and N, — Ny are
independent. Independence of arbitrary finite families of increments can be proved in a
similar way. Formula [2.16] justifies that the increments have the Poisson distribution.
The theorem is proved. O

2.4. Compound Poisson process

Let {7;,i > 1} be a sequence of independent identically distributed random
variables (in what follows, we shall use the abbreviated notation iid rv or iid random
variables), N = {N;,t > 0} be a Poisson process with independent measure
m = m((s,t]) for 0 < s < t, and let the process N not depend on {7;,7 > 1}. Since
N takes its values in Z1, we can form a sum

N,
X = Z &
=1

As usual, we put Z(i):l = 0. Process X is called a compound Poisson process

with intensity measure m = m((s,t]) and generating random variables {&;,i > 1}.
It can also be represented in the following form. Let {7;,% > 1} be the lengths of the
intervals between subsequent jumps of the Poisson process (77 is the moment of the
first jump). Then the Poisson process itself can be represented as N; = Z?; 17, <t
and the compound Poisson process, in turn, can be represented as

X = Z &l <t
i1

Denote ¢(\) = Eexp{iA&}, A € R. If we denote the cumulative distribution
function of §; by v = v/(dz), then the characteristic function can be written as ¢(\) =
J € v (dx).

THEOREM 2.6.— The characteristic function of the increments of the compound
Poisson process has a form

Y(Ass,t) = exp{m((s,t])(¥(N) — 1)}
= exp {m((s.1) /R(em ~ ()} 2.17]
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In particular, the compound Poisson process is a process with independent
increments.

PROOF.— Taking into account the independence of &; and IV, we get

P(A;s,t) = Eexp{iA(X: — X))} =E | exp {z/\( % @) }]th>Ns

J=Ns+1
00 ) l
PN =N} =3 > Bep{i( D0 &) PAN, =k, N =1} + (D)
k=01=k+1 G=k+1
oo [ee]
=3 3 W) PN, =k, Ny — N, =1 — k} + ™1
k=01l=k+1

(’L/)(/\))l_k (m(<2a'3}))k e—m([O,s)) (mgs_,t;c);l_k e—m((s,t]) + em((s,t])

I
(]
(]

The theorem is proved. d

REMARK 2.6.— The compound Poisson process has a lot of practical applications. It
can be used as a model for accumulated claims of insurance companies, total revenues
in the queuing theory, etc.

2.5. Lévy processes
Consider now processes with independent increments that contain both the Wiener
and the Poisson components. Let the process under consideration be real-valued. Let

us fix two numbers, ¢ € R and ¢ > 0, and a measure v on the Borel o-field B(R),
such that v({0}) = 0 and

/(1 Ay v(dy) < oo.
R
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DEFINITION 2.6.— Stochastic process X = {Xy,t > 0} is called a Lévy process
with characteristics (a, o, v) if it satisfies the following three conditions:

1) Xy =0.

2) X is a process with independent increments.

3) For any 0 < s < t, the characteristic function of the increment X; — X has a
form

o(A;s,t) = Eexp{i\N(X; — X))} = elt=9)v(N) [2.18]

where the function 1 = 1p(\) has a form

. 1 ; .
Y(N) = ia\ — 50%2 + /R(e M — 1 — idylocpy <1)v(dy). [2.19]

It immediately follows from equality [2.18] that

e(Ais,u)p(Asu,t) = (A s, t).

It means that such a process with independent increments does exist and is
homogeneous in the sense that ¢(\;s,t) depends only on the difference ¢t — s. If
s = 0, it follows from [2.18] that

Eexp{iAX,} = e!¥®)

where 1()) is defined by the formula [2.19]. The function () is called characteristic
exponent of the Lévy process.

REMARK 2.7.— It turns out that any process with homogeneous independent
increments is a Lévy process in the sense of the definition given above, i.e. the
characteristic function of its increments has necessarily the form [2.19], called the
Lévy—Khintchine representation. For more detail on this topic, see e.g. [SAT 13].

Note also that in the case where ¢ = 0 and [, (|z| A 1)v(dx) < oo, trajectories of
the Lévy process a.s. have a bounded variation on any finite interval. If additionally the
Lévy measure is concentrated on R, and a > 0, the trajectories of the corresponding
Lévy process are a.s. non-decreasing. In the latter case, the Lévy process is called a
subordinator.

Consider some particular examples of Lévy processes.



36 Theory and Statistical Applications of Stochastic Processes

2.5.1. Wiener process with a drift

Letv = 0,a # 0,0 > 0. Then ¢(\) = iaX\ — 3%\, and in turn, it follows that
Eexp{iAX,} = e'(i9A=37">*) Comparing with [A2.1], we see that X; has Gaussian
distribution with mean at and variance ot. Taking into account that X is a process
with independent increments, we get that X can be represented via a Wiener process
as X; = at+ oW,. Such a process is called a Wiener process with the drift coefficient
a and diffusion (volatility) coefficient o. Since the Wiener process is symmetric in the
sense that —WV is also a Wiener process, it is natural to restrict the coefficient o to
positive values, which implies that there is no sense in considering negative values of
.

2.5.2. Compound Poisson process as a Lévy process

Let 0 = 0 and measure v to be not identically zero. If additionally the measure v
is finite, ie. v(R) < oo, then both integrals [p(e*Y — 1)v(dy) and
Jr iAyL{0<|y|<13v(dy) are finite, and ¥(\) can be represented in a form

B(A) = iah — iA / ylo<iy<1(dy) + / (™ — 1)u(dy).

If we assume additionally that a = [, yLo<|y|<1¥(dy), then

PY(A) = /R(eiAy — Dr(dy) = v(R) /R(eMy —1) YR [2.20]

Comparing formula [2.20] with [2.17], we see that X is a compound Poisson
process with intensity measure m((s,t]) = v(R)(t — s) and generating random
variables {&;,4 > 1} whose distribution is described by P{{;, < z} =

v((=o0, z])/v(R).

2.5.3. Sum of a Wiener process with a drift and a Poisson process

Now, let a = o = 0, the measure v be concentrated at the point 1 and
v({1}) = v > 0. Then ¥)()\) = ~(e** — 1) and we get the characteristic function of
the form ¢(\;s.t) = =¥V = e1(t=5)(€=1) that is. a characteristic function
of the increment of a Poisson process N with intensity ~y. Further, if a # 0, ¢ > 0,
the measure v is concentrated at the point 1 and v(1) = ~ > 0, then
¥(A) = iaX — 2022% 4+ y(e"* — 1), and the process X is a sum of two independent
processes: a Wiener process with a drift, at + oW, and a Poisson process N with
intensity ~y:

Xt :at+aWt+Nt.
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2.5.4. Gamma process

Recall that the density function of Gamma distribution with parameters o > 0 and
B > 0 has a form

e

faplx) = Fﬁ(a)xal exp{—pz}, = >0.

The characteristic function has a form

)\ —
wsN) = (1-2) .
Pa.8(A) (1 B)
a(l—e P)

Consider the Lévy process with a = —F 0= 0 and

v(dr) = e P21, od. [2.21]

Such Lévy process is called a Gamma process; since the measure v is concentrated
on the positive half-line, it is a subordinator. Its characteristic exponent equals

PY(A) = da\ + /R (ei)‘y —1—1i\y ]10<‘y‘<1) v(dy)

ia\(1 — e P)
B

oo
+ a/ (e“‘y —1—i\y ]10<y<1) e PYy~ldy
0

= a/ (e”‘y — 1) e Py 1dy.
0
Therefore, for the Gamma process, we can put a« = 0, ¢ = 0 and
P(A) = [37 (e* — 1) v(dz) with v(dz) defined in [2.21].
2.5.5. Stable Lévy motion

For a € (0,2), a Lévy process is called a (standard) symmetric a-stable Lévy
motion if

Ee?Mt = eftl)“a, t>0.

This is a generalization of the Wiener process (which, up to a constant, corresponds
to oo = 2) with heavy tails of distribution: its variance is infinite for any o € (0, 2),
and the expectation is infinite for « € (0, 1.
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2.5.6. Stable Lévy subordinator with stability parameter o € (0,1)

For o € (0,1), a subordinator X with Lévy measure v(dx) = ﬁx_a_l,

x> 0is called a stable process with stability parameter «.. The characteristic exponent
equals 1o (A) = [~ (€Y — 1)u(dy).

REMARK 2.8.— For more detail concerning Lévy processes, see e.g. books [BAR 01,
SAT 13, SCH 03].
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Gaussian Processes. Integration with
Respect to Gaussian Processes

3.1. Gaussian vectors
Letm > 1,letand £ = (&1,. .., &) be arandom vector.

DEFINITION 3.1.— Vector £ is called Gaussian if there exists a non-random vector
a=(ay,...,an) € R™ and a non-negatively definite symmetric non-random matrix
C = {cir}5_, such that, for any vector X = (\1,..., A\p,) € R™,

(o, A)} , [3.1]

¢eM) = EBexp (i(R9)} = exp {ilR.0) - 5

where (7,9) = 37", 2;y; stands for the inner product in R™.
LEMMA 3.1.-

i) Coefficients in the representation [3.1] equal
a; = B¢ and cjp = Cov(§;, &) = E(§; — a;) (& — ar).
ii) Let det C' # 0. Then the coordinates of vector £ — @ are linearly independent.

In this case, the distribution of the vector & is non-degenerate, supp & = R™, i.e. the
distribution of & has strictly positive density on R™, and this density equals

pz(T) = (27) "% (det C) 2 exp {—(C~ (@ —7), T —a)}, [3.2]
where C~1 is the inverse matrix to C.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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iii) Let det C' = 0. Then coordinates of ¢ — @ are linearly dependent, the number of
linearly independent coordinates equals my := rank C' < m and the distribution of
the vector £ is concentrated on R™1.

PROOF.— i) On the one hand, differentiate QDE(X):

(ax75)

On the other hand, it follows from the properties of the characteristic functions
that

B =1a;.
A=0

aiexp{ (\a) - ;(0)‘7’\)}

A=0

4 Eexp{ )\5}

o\ = G,

A=0

whence a; = E¢;. Similarly, differentiating in A; and Ay, we get that

(<)

and, at the same time,

(8/\?;)\kEexp {i(3, 5)})

whence ¢, = E&;&, — ajar = Cov(§;, & ).

T Tajak — Cik,
A=0

= —E§&,
X=0

ii) Let det C' # 0 (which means that det C' > 0). Then the rows of matrix C' are
linearly independent, i.e. if Z;cn:l Brer = 0,1 <1 <m,then 8, = 0,1 <k <m.
Assume that coordinates (§;—ay, . . ., &n—ay, ) are linearly dependent, i.e. there exists
vector B = (B4, 1 < k < m), notidentically zero, and such that ;" B, (& —ax) =
0. Then, forany 1 < < m,

<Z/Bk5k—ak fl—az> Z/Bkclk—o
k=1

and we get a contradiction. Therefore, coordinates ({1 — a1, . . . , &y — Gy, ) are linearly
independent.

In order to prove that the density of non-degenerate distribution has a form [3.2],
it is sufficient to establish that, for any A € R™,
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or, equivalently, to establish that

om) F et 0)F [ AP E D gy

= exp {i()\, a) — E(CX, )\)} : [3.3]

Matrix C' is symmetric and non-negatively definite. Then it follows from matrix
theory that there exists an orthogonal matrix B, i.e. BB' = E (unit matrix) and such
dy -+ 0
that B¥CB = D, where D is a diagonal matrix of the form D = : oo
0 - dp
di >0,1 <j <m.SincedetC # 0,thend; > 0,1 < j < m. Changing the
variables in the left-hand side of [3.3], T — @ = By, and putting A = B, we get,
taking into account that C~1 = (C~1)tr:

1

J = (2m) 7% (det ©)” 5/ ¢i(BR:+BY) —3(C ™" BY.BY) g

= (2m)7 % (det C) i a)/ ei(Bﬁ)tngfé(C’_lBﬁ)“B?dy

17r T —1\tr p— —
BT (C)" By} dy

= (2m)" % (det C)~2/OD /m exp {i(u,y) ~ 3

— )% @t 0) 5™ [ exp{iry) - JytBC By} an

Calculate B*C~1'B. Let B¥C~'B = X. Then C~'B = BX, C~! = BXB",
whence CBXBY = E, or BP"CBXB"Y" = B"Y, whence DXB" = BY or
DX = E.Finally, X = D!, Therefore,

2

= (2m) "% (det C) 7 i(i’a)/, eXP{ Zﬂkyk—*zd_ }

7= ()@ )20 [ ey i) - 5507}y
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Note that det C' = det D = [, dj. Therefore,
m 1 _ m m

_ (27.‘_)—% H d;ﬁei(kﬁ) H / ei)\uk,yk—%dglyidy _ H eikka,
k=1 k=1"R k=1

= exp {i()\, a) —

= exp {i(/\, a) —

242

— 1
”Du} = exp {i()\,a) - QﬂtTBtrCBﬂ}

(O, )\)}

l\DM—l [\3\»—\

iii) If det C' = 0, then the rows of matrix C are linearly dependent, so that there
exist B, 1 < 1 < msuch that 8 = (B1,...,Bn) # 0, and Y ;" Bicy, = 0 for
1 < k < m, whence

2
Z BiBrCov (&, &) = (Z Bi& — ar > =0.

k=1

This means that Y, | 3;(& — a;) = 0 with 8 # 0, and coordinates of £ — @ are
linearly dependent. These reasons clearly demonstrate that the number m; of linearly
independent coordinates equals rank C and other coordinates are linear combinations
of linearly independent ones, and so the distribution of £ is concentrated on some
m1-dimensional subspace. U

REMARK 3.1.— Recall that the coordinates of a Gaussian vector are independent (in
standard sense, as the random variables), if and only if they are non-correlated. If
some subsets of coordinates of a random vector are Gaussian, it does not mean that
the vector itself is Gaussian.

3.2. Theorem of Gaussian representation (theorem on normal
correlation)

Consider a Gaussian vector (£,&1,...,&,). Introduce the o-field

fnzg{flv"'vfn}'

THEOREM 3.1.— Theorem on normal correlation. There exist constants d and d;,
1 <35 < nsuch that

E(¢|Fn) = Zd & +d.

The values of the constants will be specified in the proof of the theorem.
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PROOF.— Denote m = E{ m; = Eg, E = ¢ — m and EJ = & — my,
Cjk = Eé;é; = Cov(&;,6k). ¢; = Egg] = Cov(§, ;). Without loss of generality, we
can assume that {{1,...,&,} are linearly independent. Indeed, let {&1,...,&,/} be
linearly independent and {&,/41,...,&,} be the linear combinations of
{€1,...,&w). Then F,, = Fu. If we get that E(¢]Fy) = Y, dj€; + d, then
E(¢|F,) = >5_, dj& +d, with dyryy = -+ - = d,, = 0. Therefore, let {&1, ..., &0}
be linearly independent. In this case, according to lemma 3.1, det C' # 0, where
C= {cjk}?_kzl is a covariance matrix. Now, let us find constants {1, . .., a;,} such

that the centered random variable E — Z?:l ajgj and any of é; become orthogonal:

E<g_zargr>gjzoy 1<j5<n.
r=1

The latter system of equations is equivalent to the following one:

n
cj—Zoz,.cjr:O, 1<53<n.

r=1

This system of m linear equations has a non-zero determinant which equals

det C; therefore, it has the unique solution «,. = ‘if;t%, where C,. can be obtained
by replacing in C' rth column with (Ci,...,Cp)". Now, & — >0 a;&; is
independent with the vector (21, . ,En) because it follows from orthogonality that,

for any (A, A1,..., \n),

Eexp ¢ i\ g—Zajgj —H’Z)\jgj
j=1
2

1 ~ ~ 1 &
= exp —5/\2E f—Zajgj — 5 Z )\j)\kcjk

j=1 jk=1

= FEexp < i\ g—Zajgj Eexp iz/\jgj
j=1
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Finally, we get

B(E|F) =BEF) +m=E| =3 a;§| Fu | + > a;& +m

j=1 j=1
=E|&-) a6 |+ ai§+m
j=1 =1
=Y G +m =Y & +m+ Yy am;.
j=1 j=1 =1
Therefore, d = m + Z?Zl aym; and dj = a; = %%j, and the theorem is
proved. g

3.3. Gaussian processes
Let X = {X,,t € T} be a real-valued stochastic process.

DEFINITION 3.2.— Stochastic process X is Gaussian if all its finite-dimensional

distributions are Gaussian, i.e. forany m > 1l and any ty, ..., t,, € T random vector
(Xt .., Xt,,) is Gaussian.

m

REMARK 3.2.— If only one-dimensional, or one- and two-dimensional distributions
are Gaussian, it does not mean that the process is Gaussian.

Definition 3.2, together with definition 3.1, means that there exist function
{a(t),t € T} and function of two variables {R(t,s), (t,s) € T x T} such that, for
any m > land any A = (A1,..., Ap),

m

m m
) . 1
Eexp (i ]221 N Xy, p=expi jél Aja(t;) — 3 j 221 R(tj, ti)\j Ak

It follows from lemma 3.1 that a(t) = EX; (mean function) and R(t, s) = E(X; —
a(t))(Xs — a(s)) (covariance function). Therefore, function R has the properties:

(R)
D) R(t,s) = R(s,1), (s,t) € T x T,
ii) forany n > 1, any t1,...,t, € T and any by,...,b, € R

> R(tj,tr)bsby > 0.
jk=1
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Property (i) is evident. To prove (ii), note that

> Rt t)bibr = > B(Xy, — a(ty))(Xe, — alt;))bbe
J,k=1 j,k=1

2

=E Xn:bj(th —a(tj)) > 0.

j=1

DEFINITION 3.3.— Function R = R(t,s) : T x T — R is called symmetric and
non-negative definite if it satisfies properties (R), (i) and (ii).

The next theorem states that any real-valued function a = a(t) : T — R and any
real-valued non-negatively definite function R = R(¢,s) : T x T — R define some
Gaussian process on T with finite-dimensional distributions defined uniquely.

THEOREM 3.2.— Let us have an arbitrary function a : T — R and a symmetric
non-negative definite function R : T x T — R. Then there exists a probability space
(Q, F,P) and a unique in the sense of finite-dimensional distributions Gaussian
process X = {X; : T x Q — R}, such that a = a(t) is its mean function: EX; = ay,
and R = R(t, s) is its covariance function: E(X; — a(t))(Xs — a(s)) = R(t, s).

PROOF.— For any n > 1 and t4,...,t, € T, let us define the characteristic functions
1 n
VAo Anite, .o ty) = exp ZA a(t -3 > NMR(t ) p . [34]
J,k=1

Then the consistency conditions (B) are fulfilled. Indeed, for any 1 < ! < n and
any pointst; € T,1 < j <n, A\; € R,1 < j < n, we have that

QZ}(Ala'-'7)‘Z7O>--~»O;tla-~~atl>tl+17~~~atn)
——
n—k

l

l

Z 1

=expy§? )\ja( 5 E )\)\th],tk) :1/)(>\1,...7>\l;t1,...,t1),
J=1 Jk=1
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so condition (B), 1) holds. Further, forany n > 1, A\; € R, ¢t; € T, 1 < j < n and

any permutation 7(\) = (X;,,...,\;,) and the corresponding permutation (%) =
(tiys---,ti, ), we have that
_ _ < 1
P(r(A);7(F)) = exp ZZ)\ a(t ~3 Z i Ni R(ts; )
j=1 jk=1
- 1
= iy A = NAeR(t;,t =1, Anite, - tn),
Z; j(l( 2];1 k _]7 k‘) d)( 1, s A\ny Ul 5 L)

so condition (B), 2) holds. Applying the Kolmogorov theorem in the form of theorem
1.3, we get that there exists a probability space (2, F,P) and a stochastic process
X ={X;: T x Q — R} for which

Y(A1s. s Anite, ... ty) = Eexp Z/\ Xy,

According to [3.4], process X is Gaussian; a = a(t) is its mean function and
R = R(t,s) is its covariance function. Since finite-dimensional distributions of the
Gaussian process are uniquely determined by its mean and covariance function, such
a process is unique in the sense of finite-dimensional distributions. The theorem is
proved. O

3.4. Examples of Gaussian processes

In what follows, we shall consider centered Gaussian processes, i.e. EX; = 0
for any ¢t € T. Any such process is uniquely determined by its covariance function;
therefore, giving an example of the Gaussian process is equivalent to providing an
example of a covariance function.

3.4.1. Wiener process as an example of a Gaussian process

Consider a Wiener process W = {W;,t > 0} satisfying definition 2.1. Recall that,
for any ¢ > 0, EW}; = 0 and the covariance function equals

COV(WS, Wt) = EWsWt =sAt.
According to theorem 2.2, the Wiener process does exist; therefore, the function

R(s,t) = s At is non-negative definite, as any covariance function. With this in mind,
consider another definition of a Wiener process.
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DEFINITION 3.4.— Stochastic process W = {Wy,t > 0} is a Wiener process if it
satisfies three assumptions:

1) W is a Gaussian process;
2)EW; =0, foranyt > 0;
3) Cov(Wy, Wy) = sAt, s,t>0.

THEOREM 3.3.— Definitions 2.1 and 3.4 of the Wiener process are equivalent.
PROOF.— Let the process W satisfy definition 3.4. Then, for any 0 = 5 < ¢ <

to < ...<tp,vector Wy, , Wy, — Wi, , Wey — Wh,, ..., Wy, — W _,) is Gaussian.
Moreover, for any A = (A1, Ao, ..., \,) € R",

Eexp{ Z)\k Wy, — Wtkl)}

1 n
=expq—3 > MNE (W, = Wiy )W, = Wi, ) [3.5]
7,k=1
—exp{ —= Z M (te Aty —thoy Aty —t Atj_1 +tp_y Atj_1)
]k 1
1 n
= exp 75 A (tktk—l)}
k=1

because, if e.g. k > 7, then t; A tj—tp—1 Nty —tp Ntj_1+ it 1 ANtj_1 =1t; —t; —
t;j—1 +tj—1 = 0. Therefore, it follows from [3.5] that

Eexp {iZ)\k(Wtk - Wt“)} = [[Bexp {iXe(We, = Wi, )},
k=1

k=1

i.e. the increments (W, , Wy, — Wy, ..., Wy — W, ) are mutually independent.
Any increment is a Gaussian random variable with E(W; — W;) = 0 and E(W, —
W,)2 =t—2(sAt)+s=t—s,if s <t Finally, EWZ = 0, so W starts from zero,
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and we get that W satisfies definition 2.1. Conversely, let W satisfy definition 2.1.
Then, forany 0 =ty < t; <t9 < ... <t,andforany A = (A1, Ag,..., A,) € R,

Eexp{iZ)\kWtk} Eexp ZZ An) (Wi, = Wi, )

Jj=1

1 n
= exXp —5 Z()\J —+ ... +/\n)2(tj —tjfl) [36]

= exp *% Z Z_/\k)\l(fj —tj-1)

j=1k,l=j
1 n kAl 1 n
= exp —5 >\k)\l Z(tj — tjfl) = exp —5 Z )\k)\l tk/\l
k,l=1 j=1 k,l=1

Equalities [3.6] mean that {W;,¢ > 0} is a Gaussian process with EW; = 0 and
Cov(Wy, Ws) =t A s. The theorem is proved. O
3.4.2. Fractional Brownian motion

Let H € (0,1).

DEFINITION 3.5.— Fractional Brownian motion with Hurst index H € (0,1) is a
centered Gaussian process B? = {BtH Jt > 0} with covariance function

1
R(t,s) = 3 (#H + 21— |t — s?H). [3.7]

THEOREM 3.4.— Formula [3.7] defines a covariance function for any H € (0,1).

PROOF.— We follow the lines of the proof of proposition 1.6 from [NOU 12]. The
symmetry property of R(t,s) is evident; therefore, we have to prove only that it is
non-negatively definite. To this end, denote

o0 2
cHg = / (1—e " u 1722y,
0

and observe that, for any = € R,

1 [ (1—e ")

ult+2H

_ 1/°° 1-e?) dy _ a®
CH Jo o Y .

1+2H|x|7172H | |
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Therefore,

% (tQH bos2H |y 5‘2H)

= 1 (/00 (1 A D e_“z(t_s)2> u_l_QHdu>
2CH 0

(I
2ch Jo

+ (e—u2(t—s)2 _ e_uzsz_uztz)) u—l—ZHdu

S h (1 - e_"252) (1 - e_"th) u 2 gy
2CH 0
]. > 2.2

i (efu 22?2 (e2u2ts N 1)) w1 2H gy = Il(t, S) + Iz(t,S).
2cu Jo

Concerning I, we can state immediately that, for any n > 1, any \;, 1 < i < n,
andany 0 <1 <to < ... <tp,

> N (t, te)

7,k=1

1 n 00 e e N
= Mj,%z:l)\j)\k‘/o (1—6 u tj) (1—6 u tk)u 1 2Hdu [3.8]
2

1 Z" o
= ? >\J / (1 — e_th?) u_1_2Hdu Z 0.
H 3 0
Jj=1

Furthermore, I5(¢, s) can be represented as

(2u? ts)
I t —u?s?—u? 7172Hd )
(t:5) 2CH Z il U
Therefore,
Z Aoty t) = Z / S A e i =2 gy
7,k=1 —1 0 k=1
2

n

1 «— > 2
= 5 > 21/ > o xer it | w2 du > 0. [3.9]
=1 0 j=1
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Proof follows now from [3.8] and [3.9]. O

Let H = 1. Then R(t,s) = 4(t + s — |t — s|) = s A t, so we have the Wiener
process. This means that the Wiener process is a particular case of the fractional

Brownian motion. The properties of fBm are considered in detail in the book
[MIS 08].

3.4.3. Sub-fractional and bi-fractional Brownian motion
Consider some generalizations of fractional Brownian motion

DEFINITION 3.6.— Sub-fractional Brownian motion CH = {CH t € [0,1]} is a
centered Gaussian process with covariance function

1
Ren(t,s) = 217 4 s2H — St + s|2H 4 |t — s,
H € (0,1). This process was studied, e.g. in [BOJ 04].

DEFINITION 3.7.— Bi-fractional Brownian motion BX = {BF t ¢ [0,1]} is a
centered Gaussian process with covariance function

1
Rpnx(t,s) = 27<(t2H + 2K ) — s\QHK),

H € (0,1), K € (0,1). This process was studied, e.g. in [RUS 06].

3.4.4. Brownian bridge

It is interesting that we can construct a Gaussian process that takes the prescribed
values in the endpoints of an interval.

DEFINITION 3.8.— Brownian bridge between points O and T in time and points a,b €
R is a Gaussian process
B ={B;,te|0,T]}
with
1
and covariance function

ts
ts)=tAs— —.
R(t, s) A s T
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It turns out that the Brownian bridge can be constructed using a standard Wiener
process W ; we provide one of the possible constructions. Define

(b— a — WT)t

Bt:a—i—Wt—i— T

It is clear that By = a, By = band EBy = 7 (a(T — t) + bt). Let us calculate
the covariance:

Cov(B,, B,) = B(W; - %WT) (W, - 2wr)

t s ts 9
= EW,W, — ?EWSWT — TEWtWT — ﬁEWT
QE tsT ts

72215/\8—?,

—tAs—
ST T

as required. For further discussion concerning the Brownian bridge, see section 9.1.2.

3.4.5. Ornstein-Uhlenbeck process

We can consider the Ornstein—Uhlenbeck process defined either on R™ or on R
(the same as the Wiener process and the fractional Brownian motion, but their two-
sided versions will be considered in detail later, in section 3.6).

DEFINITION 3.9.— One-sided Ornstein—Uhlenbeck process X = {X;,t >0} is a
Gaussian process X = {X;,t > 0} wirth EX, = xoe?t and covariance function

R(t,s) = izeewes (1 _ 6720(t/\s)) _ 12(60(t+s) B 670|t75|)
b - 29 - )

20
0eR,t,s>0.
DEFINITION 3.10.— Two-sided Ornstein—Uhlenbeck process X = {X;,t € R} isa
Gaussian process with EX; = xg and R(t, s) = g—;ee(”s*“\s) = —‘2’—;69“"9', 0 <0,
t,s € R.

An explicit construction and properties of Ornstein—Uhlenbeck processes will be
considered in section 9.1.2. Note that the expectation of the two-sided
Ornstein—Uhlenbeck process is constant, and the covariance function depends only
on the difference between ¢ and s. Such processes are called wide-sense stationary.
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3.5. Integration of non-random functions with respect to Gaussian
processes

3.5.1. General approach

Consider a centered Gaussian process X = {X;,¢ > 0} with covariance function
R(t,s), (t,s) € R%. Consider a fixed rectangle [0, T]*.

DEFINITION 3.11.— A function f = f(t): [0,T] — R is called elementary if it has a
form

m—1

f(t) = Z aj]lte(t]‘,t]‘+1]7fj € R7

J=0

where {0 =t < t1 < -++ < ty, = T} is a partition of [0, T).

DEFINITION 3.12.— Integral I(f, X)([0,T]) of elementary function [ w.rt. a
Gaussian process X is defined as a sum

T m—1
I(f,X,[0,T]) = /0 FO)AXy =Y a;(Xe,,, — X¢)).
§=0

It is evident that, for any elementary function f, the integral fOT f(#)dX; is a
Gaussian random variable with mean E fOT f(t)dX, = 0 and variance

T 2 m—1
E<A ﬂmuJ = > ajaxR(Ajy) [3.10]

§,k=0
where
R(Aji) = R(tj11,ti1) — Rty tev1) — R(tjv1, te) + R(Ej, tr)

is the rectangular increment of R over the rectangle A, = (t;,t;41] X (tk, tot1],
G k=0,1,...,m—1.

Assume that the covariance function R satisfies the following technical
assumption:

(R) The covariance function R is absolutely continuous w.r.t. the Lebesgue
measure A2 on [0, T2, i.e. there exists a function r, integrable w.r.t. the measure Ao
on [0, T')? such that, for any sy, s9,t1,to € [0, 7] with 51 < 1,85 < ta,

t1 to
R(tl,tg) —R(Sl,tg) —R(tg,Sl) —|—R(t1,81) = / / T(Ul,UQ)dUQ duy.
S1 S92
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We have from [3.10] that for any elementary function f,

E(/OTf(t)dXt> //f Vet )dt ds = K(f). 3.11]

This motivates the following definition. Denote by L5 ([0, 77]) the class of Borel
functions f: [0,7] — R for which

[ [ s saas < .

so that the integral K (f fo fo r(t, s)dt ds is well defined.

THEOREM 3.5.— Let f € L5,([0,T]). Then there exists a sequence of elementary
Sunctions g, = gn(t),n > 1,t € [0, T}, such that

K(f —gn)ds — 0, n — o0, [3.12]
and

K(gm — gn) = 0, n,m — o0, [3.13]

so, by [3.11] the limit of fo gn(t)d Xy exists in Lo(Q, F,P), and we can define the
integral fo (t)d X as a limit of the integrals fo gn(£)d Xy in L2(Q, F,P).

PROOF.— Consider first a simple function of the form

N
= Z cela, (t)
k=1

where Ay, € B([0,T]),k =1,..., N.Since the Borel o-algebra B([0, T') is generated
by the semiring of half-open intervals of the form (a,b], then by the Caratheodory
approximation theorem (see [BIL 95, theorem 11.4]), for any £ > 0 and each k =
1,2,..., N, there exist disjoint intervals (a;, b;], 4 = 1, ..., my, such that

<AkAU a;, Z) <—.

Then, defining elementary functions

3

k

N
=Y > Lana(t),

k=1 1=1
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we have

M 0,T] ha(t) RO < Y N (Ak A Uk(ai,bi]> <e.
k=1

i=1

Consequently, h. 2y h, e — 0+. Moreover, he(t)] < maxi<p<n |Ckl.
Therefore, by the Lebesgue dominated convergence theorem, we have

K(h—he) =0, ¢ — 0+

and K (he) — K(h), e — 0+, so it follows from [3.11] that K (h) > 0 and /K (h)
is a seminorm on the set of simple functions.

Now let f,, be simple measurable functions, such that, for any ¢ € [0, T, | f.(¢)] <
|f(t)| and f,(t) — f(t), n — oco. Then by the Lebesgue dominated convergence
theorem

K(fn—f)—0,n— oo,

and K(f,) — K(f), n — oo. As mentioned above, it follows that K (f) > 0 and

K(f) is a seminorm on L5 ,-([0,T7]). We can then approximate the functions f,, in
probability by elementary functions g,, so that K (f, — gn) — 0, n — oco. Then we
get [3.12] and [3.13] by virtue of the triangle inequality. O

REMARK 3.3.— Obviously, fOT f(t)dX; is a Gaussian random variable with zero
mean and variance K (f).

3.5.2. Integration of non-random functions with respect to the Wiener
process

Let W = {W;,¢ > 0} be a Wiener process. Then, on the one hand, we cannot
directly apply theorem 3.5, because the covariance function R(s,t) = s A t is not
absolutely continuous w.r.t. the Lebesgue measure on any rectangle [0,77]2. Indeed,
consider, forn > 1,0 =t <t} < --- <t =T and note that

R((t: ti1]%) = R(tp s thsr) = R(EEs,th) — R thy) + R(EE, 1)
= t2+1 - Zv

SO
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while
n—1 n—1 9
A2 ( go(tz, Z+1}2> = I;O ( k1~ tZ) < Togll?gar)fﬂ (t};+1 — t};)

may be arbitrarily small. On the other hand, the theory of integration of non-random
functions is very simple in this case because the increments in the Wiener process
are independent (non-correlated, orthogonal), and for any elementary function f(¢) =
dis Olf] te(tp ty,,) We can define

n—1
I(f’VVv [O,TD = ij(Wtj+1 - Wt]‘)
=0

that is a Gaussian r.v. with EI(f,W,[0,T]) = 0 and E(I(f,W,[0,T]))> =

ijo szAtJ, where At; = tj+1 —t;. Now, let f € L£5([0,T7], A1). Then there exists

a sequence f,(t) = Ef 61 fn, ]llte(tnj’ tn,.1) Of elementary functions such that

fOT |f(t) = fu(t)[2dt — 0, n — co. Then f, is a Cauchy sequence in £5([0,77), and
consequently, I(f,,, W, [0,T]) is a Cauchy sequence in £5(€2, F, P) because

~ ~ 2 T _ ~
B (170 W.0.) ~ 1 W 10.7)) = [ 1Fu0) = TPt
0
Therefore, we can define fo (t)dW; as the limit

T
/ F)dW, = lim I(fn, W,[0,T]) in Ls(2, F,P).
O n—roo

THEOREM 3.6.—

1) The integral fo (t)dWy is a Gaussian r.v. with E fo t)dW; = 0 and

E </0T f(t)th>2 = /OT fA(t)dt

or, in other words,

f th = Il oo inn)

2(Q,F,P)

(isometry property).



56  Theory and Statistical Applications of Stochastic Processes

2) The integral fo (t)dW; does not depend on the approximating sequence fn =
{ fa(t),t €10, T]} of elemenmry functions.

3) Let gn = {gn(t),t S [O,T]} (S EQ([O,T],)\l) and ||gn - f|‘£2([07T],)\1) — 0 as
n — oo. Then

T
/ f&)dw, = hm/ gn(O)dWy in Lo(Q, F,P).
0

4) Forany o, 3 € Rand any f,g € L2([0,T], \1),

/T(af()+69()th—a/ f(t dWﬁ—ﬁ/ t)dW;.

PROOF.— 1) By definition, fo t)dWy is a limit in Lo(2, F, P) of

kn—1

I(ﬁm w, [07 T]) = Z ﬁlqj(th,_7‘+1 - th‘j)’
=0

which are Gaussian r.v. with EI(f,,, W, [0, T]) = 0 and

kn—1

B(I(Fy W, = 3 Fhan, —/ 72t

Then it is a weak limit too, so, according to lemma A2.5, we get that fo (t)dWy

is a Gaussian r.v. with zero mean and variance fo FA(t)dt

2) Let gn, = {gn(t),t € [0,T]} be another sequence of elementary approximating
functions, i.e.

T
/ If(t) = Gu(®)|?dt = 0, n — oo.
0

Then

T
E =/ | fn(t) — Gn(t)]?dt — 0, n — oo,
0

/OT () AW — /OT Fa()dW, 2

which means that, in £5(Q2, F, P),

T
lim/ In(t)dW; = hm/ fn (t)dW, = / f(t)dWy.
0

n—oo n—r oo
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3) We can proceed as in the previous section. Indeed, it follows from isometry
property that

T
E
0

T 2 T
/0 fOdw; [ g 0awi] = / () = ga®)Pdt = 0, n— .

4) Let fn(t),gn(t) be a sequence of elementary functions such that ﬁ - f,
gn — gin L2([0,T], A1). Then af,, (t) + 5Gn (¢) is an elementary function that admits
the representation, say,

kn—1

afa(t)+ BGn(t) = Y (ack + Bdj)Lica, , ,»

4, k=0

where the intervals A, ;. have no common interior points and
kp—1
Uj =0 An.jk = [0, T. Therefore,

T kn—1 kn—1
/ (@Fa®) + BGa(®)dWs = S kAW (Ans) + 5 3 d;AW (A )
0 5,k=0 3,k=0

T _ T
= a/ fn(t)thJr/ﬁ/ G (t)dW;.
0 0
Further,

T T
/ (afult) + Bgn(t))dW, — / (af () + By ()W,
0 0

T T T T
a/o fn(t)thJrB/O gn(t))dW; %a/o f(t)th+B/0 g(t)dWy,

whence the proof follows. g

3.5.3. Integration w.r.t. the fractional Brownian motion

Let BY = {Bf!,t > 0} be the fractional Brownian motion with Hurst index
H € (3,1). We know that R(s,t) = £(s*# + ¢*# — |s — ¢|*#), and in the case
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H € (3,1), for any rectangle A = [s1, 2] X [t1, t2], the increment over this rectangle
equals

R(A) = R(Sz,tg) — R(Sl,tg) — R(Sz,tl) + R(Sl,tl)

1
= § (S%H +t§H - |82 - t2|2H - S%H - t%H + |81 - t2|2H

—S%H — t%H + ‘82 — tl‘ZH + S%H + t%H — |81 — t1|2H)

1
= 5 (|51 - t2|2H —+ |82 - t1|2H - |52 - t2|2H — ‘51 — tl‘QH)

S92 t2
= H(2H — 1)/ / lu — o> ~2dudv > 0.
S1 tl

Therefore, the covariance function R is increasing as a function of two variables,
in the sense that its increment is positive over any rectangle, so it coincides with | R},
and generates the measure, which we also denote by R, on B([0,7?). This measure
is absolutely continuous w.r.t. the Lebesgue measure. Note that % > T?H=2 and
hence, it is separated from zero and we can apply remark 3.3, (ii), and state that
integral fOT f(s)dBE exists for any f € L£3([0,7]% R). However, for technical
simplicity, we restrict the class of integrable functions. To be more precise, let us
formulate the following Hardy-Littlewood theorem (see e.g. [SAM 93]).

1

(03

THEOREM 3.7.— Let 0 < o < 1. Then, forany 1 < p <
exists a constant C), 4 o, such that

q q
</[0 7] (/[0 7] (@)l — u‘a_ldu) dac) < Cpaalfllo,qomay- [3.14]

THEOREM 3.8.— Let function f € L1 ([0,T], A1). Then

and q = lf%ap, there

i) f € L2([0,T)2, R).
ii) We can define integral fOT f(s)dBI as the limit in L2(S2, F, P) of the integrals

of elementary functions, and fOT f(s)dBE is a Gaussian random variable with
E [} f(s)dBH =0and

T 2 T T
E(/O f(s)dBf> =H(2H—1)/0 /0 F(s)f(t)|s — t|>2dsdt.

iit) Moreover, fOT f(s)dB is the limit in Lo(Q, F,P) of the integrals of any
sequence f, of elementary functions such that || f — fullz | (jo,77,,) — 0 asn — oo.
H
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PROOF.— To prove (i), it is enough to prove that any function f € £ ([0,7], A1)
belongs to L5([0,T)?, R). In turn, it is sufficient to establish that the iterated integral
is finite,

— _ o 2H-2
I:= /[O)T]|f(u)|</[0T] |f(0)]|u — vl dv>du<oo.

)

Applying theorem 3.7 with « = 2H — 1, p = % and ¢ = 1_’2’ap = ﬁ we
obtain that

I< (/[Oj] |f(u)flfdu>H</[07T] (/[OT} |f(v)||u—v\2H_1dv) 1_1Hdu>1H

)

<M lzy oo Crllfll, qoman = Cullfll7 , qo.71,0); [3.15]
H

where we have denoted Cy = C' /5,1 /(1—m),20—1, for brevity. So, (i) is proved, and

(i1) follows immediately from (i) and theorem 3.5. Now, consider arbitrary sequence

Jn of elementary functions such that || f — f.[lz, (0,r7,0,) — 0, n — oco. Then,
H

similar to [3.15], we can get that

T LT . 2
E< /O f(s)dBY — /0 fn(s)st>

fSAM“fW%—h@M(A;mU@)—LMMU—WVHzmodu

s(@ﬂmwnwﬁmy{

<|f- anL%([O,T],)\l)CHHf - fn”L%([O,T]Jq)

=Cullf - an%%([QT],)\l) — 0, n— oo.

Therefore, (iii) is established, and the theorem is proved. O

REMARK 3.4.— Let a function f be continuous, therefore bounded by some constant,
on [0,T]. Then evidently foT f(s)dBH exists. Consider any sequence of partitions
with vanishing diameter and the sequence of elementary functions of the form f,,(¢) =
Zﬁll f (tz)l(t27t2’+1]' Being bounded by the same constant, f;, tends to f pointwise,

and therefore, in £ (0,77, A1). This means that fOT f(s)dBH = lim fOT fn(s)dBH
in EQ(Q7 ]:, P)
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3.6. Two-sided Wiener process and fractional Brownian motion:
Mandelbrot-van Ness representation of fractional Brownian motion

First, construct a two-sided Wiener process.

DEFINITION 3.13.— Two-sided Wiener process W = {Wy,t € R} is a Gaussian
process with EW,; = 0 and

_JItINs], st >0,

s
A two-sided Wiener process can also be characterized as a process with
independent increments, such that Wy = 0 and Wy — W, ~ N(0,¢t — s) for
—00 < 8§ < t < +oo. It can be constructed explicitly in the following way: let
Wt = {W},t >0} be a Wiener process, and W? = {W2,¢t >0} be a Wiener
Wi, t>0,

W2, t <0 is a two-sided Wiener
—t

process independent of W'. Then W; = {

process.

Now we are in a position to construct the so-called Mandelbrot—Van Ness
representation of fractional Brownian motion ([MAN 68]) and to introduce two-sided
fractional Brownian motion. For any H € (0, 1), define the non-random kernel

-

_1 _
k() = (t—u)i 2 — (—uw) %, —oo<u<t< oo,

where we use the notation a4 = al,~q. Moreover, denote the constant

Cg) = (/000 ((1 +x)H7% —fo%)Qda:—&- 22) = (2HS?((7;{HJ)FF£>2H))27

whose value was calculated e.g. in [MIS 08]. Now, consider the Wiener integral
BF = C}}’/k;(t,u)dwu, tcR. [3.16]
R

Note that the explicit representation of B} is a little bit different for ¢+ > 0 and

t<O0:
H (1) 0 H-1 H-1 ’ H-1
B =cl! (/ ((t—u) ~3 _ (—u) _5)qu+/ (t — u) _5qu),t>0,
—o0 0

and

g =) ([ (u-wr

D=

0
_ (,U)H7%> dw, +/ (U)Héqu)  t<0.
t
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However, for any t € R, E(Bf)? = t?H Indeed, for t > 0,

E(BH)? = (C\))? (/O ((t —w)H-3 (fu)Hf%)z du + /Ot(t - u)ZHldu>

— 00

_ oy ([T Hotope1)? 1)
= (Cy)*t (/0 ((1+a) u )du+2H)_17

since

o 2 1 2(H+ 1)
1 H—1 . H-1 d I 2
/0 (( )t - 2) Ut OH T Hsm(zH)Y(2H)’

according to [MIS 08]. For ¢t < 0,

— 00

E(B)? = (Cy))? (/t (EIERE (_U)Hé)zdw/to(—u)wldu)

— (024 2H - oEH-L _H-1)? 1
= o (7 (-t o)

= ([ (-

Wl
I
—
I3
—+
—_
~—
i
D=
——
[V
U
I\
—+
|~
N—
I
=
[
=

Furthermore, for h > 0, it holds that

B, - B =} </R (ki (s + hyu) — kT (s,u)) qu> ,
and, for 0 < s < s + h, we have that

E(BY, - BIY) = () (/_ (s +n—w (s - 1)

o0

s+h
+/ (s+h—u)2H_1du>

e (7 H-i  _m-1)? [
_ (D) (/O (th+2) H) dr g
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while for —co < s < s + h < 0, we have that

S

B (B, - BY)" = () (/ (s +h -t (s —w)"4) du

— 00

+ /s+h ((s+h— u)2H_1)2 du)

2

— (D2 DO H-i _H-1 2 ﬁ _ 12H
= () </0 ((r+2) P )dz+2H>—h .

The case —0o < s < 0 < s+ h < oo can be considered similarly. Finally, we get
that the Gaussian process B introduced by the relation [3.16] has zero expectation
and covariance function

1
EB/ B = 5 (B(B")* + B(B])* - E(B/ - BJ)?)
1
— 5 (‘t|2H + |S|2H _ ‘t _ 8|2H) .
In connection with the above, we can introduce the following definition.

DEFINITION 3.14.— A two-sided Brownian motion B = { Bf ;¢ € R} is a centered
Gaussian process with the covariance function

1
([t127 + |s*H — |t — s[*7) . (3.17]

EBIBY = 3

The above calculations give us the following result.

THEOREM 3.9.— The Mandelbrot—van Ness representation of the form
B = / kf(t,u)dW,, teR, [3.18]
R

where W = {W,;,t >0} is a two-sided Wiener process, gives us a two-sided
fractional Brownian motion BH .

REMARK 3.5.—
i) Obviously, one-sided fBm admits representation [3.18] for ¢ > 0.

ii) Principally, it is possible to check that [3.17] is indeed a covariance function
similarly to the verification made in theorem 3.4. However, since we have an explicit
representation [3.18] of fBm, it is not necessary to do so.

iii) It is possible to prove that, for any two-sided fractional Brownian motion B,
there exists a two-sided Wiener process W for which [3.18] holds, see also remark
3.6.
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3.7. Representation of fractional Brownian motion as the Wiener integral
on the compact integral

Consider the so-called Molchan—Golosov representation of fBm as the Wiener
integral on the compact integral ((MOL 69a, NOR 99, JOS 06]).

Introduce the kernel

ku(t,s) =cy {tH_%s%_H(t - s)H_%

1\ 1 ! |
—<H—2) sifH/ uH*%(u—s)Hfidu ,

3 3
where cy = (QHF("’H)) .

(2—2H)D(H+3)

For H > 1, we can integrate by parts and reduce the kernel £ (t, s) to

1 t
kp(t,s) = (H— 2) cHs%_H/ uH_%(u— S)H_%du.

THEOREM 3.10.— Let W = {W,,t > 0} be a Wiener process. Then the stochastic
process

t
BI = / kg (t, s)dW, [3.19]
0
is a fractional Brownian motion.

PROOF.— Consider, for technical simplicity, the case H > % and for any ¢ > 0 denote
Cg = (H — 1)cpy. Then we can transform fot k% (t, s)ds:

t t t ) 2
/ K% (t, s)ds = 012{/ si—2H (/ uH_%(u - s)H_Sdu> ds
0 0 s

t t t
:C'IZ_I/ SI_QH/ uH_%(u—s)H_%du/ UH_%(U—S)H_%dvds
0

S

S
t t L . uNv 3 3
:C'IZ_I/ / uH_EvH_ﬁ/ s (y — )2 (v — 5)H 2 ds du dv.
0o Jo 0
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According to lemma 2.2 (i) from [NOR 99], for u > 0,v > 0,¢c > 1

/O t#—l(l o t)”_l(c —t)HFVdt = ¢V (c— 1) B(u,v).

Inthiscase,py—1=1—-2H,v—1 :H—%,sothat—uz %—H, —p=2H-2.
Therefore,

0 uNv

Vi H Vi 2—2H 1
:(u/\v)_l(u ”) (” ”—1) B(2-2H,H-=

uNv uNv 2

We can continue with fg k% (t, s)ds:

/th(ts)ds—CH ( 2HH—;>><
s / L T O R s
/ / gyt )%‘H(zl)”*dudv)
:c,%,B( —2H,H — )(// v)*=2dy du
// u)?H - 2dvdu>

_ C}yB(2—-2H,H —3) .y

H(2H — 1)

< Q.

Therefore, integral B := fot rp(t,s)dWy exists, and so EBT = 0. Moreover,

C%,B(Q—QH,H—%)72HF(%—H)F(2—2H (H-3)(H
H(2H —1) - T(2-2H)T (H+3)H@2H-1)r (g H) 7

l\')\»—t
\_/
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so, E(Bf)? = t?H_ Applying the same transformations, we can calculate the
covariance function. Let ¢ > s, then

s
EBIBH — C?{/ K(t, u)k(s, u)du
0

s t s
—C?{/ 1_2H/ vH_l(v—u)H_%dv/ A3 (2 —w)H 3 dz du
N . zZAv 3 5
_CH/ / T2z E/ w2 H (p — )72 (2 — )72 dz du do
~an([ ] //)‘82’”%// -

9 _ JH—} -1 v —H v 2H -2
+O4B (2 2H, H — ) / / (z) (Z 1) dzdv
_ (2H 2)2H -2
= TS HeE - 2H—1 // dzdv

1
282H+2(t2H S2H_( —S)QH):5(82H+t2H—|t—8|2H).

The case s > t can be considered similarly, and the proof follows. O
REMARK 3.6.— Any fractional Brownian motion admits representation [3.19] with

some Wiener process. Indeed, let ' be the Gauss hypergeometric function of
parameters a, b, c and variable z € R defined as

F(a,b,e,z) = _ I /1 P TH1 =) — w2) e
Y L(b)L(e—10) Jo ’
~ 1
and Cy = (I(2—2H))> =. It was established, e.g. in [JOS 06], that if we have

2HT(H+1)3T(3—H)3
the fractional Brownian motion B¥ = {B}! ¢ > 0}, then for any ¢ > 0 the integral

t
~ | 1 3 s—t\ oy
W, = t— F|\--H -—-H-—-H dB
t CHA( 5)2 (2 72 72 ) s s

exists and W = {W;,t > 0} is a Wiener process, according to which BH admits the
representation [3.19].






4

Construction, Properties and Some
Functionals of the Wiener Process and
Fractional Brownian Motion

4.1. Construction of a Wiener process on the interval [0, 1]

Consider interval [0, 1] and the sequences of Haar and Schauder functions on this
interval. Haar functions are constructed as follows:

Ha(t) = V2 (L3 3) () = 3. ().

and, in general, we can divide the function into the groups, with functions
Hon-1(t),..., Hon_1(t) in the nth group, n > 1, and for 2"~ < j <27 —1

n—1

Hj (t) =22 (]l[ 2];3” i 2j+217_72") (t) — ]1[ 2]'+21n72” 72]'+22n72" ) (t)) .

The functions are depicted in Figure 4.1.

Denote for brevity £2([0,1]) = L£2([0, 1], A1), where A; is the Lebesgue measure
on [0, 1]. Evidently, for any n > 1,

H,, € L5([0,1]), ||Hn||[,2([0,1]) = land <Hn;Hk>L2([o,1]) = 0forn # k.

Furthermore, Haar functions create an orthonormal basis in £5([0, 1]). Indeed,

any indicator of dyadic interval [2%, 2%) can be presented as a linear combination of

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
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Haar functions from nth series, and the family of such indicators is tight in £2([0, 1]).
Therefore, any function f € £5([0, 1]) can be presented as

f(t) = Z(ﬁ n) £,((0,1]) Hn(t),

where
1 (o]
Fsheaom = [ FOa0dt =3 (£ Ha)cyony (9 Ho) oy
n=0
Hy(t) Hy(t) Hs(t)
V2= NG) s
11—
I 1 1 1 3
3 1t i3t 2 03 1t
—_—
— —
Hj(t),2" ' <j<2m—1
2" —
212" +1 2j—2"+2
PAG 2"
2j—2" ¢
27L
—_—

Figure 4.1. Haar functions

Schauder functions are defined as follows:

/H )ds = (Hj, 1jo.4) La(f0]) ? teo,1].
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However, a simpler description is as follows:

So(t) =t; Si(t) =t Logycs + (1 =) Licycys

S;(t) =278 (2" Mt —j42nl), vl << 1

S1(t) S (t) S3(t)

Ml
N
SH
N
N
%H
N

NI=
—_
~~

N

D=
~+

[N

W
—_
~~

n+1

2j—2" 2j—2"+1 2j—2"+2 t
2n 271 271,

Figure 4.2. Schauder functions

In the ensuing considerations, we need the following two properties of Schauder
functions:

i) For any ¢ € [0, 1], only one function S} (t) in the nth series, i.e. with some index
2n—1 < j < 2™ — 1, is non-zero.

i) maxyep, Sj(t) =277, 2" L <j <2 —1,n > 1.

Now, we can establish the following result.

THEOREM 4.1.— Stochastic process W = {W,,t € [0, 1]}, of the form

Wi =Y Sk(t)é t € [0,1], [4.1]
k=0

where S, = {Si(t),t € [0,1]} is a sequence of Schauder functions and {&y, k > 0}
is the sequence of iid N'(0, 1) random variables, is a Wiener process. The series [4.1]
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converges uniformly on [0, 1] with probability 1 and for any t € [0,1] in L2(Q, F, P).
The trajectories of W are continuous a.s.

PROOF.— We divide the proof into several steps.

1) First, establish convergence in Lo(2, F,P). To this end, observe that for
N>M2>1

N 2 N N ,
E Z Z Si(t) = Z (Hi, 10.4)" — 0
E=M+1 k=M+1 k=M+1

as M, N — oo because Z (Hy, ]1[0’t1>2 = !’]1[0»’5]“252([0,1]) =t.
k=1

It means that the sequence Zle Sk(t)ék, K > 1 is a Cauchy sequence in
L2(Q, F, P); therefore, it converges in Lo(£2, F, P), for any ¢ € [0, 1]. Denote by W}
its limit in £o(€), F,P). Recall that the convergence in L(Q, F,P) implies the
weak convergence of finite-dimensional distributions which in turn is equivalent
to the convergence of the characteristic functions. Therefore, for any
0=ty <t <...<tgandanyvector \ = (Ai,..., \g),

K
Eexp {’L Z )\k(Wtk — Wtkl)}
k=1

K M
= A}iinooEeXp Z;Akz;g] <Hj71[tk,1,tk) >£’2([0)1])
= ]:

M K
:]\/}ii}nooEeXp ZZ{] (Z)\k <Hj;]1[tk,1,tk) >£2([011])>

j=1 k=

—

| MoK 2
= A}iinoo exp —5 Z <Z Ak <Hja l[tk—l,tk) >£2([0)1])>

j=1 \k=1

= lgnooexp —szl)\k)\ Z< At >,52([0,1])

X (Hj, L1,y ., >£2([0,1])
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=exp{ —= Z Ak Ay Z<H7’l[tk 1,tk) >£2([0 1])

krl

X (Hj, 114,y 00 >z:2([0,1})

K
1
= exp _5 Z )‘k)‘r <]1[tk_1,tk) 9 l[tr,htr) >£2([0’1])
k,r=1

—exp{—Z)\ (tr — th_1) }

These equalities can be read as

K K
Eexp {z > (W, — Wt“)} =[] Eexp {iXe(We, = Wi, )}
k=1

floe{ oo}

and it means that W is a process with independent increments and the increment
Wy — Wy = N(0,¢ — s). Therefore, W is a Wiener process.

2) Second, prove that the series converges uniformly a.s. Indeed, for any z > 0
and £ = NV(0, 1), we have that

P{él >} =2P{E>a) =2 /

_L
2 e 2

™ Y

Therefore, for any £ > 1 and for {{;,j > 1} consisting of A/(0,1) random
variables,

2e
Pl ol v} < ZP{|@|>x}<k[ el %)
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In particular,

P{ max |¢;] > k3 <k§\ﬁ K
121%1@ il > < —exp 5 (-

As > 02, k3 exp { B } < 00, we get from the Borel-Cantelli lemma that, for

to

any w € Q, P{Q'} = 1, there exists k = k(w) that, for k > k(w),

< 1
1252 SRS
Therefore, for N > 1 + log, k(w), we have that 2V =1 > k(w) and, for 2V 1 <

1
j < 2N —1, we have that €51 < (ZN — 1) 3 < 2%.Moreover, for2V-1 < j <2V 1
and for any 0 < ¢ < 1, only one Schauder function with such index j is non-zero, and

additionally, it does not exceed 2~ 2~ . Finally, for oN-1 > k(w), we get the bound
2N 1
N
Z S(t)]¢;] < 2% <277,
] 2N 1

The latter inequality implies that

oo

”
> Sl x

o=

and this upper bound does not depend on ¢. In turn, it means that the series
Z;’O 1 5;(t)€&; converges uniformly on [0, 1] and, consequently, the trajectories of W'
are continuous a.s. The theorem is proved. O

4.2. Construction of a Wiener process on R™

Let Wy = {Wy(t),t €[0,1]} be a Wiener process with a.s. continuous
trajectories on [0, 1]. Consider a sequence {W,, = {W,(t),t € [0,1]}n > 1} of
independent copies of W (the notion of independent processes was discussed in
section 2.2.2). Define a stochastic process

oo
Wy = Wo(t) Liepory + Y, (Wi ot Wi (1) + Wit — k) Liepp,bv1)-
k=1

THEOREM 4.2.— Stochastic process W = {W,,t > 0} is a Wiener process with a.s.
continuous trajectories.
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PROOF.— Consider the points 0 =ty < ¢; < ... < txy and suppose that

tost1,.enytny €[0,1), tng1,. - tn, €[1,2),
. tnN+17'~'7tnN+1 S [N—I,N]

(The case where some unit intervals between 0 and N do not contain the points
can be considered similarly). Then, for any ny + 1 <p < ngy1 — 1,

Wi — Wy, = Wi (tpt1 — k) — Wi(t, — k),

p+1

therefore, these increments are mutually independent and are independent with any
other increments that belong to the interiors of the intervals [k, k + 1). Furthermore,
the increments between two neighbor points from different intervals have a form

Wit (tng a1 — b+ 1) + Wi(1) — Wi(tn, — k)

and they are independent with any other increments of W, and Wj. The situation
when some neighbor points belong to different but not neighboring intervals is
considered similarly. Therefore, I has independent increments and starts from 0.

Consider 0 < s < tandlets € [k,k+1),t € [I,l +1), k <. Then

Wy — Wy =Wo(1)+ ...+ W_1(1) + Wit = 1)
= (Wo(1) + ... + Wi (1) + Wi(s — k))
= We@) + ...+ Wi (1)) + Wit = 1) = Wi(s — k))

and E(W, — W) =0,

E(W; — W,)2 = E(Wi(1) = Wi(s — k)2 + E Wiyt (1)) +... + E(W_1 (1))
FEW(t =0 =(k+1-8)+(l—1—k) +(t—1)=t—s.
Moreover, W; — W is a sum of independent Gaussian variables

(Wr(1) = Wi(s — k), Wi—1(1), ..., Wip1 (1), Wi (t — 1),

therefore, it is a Gaussian random variable. It means that W is a Wiener process.
Continuity of the trajectories follows directly from its construction. The theorem is
proved. O
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4.3. Nowhere differentiability of the trajectories of a Wiener process

In the previous section, we established that there exists a Wiener process with
continuous trajectories. However, the trajectories are irregular in the sense that
almost all trajectories have no derivative at any point ¢ € R™. It is hard to depict such
trajectories since there is no fixed direction of the trajectory at any point. The
approximate form of such a trajectory is shown in Figure 4.3.

Figure 4.3. Wiener process

Sometimes the absence of derivative is argued in the following way. For any ¢t > 0,

2

E‘W :E%oo, as h — 0.

It means that the Wiener process is not differentiable in the so-called mean-square
sense; in other words, it means that the derivative, even if exists, is not square
integrable. To establish non-differentiability of the trajectories, we need more subtle
arguments. The result was originally proved in [PAL 33] by Paley, Wiener and
Zygmund, and then proved in a more simple form in [DVO 61] by Dvoretzky, Erdos
and Kakutani.

THEOREM 4.3.— [Paley—Wiener—Zygmund—Dvoretzky—Erdos—Kakutani] Almost all
trajectories of a Wiener process have everywhere a lower derivative —oo and upper
derivative +00, i.e.

P {liminfM — oo and limsup Ve = We

— > —1.
m in W m sy W ~+o0 forall t > 0} 1



Construction, Properties and Some Functionals of the Wiener Process 75

REMARK 4.1.— For t = 0, we consider right-hand upper and lower derivatives.

PROOF.— For technical simplicity, we prove only the weaker result:

P {lim sup = +4oo forall ¢t > 0} =1. [4.2]

‘ Wisn — Wy
h—0

h

Relation [4.2] is equivalent to the following one:

Wiin — W, Wiin — W,
P {liminfwht = —o0 or limsup Sbh T

frd > — .
m it N 1 sy W +oo forall t > 0} 1

<oo}.

Consider any ¢t > 0. Let ¢ € [m, m + 1) for some m > 0. Assume that, for some
w € B,

Introduce the event

Wivn — Wi

B = {w : there exists ¢ > 0 for which lim sup i

h—0+

Wipn — Wil

lim sup < 00.

h—0 h
Then there exists N € N such that for thisw € B

lim sup M < N.

h—0
Assume that

Wt+h - Wt‘

lim sup <N

h—0+ h

(the case where h 1 0 is considered similarly). Then there exists j > 1 such that
t—i—% <m+landforany0 < h < % [Wipn — Wi < Nh.

Now, let n > 1besuchthat% < %andletl gkgnbesuchthatm—i—% <

t<m+E Thent <m+ 52 <t 4 > and
Wpker =W k| S W e — Wi+ [W e — Wi
1 3N

k 2
t{+Nm+=—t| < NZ4+N= =2,
n n n n

k1
< Nijm+ 21— —
n
(Wpisz = W, | W, wsn — Wil + (W, i — W

k+2 k+1 2 N
<Nm+ "2 N P a2 N2
n n n n n
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and similarly,

(Wingits =W s | S W ess = Wi + W, kie — W

k+3 k+2 4 3 7N

Introduce the events

3N 5N
BN knm = { ‘W kt1 — Wm+ﬁ| < — |W ktz — w.. k+1| < —
n n

)

Then

oo oo oo n

pe U UU N UBrsnm

m=1 N=1 j=1n=4j k=1

Taking into account the independence of increments in the Wiener process W that
are included in the event By i y.m, consider

o0 n n n
PS () U Byvrnm ¢ <liminfP { U BN,k,n,m} <liminf Y P {Byknm}

n=4j k=1 k=1 k=1

< liminf 9 <3N <5N
Sl ) P W s =Wyl S S5 pPAIW aen =W, | < =0

3 TN 3
1 N n .’1)211,
SliminfﬂwP{‘N(O,f)‘S?—} = liminfn - (ﬁ / e 2 dz>
n— oo n n n—oo 2w J_IN

1 Ve _ a2 1 (14N)3
:‘xf=y|:liminfn~ —/ e_%dy < lim n- ( ) =0
n—o0 _
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Therefore,
P5) <Y 33 Py () U B | =0
m=1N=1 j=1 n=4j k=1
and the theorem is proved. O

4.4. Power variation of the Wiener process and of the fractional
Brownian motion

4.4.1. Ergodic theorem for power variations
Let X = {X;,t > 0} be a stochastic process. Denote for any finite set of points
T={0<t; <tag<...<t,}andp>0

Var® (X, 7) = Z|th+1 X, |7

First, consider the case where 7 = 7,, = {0, 1,...,n}.

LEMMA 4.1~ Forany H € (0,1),

n—1 P
2

: 1 H H p 2 p
lim ~ Var® (B mn)—nlggoﬁzwkﬂ BH” = 5fr(i)

n—oo n

with probability 1.

PROOF.— At first, note that the fractional Brownian motion with any Hurst index H €
(0, 1) has stationary increments (being not stationary itself). Indeed, for any 0 < ¢; <
to <ty <tz <tgandh >0

E(Bt2+h Bf+h)(Bﬁ+h - Bngh)
1

=5 ((t2 + h)*" + (ta+ B)*T — |ty — to* — (81 + h)*7

— (t4 —+ h)2H + |L‘4 — t1|2H — (tQ + h)ZH — (tg + h)QH
+ [ts — to*" + (t1 + h)?H + (ts + h)*7 — |t — t4]*1)

1

=3 ((ta = t1)*T 4 (ts — 12)?T = (ta — t2)* = (t5 — 1)),
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and the last value does not depend on h. Since, for any k£ > 1, the common distribution
H H H H H H

of (B.t2+h = Biivn Bigan = Biyno - i — B ;) depends only on the

covariance matrix

Oij(h) E(Bt +h Btj 1+h)(BtIz+h Btk 1+h)
=EB/ - B[ (B[l - B/l )=Cy(0),

we get the equality of the distributions:

H H H
(Bt2+h Bl Biioh = Biysns - Biton = Bil_ 1)
H H pH H H H
(B - B;,B;, —Bi,,...,B;, — B, )
Now, consider the stationary sequence (B¥ B — BH ... . BHE — BH ).

