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PREFACE 

The present volume consists of a selection of 31 papers which were pre
sented at the conference Statistics 2001 Canada: Fourth Canadian Conference 
in Applied Statistics held at Concordia University, Montreal, Quebec, Canada 
during July 6-8, 2001. The Conference attracted approximately 250 partic
ipants from all over the globe and featured 144 speakers in seven plenary 
sessions and 42 invited and contributed papers sessions. 

This conference was held as a sequel to the ones previously held at Concor
dia University in 1971, 1981 and 1991 as the first, second and third Canadian 
conferences in applied Statistics, all under the chairship of Professor T.D. 
Dwivedi. The 1971 conference was initiated with local Statistics groups in 
Montreal and Ottawa, and led to the creation of the Statistical Society of 
Canada. The next two conferences were held under the joint sponsorship of 
the two departments: Mathematics &: Statistics and DS & MIS. The Confer
ence brought eminent academics and practitioners in the discipline of Statis
tics from all over the world, a majority mainly from Canada and USA. The 
tradition of these conferences has become a permanent feature in the minds 
of the Statistics community on the Canadian scene - to hold such conferences 
every 10 years in order to assess the existing techniques and new directions 
in Applied Statistics. 

The success of the Conference was summarized by one of the Plenary 
Speakers, in an email to me: "This is just a note to express my pleasure in 
attending the highly successful conference you have arranged. You indeed did 
a splendid job." Here, "you" must be understood in a plural sense. The task 
of this magnitude required help from many people, and the organizers are 
thankful to all those who helped. The success of the Conference is a pride 
for the team on the Organizing Committee, Scientific Committee and Student 
Volunteers. 

The papers included in this volume have gone through serious refereeing 
process. The editorial contribution provided by the members of the Editor
ial Board and many referees is highly appreciated. Furthermore, I am very 
thankful to all the authors for submitting their papers and continued coop
eration. I would also like to thank Mr. Anthony Doyle of World Scientific 
Publishing (UK) Ltd. for enthusiastically supporting this project. 

I sincerely hope that this volume will prove to be an important research 
resource for the scientific community. 

Yogendra P. Chaubey Concordia University 
Montreal, May 2002 
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ON THE ESTIMATION OF SIZE A N D M E A N VALUE OF A 
STIGMATIZED CHARACTERISTIC OF A H I D D E N G A N G IN 

A FINITE POPULATION 

RAGHUNATH ARNAB 

Department of Statistics, University of Durban-Westvile, Durban-4000, South 
Africa 

SARJINDER SINGH 

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, 
Canada 

E-mail: sarjinder@yahoo.com 

Arnab and Singh 1 developed theoretical formulae for estimation of size and the 
mean value of a sensitive character of a sub group (such as hidden gang) of a finite 
population using a randomized response survey in a unified set-up. In this article 
expressions for the estimators of the population characteristics and their variances 
are obtained for various sampling strategies used in practice. Performance of the 
proposed estimators are compared using numerical studies. 

1 Introduction 

In the collection of data of a sensitive nature, like induced abortion, drug 
addiction, suffering from AIDS etc. directly from the respondents, the re
spondents very often report untrue value and even refuse to answer. Warner 
8 introduced an ingenious method known as randomized response (RR) tech
nique for collection of data of a stigmatized nature by protecting confidential
ity of respondents and produced an unbiased estimator for the proportion of 
persons belonging to a certain sensitive group under simple random sampling 
with replacement (SRSWR). This technique was extended for quantitative 
characteristics and or other sampling designs by various authors: see Chaud-
huri and Mukherjee 3 and Arnab and Singh x. Singh, Horn and Chowdhury 7 

were the first who used RR technique to estimate population parameters for 
both the qualitative and quantitative characters. 

Arnab and Singh 1 extended the method of Singh, Horn and Chowdhury 7 

for SRSWR for an arbitrary sampling design. In the present investigation we 
have studied the performance of a few well-known sampling strategies which 
may be used in estimating parameters of two population characteristics in 
practice. Efficiencies of the proposed strategies are compared on the basis of 
simulation studies and a real survey data. 

1 
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2 Formulation of the Problem 

Suppose that a finite population P consists of N (known) identifiable units. 
Let NQ (unknown) denote the total number of persons belonging to some 
sensitive group (Gang) G(G P) and Xi be the value of the stigmatized quan
titative character X under study for the i—th person in the Gang G. Arnab 
and Singh * considered the following sampling strategies for estimation of pro
portion -K = 2j£- and the mean px = ^2i=1 Xi/N of the sensitive character^ 
for elements of the population P belonging to the subgroup G in a unified 
setup. 

From the population P , two independent samples s\ and «2 of sizes ni and 
ri2 are selected by using some suitable sampling design p\ and P2 respectively. 
If the respondent labeled i, selected in the sample sk(k = 1,2) belongs to the 
sensitive group G then he or she has to disclose the true value Xi. On the 
other hand if the respondent does not belong to the sensitive group G the 
respondent has to perform certain randomized response trial using a suitable 
randomized device. It is expected that the chosen randomized device Dk 

should produce a value similar in range to the confidential character X for 
generating more co-operation from the respondents. 

Thus each of respondents selected in the sample will supply either the 
true value of X or a number obtained by randomized device Dk. The confi
dentiality of the respondent is maintained since the interviewer will not know 
whether the respondent is supplying true value or a value generated by the 
randomized device. The mean and variance of the randomized device Dk are 
assumed to be known to the interviewer and will be denoted by 9k and <J\ 
respectively. Thus for the i-th respondent, included in the sample sk, k — 1, 2, 
we obtain a randomized response: 

_ J xit iiieG . 
Zki-\Rki, MiiG W 

where Xi and Rki denote respectively the true value of the stigmatized 
character X and the response obtained by the randomized device. The above 
response can be written as 

zki = xJi + (1 - h)Rki = xJi + I[Rki (2) 

where 

f 1, if i € G 
* \ 0 , MiiG (3) 
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with I\ = \ — I{. Denoting for ER(VR) as expectation (variance) with respect 
to the randomize device, we get 

ER(ZH) = xJi + I'iOk = 7i (say) (4) 

and 

VR(zki) = I'MRki) = I-al (5) 

Conditional on the randomized device Dk, let the population mean of 
z-values be given Zk = 53»=i Zhi/N. By using the standard results in finite 
population survey sampling, it may be estimated by a linear homogeneous 
unbiased estimator given by 

Tk = Y, KiZki/N (6) 

where bSki are known constants satisfying the following design unbiasedness 
condition Ylsh3i bSkiPk(sk) = 1 with pk{sk) being the probability of selection 
of the sample sk for the design pk. It is easy to see from (4) as in Arnab and 
Singh 1: 

E(Tk)=nnx + (l-n)0k,k = l,2. (7) 

This gives rise to unbiased estimation of n and fix as given in the following 
theorems. 

Theorem 2 .1 . An unbiased estimator of the proportion 7r is given by 

* = * - ^ (8> 

with the variance 

= V(Ti) + V(T2) 
[ ) ( 0 1 - 0 2 ) 2 ( ) 

Theorem 2.2. An approximately unbiased estimator of \ix is given by 

A* = j - (10) 

where di = T20i - Ti62 and d2 = (T2 - 02) - {Ti - #1). An approximate 
expression of the variance of the above estimator is given as 

V{fix) = (6, - fix)
2V(T2) + (92 - /ix)2V(T!) (11) 
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Remark: Note that the variances of the unbiased estimators in the 
above theorems may be obtained by replaing V{T\) and V{T2) by their 
respective unbiased estimators. The following theorem is useful in this regard. 

Theorem 2.3. The variance of Tfc and its unbiased estimator are respectively 
given as 

V{Tk) = {al/N') ^ a i ( f c ) j : + ^ 7 t
2 ( f c ) { a i ( f c ) - l } 

An unbiased estimator of the variance V(Tk) is given by 

(12) 

V(Tk) = Vk + ^(l-n(k)) (13) 

where 

ai(k) = X!6^P f c(S f c) ' a y ( f c ) = J2 KibskjPk{sk), (14) 
Sk.Bi sk3i,j 

«i - I P E ;§)<"*> - » + E E ^ c o - ») («) 
and 

*<*>-£E;$o- ( • • ) 
Now any of the standard sampling strategies, such as Horvitz-Thompson 

5, SRSWR, SRSWOR, Hansen-Hurwitz 4 , and Rao-Hartley-Cochran 6 can be 
used to obtain Tk in obtaining the estimator of n and fix. The results are 
summarized in the following section. 

3 Estimators under Standard Sampling Strategies 

The results given below under different strategies can be obtained by using 
different choices of T\ and Ti in the general estimator of 7r and \ix described 
in section 2. 



3.1 Horvitz- Thompson Estimator Based on an Arbitrary Sampling 
Scheme 

The Horvitz-Thompson 5 %HT of 7r, based on arbitrary probability sampling 
scheme can be obtained by choosing bSki — | , , and is given by 

T* = JvE^= T ^ (17) 

The variance of TkHT is obtained by using Theorem 2.1 and is given in the 
following theorem. 

Theorem 3.1 . The variance of TkHT is given by 

(18) 

+^(E(Ay-1)+EE^(fc))+2^(Ex» E M*))] (19) 
ieG ^ } i& jeG ieG jfreG 

where G is the complement of the set G and Pij(k) = ^ !^rfc|fc) — 1 for k = 1, 2. 
Using standard results in sampling with unequal probabilities, we can set 

two unbiased estimators for VkHT gibem below: 

*& - ̂ E 4 < 4 -1)+E E m-/"m] 4 c - *' 
(20) 

and 

V, (2) 
fcHT 

_ 1 y ^ y ^ 7ri(fc)7Tj(fc) - 7Tij(fc) , Zfcj Zfcj ^2 , akn ^\ (01\ 

-N*1Z£ ^m {W)~^m] +^(1_7r) (21) 

The first estimator is obtained from (13) and the second one is an alter
native estimator. 

3.2 SRSWOR Sampling Scheme 

The results given above may be specialized to the SRSWOR sampling by 
substituting, 7r;(fc) = ^ and ^( fc ) = n^h^Sw • The expression for Tk, 
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V(Tk) and VkHT for SRSWOR are obtained as folows: 

Tk = — V Zki = z(k) = TkwoR (22) 

V(TkWOR) = ^ — ^ + ( - - i ) # T ^ - ^ + 7T(1 - 7r)(^ - 0fc 
nk nk 

(23) 

and 

^ = ̂ -> 'W + ^ 1 - ^ (24) 

where (JVG - l)s* = £ ^ _ (^.^xtf/No and (nfc - l)^(fc) = 

E i 6 S f e ( ^ - ^ ( f c ) ) 2 

5.5 Hansen-Hurwitz Estimator Based on PPSWR 

Here we assume that the sample sk of size nk is selected by PPSWR method 
of sampling with pi as a probability of selection for the i—th unit of the 
population at every draw. Using the Hansen-Hurwitz 4 estimator of mean for 
PPSWR, an unbiased estimator of IT(IX + (1 — ir)6k is obtained by choosing 
bSki = rh^fL and it is given by 

where ni{sk) denotes the number of times the ith unit appears in the fcth 
sample Sk and Zki denotes the average of the randomized responses from the 
sample sk. For the PPSWR sampling scheme we have: 

Theorem 3.2. The variance of Tknu is given by 

7V2nfc 

-/v2")= r-t Pi 
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34 SRSWR Sampling Scheme: 

Specializing the above result for the SRSWR sampling, an unbiased estimator 
of TT)IX + (1 — ir)0k is obtained by putting rii(sk) = ^ - in T£ and is given by 

TkHH = — 5 3 Zki = z(fc) = TkWR-
Tlk .,_ 

(27) 
i&Sk 

The variance of TWR is obtained by putting pi — jf in the expression for 
V(THH)

 a n d is given by 

V{TkWR) = — [ncrl + TT(1 - 7r)(Mx - 6xf + (1 - TT)^] (28) 

where 

a* = iJzY,xi-> NG i€G 

3.5 Rao-Hartley-Cochran Strategy: 

Following the standard terminology of Rao, Hartley and Cochran 6 (RHC) 
strategy, an unbiased estimator of TT/J,X + (1 — ir)Ok is given by 

N'tz* 
(29) 

for k = 1,2 where Pi(k) denotes the sum of p;'s belonging to the ith group 
Qi(k)(i = 1,2, ...,rifc) that was formed in selection of sample sk by RHC 
sampling scheme. For the RHC sampling scheme we have: 

Theo rem 3.3. 

2 

V{TkRHc) = j ^ 
N(nk - 1) 
nk(N 

ZH\^T'+ N~Uk V k 
- 1 ) 4 ^ * n fc(JV-l)4-Pi 

+ 
N-nk 

N2{N-1) ?H*> (30) 

4 Relative Efficiency of Estimators 

We next numerically compute the relative efficiency of various strategies. The 
measure for this is called Percent Relative Efficiency (PRE) of ei relative to 
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Table 1. Percent Relative Efficiency of SRSWOR vs. SRSWR for estimating proportion 

N 
100 
500 
1000 
1000 
5000 
10000 
10000 

nx 
20 
100 
100 
200 
500 
2000 
2000 

"2 

20 
200 
200 
200 
500 
2000 
3000 

•K 

0.1 0.3 0.4 0.6 0.7 0.8 0.9 
109.4 115.9 117.5 119.6 120.5 121.4 122.6 
114.8 129.7 133.8 138.7 139.9 140.3 139.5 
106.9 112.9 114.4 115.5 116.6 116.7 116.5 
109.3 116.2 117.9 119.1 121.0 121.9 122.9 
104.4 107.4 108.2 108.8 109.5 109.9 110.3 
109.3 116.2 117.9 119.2 121.1 121.9 123.0 
112.3 123.2 126.1 128.1 130.7 131.5 131.9 

e<i defined as 

P f lE ( e i , e a ) = 100x V"r(e2\ (31) 
Varei 

4-1 SRSWR vs. SRSWOR 

In order to study the performance of the proposed estimator under SRSWOR 
sampling with respect to SRSWR sampling design, we considered here a few 
fixed values of the parameters of the sensitive character and that of the ran
domization devices. We considered a hypothetical situation with 6\ = 20.5, 
<J\ = 2.50,02 = 25.6,a| = 2 .54,^ = 20 and S* = 2.50. PRE of SRSWOR 
sampling with respect to SRSWR for estimating proportion for a selection of 
values of N, ni, ni and n is summarized in Table 1. It has been observed that 
for moderate sample sizes and population sizes the relative efficiency of SR
SWOR sampling over SRSW^R sampling remains appreciable. Similar values 
are obtained for estimating fix, which are not displayed here. 

4.2 PPSWR vs. SRSWR and SRSWOR 

We consider here the parameters from the following small artificial popu
lation, which was used for checking the behaviour of the estimators under 
SRSWOR: 

We observed that it is possible to make PPSWR sampling more efficient 
than SRSWR and SRSWOR sampling designs based on the choice of selection 
probabilities. For illustration we consider 9X = 63.5,of = 2.50,02 = 65.6 and 
a\ = 2.54. From the artificial population we have \ix = 65,5^ = 9,iVG = 3 
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Table 2. Values in an artificial population 

65 68 62 10 14 25 36 23 18 20 
10 25 39 25 36 47 45 24 25 36 

Table 3. Percent Relative Efficiency of PPSWR vs. SRSWR and SRSWOR 

TV 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

m = 
WR 

419.4 
207.1 
168.6 
152.3 
143.2 
137.3 
133.1 
129.9 
127.3 

n2 = 3 
WOR 
269.1 
152.4 
131.2 
122.1 
117.0 
113.6 
111.2 
109.3 
107.8 

TH = 5 
WR 

422.7 
207.9 
169.2 
152.9 
143.7 
137.8 
133.6 
130.4 
127.9 

n2 = 7 
WOR 
249.1 
133.8 
112.9 
104.1 
99.1 
95.8 
93.5 
91.7 
90.3 

and N = 20. We consider Pi = 0.07,P2 = 0.08,P3 = 0.06 and P4 = Ps = ••• = 
P20 = 0.79/17 = 0.046471. Here 7r = 3/20 = 0.15 and the percent relative 
efficiency of PPSWR sampling over SRSWOR sampling is 256.7 and 179.7 
percent Respectively, for n\ = 7i2 = 3. Similar experiments have been done by 
considering different values of n (except the value of NQ ) and changing the 
above artificial population accordingly, then the relative efficiency of PPSWR 
sampling over SRSWR sampling and SRSWOR sampling, respectively, for 
different choices of sample sizes and values of true proportion is given in 
Table 3. 

In case, the sample sizes are large relative to the population size, the loss 
in efficiency of PPSWR vs. WOR is not surprising. This may happen because 
in case of large sample sizes, WOR samples become more representative of the 
population and hence it may produce gains in efficiency with respect to any 
WR sampling design. It is more interesting to note that for small values of 
the true proportion of the gang, the PPSWR sampling shows efficient results 
than both designs for moderate sample sizes in comparison to population size. 

Similar results hold for efficiency of estimators of fj,x. 
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Table 4. Percent Relative Efficiency of RHC vs. PPSWR for estimation of w 

IT m = Tl2 = 3 Til = 5, Tl2 = 7 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

102.5 
103.6 
104.2 
105.6 
107.4 
105.4 
103.9 
103.1 
102.8 

101.3 
102.6 
103.6 
104.5 
106.6 
104.6 
102.4 
102.2 
101.9 

Table 5. Percent Relative Efficiency of RHC vs. PPSWR for estimation of fj.x 

•K rii = ri2 = 3 n\ = 5, n-i = 7 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

110.2 
111.4 
113.6 
115.3 
116.3 
114.6 
113.2 
110.2 
108.2 

109.7 
110.4 
111.5 
112.5 
114.6 
112.5 
110.2 
109.8 
106.2 

4.3 RHC Scheme vs. PPSWR 

Percent Relative Efficiencies of RHC scheme vs. PPSWR have been computed 
for the same values of parameters as given in the earlier section and reported 
in Table 4, for estimating proportion. It is interesting to note that under RHC 
scheme there is slight but non-ignorable gain in efficiency over the PPSWR 
sampling for estimating proportion. However, for estimating fix, there may 
be considerable gain in efficiency under RHC scheme, as seen from Table 5. 
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UNEMPLOYMENT, SEARCH A N D THE GENDER WAGE 
GAP: A STRUCTURAL MODEL 

CHRISTIAN BELZIL AND XUELIN ZHANG 
Department of Economics, Concordia University, HSG 1M8 

and Statistics Canada 
E-mail: belzilc @vax2. concordia. ca 

Using a structural model in which the decision to search is indogenous, we analyze 
how various parameters such as the mean wage offer, the offer probability and 
the value of non-market time can explain the gender wage gap. The model, imple
mented on a sample of young Canadian men and women who suffered a permanent 
job displacement, is able to explain both the higher incidence of right-censored un
employment spells and longer completed unemployment duration for females. The 
structural parameters imply that around 30% of the gender re-employment wage 
gap is explained by the presence of young children. 

1 Introduction 

For several decades, labor economists have tried to explain the existence of 
the gender wage gap. As women have constantly increased their share of the 
labor force, interest in the persistence of a significant difference in wages paid 
to female versus male workers (given identical observable characteristics) has 
grown steadily. To date, economists have used two fundamental economic 
theories to explain the gender wage gap: human capital theory and statistical 
discrimination. 

In the human capital approach, which dates back to Mincer and Polachek 
5, the gender wage gap is explained by the fact that females are relatively more 
productive in household activities than males. For this reason, women tend 
to invest less in labor market human capital or tend to work in occupations 
which do not require heavy human capital investments. The gender wage gap 
is therefore a result of discontinuous work pattern expectations. 

The literature on discrimination has, on the other hand, focused on the 
differential treatment of male and females workers who are otherwise identi
cal. The notion of discrimination, dating back to Becker 1, is based on the 
fact that employers, facing uncertainty about individual productivity or indi
vidual labor force attachment, must sometimes focus on observed differences 
between males and females when hiring new workers. As a result, women may 
systematically receive lower wages or may be excluded from various occupa
tions. 

The approach to the gender wage gap suggested in this paper is quite 

12 



13 

different from most previous work. We use a partial equilibrium job search 
framework in order to investigate the gender differences in job search outcomes 
which take place following a permanent job displacement and analyze how 
much of the gender re-employment wage gap can be explained by the presence 
of young children. 

The model has several distinct features. First, the decision to search is 
endogenous. Using data on the willingness to search for a new job upon job 
displacement (participation data), we specify a model where both males and 
females may decide to drop out of the labour force. By allowing the decision 
to search to be endogenous, we avoid self-selection bias introduced if we were 
to sample only those women searching and work with duration and wage data 
(such as is typically done in the literature). Second, we examine the pos
sibility that the information on job search activities provided by individuals 
over-estimates the fraction of displaced workers who decided to search. Third, 
we do not rely on homogeneity assumptions. We use observable characteristics 
such as age, education, marital status and child status (number of young chil
dren) to parameterize three important aspects of the search process; the value 
of non-market time, the mean wage offer, the offer probability. Reservation 
wages are treated as a function of unknown parameters and exogenous regres-
sors; this must be solved using dynamic programming principles. Fourth, we 
also introduce measurement errors in observed re-employment wages. 

We believe that investigation of the gender wage gap using a structural 
model is particularly promising. First, the imposition of all the restrictions 
imposed by dynamic programming allows us to obtain separate estimates for 
all parameters of the mean wage offer and the reservation wage function. 
This means that we can actually compute how various regressors such as the 
number of young children, marital status, and education, effect on males and 
females differently. This can be achieved without having to impose exclu
sion restrictions such as those needed in reduced-form analysis of female wage 
functions. In other words, our model allows us to distinguish between supply 
side versus demand side factors affecting the gender wage gap. As a conse
quence, the structural estimates can be used to investigate gender differences 
in offered wages, reservation wages and re-employment wages, unemployment 
duration and on the incidence of non-participation following job displacement. 

The model is estimated from a sample extracted from the Canadian 
Labour Market Activity Survey. We use a sample of men and women who 
have experienced a permanent job displacement. The likelihood function is 
based on information on the decision to search or not to upon displacement 
(we refer to this as participation data), duration data and re-employment 
wages. 
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The paper is arranged as follows. In Section 2, the theoretical model is 
presented in detail. Section 3 is devoted to a discussion of econometric issues 
and a presentation of the likelihood function. The data set is presented in 
Section 4 while Section 5 is devoted to a discussion of the main results while 
an analysis of the gender wage gap resulting from the structural parameter es
timates is performed in Section 6. The conclusions are summarized in Section 
7. 

2 A Model with Endogenous Job Search 

To investigate gender differences in job search outcome, we specify a sta
tionary search model similar to the one estimated by Belzil and Zhang 2 to 
investigate child care and search costs. The model is applied to full-time male 
and female workers who are affected by a permanent job displacement. We 
disregard temporary layoffs. The model is constructed around the following 
assumptions. 

1. Expected lifetime earnings are maximized over an infinite horizon and 
discounted at rate 6 — T̂ — 

2. Individuals receive at most one offer per period and the probability of 
receiving an offer is given by £. Search is costless. 

3. The unemployed receive unemployment benefit b for each period of un
employment. 

4. For those who decide not to search, the value of non-market time per 
period is given by 

•d(K) = - exp(rK) 
T 

in which ~&(K) may be interpreted as the monetary value of the output 
produced at home, K denoting the number of young children at the time 
of the displacement. 

5. We assume that job offers are indexed by an hourly wage rate and that, 
upon acceptance, a job is held forever. Wage offers are normally distrib
uted with mean /x and variance a\. 

Using the previous assumptions, it is straightforward to derive the value func
tions associated with each state. These are 
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Vu = b + (3E[V] (2) 

V" = r7p (lexP(rK)^ (3) 

in which Ve(w) is the value of accepting employment at wage w, Vu is the value 
of unemployment (search) and Vn is the value of leaving the labour force to 
involve in household activities. The value of following the optimal policy in 
the future, E[V], is given by 

E[V] = — ^ [(1 - Ow* + £P(i» < w*)w* + £P{w > w*)E(w\w > w*)} (4) 

where w* denotes the re-employment reservation wage (for those who decide 
to search and remain in the labour force) . In the case where wage follow 
a normal distribution with density </>(-^Iii) and cdf $ ( ^ l i i ) , E[V] can be 
re-expressed as 

E[V\ = - L - L + K - M)*(^) + <^(^)1 + (1 - 0 (-^) 
(5) 

The necessary and sufficient condition to remain in the labour force and search 
(following displacement) is given by 

- ^ ( 1 exp(Tlo) < b + PE[V] = ^ K ) (6) 

3 Econometr ic Specification 

In this section, we present the estimation strategy used to investigate the 
gender wage gap and other related issues. 

3.1 Parameterization 

To take into account individual unobserved heterogeneity in the value of non 
market time, we allow the value of non-market time to incorporate a stochastic 
element: 

•d(K) =a + - exp(rK) 
T 

in which 

a~N(0,(T2
n) 

In order to introduce observed heterogeneity, we parametrize the offer prob
ability and the mean wage offer. Initially, the job offer probability is allowed 
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to depend on child status only. This might be relevant if for instance, those 
women with young children searching for a new job are less flexible or have 
less time to devote to search activities." To take this into account, we specify 
the offer probability as 

£ = exp(£o + £i^) 

We parametrize the mean wage offer distribution as a function of education 
binary variables (primary, secondary and university) indicating the highest 
degree attained by a given individual, and age dummies: agei (16-24, in
clusive), age2 (25-34, inclusive) and age3 (35-44, inclusive). Note that the 
reference groups are those who have a secondary education and are aged be
tween 25-34. 

M = fioj + Mi ' primary + ^2 • university + /x3 • age1 + (14 • age3 (7) 

where fioj, {j = 1,2) is an individual effect intended to capture unobserved 
heterogeneity in the mean wage offer. 

In order to estimate the discount factor and the sample proportion for 
the unobserved heterogeneity term, we use the following transformations: 

a exp(6/3) 
1 + exp(6/3) 

exp(My) 
1 + exp(/ip)' 

3.2 Likelihood Functions 

Let Si = 1 for those women who decided to search and 0 for those who dropped 
out. Using condition (6), the probability that a woman i will search is given 
by 

(8) 

where 

h(w*) = w* - - exp{rK) (9) 

The probability that a woman decides not to search, Pr(si = 0), follows 
trivially from equations 6 and 7. As it is the case in most economic surveys of 

aOf course, it is impossible to distinguish this hypothesis from the hypothesis that employers 
are less likely to offer employment opportunities to females with children. 

Pr(S i = 1) = Pr [a < h(w*)] = $ W) 
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the unemployed, some of the individual reporting that they are searching are 
still unemployed by the end of the survey time. For women, we only observe 
a censored unemployment duration. For these women who completed their 
unemployment spell, we observe a completed duration ti and a re-employment 
hourly wage Wi. Completed observations are indexed by the binary variable 
Ci = 1 while censored observations are indexed by Cj = 0 . 

It is well known that wage data is often subject to measurement errors. 
We assume that observed wages, wt are given by 

i.i.d. 

wt =wt+Et, withe t sim N(0,cr*) 

in which 
i.i.d. 

wt~n + et, withet sim N(0, <r„) 

Assuming that it and et are independent, then 
Ot=et + et i.i.d. N(0,CT2) 

(10) 

(11) 

(12) 

where erf = a\ + o\. It is easy to see that the joint probability of receiving an 
acceptable offer and observing a re-employment wage wt, is given by 

Pr(wt > w* ,wt) = l - * ( -
w* - n - ^t(wt - fx) 

(^(i-V))* -) 

where 

s/rt + ^I 

• 7 ^ ) d3) 
OQ Og 

(14) 

In the paper, we consider two distinct likelihood functions which differ 
according to whether or not participation data is judged reliable or not. 

1. Model with Participation Data (Model 1). When we rely on the 
answer provided by each individual to the question (s) pertaining to their 
job search status, the log likelihood function for the entire sample is given 
by 

Ll= X > S 1 .$ 
h(wT) 

' i-.Si=l 

MO 
+ 

log [(1 - ^(w*))^-1^. Pr(w > w*,w)] (15) 
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Model without Participation Data (Model 2). As reported in 
Section 4, we have found that quite a large number of individuals mis
takenly reported a willingness to search, For example, some individuals 
who reported they were not willing to work and were not searching for 
job after being laid-off were reemployed before the end of the survey, 
while a large number of individuals, reporting that they were searching, 
remained unemployed for a long period. We consider that the probability 
that an individual did not find re-employment by the end of the survey is 
the sum of the probability that he(she) was not searching and the proba
bility that he(she) was indeed searching weighted by the probability that 
no acceptable offer had been found. The log likelihood is then given by 

L2 = J2 log | $ fl^ll) (l _ ^ ( a , ; ) ) * ' - ^ . Pr(«, > w*, w) 
i:,Ci=l 

\ r ^(.-.(^>)+.(*£!)<.-««>>"• 
i:Ci=0 

(16) 

It is easy to see that the following parameters are identifiable (and hence es
timable); the standard deviation of a, (an), the parameter of the function 
representing productivity at home (T) , the wage offer distribution parameter 
{(i) and cru, the standard deviation of the measurement error term <r£, the dis
count rate f3,b the offer probability (£). Using a Newton-Raphson procedure, 
values for reservation wages can be obtained relatively easily although these 
calculations must be updated at each of the iterations needed to maximize 
the log likelihood function.0 With unobserved heterogeneity in the mean wage 
offer, it is easy to see that the likelihood function is simply a weighted sum of 
two contributions to the likelihood (for each value of the support points /J,0I 
and jj,Q2) where the weights are the probabilities of belonging to a particular 
type. 

4 The Canadian Labour Market Activity Survey 

The sample analyzed in this paper is drawn from the 1986-1987 Canadian 
labour Market Activity Survey (LMAS). The LMAS was designed as a re
placement for the Annual Work Patterns Survey in order to provide measures 

Many authors set the discount rate /3 to a constant. 
cTo do so, we make use of the optimality condition and apply a Newton-Raphson algorithm 
to obtain estimates of the reservation wage. 
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of labor market dynamics. The data have been collected by Statistics Canada 
and Employment Immigration Canada. 

4-1 Description 

The LMAS is based on a stratified sample of Canadians aged between 16 and 
69. The sample contains workers who held a full time job and experienced a 
job displacement. Workers are defined as full-time workers if they worked at 
least 120 hours per month. Job displacement information is based on question 
34 of the LMAS: "What was the main reason for stopping work?". The reasons 
corresponding to a permanent separation are non-seasonal economic/business 
conditions, company moving or going out of business, end of a temporary 
(non-seasonal) job and dismissal by the employer. The question is therefore 
consistent with the notion of displacement used in the empirical literature. 
Given these restrictions, we started with 1910 observations: 1091 females 
and 819 males. Since we were interested in young and prime-age male and 
female workers, we eliminated all those older than 45 years old as well as those 
working in primary sector occupations such as farming, fishing, hunting and 
other occupations of this type. The resulting sample was 794 females and 494 
males (1288 observations in total). 

In order to estimate the model, a measure of unemployment duration 
(perhaps censored) is typically needed. Jones and Riddell 4 point out that 
the LMAS is unique in that the design of the survey attempts to distinguish 
between individuals who search throughout the entire non-employment spell 
and those who did not (those out of the labor force and those who have a 
"marginal attachment" to the labor force). The distinction is made according 
to the number of consecutive weeks of search reported by every individual 
and the number of weeks of non-employment in which the individual reported 
whether he/she was willing to accept any job. A "marginal attachment" 
applies when an individual reports not searching while also reporting that 
available work would have been accepted. The post-displacement status can 
actually be a complex sequence of states and, as documented by Jones and 
Riddell4, the exact nature of the non-employment spell is not clear. 

To get around these problems, we estimate our model with fixed non-
market time value using the information provided in Question 21 (Did you 
look for work at any time during this period ?) and Question 24 (Did you want 
to work at any time during this period ?). We define a displaced worker as a 
non-participant if the individual did not look or did not want to work during 
the period. The duration of unemployment is computed from the difference 
between the starting week of the new job (when applicable) and the week of 
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termination of the previous job. 
The LMAS has information on hourly wages as well as hours per week 

for all jobs sampled. The hourly wage rate used in this study is derived from 
information on hours worked per day, hours worked per week, total weeks 
worked and annual earnings in a given job. Using information on whether one 
has received some unemployment benefit or not, we can construct a measure 
of the amount of unemployment benefit received for those who report having 
received UI benefit. To do so, we use the fact that, in 1986, the maximum 
insurable earnings were $495 per week and the replacement ratio was 60%. 

Apart from the information on the decision to search, non-employment 
duration and accepted wages, the LMAS reports information on the number 
of young children; this can identify those women who had children when dis
placement took place. We also observe the marital status (married, divorced, 
single or cohabitating) so that lone mothers and married mothers can be iden
tified. Education level is reported by class variables (there are 5 classes). For 
the purpose of this study, we constructed three (3) education dummies. The 
first group contains those with secondary schooling, the second one contains 
individuals with post-secondary schooling while those with university training 
are in the third group. Age is also reported as a class variable. For our sample, 
we construct three (3) age dummies corresponding to 16-24, 25-34, and 35-44. 
Variable definitions and sample statistics can be found in the Appendix. 

4-2 Some Features of the Data 

One of the most striking features of the data is the difference between male 
and female unemployment duration. Although the overall averages are quite 
close (20 weeks for males and 23 weeks for females), censoring appears more 
important for females. Among 794 women aged below 45, only 264 (33%) 
had found a new job by the end of the survey. The remaining 558 women 
are split between those who were still searching at the end of the survey and 
those who report not searching after the loss of their previous job. The dif
ference in sample averages between male and female unemployment duration 
is, however, not explained by censoring alone. Belzil and Zhang 2 also report 
that simple non-parametric rank tests indicate clearly that females experience 
longer unemployment spells than males. It is interesting to note that despite 
the large number of censored non-employment spells, only 6% (48/794) re
port not being available to search. Among 494 males, more than 50% had 
found a new job before the end of the survey. Interestingly, although pre-
unemployment wages and re-employment wages for both males and females 
are relatively similar (10.09$ vs 9.61$ for males and 6.28$ vs 6.95$ for fe-
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males), we found female average pre-unemployment wages for those who have 
no children and those with children to be almost the same (6.30$ vs 6.35$). 
However, the average re-employment wage of females with no children (7.00$) 
exceeds the average re-employment wage of those with children (6.26$) by 
more than 11%. 

5 Empirical Results 

As discussed earlier, we worked with two versions of the model. The first 
version is estimated under the assumption that the reported participation 
decision information is reliable (Section 5.1) while the second version uses 
the likelihood function which does not use participation data (Section 5.2). 
Section 5.3 is devoted to the introduction of marital status while, in Section 
5.4, we investigate the initial condition problem that could arise if permanent 
unobserved heterogeneity in the labor market is correlated with child status. 

5.1 Model with Participation Data 

The results obtained under the assumption that the reported participation 
decision is reliable are in Table 1-A (Model I). A summary of the value of non-
market time and the offer probability implied by the structural parameters 
are in Table 1-B (Model I). Estimates for the variance of the true wage offer 
(1.36 and 0.09) and the variance of the measurement error (2.69 and 2.13) 
illustrate the importance of measurement error. Unobserved heterogeneity 
in mean wage offer is also found to be important; about 10% of male and 
female workers are at the high end of mean wage offer ($16 for males and 
$15 for females).d Although the gender gap in mean wage offer appears to 
be very small, the differences observed in the value of non-market time, offer 
probabilities and the discount factors reveal differences in job search behavior 
between males and females. The parameter estimates of the effect of young 
children on the offer probability (£i) indicates that men with children receive 
more offers than those without children while it is the reverse for females. For 
those without children, these estimates imply that males face a probability of 
0.05 per week of receiving an offer while females would have a probability of 
0.31.With one child, female workers still receive offers at higher rate than male 
workers (0.15 vs. 0.13). These estimates do not seem to fit the data very well 
because, in the sample, females experience longer spells of unemployment. 

"We started to allow for three mass points in the mean wage offer. However, we found that 
two of them are fairly close to each other. This lead us to specify only two mass points for 
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The estimates for bp imply a very large a difference in discounting behavior 
between males and females as the annual discount rates are 29% for males and 
0.1% for females. Given that our sample consists of relatively homogeneous 
individuals (in age and education, for example), it is quite unlikely that such a 
difference is the case. The estimates for the value of non-market time (Table 
1-B, Model I) indicate that males and females tend to have similar home 
productivities (a questionable result) and that home productivity is increasing 
with child status (as expected). 