Using the generalized formula for the power binomial function,

ala—1)

5 2?2 + o(2?),

l+z)*=14azx+
we can calculate the following value of the covariance function:

R(n) :=EBf (B - B ) = %(1 +n? —(n—1)*" —1 - (n—1)*#

2

2H 2H
1 2 1
=n2H<1 (1—) —2(1—) )
2 n n
2

2H(2H — 1) 4 1
= 2H(1+1—2H 2AeH - 2—1—0(2)

(- 2)M) = L2 g (-2 a(n —1)2H)
+

n 2 n n

1—2H7 (221_1)732—#0(;2)))

—2
(
_ 1 2H( +—+4H(2}5{>1)i—2H(2H*1)1 (nlg»

1

1 1

Therefore, according to theorem A2.15,
n—1

lim 1z|Bk+1 Bl'|” — E|BY|,

n—o0o N

and the proof follows from lemma A2.3. O
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4.5. Self-similar stochastic processes
4.5.1. Definition of self-similarity and some examples

Let X = {X;,t>0} and Y = {Y;,t >0} be two real-valued stochastic
d

processes. We shall write {X;} {Y;} if they have the same finite-dimensional

distributions.

DEFINITION 4.1.— We say that the process X is self-similar if, for any a > 0, there
exists b > 0, such that

{Xai} £ {0X,}. [4.3]

THEOREM 4.4.— Let X = {X;,t > 0} be a non-trivial stochastically continuous at
zero and self-similar stochastic process. Then there exists a unique H > 0, such that
bin [4.3] has a form b = a*.

PROOF.— Let a > 0 be given and for some ¢t > 0 X4 4 bX;. As X; is non-trivial, b
is uniquely determined by a, so is a function of a, denoted as b(a). Then

Xaalt g b(a)Xalt g b<a)b(a1)Xt'
Therefore,
b(aay) = b(a)b(ay). [4.4]

Now, let @ < 1. We have that Xon; = (b(a))"X,, while a"t — 0+. As X is

stochastically continuous at zero, we conclude that b(a) < 1. Further, b ( ) = ZEZS

ai
as
b(a1)
b(az)
[4.4]. Therefore, b(a) is a power function, b(a) = a¥ for some H > 0. O

and < 1 for a; < ag. Therefore, b(a) is a non-decreasing function satisfying

THEOREM 4.5.— Fractional Brownian motion with Hurst index H € (0,1) is a self-
similar process with b = a*!, according to definition 4.1.

PROOF.— Forany a > 0 and 0 < ¢ < to,

EBH BH —

at: Bats ((at1)* + (at2)*™ — |aty — ato|*™)

N~ N

a2 (7 + 37 — (t2 — t1)*7) = *"EB/ B/!.
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Therefore, the covariance matrix for vector (BE  BHE ) equals the

aty? atg"' at;C
covariance matrix for (Bff, Bf, ... Bfl), multiplied by a®*, nd

n n
Eexp {ZZ/\kng} = Eexp {iZ/\kaHBg} . [4.5]
k=1 k=1

As the characteristic functions uniquely determine the distribution, the proof
follows immediately from [4.5]. O

4.5.2. Power variations of self-similar processes on finite intervals

Now, consider any p > 0, fix interval [0, T, introduce the sequence of partitions

7n: {T(Sk)ak:;)OSkSQn}?

and let
2m—1 v
Var(p)( ﬂ'n, [O T Z ‘BT5k+1 BT5k
k=0

Note that according to the self-similarity of fractional Brownian motion

2" —1 Py (T pH 2" —1
p
S |t -5t 2 (5) X Bl

k=0 k=0
consequently,
n(pH—1) 2" —1 2" —1
LS vy pi _pn P4l BH, — BH”
TpH T§k+1 T - 27 | k+1 k .
k 0 k=0

Applying lemma 4.1, we get that
2" 1

1
Z |Bk+1 Bf! ‘ — E|B{'|P = (2;)2 F(g)

in probability. The almost sure convergence can be shown as in proposition 2.1 of
[DOZ 14], so we have the following result.
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THEOREM 4.6.— ForanyT > 0,p > 0and H € (0,1),
1

on(pH-1)

9p
IOl Var(p)(BH,ﬁn, [0,T]) — () r (B) a.s. as m — oo.

T 2

COROLLARY 4.1.—

i) Let p > 4. Then
V&T(p) (BHaﬁnv [OaT]) — 0as.asn— oo.

Letp < % Then

Var® (B 7,,.[0,T]) = o0 a.s. as n — co.

Letp = % Then

Var(%)(BH,ﬁn, [0,T]) = T as n — oco.
ii) Let H = % p = 2. Then B = W, a Wiener process, and we have that
2" 1

2
Z (VVTak+1 — WTgk) — T a.s.as n — oo.
k=0

What about non-uniform partitions? Consider any sequence of partitions
Tp = {O:tg") <t < <t§£) :T}
such that

7ol = max |6 — ] = 0.

The ergodic theorem does not work in this case. Consider the Wiener process and
establish at first the convergence of quadratic variations in L5(2, F, P).

THEOREM 4.7.— The sequence of quadratic variations

n—1 2
S =3 (Wyon =Wy ) = T in Lo(, F, P).
k=0
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PROOF.— Consider

2
E(Sn - T)2 =k (Z ((AWk)z - Atk)) ;

where

t

AWk = thcn) — W ](;217 Atk = tgn‘) — t](;i)l
We have that, for k # 7,

E ((AWy)? = Aty) ((AW;)* — At;) =0,

therefore,
n—1 2 n—1
E(S, —T)*=E ( (AWy)? — Atk)> = Z E (AW)? — Atk)z
k=0 k=0
n—1 n—1 n—1
=D BAWR) -2 AREAWL)? + ) (At)?
k=0 k=0 k=0
n—1 n—1 n—1
=3> (At)? =2 Aty At + Y (Aty)?
k=0 k=0 k=0
n—1
=2 (Atp)? <2|ma|-T — 0, n — 0.
k=0

REMARK 4.2.— By using similar calculations, it is easy to prove that, for any p € N,
there exists C}, > 0 such that E(S,, — T)?? < Cp|m,|P. Now, let |7,,| = O(n=?) for
some A > 0. Then it is possible to prove that S,, — 7" a.s. as n — oo. Indeed, for
any € > 0 and any o > 0, there exists p € N such that |7, [P = O(n~17%) for some

« > 0. Then the series

Z P|S, —T|>¢) <e? Z E(S, —T)% < Cpe? Z |70 |P
n=1 n=1 n=1

[eS)
S Cp€72 § nflfa
n=1

converges, and the almost sure convergence follows from the Borel-Cantelli lemma.
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REMARK 4.3.— If for some stochastic process X = {X;,t € [0,T]}, for any ¢ €
[0, T'] and for any sequence {ﬂ'"(t) =0=tM <tV <. < t,(;t) = t} of partitions

2
such that |m,(t)] — 0, we have that Zz;é (Xt;n,) - thl)l) has a limit [X]; in
probability, then we say that X has a quadratic variation [X]| = {[X];,t € [0,T7]}.
Evidently, [X]; is a non-decreasing process on [0, T"]. Theorem 4.7 states that the
Wiener process W has quadratic variation [W]; = ¢, for any ¢ > 0. Using theorem
4.6, it is possible to prove similarly to Theorem 4.7 that, for any H € (O, %), the
quadratic variation of B H iq infinite and, for H € (%, 1), it equals zero.
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Martingales and Related Processes

5.1. Notion of stochastic basis with filtration

Consider a probability space (€2, F, P). Let a family {F;,¢ > 0} of o-fields satisfy
the following assumptions:

A)i)Forany 0 < s <t
Fs CFe CF.
ii) Forany ¢ > 0

Fi = ﬂ Fs (continuity “from the right™).
s>t

iii) Fo contains all the sets from F of zero P-measure.

DEFINITION 5.1.— The family {F;,t > 0} satisfying assumptions (A), is called a
flow of o-fields, or a filtration.

REMARK 5.1.— We can define filtration for the discrete time: the family {F,,,n > 0}
of o-fields is called a filtration if, forany 0 < m < n, F, C F, C F and Fy
contain all the sets from F of zero P-measure.

REMARK 5.2.— The notion of filtration reflects the fact that information is increasing
in time: the more time passed, the more events we could observe, and the richer the
corresponding o-field. Continuity “from the right” means that each o-field F; is
sufficiently rich to contain all “future sprouts”, and condition (iii) means the
completeness of all o-fields.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Sometimes, the collection (2, F, {F;},~,,P) or (8, F,{Fn},>o,P) is called a
stochastic basis with filtration. N B

DEFINITION 5.2.— Stochastic process X = {X;,t >0} (X = {X,,n>0}) is
said to be adapted to the filtration {F;},~, ({Fn},>o) if for any t > 0, X, is F-
measurable (for any n > 0, X,, is F,,-measurable).

If we write { X}, F;, ¢ > 0}, then it means that X is F-adapted.

REMARK 5.3.— Adaptedness of a stochastic process means that, for any moment
of time, the values of the process “agree” with the information available up to this
moment of time.

Consider also the notion of predictability, but only for discrete-time process.

DEFINITION 5.3.— Let {F,},~, be a filtration. A stochastic process X =
{X,,n > 0} is called predictable w.rt. this filtration if X is a constant, and for any
n > 1, X, is a F, _1-measurable random variable.

Throughout this chapter, we consider the phase spaces S = R or R%,d > 1.

REMARK 5.4.—Let X = {X},¢ > 0} be a stochastic process. Similarly to definition
1.9, we can define o-algebra X generated by the process X restricted to the interval
[0,%]. According to corollary 1.2, o-algebra F;* is the smallest o-algebra containing
the sets {w e€0: X(tl,w) € Aq,... ,X(tk,w) S Ak}, A, C R A € B(R), t; <
t,1 < i < k. We denote it by FX = o {X,,s <t} and say that {F/*},_ isa
natural filtration generated by process X. Any stochastic process is adapted to its
natural filtration. Moreover, if X is adapted to {7}, then FX Cc F fort>0.

5.2. Notion of (sub-, super-) martingale: elementary properties

Let T be a set with a linear order. It can be RT or Z+* = N U {0}. Let
(Q, F, {Ft},cr » P) be a stochastic basis with filtration.

DEFINITION 5.4.— A stochastic process { X, t € T} is said to be a martingale w.r.t. a
filtration { F;}, . if it satisfies the following three conditions.

i) For any t € T, the random variable X; € L£1(Q, F,P) (this means that the
process X is integrable on T).

ii) Foranyt € T, X; is Fi-measurable, so the process X is {]—}}teT—adapted.
iii) For any s,t € T such that s < t, it holds that E(X{|Fs) = X P-a.s.
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If we change in condition (iii) the sign = for > and obtain E(X;|F,) > X, P-a.s.
for any s < ¢, we get the definition of a submartingale; if E(X,|F,;) < X P-as.
for any s < t, s,t € T, then we have a supermartingale. A vector process is called
(sub-, super-) martingale if the corresponding property has each of its components.
Evidently, any martingale is a (sub-, super) martingale. If X is a submartingale, then
—X is a supermartingale and vice versa.

LEMMA 5.1.—
1) Each (sub-, super-) martingale has the same property w.r.t. its natural filtration.
2) Property (iii) is equivalent to the following one: for any s <t, s,t € T E(X; —
Xs|Fs) =0(> 0, <0 for (sub-, super) martingales).

3)If T = Z, then property (iii) is equivalent to the following one: for any n > 0
E(Xn+1|Fn) = X, or, that is the same, E(X,, 11 — X,,|Fn) = 0.

PROOF.— 1) Let { X}, 7;,t € T} be a martingale. (Sub- and supermartingales can be
considered similarly.) Then X; is F;X-measurable for any ¢ € T, and E(X;|FX) =
E(E(X:|Fs)|FX) = B(X|FX) = X, because F;X C F, as it was mentioned in
remark 5.4.

Statement 2) is evident, and to establish 3), we only need to prove that if
E(X,41|Fn) = X, then {X,,, F,,,n > 0} is a martingale. However, in this case,
forany n > m

E(X,|Fn) = E(E(X,|Fn-1)|Fm) = E(Xn-1|Fm) = ... = E(Xpmi41]|Fm) = X
]

REMARK 5.5.—

i) It is very easy to check that EX = ¢, if X is a martingale and EX increases
(decreases) if X is a submartingale (supermartingale).

ii) Let {&n, Fn,m > 1} be a sequence of integrable random variables for which
E{¢.|Fn—1} = 0,n > 1. We say that the sequence is a martingale difference, or
forms a martingale difference. Obviously, a stochastic process { X,,, F,,,n > 0}, is a
martingale if and only if {X,, — X,,_1, F,,,n > 1} is a martingale difference.

5.3. Examples of (sub-, super-) martingales

EXAMPLE 5.1.— (Random walk). Ler {&;,i > 0} be a sequence of integrable
independent random variables. Consider X, = > i &, Fp, = 0{&,0<i<n} =
0{X;,0 <i<n}. Then

E(Xn+1|~/fn) =E <Z Ez + €7L+1|‘F'Il> == Zgz + Egn—}-l == Xn + E€n+1~

1=0 =0
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Therefore, in the case where E§; = 0, i > 0, {X,,, Fp,n > 0} is a martingale, if
E& >0 (£0), 4 > 0, then we have a sub- (super-) martingale with discrete time.

EXAMPLE 5.2.— (Process with independent increments). Let { X;, F;,t > 0} be an
integrable process with independent increments, EX; = a;. Then

E(X, — X,|F,) =EX, - EX, = a; — a,.

Therefore, X is a martingale if a; = a, i.e. the same for any t > 0, and X is
a sub- (super-) martingale if a; is increasing (decreasing) in t. In particular, Wiener
process W is a martingale w.r.t. a natural filtration. Further, let N = {Ny,t > 0} be a
homogeneous Poisson process with parameter \ (recall that A > 0). Then EN; = \t,
therefore N is a submartingale, and a compensated Poisson process Ny — At is a
martingale w.r.t. a natural filtration. In general, we see that the process Y, where
Y; = X — ay, is a martingale w.r.t. a natural filtration.

EXAMPLE 5.3.— (Multiplicative martingale). Let {&;,i > 1} be a sequence of
bounded random variables. Consider the process X, = Xo[[i—,(1 + &), where
Xo # 0is a constant. Let F,, = F.X. Then

E(X7L+1|-7:1)1() = XnE(l + £7L+1|]:1')7,() = Xn(l + E(fn-&-l‘}—f))-

We see that {Xm]:,)f ,n > O} is a martingale (so-called multiplicative
martingale) if and only if E {§n+1|fr)f} = 0,n > 0, so that &,1 > 1 create a
martingale difference, see remark 5.5.

EXAMPLE 5.4.— (Likelihood ratio as a martingale). Let interval [0, T be fixed, and
(Q, F, {‘Ft}te[o,T] ,P) be a stochastic basis with filtration. Let Q < P be another

probability measure on (Q, F). Consider the restriction of measures P and Q on F;
and denote them by P; and Qy, respectively. Evidently, Q; < Py. Denote by

_w(9Q _dQq
xi =k (5| 7) =

the corresponding Radon—Nikodym derivative that is also called likelihood ratio or
density process. Then, for any event A € F, s < t, we have that

aQ b [ Ay _ [ dQs [ dQ,
/ATP,sdP - /A ap, 1Pt = Qi(4) = Q(4) = /A ap. o —/A 0P [5.1]

Taking into account that, for any t > 0, Z(PQ: is Fi-measurable, we get from [5.1]

that E (flgf }'s) = zgs. As a by-product, we get that Z—% =E (%‘ }'t). Indeed,

similarly to [5.1], for any A € F,

dQe - _ _ [ 4Q
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Of course, we can consider the discrete time as well and conclude that for Q < P

E (j—g ]-"n) = d%: is a martingale w.r.t. the corresponding discrete-time filtration.

EXAMPLE 5.5.— (Geometric Brownian motion). Let W = {W,, F;,t > 0} be a
Wiener process, X; = exp{at+oW;},a € R,o > 0. Process X is called a
geometric Brownian motion. Taking into account the independence of the increments
of Wiener process on non-overlapping intervals, we get that

E(X¢|Fs) = E(exp {as + oW} exp {a(t — s) + o(W; — W)} | Fs)
= Xsexp{a(t — s)} Eexp {oc(W; — W;)}

— X, exp {a(t — 5)} exp {;02@ - s)} .

Therefore,

martingale if a + %02 =0;
the process X is a  submartingale if a + %a2 >0

supermartingale if a + %02 <0.

EXAMPLE 5.6.— (Martingale transformation). Consider an arbitrary martingale
X = {X,,Fn,n > 0} and a bounded process p = {p,,n > 1}, predictable w.rt.
the same filtration, with zero initial value, ¢y = 0. Create an integral sum of the form
S, = ZZ;S ©k(Xk+1 — Xk), So = 0. Then S is an integrable adapted process, and

E(Sn - Sn71|-Fn71) = SDnE(Xn - anllfnfl) =0.

Therefore, S is a martingale. It is called a martingale transformation of martingale
X.

EXAMPLE 5.7.— (Lévy martingale). Let £ be an integrable random variable on
some probability space and {F;}tct be any filtration with arbitrary linearly ordered
parameter set T on this probability space. Then X = {X; = E(§|F:)} creates a
martingale that is called the Lévy martingale.

THEOREM 5.1.—

1) Let { Xy, Fi,t > 0} be a martingale, f = f(x) : R — R be a convex function,
and E|f(Xy)| < oo forany t > 0. Then { f(X), Fi,t > 0} is a submartingale.

2) Let { Xy, Ft,t > 0} be a submartingale, f = f(x) : R — R be a convex
increasing function, and E|f(X)| < oo forany t > 0. Then {f(X}), Ft,t > 0} isa
submartingale.
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PROOF.— 1) Evidently, f(X}) is a F;-adapted and integrable process. Furthermore, it
follows from Jensen’s inequality for convex functions that, for any 0 < s < ¢,

2) Similar to the previous statement, f(X;) is a F;-adapted and integrable process.
Furthermore, for any 0 < s < ¢,

since E(X¢|Fs) > X, and function f is increasing. O

EXAMPLE 5.8.—

i) Obviously, functions f(x) = 2%, f(x) = |z|, f(z) = e~* are convex. Therefore,
if {X4, Fe,t > 0} is a martingale, then | X| = {|Xy|, Fi,t > 0} is a submartingale.
IfEexp{—X:} < oo for anyt > 0, then exp{—X} = {exp{—X:}, F1,t > 0} isa
submartingale. If X is a square-integrable martingale, then X? = {th, Fi, t > O}
is a submartingale. Further, functions f(z) = (v — K)*, where K > 0 is a constant,
and f(x) = €*, are convex and increasing. Therefore, if X is a submartingale, then
(X — K)T = {(Xy — K)*, Fi,t > 0} is a submartingale. If X is a submartingale
and EeXt < oo for any t > 0, then eX = {eXt,]-'ht > O} is a submartingale.

ii) Let X be a non-negative martingale, a > 0, f(x) = x A a. Note that f is
a concave function, and (—X) is a non-positive martingale. Additionally, f(r) =
—(x A a) is a bounded convex function in the range of X; therefore, —(X N a) is a
submartingale whence X N a is a supermartingale. Obviously, we can consider any
non-negative bounded concave function and conclude as above.

5.4. Markov moments and stopping times

LetT = R* or Z*, (Q, F,{F¢},cr , P) be a stochastic basis with filtration.

DEFINITION 5.5.—

1) Random variable T = 7(w) : Q — T U {400} is called Markov moment if; for
anyt € T, the event {w : 7(w) < t} € F.

2) Markov moment T = 7(w) is called a stopping time if T < 00 a.s.

3) The o-algebra generated by the Markov moment T is the class of events

Fr={AeF:An{r <t} € F,t €T}.

DEFINITION 5.6.— The Markov moment T = 7(w) is called predictable if there exists
a sequence {T,,n > 1} of Markov moments, such that
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i) Tn(w) is an increasing sequence a.s. and lim,,_, o 7, (w) = 7(w) a.s.

ii) For any n > 1, it follows that 7,,(w) < 7(w) a.s. on the set {T(w) > 0}.

Sometimes, it is said that the sequence 7,, (w) described above predicts the Markov
moment 7.

Now we can consider the general definition of predictable o-algebra and
predictable stochastic process.

DEFINITION 5.7.— A o-algebra is called predictable on T x () if it is generated by
random intervals [1,0) = {(t,w):7(w)<t<o(w)}, where T and o are
predictable Markov moments.

DEFINITION 5.8.— A real-valued stochastic process X on a stochastic basis
(0, F AFi}er,P) with filtration is said to be predictable if the mapping
X : T x Q — R is measurable with respect to the predictable o-algebra on T x €.

REMARK 5.6.— Note that, in discrete time, we cannot define predictable Markov
moments because, in this case, conditions {7, <7} on {7 >0} and 7, — T
contradict each other.

Stochastic process X = {X;,t > 0}, whose trajectories are a.s. left-continuous at
any point ¢ > 0 and continuous from the right at zero, is predictable w.r.t. the natural
filtration. In particular, the process with a.s. continuous trajectories is predictable. For
the proof, see e.g. theorem 7.2.4 and corollary 7.2.6 from [COH 15].

Introduce the notion of the process with cadlag trajectories. It means “continue
a droite avec des limites a gauche” in French, and English abbreviation is “corlol”,
“continuous on the right and with the limits on the left”. See also definition Al.4,
part (2).

DEFINITION 5.9.— Stochastic process has a.s. cadlag trajectories, or simply is cadlag
on some interval [0, T, if with probability 1 its trajectories are continuous from the
right and have the left limit at any interior point, and the trajectory is continuous from
the right at the origin and is continuous from the left at T'.

EXAMPLE 5.9.— Consider the examples of Markov moments for discrete and
continuous time.

i)Let X = {X,,Fn,n>0} be a real-valued process. Then, for any
sett A € B(R), a random variable T = inf{n>0:X,€ A} is a
Markov moment because, for any k > 0, the event {w € Q:7(w) <k} =
{Xo€ 4} U (Ule {Xo ¢ A,... . Xi1¢AX,; € A}) and any  event
{X() ¢A,...,X¢,1 ¢A,Xl€14} e F; C Fy.
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ii) Let X = {Xi, Fi,t >0} be a real-valued right-continuous process with
continuous time. In addition, let A € B(R) be an open set. Then T =
inf {t > 0: X; € A} is a Markov moment. Indeed, in this case, the set A =R\ A is
closed and

(r>tt={X, ¢ A,sec0,}={X, € A se [0,

-N {X%6A070§k§2"},
n=1
and this event belongs to Fi, whence {T <t} = Q\ {r >t} € F.

iii) Let A € B(R) be a closed set, and process X be continuous. Then T =
inf {¢t > 0: X; € A} is a Markov moment. Indeed, the event

(70 = {0 Jo, o X vl =0} € 7

REMARK 5.7.— The last two examples can be significantly generalized. Namely, if
X is a right-continuous adapted process, and A € B(R), then the hitting time of A,
T4 = inf{t > 0 : X; € A}, is a stopping time, and this is the so-called Debut
theorem, see [DEL 78, theorem 50].

THEOREM 5.2.—

1) In the case T = Ry, a random variable T:  — [0, +00] is a Markov moment
if and only if, forany t € Ry, {r < t} € F;.

2) If T is a Markov moment, then for any non-decreasing f: T U {+o0} — T U
{400} such that f(t) >t forany t € T, f(7) is a Markov moment.

3) Let o and T be Markov moments. Then o + T, o AT, 0 \V T are Markov moments.

4) Let {1,k > 1} be Markov moments. Then Z,;“;l Tk, SUDPg>q Tk i0fr>1 7,
lim supy,_, o Tk, iminfy_, o 7 are Markov moments.

PROOF.— 1) For necessity, note that {{} 7 < t} = Un > 1{r, <t—-1/n} € F.
For sufficiency, note that, for any n > 1, {1 <t} = (o, {7 <t +1/k} € Fiy1/n-
Therefore, {7 <t} € [, Fit1/n = Fi by the right-continuity of filtration.

2) Clearly, for any ¢ € T, there exists some g(t) < ¢ such that either

{w:f(r) <t} ={w:7<g()} € F
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or

{w: f(r)<tl={w:T<gt)} € F.

3) Consider the case T = R (the discrete time case is similar, but simpler) and
random variable 0 + 7. For any ¢ > 0, define a sequence of random variables

o] k41
oy = Zk:o t(;,f ) 1

ve %’“2#)) . Clearly, 0,, — 0, n — 00, and by (2), these are

Markov moments. Then

o0
{wio+7>t} = ﬂ{w:on—krzt}

n=1

= ﬂ <<U {w:on:t(gj:l)ﬁzt—t(gj:l)}>u{an>t}>€ft.

n=1 k=0

Therefore, {w: 0+ 7 <t} = Q\ {0+ 7 >t} € Fi,soby (1), 0+ is a stopping
time. Further,

{wionT<t}={w:o<t}U{w:7 <t} eF,
{wiovr<t}={w:o<t}n{w:7 <t} € F,
so o AT, 0 V T are stopping times.

4) For any t > 0,

{w:suanSt}: ﬂ{mgt} and {w:rigflrn<t}: U{T”<t}’

n21 n>1 n>1

whence, with the help of (1), sup,,~; 7, and inf,,>; 7,, are Markov moments. Since
limsup,,_, ., 7 = infy>1 SUDg>p Tk and liminf,, .. 7, = SUpP;,>1 infy>, 7, these
are Markov moments too. O

THEOREM 5.3.—

1) Let T be a Markov moment and let the collection of sets F, be defined according
to definition 5.5, (3). Then F; is indeed a o-algebra and T is a F-measurable random
variable.

2)IfT =Ry, then A € F, ifand only if foranyt € T, AN {r < t} € F;.
3) Let o < T be two Markov moments. Then F, C F.
4) For any two Markov moments o and 7, Fopnr = Fo N Fr.

5) For any sequence of stopping times {7,,n > 1}, Finfrsy 7 = Nys>1 Fron-
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6) Let o and T be two Markov moments. Then the events {oc = 7}, {0 < 7}, and
{o < 7} belong to Fypr.

7) Let {X;, Fi,t € T} be an adapted stochastic process and T be a Markov
moment. In the case where T = R, let also X be right-continuous. Then X, is
Fr-measurable.

PROOF.— 1) Let {A,,,n > 1} be the events from F,. This means that for any ¢ > 0
andany n > 1, {w:7(w) <t} N A, € F.Then {w: 7(w) <t} N (U~ 4n) =
Uro, fw:T(w) <t}NA,) € F. Therefore, | Jo—, A, € F,. Similarly, we can
prove that, for any A, B € F,, A\B € F, as well. Evidently, Q) € F. because, for
any t > 0, QN {r <t} = {r <t} € F;. Therefore, F, is a o-algebra.

Further, for any ¢ > 0, the event {r <t} € F, because, for any other s >
0, {r<t}n{r<s} ={r<tAs} € Firs C Fs. Then, for any interval (u, ],
the event {7 € (u,t]} = {7 <t} \{r <u} € F.. As the Borel o-field B(R") is
generated by the intervals (u, t],0 < u < t, we get from lemma 1.1 that for any Borel
set A € B(RT) 771(A) = {w : 7(w) € A} € F;. It means that 7 is F,-measurable.

2)Forany t € T, A € F,, we have

An{r<ty=An||J{r<t—-1/n}

n>1

— U (Aﬁ{Tgt—l/n}) € Fi,

n>1

which implies the necessity. Concerning the sufficiency, let A be such that AN{r < s}
for any s € T. Then, forany ¢t € Tandn > 1,

An{r<ty=An| [ {r<t+1/k}
k>n

= m (Aﬁ{T<t+1/k’}) € Fiqi/n-

k>n

Therefore, AN {7 <t} € (,~1 Fit1/n- In view of the right-continuity of the
filtration, this means A N {7 <t} € F;,s0 A € F..

3) Consider the Markov moments ¢ and 7 such that ¢ < 7 a.s. Let A € F,. This
means that, forany ¢t > 0, AN{oc <t} € F.Now, An{r <t} = An{o <t}nN
{7 <t} is an intersection of AN {o <t} and {7 < t} and both events belong to F;,
so AN {r <t} € F; and A € F;. This means that 7, C F..
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4) It follows from (2) that F,r, C F, and Foprr C Fr, so that Foar C Fr N Fy.
Further, letevent A € 7, NF,. Then A € F, and A € F,. Therefore, AN{oc <t} €
Frand AN{r <t} € Fp.Consider AN{o AT <t} =AN({o <t}U{r <t})=
(An{o <t}) U(ANn{r <t}) € F;. This means that A € F, .. Therefore, F, N
Fr C Fonr-

5) From (3), by induction we have that, for any m > 1, Fiin, cn<mTn =
N, Fr,. Using (3), we get

m
]:iﬂfnzl ™ C fminlgngm Tn — ﬂ J:Tn

n=1
for every m > 1, whence Fint, ., 7, C [y>1 Frn-

Vice versa, take any A € (), Fr, and t € T. Noting that 7 := inf,>1 7, =
lim,,, s 00 MiNg <y <m Tn, WE Can write

AN i t
U m {1%I7lnlélm Tn < }

E>1m>k

U n AN {121327”7'” < t}.

k>1m>k =

An{r <t}

From (2) and the above argument, we have that A N {mini<,<m 7, <t} € F,
so AN {r <t} € F. Using (2) again, we get A € F,.

6) We prove this for T = R, ; in the case of discrete time, the proofs are similar,
but simpler. For any ¢ € T, let T, be a countable subset of T'N (0, ¢] containing ¢. Then

{o<rin{r<t}=|J{o<sin{re(st}er,
seT:

so {o < 7} € F,. Further,
{o<rinfo<ty=J{o<sin{r>steF,
seT,

so {o<7} € Fy. Asaresult, {oc <7} € F NF, = Frao. Therefore,
{r<o} = Q\{o< 7} € Frpro- By symmetry, {oc <7} € F,r,. Therefore,
{T:U}:{UST}Q{TSG}E-FTAG~
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7) Similar to (6), we show this only in the case of continuous time; the discrete
time case is simpler. It is enough to prove that for any open set U, {X, € U} € F..
For any ¢ € T, due to the right-continuity of X,

{(X,eUn{r<t}= |J [) XueUln{r<t}

s€Q weQ
Ts<t T<u<s

= U ﬂ ({Xu e Uyn{r <u})U{r>u}.

s€Q,s<t ueQ,u<s

As X is adapted, forany u < t, ({X, € Uy n{r <u})U{r >u} € F, C F.
Thus, we get {X,; € U} N {7 < t} € Fi, soby (2), {X, € U} € F, as required. [J

5.5. Martingales and related processes with discrete time

In this section, we concentrate on the discrete-time martingale processes. This
specific field is much simpler than the corresponding field for continuous-time
processes. However, it allows us to clarify and understand the main properties of
martingales.

5.5.1. Upcrossings of the interval and existence of the Ilimit of
submartingale

Let X = {X,,n > 0} be a stochastic process and a < b, [a,b] C R be a fixed
interval. Define the following Markov moments

nn=inf{n>0:X, <a}, m=inf{n>n:X, >b},

3 =inf{n>mn:X, <a}, qm=inf{n>m:X, >b},

Tok—1 = inf{n > mp_9 : X, <a}, mp =inf{n > mp_1: X, >b}.

If the corresponding jth event does not hold on some w € Q, we put 7, (w) = oo.

DEFINITION 5.10.— We say that the process X has k > 1 upcrossings of the interval
[a, b] on the time interval [0, N] if Tor, < N < Toj2. In the case where 5 > N, we
say that the number of upcrossings equals zero (see Figure 5.1).

REMARK 5.8.—

1) The number of downcrossings of the interval can be defined in a similar way,
and all subsequent theories can be based on the number of downcrossings.
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2) Evidently, for stochastic process X, the number of up- (down-) crossings is a
random variable.

Xn

n

Figure 5.1. Upcrossings

Denote by kn x([a,b]) = kn x([a,b])(w) the number of upcrossings of the
interval [a, b] on the time interval [0, N| defined for the process X.

THEOREM 5.4.— Let X — {X,,, Fpn, 0 > 0} be a submartingale. Then

E(XN — a)+

E/{iij([a,bDS b—a

PROOF.— First, note that the process Y = {Y,,, F,,,n > 0}, where Y,, = (X, —a)™
is a non-negative submartingale. Further, note that ky x([a,b]) = kn v ([0, — a])
(see Figure 5.2).

Now, denote x; = Try; |, <i<ropyo for some k>0- Then the event

o

(i =1} = J Umormr < i3\ {rnse < i}) € Fi.

k=0

The next inequality is the key point of the proof:

2
i

(b—a)kyy([0.b—al) < ) (Yisr = Yi)xs.

s
I
=)
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Figure 5.2. kn x ([a,b]) = kn,v ([0,b — a]). For a color version of the
figure, see www.iste.co.uk/mishura/stochasticprocesses.zip

Note, for better understanding, that the latter inequality holds for two reasons:
first, any subsequent non-zero series of summands in the right-hand side is equal or
overcomes b — a, since Y, ., = 0and Y7,,,, > b — a, and also the right-hand side
can contain an “additional” non-zero group of summands, in the case where, for all
k > 0, we have that N — 1 # 7o542, but this group equals Yy_; — Y, ., = Yy
and is non-negative due to our replacement of X with non-negative Y. Therefore,

N-1
(b —a)Ekyy([0,0—a]) < ) E(Yiyr —Yi)xi
i=0
N-1 N-1
E(E(Yit1 — Yi|Fi)xi) < E(Yit1 —Y) <EYy =E(Xy —a),
i=0 i=0
whence the proof follows. g

Consider a submartingale X = {X,,, F,,,n > 0}. When does there exist a limit
lim,,_, o X, at least in some sense? Theorems 5.5 and 5.6 give a partial answer to
this question.

THEOREM 5.5.— Let sup,,~q E|X,,| < 0o. Then there exists X o, = limy, ;o X, a.s.
and E| X oo| < sup,,>q E[ Xy, so that Xoo € L1(Q, F,P).

PROOF.— Let

A= {w € Q: lim X,, does not exist} = {w € Q: limsup X,, > hmme }

n—00 n—00
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As both limsup,,_, ., X, and lim inf,,_,, X, are random variables, we have that
A € F.Moreover, A =J Ayq, 40> Where

q2>4q1,91,92€Q

Aggr = {thUPXn >q2 >q > linrgingn} ,

n—oo

and Q is the set of rational numbers. Consider any event A,, ,, and introduce the limit
of non-decreasing sequence:

oeux ([0 ) (@) = Tk (o, D) @).

If w € Ay g0 then koo x([¢1,g2])(w) = +o00. However, it follows from the
Lebesgue monotone convergence theorem that Ekoo x([¢1,¢2]) = lmy_oeo
Ekn x([q1, ¢2]), and it follows from theorem 5.4 that

E(Xy —q)* < E|Xn|+ |q1]
@2 —q1 T 2 q1

Ekn x ([q1,¢2]) <

whence

E|X su E| X n| +
Ekoo x ([q1,q2]) < limsup [Xn |+ ] < P20 Xl + o] < 00
N—o0 q2 — q1 q2 — 41

It means that ko x ([q1,¢2]) < oo a.s., and consequently P{A,, ..} = 0. Finally,
P{A} = 0and lim,,_, X, exists a.s. The second statement is the direct consequence
of Fatou’s lemma:

E|Xw| =E lim |X,| = Eliminf | X,,| <liminf E|X,,| <supE|X,|. O

THEOREM 5.6.— Let {X,,, F,,n > 0} be a martingale and let, for some p > 1,

sup E| X, |P < oo.
n>0

Then there exists a limit lim,,_, o X, =: X a.s. and in L,(Q, F, P).

PROOF.— Existence of a.s. limit X, = lim,,_o, X, follows from theorem 5.5.
Therefore,
| X — XoolP =0 [5.2]

a.s. as n — 0o. Moreover, by Fatou’s lemma, E|X o, [P < liminf,, . E|X,[P < co.
Let us establish that E|X,, — X|? — 0, n — oo. First, by theorem A2.5, the
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sequence {X,,,n > 0} is uniformly integrable; therefore, by theorem A2.4

E|X, — Xe| = 0, n = .

Consequently, for any k¥ > 0 and m > k,

E|Xk - E(Xoo‘]:k” =E |E(X7n|]:k:) - E(Xoo|"rk)|
<E|X,, — X| =0, m — oo.
Therefore, E(X o |F) = X a.s. for any & > 0. By Jensen’s inequality, for any
a,C >0,

sup E| Xy [P1)x, >c = sup E[E(Xo | 7)1 x>

n>0 n>0

<sup E (E(| Xo|?|Fu) 1x, 20) < SgPE (I X P1yx,50)

n>0

n>0

<sup a?P {|X,,| > C} + B[ X P11 x 30
n>0 -
ap
< sup B[ X, |” + B[ Xao P11 x>0
W wl>

whence

lim sup E|Xn|p]1|Xn\ZC § E|Xoo|p]1|Xoo|2aa

C—oo n>0
and letting a — oo, we get that

lim sup E|Xn|p]1|xn\zc =0.

C—o0 n>0

It means that the sequence {|X,|P,n > 0} is uniformly integrable and now the
proof follows from the relation [5.2] and theorem A2.4. Il

How to formulate a similar result for p = 1? We see from the proof of
theorem 5.6 that such results are closely connected to the uniform integrability
property. This connection is demonstrated by the following result as well.

THEOREM 5.7.— Let X = {X,,F,,n > 1} be a martingale. Then the following
statements are equivalent.

i) Martingale X is uniformly integrable.
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ii) sup,,>1 E[X,| < oo (consequently, there exists Xoo = lim,, 0 X, a.5.) and
X, = E(Xx|Fn) as.

iii) There exists lim,,_, oo X, in L1(Q, F,P) (then there exists X defined at point
(ii) and the limit in L1(Q, F, P) coincides with X », a.s.).

iv) X, = E(X|F,) a.s. for some integrable random variable X (then there exists
Xoo defined at point (i) and X = X a.s.).

PROOF.— (i) = (ii). Indeed, according to theorem A2.4, for any uniformly integrable
sequence {X,,,n > 0}, we have that sup,,~; E|X,,| < co. Then the existence of the
random variable X, that is, a limit with p_robability 1of X,,, Xoo = lim,,—500 X0,
follows from theorem 5.5. Moreover, uniform integrability implies that

E|X, — Xo| = 0
as n — oo, and, for any m > k,
E|Xy — E(Xoo| Fr)| = E[E(Xon|Fi) — E(Xoo| Fi)| < E[Xm — Xoo =0 [5.3]
as m — oc. Therefore, we get that X, = E(X | F) a.s.
(i1) = (ii1). Consider

E|Xn|l\Xn|ZC = E|E(Xm|Fn)|ﬂ\Xn|ZC < E(E(IXoo||~Fn))]l\Xn|ZC [5.4]
:E|XOO|1|Xn\zC SCLP{|X”| ZC}+E|XOO|]1|XOO|2<1 [5.5]

a
< GEXal + ElXoo|1 x>0, [5.6]
whence

lim sup E[X,|1|x, >c < E[Xx|ljx_|>a — 0 as a — oc.
C_)OOTLZI ni= eol=

This means that limc o0 sUp,>1 E[Xn|1x,>¢ = 0, and {X,;,n > 1} is a
uniformly integrable sequence. Then E|X,, — X| — 0, n — oo according to

theorem A2.4.

(iii) = (iv). Let E| X,, — X| — 0 as n — oo. Then, similarly to [5.3],

E| X — E(X|Fr)| = E[E(X,n | Fr) — E(X|Fe)| <E|X,, — X|—0
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as m — oo, and X = E(X|F;) a.s. Moreover, it follows from convergence in
L£1(£2, F, P) that the sequence is bounded in this space, whence sup,,~; E|X,,| < oo;
therefore, there exists X, defined at point (i7) and then obviously the limit X in
L1(Q, F,P) coincides with X, a.s.

(iv) = (i). Similar to [5.4], consider

E[Xn[1x,>c = BIE(X[F0)[11x,, 20 < B(E(X[[F.)1x,>c)
= E|X|]1|Xn‘zc S aP{|Xn| Z C} + E|X|]1|X\Za

a
< GEXal +EIX[1 x>,
whence

lim supE|X,|1|x,>¢c < E[X[1x|>¢ = 0 as a — oo.

C—o0 TL> 1
This means that limg o0 sUp,>1 E[Xu[1x,)>¢ = 0, and {X,,,n > 1} is a
uniformly integrable sequence. From these reasons, the existence of X, = X a.s.
follows immediately. O

5.5.2. Examples of martingales having a limit and of uniformly and non-
uniformly integrable martingales

EXAMPLE 5.10.— Consider a sequence of independent random variables {&,,n > 1}
such that |€,| < 1 and B, = 0. Define a stochastic process and the corresponding
o-fields:

Xo=20>0, Xp=x0 [[A+&), n>1,
k=1

Fo=A{0,Q}, Fno=0{&,....&n} =0 {X1,..., Xn}, n>1.

Then {X,,,Fn,n > 1} is a martingale, X,, > 0 a.s., and EX,, = zp, n > 1.
Therefore, sup,,~ E|X,| = sup,,~o EX,, = xo, which means that there exists a limit
Xoo = limy o0 Xy = 20 [ [0y (1 + &) a.s. Further,

n

H 1+&) - [J(+&)

E[X, — Xoo| = 20E

k=1
H1+5k IT O+ —1|=2E| [T a+&)-1/.
k=1 k=n-+1 k=n+1
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For any m > n,

1 m m—1 m—1
IT a+e)-1= ] a+&) - J] 0+ + J] 0 +&)
k=n—+1 k=n+1 k=n-+1 k=n-+1
m—2
- JI 0+&)+.. .+ (1 +&) -1
k=n-+1
m 7 j—1 m J—1
= > ( II a+e) - ]I (1+§k)>— > I a+ag,
j=n+1 \k=n+1 k=n-+1 j=n+1k=n+1

where [,,_,, ., = 1. Therefore,

m m j—1 m
El [T a+&—-1< > B ] G+&E&I= D Bl
k=n-+1 j=n+1 k=n+1 Jj=n-+1
whence
El > (1+&) -1< > Elgl.
k=n+1 k=n+1

This means that if the series y -, E|¢y| converges, then E|X,, — Xo| — 0,
n — oo and according to theorem A2.4, {X,,n > 0} is a uniformly integrable
martingale. For example, if we put £ = npay, where ny are iid random variables,
series Y po |ax| converges, and |ngax] < 1, then Y ;- E|&| = E|m
| > pey lak| < oo. As an example of non-uniformly integrable martingale, consider
the simplest case where & = :I:% with P{ﬁk = :I:%} = %, {&,k > 0} are
independent. Then {X,,,n > 0} is a martingale, X, > 0 a.s. and EX,, = x,
whence the limit Xoo = xo [ [1o (1 + &) exists. We can identify X via the strong
law of large numbers. Indeed, {log(1+ &),k > 1} is a sequence of bounded iid
random variables with

1 1 1 3 1 3
Elog(1 = —-log—+ =-log- = =-log — < 0.
og(1+ &) glogs +5logy =3log ) <
According to SLLN,
m_log(1 1 3
Ly Oi( &) Blog(146) = Slog < <0

a.s. This means that ", _, log(1+&x,) — —oo a.s. and consequently [[;:_, (14+&x) —
0 a.s. Therefore, Xoo = 0. However, EX,, = o - EX, = 0, which means that
{X,n > 0} is not a uniformly integrable martingale.

EXAMPLE 5.11.— Consider a model of population dynamics with discrete time,
called a Halton—Watson process. Let some population develop in such a way: at the
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initial moment n = 0, we have an integer number &y > 0 of individuals. Each initial

individual generates a random integer number {,i(l) € NU {0} of individuals in the
next generation, 1 < i < &y and so on. In nth generation, under the condition that it

is not degenerated, we have &, of individuals, and &, = Zg” ! f(" Denote
Z?:l = 0. Assume that all random variables {ffn),n > 1,1 > 1} are mutually

independent and Egz?”) = ln. Denote F,, = o {51, . ,§n,§§k),i >1,1<k< n}
Then it follows from the Fubini theorem that

E(§n|Fn-1) =E (Z fi(n)]li<§n1]:n1)

i=1

HMg

9]
( n)ﬂt<fn 1“Fn 1) - Z ]1i§€n71E§i(”) = ,ung'n—l-
i=1

Denote X, Eiu Then {X,, Fn,n > 1} is a non-negative martingale,

L

EX, = &. Therefare there exists a limit

X = lim X, = hm &n H/i a.s.

n—o00
k=1

The dynamics of population depends on {ug,k > 1}. If py = p < 1, then
u "€, — Xoo whence &, — 0 a.s. and the population asymptotically degenerates.
If, eg. pr = 1+ % then HZ:I (1+ %) — 00, n — o0. However, we cannot
conclude that £, — oo a.s. because it can be X, = 0. The same doubtful situation
is in the case where . > 1. To study the asymptotic behavior of population in these
cases, more advanced methods from the theory of branching processes should be
involved, see e.g. [HAC 07]. Obviously, in the case u, = p < 1, we conclude that
{Xn,n > 1} is not a uniformly integrable martingale.

5.5.3. Lévy convergence theorem

Now we apply the martingale methods to establish a useful result concerning the
convergence of conditional expectations.

THEOREM 5.8.— Let X be an integrable random variable and let the sequence of
o-fields Gy C Gy C ... C G, ... C F create a filtration. Denote

goc =0 <U gn) .
n=1

Then E(X|G,) — E(X|G) a.s. as n — co.
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PROOF.— Introduce the sequence X,, = E(X|G,,). Then E(X|G,,—1) = X, —1, Le.
{Xn,Gn,n > 1} is a martingale. Moreover, according to theorem 5.7, {X,,, G,,, n >
1} is a uniformly integrable martingale. Therefore, there exists a limit

Xoo = lim X,, = lim E(X|G,) as.
n—oo

n—oo
Further, it follows from uniform integrability and theorem A2.4 that, for any set

Aeg,,

XoodP = lim | X,,dP = lim / E(X|G,,)dP = / Xdp,
A A

A m—o0 A m—r o0

because, for m > n, [, E(X|Gy,)dP = [, XdP. Therefore,

/ XodP = / XdP [5.7]
A A

for any A € F,, n > 1. The left-hand and right-hand sides of [5.7] are the finite
measures coinciding on the algebra UZO=1 Fn- They can be uniquely extended to the
measure on F.; therefore, [5.7] is valid for any A € F.. This means that for any

A€y

/ XoodP = / XdP = / E(X|Gw)dP. [5.8]
A A A

Note that X, as the limit of X,, is F,-measurable. Then it follows immediately
from [5.8] that X, = E(X|G) a.s., and the proof follows. O

5.5.4. Optional stopping

Consider a process X = {X,,F,,n > 0} with discrete time. The next result
shows that (sub-, super-) martingale property preserves under random stopping, if you
stop in a reasonable way. This result is called “Doob’s theorem on optional stopping”,
or “Doob’s optional stopping theorem”. We formulate it in the following way.

THEOREM 5.9~ Let X = {X,,, F,n > 0} be an integrable stochastic process with
discrete time. Then the following statements are equivalent:

1) X is a (sub-,super-) F,-martingale.

2) For any bounded stopping time T and any stopping time o

E(X;|F)(>, <) = Xrho- [5.9]
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3) For any bounded stopping times o < T
EXT(Za S) =EX,.
PROOF.— Consider a submartingale; (super-) martingales are considered similarly.

1) = 2). Let 7 be a bounded stopping time, 7 < N. Then X, is an integrable
random variable, because

N N
E[X,| =) BIX,|[1— <Y E|X)| < cc.
k=1 k=1
Additionally, XT/\U = X, nonn and according to theorem 5.8, which can be

applied with Gy = F,yan and G, = F,, we have that a.s.
E(X;|Forn) = E(X;|Fs), N — oo.
Furthermore, it follows from theorem 5.3 that for oy = 0 A N

(X |~7:0N) = (XT\/GN L’ZUNU:UN) + E(XT/\UN ]17'<0N|~7:0N)

[5.10]
= E(XT\/GN|]:0'N)]1T20N + XT/\O'N ]1T<O'N'

It follows immediately from [5.10], that in order to prove [5.9], it is enough to
prove that, for two bounded stopping times v and p, such that p < v < N, we have
that E(X, |F,) > X,. Consider any event A € F,. Then

N
E(X,|F,)dP = / X,dP = / X,dP = / X,dP.
/A ( ‘ Q) A ; An{o=k} Z An{o=k,v>k} ¢

Therefore, it is sufficient to prove that

/ X,dP > / XdP. [5.11]
An{e=k,v>k} An{o=k,v>k}

However,

/ XpdP :/ Xl,dP—i-/ XpdP
An{o=k,v>k} An{o=k,v=k} An{o=k}n{vr>k}

[5.12]
S/ deP+/ E(Xp+1|Fk)dP
An{o=k,v=k} An{o=k}n{v>k}
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Since the event AN {p =k} N{v > k} € Fj, we can continue as follows:

E(Xpp1|Fe)dP = / Xpoy1dP
An{o=k}n{vr>k}

- / X,dP + / Xps1dP
An{o=k}n{v=k+1} An{o=k}n{r>k+1}

/Aﬂ{g—k}ﬂ{u>k}

<

Xl,dP—l-/ E(Xk+2|]:k+1)dP
An{o=k}N{vr>k+1}
[5.13]

/An{g—k}m{u—kﬂ}

= / X, dP + / XppodP
An{o=k}n{v=k+1} An{o=k}n{r>k+1}
g...g/ Xl,dP—i—/ X, dP
An{o=k}n{r=k+1} An{o=k}n{r=k+2}

+...+/ XNdP:/ X, dP.
An{o=k}n{v=N} An{o=k}n{vr>k}

Combining [5.12] and [5.13], we get [5.11].

2) = 3).Foro < 7,0 AT = 0, so E(X;|F,) = X,. Taking expectation, we
get 3).

3) = 1).Let0 < n < N, theevent A € F,, and put 7 = N a.s. while 0 =
nla + N1 c. Then, for any 0 <[ < NN, we have that the event

0, 1 <mn,
{e<l}=¢An<I<NeF,
Q, [=N.

so that o is a bounded stopping time. Therefore,
EX, <EXy,
or, that is equivalent,
EX, 14 +EXy14. < EXp,
EX,14 <EXylg4. [5.14]

Inequality [5.14] means that E(X x| F,,) > X,,. O



108 Theory and Statistical Applications of Stochastic Processes

5.5.5. Maximal inequalities for (sub-, super-) martingales

An explicit calculation of maximum probabilities, i.e. probabilities of the form
P {maxo<;<ny X; > a}, P {maxo<;<n |X;| > a} or P {sup,> |X;| > a} are, as a
rule, impossible even for processes with discrete time. For processes with continuous
time, the situation can be characterized as even more involved. Even the reasonable
upper and lower bounds for such probabilities are often not easy to find. However, for
(sub-, super-) martingales, we can get the reasonable and applicable upper bounds for
such probabilities.

THEOREM 5.10.— 1) Let {X,,, F,,,n > 0} be a submartingale. Then
i) Forany a > 0and N € N,
E (XN]lmaXogngN ana) < EX;\F[

P{ max XnZa}S < ;
0<n<N a a

ii) For any a > 0,

E (XN]lminogngN X,I,>—a> - EXO < EXJJ\r,v — EX()
a - a '

P{ min X, < a} <
0<n<N

2) Let {X,,, Fn,n > 0} be a supermartingale. Then

EXo+ EXy 2E|X
P{max X,LZa}S ot N < | N|,
0<n<N a a

PROOF.- 1), i) Let 7 = inf{n > 0: X,, > a} A N. Then 7 < N, 7 is a bounded
stopping time; therefore, EX, < EX . Furthermore, let A = {supogng NXn > a}.
Then X, 14 = Xn14c, and

EX, =EX,14 +EX, 14 > aP{A} + EXy14,
whence
aP{A} S EXN — EXN]lAC = EXN]lA =E (XN]lmaxogngN ana) S EXJJ\?,

ii) Similarly, let o = inf{n>0:X,<—-a} A N. Let
B = {IIliIlognSN Xn < —a}. Then

EXQ S EXU]lB +EXU]ch S —CLP{B} +EXN]13c,
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whence

EXynlg. — EXy - EX¥ — EXy

P{B} <
{ } - a a
Note that EX; > EXy > EX,.

2) Let 7 and A be the same as in 1), (i). Then the following relations hold:
Xnlge = (X3 — Xy)1lae > —Xy1ac, and

EX, > EX, =EX,14 +EXy14 > aP{A} — EXj.

Therefore,

P{A} <

EXo+EXy _ 2E[Xx|
a a

From this point for a random process { X,,, n > 0}, we denote

XN = max |X

N = max | X,

the running maximum of the absolute value of X. Observe that for a non-negative
process X, X = maxo<p<n Xk-

REMARK 5.9~ Let {X,,F,,n >0} be a non-negative supermartingale. Then
EXy = 0; therefore, it follows from theorem 5.10 2) that for any a > 0 and any
N >0,

EX
P{X} >a} < =22
a

THEOREM 5.11.— Let {X,,, F,,,n > 0} be a martingale. Then, for any p > 1, any
a > 0andany N > 0,

E| X n|P
X* > < T
P{Xy = a} < P
PROOF.— The statement is evident in the case where E|Xxy|P = oo. Now, let

E|Xn|? < oo. Then {|X,|?,F,,0 <n < N} is a submartingale, since for p > 1
f(z) = |z|P is a convex function. Therefore, according to theorem 5.10, 1), (i)

E| X n|P

* * \P

P{Xj > a} = P{(X3)" 20"} < =20 O
THEOREM 5.12.—  Let {X,,F,,n >0} be a martingale or non-negative

submartingale. Then
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1) For any p > 1 and any N > 0,
P p P
E(X%y) <[ — | E|XNyP
(X%) <p_1) | X7,
or, in other words,
* p
”XN”L,,(Q,J-',P) < Zi ||XN||/;I,(Q,]:,P) :
2) Forany N > 0,

EX}, < 2(1+ E(|Xy|log* | X)),

where, for any a > 0, log™ a = (loga)ls; = log(a V 1).

[5.15]

PROOF.— 1) If X is a martingale, then {|X,,|,n > 0} is a non-negative submartingale.
Therefore, it is sufficient to establish [5.15] only for a non-negative submartingale X,,.
Evidently, it is sufficient to consider the case where EXX, < oco. In this case, EX? <
oo forany 0 < n < N, because X? is a submartingale, and maxo<,<y EX? <

EXZ%, < oo. Therefore,

N
E(X})P <) EXP < oc.

n=1

Now, let Fiy(x) be the cumulative distribution function of X . Then, applying
theorem 5.10, 1), (4), integrating by parts and applying the Fubini theorem and the

Holder inequality, we get the following relations

E(Xy)P = /000 ZPdFN(z) :p/ooo 2P7H1 — Fy(2))dz

oo

:p/ zpflP{Xl*sz}dzgp/ 2P

0 0

—1 EXN

T]IXJ*VZZdZ

[5.16]

0o X5
= pE (XN/ zp_g]lxl*v%dz) = pE XN/ 2P72dz
0 0

= P p(xy(xp)r) < % (EX%)

p—1

P (BN 7

=

p—1

Dividing left- and right-hand sides of [5.16] by (E(X%)?) * < oo, we get the

desired inequality.
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2) Let p = 1. Then it follows from theorem 5.10 that for any ¢ > 0 and N > 0

E (XN]IX;VZQG) < E(XnIxy>a) n aP {X% > 2a}

P{X% >2a} <
Xy = 20} < 2a - 2a 2a

E(XN]lXN>a) 1
2a + 2 { N — a}?

whence
N 1
P{XN Z 2(1} S -E (XN]IXN>Q) .
a >

Now, let Gy (x) = P{X} > 2z}. Then, again integrating by parts, we get that

B ();N _ 1)+ - /Ooo(x )G () = /100(32 )Gy ()

o e’} 1 XnyV1 1
= / (1 — GN<.’L‘))dJJ S / -E (XN]lXN>:v) de =E XN/ —dx
1 1 T B 1

X

=E(Xy (log(Xy V1)) =E (Xylog" Xy).

Therefore,
E(X% —2
EX} < EEN =2 +2
Xi 4\ N
< 2E 7—1 +2 < 2E (Xylog" Xn) +2. O

5.5.6. Doob decomposition for the integrable processes with discrete
time

THEOREM 5.13.— Let X = {X,,, F,,,n > 0} be an integrable process with discrete
time. Then there exists a unique decomposition
X, =M, + A,, n>0, [5.17]

where M = {M,, F,,n > 0} is a martingale, Ay = 0, A = {A,,n>1}isa
predictable process, i.e. A, is a F,,_1-measurable random variable for any n > 1.

PROOEF.— Put
AO = 0, Al - AO - E(Xl - XO‘fO)a
Ay — Ay = E(Xe — Xa|F1), ooy Ap = Apr = E(X — X[ Facn), -



112  Theory and Statistical Applications of Stochastic Processes

Then it is very easy to see that A, is a F,_j-measurable random variable.
Moreover, A,, are integrable by definition of conditional expectation. Now, put
M, = X,, — A,,. Then M,, is a F,,-measurable integrable random variable, and

E(Mn - Mnfl‘fnfl) = E(Xn - Xp_1— E(Xn - Xn71|-Fn71)|-7:n71)
=E(X, — Xn-1|Fn-1) — E(Xp, — Xpn—1|Fn-1) = 0.

Therefore, { M,,, F,,n > 1} is a martingale, and the existence of decomposition
[5.17] is established. To prove the uniqueness, assume that X,, = M, + A,, is another
decomposition, where M "isa martingale, A s predictable and Az) = 0. Then, for
anyn > 1, M,, — M;L = A/n — A, so the difference M,, — M,'L is F,,_1-measurable,
n > 1. Consider conditional expectation E(M,, — M, | F,,_1). Itequals M, _, —M,,_,
because M,, — M;l is a martingale and simultaneously it equals M,, — M;L due to the
Fn—1-measurability of M,, — M,; Therefore,

My, —M, =M,y —M, | =...=My— M,
= Xo — Ao — (Xo — Ag) =0,

whence M,, — M, as.and A, — A, = 0 a.s. Uniqueness is proved. O

EXAMPLE 5.12.—

1) Let X = {X,,, Fn,n > 0} be a submartingale. Then, in its Doob decomposition,
A, — An—1 = E(X,, — X,,_1|Fn—1) > 0. This means that A is a non-decreasing
and, consequently, non-negative process. Obviously, in the case where X is a
supermartingale, A is a non-positive and non-increasing process.

2)Let M = {M,, Fn,n >0} be a square-integrable martingale. Then M? =
{Mﬁ, Fnyn > 0} is a submartingale. Consider its Doob decomposition. Put Ay = 0,

Ay —Ap 1 =B(M? = M?_||Fn1) = E(My_1 + AM,)? — M?_||Fn_1)
=E(2M, 1AM, + (AM,)?|F._1) = E(AM,,)?|F._1),

where AM,, = M,, — M,,_. Therefore,

Ap = E((AM)?| Fr-1). (5.18]

k=1

n

We shall consider this process in the next section.
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5.5.7. Quadratic variation and quadratic characteristics: Burkholder-
Davis-Gundy inequalities

Let X = {X,,,n > 0} be a stochastic process. Denote AX,, = X,, — X,,_1,
n>1.

DEFINITION 5.11.— Quadratic variation of the process X is a stochastic process of
the form

[X]o =0, [X],= zn:(AXi)Q,n > 1.

i=1

Obviously, [X] is a non-negative and non-decreasing process, adapted to the same
filtration as X.

The next result is called the Burkholder—Davis—Gundy inequality. More precisely,
the result for p > 1 belongs to Burkholder and Gundy, and for p = 1 it was proved by
Davis.

THEOREM 5.14.— Let M = {M,,, F,,n > 0} be a martingale with My = 0. Then,
forany p > 1, there exist the constants ¢, > 0, Cp, > 0 such that, for any n > 1,

¢, E[M]2 < E max |M[P < C,E[M]3. [5.19]
0<k<n
PROOF.— During this proof, we denote by ¢, and C,, different constants depending
only on p.

i) Let p > 1. We shall use the Khinchin inequality of the following form: let
{an,n > 0} be a sequence of real numbers such that >~ ;a2 < oo and {&,,n > 0}
are a sequence of iid symmetric Bernoulli random variables with P {¢,, = +1} = =
Then, for any p > 0, there exist such constants c,, and C},, such that

p oo 5
<Za ) <E <C, (Z ai> . [5.20]
n=0

Now, consider the sequence {r,(t),n > 0,t € [0,1]} of Rademacher functions,
ie. r,(t) = +1foranyn > 0,t € [0,1], fo rn(t)dt = 0 and

Z anén

1
/ T (O)rm (8)dt = Spm = L.
0

>
A

The Rademacher function can be defined as 7, (t) =sign(sin(2"7t)), n
] 1) NOW,

0. They
can be considered as independent r.v., if we put (Q, F,P) = ([0, 1], B[0, )
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for any ¢ € [0, 1], consider the following sequence of martingale transformations:
So(t) =0,

Sn(t) =Y ru(t) (Mg — My_1), n > 1.
k=1

Then {S,(t),Fn,n > 0} is a martingale for any ¢ € [0,1]. Moreover, if we
similarly transform .S, (¢), we get M,,, because

n

Zrk(t)(Sk(t) - Skfl(t)) = zn:ri(t)(Mk - Mkfl) = ]\4}17 n 2 1.

k=1 k=1

It follows immediately from theorem A2.17 that, for any p > 1,
E[M,|? < CoE|S,(t)|P < CREIM,|P, n>1, t€[0,1],
where (), depends only on p but not on n, ¢ and M.

According to Khinchin’s inequality [5.20],
1
e[ MIP/2 < | |Sn(s)[Pds < C,[M]E/? forany n > 1. [5.21]
0

Taking expectation of all sides of [5.21], we get that
c,E[M]P/? < E|M,|P < C,E[M]P/2. [5.22]

Since p > 1, it follows from inequality [5.15] that

p
E(My)P < (p 1) E[M, ", [5.23]
.

and the proof follows from [5.22] and [5.23].

ii) Now, let p = 1. Consider the Davis decomposition of martingale M, i.e. M,, =
M), + M. Its components satisfy evident inequalities:

My < (M) + (M), < (M');,+ > [AMY], [5.24]
k=1
and

(M2 < (M2 + [M7Y2 < M2+ |AM]. [5.25]
k=1
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According to lemma A2.7, [A2.34] and [5.25],

n
E(M');, < 3E[M']}/* + E(AM);, < 3E[M]}/> + B |[AM}/| + E[M]}/?, [5.26]
k=1

and it follows from [A2.36] that

EZ |AM]'| < 4E(AM)* < 4E[M]L/2. [5.27]

Summarizing, we get that E(M')} < 8E[M]}/2 and E(M"): < 4E[M]1/2
Therefore, it follows from [5.24]—[5.26] and the last relations that

EM} <E(M'): +BE(M"): < 8B[M]Y/? + 4E[M]}/? < 12E[M]}/2.

This means that the right-hand side of [5.19] holds for p = 1 with the constant
C1 = 12. To get the left-hand side, we again use the Davis decomposition. This
implies that

(M1 < [M'/2 4 M7/ < [MV/2 4 |AMY), [5.28]
k=1

TL—

(M');, < My + (M");, < My +Z|AM

According to lemma A2.7, [A2.34], [A2.36] and the last inequality,

E[M')}/? < 3E(M") +4E(AM)*: < 3E(M')* + 8EM

[5.29)
< 11EM; + 3EZ |AM]'| < 11EM; + 12E(AM)* < 35EM;.

k=1

Substituting [5.29] and [5.27] into [5.28] and taking expectation, we get the left-
hand side of [5.22] for p = 1 with ¢; = 1/39. O

REMARK 5.10.— Denote [M] = lim,, ;o [M],,, M* = supjg | M| Then it follows
immediately from [5.19] that for the same martingale as in theorem 5.14 and any
p > 1, there exists constants ¢, > 0, Cp, > 0, such that

¢, B[M|P/? < E(M*)? < C,E[M]P/2.

Now let M = {M,,, F,,,n > 0} be a square-integrable martingale. Consider the
process of the form [5.18].
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DEFINITION 5.12~ A process (M), = >.;_ E((AMy)?|Fyx—1) is called a
quadratic characteristic of martingale M it follows.

It follows from example 5.12, 2) that (M) is a predictable process in the Doob
decomposition of submartingale M?2. However, (M) is also a predictable process in
the Doob decomposition of the quadratic variation, which is established in the
following lemma.

LEMMA 5.2.— The Doob decomposition of [M] has a form
[M]n = Nn + <M>na n > 07
where N = {N,,,n > 0} is a martingale.
PROOF.— The proof immediately follows from the formula A, — A,,_1 = E(X,, —
Xp—1|Fn-1) in the Doob decomposition. Indeed, now X,, = [M],, X,, — X,—1 =

[M],, — [M]n—1 = (AM,)? and A,, — A,,_1 = E((AM,,)?|F,,_1), so that A,, =
(M),,,n > 0. O

REMARK 5.11.— Quadratic characteristic (M) is also called a dual predictable
projection of the quadratic variation [M].

The next result is, to some extent, similar to the Burkholder—-Davis—Gundy
inequality; however, the reader should pay attention that its different parts hold for
different values of p and take place simultaneously only for p = 2. We omit the proof
of this result.

THEOREM 5.15.— Let M = {M,,, F,,n > 0} be a square integrable martingale,
My = 0.

1) For any p € (0, 2], there exists a constant Cy, such that, for any N > 0,
E(MR)" < C,E (M)
2) For any p > 2, there exists a constant cp, such that, for any N > 0,

¢ (M) < E(MR)P.
5.5.8. Change of probability measure and Girsanov theorem for discrete-
time processes

Let (Q2,F,P) be a probability space. Recall the notion of the equivalent
probability measure (this notion is stronger than the notion of absolutely continuous



Martingales and Related Processes 117

probability measures, but we do not go into the details of absolutely continuous
probability measures now).

DEFINITION 5.13.— Probability measure P on (Q, F) is equivalent to measure P
(P ~ P) iffor any set A € F P{A} = 0 if and only if P{A} = 0.

According to the Radon—Nikodym theorem, for P~ P, there exists a non-negative

dP "such that, for any B € F

integrable random variable o>

P{B} = /B %@)P{dw}.

~ ~ 1 ~
Moreover, % > 0 a.s., % = (L?) and E% = 1. We can state also that, for
dP

any positive a.s. random variable 7, such that En = 1, the measure ﬁ{B } defined as

P{B} = J 5 ndP is equivalent to P: P ~ P. Therefore, any random variable 7 > 0
with En = 1 defines the new equivalent probability measure.

Now, let us have a stochastic basis with filtration (2, 7, {F,,},,5( , P) and let P~

P. Then, according to example 5.4, {E (%’ }'n) ,n > 0} is a martingale. Now our

goal is to find the representation of this martingale and to study the transformation of
a martingale by changing a probability measure to an equivalent one.

THEOREM 5.16.— Let the probability measures be equivalent, P ~ P. Then there
exists a P-martingale X = {X,,Fn,n >0} with initial value Xo = 1 and
increments AX, 11 = Xp41 — X > —1 as, for any n > 0, such that the

martingale Y, := E ( % ‘ fn) admits the representation

n

Yo=1,Y, = [[0+AXs), n>1. [5.30]
k=1

PROOF.— Put Xy = 1 and let

Yii1 — Y

> 0. 31
7 k>0 [5.31]

Xiy1 = Xg +

Then AXyy1 = Y;“/ZI — 1 > —1 a.s. because Y > 0 for any £ > 0. Let us
show that X is a martingale. Obviously, it is adapted to the filtration {F,,n > 0}.
Integrability can be established by induction: Xy = 1 is integrable, and if X is

integrable, then

Yii1
Yy

Yii1

E|Xk+1|<E|Xk|+1+E‘ =E|Xy|+14+E v,
k
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Since Y is positive with probability 1 process, E (%

fk) is well defined and,

moreover, it equals Y%_E(Ymﬂ}—k) = 1. Therefore, EY;‘/—;” = 1, and E|X}14] <
E|Xk| + 2, i.e. Xg41 is integrable. Now, martingale property of X follows from the

relation
fk)

1
=Xp+ ?kE (Y1 — Yi|F) = X

Yii1 — Y,
E(Xp41|Fr) = Xp +E <’““Yk’“

Finally, [5.31] implies that Y1 = Y (1 + AXj41), and we get [5.30]. O

THEOREM 5.17.— Let P ~ P. An adapted process Misa f’—mgrtingale if and only if
the process M -Y is a P-martingale, where Y = {Yn =E (%U?n) ,n > 0}.

PROOF.— Denote E expectation w.r.t. a measure P. First, note that

— dP — dP
Es| M, | :EE|M,L| —E (E (dP

fn) |ML|> = EYnU/\ZnL

therefore, M is f’-integrable if and only if MY is P-integrable. Now, we use the
following relation for conditional expectations w.r.t. different probability measures:
for any non-negative r.v. £ and G C F,

_ (w9

E;(£19) E(%‘g) :

According to this relation,

B($77/)
- (37

dpP
dP 77 —
E (E (‘TPMyH_l’]:TH_l) ’ ]:n) _ E(Yn+1M7L+1|]:n)

(317 -

(M1 |Fp) =

Therefore, B (M, 11|F,) = M, if and only if E(V;41Mpi1|Fn) = YoM,
whence the proof follows. d

The next result is called the Girsanov theorem for discrete-time processes (the
Girsanov theorem for continuous-time processes is considered in section 8.9).
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THEOREM 5.18.—  (Transformation of martingale under transformation of
probability measure) Let Z = {Z,,, F,,1 < n < N} be an integrable process with
Doob decomposition

Zn=Mp+An, n20,0<n<N,

where M = {M,,, F,,,0 < n < N} is a square-integrable martingale, Ay = 0 and
A={A,,Fn,1 <n < N}isapredictable process. Let the random variables

AA,AM,
AX, = — et 1<n<N
E((AMp)?| Fn1)
be bounded, and AX, > —1 a.s. Then the process Z is a martingale w.r.t. an
equivalent probability measure P, such that

N

=[]+ Aaxy). [5.32]
k=1

dP
dP

PROOF.— Define P by relation [5.32]. Then gg > 0 a.s. and EdP = Eszzl(l
AXy) =1, because

AAkE(AMkU-—k_l)
E(1+AXy|Fr_1)=1+ =1
L+ AXelFi) (AN Fry)

Therefore, P ~ P. Further, according to theorem 5.17, we need to check that
Zp Y, =2, E (%‘ ]-'n) is a P-martingale. To this end, we evaluate

n+1
E ((Mn-‘rl + An-‘,—l) H(l + AXk)|]:n>

dP
E<Zn+1Yn+1|]:n) =E (Zn+1 E <dP

k=1

H (1+AXy) (E(Mpy1(1+AX 1) Fn)

F A E(L+ AXpi1|F)) [5.33]
=Y, (Mn + E(Mn+1AXn+1|]:n) + An+1)
B E(Mp1 AMyi1|Fp)
=7 (30 = St PR
E((AMn—H)Z‘}—n)
= Yn Mn - AAn An
( TE(AM )2 F) O

=Y,(M,+ A,) =Y, Z,.
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Here, we use the fact that, for the square integrable martingale, the following
expectation vanishes: E(M,,AM,,1|F,) = 0. The proof follows from [5.33]. O
5.5.9. Strong law of large numbers for martingales with discrete time

We assume that a stochastic basis (€2, F, {F,},~,P) is fixed and all processes
are adapted to this basis. Let X = {X,,,n > 0} be a stochastic process. Denote by
Xoo = limy, 00 Xp, and {X —} the set where this limit exists. Write A C B a.s. if
P{A\B} = 0. Introduce the notation for stopped process: for a Markov moment 7
and random process X = {X,,,n > 0}, we denote X™ = {X,r,n > 0}.

LEMMA 53— LetY = {Y,,,n >0} and Z = {Z,,,n > 0} be two processes with

discrete time. Let, forany a > 0, P{Z™ —} = 1, where 7, = inf{n > 0:1Y,,| > a}.
Then

{sup Y, | < oo} c{Z =} as.

n>0
PROOF.— For any n € N, we have that
P{Z 4,7, =00} =P{Z™ 4,1, = 0} =0.

Therefore,

PR Z =, | J{m =00}y =0.

n>0
Now,
{sup|Yk| < oo} = U {7 = 00}
k=0 n>0
=(Utm=w2z2=}|u[J{m=x224}]| c{Z-} as.,
n>0 n>0
whence the proof follows. O

Now, let X = {X,,, F,,,n > 0} be a non-negative and non-decreasing integrable
process, Xo = 0, X = M + A its Doob decomposition.

THEOREM 5.19.— We have that {As < 00} C { X < 00} a.s.

PROOF.— Recall that A is a non-negative and non-decreasing process as well.
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i) Assume that E (A; — A;_1) l,<o < oo for any Markov moment 7. Define
T, =inf{n >1: A, > a},a > 0. Then

EA;,, =E(A;, 1 +AA 1, <o) Sa+EAA; 17, <00 < 0.

Further, since X and A are non-integrable and non-decreasing, it follows from the
Lebesgue monotone convergence theorem that

EX, = lim EX, ., EA;, = lim EA, r, < 0.

n—oo n—oo

Moreover, it follows from Doob’s optional stopping theorem that EM, A, = 0.
Therefore,

0= lim EM, nn = lim E(X; An — Ar An)
n—roo

n—oo

= lim (EX; an —EA; an) =EX, —EA, ,

n—oo

whence EX,, = EA, < oo.In turn, it means that P{X < oo} = 1, and
P{X7 —} = 1. Now we can apply lemma 5.3 with Z = X and Y = A, getting that

{ig%An < oo} ={Ax <0} C{X =} = {X < 0} as.

ii) Consider the general case. Define two increasing processes with zero initial
values, A(()l) = A(()Z) = 0, having the form
AS) = Z HAAk>1AAk7 and Ag) = Z ]lAAkSIAAk'

k=1 k=1

Evidently, Ag) and Ag) are predictable components in the Doob decomposition
of the process

X,'(ll) = Z ]lAAk>1AXk7 and X,,g?) = Z HAAk:SlAXk~
k=1 k=1

Moreover, AA7 < 1 for any k > 1. Applying arguments from (i), we get that

{Ag) < oo} C {ng> < oo} as.
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Further,

AD =3 1aa,51045, and X =" 1a4, 514X,

k=1 k=1
Therefore,
{A(()L) < OO} C {Z 1AAk>1 < OO}
k=1
C {Z HAAk>1AXk < OO} = {Xéé) < OO} .
k=1
Finally,

{Ax < 00} = {Ag) < oo} N {Ag? < oo}

C{Xéé)<oo}ﬁ{Xg)<oo}:{Xoc<oo}. O

Let M = {M,,n > 0} be a square-integrable martingale and L = {L,,,n > 0}
be a predictable integrable non-decreasing and non-negative process, both of them
starting from zero, My = 0 and Ly = 0. We say that the pair (M, L) satisfies the
strong law of large numbers (SLLN) if % — 0 a.s. as n — oo. In general, the set, on
which lim,,_, ]\f—: = 0, will be denoted as {#£ — 0}. Denote U,, = >} _, 1A+]\1/:[’Z ,
n 2 ]., Uo =0.

THEOREM 5.20.— The following relation holds:

{Lm:oo}ﬁ{U—>}C{]\L4—>0} as

PROOF.— Forany n > 1,

AM,

L) (Us —Up) =S 1+ L — M, 534
;-‘v‘k & k1) I;—I—k)lJrLk [5.34]

and evidently, the sets {Lo, = 0o} N {# — 0} and {Le =00} N {1+L — O}
coincide. Therefore, it is enough to prove that

{Lm:oo}ﬂ{Ue}c{HMLeo} as
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To this end, note that, for any n > 1, according to [5.34],

n

(1 + Ln)Un = Z((l + Lk)Uk - (1 + Lk—l)Uk—l)
k=1

=Y (1 +Li)(Us = Uk-1) + > Uk-1(Lk — Li—1)

k=1 k=1

=M, + Y Up1(Li — Li-1),

k=1

and

LnUn =Y Li(Ux = Up-1) + > Uk—1(Li — Lg—1).
k=1 k=1

This means that

M, _u, - k=1 Uk—1 (L — Li—1)
_ Un + LnUn - ZZ:I Uk—l(Lk - Lk—l)
- 1+ L, ’

Evidently, { Lo, = 0o} N {U —} C { - 0}. Consider

1+L

n

> (Un = Up—1)(Li — Li—1)| -
k=1

LU, ZUk 1(Lis — Li—1)
k=1

For any £ > 0 on the set {U —}, there exists a number n(e,w), such that
|Uso — Up| < € forn > n(e,w).

Therefore, for n > n(e,w),

n n(e,w)
> (Un = U1)(Lik = Li-1)| < D |Un = Upa|(Li = Li—1)
k=1 k=1

n

+ > (Us = Unl + |Use = Uk—1)(Li — Li—1)
k=n(e,w)+1

<2 s UlEaew + 25 L
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whence on the set {U —} N {Ly = o0},

lim | LnUn = 35—y Uk—1(Li — Li—1)|

) 2maxi<p<n |Ug|Ln (e w) Ln
- << : < 2.
_nlgléo( 1+ L, TETRL) S

Since € > 0 was chosen arbitrary, we get the proof. U

THEOREM 5.21.— Let M = {M,,n > 0} be a square-integrable martingale, and
(M), = > 4_1 E((AM})?|Fi—1) be its quadratic characteristic. Let (M)_ = oo
a.s. Then the pair (M, (M)) satisfies SLLN, i.e.
M,
(M)

n

PROOF.— Note that, for any n > 1,

~ E(AMy)?Fr1) _ x~  B((AM)?| Fy)
< <27

; 1+ (M), )? = (1 4+ (M) )1+ (M), _,)
& ne-on, 1
Z (L+ (M) + (M), _,) ' 1+(M), =t

k=1

According to theorem 5.20, it is sufficient to prove that the process
Uy=>01_4 % converges a.s. Process U is a square-integrable martingale with
quadratic characteristics

E AMk \]:k 1) <1
-y MYz S
k=1

as we established above. According to Burkholder—Davis—Gundy inequality (theorem
5.14),

Esup |U,| < CE(U)/? <,

n>0
whence the proof follows. 0
THEOREM 5.22.— Let M = {M,,n >0} be a square-integrable martingale,
My = 0. Then

{(M)_ <oo} C{M —} as.
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PROOF.— i) Let EA (M)_1;<o < oo for any Markov moment 7. Then

T

E (M) 1r,coo <00 forr, =inf{n>1:(M), >a}.

T

<a+EA(M)

Ta

According to Burkholder—Davis—Gundy inequality which can be applied to
Markov moments as well,

E sup |M,|<CE (M}i/Q < o0,
0<n<7q ¢

i.e. supg<,,<,, [My| < 0o a.s. Now we apply lemma 5.3 and get that

{(M), < oo} = {sup (M), < oo} Cc{M —}.
n>0

ii) In general, consider the expansion M = M) + M) where

M7(11) — Z Laqary, >1AMy, MT(LZ) = Z La(ary, <tAMg.
k=1 k=1

Both M) and M (®) are square-integrable martingales,

<M(1)>n = ; lA(M),C>1E((AMk)2|}—k71) = kz_l Laqany, >1A (M),

<M(2)>n = zn: ]lA<M>kSIA <M>k :

k=1

We can apply (i) to (M®)) and get that {(M®@) <oo} c {M® =}
Further,

() <} e {3 tanios <o}
k=1
C {i ]1A<M>k>1A<M>k < oo} = {Mg) = oo}.

k=1

Now we conclude as in theorem 5.19. O

REMARK 5.12.— Concerning the strong law of large numbers for the martingale-type
processes with continuous time, see section 8.7.1.
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5.6. Lévy martingale stopped

Now we formulate two results that are true both for discrete- and continuous-time
uniformly integrable martingales.

THEOREM 5.23.— Let X be an integrable random variable, let {F;}1>0 be a flow of
o-fields satisfying assumptions (A) and let martingale X; = E(X|Fy). Then, for any
stopping time T, X, = E(X|F,) a.s.

PROOF.— First, consider discrete stopping times 7,, = ZZOZO 2in]l (re[ .50 )
Then, according to theorem 5.3, 4), for any number £ > 0 and any event A € F, ,
theevent AN {1, = £} € F .- Therefore,

/ E(X|F,, )dP
Aﬂ{'rn:%}

Il
S
)

=
3
3
Il
a‘?"
-

>

QU

jav]

_ / E(X|F . )dP [5.35]
Aﬁ{T,L—2-,L } )

/ X, dP.
Aﬁ{Tn:%}

Since X,, is J,, -measurable, we get from the definition of conditional
expectation and [5.35] that E(X|F,, ) = X, . Furthermore, note that according to
corollary 5.1.9 from [COH 15], martingale X; has a cadlag modification. Now, let
n — oo. Then 7,, — 7+, therefore, X, — X,. Apply theorem 5.8 which states that
E(¢|G,) — E(|G) when E|f|] < oo and o-algebras G,, increase and
G =0 (Ui~ Gi). Then E(X|F,,) — E(X|F,), and the proof follows. O

Il
S
D

-~
3
Il
3‘*
-
<
P

QU

e

I

THEOREM 5.24.— Let o and T be two stopping times and Y be an integrable random
variable. Then

EEY|F)|Fs) = E(EY]F)|Fr) = E(Y|Frno)-

PROOF.— Without loss of generality, we can assume that Y > 0. For any n,m >
0, introduce bounded stopping times 7,, = 7 A n and 0,, = o A m. Consider the
martingale X; = E(Y|F;). Then, according to Doob’s optional stopping theorem,
we have that E(X, |F,, ) = X, ac,,. Furthermore, applying theorem 5.23, we can
rewrite the last equality as

EEY|Fr, )| Fo,) = E(Y |7, p0,)-

Let n be fixed, m — oo. Apply theorem 5.8 which supplies that E(Y'|F o, ) —
E(Y|F;, ao) as. Further, E(Y|F;,) is an integrable random variable; therefore, by
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the same theorem, we have that E(E(Y|F; )| Fs,.) — E(E(Y|F;,)|Fs), m — oo.
Therefore, we get that

EEY[F,)Fs) = E(Y|Fr,n0)-

Similarly, E(Y|F;, rno) = E(Y|Frnao), and E(Y|F,, ) — E(Y|F;) asn — oo.
Therefore, in order to finalize the proof, it is sufficient to establish that the random
variables {&, = E(Y|F,, ),n > 1} are uniformly integrable. Now, for any b > 0 and
C >0,

b

< _E¢,
< B¢

/ &ndP = E(Y ]lgnzc) < bP {fn > C} + E(Y ]1y2b)
{&n2C}

b
+E(Y ﬂyzb) < aEY + E(Y ]lyzb).

For any fixed ¢ > 0, choose b > 0, such that E(Y 1y>;) < . Then choose
C' > 0, such that %EY < §, and get that limc— o0 SUP,, >4 f{§ ) &ndP < €. Since
¢ > 0 is arbitrary, we get that -

lim sup/ & dP =0
C—oo n>1J{,>C}
which means that {¢,,, n > 1} are uniformly integrable. Therefore,

lim E(E(Y|Fran)|Fs) = B(E(Y|F)Fy) = E(Y[Frro)- O

n—oo

5.7. Martingales with continuous time

Let us consider the case of continuous-time parameter, i.e. the parameter set T
is either R or [0,7] with some 7" > 0. Many of the results for martingales with
discrete time are also valid for the continuous-time case. We will prove only those
results which will be important in the proceeding. We start with optional stopping
theorem.

THEOREM 5.25.— Let X = {Xy,t €} be an integrable right-continuous stochastic
process. Then the following statements are equivalent:

1) X is a Fy-martingale.

2) For any bounded stopping time T and any stopping time o,

E(XT | ]:o') = Xino-
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3) For any bounded stopping times o < T,

EX, =EX,.

PROOF.— The implication 2) = 1) is obvious: for arbitrary 0 < s < ¢, we can set
o = sand 7 =t, getting E(X;|F,) = X, as needed.

To show 3) = 2), first assume that 0 < 7 < T with some non-random 7. For any
A€ F,,definecy =0lg+Tlycand 7y =714+ T1gc. Forany t € [0,T), we
have {o4 <t} = An{o <t} € F; by the definition of stopping time; for t > T,
{oa <t} = Q € F;, s0 04 is a stopping time. Similarly, 74 is a stopping time;
moreover, 04 < T4, 50 EX,, = EX,,, equivalently, EX,14 = EX;14. Since by
theorem 5.2, X, is F,-measurable, we have from the last equality E(X, | F,) = X,
by the definition of conditional expectation.

In general, we have
E(X; | Fo) =EX:l,cs | Fo) +E(X 150 | Fo).
Since the process X1, is adapted and right-continuous, we have
E(X:1r<o | Fo) = Xrlrco [5.36]

by virtue of theorem 5.2. Moreover, from the previous section, E(X v, | Fo) = X,
Since {T > o} € F, by theorem 5.2, we have E(X,v,1;>, | Fo) = Xolr>p.
Adding this to [5.36], we get E(X; | Fo) = X po-

It remains to prove 1) = 3). For any bounded stopping times o < 7, consider their
discrete approximations 7, = f(7), 0y, = fn (o) with f,,(¢) = >"p2 %]l(u’ﬁ](t).
Evidently, these are bounded stopping times with o,, < 7,. Further, o,, < %ng"nz o,
T, — T,and 0, = o, T, — T, n — o0o. Since {Xk/n,k > 1} is a martingale with
a discrete-time parameter, it follows from theorem 5.9 that EX, = EX, . Thanks
to the right-continuity, X, — X, and X, — X,, n — oo. Therefore, in order
to prove that EX, = EX,, it suffices to show that the sequences {X, ,n > 1} and
{X,,,n > 1} are uniformly integrable. We have 7, < T, and {X},,,k > 1} is a
martingale with discrete time, so by theorem 5.9, X, = E(Xr | F. ). Therefore,
for any C' > 0,

E(Xr, 1x,, >c) = E(X7lx, >0)
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Moreover, by the Jensen inequality,

sup PAX-, = O} < sup P {|Xr, | 2 C}

n>1
<1 E|X <1E|X|—>OC—>
— su < = , 0.
- C7n2€ " C' r
Therefore,

supE(X;, 1x,, >c) =supE(Xrlx, >c) = 0, C — oo.
n>1 n>1

Similarly,

supE(-X,, 1x, <-c) =0, C — o0,
n>1

yielding the required uniform integrability. The one of {X, ,n > 1} is shown
similarly, concluding the proof. 0

Let us now address the maximal inequalities. For 7' > 0, denote

X} = sup |Xi
t€[0,T]

the running maximum of the absolute value of X.

THEOREM 5.26.— Let {X;,t > 0} be a right-continuous martingale.

1) Foranyp>1,a>0andT > 0,

E| X P

P{X;>a} < o

2) Foranyp > land any T > 0,

p r \’
E(X7)" < (—=) ElXr|".
(X7)" < (p—1> A
3) Forany T > 0,
EX; < 2(1+E(|Xr|log" [X7]),

where, for any a > 0, log" a = (loga)la>1 = log(a V 1).
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PROOF.— For n > 1, consider a uniform partition II,, = {t} = kT/2",0 < k < 2"}
of [0, T']. Due to right continuity, X5 = lim,,_,oc maxer,, | X¢/.

1) The sequence max;cyy, |X¢| increases, so { X > b} is the union of increasing
events {maxycyr, |X:| > b}. Due to continuity of probability,

P{X} >b} = hm P {max | X¢| > b}

The process { X, ¢ € II,, } is a martingale with discrete time, so by theorem 5.11,

E|X
P{max|Xt| > b} < BlXr|
tell, br
Consequently,
E|X
P{X;>b} < ‘pr‘.

Setting b = a—1/k and letting k — 0o, we get in view of continuity of probability

E|XT|

P{X} >a} < "

2) Similar to 1), using theorem 5.12, we have for any n > 1

p
Emax | X;|” < <p> E|X7[P.
tell, p—1

By the Fatou lemma,

P
E(X7)" = Elim inf max | X¢|” < lim inf E max | X;|" < P E| Xr|P.
n—00 tell, p— 1

n—oo tell,

The last statement is proved similarly. U
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Regularity of Trajectories of
Stochastic Processes

6.1. Continuity in probability and in £,(Q, 7, P)

Let T = Ry, X = {X;,t € R;} be a real-valued stochastic process. We can
consider its restriction on some interval [0, 7], or some other subset T/ C R, if
necessary. If we restrict X on some subset T/ C R, we suppose that T’ consists of
limit points.

DEFINITION 6.1.—

1) Stochastic process X is continuous in probability (stochastically continuous) at
a point ty € Ry if Xy — X4, in probability as t — 1.

2) Stochastic process X is continuous in probability (stochastically continuous) on
the subset T C R if it is continuous in probability at any point t € T’.

LEMMA 6.1.— Let X = {X;,t € [0, T|} be continuous in probability on [0, T)]. Then,
forany e > 0,

li S P{| X, —X;| >e}=0.
5—1>%1+ |t,lsl|p§5 {Ix d=ze)
t,s€[0,T]

PROOF.— Let ¢ > 0 be fixed. Denote

Ps:= sup P{|X;—Xi >¢}.
[t—s|<d
t,s€[0,T]

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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As Ps is non-decreasing in 4, limg,oy Ps exists. Assume that
lims_,o4+ Ps = a > 0. According to the definition of supremum, there exist two
sequences, {t,, sp,n > 1}, such that |t,, — s,,| < %, tn, sn € 10,7T], and

P{‘Xén - th| Z 6} 2

o) e

Consider a convergent subsequence t,, — to € [0,7], which exists since the
closed bounded set [0,7] C R is compact. Then s,, — to, k& — oo, and

P{|Xt0 - X, | > 5} > 0rP{|XtO - X, | > 5} > 2 forany k > 1, which
contradicts to continuity in probability of X at point #. O

REMARK 6.1.—

i) Lemma 6.1 is valid for any compact subset T’ C R consisting of limit points.

ii) Let X be continuous on [0, 7], so that its trajectories are a.s. continuous. Then,
for any ¢y € [0, T, we have that X; — X, a.s. as ¢ — t¢; therefore, X is continuous
in probability. However, the inverse statement fails. As an example, consider 2 =
0,1, T = 1, F = B([0,1]) a o-algebra of the Borel sets, P = \;, the Lebesgue
measure on F. Let X;(w) = 1;—,,. Then all trajectories of X are discontinuous. More
precisely, they have a discontinuity at the point ¢ = w. However, forany 0 < ¢ < 1

P{X;,— X,|>c} =P{X, =1,X,=0}+P{X,=0,X, =1}
<M({t}) + Mi({s}) =0.

LEMMA 6.2.— Let the stochastic process X be continuous in probability on [0, T).
Then

lim sup P{|X; >C}=0.
C—o0tel0,1)

PROOF.— As pc := supejo ) P {|X:| > C} is non-increasing in C' > 0, the limit

limeo 00 po exists. Suppose that lime 00 poc = « > 0. Then, according to the
definition of supremum, there exists a sequence {¢,,,n > 1} C [0,T], such that

P {|Xt,

«
> > —.
znp =g
Consider a convergent subsequence t,,, — to € [0, 7. Then
« Nk Nk
S <p{ix, I zm} <P{IX,, - Xl 2 2} P{IX 2 2} o,

as k — oo, and we get a contradiction. O
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REMARK 6.2.— Lemma 6.2 holds if we replace interval [0,7] with any compact
subset T C R... For completeness, we give an example of the process, which is not
stochastically continuous at any point.

EXAMPLE 6.1— Let X = {X;,t € Ry} be a stochastic process with independent
values, i.e. the random variables {Xy,t € Ry} are mutually independent. Assume
that X; are identically distributed and their distribution is non-degenerate. Then the
process X is not stochastically continuous at any pointt € R_.. Indeed, for anyt > 0
(t = 0 can be treated similarly) and any s > 0

P{X,~ X, >e} =P{X,> X, +e} +P{X, < X, — ¢} [6.1]
:/ (1—F(:v+5—))dF(x)+/F(m—a)dF(x),
R R

where F' is the cumulative distribution function of X;. We see that the right-hand side
of [6.1] is strictly positive if F' is not degenerate, and it does not depend on t and s;
therefore, it does not converge to 0 as s — t.

DEFINITION 6.2.—

1) Stochastic process X = {X;,t € R}, such that EX? < oo forany t € Ry, is
continuous in Lo (2, F, P) (mean-square continuous) at the point to € Ry if E| Xy —
Xi|> = 0ast — to.

2) Stochastic process X is continuous in Lo(Q2, F,P) on some T C Ry if it is
continuous in L2(Q2, F,P) at any pointt € T'.

Obviously, a stochastic process X continuous on T’ in £2(2, F, P) is continuous
on this set in probability.

6.2. Modification of stochastic processes: stochastically equivalent and
indistinguishable processes

Let X = {X;,t € T} and Y = {Y},t € T} be two stochastic processes defined
on the same parametric set and on the same probability space.

DEFINITION 6.3.— Processes X and Y are stochastically equivalent if for any t € T

P{X, =Y} =1

DEFINITION 6.4.— If X and Y are stochastically equivalent, we say that Y is a
modification of X (and vice versa, X is a modification of Y ).

DEFINITION 6.5.— Processes X and Y are indistinguishable if

P{X,=Y,VteT}=1.
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Obviously,

P{Xt:}/t,weﬂr}zp{ M {X =Yt}}

teT

<P{X,=Y,;} forany t € T.

Therefore, any indistinguishable processes are stochastically equivalent.
Indistinguishability means that X and Y have the same trajectories X.(w) = Y. (w),
w € Q' where P{Q)’}=1. It means that X and Y coincide, up to a negligible set. Vice
versa, stochastic equivalence, generally speaking, does not imply indistinguishability,
as shown in the following example.

EXAMPLE 6.2.— Let Q =T = [0,1], F = B([0,1]), P = A\ (the Lebesgue measure
on B([0,1])), X; =0, t € [0,1), Y; = 14— Then P{X; = Y3, ¢t € [0,1]} = 0 since
the set {w € Q: X; =Y;,t € [0,1]} is empty. However

P{X, =Y} =P{t#w=1-P{t=w}=1-N{t}) =1,

from which X and 'Y are stochastically equivalent.

Under some additional assumptions, we may deduce indistinguishability from
stochastic equivalence, as formulated in the following theorem.

THEOREM 6.1.— Let X and Y be stochastically equivalent processes.
1) If T is at most countable, then X and Y are indistinguishable.

2)If X and 'Y are right-continuous, then they are indistinguishable.

REMARK 6.3.— The second conclusion also holds for left-continuous processes.

PROOF.- 1) Since

(X, =Y;VteT} = {X; =Y}
teT

is at most a countable intersection of sets of probability 1, it has probability 1 as well.

2) Let T/ C T be a countable set, which is dense everywhere in T. Also let T” be
the set of right limit points of T, i.e. points ¢ € T for which there exists a sequence
{tn,n > 1} C TN(t,+o0) with t,, — ¢, n — oo. The set T\ T” is at most countable,
since each of its points has a right neighborhood containing no other points from
T \ T”. Thanks to right-continuity,

t =YVt e = =YVt € n =YVt € .
X, Y,V T X, Y,V T X, Y,V T\ T
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By 1),
P{X,=V,VteT}=P{X, =Y, VteT\T"} =1,

whence the statement follows. O

6.3. Separable stochastic processes: existence of separable
modification

Separability of stochastic processes is an important property that helps to
establish regularity properties of its trajectories, like continuity or absence of
second-kind discontinuities.

Assume that the set T consists of its limit points, and that (€2, 7, P) is a complete
probability space.

DEFINITION 6.6.— A real-valued stochastic process X = {Xy,t € T} is separable on
T if there exists a set & C Q, ® € F, such that P{®} = 0, and a countable subset
M C T, dense in'T, such that for any w € Q\® and any t € T,

Xt(w) € | liminf X (w), limsup Xs(w)| .
s—t,s€M s—t,s€EM

The countable dense set M € T is called a separant of T. Separability is a rather
weak property; in a sense, any ‘“reasonable” real-valued stochastic process has a
separable modification.

THEOREM 6.2.— Let X = {X, t € T} be a real-valued stochastically continuous
process and T be a separable set. Then there exists a separable process
Y = {Y;,t € T} taking values in the extended phase space R = [—o00, 00| and
stochastically equivalent to X, wherein any countable dense set M C T can serve as
a separant.

PROOF.— Define the process Y as follows. Let M be any separant; then for any t € M
putY; := X;. Fort € T\M and w € €2, such that

Xi(w) € [ liminf X (w), limsup Xs(w)} )

s—t,seM s—t,s€EM

we put Y;(w) := X¢(w). For any ¢ € T\ M and for any w € €2, such that

Xi(w) ¢ [lim inf X;(w), limsup Xs(w)} )

s—t,seM s—t,s€EM
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we put Y3 (w) := limsup,_,; ;¢ s Xs(w). Alternatively, it is possible to put Y; (w) :=
liminf,_,; senr Xs(w). Note that both conventions can lead to the expansion of phase
space, since the limits can be infinite.

Now the rest of the proof is divided into several steps.

i) Let us prove that Y = {Y;,¢ € T} is a stochastic process. In this connection, it
is necessary to establish that, for any ¢ € T, Y; is a random variable. It is evident for
t € M. Further, for t € T\M

Xi(w) == limsup X, (w) = inf sup X (w)
s—t,s€M m>1 |s—t|<L
seM

is a random variable, and similarly

X,fo) = lipiaf X.(o

is a random variable. Therefore, if we denote for any t € T

A = {w € Q: X(w) € | liminf Xg(w), limsup XS(w)] } ,

s—t,s€M s—t,sEM
then for ¢t € T\M
Ay ={weN: X,(w) < Xy(w) <Xy (w)} € F.

Therefore, Y;(w) = X¢(w)la, + X¢(w)14c is a random variable for any ¢ €
T\ M.

ii) The process Y is a separable process. Indeed, for ¢ € T\M
Vi(w) € [X,(w), X¢(w)], but X, (w) and X;(w) are defined by the values of X and
M, and on M, X coincides with Y. Therefore, for ¢t € T\ M

Yi(w) € | liminf Y;(w), limsup Yi(w)
s—t,seM s—t,seM
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for any w € 2. Now let ¢ € M. Then we have
P {Yt(w) ¢ [ liminf Y;(w), limsup Ys(w)} } =P{A;}
s—t,seM s—t,s€M

P Xi(w liminf X (w), limsup X;(w)
s—t,seM s—t,s€M

P{ liminf | X — X¢| > 0}

s—t,seM

uu N {IXS—XtIZ;}} [6.2]

m>11>1|s— t|<1,5€M

Sl 0 fwoxed))

s—t|<i sem
1

|
g

= 1
Z im inf P {|XS — Xy > }
m

oo l—o0 |s—t|<}
- seM

<> iggP{|Xth| > m} =0,
m=1seM

since X is a stochastically continuous process. Denote ® = | J,.,, A7. Then P{®} =
0 and for any w € Q\® and any t € T

Y (w) € [ liminf Y, (w), limsup K(w)]
s—t,seM s—t,s€M

from which Y is a separable process.

iii) The process Y is stochastically equivalent to X. Indeed, for any ¢ € M and
any w € Q, X; =Y;. Fort € T\ M, we have that

P{X; #Y} =P{weQ: X;(w) ¢ [X(w), X¢(w)]} =0
because this equality was proved in [6.2] for ¢ € M, but the proof is based on the fact

that X is stochastically continuous at point ¢ and irrespective of whether ¢ belongs to
M or T\ M. O
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6.4. Conditions of D-regularity and absence of the discontinuities of the
second kind for stochastic processes

The notion of D-regularity of the function is introduced in section Al.4, where
the criteria of D-regularity are formulated in terms of the modulus of continuity Ag.
The notion of function without discontinuities of the second kind is well known, and
in section Al.4, the criteria for a function to have no discontinuities of the second
kind is formulated in terms of e-oscillations. Note that obviously the property to be
D-regular is stronger than to have no discontinuities of the second kind. In this
section, we consider first the Skorokhod conditions of D-regularity of the trajectories
of the stochastic process in terms of three-dimensional distributions and the
conditions for the process to have no discontinuities of the second kind in terms of
conditional probabilities of the big increments.

6.4.1. Skorokhod conditions of D-regularity in terms of three-
dimensional distributions

Now our goal is to consider the sufficient conditions for the D-regularity of a
stochastic process, which means that its trajectories have no discontinuities of the
second kind and, at any point, have at least one of the one-sided limits. First, we prove
an auxiliary result. Let the interval [0, T be fixed.

THEOREM 6.3.— Let X = {X;,t € [0, T]} be a real-valued separable stochastically
continuous process, satisfying the condition: there exists a strictly positive
non-decreasing function g(h) and a function q(C,h), h > 0, such that, for any
0<h<t<T—handanyC >0

P {Ini11(|Xt+h — Xt|a |Xt — Xt—h|) > Cg(h)} S q(C', h),
and G(0) < o0, Q(1,C) < oo. Define

On = 2n, kzng(sk Q(n,C) Z2k (C,61).

Then, for any e > 0
i) P{ sup \Xt—Xs|>5}<P{|XT—XO|>Eg(T)}—i—Q( = )
0<s<t<T - 2G(0) 2G(0)

ii) P {A}I(X, [0,T],¢) > 2CG ([mgQ ;CD} <Q <[log2 ;‘FE] ,C) ,

where

ALX,[0,T),¢) = sup min(|X;, — Xt |, | Xe, — X, |)-
0<t1<t2<ts<T,
ts—t1<e
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REMARK 6.4.— Compare the modulus A (X, [0, T, €), which is just introduced, with
the modulus A4(X, [0, T}, €) introduced in [A1.4]. We see that the latter also contains
the values of the increments in the left and right ends of the interval [0, 7.

PROOF.- Define t}} = kd,, k =0,1,...,2".
i) Introduce the following events. Let
Ay = {w €Q: Xy, —Xy| < cg((sn)}, n>0,0<k<2"—1,

Bug=Anp-1UApg, n>11<k<2m !

oo 2M—1

Dn= () () Bmk: Do=DinAgg. [6.3]

m=n k=1

Since X is a separable stochastically continuous process, we can consider any
dense countable set, e.g. the set M = {t}z, n > 0,0 < k < 2"}, as a separant. Recall
that for the set A we denote its complement in the whole space by A¢, which is €2 now,
so that A° = Q \ A. Note that P {B¢,.} < ¢ (C, dy,), and therefore,

0o 2Mm_1

P{DSL} < Z Z P{Bvcnk} < Z 2mq (O, 6m) = Q(R,C),

m=n k=1

and
P{D§} <P{A§,} +P{Df} <P{|Xr — Xo| > Cg(T)} + Q(1,C). [6.4]

Let the event Dy hold. Then Ay o holds, so that | X — Xo| < Cg(T'), and By 1
holds so that at least one of the two events holds:

[ X7 — X5,| < Cg(61) or [X5 — Xo[ <Cg(61).
Then it follows from triangle inequality that in any case
| Xs, — Xo| < Cg(T)+Cg(61), and | X7 — X5,| < Cg(T) 4+ Cg(61).

Now we shall apply induction. Assume that D holds and suppose that the
inequality

Xip = Xin| < Cg(T)+2C) g (5k) [6.5]
k=1
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is true for some n > lany k,j = 0,1,...,2". Let us establish the same inequality
for n + 1. Let, e.g. k and j be even numbers: k = 2k;, j = 2j;. Then it follows from
[6.5] that

< Cg(T)+2CY g (6k). [6.6]

k=1

th+l - th+1
2ky 271

:Xn —Xn
‘ te e

Now, let k£ and j be odd numbers: k& = 2k; 4+ 1, j = 2j; + 1 (the cases where one
of the numbers is even and another is odd can be considered similarly). Then k and j
are situated between two even numbers: 2k; < k < 2k; + 2 and 2j; < j < 251 + 2,
and it follows that B, {1 o, +2 and B,, j, 41 hold, i.e.

n+1 - n+1 < g (5 [0) n+1 - n+1 < (7 (S
h()ldS, and
}( n+41 - }( n+1 < g (5 + (0)¢ j( n+1 _ }( tn«%»l < g (; +
’ 2j1+2 2j1+1 C ( " ) 2j1+1 271 C ( " )

holds. Let, e.g.

‘Xt;1e+11+1 — Xy =0y (0n41)
and
K, = Xagsn, | < O G
Then
‘Xt;:llﬂ - thjtil < ’Xt;:llﬂ - Xt;:ll + ‘th;il - Xt;jtiz
|y, - X | < 0o 4203 960 + 20 (Gri).

k=1

Therefore, we prove [6.5] for all n > 0. It means that, for w € Dy,

X,ui1 — X,ni1| < 20G(0), [6.7]
t2k1 t2j1
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and it follows from separability of X that forany 0 < s < ¢t < T |X; — X,| <
2CG(0) for w € Dy. Now, for any ¢ > 0, put C' = 5=<—. Then it follows from [6.4]

2G(0)
that
T
P{ sup | Xy — X| > E} <P{D§} < P{XT — Xo| > 9! )}
0<s<t<T 2G(0)
5
1, —— .
+0 (1 35)
ii) Setn = [log, £] so thate < 4, and fix some i € {1,...,2" — 1} temporarily.

Denote M,, = {tJ*,k =0,...,2™}, m > 1. Let us prove by induction that, for any
w € D,, and any m > n, there exists o,,, € [t} 1,1}, ) N M,y,, such that

t?;létlgl}g:{, teMm [Xep, =X < Ckz: 9 (), [6.8]
C="
et S err X = Xim | <C ; 9 (), [6.9]

and o, is non-decreasing in m.

Letm =n.Forw € D,

| Xin — Xyn
i41 7

< Cyg(n)
or
Xin — Xyn | < Cg(6,).

In the first case, we can choose o, = ¢}’ ;, and, in the second case, o,, = t}'; if
both inequalities hold, the choice can be ¢t}* ; or ¢}'.

Let 0,, be already chosen. For w € D,,,

X(Tm-‘rém+1 - X0m| < Cg (6m+1)

or

Xﬂm,+5m+1 - X<Tm+5m

<Cy (5m+1) .

In the first case, we can choose 0,,,+1 = 0y + dmt1, and, in the second case,
Om+1 = O if both inequalities hold, the choice of these two values is arbitrary.
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Denote o = lim, 0 0, and recall that M = J,, M,,. Then we have from [6.8]
and [6.9]

sup Xin = Xt| < CG(n)
th  <t<oteM o

and

sup X — Xtyﬂ‘ < CG(n).

o<t<th, teM
However, if 0 € M so that 0 = t}”o for some mg, we can say more than that.
Namely, two situations are possible.

1) There exists m; such that ¢,, = o for all m > m;. In this case, equation [6.8]
yields

sup | Xy — Xy < CG(n). [6.10]

tr | <t<o,teM

2) For any m > 0, 0, < o. Then, for m > mg, 0, + 6, < o. Therefore, for
m > myg, we get from equation [6.9] that

max X, — Xt;m“| < CG(n).

o<t<tr, | tEMy,
By letting m — oo, we get

sup | Xy — Xpn | < CG(n). [6.11]

o<t<tr, teM

Now let t1,t2,t3 € M, t?fl <t <ty <tz < tz—LJrl. If t5 > o, then from [6.11]
Xy, — Xi,| <2CG(n), andforty < o | Xy, — Xy,| < 2CG(n). Finally, for t; = o,
which means that o € M, as explained above, either [6.10] or [6.11] holds. Hence,
we get either | Xy, — X, | < 2CG(n) or | Xy, — Xy, | < 2CG(n) respectively.

Since € < 6, for any 1, ts,t3 € M satisfying t1 < to < t3 < t1 + ¢, there exists

i€ {l,...,2" =1} suchthatt} | <t; <t < t3 <t} ;. From the above paragraph,
we have

min (lXt2 — th ‘, ‘th — Xt2|) S 2CG(TL)

for any w € D,,. Since X is a separable process, there then exists & € F such that
P{®} = 0 and for any w € D,,\®

A; = sup min (|Xt2 - th |7 |4X’t3 - Xt2‘) S QCG(TL)

0<t1<ta<t3<ti1+e
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Therefore,
P{Al >2CG(n)} <P{D;} < Q(n,0),
as required. g

THEOREM 6.4.— Suppose that conditions of theorem 6.3 hold. Then with probability
1 the process X is D-regular, i.e. it has no discontinuities of the second kind, and
moreover, for each t € (0,T), it is left- or right-continuous at t, i.e. X (t—) = X (¢)
or X(t—) = X(t), and X (0+) = X(0), X (T'-) = X(T)).

PROOF.— Using the notation of the proof of theorem 6.3, we will show that X is D-
regular forw € D := Uzo:l D,,, where D,, were introduced in [6.3]. The assertion
will then follow since P{D°} = lim,,_,o, P{D¢} < limsup,,_,., @(n,C) = 0.

It follows from the proof of theorem 6.3 (ii) that if ¢ € (d41,0n], then
AL(X,[0,T],6) < 2CG(n) on D,,. Since G(n) — 0 as n — oo, we get that
AL(X,[0,7T],6) — 0 as e — 0 on the event D.

To apply theorem A1.9, we need to show that

sup | Xy — Xo| =0 and sup | X; —Xr| =0, e —0,
0<t<e T—e<t<T

on the event D. We will show only the first convergence, the second one being similar.

From the proof of theorem 6.3 (ii) it follows that, for any n > 1 and w € D,,, there
exists o(n) € [0,24,,] such that

sup | Xy — Xo| < CG(n)
0<t<o(n)

and

sup | Xi — Xo5,| < CG(n). [6.12]

o(n)<t<26,
Define D), = {w € D,, : o(n) > 0},

D' = lim D), ={w € D :o(n) > 0 for infinitely many n} .

n—roo

Clearly, supy<;<. |X; — Xo| < CG(n) on D, for any € < o(n), hence

lim sup |X; — Xo| < CG(n)

e—0 0<t<e
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on D},. Using that G(n) — 0, n — oo, we get that

lim sup |X; — Xo| =0 [6.13]

e—0 0<t<e

on D’. On the other hand, if w € D \ D', then there exists ng, such that ¢;,, = 0 for
all n > ng. Then from [6.12]

sup | Xi, — Xi,| <2CG(n)
0<t1<t2<26,

for n > ng, which obviously implies that there exists the limit lim;_,o4 X;. Thanks
to stochastic continuity, this limit is equal to X, but then [6.12] yields

sup |X; — Xas,| < CG(n),
0<t<26,

whence

sup | X3, — Xi,| <2CG(n)
0<t1<t2<20n

forall n > ng on D\ D’. Setting t; = 0 and combining this with [6.13], we get

lim sup |X;— Xo| =0

e—0 0<t<e

on D, as claimed. As a result, lim._,0 Ag(X,[0,T],¢) = 0 on D, so the statement
follows from theorem A1.9. g

6.4.2. Conditions of absence of the discontinuities of the second kind
formulated in terms of conditional probabilities of large increments

In this section, consider a complete probability space (€2, F,P). Recall that the
completeness means the following: for any A € F with P{A} = 0 and any B C A,
we have that B € F, and consequently, P{B} = 0. Furthermore, consider stochastic

basis with filtration (Q, F, {]:t}tzo ,P) constructed on (€, F,P) and assume that

this basis is complete, i.e. Fy contains all P-zero sets of F. Consider a stochastic
process X = {X;, F;,t > 0} adapted to the filtration mentioned above. For any & > 0
and 0 < s < t, consider a conditional probability P {|X; — X| > ¢|Fs} (we call
it the conditional probability of a big increment). It is a bounded random variable;
therefore, for any interval [a,b] C Ry, and any ' € F with P{Q'} = 1, we can
consider

a(e,6,8, [a,b]) = sup sup P{|X: — Xs| > €| Fs}.
WY a<s<t<(s+8)Ab
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Let

a (e, d,]a,b]) = Q,:Pi{r%zf/}:1 a (g, 6,8, [a,b]).

Note that both a (g, 0, €Y', [a, b]) and « (e, 6, [a, b]) are real numbers between 0 and
1. According to the definition of infimum, there exists a sequence {2/ ,n > 1}, such
that P {Q,} = 1 and a (¢,6,9,, [a,b]) = a(e,4,[a,b]). If we put Q) = U~ Q.
then

« (&5, Qé), [avb]) § lim o (5757 Q/nv [aab])»

n—o0
therefore, a (g, d, [a,b]) = a (g, d,Q, [a, b]).
Now establish the auxiliary result. Let a < t; < t3 < ... < t, < b be any

finite number of points. Denote 7 = {t1, ..., ¢, } and introduce the following events:
A¥(e,m) = {w € Q : X has at least k e-oscillations on the set 7} .

LEMMA 6.3.— The following upper bound holds:

P {AF(e,m) | Fu)} < (2a (Z,b— a, [a,b]))k as. [6.14]

REMARK 6.5.— Since the conditional probability P {| X; — X| > € | F5} for each s
and ¢ is defined up to a set of zero probability, then the expression a(e, d, ', [a, b]) is
defined non-uniquely. Moreover, since the supremum in its definition is taken over an
uncountable collection, the non-uniqueness is essential: the union of exceptional sets
of zero probability can even be equal to whole €. Consequently, «(e, d, [a, b]) is also

defined non-uniquely. Nevertheless, all results that follow are valid for any choice of
al(e, d,[a,b]).

PROOF.— 1) Consider the case k = 1 and introduce the events

Al:{|Xti—Xa|<§,1§z’§l—1, |th—Xa\>§},

Bi={|Xy = Xo| 2 S}, Cr= ANBL 1< 1<, Bo={|X— Xl = S}

The events A;, consequently C;, are disjoint, and A'(e,m) C (UL, C1) U Bo.
Indeed, if the trajectory of X has at least one e-oscillation on 7, then one of A
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happens, and if, at the same time, B; does not happen, then

| Xy — Xa| > | Xy, — Xo| = [ Xy — Xy, | > §.i.e. Bo happens. Therefore,

P {A'(e,m)|Fa} < P{Bo|Fa} + zn:P {C1|Fa}

=1

= P{IX, — Xo| > S1F} + Y B (14 E(1g|F0) 1)
=1

ga(%,b—a, [a,b]) + E(]lALOé (Z,b—a, [a,b]) |~Fa)

=1

a (Zb —a, [a,b]) (1 + éP{Al}'a}> < 2a (Zb —a, [a,b]) .

3

IN

2) Now we can apply induction. Assume that [6.14] is checked for some k£ — 1.
Introduce the event

D; = {onthe set {t1,...,t;} the trajectory of X has at least k — 1
e-oscillations, while on the set {t1,...,%;—1} the number of

e-oscillations is less than k£ — 1} .

The events Dy, 1 <[ < n are disjoint, |J;—, D; = A*~1(e,7) D Ak(e, 7).

Now, let A¥(g,7) N D; hold. Then on the set {t;,#;41,...,t,}, we have at least
one e-oscillation. Therefore, A*(e,m) = (U, (D, N A%(e, 7)) C UL, (DN Ey),
where

E; = {on the set {¢;,t;41,...,t,} the trajectory of X

has at least one e-oscillation}.

Note that P {E;|F,} < 2a (5,0 —t;,[t;,b]) < 2a(5,b— a, [a, b]). Therefore,
applying induction, we get

P {Ak(s,w)|}-a} < zn:P {DiNEy|Fa}
1=1

_ZE 1pE lEz‘ftz)l-F) ZE(HDZP{E”}—U}U:G)

=1



Regularity of Trajectories of Stochastic Processes 147

< 2« (Z,bf a, [a,b]) P {O sza}
1=1

=2 (Z,b —a,|a, b]) P {AF (e, )| Fa}

< <2a (Z,bfa,[a,b]))k. O

THEOREM 6.5.— Let the stochastic process X = {X;, F¢,t > 0} be separable and
for some T > 0 and any ¢ > 0 lims_o4 a(€,0,[0,T]) = 0. Then X has no
discontinuities of the second kind on the interval [0, T).

PROOF.- Denote by M C [0, T'] the separant of the process X. Since M is countable,
it can be presented as M = | J;-_; M, where M,, are increasing finite sets. Lete > 0
be fixed. We can choose m € N in such a way that 2« (£, L, [0,7]) = o < 1. Since

a(e, , ) increases when the interval increase, 2« <4, nTw {(k_ni)T7 ’%D < « for any

1 < k < m. Therefore, according to lemma 6.3,

P{Ak (E,Mnﬂ [W kTD Fou_ I)T} <ak. [6.15]

m m m

Denote

A% (e, 'ﬁ‘) = {the trajectory of X has an infinite number of e-oscillations on ’f‘} .

Then for a separable process

A% (g,[a,b]) = A®(e, M N [a,b]) = ﬁ A"(g, M N [a, b)),
r=1

and the events A" (e, M N [a, b]) are decreasing in r; therefore,

P {AOO (e, {(kml)T kTD’ﬂk 1>T} [6.16]
< lim P{AT (E,Mﬂ |:(k_1)T kT])'f(k l)T}.
—00 m
Further,

Rl (L) By vy (L A



148 Theory and Statistical Applications of Stochastic Processes

and the events A" (5, M, N {(kfl)T k—TD are increasing in n, hence, using [6.15],

m ’'m

P {A’" (s, MnN {W kTD Fonr } [6.17]

m m

= lim P {AT (E,Mn N {(k_l)T, kT]) ’ f(kl)T} <a".

n—o00 m m

It follows from [6.16] and [6.17] that P {AOO (5, [M HD Fonr } =0,

m ’'m
m

from which P {AOO (5, [M @D} =0forany 1 < k < m, and

m ’'m

P{A%* (¢,[0,T])} < éP {AO" (5, [(k_l)T, kT})} =0 forany € > 0.

m m

The proof now follows from theorem A1.8. g

COROLLARY 6.1.—Let X = {X,t € [0, T} be a separable continuous in probability
stochastic process with independent increments. Then it has no discontinuities of the
second kind.

PROOF.— Calculate a(e, §) for any £ > 0. Owing to independent increments, it equals

a(e,d) = sup P{|X; — X;| > ¢| Fs}
O§s<(:‘,)§ﬁ(i&’-5)/\T
= swp P{X, - Xze)
0<s<t<(s+0)AT
and this value tends to 0 as § — 0+ according to lemma 6.1. g

6.5. Conditions of continuity of trajectories of stochastic processes

6.5.1. Kolmogorov conditions of continuity in terms of two-dimensional
distributions

Similarly to theorem 6.4 and in the same notations, we can formulate and prove
the following result.

THEOREM 6.6.— Let X = {X;,t € [0,T]} be a real-valued separable stochastic
process satisfying the condition: there exists a strictly positive non-decreasing
Sunction g(h) and a function q(C,h), h > 0, such that forany 0 < h <t <T —h
and C > 0,

P{|X1n — Xi| > Cg(h)} < q(C, h),
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and

Zg ) < o0, Q(C 22” (C,5,)

Then

i) foranye > 0
€
P Xy — Xs| > < ;
{0<§1<112<T ' | 6} Q(QG(O)

i p{axne e (fon | )} <o fong|.o).

where
6 =3 0(60), Q€)= 3 24(C.0)
k=n
PROOF.— As before, denote ¢} = kd,,, k = 0,1,...,2" and consider the events

T
An,k:{WGQZ‘Xt;C‘+1_XtZ SCQ(TL)}, n20,0§k§2”_1

and let

oo 2M—1

D, = ﬂ ﬂ A -

m=n k=0

Then, forany w € Dgandanyn > 0,0 < j < k <27,

‘th ~ Xu| <206(0)

which can be proved similarly to [6.7]. It follows from separability of the process X
that, for w € Dy, | X; — X;| < 2CG(0), and

P{ sup | Xy — X| > QC’G(O)} <P{D§},
0<s<t<T

whence

co 2™—1 c
P{0<§1<l£)<TXt_XS|ZE}<,;JkZOq( >:Q<2G(O))'
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Lete >0,n = [log2 %}, so that e < 2% and let w € D,,. Then th“ — th <

Cg (d,). Assume that for some m > n, |k — j| < 2m™"

S2029(5k)~

k=n

‘Xtm — Xiym
k J

Then for m + 1 and |k — j| < 2™ F1=" suchthatk > j, k = 2k; +1,j = 2j1 + 1
we have that |k; — 1 — j;| < 2™~ ", therefore

| Xygrr = X
k J

< Xy = Xy
k

k141

+ ‘Xtm+l — Xim
ky—1 J

<29 () 203" g (54) < 20C(n).

k=n

—+ )thwrl — Xtm+1
251 271 +1

Other points tZ“rl and t;”“ are considered similarly. Finally, we get that, for any
tit, ¢, m > n, such that |k — 710m < 6n

]Xtm ~ Xpn
k J

<20 i g (0x) = 2CG(n).
k=n

Since X is separable, we get that, for 0 < £ < §,, and |s — ¢| < ¢,
X, — X,| < 2CG(n) on D,. [6.18]

It means that

P sup | Xy — X | >2CG(n) p <P{D;} <Q(n,C),
t—s|<e
O‘§s<‘th

as required. d

The next result is an obvious corollary of theorem 6.6. It can be proved similarly
to theorem 6.4 but much simpler.

THEOREM 6.7.— Under the conditions of theorem 6.6, the process X is continuous
on [0, 7).

THEOREM 6.8.— (Kolmogorov—Chentsov) Let X = {Xy,t € [0,T]} be a separable
stochastic process satisfying the assumption: there exist constants K > 0, a > 0 and
B > 0, such that

E|X; — X |* <Kt —s]', 0<s<t<T. [6.19]
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Then X is a continuous process.

PROOF.— Let g(h) = h#1/*, where 0 < B; < . Then

> Th1/e (1)Prm/a .
Gm) = 3 (3) e = (—>B/ = Oy (0m)
k=m 1 (5)

P{|X; — Xyyn| > Cg(h)} < C[g(h)] " E|X¢yn — X¢|*
< CCKh Pplth = o~ gpiTh—Pr,

Therefore, we can put ¢(C, h) = KC~*ptA=P1 1In this case,

oo T B/
Zg Z(Zn) < 9,

n=0
and
(o)
Z 277,9(0’ 6n Z KC~ a2n 1+B B1
= KC™oT A=Ay "o nB=A) < oo,
n=0
and the proof follows from theorem 6.7. g

REMARK 6.6.— Theorems 6.7 and 6.8 can be reformulated in such a way that a
stochastic process, satisfying their assumptions except the assumption of separability,
has a continuous modification. From now on assume that we consider a separable
modification of any process X.

REMARK 6.7.— Condition E|X; — X,|? < C|t — s| does not supply the continuity
of X. Indeed, if X is a homogeneous Poisson process with parameter A, then, for any
keN,

> At — s )\t —1
E|X, — X,|F = Zlkef’\‘t’s‘('# < At — Zlk 1 (A iz 1;
1=0 :

> At — s|)!
=\t — s|Z(Z + 1);@—1% < C|t - s,
1=0 ’

however, almost all trajectories of the Poisson process have jumps on R™.
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REMARK 6.8.—Let X = {X,? € [0, T]} be a Gaussian process with zero mean and
covariance function R(s,t). Then

E(X: — X5)? = R(t,t) — 2R(s,t) + R(s, s).

According to the formula for higher moments of Gaussian distribution, if £ ~
N(0, 02), then Ef% = Co*, where k € N, C}, are some constants depending only
on k. Therefore,

E(X; — X,)? = Cr (R(t,t) — 2R(s,t) + R(s, s))", k € N.
Assume that there exist C' > 0 and y > 0 such that, for any s,t € [0, 77,

R(t,t) — 2R(s,t) + R(s,s) < C|t —s|7. [6.20]
Then, for k > j ', we have that

E(X; — X,)%* < C.CF|t — 5™,
It means that X is a continuous process.

In particular, let X be a Gaussian process with zero mean and E(X; — X,)? =
R(Jt—s]|), where R : Ry — R is some function (such processes are called processes
with stationary increments). If R(x) < Cz", x € [0,T], then X is a continuous
process.

Consider some examples.
EXAMPLE 6.3.— Let X = W be a Wiener process. Then E|W, — W,|? = |t — 5],

so W is a process with stationary increments with R(x) = x and W is a continuous
process on any [0, T).

EXAMPLE 6.4— Let X = BY be a fractional Brownian motion with Hurst index
H € (0,1). Then

1
E|BE — BE|? =21 —2~§(t2H—|—52H — |t—s|2H) + 2 = |t — s|?H.

Therefore, B isa process with stationary increments, R(x) = 22" and B is a
continuous process.

6.5.2. Hdlder continuity of stochastic processes: a sufficient condition

Recall that function f : [0,7] — R is said to be Holder continuous of order
0 < a < 1if there exists C > 0, such that, for any s, ¢ € [0, T,

[F(8) = f(s)] < Clt = s]%
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Obviously, if f is Holder continuous of some order o € (0, 1) on [0, T, then it is
Holder continuous of any order 8 € (0, «) on this interval.

DEFINITION 6.7.— Function f : [0,T] — R is Holder continuous up to order « €
(0,1) on [0, T) if it is Holder continuous of any order B € (0, ).

THEOREM 6.9.— Let stochastic process X = {X,,t € [0, T} be separable and satisfy
condition [6.19]. Then a.s. its trajectories are Holder continuous up to order [3/c.

PROOF.— Let us attentively check the proof of theorem 6.8. It follows from [6.18] that

for0 <e< L and|s—t|<e

oo Bi/a
) i AL
|Xt Xs‘ < QCG(TL) - QCkz:;L((sk) < 201 _ (571’)51/04

< 4C (6,)"* for n > log, (T : 2ﬁ> , and for w € D,,.

Furthermore,
Y P{DL} <> 2"Q(n,C) < .
n=1 n=1

Therefore, it follows from the Borel-Cantelli lemma that, for any w € Q' with
P{Q'} = 1, there exists ng = ng(w) > logy (T - 2°1/®), such that, for n > ng(w),

X, — X,| <4C (5,)"/, for |t — s| < 6.
Then, for any ¢, s € [0, T, such that [t — 5| > 0, (., the distance [t — s| does not
exceed T = 2m0(w) . o (w)» Whence
o X,] € 2 o),
and for |t — s| € [0n41, 0] for n > np(w)
1X; — X,| < 4C (8,)* < AC (8,41)"/* 251/ < Gyt — 5|1/,

and the proof follows. 0

In particular, let X be a Gaussian process with zero mean, stationary increments,
and let E(X; — X5)? = R(|t — s]). If R(z) < Cz7, z € [0, 7], then, for any p € N,

E|X; — X,|?P < Cp|t — s|7P; therefore, X is Holder continuous up to order % -1

2p
for any p > 1, i.e. it is Holder continuous up to order 3. Consider some examples.
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EXAMPLE 6.5.— Let X = W be a Wiener process. Then E|W;—W|? = [t—s]|, soy =
1 and W is Holder continuous up to order % It means that there exists )’ C Q such
that P{QY'} = 1 and for any w € ', any § > 0 and any T > 0, there exists a constant
C = C(T,w,d), such that, for any s,t € [0,T], |W; — W,| < C(T,w, 8)[t — 5|25,

EXAMPLE 6.6.— Let X = BY be a fractional Brownian motion with Hurst index
H € (0,1). Then

BB — B =t — s,
Therefore, v = 2H and B are Holder continuous up to order H. It means that

there exists Q' C ), such that P{Q'} = 1 and for any w € ', any 6 > 0 and any
T > 0, there exists a constant C = C(T,w, §), such that, for any s,t € [0,T],

|BtH _Bf| < C(T7w76)|t_S‘H_5'

Of course, these reasons do not deny that W and B have smoother trajectories;
however, it can be established that the statements above concerning their Holder
properties are sharp.

6.5.3. Conditions of continuity in terms of conditional probabilities

THEOREM 6.10.— Consider the interval [0, T] and sequence of partitions
m={0=ty <...<tp =T}.

Denote |m,| = maxi<p<k, (tf —t}_;). Let X = {Xy,t € [0,T]} be a separable
stochastic process without discontinuities of second kind, such that, for any sequence
{mn,n > 1} of partitions with |r,| — 0 as n — oo and any € > 0,

kn
P{’Xt;: _XtLll’ 25} — 0 as n — oo. [6.21]
k=1

Then the process X is continuous, i.e. it has a.s. continuous trajectories on [0, T'.

PROOF.— For any € > 0, denote by v, the number of points ¢ € (0,7) for which
Xi+ # X;— and let v be the number of points t’fL, for which ‘Xt;; - Xt;L > 5.

Then v, < lim,,_,~ inf v, while

1

kn

PO {ETES

k=1

€
>
2

It follows from the Fatou lemma and the theorem assumptions that

krn
Ev'=E) 1
=1 ’Xt:—xtzfl

2

M)

Ev. <Eliminfv] <liminf Ev” = 0.

n—oo n— oo
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Therefore, v. = 0 with probability 1 for any € > 0. It means that X;; = X;_,
t € (0,7) with probability 1. Then it follows from separability of X that X; =
Xty = Xi—, t € (0,T) with probability 1. Moreover, it follows from separability of
X on [0,T] that Xy = Xo4+ and X7 = Xp_ with probability 1. It means that X is
continuous on [0, T7]. O

THEOREM 6.11.— Let a process X = {X;,t € [0,T)} be separable and, for any

e >0, lims_,o4 w = 0. Then the process X is continuous on [0, T.

PROOF.— Under the theorem’s condition lim;_,o+ a(e,d,[0,T]) = 0. Therefore, X
has no discontinuities of the second kind according to theorem 6.5. Consequently,
it is sufficient to check condition [6.21]. Consider a sequence of partitions m,, with
|| — 0 as n — co. Note that

P{‘th thZ_ll zg} <El1

>e

Xin—Xyn
e Tt

1

—E(E[1 Py :E(P{‘th —thfl‘ 25|]—‘t271})

X n 7X n
e T |T

< 04(57152 - t;tl, [tﬁaﬁifﬂ) < a(&tz - Z—la [O,T]),

we conclude that

k k
~ N cal(ety =t _,[0,T7)
P{|xy - x4 |2} <Dt — i) =2
Pt k=1 bkl [6.22]
ale, t} —t7_,,10,T 7,10, T
< max 2O ZELOTD @ 07D
l<ksn th —tp_a 0<y<|mnl v
Therefore, it follows from the definition of lim sup and [6.22] that
o al(e,6,]0,TY))
lim ZP{‘X%L — X ‘25} < limsup 2802 p_ g, 0
n—oo P o—1 5—0+ 1)
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Markov and Diffusion Processes

7.1. Markov property

Consider a complete probability space (£2, F,P) and a parameter set T C R,
playing the role of time.

DEFINITION 7.1.— A stochastic process {Xi,t € T} in (S,X) is called a Markov
process if for any s,t € T, s < t and any A € %
P{X;eA|Fs}=P{X, € A| X,} [7.1]
almost surely, where F; = FiX = 0 {X,, s <t,s € T} is the natural filtration of X.
Equation [7.1], called the Markov property, is the absence of memory: it means
that the probability distribution of future values of the process depends only on its

current value but not on the path which led to this value. In other words, conditionally
on the current state of the process, its future values are independent of its past values.

PROPOSITION 7.1.— The stochastic process X is Markov if and only if for any n > 1,
any s1,82,...,8p,t ETwiths; < s9 < -+-< 8, <tandany A € &
P{X:e€A| X5, Xsp,..-, X5, } =P{X: € 4] X, } [7.2]

almost surely.

PROOF.— Let X be a Markov process. Then, for any n > 1, any s1,82,...,5,,t € T
with $1 < s2 < -+- < s, < tand any A € ¥, it follows from the properties of
conditional expectation that

P{X, € A| Xy, Xep, -, Xs, } =E(P{X, € A| Fo,} | X1, Xopr o, Xs)
—BE(P{X, € A| X, }| X, X X,)=P{X,€A|X,,}.

Soy ey

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
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Vice versa, let [7.2] hold. Fix some s,t € T with s < ¢t. When P{X; € A} =0,
equation [7.1] is obvious, since both its sides are zero almost surely. So assume that
A € Y is such that K := P{X; € A} > 0. Denote

n=P{X, € A| X,}

and consider set functions

Qi(B) = %E(ﬂxteAﬂB% Q2(B) = %E(’Iﬂl]g), B e F.