5.2 Model without Participation Data 

Table 1-A (Model II) contains the result for the model estimated under the 
assumption that the reported participation decision may not be reliable. The 
estimates of cre for males and females (2.44 and 1.21 respectively) indicate 
again the importance of measurement error in wage data while the two con
stant terms ^oi a n d M02 (15.33 vs. 7.03 for males) and (11.38 vs. 3.77 for 
females) indicate the importance of unobserved heterogeneity. Other things 
equal, university education raises the wage rate by $1.32 for male and $1.80 
for female workers when compared to the reference group (high school ed
ucation). Although the sample contains only those who were below 45, we 
still find a positive effect of age on expected wages although it is insignificant 
for females. This is perhaps a reflection of the fact that females have flatter 
age-earnings profiles than males. 

From Table 1-B (Model II), we see that offer probabilities increase with 
child status for males but decrease with child status for females. Female dis
placed workers with no children receive offers at a higher rate than males 
with no children (0.20 vs. 0.07). With one child, male and female workers 
receive job offers at a similar rate (about 0.1); with two children, the prob
ability a male worker receives job offer per period of time (one week in the 
current study) becomes 0.15, but that for a female worker becomes 0.05. The 
discount factors estimated are 0.965 for male workers and 0.94 for female work
ers. These estimates are close to those obtained by Christensen and Kiefer 
3. Although the results show that male job searchers put a relatively higher 
value for future offers than their female counterparts, we no longer observe a 
huge gender differences in discount rates as obtained with Model l.e 

The most striking difference between Models I and II lies in the value of 
home productivity. When we let the data determine the probability that a 

eIn a companion paper (Belzil and Zhang 2 , 1996), we estimate of structural search model 
with child care costs in which the discount factor in treated as an individual effect. We find 
a particularly large dispersion in individual discount factors amongst women. 
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Table 1-A: Estimation Results for Models I and II 

0"u 

Mp 

Moi 

M02 

Ml 

M2 

M3 

M4 

£o 

T 

b/3 
logl 

Male 
Model I Model II 

1.3571( 2.38) 1.7748( 4.23) 
2.6860(12.60) 2.4400(11.09) 
-2.3626(-7.94) -1.8875(-6.57) 
16.0007(15.12) 15.3292(17.42) 
7.2211( 7.50) 7.0281(10.75) 
-0.8517(-1.36) -1.1636(-1.36) 
0.8228( 1.65) 1.3208( 2.14) 
-0.8546(-1.97) -1.2983(-2.29) 
0.0953( 0.22) 1.2450( 1.64) 
-2.9462(-6.47) -2.6618(-14.7) 
0.8731( 2.67) 0.3829( 2.63) 
0.3972( 5.51) 0.5303( 2.76) 
2.8689( 7.27) 10.3291( 2.99) 
5.1807( 8.85) 3.3061( 7.80) 

-1851.46 -1832.16 

Female 
Model I Model II 

0.0882( 3.72) 2.6149( 4.15) 
2.1324(18.99) 1.2058( 8.44) 
-2.5443(-7.75) -2.8972(-5.30) 
15.0150(20.42) 11.3806( 4.26) 
7.0468(68.98) 3.7692( 1.86) 
-0.3807(-2.28) -I.2674(-1.54) 
0.3431( 3.54) 1.8027( 4.69) 
-1.2255(-10.9) -0.9423(-1.64) 
-0.3014(-3.62) 0.4177( 0.75) 
-1.1577(-10.9) -1.6048(-2.86) 
-0.7581(-3.34) -0.7103(-3.16) 
0.4418( 8.94) 0.1628( 5.24) 
2.8087(12.95) 9.3314( 1.85) 
10.7921(17.08) 2.7810(10.48) 

-1897.55 -1892.86 

Note: Asymptotic t-ratios are in parantheses 

Table 1-B: Home Time Value and Offer Probability 

K = 0 
Female K = 1 

K = 2 
K = 0 

Male K = 1 
K = 2 

Model I 
Hm. Value Offer Prob. 

2.26 0.31 
3.52 0.15 
5.48 0.07 
2.52 0.05 
3.75 0.13 
5.57 0.30 

Model II 
Hm. Value Offer Prob. 

6.14 0.20 
7.23 0.10 
14.46 0.05 
1.89 0.07 
3.21 0.10 
5.45 0.15 

given individual is searching, the household productivity parameter r esti
mates are 0.53 for males and 0.16 for females. The implied home time values, 
shown in Table 1-B (Model II) indicate that females are more productive 
at home than males. This seems to indicate that answers provided by indi
viduals on their job search status tend to over-estimate search intensity and 
under-estimate home productivity. 

Overall, we believe that the estimates obtained without relying on partic
ipation data yield more convincing results. However, on the matter of which 
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model fits the data better, the log likelihood values do not yield a clear indi
cation. 

5.3 The Effects of Marital Status 

The estimates presented in Table 1-A were obtained from model specifications 
in which marital status played no part. As most static and dynamic models 
of female labor market behavior are based on the fact that married and sin
gle females behave differently, it is reasonable to investigate whether marital 
status has an impact on job search outcomes for female displaced workers. To 
do so, we allow the offer probability and home time value to be a function of 
marital status. The parameterization for £ and r are £ = exp(£o+l;iK + £2M) 
and r = exp(ro + T\M) respectively where M is equal to 1 for those who are 
married or live in a permanent union and 0 otherwise. Marital status is intro
duced in the offer probability function in order to reflect the possibility that 
married women have less (or more) time to devote to search activities. We 
retained a specification without participation data (such as in Model 2). 

The results (in Table 2-A, under Model III) show that marital status has 
basically no effect on male offer probability and male home time value, though 
it does raise female home productivity. The level of significance is however 
relatively low (t-ratio of 1.48). Although being married seems to raise the offer 
probability for males (0.35) and females (0.15), standard errors are also large. 
Introducing marital status does not seem to lead to any major improvement. 

5.4 The Initial Condition Problem: Child Status and Unobserved 
Heterogeneity 

The estimates obtained in Section 5.1, 5.2 and 5.3 were generated under the 
assumption that unobserved ability in the labor market production is indepen
dent from any individual characteristic, including child status. It is possible 
that the distribution of unobserved labor market ability among women who 
have children is different than for women with no children. For instance, 
one could imagine that females who were working full-time in the presence of 
young children have relatively higher labor market ability than those women 
with no children. 

In what follows,we extend the model to take into account correlation 
between unobserved heterogeneity in the mean wage offer and female child 
status. The probability of belonging to the high level, px, is given by 

exp(^p0 + VpiK) 

1 + exp(/iipo + fipiK) 
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The results (Table 2-A, Model IV and Table 2-B) do not support the hy
pothesis that permanent unobserved heterogeneity in labor market ability is 
correlated with child status. Although the probability of belonging to the 
high ability class (/(Xoi = 15.3) increases with K, the very low t-ratio (0.04) 
implies that sorting is insignificant. 

6 Investigating the Gender and the Fertility Wage Gap 

In this section, we use the structural parameters obtained for Model II (where 
participation data are not necessarily reliable) to calculate the mean wage 
offer, reservation wage and observed re-employment wage rate (all measured in 
$ terms on an hourly basis)/ The gender gap (1 minus the ratio of female re
employment wage to male re-employment wage) can be calculated at different 
levels of education, age and number of children. Controlling for age and 
education, we can define a gross gender wage gap that reflects gender as 
well as child status. This gross gender wage gap is then decomposed into a 
portion that is due to child status and a residual part. 

The mean wage offer n is calculated according to equation 8, while the 
reservation wage is obtained through the Newton-Raphson procedure using 
the estimates of the structural parameters. The expected re-employment wage 
can be calculated using, 

E[w\w > w*] = fi + a, 

Table 3 presents the expected mean wage offer, mean reservation wage and 
average expected re-employment wage for both male and female workers at 
different levels of age, education, and child status (mean wage offer is inde
pendent of child status). Table 4 contains the corresponding gender wage 
gap. The gender wage gap in mean wage offers ranges between 60% (for low 
education workers) and 40% for high education workers. We note that the 
reservation wage gap is smaller than the wage offer gap. This implies that 
female hazard rates will be smaller than male hazard rates. Note also that the 
reservation wage gap rises significantly as the number of children increases; it 
goes from around 20% (for those without children) to around 50% for those 
with 2 children. Both the reservation wage gap and the re-employment wage 
gap are widening with age and shrinking with respect to education level. More 
importantly, the gender wage gap becomes larger as the number of children 
increases. For younger females, the gender wage gap goes from 15% to 20% 

•f All values are averaged over the two support points in the mean wage offer. 
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Table 2-A: Estimation Results for Models III and IV 

Mp 

MpO 

Mpl 

Moi 

M02 

Ml 

M2 

M3 

m 

& 
T 

To 

Tl 

<7n 

b/3 

Logl 

Male 
Model III Model IV 

1.8470( 4.32) 1.7688( 4.25) 
2.4122(11.35) 2.4370(11.15) 
-1.9204(-6.82) 

-1.9904(-0.72) 
0.2244( 0.04) 

15.2750(17.03) 15.3283(17.53) 
6.8664( 9.43) 7.0213(10.85) 
-1.1565(-1.38) -1.0958(-1.29) 
1.3364( 2.18) 1.3650( 2.21) 
-1.1204(-1.90) -1.2926(-2.29) 
1.0686( 1.36) 1.2206( 1.62) 
-2.8432(-12.6) -2.6669(-14.9) 
0.3281 ( 2.00) 0.3843( 2.65) 
0.3458( 1.24) 

0.5274( 2.75) 
-0.0461(-0.73) 
-0.9884(-1.31) 
8.6643( 2.38) 10.2342( 3.01) 
3.3617( 7.50) 3.3077( 7.82) 

-1831.14 -1832.16 

Female 
Model III Model RA 

2.6141( 4.68) 2.6265( 4.13) 
1.2085( 8.59) 1.2041( 8.46) 
-2.9910(-5.39) 

-2.9026(-4.87) 
0.0296( 0.04) 

11.7045( 4.58) 11.3294( 4.23) 
3.9000( 2.09) 3.7276( 1.83) 
-1.2362(-1.49) -1.2580(-1.53) 
1.7563( 4.66) 1.8044( 4.70) 
-1.0650(-1.86) -0.9287(-1.63) 
0.1950( 0.34) 0.4181( 0.75) 
-1.6698(-3.62) -1.5964(-2.81) 
-0.6615(-3.06) -0.7064(-3.17) 
0.1506( 0.56) 

0.1637( 5.42) 
-1.6430(-8.01) 
-0.2838(-1.48) 
8.6094( 2.12) 9.1749( 1.92) 
2.7884(10.06) 2.7833(10.58) 

-1891.70 -1892.86 
Note: Asymptot ic t-ratios are in parantheses 

Table 2-B. Marital, Offer Prob. and Hm. Value 

K = 0 
Female K = 1 

K = 2 
K = 0 

Male K = 1 
K = 2 

Married 
Home Value Offer Prob. 

6.87 0.22 
7.95 0.11 
9.19 0.06 
2.81 0.08 
4.02 0.11 
5.73 0.16 

Single 
Home Value Offer Prob. 

5.17 0.19 
6.27 0.10 
7.61 0.05 
1.05 0.06 
2.72 0.08 
7.07 0.11 



Table 3: Mean Wage, Reservation Wage and Re-employment Wage 

Mean Wage Offer (/x) 
Primary 

Agei=l Secondary 
University 
Primary 

Age2=l Secondary 
University 
Primary 

Age3=l Secondary 
University 

Reservation Wage 
Primary 

Agei=l Secondary 
University 
Primary 

Age2=l Secondary 
University 
Primary 

Age3=l Secondary 
University 

Re-employment Wage 
Primary 

Agei=l Secondary 
University 
Primary 

Age2=1 Secondary 
University 
Primary 

Age3=l Secondary 
University 

Male 
K=0 K=l K=2 

5.66 
6.82 
8.14 
6.96 
8.12 
9.44 
8.20 
9.37 
10.69 

4.92 5.30 5.68 
5.57 6.03 6.47 
6.35 6.89 7.40 
5.65 6.11 6.56 
6.34 6.88 7.39 
7.15 7.78 8.36 
6.39 6.93 7.45 
7.11 7.73 8.30 
7.94 8.65 9.29 

6.73 6.92 7.13 
7.63 7.83 8.06 
8.72 8.92 9.16 
7.74 7.94 8.17 
8.70 8.91 9.14 
9.85 10.04 10.28 
8.77 8.98 9.21 
9.78 9.98 10.21 
10.97 11.15 11.38 

Female 
K=0 K = l K=2 

1.96 
3.23 
5.03 
2.90 
4.17 
5.97 
3.32 
4.59 
6.39 

3.86 3.42 3.10 
4.45 3.87 3.39 
5.43 4.64 3.94 
4.29 3.74 3.31 
4.94 4.25 3.66 
6.00 5.09 4.27 
4.49 3.90 3.42 
5.18 4.43 3.79 
6.25 5.30 4.42 

5.40 5.10 4.88 
6.17 5.77 5.48 
7.40 6.91 6.53 
5.96 5.57 5.31 
6.79 6.34 6.00 
8.09 7.56 7.16 
6.23 5.82 5.53 
7.08 6.61 6.25 
8.41 7.87 7.46 
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(with no children) up to 30% (with 2 children). For the older age group in 
the sample, the wage gap goes from 25% (with no children) to 35% to 40% 
(with 2 children). 

Table 4: Predicted Gender Wage Gap (%) 

Primary 
Agei=l Secondary 

University 
Primary 

Age2=l Secondary 
University 
Primary 

Age3=l Secondary 
University 

Mean* 

(M) 
65 
53 
38 
58 
49 
37 
59 
51 
40 

Reserv. Wage 
K=0 K = l K=2 

22 36 45 
20 36 48 
15 33 47 
24 39 45 
22 38 51 
16 35 49 
30 44 54 
27 43 54 
21 39 52 

Re-empl. Wage 
K=0 K = l K=2 

20 26 32 
19 26 32 
15 22 29 
23 30 45 
22 29 34 
18 25 30 
29 35 40 
28 37 39 
22 29 34 

Our measurement of the contribution of child status to the gender wage 
gap is based on three expected wage values; one for a male worker with no 
children, one for a female worker who has no children and the third value is 
from another female worker who has one child. The difference in expected 
wage between a male worker who has no children and a female worker who 
has one child becomes the gross gender wage gap (reflecting the effects 
of gender and child status) while the gap between the two female workers is 
referred to as the fertility wage gap. We normalize the gross gender wage 
gap to be unity, and calculate the percentage contribution by fertility. Table 
5 presents the calculated fertility wage gaps for different age and education 
groups. In the first column, we compare a male worker who has no children 
and two female workers, one has no children, the other has 1 child. In the 
second column, the fertility wage gap is computed using a male and a female 
worker with no children, and a female worker with two children. On average, 
more than 20% of the gender wage gap observed for females with one child is 
due to the presence of this child. For female workers who have two children, 
the presence of young children contributes about 30% to the gross gender gap 
in expected wage. 

7 Conclusion 

The fact that males tend to earn more than females is a stylized fact present 
in all industrialized countries. Several explanations, reviewed in the Intro
duction, have been proposed by labor economists. In this paper, we have 
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proposed a new approach to the issue; namely, we have investigated how the 
job search process may differ across males and females. Using a structural 
job search model with endogenous search, we have estimated how differences 
in structural parameters can affect the discounted expected lifetime earnings 
of unemployed females and found that the presence of young children plays 
an important role in the setting of the optimal reservation wage. More pre
cisely, we found that female workers with young children have a substantially 
lower probability of receiving an offer while the opposite is true for males. 
In other words, the presence of young children translates into a significant 
efficiency loss in their of job search. We also found that the value of non-
market time for females with young children is actually higher than for males. 
Overall,the self-reported search status in the Labour Market Activity Sur
vey seems to over-estimate the number of female displaced workers who are 
actually searching. This is consistent with the higher incidence of censoring 
among women than among men. 

Table 5: Fertility Wage Gap (%) 

Agei=l 

Age2=l 

Age3=l 

Primary 
Secondary 
University 
Primary 
Secondary 
University 
Primary 
Secondary 
University 

K = l 
18 
22 
27 
18 
19 
23 
13 
14 
17 

K=2 
28 
32 
40 
27 
29 
35 
22 
24 
27 

One of the advantages of obtaining structural estimates is that we can dis
tinguish supply side effects (non-market time) from demand side effects (offer 
probability) and impute a fraction of the gender wage gap to the efficiency 
loss in job search explained by the presence of young children. Our estimates 
imply that females with no young children face parameters much the same 
as male workers. When females with no children are compared with males 
with no children, the gender wage gap is between 15% to 25%. We found the 
gender wage gap to be increasing with the number of young children (up to 
35% for females with no children). However, the results indicate that around 
30% of the gender wage gap is actually accounted for by the effect of young 
children on the valuation of job search activities (through the offer probabil
ity). As well, our results indicated that the gender gap in the mean wage offer 
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received tends to exceed the gender reservation wage gap and is therefore con
sistent with the fact that females experience longer spells of unemployment 
than males. Finally, the results presented are consistent with the claim that 
the gender wage gap is typically small when males and females enter the labor 
market but tends to increase with age or experience. 

Appendix A: Variable Definition and Sample Mean 

Variable 
Marital 
Kid 
Prim 
Second 
Univ 
Agei 
Age2 

Age3 

Wagel 
Wage2 
U-Durat 
UIB 
Censor 
Parti 
N 

Male 
0.5992 
0.3765 
0.1174 
0.6336 
0.2490 
0.2794 
0.4413 
0.2794 
10.0923 
9.6082 

20.5243 
3.9212 
0.5041 
0.9575 

494 

Female 
0.5781 
0.3325 
0.0781 
0.5982 
0.3237 
0.4181 
0.3967 
0.1851 
6.2843 
6.9574 
22.6373 
1.7465 
0.3325 
0.9396 

794 

Definition 
Marital Status, 1 if married 
Number of children under 6 
=1 for elementary or lower education 
=1 for high school or post-secondary 
=1 for university education 
=1 if age falls between 16-24 
=1 if age falls between 25-34 
=1 if age falls between 35-44 
Hourly wage rate before separation ($) 
Hourly re-employment wage rate ($) 
Unemployment duration in weeks 
Hourly UI benefit ($) 
=1 for censored unemployment spell 
=1 for labour market participant 
Sample size 
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KULLBACK-LEIBLER OPTIMIZATION OF DENSITY 
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We analyze the asymptotic behavior of the expected value of the Kullback-Leibler 
information divergence between the true density and modified histograms. This 
provides an asymptotically optimal value for the smoothing parameter which can 
be used in plug-in methods. 

1 Introduction 

The Kullback-Leibler divergence is a basic tool in decision and information 
theory. It has a lot of attractive features such as its additivity property used in 
projection pursuit density estimation and it defines a strong notion of conver
gence (stronger than L\-convergence) in the set of probability densities. Also 
in some parametric models the Kullback-Leibler divergence can be expressed 
as simple function of the parameters. However, with this error criterion, diffi
culties appear when standard kernel estimates or histograms are considered to 
estimate an unknown probability density from a sample of observations. On 
the one hand tail properties of the kernel dramatically influence the behavior 
of estimates (Hall 9 ) . On the other hand empty cells, occuring with high 
probability, make the Kullback-Leibler divergence between the true density 
and the histogram equal to infinity. Recently, modified histograms circum
venting the problem of empty cells have been shown to have nice properties 
with respect to information divergences (Barron, Gyorfi and van der Meulen 
2, Berlinet, Gyorfi and van der Meulen 5, Berlinet, Vajda and van der Meulen 
6 , Gyorfi, Liese, Vajda and van der Meulen 7 ) . As usual in such a non para
metric density estimation framework the crucial issue is about the number 
of cells to take into account. From upper bounds given by Barron and Sheu 
3 and Barron et al. 2 for densities with bounded support and finite Fisher 
information it follows that the number of cells should be of order n1 /3 , where 
n is the number of observations. Here we carefully analyze the behavior of the 
expected value of the Kullback-Leibler divergence between the true density 
and the modified histogram and give the exact constants in its asymptotic 
expansion. This provides an asymptotically optimal value for the number of 
cells which can be used in plug-in methods. 
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2 Kullback-Leibler divergence and modified histograms 

First recall that if / and g are two probability densities on R, the Kullback-
Leibler information divergence of / with respect to g is defined by 

i(f,g) = 
J f(x) log(f(x)/g(x)) d\(x) if / « g 

oo otherwise, 
(1) 

where A is the Lebesgue measure. Integrals without limits are taken over the 
whole real line. 
Let us now turn to the estimation problem and the definition of estimates. 
Let (Xi) j>i be a sequence of independent real random variables with the same 
unknown distribution fx on R. The probability measure fi is supposed to have 
a density / with respect to A. Define a sequence of integers (m n ) n e N. such 
that 0 < mn < n and put hn = l/mn. The integer m„ will be the number of 
cells for n observations X\,..., Xn and hn is called the smoothing parameter. 
We suppose that we know g, a density which can be seen as a reference 
density, satisfying l(f, g) < oo and denote by v the probability measure on 
(R, S(R)) with density g. In practice g will correspond to some a priori idea 
on the unknown density. For instance one can suspect that the true density 
/ is not far from some known parametric density g. Contamination and more 
generally mixture models are examples of such situations. When the entropy 
of / and E{\og \X\)+ are finite a density constant on (—1,1) and behaving like 
constant/x2 if |x| > 1 is such that X(f,g) < oo (Gyorfi and van der Meulen 
8 ) . Define finite partitions Vn = {An>i, • • •, An<mn} of R such that the An<kS 
are mn consecutive real intervals with v(An:f.) = hn, k € {1, • • • ,mn}. Let 
(ara)neN* denote the sequence of strictly positive numbers given by an = 
1/(1 4- nhn), n > 1. The density estimate introduced by Barron l is then 
defined as 

Vh,Xx) = an [l + niJ,n(An(x))] g(x) 
fj,n(An{x)) 

(1 - o„) + an 9(x) (2) 

where An(x) = An^ if x £ An^ and /in stands for the empirical measure 
associated with the sample X\,... ,Xn. As shown by Barron et al. 2 (who 
study the case with general ( a„ ) n 6 N . ) , under the assumption l(f,g) < oo, if 
hn —> 0 and nh„ —> oo as n —> oo, then 

Z(f,PhJ -> 0 a.s. and E ( l ( / , p h j ) -» 0. (3) 
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Moreover, Berlinet et al (1997) showed, with the additional assumption v^S^ — 
Sfj) = 0 where S^ = {x : f(x) > 0}, that 

£-> M^viS,)). (4) 

The condition T(f, g) < oo is minimal to ensure the finiteness of X(/,pV„) and 
of its expectation. Now, the choice of g can easily meet the condition on the 
boundary of the support of jj,. It is worth noting that (4) is independent of 
the dimensionality of the problem (see Berlinet et al (1997)). As u(SM) < 1, 
one gets from (4), for any e > 0, 

lim P ( n v ^ P X / . P f c J - E [ I ( / , p f c J ] | > e) < 2 $ ( - e ) , (5) 

where $(•) stands for the cumulative distribution function of a standard 
gaussian random variable. The upper bound in (5) is independent of both 
/ and g. For other properties of modified histograms see the above mentioned 
references and the recent paper by Berlinet and Biau 4. 

3 Asympto t ics 

Let us write T(f,phn) = B(hn) + V(hn), where 

5 ^ ) = //(«) log ( ^ j j ) ^ ) 

and 

V(M =//(*) l°g f ^ # W ) . 
J \ Phn(

x) J 
The terms B(hn) and V(hn) are respectively named bias and variance com
ponents by analogy with the theory of quadratic loss. But balance between 
these two components cannot be achieved so easily than between analogues 
in L2-theory. As Theorem 1 shows, the order of convergence of the bias com
ponent depends crucially on tail properties of / and g whereas the variance 
component (in which g simplifies and disappears) is typically of order {nhn)~

l 

without almost no restriction. 
From the very definition of p^n (x) it appears that a strange fact can happen 
with that estimate. We can be very lucky and have g = / , the unknown 
density. Then the choice hn = mn = 1 leads for any x to 

X ( / , P O - E ( / ( / , P O ) 

Phjx) = f{x). 
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This is unbeatable whatever the error criterion one can consider! In the 
following we will remove that case by considering densities such that the 
derivative of (f/g) cannot be identically zero. 

Assumptions 

Let /o = f/g be the density of fi with respect to the probability measure v, 
denote by G the distribution function of v and by ip = f0 o G~1 the density 
of G(X). Let Stl = {x : f(x) > 0}, S^ be the closure of S^, and for e G (0,1) 
let Afn = {xeS^ : E \phn(x)} < (1 - e) f(x)}. 
We consider the following assumptions 

(Ao) I(f, g) < oo; n —> oo; nhn -> oo; 

(Ai) K ^ - 5 M ) = 0 ; 

(-A2) V admits first and second order bounded derivatives; 

(.A3) there exists 7 > 0 so that for all x G S^ , fo(x) > 7. 

Comments on assumptions 

The only assumptions required for the analysis of the variance component are 
(Ao) which is the minimal condition for consistency of Barron estimates and 
condition (A\) already given by Berlinet et al (1997). This last condition 
is not too much restrictive since it is satisfied for all measures v for which 
the boundary of the support of \i is negligible. Although / is unknown, 
it is often the case that its support S^ is known. Then one can choose v 
such that v{Sp) = 1. Otherwise ^(S^) has to be estimated, for instance by 
j/(min; Xi, max; Xi). Here we only consider the case where v(S,j,) is known. 
The two following weaker conditions could be given in place of (.A3). 

(A'3) J / ( x ) I 0 g ( E ^ ) ] ) dX(x) = o(hl); 

(A'A) sup ^f\ d\(x) = O ( n 2 ^ ) and f £& dX(x) = o (n2h4
n); 

Under (A3) the ratio E \ph,Xx)] /f(x) converges uniformly to 1, thus for n 
large enough, the set J\fn = {x € 5M : E [p/i„(a;)] /f(x) < 1 — e} is empty and 
assumption (A'3) follows directly. Under (A'3) and (A'4), the set W„ (which 
can be intuitively understood as a kind of "non-uniform convergence set of 
the ratio") is asymptotically negligible in the sense that X(Afn) tends to 0. 
Conditions (A3) and (A^) are less easy to interpret than the condition (.A3) 
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but they allow more flexibility in the choice of g. Indeed, under (.A3) and (.44), 
f/g is allowed to tend to 0 with slow rate of convergence. Also conditions 
(.A'3) and (A4) involve the expectation of the estimate E [ph„(a;)], so (.A3) can 
be preferred. Although it is stronger, it only involves / and g. So it appears 
as a more clear and understandable condition on the model. 
As well known conditions on tail behavior must appear when the accuracy of 
estimates is evaluated by means of Kullback-Leibler divergence. 
The following theorem gives the asymptotic behavior of the bias component 
and of the expectation of the variance component of the Kullback-Leibler 
divergence of modified histograms. 

Theorem 1 Under the assumptions (Ao) and (Ai), 

E^^+°(£)- (6) 

/ / moreover the assumptions (A2) and (A3) are satisfied, if 

f'21 

0 < [ kMd\(x) < 00 
J f(x) 

and nh\ —> 00, as n —> 00, then 

f ' 2 

**->-&/^<*>+<,(*s+;s:)- (7> 

Corollary 1 Under the assumptions required in the second part of Theorem 
1 the asymptotically optimal smoothing parameter is given by 

/ „ \ - 1 / 3 

h: = (Gv(s»))i/3LJ{j^d\(x) 

For this value /i*, 

'2<^ \ 1 / J / o „ N-2/3 

+ o (n~2^ . 

As already mentioned the choice of g can often be made such that u(S^) = 1. 
Then a pilot estimator can be used to compute an approximated value of h*n. 
Our results are in accordance with the upper bounds given by Barron and 
Sheu 3 and Barron et al. 2. Up to our knowledge no minimax results are 
available in the present setting. 
In the proof of Theorem 1 the following lemma is used several times. This 
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lemma extends a technical result given by Berlinet et al (1997). Its proof, 
which is omitted, relies on the application of the Lebesgue dominated conver
gence theorem to suitable functions. 

Lemma 1 Let fi and v be two probability measures with densities f and g 
with respect to the Lebesgue measure on (R,B(R))- Let (An>i,..., -A„]mn) be 
a partition o / R satisfying v{Anik) = hn = \/mn. The measure fi is supposed 
to be absolutely continous with respect to v and to satisfy v^S^ — S^) = 0, 
where 5M = {x : f(x) > 0} and S^ is the closure of 5^. If hn —* 0 and 
nhn —> oo as n —-> oo then, for any couple (p, q) of positive integers, we have 

" ^ (n/a(An,k))
P ( 0 if 0<p<g 

n^°° fc=i ( ! + n/j,(Anik)j [ i/(Sp) if p = q 

and 

Jirn^ hn ^ [nKAn,k)J log (l + n(i,(Anikj) exp [-C (n - /«)/i(An,fc)] = 0, 

where C > 0 and K G R are any fixed constants. 

Proof of Theorem 1. Let Rn(x) = (phn(x) - E \phn{x)\)/E \phn(x)]. 

E [V{hn)} = - J f(x)E [log ( l + E„(z)) ] d\(x). 

Elementary analysis shows that 

r2 

V r > - 1 , |log(l + r ) - r - + y | < | r | 3 - l o g ( l + r ) I ( r < _ 1 / 2 ) , (8) 

so that E [V{hn)\ -±J f(x)V(Rn(x)) d\(a 

< J f(x) { E \Rn(x)\3 + E (| log (1 + Rn(x)) | I(Rn{x)<-1/2)) } d\(x). (9) 

By Holder inequality, we get E |ii„(x)| 3 < E (i?„(z)4)3 / 4 and since 

\nn{An{x)) - n{An{x))}, Rn{x) 
1 +n/j.(An(x)) 

simple calculations give 



37 

E (R (xY)314 = / 3 n 2 M ^ " W ) 2 + nM(^n(a:))\3/4 

{ ' { (l + n^An(x)))4 ) • 

Consequently, 

nhn ff(x)E\Rn(x)\3d\(x)<2:i/2hny ^ A ^ , 

Hence by Lemma 1, it follows that 

Now for all x S Anik , Rn(x) S 

lim nhn f(x)E\Rn(x)\3d\(x)=0 
' — ° ° J 

(10) 

so that 
1 + n/j,(Anik) ' 1 + nfi(Antk) 

|log (l + Rn{x)j I(fi„(x)<_i/2) < log ( l + n/i(A„,fc)) • 

Applying Bernstein inequality, we obtain the following bound for the second 
term in the right hand side of (9), 

nhn / f(x) E (J log (1 + Rn(x)) | I(fln(:c)<-i/2)) d\(x) 

< nhn ^ fi{Anik) log (1 + nn(An>k)) exp ( - — nfj,(Anik)). 
fc=i 

Lemma 1 applies and we can conclude that 

\m^nhn f f(x) { E ( | l o g ( l + ^ n (a ; ) ) | l ( f l n ( : c ) < _ 1 / 2 ) )} d\(x) = 0. 

From this and (10), we get 

E [V(hn)} - \ J f(x) V(Rn(x)) d\(x) °(zir) nhr. 
(11) 
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Now by Lemma (1), it is easily seen that 

nhn ^ n/u(Ara,fc)
2 

lim ^ [f(x)V(Rn(x))d\(x) = hm I ^ g -

2 

To prove (7), we decompose the pointwise bias as follows 

~ n{An{x)) 

+ nn(Antk)y 

h„ - /oW E[p f c„(i)] - /(a:) = (1 - an) 

Now, changing variable in the integrated bias, we obtain 

B(hn) = -J <p(y) log (l + Un{yj) d\(y) 

where, for y £ [0,1], 

g(x) + an[g(x) - f(x)}. 

Un(y) = (1 - an) 
^An(G-l(y))) 

hn 
v(y) + a. 

v{y) Iviy) 

Thanks to assumption (A3), putting 

Mn = {y£ G - 1 ^ ) n [0,1] : Un{y) < - e } , 

where 0 < e < 1, we have 

/ ip(y) log ( l + Un(y)) d\{y) 

I V(y)\og(l + Un(y))dX(y) 
Jo 

= I v{y) log (1 + un(y)) i(Un(v)>-e) dKy) + o [h2
n). 

Jo 

Applying Taylor expansion with integral remainder, we can see that 
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B(hn) = - / ip(y) 
J[0,l]/Mn 

Un(y) - ^Un{yf + Rn{y) dX(y) + o{hl) 

with 

Rn(y) I 
UM(t-Un(y))2 

( l + t ) 3 

for Un(y) > —e. Simple arguments lead to 

d\{t), 

l i m 17 I f(y)\Rn(y)\d\(y)=0 
n-oo h^ J[0,l]/Mn 

and by checking that 

0 < / <p(v)Un(y) d\(y) = - f <p(y)Un{y) d\(y) 
J\0,l]/Mn JMn '[0,1]/M 

which is upper bounded by 

/ <p(y)log(l + Un(yj)dX(y) = o(hl), 

we get finally 

B{hn) = \f ¥>(y)Un(y)2dX(y) + o< 
Z J[0,l]/Mn 

(hi). 

So, it remains to compute the integral in the above expression. For this, we 
write by Taylor expansion, for y € \(k — l)hn ; khn] 

M(An(G-x(j/))) = hMv) + v'{y)hn (khn ~Y~y)+ °( / l«) (12) 

and that gives 

/f,.\2 v'iv) h-n 
v{v) Un(y? = (l - a „ ) 2 ^ f (khn -'-f-y) 

+ < 

<p(y) 

ill + 2 a „ ( l - a „ ) ^ (1 - <P(V)) (khn - ^ - y) 

<p(y) 
+ o(h2

n). 
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By using the assumption n/i2 —> oo, the second and the third terms in the 
right-hand side are proved to be negligible in front of h\. Therefore, 

/ <p(v)Un{y)2d\(y) 
J[0,1]/M„ 

is equal to 

J[o,i]/Mn f{y) 2 

Now, apply the mean formula. Since <p 2/tp is continous on [0,1], for all 
k G { 1 , . . . , mn} there exists £& £](k — l)/in; khn[ such that 

I TW{khn~^-y) dX{v) 

m " Jit \2 rkh" u 

- 19 2^" 
12 ^ " ¥>(&) fc=l 

From this result and by checking that fM ^>'2{y)/f{y) d\(y) tends to zero as 
•M-Mn) does, we obtain 

1 f^VfjU^ l f/oW2 ,w , 

n 
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THE ASYMPTOTIC DISTRIBUTION OF SPACINGS OF 
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It is well known that for an i.i.d. sample from a uniform distribution, the spacings 
between the order statistics are asymptotically distributed like i.i.d. exponential 
random variables. Although the spacings between order statistics from an arbi
trary distribution are not in general identically distributed, one can still consider 
the distribution function to which the empirical cdf of such spacings from an i.i.d. 
sample would converge as the sample size goes to infinity. The limit of this em
pirical cdf is called the asymptotic spacing distribution. If X is a random variable 
with density / , then the asymptotic spacing distribution is 1 — L, where L is the 
Laplace transform of the distribution of f(X). Although the explicit form for L is 
not tractable in general, one can use Tauberian theorems to relate the tail behav
iour of L to the order of contact of / to the z-axis: The more gradual the approach 
of / to the axis, the heavier the tail of the asymptotic spacing distribution. 

1 Introduction 

Imagine a large number of marathon runners crossing a finish line, and con
sider the set of time intervals between their arrivals. What would be the 
distribution of the lengths of these intervals? The question is ill-posed, since 
in general these lengths would not have the same distribution. Nonetheless, 
one can calculate the empirical distribution of such a collection and ask the 
question "Is there a probability distribution to which this empirical distribu
tion converges as the sample size goes to infinity?" 

It was noted by Katz l that the empirical distribution appears to follow 
a "power law". More precisely, one could say that the tail of the distribution 
function behaves like a negative power of its argument (although, of course, 
integrability requirements prohibit such behaviour extending to the origin). 
This observation led Katz to speculate the spacings in an ordered Normal 
sample would have such a "power law" distribution. 

In this paper, we study the relationship between a parent distribution 
and the asymptotic distribution of spacings between its order statistics. We 
characterize the distributions for which the spacings distribution has a neg
ative power tail, and discover that these do not, in fact, include the Normal 
distribution. 
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2 Empirical distribution of spacings 

Let Xi,..., Xn be i.i.d. from a distribution F, and define 

Yi = X(i+1) --X"(i), i = l,...,n-l 

to be the spacings between consecutive order statistics. We will assume in 
what follows that F is absolutely continuous. 

It is well known that if F is the uniform distribution on the unit interval 
then nYi, i = 1 , . . . ,n — 1 are asymptotically i.i.d. exponential, and thus it 
makes sense to talk about the asymptotic distribution of the spacings. In gen
eral, however, the Yi's will not be identically distributed, even asymptotically, 
so care is needed in defining what is meant by "the" asymptotic distribution. 