It is obvious that Q; is a probability measure and it follows from the tower property
of conditional expectation that En = P{X; € A} = K, so QQ; is a probability
measure too. Now for B of the form

B={(Xs,...,X,)eED},n>1,8 < --<s,<s,Dexm, [7.3]

we have, thanks to equation [7.2], that E(1x,calp) = E(nlg), whence Q;(B) =
Q2(B). The sets of the form [7.3] form a 7-system and generate F, so we get from
theorem A2.2 that Q1 (B) = Q2(B); hence, E(1x,c4lp) = E(nlp) forall B € F;.
Since 7 is Fs-measurable, the latter equality means that

n:E(]lXteA ‘J:S) :P{Xt €A|]:s}a

as required. g

Assume further that the state space (S,3) is a Polish space, i.e. a separable
complete metric space with Borel o-algebra. By theorem A2.6 and remark A2.2, we
can write

P{X; € A| X} = P(s, X;,t, A), [7.4]

where the function P(s,x,t, A) is measurable in x for any fixed s, ¢, A. Moreover,
by theorem A2.12, a regular conditional distribution exists, so we can assume without
any loss of generality that P(s,z,t, A) is a measure as a function of A for any fixed
s, t, x. Further, using theorem A2.3, we find that for any bounded measurable function
g: S =R,

E(g(X,) | o) = /S 9(y) P(s, X..t. dy) 7.5)
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almost surely. Therefore, using the tower property of conditional expectation, we can
write for any s,u,t € Twiths <u <tandany A € ¥

P(s, Xs,t, A) = P{X(t) cA \ ]:S} = E(P{Xt €A fu} | ]:5)
=E(P(u, Xy, t,A) | Fs) = / P(u,y,t, A)P(s, Xs, u,dy)
S

almost surely. This is equivalent to saying that

P(s,a.t, A) = / Plu,y,t, A)P(s, . u, dy) 17.6]
S

for all z € S except some set N such that P{X; € N} = 0. This equation, called the

Chapman—Kolmogorov equation, motivates the following definition, where we denote
T2< = {(s,t) € T? : s < t}.

DEFINITION 7.2.— A transition probability function is a function P: T?< x S x ¥ —
R such that:

1) P(s,x,t, A) is measurable in x;
2) as a function of A, P(s,x,t, A) is a probability measure;
3) equation [1.6] holds for all (s,t) € T><, z € S, A€ X.

A function Q: S x ¥, such that Q(x, A) is measurable in x and a probability
measure in A, is called a transition kernel, stochastic kernel or Markov kernel.
Alternative names for transition probability function are transition probability and
Markov transition probability (function).

It is natural and convenient to define the “zero-time” transition probabilities as
P(t,x,t, A) = §,(A) := 1 a(x).

With this extension, equations [7.4] and [7.6] obviously hold when some of the
parameters s, u, t coincide.

DEFINITION 7.3.— A Markov process X is said to have the transition probability
Sfunction P, or the transition probability function P is said to correspond to X, if
equation [7.4] is satisfied for any (s,t) € T?< and A € X almost surely.

If a Markov process X has transition probability function P, then, appealing as
before to theorem A2.3, [7.5] holds for any bounded measurable function g. Vice
versa, substituting an indicator function into [7.5] leads to [7.4], so [7.5] can be
regarded as an alternative definition of the fact that P corresponds to X .
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The discussion preceding Definition 7.2 shows that to each Markov process
corresponds a function, which satisfies [7.6] for almost all x € S with respect to the
distribution of X, so it is in this sense almost a transition probability function. It
turns out that for a Markov process taking values in a complete separable metric
space, there exists a genuine transition probability function, i.e. one that satisfies
[7.6] for any (s,t) € T?<,A € ¥ and all # € S; this was proved by Kuznetsov
[KUZ 84]. The converse is not always the case: not all transition probability
functions have Markov processes corresponding to them.

EXAMPLE 7.1.— Let T = 7, S = N, ¥ = 2N, Define for integer s <t,z € N, ACN
P(s,x,t,A) = la(x+t—s).

This function is easily seen to be a transition probability. Assume that a corresponding
Markov process { X, t € Z} exists. Note that

P{X;11€A| Xs=a}=P(s,z,s+1,A) = 14(x + 1),

so the underlying evolution is deterministic: the process simply increases its value by
1 on each step. In particular, thanks to the law of total probability, for every n > 2,

P{Xiy1=n}=> P{Xip1 =n|X,=kP{X;, =k} [7.7)
k=1

:P{Xt_H:n|Xt:n—l}P{Xt:n—l}:P{Xt:n—l},

and P{ X411 = 1} = 0. Obviously, P{Xy = m} > 0 for some m € N. From [7.8],
we get

P{Xo=m)=P{X_1=m—-1}=P{X y=m—2}=---=P{X,_,, =1} =0,

a contradiction.
Nevertheless, if there is a “starting point”, then the corresponding process exists.

THEOREM 7.1.— Assume that T has a minimal element to and P is a transition
probability function. Then, for any probability distribution p on (S,Y), there exists
a Markov process X such that P is its transition probability function and X, has
distribution u. Moreover, finite-dimensional distributions of the Markov process X
are uniquely determined by v and P.

PROOF.— Let us start with the second statement, at the same time determining the
finite-dimensional distributions of X . For arbitrary integer n > 2,let A;,..., A, € &



Markov and Diffusion Processes 161

and t1,...,t, € T besuchthatt; < --- < t,. Denote I}, = 1th€Ak’ k=1,...,n,
and write, using the Markov property and [7.5],

P{X, €A,.... X, €A} =EENL L, |F,_,))

=E1 - L E(,|F, ) =E@ L E, | X ,))
=E (L L1 P(tn-1, Xt,_1stn, An))

=E(L - L 2E (Lis1P(tn—1, Xty tns An) | Frns))
=E(L - L2 E (Lica Ptn—1, Xtn_1s tn, An) | X(tn—2)))

= E(Il R In72 / P(tnfly Yn—1, tna An)P(tn72> th,zy tnfh dynl)) .
A

n—1
Repeating this chain of reasoning and noting for better appearance that

P(tnflvynflatnvAn) :/ P(tnflaynfhtnvdyn)v
An

we get

P(th €A,.... Xy, €A)

n

E(/Al /Az.../An (UP(tk_l,yk_l,tk,dyk)>P(t0,Xt0,t1,dyl))
[ (L

which implies the uniqueness.

P(tklayk1atk»dyk)>/i(dy0)7 [7.8]
k=1

On the other hand, given a transition probability function P and an initial
distribution y, we can define finite-dimensional distributions through [7.8]. This is
easily seen to be a consistent family, so thanks to theorem 1.2, there exists a
stochastic process { X, ¢ € T} such that its finite-dimensional distributions are given
by [7.8]. Moreover, it follows immediately from [7.8] that the distribution of X3, is
w. Therefore, it remains to check that X is a Markov process with transition
probability function P.

To this end, first observe from [7.8] that for any s € T, B € 3,

P{X,e B} = [SP(to,yo,s,B)u(dyo)-
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By using theorem A2.3, we get

Ef(X,) = /5 /3 F)Pto, you s, dy)pu(dyo)

for any bounded measurable function f. Therefore, using [7.8] again, for any ¢t € T,
t>Tand A, B € ¥, we have

P{Xs S BvXt € A} = / / P(svyht»A)P(tU?y0787dy1)/1‘(dy0)
SJB

= E(]lXSEgP(S,XS7t,A>) .

whence [7.4] follows. Similarly, from [7.8], for any n > 2, ¢{; < --- < %, and
Al,...,An SN

P{th e Al,...,th (S An}

n

-1
:// / P(tn—layn—lvtnvAn)(HP(tk—lvyk—17tk7dyk))u(dy0)
s/, Ani Pt

n—1
=E <H ]lthEAkP<tn—17th17t7hAn)> )
k=1

whence
P{th E An ‘ th, . '7th—1} = P(tnthtn,lytnyAn)

almost surely. In particular, P{X, € A, | X,..., X, ,} is o(Xs, ,)-
measurable, whence by the properties of conditional expectation,

P{Xt" S An | thfl} =E (P{th € An ‘ th' "7th71} | th—l)
- P{th S An | th, “en 7th—1}7
which yields the Markov property, since t1, ... ,t, and A,, are arbitrary. U
In the case where (S,%) = (R¢,B(R)), if the transition probability P, as a

function of A, has a density p with respect to the Lebesgue measure, i.e.

P(S,x,tfl)=/p(s,ar,t,y)dy,
A

then p is called a transition probability density. The Chapman—Kolmogorov equation
[7.6] can be rewritten with the help of the Fubini theorem as

/p(s,x,t,y)dy:/ /p(u,z,t,y)dyp(&au,Z)dz
A R JA

:// (s, z,u, 2)p(u, 2, t, y)dz dy.
A JRrd
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Since this is true for any A € 3, we get
p(s, . t,y) = / p(s,,u, 2)p(u, 2,1, y)dz [7.9]
Rd

for almost all 5y € R%.

An important particular case is where the transition probability depends only on
the distance between time instances.

DEFINITION 7.4.— A transition probability function P is homogeneous if for all
$1,t1,89,t0 € Twithty — sy =1t; —s1 >0andanyx € S, A € %,

P(SlvxvtlaA) = P(527I7t25A)'

A Markov process is homogeneous if it has a homogeneous transition probability
function.

A homogeneous transition probability function may be regarded as a function of

three arguments, i.e. P(s,z,t, A) = P(t — s,x, A), equivalently, P(s,z,s +t,A) =
P(t,x, A). Then, the Chapman—Kolmogorov equation may be rewritten as

P(t—i—s,x,A):/P(t,y,A)P(s,x,dy). [7.10]
s

If S = R? and the transition probability density exists, then we can write the
following homogeneous version of the Chapman—Kolmogorov equation for densities:

p(t+ s,x,y) = / p(s,z, 2)p(t,y, 2)dz [7.11]
Rd

for almost all y € R%.

7.2. Examples of Markov processes
7.2.1. Discrete-time Markov chain

Let the state space S be finite or countable, ¥ = 2° and the parameter set be
the set of non-negative integers: T = {0,1,2...}. In this case, a Markov process
{X¢,t € T} = {X,,,n > 0} is called a (discrete-time) Markov chain. Without loss of
generality, we can assume that S = {1,2,... , N}orS = N.
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It is not hard to see that in this case the Markov property can be reformulated as
follows: for any n > m > 0 and g, Z1, ..., Zm,x € S such that P{X,,, = z,,} > 0,

P{Xn=x|X0 =10, X3 :ml,...,Xm:xm} :P{Xn :x|Xm:mm}.
For any i,j € S such that P {X,,, = j} > 0, define the transition probabilities
pij(m,n) = P{Xn =j|Xm= i};
for definiteness set p;;(m,n) = 1,—; if P {X,, = j} = 0. These probabilities form a

matrix (of infinite size if S = N), called the transition probability matrix (or simply
the transition matrix) of X:

P(m,n) = (pij (m, n))i,jes'

The transition probability function is now easily seen to be

P(m,i,n, A) = Zp”mn
JEA

8o, setting in [7.6] x =4, s =m,t =n,u=1, A = {j}, we get

pij(m,n) = pir(m, Dpk;(1,n).
kes

Thus, in the Markov chain setting, the Chapman—Kolmogorov equation turns into
matrix multiplication

P(m,n) = P(m,))P(l,n).

In particular, transition probabilities can be expressed in terms of one-step
transition probabilities

n—1
P(m,n) = [] P(k,k+1). [7.12]

k=m

If P(m,n) is a function of n — m, then the corresponding Markov chain is
homogeneous; this is equivalent to saying that the one-step transition probabilities
are independent of time: p;;(m, m + 1) = p;;,4,j € S, so

P(m,m—l—l) =P= {pij}i,jES’ m > 0.



Markov and Diffusion Processes 165

Then, the n-step transition matrix, thanks to [7.12], is a power of the one-step
transition matrix P(m, m + n) = P™.

Finally, it is worth mentioning that the term “Markov chain” is often used for
a homogeneous Markov chain, while a general one is called a time-inhomogeneous
Markov chain.

7.2.2. Continuous-time Markov chain
Consider a generalization of the previous situation: the state space is again finite

or countable, but the parameter set T = R,. Let X be a Markov process. As above,
the transition probability function can be written as a matrix

P(s,t) = (pij(tvs))i,jES’

where p;;(s,t) = P{X; = j | X, =i} if P{X, =i} > 0and p;;(s,t) = L=,
otherwise. Then, the Chapman—Kolmogorov equation reads

P(s,t) = P(s,u)P(u,t)

forallt > uw > s > 0. In the present case of continuous time argument, this is the
so-called cocycle property.

Let us now turn to the homogeneous case where
P(S?t) =P_s= (plj(t - 3))1*’]‘63’
SO
P5+t == PSPt. [713]

Together with the “initial condition” Py = I, the identity matrix, this equation
resembles properties of an exponential function and gives the idea that

o0

p=eti= Dan
t . ’I’L' )

n=0

the matrix exponential. We will show this under the additional assumptions that S is
finite and that the transition probabilities are continuous. The matrix A in this
representation is called the generator matrix.
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PROPOSITION 7.2.— Let S be finite and the transition probability matrix P; be
continuous at t = 0, i.e. P, — I, t — 0+. Then, for each i,j € S, the limit
ai; = limyoqt 1 (pij(t) — dij) exists, and P, = e, t > 0, where
A= (aij)ijes = limt_>0+ t_l(Pt - I)

PROOF.— It follows from the continuity at 0 and [7.13] that P; is continuous on R .
Then, we can integrate it elementwise, moreover,

1 t
St::Z/ Pids — I, t—0+.
0

In particular, det S; — 1, ¢ — 0+, so there exists € > 0 such that S; is invertible
for any ¢ € (0,¢). Taking some a € (0, ¢) and using [7.13], we get for any h > 0

a a h+a
Vh:PhSa:Ph/ Ptdt:/ Pt+hdt:/ Ptdt
0 0 h

Thanks to the continuity of P; if the right-hand side of the last equation is
continuously differentiable in h, then the left-hand side is differentiable as well; in
particular, it is differentiable at zero. Therefore, P;, = VhS is differentiable at zero
as well, which implies the existence of the matrix A.

From [7.13], we have
1 1
*(Pt+5—Pt): *(PS—I)Pt%APt, S-)O—‘r,
s s
so we get the differential equation

d

—P,=AP;,t>0
dt t ts —Z Y%

or, in integral form,
t

Pt:I—i-/ APds, t > 0.
0

Then, we can write

t S t s
Pt:I—i—/ A(I—i—/ APudu>ds:I+tA—|—/ / A?P,duds
0 0 0
_I+tA+/ / A2<I+/ APdv)duds
—I+tA+ A2 ///A3Pdvduds
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Continuing this line of reasoning, we get

n

t2 t
Pt:I+I+tA+5A2+~-~+EA”+R,L¢,

where

t t1 tn
Rn,t = / / . / An+1Ptn’+1dtn+1dtn . dtl
0 Jo 0

It is easy to see that the elements of R,, ; do not exceed (ta* |S)"T1/(n + 1)!,
where a* = max; jes a; ;. Therefore, R, ; vanishes as n — oo, so letting n — oo,
we get P, = et O

Assume further that the conditions of proposition 7.2 are fulfilled.

Let us now describe the evolution of X. It follows from our assumptions that
pii(t) — 1 for each ¢ € S, which means that X is stochastically continuous.
Therefore, by theorem 6.2, it has a separable modification, so we will assume that X
is separable. Denote \; = —a;;, i € S. Let us identify the distribution of the exit time
7 = inf{t > 0 : X, # i} given that Xy, = 4. Note that
{r >t} ={Xs, =1iVs €[0,t]}. Let t} = tk/n, k =0,1,...,n. Then, thanks to the
separability of X,

P{T>t|Xo=¢}=n13§OP{Xt; =iVk=0,1,...,n| Xo =1}
n
= lim HP{XtZ =i| Xy  =i}= Tim py(t/n)"

n— 00
k=1

= exp {nlggonlogpii(t/n)} = exp {nlggo n(pii(t/n) — 1)} = e Mt

so 7 has an exponential distribution with parameter \;. Further, to identify the
distribution of the value of X; after jump, we observe that for j # i, the probability
P{X;s =j | X¢4s # 1, X, = i} is independent of ¢ and is equal to

pij(s)
1 —pii(s)’

which converges to ¢;; := a;;/A; as s — 0+. Consequently, independently of where
the jump occurs, the distribution of the value X, after the jump is

P{X,s =j|Xo=i}=qy, jeS\{i}.



168 Theory and Statistical Applications of Stochastic Processes

Summing up, the behavior of the continuous-time Markov chain X is as follows.
It spends an exponential time at state ¢ and then switches to another state according to
probabilities g;;. The sequence of values of X is a discrete-time homogeneous Markov
chain with one-step transition probability matrix Q = (g;;), jes» Where g;; = 0 for
all 7 € S; this is the so-called embedded Markov chain. Such behavior is close to that
of the Poisson process (see section 2.3.3).

7.2.3. Process with independent increments

Assume that S = R? and that the process {X;,¢ € T} in S has independent
increments. Then, for any s,¢ € T with s < ¢t and any A € B(Rd),

P{Xt) e A|F,} =P{Xy - X, € A— X, | %}
=P{X;-X,eAd—a}, | [7.14]

almost surely, since X is Fg-measurable and X; — X is independent of Fj; here,
A — 1z :={y —x,y € A}. Noting that the last term in [7.14] is a function of X, we
establish the Markov property of X.

In particular, any Lévy process is a homogeneous Markov process.
7.3. Semigroup resolvent operator and generator related to the
homogeneous Markov process

Let S be a complete separable metric space, ¥ = B(S) be the Borel o-field and
X = {X:,t >0} be a homogeneous Markov process with transition probability

function P(t,z, A),t > 0,z € S, A € X. Since P(t, z,-) is a probability measure in
A € 3, for any bounded measurable function f: S — R, we can define the integral

T f(x) = /Sf(y)P(t,a?,dy), t>0. [7.15]

7.3.1. Semigroup related to Markov process
Denote B(S) the space of bounded measurable functions f: S — R with the

norm || f|| = sup,cs | f(x)|. Formula [7.15] defines the operator 7} : B(S) — B(S).
Indeed,

ITf1l < sup [T/ (2)] < |I£] / Plt,x.dy) = | f]]. 17.16]
xES S
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The operator T} is obviously linear on B(S) and the relation [7.16] means that
|T:l = supsem(s) ITefll < 1 (for the definition of the operator norm, see
section A1.7).

Moreover, if we put f = 1, then |7, f|| = 1. It means that ||T}|| = 1 for any ¢ > 0.
Defining

Tof(z) = f(=), [7.17]

we get a family of linear isometric operators {T3,¢ > 0} : B(S) — B(S). With the
general definition of semigroup from section A1.7, we can prove the following result.

THEOREM 7.2.— The family of operators {T;,t > 0} defined by the relations [7.15],
[7.17] is a semigroup.

PROOF.— We should check only semigroup equation [A1.6], but it follows
immediately from the Chapman—Kolmogorov equation, because for any f € B(S)
and t, s > 0, the Fubini theorem and [7.16] imply that

Tiisf(x) = /Sf(y)P(t-i- s,x,dy) = [Sf(y)/sP(t,z,dy)P(s,x,dz)
= / P(s,a:,dz)/ fWP(t, z,dy) = / T f(2)P(s,x,dz) = Ty(Ts f)(x). O
S S S
The semigroup Ty is called a Markov semigroup.

7.3.2. Resolvent operator and resolvent equation
Let {T;,t > 0} be a semigroup defined by relations [7.15] and [7.17]. Consider
the Laplace transform of the following form: for any A > 0 and f € B(S), let

Ryf(z) = /Ooo e MNT, f(x)dt. [7.18]

Operators { Ry, A > 0} form a family of resolvent operators of the semigroup T;.

LEMMA 7.1.— The family { Rx, A > 0} defined by relation [7.18] consists of bounded
linear operators from B(S) to B(S), and ||Ry| = A~L

PROOF.— Let us estimate ||Ry||. We have that

@)l < [ ML ()t < / " e sup |11 £ ()|t
0 0 xeS

> A
< £l / et = AV £,
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whence Ry: B(S) — B(S) and ||Ry|] < X' Let f = 1. Then,
Ral(z) = [;° e *dt = %, whence || Ry|| = . Linear property is evident. O

THEOREM 7.3.— (Resolvent equation). For any A > 0, u > 0, we have the following
operator equation:

Ry— R, = (u— \NR\R, = (A — p) R, Ry [7.19]

PROOF.— For any f € B(S), x € Sand A\, > 0, A\ # u, we can apply the Fubini
theorem and theorem A1.14 to get the following equality:

Raf@) = Ruf(o) = [ (e = e mp i
= /OO e ML — e WINT, f(x)dt
0

o} t
= / e_’\t/ e~ =N AT f () dit (u— N)
0 0

— (M—A)/O e~ (H=Ns (/OO e M f () dt) ds

=(u— )\)/ e~ (B=N)s </ e AT F () du> ds
0

0

==X /OOO e T (AOO e T, f () du) ds

= (=X /000 e Ty (Raf(x))ds = (n — ARy Ry f(2). O

REMARK 7.1.— In the theory of linear operators, the resolvent operator traditionally
is defined in the following way. Let Z be some linear normed space and A : Z — 7Z
be a bounded linear operator. Denote

Ra={X€R:(A— )" exists as a linear bounded operator from Z to Z}

the resolvent set of A. Define Ry = (A —X)=1, X\ € R4 the resolvent operator of
A. Now, let A, u € R 4. Then

Ry—Ry= (A=A~ = (A—pl)™
=(A-XN)"'T - (A= MD)(A—pul)™h) [7.20]
= (A=A = (A= pD)(A=pD) ™ = (u=N)(A—=pl)™)
= (A= w(A= )" (A= pl) = (A= p)RAR,.



Markov and Diffusion Processes 171

Equation [7.20] differs from [7.19] only in sign. Therefore, for Ry = —EA =
(M — A)~1, we get equation [7.19]. This leads to the idea of looking for an operator
for R from equation [7.18] as a resolvent operator. This idea will be realized with the
notion of generator, which generalizes that from section 7.2.2. However, at first, we
establish some auxiliary results.

LEMMA 7.2.— Foranyt > 0, A\ > 0 and f € B(S),

t
T,Ryf — Ryf = (eM — 1)Ryf — e“/ T, fe *ds. [7.21]
0

PROOF.— Because of theorem A1l.14, we can write
TyRxf =T, / e T, fds = / e Ty, fds
0 0

z/ e_A(”_t)Tufduze)‘t/ e T, fdu
t t

_ At R _ ! —)\uTu du)
e (Af /06 /

t
=Ryaf+ (M —1)R\f — e)‘t/ e M, fdu,
0

as required. g

7.3.3. Generator of a semigroup

The general definition of the generator of a semigroup is given in section A1.7. We
can consider a particular case of a Markov semigroup 7} to transition probability via
[7.15].

DEFINITION 7.5.— Let {T},t > 0} be defined by [7.15] and [7.17]. The generator A
of the semigroup T} is the operator

o Tl @) = f(2)

Af(z) = lim ;

whenever the limit exists in the norm ||-|| on the space B(S) : ||g|| = sup,es |9()|.
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Denote D 4 the domain of the operator A. Sometimes A is called the infinitesimal
operator of the semigroup 7.

By theorem A1.13, forany ¢ > O and f € Dy,

d
—T.f = AT;
ST = AT
and
d
%th =T, Af. [7.22]

These are so-called forward and backward Kolmogorov equations for the Markov
semigroup {73,t > 0}.

THEOREM 7.4.—
i) Bo(S) is the subspace in B(S) and for any s > 0 Ts : Bo(S) — Bo(S).
ii) For any f € Bo(S),

Jim IARASf = f = 0.

iii) For any f € Bo(S),
AR\f = AR\ — [.
iv) Forany f € Dy,

RAAf = AR\f — f.
PROOF.- i) Obviously, By (S) is a linear set. Further, let {f,,,n > 1} € By(S) and
lfn — fll > 0asn — oo, f € B(S). Then
ITef = fI < NTefn = full + TS = Tef || + [1fn = £

Therefore, for any n > 1,

111215111) IT:f — fI < lthlf;)up | T fro = full =21 frn = fIl = 2| fn — fI - [7.23]
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Taking limits as n — oo in the left- and right-hand sides of [7.23], we get that
lim || T.f — f]| = 0.
i | T2f — f]

Now, let f € By(S). Then, for any s < 0,

lim | T, TL f — Ts f|| = lim || T Ty f — T f|| < lim || T, f — f|| = 0.
tligIIt f Il tligll tf fll Eﬁ?H vf = fll

Therefore, Ts f € Bo(S).

ii) Let f € Bo(S). Then, for any A > 0,

Mf = f = [ TN - = [ e (T -

Therefore,
IARAf = < [ e [Tt = f]]

Forany u > 0, || Ty f — f H — 0 as A — oo. Additionally, there exists an
integrable dominant 2e~* || f||. Therefore, the Lebesgue dominated convergence
theorem supplies that fooc e " HTu nf=1r H du  — 0, and obviously
AR — fll = 0, A = +o0.

iii) Let f € Bo(S). Then, it follows from [7.21] that

TtR)\fiR)\f _ eAti]'R e)\t]'/tT fef)\sds
t ¢t t), ® '

Now, let t | 0. Then, the real-number multiplier eMt_l — \. Furthermore,

1 [t e
[¢ [ mremae]

1/t 1 [t 1—e
— ||z Ts _)\sd—* _)\Sd' T
[i [ i [[evan s (5= 1) ]

¢ 1—e™?s |1 —e M — M
Tf—f)—% rze =AY
[ - n i s e =

1 —e

< [ 1mg - g Sas + B2 =
0 )
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where y = At | 0 ast | 0. Further,

[ =1 5as < [ - s <2050
0 0

as t | 0, and by the L’Hopital rule,

1—e ¥ —
lim ———Y = lim(e™ — 1) = 0.
Y40 Y yl0
Therefore,

1 t
Ht/ e"\STSfds—fH —0ast]o0,
0

and

TtRAft_ BAf _ ARy S — f,

ARy f = ltiﬁ)l

as required.

iv) Let f € D(A). Then
Ry\Af :/ e MTLAfdt :/ e MT, (hﬁ} IS = f> dt
0 0 S

s

e Tiisf — T,

= / e M i 2Lt / tfdt.
0 sl0 S

To swap the integral and the limit sign in the last expression, we only need to check
that e"\té(THS f — T f) admits an integrable dominant independent of s. Thanks to

equation [7.22], Tsqtf — T3 f = tHS T, Afdu, and

Ts — T

Therefore, the integrable dominant is e~** || Af||, whence we get that

o T. - T
RA\Af = lim/ e"det
sl0 Jo S
1 (oo} (oo}
= lim - (&S / e~ M, fdX du — / e MT, fdt)
sl0 8§ s 0
1 oo S
= lim — ((e>‘S — 1)/ T, fdu — e** / e)‘"Tufdu>
sl0 8§ 0 0

= A\Rpf — f. O
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REMARK 7.2.— It follows from (iii) that Ry : Bo(S) — Da. The operator R) is a
bijection between By (S) and D 4. Indeed, if Ry f = 0, then it follows from (iii) that
f = 0. Also, any g € D4 can be represented as g = R f with f € By (S) if we put
f = Ag — Ag. The only question is why Ag € By(S). It is true because g € D C
Bo(S), Trg € Da C Bo(S), T,g — g € Bo(S) and Ag = limy o 74=2 € By(S)
because this limit exists and B((S) is a closed set. Then, it follows from (iii) and (iv)

of theorem 7.4 that Ry = (\I — A)~L.

7.4. Definition and basic properties of diffusion process

As the name suggests, a diffusion process is a mathematical model for the
physical phenomenon of diffusion. In physics, diffusion can be understood either at a
macroscopic level as a movement of substance from a region with high concentration
to a region with low concentration or at a microscopic level as a chaotic movement of
an individual particle, say, of a gas, which results from its interaction with other
particles. We are interested in this second notion, which in its simplest form is the
celebrated Brownian motion (mathematically modeled by the Wiener process).

Let the state space be a finite-dimensional Euclidean space: S = RY, and the
parameter set be non-negative half-line: T = R.

Denote by B(z,7) = {y € R?: |y — | < r} the ball of radius r centered at z,
with B(x, )¢ = R4\ B(x,r) its complement. Also, let (z,y) denote the inner product
in R%and M, the set of symmetric non-negative matrices of size d.

DEFINITION 7.6.— A continuous Markov process X with the transition probability P
is called a diffusion process if there exist measurable functions a: R, x R? — R?
ando: Ry x RY — M, such thatforalle > 0,t € Ry, x,z € R4,

o1 o

h£%1+ EP(t, z,t+ h, B(z,e)¢) =0, [7.24]
. 1

h1—>u})1+ 7 /B(x B} (y —z)P(t,z,t + h,dy) = a(t, ), [7.25]

lim — (y —x, z)2P(t, x,t+ h,dy) = (U(t, x)z, z) [7.26]

The functions a and b are called the drift coefficient and the diffusion matrix,
respectively.

The drift coefficient plays the role of local average speed of a particle, the
deterministic part of evolution. The diffusion matrix, which corresponds to the
stochastic part of evolution, measures the amplitude of noise, namely, for z € R¢
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with |[z]| = 1, the expression (o(t,x)z,z)dt is the variance of the infinitesimal
displacement projected to z.

REMARK 7.3.— It follows from [7.26] that for any z;, zp € R,

1
7 / (y -, zl) (y -, ZQ)P(t, x,t+ h,dy) = (U(t, x)z1, 22). [7.27]
B(z,e)

Indeed, both sides of this equality are symmetric bilinear forms as functions of

21, 22, s0 [7.26] implies [7.27] through the polarization identity: for any symmetric
bilinear function f,

(f(21 + 22,21 + 22) — f(21 — 22,21 — 22))

o~ =

f(z1,22) =

Let us give simpler sufficient conditions for a diffusion process, which are often
easier to check.

PROPOSITION 7.3.— Assume that for some § > 0 and any z € R?, the following
conditions hold:

1
lim — —zPPP(t, .t + h,dy) =0
Jim, /Rdly | (t,z,t+ h,dy) =0,

. 1
Jin o [ =P+ hdy) = at.a),

.1 2
hl—lf(I)l-‘rﬁ/Rd (y-l’,Z) P(f,l‘,t-'—h,dy) = (U(t,a:)z,z),

where a: Ry — R? and o: R, — Mg are measurable functions. Then, X is a
diffusion process with drift a(t, x) and diffusion matrix o (t, x).

PROOF.— For any € > 0, by the Markov inequality

1 . 1
EP(t,x,t—&—h,B(x,e) ) < W/}Rd \y—x\2+5P(t,x,t+h,dy) —0,h—0+.

Further,

1

7/ (yfx)P(t’$7t+hvdy)
h JB(z,e)

1

1
zf/ (y—sc)P(t,x,t+h,dy)——/ (y —x)P(t,x,t + h,dy)
I Jre h JB(.e)e

= I,(h) + Lx(h).
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By our assumption, I;(h) — a(t, z), h — 0+. Also
1
BN < [ el Pt hdy)
h JB(z,e)e
! / ly — | P(t, 2,1 + h, dy)
— h€1+6 (x E)C y X ) m) ) y

1
W/ ly — x| P(t,z,t + h,dy) = 0, h - 0+.

IN

Therefore,

1
o /B(w E)(y —x)P(t,,t + h,dy) = a(t, z).

Similarly, for any z € R?, we have

lim —

1 2
hA)Oth/B(.Lg) (y_$72) P(t,x,t+h7dy)_ (J(t,x)z7z)7

as required. O

Now we are going to obtain an alternative definition of diffusion process, which is
often used as a principal definition. Introduce the second-order differential operator

d 1 d 92
x)zziai(t,x) g 100 20 l00) 1)

= (alt,2), Daf (@) + gtx (o1, 2) D2, F(@)) , f € CHRY,

where CZ(R) denotes the set of twice-continuously differentiable bounded functions
with bounded derivatives of first and second orders.

THEOREM 7.5.— A continuous Markov process X is a diffusion process if and only if
forany f € C3(RY) and all t € RT, z € R?
[7.28]

%/Rd (f(y) = f(x))P(t,z,t + h,dy) = Lo f(x), h = 0+.
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PROOF.~ First, assume that X is a diffusion process. Take any f € C2(RY) and write
fore >0

[ ) - £ Pt 4 hdy)
Rd

_ (/B( /B(“ ) — f(2))P(t, .t + h,dy)

=: I, (h) + I(h

Thanks to [7.24]:

1
OISy [ 156~ @ P vy

2
7 sup |f(2)|P(t7$,t+h,B(x,5)C) -0, h—=0+.
th]Rd

IN

Further, write for y € B(z, €), using the Taylor formula,
1
fy) = f(z) = (Do f(z),y —z) + 5((D§mf(l’))(y — 1),y — ) + R(z,y),
where |R(z,y)| < ¢(¢) |y — #|* and ¢(¢) — 0, € — 0+. Then

B = gDuf @) [ )Pt by

1
+ 57 (D2, f(2))(y — z),y — 2) P(t,x,t + h,dy)
2h JB(2,e)

1
+ 7 / R(y)P(t,x,t + h,dy) =: Is1(h) + Ia2(h) + I23(h).
B(xz,e)
By [7.25],
Igl(h) — a(t,x), h — 0+;

by [7.27],

2

&
Ia(h o Z: 8x]

(yi — @) (y; — x;)P(t,z,t + h, dy)
B(xz,e)

0?2 1
32 ; axz(’)xjf( Joij(t,z) = Str (o(t,)D2, f(x)), h—0+.
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Further,

1

Tas ()] < ee)~ / ly — 2P P(t, 2.t + h, dy),
h B(z,e)

and from [7.27], we obtain

_— 2 —
h1i>I(I)1+ 7 o) ly —z|*P(t,x,t + h,dy) = tro(t, x),

whence

limsup [I2(h) — L f(z)| = limsup |Iog(h)| < c(e)tro(t, z) < c(e)tro(t, z).
h—0+ h—0+

By letting ¢ — 0+, we arrive at the necessary part of the statement.
Concerning the sufficiency part, to prove [7.24], we consider for fixed z € R? a
non-negative function f € CZ(R?) such that f vanishes at x together with its first-

and second-order derivatives, and f(y) = 1 for y ¢ B(z,e). Then, using [7.28], we
have

%P(t,x,t +h, B(z,£)°) < %/ (F(y) = F(2) Pt 2,1, dy) — Lof(@)h — 0+
Rd

Further, for each i = 1,...,d, we consider a function g € CZ(R?) such that
9(y) = yi, y € B(x,¢). Then

1
7/‘ (x’i _y7)P(t7I7t+hady)
h B(z,e)

1
:</ _/ )g(m)P(t,x,t—i—h,dy)—>,Ctg($)=al(t,x), h_>0+7
h R4 B(z,e)°

where the second integral vanishes thanks to the already proved [7.24]. This
establishes [7.25], and [7.26] is shown similarly. [l

7.5. Homogeneous diffusion process. Wiener process as a diffusion
process

DEFINITION 7.7— A diffusion process X is called homogeneous if it is a
homogeneous Markov process.

We can formulate an equivalent definition by adjusting definition 7.6 accordingly.
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DEFINITION 7.8.— A process X with the transition probability P is called a
homogeneous diffusion process if there exist measurable functions a: R* — R% and
o: R — My such that foralle > 0, xz,z € R,

1 o
hlgga EP(h,o:,B(x,r) ) =0,

o1
Jm /B(x’g)(y —x)P(h,x,dy) = a(z), [7.29]

1 2 o
hlgga 7 /B(w)s) (y — :C,Z) P(h,z,dy) = (o(x)z,z).

We see that the drift and the diffusion matrix of a homogeneous diffusion process
are functions of x only, i.e. a(t,x) = a(z), o(t,z) = o(x). The operator L is also
time independent now:

LF(x) = (a(e), Daf () + ir (o(@)D2,F(@)) , | € CF(RA.

Let us formulate a homogeneous counterpart of theorem 7.5.

THEOREM 7.6.— A homogeneous Markov process X is a diffusion process if and only
if for any f € CZ(R?) and all z € RY,

1

. / (F(y) — F(@))P(h,a,dy) — LF(x), h—0+. 7.30]
Rd

In the left-hand side of [7.30], we have exactly

(Tnf (@) = f(2)),

S

where
th(l‘) = - f(m)P(t,x, dy)

is the Markov semigroup corresponding to X; assume that the process X is Feller, i.e.
the semigroup 77 is strongly continuous on Cy(R%). Then, theorem 7.5 states that £
is the generator of this semigroup.

Let us now consider the standard Wiener process W = {W;, ¢t > 0} in R%. It has
independent increments, so it is a Markov process, as shown above. Since the



Markov and Diffusion Processes 181

increment W; — W, has the normal distribution A (0, (¢t — s)Ey), the transition
probability density is the density of that distribution, i.e.

1 (z —y)?
p(s,z,t,y) =p(t —s,2,y) = WGXP {_Q(ts)} :
Let us check the assumptions of proposition 7.3:
%/R |z — y[*p(h, z,y)dy = %E‘Wh|2+6 = Csh®/? =0, h — 0+,
1 1
7 /Rd (@ —y)p(h, z,y) = S EW), =0,

1 2 1 2
E/Rd (x =y, 2) plh,z,y) = EE(Wh’z) = |27

As aresult, W is a diffusion process with zero drift, which means that the evolution
is purely random, and an identity diffusion matrix, which means that the process is
isotropic, i.e. its properties are the same in all directions. The generator of the Wiener

process is

@) = 2 L )= Lag)
=5 Ox? Y=y s

i=1

the Laplace operator times 1/2. Conversely, if X is a diffusion process with zero drift
and a unit diffusion matrix, then X is a Wiener process; this follows from the unique
solvability of the Kolmogorov equation, which is the subject of the following section.

7.6. Kolmogorov equations for diffusions

Recall that Kolmogorov equations for a general homogeneous Markov process are

%th(x) = AT, f(x) (backward),

%th(x) =T, Af(x) (forward).

For diffusion processes, A = L is a differential operator, so the Kolmogorov
equations are partial differential equations. Let us give precise formulations.
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For T C Ry, we will say that u € C%%(T x R?) if it is continuous and has
El
ox;
also denote by Cy,(R?) the set of bounded continuous functions.

. . . 2 .. .
continuous derivatives =2-u(t, x), ﬁu(t, x),i,5=1,...,d,on T x R?; we will
1O

THEOREM 7.7.— Let a homogeneous diffusion process X have continuous drift a(x)
and diffusion matrix o (x). Also, let g € C,(R) be such that the function

ut.a) = [ o) P(T = t.2.dy)

belongs to C%2([0,T) x RY) for some T > 0. Then, u satisfies the backward
Kolmogorov equation

%u(t,z) + Lu(t,z) =0, t € [0,T),z € R%. [7.31]

REMARK 7.4.— The formulation is designed to conform with the inhomogeneous case,
where we can define

u(t.a) = [ gl)P(t.a.Tdy).

and show, under the same assumptions, that 2-u(t,z) + L;u(t, z) = 0. In addition to
those assumptions, if w is continuous at point 7°, then it is a classical solution to the
Cauchy problem

%u(t, x) + Lyu(t,x) =0, t €[0,T),z € R?

u(T,z) = g(x).

Now the term “backward” becomes clear: this equation describes an evolution of
systems backwards in time, starting from time 7.

PROOF.— Note from the Chapman—Kolmogorov equation [7.10] that

u(t,x) = y f)P(T —t,x,dy) = /Rd f(y) /Rd P(h,z,dz)P(T —t — h, z,dy)

— [ [ 1@P@—t-hzdnPhiads) = [ e hn)Pihe.de)
Rd JR4 Rd

so by theorem 7.6, taking into account that fRd P(h,z,dy) =1,

(u(t,z) —u(t+ h,x)) = % g (u(t + h,y) — u(t + h,z)) P(h,z,dy)

= Lu(t + h,z) + o(1).

S| =
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It is clear from its proof that the remainder term depends on the moduli of
continuity of the second derivatives of u(t + h,-) in a small neighborhood of x.
Therefore, in view of the continuity of those derivatives and of Lu(-, ), we arrive at

0+ B
Eu(t’ x) = —Lu(t, x),

where %—J; denotes the right derivative. Since the right-hand side of the last equality is
continuous in ¢, the left-hand side is continuous as well, so u is continuously
differentiable in ¢ and

—u(t,z) = —Lu(t, x),

as required. O

Now assume that there exists the transition probability density p(¢, z, y), i.e.
P(t,z,A) = / p(t, =, y)dy.
A
Then, forany 7 >t > 0 and g € C,(R%),

/ g(y)P(T —t,x,dy) :/ p(T —t,z,y)9(y)dy,
Rd Rd

so in view of theorem 7.5, p, as a function of ¢, x,y, is a fundamental solution of
[7.31]. This gives a good chance that p is itself a solution to this equation. Let us
formulate the corresponding result.

THEOREM 7.8.— We assume that the diffusion process X has a transition probability
density p satisfying [1.11] for all s,t € R* and x,y € R®. Let also for any y € R,
p(,y) € C%2((0,00) x RY) and p(t,x,y) is bounded in x. Then, for any t € R*
and x,y € RY, p satisfies the backward Kolmogorov equation

0

REMARK 7.5.— The symbol L, is used to emphasize the fact that the operator £ acts
on p(t, z,y) with respect to the argument . The reason for the sign change is that we
now write the equation for p(t, z, y), not for p(T — t, z,y) as in theorem 7.7.

PROOF.— Using [7.9], we write for some T' > 0, s € (0,7), and u > 0,

U(S,ZL’) = p(T_ S+U,£L'7y) :/ p(T - S,x,z)p(u,z,y)dz.
Rd
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Denoting g(z) = p(u, 2, y), we get from theorem 7.7 that

0
%u(s, x) + Lu(s,x) =0,

which transforms into [7.32] by the variable change t =T — s + u. g

Let us now turn to the forward Kolmogorov equation. Let i be a o-finite measure
on R?. If it is a probability measure, then it can be understood as the probabilistic
distribution of initial condition X (0) of the underlying diffusion process and we are
interested in the evolution of the distribution of X (¢). More generally, we can think
of 1 as initial distribution (in the physical sense) of some substance, which further
diffuses according to the drift and the diffusion matrix, and we are interested in the
evolution of this mass in time:

ui(A) = y P(t,z, A)u(dx).

If 1 and P have densities m and p, respectively, we can also look at the evolution
of densities

o) = [ ot g)m(o)de 7.33

In contrast to the “backward evolution” considered before, in general, this
expression can be ill-defined even for good m, say, continuous and bounded. Further,
we study this evolution.

Assume that the drift coefficient a is continuously differentiable, the diffusion
matrix b is twice continuously differentiable and consider the adjoint to the £
operator:

L*m(x) = — Z_; % (ai(z)m(z)) + % Z; 388% (0i5(@)m(x)).

THEOREM 7.9.— Let a € C*(RY), 0 € C?*(R?) and the convergence in [1.29] be
uniform in .

1) If the transition probability density p(t,x,y) has continuous derivatives
%P(t»%y) and 73y‘?2y.]9(t,x,y), t,7 = 1,...,d, then it satisfies the forward
1OYj
Kolmogorov equation

9 .
&p(t,l’7y) = ‘Cyp(taxa y)
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2) Let the transition probability density p(t,x,y) have continuous derivative
%p(t:&y), and m be such that the function defined by [7.33] has continuous

. . 2 . .
derivatives %v(t, y) and ﬁaij(tv y), i,j = 1,...,d, and %v(t, y) =
Jga m(x) %p(t, x,y)dx. Then, v satisfies the forward Kolmogorov equation

9 .
Ev(ta y) =L U(t>y)

PROOF.— Take arbitrary f € C’lzm(Rd), i.e. a twice continuously differentiable
function with compact support. We will first argue that f is in the domain of the
infinitesimal generator £. Indeed, inspecting the proof of theorem 7.5, we have

1

E R (f(y) - f(l’))P(h,{E,dy) = ,Cf(.’t) + 0(1), h — 0+7

where the remainder term depends on sup |f|, the moduli of continuity of second
derivatives of f and the speed of convergence in [7.29]. It then follows from the
assumption of the theorem that the convergence

%/R (f(y) — f(@))P(h,z,dy) — Lf(z), h — 0+,

is uniform. Therefore, f is indeed in the domain of £ and
d Tif =T:Lf
gt T

Rewriting in terms of the transition probability density,

p(t, 2, 9) f(y)dy = / p(t, z,9) L (y)dy

& Rd Rd

Since f has bounded support and % p(t, x,y) is continuous, we have

o )
E/Rd p(t,z,y) f(y)dy = g F(y) 5ot y)dy.
Recall that
d 0 1 d 82
Lfy)=> ai(y) ay,f(y) +5 > O'ij(y)mf(y)’
i=1 i “ i

1,j=1
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SO

[ pteneswin =3 [ vtz -fwd

i=1 v

32
+35 Z / (t,2,9)a;( )Wf(y)dy
i0Yj

2]1

Integrating by parts with respect to y; and recalling that f has compact support,
we get

[ pttatg- == [ F)5- bl a)d

Similarly,

[ tssaon g s = [ 1057 (ot )

Therefore,

W ) _p(t, 7, y)d Z/Rd pt 2, y)ai(y))dy

+5 Z/ 8y18y]( p(t, =, y)oi(y dyf/ F)Lyp(t, =, y)dy.

2]1

From the arbitrariness of f and continuity of p, we get the first statement. The
second statement is proved in the same way. g

REMARK 7.6.— A distribution p (not necessarily probabilistic) is called invariant for
a diffusion process X if the evolution of X does not alter it, i.e. ; = . If an invariant
distribution has a density m, then in view of invariance:

m(y) = /Rd p(t, z,y)m(z)dx,

so the function v defined by [7.33] is independent of ¢, namely v(t,z) = m(x).
Consequently, if all assumptions of theorem 7.9 are satisfied, then this density solves
a second-order ordinary differential equation

L*m(x) = 0.

For the Wiener process, this transforms to Am(xz) = 0. The only positive
function solving this equation is constant, so all invariant measures are proportional
to the Lebesgue measure; in particular, for the Wiener process, there is no invariant
probability distribution.
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Stochastic Integration

8.1. Motivation

Consider a dynamical system with state space R¢, which evolves under the
influence of external forces. The dynamics of such a system can be described by a
system of differential equations (or simply a differential equation in R?)

X(t) = f(X(t), t >0,

where X is the current state of the system, X denotes the time derivative and
f: R4 — R? is the function measuring the external influence at the point . This is a
very popular mathematical model to describe a deterministic evolution. However, as
it was mentioned in the Introduction, no evolution can be totally deterministic. The
simplest model of perturbation is perhaps the white noise, n(t), a collection of
independent identically distributed random variables indexed by time ¢ > 0. A
slightly more advanced idea, which leads to a much greater versatility of models, is
to allow the amplitude of noise to depend on the state of the system, which leads to
the following equation modeling a behavior of a random dynamical system:

X(t) = f(X() +g(X(®)n(t), t >0, 8.1]

where ¢ is a deterministic function measuring the amplitude of noise and 7 is the
white noise. Depending on the particular application, there can be different choices of
distribution for 7, but the most popular model is Gaussian white noise. Now comes
the bad news: if we assume that 7)(¢) are independent Gaussian random variables
N(0,5?), then 7, as a function of ¢, is a very ill-behaved object: the integral |, OT n(t)dt
is not well defined. Indeed, if it were, by lemma A2.5, its value would be a Gaussian
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random variable; in particular, it would be square integrable. However, by the Fubini
theorem,

E</O )//En Sdids =0, 8.2

whence fo t)dt = 0 almost surely, which is absurd. So even in the simple case
where f = 0 and g = 1, it is hard to say what X is. The most feasible way is to
assume the independence only for variables which are on distance at least € and to let
€ — 0. If the variance of 7 is bounded, then through an argument similar to [8.2], we
arrive at the boring conclusion X (¢t) = X (0). This means that in order to get a non-
trivial evolution, the variance should be unbounded. Therefore, taking into account the
independence, we arrive at the following desired covariance:

E(n(t)n(s)) = d(t — s),
where § = §(x) is the so-called Dirac delta function, which vanishes for z # 0 but
integrates to 1. Such rather misty discussion may scare off some mathematical purists,
but not physicists. Moreover, surprisingly, it has, in a sense, much better properties

than the white noise with finite variance. Let us return to the simple case f = 0 and
g = 1, where the solution can be written “explicitly” as

X(t)_X(O)Jr/O n(s)ds =: X(0) + H(1).

To identify the integral, note that EH (t) = E fo s)ds = fo En(s)ds = 0 and
for s <'t,

E(H(s)H(t)):E(/S ()du/ > // ))dv du
// ufvdvdU*/du:s.

Thanks to symmetry,
E(H(s)H(t)) =tAs,

the covariance function of standard Wiener process W . Substituting this into [8.1], we
get

X(t) = f(X(1) + g(XO)W (1), t > 0.
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However, we know from theorem 4.3 that the Wiener process is nowhere
differentiable. Nevertheless, we can write this equation in an integral form

X(t) = X(0) + /0 F(X(s))ds + /O g(X ())dW (s). [8.3]

Now it boils down to defining an integral with respect to W. This was already
discussed in section 4.3, but for deterministic integrands. The following chapter will
be devoted to the construction of such an integral for random integrands and to the
investigation of its properties.

8.2. Definition of It6 integral

Let (92, F,{F:t > 0},P) be a stochastic basis with the filtration satisfying
standard assumptions from section 5.1. We assume that {W (t),t > 0} is a Wiener
process on this basis, which means that W is adapted to the filtration {F;,¢ > 0} and
for any t > s > 0 the increment W (¢) — W (s) is independent of F.

REMARK 8.1.— We may restrict ourselves to the case where F; = F, W ie. the
filtration is generated by the Wiener process, then the latter assumption is clearly
satisfied. However, this filtration might not satisfy the standard assumptions from
section 5.1 (e.g. Fy is trivial, since W = 0). However, this is not the only reason to
consider integration in a more general setting. Much more important is the necessity
of considering multi-dimensional integrals later.

In order to define the class of admissible integrands, we need to recall a notion of
progressively measurable process.

DEFINITION 8.1.— Let T C R" be a parametric set. A stochastic process {X (t),t €
T} with values in a measurable space (S,X) is called progressively measurable if for
anyt >0and B € &

{(s,w) € (TNJ0,t]) x Q: X(s,w) € B} € F; ® B([0,t]),
where B([0, t]) is the Borel o-algebra on [0, t].

REMARK 8.2.— In layman’s terms, a progressively measurable process is an adapted
process jointly measurable in (¢, w). Measurability in ¢ is now important, as otherwise
it is impossible to define even the deterministic integral [ X (¢)dt.

It is worth mentioning, see e.g. [DEL 78, theorem 39], that an adapted measurable
process (i.e. such that the map X : RT x 0 — S is measurable) has a progressively
measurable modification. So, in a sense, the above “layman’s” definition turns out to
be quite close to reality.
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Now, for a,b € RT, a < b, we introduce the class Ha([a,b]) of real-valued
processes {£(t),t € [a, b]} such that:

— & is progressively measurable;

b
- ||§||3-[2([a,b]) = fa E&(t)%dt < oc.

Provided that we identify indistinguishable processes, this space can be regarded as
a Banach or even Hilbert space. Because of the progressive measurability requirement,
there are some hidden rocks on this path, for example, when proving completeness.
We put aside this subtle matter, referring an interested reader to [DEL 78].

It is natural to include to Hz([a, b]) also the processes defined on a larger interval,
so that, in particular, Hz([a,b]) C Ha([c, d]) whenever [a, b] C [, d].

The construction of integral will follow the same scheme that was used for the
Wiener integral. Let us first consider simple processes of the form

n(t) = arlie, (1), [8.4]
k=1

where n > 1 is an integer, a < a; < by < b are some real numbers and oy is an
F.,-measurable square-integrable random variable. Clearly, n € Hs([a, b]). Define
It6 integral, or stochastic integral, of n with respect to W as

For notation simplicity, we will also denote

b
(1, W, [a,b]) = I(n,[a,B]) = / n(t)dW;.

a

It is evident that the value of the integral does not depend on the particular
representation [8.4] of a simple process.

Further, we establish several properties of the Itd integral.

THEOREM 8.1.— Let 1,( be simple processes in H([a,b]). Then, the following
properties are true:

1) I(n+¢la,b]) = I(n,[a,b]) + I(¢, [a,b]);
2) Forany c € R, I(cn,[a,b]) = cl(n,[a,b]);
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3) Forany c € (a,b), I(n,[a,b]) = I(n,[a,c)) + I(n, [e.):

4) EI(n,|a,b]) = 0. Moreover, {I(n,[a,t]),t € [a,b]} is a martingale;
5) EI(n, [a,b])? = ||TI||H2( aap = o En(t)2dt;
6) E(I(n, [a,b))I(¢, [a, Fa) = f E(n(t)((t) | Fa)dt, in particular:

b
<777 C)HQ([aJ?]) = E(I(n’ [a’ b])I(Cv [a7 bD) = / E(U(t)C(t))dt

REMARK 8.3.— Properties 1 and 2 mean that I is a linear operator on the set of
simple functions. Properties 4 and 5 are counterparts of the corresponding properties
of Wiener integral. However, note that in contrast to the latter, in general, It0 integral
does not have Gaussian distribution.

Property 5 is the so-called 110 isometry: it says that I maps the family of simple
functions (as a subspace of Ha([a,b])) isometrically into a subspace of
square-integrable random variables. This property will be crucial in extending I to
the whole Hz([a, b]).

PROOF.— Properties 1-3 are obvious from the definition.

To prove 4, assume that 7 is given by [8.4] and consider the conditional
expectation:

E(I(n, a,b]) ZE ar (W W(ar)) | Fa)

=S E (E((W(be) — W(ar)) | Fo) | Fa) =
k=1

where we have used that ay, is F,, -measurable and W (b)) — W (ay) is independent
of Fg,. It follows that EI(n, [a, b]) = 0. Further, for any ¢ € (a,b):

E(I(na [a,b]) ‘ }—t) = E(I(nﬂ [a,t]) | ]:t) + E(I(ﬁa [t,b]) | ]:t) = 1(777 [a7t])7 [8-5]

since I(n, [a,t]) is clearly F;-measurable and E(I(n, [¢,b]) | F:) = 0. This implies
the martingale property.

To prove 6 (5 would follow), first note that the both sides of equality are linear in
n and ¢, so it is enough to prove it in the case where n(t) = a1l p,)(t),
C(t) = alg,p,)(t), where o; is F,,-measurable, i = 1,2. In turn, when splitting
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the intervals, if necessary, into smaller parts and using the linearity again, it is
sufficient to consider the cases [a1,b1) = [ag,b2) and [a1,b1) N [az,by) = @. In the
first case, recalling that W (b;) — W (ay) is independent of F,,, we get

E(I(7, [a,b)I(C, [a,b]) | Fa) = E(araz(W(b) — W(a))® | Fu)
= E(a1aaE((W(b1) — W(al))2 | Fai) | Fa) = E(anaa(by —ar) | Fa)

= (b1 —a1)E(aon | Fo) = / E(n(t)¢(t) | Fa)dt.

In the second case, assuming that az > by, we have that oy (W (by) — W(a1))as
is F,,-measurable, while W (b2) — W (az) is independent of F,, so

E(I(nv [av b])I(Cv [a7 b]) | ]:a)
= E(Oél (W(bl) — W(CLl))OéQ (W(bZ) - W(QQ)) | ‘Fa)
= E(ar(W(b1) — W(a1))az B(W(b2) — W(az) | Fu,) | Fa) =0

b
- / E(n()C(t) | Fo)dt.

This establishes the first equality; the second follows from the tower property of
conditional expectation. O

To extend the definition from simple functions to the whole space, we need the
following approximation result.

LEMMA 8.1.— Let & € Ha([a, b]). Then, there exists a sequence {n,,n > 1} of simple
processes such that

€ — Wn||H2([a,b]) —0,n — oo.

PROOF.~ It is evident that we can approximate an element of H([a, b]) by bounded
functions (e.g. by truncation), so it is enough to prove the lemma in the case where

Supte[a,b],weﬂ ‘g(tvw” < 00.

Define a smooth approximation of &:

(1) = 61/( &(s)ds, t € [a,b).

t—e)Va
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Due to boundedness, . € Hz([a, b]). Moreover, from theorem A1.4, we have that

ff (&@t) — & (t))th — 0, & = 0+, for any w € Q. Then, the bounded convergence
theorem implies

€ — 58”7—[2([(1’[;]) —0,e—=>0+. [8.6]

Now define for integer N > 1, tkN =a+ (b—a)k/N,k=0,...,nand

N

Een(t) = S &t Ly (1), £ € [ab].

k=1

Due to the continuity of &,

Cen(t) —&(B)] < sup  [€(u) = &(s)] = 0, N = o0

u,s€[a,b]
lu—s|<(b—a)/N

Moreover, [ n(t) —&:(1)] < 28upyepep)wen [§(t,w)[, so the bounded
convergence theorem gives ||, — fEaN”Hg([a,b]) — 0, N — oo. Since & n is a
simple process, we get the desired approximation, with 7, equal to & y with
appropriate € and N, through [8.6] and the triangle inequality. g

With this at hand, the extension is done in a standard manner. Namely, if
{Mn,m > 1} is a sequence of simple processes converging in Hy([a,b]) to
& € Ha([a, b]), then, due to the isometry property, the sequence {I (7, [a,b]),n > 1}
is a Cauchy sequence in Lo(£2). Then, it has a limit in L£5(2), which justifies the
following definition.

DEFINITION 8.2.— For { € Ha([a,b]), 1td integral of € with respect to the Wiener
process is the limit

b
uammz/fwwwwzmanMM> 8.7)

n—roo

in L2(Q), where {n,,n > 1} is a sequence of simple processes in Hz([a, b)) such that
1€ = Moz ((ap) = 01— o0

It is clear from such a definition that the integral is defined modulo P-null sets.
Moreover, the limit does not depend on the approximating sequence. Indeed, if
{¢n,n > 1} is another approximating sequence, then

. 2 .
lim E(I(n, [a,b]) — I(Cn, [a,b]))” = nh—1>réo 17 — C"||’2i-12([a,b]) =0,

n—oo

so the limits coincide.
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The properties of the Itd integral defined by [8.7] are essentially the same as for
simple functions. For completeness, we give them in full.

THEOREM 8.2.— Let 1,¢ € Ha([a, b]).
1) I(n + ¢, a,b]) = I(n, [a,b]) + I(C, [a, 0]
2) Forany c € R, I(cn, [a,b]) = cI(n, [a,
3) For any c € (a,b), I(n,[a,b]) = I(n,|a,c])+ I(n,[c,b]) almost surely;
4) EI(n, [a,b]) = 0. Moreover, {I(n, [a,t]),t € [a,b]} is a martingale;

) almost surely;
)

b)) almost surely;

5)EI(n,[a,b)? = HUHZZ([a ) f En(t)2dt (Ito isometry). Moreover, the
process

M(t) = I(n, [, 6)* — / 0(s)%ds, t € [a,)],

is a martingale;
6) E(I<777 [a7 b])I(C7 [a7 b])) = <77) C)HQ([a,b])'
PROOF.— Let {n,,n >1} and {¢,,n > 1} be sequences of simple processes

converging in H2([a, b]) to  and ¢, respectively.

To prove 1 and 2, note that 7,, + ¢, and cn,, converge in Ha([a,b]) to n + ¢ and
cn, respectively, whence the properties follow from those for simple functions.

Property 3 follows from 1, since clearly I(n),[a,t]) = I(nljay),|[a,b]) and
I(?’], [ta b]) = I(n]l[t,b]a [a; b])

To prove property 4, first observe that
2
E(E(I(n,[a,0]) | Fo) = E(I (1, [a,b]) | F))

< E(I(n, [a,b]) — 10, [a,8]))° = 0 = 1134, arn)

for any t € [a, b], so E(I (0, [a,b]) | Ft) = E(I(n, [a,b]) | Ft), n — oo, in L2(£2).
On the other hand, by [8.5], E(I(nn, [a,b]) | Ft) = I(0n, [a,t]) — I(n,[a,t]), n —
00, since || = N llay, (a,) < 117 = Mnllag, ((a,p)) = 0 7 — 00, whence

E(I(n, [a,b]) | Fi) = I(n,[a,t]), n — oo,
in L5(2). Therefore, for any ¢ € [a, b]:
E(I(na [(l, b]) | ]:t) = 1(77» [a7t])

almost surely, implying the martingale property.
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The isometric property follows from that for simple functions through the
Minkowski inequalities:

(0 [0, ))* ~ (B 1))

< (E(I(n, [a,b]) — I(nn, [a, b]))Q) v 17 = 10l 24, (a,))

L L ST I LR g

Let us now show the martingale property for M. Let ¢ € [a, b]. From theorem 8.1,
we have

b
E(I(n,[t,0])* | Ft) =E (/t n(s)%ds ‘ ]-'t> ,

whence

E(M() | F) = B (I [a.t]) + I [£.0) | )

- [ toas—m < / e(oas| ﬂ)

= 1€, [, 1)? + 20(€, [, () (16, [t.6) | ) - / £(s)2ds = M(t),
since E (I1(¢,[t,b]) | F2) =0.

The last property can be shown similarly to the isometric property or can be
deduced from the latter by using the polarization identities. U

8.2.1. It6 integral of Wiener process

Let us compute the integral
T
10V, [0.71) = [ Wieaw o).
0

To this end, we have to approximate W by simple processes. The simplest way is
probably to consider for n > 1 a uniform partition ¢} = kT/n, k = 0,...,n, and
to set

n
M (t ZW te_q l[tk Lt Z)(t).
k=1
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Then

2 n 2
1 = W oy = 2 / — W)

n t:’ 1 n T2
:Z/ (t—tp Ddt==Y (tF —t8 )2 ="— =0, n— oo,
i 2 = 2n

—

so I(W,[0,7)) = limy—oo I(nn,[0,7]) in L?(£2). Denote AW = W(t7)—
W (t7_,) and write

210, [0, 7)) =23 W(t_ ) AFW

=~
Il
_

=S WA + S WA - 3 (AP

k=1 k=1 k=1
=S (W - W) = > (Apw)’?
k=1 k=1
= W) (Apw)? =w(T)? =3 (AFw))°.
k=1 k=1
Consider
n 2 n 2
E(Z (Aapw)® - T) — E(Z ((arw)?* - E(arm)?) )
k=1 k=1
= DA’ - B(Agw)’) =2 - 1,
_ k=1
an — 0, n — oo.

Consequently, > )_, (A}CLW)2 — T, n — oo, in L2(), whence

/WdW

not W(T)?/2, as some might have expected. (Note that the answer W (7)?/2 is
impossible, as the Itd integral has zero mean.)

(W(1)*-1T),

w\»—*
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8.3. Continuity of It6 integral

Let {{(t),t > 0} be an adapted process such that £ € Ho([0,¢]) for any ¢ > 0;
then for each 0 < s < ¢, the Itd integral

I(£,[s.1]) = / (u)dW ()

is well defined. However, we have seen above that the definition is up to sets of
probability zero. These exceptional sets can be different for different values of s and
t, so the integral may have some deficiencies as a function of s and ¢. For example,
for any fixed w € (2, it might happen that I(&, [s,u]) + I(, [u,t]) # I(&, [s,t]) for
the majority of values s < u < ¢, which is not a desired behavior.

For this reason, we will establish the existence of a nice modification of the It
integral.

THEOREM 8.3.— Let {£(t),t > 0} be such that & € Hz([0,t]) for any t > 0. Then,
there exists a modification {Z(s,t),0 < s < t} of{fst EudW,,0< s < t} such that:

— 1 is a continuous function of s and t,

—forall0 <s<u<t,

Z(s,t) =Z(s,u) +Z(u,t).

PROOF.— Since the Wiener process has a continuous modification, we will assume
that this is continuous.

Let us first construct a continuous modification {Z(t), t > 0} of {I(¢,[0,¢]),t >
0}. Note that it is enough to construct a continuous modification Zy on [0, N] for each
integer N > 1. Indeed, once this is done, for any Ny > Ny, the equality Zy, (¢) =
ZIn,(q) holds almost surely for all ¢ € [0, N1] N Q, hence

P{QN17N2} = P{INl (t) = INQ(t) forallt € [O,Nl]} =1.

Then, P {ﬂ1§ Ny <Ny 2N, Nz} = 1, as the intersection is taken over a countable
set of indices. Therefore, setting Z(t) = > N_;Zn(t)Ly_1,n(t) for
W € Ni<n,<n, Svi,n, and Z(t) = 0O otherwise yields the desired modification
continuous on R .

Now let N > 1 be fixed and {n,,n > 1} be a sequence of simple processes such
that [|€ — 7 3, (jo,n7) — 0- 7 — oc. Then there is a subsequence {7y, , k > 1} such

that ||77nk < 272k for any k > 1. The process

T it g4, ([0, N7)

Mk(t) = I(nnk Mgy [Ovt])
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is a martingale; moreover, it is easy to check from the definition of the It6 integral for
simple functions that Mj is continuous in ¢. Hence, using theorem 5.26, we get

P{ sup | Mi(t)] > 2’“} < PPEM, (N’
t€[0,N]

= 22k ||777Lk — Mngaa ||’2Hz([0,N]) < 2*2k.

Observe that, by definition, 7, (¢t) = I(n,, [0, ]) is continuous in ¢ for each n > 1.
Thanks to linearity of It6 integral, the last inequality can be rewritten as

P{ sup ’Jnk(t) — Jnk+1(t)| > 2_k} < 272k,

te[0,N]

Then, the Borel-Cantelli lemma implies that with probability 1, there exists some
ko = ko(w) such that supcio ny | Ty (1) = Tnpyr (B)] < 27F for all k > ko.
Therefore, the event

A = {Z sup |\7nk(t) - jﬂk+1(t)| < OO}

L—1 t€0,N]

has probability 1. It is easy to see that the sequence {Z,,, , k& > 1} is a Cauchy sequence
in C[0, N] with respect to the uniform norm for w € A. Therefore, for each w € A,
there exists a continuous process {Z(¢),t € [0, N]} such that 7,,, — Z in C[0, N].
Set Z(t) = 0 for w € Q\ A. To conclude, we need to show for any ¢ € [0, N] that
Z(t) = Z(&, [0, t]) almost surely. Since [|§ — 1, [, 0,y —* 0> k — 00, we have that
Tni () = I(£,]0,¢]) in Lo(2). Therefore, there is a subsequence converging almost
surely. However, we also know that 7, (t) — Z(t), k — oo almost surely. Hence,
Z(t) = I(&,[0,t]) almost surely, which yields the desired continuous modification of

1(&, [0, 2]).

Now set Z(s,t) = Z(t) — Z(s). Then, Z(s, ) is continuous as well, and

I(S,t) = I(f, [OvtD - I(ga [O,S]) = 1(57 [Svt])

almost surely thanks to the additivity property of It integral. Therefore, Z(s,t) is a
modification of I(¢, [s, t]), as required. O

REMARK 8.4.—In the following, we will always assume that the It6 integral is additive
G.e. I(&, [s,u]) + I(&, [u,t]) = I(&,[s,t]) forall 0 < s < w < t) and continuous. We
should be careful here, as the exceptional set may depend on the integrand. However,
since we will always be dealing with at most countable families of functions, we are
on the safe side with this assumption.
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8.4. Extended It6 integral

It turns out that the Itd integral can be naturally extended to a larger class of
integrands. In order to proceed, we need to prove the “locality” property of the Itd
integral, which will also be useful in the sequel.

THEOREM 8.4~ Let & € Ho([0,T]). Then, for any stopping time T,
51[077] € Hz([O,T]) and

| eotonware) = [ soaw
0 0
almost surely.

REMARK 8.5.— The right-hand side of this formula should be understood as
I(£,10,t])|e=rn1-

The formula is not true when 7 is not a stopping time; moreover, its left-hand side is
not well defined in general.

PROOF.— It is clear that [[£1j0,1]|,,, (077 < €], (10,77 < 00: s0 we need to show

the progressive measurability. The process & is progressively measurable, so it suffices
to show that 1y ; is. For any = € (0, 1],

Ay = {(w,5) € QX [0,t] : 1jg () <2} = {(w,s) € 2 x[0,8] : T(w) > s}

= |J {weQ:irw)>q} x (g1 € F@B([0,1),
q€(0,t)NQ

since {w e Q:7(w) >q} € F; C Fr.Forz < 0,4, = dandforz > 1, A, =
Q0 x [0,t]. As aresult, 1 ) is progressively measurable.

To prove the desired equality, start by observing that

E(t) Lo, (t) = &(t) Lo, 7 a1y (1), t € (0,77,

s0 I(§140,71,10,T]) = I(£1jo,7a17, [0, T]). Therefore, we can assume that 7 takes
values in [0, 7.

Let us first consider a situation where the integrand is a simple process of the form

n
n(t) = Z akﬂ[tk,htk)(t)v
k=1
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where tp = 0 < t; < -+ < t,—1 <t, =T, oy is F;, ,-measurable, and 7 takes
values from the set {tg, t1,...,t,}. Then,

n

Ljo,(t Zakl[tk L) (O 10,7 (t Zakl[tk Litn)

where az, = ogls>t,_, 1s Fi,_,-measurable, since 7 is a stopping time. By the
definition of the Itd integral,

T
/0 00,0 (t Zak W (tx_1))

- Zak W (te—1))Lrse,_,

= Zak (W(tk) — W(tk—l)) Z Lr=
k=1 =k

-y ( o (W) - W<tk-1>>> L,
k=1

J=1

jil ( /O ’ n(t)dW(t)) Ly, = /0 Tn(t)dW(t).

Now consider dyadic partitions ¢ = k27"T, k = 0,...,2" and let
T € {ty", k=0,...,2™} for fixed m > 1. Take arbitrary £ € H2([0,77) and
approximate it by processes of the form

gn
= Z agl[tﬁl,tg) (t),
k=1

where aj is Fip  -measurable so that || — 1|y, 0,77y = 0. m — oc. For any
n > m, we have

T T
/ 7 (6) Lo () AWV (£) = / I (H)AW (£)
0 0

m

-3 ( /O v nn(t)dW(t)> 1.,

j=
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Since for each j = 1,...,m we have I(n,,[0,t;]) — I(§[0,t;]), n = oo, in
Ly(Q), it follows that

/OT N () Lj0,7) (8)dW (t) — i </0tj E(t)dW(t)) 1

- /OTg(t)dW(t), n — oo,

in Ly(€). On the other hand, the obvious fact ||77n]l[07T) — gn[O,T]HM([O m 0,
n — oo, implies that I(nn]l[o T) [0,T]) = I(§1j0,71,[0,T]), n — oo, in La(£2),

yielding [ £(t)dW fo (t) 110,71 (t)dW (t) almost surely. Since 7 < T, this is
the desired equahty

Finally, let 5 € H2([0, ) and the stopping time 7 < T' be arbitrary. Define for
n>1r1,= Zk s l(tn 7] (7). By theorem 5.2, this discretized version of 7 is a
stopping time, too. From the previous paragraph, for each n > 1,

/f [0,m] (L) AW (t / E(t)dW (¢

Since 7,, — 7, n — 00, the dominated convergence theorem yields
1€ 10,7 = 310,721 |, 0.7y = 05 10 = 004
so I({1y0,7,1,[0,7]) — I(f]l 0,7, [0,T]), n — o0, in Ly(€2). On the other hand,

I(&10,r,),[0,T)) — [y £(t)dW (t), n — oo, due to continuity of the Itd integral.
The proof is now complete g

Now let £ = {£(t),t € [0,T]} be a progressively measurable process such that

T
/ &(t)%dt < oo almost surely.
0

We will denote the class of such processes by H([0,T7]); clearly, H2([0,T]) C
H([0,T)). Define

t
Tn:inf{tZO:/ f(S)QdSZTL}/\T, n>1.
0

Obviously, this is a sequence of stopping times increasing to 7" almost surely. The
processes &, (t) = &(t)1jo,-,1(t), n > 1, belong to Hz([0,T]). Moreover, for any
m >n > 1, §,(t) = &n(t)1o,r,), so by theorem 8.4, 1(&,,,[0,t]) = I(§m, [0,1])
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almost surely on the set {7, > ¢}. In particular, I(&,,[0,T]) = I(&m,[0,T]) almost
surely on §2,, := {fOT f(s)th < n} for any m > n. Hence, it is easy to deduce the

existence of a random variable 7 such that Z = I(§,,, [0, T]) almost surely on €2,, for
any n > 1. The value of this random variable is, quite naturally, called the extended
It6 integral of £ with respect to W. From theorem 8.4 it follows that Z = I(&,[0,¢])
almost surely if & € Ho([0,T]). Therefore, this is indeed an extension of the Itd
integral. For this reason, we will use the same notation for extended Itd integral:

T
1(£,[0,1]) = / (AW (1) =T;

it will always be clear from the context which definition is used, i.e. whether ¢ €
H2([0,T7]) or not. However, the extended Itd integral loses some of the properties of
the usual It6 integral. For instance, it does not have zero mean in general; moreover,
the mean is not guaranteed to exist. For convenience, we gather all the properties
which are preserved; they immediately follow from theorem 8.2. The statement below
is for arbitrary interval [a, b]; the definition is modified obviously.

THEOREM 8.5.— Let &, 1 € H([a,b]). Then:
1) I(&+n,[a,b]) =1, [a,b]) + I(n,[a,b]) almost surely;
2) Forany c € R, I(c€,|a,b)) = cI(&, [a,b]) almost surely;
3) Forany c € (a,b), I(&,]a,b]) = I(&, [a,c]) + I(n,[c,b]) almost surely;
4) There exists a continuous modification of {I1(&, [a,t]),t € [a, b]};

5) For any stopping time T with values in [a,b], fab ) Lg(t)dW; =
7 &

We conclude this section by showing the continuity of the extended Itd integral
with respect to the integrand.

THEOREM 8.6.— Let {£,,n > 1} be a sequence of processes in H([0,T)) such that
ST 1en(t) = €@) dt 5 0,1 — co. Then,

sup |1(&n, [0,T]) — I(€, [0, T])| == 0, n — oo.
t€[0,T]

PROOF.— Due to linearity, it is sufficient to prove the statement for £ = 0. Define for
fixed = > 0, 7 = inf {£ >0 [ €0()%ds > =5 PAT and .0 (8) = &0 ()<, .-
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We have that I(¢,,[0,t]) = I({ne [0,t]), t € [0,7], on A,. =
{fOT £ (t)2dt < 53}; moreover, P{A,, .} — 1, n — oco. By theorem 5.26,

1 T
P{ sup |I(&c,[0,T))] > e} < 7/ E|&,-(t)]* dt <e.
t€[0,T € Jo

Consequently,
P{|1(&x,[0,T])] > e} < P{ Sup [1(6n.e, [0, T])| = e} +P{A7 .
telo,

<e+P{4;

n,eJ»

whence:

lim sup P{|1 (€, [0,7])] > £} < e,
n— oo

and the statement follows due to the arbitrariness of ¢. O

8.5. It6 processes and It6 formula

DEFINITION 8.3.— A process X = {X(t),t € [a,b]} is called an 1td process if it
admits the representation:

X(t) = X(a) +/ a(s)d5+/ B(s)dW (s) [8.8]

almost surely for all t € [a, b, where X (a) is an F,-measurable random variable and

a and (8 are progressively measurable processes such that ff (|oz(t)\ +8 (t)2) dt <
oo almost surely. The expression

AX(t) == a(t)dt + B(E)AW (¢)

is called the stochastic differential of X.

In other words, Itd processes are sums of indefinite Lebesgue and Itd integrals.
These processes are adapted and, as we know from the previous section, have a
continuous modification; we will assume that they are continuous.

THEOREM 8.7.— Let X; and i = 1,2 be It6 processes on [a, b]. Then, for any c1,cs €
R, ¢1 X1 + c2 X5 is an Itd process with

d(Cle(t) + Cng(t)) = ClXm(t) + ngXg(t),

where the linear combination of differentials is defined in an obvious way.
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PROOF.— Follows straightforwardly from the linearity of the It6 integral. d

As we have seen in section 8.2.1, dW (t)? # 2W (t)dW (t), so we should not
expect in general that dF' (X (t)) = F'(X (t))dX (¢), as in the deterministic case. The
change of variable formula for Itd integral, called It6 formula, involves an extra term
with second derivative; this is a subject of the following theorem.

THEOREM 8.8.— Let {X(t),t € [a,b]} be an It process with dX (t) = «a(t)dt +
B(t)dW (t) and F € CY2([a,b] x R). Then, {F(t, X (t)),t € [a,b]} is an It6 process
with

0 0

o (X M)t + o~ (X (£)dX (¢)

dF(t, X (1)) = =

Zpa xws

= (P XO) 4 SLF X)) + 55 XW)50? ) d

+ B X)W (1),

First, we need a lemma on behavior of sums of weighted squares of increments of
16 integral.

LEMMA 8.2.— Let § € H([a,b)]), {Y(t),t € [a,b]} be a continuous process and
{a =1ty <t <. <t =b,n > 1} be a sequence of partitions, with the mesh
going to zero: maxi<i<n \t}; — t};_1| — 0, n — oo. Then,

ZYt</ B(s)dW (s ) /Y )2dt, n — oo.

k—

PROOF.— To avoid cumbersome notation, denote ¢, = ¢}, k = 0,...,n. Let us first
consider the case where 8 € Ha([a,b]), Y = 1. Let {8,,n > 1} be a sequence of
simple processes from H3([a,b]) such that for any n > 1, f3,, is constant on each
interval [ty—1,tk), and [|8 — Bullyy,(jap) — 0. m — o0; the existence of such
sequence is proved similarly to lemma 8.1. For any ,y € R and § > 0, we have the
following simple inequality:

|x2 —y2| < |2z(x —y)| + |as—y|2 <0z*+ (1 +971)|x—y|2.
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Hence, setting 0, = (|8 — Bnll3, ((a.5)):
b b
/ E|B(s)? = Bu(s)?| ds < 9n/ EfB(s)%ds
’ 2
(140, [ E3) - 5u(s)"ds 5.9

=8- ﬂn”q-[z([a,b]) (”5”;2([(1,17]) +118 - 5n||7-lz([a,b]) + 1) — 0,n — o0

in other words, 32 — 2 in Ly ([a,b] x €); therefore, the sequence {82,n > 1}
is uniformly integrable in L;([a, b] x ). Similarly, we obtain with the help of Ito

isometry
n te 2 n t 2
E B(s)dW(s)> - ( ﬂn(s)dW(s)>
; (lkl k=1 /t.k1
<0,5E ( ) 5(s)dW(s)>
k=1 te—1

n

tr 2
+ (140,71 E</t (5(5)ﬂn(8))dW(8)>

k=1

=18 = Bullaey (ja.0)) (HB”?{Z([CL@]) + 118 = Brlla, (japp) T 1) — 0, n— oo.

As a result,

k=1 \’tk=

Take A > 0 and write

n

n th 2
) ( / Bn(S)dW(S)> =3 Bultioa) (AW
k=1 \Ytk—1

k=1

= Z Bn(tkfl)zl\ﬂn(%fl)\SA(AkW)Q
k=1

) Bulte-1)’Lis, 1y > A (A W)?,
k=1

n t 2 n te 2
3 ( B(s)dW(s)) -3 < Bn(s)dW(s)> 250, n—> 00 [8.10]

[8.11]
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where AW = W(tr) — W(tx—1). Denoting v} = ﬁn(tk—l)%lmn(tk,mgm Ay =
ty — tr—1,

(Z’y (ApW)? Ak)>2

3

=

1

n

= DS B OR (A7 - ) (AW - A)).

k=11=1

Note that for & < [,

E (77 (AW)2 = Ap) A7 ((AW)2 = Ay))
=E (v (AeW)? = Ap) E ((AW)* = A)) | F,_y)) =0,

since 7y ((Ak.VV)2 — Ak) v is Jy_,-measurable and ((AZVV)2 — Al) is
independent of 7, | and centered. Therefore,

(Zwk (A2 ) ZE(% (AaW)? = Ar)°)

k=1

<AQZE( ((AW)? )—ZAQZAZ

< 24%(b — a) ax Ap — 0, n — oo.
<k<n

Therefore,
Z’yg AkW Z'y Ak—>0 n — oo. [8.12]

Further,

SipE (Zﬁn te-1)"Lis, (tr_r) >4 (D) )
" k=1

n

=sup ) E (Bu(te—1)"Lip, (10 1)j>4) Ak [8.13]

n>1;—

k=1
b
:Sup/ E(ﬂn(s)zﬂwn(s)bfl) dS%O, A*)OO,

nZl a
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Due to uniform integrability. Similarly,

t
supE / Bn (s ds—Z7 'Ap| =supE / Bn(s)?ds
n>1 n>1 0
b
—/ Bn(5)* 114, (s)|<ads [8.14]

b
:sup/ (Bn(8)°Lig, (s)/>4) ds — 0, A = cc.

n>1

Combining [8.11]-[8.14], we get

Z ( ) Bn(s)dW(s)> _/0 Bn(s)?ds N 0, n — oo.

k=1

Recalling [8.9] and [8.14], we get

(/h B(s)dW (s ) /ﬁ ds—>0 n — 00,

as required in this case.

By linearity, we get the statement in the case where 3 € Ha([a,b]), Y is a simple
process, which, through a standard approximation argument, gives the statement for a
continuous Y.

Finally, for 5 € H([a, b]), define Ty = inf {t >aqa: f: B(s)%ds > N} A b and set
By (t) = B(t)11<ry so that By € Ha([a,b]), N > 1. Then,

n 2 b
ZYt” ( ) ﬂN(s)dW(s)> i/ Y () Bn (£)2dt, n — .

=1

The required statement then follows from the observation that 5 = [y on
b .
{ fa ﬂ(s)st <N }, and these events increase, as N — 00, to an almost sure
event. O

PROOF (Proof of theorem 8.8).— We need to show that

(;F(s, X(s)) + [%F(s, X(s))a(s)

F(t,X(t)) = F(a, X(a)) +/
[8.15]

a

1 92

+ P XENB? ) dst [ (X))
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almost surely for all ¢ € [a, b]. As both sides of the equality are continuous processes,
it is enough to show this (almost sure) equality for any fixed ¢ € [a, b], see theorem
6.1.

Let us first assume that 8 € Hz([a,b]) and F € C*([a,b] x R?), compactly
supported. We fix some ¢ € [a,b], take arbitrary n > 1, set 6, = (t — a)/n and
consider the uniform partition of [a, t]: tx = a + kd,, k = 0,...,n. We write

n

F(t,X(t) — F(a,X(a)) = Y _ (Fte, X (tx)) — Fte-1, X (tr-1)))-
k=1

We have
Fte, X(tr)) — Ftp—1, X ()

0 10?
= —F(tp1, X (t))0n + = =5 F (0, X (1)) 02

ot 20t
= aF t X(t 1)
=5 (th—1, X (th—1))0n
o? 1 92 ,
5 axF(tk—la Vi) (X (t) — X (te—1))0n + E@F(aa X (tr))oy,
and
F(ty—1, X(t)) = F(te—1, X (tp-1))
0
= %F(tkq, X (te—1)) (X (te) — X (tx—1))
L& L Xt X(t) — X(tr_1))’
2 Pl X)) (X () — X (b))
103
+ & g F e ) (X (8) - X(te-1))’.
As aresult,

F(te, X (te)) — F(te-1, X (tr))

— %F(tkfl,X(tkfl))(sn + %F(tkﬂ,X(tk,l))(X(tk) — X(tx_1))
1 92
2 922

where, thanks to our assumptions, the remaining term admits the estimate

+ Fltr 1, X (te-1)) (X (t5) = X(te—1))° + R,

Rl < € (02 + 6 X (05) = X (ty)| + [X (1) - X(tn)|*)  18.16]
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with constant independent of k£, n. Summing up, we have

1
F(t’X(t)) - F(Q,X((l)) = Sl,n + SZ,n + 533,77, + Rna

where
n a n

St =3 5 Flt1, X(tr-1)0n, Bu = R
P k=1
Z oy 1 (b1, X (b)) (X (t) = X (th-1)),

02 2

San = @F(tk—l’X(tk—l))(X(tk) —X(te-1))"

k=1
First,

S — /*FSX ))ds

0 0
S;/t 5 F (b1, X (1)) = 5 F (s, X (s)) | ds 8.17]
< (t—a) O Plu, X(w) — L F(s, X(s)] = 0, n -
slt-a) sup et gl ;> 00,
|s— u\<6

due to uniform continuity of F' and continuity of X. To study the terms S5 ,, and S ,,
we write

X(ty) = X(tp—1) = I, + Ji,

where Iy = [1* a(s)ds, J, = B(s)dW (s).

fk 1
Similarly to [8.2],

>

Ftr—1, X(tk—1 fk—>/a (s, X(s))a(s)ds, n — oo.
k=

%’\Qv

=

Defining 1,,(s) = 8(s) >_p_ 18@ F(te—1, X (tk—1)) 1, ,t0)(5), we have

F(tk_l,X(tk._l))sz/ 7 (5)dVV (),

M
S

~
Il
-
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and by virtue of It6’s isometry,
2

D ( / a(s)dW (s) — / t F(s,x<s>>ﬂ<s>dw<s>)

2

(| " ((s) — Fls, X3V ()

:/ E(nn(s)fF(s,X(s))B(s))zdsg/ E (D26(s)?) ds

where
D,= su éF(u X(u)) — 2F(s X(s))
" s,uG[IZ,t] &’C ’ 8x ’ '
|s—u|<ép

As above, D,, — 0, n — oo. Moreover, D, < 28Up,cq4),2cR }%F(s,x) ,
by the dominated convergence theorem

e(/ ()W (s) / s, X(S))B(S)dW(S))Q S0, n oo,
whence
>

Pty 1, X(te 1))k —>/ Fls, X ())8(s)dW (s), n — 0o,
k=1

%’\Qv

Consequently,
t

San i)/ %F(S,X(s))a(s)ds +/ F(s,X(5))B(s)dW(s), n — 0.

Further, consider

2
S3n 0

n=3 @F(tk_l,X(tk_l))(I,§+21kjk+J,§).
k=1

Thanks to boundedness of ;—;F,

>

F(te—1, X (tr—1)) (If + 21cJy,)

k=1

Ox?
(max | I | + nax Jk>ZIk

max |Ik|+ nax Jk>/ lae(s)| ds.
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The last expression vanishes, since by continuity of Lebesgue and Itd integrals,
maxi<k<n |Ir| + maxi<g<n |Ji| = 0, n — oo, almost surely. By lemma 8.2,

Z Pty 1, X (t_1)J2 —>/ D (s, X(5))B(s)2ds, n — oo,

0x2
k=1

Summing up, we have

t g2
P 0 5
Ssn — /a By F(s,X(s))B(s)*ds, n — oo.

Finally, by [8.16],

ooy TV

Z|Rnk|<0< + max |X(tk) X (tr-1) <1+Z X (tj— 1))2>>

Similarly to Ss ,,

Z X(te-1)) —>/6 )2ds, n — oo,

k=1

and thanks to continuity, maxg—1, . » ‘X(tk) — X(tk_l)’ — 0, n — oo, almost
surely. Therefore, R,, L 0, n — oo, which finishes the proof for the current case.
Let us now turn to the general case, ie. where 8 € H([a,b]) and

F € CY2([a,b] x R). Take arbitrary N > 1 and consider a sequence of compactly
supported functions F,, € 012([a b] x R) such that F,, — F, 2F, — 2F,

6 ~ = 8 ~F, aaﬁF 8962F n — oo, uniformly on [a,b] x [N, N]. Define
also ™~ = mf{tza.fa B(s)? ds+|X( ) >N} Ab, an(t) = a(t)licry.
Bu(t) = B(t)li<ry and Xn(t) = X(a) + ['an(s)ds + [* By (s)dW (s). We

write the Itd formula for F,, (¢, X (t)):
Falt: X (0) = Fua, X(@) + [ (A 60X o)

+ o F (s, Xv () ()
2
b 3 (o X)) (5) ) ds

[ Fuls X ) ()W )
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almost surely. Since | X (t)| < N for ¢ € [a,b] and in view of uniform convergence
of F), together with its derivatives to F', we get

<§tF(s,XN(s)) + %F(S,XN(S))OLN(S)

F(t,Xn(t)) = F(a,X(a)) +/

1 92

- QWF(S,XN(S))BN(S)z) ds +/a a%F(SaXN(S))ﬁN('S)dW(S)

almost surely. This coincides with [8.15] on {f: B(t)*dt + supyepqp | X ()] < N}.
Since these events increase as N — oo to an almost sure event, we arrive at [8.15]. [

8.6. Multivariate stochastic calculus

The definition of Itd integral can be extended straightforwardly to the
multi-dimensional case. Specifically, let {W (t) = (Wi (t),...,Wk(t)),t >0} be a
standard Wiener process in R¥, i.e. its coordinates are independent standard Wiener
processes in R. As before, we assume that W is adapted to the filtration {F;,¢ > 0}
and for any 0 < s < t the increment W (¢) — W (s) is independent of F;. For a
matrix-valued process {&(t) = (&;(t),i=1,...,d,j=1,...,k)} such that
&; € H(la,b]) for any ¢ = 1,...,d, j = 1,...,k, we will understand
I(¢, [a,b]) = ff &(s)dW (s) as an R%-valued process with ith coordinate equal to

kb
L) =3 [ &saws )

In particular, for an R¥-valued process {n(t) = (n1(t),...,m(t)),t > 0} with
n; € H([a,b]),i=1,...,k, we define

b k b
10, [a,b]) = / (n(e), dw (5) =3 / ni(£)dWi(0).
a i—17a

As before, (z,y) denotes the inner product. The meaning of |x| will depend on the
context: it is the absolute value of a number, Euclidean norm of a vector or a matrix
(square root of the sum of squares of elements).
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The multi-dimensional version of It6 integral has the same properties as its scalar
counterpart; in particular, if £ € Hz([a, b]) (which means that all its elements are in
Ha([a, b])), then

EI(£(1), [a,b]) =
b
B|I(€(t), [a,0])[ = / Ee(t)]? dt.

The definition of the Itd process is carried over to several dimensions in a
straightforward way: it is a process of the form

X(t) :X(a)+/ta(s)ds+/tﬁ(s)dW(s), € a,b] 8.18]

where X (a) is an F,-measurable random vector in R%, and o and f3 are progressively
measurable processes with values in R? and R4*¥, respectively, such that f: (leu(t)|+
1B()|? )dt < oo almost surely. Equation [8.18] can be written coordinatewise:

t k t
X,;(t):X,;(a)+/ ai(s)ds+Z/ Bii(s)dW;(s), t € [a,b], i =1,...,d.

Similarly to the scalar case, the expression d.X (t) = «a(t)dt + B(t)dW () is called
the stochastic differential of X.

There are no difficulties in generalizing the 1t6 formula, except notational ones.
Let ' = F(t,x): [a,b] x R? — R be continuously differentiable with respect to ¢
and twice continuously differentiable with respect to z. Then, for X given by [8.18],
F(t,X(t)) is an Itd process with

dF(t, X (t)) = %F tX(t dt+z 3, o (t)dt
d ) k
+ ; 70, Pt X EZ:BU

1< 92 k
3 Z Ow;xj F(t’X(t));Bij(t)ﬂlj(t)dt

il=1
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To avoid cumbersome expressions, we will use a shorter form:

dF(t, X (1) = L P, X(0)dt + (DoF(t, X (1)), alt))dt

ot
+D,F(t, X ()B(t)dW (t) + %tr (BB (t)D2,F(t, X(t))) dt,

where D, F(t,x) = (835 F(t,x),. ..762 F(t, a:)) is the vector of first derivatives

d
and D2 F(t,x) = (6—2F (t, :r)) is the matrix of second derivatives.

Oziz id=1
REMARK 8.6.— Informally, the Itd6 formula can be written as

dF(t, X (t)) = gF(t,X(t))dt + (D, F(t, X (t)),dX (1))

ot

+ 5 (D2, P (0, X(0)dX (1), X (1),

where we use the following rules of multiplying differentials:
dt dt = dt dW;(t) = dW;(t) dWi(t) =

for i # [ and
dW;(t) dW;(t) = dt.

EXAMPLE 8.1.— One of the important particular cases of the Ito formula is the
Sormula for differential of product. Let X; and i = 1,2 be Itd processes on [a, b] with

k
dXi(t) = ai(t)dt + > By ()dW;(t), i =1,2.

Then, the product X1 X5 is an Ito process, and

d(X1 () X2(t) = X1 (t)dXa(t) + Xo(t)d X (t +Zﬁ1g (t)Ba;(t)dt

=1
= X1 (1)dXa(t) + Xa(t)d X1 (1) + d[ X1, Xo]t. [8.19]
The process [ X1, Xa]: = J 1 f B1;(8)B2;(s)ds is called covariation of the

processes X1 and Xso. The above formula simplifies when one of the processes has
usual differential. Let, for example, Xo be absolutely continuous, that is, dX5(t) =
ao(t)dt. Then,

d(X1(t)X2(t)) = X1(t)dXa(t) + Xa(t)dX: (1), [8.20]

which coincides with the usual formula for differential of product.
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8.7. Maximal inequalities for It6 martingales

In this section, we consider maximal inequalities for It0 local martingales, i.e. Itd
processes of the form M (¢ fo t € [0,T], where £(t) € H([0,T7]).
Consider a sequence of partitions {0 = t” < tl < - <t =T,n > 1}, with the
mesh going to zero. Then, it follows from lemma 8.2 that

n 9 p T
DO (M) = M(t;_y)) *)/O £(t)%dt, n — oo.

k=1

Thus, the process [M]; := fo )2ds is a natural generalization of quadratic
variation process to a continuous parameter case.

THEOREM 8.9.— For each p > 0, there exist positive cp, Cp such that for any
progressively measurable {&;,t € [0, T} with fo t)2dt < oo almost surely

E[MY? <E sup M) < CE[M ]”2 [8.21]
t€[0,T]

where M (t fo s) and [M]; = fo 5)2ds.

REMARK 8.7.— For p > 1, inequality [8.21] is often referred to as the
Burkholder-Davis—Gundy inequality (for p = 1, this is the Davis inequality, for
p > 1, the Burkholder—Gundy inequality). Similar inequalities for martingales with
discrete parameter were discussed in section 5.5.7.

REMARK 8.8.— It is worth mentioning that the same assertion holds when 7' is a
stopping time: after setting M (f) = M (t)1;<r and using theorem 8.4, this boils

down to the case of non-random 7.

PROOF.— Take any NV > 1 and denote
t
75 = inf {t >0: / £(s)%ds + |M(t)| > N} AT,
0

My (t) = M(tATN) M{(T) = supsejo,r IMn ()], En(t) = &(t)10,q(Tn). By
theorem 8.4, My ( fo En(s)dW (s) and My is a continuous martingale.

We first prove the right inequality in [8.21]. Let p > 2. By theorem 5.26,

EMy(T)? < CE[My(T)|".
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Using the It6 formula,

T
E[My (T = pE ( [ Mo sign b)) dW(t))
+5p(p— DB ( | aior §N<t>2dt>

1 T p—2
= 5p(p ~1)E (/O |Mn (1) d[MN}t>

< 2plp — DB (MR(T)[M]r)

If p = 2, we arrive at
EM3(T)* < CoE[My]r < CoE[M]7.
If p > 2, using the Holder inequality with ¢ = p/(p — 2), we get

EM(T)” < G, BM (1)) (B[Mxly?) ™,

whence
EMy (T)" < C,E[My]}? < CE[M]}*.

Letting N — oo and using the Fatou lemma, we obtain the right inequality in
[8.21].

Now let p < 2. Define ay(t) = {N(t)[MN]fM_l/Q]l[MN]OO,

An(t) = [y an(s)dW (s), A (T) = sup,cp 1y |[An(t)|. Then, Ay is a martingale
and

T
EAN(T)2 =E (A §N(t)2[MN]f/21]1[MN]t>0dt>

T
_ 2 >
- B (/ [My]P/? 111[MNh>0d[MN]t> _ 5E[MN]’T/Q.
0
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On the other hand, by the It6 formula,

Ax @ = [ an (o) Myl aw (s
0
+ [ Atz

t
= My(0)+ [ ()M},
0
whence
M3y (T) < 24% (T)[My ]y >/,

Thus, using the Holder inequality with ¢ = 2/(2 — p) and theorem 5.26, we arrive

at
EM (1) < 27E (A3, (T)7 [My 527/
1/
< 27 (BAR (1)) (B[ 27 /0)
2 1/q
< C, (BAN(T)?)*” (E[MN]’}/Q) = C,E[My]2/2.
Hence, as above, we derive the required inequality by letting N — oc.
To prove the left inequality, use the It6 formula again:
T
My (TP =2 [ My(On(OaW(®) + Myr,
0
getting

p/2

E[My]Y? < C, | E|Mn(T |”+E/ My (t)én (1) dW (t)

( o/t
<G, (E P+E ( / My (t ]t>

(E P L EM(T )P/2[MNV;/4)

,BQ

<G, <E + (E(Mz(1)?) - E ([MN]%/Q))1/2> ;
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whence it follows that

E[My]Y? < C,EM(T) < Ets[lé% | M)
€10,

As before, letting N — oo leads to the desired conclusion. O

8.7.1. Strong law of large numbers for Ité local martingales

As an application of the maximal inequalities, we will show a strong law of large
numbers for Itd6 martingales, which is of great importance in statistics of stochastic
processes.

Let {X(t),t > 0} be a one-dimensional Itd martingale, i.e.

X(t) = X(0) + / E(s)dW (s), t > 0,

where £ € #H([0,¢]) for each t > 0. Recall that the quadratic variation of X is
(X, = fg £(s)%ds. Obviously, this is a non-decreasing process, so there exists the
limit limp_, o0 [X]7 € [0, +00].

THEOREM 8.10.— For any It6 local martingale { X (t),t > 0},
X(T)
[X]r

— 0, T'— o0,

Sor almost all w € {limy_,o[X]7 = +o0}.

PROOF.- Set T, = inf {¢ > 0: [X]; > 2"}, n > 1. We have that T,, — 400, n — 00
and T,, < 400 on A := {limy_, o [X]|1r = +00}.

For any T' > 0, we define

X7
Mumy= s O
To ANT<t<T), 41 AT [X}t

and M, (T) = 0if T < T,,. We estimate

M, (T) < 21720 <|X(Tn AT)? + sup |X(t) — X(T,, A t)|2>
T NT<t<Tp 1 NT

S 21—2n (lX(Tn A T)|2 + sup |X(Tn+1 VAN t) — X(Tn AN t)|2> .
te[0,T]
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It follows easily from theorem 8.4 that

X (T At) — X (T At) = /O £ (s)dW (s),

where &,,(s) = £(s) 11, <s<T,,,- Therefore, by theorem 8.9, we have

T
E( sup [X(Thsi At)— X(Tu At)]?] < E/ Eq(t)2dt < 2nHL
te[0,T] 0

Also, from theorem 8.4 and the It6 isometry,
T
E|X(T, AT)|? = / E (£(t)* 1<, ) dt < 2",
0

Collecting the estimates, we get
EMn(T) S 2172n(2n+1 4 2n) S 237n.

Therefore,

X ()2
E( sup X ()] ]1A) <EM,(T) < 237"
Tn<t<Tpi1 [X]

Hence

E(i sup |X(t)|21A> = iE( sup |X(t)|2]1A> < 00

1 Tn<t<Tn41 [XE

n=

In particular,

X (1))

Ty <t<Typi1 [X]t2

14 —0, n— o0,

almost surely. Consequently, | X (t)|/[X]: — 0, ¢ — oo, for almost all w € A, as
claimed. O
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8.8. Lévy martingale characterization of Wiener process

As we know, the standard Wiener process W is a martingale with quadratic
characteristics ¢, i.e. Wf — t is a martingale, too. It turns out that this statement can
be reversed. The reverse statement is called the Lévy martingale characterization (or
simply the Lévy characterization) of the Wiener process; we formulate its
multi-dimensional version.

THEOREM 8.11.— Let {X(t),t > 0} be a continuous process in R¢ such that:
—foranyi=1,...,d, X; is a martingale;

—foranyi,j=1,...,d X;(t)X;(t) — 6;;t, t > 0, is a martingale.
Then, X is a standard Wiener process in R%.

REMARK 8.9.— The continuity assumption cannot be omitted: the compensated
Poisson process N (t) —t,t > 0, is easily seen to satisfy both conditions.

We start by proving some analogue of the It6 formula.

LEMMA 8.3.— Let X satisfy the assumptions of theorem 8.11 and f € C3(R?) be
bounded together with its derivatives up to the third order. Then, for any 0 < s < t,

E(F(X(1) | F) = / ( Sl (X ‘J—')du

PROOF.— For n > 1, we denote §,, = (t — s)/n and consider a uniform partition
{thy =s+kb,,k=0,...,n} of [s,t]. We fix arbitrary ¢ > 0 and define w,,(u) =
SUPyelu—s,,u) [ X (V) = X(u)], u € [s + p,t], Tne = inf{u > s wp(u) > e} AL
The continuity of X implies

Tn,e — t, M — 00. [8.22]

We write

E(f(X(0) | Fs) = F(X(s)) = E(f(X(?)) = f(X(mne)) | F5)
TE(f(X(7n0)) | Fo) = F(X(5)).

Taking into account [8.22] and the boundedness of f, we get

E(f(X (1)) = f(X(Tne)) [ Fs) = 0, n = oo,
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almost surely. Further, we denote t}; . =t} A7y o, AL _Xi = X;(t]) — Xy (¢ _,) and
write, using the Taylor formula,

E(f(X () | Fo) = f(X(5) = D E(F(X(t2) = F(X (1) | Fo)
k—

1

S

d 62
Z o 8% f(X( Z—l,e))Az,inAZ,EXJ

n d
5 E (AZ S [0 AL XL X AL X |
7
+

= ~ 0x;0z ;0
=: ST + 53 + 57,
where 6}, are some points in R¢ between X(ty_y.)and X(t; ), k=1,...,n. Note
that forany k = 0,1,...,n, t}; _ is a bounded stopping time. Since X is a continuous

martingale, from theorem 5.25, we have

St =E (;;f(X( 211,5))]3( reXi | fﬁ%s) ‘ fs) -

Further,

2

n d
ZZ (ax - (X (1 B (DL XAL X | Fy, ) ‘}"8> 18.23]
k=114,j=1 1

L\DM—*

Since X;(t)X;(t) — J;;t is a martingale, we have
Xi(ti 1) X(th1 ) =0ty . =E (Xi( ko) Xtk ) = 0ijt e | ]'"t;;,l,g)
= B ((Xilthor.0) + ARX0) (Xi(60 ) + ARX) = Gt | Fip, )
= Xilth 1 )X () + Xt OB (ARG | ft;_u)
+X;(th-1,.)E ( ke Xi | }_t;;,l,s) + E( ke XiAL Xy — it | ]:t;;,l,e)

= X;(tg_1,)X;(tho1.) +E ( ke XilAg X — 0ijty . | }—t;ll,s) :
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whence
E( rXAY X, |]-"t;,_1‘s) = 0,;E (t};a —ip | ftz,_LE) . [8.24]

Substituting this into [8.23], we get

for all n large enough, which converges, thanks to the continuity of X, to

t g2
/s p aigc?f(X(U))du

as n — co. Moreover, that expression is bounded by assumption, so the dominated
convergence theorem yields
fs>

SQ—>E</ 62f X (u))du

/ (a 7 f(X( ))’fs)du,n%(}o_

Recalling that ‘AZ 0.9 ‘ < ¢ and the third derivatives are bounded, we estimate

d
|<CEZE > larxiar x| | 7
1,7=1
Ce n d
k=1 ij=1

d

:CdsiE<ll ];f)

= Cde ZE (the—th 1o | Fo) < Cd(t - s)e,
k=1

where we have used [8.24].
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Collecting our findings and letting n — oo, we arrive at

E(f(X(1) |fs)—f(X(8))—;/t§d:E<a T ()| 7) du
5 =1
< Cd(t — s)e.

Since ¢ is arbitrary, the statement follows. O

PROOF (Proof of theorem 8.11).— Take any A € R%, s € [0, 7] and use lemma 8.3 to
derive that

f(#) = (¢OXO | F,) = X0
/ Z iA)?E (XD | F) du

t
= /AX () _ %/ f(u)du, t € [s,T).

Solving this equation for f, we obtain
ft)= ei(x\X(S))—I/\\Q(t—S)/27 tels,T),
whence

E (6i()\,X(t —XG) | F, ) e~ PP (t=9)/2
which shows that for any ¢ € [s,T], the increment X (t) — X (s) is independent of
F, and has the normal distribution (0, (t — s)E4), where Ej is the identity matrix.
Consequently, X is a standard Wiener process in R<. g

8.9. Girsanov theorem

In section 5.5.8 we discussed how to turn a stochastic process with discrete time
into a martingale. This section studies a similar question for continuous time.
However, in contrast to general setting, considered in discrete time situation, here we
address the particular case of the Wiener process and related processes.

Let {W(t) = (Wi(t),...,W(t)),t > 0} be a standard Wiener process in R”
and {h(t) = (h1(t),...,he(t))} be an RF*-valued process in H([0,T]), i.e.



224  Theory and Statistical Applications of Stochastic Processes

fOT hi(t)?dt < oo fori = 1,...,k. We are interested in a measure Q such that the
Wiener process with drift

Wht) = W(t) + / t h(s)ds,t € [0,T]
0

is a Wiener process under Q.

We start by studying the martingale property of the so-called stochastic
exponential (or Doléans—Dade exponential)

£M(t) = exp{ / (). aW(s)) - 3 / t |h<s>|2ds}.

THEOREM 8.12.— Let h € H([0,T]) be such that
EEMNT) =1. [8.25]
Then, {E"(t),t € [0, T} is a martingale.

REMARK 8.10.— Since £"(0) = 1, it is obvious that [8.25] is also necessary for £ to
be a martingale.

PROOF.— Define 7y = {t >0:EM¢t) + fot |h(s)|?ds > N} A T; due to the
continuity of the Itd integral, 7v — 7', N — oo, almost surely. Therefore, setting
hN(t) = h(t)ly<ry for N > 1, we have £ (t) — E"(t), N — oo, almost surely
by virtue of theorem 8.4.

By the It6 formula,
k
de"™ 1y = € (1) [ (WY (1), aw (1)) — % BN () dt + %Z O
= M () (BN (1), AW (1)).

Since fOT en ()2 ‘hN(t)’2 dt < N3, we get that £"" () is a martingale. Then,
the Fatou lemma for conditional expectations yields for any ¢ € [0, T]]

h R TI h IR TI N
ENt) = 1}\1[1;1;101"5 (t) = I%IiggofE(E (T)| F)

> E(liminfShN (T) ‘]:t): E(EMT) | ).
N—o0
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By integrating, we get
E&M(t) > EENT) = 1.

Similarly,

E&M(t) <EEM0) = 1.

This means that all the above inequalities must be equalities, consequently,
EM(t) = liminf E"(t) = BE(EMN(T) | Fr)
N—o00
a.s., whence the martingale property follows. g

There are a number of sufficient conditions supplying [8.25]. The most popular
one is the Novikov condition, which is the subject of the following theorem.

THEOREM 8.13.— Let h € H([0,T]) be such that

1 (T 9
Eexp §A W) dt b < . (8.26]

Then, [8.25] holds true.

PROOF.— Let {hN ,N > 1} be a sequence of bounded processes from Hz ([0, T']) such
that [hN (t)| < |h(t)| forall N > 1,¢ € [0,T] and ||hY — hHHQ([O_T]) — 0, N = o0
(e.g. we may take the sequence constructed in the proof of previoué theorem).

Let us consider a € (0,1). Thanks to properties of Itd processes, gan” (T) —

EM(T), N — oo, in probability. Using the same reasoning as in the previous theorem,
we have E £ah" (T) = 1. Moreover, by the Holder inequality,

ah™ — Fex Ta N 7} Ta2 Npy|2
EE (T)=E p{/o (R™ (t),dW (1)) 2/0 IMG] dt}

:E<5h”(T)a.exp{“_2“2 /T]hN(t)|2dt}>
0
< (EEhN(T))a- <Eexp{;/T |hN(t){2dt}> [8.27]
0

< (Eexp{;/o |h(t)2dt}> .
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Therefore, the sequence {5 ah® (T),N > 1} is uniformly integrable, whence
EEM(T) = lim EE(T) =1.
N —o00

Further, similarly to [8.13],

1:E5“h(T)§(E€h(T))a.(Eexp{;/o |h(t)|2dt}> ,

whence, letting a — 1, we get E £"(T) > 1. Recalling from the proof of the previous
theorem that E £"(T") < 1, we arrive at the statement. O

Finally, let us prove the Girsanov theorem in continuous time.

THEOREM 8.14.— Let h € H([0,T]) be such that [8.26] holds. We define the
probability measure Q by

aQ _
>

Then, the process

EMT).

t
Wh(t) = W(t) + / h(s)ds, te€0,T],
0
is a Wiener process on (Q, F, {F¢, t € [0,T]},Q).

REMARK 8.11.— The stochastic exponential

—h =expy — ' —1 ' % ds
£H(T) = p{ | eerawe)—3 [ mo) d}

is sometimes called the Girsanov density corresponding to the drift term h. Note that
the Novikov condition is the same for h and —h, so theorem 8.13 supplies that
EE™MT) = 1, ie. it is indeed a density of probability measure under this
assumption. Another important observation is that [8.25] suffices for theorem 8.14 to
hold true; the proof of this fact is beyond the scope of this book.

PROOF.— Clearly, W is adapted to the filtration {F;}, so it is enough to show that for
any s,t € [0,7] with s < t, the increment W"(t) — W"(s) is independent of F, and
has the normal distribution N (0, (¢ — s)E},) with respect to the measure Q. To this
end, consider the conditional characteristic function

E(eMW"O-W"eDe=h(T) | F,)

BN O | 7) = A T

A eRF
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By theorem 8.12, E(€~"(T) | ;) = £€7"(s) and
E(e(/\,Wh(t)—Wh(s))g—h(T) ‘ -Fs)
= E(e(*wh(t)_Wh(S))E(S_h(T) | 7) | 7o)
=E(e AW -W"(s) ¢ (t) | Fo)

_ £ h(s)E (exp {/t (g(u), dW (u)) + /:f(u)du} | ]-‘S)

almost surely, where g(u) = i\ — h(u), f(u) = i(\ h(u)) — & [h(u)|*. It is easy
to see that f(u) = |g(u)|?> — |A\|?/2 and that g satisfies the Novikov condition [8.26],
so E(E9(t) | Fs) = £9(s) almost surely (despite g being complex-valued, the proof
needs just minor modification, as the imaginary part of g is constant). Therefore,

B <exp{/: (g(w), dW (u)) +/:f(u)du} ‘;)

EIt) _npe— NI
— g A NP E-s)/2 ’ ) = P92,
(59<s>e Fo) =

Combining our findings, we get

EQ (e(A,W’%t)—W“(s)) | ) = e~ M (t=9)/2.

which shows that the increment W"(¢) — W"(s) is independent of F; and has the
normal distribution N (0, (¢ — s) E},) with respect to the measure Q. O

As an immediate consequence, we obtain a result on the change of measure,
turning an It6 process into a martingale. This is of great importance for financial
modeling (see section 9.8).

COROLLARY 8.1.— Let X be an It6 process in R? with
dX(t) = a(t)dt + B(t)dW(t),t € [0,T],

where o is an R*-valued progressively measurable process and 3 is a bounded R -
valued progressively measurable process. Assume that there exist some R*-valued
processes h € H([0,T]) such that [8.26] holds and o(t) = (t)h(t) almost surely for
anyt € [0, T). Then, {X (t),t € [0,T]} is a martingale with respect to the measure Q
with density

aQ

= EMT).

REMARK 8.12.— In the one-dimensional case, where k = d = 1, we have h(t) =
t)/B(t) provided that /3 is non-zero.
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PROOF.— By assumption, we can rewrite the stochastic differential of X in the form
dX (t) = B(t) (h(t)dt + dW (t)) = B(t)dW" (2).

By theorem 8.14, W"(t) is a Wiener process with respect to Q. Since 3 is bounded,
it follows that { X (¢),¢ € [0, T]} is a martingale with respect to Q. O

8.10. 1t6 representation

Let, as in the previous section, W be a standard Wiener process in R*. We will
discuss the representation of random variables in the form

T kT
X:C+/O (&(s),dW (s)) :C+Z/O &i(s)dWi(s)

with & € Ho([0,T]),i=1,...,k, C € R. Since the It6 integral is centered, we must
have C' = E X in this representation.

Such representations play an important role in applications, most notably in
mathematical modeling of financial markets, where they are related to replicating
portfolios for contingent claims (see section 9.8 for details). The following result,
establishing the existence and uniqueness of such a representation, called [0
representation, is thus of significant importance. Denote by {F}V,t € [0,T]} the
augmented natural filtration of the Wiener process .

THEOREM 8.15.— For any f%v-measurable random variable X with E X2 < oo,
there exists a unique (up to modification) RF-valued process &, progressively

measurable with respect to {F}¥ ;¢ € [0,T|} such that fOT E|¢(t)]2dt < oo and the
following representation holds:

X=EX+ /0 (&(s),dW (s)). [8.28]

PROOF.— The uniqueness follows immediately from the It isometry.

Denote by H3W the set of R¥-valued process £, progressively measurable with
respect to {FV, ¢ € (0,71}, with [|€]|3w = [, BIE(#)2dt < oo. Similarly to
H2([0,T7), this normed space is complete. Let also Z be the set of square integrable
f%v -measurable random variables representable in the form [8.28]. It is evident that
7 is a linear subset of L£5(€2). Let us show that it is closed. Take any sequence
{X,,,n > 1} C T such that E(X,, — X()? — 0, n — oo, for some Xg € L2().
Then, it follows from Holder’s inequality that E X,, — E Xy, n — oo. Writing now
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the Itd representation X,, = EX, + I(£",[0,7]), we get that the sequence
{I(£",]0,T]),n > 1} is a Cauchy sequence in £2(2). Therefore, thanks to the Itd
isometry, the sequence {¢™,n > 1} is a Cauchy sequence in 73" . Since this space is
complete, there exists some ¢ € HY such that " — £, n — oo, in HY . Using the
It6 isometry again, we obtain I(¢",[0,T]) — I(£,[0,7]), n — oo, whence
Xo =E X0+ I(&,]0,T]). As aresult, Z is closed in £2().

For a deterministic function h: [0, 7] — R¥ with fOT |h(t)|? dt < oo consider the
process

(1) = exp {Z/Ot (h(s), dW (s)) +;/Ot|h(s)|2ds}.

This is exactly the same stochastic exponential studied in section 8.9; despite it
involving complex quantities, we can treat it similarly. That is, we can use the Itd
formula, which easily generalizes to complex-valued functions, to get

k
de™(t) = £ () | i (h(t),dW (t)) + % \h(t)|? dt + % > (ih; (1) dt
=i&M () (h(t),dW (t)).
In particular,
T
EN(T) =1+ / £ (1) (h(t), W (1)) (8.29]
0

Since {E7(t)h(t),t € [0,T]} is progressively measurable with respect to the
natural filtration {F}V ¢ € [0, T]} of the Wiener process and

/OTE €™ ()h(e)[ dt < /OT (1|2 dt - exp {/OT |h(t)|2dt} < 0,

we get Re E7(T) € T and Im E*(T) € T. By linearity, Z contains variables of the
form sin (h(t), W (t)), cos (h(t), W (t)). Taking h piecewise constant, we get that for
any n > 1 and any tq,...,t, € [0,7T], Z contains all trigonometric polynomials of
Wi(t1), ..., Wi(tn), i = 1,..., k. By theorem A1.5, the set of such polynomials is
dense in the space of square-integrable random variables of the form
FW(ty),...,W(ty,)), so they belong to Z as well. In particular,
1a(W(t1),...,W(tn)) € Z forany A € B(R"), n > 1 and t1,...,t, € [0,T].
Hence, similarly to theorem A2.3, we get that Z = Lo(Q2, FV'), as needed. O
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The left-hand side of [8.28] is a martingale, as a function of 7". Thus, as a corollary
to theorem 8.15, we get the so-called martingale representation.

THEOREM 8.16.— For any F" -martingale {M(t),t € [0, T]} with E M (T)? < oo,
there exists a unique (up to modification) RF-valued process &, progressively
measurable with respect to {F}V,t € [0,T]}, satisfying fOT E|¢(t)]2dt < oo and
such that

MO =0+ [ (e(e).aW ()
almost surely for each t € [0,T].

PROOF.— Follow from theorem 8.15 by setting X = M (T") and taking the conditional
expectation with respect to 7,V 0

Theorem 8.15 asserts only existence of some integrand in Itd representation, and
gives almost no idea how this integrand can be found. In some cases, the answer can be
given in terms of the stochastic derivative (or Malliavin derivative). We will give only
basic information; the details may be found in [NUA 06]. For technical simplicity,
we will treat only the case k = 1; the generalization to the multi-dimensional case is
straightforward.

We call an ]—'}/V -measurable random variable X cylindrical if it can be represented
in the form X = f(W(t1),...,W(t,)) for some ¢; € [0,7], 1 < i < n, and
infinitely differentiable compactly supported function f. The stochastic derivative of
X is the stochastic process

"9
DX = E_; S LV (), W () o 0 (1), ¢ € (0,7

we will consider it as an element of H3([0,77]). In particular, the indistinguishable
processes will be identified. We define the following norm:

T
IX15, , = EX? +/0 E(D:X)? dt.

The space D 5 C Lo (€2) is defined as a completion of the set of cylindrical random
variables with respect to the norm ||-||, ,. It can be checked that the operator D is
closable, so it admits a unique extension to Dy 5.

The following properties of the stochastic derivatives can be checked easily from
this definition:

— linearity: Dy(aX +bY) =aDyX +bD;Y,a,b € R, X,V € Dy 5;
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—productrule: D¢(XY)=XD,Y +Y D, Xif XY, XY €D o;

— chain rule: for any X7,...,X,, € Dj 2 and any function h € C'(R™) of at
most linear growth,

0
0:@-

m
Dih(Xy,..., X)) = Z h(Xi,...,Xp) D Xp.
=1

For elements of D », it is possible to write the Itd representation explicitly in
terms of stochastic derivative via the so-called Clark—Ocone formula (also called
Clark formula or Clark—Ocone—Haussmann formula by some authors).

THEOREM 8.17.— For any X € Dy,
T
X =EX + / E(D:X | FV)aw (t) [8.30]
0
almost surely.
PROOF.—- The set J of variables from Dy » satisfying [8.30] is clearly linear. Further,

let {X,,n>1} C J and [ X, — Xollp,, — 0, n — oc. Then, by Jensen’s
inequality, EX,, — EX, and

t
/ E(E(D:X,, | FIV) — B(D,Xo | F}V))dt — 0
0
as n — oo. Thanks to Itd’s isometry,
T T
/ B(DyX,, | FV)AW (t) - / B(DyXo | FW )W (£), n — co.
0 0

Therefore, X satisfies [8.30] as well, so 7 is closed in D .

Equation [8.29] establishes [8.30] for the variables £ (T'); therefore, by linearity,
J contains all trigonometric polynomials of values of W taken at different points.
Taking for granted (a not-so-trivial fact) that the set of such polynomials is dense in
D 2, we get that J = Dy o, as claimed. O

As a corollary, we have the following stochastic integration by parts formula. It
may be used to define an extension of the Itd integral to non-adapted (anticipative)
integrands, which is called Skorokhod integral; for more information, see [NUA 06].
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COROLLARY 8.2.— Assume that X € D%? and ¢ is progressively measurable with
respect to { F}V ;¢ € [0, T|} process, satisfying fOT E|¢(t)|?dt < oo. Then,

T T
E(X/O §(t)dW(t)> :/0 E(&(t) D, X)dt.

PROOF.— Using theorem 8.17,

T
B (X /O f(t)dW(t))
T - T
:E((EX+ /O B(D,X | F) )dW(t)) /0 5(t)dW(t)>

T T
= / E(E(D:X | FV)&(t))dt = / E(& Dy X)dt,

0

where we have used the 7}V -measurability of &; and property 6 from theorem 8.2. [J
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Stochastic Differential Equations

9.1. Definition, solvability conditions, examples

As explained in section 8.1, the main reason for stochastic integration lies in the
necessity of modeling dynamical systems with randomness. This is done through
stochastic differential equations, which are the main object of this chapter.

To keep things simpler, we will consider a finite interval [0, T']; in the case of whole
half-line [0, +00), only marginal changes are needed. Let (2, F, {F;, ¢ € [0,T]},P)
be a stochastic basis and T be a standard R*-valued Wiener process on this basis.
Assume that we have deterministic functions a: [0,7] x R? — R? and b: [0, 7] x
R? — R¥k which serve as coefficients for the equation, and an R%valued F-
measurable random variable X (0), serving as an initial condition for the equation.
The corresponding stochastic differential equation is

dX (t) = a(t, X (£))dt + b(t, X (£))dW (1), t € [0, T, 9.1]

with the initial condition X (0). It may be written in coordinate form as

k
dX;(t) = a;(t, X (t))dt + Y bi;(t, X (£))dW;(t), t € [0,T],i =1,....d,
j=1

so it is in fact a system of (stochastic differential) equations. Nevertheless, we will
follow the tradition, calling it an equation. It is worth mentioning the similarity of this
equation and [8.3], obtained by heuristic reasoning. The functions a and b are called
the drift and diffusion coefficients, respectively.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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DEFINITION 9.1.— A (strong) solution to equation [9.1] is an It6 process
{X(t),t >0} in R? such that its stochastic differential satisfies [9.1]. In other
words, it is a progressively measurable process satisfying

t t
X(t) = X(0) —|—/ a(s, X(s))dt —|—/ o(s, X(s))dW(s), t >0, [9.2]
0 0
almost surely for any t € [0, T).
Since we have agreed on assuming Itd processes to be continuous, the same
agreement will be in force for solutions of stochastic differential equations.
9.1.1. Existence and uniqueness of solution

Let us turn now to the question of the solvability of stochastic differential
equations. We will assume that the coefficients a,b are measurable and satisfy the
following conditions with some non-random constant X > 0:

— linear growth: for any t € [0, T, v € R?

la(t, )| + [b(t,z)| < K(1 + |z]). [9.3]
— Lipschitz continuity: for any t € [0,7T], z,y € R?

la(t,z) — a(t,y)| + [b(t,z) = b(t,y)| < K|z —y|. [9.4]
As in the previous section, |-| denotes absolute value, vector norm or matrix norm,

depending on the context. We will also use the symbol C' for a generic constant; its
value might change between lines.

We start with a result establishing a priori estimates for the solution.
THEOREM 9.1.— Let X be a solution to equation [9.1] satisfying [9.3] with square-
integrable initial condition: E|X (0)|? < oc. Then,
E sup [X(¢)]> < C(1+E[X(0)])
t€[0,T

with constant C depending only on K and T

REMARK 9.1~ The assumption of square integrability of X (0) is not essential and
is made just for technical simplicity. It is possible to prove a similar estimate for
conditional expectation:

E( sup IX(t)IQ‘fo> < CL+[X(0)P),

t€[0,T

which is sufficient for further development.
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PROOF.— We denote

X*(t) = sup |X(s)|
s€[0,t]

andset 7y = inf {t > 0: X*(t) > N} AT, N > 1. We estimate

X*(t) <|X(0)] + sup/ la(u, X (u))| du+ sup
s€[0,t] s€[0,t]

/OS b(u, X (u))dW (u)

< |X(O)|—|—K/O (141X (w)|)du+ sup

s€0,t]

/O b, X () )W ()

<1X(0 )|+KT+K/ X*(u)du+ sup
s€[0,t]

/OS b(u, X (u))dW (u)],

whence

tATN 2
EX*(tATy)? <4 (E 1X(0)] + K2T? + K*E (/ X*(u)du)
0

2)
Using the Cauchy—Schwarz inequality, we get

(/OWN X*(U)dU>2 < (/OtX*(u/\TN)du)2 < t/OtX*(U/\TN)Zdu.

Theorem 8.9 through [8.4] implies

+ E sup
s€[0,t]

/0 T b X () AW ()

SATN 2
E sup / b, X (u))dW (u)
s€[0,t]
2 t
—E sup / b, X () Lucry dW ()| <E </ |b(u,X(u))|2ILu§TNdu}
s€[0,t] 0

<2K2/0 E((1+4|X(u) )]lu<TN)du§C(l—i—/OtEX*(u/\TN)zdu).

Combining these estimates, we get

t
EX*(tATn)? < C (1 +E|X(0))? +/ EX*(u /\TN)Qdu> ,
0
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whence by theorem A1.12,
EX*(T A1y)? < C (1 +E |X(O)|2) .

The proof is concluded by letting N — oo, noting that X*(7T") < oo thanks to
continuity, and appealing to the Fatou lemma. d

With the a priori estimates at hand, we are now in a position to prove the result
about the unique solvability of a stochastic differential equation.

THEOREM 9.2.— Let the coefficients of equation [9.1] satisfy [9.3], [9.4] and X (0)
be such that E| X (0)|? < oo. Then, the equation has a unique solution X. Moreover,
X e HQ([O,T]).

PROOF.— The idea is to use the Banach fixed-point theorem. Take some A > 0 (to be
chosen later) and introduce the norm

T
mwazé e ME|Y (1)Pdt, Y € Ha((0,T)).

Itis easy to see that e T Y3, 1029y < [V} < 1Y [13, jo.z> SO this norm is
equivalent to [|-||5,, (o 71); however, this will not play a crucial role in our argument.

ForY € #H([0,T]), we define the process F'(Y') by

F(Y)(t):X(O)+/O a(s,Y(s))ds+/0 b(s, Y (s))dW (s), t € [0, T).

Our first aim is to show that F'(Y) € H2([0,7]). Using the Cauchy—Schwarz
inequality and the It6 isometry, we estimate

2

B|F(Y)(0)]? < 3 <E|X(0)2 +E ’/0 a(s, Y (s))ds

<3 <E|X(O)|2 B /01t la(s, Y (s))[2ds +E/Ot |b(s,Y(s))|2ds>

+E /0 b(s, Y (s))dW (s)

t
<cQ+AEa+W@%@><ﬂHWWimm)
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F(Y)H;Q([ij < 00, as announced.

Similarly, for Y, Y" € H2([0,T7]),
2

/0 (a(s,Y'(s)) —a(s,Y"(s)))ds

)

BIF(Y)(t) = F(Y") (1)) <2 (E

+E

/0 (b(s,Y"(5)) = b(s,Y"(s)))dW (s)

2 (tE /Ot la(s, Y (s)) — a(s, Y (s))[2 ds
+ E/Ot Ib(s, Y (s)) — b(s,Y"(s))|? ds>

<2KAT +1) /Ot E|Y'(s) = Y"(s)] ds.

Therefore,
T t
IF(Y') = F(Y")|; < 2K*(T + 1)/ e_)‘t/ E[Y/(s) = Y"(s)|* dsdt
0 0

T T
= 2K*(T + 1)/ E|Y'(s) — Y”(s)|2/ e Mdtds
0 s

2K%(T +1)

r 2K2(T +1
< f/ e ME[Y(s) — Y (s)]  ds = %
0

1Y —y"|3.

Setting A\ = 4K?(T + 1), we get that F is a contractive map on H([0,77]) with
respect to ||-|,. Therefore, by the Banach fixed-point theorem, there exists a unique
process X € H2([0,T)) satisfying X = F(X) and thus solving [9.1]. It remains to
note that, thanks to theorem 9.1, any solution to [9.1] must belong to Hz([0,T]). O

REMARK 9.2.— A similar existence and uniqueness result may be shown for an
equation with random coefficients. Specifically, let the coefficients
a: [0,7] x R x Q — R%and b: [0, T] x R? x  — R4*¥ be “adapted” in the sense
that for any progressively measurable process Y = {Y'(¢),t € [0,T]} the processes
{a(t,Y (t,w),w),t € [0,T]} and {b(t,Y (t,w),w),t € [0,T]} are also progressively
measurable. Then, assuming that [9.3] and [9.4] hold with non-random constant K,
the corresponding stochastic differential equation has a unique solution. The linear
growth assumption [9. 3] may be further relaxed to the requirement that
fO E(|a(t,0)]* + [b(t,0)[* )dt < oo or even that fo (la(t,0)] + [b(t,0)[* )dt < oo
almost surely; however, in the latter case, the proof will be more involved.
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9.1.2. Some special stochastic differential equations

It6 process. An Itd process with dX (t) = a(t)dt + b(¢t)dW (t) may be viewed as
a solution to a stochastic differential equation with coefficients independent of x.

Linear equation. Let d = k = 1 and a(t, z) = u(t)z, b(t,z) = o(t)z be linear.
The functions @ and 5 may be non-deterministic or, more precisely, progressively
measurable processes with fOT (|u(t)] + o(t)?) dt < oc. The corresponding equation
reads

dX (t) = X (t) (u(t)dt + o (t)dW (t)). [9.5]

In the deterministic case, this can be solved by dividing over X (¢) and noting that
djf (%) = d(log | X (¢)|). This will not work in the stochastic case, as the chain rule (It
formula) is different. However, the 1t6 formula is the correct approach, as we can write

(not bothering for the moment about non-differentiability of log |z| at 0)

Cdx@) 1 -1

dlog | X (t)| = X(0) +§-X(t)2a(t)2X(t)2dt
o 2
= (u(t) - %)dt +o(t)dw (t),

thus obtaining, as in the previous example, an equation with coefficients independent
of x. Clearly, this is solved by

log ()] = log |X(0) + () - s + / ()W (s).

whence, thanks to continuity

X (t) = X(0) exp {/Ot (u(s) — 0(5)2)(18 + /Ot J(s)dW(s)} . [9.6]

We can apply the It6 formula to prove that the process given by [9.6] solves [9.5].
In the case of constant i and o, the solution is further simplified to

X(t) = X(O)e(“_é)w"w(t);

such a process is called a geometric Brownian motion.

In the case where £ > 1, a formula similar to [9.6] is valid, with J(t)2 replaced by
lo(t) |2. However, for d > 1, there is no hope, in general, to get such a nice expression.
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See also the discussion in section 9.8 concerning the diffusion model of financial
markets, where linear stochastic differential equations arise.

Semi-linear equation. Consider now a scalar (i.e. d = k = 1) equation, called the
Langevin equation:

dX () =0(X(t) — p)dt + o dW(2), [9.7]

where 6, i and o are fixed parameters. As in the previous example, it is possible to
consider time-dependent (even random) coefficients with minimal changes, but we
will stick to the simplest situation, which is already sufficiently enlightening.

In a deterministic setting, an equation like [9.7] is usually solved using the
variation of constants. Fortunately, this is also possible in the stochastic setting
without any substantial difference. That said, the solution to a homogeneous version
dZ(t) = 0Z(t) of [9.7] is Z(t) = Ce%. Letting the constant C' vary, we look for a
solution to [9.7] in the form X () = C(t)e%. Since e* has the usual differential,
differentiation of the product does not differ from the deterministic setting:

dX (t) = 0C (t)e’ dt + ?1dC(t) = 6X (t)dt + %' dC (t).
Substituting this into [9.7] yields
P dC(t) = —Oudt + o dW (t),

whence, noting that C'(0) = X (0),

Ct)=X0)—p+pe " +o /Ot e 95aw (s).

As a result,

X(t) = p+ (X(0) — p)eb + aﬂ =D aw (s).

This Gaussian process is called the Ornstein—Uhlenbeck process. It is often
considered only for € < 0. In this case, it is easy to see that the mean of X converges
to 1 and the variance to ‘2’—;. Therefore, in the long run, the process tends to oscillate
around p, which is called the mean-reverting property. This property is of particular
interest in financial mathematics, where the Ornstein—Uhlenbeck process is used to
model interest rates and stochastic volatility; this is the so-called Vasicek model.