Let 
1 n—1 

Sn(t) = - ^ / ( ^ W ) (1) 
n — 1 *-^ 

i=\ 
be the empirical survivor function of the scaled spacings, where /(t)00) (') rep
resents the indicator function of the interval (t, oo). (Formulas look simpler 
in this context if we deal with survivor functions rather than cumulative dis
tribution functions. It should cause no confusion if we refer to a distribution 
by its survivor function rather than its cdf.) Suppose that there is a distribu
tion S such that with probability 1, Sn converges weakly to S. Then we will 
call S the asymptotic spacings distribution (ASD) of the distribution F. 

Pyke 2 considered the limit of (1), and presented an elegant proof that 

/
oo 

e-tf(x)f(x)dx in probability, 
-oo 

where / = F' is the probability density function of the original sample. He 
added, without proof, the stronger statement that the convergence is, in fact, 
uniform with probability 1, referring to a paper by Blum and Weiss 3. 

Monte-Carlo investigation led the present author to speculate that the 
empirical distribution of spacings is, moreover, asymptotically equivalent to 
the empirical distribution of an appropriate i.i.d. sample, as suggested by 
the following heuristic argument, under the additional assumption that the 
density / is continuous. 

Conjecture: Let X\,..., Xn,... be i.i.d. from a distribution F with a con
tinuous density / , and let Z\,..., Z„,... be i.i.d. from an exponential dis
tribution with mean 1, independent of the X;'s. Then the empirical spac
ings distribution S„(t) converges to the same limiting distribution as the 
empirical distribution from the i.i.d. sample Z\jf{X{),... ,Zn/f(Xn). 
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Heuristic Argument: By the mean value theorem 

F(X(i+1)) = F(X(i)) + f(Vi)(X(i+1) - X(i)) 

for some X^ < Vi < X(i+iy Thus 

F ( X ( j + 1 ) ) - F ( X ( i ) ) = /(V5)r i. (2) 

However, since F{Xi) has a uniform distribution, the left side of (2) gives 
the spacings of an i.i.d. sample from the uniform distribution. Thus, the 
joint distribution of 

n / ( y 1 ) y 1 , . . . , n / ( y „ ) y n 

will approach that of Z\,..., Zn. For large samples, the order statistics 
will approximate the appropriate quantiles, as will the Vi's sandwiched 
between them. Thus, the joint distribution of nY\,... ,nYn will approxi
mate that of Zi/f{Xw),..., Zn/f{X(n)). 

The random function 

5;c) = ^iEJ(t.oo)(2r*//(xw))> 
i=l 

on the other hand, will have the same distribution as 

1 71 — 1 

Sn(t) = £ J(tl0o) (Zi/fiXi)) , (3) 
»=i 

which is the empirical survivor function from the i.i.d. sample 
Z1/f(X1),...,Zn/f(Xn). 

A rigorous proof of the conjecture will depend first on a careful specifica
tion of the nature of the putative asymptotic equivalence between (1) and (3). 
A strong result would obtain if it could be shown that the stochastic process 
TJU (§n(t) — S(t)) converges to the same limit as y/n (Sn(t) — S(t) J. 

The asymptotic spacings distribution 

/

oo 
e-tfWf(x)dz (4) 

-oo 

is just the distribution of the random variable Z/f(X), which, by conditioning 
on X, can be viewed as a mixture of exponential distributions. 
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Example 1. If F is exponential, then the spacings themselves are exponential 
with E{Yi) = l/(ra — i) and the distribution of Sn can be calculated 
explicitly for finite n. 

We have 

n - l 

E (sn(i)) = (n - I)""1 Y, P r {^ > *M 
i= l 
n - l 

= (n-l)-1Y,e~in~i)t/n 

i = l 

_ 1 - exp(- ( l - l/n)t) 
( n - l ) ( e ' / n - l ) 

from which we can see that E (§n(tj) -y (1 — e ')/£ as required by (4). 

Example 2. Consider a random variable with density function 

k 

/(*) = : + l 
0 < a; < fc + 1 

where k > 0 is a parameter. (These distributions are members of the 
Beta family, rescaled for ease of computation.) Making the change of 
variable 

v - t 
fc+1 

rfc+i 

we can calculate 

S(t) = / exp 
Jo 

_ 1 + 1/fc 

- t 
fc + 1 

~vv^k dx 

fc + 1 
<ia; 

Te-V 
Jo ti+i/k 

r (2 + i/k)G1+1/k(t) 
tl+l/k 

where G1+1/fc(t) is the Gamma cdf with shape parameter 1 + 1/fc. 

These two examples illustrate ASD's with tails behaving like negative 
powers. Such distributions have at most a finite number of moments. In 
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particular, the expected asymptotic spacing length will be 
roo />oo r 

/ S(t)dt= / / e-tfWf{x)dxdt 
JO JO Jf(x)>0 

= / f(x)/f(x)dx 
Jf(x)>0 

— 00 

unless the support of / is bounded. Thus the distribution of an unbounded 
random variable, such as the Normal, cannot have an ASD with a tail 0(t~a) 
with a > 1 for then its expectation would be finite. 

3 Characterization of asymptotic spacings distributions 

Note that the ASD is in fact a Laplace transform. If X has density / , consider 
the random variable W = f(X). Then S{t) = E{e~tw). If / is monotone, 
then the density of W is given by 

/ ° / _ 1 ( w ) w 
| / ' o / - » | = | / ' o / - » | 

provided the density is differentiable. (If / is not monotone, then the density 
of W must include contributions from the components of f~1(w)). 

Thus, for example, if X is Exponential, then W is uniform with Laplace 
transform (1 — e~')/ i as seen previously. If X is Uniform, W is degenerate 
at 1, with Laplace transform e~l. 

The representation of the ASD as a Laplace transform allows one to use 
Tauberian theorems 4 which relate the tail behaviour of the Laplace transform 
with the behaviour of the distribution near the origin. 

Specifically, if L is the Laplace transform of a distribution F, then as 

F(t)~L(l/t)/T(p+l) 

where 

[mlog(F(tx)/F(t)) _ 

i->0 log X 

We see that what controls the tail behaviour of the ASD is the behaviour 
near the origin of W, which is determined by the way that the density / ap
proaches the axis. It can readily be seen that if f(x) behaves like 0(xk) as 
x -> 0, then W will have a density like 0{w1/k) as w - • 0. The cdf of W will 
then behave like 0{wl>k+l) and the ASD will have a tail like 0 ( H 1 + 1 / f c ) ) . 
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Quantiles of asymptotic spacing distributions 

< 
O " 

CM < 
O " 

< 
o 

3 ? 
CD 
Q. 
Q. 
Z> r 

o 

CM 
< -
O 

CO 
< -
O 

~~ — — " ^ ^ r i ^ 1 1 * * « - ^ 

— Normal 
Exponential 

- - Beta(1,2 ' 
— Uniform 

^--^^^^x 

1 

0.001 0.005 0.010 0.050 0.100 
Probability 

0.500 1.000 

Figure 1. Upper quantiles of asymptotic spacings distributions from selected parent distri
butions 

Obviously, the distribution of W will be unaffected by location shifts or reflec
tions, and will be reciprocally scaled by rescaling of X. Thus the tail behaviour 
of the ASD is the same for all distributions in a location-scale family. 

If X is Normal, then the density of W is messy, but after some calculation 
can be seen to be approximately proportional to (— logw) -1/2 near the origin. 
This does not behave like a power of w, indicating that the ASD will not have 
a negative-power tail. By making the change of variable s = — logw, we can 
see that the cdf of W will be approximately proportional to 

/ . 
- ! / 2 f 'da. 

— log w 

It follows that the tail of the ASD will be like 
/ •OO / •OO 

/ ' 
J log* 

- l / 2 „ - s ds, 

i.e., like the tail of exp(C) where C has a xl distribution. 
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0.01 0.10 1.00 10.00 100.00 
Normal spacings quantiles 

Figure 2. Q-Q-plots of Normal spacings 

4 Numerical results and simulations 

The quantiles for the ASD corresponding to given parent distributions can be 
computed numerically. These are plotted in Figure 1 for distributions with 
different tail behaviours. 

One can examine the suitability of the ASD for describing the empirical 
distribution of spacings for large but finite sample sizes. Figures 2 and 3 
present Q-Q-plots for spacings of samples 1000 i.i.d. observations from the 
Normal and Exponential distributions, respectively, plotted against the re
spective ASD. These plots demonstrate a reasonably good fit. The plot is 
presented on a log-log scale to accommodate the heavy-tailed distribution. 
Note that on such a scale, a well-fitting plot should lie on a straight line with 
unit slope. Such a line is superimposed on the points, constrained to pass 
through the empirical upper 10 percentile. 
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Figure 3. Q-Q-plots of Exponential spacings 
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Bivariate or multivariate ordinal categorical data is quite common in different real 
life situations. Several frequentist's approaches are available for the analysis of 
such data. In almost all those approaches, the computational burden is tremen
dous. As an alternative, some Bayesian latent variable based approach were sug
gested by some authors. In such cases also, the computation is a key issue. The 
computational burden of such Bayesian analyzes can be remarkably reduced by 
using the software WinBUGS. The present paper discusses one real life dataset on 
an ophthalmologic study, called the Wisconsin Epidemiologic Study of Diabetic 
Retinopathy (WESDR), which provides bivariate ordinal categorical data with 
several eye-specific and subject-specific covariates. The techniques of the available 
Bayesian analyzes with reference to the WESDR data are discussed in the present 
paper. Some results on Bayesian model selection for this data is also discussed. 
By the help of some exploratory data analysis an appropriate model is selected, 
and it is then analyzed in the Bayesian semiparametric way taking a Dirichlet 
process prior for the random effect (in the frequentist's sense). The final result 
on the analysis of WESDR data is presented. Several computational issues in this 
context are also discussed. Finally, the applicability of the present approach to 
some more general situation are also pointed. 

1 Introduction 

In several social, psychological and biomedical studies the response variable is 
ordinal categorical in nature, sometimes they are ordinal due to the absence of 
well-defined non-invasive direct measurements {e.g., mild, moderate, severe, 
etc.). If the response is of multivariate nature and each component of the 
response is ordinal categorical, we have multivariate ordinal categorical data 
to deal with. This kind of data are available in many real life situations. 

Ever since Dale 7 proposed the analysis of bivariate ordinal categorical 
data, a lot of subsequent studies were carried out in this interesting and im
portant research area. Much of the early works were done on the frequentist's 
view point. Molenberghs and Lesaffre 27 used a multivariate Placket distribu
tion as an extension of Dale's 7 model. These likelihood methods are, of course, 
computationally extensive. As an alternative, Williamson et al. 37 considered 
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the generalized estimating equations (GEE) approach. They fitted cumula
tive probit margins and a global odds ratio association model. Williamson 
et al. 38 discussed the applicability and usefulness of their computer pro
grams GEECAT (generalized estimating equations for categorical data) and 
GEEGOR (generalized estimating equations using global odds ratio). Kim 19 

carried out a latent variable based estimation technique for a bivariate ordinal 
data of an ophthalmologic study called the Wisconsin Epidemiologic Study of 
Diabetic Retinopathy (WESDR). Kim 19 used the Newton-Raphson iteration 
technique to find the estimates of the underlying parameters including the 
typically unknown cut-off points. But he admitted the computational diffi
culty of the technique in a more general set up. Williamson and Kim 36, also 
with reference to the WESDR dataset, considered bivariate latent variable 
regression model using global odds ratio, which required no specific choice 
of underlying latent distribution except its continuity, and no specific struc
ture of the correlation. A quasi-Newton method in a full maximum likelihood 
procedure was employed for the estimation of the model parameters. Kim et 
al. 20 discussed regression models for bivariate ordered categorical data from 
ophthalmologic studies. 

Some statisticians wanted to look at the multivariate ordinal categori
cal data from a Bayesian philosophy and tried to apply the Bayesian theory 
for analyzing such a multivariate ordinal categorical data with covariates. 
It is observed that, besides the difference in philosophical perspective, the 
Bayesian computation becomes more tractable and one may arrive at good 
solutions after some easy computational effort. In the present paper we dis
cuss some of the available approaches and discuss some possible new direc
tions, mainly with reference to a real life bivariate ordinal dataset obtained 
from the WESDR study. We discuss the WESDR study and the nature of 
the resulting bivariate ordinal data briefly in the next section. In Section 3, 
two available analyzes on WESDR data are briefly indicated. A discussion on 
appropriate model selection is provided in Section 4. In Section 5, a Bayesian 
analysis of the WESDR data using the selected model from Section 4 is car
ried out. The results are briefly discussed. Some important computational 
issues are discussed in Section 6. Finally, Section 7 ends with some concluding 
remarks. 
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2 W E S D R 

2.1 Description of the WESDR 

It was a population-based study conducted in Southern Wisconsin between 
1980 and 1982 by Dr. Ronald Klein and his medical colleagues at the Uni
versity of Wisconsin and supported by the National Eye Institute, NIH. In 
the baseline study, a total of 996 insulin-taking, younger onset diabetic pa
tients were examined using standard protocols to determine the prevalence 
and severity of diabetic retinopathy and associated risk variables. The pop
ulation of the study consisted of a probability sample selected from 10135 
diabetic persons who received primary care in an 11-county area in southern 
Wisconsin from 1979 to 1980. A detailed description of the population can 
be available in Klein et al. 21. Of the younger-onset persons (less than 30 
years of age), 996 participated in the baseline examination (1980 to 1982). 
Subsequently there were two follow-up examinations on the same population 
after 4 and 10 years (cf. Klein et al. 24; Klein et al. 2 2 ) , with some missing 
data in this course of study. The baseline and the two follow-up examina
tions were performed in a mobile examination van in or near the city where 
the participants lived. The ocular and physical examinations included tak
ing stereoscopic color fundus photographs of seven standard fields. The basic 
goals of the study (cf. Klein et al. 25) were 

• To find the associated risk factors which are important in planning a 
well-coordinated approach to the public health problem posed by the compli
cations of diabetes (cf. Hamman 17; Rand 3 0 ) . 

• Identifying the possible patients at high risk level of severe retinopathy 
was quite important for advising ophthalmologic care. 

• Planning future studies such as controlled clinical trials of treatment of 
diabetes and diabetic retinopathy (cf. Rand 30; Palmberg et al. 2 8 ) . 

• Progression of diabetic retinopathy over time and associated factors was 
also an important aspect of study (cf. Wahba et al. 3 3) . 

2.2 Data description 

WESDR data is a bivariate ordinal data. The retinopathy scale (RS) provided 
in the dataset is a more current one than the one used in some earlier works. 
Both the right and left eye retinopathy severity levels are recorded as two 
components of the bivariate response. The possible values of the retinopa
thy severity levels are 10, 21, 31, 37, 43, 47, 53, 60, 61, 65, 71, 75 and 85, 
corresponding to increasing levels of severity of retinopathy within an eye. A 
commonly used grouping is 10, 21-37, 43-53 and 60-85, which correspond to 



53 

no retinopathy (category 0), mild nonproliferative retinopathy (category 1), 
moderate to severe nonproliferative retinopathy (category 2), and prolifera
tive retinopathy (category 3), respectively. Such a grouping is usually done 
for easy interpretation of the data, and it reduces the computational burden 
to a great extent. Most of the available works are done using this grouping. 

Three eye-specific covariates are recorded separately for each eye. The 
first one is the presence or absence of macular edema (ME), which is the 
effusion of serious fluid into the intersects of cells in tissues. The right and 
left eye refractive error (RE) in diopters, which is the ability of the eye to 
refract light which enters into it so as to form an image on the retina, is also 
recorded. The values can be negative or positive, negative values represent 
myopia (nearsightedness), and positive values represent hyperopia (farsighted
ness). In addition, the right and left eye intraocular pressure (IOP) in mmHg. 
is also measured. 

In addition there are 11 person-specific covariates. The first two are age 
at diagnosis (AgD) of diabetes in years and duration of diabetes (DuD) in 
years. To get current age at the time of examination, one has to add AgD 
and DuD. The other person-specific covariates are glycosylated hemoglobin 
(GH) in percent (a measure of control of blood sugar where lower values are 
considered better), systolic and diastolic blood pressures (SBP & DBP) in 
mmHg., body mass index (BMI) in kilograms per meter squared (using weight 
and height), pulse rate (PR) in beats per 30 seconds, sex, urine protein (UP) 
(present/absent), doses of insulin (DI) per day and area of residence (AR) 
(urban/rural). 

3 Bayesian Analyses 

3.1 Bayesian Analysis of Baseline Data 

The first major Bayesian analysis of the WESDR (baseline) data is due to 
Biswas and Das 2. They considered 691 observations with full response and 
covariate information for their analysis. Suppose yn and ym be the responses 
from the left and right eye, respectively, for the it\\ individual. Both y^i and 
ym can take values 0, 1, 2 and 3. It is assumed that there are some underlying 
latent variables which are unobservable, but in effect we observe these y^ 
and ym- Underlying latent variables y*Li and y*Ri are postulated, which are 
responsible for observing y^ and ym in the following way: 

Vhi = 3 if y*Li S (7ij,7ij+i], 3 = 0,1,2,3, 

VRI =HfyRi G (72i,72/+i], Z = 0,1,2,3, 
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where 71/s and 72*'s are typically unknown cut-off points such that 7so < 
7*1 < • • • < 7s4 f° r 5 = 1,2. Some mild conditions on these 71/s and 72;'s, 
such as 

(1) 7 io = 720 = - 0 0 , 714 = 724 = 00, 

(2) 711 = 721 = a known constant, 

are needed for identifiability (see Chen and Shao 3, for details). The latent 
vector y* = {y*Li,y*m)T is assumed to follow a bivariate normal distribution 
N2{XiP, S). The joint distribution of yt = (yLi, VRi)T, yVs a r e wr i t ten as 

7r(i/?, j / i , i = ! , ••• , ^1)8, E, 7) 

N 

n 5 3 lioi x J (»£ i e (7ij.7ij+i],I/m G (721,721+1]) 
3,l€S 

xN2(Xip,i:), (1) 

where N = 691, the number of individuals under study; 7 is the collection of all 
unknown 7^ 's and 72i 's; S = {{j, I) : j = 0,1, 2, 3; I = 0,1, 2, 3}; I(X e A) = 1 
or 0 according as X € A or not; and 1J, = 1 or 0 according as y* = (j, l)T 

or not. Without sufficient prior knowledge, noninformative priors for /?, S 
and 7 are taken. The conditional posteriors of the parameters are of known 
form. The computations can be carried out using Markov Chain Monte Carlo 
(MCMC) technique. In particular, posterior summary statistics of all the 
parameters are obtained using the software WinBUGS. 

The analysis shows that the severity of retinopathy among the younger 
onset diabetic persons is directly affected by DuD and DBP. Also GH was one 
vital covariate for retinopathy. 

3.2 Analysis of the Baseline and 4-year Follow-up Data 

Das and Biswas 9 considered the analysis of bivariate ordinal data repeated 
over time. They took the WESDR data for two time points only (baseline and 
4-year follow-up data). Some notational adjustments are to be needed from 
the subsection 3.1. In place of yLi, yRi, y*Li, y*Ri, 1},, Xt we just write yLit, 

ymt, yliti y*mv !}*> -Kit to indicate that they are for time point t, t = 0,1. For 
the baseline data we write t = 0 and for the 4-year follow-up data we write 
t = 1. The joint distribution of yit = {yLit,VRit)T, y*t = (ylit,y*Rit)T,s a r e 

now written as 

T(j/*t. Va,i = 1, • • •, n, t = 0, l |/3, S , 7 ) 
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n 1 

= IIII £ Ji* x / ( » £ « G (7ii . 7y+ i ] , J/ffit G (72J, 721+iD 
i=i t=o |_j,ies 

x A ^ X ^ + Z ^ E ) , (2) 

where the sample size n is now 548, as some of the individuals of the baseline 
study were missing in the follow-up study. A random effect model (in the 
frequentist's sense) is assumed for y*t as 

y*t = Xit(3 + Zitbi + eit, 

where &;, a ^-dimensional vector, is the ith cluster (subject) effect, which is 
responsible for the longitudinal dependence. Here e;t is assumed to be bi-
variate normal with mean vector 0 and dispersion matrix E. For likelihood 
identifiability, E needs to be a correlation matrix (see Chib and Greenberg 5; 
Chen and Shao 3 ) . The prior for (3 is taken as Np(Po, Eo). Without sufficient 
prior information a relatively vague prior is chosen by setting /30 = 0 and 
Eo = 104x identity matrix. This ensures the posterior to be driven by data. 
A noninformative prior for 7 is taken. A prior proportional to the normal 
density (with known mean po and known variance T _ 1 ) in the domain ( — 1,1) 
is taken for p, the only correlation parameter in the 2 x 2 correlation matrix 
E. A Dirichlet Process (DP) prior for the unknown distribution G of 6,'s 
are taken (see Ferguson 12; Kleinman and Ibrahim 2 6 ) . The software Win-
BUGS is used for the Markov Chain Monte Carlo (MCMC) computations. 
Metropolis-Hastings algorithm (Hastings 18) was employed for sampling from 
the posterior of p, as it becomes non-standard; for other parameters the popu
lar Gibbs sampler (see Geman and Geman 16; Gelfand et al. 13) is used. Note 
that in case E is a proper dispersion matrix, a suitable inverted Wishart prior 
could be taken for E. In that case the Bayesian MCMC computations could 
be same, possibly requiring some smaller time as the conditional posterior of 
E would be inverted Wishart also. 

3.3 Present Analysis Using all the Data 

The WESDR data provides information of only baseline values (and not of 
the 4-year follow-up) on N — n = 143 individuals. Das and Biswas 9 ignored 
this information. Now this data on 143 individuals can be successfully used 
to get more information. The likelihood thus becomes 

n(y*t,yit, i = 1, • • •, n, t = 0,1; y*0,yio, i = n +!,•••, N\0, E, 7) 
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i=n+l 

J2 l% x ^Lit G (7y.7y+i],»fl« G (72(,72i+i]) 

S ^ X J ^ i 0 G (Ty'7ii+i],yfliO G (72i,72i+il) 

xAr2(XiO/3 + Z i0&i,S)}, (3) 

after modifying (2). Our ultimate goal is to analyze the baseline and 4-year 
follow-up data by making full use of the data after suitable prior elicitation 
and model selection in terms of covariate selection. These issues are discussed 
in the next section. 

4 Prior Elicitation and Model Selection 

Most of the priors considered so far are vague priors. An empirical Bayes 
procedure could be carried out if some past data were available. For example, 
Angers and Biswas l considered the analysis of the 4-year follow-up data only. 
They used the baseline data to construct priors for different parameters. Some 
sensitivity analyses were also carried out by Angers and Biswas 1. But, in the 
absence of such past information, the vague priors are appropriate. In such a 
case, the posterior will be driven by the data. In fact, we have a quite large 
dataset, and the data should dominate the posterior in any case. 

In the context of the 4-year data of the WESDR, model selection in terms 
of covariate inclusion was carried out by Angers and Biswas l . They computed 
the standardized Bayes estimators and ordered them. Then the model with 
highest marginal probability is selected. It was observed in their study that the 
baseline values, DBP and GH are important covariate in different situations. 
They included these covariates in their model to analyze the data. But if we 
carry out our analysis simultaneously for the baseline and 4-year follow-up 
data, there is no question of taking the baseline values as covariates. The 
covariates which are not important can be excluded from considerations to 
ease the computational burden. 

Wahba et al. 33 carried out their analysis on a subgroup of the younger on
set population, consisting of 669 subjects with no or nonproliferative retinopa
thy. They considered retinopathy scale (RS) as the response variable. Thus 
they reduced the bivariate ordinal data problem to a simpler univariate ordinal 
data problem. Some exploratory GLIM modeling using the SAS procedure 
LOGISTIC (SAS Institute 31) were carried out and after some exploratory 
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considerations they took the model. Wahba et al. 33 observed that the effect 
of GH was very strong and fairly linear in the logit and that the effects of AgD, 
DuD and BMI were strong and nonlinear. We have done a similar detailed 
exploratory study using SAS with the baseline and 4-year data. We observe 
that the effect of DuD in a log-scale explains the data in a better way. Note 
that Wahba et al. 33 also observed that DuD has a nonlinear effect. We also 
find that the effects of GH and DBP are significant in the context of retinopa
thy levels. In fact, Klein et al. 23 reported that GH is a strong predictor of 
progression of diabetic retinopathy in the younger onset group. Angers and 
Biswas * also observed the same scenario. DBP came out as an important 
covariate in the study of Kim 19 and Biswas and Das 2. In the present study 
we observe possible interaction between GH and DBP. Thus the model has to 
be taken with care. This is discussed in Section 5. 

5 Present Bayesian Analysis With the Selected Model 

We now carry out a Bayesian semiparametric analysis of the baseline and 4-
year follow-up data of the WESDR. We take the selected covariates (discussed 
in Section 4) into the model, suitable transformations and interaction effects 
are also considered following our exploratory study described in the previous 
section. This seems to be a correct model which can explain the retinopathy 
levels in terms of different covariates. We use all the available data, i.e., the 
likelihood is given by (3). We impose an additional restriction 71 j = ^2j for 
all j , which seems logical as the two eyes should behave in the same way. 
The random effect model (in the frequentist's sense) is justified from intuitive 
feelings. Besides the significant covariates taken in the model (after excluding 
the insignificant ones) there must be several unobserved (most of which are 
unobservable) factors that can be responsible for retinopathy and also the 
association between the retinopathy levels between two eyes. As the two eyes 
of the same human being are considered, several nerves, tissues, same reading 
habit and work habit, same environmental exposure, etc. are responsible for 
similar effects on both the eyes. These unobservable factors are expressed in 
terms of the uncertainty 6j's. 

The model is then taken as 

y*kit = constant + \og(DuD) x j3DuD + GH x (3GH + DBP x (3DBp 

+ (GH x DBP) x PGHXDBP + bki + ekit, k = L,R. 

A Bayesian semiparametric study as in Das and Biswas 9 was carried out with 
different choices of the prior. The prior for f3 is taken as a vague prior. This 
is taken by setting (3 ~ Np(0, EQ), where So = 104x identity matrix, i.e., by 
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setting the variances to be large. Some noninformative prior proportional to 
unity is set for 7. The prior for p is the same discussed in subsection 3.1. A 
Dirichlet process prior is taken for bi = (&Lz!&JRi)T's such that 

bi ~ G , 

G~DP{a,G0), 

with Go ~ iVm(0,r), with some known T. When G0 is known, i.e., G has 
a prior probability model with known hyperparameters, the posterior distri
butions can be easily obtained as in Wilks et al. 35. Here we have set F = 
identity matrix. The posteriors are observed to be dominated by the data. 
We primarily take priors of the form discussed in Section 3. 

Now we discuss the nature of the conditional posteriors without providing 
the exact mathematical expressions. The conditional posterior of /3 is mul
tivariate normal. The conditional posterior of p is non-standard, to sample 
from it one has to use the Metropolis-Hastings algorithm (see Hastings 1 8 ) . 
With some probability a(p, p ) (easily computable) we move to a candidate 
value p from the present value p, and with probability 1 — a(p, p ) we stick 
to p. We take p = p + h, where h is a random zero mean increment. The 
variance of h is usually taken to be of order O(^). The conditional posterior 
of 71J is found to be uniform over some domain. The conditional posterior 
of y*t is truncated bivariate normal, truncated in some rectangular region. 
Finally, the conditional posterior of bi is a mixture where one piece is normal 
and the others are point masses. That is, with some probability we choose 
bi = bj and otherwise we sample from the normal density. For detailed math
ematical forms of the conditional posteriors, one can see Das and Biswas 9. 
The derivation of the present case is similar to Das and Biswas 9 with a slight 
possible change in some expressions. 

The posterior summary statistics of the relevant parameters are then ob
tained. From our final analysis, the posterior mean of PDUD is 0.78, that for 
POH is 0.52 and for PDBP is 0.32. The posterior mean of PGHXDBP is 0.27. 
Thus all of DuD, GH and DBP have positive effect to the retinopathy on both 
the eyes in the sense that presence of any of them increases the retinopathy 
levels. The interaction of GH and DBP is also affecting the retinopathy in 
a positive way. The posterior mean of p, the polychoric correlation (cor
relation between two categorical random variables) is observed to be 0.862. 
Thus, quite a high correlation between the two eyes is present. This justifies 
the need for such an analysis of multivariate categorical data - one would 
loose much information if the analysis were carried out marginally for each 
response, separately. It is also observed that the posterior standard deviations 
of the regression coefficients are low for most of the cases. The Monte Carlo 
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error (MC error) is also quite small, these are less than 0.001 for most of the 
parameters. 

In turn we have tried the same analysis using logistic distributions for 
cm and emt (see Qui et al. 29, for such logistic error distributions). But the 
results are almost same as that for normal errors. Hence we are not discussing 
the figures separately. 

6 Computational Issues 

In such analyses, computations play a major role. The main objection to 
the earlier frequentist's solutions (without going to the philosophical issues) 
was their tremendous computational burden. In fact, in some more com
plicated scenarios, most of those approaches become computationally in
tractable. Thus, along with the philosophical view point, we look at the 
computational burden of the Bayesian approaches with great interest. 

Qui et al. 29 discussed some such computational issues for multivariate or
dinal data in some other situations. Their case was much simpler in the sense 
that they did not consider complicated random effect distributions like the 
Dirichlet process semiparametric model. Moreover the prior for p in our case 
yielded a non-standard conditional posterior, requiring Metropolis-Hastings 
algorithm to be carried out. 

All the computations of Biswas and Das 2 and Das and Biswas 9 were 
carried out using MCMC technique which avoids the evaluation of high di
mensional numerical integration. The computations in Angers and Biswas 1 

was done using a computer program in S-Plus. It took hours for the com
putation for model selection. The MCMC requires intensive computation 
and careful assessment of convergence. For computations, the freely available 
software WinBUGS is used and it eased the computational burden greatly. 

WinBUGS is a window version of the software BUGS (Bayesian analysis 
Using Gibbs Sampler), developed by MRC, Biostatistics Group, Institute of 
Public Health. For details see http://www.mrc-bsu.cam.ac.uk/bugs/ or the 
manual of WinBUGS 1.3 (see also Spiegelhalter et al. 3 2 ) . To operate the 
necessary computations, the software requires the likelihood, prior and data, 
although we have mentioned the distribution of the conditional posteriors only 
to visualize what is going on behind the tandom. It generates random samples 
from a series of conditional posterior distributions specified in the Bayesian 
model according to an MCMC algorithm. 

The analysis of the baseline data in Biswas and Das 2 was initially pro
grammed in C. But it took more than 24 hours for the computation. By 
WinBUGS the computations were done in less than 4 hours. For the DP 

http://www.mrc-bsu.cam.ac.uk/bugs/
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prior with baseline and 4-year follow-up data in Das and Biswas 9, WinBUGS 
took about 16 hours for the computation. After selecting the model and ex
clusion of several insignificant covariates, for the present analysis WinBUGS 
took about 12 hours for each computation. 

Standard approaches can be considered for assessing convergence (Cowles 
and Carlin 6) and for model checking (Gelman et al. 14) and comparisons 
(Chib 4, Diciccio et al. n ) . In the present paper the convergence of Gibbs 
sampler is ensured by the basic approach of Gelman and Rubin 15. Starting 
from some initial values of the parameters we generate 4 chains of values, each 
chain being generated starting from an over-dispersed distribution and with 
a sample size of 8000. We delete 4000 replications as "burning" samples to 
minimize the effect of initial values and retain the values of the next 4000 
replications to approximate the posterior distribution. To monitor the con
vergence we focus our attention to the parameters of interest, namely DuD, 
GH, DBP and GH x DBP. Following Gelman and Rubin 15, we compute the 
between and within chain mean squares of the retained values, say B and W 
respectively, for each of the parameters. Then we find 

s2 = (4000 - l)W/4000 + 5/4000, i/ = s2 + (4x 4000)_1S, 

and finally the potential scale reduction factor r = v/W. The potential scale 
reduction factors are nearly 1, and this suggests that the desired convergence 
is achieved in the Gibbs sampler. 

A 4000 updates were burn in as the initial samples, followed by a further 
4000 samples which were used to obtain the posterior summary statistics like 
the posterior mean, median, standard deviation, MC error, 95% probability 
interval for each of the parameters under consideration. 

7 Concluding Remarks 

• It could be of interest to analyze the 10-year follow-up data at the same 
occasion. But we could not access the data. 

• In addition to the probit link, a Iogit link is also tried, of course with 
not much difference in the results. This result was somewhat expected, as 
there is not much difference in the tail behavior of the normal and the logistic 
distributions. With the help of WinBUGS the computation is easily doable, 
and it only needs a slight change in the program. 

• Some nonparametric technique in terms of smoothing spline ANOVA 
was employed by Wahba et al. 33. We are now trying to employ a suitable 
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wavelet approach. This is under consideration and will be pursued in a future 
communication. 

• If we had to deal with multivariate data, the number of correlation 
components in the correlation matrix would be greater than one, namely 
Pi2,Pi3, • • •• In this case writing p = (pi2,Pi3, • ' ' )T i t n e prior of the k-
dimensional vector p (say) can be taken to be proportional to a fc-variate 
normal density (with known mean vector and dispersion matrix) truncated 
in a set C which is a convex solid body, subset of [—1, l]fc that leads to a 
proper correlation matrix. See Chib and Greenberg 5 for details. One can 
set the variances large to make it an uniform prior. If, instead, S were taken 
as a proper dispersion matrix (unknown), an inverted Wishart prior could 
be appropriate. The conditional posterior would be inverted Wishart in that 
case. 

• One relevant point may be the case where some component (s) of the 
multivariate categorical response is (are) not ordinal. In that case one can 
possibly use the Rasch model for that component(s). The problem of combin
ing it in our present set up is a challenge. Latent variable approach will not be 
applicable for those components. The theory is under study with some ordinal 
components and some (non-ordinal) only categorical components. The details 
will be pursued in a separate communication. Also one interesting situation 
could be the case where some of the components of yi, say yu, • • • ,ysi are 
ordinal categorical, and the remaining components of j / i ; say ys+i,i, • • • ,VH 
are continuous. See Das et al. 10 for a Bayesian approach in such a situation. 

• If, in the multivariate case, some of the cells of the fc-way ordered clas
sification (two-way, for bivariate case) are empty, the analysis will become 
more complicated. In a bivariate case, such a situation is observed and ana
lyzed by Weiss 34 in the frequentist's set up. But Weiss 34 observed that the 
log-likelihood function is not globally concave resulting serious difficulty in 
estimation. In the Bayesian set up, the likelihood will be simply as (1) with 
an indicator multiplied for each individual i, which will be 1 if the bivariate 
observation vector belongs to the non-empty cells, and will be 0 otherwise. 
A Bayesian analysis in this direction has been done by Das and Biswas 8 

which shows that the Bayesian solution does not have the drawbacks of the 
frequentist's approach. 

• Finally, we would like to provide some motivation of the random effect 
(in the frequentist's sense) semiparametric model. We are, in fact, observ
ing some covariates. But, there is reason to believe that there are numer
ous physiological factors such as several nerves are affecting the retinopathy 
of an individual, most of them are unobservable. To model their effects in 
the retinopathy level, one has to bring some random component (in the fre-
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quentist's sense) under consideration. See Das and Biswas 9 for a detailed 
discussion in this context. 
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A statistical network is a collection of nodes representing random variables and 
a set of edges that connect the nodes. A probabilistic model for such is called a 
statistical graphical model. These models, graphs and networks are particularly 
useful for examining statistical dependencies amongst quantities via conditioning. 
In this article the nodal random variables are time series. Basic to the study of 
statistical networks is some measure of the strength of (possibly directed) con
nections between the nodes. The use of the ordinary and partial coherences and 
of mutual information is considered as a study for inference concerning statistical 
graphical models. The focus of this article is simple networks. The article includes 
an example from hydrology. 

1 Introduction 

Science concerns relationships. The question that usually arises is what is the 
form of some relationship. A lesser question is how strong is a relationship. 
The work presented considers the use of partial coherency, and of coefficients of 
mutual information as measures of the strength of association of connections. 

An example involving river flows measured at a succession of dams along 
the Mississippi River is presented. Here the nodes are in series and the edges 
are directed. The locations of the dams are provided in Figure 1. 

Basic books discussing statistical graphical models include Cox and 
Wermuth7,Whittaker 19, Edwards 8 , Lauritzen16. The paper has the following 
sections: Mutual Information, Networks, Results, Discussion and Extensions. 

2 Mutual Information 

2.1 Continuous Case 

The field of information theory provides some concepts of broad use in statis
tics. One of these is mutual information. It is a generalization of the coefficient 
of determination, corr{X,Y}2, and it unifies a variety of problems. 

For a bivariate random variable (X, Y) with density function p(x, y) the 
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mutual information (MI) is defined as 

IXY = [ P(x,y) log P}X'y) dxdy (1) 
Js px{x)PY{y) 

where S is the region p(x, y) > 0. 
As an example, for the bivariate normal the MI is given by 

IXY = -^og(l-p2
XY) 

where pxy is corr{X,Y}. 
The coefficient IXY has the properties of: 

1). Invariance, IXY = luv if the transformation (X,Y) ->• (U,V) has 
the form U — f(X),V = g(Y) with / and g each differentiable 1-1 
transforms. 