If the initial condition is X (0) = 0, then the resulting process is the one-sided
Ornstein—Uhlenbeck process from Definition 3.9; if X (0) is a random variable
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having the Gaussian distribution N (u, ‘2’—;), then the resulting process coincides on
the positive half-line with the two-sided Ornstein—Uhlenbeck process from
Definition 3.10.

Brownian bridge. Consider again a scalar equation

dX(t) = *%dtﬁ’dW(t), tel0,T),

with the initial condition X (0) = 0. Despite the fact that its drift coefficient does not
satisfy [9.3] and [9.4] near T, it still does satisfy these assumptions on [0, 7”] for any

T’ € (0,T), which implies that a unique solution on [0, T") exists. Let us look at the
differential of X (t)/(T — t). By the product differentiation rule [8.20],

d (fﬂ) - (TX_(tZ)th— (TX_(tZ)th+ Tl_tdW(t), te0,7),

whence

X(t) = (T - t)/o = i —dW (), t € [0,7).

Thanks to the results of section 3.5, this is a centered Gaussian process with the
covariance

EX(t)X(s) = (T — t)(T — s)E (/Ot = L aw) /0 = ! dW(u)>

_(Tt)(Ts)/OS(T—luPdu
=T —-t)(T-s) (Tis_;> :5—%8, s <t

In view of symmetry,
ts
E(X(t)X(s)) =tAs— T t,s €10,T),

so X is the Brownian bridge between points 0 and 7" in time and points 0 and O in
space, considered in section 3.4.4; in particular, we can define X (T') = 0.
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9.2. Properties of solutions to stochastic differential equations

As mentioned previously, a solution to stochastic differential equation [9.1] is
continuous and square integrable. Let us derive some further properties. We will
always assume that [9.3] and [9.4] are satisfied.

THEOREM 9.3.— Let E | X (0)|*” < oo for some p > 1. Then

E sup [X(¢)*’ < C (1+E[X(0)F)
t€[0,T]

and for any t,s € [0,T]
E[X () = X(s)[*" < C|t —s|” (1 + E|X(0)]*)

with constant C' depending only on K, T, and p.

PROOF.— The first inequality is derived similarly to theorem 9.1: we define X*(¢) =
Supgepo,g [ X (), Tv =inf{t > 0: X*(¢t) > N} AT, N > 1 and estimate

t 2p
EX*(t ATyn)?P < 4P7! (E |X(0)]* + K?PT% + K*PE (/ X*(u A TN)du>

0
2p>

t 2p t
(/ X*(u/\TN)du> < t2p*1/ X*(u A 7n)*Pdu.
0 0

+ E sup
s€[0,t]

/0 b, X (1)) Ly < dWV (1)

The Holder inequality gives

Using theorem 8.9 and Holder inequalities, we get
2p

E sup
s€[0,t]

<F (/Ot |b(u,X(u))|21lu<TNdu)p

/OS b(u, X () ly<rydW (u)

t
< KPept / E ((1 + \X(u)|)2p]1u§m) du
0

¢
<C (1 +/ EX*(u/\TN)deu> .
0
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Summing up, we obtain
t
EX*(tATy)? < C (1 +E|X(0)* + / EX*(u A TN)deu> ,
0

which, as in theorem 9.1, leads to the first inequality through the application of the
Gronwall and Fatou lemmas.

The second inequality is proved similarly using the Holder inequality and
theorem 8.9:
2p

/St a(u, X (u))du

<C ((t - 5)2P1E/5t |a(u, X (u))|*” du + E (/t b(u,X(u))|2du)p>

<cC <(t —5)P 1 /:E (1 + |X(u)|2p) du

E|X(t) — X (s)]? < 22771 (E

+E / b(u, X (u))dW (u)

+(t—s)”_1/stE(1+|X(u)2p) du>

<Clt—sP sup E[X(u)|* <Clt—sl” (1+E|X(0)). O
u€[0,T]

Further, we will focus on the regularity of the solution with respect to the initial
data. Consider equation [9.1] on a smaller interval:

dX(s) =a(s,X(s))ds +b(s, X(s))dW(s), s € [t,T],

with a non-random initial condition X (t) = z € R?. We denote the unique solution
of this equation by X, , = {X; ,(s),s € [t,T]}.

THEOREM 9.4.— 1) Forany t',t" € [0,T],z € R%, p > 1,
E sup |Xya(s)— th’r(s)|2p <CW " (1+ )

se[t’vi | T]

with constant C depending only on K, T and p.
2) Foranyt € [0,T),2',2” € R%, p > 1,

E sup |X;.(s)— Xmu(s)|2p <Cla' — 2"
s€t,T]

with constant C depending only on K, T and p.
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PROOF.— 1) Assume without any loss of generality that ¢’ < ¢” and denote A(t) =
SUPseppr ) [ X (8) — Xor 2 (s)], t € [¢”, T]. We have

EA(t”)2p - R |Xw,t’(t//) _ x|2P
= B X, (") = Xow ()] < Ol = #"[7 (14 [a]*")

by theorem 9.3 and

EA(t)2 < 32! (E | X () — 2P

s 2p
+E sup /(a(u,Xt/’x(u))—a(u,Xtu,z(u)))du
seftt] |
s 2p
4B sup | [ (blu, Xi (1) = b X () W () )
seft! ] St

S C (t/ _ t//‘p (1 + |x|2p)
t
L E / lau, Xy (1)) — a(u, Xor o () du
t//
t
+ E/ [b(u, Xy o (u)) — b(u, Xt,,@(u))|2p du)
t//
t
C (|t' — 1P (1 + |2|?) +/ B| Xy 2(u) — Xor o(u)]?” du>
t//
t
<C <t’ —t"|P (14 |2|*P) +/ EA(u)deu>
t//

for any ¢ € [t”, T]. Applying the Gronwall lemma, we arrive at the desired inequality.

o 2) S/i/lflilarly, denoting A;(s) = sup,e(y o [ Xt (1) = Xt 20 ()] s0 that Ay (t) =
xr — x|, we get

EA(s)*? < C <|x’ —z"|?P +/ EAl(u)deu)
t

and conclude by using the Gronwall lemma. g

This statement allows us to deduce the existence of a modification of X ,(s),
jointly continuous in ¢, x, s. We give the formulation below, omitting the proof, which
uses the same idea as that of theorem 6.9.
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THEOREM 9.5.— There exists a modification of { Xy »(s),x € RLEO<t<s< T4,
Jjointly continuous in t,x,s. Moreover, for any o« € (0,1/2) and § € (0,1), this
modification satisfies

X0 (') = X r(5")] < C(Rw) (1 =7 418 = " + ]’ — 2"

forany R > 0, o', 2" € R such that |2'| < R, |2"| < Rand t',t",s' s" € [0,T]
such that t' vV t"" < s’ A s". In other words, this modification is Holder continuous of
an order up to 1/2 in t, s and locally Hélder continuous of an order up to 1 in x.

Let us now turn to the Markov property, discussed previously in Chapter 7. In
layman’s terms, it means that the future evolution of a process is independent, given
the present state, of its past. In the context of stochastic differential equations, it means
that if we use the state as some moment of a solution to the stochastic differential
equation as an initial condition at that moment, then we will reproduce its future path.

Similarly to above, for ¢ € [0, 7] and an F;-measurable random vector ¢ in RY, let
X¢,¢ denote the solution to dX (s) = a(s, X(s))ds + b(s, X(s))dW(s), s € [t,T],
with X (¢) = €.

THEOREM 9.6.— Forany s € [t,T],

Xt Xo..(t)(8) = Xo,2(5)

almost surely.

REMARK 9.3.— It is possible to prove a similar result when ¢ = 7 is a stopping
time. This requires a lot of technical work: proving the existence of a version of X, ,,
jointly measurable in all variables, including w, and proving the substitution rule for
the Itd integral: f; f(¢t)dW (t) = f; f(x, t)dW (t)|4=¢ for F,-measurable variable
(. To avoid these technicalities, we establish only the simplest version of the Markov
property, as stated above.

PROOF.— From the definition of X ,,, we have

Xow(u) = 7 + /Ou a(z, Xou(2))dz + /Ou b(z, Xo.0(2))dW (=), u € [0,T).

Substituting t and s > ¢ for u, and subtracting, we get
Xo.a(s) = Xo.u(t) + / a2, Xou(2))dz + / b(z, Xo.o ()W (2), s € [t,T],
t t

which exactly means that X x, . t)(s) = Xo.2(s), s € [t,T]. O
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9.3. Continuous dependence of solutions on coefficients

It is not rare that we have to consider not a single stochastic differential equation,
but a whole family of such equations, with coefficients depending on parameter. Most
notably, this manifests in modeling, where we have to calibrate a model so that it
better describes the reality. In such cases, we have to ensure that small changes in
parameters will not lead to a significant change in the behavior of a model. In this
section, we study this important question of the continuous dependence of a modeled
process on parameters for stochastic differential equations.

Consider a sequence of stochastic differential equations, indexed by integer n > 1:
dX"(t) =a™(t, X" (t))dt + b"(t, X" (t))dW (¢), t € [0, T, [9.8]

with the initial condition X™(0); as before, the coefficients a™: [0,7] x R? — R?
and b™: [0,T] x R? — R*¥ are jointly measurable, and the initial condition X™(0)

is an JFy-measurable random variable.

Let the coefficients a™, b™ satisfy assumptions [9.3] and [9.4] with a constant K
independent of n, i.e. forany n > 1,t € [0,T), z,y € R? we have

la™(t, )| + 0" (t, )| < K(1+ |z]),
la"(t,z) — a”(t, y)| + [b" (¢, z) = " (t, y)| < K |z —y]. [9.9]
For simplicity, we will assume that the initial conditions are square integrable,
i.e. E[X"(0)]? < oo, n > 1. Then, thanks to theorem 9.2, each of the stochastic

differential equations [9.8] has a unique solution.

Further, assume pointwise convergence of the coefficients: forall ¢t € [0,T], x €
R4,

a"(t,x) = a(t,x), b"(t,x) = b(t,z), n — oo, [9.10]
and the mean-square convergence of initial conditions:

x"(0) 2%

X(0), n— oo. [9.11]
Note that a, b satisfy [9.9] as well, so the stochastic differential equation

dX (t) = alt, X (t))dt + b(t, X (£))dW (1), t € [0, T], 9.12]

with the initial condition X (0) has a unique solution.
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THEOREM 9.7.— Assume [9.9]-[9.11]. Then, the solutions of equations [9.8] converge
to that of [9.12]; moreover,

E sup |X™(t)— X()? =0, n— oo
t€[0,T]

PROOF.— Denote A" (t) = Esup,¢o4 [ X" (s) — X (s)|? and estimate

A™(t) <3 (E |1 X™(0) — X (0)]

2

+ E sup
s€[0,t]

[9.13]

/03 (a”(u,X”(u)) — a(u, X(u)))du

+E sup
s€[0,t]

/0 (5 (u, X7 () — b(u, X () AW (u)

2)
Using theorem 8.9, we have

2

E sup
s€[0,t]

/OS (b"(mX"(u)) — b(u, X(u)))dW(u)

< C’/tE|b"(u,X"(u)) —b(u, X (u | du
SC’/tE|b"(u,X"(u)) b" (u, X (u | du

C/o E[b" (u, X (u)) — b(u, X (u | du

< c/o E| X" (u) —X(u)}Qdu+C/O E|b" (u, X (u)) — b(u, X (w))|*du

SC’/O A”(u)du+C/O E[b" (u, X (u)) — b(u, X (u | du.

Similarly, using the Cauchy—Schwarz inequality, we have

2

E sup
s€[0,t]

/0 (@™ s X7 (0)) — alu, X (u)))du

< C/O A"(u)du+c/0 E|a™ (u, X (u)) — a(u, X (u))|*du.
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Substituting these two inequalities into [9.7] and using the Gronwall lemma, we
get

AMT) < C (EIX”(O) - X(0)/*
! n —a(u n 2 en u)) — blu U 2 U
+/O E(|a (u, X (u)) — a(u, X( ))‘ +|b (u, X (u)) — b(u, X( ))| )d )

The first term on the right-hand side converges to zero as n — o0; in the second
term, the expression under expectation vanishes and is bounded, thanks to [9.9] and
[9.10], by 16K>(1 + sup,co |X (t)|?), which is integrable by theorem 9.1.
Therefore, we get A™(T') — 0, n — o0, as required. O

9.4. Weak solutions to stochastic differential equations

Let a: [0,7] x R — R% and b: [0,7] x R? — R¥* be some measurable
functions and T be a standard Wiener process in R*. Consider a stochastic
differential equation

dX(t) = a(t, X (t))dt + b(t, X (t))dW (¢), t € [0,T], [9.14]
with Fyp-measurable initial condition X (0).
DEFINITION 9.2.— A weak solution to stochastic differential equation [9.14] is a
triple, consisting of:
— a stochastic basis (', F',{F{,t > 0},P’);
— a Wiener process W' on this basis;

— an adapted process {X'(t),t € [0,T]} on this basis such that X' (0) 4

and

X(0)

dX'(t) = a(t, X'(t))dt + b(t, X' (t))dW'(t), t € [0,T].

The difference from the notion of strong solution is that the former is constructed
for a given Wiener process; in fact, a strong solution is a function of initial conditions
and the path of the underlying Wiener process. In contrast, a weak solution is
constructed for some Wiener process and in general it is not measurable with respect
to this Wiener process. The following classical example illustrates the difference
between the notions quite well.
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EXAMPLE 9.1.— Consider the following scalar stochastic differential equation, called
the Tanaka equation:

dX(t) = sign X (t)dW (¢) [9.15]

with the initial condition X (0) = 0; here, we denote signx = 1y>0 — 1x<o to avoid
zero values. Now take a standard Wiener process {B(t),t > 0} on some stochastic
basis. Define

W'(t) :/0 sign B(t)dB(t).

It can be seen that W'(t) is a standard Wiener process on the same stochastic
basis (the simplest argument comes through the Lévy characterization theorem; see
section 8.8). Since

dW'(t) = sign B(t)dB(t),
we have
dB(t) = sign B(t)dW'(t),

so B(t), accompanied by the corresponding stochastic basis and the Wiener process
W', is a weak solution to [9.15]. Moreover, —B(t) is a weak solution too, since

d( — B(t)) =sign (— B(t))dW'(t).

Therefore, there are at least two solutions corresponding to the same Wiener
process W'; in such a case, we say that pathwise uniqueness fails for the equation.
As a result, there can be no strong solution, see e.g. [CHE 01]. It is also worth
mentioning that in this example, the Wiener process W' is expressed as a function of
the solution B, but not vice versa.

EXAMPLE 9.2.— As a contrasting example, we can consider a scalar equation
dX(t) = o(X(t))dW(t), t>0,

with X (0) = 0, where 0(z) = 041,50 + 0_1y<o and o, 0_ > 0. This equation
has a unique strong solution by the Nakao theorem, see e.g. [JEA 09, theorem 1.5.5.1
(iii)]. Therefore, we see a remarkable phenomenon: the properties of the equations
are very different when o and o_ have the same sign, as here, and when they have
different signs, as in the previous example.

The concept of weak solution is important because in many situations (for some
examples, see sections 9.7 and 9.8), we need to consider only some functionals of a
solution to stochastic differential equations. Then, it is irrelevant whether the solution
is given for the particular underlying Wiener process. What matters is the probabilistic
distribution of the solution, which will be unique under weaker assumptions than those
required for the existence of strong solutions.
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One of the useful tools to construct weak solutions is the Girsanov theorem (see
section 8.9).

THEOREM 9.8.— Let X be a weak solution to [9.14). Let also measurable functions

c: [0,T] x R — R¥ and d: [0,T] x R* — R? be such that c(t,z) = b(t, z)d(t, )
forallt € [0,7T), z € R and

T
Eexp{;/o |d(t,X(t))2dt} < 0.

Then, the stochastic differential equation
dY (t) = (a(t,Y (t)) + c(t, Y (t)))dt + b(t, Y (t))dW (t)

with the initial condition Y (0) = X(0) has a weak solution given by the triple
(Qv Fa {]:tv te [Ov T]}a Q)’

W’(t):W(t)—/O d(s, X (s))ds, t € [0, T,

and {X (t),t € [0,T]}, where the probability measure Q is given by

T T
jlgexp{ | e xwy.awe) - [ |d<t7X<t>>2dt}-

PROOF.— By theorem 8.14, W' is a Wiener process under Q. Moreover, similarly to
the proof of theorem 8.13, it can be shown that

E(Zg‘]-'o)—l

almost surely. As a result, Q| 7, = P|z,, in particular, X (0) has the same distribution
under Q as under P. Finally, it follows from assumptions that

dX () = (a(t, X () + c(t, X (t)))dt — c(t, X (t))dt + b(t, X (t))dW (t)
= (a(t, X (1)) + c(t, X (t)))dt — b(t, X (t))d(t, X (t))dt + b(t, X (t))dW (t)
= (a(t, X (1)) + c(t, X (t)))dt + b(t, X (t))dW'(¢),

thus concluding the proof. g

9.5. Solutions to SDEs as diffusion processes

Consider a stochastic differential equation in R¢

dX(t) = a(t, X (£))dt + b(t, X (£))dW () [9.16]
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where the coefficients a: [0, T]xR? — R%and b: [0, 7] xR% — R*¥ are continuous
and satisfy the assumptions [9.3] and [9.4]. Assuming that the solution is a measurable
function of initial condition, we get from theorem 9.6 that X is a Markov process. It
turns out to be a diffusion process.

THEOREM 9.9.— Under the above assumptions, the solution X to [9.16] is a diffusion
process with drift a(t, ) and diffusion matrix o (t,z) = b(t,z)b(t,z)".

PROOF.— We are going to check the conditions of proposition 7.3. Denote by X, ,(t)

the solution to [9.16] with the initial condition X (s) = z. By definition, the transition
probability is P(s,z,t, A) = P{X, ,(t) € A}. Then, by theorem 9.3,

/]Rd ‘y - x\4P(s,x,s + hady) = E|Xs7w(5 + h) - $|4

< CR* (1 + |z|*) = o(h), h — 0+,

whence the first assumption of proposition 7.3 follows. Further,

/]Rg(y —z)P(s,z,s + h,dy) =E(Xs (s + h) — )
s+h s+h
=E (/ a(u, X »(u))du +/ b(u,XS,m(u))dW(u)>
s+h
= E/ a(u, Xs »(u))du.

Therefore, using the continuity of a,
1
7 (yf'r)P(Sa‘Tas+hvdy)70’(53I)
h Jgs

1

s+h
EE/S a(u, X5 o (u))du — a(s, x)

IN

s+h
% E/ (a(qus,m(u)) - a(uym))du

1

s+h 1 s+h
7 / E|a(u, X5 o(v)) — a(u, z)| du + 7 / la(u, ) — a(s,z)|du

IN

C s+h
<[ EXealw) -aldut s fa(u) - als,)
h s u€[s,s+h]



Stochastic Differential Equations 251

C s+h 12
< — |lu—s]""du+ sup |a(u,z)— a(s,z)]
h s u€E[s,s+h)

<ChY?+ sup |a(u,z) —a(s,z)| = 0, h — 0+,
u€ls,s+h]

which is the second assumption of proposition 7.3. Concerning the third one, for any
z € RY,

/11&3 (y — =z, z)QP(s, x,s+ h,dy) = E(Xs’m(s +h) -z, 2)2
= E(L(h) + I2(h))* = EL(h)* + ELy(h)* + 2E (I (W) T2 (h)) ,

where

s+h

I(h) :/ (a(u, Xs.0(w)), z)du,
s+h

Bt = [ (o X )V (). ).

By the Cauchy—Schwarz inequality,

s+h
EI(h)? < h/ E(a(u,XS@(u)),z)Qdu
s+h
< C|z|2h/ E(1+ | Xs2(w)|?)du < C|2|*h* = o(h), h — 0+.

Thanks to the It isometry,

2

s+h
EL(h)?=E (/ (b(u,Xs,x(u))Tz,dW(u)))

s+h 9
< / E[bT (4, Xy o (u))2] du.

Similarly to the proof of the second assumption of proposition 7.3, using the
continuity of b,

%Ig(h) — ‘b(s,x)—rz|2 = (b(&x)b(s,x)—rz,z) = (o(s,2)z, 2).
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Finally,
1 1 1 1/2
7 |E (I; (h)I2(h))| < (hE(Il(h)Q) . hE(IQ(h)Q)) -0, h —=0+.
This gives
1

E/ (y —x,2)*P(s,z,s + h,dy) — (U(s, x)z, z)7 h — 0+,
R3

finishing the proof. g

9.6. Viability, comparison and positivity of solutions to stochastic
differential equations

Consider a stochastic differential equation in R¢
dX(t) = a(t, X (¢))dt + b(t, X (t))dW (t), t > 0, [9.17]

where the coefficients a: R, x R? — R? and b: Ry x R? — RI*F satisfy
assumptions [9.3] and [9.4], and W is a Wiener process in R*. As shown in
section 9.5, it is a diffusion process with generator

2

0
a$i8$j

d d m
L) = Y aultsn) o @)+ 5 D0 D bt byt 50— @)

i,j=1k=1
1 T2 2md
= (a(tax)vDrf(m)) + itr(b(t,x)b(t,x) Dzzf(x))7 f eC (R )
In this section, we first address the question of the viability of process X in some
subset of R,

DEFINITION 9.3.— Solution X to [9.17] is called viable in a set A C RY if P{X (t) €
A forallt > 0} = 1 provided that X (0) € A almost surely.

Let ¢ : RY - R, p € C?(R?) be a function such that D,p(x) # 0 when
o(x) = 0. Assume that the set

A={z:p(x) =0}

is non-empty and denote A = {z : ¢(x) = 0} its boundary.
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THEOREM 9.10.— Assume the following conditions:

1) foranyt >0, z € JA,

Lip(x) > 0;

2) foranyt >0, z € 0A,
B(t,x) :=b(t,z) " Dypp(x) = 0.

Then, X is viable in A.

REMARK 9.4.— It is well known that the gradient D, () is a vector orthogonal to
the hypersurface 94 = {p(x) = 0}. Therefore, the second assumption means that
near the boundary of the set A, the process diffuses mainly in directions along the
boundary; there is no diffusion toward the boundary (and hence there is viability).

We start by establishing some auxiliary results.

LEMMA 9.1.— For x € R?, let z(x) be one of the closest points to x points from 0 A,
i.e. such that o(z(x)) = 0 (it exists since the set DA is closed). Then, for any R > 0,
there exists C'r > 0 such that

[z — z(2)| < Crle(z)|
forall x € R with |z| < R.

PROOF.~ Let us choose arbitrary a € 0A. Clearly, |z — z(z)| < |z — a| < |R| + |a
when |z| < R. In particular, the points z(x) lie in some bounded set when |z| < R.

The point z(x) is a minimizer of |x — y|? given that ¢(z) = 0. Therefore, from
the Lagrange multiplier method, we know that either ngo( (x)) = 0 (which is
impossible by our assumption) or D, |y — z|? |y ) = 2(z(x) — ) is collinear to

D.,¢(z(x)). Using this collinearity, by Taylor’s formula, we have
p(@) = p(2(2)) + (Dap(2(2)), & — 2(2)) + R(@)|a — 2(2)?
= £[Dap(2(2))] - & - 2(2)| + R(@)| — 2()]?, [9.18]
where R(z) is bounded since ¢ € C?(R?) and x, z(x) are bounded.
Now assume the contrary and let, for each n > 1, z,, € R? be such that |zn] < R
and |z, — z(z,)| > ne(x,) > 0. Since {x,,n > 1} is bounded, there exists a
convergent subsequence; without any loss of generality, let x,, — zg, n — 0. As

|€ — 2, ()| is bounded, we must have ¢(xg) = 0; therefore, z(x,,) — xg, n — oo.
Thus, from [9.18], we have

0= lim M = lim ’Dgg(p Tn)) £ R(xp)|zn — z(a:n)H

n—oo |x, — z(xz,)| n—ooo

= [Datp(20)l,
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contradicting the assumption that D ¢(xg) # 0. O

LEMMA 9.2.— Assume the following:
1) foranyt >0, x € 0A,

Lep(x) > 0;
2) foranyt > 0, z € 0A,

b(t,z) " Dyp(x) = 0.

If T is a bounded stopping time such that X (1) € A and X (1) is bounded, then
there exists a stopping time 0 > T a.s. such that X (t) € A forallt € [r,0)].

PROOF.—If w ¢ B := {X (1) € 9A}, then define ; = inf {t > 7: X(t) € 0A} A
(7 + 1), thanks to the continuity of X, 6; > 7.

Now let w € B. Fix some positive R > | X (7)| and define stopping times
' =inf{s > 71: Lip(X(s)) <0}, TR =min{s > 7:|X(s)| > R}.

As usual, we suppose that a stopping time equals oo if the corresponding set is
empty. In view of continuity, 7/ > 7 and 7g > 7 almost surely on B.

For any non-random u > 7 put #,, = u A 7/ A 7g and apply the Itd formula to the
process (X (+)):

0.

P(X(0.))15 = /

T

(Lo (X ())ds + (Dap(X(5)), bls, X ()W (5)) ) L.

Since X is bounded on [r,6,], the above It6 integral has zero expectation given
F-, S0

O

E(p(X()15) = E ( Lop(X(s5))ds 13) .

T

For a non-negative function ¢» € C(R) such that [, ¢)(x)dz = 1 and ¥(z) = 0,
x ¢ [0,1], we define

Un () :n/om /wa(nz)dzdy.
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Obviously, ¥, (z) 1 |z| asn — oo and |¢, (z)| < 1,n > 1.

Applying the It6 formula to ¥, (p(X(+))), we get
0
Un(p(X(0u))) 15 = / U (P(X(5)))Lsp(X (s))ds 1p
O
+ [ U ) (Bl X (). W () 15

/ W(o(X(5))) 1B(s, X () ds L,

whence

Oy
E (¢n(p(X(04))15) = E </O Un(p(X(5)))Lsp(X (s))ds ILB>
+5 'p (/ V! (g ) 1B(s, X (s ))|2ds]13>.

Recall that L,p(X,) > 0 for s < 6, and |¢],(z)| < 1, so the first term in the
right-hand side of [9.19] does not exceed E (fo Lsp(X(s))ds ]13). We will prove
now that the second term vanishes.

[9.19]

Let z(x) be one of the closest points to x points from 0 A. For |z| < R,
16(s,2)| = |B(s, ) = B(s, 2(x))]
< [b(s,2)T (Dasp(w) = Daspla(@)) | + | (b5, 2) = b(s, 2(2))) " Do (2(x)

< CR(|:E —z(2)| + |x—z(az)|) < Crlx —z(z)|.

Therefore, using lemma 9.1 and recalling that 8,, < 7 + u, we have

( / B (0(X(5))) |B(s, X (s >>2dsuB>

0.
< CrnE (/ ¢(W(X(S)))<P(X(S))2> ds

Ou
_Cry (/ w(w(X(S)))(@(X(S)))QdS>

Cru
< 2B sup 2%y (z) = 0, n — oo.
N zeR
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Taking n — oo, we get from [9.19],
B (lp(X(6.))] 15) < liminf B (4, (o(X (6,))) 1)

0.
<E (/0 Lsp(X(s))ds 13) = E(p(X(0.)) 1),

and hence, ¢(X(6,)) > 0 almost surely on B. Since 6, = u A 7/ A 7 and u is
arbitrary, we get the desired claim with § = 6,15 + 6115 > 7 almost surely. O

PROOF (Proof of theorem 9.10).— Let X (0) € A. It is enough to prove that P(X (¢) €
A) = 1forall ¢ > 0. Indeed, this would imply P(X (t) € Aforallt € Ry NQ) =1,
yielding P{X(t) € Aforallt > 0} = 1 thanks to the closedness of A and the
continuity of X.

First assume that L;p(x) > 0 forallt > 0, z € JA.

Define 74 = inf {s > 0: X(s) ¢ A}. Since X is continuous, we have X (74) €
A whenever 74 < oo. Assume that P{74 < oo} > 0. Thanks to the continuity
of the probability measure, there exist some > 0 and ¢ > 0 such that P{r4 <
t,|X(74)] < r} > 0. Therefore, defining 7 = 74 At Ainf {t > 0: | X (¢)| > r}, we
have P{74 < 7} > 0. Applying lemma 9.2, we get the existence of § > 7 such that
X(t) € A, t € [r, 0], almost surely, which contradicts the definition of 74 and the fact
that P{r4 <7} > 0.

Now we prove the statement in its original form. Let {a"(¢,x),n > 1} be a
sequence of coefficients such that for all t > 0, z,y € R? |a"(t,z)| < C(1 + |z|),
la™(t,z) —a™(t,y)| < Clr —yl,n>1,a"(t,x) = a(t,x), n — oo and

Lio(x):= (a"(t,z), Dyp(x)) + %tr(b(t,;v)b(t,:n)Twaga(x)) > 0.

We can take, for example, a,,(t,z) = a(t,z) + n~ 1 D,¢(z)G(x) with a positive
smooth function G: RY — R, which does not vanish on A and decays on infinity
sufficiently rapidly so that D, ¢ (2)G(z) is bounded together with its derivative.

Let X" be the solution of
dX"(t) = a™(t, X" (¢))dt + b(t, X" (t))dW (t), t > 0, [9.20]
with the initial condition X™(0) = X (0). From theorem 9.7, we have

sup |X"(t) — X(t)] 250, n— co.
te[0,T]

We have shown P{X"(t) € Aforallt > 0} = 1, whence P{X (¢) € A for all
t > 0} = 1 thanks to the convergence of X™ to X and the closedness of A. O
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9.6.1. Comparison theorem for one-dimensional projections of
stochastic differential equations

Let us now formulate a stochastic version of a comparison theorem. While we
formulate it in a multi-dimensional setting, it is basically about a pathwise comparison
in one-dimensional cases (hence the name of this section).

Let X, i= 1, 2, be solutions to stochastic differential equations
dX'(t) = a'(t, X' (t))dt + b*(t, X*(t))dW (t), t >0,

where the coefficients a’, i = 1,2, and b satisfy the assumptions [9.3] of linear growth
and [9.4] of Lipschitz continuity; the initial conditions X*(0) = (X7(0),..., X%(0)),
i = 1,2, are Fp-measurable random vectors. Fix some [ € {1,...,d} (which will be
the index of the coordinate we compare).

THEOREM 9.11.— Assume that
1) X}(0) < X?(0) almost surely;
2) forany t > 0 and any z*,x? € R? such that x} = z3, af (t, ') < a}(t,2?);

3) forany j = 1,...,k, the coefficients b}l and b?l coincide and depend only on
the lth coordinate of x, i.e. there exists some bj;: Ry X R — R such that for any t > 0
and any x € R%, b}, (t,7) = b?l(t,x) = b, (t, ;).

» Vi1
Then, P{X}(t) < X?(t),t > 0} = 1.
PROOF.— Consider the process

X(t) = (X'(t), X2(1)) e R* = {(a',2?) 1 ', 2? € R}

and set p(z) = 7 — z]. Then, in the notation of theorem 9.10, we have
A={zeR*:a} <z}},0A={z €R*: 2] =27} and

Lip(x) = (aQ(t,xl) - al(t,xQ),Dwgo(w)).

Further, the diffusion coefficient of X is

E o bl (t, ZCl)
-\ (ta?))
s0 b(t, )" Dyp(x) = (b3 (t,2?) — bj;(t,2'),j = 1,...,d). By the assumption,

Xo = (X1(0), X2(0)) € A almost surely, £;p(x) > 0 and b(t, )" Dyp(x) = 0 for
x € 0A. Thus, we get the desired statement from theorem 9.10. O
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9.6.2. Non-negativity of solutions to stochastic differential equations

Non-negativity is an important feature in modeling. For example, the prices of
ordinary stocks cannot be negative in view of limited liability, which in layman’s terms
means that an investor in stock of some company has no liability for the misfortunes
of the company. Therefore, it is important to establish the non-negativity criteria.

Consider again equation [9.17] and assume that its coefficients satisfy the existence
and uniqueness assumptions [9.3], [9.4]. Let S C {1, ..., d} be a fixed non-empty set
of coordinates. We are interested in the non-negativity of X;, ¢ € .S, which is exactly
the viability in the set A = {z = (z1,...,2q4) € R? : z; > 0}.

THEOREM 9.12.— Let the following hold:

2) if x € R? is such that x; = 0 for some i € S and x; > 0 for any | € S then
a;(t,z) > 0and b(t,z) = 0.

Then, P{X;(t) > O foralli € Sandt >0} = 1.
PROOF.— Let f;(x) = |z|Lics + xlj¢g.i=1,...,d, x € R. Consider the equation
dX (t) = a(t, X (t))dt + b(t, X ())dW (L), t > 0,

with the initial condition X (0) = X (0), where

a(t’m) = (Z(t, fl(x1)7 ceey fd(xd))7 b(t,l’) = b(tv fl(xl)a R fd(xd))

For arbitrary i € S, it is easy to check that @ and b satisfy the assumptions of
theorem 9.10 with p(x) = x;. Therefore, X (t) is viable in each 4; = {z; > 0},

i€ S,s0P(X;(t) >0foralli € Sandt > 0) = 1. Hence, X (¢) solves [9.17] and,

by uniqueness, we obtain P{X (t) = X (¢),t > 0} = 1, as claimed. O

9.7. Feynman-Kac formula

This section is devoted to the remarkable connection between solutions of
stochastic differential equations and those of partial differential equations. Let
a:[0,7] x R® — R%and o : [0,T] x R? — R?*? be continuous functions. For
t € [0,T7], consider a second-order partial differential operator

d 9 1< 02
Lif(z) = Zai(t,x)%f(m) +3 > Uij(t,x)mf(x)
i=1 ¢ i,j=1 !

= (alt,2), Daf(@) + gtx(o(t0)D2, /(@) [ € C2(RY,
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which is the infinitesimal generator of a diffusion process with drift a(¢,x) and
diffusion matrix o (¢, ). Under the assumption that (¢, ) is non-negatively definite,
L; is of parabolic type. Consider the boundary value problem

%u(t,x) + Lou(t,x) — r(t,x)u(t,x) + f(t,2) =0, t€[0,T),z€R?

u(T,z) = g(z), z€R? [9.21]

for a backward parabolic partial differential equation; here, 7, f: [0,7] x R? — R
and g: RY — R are some continuous functions. In order to associate this equation to
a probabilistic object, note that £; resembles a generator of a diffusion process.
Indeed, the non-negativity of o(t,x) implies that there exists some d X d-matrix
b(t,x) with o(t,z) = b(t,z)b(t,x)", for example, we may use the so-called
Cholesky decomposition of o(t,x); we will assume that b is continuous as well.
Consider a stochastic differential equation

dX(s) =a(s, X (s))dt + b(s, X(s))dW (s), s € [t,T], [9.22]

with the initial condition X (¢) = z. Assume that it has a weak solution, which we
denote by X*#; for notational simplicity, we will use usual symbols for the stochastic
basis and the Wiener process corresponding to this solution.

The following theorem establishes a probabilistic representation of a solution to
[9.21] as a functional of a solution to [9.22]. This representation is called the
Feynman—Kac formula.

THEOREM 9.13.— Assume that a,b satisfy the linear growth assumption [9.3], f,g
satisfy a quadratic growth assumption |f(t,x)| + |g(x)| < C(1 + |z|?) for all t €
[0, T), z € R and r is bounded from below. Let u € C*2([0, T)xRH)NC([0, T]xR?)
be a solution to [9.21] such that u(t,x) < C(1 + |z|?) forall t € [0,T), z € R
Then, for all t € [0,T], v € RY,

T
u(t,z) = E (/t v(t,s)f(s, Xt z(s))ds + v(t, T)g(Xm(T))> , [9.23]

where v(t, s) = exp {— [}’ r(u, X; o(u))du}, s € [t,T.

REMARK 9.5.— The term v(¢, s) frequently plays a role of discounting factor, which
explains the negative sign used above.
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REMARK 9.6.— The terminal condition g is often non-differentiable; for example, in
financial mathematics, g(z) = (z; — K)™ may be used. This explains why u is
assumed to be differentiable only on [0, 7). Also it is well known that, in general, a
solution to [9.21] is not unique but there are some rapidly growing extraneous
solutions, that is why the quadratic growth assumption on w is imposed.

PROOF.— Take any 7" € (¢,T") and write by the It6 formula

v(t, Tu(T", X1 (T")) = v(t, t)u(t, X¢ . (t))

b
+ [t (s Xea () + Lru(s, X9

—r(8, X1 o(8))u(s, X¢,5(8))) ds

7
+/t v(t,s)(Dyu(s, Xi,2(5)), b(s, Xi,0(5))dW (s))
:u(t,gc)—/t v(t,s)f(s, X¢x(s))ds

T
+ /t v(t, s) (Dmu(s7 Xt.2(5)), b(s, Xt,z(s))dW(s)).

We can assume that the integrand in the Itd integral is bounded, otherwise a
standard localization argument may be used. Then, taking expectations,

T
u(t,z) =E (/t v(t, s)f(s, Xt o(s))ds + V(t,T’)u(T’,XtJ(T'))) )

Thanks to our assumptions, the expression under expectation is up to constant
bounded by sup,cp, 1 |Xt7x(s)|2, which is integrable by theorem 9.1 (the latter
clearly holds for weak solutions as well). Therefore, using the dominated
convergence theorem and the terminal condition u(T,x) = g(x), we arrive at [9.23]
asT' — T—. O

9.8. Diffusion model of financial markets

Consider the following continuous time financial market model. Let T > 0 be
a finite time horizon and (2, F, {F:,t € [0,T]},P) be a stochastic basis. Here, the
filtration { F3, ¢ € [0, T} is interpreted as the information flow: at each time ¢ € [0, T,
F is the information available to the market up to this time. For convenience, we will
assume that Fy is trivial, i.e. it contains only P-null sets and their complements.
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There are d 4 1 traded assets in our model: a bond (bank account) and d risky
assets, stocks. Concerning the bond, we assume that it has the following dynamics:

So(t) = exp {/Otr(s)ds}, te0,T],

where the progressively measurable bounded process r(s) > 0 is the instantaneous
interest rate. The progressive measurability requirement implies that .Sy is locally
riskless: at each moment, there is a complete knowledge of its immediate return. The
risky assets are assumed to have diffusion dynamics driven by a d-dimensional
standard Wiener process W. The coincidence of dimension is in a sense a
non-redundancy assumptions: each risky asset has its own source of randomness
(possibly correlated with our sources). Precisely, the dynamics are

d
dS;(t) = pi(t)Si(t)dt + > oy (1)Si(H)dW;(t), t € [0, T],i=1,....d,  [9.24]
j=1

where 11 and o are bounded progressively measurable processes in R? and d x d,
respectively. The drift term g plays the role of a deterministic trend in the price
evolution, while the diffusion term o describes the stochastic part of the evolution,
which is called volatility. The presence of the Wiener process makes the immediate
return on a stock unpredictable, thus the term “risky asset”.

We will assume that o is non-singular, again for non-redundancy reasons. Using
the 1t6 formula, we can see that the process

t d d t
1
S;i(t) = S;(0) exp / (ui(t) —5 Zaij(S)Q) ds + Z/ 0i;(s)dW;(s)
0 j=1 j=170
solves [9.24]. Therefore, the stock prices are positive provided that their initial prices

are also positive.

For brevity, the vector of risky asset prices will be denoted by S(¢) = (S1(¢), .. .,
S4(t)), and equation [9.24] can be abbreviated as

dS(t) = S(t) * (u(t)dt + o(t)dW (1)), te[0,T],

where x is the coordinatewise product of vectors. The whole vector of asset prices will
be denoted by S(t) = (So(t), S(t)) = (So(t), S1(t),...,Sa(t)).
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A portfolio, or strategy, is a progressively measurable process

F(t) = (o (t), 11 (t),---,va(t)), t €[0,T],

where v;(t) denotes the quantity of ith asset in the portfolio. The progressive
measurability of the portfolio means that investor’s decisions at time ¢ are based only
on information available to the market at that time (in other words, trading based on
insider information about future price changes is prohibited). There can be negative
numbers in the portfolio: for the bond, this means borrowing money, for a stock, its
short sale.

The value, or wealth, of the portfolio at time ¢ € [0, 7] is the total price of assets
in the portfolio, i.e.

d

C(t) = (7). 5(1) = 3 wmt)Si(t).

i=0

It is important to distinguish portfolios which are conservative in the sense that
they do not use external money and there is no money going outside them. Such
portfolios are called self-financing (or self-financed). The changes in the capital of
such portfolios are only due to changes in the asset prices, not due to some external
inflows or outflows of capital; this leads to the following equation:

dC7(t) = (3(t),dS(t)), tel[0,T).

For many reasons, it is convenient to deal with discounted values using the bond
So as a numéraire. Namely, we define discounted price processes as
X;i(t) =8:(t)/So(t),t € [0,T],i=1,...,d. The corresponding dynamics are

d
dXi(t) = Xi(t) (ps(t) — r()dt + > oi(0)dW;(t)), t€[0,Ti=1,...,d.
j=1
Denoting by 1 the vector of ones, we can abbreviate the last system as

dX (t) = X(t) * ((ui(t) — r(t)1)dt + o (t)dW (t)), t € [0,T).

This is often expressed in terms of the so-called risk premium process A(t) =

o(t) ™ (pi(t) — r(t)1):
dX(t) = X(t)*o(t)(A(t)dt +dW(t)), te€][0,T].

In the case where d = 1, A(t) = (u(t) — r(t))/o(t) is the Sharpe ratio, a popular
tool to measure the performance of a risky investment.
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The discounted value of a portfolio is
V() = C7(8)/So(t) = v(t) + (v(t), X (1)), te€[0,T],
where (t) = (71(¢),...,va4(t)) is the risky component of the portfolio.

In the following, we will only consider self-financing portfolios. With this at hand,
the discounted value satisfies

dv(t) = (y(t),dX(t)), tel[0,T],

equivalently,

V(1) :VV(O)—i—/Ot (v(s),dX(s)), te0,T]. [9.25]

Hence, the amount of bond in the portfolio can be determined from its risky
component and the initial capital:

'70(t) = V’Y(()) + /0 (7(5)7 dX(S)> - (V(t)a X(t))v te [OvT}- [9.26]

9.8.1. Admissible portfolios, arbitrage and equivalent martingale
measure

So far, we have not imposed any restrictions on the portfolio except its
adaptedness. In reality, we cannot trade arbitrary amounts of bonds and stocks, and
the price will certainly depend on the amount traded. Reflecting all possible
restrictions and transaction costs in a model would be impossible but we can consider
some well-behaved portfolios. Note that in order to write formulas like [9.25], we
already have to assume a certain integrability of the portfolio. There are many other
possible sets of restrictions (see [SHI 99, BJO 04] for more information). We take
one of the simplest assumptions: that the discounted capital is bounded from below.
This can be interpreted as a fixed credit line provided by a broker.

DEFINITION 9.4.— A portfolio v is admissible iffOT Iy () |2 dt < oo almost surely (so
that the integral in [9.25] is well defined), and there exists some non-random constant
a € R such that

V() >a, te][0,T],

almost surely.
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Next, we define the fundamental notion of arbitrage.

DEFINITION 9.5.— An arbitrage opportunity is an admissible portfolio v with
V7(0) <0, VI(T) > 0 almost surely and P(V"(T) > 0) > 0.

The market model is called arbitrage-free if there are no arbitrage opportunities.

In layman’s terms, an arbitrage opportunity is a possibility to make a certain profit
without any risk, a “free lunch”. In real markets, arbitrage opportunities are possible
(and some financial companies have special departments to hunt for them) but they
quickly disappear due to increasing demand for arbitrage positions.

There is a well-known “martingale” betting strategy in a game, where we can put a
stake on some outcome, like flipping tails with a fair coin: we can double the bet in the
case of loss and exit the game in the case of win. This strategy guarantees the gambler
his initial bet provided that he has unbounded capital at his disposal. However, if we
limit possible losses, as in definition 9.4, then the arbitrage opportunity will no longer
be available.

This means that the non-arbitrage property depends on the definition of the
admissible portfolio used. In [BJO 04, SHI 99] we can find discussions of different
notions of arbitrage.

Let us move on to another important concept of financial mathematics.
DEFINITION 9.6.— A measure Q on (2, F) is an equivalent martingale measure if
Q ~ P and the discounted price process {X (t),t € [0, T} is a Q-martingale, i.e.

EQ(X;(t) | ) = Xi(s)
almost surely forall s <t <T,i=1,...,d.
It turns out that the existence of an equivalent martingale measure is closely related

to the absence of arbitrage. We first prove the martingale property for the discounted
value of an admissible portfolio.

THEOREM 9.14.— Let Q be an equivalent martingale measure. Then for any
admissible portfolio ~, the discounted capital process {V7(t),t € [0,T]} is a
Q-supermartingale.

PROOF.— Similarly to the proof of lemma 8.1, it can be shown that there is a sequence
of simple processes of the form

kn

27 Lgn (@), t€[0,T],n>1
k=1
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where 7} is an Fy»  -measurable random vector in R? such that

T
/ " (6) = A2 dt = 0, n — oo,
0

almost surely.

Consider now the corresponding self-financing portfolios with the initial capital
V7(0). Then

kan

V) = V0 + D (L X (R A — X (8, AT))
k=1

is a Q-martingale. Indeed, each summand is easily seen to be a martingale thanks to
the Q-martingale property of X. On the other hand, in view of the boundedness of 1,
r and o, we have from theorem 8.6

sup |V (t) — V'Y(t)‘ 50, n — .

t€[0,T)
Therefore, defining 7, = inf{t>0:[V?"(t)-V(t)|>1} A T and
y'(t) = ~4"(t)1;<-, and considering the corresponding self-financing portfolios

with the initial capital V7(0), we have

sup v (t) — V”(t)‘ 50, n — .
te[0,T)

Extracting, if necessary, a subsequence, we can assume that the convergence is
almost sure. For every t € [0, T, we have V7 (¢) > a with some a € R, so it follows
from the definition of 3™ that v (t) > a—1,t € [0,T]. Therefore, using the
martingale property of V7" and the Fatou lemma (which can be used thanks to the
boundedness from below), we have forany s < ¢ < 7T,

V7(s) = liminf V;”(S) = lim inf E? (V;n () | .7:5)

n—oo n—oo

n—oo

> EQ (lim inf V7" (t) | ]—"S) —EQ(V(1) | F),
which is the desired supermartingale property. |
The following fact is a simplified version of the so-called first fundamental

theorem of asset pricing relating the absence of arbitrage to the existence of a
martingale measure.
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THEOREM 9.15.— If there exists an equivalent martingale measure, then the market
model is arbitrage-free.

PROOF.- Let Q be the equivalent martingale measure, and an admissible portfolio y be

such that V7(0) < 0and P(V7(T) > 0) = 1. Since Q ~ P, also Q(V(T) > 0) = 1.
However, by the previous theorem, V7 (T') is a Q-supermartingale, therefore

EQVY(T) < V7(0)

a.s., whence Q(V7Y(T) = 0) = 1. The equivalence of measures then implies
P(VY(T) = 0) = 1, so there are indeed no arbitrage opportunities. O

REMARK 9.7.— In some cases, the statement of theorem 9.15 may be reverted; see
[BJO 04, SHI 99] for details.

A sufficient condition for the existence of an equivalent martingale measure is
given by the Girsanov theorem.

THEOREM 9.16.— Let the risk-premium process \ satisfy

1 [T 9
Eexp 3 [IA(@®)|" dt p < 0.
0

Then, the measure Q defined by

;lg:exp{_ [ owavw) -1 |A<t>|2dt}

is an equivalent martingale measure. Consequently, the market model is arbitrage-

free.

PROOF.— Arguing as in the proof of corollary 8.1, we get
t
X(0) = X(0)+ [ X(s)xa(s)aWA(s), t € 0.7, [9.27]
0

and W is a Wiener process with respect to Q. From theorem 9.3 applied to equation
[9.27], it follows that E? Supyepo, 7] | X (t)|? < oo, so the integrand in [9.27] is square
integrable. Thus, X is a Q-martingale. g

9.8.2. Contingent claims, pricing and hedging

The bond Sy and stocks S1, . .., S are usually called primary (financial) assets to
distinguish them from other instruments traded in the market: options, futures, swaps,
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warrants, etc. We will consider only instruments maturing at time 7" and paying some
random quantity, which is called payoff of the claim. For brevity, we will identify
contingent claims with their payoffs.

DEFINITION 9.7.— A contingent claim is a non-negative Fr-measurable random
variable C. The contingent claim is called a derivative of primary assets
S0,51,...,8q if it pays an amount depending on the primary assets, i.e.
C € o (S(t),t €[0,T)). A European claim, or European option, is a derivative
depending only on the ultimate prices, i.e. C = f(So(T),S1(T)...,Sa(T)); here, f
is called the payoff function of the claim.

EXAMPLE 9.3.— A European call option with strike price K and the maturity date T’
on the unit of stock Sy is a contract which gives its buyer (holder of the option) the
right to buy the designated (here, unit) amount of the underlying asset (here, Sy,) at the
moment T for the agreed price K. Note that it is up to the holder to decide whether he
would use this right, exercising the option at time T' to buy the stock (in which case the
option writer has the obligation to sell the stock). It is natural to assume that the holder
acts rationally, exercising the option if and only if its current price S.(T') exceeds the
strike price K. The virtual profit of the option holder in this situation, called in the
money, is S,(T) — K, the amount he would realize from selling the stock at current
price. When S.(T') < K, the option is useless (out of the money), since the holder
can buy the underlying asset cheaper. Thus, the amount Ceoy = (Sp(T) — K)* =
max(Sg(T) — K,0) is naturally identified with the payoff of the option. Moreover,
very often an option is cash-settled, i.e. the amount C,)) is paid to the holder instead
of delivery of the asset; sometimes the delivery is even impossible, as the underlying
asset is a stock index or interest rate.

EXAMPLE 9.4.— Similarly, a European put option gives its holder the right to sell
the underlying asset at time T for the strike price K. The corresponding payoff is
Cput = (K - Sk(T))+

EXAMPLE 9.5.— An exchange option allows one to exchange a unit of asset Sy at
time T for K units of asset S;. Its payoff is (Si(T) — KS;(T))*. It is often called
a Margrabe option, named after William Margrabe, who derived the formula for its
price in a simple diffusion model.

EXAMPLE 9.6.— A basket option is written on a portfolio of assets. Say, an option

allowing one to buy a portfolio containing a; of asset S;, i = 1,....,d, for a strike
+

price K has payoff (Zle aiSi(T)) . Options on stock indices are examples of

basket options. Basket options are also called rainbow options; the latter allow

negative weights a; so that, for example, the exchange option is a rainbow option
withay =1, a; = =K, a; = 0,1 # j, k.
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EXAMPLE 9.7.— The payoff of Asian derivative security depends on the average price
Ap(T) = 7 fOT Sk (t)dt of some asset Sy, over time interval [0,T). Therefore, the
payoff of Asian security depends on the whole trajectory of the price process, not
only on the terminal value, as that of a European option. Such financial instruments
are thus called path dependent. Examples of Asian options: average price call option
paying (Ay(T) — K)™, average price put paying (K — Ay (T))™, average strike call
paying (Si(T) — Ax(T))*.

EXAMPLE 9.8.— Another class of path-dependent options are so-called lookback
options depending on the minimum price my(T) = minycjo1) Sk(t) and/or
maximum price my(T) = minye(o 1) Sk(t) of asset Sy. One example is the fixed
strike lookback call option with payoff (My(T) — K)*. It can be interpreted as a
European call option, where the maturity t € [0,T) is chosen retrospectively at time
T. A floating strike lookback call has the payoff (My(T) — Sk.(T)) ™. Other examples
are barrier options, where the payoff is void if the price of the underlying asset hits
(for knock-in options) or does not hit (for knock-out options) the prescribed barrier.
Depending on the position of the barrier, there are up and down options. There is
also the call/put ambivalence, which gives in total eight types of barrier options. For
example, up-and-in call option pays (Sp(T) — K)" 1, (1)>n. down-and-out put,
(K = Se(T) " Liny(1)> 1

Pricing contingent claims is a fundamental task of financial mathematics; there are
numerous approaches based on different concepts. The most established of them is the
arbitrage pricing theory, which we briefly describe here.

Let us start with the case where a contingent claim is a final value of some
portfolio.

DEFINITION 9.8.— A contingent claim C is attainable (or marketable) if
C = C(T) = (F(T),S5(T)) for some admissible portfolio +, called a replicating
portfolio. The initial capital of the replicating portfolio is called a fair price of C':
w(C) = C7(0).

One claim can be replicated by different portfolios, and a priori there can be
several fair prices. When there are no arbitrage opportunities in the market model, the
price is normally unique, and this is the so-called law of one price. We will prove it
under the additional assumption that there exists an equivalent martingale measure.

THEOREM 9.17.— Let there exist an equivalent martingale measure Q. Then, every
attainable contingent claim C' has a unique fair price. Moreover, it is equal to the
discounted expected value with respect to Q:

C
= E® .
So(T)

w(C)
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PROOF.— Let v be a replicating portfolio for C. By theorem 9.14, the discounted
capital V7 of v is a Q-martingale; therefore,
qQ C
So(T)

=EQVY(T) = V(0) = n(C),

as claimed. O

The second conclusion of this theorem allows us to extend the definition of fair
prices to a larger class of contingent claims. We denote by P the set of all equivalent
martingale measures.

DEFINITION 9.9.— A fair price of contingent claim C'is a finite discounted expected
value of C with respect to an equivalent martingale measure, that is, an element of

o) = {EQ SO?T)

q C
’QEP,E SoT) <oo}.

For an attainable claim, II(C') = {x(C)}, provided that an equivalent martingale
measure exists; for a non-attainable claim, this set is usually non-empty and is an open
interval. We will prove that each fair price is non-arbitrage.

THEOREM 9.18.— Any 7 € II(C) is a non-arbitrage price for C, i.e. there exists a
non-negative adapted process {Sqy1(t),t € [0, T} such that S;41(0) = m,
Sa+1(T) = C, and the extended model with traded assets So,S1,...,Sq, Sa+1 is
arbitrage-free.

PROOF.— By definition, 7 = EQ(C/Sy(T)) for some Q € P. We define

C
So(T)

Sup1(t) = So(t) EQ < ‘]-"t> L telo,T). 9.28]

Then, S44+1(0) = 7w, Sq+1(T) = C, and it is easy to see from [9.28] that Q is an
equivalent martingale measure in the extended market. Then, the extended model is
arbitrage-free thanks to theorem 9.15. (I
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Parameter Estimation

In this chapter, we consider the simplest models consisting of the drift (regular)
component and the diffusion (non-regular) component. We propose different
estimators of unknown scaling parameters of the models under consideration and
study their strong consistency. Recall the definition of strong consistency for discrete
time and continuous time observations.

DEFINITION 10.1.—

i) An estimator Yy, of the unknown real-valued parameter Y, constructed by the
finite number {Y1,...,Y,} of observations is called strongly consistent if Y,, — Y
a.s.asmn — oQ.

ii) An estimator }A/t of the unknown real-valued parameter Y, constructed from the
observations {Ys,0 < s < t} is called strongly consistent if Y; — Y a.s. as t — oo.

10.1. Drift and diffusion parameter estimation in the linear regression
model with discrete time

Consider the linear regression model of the form
Xn:XO+9bn+Rna n > 13

where {b,,n > 1} is a known sequence of real numbers, not all of them being equal to
zero, Xy € R and 6 € R are the parameters to be estimated, 6b,, is a drift component
(in other words, regular part, or signal), and {R,,,n > 1} is a sequence of random
variables that is treated as the diffusion component (in other words, irregular part,
or noise). Initial value X is also called an infercept term and 6 is called a slope
parameter. Throughout the section, we assume that the noise is centered, i.e. ER,, = 0,
n > 1.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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10.1.1. Drift estimation in the linear regression model with discrete time
in the case when the initial value is known

Assume that X € R is known. Consider two estimators of the parameter § € R
constructed by the observations { X, X1,..., X, }. One of them can be constructed

under the additional assumption that b,, # 0, n > 1, and has the form @(ll) = )b(—

(the estimator constructed from the last observation). Another one, @3), is the least
squares estimator (LSE). To construct the LSE, we consider AX,, = X,, — X,,_1,
n > 1, and minimize the quadratic form Y ;"  (AX; — 6b;)? in § € R, getting
" OAXb; . . . . .
553) = thibz These estimators admit, respectively, stochastic representations
i=1 1t

of the form

~ R ~ S eibi
O — g+ ™ and 9@ — g 4 &=i=1"1"
n Ty, MmO

where E; = Ri — Rifl,i > 1.

Evidently, both estimators are unbiased, that is E@\g) = E@(f) = §. Their
consistency properties depend on both the properties of the drift {b,,,n > 1} and the
noise { R,,,n > 1}, as well as on the relationship between them.

THEOREM 10.1.—

1) Let {e,,n > 1} be a sequence of iid random variables, Ele1| < oo and |b,| >
bn for some b > 0 and for all n > ng, where ng € N is some integer number. Then
%

the estimator is strongly consistent as n — oo.

2) Let {e,,n > 1} be a sequence of independent random variables, ¢, €

Lo(Q,F,P), n > 1, and >.°° I%f’ < oo. Let |b,| > bn for some b > 0 and

n=1
for all n > ng, where ng € N is some integer number. Then the estimator 57(11) is

strongly consistent as n — 0.

3) Let {e,,n > 1} be a sequence of iid random variables, €, € L,(Q,F,P),n>
1, for some 1 < p < 2. Let |b,| > bn'/? for some b > 0 and for all n > ng, where
o5

ng € N is some integer number. Then the estimator is strongly consistent.

Theorem 10.1 is an immediate consequence of theorems A2.18, A2.19 and A2.20
from section A2.7.

EXAMPLE 10.1.— The simplest illustrations of the assumptions of theorem 10.1 are as
follows, respectively:

1) e, ~ N(0,1) are iid random variables, b, = n;
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2) e, are independent random variables with E52 < Ci'79 for some 0 < § < 1,

. E
by, = n. In this case, Y -, ;2

n1n2<oo

3) e, are iid random variables with E|e;|3/? < oo, b, = n?/3.

In the next theorem, we use the class ¥ of functions introduced in section A2.7.

THEOREM 10.2.— Let {e,,n > 1} be a sequence of centered orthogonal random

variables from Lo(Q, F,P). The estimator oLV is strongly consistent under either of
two the assumptions:

1) {|bn|, n > 1} is a non-decreasing sequence,

E
S bi"log n < oo.

2) |bn| > bn for some b > 0 and n > ng, and Y, Ee? = O (m) for
some ) € U,

PROOF.— These statements follow immediately from theorems A2.21 and A2.22. [J

EXAMPLE 10.2.—

1) Let Eefb <e¢b, = n%+°‘f0r some o« > 0 and forn > 1, and €,, be centered and

uncorrelated (for example, independent). Then Y | Ebi log?n <ed0% :ngzz <
" £q . .
00, therefore, % = Zﬁ — 0a.s.asn — oo, and 1/9\( ) is strongly consistent.

2) Let E€2 < en® for some o € (0,1) forn > 1, and {,,mn > 1} as above, be
centered and uncorrelated, b,, = n. Then for (z) = 2° € U, 0 < B < 1 — a we
have that

n ‘TL2
ZEE? <en®tl<en® P =0 <¢( 5 > )

P n)log™n
Ry _ Ry
and = 0 a.s.

Now consider the cases of martingale and stationary sequences.

THEOREM 10.3.— Let {R,,, F,,n > 1} be a square-integrable martingale, F,, =
o{er, et =0 {Ri,..., Ry}, n>1, Fo = {0,Q}.

1) Under any assumption 1) or 2) from theorem 10.2 it holds that @(11) is strongly
consistent.
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2) Let > | E(e2|Fi—1) — 00, n — oo and there exists a random variable & > 0
such that > EB(e2|Fi_1) < &|by|, n > no. Then o5 is strongly consistent.

PROOF.— The first statement follows from the orthogonality of ¢;: if R, is
Fn-martingale, then for ¢ > k,

EEiEk = E(E(€1|.Fk)€k) = E(E(RZ — RZ‘71|‘7‘—]€)€]€) =0.

Therefore, we can apply theorem 10.2. The second statement follows from SLLN
for martingales, theorem 5.21:

R (), _ |Ral

R,
— < &E—0
a.s. if
(R), =Y E(e]|Fii1) = o0
i=1
asn — oo. O

THEOREM 10.4.— Let {¢;,i > 1} be a stationary Gaussian sequence and Eege,, — 0
asn — o0. Also, let |b,| > bn forb > 0and n > ng. Then @(11) is strongly consistent.

[Bn]  _n

PROOF.— Convergence Ilf" n o] 0 a.s. follows immediately from theorem

A2.15. 0

Conditions of strong consistency of @(,2) can be formulated in a similar way if
we replace &, for £,Ab,, and the condition |b,| > bn, n > ng for the condition
S (Ab;))? > bn, n > ng. In the case when b,, = n, assumptions supplying strong
5,(11) and 57(12)

consistency of coincide as well as the corresponding examples.

REMARK 10.1.— Let the sequence b,,, n > 1, be non-negative and non-decreasing.
Assume that the limit A := lim,,_, o Ab, exists and A € (0, +00). Then it follows
from the Stolz-Cesaro theorem that
" (Ab;)?
lim M = lim Ab, = A,
n—o00 n n—oo
and

lim bn = lim Ab, = A,

n—oo n n— 00

which means that both conditions hold: Y7 | (Ab;)> > bn, n > ng and |b,| >
bn, n > ng.
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10.1.2. Drift estimation in the case when the initial value is unknown

Assume that both Xy € R and § € R are unknown parameters to be estimated.
Consider the LSE estimator of the parameters (X, #) constructed by the observations
{X1,...,X,}. In this case, we should minimize the quadratic form ) ;"  (AX; —
6b;)? in (Xo,0) € R?, obtaining

X oo i AXab;
Xo=X1— Hnbl,ﬁn = ﬁ7

or, finally,
Ry =x, - Zizt AKXy o S AXb

i1 b XL

Strong consistency of these estimators is studied in the same way as that of 5512).

REMARK 10.2.— The LSE for the multidimensional linear regression scheme is treated
in detail in the book [SEB 03].

10.2. Estimation of the diffusion coefficient in a linear regression model
with discrete time

Consider the model of the form
X, =Xo+b,+0R,,n>1

where X € R, {b,,n > 1} is a sequence of real numbers, { R,,,n > 1} is a sequence
of random variables of the form R,, = >, &;, where {e;,i > 1} are independent
centered random variables, and o > 0 is a parameter to be estimated. In order to
estimate o, we define the differences AX,, = X,, — X,,_1 = Ab, + oe,, where
Ab, =b, —b,_1and e, = R,, — R,,_1, and construct an estimator of the form

(6,\)2 _ Z?:l(AXi)Q _ Z?:l(Abl)2 + 20 Z?:l £iAb; + o’ 25:1 512.

" n n n

THEOREM 10.5.— Let the following conditions hold: ¢; are iid random variables,
g; € Lo(Q, F,P), i > 1, and

Z?:1(Abi)2

n

— b, as n — o0, [10.1]

where b > 0 is some constant. Then ()% — 0?Ee? + b a.s. as n — oc.
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PROOF.— If ¢; are iid random Variables with Ee? < oo, then by the version of SLLN

formulated in theorem A2.18, 2 ==l S Ee? as. as n — oo. Moreover, €;Ab; are
independent centered random varlables with Y72, M = Eef > 2, (A;;) .
Further, under condition [10.1], there exists ng € N such that for all n > ng it holds

that

> (Ab)? < (b+ 1)n.

Therefore, for such n that 2*+1 > ny, the following inequalities hold:

2n+l 2n+1

(8%  5-2n Ab)? <272 (b+1)2" ! < 2(b+1)27
ZT— 3 (Ab)? < (b+1) <2(b+1)

1=2" =1

(Ab;)?

72

It means that the series >, converges. Therefore, according to the version

e 1503 Abl
of SLLN formulated in theorem A2.19, Z’% — 0 a.s. asn — 00, and the proof
follows. O

REMARK 10.3.—

" Ab)? '
i) Let Ab, — basn — oo. Then 23:17% — bas n — oo, according
to the Stolz-Cesdro theorem, and it follows as in the proof of theorem 10.5 that

0o (Ab)? .
> ic1 ——m— < 00. In this case theorem 10.5 holds.

ii) Let b, = n. Then condition [10.1] and consequently theorem 10.5 hold with
b=1.

10.3. Drift and diffusion parameter estimation in the linear model with
continuous time and the Wiener noise

Consider the model of the form
Xt = X() + Hf(t) + O'I/Vt7

where Xy € R is a known initial value, § € R, o > 0 are parameters, f = f(¢) is
a positive measurable function that we assume to know, and W = {W;,¢ > 0} is a
Wiener process. As before, 6 is called a drift parameter, while o is called a diffusion
parameter.
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10.3.1. Drift parameter estimation

We suppose that X; is observable for all ¢ > 0, and propose two estimators for ¢
constructed by its observations on the interval [0, T], assuming that o > 0 is known.

The first one is the estimator constructed by the last observation, it has a form
5(T1 ) — % The second one is the least square estimator (LSE) constructed under
additional assumption f € C'")(R,) and f’ does not equal to zero identically, as a
result of minimization of the quadratic form that can be formally written as

fOT(dXS — 0f'(s)ds)?. Finally, the estimator has a form

02 _ Jo f'(s)dXs :
T (s))2ds
THEOREM 10.6.—

i) Let there exist to > 0 and C' > 0 such that |f(t)| > Ct for all t > to. Then é(Tl)
is a strongly consistent estimator of 6.

ii) Let f € CO(R,), and fOT(f’(s))st — o0 as T — oo. Then g(Tz) is a strongly
consistent estimator of 0.

PROOF.— 1) According to SLLN for martingales with continuous time (theorem 8.10),
Wz — 0a.s.as T — oo, whence the proof of (i) follows.

ii) Note that

T
02 — g o SN
T .
Jo (£'(s))?ds
Due to condition (ii), we can apply SLLN here as well for martingales with
continuous time, according to which % — 0 as. as T" — oo. Hence, the

proof follows. U

REMARK 10.4.— The conditions (i) and (i) are not completely overlapping. For
example, let f(t) = |f1(t)| + ¢, where the function f; is nowhere differentiable.

Then we can not apply §(T2), however, §(1) works. Conversely, let f(t) = Vtli>1.

Then [ (f'(s))%ds = 1 [[° % = 400, s0 5(2) works, but Wz NN(O 1), therefore

1
% does not converge to zero as I’ — oo.
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REMARK 10.5.— As is established in theorem A2.23, % — 0 as.as T — oo for

any a > 1. Therefore, condition (i) can be relaxed to | f(t)| > Ct for some C > 0,
o> %andallt2t0>0.

10.3.2. Diffusion parameter estimation

In order to estimate ¢ assuming 6 to be known, we use the properties of quadratic

variation of the Wiener process. Namely, we fix some 7" > 0 and consider the
equidistant partition of [0,T], e.g. m, = {% = t,(c"), 0<k< n} According to

remark 4.2, ZZ:1(W,5<"> - W,m )2 — T as. as n — oo. Therefore, we can
k k—1

formulate and prove the following result.

THEOREM 10.7.— Let foranyT > 0, f € C([0, T])NBV ([0, T]). Then the estimator
5)2 2 2
= X —X,n T a.s.
@)1 kz_l( #m tifl) — 0T a.s.as n — oo,
()

ie, —7" — o2 a.s. as n— oo.

PROOF.— We have that

n

@ha=3 (0 g ]+ (g - )°)

k=1
Denote Afy, = f.(y — f,oy and AWy = Wy — W ) . Then
tk tk*l tk tk—l

n

(67 = 02D (Afe)* +200 > AfsAWy + 07> (AWR)2.

As we mentioned before, Y _,(AWy)? — T as. as n — oo. Since
f€C([0,T) n BV([0,T]), we can conclude that

n n

)2 < | <
;(Afk) < max [Afy] I; [Afil < max [Afu[Varjy f =0, n = oc,

(see also theorem A1.11), and similarly

> AfAW;

< max |[AWg|Varpy f — 0, as.as n — oo,
— 1<k<n ’

and hence the proof follows. O

REMARK 10.6.— Some related properties of functions of bounded variation are
considered in section A1.5.
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10.4. Parameter estimation in linear models with fractional Brownian
motion

Consider a model
X; = Xo+0f(t)+0oB, t >0, [10.2]

where Xy € R, f € C(l)(R), o > 0and # € R are the parameters to be estimated,
BH = {Bf,t > 0} is a fractional Brownian motion with Hurst index H € (0, 1).

10.4.1. Estimation of Hurst index

Assume that the index H € (0, 1) is unknown. Fix any 7" > 0 and suppose that
the process X is observable on [0, 7). Consider a sequence of uniform partitions

ok
Tn = {T(Sk, 5 = g0 <k < 2"}, n>1. [10.3]

According to theorem 4.6, for any H € (0, 1)

on(2H-1) 2" i " 2 2
—m Z (BTzs,(f') — BT(;in)l) — ﬁ a.s.as n — oo. [10.4]
k=1 ’ T

Replacing n with 2n, we get from [10.4] that

22n(2H71) 2%" " H 2 2
—mT E (BT(S(%) — BT(S(Q”)> — ﬁ a.s.as m — oo. [10.5]
k=1 k k—1

Dividing the left-hand side of [10.5] by the left-hand side of [10.4], we get that

22n

2
H H
Zk:1 (BT‘;IE%') - BTél(fn))
] -1

2n(2H71)
2
271
BH =~ BH
k=1 < 75 5™,

— 1 a.s.as n — oo. [10.6]

Denote

Rr (B = L [10.7]
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Then it follows from [10.6] that

logy Rrn(B?) +n(2H — 1) — 0, as.,or

logy Rr(BH) 1
_OgZT—’()—i—f—>H a.s.as 1 — 00. [10.8]

2n 2

Now, let Ry, (X) be the right-hand side of [10.7], where we substitute X instead
of BH . Taking [10.8] into account, we can prove the following result.

THEOREM 10.8.— Forany T > 0

7 10g2RTn(X) 1
Hyp, = ——o2Tm 2], ~
T om 3

is a strongly consistent estimator of H.

PROOF.— It is sufficient to prove that

_ logy Ry o (X) _ logy Ry (BH)
" 2n 2n

— 0 a.s.as n — oo.

However, 7, = 5- log, RT"i(SBXH)), and

92n 2 )
1 (Xaap = Xy e 2
= 0 f (271.)_f (2n)
on T5¢ 7532
X -X k=1
k=1 15" 5™,

Rn(X) =

22n
2 ) — ») (BE .. —BH
+ 90}; Frsem = fpsem )\ Brgem = Bpsem

2271,

2 2™ 2
2 H H 2
+o B , — B 0 ( (n) — (n) )
2 Bragm = By ) || 220 U = T,

H H
#2073 (g~ Frs) (Bl = Bl

—1

2
2
o Z( 5 Téli") )
-1
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According to theorem 10.8 and remark Al.1,

on

2

I ( - ) =0, and

Ji 2 (Frsp = rsfp, ) =0 an

2’”.
. H H _
Jim > (Frsen = Frsm ) (Bm;n) - BTéén)l) =0 as. [10.9]
The same is true if we replace n in [10.9] for 2n. Therefore IfL((X)) — la.s. as

n — oo and consequently r,, — 0 a.s. as n — oo. O

10.4.2. Estimation of the diffusion parameter

Consider the model [10.2] in which we assume the Hurst parameter H € (0,1)
to be known. Let us estimate the parameter ¢ > 0. Consider the sequence [10.3] of
uniform partitions of [0, 7).

THEOREM 10.9.— Forany T > 0 andfor any H € (0, 1),

N on(2H— 1) 2
(U)?{T = f Z ( (n) — (n) )
AL 2T2H T, T6k71

is a strongly consistent estimator of 0.

PROOF.— We start with evident equality

. on(2H-1) /% 2" 2
@) urm= ~orzH Z (fTéfe"‘) - fTé,iﬂ)

k=1

on
H H
+2 ; (fTé,im - fTJI(cTi)l) (BT(SI(!L) - BT§]<€7L)1> [10.10]

2
102 Z ( 6(”) 5}(21) ) .

Let us analyze the asymptotic behavior of all terms in the right-hand side of
[10.10]. Denote C'y = maxo<¢<7 | f’(t)|. Then

( ) 22" ? ( ) A

n(2H-1 20n(2H—-1)on

2 (fT(;,(C”) - fT(g’i’:)l) S sz 2 <2n>
k=1

= Cjr2Ptmrn=n — ofr2?n ) 0 as n— oo,

[10.11]



284 Theory and Statistical Applications of Stochastic Processes

To estimate the middle term, recall that for any w € €’ with P{Q'} = 1 and for
any 0 < & < H there exists such C(w, T, §) that |Bf — BH| < C(w, T, d)[t — s|#~°
forany 0 < s, t < T (see example 6.5). Therefore, for any w €

on

Sy (w) = 2nH=D Z ‘fT(;,(Cm - fT(;]i@l ‘B s~ B 760",
k=1
7 TN\H-S
< 27z(2H—1)2an270(w T,6) (2n) [10.12]

_ CfC(OJ T 6)T1+H—522Hn—n+n—n—nH+n5

E CfC(w’ T’ 5)T1+H—62(H—1)n+n5.

Choosing 0 < 6 < H A (1 — H) we get that S,,(w) — 0 a.s. as n — oo. Finally,
it follows from [10.10]-[10.12] that

2n(2H 1) \/’ 2"
2

2
2
T oT2H ( s T5;i">1> — 07 a.s.as n — 0o,

and hence the proof follows. O

10.5. Drift parameter estimation

Consider the model [10.2] in which we assume the Hurst parameter H € (0,1) to
be known. The Diffusion parameter o > 0 is also assumed to be known, and we can
simply put ¢ = 1. And so, let us estimate the parameter 6 € R in the model

X;=Xo+0f(t)+B, t>0,

where f € C()(R). Note that both integrals fot(t — s)2 HgzH f/(5)ds and
fot(t — 5)2~Hs3=HJBH are well defined, and moreover, the process M} =
Cy fg (t — s)2 Hs3~HdBH is a continuous martingale with quadratic variation
[MH], = t272H  see section A2.8. Therefore, we can consider the process Y,/ =
OF + MI, where Y = Y [1(t — s)2 Hs3 HdX, and Ffl = CY
fot(t —s)2 Hgzs—Hfl(s)ds

THEOREM 10.10.—

i) Let there exist to > 0 such that |[F1| > Ct>=2H for some C > 0 and any t > t,.

Then 5(1) = H is a strongly consistent estimator of 6.
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ii) Let there exist to > 0 and 6 > 0 such that |f(t)| > Ct7+°, for some C > 0
and any t > to. Then @5?) = %, considered for T > tg, is a strongly consistent
estimator of 6.

PROOF.— i) Obviously, ’;if, =0+ ]\If;[—f, and the proof immediately follows from the
T T
SLLN for martingales.

H
ii) In this case @ET = % +0+ %, and the proof follows from theorem A2.24.[]

10.6. Drift parameter estimation in the simplest autoregressive model

Consider the linear autoregressive model of the form
X,=0X,_1+¢en, n>1. [10.13]

Assume that {e,,n > 1} are i.i.d. AM(0,1)-random variables representing the
noise, § € R is a parameter to be estimated. The values {Xo, X1,...,X,,...} are
assumed to be observable, Xy € R. And so, our goal is to construct the statistics that
will be an estimator of 6, based on the observations { Xy, k > 1}.

For this purpose, we construct the least square estimator, which minimizes the
value Y " (X; — 6X,_1)>. A minimum value is achieved at the point
~ "X X
6, = Zu XX

X:
=1 t—1
following lemma.

. To establish the asymptotic properties of é\n, we need the

LEMMA 10.1.— For any 0 € R it holds that Z?:l X? | = ooas. asn — oc.

PROOF.— a) Let # > 1. Note that X,, = "Xy + 0" 'e; +...+60e,_1 + €,. Further,
it follows from the Cauchy-Schwartz inequality that

n 2
ZXQ S (>, Xioa)
1—1 .

Therefore, for any A > 0

- A
Eexp{)\ZXf_l} < Eexp -
i=1
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Denote

my, = Ezn:Xi,1 = i0i71X0 = 9;__11X0,
i = i=1

and

n 2
=E (Zle —mn> .
i=1

Since ¢; are pairwise uncorrelated, we get that

gnfl_l 07172_1 2
2
=E —+ =+ ... n—
(o8 <€1 0-1 E2 0—1 +e 1>

=@ -2 1)+ (0P 1)+ (0 -1)P)
— (0 _ 1)72(02(n71) + 02(n72)
4o+ 02 —20m —2m 2 20— 1) [10.14]

02 —1  _6m—1
— —1)2 _
=(0—-1) (92_1 29_1+n)

_(0—1) (90n+‘11 26" — 1) +n(6— 1)) .

Now, on one hand, it follows from [10.14] that o, = O(6™) as n — oo. On the
other hand, if we have a \'(m,,, 02 )-random variable &,,, then

-1 _2g2_ (@=mp)?
Eexp{—/\gfl} = (\/27T0’n) /e " n dx
n R
i gt e
- 2 21 25 2

Therefore, E exp {,A (Z?Zl Xi_1)2} — 0 as n — oo, and consequently

n

E exp {—)\ZXfl} -0
i=1

asn — oo for any A > 0. Since >_; | X? , is a non-decreasing sequence, we have
from lemma A2.10 that > | X? | — 0o a.s. as n — o0.
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b) Let # = 1. Then

n n
Xo=Xo+) en my=E)Y Xiy =nX,
k=1 i=1

n 2 n i—1 2
ZXi_l — TLXO> =FE <Z ( €k>>
1=1 =1 \k=1

and we can conclude as in (a) because \/no, ! — 0asn — occ.

c) Let < —1. In this case 0, = O(|0|"), therefore as in (a), \/no,* — 0 as
n — oo and hence we get the statement.

d) Let = —1. Then
Xn=(-1)"Xo+ Y _(-1)"Fey,
k=1
therefore
(—1)"Xp = Xo+ Y _(-1)Fes.
k=1

Operating with Y;, := (—1)"X,, instead of X,, and e, = (—1)*e, instead of ¢y,
we get that their moments m,, = nXg and

02 =FE (i(—l)kek(n — k)) = i(n —k)? =0(n?) as n — oo.
k=1

Additionally, 7" | X2 ; = > | Y;2,, and we can conclude as in (b).

e) Finally, let € (—1,1). Then

n n—1 n—1 n
SXP=XF+0?) XP 420> Xieg + Y el [10.15]
i=0 =0 i=0 i=1
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Denote M, = Z?;ol X;eiy1. This is square-integrable martingale (more
precisely, M,, has the moments of any order), and

(M),, = iE (Xigina)*|Fi) = 2&2

According to theorem 5.22 {(M)_ < oo} C {M —}. For such w € ), where
(M), < oo, we can pass to the limit as n — oo in [10.15] and get the equality

n
_ 2 2 . 2
(M) = X2+ 0> (M) +20M + nlgréo;ez,
or

_p2 _ 2 ; 2
(1-6%) (M) = XZ +29Moo+nh_1)gc§al. [10.16]

Now, note that according to the strong law of large numbers,

Z?:l 512

— EE% =1 as.,
n

which means that ;" , €7 — 0o a.s. It means that [10.16] is contradictory, which
means in turn that the probability of the event {(M)_ < oo} is zero and hence the

proof follows. g

THEOREM 10.11.— The estimator
0 S XX
Z?:l Xi2—1

is a strongly consistent estimator of parameter 0 in the linear regression scheme
[10.13].

PROOF.— We can transform 6,, as

n g Xic16i
5 — 04 iz K15 L5
Zi:l Xifl

Denote by M,, martingale M,, = Z?:l X;_1¢;. Then its quadratic characteristics
equal (M), = > X? ;. As it follows from lemma 10.1, (M)__ = oo a.s. Then
it follows from the strong law of large numbers for martingales (theorem 5.21) that

{ %g — 0 as n — oo with probability 1, and hence the proof follows. g

n
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REMARK 10.7.— An autoregressive scheme [10.13] is a particular case of
autoregressive-moving-average (ARMA) models of the form

p P
Xn - Z gnfanfi + Z Pn—i€n—i + En,
i=1 i=1

which are treated in detail within the framework of time series analysis, see [BRO 06]
for example.

10.7. Drift parameters estimation in the homogeneous diffusion model

Consider the diffusion process X = {X;,¢> 0} which is a solution to the
stochastic differential equation with homogeneous, i.e. not depending on ¢,
coefficients:

We assume that X|;—9 = Xy € R is non-random, coefficients a,b : R — R
are measurable functions, b(z) > 0 for all z € R, W = {W;,t > 0} is a Wiener
process, 8y € R is an unknown drift parameter to be estimated. We also assume that
the SDE [10.17] has a unique strong solution X, ¢ > 0. It follows from theorem 9.2
that the existence and uniqueness of a strong solution is supplied in a homogeneous
case by the Lipschitz condition: (A) there exists K > 0 such that for any z,y € R
la(x)—a(y)|+]b(z)—b(y)| < K|z—yl, since in a homogeneous case it implies linear
growth condition. Let us construct a maximum likelihood estimator of 6. To this end
we test the hypothesis Hy, : § = 0, against the alternative Hy : 6 = 0. The measure
that corresponds to Hy, is Pg,, the measure that corresponds to Hy is Py, up to our
notation.

Let us transform the right-hand side of [10.17] as follows: dX; = b(X%)
{Hg(ﬁt))dt—i—dwt} And so, under Hy the process W; + Hft Z&( ;ds is a new

Wiener process Wt, so that Wt =W;+06 fot a(X )ds According to the Girsanov

theorem,
T a(Xy) 1 ¢ a?(X,)
= exp 79/ dstfQQ/ ds .
#r { “Jo B(Xo) 270 Jy P(X,)

dP,
dPe,
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Since we are interested in the true value 0y of an unknown parameter, we consider

the inverse likelihood function jFl,D o and get that
) ]:
dPg, Ta%(X,)
= 0 d
Py |, P { 0 b X o (X"

_ a(X5) 1, (X5)
= exp {90/(; bQ(XS)dXS — 590/0 bz(XS)ds}. [10.18]

Obviously, the following condition is needed for the right-hand side of [10.18] to
be well-defined.

(B) forany T > 0, fo bQ&())ds<ooas

THEOREM 10.12.— Let the conditions (A) and (B) hold. Then the maximum
likelihood function for the estimation of parameter 0y has a form

N e S PR ENTe &
i ([ i) [ e 1019

PROOF.— As we have just established, the likelihood ratio for the equivalent measures
Py is presented by the right-hand side [10.18]. To maximize it, we take the quadratic
in g function

1y TGQ(XS)
(X)) T 270y (X))

ds,

obtaining that the maximum is achieved in §T, represented by the right-hand side of
[10.19]. 0

Now consider the denominator of §T, OT 22 e < =) ds. Tts asymptotic behavior is
based on the following result from [MIS 14]. Since the proof of this result involves
some notions (local time, recurrent and transient diffusion processes) which are
beyond the scope of the present book, we omit it.

THEOREM 10.13.— Let the following conditions hold: (A), (B) and (C) function
a?(x)

b(x) # 0 for all © € R, function a(x) is not identically zero, functions %, ()

and b4g )) are locally integrable, i.e. integrals

/[—N.,N] b, /[—N N]a ()b~ (z)dz and/[_N’N}a (z)b~*(x)dx

exist for any N > 0. Then [ x5 g ;ds = +ooa.s.



Parameter Estimation 291

Taking into account this theorem, we can establish our main result.

THEOREM 10.14.— Let the condition (A), (B) and (C) hold. Then

(o Texy) T alx)
o <9/ b?(XadS) / p(x,)

is a strongly consistent estimator of the unknown drift parameter 6.

PROOF.— Let us present O as

fo b(X ;dW
Or = 6o + T a2(Xs) 5.
0 BI(X,) ds

Under condition (B) the process M; = f b( X, )dW is a local martingale with

quadratic variation [M]; = ot Zz((X ))ds

According to condition (C') and theorem 10.13, f ())g Jds — oo as.as T —

00. Therefore, the proof follows from the SLLN for local martlngales with continuous
time, established in theorem 8.10. O

EXAMPLE 10.3.— Consider the Langevin equation with the unknown drift parameter

dX, = 0X,dt +dW,, t > 0.

In this case, coefficient a(z) = x is not identically zero, b(z) = 1 # 0, conditions
(B) and (C) obviously are fulfilled. It means that
o g2 (X
o b,

d —/ de-—l—ooas

~ -1
therefore the maximum likelihood estimator 7 = ( fOT X gds) fUT X.dX, is a

strongly consistent estimator of 6. Another more particular approach involving the
calculation of the Laplace transform

T
Eexp —/ X2ds
0

1
B e T2+ 62 :
V02 + 2 cosh(Tv0? + 2) — Osinh(TV6? + 2)

which evidently tends to zero as 7' — oo implying that fOT X2%ds — ccas.as T —
oo, was considered in [LIP 01].

)
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Filtering Problem. Kalman-Bucy Filter

We considered the problem of the construction of an optimal filter in the linear two-
dimensional partially observed Gaussian model and reduced it to the solution of two
equations, one of them being a Riccati differential equation and the other one being a
linear stochastic differential equation. For technical simplicity, we consider the proofs
only for the case where the initial equations have constant coefficients; however, final
formulas are presented for the general case when the coefficients depend on time.

11.1. General setting

Let (2, F,{Ft},5q,P) be a complete probability space with filtration. Also, let

W(t) = (W1(t), Wa(t)) be a two-dimensional Wiener process, i.e. Wiener processes
W7 and W, are independent.

Consider a two-dimensional Gaussian process (X1, X2) = {(X1(¢), Xa(t)),
0 <t < T}, which is a unique solution of the following system of stochastic
differential equations

dX1 (t) = a(t)X1 (t)dt + b(t)dWl (f),
dX5(t) = A(t)X: (t)dt + B(t)dWa(t),

where a, A : RT — R, b, B : Rt — RT, X;(0) = 21 € R, X3(0) = 22 € R. The
coefficients will be assumed to satisfy

T T T T
/ |a(t)|dt+/ \A(t)|dt+/ b2(t)dt+/ B%(t)dt < co. [11.1]
0 0 0 0
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Note that the equation for X is the Langevin equation, so that X, is the Ornstein-
Uhlenbeck process. We assume that X; is a non-observable process which can be
interpreted as the input signal, while X5 is observable and can be interpreted as the
output signal.

11.2. Auxiliary properties of the non-observable process

From now on, we consider a model with constant coefficients, that is,

{Xm(t) = a X, (t)dt +bdWi(t), [11.2]

dXQ(t) =AX, (t)dt + Bde(t)

Let us study in more detail the non-observable process X;(t), which can be
presented in the integral form as follows:

t
0

It is an Ornstein-Uhlenbeck process, the unique solution of Langevin equation
[11.3]. It can be presented as follows:

t
X1 (t) = z1€ + be / e~ M dWy (u).
0

Evidently, EX;(t) = x1e* and EXy(t) = 0, ¢t > 0if z; = 0. In the latter
case EX5(t) = xo. Further, the covariance K (¢, s) of X is equal to the following
expression:

b
K(tas): %

see sections 3.4.5 and 9.1.2.

2
(ea(tJrs) . ea\tfs\) ,

If x1 = 0, then
b2
K(t,s) = o (ea<t+5> - ealt—sl) . [11.4]
a

Function K (¢, s) is continuous and consequently bounded on any rectangle [0, T?.
Moreover, it is differentiable on the interval [s, T (at the point s, the right derivative
is considered) for any s € [0, 7] and

%:(ﬂ((t,s), telsT] [11.5]
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11.3. What is an optimal filter

The Kalman-Bucy problem of optimal linear filtering is the following: recall that
we assume the process X to be not observable, while the process X5 is observable.
The problem is to reconstruct (to estimate and to filter) X; in an optimal way by
the observations of X5. More exactly, if we wish to be non-anticipative, we want to
reconstruct X (t) by the observations of {X5(s),0 < s < t}. Obviously, X (t) has
the moments of any order. Furthermorg, if we wish to be within the framework of
Lo-theory then the goal is to find such X (¢) that

—~ 2
B(X0) %) = o 0L, | B -7 [11.6]

where {]-'tX 2 telo, T]} is the filtration generated by Xo.

LEMMA 11.1.— Random variable X, (t) := B(X1(t)|F{?) is the optimal estimator
of X1 (t) in the sense of equation [11.6]. More exactly,

B(X() - E(Xl(t)|]-"th))2 = min_ E(X(1)-¢)>
§EL (LT, 2,P)

PROOF.— Indeed, for any ¢ € Lo(Q, F;¥2, P)
B (1) - 02 =B (X)) - K0~ ¢+ X))
B (X0 - Xi0) +28 (X0 - Ti0) (¢ Fao)
+E (Xl(t) - C)Q.
Further,
E(x(0) - %) (¢ - X))
=E((¢-X0) E (X0 - Zu0] 7))
=E((¢- %) (B(x01F) - %)) =0
Therefore,
E(X (1) - € = BOG() — K1) + B (1) - €2 2 BOG () - Ki(1)?

with the equality achieved at the unique point { = )?1 (t), and hence the proof
follows. O



296 Theory and Statistical Applications of Stochastic Processes

And so, we know what an optimal filter is at the point ¢: it is equal to X 1(t) =

E(X,(t)|F7*?). Now our goal is to present X 1(t) in terms of the observable process
Xo.

11.4. Representation of an optimal filter via an integral equation with
respect to an observable process

Now we present )Afl(t) as the integral w.r.t. observable Gaussian process
{X2(s),0 < s <t} with some non-random kernel.

For technical simplicity, assume from now on that z; = 0 so that EX; (¢) = 0 (see
section 11.2).

LEMMA 11.2.— There exists a kernel G = G(t, s) : [s,T] x [0,T] — R such that for
any t € [0,T) fg G?(t,s)ds < oo, and the optimal filter X1(t) admits the
representation

~

¢
X1(t) = / G(t,s)dXa(s), t€[0,T].
0
REMARK 11.1.— Integral fot G(t, s)dX2(s) can be decomposed as follows:

/GtSdXQ A/GtSXl( dS+B/GtSdW2()

and both integrals exist under condition fo G?(t,s)ds < <.

PROOF.— Let us fix any ¢t € [0,7] and consider the sequence of dyadic partitions
T = {t&fj’),o <k< 2",6,(;) = 2%}, n > 1. Consider the Gaussian vector

{X1(0), Xa(t0") = Xo, X (1657) = Xa(t6("™), ... Xa(t0}") = Xa (15", ..,
Xo(t) — Xz(téé:f)) }, and denote the sequence of o-fields

F g {Xg(tag’”), Xo(t057) — Xo(t61), ..., Xa(t) — Xa(t 5515’)} .

Note that under condition ;7 = 0 we have that EX5(¢) = xo; therefore,
B(Xa(t60") — Xa(t6"))) = 0,1 < k < 2",

According to the theorem on normal correlation (theorem 3.1), we have the
representation

B(X: ()| F™) Z af (X2 (t6™) — Q(td,@l)) . [11.7]
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In this relation, coefficients « (¢) are non-random and depend both on point ¢ and
the number k. Also, they depend on partition 7,,. Further, note that o-fields .7-',5(") are
non-decreasing: ]—'t(l) C ]—')5(2) C...C ft(") C ...,and }-th =0 {UZO:1 Ft(") }
Therefore, according to the Lévy convergence theorem (theorem 5.8)

E(X1(0)|F™) = B(X1(1)|FX?) as.as n— oo [11.8]

Moreover, since X;(t) is a Gaussian random variable, it has moments of any

order, consequently, the sequence of random variables {E(X 1 (t)|.7-"t(n)),n > 1} is

uniformly integrable. Now, denote G, (¢, s) = a,gn)(t) for s € [té,(:i)l, télin)). We can
rewrite the representation [11.7] as follows:

t
B(X: (8)]F™) = / Gt $)d X (s). [119]
0
It follows from [11.8] and uniform integrability that
E(X1(0)|F™) = B(X1(6)|FX?) in L2(Q, F,P) as n — oo. [11.10]

In turn, this means that the integrals fot Gn(t, s)dX5(s) in the right-hand side of
[11.9] create a Cauchy sequence in Lo(£2, F, P), so that

2

E (/Ot(Gn(t,s) — Gm(t,s))ng(s)) — 0 as m,n — oo.

Let us transform the latter expectation in the following manner:
t 2
B ( / (G(t,5) — Gt s))dX2<s>>

0

2

— AR ( /O (Goltes) — Gt s))Xl(s)ds>

+2ABE </Ot(Gn(t,s) Gt 5)) X2 (5)ds /Ot(Gn(t, 5) [11.11]

—G(t, 5))dWs(s))

+ B’E (/Ot(Gn(t, 5) — Gt 5))dW2(s))
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Since the process X; does not depend on W5, we get that
t t
B / (Gu(t,5) — Gt 5)) X, (s)ds / (Gu(t,5) — Gt 5))dWa(s)
0 0

- /0 (Go(t, 5) — Gon(t, 8)) X1 (5)ds - E /O (Go(t, )
— Gn(t, 8))dWa(s)

:E/t(Gn(t,s) Gt $)) X1 (s)ds - 0 = 0. [11.12]
0

Moreover, it follows from the isometry property that

2

E </0t(Gn(t, s) — G (t, s))dW}(s))

t
:/ (G(t,8) — G (t, 8))%ds. [11.13]
0

Substituting [11.12] and [11.13] into [11.11], we get that

2

E </0t(Gn(t, s) — G (t, s))dX2(5)>

2

0

_A%R ( / (Gt s) — G s))Xl(s)ds>

t
+ B2/ (G(t,8) — Gunl(t,s))%ds — 0 as m,n — oco.
0

For the last term, this means that it tends to zero as m, n — oo; therefore, G, (¢, )
is a Cauchy sequence in L2([0,¢], A1) where there exists a function G(¢, s) such that
Gn(t,") = G(t,-) in L2([0,1], A1) as n — oo. Since the value EX?(s) is bounded on
[0, 71,

2

E < /0 t(Gn(t, s) — G(t, s))Xl(s)ds>

t t
< / (Gn(t,s) — G(t,s))%ds - E/ X2(s)ds — 0 as n — oo.
0 0
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Finally, we get from the previous relations that

/0 Gn(t,s)dXs(s) = A/o Gn(t,s)Xl(s)ds—i—B/O G, (t, s)dWy(s) —

: [11.14]
— / G(t,s)dXa(s) in Lo(Q, F,P) as n — oo.
0
It follows from [11.9], [11.10] and [11.14] that
t
BUGOIF) = [ Gt s)axas),
0
and the theorem is proved. g

REMARK 11.2.—1tis reasonable to consider E(X; -X +)? as the error in the solution of
the problem of optimal filtering. In what follows, we shall use the notations m; = X,

and Ut2 = E(Xt — mt)Q.
11.5. Integral Wiener-Hopf equation
Now we establish integral equation for the kernel G(¢, s).

LEMMA 11.3.— The kernel G(t,s) : [s,T] x [0,T] — R from lemma 11.2 satisfies
forany t € [0, T)| the following integral Wiener-Hopf equation:

t
AK(tu) = A2 / G(t, 5)K (s,u)ds + B2G(t, ). [11.15]
0
PROOF.— Note that for any ¢ € [0, 7]

t
< max \K(s,u)|/ |G(t, s)|ds < o0,
0

0<u, s<t

/t G(t,s)K(s,u)ds
0

since K is a continuous bounded kernel on [0, 72, and G(¢

s ) S £2([0, t], /\1) For
any t € [0, T consider a measurable bounded function f(t, s) a

nd define the integral

/0 F(t, 5)dXa(s) = A /O F(t,$)X,(s)ds + B /O (L, 5)dWa(s).

Evidently two latter integrals are square-integrable, and we can consider the
following expectation:

H&@—ﬁWAf@M&@-
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Note that this expectation equals zero:
t
BUG () - %u(0) [ f(t5)Xa(s)
0
t
— B (B0 - Ta@)IF") [ f(ts)dxa(o [11.16]
0
N N t
B0 - £a(0) [ f(t5)aXa(s) =
0
At the same time, the left-hand side of [11.16] can be rewritten as follows:
0—EX1 /ftSdXQ /GtSdXQ /ftSng
—amx,(0) [ 1095 + BEX) [ 1090w (s
0 0

_B (A /0 Gt 9)X, (s)ds + B /O t G(t,s)dm(s)) y

t t
X <A/ f(t, S)Xl(s)ds—i—B/ f(t, s)dW2(3)> . [11.17]
0 0
Taking into account independence of the processes X; and Ws, we get that
t
EX, (1) / F(t, $)dWa(s) = BXa(t / F(t, 5)dWa(s) =
0
and similarly the following expectations equal zero:
t t
E/ G(t,s) X1 (s)ds/ f(t,s)dWa(s) =
0 0
and

E/0 G(t, s)dWQ(s)/O f(t,s)X1(s)ds = 0.
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So, we get from [11.17] that
t
0= AE/ f(t,9)X1(t) X1(s)ds
0
t ot
— A’E G X1(s) X1 (u)dsd
./0 /0 (t,u) f(t, 5)X1(s) X1 (u)dsdu
t t
-B?| G ds= A K(t,s)d 18
/0 (t,8)f(t,s)ds /0 f(t,8)K(t,s)ds [11.18]
t t t
— A? G K duds — B> G(t,s)d
/Of(t,s)/O (t,u)K (s, u)duds /Of(t,s) (t,s)ds

_ /Ot f(t,s) {AK(t, 5) — A2 /Ot Gty u)K (s, u)du — B2G(t, s)} ds.

Since the bounded measurable function f is arbitrary, we can get from [11.18] by
standard approximation methods that

¢
AK(t,s) — A2/ G(t,u)K(s,u)du — B*G(t,s) = 0,
0

and the proof follows. 0

LEMMA 11.4— For anyt € [0,T)], equation [11.15] has a unique solution G =
G(t, s) in the space L2([0,t], A1), and this solution satisfies the relations

G(s,s) = A 2 G(t,s) = g(t,s)G(s,s) = AO'QG(S,S), and

B0 7%
dy(t, A?
gét 5) _ (a— BQat?) g(t,5), g(s,8) = 1. [11.19]
PROOF.— i) Let G;(t,s), ¢ = 1,2 be two solutions of [11.15] in the space

L2([0,t], A1). For their difference Ag(t,s) = Gi(t,s) — Ga(t,s) we have the
equation

t
A2/ Ag(t,s)K(s,u)ds + B*Ag(t,u) = 0. [11.20]
0
Multiply [11.20] by A (¢, u) and integrate from O to ¢:

t ot t
AQ/ / Ag(t,u)Aq(t, s)K (s, u)dsdu + BZ/ AZ(t,u)du = 0.
0 Jo 0
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Note that the kernel K (s, u) is non-negatively definite, as any covariance function:

/Ot /Ot Ac(t,u)Ac(t, s)K(s,u)dsdu = E (/Ot Aglt, u)Xl(s)ds>2 > 0.

Therefore,

t
/ AL (t,u)du = 0,
0
where
Ag(t,u) =0, 0<u <t ae wrt. ;.

And so, we proved the uniqueness of the solution of [11.15] in the space
L2([0,¢], A1) forall ¢ € [0,T].

ii) Note that the function o is bounded on [0, T']. Indeed, it follows from [11.4] that
2 2
of =B (X1(t) — B((X1 (01F7)) < 2BX3() + 2B (E(X, (1) 7))

<4EX2 _K _E 2at71 <ﬁ 2|a|T71
< () = K(t,t) = 5 (e ) < 2l e )

Therefore, equation [11.19] has the unique solution of the form
t 2
A
g(t,s) = exp {/ <a — BQUZ> du} .
iii) It follows from Wiener-Hopf equation [11.15] that
t
AR (1 1) = A / Gt )K (s, 1)ds + BG(t,1).
0

Therefore,

B2G(t.1) = AK(t,1) — A / Gt ) K (s, )ds
0
= AEX:(t) — A’E /t G(t,s)X1(t)X1(s)ds
0

) (Xl(t) A /O e s)Xl(s)ds>
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— AEX, (1) (Xl(t) A /0 "Gt )Xy (s)ds — B /0 ‘G, s)sz(s))

— AEX, (1) <X1(t) - /0 t G(t,s)dX2(5)> — AEX, (¢) (Xl(t) - )?1(15)) .

Further,

EX (1) (Xl(t) - f(l(t)) —E ()?1 (t) (X1 t) - X, (t)|f§2))

Therefore,
~ 2
B2G(t,t) = AE (Xl(t) - Xl(t)) = AoZ. [11.21]

iv) Assume that G(t, s) is a.e. differentiable in ¢. If we find such a solution of
[11.15] and it is in the space L£2([0,t], A1) for all ¢t € [0, T7], then it will be the unique
solution, due to (¢). Under this assumption, we can differentiate left- and right-hand
sides of [11.15] in ¢:

OK(t,u) , [T OG(t,s) 2 0G(t, u)
ASELY) 2G4, K () + A /O O
Substituting BK(t “ from [11.5] and G(t,t) from [11.21], we get
A3, , [t OG(t,s) L 9G(t,u)
aAK(t,u) = BQUtK( u)+ A /0 TK(s,u)ds—l—B T [11.22]

Now we substitute the value of K (¢, «) from [11.15] into [11.22] and obtain that

a <A2 /t G(t, 5)K (s, u)ds + B?G(t,u))

2
/312 (Az/ G(t,s)K(s,u)ds + BZG(t,u)>
0
¢
+ A2 / oGt s) K(s,u)ds + B? 9G{t, u)
0

ot ot
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or

A2 /O t <aG(t,s) A s - W) K (s, u)ds

B? ot
) oGt [11.23]
A t,u
2 2 ’
Equality [11.23] means that any function G satisfying equation
0G(t, s) A%,
e <a - ﬁat G(t,u) [11.24]

transforms [11.23] into identity; therefore said function G satisfies equation [11.15].
However, as was stated in (i), [11.15] can have only one solution. Therefore, this

unique solution satisfies [11.24]. Denote g(t, s) = ggi% Then, g(s,s) = 1 and

dg(t,s) 0G(t,s) 1 iz ,
o ot Glss)  \* 7~ B2 g(t, s).

Lemma is proved. g

REMARK 11.3.— As it was mentioned before, function g(¢, s) has a form

e~ on{ [ (a- ot ).

This means, in particular, that

g(tv 5) =

THEOREM 11.1.— The process m; = )/(\'t =E (Xt |}',sz) is the unique solution of the

stochastic differential equation

A2, A
dmy = | a — 530t mydt + 520t dXs(t), [11.25]
while o3 satisfies Riccati equation
2
(02) = b* + 2a0? — ?(03)27 mo = oa = 0. [11.26]
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PROOF.— i) Taking into account remark 11.3, we get the relations

mt:/ G(t,s)ng(s):/ g(t,s)G(s, s)dXa(s)
0 0

= 9(1,0) S, 8 s —i K o2 )
7/0 9(5,0) 12 #)0X2(5) = B2g(t’0)/0 o(s,0) X2 ()

Applying It6 formula to the product of g(¢,0) and fo g(; dXs(s), we get

A dg(t,0) [t o2 A g(t,0)

— 5 X — X

B dt /og(s,O)d 200 53 44,0y 71 X0
A A2 b2 A

== ——dX —07dX.
= (a o ) ot o)/0 S AXals)dt + fotdXo(t

A A2 t A
= 5z <a - BQO?) /0 g(t,s)adeg(s)dt + ﬁadez(t)

dmt =

= (a— (Tt)/ G(t,s)dXa(s)dt + ;QJ?dXQ(t)

A? A
= <a 527 )mtdtJr Bzcrdeg(t).

And so, we get equation [11.25] for m,.

i) In order to get [11.26], we denote R; = X;(t) — my, so that ER? = o2, and

write dR; as

dRy = dX:(t) — dmy

2
= aX1(t)dt + bdWy(t) — <a 22 )mtdt
A2 A
— oI Xi(t)dt —

B O'thWQ (t)

A2
= a(Xy(t) = my)dt — 50, 2(X1(t) —my)dt
+ bdWi (t) — %afdwg(t)

A2 A,
=\|a— B2 tht + del( ) Bdt dW2 (t)
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Therefore, due to the independence of the processes W; and Ws, their mutual
quadratic characteristics are equal to zero, and

AQ
dR? = 2R;dR; + <b2 + BQaf) dt

A2 2 2 A 2
=2(a— 507 | Ridt + Ry (bdWi (1) — ZoidWa(1)

_4 2RdW()+/t b2+A—2( 2 )d [11.27]
B 005 s 2(s . B2 Oy S. .

Taking expectation of both sides of [11.27], we get

2 . A2 [ "2, A o
ER; :Za/o Edes—2§/0 UsEde3+/O <b +ﬁ(0s) >ds,

or
t A2 t
o? = bt + 2a/ o2ds — ?/ (02)?ds,
0 0

and we get equation [11.26]. O

REMARK 11.4.— Consider the so-called innovation process Z; = B~ !X,(t)—
% fot mydu. It is ff(?—adapted and

E(Z, — Z,|F)*) =E (g/@ X1 (u)du + Wa(t) — Wa(t)

t

—%/ mudu|fSXZ>

A t

= EE </ E (X1 (w)|F?) du

- [ e anE) <o
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. X . . . ..
Thus, Z; is F; ?-martingale. Furthermore, Z is a continuous process, it is square-

integrable martingale, and (Z), = [Z]; = [Wa]; = t. According to the one- parameter
version of the Lévy representation theorem (theorem 8.11), Z; is the ]-'t 2-Wiener
process. Now, let f = f(¢,s) : [s,T] x[0,T] — R be a bounded measurable function.
Then

—mo) [ ste.s)0z, =

It follows from the one-parameter version of the It6 representation theorem
(theorem 8. 15) that there exists a measurable function m(t,s) : [s,T] x [0,T] — R
such that fo 2(t,s)ds < oo and my = fo m(t, s)dZs. Therefore,

EX;(t) /ot f(t,s)dZs = /Otm(t,s)f(t,s)ds. [11.28]

Since

A t A t
= E/o Xl(u)du—g/o mydu + Wa(t),

the left-hand side of [11.28] can be rewritten as follows:

EX;(¢) (/Ot f(t,s)dZ5> = %EXl(t) /Ot ft,u) X1 (u)du

A

~ ZEXa (1) /O F(t w)ymadu + EX (1) /O £t w)dWa ()

_ % /0 £t ) EX ()(X1 (1) — mu)du,

because it follows from the independence of the processes X; and W, that
EX:(t) [7 f(t,u)dWa(u) = 0. Further, X;(t) = e [} e=**dW; (u), therefore,

E(X,(t)|Fs) = e / e~ AW, (u) = e X (s)
0

forany s < ¢, and forany u < ¢
EXy (8)(X1(u) —my) = E (E(X0 (8] Fy)) (X1 (w) —ma)
= e CWEX (u)(X (u) — my)
= e“(t_“)E(Xl (u) —my)? = e“(t_“)az.
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This means that [11.28] can be rewritten as follows:

A t t
—/ f(t,u)er =W o2 dy = / m(t, u) f(t, u)du.
B Jo 0
Since f is arbitrary, we get that
A
m(t,u) = Ee“(t_”)ai,

and

t A t
my = / m(t,u)dZ, = =e™ | e "o2dZ,
0 B 0

A b 1 A
- Eeat e aug2 <BdX2(u) - Bmudu> . [11.29]

Now we can apply to m, the Itd formula for the product of two processes and get
that

A A%,
dm; = amdt + 520 dXs(t) — 520 mydt,
and this formula coincides with [11.25].
REMARK 11.5.— Denote k = A%/ B2,
= o V). 0= (o= V)

and
= -1 = s
Yr — Y2 9 a2+k‘b2'

Then the solution of Riccati equation with zero initial condition has the following
form:

= —&ex/c.
Y2

‘yyl
Yy—1Y2

Furthermore, equation [11.29] has the following unique solution

my = ;Q/Ot o? exp{/os (ko2 — a)du} dX2(8)~exp{/0t (a— kof)ds}.
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For a general scheme,
X, (t) = a(t) X (£)dt + b(t)dWy (1),
dXo(t) = A(t) X, (t)dt + B(t)dWa(t),
X1(0) €R, X,(0) R

with non-random measurable functions a(t), b(t), A(t) and B(t) satisfying [11.1]; all
previous calculations can be repeated with evident modifications to get the following
result.

THEOREM 11.2— Let [} A%(t)dt < oo and |B(t)] > B > 0. Then
my = E (X1 (t)|]-'th) and 02 = E (X, (t) — my)? satisfy the following system of
equations:

A%(t) At)
dmy = (a(t) - BQEt;Ut> mydt + BQ((t)) oy dXs(t),
2
(02 = b(0) + 20(0)07 ~ 0 (0"

mo = X1(0), o2 =0.
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Appendix 1

Selected Facts from Calculus, Measure
Theory and the Theory of Operators

A1.1. Some facts from the theory of metric spaces
Let (.5, p) be a metric space.

DEFINITION Al.1.— The set A C S is called compact if any sequence {x,,n > 1}
from A has a convergence subsequence.

According to the Hausdorff criteria, in a complete metric space, the set A is
compact if and only if any e-covering of A by open balls of radius € > 0 has a finite
sub-covering. We shall denote by B(a,r) = {ze€S:p(r,a)<e} and
B(a,r) = {z € S: p(z,a) < €} open and closed balls, respectively. Recall that the
set A C S is closed if it contains all limit points and is open if any point a € A

admits an open ball B(a,c) C A for some £ > 0.

THEOREM Al.1.— Let (S, p) be a complete separable metric space. Then, the space
(S (), Pk ) Is also a complete separable metric space, where

SF) = §x ... xS,
—_——
k

and py, is defined by [1.2].

PROOF.— Let M C S be a countable separant, i.e. for any € > 0 and any = € S there
exists z() € M such that p(x, z(¢)) < e. Consider the set M¥) = M x ... x M.
—_——

k
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Let ¢ > 0 be fixed. For any k) = (x1,...,2k) € S*) where z; € S for1 <i <k,
we can find z; (£) € M. Then,

pra®.a () <e.

where 2 (£) = (21 (£),..., 21 (£)). Evidently, M®) is countable, and we can

understand that M (®) is separable. Now, let x;’” be a Cauchy sequence in S(*), i.e.

(m%k),xm)) — 0 as n,m — oo. Then obviously any coordinate x( )

®) 5,

isa Cauchy

sequence in metric p for any 1 < ¢ < k. Therefore, Where :v ) e Sin

)y g0 — () )

metric p, when x5, ., xy ) in metric py. O

THEOREM A1.2.— Let (S, p, ) be a complete separable metric space with Borel o-
field 3, and let P be a probability measure on . Then, for any € > 0 and any A € %,
there exists a compact set K C A such that P{A\ K} <e.
PROOF.— Any probability measure on X is regular, that is, for any A € 3,
P{A} =sup{P{C}: C C A,C closed} = inf {P{O} : O D A, O open}.

Therefore assume that A is closed. In this case, we can consider A as a complete
separable metric subspace of S. Let M4 = {a;,i > 1} be a countable dense subset
of A. Then for any 6 > 0, Up—,(B(ax,8) N A) = A. Therefore,

pw(A) = limy, oo P{Use; (B(ag,6) N A)} for any § > 0. Let ¢ > 0. Then for any
m > 1 there exists n,,, > 1 such that

P{U (B (ak, ) ﬂA)} > u(A)—e-27"
k=1
Let K = (oo_, Up™, (B (ak, L) N'A). Then K is closed and for any 6 > 0
KCU( (ak, )ﬂA)CUB(CLk,(S)
k=1

for m > %. Therefore K is compact. Moreover,

P{A\K} =P {UA\U( (ak, )ﬂA)}

m=1



Appendix 1 315

A1.2. Marcinkiewicz interpolation theorem
Let r > 1. Consider the map T from £,.(Q2, F, P) into L,.(Q2, F, P).
DEFINITION A1.2.— The map T is called subadditive if for any £,m € L,.(Q, F,P)
T+ n) (W) < [T(E)(w)]+ [T (n)(w)].

THEOREM Al.3.—Let T : L.(Q, F,P) — L,.(Q, F,P) be subadditive, and for any
k>0and €& € L,.(Q,F,P)

P{T(ﬁ)(w) > x} < <C1|£H2W> A (M) . [Al.1]

xT
Then forany 1 <p <r
17z, @rm) < CollEll e, orpy
where Cy, Co, C,, are some constants, Cy, depends on C1, Ca, p and 7.

PROOF.— Let £ € L£,.(Q, F,P) and = > 0 be fixed. Denote &; and & as the random
variables {1 = {1j¢>, and §3 = {1|¢|<,. It follows from subadditivity and [Al.1]
that

Glx) == P{w: [T©OW)| > o} < P{w: [T(€)w)| > 3 }

C C
+P o [T@))] > 3} < 2 B(€N L gs0) + - 2B(E D<),

Furthermore, forany 1 <p <r
oo o0 X
IOy == [ oG =p [~ a7 Gla)ds

< QC’lp/ xP*QqummM)dx+2T02p/ P T B(E] L) da
0 0
= QClpE <|§|/ Z‘p_Qllx<£d$> + 2r02pE (|£|T/ .I‘p_r_lﬂx>§d$>
0 0
€] oo
= 2CpE |§\/ 2P 2dx | 4 2" CypE |§\T/ 2P~ g
0 €]
2C1p 2"Cop
_ El£P EleP = PE|£IP
Zlejer + Z2pige - (c, PEiel,

” 1/p
where C), = (—Qpcillp + 72:‘;” ) . O
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A1.3. Approximation of integrable functions

Let f: R — R be a (Borel) measurable function and p > 1 be a fixed real number.
Define

i1, (. f(t)l”dt)l/p

and

L,(R) = {f: R—R ’ [ is measurable and || f[|, < oo}.

This is a linear space and ||-|| , is a seminorm.

Call a function h: R — R elementary if it has a form
h(t) = ¢ilia,0,)(t),
j=1

where a;,b;,c;, j = 1,...,m are some real numbers where a; < b;.

PROPOSITION Al.1.— The set of elementary functions is dense in L,(R), i.e. for any
[ € Ly(R) and any 6 > 0 there exists an elementary function h such that || f — hl|,, <
d.

PROOF.— Define forn > 1

n2

on(2) = Z

k=1

3|

(Vo) @) = 1 _sr _1)(@)), 2 € R,

3=

Then |, (2)| < |z|,z € R, and ¢,, () — z, n — oo. Therefore, defining g, (t) =
en(f(t)) = f(1),t € R, we have [gn(t)] < |f(?)], and gu(t) = n(f(t)) — f(1),
n — oo. Hence, by the dominated convergence theorem, || f — gy || p 0, n — oo,
so there exists N > 1 such that || f — gn|[, < J/2.

Denote

Ay,

I
~
m
~
=
==
o
2|+
—_
N—
——
BN
-
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=

—_

The sets Ay and A_j are measurable. Moreover, they have finite measure, as
otherwise [, |gn(t)[” dt would be infinite. Since the Borel o-algebra B(R) is
generated by the semiring of half-open intervals of the form [a,b), then by the
Caratheodory approximation theorem (see [BIL 95, theorem 11.4]), for any

k=1,2,..., N? there exist disjoint intervals [a;, b;), i = 1, ..., my, such that
5P
(AkA U (LZ, > 4N)p+2’
and disjoint intervals [a}, b}), 7 = 1,...,m/}, such that

5P
/
( —k & U a;, ) ) (AN)p+2°

Define elementary function

10 =3 2 (3 10 S 1000

k=1 =1
Then
M{t eR: A1) #gn()})

N2 m
SZ Al(AkALj[aiabi)>+)‘l< kAUa b/>
k=1 =1

N2

oP P
< Z 22p+1 N p+2 < (4N)p'
k=1
Therefore, taking into account that |gx (¢)| < N and |h(t)| < N, we get

1/p
lgn — A, < (/ (lgn ()] + h(f)|)pdt>
{teR:h(t)#gn (1)}

<ON M ({t €R: () # gy (B} < 2N - 4i _

N | >
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Using the triangle inequality, we obtain || f — A, < || f — g~ ||, +[lgn — R, < 6.
as required. g

PROPOSITION A1.2.— The set C'¢;p, (R) of compactly supported continuous functions
is dense in L,(R), i.e. for any f € L,(R) and any § > 0, there exists a function
9 € Ctin(R) such that || f — gl|,, < 6.

PROOF.— Using proposition Al.1, it is enough to prove the statement for elementary
functions. In turn, by the triangle inequality, it suffices to prove it for indicator
functions of the form h(t) = 1,4)(t), a,b € R, a < b. Defining

L, [aab_%]

) n(t—a), € la— % a),
=V n -0, tem- 1,
0, t¢[a =0,

we have h,, € C(IR) and hy, (t) — T(q)(t), n — 00. Moreover, |hy, (t)| < 1jo—1,4)(t);
s0, by the dominated convergence theorem ||h,, — ||, = 0, n — oo, the statement
follows. .

It turns out that one may construct a continuous function, which approximates
f € L,(R), explicitly. Namely, define for e > 0

1 st
= 7/ f(z)dz, t € R.
€ Jt—e

THEOREM Al.4.— Forany f € Ly(R), f- € L,(R) and || f — fc[|, = 0, & = 0+
PROOF.— By Jensen’s inequality,

1f=ll; = /' / fx)da dt</ / )P da dt

1 ate
:/Rg|f(x)|p/x dtdm:A|f(x)|pd$:w@q ALY

so f- € L,(R). Further, fix some § > 0 and take g € C;,,(R) such that | f — g||,, <
6. Then, using the triangle inequality,

If = fell, < If = gll, + llg = gell, + llge = fell,,- [A1.3]

Similarly to [AL.2], [|g- — fcl|, < [[f —g|l < d. Further, thanks to continuity,
9:(t) — g(t), e = 0+, for any t € R. Moreover, if f(x) = 0, 2 ¢ [-T,T], then
lg(t)] < maxge—7,1) 9(%)L[—p_1,741](t) forany e € (0, 1). Thus, by the dominated
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convergence theorem, |lg — g.[|, — 0, ¢ — 0+. Hence, we obtain the following
relation from [A1.3]

limsup || f — f.]|, < 25.
e—0+

Letting § — 0+, we arrive at the statement. OJ

PROOF.— We will also need an approximation result with respect to the arbitrary
probability measure ;2 on R?. It can be understood as the distribution of a random
vector ¢ in R?. One can define the spaces of integrable functions w.r.t. ; in the same
way as for the Lebesgue measure, viz.

c®@) = {12 S| [ 1@ a0 =B I OF <o}

Call a function g: R? — R a trigonometric polynomial if it has a form

n

g(t) = Z (ak cos(0F,t) + by sin(0%,1)) , t € RY,
k=0

where ay,, b, € R, 6% € R4,

THEOREM A1.5.— The set of trigonometric polynomials is dense in L,(R, 1), i.e. for
any f € L,(R, p) and any § > 0 there exists a trigonometric polynomial g such that

E[f(Q) = 9O <.

PROOF.— Similar to theorem A1.4, the set C'f;,, (R?) is dense in £,(R%, 1), and so it
is enough to consider the case where f is a continuous compactly supported function.
Evidently, we can assume that the support of f is in [~ R, R]?, where R is sufficiently
large.

Consider the set 7 of trigonometric polynomials of the form

- 7(6,1) . m(6,1)
g(t) = aop + Z (akCOb 7 + by, sin R)

with some n > 1, ag, b € R. These are 2R-periodic functions in each variable, and
so they can be understood as functions on a d-dimensional torus T := [—R, R]¢
(where endpoints —R and R of the segment [— R, R] are identified). The set 7 is an
algebra (a linear set closed under multiplication) and it separates the points of Ty: for
any points t; # to in T, there is a function g € 7T, such that g(¢t1) # ¢g(t2).
Moreover, f € C(Ty), since f vanishes on the boundary of T,. Therefore, by the
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Stone-Weierstrass theorem, for any ¢ € (0,1) there is some g € 7T with
supyer, | (t) — g(t)| < e. Then
E[f(¢) = g(Q)I” = E(1/(C) = 9(OF 11~ r,rj(C))
+E(19(Q)” 1ga\(—r,r2(€))
< el + sup |g(t)| P{¢ € R*\ [-R,R]"}.
teR?

Thanks to 2 R-periodicity of g,

sup [g(t)| = sup [g(t)| < sup [f(t)|+e < sup [f(t)|+ 1.
teR4 te[—R,R]? te[—R,R]? teRd

By continuity of probability, P{¢ € R*\[-R,R]*} — 0, R — +oo.
Consequently, E|f(¢) — g(¢)|” can be made arbitrarily small, which concludes the
proof. g

A1.4. Moduli of continuity
Let f : [a,b] — R be a measurable function.

DEFINITION A1.3.—

1) Function f is continuous at the point ty € (a,b) if for any € > 0 there exists
d > 0 such that fort € (to — d,to +6) N[a,b] | f(t) — f(to)| < . Or, in other words,
limyqy, f(t) = limy_yy oy f(E) = f(to)-

2) Function f is continuous on [a,b] if it is continuous at any point t € (a,b)
and limy .4 f(t) = f(a), limqy f(t) = f(b). We denote C([a,b]) as the space of
continuous functions on [a, b]

3) Function f is uniformly continuous on [a, b] if for any € > 0, there exists § > 0,
such that for any t1,ta € [a, b] such that [t1—t2| < 0, we have that | f (t1)— f(t2)| < e.

Introduce the following modulus of continuity

Ac(f,[a,b],0) = sup |f(t1) — f(t2)]-
[t1—t2| <4,
t1,t2€a,b]

THEOREM A1l.6.— Cantor-Heine theorem on uniform continuity. Function
f i [a,b] = R is continuous on [a, b] if and only if it is uniformly continuous on [a, b].
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The next result immediately follows from the definition of a uniformly continuous
function and the Cantor-Heine theorem on uniform continuity.

THEOREM A1.7.— Function f : [a,b] — R is continuous on [a, b] if and only if
lim A.(f, [a,b],d) = 0.
d—0

DEFINITION Al.4.—

1) Function f : [a,b] — R has no discontinuities of the second kind on [a, U] if there
exist limits limgyy, f(t) =: f(to—) lime—yyo+ f(t) = f(to+) at any point t € (a,b)
and there exist limits lim;_, .1 f(t) and lim;_,p— f(¢).

2) Function f : [a,b] — R is D-regular on [a,b] if it has no discontinuities of the
second kind on [a, b] and at any point t € (a,b)

f(t) = f(t=) or f(t) = f(t+),

and f(a+) = f(a), f(b=) = f(b).

3) Function f : [a,b] — R is a cadlag function if it has no discontinuities of the
second kind, is continuous from the right at any point t € [a,b) and continuous from
the left at point b.

4) Function f : [a,b] — R has on [a, b] at least k e-oscillations if there exists points
{to,tl, . ,tk} C [CL, b] such that |f(tl) — f(ti_1)| >e1<i<k.

THEOREM A1.8.— Function f : [a,b] — R has no discontinuities of the second kind
on [a, b] if and only if it has for any € > 0 only a finite number of e-oscillations.

PROOF.— = Let function f have no discontinuities of the second kind on [a, b].
Assume that for some € > 0, we have an infinite number of -oscillations, so that we
have an infinite (one- or two-sided) sequence of points such that
|f(t:) — f(ti—1)] > e. Let, for example, the sequence be two-sided,
o< <tp<topp <...<t1<ty<ti <...<tp <tpy1 <...<b and
|f(t;) — f(ti—1)| > eforany i € Z. Thent_;, — t_+ € [a,b] and t;, 1 t1 € [a,b)].
This means that the limits f(¢_+) and f(¢+—) do not exist, which is a contradiction.
In the case of a one-sided sequence, for example, the sequence of the form
a<ty<ty <...<tp<tgs1 <...<bcanbe considered similarly.

<« Let us assume that for any € > 0 we have only a finite number of c-oscillations.
Fix some ¢ > 0, consider any point ¢y € (a,b) (points a and b can be considered
similarly), and consider any increasing sequence t; <ty < ... <t, < ... <t such
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that¢,, 1 to, n — oo. Then, there exists a number ny € Nsuch that | f(t)— f(tn,)] < €
for t,,, <t < tp. Then, for any m,n > ng we have that

[f(tm) = FE)] < 1F(Em) = f o)l + [f (Em) = F(En,)] < 2¢.

It means that f(¢,),n > 1 is a Cauchy sequence, and therefore there exists a limit
f(to—). Existence of f(to+) can be proved similarly. O

Introduce the following moduli of continuity

Aa(f,[a;b],0) = sup  [f(t) = f(O)[+ sup [f(t)— f(D)|

a<t<a+é b—3<t<b
. Al4
+osupwmin (|f(t) — F()], [F(ts) — F(t2)]). [AL4]
a<ti<ta<t3<b,
ts—1t1 Sé

THEOREM A1.9.— The following conditions are equivalent:
i) function f : [a,b] — R is D-regular on |a, b].
i) limg_0 Ag(f, [a, b],0) = 0.

PROOF.—- Let function f be D-regular on [a, b]. Then, it has a right-hand limit at point
a, therefore,

sup | f(t2) = f(t)[ =0

a<ti1<tz<a+d

as § — 0. Similarly, f has a left-hand limit at point b. Therefore,

sup  [f(t2) = f(t1)| =0
b—o<t1<ta<b

as § — 0. Assume that
Ay(f,[a,b],6) = B>0as § =0

(the limit exists because Ay(f, [a,b],d) is nondecreasing in §). It means that there
exist three sequences a < £\ < 15" < ¢ < b ¢ — 4" < L4 4 o1

n’ n

such that |f(t:(3")) - f(tén))| > g, |f(tg")) - f(tg"))| > g If we take convergent

subsequence tgn’“), t1* — to, say, then tz(-"k) — 19,7 = 2, 3. Assume that ty € (a,b).
And then, for an infinite number of n; there can be one of the following possibilities:
) 4 g0, £ 4 1o, or ) 4 g, £ = to, £ o to+, or ) tot,

™) 5 to-+. In the first case |f(tS")) — f(¢{"))| = 0 because f has the limit
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F(to—), in the third case | £(¢{")) — £(t"*))] — 0 because f has the limit f(to+),
and in second case | F(t")) — (£ ) = | F(E™)) = f(to)| — 0if f(to) = f(to—)

and |£(t5"™)) — F(t5"))] = [£(8™) — f(to)| = 0 f(to) = f(tot). We get
contradiction which means that f satisfies (i7).

Let f satisfy (ii). Then, f has right-hand limit at point ¢ and has left-hand limit at
point b. Consider any point ¢y € (a,b). Then,

sup (min(|f(t2) — F(t2)], |F(ts) = F(t2)]) = Oas§ — 0.

a\/(to—é)gtl <to <t3§(t0+6)/\b

Therefore, if we take any sequences a V (tg — 1) < t(ln) < té") =1ty < tg") <
(to + 2) A b, we get that either there exists a subsequence {ny,k > 1} such that
|f(to) — (t(”’“))\ — 0 which means that f is continuous at ¢y from the left, or
|f (t(”’“)) f(to)] — 0 which means that f is continuous at ¢y from the right. Let f
be continuous at ¢y from the left. Then, if we take any sequence a V (g — %) < t%") <
< 1 < (to + L) A'b, for example, 1 <ty < t§ < (", then either there
exists subsequence {ny, k > 1} such that |f(t(n’“ )—f(t ”’“))| — 0 which means that

f is continuous at ¢, or \f(t("")) f(t(Q""))\ — 0 which means that f has right-hand
limit at ¢. The case when f is continuous at ¢y from the right is considered similarly.C]

A1.5. Functions of bounded variation

Consider the measurable function f : [a,b] — R and any partition 7 ([a,b]) =
{a=to<ti <...<t, =T}

DEFINITION Al.5.— Function f has bounded variation on the interval [a,b] if
Varpf = SuDrpap doney [f(tk) — f(ti—)| < oo. In this case, we write
[ € BV ([a,b]) and its total variation on [a, b] equals Vary, 3 f.

THEOREM A1.10.— Let f € BV ([a,b]). Then, it can be decomposed as f; = f;% —
f;~, where both functions f* are non-decreasing on [a, b).

PROOF.— We can put f;7 = Var, (f), t € [a,b]. Then, it is easy to see that both
functions f* and f~ = f* — f are non-decreasing. O

THEOREM Al.11.— Let f € C([a,b]) N BV ([a,b]). Create a sequence of partitions
mn([a,b]) = {a = tén) < tg") <...< t,(;z) = b}. If |mp| = maxi<g<k, |t§€n)—

. p
t,(cnj1| — 0, n — oo, then for any p > 1 2211 ftin;)l‘ asn — oo.
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PROOF.— We have a very simple upper bound:

K Ky,
— f.m ’p < max |f.m) — f.m Z ft ft(n)
— tk—l ~ 1<k<k, tk tk— — k k—1
< max ) — fin ‘Var —0 as n—o0
< ax | fyo fim. (a0 f ;
where we applied the Cantor-Heine theorem in the last relation. g

REMARK Al.1.- By similar calculations we can obtain the following result: let f €
BVia4)» 9 € Cla, b]. Then for any sequence (m,,n > 1) of partitions with |7, | — 0,
n — 00, we have that

kn
lim E (ft(") — ft(n) ) (gt(n) — g, ) =0.
n—oo k—l k k—1 k k—1

A1.6. Gronwall inequality

The following simple inequality, called the Gronwall inequality, or the Gronwall-
Bellman lemma (it was formulated by Gronwall in a differential form; the integral
form below was shown by Bellman) is a very efficient tool to study both deterministic
and stochastic differential equations.

THEOREM A1.12.— Let a function f: [0,T] — RY be integrable such that

t
f)<a+ b/ F(s)ds, t € [0,T]. [ALS5]
0
Then the function f admits an estimate
f(t) <ae™, t€[0,T).

PROOF.— Repeatedly plugging the inequality for f into [A1.5], we get
t 5 t t
f@) Sa—!—b/ <a—|—b/ f(u)du) ds:a+abt+/ f(u)/ dsdu
0 0 0 u
t
=a(l+bt)+ / flu)(t —u)du
0

< a(l + 0t + (b;)z) + /Ot U _21))2f(v)dv
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Estimate

n!

/Ot(t_z)nf(z)dz<z;/otf(z)dz—>0, n — oo.

Therefore, letting n — oo, we get

f() < az (b;;)k = ae. O
k=0

REMARK A1.2.— The Gronwall inequality should be applied carefully: one should
ensure a priori that the function f in question is integrable, as any function f such
that fg f(s)ds = +o0o, t € (0,T7, clearly satisfies [A1.5].

REMARK A1.3.— It can be shown similarly that if a non-negative function f satisfies
f@t) <a+ fg b(s)f(s)ds, t € [0,T], for some non-negative integrable function b
such that bf is integrable as well, then

F(t) < aels ¥t e 0,7,

A1.7. Normed spaces, linear operators and semigroups

In this section, we present some basic notions and basic statements from operator
theory without proofs.

DEFINITION A1.6.— The set Z is called a (real) linear space if for any x,y € Z,
T+ vy € Z, and for any x € Z, o € R ax € Z, and the following properties hold:

DV, yeZ z+y=y+a;

2)Va,y,2€Z x+(y+2)=(x+y)+2

3) there exists the unique zero element 0 € Z such that for any z € Z z+ = z;
4) Yz € Z, there exists the unique (—z) € Z such that z + (—z) = 0;

5)Va,B e RVz € Z «fz) = (af)zand (a+ B)z = az + Bz
6)1-z=z

7)Na e RVz,y €Z alr+y)=az+ ay.
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DEFINITION A1.7.— Let Z be a real linear space. A function z € Z — ||z|| > 0 is
called a norm, if it satisfies the following conditions:

I|z|=0<2z=0;
2)Va e RandVz € Z |az|| = |||z

s

IVe,y € Z o +yll < flfl + llyll.