2). Non negativity, IXY > 0. 

3). Measuring independence in the sense that IXY = 0 if and only if X and 
Y are statistically independent. 

4). Providing a measure of the strength of dependence in the senses that i) 
IXY = oo if Y — g(X), and ii) Ixz < IXY if X is independent of Z 
given Y. 

The property 3) that IXY = 0 only if X and Y are independent stands in 
strong contrast to the much weaker correlation property of pXY. 

The estimation of entropy 

There are several methods that have been used. 

Nonparametric estimate 

Suppose one is considering the bivariate random variable (X, Y). Sup
posing further that p(x,y), is an estimate of the density p(x,y), for example 
a kernel estimate, then a direct estimate of the entropy is 

S2J2 P{iS,jS) log p{iS,j6) = E{\og p(X,Y)} for 6 small. 

In the same way E{log px(X)}, E{\og py(Y)} may be estimated and one 
can proceed to an estimate of the mutual information via expression (1). 
References to the type of entropy estimate just described and some statistical 
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properties include: Joe 15, Hall and Morton 13, Fernandes 9, Hong and White, 
14, Granger et al. 12. 

Difficulties with this form of estimate can arise when px(-), PY(-) are 
small. The nonparametric form also runs into difficulty when one moves to 
higher dimensions. 

A sieve type of estimate is presently being investigated for this situation, 
in particular an orthogonal function expansion employing shrunken coefficient 
estimates. 

Parametric estimates of entropy 

If the density p(x,y\8) depends on a parameter 9 that may be estimated 
reasonably then an immediate estimate of the entropy is provided by 

/ 
p(x,y\6) log p(x,y\6) dxdy. 

Another form of estimate is based on the likelihood function. Suppose 
one has a model for the random variable (X, Y) including the parameter 0, 
(of dimension u). Suppose the model has the property that X and Y are 
independent when 6 = 0. When there are n independent observations the 
log-likelihood ratio for the hypothesis 6 = 0 is 

Vlog- p(Xi'ViW 

with expected value 

'Px{xi)pY(yi) 

nlxY-

This suggests the use of the log-likelihood ratio statistic divided by n as 
an estimate of IXY- A further aspect of the use of this statistic is that 
its distribution will be approximately proportional to xl, where v is the 
dimension of 6, when X and Y are independent. 

Partial analysis 

When networks are being considered the conditional mutual information 
is also of use. For a trivariate random variable X, Y, Z one can consider 

7- f f f I \ 1 P(X1 Vl Z)P(Z) , , , 
IXY\Z = J ] J P(x,y,z) log p{x^z)p{yjZ) dxdydz 
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Its value for the trivariate normal is 

- - l o g ( l - p2
XY\z) 

with PXY\Z the partial correlation of X and Y having removed the linear 
effects of Z. 

2.2 Processes 

A disadvantage of MI as introduced above is that it is simply a scalar. As 
consideration turns to the process case, i.e. functions, it seems pertinent to 
seeks to decompose its value somehow. 

1. Time-side approach 

The entropy of a process is denned by a suitable passage to the limit for 
example as 

lim E{logp(X1,X2,...,XT)} 
T—foo 

where p(xi, ...,XT) denotes the density of order T. To begin one can 
simply consider the mutual information of the values Y(t + u),Y(t) or of 
the values Y (t + u), X(t). This leads to a consideration of the coefficients 

IYY(U) and IYX(U) 

i.e. mutual information as a function of lag u. References to this idea 
include: Li 17 and Granger and Lin n . 

2. Frequency-side approach 

Similarly it seems worth considering the mutual information at frequency 
A of two components of a bivariate stationary time series. This could be 
defined as the mutual information of the spectral increments dZx(X) 
and dZy(A) of the Cramer representation. Because these variates are 
complex-valued a 4-variate random variable is involved. In the Gaussian 
case the MI at frequency A is 

- log(l - \RXYW\2) 

where \RXY (A)|2 is the coherence of X and Y at frequency A. The overall 
information rate is 

- T i o g a - \R(U) \2)du, 
J — 7T 

(see Granger and Hatanaka 1 0 ) . 
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Figure 1. The locations of the 10 dams along the Mississippi River some of whose flow rates 
are studied. 
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In the general case for each frequency one might construct an estimate, 
/xy(A), based on kernel estimates of the densities taking empirical FT-values 
near A as the data. 

One way to estimate the MI, suggested above, is to fit a parametric model 
and then to use the log-likelihood ratio test statistic for a test of independence. 

A novel way, also being pursued, is to use first recurrence time estimates 
of entropy (see Ornstein and Weiss 18 and Wyner 2 0 ) . 

3 Networks 

In crude terms a network is a box (or node) and line (or edge) diagram and 
some of the lines may be directed. In our work a box corresponds to a random 
entity, to a random variable, to a time series or to a point process. In studying 
such models the methods of statistical graphical models provide pertinent 
methodology. Typically these models are based on conditional distributions. 
See the books by Edwards 8, Whittaker 19, Lauritzen 16, Cox and Wermuth 
7 

If A, B, C represent nodes a question may be as simple as: Is the struc
ture A -»• B -> C appropriate or is it better described as (A, B) -> CI 
On the other hand the question may be as complicated as: What is the wiring 
diagram of the brain? 

Figure 1 shows the locations of dams of a network along the Mississippi 
River. Since the bulk of the water flows south an elementary graphical model 
for this situation is: Dam 1 -> Dam 2 -> ... -> Dam 10. Of course there 
are other sources of water, such as entering rivers and rainfall to be taken 
note of. The figure and the data to be analyzed are taken from 

www.mvp-wc.usace.army.mil/projects/lockjdam.html 
One reference to the approach of this paper is Brillinger 3. 

4 Resul ts 

4.1 Mississippi River Flow 

The waters of the Mississippi River flow from Minnesota in the north of the 
United States to the Gulf of Mexico. Flooding along the river has long been 
a concern, and the U.S. Army Corps of Engineers has constructed a series of 
locks for flood control and as an aid to navigation. The waters flowing may 
be viewed as a system added to by precipitation and by flow from entering 
streams and runoff and reduced by evaporation, absorption and diversion. 

The basic data employed in the study to be described are the daily water 

http://www.mvp-wc.usace.army.mil/projects/lockjdam.html
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Figure 2. Estimated partial coherence of log(flow rate) at Dams 2 and 5 given those at 
Dam 4. The horizontal line gives the approximate upper 95% null level. 
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Figure 3. The estimated partial coherence of log(flow rate) at Dams 3 and 5 given Dam 4, 
Dams 2 and 4 given Dam 3 and Dams 2 and 5 given those at Dams 3 and 4. The horizontal 
lines give the approximate upper 95% null level. 
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flow rates as recorded at a succession of dams along the river. The data are 
daily from 1960 on and were obtained from the WWW site mentioned above. 
Figure 1, taken from that web site, shows the locations of the dams. Entering 
streams may be seen. Consider for example the logarithms of the flow rates, 
Y2(t),Yi(t),Y5(t) at Dams 2, 4, 5. Their locations may be seen in Figure 1. 
One sees the bulk of the waters passing from Dam 2 to Dam 4 and then onto 
Dam 5. One sees the Zumbo River entering between Dams 4 and 5 and the 
three other rivers entering between Dam 2 and Dam 4. The logarithms of the 
flow rates are taken as the basic variables. 

This situation will be studied as providing a useful test bed for studying 
the effectiveness of the partial coherence and mutual information parameters. 

Figure 2 presents the results of a partial coherence analysis focusing on 
Dams 2, 4, 5. The top right panel provides the estimated coherence functions 
of Dams 2 and 5. The horizontal line gives the approximate upper 95% null 
level under the null hypothesis of zero coherence. One sees high coherence at 
the low frequencies. The bottom right plot is the estimated partial coherence 
function of Dams 2 and 5 having removed the linear time invariant effects of 
Dam 4. Once again the horizontal line gives the approximate upper 95% null 
level under the null hypothesis of zero coherence. One looks for more than 
about 5% of the values lying above these lines. In the partial coherence case 
one sees not too much activity. In this situation the partial coherence could 
have been anticipated to be negligible because of Dam 4's being so close to 
Dam 5, i.e. highly effective in blocking off the direct effects of Dam 2. As an 
aid to understanding this analysis one can consider the model 

Y5(t) = I a{t - u)Yi(u)du + e{t) 

Y4(t) = / b(t - u)Y2(u)du + r)(t) 

with e and 77 noise processes. The partial coherence estimated is then the 
coherence of the processes e and 77. 

The analysis is now extended to 4 series. Figure 3 provides the estimated 
partial coherences of Dams 3 and 5 having removed the effects of Dam 4 and 
of Dams 2 and 4 having removed the effects of Dam 3 and also that of Dams 
2 and 5 having removed the effects of Dams 3 and 4. The required formulas 
may be found in Brillinger 2. The networks contemplated in the analysis are 
the parallel and series ones. Logically the series structure is appropriate. 

All three of the partial coherences appear weak. This is consistent with the 
series structure of the graph as was anticipated. Had there been parallel links 
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Figure 4. The top panel provides an estimate of the MI of the two real parts of the Missis
sippi river flows at Dams 2 and 5. The bottom panel similarly refers to the two imaginary 
parts. The dashed line gives the approximate upper 95% null level. 
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through Dams 3 and 4 instead of the serial ones then the partial coherences 
35|4 and 24|3 would not be expected to be near 0 generally. 

As a further example the MI of series 2 and 5 was estimated as a func
tion of frequency A, actually the Mi's of the two real parts of the frequency 
components and of the two imaginary parts. These estimates are graphed in 
Figure 4. Approximate 2.326 s.e. limits are obtained by randomly altering 
the phases of the empirical FT components, following the procedure of Braun 
and Kulperger 1. In the plots one notes some apparent association at the 
lower frequencies. This could arise, for example, from the occurrence of snow 
or rain storms affecting the segments of the river at the same time. 

An estimate of the full MI is currently being developed following the 
discussion of Section 2 . 

A point process analysis of this situation is developed in Brillinger 4. 
These data are also considered in Brillinger 5 . 

5 Discussion and Extensions 

The estimated partial coherences of the dams' flow rates had the forms an
ticipated given the physical knowledge of the situation. The coefficient of 
mutual information is a unifying concept extending second-order quantities 
that have restricted applicability. Its being 0 actually implies that the quan
tities involved are statistically independent. Another important advantage is 
that the MI pays no real attention to the values of the process. They can be 
non-negative, integers or proportions for example. 

The MI is useful when one wishes to make inferences stronger than: 
"The hypothesis of independence is rejected" and more of the character "The 
strength of connection is I." 

During the work the plot of the function IXYW, appear more useful than 
simple scalars IXY- Both parametric model-based estimates and nonparamet-
ric estimates of mutual information have been mentioned and computed. 

A number of extensions are available and some work is in progress. One 
can consider the cases of: point processes, spatial-temporal data, local es
timates, of learning, of change, of trend, and of comparative experiments. 
Brillinger 6 contains related ideas and examples from neurophysiology. 

One needs to develop the statistical properties of other estimates of MI 
such as the estimate based on the waiting time and the sieve estimates. 
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Cohort study designs are often used to assess the association between community 
based ambient air pollution concentrations and health outcomes, such as mortality, 
development and prevalence of disease, and pulmonary function. Typically, a large 
number of subjects are enrolled in the study in each of a small number of commu
nities. Fixed site monitors are used to determine long-term exposure to ambient 
pollution. The association between community average pollution levels and health 
is determined after controlling for risk factors of the health outcome measured at 
the individual level (i.e., smoking). We present a new spatial regression model 
linking spatial variation in ambient air pollution to health. Health outcomes can 
be measured as continuous variables (pulmonary function), binary (prevalence of 
disease), or time to event data (survival or development of disease). The model 
incorporates risk factors measured at the individual level, such as smoking, and at 
the community level, such as air pollution. We demonstrate that the spatial auto
correlation in community health outcomes, an indication of not fully characterizing 
potentially confounding risk factors to the air pollution-health association, can be 
accounted for through the inclusion of location in the deterministic component of 
the model assessing the effects of air pollution on health. We present a statistical 
approach that can be implemented for very large cohort studies. Our methods are 
illustrated with an analysis of the American Cancer Society cohort to determine 
whether the prevalence of heart disease is associated with concentrations of sulfate 
particles. 
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1 Introduction 

Cohort study designs are often used to assess the association between com
munity based ambient air pollution concentrations and health outcomes, such 
as mortality, development and prevalence of disease, and pulmonary function. 
Typically, a large number of subjects are enrolled in the study in each of 
a small number of communities. Practical considerations of implementation 
motivate this epidemiologic design, in that it is relatively easy to recruit ad
ditional subjects in a community compared to identifying communities with 
appropriate longitudinal pollution monitoring records. Fixed site monitors are 
used to determine long-term exposure to ambient pollution. The association 
between community average pollution levels and health is determined after 
controlling for risk factors of the health outcome measured at the individual 
level (e.g., smoking). Standard statistical computing software programs (e.g., 
SAS 10) can be used for analysis if the assumption of statistical independence 
between subjects is appropriate. 

Health responses, however, often cluster by community, indicating that 
responses of subjects within the same community are more similar than re
sponses of subjects in different communities. This implies that community 
itself poses some risk to health. Community-level variables, such as measures 
of socio-economic status of the community, can be used to model this unex
plained risk in addition to individual-level risk factors. Failure to account for 
all the variation between community health outcomes even after controlling 
for individual and community level risk factors can lead to downward biased 
estimates of the uncertainty in the community-level risk factors, including air 
pollution (see Ware and Strom 1 3) . Additional bias in the uncertainty of the 
risk estimates can occur if the community average health outcomes display 
spatial autocorrelation. That is, health responses for communities close to
gether are more similar than responses for communities farther apart, thus 
invalidating the use of standard statistical models such as linear, logistic or 
hazard models. Autocorrelation in the residuals of these models could be 
due to missing or systematically mis-measured risk factors that are spatially 
autocorrelated. Failure to account for spatial autocorrelation can yield down
ward biased estimates of uncertainty in the community-level risk factors and 
may suggest uncomplete control for potentially confounding community-level 
factors with the variables of primary interest, such as air pollution (Miron 8 ) . 

We present a regression model in which the residual community health 
responses are characterized by community-based stochastic variables called 
"random effects", after controlling for individual and community-level risk 
factors. The variance of the random effects represents the residual variation 
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in response between communities. Broader spatial trends in residual health 
outcomes are modeled by non-parametric smoothers of location in the deter
ministic component of the model. This approach is analogous to that used 
in time series studies in which temporal trends in health series are jointly 
modeled with air pollution (Cakmak et al. 2 ) . 

Our modeling framework can accommodate continuous, binary, and time 
to event health data. We present an approach to statistical inference that 
can accommodate very large datasets typically encountered in this area. Our 
methods are illustrated using data obtained from the American Cancer Society 
(ACS) study of particulate air pollution and health (Pope III et al.g). We 
examined the association between the prevalence of heart disease and ambient 
particulate sulfate concentrations in 144 metropolitan areas in the United 
States. 

2 Spatial Model 

Three basic regression models are considred here: linear, logistic, and time to 
event. First, we start with time to event models. 

Suppose that the cohort of interest is stratified on the basis of one or more 
relavant covariates. Let the instanteneous probability of event at time t, or 
hazard fuction, for a individual i residing in area s and a member of stratum 
m is given by h™(t). We propose a space-time model to relate spatial risk 
factors to longevity. The hazard /ijm(£) for our model is determined by 

jlm^e{(^)+pTxr(t)+0Tz(s)+V(s)} ^ 

where /i™(£) is the baseline hazard function for the mth strata, ((s) is the 
two-dimensional term to account for residual spatial variability, p is a vec
tor of unknown regression coefficients linking individual risk factors to the 
hazard function, and /? is a vector of unknown regression coefficients linking 
the spatial level risk factors to the hazard function. Covariate information 
modulates the baseline hazard function with the regression parameters p and 
P representing the logarithm of the relative risk of death per unit change in 
the individual and spatial covariates, respectively. The spatial random ef
fects, T](s), or frailties, are shared by all individuals in area s. These random 
effects reflect the difference between the observed hazard function and the 
hazard function predicted from a statistical model. We assume that the spa
tial process has zero expectation, variance , 0 > 0 and correlation matrix Ct 
with dimension S. 

Second, we consider logistic model. Let us assume that the response 
probability is given by n. The odds of positive response {j~) for a individual 
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residing in area s and a member of stratum m is defined by 

e{C(s)+pTxr(t)+PTz(s)+v(s)} (2) 

where C(s) is the two-dimensional term to account for residual spatial vari
ability, p is a vector of unknown regression coefficients linking individual risk 
factors to the odds of positive response, /3 is a vector of unknown regression 
coefficients linking the spatial level risk factors to odds of positive response, 
and the spatial random effects process, 7j(s), are shared by all individuals in 
area s. 

Third, we consider linear model. The model assumes that dependence of 
health responses on covariates occours through linear combination: 

as)+pTXr(t)+0TZ(s)+r1(s) (3) 

where C(s) is the two-dimensional term to account for residual spatial vari
ability, p is a vector of unknown regression coefficients linking individual risk 
factors to the health responses, (3 is a vector of unknown regression coefficients 
linking the spatial level risk factors to the health responses, and the spatial 
random effects process, r](s), are shared by all individuals in area s. 

3 Statistical Estimation 

We divide the estimation procedure into two stage. In "Stage One", we work in 
time domain. Health outcome data is modeled by covariates at the individual 
level and indicator functions for each community. Community-level covariates, 
such as air pollution, are not included at this stage. For our hazard model 
(1), for example, in the time domain we consider 

h™e&
s.^5(s)I(>)+PT*r(t)} (4) 

where I(s),s = 1, ...,S — 1 are indicator variables taking the value 1 if the 
subject resides in area s and zero otherwise. One area (S) is (arbitrarily) 
assigned as a reference. The unknown parameters represent the logarithm 
of the relative risk of death for those subjects living in area s compared to 
those subjects in the reference area 5, after controlling for the individual risk 
factors Xi^(t). In the time domain the corresponding equations for linear 
and logistic regression models are straightforward. 

Estimates of the community-specific health responses are determined us
ing standard computer software for linear, logistic and Cox proportional haz
ard survival models. We used SAS 10 procedures because they can accommo
date very large sample sizes. For linear and logistic regression models, we do 
not specify an intercept term. The estimates of the indicator functions can be 
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interpreted as the average response in a specific community after adjusting for 
individual-level covariates. Output from stage one is the community-specific 
adjusted health responses denoted by {J(s),s = 1,...,S}, where s denotes a 
zero dimensional point in Cartesian (x,y) space representing the location of 
one of communities under study. Additional output from this stage is the 
variance-covariance matrix of the S(s), denoted by v, which describes the un
certainty in the estimates of the community-specific adjusted health response. 

The Cox proportional hazards survival model incorporates a baseline haz
ard function that is interpreted as the instantaneous probability of an event 
given all covariates in the model are assigned a zero value. In this case, in
dicator functions for community are defined with respect to a reference com
munity. A limitation of this procedure is that the uncertainty of the estimate 
of the reference area is not defined. Because these values are based on com
parisons with the same reference area, they are correlated. This correlation 
increases the estimated uncertainty in the location-specific log-relative risks 
{J(s)}. The induced correlation can be removed by methods developed by 
Easton et al. 4. This procedure eliminates the covariance between the {<5(s)}, 
and defines an associated estimate of uncertainty to the assigned value of zero 
for S(S). 

In "Stage Two", we work in space domain. Estimates of community 
health responses are related to risk factors defined at the community level 
using a linear random effects regression model as follows: 

6(s)=as)+PTZ(s) + r)(s) + e(s) (5) 

where e(s)is a random process with zero expectation, variance-covariance ma
trix v, independent of the spatial random effects process rj(s). 

C(s)is the two-dimensional trend term to account for residual spatial vari
ability, and /? is a vector of unknown regression coefficients linking the vector 
of spatial level risk factors, Z(s), to the community-specific health responses. 

The spatial random effects, T](S) , are shared by all individuals in area s. 
These random effects reflect the difference between the observed and predicted 
values from our statistical model. We assume that the spatial process r](s) 
is stationary (i.e., expectation does not vary in space), has zero expectation, 
variance 0 > 0, and correlation matrix 0 with dimension S. The correlation of 
the random effects between two areas can be modeled by their distance apart 
or some other characteristic of their locations. Autocorrelation models, or 
correlation between the same response at different locations, typically assume 
that closer locations will have attribute values, in this case random effects, 
that are more similar than values in locations farther apart. Thus, these 
models are often characterized by functions that decrease monotonically with 
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distance (Matheron 7 ) . 
Here, <5(s), has expectation /u(s) = C(s)+0TZ(s) and variance-covariance 

matrix £ = OfJ + 1/ If the number of subjects and events in each community 
is large, as is assumed here, the {<$(s)} have approximately a multivariate 
normal distribution with mean vector /u and variance-covariance matrix £. 
The unknown parameter vector, f3 , and the variance of the random effects, 
0 , can be estimated by maximum likelihood methods with the log-likelihood 
function minimized by Fishers Scoring algorithm (see Burnett et al. 1 ) . The 
elements of V are assumed to be known in this stage. 

The random effects will be non-stationary if there is a trend in space. Spa
tial trends can be accounted for by surface ((s). We consider non-parametric 
smoothed estimates of £ using the robust locally-weighted regression (LOESS) 
smoothers (Cleveland and Devlin 3) within the generalized additive model 
(GAM) framework (Hastie and Tibshirani 5 ) . The complexity of the surface 
is controlled by a "span" parameter which is the proportion of the data used 
for the local regression. The larger the span, the smoother the estimated 
surface. 

We have developed a simple method to judiciously select the appropriate 
span in the LOESS smoother so as to minimize the autocorrelation structure of 
the random effects. We do this by plotting the correlation of the standardized 
residuals versus the distance between communities. The span is decreased 
until there is no apparent association with distance. 

The GAM procedure in S-Plus requires that the data are uncorrelated. 
Within our iterative estimation procedure, we run the GAM with a weight 
function as the inverse of diagonal elements of S. The GAM regression model 
consists of a LOESS surface of (x,y) and spatial or community-level covariates, 
Z(s). We then capture the marginal values of this surface in the x and y 
dimension. These values are used as two new covariates in the random effects 
linear regression model, in which estimates of the covariate parameters, /?, and 
the dispersion parameters, 0 , are obtained by maximum likelihood methods. 
We iterate between the GAM step and the maximum likelihood step until 
little relative change in consecutive estimates of 0 is observed (in this case 
< io-4). 

4 The American Cancer Society Study 

Volunteers of the ACS enrolled over 1.2 million people in September of 1982 
throughout the United States. Information on history of disease, longevity, 
and demographic characteristics were obtained. We obtained information on 
particulate sulfate levels from the Aerometric Information Retrieval System 
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(AIRS) and the Inhalable Particle Network (IPN) for 1980 and 1981 for 144 
Metropolitan Statistical Areas (MSAs) in which ACS subjects were enrolled. 
Sulfates are secondarily formed particulate aerosols originating from sulfur 
dioxide emissions and are a major component of fine particulate matter. The 
sulfate data from AIRS was collected using glass fiber filters, which react in the 
presence of sulfur dioxide and artifactually innate the sulfate concentration. 
The sulfate data obtained from the IPN used teflon niters which are not 
subject to this artifact problem. Both monitoring networks were operating 
in 41 MSAs. We calibrated the AIRS sulfate data to the IPN sulfate data 
using six linear regression models with separate calibrations for three regions 
of the county and two time periods [April-September and October to March] 
6. Estimates of exposure were obtained by averaging all available sulfate data 
from all monitors located in a MSA for the years 1980 and 1981, inclusive. 
The mean concentration of sulfate particles adjusted for the sulfur dioxide 
artifact across all 144 cities was 6.4 ng/m3 , with a minimum value of 1.4 
fig/m3, an interquartile range of 4.2 fig/m3, and a maximum value of 15.6 
/j.g/m3. 

5 Resul ts 

We examined the association between concentrations of sulfate particles and 
the prevalence of doctor diagnosed heart disease (8.6%). The mean age at en
rollment for the 540,679 subjects was 56.6 years, 5% of subjects were younger 
than 40 years, 5% were older than 75 years, 56.6% of subjects were women, 
and 94% were white. There were 3,755 subjects per community on average, 
with a mean of 323 subjects with heart disease per community. Beaumont-
Port Arthur, Texas provided the least number of subjects (61) and the fewest 
with heart disease (7), while the most subjects were recruited in Los Angeles 
(23,151) with the highest number with heart disease (1,970). 

The first step in the analysis was to use the logistic regression procedure 
in SAS to identify all relevant individual risk factors that were associated with 
heart disease. This model also included indicator functions for the 144 com
munities to account for any extra between community variation not account 
for by the individual-level covariates. Thirty-seven risk factors were selected 
including variables representing age (a cubic polynomial to account for poten
tial non-linear association with disease), gender, age-gender interaction, race 
(white versus other), quadratic polynomial of the number of cigarettes smoked 
and years smoking for current and former smokers, age starting smoking for 
current and former smokers, consumption of beer, wine, and liquor, quadratic 
polynomial of body mass index (square of height divided by weight), edu-
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cational attainment (less than high school, high school, or more than high 
school), martial status (single, married, other), passive exposure to tobacco 
smoke, and regular exposure to some air toxics in work or daily life (asbestos, 
chemicals/acids/solvents, coal or stone dusts, coal tar/pitch/asphalt, diesel 
engine exhaust, or formaldehyde). 

In the next step, we visualized the spatial association between the preva
lence of heart disease and sulfate particles using our stage two linear random 
effects regression model. Here, we regressed the {(5(s)} onto the (x,y) geo
graphic coordinates defined by longitude and latitude of the 144 MSAs with a 
non-parametric smoothed spatial surface £ (Figure 1, right panel), excluding 
spatial covariate information such as air pollution (i.e. Z(s)=0 ). We used the 
GAM procedure in S-Plus 12 assuming no autocorrelation (i.e. U = 0) and 
a diagonal form for V. [A diagonal covariance matrix is required to use the 
GAM in S-Plus 12.] We use latitude and longitude for this visualization step 
because these coordinate definitions are more easily interpretable than the 
Cartesian (x,y) coordinate specification. We use the Cartesian coordinates in 
all other formal statistical analyses as the examination of spatial autocorrela
tion usually relies on Euclidian rather than angular distance measures. This 
procedure produced a three-dimensional surface of {^(s)} after adjusting for 
all individual level risk factors. 

We found that adjusted prevalence of heart disease was elevated in the Ohio 
Valley region south of Lake Erie and in the southeast, diminished in the west 
and south, and moderately elevated in the mountain states. We also spatially 
modeled concentrations of sulfate particles using a GAM assuming these val
ues were uncorrelated (i.e. E = a21, where a2 is the residual variance and / 
is the identity matrix). Modeled sulfate values centered by their mean con
centration are portrayed in left panel of Figure 1. A corresponding elevation 
in concentrations of sulfate particles exits in the Ohio Valley region and the 
southeast, with much lower concentrations in the west. Heart disease was 
elevated in the mountain states, a pattern not observed for sulfates. This 
visualization suggests a positive association between the two surfaces. 

We then fit our spatial linear random effects model with no spatial 
predictors, no location surface, assuming that the data are uncorrelated 
(S = 0 / -I- V) and determined the standardized residuals from this model. 
The association between the autocorrelation of these standardized residuals 
and distance is graphically presented in Figure 2 (panel a) using the correl-
ogram function in the Spatial Module of S-Plus u . Correlograms measure 
autocorrelation as a function of distance between the observations within 
binned distance groups. This procedure generates average autocorrelations 
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Figure 1. Non-parametric smoothed surface of the prevalence of heart disease by latitude 
and longitude, adjusted for individual level covariates in American Cancer Society Study 
with smoothing parameter of 20 percent (left panel). Non-parametric smoothed surface of 
particulate sulfate concentrations by latitude and longitude with a smoothing parameter of 
20 percent (right panel). Note, z-axis represents residuals from generalized additive model. 

at 20 roughly equal distances. Autocorrelation peaks at a value of 0.45 for 
near communities, and is positive but declining for distances under 500kms.. 
A cyclic pattern is evident in the autocorrelations for distances greater than 
500kms.. This pattern could be due to the several regions of elevated preva
lence of heart disease (see Figure 1, right panel). The association between 
autocorrelation and distance is reduced slightly by the inclusion of sulfates 
(Figure 2, panel b). 

We also examined the autocorrelation structure in the standardized resid
uals for models with a LOESS location surface with spans of 80, 60, 40, and 
20% (Figure 2, Panels c-f respectively). A span of 20% was required to elim
inate the association between the standardized residuals and distance. 

The sensitivity of the sulfate effect, /3, and the random effects variance, 
0 , to the model specification is given in Table 1. The sulfate effect based 
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Figure 2. Correlation of standardized residuals by distance between locations for spatial 
random effects model under six model specifications: a) no spatial predictors and no loca
tion surface b) sulfates as the spatial covariate with no location surface, c-f) model includes 
sulfate and a location surface estimated with a LOESS span of 80-20% respectively. Hori
zontal line indicates zero values. 

on the standard logistic regression model ( Model 1) assuming subjects are 
independent 0 = 0.0100) was similar to the corresponding estimate based on 
our "Two-Stage" spatial random effects model ( Model 2) (/? = 0.0103) under 
the identical assumption of independence (i.e. 0=0) , indicating that the 2-
stage estimation approach gave similar results to the logistic regression model 
for this example. This was most likely due to the large number of subjects 
and cases of heart disease per MSA. The estimates of the standard errors of 
the sulfate effect for the two approaches were also similar (Table 1). 

There existed strong statistical evidence to support the assumption of 
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Table 1. Sulfate Effects and random effects variance by model type and span of LOESS 
smoother of location surface. 

Model Type 
(Model No.) 

Logistic 

(1) 

Spatial 
(2) 

Spatial 
(3) 

Spatial 
(4) 

Spatial 
(5) 

Spatial 
(6) 

Spatial 
(7) 

Span(%) 

NA 

NA 

NA 

80 

60 

40 

20 

Sulfate Effect(/3) 
(st. error) 

0.0100 
(0.0018) 

0.0103 
(0.0019) 

0.0123 
(0.0033) 

0.0132 
(0.0036) 

0.0132 
(0.0035) 

0.0131 
(0.0032) 

0.0110 
(0.0031) 

Relative Risk* 
(95% Conf. Int.) 

1.043 
(1.027, 1.058) 

1.044 
(1.028, 1.060) 

1.053 
(1.026, 1.080) 

1.057 
(1.025, 1.089) 

1.057 
(1.026, 1.089) 

1.057 
(1.028, 1.085) 

1.047 
(1.02, 1.07) 

Random Effects 
Variance(0)) 

NA 

0 

0.0076 
0.00041 

0.0062 
0.00041 

0.0055 
0.00015 

0.0043 
0.00012 

0.0022 
0.00025 

*: Relative risk evaluated at interquartile range of sulfate levels (4.2 ng/m3) 
NA: not applicable 

additional variation in the adjusted prevalence of heart disease between com
munities (i.e., 0 > 0) based on the likelihood ratio test comparing Models 2 
and 3 (p < 0.0001). Increasing the complexity of the location surface (i.e., 
decreasing the span) was also justified in terms of improving the model's fit 
to the data (p < 0.0001) (likelihood ratio tests comparing Model 3 to Models 
4 to 7 respectively). 

The inclusion of a random effect for location ( Model 3) increased the 
estimate of the sulfate effect 0 — 0.0123) but almost doubled the estimated 
standard error (0.0033) compared to the error obtained from a model assuming 
independence among subjects (i.e., 0.0019). This suggests that there was more 
variation in heart disease between communities ( 0 = 0.0076) than can be fully 
explained by the within community estimation error,V, and sulfate particles. 
The sulfate effect estimate was insensitive to inclusion of location surfaces 
(Models 3-7). The unexplained between community variation, however, was 
much lower for Model 7 (0 = 0.0022) compared to Model 3 in which no surface 
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Figure 3. Cubic-spline representation of the association between particulate sulfate concen
trations (fig/m3) and prevalence of heart disease adjusted for individual level covariates and 
a smoothed representation of location (LOESS span of 20 percent). Dashed lines represent 
95 percent confidence intervals, with tick marks indicating sulfate values. 

modeling was undertaken (0 = 0.0076), reflecting the ability of the location 
surface to explain between community variation not accounted for by sulfate 
particles. 

The form of the relation between sulfate concentrations and the prevalence 
of heart disease is illustrated in Figure 3. Here, we used a spline function 
representation of sulfates in the GAM after adjusting for a LOESS surface of 
heart disease using a span of 20 percent. There was little statistical evidence 
for a departure from a linear association (p=0.4429). 
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6 Discussion 

We have identified two related issues about the analyses and interpretation 
of studies linking spatial variation in ambient air pollution and health. First, 
if the assumption of statistical independence is not valid, the uncertainty in 
the estimates of effect may be understated. Second, autocorrelation in these 
residuals may suggest that there exists missing or systematically mis-measured 
risk factors that may be correlated with air pollution and consequently could 
confound the pollution-health association. 

On the first issue, our model provides more accurate estimates of the 
uncertainty of estimates of effect. Based on the analysis of the ACS data, 
while our model gave similar sulfate-heart disease estimates as the standard 
logistic model, the standard errors of these estimates were higher (Table 1). 

With regard to the second issue, we have observed a pattern of spatial 
autocorrelation in the prevalence of heart disease that cannot be fully ex
plained by ambient particulate sulfate concentrations, even after controlling 
for a host of risk factors measured at the individual level. Inclusion of a lo
cation surface eliminated this spatial correlation pattern and slightly reduced 
the uncertainty in the sulfate effect estimate from 0.0030 for a LOESS loca
tion surface estimated using a 80% span (Model 4) to 0.0029 for a span of 
20% (Model 7). However, the sulfate effect was insensitive to adjustment for 
spatial trends in heart disease suggesting that the association between heart 
disease and sulfate pollution was strong enough to effectively complete with 
location in predicting the prevalence of heart disease. 

We have extended our modeling approach beyond that reported in our 
reanalysis 6. Spatial autocorrelation was modeled by including regional in
dicator variables into the random effects model. This procedure was ad hoc 
in that there is no unique method for defining regions. Our new approach 
of using location surface models allows the data to determine the form and 
extent of the spatial adjustment. We also removed spatial autocorrelation 
by pre-filtering both the S(s) and the sulfate data for spatial trends using a 
spatial moving average function. The radius of data inclusion for the moving 
average term was based on the distance beyond which no evidence of spa
tial autocorrelation was graphically apparent. Furthermore, the number of 
communities comprising the moving spatial average varies in space, yielding 
spatially filtered estimates with varying uncertainty. Finally, all evidence of 
associations between air pollution and mortality at the regional scale are re
moved using the pre-filtering approach. Our new modeling method allows air 
pollution to compete with location to predict health responses. Evidence of 
regional scale associations between health responses and air pollution will be 
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captured with this new approach. 
Our spatial models can also be used to assist with the selection of ap

propriate spatial or community-level risk factors. The visualization stage 
suggested that the upper midwest had elevated prevalence of heart disease 
and this pattern was not observed in the sulfate data. This would indicate 
the need for including additional risk factors that cluster in this region. By 
repeating the visualization and spatial dependence analysis after adding new 
variables, our method can help to identify variables most likely to explain 
significance between-community variation. 
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Relative surprise inferences are derived in the context of a sampling model for the 
data and a prior model for the parameter by examining how beliefs change from 
a priori to a posteriori. Relative surprise inferences are often different than those 
that arise from frequency or some standard a posteriori Bayesian methods. Given 
that relative surprise inferences are determined by how the data has caused beliefs 
to change we would expect that these inferences are more robust to the choice of 
prior than inferences that are dependent solely on the posterior. This paper is 
concerned with demonstrating this and quantifying the extent to which robustness 
is enhanced by taking the relative surprise approach. The connection with Bayes 
factors is also explored. 

1 Introduction 

Suppose that we have model {/# : 6 € fi} for data x € X, where each f$ 
is a density with respect to support measure /x, and a prior density n with 
respect to support measure v for 6. Suppose further that our interest is in 
making inferences about the marginal parameter r = T (6) where T : ft —> 
T. Conditional probability (Bayes Theorem) then prescribes that inferences 
about T should be based on the conditional distribution of r given x; i.e. the 
posterior distribution of r. We will denote the prior density of r with respect 
to some support measure vj- on T by 7r-f and the posterior density of T with 
respect to vj- by 7TT (• | x). Throughout this paper all priors are proper. 

The actual choice of the densities is important for what follows and this 
cannot be done arbitrarily; e.g. changing the value of a density on a set of 
measure zero. For the purposes of this paper we will always take our densities 
to be limits. So, for example, if P is a probability measure on a space S, 
absolutely continuous with respect to support measure A, then the density at 
s will be taken to be equal to 

dP_ ,g) = l i m P{An) 
d\ n-too A (An) 
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where An C S is a sequence of sets that converge "nicely" to s. That we 
can define densities in this way in very general situations follows from defini
tions found, for example, in Rudin 8 and, as can be seen from Evans, Eraser 
and Monette 2, this does not restrict our discussion in any meaningful way. 
Further this restriction on the definition of densities establishes an important 
connection between the relative surprise approach to inference and the use of 
Bayes factors as shown at the end of Section 2. 

In Section 2 we review some discussion found in Evans : concerning the 
use of surprise and relative surprise for deriving inferences. In addition we 
establish a relationship between the relative surprise approach to inference and 
the use of Bayes factors and consider an important example whose robustness 
properties are subsequently analyzed. 

Inferences based on what is called the observed surprise are seen to cor
respond to some standard Bayesian inferences. These inferences suffer from a 
lack of invariance; i.e. the inferences depend intrinsically on the parameteri
zation chosen for the model. There may be reasons in a particular application 
why a parameterization must be fixed; e.g. a loss function is prescribed, but, 
in general, it seems reasonable to ask that our inferences not be parameter
ization dependent. Relative surprise inference, as defined in Evans 1, is one 
example of inference that is independent of the parameterization. This type 
of inference is also seen to have a very natural interpretation as it is based on 
how the observed data has changed our beliefs from a priori to a posteriori. 

Given that relative surprise inferences are more data driven that some 
standard Bayesian inferences one might expect that they are more robust to 
the selection of the prior. This is the topic of Section 3 and is the main 
content of the paper. We develop the relevant mathematical theorems for 
characterizing the local robustness properties of relative surprise and surprise 
inferences and compare these. Although the arguments are somewhat sub
tle the results confirm our suspicions that relative surprise inferences exhibit 
superior robustness properties when considering sensitivity to the choice of 
prior. 

Our approach to studying the robustness properties of our inferences is 
similar to that taken in Gustafson and Wasserman 6 and Gustafson 4 '5. One 
key difference, however, is that these authors are concerned with developing 
robustness diagnostics for applications of Bayesian inference; i.e. determining 
whether or not a particular model, prior and data combination is robust. 
While such diagnostics are highly relevant in applications, however, this is 
not our concern here. We simply want to compare the robustness properties 
of two different approaches to inference. 

In Section 4 we draw some general conclusions and discuss future research 
on this topic. 
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2 Surprise and Relative Surprise 

While conditional probability prescribes that inferences should be based on the 
posterior distribution it says nothing about what form these inferences should 
take. For example, if we wish to quote an estimate of r then perhaps we might 
think of using the posterior mean as natural choice. Of course this may not 
make sense in general as r need not take its values in a Euclidean space, or 
the relevant expectation may not exist or the posterior distribution may be 
strongly skewed or multimodal which could render its mean an inappropriate 
choice as a representative value. One way to prescribe an inference in such a 
situation is to specify a loss function and to use a Bayes rule; e.g. posterior 
expectations are the optimal choice when using squared error loss. Such an 
approach places a premium on minimizing expected losses over any other 
considerations. 

Another approach is to look for a principle or basic idea that leads nec
essarily to the form of the inference much as the principle of conditional 
probability leads to the use of the posterior. If the principle, or basic idea, is 
compelling then we feel confident that the inferences derived make sense. Of 
course the assessment of the principle involves examining many applications 
to see whether or not its application leads to what are generally considered 
to be sensible inferences. 

One principle, or basic idea, is that of surprise. In essence we want to 
measure whether or not a specified value TQ € T is surprising in light of the 
data x. While there are a number of different ways of measuring surprise one 
fairly natural method for this is given by the observed surprise (OS) 

n (7 r T (T (0 ) \x)>*r{TQ\x)\x); (2) 

namely the posterior probability that the posterior density at r = T (9) is 
greater than at the specified value TQ. If (2) is near 1 then To is in a region where 
the posterior density is relatively small and r0 is then said to be surprising in 
light of the data. 

As an example consider the following. 

Example 1. Hypothesis testing. 
Suppose that T = IH0 (the indicator function for the set H0) where 

H0 C fi is such that II (Ho) > 0 and r0 = 1. So in such a case (2) provides an 
assessment of whether or not the hypothesis Ho is surprising in light of the 
data. Taking 7rT (11 x) — II (H0 | x) and 7TT (01 x) = II (H£ | a;) we have that 
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the observed surprise equals 

II (TTT (T (9) \X)>TTT {T0 \X)\X) 

_ / 0 ]SU{H0\x)>U{HS\x) ( , 

~ \ n (#0
c | re) if n (H0 i x) < n (#0

c j x) { ' 
and we have evidence against Ho when II (HQ | X) is large. It is easy to see 
that (3) is a Bayes rule when using 0-1 loss so that the OS approach agrees 
with the standard Bayesian decision-theoretic answer for this problem. 

Sometimes it is argued that posterior probabilities are to be preferred 
to P-values in assessing a hypothesis but (3) makes it clear that assessing 
hypotheses using posterior probabilities can also be thought of as falling within 
the P-value approach. The virtue of a P-value approach as exemplified by 
(2) is that it does not require II (Ho) > 0 to provide a measure of surprise, 
although the assessment is different than simply looking at T = i# 0 , so that 
continuous priors can be used. This has some consequences for the avoidance 
of Lindley's paradox, as discussed in Evans 1, but this issue does not concern 
us here. 

If we want to estimate r then Good's principle of least surprise naturally 
leads us to select the least surprising value of To and this is a value which 
minimizes (2). It is obvious then that the least surprise estimator is given by 
a mode of the posterior density iry (• | x). Further if we wanted to construct 
a region containing the true value of r then perhaps a natural choice is to 
specify 7 € [0,1] and use the 7-surprise region 

{T0 I n (TTT (T (0) \x)>nr (r0 | x) \ x) < 7} ; 

i.e. the set of values for To that are not surprising at the level 7. It is immediate 
that such a region corresponds to a highest posterior density (HPD) region 
for r. 

The above shows that measuring surprise via (2) leads to some standard 
Bayesian inferences and that the derivation of these does not require the 
specification of a loss function. It has been pointed out previously in Evans 
1 , and it may be obvious to the reader, that there is a fundamental difficulty 
with inferences derived via (2). In particular these inferences will depend 
upon how we specify the posterior density 7TT (• | x), or equivalently, how we 
specify the support measure v-r- Different choices will lead to very different 
values for (2), very different estimators and very different 7-surprise regions. 
In general there does not seem to be an argument that leads us to a canonical 
choice of support measure. So surprise as a justification for these inferences 
seems untenable and perhaps we are even lead to doubt the validity of such 
inferences even though posterior modes and HPD regions are commonly used. 
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As a solution to this problem Evans l proposed to base the derivation of 
inferences instead on the observed relative surprise (ORS) given by 

JJ | 7TT (Y (0) | x) ^ 7Tr(T0\x) 

nr(T(6)) 7TT (To) 

Here 

7TT (TQ I x) 

7TT ( r 0 ) 

(4) 

(5) 

is measuring the change in belief in TQ from a priori to a posteriori and (4) 
is the posterior probability of a change in belief larger than that observed at 
T0. Again if this number is near 1 we have that To is a surprising value. In 
essence a value To is surprising when the data has lead to a bigger increase in 
belief at other values of r = T (6) compared to the increase (or decrease) at 
T0. A least relative surprise estimate is then obtained by choosing a value of 
r0 that maximizes (4) or equivalently maximizes (5). As above we can also 
obtain 7-relative surprise regions. 

A virtue of all the relative surprise inferences is that they are not de
pendent on the choice of the prior or posterior densities or equivalently the 
choice of the support measure vj-- These inferences are invariant under smooth 
reparameterizations. As shown in Evans 1 these inferences can also be quite 
different than standard Bayesian inferences although often they are similar. 
We consider the context of Example 1. 

Example 2. Hypothesis testing (Example 1 continued). 
We consider again the situation where T = IH0 , II (Ho) > 0 and we take 

7TT (1) = II (Ho) and 7Tx (0) = II (HQ) then the observed relative surprise is 
given by 

n J' 7TT ( T (<?) I x) > 7TT (T 0 I a;) 

where 

7TT ( T (9)) 

BF, 

71"T ( r 0 ) -{n 
if BFHo > 1 

{H§\x)i£BFHo<l 

Ho 
U(H0\x) n {H0 

l-U(H0\x)fl n(H0) 

(6) 

(7) 

is the Bayes factor in favor of Ho- So we get something similar to what is 
commonly recommended in this context. We will see, however, that the ro
bustness properties of (6) are very different than those of (3). Further (4) has 
the virtue of providing a measure of surprise even when II (Ho) = 0 and again, 
see Evans 1 , this has implications for the avoidance of Lindley's paradox. 
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Sometimes just the Bayes factor is recommended in hypothesis testing 
with small values of (7) treated as evidence against Ho- The interpretation 
of the value a Bayes factors takes is somewhat ambiguous, however, although 
various calibrations have been suggested; see, for example Kass and Raferty 
7. Perhaps the most direct way of calibrating a Bayes factor is to proceed 
as we have with the OS and ORS computations and compute the posterior 
probability of obtaining a value larger than (7) with large values of this prob
ability indicating that Ho is indeed surprising. For the context of Example 1 
we obtain 

n{BFr(9)>BFHo\x) = {0
u 

if BFHo > 1 
(H£ | x) if BFHo < 1 ; 

i.e. this measure of surprise agrees exactly with the ORS. So in a sense we can 
think of the ORS as a generalization of the Bayes factor when we choose to 
calibrate the value of a Bayes factor using the tail probability. Suppose more 
generally we have that T = { r i , . . . , r*} with prior probabilities 7Ti,..., n-* 
respectively, and we want to assess the plausibility of the value To. Then 

U({T}\X) n({r}) 
T i-u({T}\x)'i-n({T}) 

and possibly we could assess the surprise at To by computing 

n (BFr(e) > BFT0 | re) 

but when k > 3 this is generally not equal to the ORS at To- Effectively this 
approach is saying that the change in belief in r from a priori to a posteriori 
should be measured by BFT and this seems somewhat less direct than using 
7TT (r | x) /-7TT (T) as in the ORS. Further it is not at all clear how to extend 
this approach to the continuous case. Notice, however, that when II (An) > 0 
for all n, and the An converge nicely to {r} with II ({r}) = 0, then 

_ n (An I X) IVT (An) II ( H ) /vr (An) 7TT (T I x) 
A" l-U(An\x) ' l-U(An) 7 T T ( T ) 

as n ->• oo. So in general it is very natural to think of the relative surprise 
approach as a modification and generalization of the Bayes factor approach. 
Of course the Bayes factor is restricted to hypothesis testing problems where 
the parameter space is partitioned into ft = H0UHQ with the prior probability 
of H0 satisfying 0 < II (H0) < 1. The relative surprise inferences are more 
general in their application than this, however, both with respect to hypothesis 
testing, and estimation, prediction and model checking problems; see Evans 
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3 Robustness to the Prior Under Linear Perturbations 

In an obvious sense relative surprise inferences are more data driven than 
inferences based on surprise. Observe also that when T (6) = 9 then (4) 
equals 

n {fe{x)> fe0{x)\x); 

i.e. the observed relative surprise is the posterior probability that the likeli
hood at 8 is greater than the likelihood at 9$. In particular, a least relative 
surprise estimate of 6 is given by a maximum likelihood estimate while rela
tive surprise regions for the full parameter 9 correspond to likelihood regions 
and only depend on the prior through their posterior probability contents. So 
in a general sense we expect relative surprise inferences to be less dependent 
on the prior than other Bayesian inferences. It is the purpose of this section 
to examine this issue more closely and in particular to examine the marginal 
parameter case; i.e. T (8) ^ 9. 

Our interest then is in how the inferences vary as we perturb the prior II. 
Basically we will say one inference method is more robust than another if the 
rate of change in the inference is smaller at II for the first inference method 
than for the second. For example, it is clear immediately that when our goal 
is to estimate 9 then a least relative surprise estimator is more robust to the 
choice of prior than any other Bayesian inference because it only depends 
on the likelihood function. Actually this example is somewhat unusual as 
even the estimation problem becomes more difficult as soon as interest is 
in a marginal parameter r. In that case a LRSE will depend on the prior 
and the extent of the dependence is not obvious. Still the result for the full 
parameter leaves us hopeful that something similar can be obtained for a 
marginal parameter as well. 

Computational and mathematical issues prevent us from arbitrarily choos
ing the directions in which we perturb the prior so that definitive comparisons; 
i.e. results that hold for all directions, seem impossible to achieve at this point. 
Still we can obtain results for several choices of directions and the results give 
us considerable insight into the relative robustness of the various inferences. 
Further, since all the inferences under consideration are based on the observed 
surprise (2) or observed relative surprise (4), we will compare the robustness 
of these quantities. Recall that these quantities can be used for assessing 
whether or not ro is a plausible value for r. 

Perhaps the most commonly used directions are the contamination direc
tions given by prior probability measures of the form 

IP = (1 - e) n + eQ 
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where e > 0 and Q is a probability measure on Q. The prior density of 9 with 
respect to v is then given by 

7re = (1 - e) 7T + eq 

when Q is also absolutely continuous with respect to v. Actually, because our 
interest is in the marginal parameter r, we want to consider only perturbations 
to the marginal prior distribution so that the conditional distribution of the 
full parameter given the marginal remains fixed. This kind of perturbation is 
easily expressed in terms of densities as 

Tre (9) = (1 - e) 7TT (r) TT (0 I r) + eqr (r) IT (9 | r ) 

= [ ( l -e )7r T (T)+«fr (T)]7r (0 |T) (8) 

where TT(6\T) is the conditional density of 9 given T (8) = T with respect to 
support measure vT on {9 : T (9) = r } . Then the marginal posterior density, 
when the prior density is given by (8), is 

Try (T I x) = (1 - ex) TTT (r | x) + exqr (r | x) 

where 

£x = em« (*) ( 9 ) 

(1 - e) m^x) + emq (x)' 

™*(x) = /" /6(K)ir(e)u(de) 

is the prior predictive density for the data when the prior is 7r with a similar 
definition for mq (x), 

T T ( r ) / , * ( * ) 
7Tr (T I x) — 

Qy (T I x) 

mn (x) 

9r(r)f;(x) 

mq(x) 

and we write the conditional density with respect to /j, of x given that T (9) = T 
as 

J T - H T } 

Now letting G denote the posterior distribution function of ny (r | a;) when 
T ~ ITx (• | x) then the following result, as proved in Evans and Zou 3, yields 
expressions for the upper and lower Gateaux derivatives of the observed sur
prise. 
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Theorem 1. If the posterior distribution of ny (T\X) is continuous when 
T ~ n T (• | a;) or when T ~ Qy (• | x), G is differentiable at -Ky (TO \ x) with 
derivative g (ny (r0 | x)) and <7T (• | x) is continuous and bounded, then the 
lower Gateaux derivative (and the upper Gateaux derivative) of the observed 
surprise at r0, under linear perturbations of the marginal parameter r = T (0), 
takes the form 

mq (x) 
{qr (r» \x)-qr (T0 | X)} g (ny (r0 | a;)) + 

mn(x) 

mq{x) | <3T [TTT (r I x) > TTT (r0 | a;) | x] - 1 . _ 
m^x) \ n T [TTT (r | a;) > TTT (T0 | X) \ x] J 

for some T* 

Of course when the Gateaux derivative of the observed surprise exists it takes 
the form given in (10) as well. The expression (10) is not very useful when 
we need to compute the Gateaux derivative as r* is unspecified. In specific 
examples we are still required to evaluate the limit corresponding to the first 
part of (10). We will see, however, that (10) is of great value when comparing 
the robustness of the OS with the robustness of the ORS. 

We note that the second term in (10) is always bounded above by 

S-^jJlM {l _ n T [TTT (r | x) > TTT (TO I x) I a:]} . 
mn[x) 

The following result, as proved in Evans and Zou 3, suggests that the first 
term in (10) can be arbitrarily large in absolute value. 

Lemma 2. If the density function g of Try (r | a;) is continuous from the 
left at 7Tx (TO I x), where To is the unique mode of 7TY Ola:), and 7TT (• | x) is 
continuously differentiable at TQ then g(Try (TQ \ x)) = oo. 

So Lemma 2 indicates that the first term in (10) could be infinite whenever 
To is a posterior mode. That this happens is confirmed by the following 
example. 

Example 3. Gateaux derivative of the OS can be infinite. 
Suppose that x ~ Bernoulli^1/2) where 8 G [0,1] is unknown, we take 

II to be the Beta(l/2,1) distribution and the support measure v is Lebesgue 
measure. Then the posterior density, when we observe x — 1, is given by 1; i.e. 
the posterior distribution is uniform. Suppose we take Q to be a Beta(3/2,1) 
distribution which leads to the posterior density 28 when we observe x — 1. 
Now we explicitly evaluate the first term in Gateaux derivative of the observed 
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surprise at 60. First note that II [IT (6 \ x) > it (90 | x) \x] = U [1 > 11 x] = 0 
and 

(1 - ex) + 2ex6 > (1 - ex) + 2ex60 

if and only if 0 > 60. Therefore 

lim - ( n 
e-+0 e L 

(1 - cx) + 26*19 > 
(1 - ex) + 2ex60 

n [TT (6 | x) > n (d0 | x) | a;] 

= lim - (1 - 60) = oo 
e->0 e 

and we see that the first term in the Gateaux derivative for the observed 
surprise is infinite for every #o-

In Evans and Zou 3 the following result is established for the Gateaux 
derivative of the observed relative surprise. 

Theorem 3. The Gateaux derivative of the observed relative surprise at To 
under linear perturbations of the marginal parameter r = T (6) is given by 

^ { Q T [ / ; ( * ) > / ; ( * ) ! x ] - n r [ / ; (* )>/ ;» |* ]} . (n) 
lil-n^X) 

Note that this result implies that the Gateaux derivative of the observed 
relative surprise is always finite. In particular consider an application of this 
result to Example 3. 

Example 4. Gateaux derivative of the ORS in Example 3. 
We have that fg (x) = 61/2 and therefore 

Q [/; (x) > f*T0 (x)\ x] =Qr[6> do I x]= f 29d0 = l-el 

n[/;(x) > /;o(x)\ x] = u[e>e0\ x] = [ de = i-e0 
J00 

while mn(l) = 1/2 and mq (1) = 3/4. Therefore the Gateaux derivative of the 
observed relative surprise at #o is given by, using (11), 

| (1 - 0g - 1 - (?o) = |«o (1 - <?o) 

which is bounded by 1. 

We see from Theorem 3 that when To is a LRSE then the Gateaux deriva
tive of the ORS is 0. Suppose that T0 is not a LRSE. If we consider a sequence 
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of Q measures that converge to a measure degenerate at a LRSE then (11) 
converges to 

s-^im{1_Ur[rAx)>f:Ax)\x]} (12) 

and this is bounded whenever sup r /* (x) < oo. It clear then that (12) is the 
supremum of (11), when the supremum is taken over Q. 

We now establish a result that formally confirms our intuition, at least 
in the continuous case, that inferences based on the ORS are more robust to 
the choice of prior than inferences based on the OS. For this we consider the 
supremum of the absolute values of the Gateaux derivatives over all possible 
absolutely continuous perturbation measures Q and all possible reparameter-
izations. By a reparameterization we mean a 1-1 bicontinuously differentiable 
map defined on T. 

Theorem 4. If r has an absolutely continuous prior distribution on an open 
subset of a fc-dimensional Euclidean space, then the supremum of the absolute 
value of (10) is greater than or equal to the supremum of the absolute value 
of (11) when the supremum is taken over all possible absolutely continuous 
measures Q and all possible reparameterizations. 
Proof: When ir is absolutely continuous on an open subset of Rk we can 
reparameterize the problem so that the prior distribution for r is uniform on 
[0,1] . For example, we could use the probability transform based on ir to do 
this. 

With this parameterization, if To is a LRSE then it is also a posterior mode 
so that (11) is 0 and so is the second term of (10). From Lemma 2, however, 
we have that the first term of (10) is either 0 or infinite in absolute value. So in 
the case that To is a LRSE the supremum, over all possible parameterizations, 
of the absolute value of (10) is always greater than or equal to the absolute 
value of (11). 

When ro is not a LRSE then reparameterizing so that r is uniform on 
[0,1] establishes that the second term of (10) equals (11). Further if we 
take a measure Q that assigns 0 probability to a neighborhood of To then 
<ZT (I~O I x) = 0 and we have that the first term in (10) is nonnegative. This 
proves the result. 

We have seen from Examples 3 and 4 that the value of (10) can be strictly 
greater than the value of (11). So there is definitely content to Theorem 
4. Taking the supremum over all possible parameterizations seems like the 
fairest comparison as no parameterization is to be preferred over another 
unless additional ingredients are introduced into a problem. From the point of 
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view of robustness one would want to ensure that such a selection did not lead 
to inferences that had terrible robustness at least when using some traditional 
Bayesian inferences. Of course this is not an issue when using relative surprise 
inferences as these are not dependent on the parameterization chosen. We 
interpret Theorem 4 as strong support for the increased robustness of the 
ORS over the OS. 

Theorem 4 is restricted to contexts where the prior is absolutely continu
ous. Discrete contexts seem much more difficult to analyze. We consider now, 
however, an important problem where the marginal prior is discrete. 

Example 5. Hypothesis testing (Examples 1 and 2 continued). 
Consider the problem discussed in Section 1 where we want to test the 

null hypothesis HQ and we have II (HQ) — no > 0. Therefore the posterior 
probability of HQ is given by 

V"O/H (X) 

n(H0\x)= — ° J n o _ ^ ^OIHO (X) + (1 - TO) f*m (x)' 

Let Q be the measure degenerate at HQ. Under a small perturbation e of the 
prior probability the posterior probability becomes 

W(H0\x)~ ( U - < ) *o+ 0 / * „ ( * ) 
((1 - e) TTO + e) rHo (x) + (1 - c) (1 - TTO) / £ . (x)' 

Now suppose that II (H0 \x) > U (HQ \X) . Then, by (3), and the fact 
that IF (Ho \x) > IP (HQ | X) for all e small enough, the observed surprise 
is 0 when e is small enough and so the Gateaux derivative of the observed 
surprise is also 0. 

If n (H0 | x) = n (H§ | x) then 7r0/£0 (x) = (1 - TT0) / £ g (x) and so 

IT (H0\x) 

_ ( ( l -e)Tro + e) fHoW 

((1 - e) no + e) f*Hg (x) + (1 - e) (1 - n0) f*H< (x) 

ni-xpU ( (l-e)7ro + e ) 

I TTO j\(l-e)(l-no)j 
f (l-e)(l-*o)rHS(x) ] 

\ ((1 - e) TTO + e) f*Ho (x) + (1 - c) (1 - 7T0) f*H, (x) j 

1 / e \ f ( l - e ) ( l - 7 r 0 ) / £ c ( i ) 
7̂ 0 + 

TTO V 1 - e / 1 ( ( l - e ) 7 r o + e ) / ^ 0 ( x ) + ( l - e ) ( l - 7 r o ) / ^ ( a ; ) 
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( l - e ) ( l - 7 r o ) / & . ( s ) 

> ( ( i - c) *•„ + e) fa (X) + (1 _ e) (1 - TTO) fa, (x) 

= W(HZ\x) 

and the Gateaux derivative is again 0 by (3). 
If U(H0\x) < II (#0

C | x) then, since IP (H0 \x) < IF (#0
C | x) for all e 

small enough, the Gateaux derivative of the observed surprise is given by 

I f ( ( 1 - < 0 * O + C ) / H O ( S ) TO/£„(*) 

~ i ™ 7 \ ((l-£)7r0+e)/^o(a :)+(l-e)(l-7ro)/^(x) 7ro/£0(z)+(l-7ro)/£s 

= - (*0fk (X) + (1 - TTo) /£« (*)) _ 2 (1 - TTo) f*Ho (x) ft- (X) 

= -—n(H0\x)Il(HZ\x) 
TTO 

(1 - TTo) BFHo 

( l - 7 r 0 + 7 r o 5 F . f f 0 ) 2 - (13) 

Now observe that BFfj = jBF/fo for all e; i.e. the Bayes factor in favor 
of HQ is independent of e. This implies that the Gateaux derivative of the 
observed relative surprise is given by 0 when BFH0 > 1 and is given by (13) 
when BFHa < 1. 

It would seem then that the behavior of the two measures of surprise is 
very similar. Consider, however, the situation where BFH0 > 1, n (Ho \ x) < 
II (HQ I x) and U(H0) — 7r0 is very small. In this situation the Gateaux 
derivative of the ORS is 0 while for the OS (13) is approximately equal to 
BFH0 • So in situations where the data have lead to a large value of BFHo, 
but the posterior probability of Ho is still less than 1/2, the observed surprise 
is very sensitive to perturbations in the prior belief assigned to Ho. 

Now consider the situation where BFJJ0 < 1 while II (H0 \ x) > II (HQ | X) 

so that the Gateaux derivative of the OS is 0 and the Gateaux derivative of 
the ORS is (13). We have that (13) is bounded above by 

BFHo 

1 - 7T0 + TT0BFHo 

and, because BFJJ0 < 1, this is an increasing function of -KQ which goes to the 
value 1 as 7To -> 1. 

So we have shown that the worst case behavior of the Gateaux derivative 
of the ORS in this problem is given by the upper bound 1 while the worst 
case behavior of the Gateaux derivative of the OS, using the relation BFJJ0 = 
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/ H 0 (X) If HI (X) > i s s i v e n by 

supZkM. 

Based on this we see that the ORS has superior robustness properties to the 
typical Bayesian inference II (HQ \ x) for testing HQ versus HQ. 

As mentioned previously sometimes BFH0 is used in these contexts and 
this has the appearance of being fully robust because BFjjo = BFH0 for all 
e. Recall, however, the need to calibrate the value of a BFH0 through an 
equation such as (7). This leads to 

n(H5\x)=(l + Y^BFHo
>) . 

Therefore a value of BFH0 = 20 when 7r0/ (1 - 7To) = 1 implies II (HQ \ x) = 
1/21 = .048. On the other hand BFHo = 20 when TT0/ (1 - 7r0) = 1/10 implies 
II (HQ I x) = .5. The point here is that the interpretation of the value BFH0 

does inherently depend on the values of the prior probability -KQ and so is not 
robust to this choice. 

The key concept in determining relative surprise inferences is the ORS 
and so it makes sense to concentrate on assessing its robustness properties. 
Ultimately, however, we should look at the robustness properties of the specific 
inference. With hypothesis testing this is the ORS but with estimation, for 
example, we need to look at the LRSE. We note that 

*?(T\X)= f;(x) 

-Ky (T) (1 - e) m7r(x) + em, (a;) 

for every e > 0 immediately implies the following result. 

Theorem 5. The LRSE of r is constant under perturbations that affect only 
the marginal prior of r and so the Gateaux derivative of the LRSE is always 
0. 

Of course this is not true of the posterior mode which arises from the observed 
surprise and the principle of least surprise. 

Example 6. 
Suppose that x ~Bernoulli(01/2) , we take II to be the Beta(l,3/2) dis

tribution and the support measure v is Lebesgue measure. Then the posterior 
distribution, when we observe x — 1, is given by the Beta(3/2,3/2) distrib
ution and this has its mode at 1/2. Suppose we take Q to be a Beta(l, 1/2) 
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distribution and this implies that the posterior distribution is Beta(3/2,1/2) 
when we observe x = 1. Note that 

-' <» i*>=o - -» m m el"(1 -e)"2+"mme"2 (1 -er'2 

and this always has its mode at 1. This is an extreme example of course but 
it illustrates an important point. In particular the Gateaux derivative of the 
LRSE is 0 while, in this case the Gateaux derivative of the posterior mode is 
infinity. 

4 Conclusions 

In Evans x relative surprise inferences were advocated for Bayesian contexts 
where a loss function was not prescribed. One of the advantages of these 
inferences is that they are invariant under reparamerizations and this is not 
the case for more traditional approaches to deriving inferences in Bayesian 
inference problems. Further the relative surprise inferences are seen to be 
primarily data driven in that they are based on how the data changes beliefs 
from a priori to a posteriori rather than being based on the posterior alone. It 
might be argued that for a specific application a particular parameterization 
is paramount but reasons must be supplied for this and these do not seem 
available in many applications. Further it might be argued that if one has a 
strong belief in a particular prior then the relative surprise approach weakens 
the amount of input that the prior has in determining an inference. While this 
is true, the results of this paper point to the negative side of that argument, 
namely, the lack of robustness to the choice of the prior for some traditional 
inferences. 

The development here has excluded consideration of improper priors. 
Strictly speaking improper priors are excluded from the relative surprise for
mulation as they do not marginalize appropriately. Still we can consider many 
improper priors as limits of sequences of proper priors and consider the lim
iting surprise and relative surprise inferences as was done in Evans l . In such 
a case we could consider perturbations to this sequence and study the rela
tive robustness properties of the limiting inferences. This is something we are 
currently investigating. 

This paper has only considered linear perturbations to the marginal prior. 
More generally we will study other types of perturbations. Further there is the 
question of the effect of perturbing the conditional prior distribution of the full 
parameter given the marginal parameter. It seems reasonable to separate out 
the effect of perturbations to the marginal and conditional. We will consider 
these questions in further research work. 
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In conventional preterm birth studies the outcome variable was a binary data, 
namely whether or not the gestational age was less than 37 weeks. An absolute 
yes or no classification was used. Based on the progressing sense of gestational age, 
this study investigated the risk of preterm birth among different age groups using 
survival analysis. Using the key concept of the rank ordering of time, Kaplan-
Meier estimate and the Cox model were applied to preterm birth studies. The 
applied results show that the relative risk of preterm birth for the 12-17, 18-19 and 
20-24 year old age groups, varied with gestational age, and was 1.6-8.69, 1.2-5.76 
and 0.92-1.52 respectively when compared with 25-29 years old. For the older age 
groups, namely 30-34, 35-39 and 404- years old, the relative risks of preterm birth 
were 1.2, 1.54 and 1.74, respectively, constant in gestation age. Hence, applying 
survival analysis to preterm birth studies can provide more informative results 
than other approaches. 

1 Introduction 

Preterm birth is the leading cause of neonatal death and of morbidity in sur
viving infants ( Rush, Davey and Segall10). The development of a complement 
system in preterm births was closely related to gestational age (Wolach et al. 
u ) . Hence, the duration of gestational age was important for preterm birth. 

Previous studies of preterm birth, namely Fu et al. 5, Meis et al. 9, 
Rush et al. 10 etc., always used a binary data approach, merely considering 
whether or not gestational age was less than 37 weeks. Naturally, the study 
results thus failed to reflect the relationship between risk of preterm birth and 
gestational age. 

Chiang 1 constructed an antenatal life table for fetal death and live birth 
in a prospective pregnancy study. The birth data was actually a history 
cohort data with the special feature of specific birthdays, the gestational age 
was a duration time of a fetus and the gestational age of less than 37 weeks 
was treated as an event. Hence, it should be straightforward to use survival 
analysis for a preterm birth study. 

107 



108 

The censoring of data was a major issue in survival analysis. This study 
explores the performance of partial likelihood for the Cox model through 
censored data defined in this preterm birth study. The analytical results were 
expected to be more informative than those of other studies. 

2 Statistical Method 

Kaplan-Meier 7 estimate is an empirical method for estimating survival func
tion. The Cox 2 model is commonly used for survival model incorporating 
covariates based on the partial likelihood function. Crowley and Hu 3 employ 
time-varying covariates in the Cox model. 

Both Kaplan-Meier method and Cox model are based on the concept of 
the rank ordering of time rather than on time itself. According to this concept, 
the units of time employed might be days, months, hours, gestational age, and 
so on. 

In this work, gestational age was equivalent to time, and birth at 37 weeks 
or less was an event. Births at 37 weeks or later were treated as censored 
data. The preterm birth data were then analyzed through survival analysis. 
Furthermore, graphs explored the original data and presented the modeled 
results. This study used the software, SAS 6.12 and S-plus (only for drawing 
plots). 

3 Preterm Birth Study 

Preterm birth is the cause of neonatal death, and of morbidity. Wolach et 
al. (1997) reported that the development of a complement system in preterm 
births is closely related to the gestational age . Hence, the conditions of 
preterm births varied with gestational age. And, the methodology of survival 
analysis is able to keep this information. Meis et al. 9 reported that the risk 
for preterm birth in different age groups displayed a U-shape, with younger 
and older mothers being high risks groups for preterm birth. In this study 
population, comparing with the 25-29 year age group, the relative risk for 
preterm birth in different age groups would be estimated. The data in this 
study came from the Computerized Medical Birth Registry (Lu et al. 8 ) , a 
data bank collected prospectively from ten Taiwanese hospitals from February 
1993 to February 1995. The recruitment criteria included single birth, first 
parity, gestational age > 24 weeks, and birth weight < 500g. Totally, 17958 
births met these criteria. 

Gestational age were estimated from the last menstrual period, and births 
with gestational age > 24 weeks and < 37 weeks were considered preterm 
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births and denned as event data. Those normal births, births with gestational 
age > 37 weeks, were treated as censored data. Age groups were classified as 
12-16, 17-19, 20-24, 25-29(reference group), 30-34, 35-39 and 40+ years old. 

From a previous study (Fu et al. 5 ) , we realized that the risk factors 
for preterm births differed among younger and older age groups. Hence, the 
data set was divided into two parts, corresponding to younger and older age 
groups, both sharing a common reference group (25-29 years old). This ap
proach increased the homogeneity each data set and did not introduce extra 
covariates into the model. However, the estimated coefficient values for the 
main risk factors (younger and older age) changed very slightly when addi
tional covariates were brought into the models. 

4 Results 

Table 1 lists the number of preterm births and censored values for 24 — 37, 38+ 

weeks. Most of the births occurred in the 20 — 34 year old age group. Almost 
all censored data occurred at 38+ weeks. Figure 1 show the smoothed curves 
for the hazard of preterm birth over different age groups. These smoothed 
curves can be divided into three sections, for 24 — 28, 28 — 33, and 33 — 37, 
weeks in both plots of Fig.l. In the 24 — 28 week section, all curves display a 
constant hazard, except for those of the 12 — 17 and > 40 years age groups. 
Across all age groups, the hazard of preterm birth remained roughly constant 
at 28-33 weeks, but increased tremendously for gestational age > 33 weeks. 

Table l .The Frequency of Fails (preterm birth) and Censoring, (#fai led/#censored), in 
Gestational Age 24 — 37 Weeks by age groups. 

Weeks 

2 4 ~ 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

36 + 

12 - 17 
yrs. 

71 = 163 

0/0 
3/1 
0/1 
0/0 
0/0 
I/O 
0/0 
3/0 
1/0 
2/1 
3/0 
2/0 
6/0 
8/0 
12/0 

0/119 

18 - 19 
yrs. 

n = 384 

0/0 
0/0 
5/0 
0/0 
2/0 
1/0 
2/0 
1/0 
4/0 
4/0 
4/0 
13/0 
7/0 
8/0 
31/0 

0/302 

20 - 24 
yrs. 

n = 3, 545 

0/0 
7/0 

3/1 
2/0 
2/0 
9/0 
8/2 
6/2 
12/2 
13/0 
25/2 
30/1 
51/2 
78/2 
220/0 

0/3069 

25 - 29 
yrs. 

n = 8,597 

0/0 
6/4 
7/2 
7/0 
12/0 
12/1 
10/0 
16/4 
32/4 
34/4 
53/1 
54/1 
85/2 
213/0 
586/3 

0/7448 

30 - 34 
yrs. 

n = 4, 188 

0/0 
2/0 
4/1 
5/0 
4/0 
9/2 
11/0 
13/2 
9/1 
15/1 
21/0 
35/1 
65/0 
120/0 
336/1 

0/3529 

35 - 39 
yrs. 

i% = 909 

0/0 
1/0 
1/0 
1/0 
2/0 
1/0 
3/0 
4/0 
6/0 
8/0 
5/0 
10/0 
14/0 
40/0 
83/1 

0/729 

40+ 
yrs. 