A linear space with norm is called a linear normed space.

DEFINITION A1.8.—- A set Z C Z is closed if it contains all limit points, i.e. for any
|zn, — 2| = 0, 2, € Z, n > 1 we have that z € 7. A linear closed set Z C Z is
called a subspace.

DEFINITION A1.9.— Let Zy and Zj be two linear normed spaces with norms ||-||, and
|-, respectively. The map A : Zy — Zs is called

i) a linear operator if V,y € Z1 and Vo, B € R A(ax + By) = aAx + SAy;

ii) a continuous operator if for any x,,,n > 1, * € Z such that ||z, — z||; — 0 as
n — oo we have that ||Az,, — Az||, — 0.

iii) a bounded operator, if there exists C > 0 such thatVz € 7y ||Az||y < C||2|, -

LEMMA Al.1.—

1) A linear operator A : 7y — Zs is bounded if and only if it is continuous.

| Az||
= 2 = sup ||AZ||2
2l ez izl <t

=inf{C>0:Yz€2 |Az],<C|zl,},

2) Al

and || A|| < oo if and only if A is a bounded operator.

The number ||A|| is called a norm of the linear bounded operator A.
DEFINITION A1.10.— The family of linear bounded operators {T;,t > 0} : Z —
Z, where 7 is a normed linear space, is called a semigroup, if Ty = I (identical
operator), and for any t,s > 0
Tivs = TiTs (= TTy). [A1.6]

DEFINITION Al.11.- Operator

Tox —
Ax = lim o
t—0-+ t

)
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defined on such x € 7 for which the limit exists in norm of the space 7 is called a
generator (infinitesimal operator) of semigroup {T,t > 0}.

Denote D 4 the domain of A.

THEOREM A1.13.—

1) Generator A is a closed linear operator from D 4 into Z, i.e. if x,, — x in the
norm of Z, x, € Da, n > 1, and Az, — y in the norm of Z, then y € D 4 and
y = Ax.

2) Foranyt > 0and z € Dy

thZ
dt

= ATtZ = TtAZ,

where % | 1o is understood as the right-hand side derivable.

3) Forany0 < s<tandz € Dy

t t
Tiz —Tsz :/ AT,z du =/ T, Az du.

The next theorem states that the linear bounded operator can be added under the
sign of the integral and removed from the sign of the integral.

THEOREM Al.14.— Let us have a linear bounded operator B : 7. — 7 and let

{P;,t > 0} be such family of linear bounded operators that fooo P,dt exists as the
limit of Riemann sums, in the sense that

) kn
1 (n)
A Ptdt = nlgrolo Z Pt}(c")Atk-‘rl
k=1
for any sequence of partitions
m={0=t{" <t <. < t,(c’i)}

such that t,(cz) — 00 and |m,| — 0 asn — oo, and let [°||P||dt < oo. Then
B [ Pt = [ BPydt.

PROOF.~ If condition [ ||P|| dt < oo is fulfilled the sums {3 BPy At{",n > 1}

create a Cauchy sequence and therefore fooo BP,dt is also a limit of the Riemann
sums, in the same sense. And then, the proof follows immediately from two
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observations: first, the linear operator can be added and removed from the sign of any
sum, in particular

B (ZP(,L)Athrl) ZBP (n)Athrl, [A1.7]

and second, the linear bounded operator is continuous and therefore we can go to the
limit in [A1.7]. O
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Selected Facts from Probability
Theory and Auxiliary Computations
for Stochastic Processes

A2.1. Families of sets and monotone class theorems
Consider families of subsets of some universal set €).

DEFINITION A2.1.— A non-empty family P of sets is called a m-system if it is closed
under an intersection, i.e. forany A, B € P, ANB € P.

DEFINITION A2.2.— A family L of sets is called a A-system if it satisfies the following
conditions:

1)Q el

2)ifA,B€ Land AC B, then B\ A€ L;

3)if {Ap,n>1} C L are such that for any n > 1, A, C Ap41, then
Ups14n € L.

REMARK A2.1.— A-systems are also called d-systems and Dynkin systems, named
after Eugene Dynkin, who introduced them. It is easy to see that the following
conditions are equivalent to the definition of a A-system:

1)Qe L
2)if A€ L, then A°:=Q\ A€ L;
3)if {A,,n > 1} C L are disjoint, then |J,,~, A, € L.

Theory and Statistical Applications of Stochastic Processes,
First Edition. Yuliya Mishura and Georgiy Shevchenko.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Recall also that a family F is called o-algebra (or a o-field) if it satisfies
HQeF;

2)if A€ F,thenQ\ A € F;

3)if {A,,n > 1} C F,then >, A, € F.

LEMMA A2.1.— A family F is a o-algebra if and only if it is a w-system and a A-
system.

PROOF.— A o-algebra is clearly a m-system and a A-system, and so we only need to
prove sufficiency. The first two conditions from the definition of o-algebra coincide
with those from the equivalent definition of a A-system. Forany A, B € F, AU B =
(A° N B°)¢ € F, therefore, F is closed under taking finite unions. Consequently, for
any {A,,n>1} C F,wehave U, :=J;_, Ax € Fand U,, C Up41,n > 1, and
soU,>1 4n =U,>1 Un € F. O

For any family C C 2%, denote

A= [ ¢

A-system LDC

the smallest A-system which contains C. Recall also that o(C) is the smallest o-algebra
containing C.

THEOREM A2.1.— (Dynkin’s 7t-\ theorem) For any w-system P,
AP) = o (P).
In particular, if L O P is a A-system, then L D o(P).
PROOF.— Since any o-algebra is a A-system, we have \(P) C o(P). Thanks to

lemma A2.1, to prove the opposite inclusion, we need to show that A(P) is a
m-system. Define the class

L' ={AeXP)|forany Be P,ANB e \(P)}.

Obviously, P C L'. Let us check that £’ is a A-system. Obviously, Q € L. If
Ay, As € L are such that Ay C As, then forany B € P, A,NB € A\(P),i = 1,2
and AN B C Ay, N B, so

(Ag\Al)ﬂB: (AQﬂB)\(AlﬂB) S )\(P)
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Consequently, Ay \ A; € L. Further, if {A,,,n > 1} C L' are such that for any
n>1, A, C A,41, then forany B € Pandanyn > 1, A, N B € A\(P) and
A,NB C A,+1 N B,so

(U An> NB=|J(4.NB) € X(P).

n>1 n>1

As a result, | J,~; A, € L', which shows that £’ is indeed a A-system. Since
L' D P, we have L = \(P). With this at hand, the same argument shows that

{A e X(P) |forany B € A(P),ANB € AX(P)} = X(P),
hence, A\(P) is a w-system, as required. O
As an immediate corollary, we have the following result.

THEOREM A2.2.— Let P and Q be two probability measures defined on some o-
algebra F. I[f P{A} = Q{ A} for any set A € P, and A is a w-system, then P{A} =
Q{A} forany A € o(P).

PROOF.— Define
G={AeF|P{A} =Q{A}}.

It follows easily from the properties of probability measures that G is a A\-system.
Also G D P by assumption, and so G D A(P). The statement then follows from
theorem A2.1. ]

Theorem A2.2 is a very efficient tool to prove equality of probability measures, as
it assumes merely that P is closed under intersections. An even more powerful result
is its functional counterpart. It is often called a functional monotone class theorem
due to the fact that general measure-theoretic results of this kind are concerned with
monotone classes.

THEOREM A2.3.— Let P be a w-system, and a family § of real-valued functions
defined on §Q satisfy
i)forany A€ P, 14 €35;
ii) 1 € §, where 1(x) = 1;
iii) § is linear, i.e. for any f1, fo € §and a1,a2 € R, a1 f1 +asfo € §;

) if {fu,n > 1} C Fissuchthat 0 < f,(z) < for1(x),n>12€Q folz) —
f(x), n = oo, and f is bounded, then f € §.
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Then § contains all bounded o (P)-B(R)-measurable functions.

PROOF.— Consider first the family
F={Aeco(P)|14€3}.

The condition (i) means that / D P, and the conditions (ii)—(iv) immediately
imply that F is a A-system. Therefore, by theorem A2.1, 7 O o(P). By linearity,
$ contains all simple F-measurable functions. Since all bounded non-negative J-
B(IR)-measurable functions are limits of increasing sequences of simple functions,
they belong to § as well. Finally, any bounded F-B(R)-measurable function f is
a difference of two bounded non-negative F-B(R)-measurable functions, e.g. f =
fT — f~, and so by linearity f € §, as required. O

A2.2. Some calculations related to Gaussian and Poisson distributions

In spite of the fact that the following result is well known, its proof is interesting
by itself; therefore, we present it here.

LEMMA A2.2.— Let a random variable & have Gaussian distribution with E¢& = m
and Var ¢ = 02, i.e., & ~ N'(m,c?). Then its characteristic function has a form: for
any A € R

2 2
Eexp{i\¢} = exp {i)\m - )\20 } . [A2.1]

PROOF.— The following equalities are evident:

EwpuM}:cmzﬂésmﬂuxymp{—uf7”V}d$

202
N (e=m)® 1o L an2 L oy a2g2
Now, iA\x sz = —5e3 (z — (M4 iXa?))” +idm 5 Therefore,
A2o2 1 — iAo2))2
Besplire) =exp fiam - 7N T [ { ln b RE

It remains to prove that

. Sy 2112
1 /m%_@(m?MD}M:L
oV2m Jr 20
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To this end, we note that

_ Sy 2\\2 +oo+ira? 2
/ exp {_ (x — (m+iXo?)) }d;z; _ / e 302 dy, [A2.2]
R

202

—oco—iAo2

where integration in the last integral is over a straight line Oz’ in the complex plane,
parallel to Ox. Define a closed contour K g, as is shown in Figure A2.1.

“R—i\o? —o? R — i\o? Ox’

Figure A2.1. Parallel axes and contour of integration

2
Since the function p(y) = e~ 307 is analytic in the complex plane, we have that

y2
/ e 222dy = 0.
Kr

Therefore,
R—iXo? 2 R 2
/ e 202 dy = / e 202 dy
—R—i)o2 -R
O Cry? O (mtin?
+ e 202 dy — e 202 dy. [A2.3]
— o2 —Ao?

The last two integrals in [A2.3] obviously vanish as R — co. So,
+oo—ilo? 2 +oo 2
/ e B dy = / e B2 dy = ov/2r, [A2.4]
—oco—iAo? —o0

Now the equality [A2.1], and consequently the statement of the lemma, follow
from [A2.2] and [A2.4]. O
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LEMMA A2.3.— Let £ ~ N(0,1). Then,

v\ 2 1
E|¢)P = () r (p—;—) Sforany p > 0.
T

PROOF.— Evidently,

Bler = —— / afre adx—\f / ave

2% 2 27 p+1
— yd: F . D
G e \/7?(2>

LEMMA A2.4.— Let the random variable £ have a Poisson distribution with parameter
A > 0. Then its characteristic function has a form: for any g € R

Eexp{if¢} = A1)

PROOF.- Indeed,

oo oo

. iBn iBn ,— A"
Eexp{zﬁf}:ZeB P{f:n}:Zeﬁ e )\F
n=0 n=0 ’
e ifyn i i

_ e—)\z (Ae') S W S (LS 0

DEFINITION A2.3.— Let {&,,n > 1,&} be random variables with cumulative
distribution functions {F,,n > 1}, F respectively. We say that &, weakly converges

to & as n — oo, with the notation £, , &, if for any point x where F' is continuous,
we have that F,,(x) — F(z), n — oo.

Equivalent definitions of weak convergence and properties of weakly convergent
random variables are described in detail in [BIL 99]. We mention here only that the
weak convergence of the random variables is equivalent to the convergence of their
characteristic functions, more precisely, to the point-wise convergence ¢, (A) — ()
at any point A € R.

LEMMA A2.5.—

1) Let {&,,n > 1} be a sequence of Gaussian random variables with E¢, = m,,

and Var¢,, = o2 > 0. Let m,, — m and 02 — o* € (0,00). Then &, , & where &

is a Gaussian r.v. with E€ = m and Var € = o2
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2) Let {£,,,n > 1} be a sequence of Gaussian random variables with EE,, = m,,

w e
and Var§,, = 0721. Also, let &, — &, n — oo. Then there exist limits lim,, .o, m,, =:
m, limy, 00 0 =: 0 and £ = N'(m, o?).

PROOF.— 1) Consider
: . Lo o , Lo 2
Eexp {iX¢,} = exp ¢ iAm,, — 5)\ o5 ¢ —>expyqiim — 5)\ 0% p, m— 00,

for any A € R. Since the convergence of characteristic functions at every point A € R

is equivalent to the weak convergence of random variables, we get that &, v, &=
N(m,o?), n — oo.

2) We first show that the sequences {my,,n > 1} and {o,,,n > 1} are bounded.
Denote F' and F,, n > 1, the cumulative distribution functions of £ and &,, n > 1,
respectively. Let a, b be points of continuity of the cumulative distribution function F',
such that F'(a) < 1/3, F(b) > 2/3. By the definition of weak convergence, F,(a) —
F(a) and F,(b) — F(b), n — o0, so there exists some ng > 1 such that for all
n > ng, F,(a) < 1/3 and F,(b) > 2/3. Since &, = N (m,, 02), we have F,,(a) =
O((a — my)/on) < 1/3 for n > ng, where ® is the standard normal cumulative
distribution function. Hence a — m,, < 0,®71(1/3),som,, > a—0,®1(1/3) > a.
Similarly,

My < b—0,® (2/3) < b, n > ny, [A2.5]
which implies the boundedness of {m,,,n > 1}. Further, from [A2.5] we have

b—m,
>-1(2/3)

op <

so {on,n > 1} is bounded as well.

Now let {(m,,, 02, ),k > 1} be a subsequence of {(my,02),n > 1} such that
(M, 05,) — (m,0?), k — oo. It follows from 1) and uniqueness of weak limit
that £ = NV (m, 0?). Moreover, appealing again to the uniqueness of weak limit, each
convergent subsequence of {(my,,02),n > 1} must converge to (m,o?), which

means that (m,,, 02) itself converges to (m, o2), concluding the proof. O

A2.3. Notion and properties of the uniform integrability

DEFINITION A2.4.— A family of random variables {X,t € T} is uniformly
integrable if

lim sup E[X¢|1|x,/>¢c = 0.
T

C—o0 te
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THEOREM A2.4.— Let the family { X,,,n > 1} be uniformly integrable. Then,
1) sup,,>1 E[ Xy | < oo;
2) If additionally X,, — X, in probability, then E|X,, — X | — 0, n — 00;
NIf X, - Xoo, n — o0 in probability, E|X,, — Xo| — 0, n — oo, and
{Xn, X} € L1(Q, F,P), then {X,,,n > 0} is uniformly integrable.

PROOF.— 1) Obviously,

supE[X,| < C +supE|X,|1x,|>c-
n>1 n>1

Choosing Cy > 0 such that sup,>; E[X,|1jx,>c, < 1, we get that
sup,,>1 E[X,| < Co + 1.

2) It is clear that E| X | < limsup,,_,. E|X,| < oo by Fatou’s lemma. And
then, forany 0 < ¢ < C

E[X, — Xoo| <+ CP{|X, — Xoo| > &}
—|—E|Xn _Xoo|]l|X,,L7Xoo\>C- [A2.6]

Consider the last term and bound it from above as follows:

An,C = E|Xn — Xoo‘]1|Xn—Xoo|>C S E|Xn| (]1|Xn\>% + 1‘Xm|>%>

We know that
:inEan|]1|X,,L\>% —0, C = o0 [A2.7]
and
Now,

C
sup B[ Xy |1 x_|sc <P {|X00| > 2} + sup E[ X, [1)x,, 5
n>1 n>1

— sup B| X, |1 x,|>6 as C — o0.
n>1 -
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Choosing b > 0 such that

sup E[ X, |1 x, > < €,
n>1

we get that

lim sup E[Xo[1jx o <€, [A2.9]

C—oop>1

for any £ > 0, whence this limit is zero. Finally,

C
E|Xoo‘]1|Xn\>% < bP{|Xn| > 2} +E|Xoo|]1|Xoo|>b
20

Choosing any ¢ > 0 and then b > 0 sufficiently large so that E| X o |1|x__ > < &,
we get that

Combining [A2.7]-[A2.9], we get that limc_ o Sup,>g A, c = 0. Returning to
[A2.6], note that

lim E|X, — Xo| <e+supd,c.
n—oo n>1

Therefore, letting C' — oo and then ¢ — 0, we get the proof.

3) Let X,, —+ Xoo, 1 — 00, E|X, — Xoo| — 0and {X,,n>1, X} €
L1(Q, F,P).

Choose ng € N such that for n > ng, E|X,, — X| < &. Then,

sup E[X,|1x,>c £ max E|X,|lx,>c+ sup E|X, — X
n>0 0<n<ng

n>ngo

+ sup E|Xoo|]1|Xn\zC~

n>ngo

Now, choose C' > 0 such that maxo<n<n, E|Xn|1|x,|>c < €. Then,

sup B[ X, |1 x, >¢c < 26+ bsup P {|X,,| > C} + E|[ X |1 x |0
n>0 n>0

b
<2+ = sup B X, | + E[X |1 x>
C n>0
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Since E|X,, — Xs| — 0, then sup,,~, E|X,,| < oco. Therefore, we can choose
b > 0 such that E|Xoo|1jx_>5 < € and we can choose C' > 0 such that
% sup,,>o En|Xn| < e. Finally, we get that sup,,~, E[X,[1|x,|>c < 4e, and the
proof follows. O

The following theorem is a criterion for uniform integrability; it is usually used as
a simple sufficient condition.

THEOREM A2.5.— (de la Vallée-Poussin) A family {X;,t € T} is uniformly
integrable if and only if there exists a non-decreasing function V : Ry — R such
that V(z)/x — 0o, x — 00, and sup,er EV (X)) < oo.

PROOF.— Necessity. Let {C,,n > 1} be such that sup,cr E (| X¢| 11 x,15¢,) <27
without loss of generality we can assume that C,, 11 > C), for all n > 1. Setting
V(z)=xY " nli, c,, ) (x), wehave forany t € T,

EV(X Z nE (|X¢| Lo, o0y (Xe) Z n2="

n=1

so sup,er EV(Xy) < Y007, n27™ < o0, as required.

Sufficiency. It follows from V (z)/x — 400, x — o0, that

T
m(C su — 0, C'— oo,
(©) =50 7

SO

supE (| X¢|1|x,1>¢) < supm(C)E (V(IXe)11x,>c)
teT teT

<m(C)supEV(|Xy]) = 0, C — 0. O
teT

A2.4. Measurability, conditional expectation and conditional probability
A2.4.1. Measurability with respect to a generated o-field

Let (2, F) and (S, X) be measurable spaces and £: {2 — S be measurable. Recall
that the o-field generated by ¢ is defined as o(¢) = {£71(A4), A € ©}.

THEOREM A2.6.— A random variable 1) : 0 — R is 0(X)-B(R)-measurable if and
only if there exists a ¥-B(R)-measurable function h: S — R such thatn = ho¢&, i.e.

n(w) = h(§(w)) forall w € L.

PROOF.— Let first ) be simple, i.e. n(w) = Ele a;14,(w), where the numbers
a; € R are distinct, and 4; € F. The o(X)-B(R)-measurability of 1 implies that for
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any i, A; = n7'({a;}) € o(X), and so there exists some B; € B(R) such that
A; = £71(B,). Therefore, n = ho & with h = 1 a;15,.

Let now 7 be arbitrary o (X )-B(R)-measurable function. There exists a sequence
{Nn,n > 1} of simple o(X)-B(R)-measurable functions such that 1, (w) — n(w),

n — oo, for any w € €. As we have shown already, there are some
Y-B(R)-measurable functions h,,: S — R such that 7,, = h,, o £. The set

B= {:C € S :thelimit lim h,(x) exists} SR
n—oo

and the limit of measurable functions is measurable, therefore the function

i B
W) = limy, 00 hn(z), 2« € B,
0, x ¢ B,

is 3-B(R)-measurable. Since, clearly, h o £ = 1, the proof is complete. O

REMARK A2.2.— It is known that any complete separable metric space (X', B(X)) is
Borel-isomorphic to a Borel subset B € B(R), i.e. there exists a measurable bijection
f: X — B, such that its inverse is measurable as well. Consequently, theorem A2.6 is
valid for any complete separable metric space in place of R. More detail on this matter
is available in [KAL 02].

A2.4.2. Conditional expectation
Let (Q, 7, P) be a complete probability space, and G C F be a sub-o-field.
DEFINITION A2.5.— Let £ be an integrable random variable, i.e. E|§| < oo. An

integrable random variable 1 is called a conditional expectation with respect to G if it
satisfies

- E(& | G) is G-measurable.
— Forany set A€ G

/AgdPZ/AndP,

or, equivalently,

E(1a) = E(nla).
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The conditional expectation is denoted by E(£ | G).

THEOREM A2.7.— For any integrable random variable &, its conditional expectation
E(¢ | G) exists. Moreover, it is unique up to a set of measure zero.

PROOF.— Define a set function
M{A} = B(¢14) = / ¢dP, A€g.
A

Due to the properties of Lebesgue integral, this is a o-finite signed measure on G,
absolutely continuous with respect to P. Therefore, it has a Radon-Nikodym derivative

n:diPa

i.e. a G-measurable random variable 7 such that for any A € G,

M) = [ ap.

which establishes the existence.

Further, if n’ = E(£ | G) is another conditional expectation, define B = {n/ > n}.
Thanks to G-measurability, B € G; therefore,

E(n'1p) =E((1p) = E(nlp).

Obviously, n'1 5 > 11 p, and so the above equality implies P{n'1p = nlp} =1,
when P{7/ > n} = 0. Similarly, P{n’ < n} = 0, yielding the uniqueness. O

For the sake of brevity, through the end of this section, equations and inequalities
concerning random variables are understood in the almost sure sense without
additional notice.

THEOREM A2.8.— Let & ( be integrable random variables. Then the following
properties hold.
i) If§ < C then E(¢ | G) < E(C|G).
ii) If € is G-measurable, then E(£ | G) = &.
iii) (Locality) if € = ( on some set A € G, then E( | G) =E(C | G) on A.
iv) (Linearity) for any a,b € R, E(a + b | G) = aE(§ | G) + DE(C | G).
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v) If € is independent of G (i.e. events A and {{ € B} are independent for any
A€ G, B e B(R)), then E(¢ | G) = E&; in particular,

E(¢ | {2,0}) = E¢.
vi) (Tower properties) if H C G is a sub-o-field, then
E[EE[G) |H) =E[EE|H)|G)=EE|H).
in particular; taking H = {@, €}
EEE]9) | H) =E(E(|G)) = E¢.

vii) If € is G-measurable and bounded, then E({n | G) = €E(n | G).

viii) (Jensen’s inequality) if f: R — R is a convex function, and f () is integrable,
then

FEE]9)) <E(f() | 9).

PROOF.— Properties (i)—(iii) follow immediately from definition.
Concerning (iv), forany A € G,
E ((aE(¢ | G) +DE(C [ G))14) = aE (E(£ | G)1a) +DE (E(C | §)14)
=aE ({14) +0E(C1a) = E((a§ +b0)14),
whence by definition we get aE(£ | G) + bE( | G) = E(a& + b | G).

For (v), write for any A € G, in view of independence,
E(£14) =E¢-Ela = E((E€)14),
so E€ =E(£ | G).

Further, for # C G, E(E( | H) | G) = E(§ | H) follows from the
‘H-measurability, and hence, G-measurability of E(§ | H). To establish another tower
property, write for arbitrary A € ‘H

E(EE¢ [G) | H)1a) = E(EE [ G)1a) = E(£14),
since A€ G,soE(E(|G) | H)=E(E|H).

To prove (vii), we need to show that for any A € G,

E(E(n [ G)14) =E(€n1a). [A2.10]
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For fixed n and A, let § be the family of G-measurable functions £ satisfying
[A2.10]. From (iii), we have E(nlp | G) = E(n | G)1p, so 1 € §. Due to linearity
of expectation, § is linear. Finally, if £ is bounded and &, € § such that 0 < ¢, <
&nt1,and &, — £, n — oo, then by the dominated convergence theorem

B(EE(r | 6)14) = lim E(6.E(n| 6)14) = lim E(6un1a) = E(EnLa),

which means that £ € §. Using theorem A2.3, we get that § contains all bounded
G-measurable variables, finishing the proof. O

THEOREM A2.9.— Let {&,,n > 1} be a sequence of random variables and 1 be an
integrable random variable such that |£,,| < nfor all n > 1. Then

1) if &, — & n — oo, almost surely, then E(&, | G) — E(£ | G), n — oo, almost
surely;

2)if&, i>§,n—>oo, then E(&,, | G) i>E(§ | G), n — oo

PROOF.— Let first {, — &, n — oo, almost surely. Then (i = supy>,, & — &l — 0,
n — oo, almost surely. By Jensen’s inequality,

[E(n |9) —EE | 9) <E(&n — €11 G) < E(G | ). [A2.11]
Since the sequence {(,,n > 1} is non-increasing, the conditional expectations

E(¢,, | G) are non-increasing as well, so there exists some limit ¢ = lim,,—, o, E({, |
G). By the Lebesgue-dominated convergence theorem, for any A € G,

E(CLa) = lim E(E(G | G)1a) = lim E((.14) =0,
which implies that 7 = 0 almost surely in view of its G-measurability. As a result,
E(&n [ G) = E(£[G), n— oo,

almost surely.

To prove the second statement, write from [A2.11] and the tower property of
conditional expectation

E([E(& |9) —EE€|9)]) <E(|& —¢€]) = 0, n — oo,

by the dominated convergence theorem. This means that E(¢, | G) — E(¢ | G),
n — oo, in £1(2, F, P), consequently, in probability. O
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A2.4.3. Conditional probability

Let, as above, ({2, F, P) be a complete probability space, and G C F be a sub-o-
field.

DEFINITION A2.6.— The conditional probability with respect to G is
P{A|G} =E(14]G), AcF.

From the properties of conditional expectation it follows that P{A | G} > 0
as. P{Q | G} = 1 a.s. Also for any disjoint Ay, Aa,... we get from linearity and

theorem A2.9 that
g} =E (HUHNA" Q) = lnn E (ﬂUn A, g>

P{ U A,
N N
= Jim E (Z 14, g) = Nlig;o;E(lAn G) =Y P{4,]6}

n>1
n=1 n>1
almost surely. However, the zero-probability event may depend on the sequence of
events, and so the countable additivity of P{A,, | G} may fail even for every w € (.
However, one might be able to adjust conditional probabilities of individual sets in
order to make it countably additive. This motivates the following definition.

DEFINITION A2.7.— The function Pg: F x 0 — R is called a regular conditional
probability with respect to G if

—forany A € F, Pg(A,w) = P{A | G}(w) almost surely;

—forany w € Q, Pg(-,w) is a probability measure on F.

A regular conditional probability allows us to compute the expectation as the usual
Lebesgue integral.

THEOREM A2.10.— Let Pg be a regular conditional probability relation with respect
to G. And then, for any integrable &,

E(|G)(w /g )Pg(dw',w) [A2.12]

almost surely.

PROOF.— Consider the family § of integrable random variables ¢ that satisfy [A2.12]
almost surely. By the definition of regular conditional probability, 14 € § for any
A. Also, § is linear and, due to the Lebesgue-dominated convergence theorem and



344  Theory and Statistical Applications of Stochastic Processes

theorem A2.9, is closed under taking limits of dominated sequences. Arguing as in
the proof of theorem A2.3, we get that § contains all integrable random variables. [J

DEFINITION A2.8.— Let £: 2 — R be a random variable. A regular conditional
distribution of § with respect to G is a function Peg: B(R) x Q — R such that
—forany A € B(R), P¢g(B,w) = P{¢ € B | G}(w) almost surely;

—for any w € Q, Pe|g(-,w) is a probability measure on B(R).

A regular conditional cumulative distribution function of £ with respect to G is a
function F¢)g: R x 0 — R such that

—forany x € R, Fgg(z,w) = P{{ <z | G} (w) almost surely;

—for any w € Q, Fy\g(-,w) is a cumulative distribution function on B(R).

THEOREM A2.11.— Let £: @ — R be a random variable. If Pe\g is a regular
conditional distribution of £ with respect to G, then F¢g(x,w) = Pejg((—00, 2], w)
is a regular conditional cumulative distribution function of £ with respect to G. Vice
versa, if F|g(w,w) is a regular conditional cumulative distribution function of § with
respect to G, then the Lebesgue-Stieltjes measure Pe|g(-,w) generated by Fe\g(-,w)
is a regular conditional distribution of & with respect to G. If, additionally, £ is
integrable, then

B¢ O)@) = [ aPyoldr.w) = [ aFyglde.w)

almost surely.

PROOF.— The first statement is obvious. To prove the second, consider the family A
of Borel sets A satisfying

Peg(A,w) =P{{ € A| GHw)

almost surely. Since Fg|g is a regular conditional cumulative distribution function of
&, we have (—oo,z] € A for all z € R. Furthermore, from the properties of
conditional expectation and of probability measure it follows that A is a A-system.
Since the intervals (—oo,z] form a m-system P, by theorem A2.1,
A D o(P)=BR).

The third statement is proved similarly to theorem A2.10. O

THEOREM A2.12.— For any random variable &, a regular conditional distribution of
& with respect to G exists.
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PROOF.— By theorem A2.11, it suffices to show the existence of a regular conditional
distribution function. Let F(q,w) = P{¢ < ¢}, ¢ € Q. Define

Q+—{ lim F(n,w)—l}, Q_—{ lim F(n,w)—O},

n—-+oo n——oo

QleQ? = {F(qhw) < F(QQ,W)}, q1,q92 € @7 q1 < g2,

Q, = 711&11 F(r,w)=F(q,w) ;, g€ Q.
reQ,r>q

From theorem A2.9 it follows that P{Q24 } = P{Q_} = P{Q,} = 1forallq € Q,
from theorem A2.8, that P{€2, 4, } = 1 for all rational ¢; < ¢o. Set

Q’:Q+HQ_m(ﬂQq)ﬂ< N qu,@)

q€Q q1,92€Q
q1<q2

and

infy>p4e0 F(qw), we
Fejg(w,w) = 9 B o
[0,+00) (%), w Q.

It is easy to see that F|g is a cumulative distribution function. From theorem A2.9
it follows that for any z € R,

Fgg(z,w) = lim P{{<q|G}=P{{<z|G}

9€Q,q>z
almost surely, concluding the proof. O
REMARK A2.3.— As it was mentioned in remark A2.2, any separable metric space is
Borel isomorphic to a Borel subset of R. Therefore, the above theorem is also valid
for a random variable taking values in a separable metric space.

A2.5. Stationary sequences and ergodic theorems

Consider the probability space (€2, F,P). Let F' be a measurable transformation
(Q, F)in (Q, F). Forany A € F denote F'~! A the pre-image of A transformation F'.

DEFINITION A2.9.— Transformation F' preserves measure P if for any A € F

P{F~'A} = P{A}.
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A set A is called F-invariant if P {(F~'A)A A} = 0. It follows from the
properties of pre-images that the family G of invariant sets is a o-field.

For k € N we denote F'* the kth power of transformation F'.

THEOREM AZ2.13.— (Ergodic Birkhoff-Khinchin theorem) Let F' be a measurable
transformation (2, F) into (0, F) preserving measure P. Also let &(w) be an
integrable random variable. Then, there exists a limit with probability 1,

n—1
Jim 37 e(Fh) = E(w),

k=0
where £ = E(¢ | G), and where G is a o-field of invariant sets.

DEFINITION A2.10.— Probability measure P is said to be ergodic for transformation
F, if any F-invariant set has probability measure 0 or 1.

DEFINITION A2.11.- Stochastic process X = {X;,t € T}, where T = Z* or RT,
is called stationary (in the narrow sense) if for any t1,to, ..., t, € T and h > 0 such
thatty + h,to +h,....t, + heT

(Xt1+h7Xt2+ha s 7th+h) g (XtuXtm v 7Xt ) )

n

d Lo .. .
where = means the equality in distribution.

DEFINITION A2.12.— Square-integrable real-valued process X = {X;,t € T} is
called stationary (in the wide sense) if EX; = m (some constant value), and

EX, Xs = EXy 1 Xsyn forany s,t,s+h,t+heT, h>0.
REMARK A2.4.—If X is stationary in the wide sense, then its covariance function
r(s,t) = E(Xs — EX ) (X — EX:) = E(Xo — m)(Xi—s — m).

Therefore, we can introduce the function R(t) = r(0,t) so that R(t) = E(X, —
m)(Xiys —m) forany t,s,t +s € T.

REMARK A2.5.— Let the process X = {X; t€ T} be Gaussian. Since
finite-dimensional distributions are uniquely determined by the mean EX; and the
covariance function r(t,s) = E(X; — EX,)(X; — EX}), the wide-sense and the
narrow-sense stationarities of X are equivalent. Thus, we shall call the Gaussian
process X stationary if EX; = m and r(t,s) = r({t + h,s + h),
t,s,t+h,s+heT.
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Let us return to the ergodic theorem. Consider a Gaussian stationary sequence
X = {X,,n > 0}. We can consider it on the canonical probability space (2, F, P),
where Q = RY, F = K.y, the o-algebra of cylinder sets. In this case X, (w) = w(n),
and we can consider the transformation F' : RY — RN, which is the unit time shift,
w(n) — w(n + 1), and so F* if the shift w(n) — w(n + k). The stationarity of the
process is reflected in the invariance of P with respect to F,i.e. PF'~! = P.

Assume that the measure P on (R, Key1) has a mixing property in the following
form: for any A, B € Ky with P{B} > 0,

lim P{F"A| B} =P{A}. [A2.13]

n—oo

LEMMA A2.6.— If condition [A2.13] holds, then probability measure P is ergodic for
transformation F.

PROOF.- Let C be an F-invariant set with P{C'} # 0. Then, we put A = B = C'in
[A2.13] and get that

lim P{F"A| B} = lim P{F"C|C} =P{C|C}=P{C}.

But P{C | C} = 1,s0 P{C} = 1, as required. O
Now let F' preserve the measure P.

THEOREM A2.14.— Probability measure is F'-ergodic if and only if for any integrable
random variable &

n—1

lim - Z £(FFw) = E¢. [A2.14]
k=0

PROOF.— Necessity. Let probability measure P be F'-ergodic. Since F preserves P, it
follows from Birkhoff-Khinchin theorem that
n—1

lim_ % 3 (Fhw) = Ew),
k=0

E&(w) = E¢(w). Since the random variable &(w) is F-invariant, symmetric difference
of the sets

FH{w:(w) <z} ={w:{(Fw) <z}
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and {w E(w) < x} has P-measure O for any € R. This means that any set
{w:&(w) <z} is F-invariant therefore it follows from ergodicity of P that
P{w:&(w) <z} = 0 otherwise 1. This means that £ is a constant, and from
Birkhoff-Khinchin theorem ¢ = E£.

Sufficiency. Let [A2.14] hold, and substitute {(w) = 14(w) for some event A.
Then,

n—1
. k _
nlg&kz_()lA(F w) = P{A}.

Now, assume that there exists F-invariant set B with 0 < P{B} < 1. Then,
the sets B, F'B, F?B, ... differ from each other on the sets of P-measure 0, and
consequently

1 n—1
E Z ﬂA(ka) = ILA(w)
k=0
and is not a constant. The obtained contradiction implies that P is ergodic for the

transformation F'. O

Now, let X = {X,,n > 0} be a Gaussian stationary sequence, EX,, = m,
E(Xo —m)(X,, —m) = R(n).

THEOREM A2.15.— If R(n) — 0 as n — oo, then lim, o + Z;é X, =ma.s.

PROOF.— According to lemma A2.6 and theorem A2.13, it is sufficient to establish the
mixing condition [A2.13].

Equality [A2.13] is a partial case of the following equality

lim EY,n = EYyEn, [A2.15]

n—oo

where Y,, = {(F"w), and &, n are square-integrable random variables. To prove
[A2.15], it is sufficient to establish that for bounded functions f(x1,...,z,) and
g(x1,...,zp), forany p > 1

Bf(Xn, .. Xnap)9(Xo, .. X,) = Bf(Xo,..., X,)9(Xo, ..., X,),  [A2.16]



Appendix 2 349

and then apply the approximation procedure. Establish [A2.16] for p = 1; forp > 1
the proof is similar. For technical simplicity, let m = 0. We have that the joint density
of X,, and X equals

puae) = e {5 (B ) - 2y )|
1 1 z? 1 y?
- M(O)exp{2R(0)2R(O)}’

[A2.17]

where D = R?*(0) — R%(n). It follows from [A2.17] that p,, o(x,y) — po(x)po(y).
when [A2.16] follows for p = 1. O

A2.6. Auxiliary martingale inequalities and decompositions

THEOREM A2.16.— (Krickeberg decomposition for martingales) Let
X = {X,, Fn,;n > 0} be a martingale with sup,,»o E|X,,| < oc. Then X can be
decomposed as follows:

"

X, =X, —X,, [A2.18]
where X' and X are non-negative martingales and

supE|X,| < EX! +EX, =EX,+EX,.
n>0

PROOF.— Condition sup,~,E|X,| < oo together with theorem 5.5 supplies
existence of the limit X, = lim, ,0o X, as. and E[X,| < oo, while
X,, = E(X|Fn) according to theorem 5.7. If we decompose X, = XL — X,
then X I and X are integrable random variables, X,, = E(X1|F,) — E(X|Fn),
and X!, = E(XZX|F,), X, = E(XZ|F,) both are non-negative martingales.
Therefore, we have decomposition [A2.18]. Moreover,

E|X,| < E|X!| +E|X, | = EX! + EX, = EX, +EX,
= EX;‘C + X =E| X,
and the proof follows. g

REMARK A2.6.— We can apply a similar reasoning to the martingale
X ={X,, Fn,0 <n < N} and get the same decomposition but with Xy instead of
X . We shall say that such a decomposition is obtained with respect to the moment
N.

THEOREM A2.17.— Let {X,,,n > 0} be a martingale, {,,,n > 1} be a predictable
process, o = 0, and |p,| < 1 a.s. Consider the martingale transformation of the
following form: S =0, S =Y, ox(Xk — Xp—1),n > 1. Then
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i) Foranyn > 1 and any A > 0
AP {Ogllggn ISy ] > )\} <22 01;1}3;E|Xk|. [A2.19]
ii) Foranyn > landp > 1
E[SY]” < ¢, E[X,|7, [A2.20]
where c,, depends only on p and does not depend on n.

PROOF.— i) Let X be a non-negative martingale. Consider the non-negative bounded
supermartingale Z,, = X, A A, A > 0 (see example 5.8, (4i)). Since Z; and Xp,
1 < k <, coincide on the set {w : maxo<r<, X < A}, we have that

)\P{ max 1S | > )\} <)\P{ Jax X >>\}+)\P{ max |SZ| > )\}
According to remark 5.9,
AP{ max |Xg| > )\} < EX,. [A2.21]
0<k<n

Further, SZ is a supermartingale as an integral transformation of a
supermartingale. Consider the Doob decomposition of Z: Z,, = M,, — A,,, where M
is a martingale, and A is a non-decreasing predictable bounded process with Ay = 0.
Note that consequently, A and M are non-negative processes with bounded
increments,

An - An—l = _E(Zn - Zn—l‘-Fn—l) < 2.

So, all processes involved are square integrable. Furthermore,

SH =Syt =S4 and 1S <Y okl (Ar — Ap-1) < Ay

k=1

Therefore, maxo<y<pn |S7| < maxo<p<n |[SM| + A, and for any o € (0, 1)

)\P{ max Sk>)\}<)\P{A >04A}+)\P{ max. |SM >(1—a))\}
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Leta = % Since EA,, = EM,, — EZ,, < EM,, = EM, we have that
A
APA, > 5 < 2EMy = 2EZy < 2EX,. [A2.22]

Further, since M is a square integrable martingale, S™ is a square integrable
martingale as well. Therefore, according to theorem 5.11,

A 4 2
M M
AP {52 > 5 < JBISY T
and
n—1
E[SY [P =B i (M1 — My)* < E[M],,.
k=0
Note that
E(Myy1 — My)? = E(Zyy1 — Z1)? + 2B(Z1s1 — Zi) (Ags1 — Ax)
+E(Ag+1 — Ap)? = E(Zj1 — Zi)? — E(Ak1 — Ax)?,
because
E(Zkt1 — Zi)(Ak+1 — Ak) = E(E(Zk41 — Zi)| Fie) (Ag+1 — Ai)
= —E(Ak+1 - Ak)Q
So,
E|Sylzw|2 < E[Z]n - E[A]n < E[Z]n
Furthermore,
(Z— Zk1)? =27 — Z7_ 1 +2Zk1(Z1—1 — Zy),
therefore,
n—1
E[Z], <EZ.+2Y E(Zy1E(Zko1 — Zi| Fro1))
k=1
n—1
=EBZ.+2) BZi1(Ax — Ar_1) < 22E(Z, + Ap) [A2.23]
k=1

=2 \EM,, =2X\EMy =2 \EZy < 2XEXj.
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Finally, we get from [A2.21]-[A2.23] that for any A > 0
AP { max. |SX| > /\} < EXy + 2EX, + 8EX( = 11EX,.

Therefore, for non-negative martingales we have proved a stronger result than
[A2.19], namely, with constant 11 instead of 22.

Now, let X be an arbitrary martingale, and let X,, = X/ — X ;L, be its Krickeberg
decomposition constructed with respect to the moment NV (theorem A2.16 and remark
A2.6). Then E|X, | = EX, + EX,, = EX| +EX,, and

/\P{max |Sk|>)\}<)\P{max 15X > )\}

0<k<n 2

A
—|—)\P{ Jmax \Sk |> 2}

< 22(EX}) + EX,) = 22E|X,,| < 22 sup E|Xj|.
0<k<n

ii) Now we use the Marcinkiewicz interpolation theorem (theorem A2.3). Assume
that the right-hand side of [A2.20] is bounded in n > 1. Then, X is a uniformly
integrable martingale and X,, = E(X|F,) (see theorem 5.7). Denote by T}, (X o)
the transformation of the form 7, (X,,) = S;X with some fixed predictable process
{op, k> 1}, 00 = 0, |pk| < 1, k > 1 as. Then T, is a linear, and consequently,
sub-additive transformation. Moreover, note that {| X[,k > 1} is a submartingale,
therefore E| X | > E|Xg|, k > 1. Then, it follows from [A2.19] that

1
P{|Ta(Xo)| > A} < 1B X,

Furthermore,

1 1
P{IT(Xuo)| > A} < 55 BITu (Xoc) P = 55 EISY P

1 = 2 2 1 n 9
= EEZ%@(XJC —Xp-1)° < FE,;(X]C - X11)% < FEX

This means that all assumptions of theorem A2.3 are fulfilled with C; = 22 and
Cs = 1, and it follows that the inequality [A2.20] holds for any 1 < p < 2. Now
consider p > 2. Let p~! + ¢~ ! = 1. Then 1 < ¢ < 2, consequently, for any random
variable 1

EIXoTh ()] < (BIXaol?) "7 (BIT (m)]7)

< Cy (B[ X P) P (Bln|2) . [A2.24]
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Further, assume that E| X T}, ()| < oco. Then for X}, = E(Xo|Fk) and Yy, =
E(n|Fx) we have that

E(XeTh(n) =E (Xoo zn: ok (Vi — Yk—l))

k=1

=E <Xn or(Ye — Yk-—l)) =Y EerXp(Yi — Vi)
k

= E(TW(Xoo)n). [A2.25]

We get from [A2.24] and [A2.25] that
1 1
[E(T(Xoo)n)| < Cy(BIXolP)' /7 (Eln]?) /. [A2.26]

Therefore, taking supremum over n with E|n|? = 1 in both sides of [A2.26], we
get

1
Ju 1IE(Tn(Xoo)n)\ < G, (E[X ). [A2.27]
n:Ein|9=

It follows from lemma A2.6 that

1/
sup  |E(Tn(Xoo)n)| = (BT (Xs0)[P) " [A2.28]
n:E[nl=1
The proof follows now from [A2.27] and [A2.28]. O

For any process X and any n > 0 denote X} := maxo<ji<n | Xk|.
LEMMA A2.7.— Let M = {M,,, F,,n > 0} be a martingale, for which |M, 11 —

M, | < Qn, where Q,, is a F,-measurable random variable, n > 1. Then, for any
n>1

1/2 < — * *
B[M],/" < 3B max [My[+E max Q =3E|M.[" +EQy, [A2.29]



354  Theory and Statistical Applications of Stochastic Processes

E max | M| < 3E[M]%/? —|—E Jmax Qk = 3E[M]/? + EQ:. [A2.30]
0<k<n

PROOF.— We only prove [A2.29], and [A2.30] is proved similarly. Denote for any
z >0
T, =inf{n>0:|M,|+Qn>x}.

Then on the set {w : 7,,(w) > k} we have that |M,_ax| = |Mi| < z, and on the
set {w : 7, (w) = k} we have that

|My| < [My—q| + [My, — My_1| < |[Mp_1| + Wiy < .
Therefore, on the set {w : 7, > 0} we have for any k > 1 that

| Mz k] < . [A2.31]
Obviously, we can estimate the following probability from above:

P{[M], >2*} <P{r, <n}+P{r >n,[M], >2*}.

Now, on one hand,
P{m <n} = P{ max (|Mk| + W) > x}

and on the other hand, it follows from Doob’s optional theorem that

E(Minr, | Fro—tyar,) = M—1)nr, -
Therefore,
P {7, >n,[M], >2*} <P{r, >n,[M] rn > 2}
<2 ?Elr, sn[M]ronn < 27 *Ely, 50[M]r an

Te ATV

=2 %Elr50 Y (Mg — My_1)°
k=1

= $_2E17$>0 Z(Mk/\‘rz - (]\4(1671)/\736)2
k=1

= $72E]17-:1:>0 Z(MI?ATT - 2Mk/\7-a:M(k—1)/\Tw + M(2k71)/\7'm)
k=1

< $72EHTI>OM5AH < 27 2E(|Mppr, | A2)? < xigE((Ogll?‘é( | My |) A )2,
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where the inequality | M-, | < |[Myuar, | A follows from [A2.31].

Therefore, if we set 0 - co = 0, then
E[M]/? = / P{[M], > 2’} dx

= / P{ max (|Mg| + Q) > 33} dz + E/ max de
0 0

0<k<n 0<k<n 2

M 0o (M*)Q
<E max |My|+E max Qk+E/ dx—i—E/ ——dx
0<k<n 0<k<n 0 X

*
n

< EM; +EQ} + EM;; + E((M;)?- (M})™') = 3EM; + EQ}.. O

Now we introduce the Davis decomposition of the martingale. As before, we use
the notation (AM),TL = Maxi<i<n |Mk — M4 ‘,

1, = Liam, <2am); s Lni=1— 1.
Let M = {M,,, F,,n > 0} be a martingale, M, = 0.

DEFINITION A2.13.— The Davis decomposition of a martingale M is a
decomposition of the form

M, = M + M, [A2.32]
where
Mg =0, AM, = M;, — M, , = Q) — E(Q|Fn-1),
Q! = AM,1,, My =0, AM, =M, — M, _, [A2.33]

= Q) +E(QL|Fu1), Q=AM,T,.

Note that, consequently, M, and M;L' in the decomposition [A2.32] are
martingales.

LEMMA A2.8.— The components of the decomposition admit the following upper
bounds:

|AM,,| < 4(AM);,_y, [A2.34]
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SIAM <3 (Qu] + D E(IQy ]| Fa-a)
k=1 k=1 k=1

<2(AM); + > E(Qy

k=1

Fr-1). [A2.35]

It follows from [A2.35] that

EY [AM,| < 4E(AM);,. [A2.36]
k=1

PROOF.— The upper bound [A2.34] immediately follows from [A2.32] and [A2.33]
because |Q’,| < 2(AM)*_,. Further, E(Q,|Fn_1) = —E(Q,|Fn_1), whence the
first inequality in [A2.35] follows. The second inequality can be checked as follows:
on the set {|AM,| > 2(AM)},_, } we have that

|AM,| +2(AM);,_y < 2|AMy| < 2(AM);,.

Therefore,

Q| = |AM|Tan, s2(am)= < 2((AM);, — (AM)} ),

n—1

*
n—1

and

> Qx| < 2(AM);,. [A2.37]

k=1

Inequality [A2.36] is a straightforward consequence of [A2.35] and [A2.37]. O

A2.7. Strong laws of large numbers

In this section, we formulate different conditions for the classical strong law of
large numbers (SLLN), i.e. SLLN for the sequences of random variables. We consider
a sequence {X,,,n > 1} of random variables, X,, € £1(Q, F,P) and EX,, = 0,
n > 1 (centered random variables). Denote .S,, = Z?:l X;, n > 1. The first result is
a standard SLLN for iid sequence; we formulate it without centering assumption.

THEOREM A2.18.— Let { X,,,n > 1} be an iid sequence, X, € L1(Q2, F,P), EX,, =
m, n > 1. Then

Sy
— — m a.s.as n — oQ.
n
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The following result was proved by Kolmogorov [KOL 30].

THEOREM A2.19.— Let {X,,n >1} be a sequence of independent random

variables, EX, = 0, X,, € L2(Q, F,P), n > 1L If> > EX S

n=1 n2 — 0
a.s. as n — oQ.

=5 < 0o, then

Now, consider the Marcinkiewicz-Zygmund result ([LOE 78]), generalized in the
paper [KOR 14].

THEOREM A2.20.— Let {X,,,n > 1} be pairwise independent identically distributed
centered random variables such that E|X1|P < oo, for some 1 < p < 2, then

Sn

nt/p

Denote ¥ the class of functions ¢ : Ry — R;\{0}, such that #)(x) is non-
decreasing on [z, +00) for some zo > 0, and >~ L__ < co. The examples of

n=1 ne(n)
Y € Ware Yp(z) = 20, (x) = (log )49, 8§ > 0.

Also, recall the notion of orthogonality: we say that the random variables
{X,,n > 1} are orthogonal (uncorrelated), if X,, € L5(£2, F,P) and

The next two results generalize SLLN to orthogonal random variables. The first
result is one of the forms of Rademacher-Menchov theorem ([RAD 22, MEN 23]).

THEOREM A2.21.— Let {X,,,n > 1} be a sequence of centered uncorrelated random
variables, {a,,n > 1} be a non-decreasing sequence, a,, > 0, a,, — 00, n — 00,
and

oo

Z ”logn<oo

Then —>Oas asn — oQ.

The second result is another form of SLLN for uncorrelated random variables. It
was proved by V.V. Petrov [PET 75].

THEOREM A2.22.— Let {X,,,n > 1} be a sequence of centered uncorrelated random

variables. If Y i, EX? =0 (ﬁ) for some function 1) € W, then 2= — 0
a.s. asmn — oQ.
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A2.8. Fundamental martingale related to fractional Brownian motion

Our goal is to transform fractional Brownian motion with the help of some singular
kernel in order to get a martingale. For this purpose consider the kernel

li(t,s) = Cps? H(t —s)3 Mgy,

N

where C; = (2 sl %F 531;)2311{() o H)) . For technical simplicity, let H € (3,1). Then,

by using the equality

1
|t et = Bn - ),
0

forany € (0,1),2 € (0, 1) (see, for example, [NOR 99, lemma 2.2]), and denoting
o = H — %, we obtain that for any ¢ > 0

1
:tI’QQ(C}{)QQHa/ w1 —u) [A2.38]
0

1
(/ (1—5)"% Yu— s|2a_1ds> du
0

— 1'2(Cy)*2HaB(a, 1 — ) B(1 — a, 1 — @)

o0 T@ =20 ()T(1 — ) 4o,
O e <

Therefore, the integral fot g (t,s)dBE is well defined. Further, similarly to
[A2.39], for any 0 < t < t/, we obtain that

E/lHtsdB/ (t',s)dBH

= (Ch) 2Ha/ (t—u) u™“

(/ YTy — 5|2°‘1d5> du [A2.39]
0

= (Cy) 2Hat1 22B(a,1—a)B(1—a,1—a) =t
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Evidently, fg I (t, s)dBH is a centered Gaussian process. Moreover, from [A2.9],
we obtain that forany 0 < u < t < o' <t

t u
E (/ la(t',s)dBY _/
0 0
t u
X (/ Iy (t,s)dBH —/ Ly (u, s)dBf) =0.
0 0

Thus, the increments of fot g (t,s)dBE are uncorrelated, and hence independent.

It follows that M := fot g (t,s)dBH is a Gaussian martingale w.r.t. its natural
filtration

’

lH(u’,s)dBf>

Furthermore, we have that forany 0 < s < tand H > %
E(MfH . MJJ)Q — 42-2H _ 2-2H < (t- 5)2’2H

whence M is a continuous process, see remark 6.8. Its quadratic variation coincides
with quadratic characteristics and both equal [M*], = ¢*=2#. The process M* is
called the Molchan martingale, or the fundamental martingale, since it was considered
originally in the papers [MOL 69a, MOL 69b]. See also [NOR 99, MIS 08].

A2.9. Asymptotic behavior of the weighted Wiener process and
fractional Brownian motion
THEOREM A2.23.— Let § > 0. Then, 7i/drs — 0 a.s. as T — oc.

PROOF.— Consider any sequence {T},,n > 1} such that T},.1 > T}, and T,, — oo as
n — o0o. Then it follows from the martingale property of the Wiener process that for
any 7 > 0

/2+6
Wi 1 Tn
P{ sup yeE; > <P sup  |Wy| > -

T <t<Tny Ty <t<Tpi1
1/2+46
Tn/ + n2Y
<P sup |Wy| > > < a5 Lot
0<t<Thi1 n Ty
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. . 2
Now our goal is to choose 7}, and ~ so that the series S = >~ | Tnlif%TnH

converges. This will be the case if we choose v = 1, T,, = n" and n > 3 . Then

n2y
@Tn+1 = n2—(1+25)n(n +1)7 < 21270,
and 2 — 20n < —1, therefore the series S converges. And then it follows from the
Borel-Cantelli lemma that for any w € €', P{Q)'} = 1, there exists ny = ng(w) such
that for any n > nyg

|We| | Wi

— 5= = Inax sup
t1/2+5 k>n Tk<t<Tk+1 t1/2+6

S

sup
t>T,

<

which means that sup;s,» W < % The last statement implies the convergence

tCY
%—)O,T—)ma.s. O

Now we can prove a similar result concerning the asymptotic behavior of fractional
Brownian motion.

H
THEOREM A2.24.— Forany § > 0 % — 0a.s. ast — oo.

PROOF.— According to theorem 1.10.3 from [MIS08], for any p > O,
CISH) = Esupgc<; |BtH|p < +oo. Taking this into account, together with
self-similarly of B¥, we get that for any n > 1 and § > 0

| H| | H| nfto
P sup >— <P { sup |B,| > }
n<t<nt1 tHH0 7 ny n<t<n-+1 n?

=P su |BH| > ﬂ < (1+1>PH (n'y 5) E su ‘BH‘p
B n%lﬁgﬁl R A n O<tI<)1

< CZ()H)np('Y*J).

Choose v =  and p > 2. Then

[e.°] H o0
Sl sw ak > ) <o

n<t<n-+

By the Borel-Cantelli lemma, for w € €', P{{)’} = 1 there exists n(w) such that
for n > ng(w)

B _ 1 B _ 1

or sup < —,
n<t<oo tH+o n6/2

L tHTS = 32

sup
n<t<n+

and hence the proof follows. O
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A2.10. Miscellaneous

LEMMA A2.9.— Let {&,,n >0} and {C,,n > 0} be two sequences of random
variables, and {£,,} 4 {Cn} Then &, — &, n — 00 a.s. <= (,, — (o, N — 00 aA.S.

PROOF.— We have two following equalities for the events:

Goa=-NUN {fk—£o|<;},

m=1n=1k=n

{Gn = G} = ﬁ [j ﬁ {Ck—Co|<;}.

m=1n=1k=n

Therefore,
o0 o0 1
P{& — &} mlgnOOP{U N {|§k —&ol < m}}
n=1k=n
~ 1
= lim lim P {|§k—f|<}}

N
. . . 1
- Ai?,onlﬂwinoop{kﬂ {6 -l < m}}

=N

m—00 n—00 N —00

N
= lim lim lim P{ﬂ{|Ck‘<0|<nl%}}:P{Cn_>C0}~ O

k=n

LEMMA A2.10.— Let {&,,n > 1} be a non-decreasing (non-increasing) sequence of

random variables. If &, 5 (én 5 0) as n — oo, then &, — oo with probability 1
(&, — 0 with probability 1) as n — oc.

PROOF.— Consider only non-decreasing sequences, and non-increasing are

considered similarly. Since &, 5 00, for any K > 1 there exists n(K) > 1 such that
P{& ) < K} < 27K Then it follows from the Borel-Cantelli lemma that
fn(K) — o0 a.s. as K — oo, and then it follows, from the fact that &, is
non-decreasing, that &, — oo a.s. as n — oo. U
LEMMA A2.11.— Let§ € £,(Q, F,P),

+==1,1<p < oo. Then,

1,1
P q

1
sup  Elén| = (El¢[”)”
n:E[nl=1
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PROOF.— Without loss of generality assume that E|£|” > 0. It follows from the Holder
inequality that for any 7 with E|n|? = 1 that

El¢n| < (Bl¢[") P (Bln|") " = (Blg[?)"/".

Now, substitute 1 = % Taking into account the equality (p — 1)q = p, we
get that
€|(p_1)q) E[¢P
Ejnlt =E ( - —1.
" Ber )~ Blep
Further,
_ E|§|P o P 1/17
Elén| = [CEDEC (El¢[P) ",

and the proof follows. O
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backward Kolmogorov equation, 172
bi-fractional Brownian motion, 50
Brownian

bi-fractional, 50

bridge, 50, 240

fractional, 48, 152

geometric, 89, 238

motion, 24, 175

sub-fractional, 50
cadlag, 91, 321
call option, 267
compact set, 313
compound Poisson process, 33, 36
conditional

expectation, 339

probability, 343

regular, 343
consistency conditions, 11

in terms of characteristic function, 12
contingent claim, 267

attainable, 268
continuity

Holder, 152

in £L2(Q, F,P), 133

in probability, 131

of operator, 326

stochastic, 131

uniform, 320

covariance function, 44
cylinder set, 13
elementary, 9

D, E

decomposition
Davis, 355
Doob, 111
Krickerberg, 349
diffusion coefficient, 233
estimator, 277
for fractional Brownian motion,
283
diffusion
homogeneous, 179
matrix, 175
model of financial market, 261
process, 175, 250
Doléans—Dade exponential, 224
Doob decomposition, 111
Doob’s inequality, 129
drift, 175, 233
estimation, 273
estimator, 279
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dual predictable projection, 116
elementary function, 52
equation
backward parabolic, 259
Chapman-Kolmogorov, 159, 165
Kolmogorov, 182
Langevin, 239, 293
resolvent, 170
Riccati, 304
stochastic differential, 233
Tanaka, 248
Wiener—Hopf, 299
equivalent martingale measure, 264
existence, 266
equivalent probability measure, 117
estimator
strongly consistent, 273
European option, 267

F,G

fair price, 269
filtering problem, 293
filtration, 85
natural, 86
finite-dimensional distributions, 11
formula
Clark—Ocone, 231
Feynman—Kac, 259
1t6, 204
stochastic integration by parts, 232
forward Kolmogorov equation, 172
fractional Brownian motion, 48
continuity, 152
estimation, 281
Holder continuity, 154
two-sided, 62
function
cadlag, 321
continuous, 320
covariance, 44
D-regular, 321
elementary, 52
Haar, 67
mean, 44
measure-preserving, 345
of bounded variation, 323
payoff, 267

Rademacher, 113

Schauder, 68

transition probability, 159
Gaussian

distribution, 332

process, 44

vector, 39
generator, 165, 171, 252, 326

diffusion process, 180
geometric Brownian motion, 89, 238
Girsanov density, 226
Gronwall inequality, 324

H, I, K

Holder continuity, 152
Haar function, 67
hitting time, 92
Hurst index, 48
estimator, 281
consistency, 282
independent
collections of events, 25
random variables, 5
stochastic processes, 25
indistinguishability, 133
inequality
Burkholder—Davis—Gundy, 113, 215
Gronwall, 324
Hardy-Littlewood, 58
Khinchin, 114
Marcinkiewicz interpolation, 315
infinitesimal
generator, 259
operator, 180, 326
integral
Ito, 190
stochastic, 190
Wiener, 55
with respect to a Gaussian process, 52
with respect to fractional Brownian
motion, 57
It6 formula, 204
It6 integral, 190, 193
continuity, 197
with respect to integrand, 202
extended, 202
locality property, 199



Index 371

multidimensional, 212
1td isometry, 191
1td process, 203, 238
multidimensional, 213
1td representation, 228
Kalman-Bucy filter, 295
Kolmogorov equation
backward, 172, 182
diffusion, 182
forward, 172, 184
Krickerberg decomposition, 349

L,M,N

A-system, 329
Langevin equation, 293
law of one price, 268
least squares estimator, 274
Lévy
characteristic exponent, 35
martingale, 89
process, 35, 168
linear
normed space, 325
operator, 326

Mandelbrot—Van Ness representation, 62

Markov chain, 163
continuous-time, 165
Markov
existence, 160
homogeneous, 163
moment, 90
process, 157
Markov semigroup, 169
generator, 171
martingale, 86
Lévy, 89
maximal inequality, 109, 129
Molchan, 359
multiplicative, 88
optional stopping, 105, 127
quadratic characteristics, 116
uniformly integrable, 100
with continuous time, 127
with discrete time, 96
martingale
difference, 87
representation, 230

transformation, 89
mean function, 44
measure-preserving transformation, 345
modification, 133
Molchan martingale, 359
natural filtration, 86
non-arbitrage price, 269
norm, 325
Novikov condition, 225
numéraire, 262

o,P

operator
bounded, 326
continuous, 326
infinitesimal, 172, 326
linear, 326
resolvent, 169
semigroup, 326
optimal filter, 295
Wiener-Hopf equation, 299
Ornstein—Uhlenbeck process, 51, 239, 293
payoff function, 267
m-system, 25, 329
Poisson process, 27, 36
compound, 33, 36
homogeneous, 28
polarization identity, 176
portfolio, 262
admissible, 263
arbitrage, 264
discounted value, 263
replicating, 268
self-financing, 262
value, 262
probability measure
equivalent, 117
equivalent martingale, 264
ergodic, 347
probability space, 3, 85
process
diffusion, 175, 250
Feller, 180
Gamma, 37
Gaussian, 44
Halton—Watson, 103
1t6, 203
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Lévy, 35

Markov, 157

Ornstein—Uhlen, 293

Ornstein—Uhlenbeck, 51, 239

Poisson, 27, 36

compound, 33

renewal, 6, 30

risk premium, 262

simple, 190

stationary, 346

stochastic, 4

Wiener, 24, 152
progressive measurability, 189
put option, 267

Q,R,S

quadratic
characteristics, 116
variation, 113
dual predictable projection, 116
Radon—Nikodym derivative, 117
random
dynamical system, 187
variable, 3
walk, 6, 87
renewal process, 6, 30
replicating portfolio, 268
representation
1to, 228
Lévy-Khinchin, 35
Mandelbrot—Van Ness, 62
martingale, 230
Molchan—Golosov, 63
resolvent operator, 169
risk premium, 262
sample
path, 5
space, 3
Schauder function, 68
self-similarity, 79
semigroup, 326
generator, 171
Markov, 169
separant, 135
Sharpe ratio, 262
stable
Lévy motion, 37

Lévy subordinator, 38
stationary process, 346
stochastic
basis, 86
continuity, 131
derivative, 230
differential, 203, 213
of product, 214
stochastic differential equation, 233
filtering, 294
generator, 252
linear, 238
solution, 234
a priori estimates, 234
comparison, 257
continuous dependence on
coefficients, 245
diffusion property, 250
existence and uniqueness, 236
Markov property, 244
moments, 241
non-negativity, 258
regularity with respect to initial
data, 242
strong, 234
viability, 252
weak, 247
Tanaka, 248
stochastic
equivalence, 133
exponential, 224
process, 4
D-regular, 143
adapted, 86, 189
continuous, 150
continuous in probability, 131

finite-dimensional distributions, 11

generated o-algebra, 19
indistinguishable, 133
Markov, 157

modification, 133

predictable, 91

progressively measurable, 189
self-similar, 79

separable, 135

stochastically equivalent, 133
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with independent increments, 8,
21, 88, 168
with independent values, 7, 133
with stationary increments, 152
without discontinuities of second
kind, 147
stopping time, 90
strategy, 262
strike price, 267
strong law of large numbers, 122, 356
for Itd martingales, 218
for martingales, 124
Marcinkiewicz—Zygmund, 357
sub-fractional Brownian motion, 50
submartingale, 87
existence of limit, 98
maximal inequality, 108, 109
subordinator, 35
stable Lévy, 38
subspace, 326
supermartingale, 87
maximal inequality, 108

TUW

theorem
Birkhoff—Khinchine, 346
Cantor—Heine on uniform coninuity,
320
de la Vallée—Poussin, 338
Doob’s optional stopping, 105, 127
Dynkin’s -2, 330

ergodic, 346
for power variations, 77
functional monotone class, 331
Girsanov, 118, 226, 266
Hardy-Littlewood, 58
Kolmogorov’s on the existence of
stochastic process, 15
Kolmogorov—Chentsov, 150
Lévy characterization, 220
Lévy convergence, 104
Marcinkewicz interpolation, 315
Marcinkiewicz—Zygmund, 357
time parameter, 5
trajectory, 5
cadlag, 91
transition probability function, 159
homogeneous, 163
uniform integrability, 100, 335
de la Vallée—Poussin criterion, 338
wealth, 262
white noise, 187
Wiener process, 24, 46
continuity, 69, 152
diffusion property, 181
explicit construction, 67
Holder continuity, 154
Lévy characterization, 220
multidimensional, 26
nowhere differentiability, 74
two-sided, 60
with a drift, 36
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