TI = 172 

0/0 
1/0 
0/0 
1/0 
0/0 
0/0 
1/0 
0/0 
0/0 
2/0 
1/0 
1/0 
5/0 
5/0 
21/1 

0/133 

Tables 2 and 3, and Fig. 2, summarize the results of Cox model. In table 2, 
model 2 provided significant time dependent results for younger age groups. 
Compared to the 25 — 29 year old age group, the relative risk of the younger 
12 —17,18 —19 and 20 — 24 age groups varied with gestational age, and ranged 
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Table 2. Estimated Cox Models for Gestational Age in preterm births; Age Groups: 
12-17, 18-19, 20-24, 25-29(reference group); Standard Errors in Parentheses 

Covariates 
Al : 1 2 - 17 vs. 2 5 - 2 9 

A2: 18 - 19 vs. 25 - 29 

A3: 20 - 24 vs. 25 - 29 

Al*Gestational Age 

A2*Gestational Age 

A3*Gestational Age 

Model 1 
0.768 

(0.159) 

0.516 
(0.116) 

0.005 
(0.055) 

NA 

NA 

NA 

Model 2 
5.281 

(1.498) 

4.631 
(1.164) 

1.293 
(0.711) 

-0 .130 
(0.044) 

-0 .118 
0.034 

-0 .037 
(0.020) 

Total sample size: 12, 675; Events: 1,712; 
Censored: 10,963 (Censoring Rate = 86.5%) 

Table 3. Estimated Cox Models for Gestational Age in preterm births; Age Groups: 
25 — 29(reference group), 30 — 34,35 — 39,40+ ; Standard Errors in Parentheses 

Covariates 
A5: 3 0 - 3 4 vs. 2 5 - 2 9 

A6: 35 - 39 vs. 25 - 29 

A7: 40+ vs. 25 - 29 

A5*Gestational Age 

A6*Gestational Age 

A7*Gestational Age 

Model 3 
0.179 

(0.049) 

0.441 
(0.081) 

0.567 
(0.165) 

NA 

NA 

NA 

Model 4 
-0 .119 
(0.686) 

1.018 
(1.050) 

0.833 
(2.184) 

0.008 
(0.019) 

-0 .016 
0.030 

-0 .008 
(0.062) 

Total sample size: 13, 849; Events: 1,991; 
Censored: 11, 858 (Censoring Rate = 85.6%) 
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from 1.6 — 8.67,1.2— 5.76 and 0.92 — 1.52, respectively. However, the relative 
risk for the older 30 — 34,35 — 39 and 40+ age groups did not vary significantly 
with gestational age (model 4 of table 3), and their relative risks were 1.2,1.54 
and 1.74, respectively. Figure 2 displays the relative risk in younger and older 
age groups comparing with the 25 — 29 year old group. 

Comparing the empirical results (Fig. 1) with the modeled result (Fig. 
2), the common impact of risk of preterm birth were the risk for younger age 
groups varying with gestational age while for older age groups this risk was 
constant. Meanwhile, the estimated relative risks were very significant for 
both models. 

5 Discussion 

The main methods employed in this application study were the Kaplan-Meier 
estimate and Cox models. Besides the key issue of censored data, the ba
sic issues included time rank ordering and risk set. The appropriateness or 
otherwise of the application of the model can be judged based on these is
sues. This study is an original work applying survival analysis to investigate 
preterm birth. Gestational ages > 24 weeks and < 37 weeks were considered 
event data, and their ranked order was analyzed. Meanwhile, a gestational 
age of greater than 37 weeks was censored data, contributing to the risk set of 
denominators in parameter estimation, occurring in the survival estimator of 
Kaplan-Meier or the partial likelihood of the Cox-model. Consequently, the 
estimated parameters are based on the entire study population. 

Based on 17,958 births, the results of log-rank trend testing (Collett 4) 
indicated that ranked by age group, the risk for preterm birth was ordered as 
follows: (12 - 17) > (18 - 19) > (40+) > (35 - 39) > (20 - 24) > (30 - 34) > 
(25 — 29), with p — value < 0.0001. This testing was based on the sense of 
average risk in weeks 24 — 37. However, the relative risks of preterm birth 
varied with gestational age from Cox models for younger age groups. Hence, 
compared to the results of Cox models and the logrank test, Cox models not 
only dealt with the time dependent problem, but also estimated their relative 
risks. 

The risk factors for preterm births included maternal age, marital status, 
education, parity, prenatal care, and so on. Model building process revealed 
that maternal age was a very strong risk factor for preterm birth. Further
more, with the very large sample size herein, whether or not other risk factors 
were included, the coefficient estimations of maternal age made very little 
difference. Consequently, this investigation only included the maternal age in 
Cox models. 
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However, the risk factors for preterm birth differed between the younger 
and older age groups. Hence, a sufficiently large sample size would offer 
the benefit of homogeneity in dealing with younger and older age groups 
separately. Finally, from two separate Cox models, the relative risk of preterm 
birth varied significantly with gestational age in the younger age group, but 
not in the older age group. Figure 1 does note this same situation. 

Reviewing previous studies, including Meis et al. 9, Fraser et al. 6, and 
Wessel et al. 12 preterm birth was defined as less than 37 weeks, thus classi
fying it as a binary response data. This work considered each gestational age 
using a survival analysis approach and thus incorporated a sense of progres
sive risk. Hence, these results were more informative than those that used a 
binary response. 
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In this paper, we derive exponential and subexponential asymptotic forms for tails 
of convolutions of compound geometric distributions. General lower and upper 
bounds for the tails are given, which can be used in some cases to determine 
a closer tail approximation. Applications of these results are given to the ruin 
probability in the classical risk process perturbed by a diffusion; previous results 
are easily derived and a theorem of Veraverbeke 26 is generalized. In addition, two-
sided bounds for the ruin probability with large claim sizes are given, extending 
the bounds of Dickson 10 to the diffusion risk model. 

1 Introduction 

Let {Xi,i > 1} be a sequence of i.i.d. non-negative random variables with 
common distribution F and F(0) = 0. Further, let iV be a geometric random 
variable with Vr{N — n} = qpn, n = 0 ,1 ,2 , . . . and p = 1 - q, for 0 < q < 1, 
which is independent of {Xi,i > 1}. SN = J2i=i %i 1S sa*d to be compound 
geometric, where SN = 0 if N = 0. Its distribution function is denoted by 
H{x) = Pr{SV < x}, x > 0. 

Suppose that Y is another non-negative random variable with distribution 
G and (7(0) = 0, where Y,N and {Xi,i > 1} are independent. Then, the 
convolution H * G of the compound geometric distribution H and distribution 
G, i.e. the distribution of SN + Y, arises in many applied probability models, 
such as regenerative processes (Cohen 8, Kalashnikov 18 and Keilson 19) risk 
theory (Dufresne and Gerber n , Sundt and Teugels 23 and Veraverbeke 26) and 
queueing theory (Asmussen 1 , van Hoorn 25 and Szekli24). Many distributions 
of interest in these works can be expressed in the form H*G of the distribution 
of SN+Y. _ 

Denote by W(x) = H * G(x), consider W(x) = 1 - W(x), the tail or sur-
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vival function of W(x). It is well-known (Renyi's theorem) that if F has a finite 
mean, then for any x > 0, H(x)/ /0°° H(y) dy ->• e~x as q -> 0 or equivalently 
£?(AT) —• oo. Furthermore, Keilson 19 (see also Kalashnikov 18) showed that if 
F has a finite second moment and G has a finite mean, then a similar limit 
theorem holds for W(x), namely for any x > 0, W(x)/ J0°° W(y) dy —> e~x as 
E(N) —> oo. However, in many applications, we are interested in the asymp
totic behavior and bounds for W(x). 

The asymptotic behavior and bounds for the tail H(x) of the compound 
geometric distribution function H(x) is well-known. The purpose of this paper 
is to give a more complete description of the asymptotic behavior for W(x), 
obtain the asymptotic estimates for W(x) under various situations, derive 
bounds for W(x) in heavy tailed cases and consider the applications of these 
results in risk theory (for bounds see e.g. Cai and Garrido 4 ) . 

The paper is organized as follows: in Section 2, we derive an exponential 
asymptotic form for W(x) in terms of Lundberg's coefficient using the key 
renewal theorem. 

In Section 3, we consider subexponential asymptotic forms for W{x). 
Here, general lower and upper bounds for W{x) are given first, the bounds 
indicate the possible asymptotic form for W(x) and are also used to determine 
a closer approximation for W(x) in some cases. 

Section 4 discusses the asymptotic forms for W(x) in the intermediate 
case, when exponential moments exist but Lundberg's coefficient does not. 

In Section 5, as an application of the results for W(x), we consider the 
ruin probability in the classical process perturbed by a diffusion (see Rolski et 
al. 2 2 ) . The asymptotic estimates of the ruin probability derived by Dufresne 
and Gerber u , Gerber 16 and Veraverbeke 26) are easily obtained. A theorem 
of Veraverbeke 26 is also generalized. 

In addition, two-sided bounds for the ruin probability with large claims 
are given, thus extending the bound of Dickson 10 to diffusion risk models. 

2 Light-tail asymptotics 

In general, W(x) does not admit an exponential asymptotic form, for example, 
see Remark 3.5 of this paper. But if conditions similar to those in Cramer-
Lundberg's theorem hold, then there exists an exponential asymptotic form 
for W(x), which is stated in the following theorem. 

Throughout this paper, f(x) ~ g(x) means that f(x)/g(x) -> 1 as x -> oo 
and f(x) = o(g(x)) means that f(x)/g(x)-*0 as x—>oo while me^s) = 
/0°° esx dB{x) denotes the moment generating function of B on [0, oo). 
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Theorem 2.1. Let F be non-lattice and K a constant such that 
/ • O O 

/ eKx dF(x) = 1/p . (1) 

If mG(K) = /0°° eKx dG(z) < oo then 

W(x) ~ W | ' i ) e - f a , if /? = / ° ° ieK» dF(a:) < oo , (2) 

P«P Jo 
= o ( e - K x ) , if ,9 = oo, (3) 

where, K; in (1) is called Lundberg's coefficient. 
Proof. See Willmot and Lin 28, Corollary 9.3.2., pp. 175-6. • 
Remark 2.1. When Y = 0, G is degenerate at zero, and thus m o ^ ) = 1, 
W(x) = H(x) and Theorem 2.1 is reduced to Cramer-Lundberg's theorem, 
i.e. under the conditions of Theorem 2.1 about F 

H(x)~^e-Kx, i f ^ < o o , (4) 

= o(e-Kx), if/3 = oo. (5) 

3 Heavy-tail asymptotics 

In this Section, we consider the case when F or G are heavy-tailed, in par
ticular, subexponential distributions. First, the two following theorems give 
general lower and upper bounds for W(x), which indicate possible asymptotic 
forms used to determine, in some cases, a closer approximation for W(x). 
Theorem 3.1. For any x > 0, 

ww >_ " F ( ; ' + f w . (6) 
pF(x) + q 

Proof. Since W{x) = PT{SN + Y > x} is the survival function of the random 
variable Sjy+Y, W(x) is decreasing. By the usual renewal argument, we have 

W(x) > qG(x)+pF(x)+PW{x) f dF(y) , x > 0 , 
Jo 

= qG(x) +PF(x)+pW{x)F(x) , 

this implies that (6) holds. • 
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Remark 3.1. Take Y = 0 in Theorem 3.1, we get a lower bound for the tail 
H(x) of the compound geometric distribution function H(x), namely 

H(x) > f f ^ , for any* > 0 . (7) 
pF{x) +q 

This gives a derivation of a result known for the ruin probability in the 
classical risk process [e.g. see Theorem 3.1 of De Vylder and Goovaerts (1984)]. 
Theorem 3.2. If F has a finite mean E{X\) and G(x) has a decreasing 
density function, then for any x > 0 

W(x) < Pn*)+jG(x) + 6(x) 
pF(x)+q 

where S(x) = pG(x){x~1 E(Xi) - F(x)}-±0 as z->-oo. 
Proof. Since W(x) = H * G(x) = Pr{S;v + Y < x}, by conditioning on the 
value of Y, we get that for any x > 0, 

W(x) = G(x) + [X H(x - y) dG(y) (9) 
Jo 

= G(x)+ [XH(x-y)G'(y)dy. (10) 
Jo 

But, we know that if f(x) and g(x) are integrable functions with different 
monotonicity on [a, b], a < b, then 

pb -i rb rb 

f(x)g(x)dx < —— / f(x) dx g(x)dx. (11) 
J a " a Ja J a 

Thus, by (10), (11) and the fact that H(x — y) is increasing in y over 
[0, x], we get that for any x > 0, 

W{x) < G(x) + - T ff (a: - i/) dy [X G'(y) dy (12) 
x Jo Jo 

- G(i) + ^ - I Hit) dt 
X 

= G ( x ) +
G W 

X 

r Hit), 
Jo 

/"OO 

E(SN) - / ^(0 
J x 

(13) 

Since 5jv is compound geometric, the distribution H of SV is a New Worse 
than Used (NWU) distribution [Lemma 2.1 of Brown (1990)], which implies 
that if is a NWUE distribution, i.e. 

/>oo 

L H(t) dt > E(SN)H(x), x>0. (14) 
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Thus, by (13), (14) and (7), we get that for any x > 0 

W{x) < G(x) + x-1G(x)E(SN)[l - H(x)] 

<G(x)+x-0(x,E(S„)[l--|SHL.] 

= B(I) + ?3S«. (15) 
pF(x)+q 

But E(SN) = E(£%=i Xi) = E(N)E(Xi) = pE(X{)lq. Hence qE{SN) = 
pE(Xi). This, together with (15), implies that (8) holds. • 
Remark 3.2. The requirement in Theorem 3.2 that G has a decreasing 
density function is not restrictive. In fact, this condition can be satis
fied by many distributions such as the class of the equilibrium distribution 
function Fe(x) = J0 F(y)dy/ J0 F(y)dy with decreasing density function 
f(x) = F{x)/ Jg00 F{y) dy, which often arises in risk theory, reliability, queue-
ing and renewal theory. In addition, the class of decreasing failure rate (DFR) 
distributions have decreasing density functions since f(x) = r(x) F(x), where 
r(x) > 0 is the failure rate function of F, which is decreasing in this case. 
Corollary 3 .1 . Combining Theorems 3.1 and 3.2 we get that under the con
ditions and notation of Theorem 3.2, for any x > 0 

PF(x)+qG(x) < _ < pF(x)+jG(x)+S(x) 

PF(x) + q ~ ~ pF(x)+q ' ^ ; 

Since S(x) -> 0 as x -> oo, (16) indicates that 

PF{x) + gG(x) 

pF(x)+q 

may be an asymptotic form for W(x) as x -+ oo. Indeed, we show below that 
under various situations, this is precisely the asymptotic form of W{x). 
Corollary 3.2. Under Theorem 3.2, if lim xG(x) = oo then 

x-+oo 

pF{x)+q 

Proof. By (16), we get for any x > 0, 

! < W(x) IT(X) + J < 1+ PGMiEm-xFjx)} 
v JpF(x) + qG{x) ~ PxF{x) + qxG{x) v 
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Since F has a finite mean, x F(x) -t 0 as x -> oo. Thus, (18) and x G(x) -> oo 
as x —> co imply that 

W(x) ~ PFW + qG(x) 
pF(x)+q 

D 
Remark 3.3. There exist classes of distributions that satisfy the conditions 
of Corollary 3.2, for example the Pareto distribution with density function 

aca 

q(x) — - —— , x > 0 , where 0 < a < 1 , c > 0, 

or more generally, the Burr distribution with distribution function 

F(x) = 1 - ( T ) , x > 0 , where A > 0 , 0 < a < l , 0 < r < l . 

But, it should be pointed out that the condition xG(x) -^ oo as a:-»oo is 
restrictive, since it implies that G has no finite mean. 

On the other hand, under the conditions of Corollary 3.2, 

pF(x)+gG(x) 

PF(x)+q 

gives a closer approximation to W{x) than G(x) does, as seen by Theorem 
3.1 and the fact that for any x > 0, 

pnx)+iG(x) > 

PF(x) + q ~ 

We know that if h is an asymptotic form of an unknown function T, 
i.e. T(x) ~ h(x), then any function g satisfying g(x) ~ h(x) is also an asymp
totic form of T. Hence, it is interesting to find a closer asymptotic form among 
known approximations. As shown above, a closer approximation can be de
rived by combining bounds and asymptotic forms. 

Furthermore, we notice that the only relation between F and G required 
in Corollary 3.2 is that G(x) dominate asymptotically F{x). If other relations 
between them are assumed and subexponentiality (as defined below) is further 
imposed on F or G, we can derive additional results for W(x) as follows. 
Definition 3 .1 . A distribution B on [0, oo) is said to be subexponential, 
denoted by B 6 S, \iB~$){x) ~ 2~B{x). 

Subexponential distributions are heavy tailed; typical examples are the 
Pareto or Lognormal distributions. The following Lemma combines Proposi
tion 1 of Embrechts et al. 14 and Theorem 2 of Chistyakov 5 . 
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Lemma 3.1. Suppose that F\ and F2 are two distributions on [0, 00). 

(i) If F2 G S and Fx{x) = o{F2(x)), then Fi*F2 G S and Fi * F2(x) ~ F2(x). 

(ii) If Fi * F2 G 5 and F^x) = o(Fi *F2(x)) then F2 G 5 and F2(x) ~ 
Fi*F2(ar). 

(iii) If F2 G 5 , then for any e > 0, lim eSxft(x) = 00, i.e. e~£x = o(Fj(a;)). 

Theorem 3.3. Suppose that G(a;) = o(F(x)). The three following assertions 
are equivalent: 

(i) F 6 S, 

(ii) W eS, 

(iii) W(x) ~ {pf (a ; )+gG(x)} /{pF(x) + 9} ~ pF(x)/q. 

Proof. First, it is clear that G{x) = o(F(x)) implies 

pF(x)+qG(x) ^ pF(x) 

pF(x)+q q 

By Corollary 3.2 of Embrechts et al. 14, we know that the following three 
conditions are equivalent: 

(a) FeS, (b) H G S, (c) i/fa) ~ pF{x)/q . 
Hence, if F G S, by (b), (c) and G{x) = o(F(a;)), we get that H G S and 

£ W = E w x M 4 0 as ^0 0 j 
H(x) F{x) H{x) 

i.e. G(:r) = o(H(x)), hence (c) and (i) of Lemma 3.1 imply that W = G*H G S 
and W(x) ~ i? (x) ~ pF(x)/q. 

Conversely, if W = G * H G S, by Theorem 3.1 and G(x) = o(F(a;)) : 

< G_(x) < {^ (x ) + g g f r ) = {pF(x) + j } G ( z ) / F » _^ Q 

- H ' ( i ) - p F ( i ) + ? G ( i ) p + 9G(a:)/F(a;) 

this is to say that G(x) = o(W(x)), thus, (ii) of Lemma 3.1 and (c) imply 
that H G 5 and W(x) ~ # (a:) ~ pF(x)/q. 

So, we have shown that F G <S 44> W e S. In addition, the above proof 
also showed that F G S =$• W(x) ~ pF(x)/q. Thus, in order to complete 
the proof of Theorem 3.3, we still need to prove that 

W(x) ~ -F(x) =>• FeS. (20) 
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By definition, W{x) = Pr{5jv + Y <x} = £ ~ = 0 qPnG * F^(x), and hence 

W{x) = ^qpnG*F(n){x) 
n = 0 

which implies that 

G*FW(x) = —; 
qp' 

w{x)-Y^qpnG*F^{x) 
n^2 

Since Y is a non-negative random variable, for any integer k > 1, 

G * FW(x) = Pv{Y + X1 + --- + Xk>x} 

> Pr{X2 + • • • + Xk > x} = F(k)(x) 

>Pr{max(X 1 ; . . . ,Xk)>x} 
k-i 

= l-[F(x)]k= F(x)Y,[F(x)]n 

n = 0 

(22) implies that 

hm mf _ N
w > lim inf _ / / > k . 

x - > oo F(x) z ->• oo F(x) 

Clearly, (22) and (23) are also true for k = 0, thus by (21) and (22) 

1 FW(x) G*F(V(x) 

F(x) ~ F\x) - qp^ 

W(x) ^ 

W)-^2
qp F(x) 

Thus by (24), (23) and W(x) ~ pF(x)/q, we get that 

FW(x) 1 
hmsup -=—— < —r-
x -» oo F(x) qpz -~2^<IP nhminf y 

< 
<ZPZ q *—' 

n^2 

qp' 
+ 2<?p2-£ ngp 

n = 0 

(21) 

(22) 

(23) 

(24) 

= 2 , (25) 

hence, (23) and (25) imply that Iim^ -> oo i^ 2 ' (x)f F(x) = 2, i.e. F e S. a 
It is interesting to note that (20) holds and is independent of the condition 

that G(x) — o(F(x)). In addition, if G is an exponential distribution, using 
Lemma 3.1(iii) and following the proof of Theorem 3.3, we get directly the 
following corollary. 
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Corollary 3.3. If G is an exponential distribution, then Theorem 3.3 holds. 

Theorem 3.4. Suppose that F(x) — o(G(x)) and F E S. The two following 
assertions are equivalent: 

(i) GeS, (ii) W G S, 

and either one of them implies that: 

(iii) W{x) ~ {PF{x)+qG{x)}/{pF{x)+q} ~ G(x). 

Proof. By (c) in the proof of Theorem 3.3, we know that 

H(x) H(x) F(x) 
= ^ - = =7-7- x = ^ -)• 0 as x -> oo , 
G{x) F(x) G(x) 

i.e. H(x) = o(G(x)), hence if G G S, by Lemma 3.1(i), we get that W = 
# * G G S and W(x) ~ G(z). But, F(z) = o(G(x)) implies that 

pF(z) + g G ( i ) m 

pF(x)+q 

Conversely, if W = H * G G S, by Theorem 3.1 and the proof of Theorem 
3.3(c), we get that 

< £ ( * ) < {pF(x) + g f f l z ) = {pF(x) + q)E{x)IG{x) _^ &g 

- W(a;) ~ p f ( x ) + ? G ( i ) gF(x)/G(x)+<? 

i.e. #(:r) = o(W(a;)). Then Lemma 3.1(h) =>• G G 5 and W(x) ~ G(z). • 
Remark 3.4. We know that 

pF(a;) + oG(a;) pF(x) „ , , , 9 ^ , . r _ „ F - * V ; > £—i-^ if and only if g2 G(x) > \pF(x)}2. 
pF{x)+q q 

Thus, in view of Theorem 3.3(iii),_if F G S^x) = o(F(x)) and q2G(x) > 
\pF{x)}2 as a;->oo, (for example, G(x) = [F(x)]3/2), then by Theorem 3.1, 
we know that {pF(x) + qG(x)}/{pF(x) + q) is a closer approximation for 
W{x) than pF{x)/q is. By an argument similar to that in Remark 3.3, we 
also know that under the conditions of Theorem 3.4 and if G G <S, then 
{pF{x) +qG(x)}/{pF(x)+q} is a closer approximation to W(x) than G{x). 

Theorem 3.5. If G(x) ~ T{x) and F G S, then 

w PF(x) + qG(x) F(x) G(x) 
W (x) ~ =—— ~ ~ . 

pF{x)+q q q 
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Proof. F E S implies that H e S and H(x) ~ pF(x)/q. Hence, 

G(x) G(x) Fix) q 

H(x) F(x) H(x) p 

Thus, by Theorem 1 of Cline 6 (see also Theorem 4.3 of Goldie and 
Kliippelberg 17) we know that 

q H(x) F(x) 
W(x)=G*H(x) ~ (l + l)H(x) = 

p p 
On the other hand, F(x) ~ G(x) implies that 

PF(x)+qG{x) F{x) G(x) 

pF(x)+q q q 

so Theorem 3.5 holds. • 
Remark 3.5. The results of this Section also show that the lower bound in 
Theorem 3.1 is asymptotically exact for W(x) as x -» oo, in the subexponen
tial case. Bounds for W(x) were considered in Kalashnikov 18 and Willmot 
and Lin 2 7 ) . The bounds for W(x) in (5.1) and (5.2) of Kalashnikov 18 are 
asymptotically exact as E{N) -> oo. The bounds of Willmot and Lin 27 are 
applicable to the tail of convolutions of more general compound distributions; 
these are based on a generalized Lundberg's coefficient and NWU distributions 
(see Willmot and Lin 28 for more details). 

Also, we point out that W{x) cannot admit exponential asymptotic forms 
and exponential upper bounds if F or G is subexponential, i.e. no constant 
c > 0 and e > 0 such that W(x) ~ ce~£x or W(x) < ce~£x, for all x > 0. For 
example, if F is subexponential, then we know that H € S and e£x H(x) —> oo 
as x -> oo, hence lim e£x W(x) = oo, since W(x) = H * G(x) > H(x). 

x—>oo 

4 Medium-tail asymptotics 

We consider here the intermediate case, i.e. when mF(s) < oo for some s > 0, 
but Lundberg's coefficient does not exist, as Tnp(s) = 1/p can not be satisfied 
but mpis) < 1/p holds (e.g. in the inverse Gaussian case). First, recall the 
definition of the S(a) class and its properties. 
Definition 4.1. A distribution B on [0, oo) is said to belong the S(a) class 
for a > 0, denoted by B S S(a), if 

(i) \imx^00BW(x)/B(x) = 2mB{a)<oo, 

(ii) limx _> oo B{x - y)/^(x) = e"*', for all y £ 
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Clearly, B € 5(0) <£• B G S. A class of distributions in S(a) is the class 
of generalized inverse Gaussian distribution N~1(a,b,c) with a < 0, b > 0 
and c > 0, since N~1(a,b,c) G <S(c/2) (see Embrechts 12 for details). The 
following proposition recalls some properties of <S(a), which will be used here. 
Its proof is in Lemma 2.4 and Theorem 2.7 of Embrechts and Goldie 13 and 
page 268 of Kliippelberg 21 (for details see Rolski et al. 2 2 ) . 
Proposition 4.1. Suppose that B G £(7). 

(i) For any e > 0, e 7 + e B(x) —> 00 as a; —• 00, 

(ii) If L is a distribution on [0, 00) and limx —> 00 L{x)/ B{x) = c, where 
0 < c < 00, then L € 5(7), 

(iii) If 7 > 0, B has a finite mean m, and B\ is the ladder height distribution 

of B [i.e. B,{x) = i |0
X B(j/)dy], then Bx G «S(7) and ^ ( z ) ~ g £ } . 

Theorem 4 .1 . Suppose that F G 5(7) for some 7 > 0 and that 771^(7) = 
|0°° e<xdF{x) < 1/p. If G(x)/F{x)-+a as z -^oo, then W G 5(7) and 

F ( » ) ~ g W 7 ) + " [ l - p m F ( 7 ) ] } 
[ l - p m F ( 7 ) J 2 

Proof. Since 0 < prnpij) < 1, there exists some e > 0 such that 0 < 
p[mF('y) +e] < 1, thus £^L0<?pn[mF(7) +e]n < 00. Hence, by Theorem 2.13 
of Cline 7, we get that If £ 5(7) and 

~H{x) ~ cF(x) (27) 

where c = Y^Li nqpn[mF('y)]n-1 = pq[l - puip^)]'2. Thus, 

G{x) G(x) F(x) a 
—, ' = =i—^ x _ -> — as x -> 00 . 
# (x ) F(a:) H( i ) c 

By Theorem 1 of Cline 6, we get that 

W{x) ,. H*G(x) . , a 
hm = 7 ~ f = hm ; = mG 7 + - * " g 7 • (28) 

1 -> 00 f f ( x ) x - > o o H(x) C 
But, 

m^(7) = £ ( e ^ ) = ^ ^ n E 
n = 0 

afZ7=iXi 

= X > " [ m F ( 7 ) ] " = q[l - p m F ( 7 ) ] - 1 

n = 0 
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Hence, by (27) and (28), we get that 
Q< 

W(x) ~ [TTIGCT) H—wjf (7)] # ( z ) ~ [email) + amH(7)] F(a;) 

= {p? [ l -pm F (7 ) ] - 2 m G (7 ) + a 9 [ l - P " ^ F ( 7 ) ] - 1 } ^ ( Z ) . 

i.e. (26) holds. W £ S(j) follows from (26) and (ii) of Proposition 4.1. • 

5 Ruin probabilities in a diffusion risk model 

To illustrate a possible application of the above results, consider the classical 
risk process perturbed by a Wiener process, i.e. the surplus R(t) at time t is 

R(t) = x + ct- S{t) + Z(t) , 

where x > 0 is the initial risk reserve, c > 0 is the premium rate, S(t) is 
the compound Poisson process representing the total claims at t [with rate 
1/d > 0, and the independent individual claim sizes with common distribution 
function B and B(0) = 0], and {Z(t)} is a Wiener process, independent of 
{5(t)}, with infinitesimal drift 0 and infinitesimal variance 2D > 0. Assume 
c > A/d, where A = /0°° B{x) dx is the expected claim size, then the relative 
security loading q = 1 — \/(cd) is such that 0 < q < 1. 

Let ip(x) denote the probability of ultimate ruin, starting with initial 
reserve x : 

V>(a:) = Pr{infiJ(i) < 0} . 

Denote tp(x) = 1 — i(>(x). Dufresne and Gerber n (see also Veraverbeke 26) 
have shown that for any x > 0, 

00 

tp(x) = Y, qpnF{n) * G(x) =H* G(x) , 
n=0 

or, equivalently, 
00 

i(j(x) = J2 1Pn F(n) * G(x) = IlTG(x) , (29) 
n=0 

where H{x) = £ £ L p q p n F ^ ( x ) , G{x) = 1 - e~cx/D, F(x) = G * 
B1 (x), Bx [x) = \ $* B(y)dy, for x > 0, and p = A/(od), q=l-p=j=ft. 

Suppose that ^ and r) are independent random variables with distributions 
G and B\, respect., then £ + r\ has distribution F' = G*B\ and for any s £ l , 

/>oo 

mF(s) = / esxdF(x) = £[e^ + ">] = E(esi)E(es») = mG(s)mBl (s). (30) 
Jo 
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Thus, if there exists a constant R such that 

mF(R) = mG(R)mB1{R) = 

then (31) implies that R < c/D , 

r rc 

mG(R) = E(e"t) = -J Rx — ^- i 

e e o dx c-RD 
< oo 

(31) 

(32) 

and 

By (31) and (32), we get that 

xe e D dx = 
cD D 

(c - RD)2 c-RD 
mG{R) . (33) 

E(eR*) = mBl(R) = 
1 c-RD 

pmG{R) pc 

Hence 
/>00 

/? = / xeRxdF{x) = E[{£ + V)em+rt) = E{^)E{eRr]) + E(efi«)S(r/efi") 
Jo 

= mG(R) 
pc A J0 

xeHxB(x)dx (34) 

5.1 Asymptotics for the diffusion risk model 

We know that if G and B\ have density functions, so does F = G * B\. This 
implies that F is non-lattice. Thus by Theorem 2.1, we get the following 
exponential formula for the ruin probability tp(x). 
Corollary 5.1. Suppose that mp{R) = 1/p. If J0°° xeRx B(x) dx < oo then 

«*>-=$?'-*-<!-£> *E+*L r xe
RxB{x)dx 

c cd J0 

- l 
-Rx 

and if JQ xeRx B{x)dx = oo, then 

ip{x) = o{e~Rx) . (35) 

This Corollary includes Theorem 4.1 of Gerber 16, the results in Section 
7 of Dufresne and Gerber u and in Section 3 of Veraverbeke 26. 
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Since G{x) = 1 - e~cxlD is an exponential distribution function, by (i) 
and (ii) of Lemma 3.1, we know that B\ 6 S <S> F = G*Bi £ S. Furthermore, 
by Corollary 3.3 and Lemma 3.1, we know that 

Bi e S =S> 1>(x) ~ - F(x) = —^— T(x) 
q cd — X 

cd — A cd-

In addition, using the fact F{x) = G * Bx(x) > Bi(x) and following the proof 
of (20), it is clear that 

%l>{x) ~ ? 57(3;) = _ ^ _ B~1[X) => Bi e <S , 
(J CO — A 

thus, Corollary 3.3 implies the following theorem. 
Theorem 5.1. For the classical risk process perturbed by a diffusion, the 
following conditions are equivalent: 

(i) Bx £ S, (ii) v e S, (iii) 4(x) ~ ^ /x°° B(y) dy. 

Remark 5.1. Theorem 5.1 generalizes Theorem 1 of Veraverbeke 26, where 
it is shown that (i) and (ii) are equivalent and that either one of them implies 
(iii). Conditions enabling B\ £ S can be found, expressed in terms of B, in 
Embrechts and Omey 15 and Kliippelberg 20. 

Finally, for the intermediate case, suppose that for some 7 > 0, BE S(J) 
and 771^(7) = W G ( 7 ) J « B 1 ( 7 ) < 1/p, then by Proposition 4.1, we get that 
B\ £ S("f) and B\(x) ~ B(x)/(/y\), in addition, 

(1) rnG{l) = (c/D) J0°° e?xercxlD dx = c/{c - D7) < 00, 

(2) mBl (7) = Jo00 e7* dBt (x) = (1/A) J0°° e^ B~[(x) dx < 00 and 7 < c/D, 

hence, there exists some e > 0 such that 7 + e < c/£>, thus mg(7 + e) = 
c / [ c ~ (7 + e)JC] < °°) a n d by Proposition 4.1, we get that 

G(a;) e-y+£G(x) 
. = z=~ > 0 as a; -> 00 . 

jBi(a:) e-y+£Bi(x) 
Thus, by Theorem 1 of Cline 6 and (ii) of Proposition 4.1, we get 

F(x) G*B1(x) 
= — = — = -> man) as z -^oo 
Bx{x) B1{x) 
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and 

F € S ( 7 ) and F(x) ~ mG^)B~[(x) ~ T^^-B(x) 

Thus, G(x) = o(F(a;)) and Theorem 4.1 imply that </? 6 5(7) and 

? 
pg[mG(7)]2 

*(*) ~ n W m G ( / \ 1 2
 F ^ (36) 

[l-pmF(j)]2 

A7[l -pmF(7)] 

= — ( 1 - - ) cdj cd 
l - 2 -A elyB{y)dy 

c cd J0 

B(x) , (38) 

thus, (38) yields Theorem 2 of Veraverbeke 26. 

5.2 Ruin probability bounds for the diffusion risk model with heavy tails 

Under condition (31), the exponential bounds for the ruin probability ip(x) 
have been derived by Dufresne and Gerber n . Here, we use a generalized 
condition of Dickson 10 to derive bounds for if)(x) with heavy claim size tails. 
General upper and lower bounds for 4>(x) follow directly by Theorems 3.1 and 
3.2 since G is exponential and has a decreasing density. 

Given t > 0, suppose that Rt satisfies 

mG(Rt) f eR'ydB1(y) = - , (39) 
Jo P 

I 
or equivalently, 

* e*<*dBM = —— • (40) 
/o cp 

Lemma 5.1. For any claim size distribution B with B(0) = 0, there exists a 
unique solution Rt € (0, c/D) to equation (39). 
Proof. Let h(x) = mG{x) /0* exydBi(y) - ±. Since H(0) = Bi{t)-±<0 and 

lim moix) = lim — = 00 , 
xtc/D xfc/D C — xD 

this implies that limx1-c/£) h(x) = 00. Thus, the existence of the unique root 
of h follows from the fact that h is continuous and strictly increasing. • 

Since B\ is continuous in here, condition (39) is clearly equivalent to 

mam J ^ydBt(y) = mry (41) 
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where 

Let 

mix) = {BMmt)so^x<t (42) 

^ W = ^ f t P l » F f
W * G ( x ) (43) 

n = 0 

or equivalently, 

%l)t {x) = l - tpt (i) = ^2qtPt ^ ( n ) * G{x) , (44) 
n=l 

where p t — pB\{t), qt = 1 - Pt and Ft — Bt* G. That is to say, Vt(^) i s the 
ruin probability in the diffusion risk model with corresponding parameters 
Pt, qt, Ft and G. 

By induction we get that for any 0 < x < t, B(
t
n)(x) = B[n)(x)/[Bi(t)]n, 

hence for any 0 < x < t, 

n^) = J2^ptBtn)*Gin)*G(x) 
n = 0 

oo 

= - J2 QPnF(n) * G{x) = - <p{x) . 
1 n=0 Q 

Thus, for any 0 < x < t, 

1>t{x) = 1 - ft{x) = 1 - - ipd{x) = 1 - ^ [1 - tl>d(x)] . 

This implies the following property. 
Lemma 5.2. For any 0 < x < t, 

^ ' q + pBrit) q + pB^t) { ' 

Using Lemma 5.2 above, we can prove the following result. 
Theorem 5.2. Suppose Rt satisfies (39), then for any 0 < x < t, 

p*JfL- < ^ < JML. + J!£±L.. (46) 
q+pB^t) ~ ~ q+pBiit) q+pBi(t) 

In particular, for any x > 0, 

P*1(X)- < iK«) < P*1AX) + qe'-X . (47) 
q + pBi{x) q+pBi{x) q+pB^x) 
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Proof. The lower bound in (46) follows from ipt(x) > 0 and (45). On the 
other hand, if a constant R satisfies 

f°° 1 

mG(R) / eR"dB^y) = - , (48) 
Jo P 

then Dufresne and Gerber 16 show that for any x > 0, 

ip(x) < e-Rx . (49) 

Thus, apply (49) to ipt{x) with condition (41), to get for any x > 0, 

tPt(x) < e~R'x . 
This, together with (45), implies that the upper bound in (46) holds. Taking 
x = t in (46), gives (47). • 
Remark 5.2. (a) Since 

pB^x) pB^x) 

q+pBx{x) q 

by Theorem 5.1, we know that the lower bound in (47) is asymptotically exact, 
for large x, if £?i is a subexponential distribution. 

(b) If D = 0, the diffusion risk model is reduced to the compound Pois-
son risk model, thus the bound of Dickson 10 is derived as a special case of 
Theorem 5.2 and is improved upon. 

Other applications of the results in sections 2-4 have been investigated, 
notably to M/G/k queues (see for example Asmussen 2) . 
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This paper investigates the finite-sample properties of the class of generalized em
pirical likelihood estimators in possibly overidentified models with weakly identified 
parameters. These nonparametric likelihood estimators satisfy exactly the moment 
conditions and automatically remove the bias that arises from a lack of centering of 
the moment conditions. The inference procedure suggested in the paper does not 
involve any explicit estimation of the variance-covariance matrix. The confidence 
sets for the parameters of interest are constructed by inverting the x2 acceptance 
region of the criterion test. 

1 Introduction 

Moment condition models arise naturally from dynamic economic theory with 
optimizing agents. Since the seminal paper by Hansen 13, the generalized 
method of moments (GMM) has become the predominant framework for es
timating the structural parameters of these models. Under some general reg
ularity conditions, the GMM estimator is consistent, asymptotically normal 
and efficient for the given set of moment conditions. Unfortunately, it has been 
found that the small-sample properties of the conventional GMM estimators 
(in particular, the two-step GMM) are rather poor. 

In this paper, we investigate the properties of the class of generalized em
pirical likelihood estimators of moment condition models. Members of this 
class are the empirical likelihood-based GMM of Qin and Lawless 27, Imbens 
15 and Imbens, Spady and Jonhson 16, and the maximum entropy-based GMM 
of Kitamura and Stutzer 17 and Imbens, Spady and Johnson 16. This class also 
includes the continuously-updated GMM as a special case (Imbens, Spady and 
Johnson 16; Newey and Smith 22) which explains the superior small-sample 
performance of this estimator over the traditional two-step GMM found in 
Hansen, Heaton and Yaron 14. These nonparametric likelihood estimators 
minimize the distance between the empirical distribution function and a dis
tribution function that exactly satisfies the moment conditions. 

One of the most attractive properties of nonparametric likelihood esti
mators is that they tend to remove some important sources of bias that give 
rise to poor finite-sample properties of the GMM estimator and GMM-based 
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test statistics. The first source of bias arises from the fact that the first-order 
conditions of the standard two-step GMM estimator (Hansen 1 3 ) , evaluated 
at the true values of the parameters, are non-zero. This bias is exacerbated 
if the number of instruments increases (Kocherlakota 1 8) . Altonji and Segal 
1 and Angrist, Imbens and Krueger 3 proposed some ad hoc methods for re
ducing the magnitude of the bias. Donald and Newey 8 showed that, for the 
continuously-updated GMM of Hansen, Heaton and Yaron 14, the first-order 
conditions are exactly satisfied at the true values of the parameters and this 
source of bias is automatically removed. In fact, for all members of the class 
of the generalized empirical estimators, the moment conditions are exactly 
centered at zero by construction. 

Second, the estimation of the weighting matrix can be another impor
tant source of bias due to the non-zero finite sample correlation between the 
elements of the variance-covariance matrix of the parameters and the errors 
(Altonji and Segal 1 ) . This source of bias is present for both the two-step 
and continuously-updated GMM estimators but disappears for the empirical 
likelihood (EL) estimator of Qin and Lawless 2T. Newey and Smith 22 showed 
that the bias of the empirical likelihood estimator of Owen 24 and Qin and 
Lawless 27 is the same as the bias for the infeasible optimal GMM where the 
optimal linear combination coefficients do not have to be estimated. 

Third, the small-sample properties of the GMM estimators and test sta
tistics can be seriously affected by the choice of instruments that are only 
weakly correlated with the endogenous variables (Stock and Wright 2 9 ) . In 
this case, the finite sample distributions of the GMM estimators and the test 
statistics may depart substantially from their asymptotic distributions. Stock 
and Wright 29 proposed an alternative reparameterization of the moment con
ditions and obtained asymptotic representations with improved finite sample 
properties. In their framework, however, the weakly identified parameters 
are not consistently estimable. Fortunately, one could still conduct asymp
totically valid inference by inverting criterion-based tests since their limiting 
X2-distribution at the true values of the parameters is preserved. 

In this paper, we show that the nonparametric likelihood estimators are 
robust in the presence of weakly identified parameters. Most importantly, the 
criterion-based inference procedure does not involve any explicit estimation of 
variance-covariance matrices. Unlike the Wald test, the confidence sets con
structed by inverting the criterion test, also satisfy the requirement of infinite 
expected volume in the completely unidentified model (Dufour 9 ) . Finally, the 
class of generalized empirical likelihood estimators is transformation invariant 
and the obtained confidence sets are transformation respecting. 

The rest of the paper is structured as follows. Section 2 discusses two ap-



134 

proaches to estimating moment condition models that give rise to the GMM 
and the nonparametric likelihood estimators. The asymptotic validity of the 
confidence interval construction by criterion test inversion is shown in Section 
3. The Monte Carlo experiment in Section 4 studies the finite-sample prop
erties of the different estimators and their corresponding confidence intervals 
in a linear instrumental variable model with weakly identified parameters. In 
Section 5, nonparametric likelihood estimators are applied to estimating the 
return to education. Section 6 summarizes the conclusions. 

2 General Approach to Estimating Moment Condition Models 

Let E[g(x,9)\F] = J g(x,6)dF = 0 be an m x 1 vector of population moment 
conditions implied by economic theory, where (xi, xi,...) are independent ran
dom vectors in R p with unknown continuous distribution function F, 8 is a 
k x 1 vector of unknown parameters from 0 and g(.) is a given function 
{g(x,0) : R p x R l - » R m } with m > k. 

Suppose that we restrict the family of possible distribution functions to 
the space of multinomial distributions with finite support on the observed 
data, denoted by $. Also, let Fn denote the empirical measure of the sample 
{xi}"=1 from F that places probability mass n _ 1 on each data point and P„ 
be another probability measure that assigns multinomial weights Pi,P2, ••••,Pn 
to each of the observations. Below, we consider two versions of the analogy 
principle discussed in Manski 20. The first version selects an estimator that 
minimizes the distance of the moment conditions from zero (GMM estima
tors). The second version selects an estimator that minimizes the distance 
between the empirical measure and a measure Pn that satisfies exactly the 
moment conditions (nonparametric likelihood estimators). 

2.1 GMM Estimators 

The conventional GMM estimator minimizes the distance of the sample coun
terparts of these moment conditions from zero using the quadratic form 

Qn(0) = 9n(6)'Wn(6)gn(6), (1) 

where gn(0) = E[g(x,6)\Fn) = f g(x,9)dFn and Wn(9) is a positive definite 
weighting matrix. Then, 9 = argmme<E@Qn(6). The properties of the GMM 
estimator depend crucially on the choice of the weighting matrix. The optimal 
GMM estimator sets Wn{9) = [£ £ t"= i & ( % # ) ' ] ~*, where gi{9) = g{Xi, 6). 
If a preliminary consistent (but not necessary efficient) estimator 6 of 9 is 
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used in the estimation of Wn, we have the two-step GMM estimator 

Oistep = argmin ( ? € 0 

« = 1 J L i = l . . « = 1 

• (2) 

If we substitute 82step in the weighting matrix and repeat this until conver
gence of both 9 and Wn, the obtained estimator is the iterated GMM estimator 
(Hansen, Heaton and Yaron 14) described by the equations 

2_ V^ / d9i(&igmm) 

i = l 
56" n 

/ j 9i \yigmm)9i ("igmm ) 

- 1 

9n\Pigmm) — Ufc. 

(3) 
Finally, the continuously-updated GMM estimator proposed by Hansen, 

Heaton and Yaron 14 does not require a preliminary estimate of 6 and directly 
minimizes the criterion function 

6CU = argmin0€O 

j=i J L i=i J L «=i 
• (4) 

The estimator is the solution to a (typically nonlinear) system of k first-order 
conditions 

I ^ j g H I W J ^ J 5 n ( e c 0 - 5 „ ^ c „ ) ' W „ ( ^ n ) ^ ^ W n ( ^ ) 5 n ( ^ ) = 0 

or 

i = l J L t=l 
<?n(0Cu) = 0, (5) 

r ^ -v I - i ^ 

where A = - [£"=i 5i(^cu)3i(^cu)'J 9n(0cu)-
Although these estimators are asymptotically equivalent, their finite sam

ple properties may differ (see for example Hansen, Heaton and Yaron 1 4) . 

2.2 Nonparametric Likelihood Estimators 

A second approach is to obtain a value of 6 that minimizes a distance between 
probability measures rather than the distance of the moment conditions from 
zero. This data driven approach selects from the set of distributions that 
satisfy exactly the moment conditions a probability measure Pn closest to the 
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empirical measure Fn defined by the Cressie and Read 6 power divergence 
criterion 

DP{Fn,Pn) = -^-j)YjPi[{nPiy-l], (6) 

where p is a fixed scalar parameter which determines the shape of the crite
rion function. Cressie and Read 6 proposed the family of power divergence 
statistics as goodness-of-fit tests. Here, we use the Cressie-Read divergence 
criterion for estimation purposes. The estimator is defined as the solution to 

minpne*,eeeDp(Fn,Pn) (7) 

subject to E[g(x,6)\Pn] = / g(x,6)dPn = 0. (8) 

This form of the analogy principle maps the empirical distribution function 
onto the space of feasible distribution functions and chooses the probability 
measure that is most likely to have generated the observed data, subject to the 
moment conditions (Manski 2 0 ) . The solution to the above constrained opti
mization problem is a straightforward application of the Lagrange multiplier 
principle. 

This framework embeds several interesting special cases (see Kitamura 
and Stutzer 17; and Imbens, Spady and Johnson 1 6) . The first two cases can 
also be interpreted as discrete versions of the forward and backward Kullback-
Leibler discrepancy between the empirical measure and Pn. If we let p ap
proach 0, the estimator is the solution to the problem 

2 " 
min — > In npi (9) 
p,e n *-^ 

n n 

subject to ^2pig(xi,6) = 0 and ^ P i = 1. (10) 

This is the empirical likelihood estimator of Owen 24>25>26 and Qin and Lawless 
27 obtained as the root of the system of equations 

(\Y,U9i{eEL)l(i + \'9i{eELj) \ 

[h££=i A' ( ^ H J / (i + \'9i(eEL)) 
J'm-\-k^ 

J 
where A is a vector of Lagrange multipliers on the moment conditions. 
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The (m + k) x 1 parameter vector (6EL, A)' can then be used to compute 

the vector of probability weights PJ = n f 1 + \'g0EL)) for i = 1,2, ...,n. 
This gives an efficient estimate of the distribution function F given the set of 
moment conditions. One drawback of this method is that the form of the loss 
function resists heavy downweighting of specific data points which may be a 
problem in the presence of outliers. 

If p -> — 1, we obtain the maximum entropy, exponential tilting or KLIC 
(Kullback-Leibler information criterion) estimator of Efron 10 and DiCiccio 
and Romano 7 and discussed in Kitamura and Stutzer 17, Imbens 15 and 
Imbens, Spady and Johnson 1 6) . It is computed as the minimizer of the KLIC 
function 

min 2 V , Pi In npi 
p' «= i 

(11) 

subject to (10). The maximum entropy estimator solves the system of first-
order conditions 

\ / ^ E f e i f t f c j e x p p ' f t f e ) ) 

l ^ £ r = 1 A ' 9gi(0BT) 
exp (Xgi(0ET)) 

= o. m+k-

Finally, if p -> - 2 , we obtain the Euclidean likelihood estimator of Owen 
26 given by the argument that minimizes 

n 
„ 2 

min 
P,0 n 

i 

i) (12) 
i = l 

subject to (10). The solution is obtained from 

\ 

v ^Er=1A'(^#^)[i+A%fe)] 
= o. m+k, 

where 90EU) = 90EU) ~ £ E"=i 90 EU)- From the first m equations, A = 

" [ £ E ? = i f f i f c ) f f i ( W ] - 1
 [^Y:U90EU)] • Then, by substituting for 

A and j>i = n _ 1 1 + \'g~0Eu) in the last k equations, we get 

i n 1 r i n 

-Y,90EU)-90EU)' -Y,90EU) =0*. E - ( dg0Eu) 
Pi 89' 

i=l 



138 

It is interesting to see that this system of first-order conditions is almost 
identical to (5) for the continuously-updated GMM estimator and very sim
ilar to (3) for the iterated GMM estimator. Hence, the Euclidean likelihood 
estimator can be interpreted as a continuously-updated GMM estimator and 
an optimally weighted iterated GMM estimator. 

Note also that the objective functions (9) and (11) implicitly impose 
the constraint pt > 0 which validates the interpretation of pi as probability 
weights. For the Euclidean estimator, we either have to inspect the positivity 
of the probability weights each time or introduce a nonnegativity constraint 
explicitly into the minimization problem. Owen 26 argues that in small sam
ples, the negativity of the estimated weights may be advantageous for confi
dence interval construction. 

3 Inference in Moment Condition Models 

Consider the estimators discussed in Section 2. Let 6Q denote the true value 
of the parameter vector and suppose that the following regularity conditions 
are satisfied. 

Assumption Al. Assume that Wn A- W, where W is a nonstochastic symmet
ric positive definite matrix; g(xi,9) is continuous in 9; E [sup f lee |<7(£;,#)|] < 
oo; supj E [g(xi,0)g(xi, 9)'] < oo for all 9 and 0 is a compact subset of Rk. 

Assumption A2. There is a unique 9Q such that E[g(xi,90)] = 0 and 
E[g(xi,0)] ^ 0 for all 9^90eQ. 

Assumption A3. Assume that M = E (d9{Z'/o)) is of full rank k; da(^;e) is 

continuous in 9 and E 

0o, N(90). 

suP0eAT(0o) ee1' \\ < ° ° for S0me neighborhood of 

Theorem 1. Under Assumptions A1-A2, 

9p -^ #o as n —• oo 

v^(£p-0o)4iv(o,n), 
where Cl = (M'V^M)-1 and V = E (g(Xi, 90)g(Xi, 90)'). 

Proof. See Imbens 1S, Qin and Lawless 27, and Newey and Smith 22. 

Theorem 2. Let 9 = (a,/3)', where a € 0 i and j3 € 02 are p x 1 and 
(k — p) x 1 vectors, respectively. Then, under Assumptions A1-A3, 
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->• x\k) as n -> oo 

(i) test for overidentifying restrictions 

nDp{9p) 4 x\m-k) as n ->• oo 

(ii) test ofH0:6 = 60 

n [DP{00) - Dp(9p) 

(iii) test for a subset a with Ho : a = a0 

n \Dp(ao,0~p) - Dp(ap,Pp)] 4 x\p) as n ^ oo 

where DP{9Q) for p = —2, —1 and 0 is the criterion function defined in (12), 
(11) and (9), 9p = (ap,j3p) is the unrestricted nonparametric likelihood esti
mator that minimizes Dp(6) and /3P is the minimizer of Dp(a,j3) subject to 
a = ao-

Proof. See Imbens 15, Qin and Lawless 27, and Newey and Smith 22. 

The results in Theorems 1 and 2 show that we can conduct asymptotically 
valid inference such as testing for overidentifying restrictions and constructing 
confidence intervals by inverting the \ 2 acceptance region of the criterion test. 
The IOOT/% confidence set for the parameter of interest 8 is then given by the 
set of values of 9 satisfying 

Cn{x) = {9eQ: Dp{9) < qn}, 

where qn is the lQQrfh quantile of the distribution of Dp(9). Equivalently, 
Cr,(x) = {9 G © : x e A(9)}, where A{9) is the acceptance region of the test 
Dp{9). The endpoints of the confidence set are the infimum and the supremum 
over Cv{x), respectively. In particular, the two-sided, equal-tailed confidence 
interval with nominal coverage n is given by Cn(x) — [9L,9U], where the 
confidence limits are defined to satisfy 6L — inf{0 6 0 : Vr(Dp(9) < q^Ho) > 
n} and 9V = sup{9 G 6 : Pr(Dp(9) < qv\H0) > T)}-

For the weak instrument case, Stock and Wright 29 parameterized the 
moment condition as a function of the sample size and developed an alterna
tive limiting theory which yields a better approximation to the finite-sample 
distributions of the estimator and corresponding test statistics. In partic
ular, Stock and Wright 29 replace Assumption 2 with the assumption that 
E[g(xi,9)] — n_ 1 /2m(0) uniformly in 8 G 0 , where m(9) is continuous in 9 
and bounded on 0 with m(0o) = 0. Under this assumption, the GMM and 
nonparametric likelihood estimators are no longer consistent (9P—9Q — Op(l)) 
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although the x2 asymptotic approximation for the distributions of the test for 
overidentifying restrictions and a test of a subvector of weakly identifiable pa
rameters is still valid. 

4 Monte Carlo Study 

The poor small sample performance of the two-step GMM estimator in linear 
homoscedastic instrumental variables models with weakly identified parame
ters has been well documented in Nelson and Startz 21, Maddala and Jeong 
19, Bound, Jaeger and Baker 4 and Staiger and Stock 28 among others. In this 
section, we assess the robustness of the nonparametric likelihood estimators 
in the presence of weak instruments. 

The structure of the Monte Carlo experiment is similar to the one con
sidered by Angrist, Imbens and Krueger 3. It is designed to study the finite 
sample bias of the different estimators and the size properties of hypothe
sis tests and the test for overidentifying restrictions with a large number of 
irrelevant instruments. The data are generated from the model 

Vi = #0 + 6iXi + e», 
(13) 

Xi - 70 + L j = l 7jzij + ui> 

where z ~ N(0,I), (fy = chol{T,)^ fc ~ iid(0,I), S = f ^ j j ^fj , 

c/io/(£) denotes Cholesky decomposition of S, 6Q = 0, #i = 1, 70 = 0, 71 = 
0.15 and 7/ = 0 for I = 2, ...,m - 1. 

The optimal two-step GMM estimator in this setting is asymptotically 
equivalent to the two-stage least squares (2SLS) estimator with Wn = (Z'Z)'1 

e2steP = {x'pzxyl (x'pzy), 
where X = (l,x), Z = (l,z) and Pz = Z{Z'Z)~lZ. 

We also consider the limited information maximum likelihood (LIML) 
estimator which is given by 

OLIML = (X'(I - kMz)Xyl (X'(I - kMz)y), 

where Mz = I — Pz, k is the smallest characteristic root of (Y Y)(Y MzY)~l 

and Y = (y X). 
The confidence intervals for the OLS, 2SLS and LIML estimators are 

constructed by inverting the Wald test using the x2 critical values. The confi
dence intervals for the empirical likelihood (EL) and the Euclidean likelihood 
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(Euclid) estimators are obtained by inverting the \ 2 acceptance regions of 
the corresponding criterion-based tests discussed above. The results for the 
exponential tilting (KLIC) estimator are very similar to the results for the EL 
estimator and are not reported. The number of Monte Carlo replications is 
10,000. 

Table 1. Monte Carlo results for model (13) with T=500 and Gaussian 
errors. 

estimator 

m — k = 
OLS 
2SLS 
LIML 
EL 
Euclid 

m — k — 
OLS 
2SLS 
LIML 
EL 
Euclid 

m — k — 
OLS 
2SLS 
LIML 
EL 
Euclid 

0.10 

l , 7 i = -15 
0.6991 
-0.1826 
-0.2297 
-0.2362 
-0.2354 

5,7i = .15 
0.6987 
-0.1098 
-0.2260 
-0.2427 
-0.2402 

quantiles around ((?i — 0i) 
0.25 

72 = 0 
0.7154 
-0.0693 
-0.1028 
-0.1120 
-0.1124 

72 = -
0.7157 
-0.0148 
-0.0975 
-0.1175 
-0.1179 

10,7i = .15,72 = .. 
0.6985 
-0.0145 
-0.2291 
-0.2394 
-0.2408 

0.7149 
0.0663 
-0.1020 
-0.1154 
-0.1161 

0.50 

0.7336 
0.0348 
0.0165 
0.0005 
0.0011 

= 76 = 0 
0.7339 
0.0830 
0.0193 
-0.0011 
-0.0022 

= 7 n = 
0.7338 
0.1484 
0.0186 
-0.0002 
-0.0010 

0.75 

0.7528 
0.1224 
0.1184 
0.0940 
0.0939 

0.7526 
0.1640 
0.1190 
0.0959 
0.0951 

0 
0.7520 
0.2220 
0.1253 
0.1009 
0.1002 

0.90 

0.7695 
0.1919 
0.2045 
0.1655 
0.1656 

0.7692 
0.2297 
0.2037 
0.1732 
0.1720 

0.7690 
0.2822 
0.2104 
0.1769 
0.1770 

test for 
OIR 

-
0.1147 
0.1219 
0.1055 
0.1019 

-
0.1443 
0.1178 
0.1118 
0.1039 

-
0.1837 
0.1132 
0.1256 
0.1059 

coverage 
rate of CI 

0.0000 
0.8809 
0.8592 
0.8909 
0.8927 

0.0000 
0.8080 
0.8617 
0.8791 
0.8830 

0.0000 
0.6287 
0.8470 
0.8745 
0.8854 

First, we assess the effect of increasing the number of redundant moment 
restrictions on the magnitude of the bias of the estimators and the size prop
erties of the corresponding criterion tests. Tables 1 reports the 0.10, 0.25, 
0.50, 0.75 and 0.90 quantiles of the distribution of (#i — 9\) as well as the 
empirical size of the test for overidentifying restrictions (OIR) with nominal 
level 0.1 and the coverage properties of the 90% confidence intervals for 6\ in 
a model with Gaussian errors. 

Newey and Smith 22 showed that in model (13) with symmetric er
rors bias(dnML) = bias(8EL) = bias(8Eu) — —fi/n> where S = Claex/a^. 
Thus, the LIML, EL and Euclidean estimators are higher-order asymptotically 
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equivalent and their bias does not depend on the number of instruments. By 
contrast, bias(Q2SteP) = (m — 2)6jn which increases linearly with the number 
of instruments. 

To investigate the finite-sample sensitivity of the bias of the estimators 
with respect to the number of irrelevant instruments, we consider three cases 
of overidentification: m — 1 = 2 (1 overidentifying restriction), m — 1 = 6 (5 
overidentifying restrictions) and m — 1 = 11 (10 overidentifying restrictions). 
Tables 1 contains the results for a sample size of 500 which is commonly 
encountered in economic applications. 

As expected, the OLS estimator is severely upward biased. The 2SLS is 
slightly biased when m — k = 1, but its bias starts to approach the bias of 
the OLS estimator as m increases. Also, the size properties of the test based 
on the 2SLS deteriorate significantly as the number of instruments gets large. 
The magnitude of the bias of the LIML estimator is small and insensitive 
to the degree of overidentification of the model which is consistent with the 
theoretical results. 

The bias of the nonparametric likelihood methods is negligible and it is 
practically unchanged as the number of the overidentifying restrictions in
creases. The confidence intervals based on the nonparametric likelihood esti
mators slightly undercover with the coverage rate of the Euclidean likelihood 
being closest to the nominal level. Similar results were obtained for sample 
size T = 150 but these results are not reported due to space limitations. It is 
interesting to note that the dominance of the Euclidean over the EL estima
tor in terms of coverage rates is more pronounced for the smaller sample size. 
This requires further theoretical investigation of the higher-order properties 
of these tests using Edgeworth expansions. 

The higher-order asymptotic equivalence of the LIML, EL and Euclid
ean estimators derived by Newey and Smith 22 is valid only for models with 
symmetric errors. Newey and Smith 23 show that all members of the class of 
nonparametric likelihood estimators except EL have an additional bias term 
coming from the estimation of the variance-covariance matrix fi. To investi
gate the sensitivity of the results to fat tailed and asymmetric distributions, 
we also report results from weakly identified models with i-distributed errors 
with 4 degrees of freedom and x2 -distributed errors with 1 degree of freedom. 
In addition, we vary the correlation of the endogenous explanatory variable 
with the instruments. 

The simulation results in Table 2 show that the nonparametric likelihood 
estimators provide reliable inference in the presence of weak instruments re
gardless of the distribution of the errors. Similar to the results in Table 1, 
the Euclidean estimator dominates in terms of coverage rate with empiri-
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cal levels within 3 percentage points from the nominal level. Although the 
bias of the empirical and Euclidean likelihood estimators could be significant 
for asymmetric errors (for instance, the bottom left corner of Table 2), it is 
still considerably smaller than the 2SLS and LIML estimators. In summary, 
the nonparametric likelihood estimators appear to possess good finite-sample 
properties in overidentified models with weak instruments. 

Table 2. Monte Carlo results for model (13) with T = 500 and m - k = 1. 

estimator ^f\ = . 0 5 , ̂ 2 = -02 

median test cov.rate 

bias OIR of CI 

6~w(o,J) 
OLS .7909 - .0000 
2SLS .1300 .1352 .8182 
LIML .0458 .0995 .8552 
EL .0149 .0859 .8946 
Euclid .0140 .0852 .8946 
6 ~ *(4) 
OLS .7900 - .0000 
2SLS .1332 .1390 .8190 
LIML .0443 .1006 .8502 
EL .0105 .0930 .8842 
Euclid .0083 .0890 .8943 

&~Xa(l) 
OLS .7957 - .0000 
2SLS .2661 .1527 .7453 
LIML .2136 .1720 .7314 
EL .1126 .0893 .8545 
Euclid .1027 .0825 .8702 

7i = .05,72 = .05 
median test cov.rate 

bias OIR of CI 

.7844 - .0000 

.0877 .1266 .8405 

.0232 .1022 .8645 

.0085 .0967 .8893 

.0077 .0963 .8903 

.7841 - .0000 

.0799 .1261 .8479 

.0184 .1108 .8715 

.0018 .1010 .8836 

.0009 .0957 .8924 

.7922 - .0000 

.1595 .1444 .8043 

.1008 .1693 .7799 

.0318 .0955 .8644 

.0287 .0882 .8776 

7! = .05,72 = -1 
median test cov.rate 

bias OIR of CI 

.7621 - .0000 

.0285 .1075 .8854 

.0286 .1319 .8462 
-.0040 .0957 .8891 
-.0037 .0950 .8903 

.7602 - .0000 

.0333 .1124 .8870 

.0337 .1396 .8344 

.0031 .1064 .8825 

.0026 .1016 .8907 

.7795 - .0000 

.0618 .1168 .8559 

.0333 .1463 .8495 

.0032 .1019 .8757 

.0027 .0940 .8908 

The finite-sample properties of the constructed confidence intervals for 
the nonparametric likelihood methods can be further improved by bootstrap 
methods. For the efficient bootstrap suggested by Brown and Newey 5 and 
Hall and Presnell 12, the data can be resampled using the implied probability 
weights pi from the estimation problem rather than the empirical measure 
(pi = n~1 for all i) as in the conventional bootstrap. Also, the asymptotic 
validity of the conventional bootstrap requires explicit recentering of the mo
ment conditions (Hall and Horowitz n ) whereas for the efficient bootstrap the 
moment conditions, evaluated at the true parameter vector, are centered at 
zero by construction. 
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5 Empirical Illustration: Return to Education 

Estimating the return to education is of central interest to labour economists. 
It shows the predicted percentage increase in wage for an additional year of 
education. Since education is believed to be endogenous, Angrist and Krueger 
2 suggested the quarter of birth as an instrument for education. However, 
Bound, Jaeger and Baker 4 challenged the results obtained by Angrist and 
Krueger 2 arguing that the two-step GMM could be severely biased in the 
presence of a large number of weak instruments. 

Here we use the Angrist-Krueger data set which consists of a random 
sample from 1980 census of 329,500 men who were born between 1930 and 
1939. See Angrist and Krueger 2 for a detailed description of the data and 
model specification. Following Angrist and Krueger 2, 30 instruments are 
constructed by interacting quarter and year of birth. Then we draw random 
subsamples of 500 observations from the original sample without replacement. 
The results in Table 3 are obtained from 5,000 repetitions and report the 
median of the parameter estimates and their corresponding standard errors. 

Table 3. Estimation results for the return of education. 

parameter estimate 
standard error 

OLS 
0.0708 
0.0087 

2SLS 
0.0714 
0.0437 

EL 
0.0723 
0.0404 

Euclid 
0.0653 
0.0373 

The estimated return to schooling for all methods is in the range of 6.5% 
and 7.3%. This is a bit surprising since the weak instruments employed in 
the estimation are expected to produce a large upward bias in the OLS and 
2SLS estimates. This does not seem to be the case and all the estimates do 
not appear significantly different from one another. It is also interesting to 
note the smaller standard errors for the nonparametric likelihood estimators 
compared to the two-step GMM estimator. 

6 Concluding Remarks 

This paper shows the robustness of nonparametric likelihood estimators of mo
ment condition models to the presence of weak instruments and nonnormal 
errors. The computational procedure does not involve any explicit bias correc
tion or estimation of variance-covariance matrices. The confidence intervals 
are obtained directly from the criterion function by inverting its asymptotic 
acceptance region. 
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One interesting finding that emerges from the study is the existence of 
noticeable differences in the coverage properties within the class of generalized 
empirical likelihood estimators. Since the criterion-based test statistics are 
asymptotically equivalent, higher-order expansions are necessary to appraise 
the statistical significance of these results. 
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This paper proposes the use of likelihood ratio statistic in choosing between gamma 
and GE models or between Weibull and GE models. Probability of correct selec
tions are obtained using Monte Carlo simulations for various sample sizes and for 
various model parameters. Simulation results indicate that it is easier to distin
guish between GE and Weibull models than between GE and gamma models. Two 
real life data sets are analyzed. Interestingly, in both cases although in the liter
ature gamma or Weibull model was used but based on the maximum likelihood 
values we select GE as the 'best' fitted model among these three distributions. 

1 Introduction 

Recently a new two-parameter distribution named as Generalized Exponen
tial (GE) distribution or Exponentiated Exponential distribution has been 
introduced and studied quite extensively by two of the authors Gupta and 
Kundu 6,7,8,9,10 rpj^ Qg famiiy h ^ the following distribution function 

FGE(x;a,\) = (l-e-Xx)a; a,\>0, 

density function 

fGE(x;a,\)=a\{l-e-Xx)a-1e-Xx; a,X>0, (1) 

survival function 

SGB(x;a,\) = l-(l-e-Xx)a; a,X>0, 

and the hazard function 

. , . , aA(l - e-x*)"-1e-Xx . n 

hGE(x;a,\) = 1 _ ( 1 _ e _ A x ) a ^ a , A > 0 . 
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Here a and A are the shape and scale parameters respectively. It is observed 
in Gupta and Kundu 6 '7 that the two-parameter GE distribution can be used 
quite effectively in analyzing many lifetime data particularly in place of two-
parameter gamma or two-parameter Weibull distribution. The two-parameter 
GE distribution can have increasing, decreasing and constant failure rates de
pending on the shape parameter (Gupta and Kundu 6 ) . It is also observed 
by Gupta and Kundu 9 that the behavior of the two-parameter GE distri
bution is very much similar to a gamma distribution in many respects and 
in many cases the two-parameter GE model provides a better fit than the 
two-parameter gamma model or the two-parameter Weibull model in terms 
of maximum likelihood or minimum chi-square. Therefore, it is quite impor
tant to choose between a Weibull and GE models or between a gamma and 
GE models to analyze real life data sets. It is found to be very difficult to 
discriminate between these three models because all these three models are 
quite flexible and they overlap with each other in the sense that exponential 
distribution is a special case to all of them. Although, these three models 
may provide similar data fit for moderate sample sizes but it is still desirable 
to select the correct or more nearly correct model, since the inferences based 
on the model will often involve tail probabilities where the affect of the model 
assumption will be more critical. Therefore, even if large sample sizes are 
not available, it is still important to make best possible decision based on 
whatever data are available. 

In this paper we propose to use the logarithm of the ratio of the maximum 
likelihood functions in choosing two overlapping distributions. The idea was 
originally proposed by Cox 3 |4 in discriminating between two models and Bain 
and Englehardt 1 used it in choosing between gamma and Weibull models. 
It is observed that the probability of correct selection (PCS) depends only 
on the shape parameter of the distribution from which the data are coming. 
Since it is not possible to obtain the exact distributions of the likelihood ratio 
statistics, we obtain PCSs by using extensive Monte Carlo simulations for 
various sample sizes and for various model parameters. We use two real data 
sets to illustrate how the proposed methods can be used in practice. 

Rest of the paper is organized as follows. In section 2, we provide the 
selection method based on likelihood ratio statistic. The PCSs are presented 
in section 3. We analyze two real data sets in section 4 and finally we conclude 
the paper in section 5. 
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2 Likelihood Ratio Statistic 

Suppose X\,..., Xn are independent and identically distributed random vari
ables from any one of the three distributions. The density function of a GE 
random variable with the shape parameter a and the scale parameter A will 
be denoted by (1). For both gamma and Weibull distributions we denote the 
shape parameter by /? and the scale parameter by 9. The density function of a 
gamma random variable with the shape parameter (3 and the scale parameter 
9 will be denoted by JGA{X) as 

/GA(X) = j ^ ^ e - ' * ; x,/3,9> 0, (2) 

and similarly the density function of a Weibull random variable with the shape 
parameter parameter (3 and the scale parameter 9 will be denoted by 

fWE(x) = P0<ix<i-1e-W. 

Let us define 
n n 

LGE(a, A) = JJ fGE{xi), LGA(/3,9) = JJ fGA(xi) 
i= l i= l 

and 
n 

LWE(P,0) = Y[fwE(xi). 

Now first consider choosing between gamma and GE models. The natural 
logarithm of the likelihood ratio statistic T\ = ln(Li), where 

_ LGE(a,X) 
1 _ LGA0,9) 

and 

7\ = n \n(a\X) - p ln(X0) - ^ . ^ + ln(r(/?)) - X(X - 9) 
a 

(3) 

Here X = ^ Y^Ji=\ -̂ »> -^ = (I"Ii=i -^i)" • Moreover, & and A are maximum 
likelihood estimators (MLEs) of a and A if the data are assumed to come 
from a GE distribution and in this case (Gupta and Kundu 7) they have the 
following relation 

a — E l L i l n ( l - e - ^ ) 
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Similarly /? and 9 are MLEs of /3 and 9 if the data are assumed to come from 
a gamma distribution and in this case they satisfy the following equation 

'4-
The proposed procedure is as follows. Choose a GE model if Ti > 0, otherwise 
choose a gamma model. It is clear from (3) that if the data are coming from a 
GE population, the distribution of T\ is free of A and depends only on a and 
similarly if the data are coming from a gamma population, the distribution 
of T\ is independent of 6 and it depends only on /?. The above assertions 
can be proved very easily. First let us assume that the data are coming 
from GE(a, A). It implies that the distribution of XXi is independent of A. 
Moreover it follows from the Theorem 7.8.5 of Bain and Englehardt 2 that the 
distributions of j and j are independent of A. Since the distributions of a 
and $ are independent of A, therefore the result follows immediately from the 
expression of Ti. Similar argument can be given when the data are coming 
from a gamma distribution then the distribution of T\ is independent of 9 
and depends only on /?. It implies that in the first case PCS is free from A 
and depends only on a, whereas in the second case PCS is free from 9 and 
depends only on 0. 

Now we consider the likelihood ratio statistic for discriminating between 
GE and Weibull models. Similarly as before, the natural logarithm of the 
likelihood ratio T2 = ln(L2), where 

_ LGE{OIA) 
2~ LWE0,§) 

and 

To. = n ln(^\-^l-XX-pin(9X) + l (4) 

Here X and X are same as defined before and a and A are MLEs of a and A 
for GE distribution and similarly /? and 9 are MLEs of /? and 9 for Weibull 
distribution. In the case of Weibull distribution, 9 and J3 satisfy the following 
relation 

9=( n 

E n yf. 

We use the similar discrimination procedure as before, i.e. if T2 > 0, choose 
GE distribution, otherwise choose Weibull distribution. In this case also it 
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Table 1. Probability of correct selection between GE and gamma distributions and when 
the data are generated from a GE distribution 

n | a —> 
20 
40 
60 
80 
100 
200 

0.50 
0.6610 
0.6342 
0.6282 
0.6134 
0.6134 
0.6033 

0.75 
0.5798 
0.5870 
0.5847 
0.5822 
0.5813 
0.5760 

1.0 
0.4942 
0.5004 
0.5039 
0.5047 
0.5059 
0.4945 

2.0 
0.4633 
0.4812 
0.5100 
0.5194 
0.5321 
0.5699 

4.0 
0.5081 
0.5563 
0.5841 
0.6059 
0.6242 
0.6947 

8.0 
0.5503 
0.6155 
0.6472 
0.6740 
0.7045 
0.7860 

16.0 
0.6012 
0.6566 
0.7031 
0.7421 
0.7641 
0.8601 

can be shown as before that if the data come from a GE population then 
the distribution of Ti depends on a and independent of A and if the data 
come from a Weibull population, then the distribution of T<i depends only 
on /? and independent of 9. It indicates that in this case also the PCS is 
independent of the corresponding scale parameter. It is difficult to compute 
the exact distributions of Ti and T%, therefore, we use Monte Carlo simulations 
to compute the probability of correct selections in the next section. 

3 Probability of Correct Selections 

In this section we use Monte Carlo simulations to compute the PCSs for dif
ferent shape parameters and for different sample sizes. We consider different 
shape parameters namely 0.50, 0.75, 1.0, 2.0, 4.0, 8.0, 16.0 and also different 
sample sizes namely 20, 40, 60, 80, 100, 200. All the probabilities are calcu
lated based on 10,000 replications. The exact details are provided below: 

Case 1: Between GE and Gamma 

First we generate a sample of size n from a GE(a, 1). From the given sample 
we obtain MLEs of a and A (GE parameters), similarly we obtain MLEs of 
/? and 9 (gamma parameters). We compute T\ and observe whether it is 
negative or positive. We replicate the process 10,000 times and compute the 
percentage of times T\ is positive and that provides the probability of the 
correct selection. The same way we estimate the PCS between gamma and 
GE models when the data are coming from a Gamma(/3, 1). We generate 
the sample from a Gamma(/3, 1) and obtain the MLEs of a, A, /3 and 9. In 
this case we compute the percentage of times Ti is negative out of 10,000 
replications. Results are reported in Tables 1 and 2. 
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Table 2. Probability of correct selection between GE and gamma distributions when the 
data are generated from a gamma distribution 

n i p -> 
20 
40 
60 
80 
100 
200 

0.50 
0.3655 
0.4086 
0.4370 
0.4555 
0.4519 
0.5039 

0.75 
0.4246 
0.4317 
0.4398 
0.4498 
0.4597 
0.4855 

1.0 
0.4977 
0.5104 
0.4999 
0.4964 
0.4998 
0.4991 

2.0 
0.5829 
0.5948 
0.5942 
0.6051 
0.6081 
0.6319 

4.0 
0.6104 
0.6281 
0.6607 
0.6745 
0.6943 
0.7534 

8.0 
0.6347 
0.6900 
0.7197 
0.7544 
0.7775 
0.8598 

16.0 
0.6653 
0.7365 
0.7849 
0.8276 
0.8542 
0.9317 

Table 3. Probability of correct selection between GE and Weibull distributions when the 
data are Generated from a GE distribution. 

n 4- a —> 
20 
40 
60 
80 
100 
200 

0.50 
0.6610 
0.7258 
0.7663 
0.7856 
0.8128 
0.8849 

0.75 
0.5643 
0.5982 
0.6157 
0.6309 
0.6430 
0.7012 

1.0 
0.5025 
0.4976 
0.4849 
0.5042 
0.5097 
0.4933 

2.0 
0.5731 
0.6316 
0.6829 
0.7139 
0.7382 
0.8295 

4.0 
0.6675 
0.7520 
0.8154 
0.8582 
0.8825 
0.9614 

8.0 
0.7283 
0.8357 
0.8929 
0.9224 
0.9496 
0.9911 

16.0 
0.7699 
0.8811 
0.9301 
0.9582 
0.9752 
0.9981 

Case 2: Between GE and Weibull 

In this case first we compute the PCS between GE and Weibull distributions 
and when the data are coming from a GE distribution. We generate a sample 
of size n from a GE(a, 1) and compute MLEs of a, A (GE parameters) and 
/3, 6 (Weibull parameters). Replicate the process 10,000 times and observe 
the percentage of times T^ is positive. Exactly the same way, we compute the 
PCSs between GE and Weibull distributions and when the data are coming 
from a Weibull distribution. The results are reported in Tables 3 and 4 a. 

Some of the points are quite clear from the Tables 1,2,3 and 4. First of 
all in all four cases when a = 1.0, the PCS is close to .5 as it should be for all 
sample sizes. Because when a = 1.0, all three distributions become exponen
tial distribution therefore, between any two distributions the probability of 
choosing any particular one is 0.5. It is also observed that in all cases (except 
for a = 0.50 or 0.75 in Table 1) as sample size n increases the PCS increases 

"When /3 = 4, the Weibull distribution becomes almost symmetric. In this case it is too 
time consuming to compute MLEs of the GE parameters. In Table 4, for /3 = 4, the results 
are based on 1000 replications. 
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Table 4. Probability of correct selection between GE and Weibull distributions when the 
data are generated from a Weibull distribution. 

n I 0 -> 
20 
40 
60 
80 
100 
200 

0.50 
0.6655 
0.7159 
0.7768 
0.8233 
0.8653 
0.9492 

0.75 
0.5155 
0.5844 
0.6169 
0.6457 
0.6700 
0.7536 

1.0 
0.5037 
0.5045 
0.5046 
0.5069 
0.5047 
0.5085 

2.0 
0.7061 
0.7823 
0.8395 
0.8757 
0.9006 
0.9660 

4.0 
0.8142 
0.9185 
0.9573 
0.9768 
0.9874 
0.9992 

8.0 
0.8738 
0.9624 
0.9868 
0.9947 
0.9979 
1.0000 

16.0 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

for all values of a ^ 1. Moreover as |Q — 1| increases the PCS increases from 
0.5 in most of the cases. Surprisingly in Table 1, when the sample size 20 or 
40 and the a = 2.0, the PCSs are less than .5. It indicates that when the 
data come from GE and the shape parameter is greater than one but not very 
far from one then the likelihood ratio statistic can not distinguish properly 
whether the data are coming from a GE distribution or from a gamma dis
tribution if the sample size is not very large. Similar pattern is also observed 
in Table 2, when the shape parameter is 0.50 or 0.75. It indicates that for 
certain ranges of the shape parameter it is really very difficult to distinguish 
between gamma and GE distributions. In Table 1, when a = 0.50 or 0.75, 
the PCSs decrease as n increases. In Table 2, when a = 0.50 and 0.75, the 
PCS are less than 0.5. Both these findings are quite counter intuitive and we 
can not justify them. We feel it might be due to the estimation procedures. 
It is known that when the shape parameters is less than one then the para
meter estimations are quite difficult for both GE and gamma distributions. 
The likelihood functions are very flat and therefore the maximum likelihood 
estimators are quite unstable. The results might be the reflection of that. 
One of the referees has mentioned that it might be due to discretization of 
the cumulative distribution function. 

Now comparing the results of Tables 1 and 2, it clear that the PCSs of 
Table 2 are more than the corresponding PCSs of Table 1 when the shape 
parameter is more than one. It clearly indicates that for the shape parameter 
greater than one, the likelihood ratio statistic can distinguish better between 
gamma and GE distributions if the data are coming from a gamma distribu
tion than vice verse. It can be justified as follows. As the shape parameter 
increases the gamma density becomes symmetric but the GE density remains 
skewed as the shape parameter goes to infinity. Therefore, if the data are 
coming from a gamma distribution and the shape parameter is large then 
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naturally PCS becomes higher. 
Comparing the results between Tables 3 and 4, it is also observed that 

PCSs of Table 4 are more than the corresponding PCSs of Table 3. Therefore, 
between GE and Weibull distributions also the likelihood ratio statistic can 
distinguish better if the data are coming from a Weibull distribution than the 
other way. The same reason as above holds here also. Finally comparing the 
results between Tables 1, 2 and Tables 3, 4, it is clear that using the likelihood 
ratio statistic it is much easier to distinguish between Weibull and GE models 
than between gamma and GE models. It might be due to the fact that the 
Weibull density goes to symmetry much faster than the gamma density as the 
shape parameter increases. We believe that it should be true for any other 
statistics also and more work is needed in this direction. 

4 D a t a Analysis 

In this section we apply the above procedure in two data sets. Both these 
data sets have been used by several authors in the literature. 
D a t a Set 1: Lieblein and Zelen n provided the following sample of size n = 
23 to illustrate the use of Weibull model. These data indicate the endurance in 
millions of revolutions of deep-groove ball bearings. Thoman, Bain and Antle 
12 mentioned that Weibull distribution should be used where as Bain and 
Englehardt * proposed to use gamma distribution. The data are as follows: 
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 
68.64, 68.64, 68.88^84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

For this data X = 72.12 and X = 63.46. The MLEs of the GE parameters 
are a = 5.2825, A = 0.0323, gamma parameters are ft = 4.0309, 9 = 0.0558 
and Weibull parameters are /3 = 2.1033, § - 0.0122. Also ln{LGE(a,X) = 
-112.9762, ln{LGA(/3,§) = -113.0272 and ln(LWE0J) = -113.6886. There
fore, Tx = 113.0272-112.9762 = .0510 and T2 = 113.6886-112.9762 = 0.7124. 
Since both T\ and T? are positive, therefore GE is preferable than gamma or 
Weibull distributions based on the likelihood ratio statistic. Moreover, from 
the tables it can be said that the PCS between gamma and GE is between 
51% to 55% and the PCS between Weibull and GE is between 67%-73%. 
D a t a Set 2: The following data represents the relief times of 20 patients 
receiving an analgesic. The data is obtained from Gross and Clark 5 (page; 
105), where they fitted gamma distribution. The data are as follows: 
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 
1.6, 2.0. 

For this data set X = 1.90 and X = 1.80. The MLEs of the GE parame
ters are as follows: a = 36.6437, A = 2.2348 and ln(LGE(a,X)) = -16.2605. 
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The MLEs of the gamma parameters are (1 = 9.6630 and § = 5.0864 and 
\n(LGA0,6)) - -17.8186. Similarly we obtain the MLEs of the Weibull para
meters as 0 = 2.7875 and 6 = 0.4695 and \n{LWE{P,6)) = -20.5864. There
fore, Ti = -16.2605 + 17.8186= 1.5581 and T2 = -16.2605 + 20.5864 = 4.3259. 
Since T\ and T-i both are positive therefore in both cases we prefer GE models. 
The PCS between gamma and GE is more than 60% and the PCS between 
Weibull and GE is more than 77%. 

5 Conclusions 

In this paper we consider the likelihood ratio statistics to choose between GE 
and gamma model or between GE and Weibull models. It is very easy to 
use in practice. We could not obtain the exact distributions of the likelihood 
ratio statistics so we use Monte Carlo simulations to compute the probabil
ity of correct selections. The likelihood ratio statistics depend only on the 
shape parameters. It is observed that as the shape parameter deviates from 
one it becomes easier usually to distinguish between two distributions. It is 
also observed that it is much easier to distinguish between GE and Weibull 
distributions than between GE and gamma distributions. Two data sets are 
analyzed. Interestingly, in both cases although in the literature gamma or 
Weibull model was used but we select GE as the 'best' fitted model based on 
the maximum likelihood values. Another interesting question is to determine 
the minimum sample size n to discriminate between two distribution func
tions (either GE and gamma or GE and Weibull) for a given PCS. Work is in 
progress in that direction and it will be published elsewhere. 
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According to the 1998 National Household Survey On Drug Abuse, almost 10 per
cent of youths in the United States between ages 12-17 used illicit drugs SAMSHA 
(Substance Abuse and Mental Health Services Administration n ) . In addition, 
18 percent of 12-17 year olds were current cigarette users, over eight percent were 
current users of marijuana, and almost one percent of youths were reported to be 
current users of cocaine. These percentages demonstrate a need for continuous 
substance use prevention programs. Although such programs have existed in U. 
S. school systems for some time, their extent and prevalence have been unclear 
(Ringwalt et al. 1 0 ; Kann et al. 7 ) . The School-Based Substance Use Prevention 
Programs Study (SSUPPS) is designed to study substance use prevention activities 
currently available in middle schools. In addition to a school sample component, 
SSUPPS includes a public school district component for those districts associated 
with the public school sample. This paper presents survey design methodology 
for obtaining statistically valid national estimates of substance use prevention pro
grams among the conventional public and private middle schools in the United 
States. Also, presented is information on sample selection and sample weighting 
procedures. 

1 Introduction 

Most researchers tend to agree that the best way to prevent substance use 
among adolescents is to reduce demand (Dusenbury and Falco 3; Eigen and 
Rowden 4) . Substance abuse prevention programs for many adolescents 
are sponsored and maintained by schools with Federal assistance from the 
United States Safe and Drug-Free Schools and Communities Act (SDFSCA). 
These programs vary widely, and include both classroom curricula and non-
classroom activities. The School-Based Substance Use Prevention Programs 
Study (SSUPPS) is designed (1) to determine if these prevention programs dif
fer across schools with middle school grades by school type, enrollment size, 
urbanicity, and students socio-economic status, and (2) to determine if the 
established programs reflect evidence of effectiveness provided by prevention 
research. This paper presents the sample design established to provide de
scriptive information about the prevalence and characteristics of school-based 
programs. Probability sampling of middle schools in the U.S. is the basis for 
our stratified systematic sampling design (see Cochran x) of both public and 
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private schools. For the list of acronyms used, please see the appendix. 

2 Defining the Target Population 

SSUPPS is a survey of conventional schools with middle school grades and 
public school districts for the 1998/1999 academic year. Middle schools are 
defined as conventional schools with one of the following grade combinations: 
(1) only fifth and sixth grades, (2) only a sixth grade, or (3) a seventh or 
an eighth grade. Specifically, this study provides information on substance 
use prevention programs available for students approximately 10-13 years of 
age. Excluded from the target population are non-conventional schools or 
educational units (such as special education schools, alternative education 
schools, public middle schools with fewer than 20 students enrolled, State 
Department of Education units, charter schools, Bureau of Native-American 
Affairs units, adult education schools, Department of Defense units, vocational 
technical schools, and middle schools with no eligible student enrollment for 
the 1998/1999 academic year). A public school district is an educational unit 
of authority that operates one or more public schools. 

3 Sampling Frame Considerations 

A sampling frame is defined as the list or mechanism used to identify pop
ulation elements for the selection of a sample. There are three conventional 
sources of sampling frames for school data. The Common Core of Data or 
CCD (U.S. Department of Education 15) is the primary public school data 
source of the National Center for Education Statistics (NCES). Two other 
sources are owned by Market Data Retrieval or MDR (Dun & Bradstreet Cor
poration 2) and QED (Quality Education Data, Inc.9). The MDR includes 
all educational levels from preschool through college in the United States and 
Canada. Both the CCD and the MDR have proven to be reliable sources of 
information on public school data (Hamann 5 ) . A single data source was pre
ferred to reduce school multiplicity and therefore eliminate the need to merge 
multiple files to capture the entire target population. The QED includes infor
mation on urbanicity and poverty that can be beneficial for stratification. In 
addition, QED provides educational data useful for all types of schools: pub
lic, Catholic, and non-Catholic schools from pre-kindergarten through 12th 
grade. Therefore, due to the need to survey both public and private schools, 
as well as the need for stratification, the QED database was chosen as the 
sampling frame. It should be noted that since the sampling frame for this 
study was constructed, there have been important developments in school 
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lists. NCES now maintains, in addition to the CCD, a database of non-public 
schools by means of the Private School Universe Survey (PSS). Both CCD 
and PSS are accessible on the NCES website (http://nces.ed.gov). Therefore, 
if this research was conducted in the future, we would recommend a combi
nation of CCD and PSS. Once finalized, the sampling frame contained a total 
of 37,841 eligible conventional middle schools (because the classifications of 
ineligibles are not mutually exclusive, the ineligible counts are not additive). 
This frame comprised 22,891 public middle schools, 6,031 Catholic schools, 
and 8,919 non-Catholic private middle schools (Table 1). 

3.1 Explicit and Implicit Stratification 

The sampling frame was stratified explicitly and implicitly to control the 
distribution of the sample and to reduce sampling variation among survey 
statistics (see Kish 8 , pp. 75-112). Explicit stratification was used to provide 
domain estimation for public schools at different levels of urbanicity, school 
size, and poverty index. Urbanicity was defined at three levels provided by 
QED: urban (area within the central city), suburban (area surrounding the 
central city), and rural (area outside any metropolitan area). Three levels 
of size were defined based on the estimated total number of eligible students 
enrolled in middle school grades: small (fewer than 200 eligible students), 
medium (200-600 eligible students), and large (more than 600 eligible stu
dents) . The poverty index for public schools was determined from the Orshan-
sky percentage, which is the percent of students who fall below the federal 
governments poverty guidelines. The Orshansky percentage is defined at the 
district level and is a relative indicator of community wealth/poverty when 
compared to other school districts. Three poverty index levels were formed: 
low (schools with an Orshansky percentage 10% or less), medium (11-40 %), 
and high (greater than 40 %). The various combinations of strata for public 
schools formed a total of 27 levels of explicit stratification (Table 1). Due 
to the small population of non-public schools and because of secondary in
terest, non-public schools were only stratified by Catholic and non-Catholic 
to assure that the non-public school population received some representation. 
Additionally, state identification was used to implicitly stratify the public and 
non-public school sampling frames. 

4 Sample Selection 

A school sample component was designed to survey a probability sample of 
teachers responsible for teaching substance use prevention programs at the 

http://nces.ed.gov
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school. In addition, a separate survey was conducted of Safe and Drug-Free 
School District Coordinators. The district survey was conducted only among 
those districts that oversaw schools in the sample. The sample design con
sisted of selecting a stratified systematic sample of middle schools within each 
explicit design stratum as described by Cochran J(pp. 226). A sample of 
schools or teachers and district coordinators was selected to participate in a 
mail survey on substance use prevention programs at the school or district. 
The sample design is illustrated in Figure 1. 

4-1 The Middle School Sample 

The initial middle school sample of 3,430 schools accommodated two data 
collection waves. Wave 1 consisted of a random subsample of 2,852 school 
selections for possible participation in the study. The remaining schools com
prising Wave 2 were not surveyed due to time constraints relative to data 
collection. Although strict proportional allocation was not used, adequate 
representation in each stratum made it possible for the public school sample 
to cover a broad range of different types of middle schools. The non-public 
school sample of 472 schools was proportionally allocated to Catholic and 
other private schools for a sample of 189 Catholics and 283 non-Catholics. 

4-2 Under-Coverage or Under-Representation 

When the frame was constructed, QED was one of the most reliable data 
sources for public and non-public schools. Public schools are updated four 
times per year, and both public and non-public schools are re-verified every 
two years. However, the list of non-Catholic private schools is not as complete 
as that of public schools. This is primarily because of the difficulty in securing 
information on non-Catholic private schools, since many tend to be small 
and difficult to track from year to year. Because of this limitation, non-
Catholic private schools are under-represented beyond the under-sampling of 
non-public schools mentioned above. 

4-3 Inclusion of Public School Districts 

This study primarily surveyed teachers who had knowledge of substance use 
prevention programs within schools with middle school grades. Due to sec
ondary interest in district level inference, the survey design was expanded to 
accommodate a comprehensive survey of public school districts. Each district 
was included in the sample based on the number of schools associated with 
the district and selected from the stratum. 
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5 Sample Weighting and Results 

Sample weights for schools were computed as the inverse of the school sample 
selection probabilities. The district weights were determined as a function 
of a multiplicity adjustment estimator (Sirken 1 4) . Some sample schools and 
district coordinators refused to participate in the study. This type of nonre-
sponse is referred to as unit nonresponse because information is missing for 
the entire sampling unit. The initial sampling weights of the responding units 
were adjusted to compensate for the missing data arising from the nonrespon-
dents. A common weighting procedure referred to as sample-based adjustment 
cell weighting is described by Jones and Chromy 6. With the school sample, 
adjustment cell weighting was employed to partition the school respondents 
into adjustment cells or weighting classes. Within each class or stratum, 
responding teachers were weighted up in an attempt to compensate for the 
nonresponding teachers within each stratum. These respondents weights were 
adjusted by the sum of the stratum weights for the respondents plus the non-
respondents divided by the sum of the respondents weights. The nonresponse 
adjusted weights are recommended for use in all weighted statistical analyses 
with software packages such as, SUDAAN (Shah, Barnwell, and Bieler 13) and 
SAS (SAS Institute Inc. 1 2 ) . 

5.1 School Weights 

For our design, each school within each explicit stratum was selected with the 
same probability. Let Nh, denote the number of schools on the frame within 
stratum h, and nh denote the number of schools selected within stratum 
h (h = 1,2, ...,29) based on frame information, which occasionally is not 
accurate. 

It follows that the school sample selection probability {ITM) a n d the initial 
sampling weight (whi) for school i within stratum h are respectively given by: 
<nhi = nh/Nh and wu = iV/j/n/j.Due to non-response, not all schools selected 
for study agreed to participate. The initial sampling weights of responding 
teachers were modified as follows. 

Let ne
h denote the actual number of eligible schools determined during 

data collection and nT
h denote the number of responding schools within stra

tum h. The weighting class adjustment (A/i) is defined as: A/j = ne
h/n

r
h. Hence, 

the teacher non-response adjusted sampling weight (tu£,-) for school i in stra
tum h is: w^ = whi * Aft. 
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37,841 

Middle 
Schools on 
Sampling 

Frame 

—> 

22,891 Public 
Schools 

6,031 Catholic 
Schools 

8,991 Other 
Private Schools 

3,430 Middle 
Schools 
Selected 

(Waves 1 & 2)1 

—> 

—> 

2,858 Public 
Schools 
Selected 

(Waves 1 & 2) 

i 

2,380 Publics 
(Wave 1) 

229 Catholic 
Schools 
Selected 

(Waves 1 & 2) 

i 

189 Catholics 
(Wave 1) 

343 Other 
Private Schools 

Selected 
(Waves 1 & 2) 

I 

283 Privates 
(Wave 1) 

i 

2,380 Public 
Middle 
Schools 
Selected 

Metro 
Type 
Urban 

Subarb-
an 

Rural 

Total 

1 
Orshansky 

Score2 

Low 
Medium 

High 
Total 
Low 

Medium 
High 
Total 
Low 

Medium 
High 
Total 
Low 

Medium 
High 
Total 

Total 
82 
352 
222 
655 
332 
442 
167 
941 
139 
468 
177 
784 
553 

1,261 
566 

2,380 

Eligible 
Small 

10 
39 
20 
69 
42 
70 
35 
147 
68 
322 
130 
520 
120 
431 
185 
736 

Grade Size3 

Medium 
33 
134 
83 
250 
152 
202 
75 

429 
57 
125 
41 
223 
242 
461 
199 
902 

Large 
39 
178 
119 
336 
138 
170 
57 

365 
14 
21 
6 

41 
191 
369 
182 
742 

1 The initial sample included a subsample of 2,852 schools in Wave 1 and 578 schools in 
Wave 2. Wave 1 was surveyed, but due to time constraints, wave 2 was not. 
2 The Orshansky scores are categorized as: Low - less than or equal to 10%, Medium - 11 
to 40%, and High - 41% and higher. 
3 Eligible grade sizes are estimates of the total number of students enrolled at the school 

for all Middle School specific grades (5-8). The size distinctions are: Small - fewer than 200 

students, Medium - 200 to fewer than 600 students, and Large - 600 and more students. 

Figure 1. The S S U P P S Sample 
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5.2 District Weights 

Since schools were sampled within strata based on school level characteristics, it was 
possible that a district contained multiple schools across different strata. Thus, it 
was sometimes impossible to match each district with a unique stratification level. 
Therefore, district weights were created by expanding or replicating the district-
level file so that the number of observations equaled the number of sampled eligible 
schools. These weights were post-stratified to the sampling frame totals by three 
Orshansky levels (less than 10%, 11% to 40%, and greater than 41%). Finally, the 
weights for responding districts were adjusted for district level nonresponse. Given 
the definitions in Section 5.1, let Mj be the number of eligible schools on the frame 
within district j , and rtihj denote the number of times district j was included within 
stratum h, then the basic sampling weight (w(p)j) for district j is: 

Denoting the number of sample districts in Orshansky level o, (o = 1,2,3) by n0 

and the number of eligible schools selected in district j by rij, equation (1) provides 
the sampling weight (tU(„)j-) for weighted estimation as: w^j = w^j/rij. The 
post-stratified weight (w?*>.) for district j is: w?V = W(„)j(n0/ VJ0 W(„)j), where 
S o w(")j = s u m °f initial district weights for point and variance estimation by 
Orshansky levels (o = 1,2,3). The non-response adjusted weight (u>(v)j) for district 
j is : 

y; w
e,vs 

y w7 »?-M = <W I ^ T ^ 1 • P) 

where TJo w^f. = sum of post-stratified weights for eligible districts, and y j 0 w^f = 
sum of post-stratified weights for responding districts. 

5.3 Sampling Results 

Table 1 shows various unweighted eligibility and response rates from school sam
ple. Rates are provided for 27 different levels of explicit public school strata plus 2 
levelest for non-public schools, including three domain variables of interest (urban-
icity, Orshansky percent, and schools size). Individual Orshansky-level eligibility 
and response rates are also given in Tables 3 and 4. Eligibility rates for both the 
public and Catholic schools (95.5 and 92.1) proved significantly higher than rates 
from non-Catholic private schools (71.0). Response rates range from a low of 46.7 
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Table 1. Frame Count with Number Selected, Eligibles, and Respondents by Strata for 
SSUPPS 

Design S t r a tum (urbanicity, 
Orshansky , size ) 

Public Schools 

1 - urban, low, small 
2 - urban, low, medium 
3 - urban, low, large 
4 - urban, medium, small 
5 - urban, medium, medium 
6 - urban, medium, large 
7 - urban, high, small 
8 - urban, high, medium 
9 - urban, high, large 
10 - suburban, low, small 
11 - suburban, low, medium 
12 - suburban, low, large 
13 - suburban, medium, small 
14 - suburban, medium, medium 
15 - suburban, medium, large 
16 - suburban, high, small 
17 - suburban, high, medium 
18 - suburban, high, large 
19 - rural , low, small 
20 - rural , low, medium 
21 - rural , low, large 
22 - rural , medium, small 
23 - rural , medium, medium 
24 - rural , medium, large 
25 - rural , high, small 
26 - rural , high, medium 
27 - rural , high, large 

Urban 
Suburban 
Rural 

Orshansky (low) 
Orshansky (medium) 
Orshansky (high) 

Size (small) 
Size (medium) 
Size (large) 

Public School 

30 - Catholic 
40 - Other Private 

Non-Public School 

All Schools 

Frame 
Count 

of 

Schools 

5 7 
2 3 6 
2 8 0 
2 6 2 

1,007 
1,333 

140 
6 1 5 
8 8 6 
3 7 4 

1,381 
1,219 

7 7 6 
2,242 
1,883 

3 8 3 
8 3 0 
6 3 2 
5 9 2 
5 0 5 
120 

3,579 
1,385 
2 3 3 

1,440 
4 4 8 
5 3 

4,816 
9,720 
8,355 

4,764 
12,700 
5,427 

7,603 
8,649 
6,639 

22,981 

6,031 
8,919 

14,950 

37,841 

Number 
of 

Selected 
Schools 

10 
33 
39 
39 

134 
1 7 8 
2 0 
8 3 
119 
4 2 

152 
1 3 8 
70 

2 0 2 
170 
3 5 
7 5 
57 
6 8 
5 7 
14 

3 2 2 
1 2 5 
21 

130 
4 1 
6 

6 5 5 
9 4 1 
7 8 4 

5 5 3 
1261 
5 6 6 

7 3 6 
9 0 2 
7 4 2 

2,380 

189 
2 8 3 

4 7 2 

2,852 

Eligible 

Number 

8 
3 3 
3 8 
3 3 

127 
172 
15 
78 

114 
37 

1 4 8 
1 3 5 
60 
192 
1 6 5 
32 
70 
56 
6 5 
56 
14 

3 1 4 
1 2 3 
20 

124 
39 
5 

6 1 8 
8 9 5 
7 6 0 

5 3 4 
1206 
5 3 3 

6 8 8 
8 6 6 
7 1 9 

2,273 

174 
2 0 1 

3 7 5 

2,648 

Schools 

Percent 

80.0 
100.0 
97.4 
84.6 
94.8 
96.6 
75.0 
94.0 
95.8 
88.1 
97.4 
97.8 
85.7 
95.0 
97.1 
91.4 
93.3 
98.2 
95.6 
98.2 
100.0 
97.5 
98.4 
95.2 
95.4 
95.1 
83.3 

94.4 
95.1 
96.9 

96.6 
95.6 
94.2 

93.5 
96.0 
96.9 

95.5 

92.1 
71.0 

79.4 

92.8 

Respond 
Schoo 

i n g 
s 

Number Percent 

6 
17 
3 2 
17 
89 

1 3 3 
7 

6 0 
8 2 
2 7 

102 
99 
4 6 
1 4 8 
121 
22 
5 1 
3 9 
4 9 
4 1 
11 

2 3 2 
96 
14 
8 3 
29 
3 

4 4 3 
6 5 5 
5 5 8 

3 8 4 
8 9 6 
3 7 6 

4 8 9 
6 3 3 
5 3 4 

1,656 

1 2 9 
1 2 0 

2 4 9 

1,905 

75.0 
51.5 
84.2 
51.5 
70.1 
77.3 
46.7 
76.9 
71.9 
73.0 
68.9 
73.3 
76.7 
77.1 
73.3 
68.8 
72.9 
69.6 
75.4 
73.2 
78.6 
73.9 
78.0 
70.0 
66.9 
74.4 
60.0 

71.7 
73.2 
73.4 

71.9 
74.3 
70.5 

71.1 
73.1 
74.3 

72.9 

74.1 
59.7 

66.4 

71.9 

The Orshansky scores are categorized as: Low - less than or equal to 10%, Medium - 11 to 40%, and High -
4 1 % and higher. 

Eligible grade sizes are est imates of the to ta l number o s tudents enrolled at school for all middle school specific 
grades (5-8). The size dist inctions are: Small - fewer than 200 s tudents , Medium - 200 to fewer than 600 s tudents , 
and Large - 600 and more s tudents . 
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Table 2. Public School District Level Eligibility and Response Rates 

Design Stratum 
(Orshansky) 

Low 
Medium 
High 
Total 

Number of 
Districts 
Included 

526 
1,069 
423 

2,018 

Eligible 
Districts 

Number 

518 
1,051 
415 

1,984 

Percent 

98.5 
98.3 
98.1 
98.3 

Responding 

Districts 
Number 

403 
856 
334 

1,593 

Percent 

77.8 
81.4 
80.5 
80.3 

Table 3. School Eligibility Percentage by School Type 

School Type 
Percentage 

Public Catholic Other Private Total 
95.5 92.1 71.0 92.8 

Table 4. School Responding Percentage by School Type 

School Type 
Percentage 

Public Catholic Other Private Total 

72.9 74.1 60.2 72.0 

percent (in the urban/high Orshansky/small stratum) to a high of 84.2 percent (in 
the urban/low Orshansky/large stratum) (see Table 1). Table 4 shows that response 
rates for public and Catholic schools (72.9 and 74.1%) are highly significant when 
compared to response rates from other private schools (60.2%). The combined re
sponse rate for all schools was 72.0 percent. The resulting overall unequal weighting 
effect (UWE) for nT responding schools was 1.45, where 

UWE~n (z^^r 
Table 2 provides public school district-level eligibility and response rates for the 
three Orshansky levels. This table shows fairly equal eligibility rates across all 
levels with a slightly lower response rate (77.8%) for the lowest Orshansky level. 
The overall eligibility rate was 98.3% and the overall response rate was 80.3%. The 
overall non-response adjusted unequal weighting effect for school districts was 1.60. 

5-4 Data Collection Experience 

Table 5 shows some weighted questionnaire findings from the teacher data collection 
activities. Approximately 64 percent of all public schools have a coordinator or a 
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Table 5. School Weighted Percentage of Teachers Responsible for Substance Use Prevention 
Education 

School Type 
Percentage 

Public Catholic Other Private Total 
64.1 42.2 40.0 56.3 

Table 6. Weighted Percentage of Districts Responding Middle Schools with a Substance 
Use Prevention Education Coordinator 

All Schools 
67.4 

Some Schools 
9.2 

No Schools 
23.5 

specific teacher who is primarily responsible for substance use prevention education 
at the school. This prevalence rate is significantly higher than that for Catholic and 
non-Catholic private schools (42.2 and 40.0 percent). Table 6 shows the weighted 
questionnaire findings for public school districts. Comparable to school findings, 
approximately 67 percent of public school districts indicated that a coordinator or a 
specific teacher was present in all schools within the district with the responsibility 
for substance use prevention activities in the school. 

6 Conclusions 

One of the most important sample design issues for this study relates to the identifi
cation of the sampling frame. When the SSUPPS study was designed, the data 
sources known were CCD, MDR, and QED. According to Hamann 5, all three 
sources are adequate for public schools, but QED is the only source containing 
both public and private schools. This feature led to our use of QED. However, 
since this survey was implemented, NCES has made available on the NCES website 
(http://nces.ed.gov) a detailed data source for private schools known as the Private 
School Universe Survey (PSS). If the surveys were implemented today, we would 
recommend a combination of CCD and PSS for the sampling frame. 

Appendix: List of Acronyms Used 

1. SAMHSA - Substance Abuse and Mental Health Services Administration 

2. SSUPPS - School-Based Substance Use Prevention Programs Study 

3. SDFSCA - Safe and Drug-Free Schools and Communities Act 

http://nces.ed.gov
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4. CCD - Common Core of Data 

5. NCES - National Center for Education Statistics 

6. MDR - Market Data Retrieval 

7. QED - Quality Education Data 

8. PSS - Private School Universe Survey 
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The proportional hazards regression model usually assumes that the covariate has a 
log-linear effect on the hazard function. In this paper, we consider a semiparamet
ric survival model with flexible covariate effects. We assume the baseline hazard 
function can be parameterized, while the risk function associated with covariates 
is modeled in a semiparametric way. A "one-step algorithm" is used to estimate 
the nonparametric components and the parametric components by maximizing 
the local and the global likelihood, respectively. Using the local linear method, 
the estimates of the unknown parameters and the unknown covariate function are 
determined, and their asymptotic distributions are obtained. 

1 Introduction 

The Cox regression model (see Cox 7) is an important model in survival 
analysis, in which the conditional hazard of failure at time t given the covariate 
value z is modeled as 

h(z\t) = h0(t)ex.p(zT/3). 

Here, the baseline hazard ho(t) is nonparametric, while the dependency on the 
covariate z is parametric. The partial likelihood principle provides efficient 
estimates of (3 in the semiparametric model (see Andersen and Gill 1 ) . The 
Cox proportional hazards model has had profound impact on clinical trials for 
quantifying the effects of covariates on the survival time and for controlling 
confounding by means of a mathematical model which takes the outcome un
der consideration as the dependent variable, and includes both the postulated 
causal factor and confounding factors in the equation (see Fleming and Lin 
13 and Elwood 1 0 ) . 

Despite the advantages of the Cox model, many authors have consid
ered nonparametric and semiparametric modeling of covariate effects on the 
censored failure time. For example, Beran 3, Dabrowska 8 , McKeague and 
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Utikal 23 and Nielsen and Linton 25 study the fully nonparametric hazard 
model where h(z, t) is unspecified. Fan, et al. n treat the multiplicative non-
parametric model where h(z,t) = h0(t)X(z) in which neither h0(-) nor A(-) 
is parametrically specified. Sasieni 29 '30 examines a partially linear covariate 
effect in a model where h(z,t) = ho(t) exp{zf(3 + Xfa)}- Dabrowska 9 dis
cusses a generalized Cox regression model with baseline intensity dependent 
on a covariate in which h(z,t) = h0(t, zi)exp{zj/?}. Hastie and Tibshirani 
15,16 consider a fully nonparametric additive Cox model. Huang 17 studies 
a partly linear additive Cox model. Grambsch, Therneau and Fleming 14 

and Fleming and Harrington 12 (Section 4.5, pages 163-168) propose to use 
smoothed martingale residuals to explore the functional form of the covariate 
effect in the Cox model. A survey of other regression models for censored 
survival data can be found in Andersen et al. 2. 

In this paper, we study the following semiparametric survival model : 

h(t\z, x) = h0(t; a) exp{zT/3 + \{x)}, (1) 

where ho is a baseline hazard function with an unknown parameter vector a. 
(zT,x)T e R p x R is a covariate vector. The variable x is continuous with 
values in a compact set X £ R, and z is discrete or continuous with values in 
Rp . 0 = (/3T, aT)T is an unknown q + p parameter vector, A() is an unknown 
smooth univariate function. In this model, the baseline hazard is modeled 
parametrically; the covariate effects are modeled semiparametrically. In many 
applications the shape of the baseline hazard is well understood: for example, 
the Gompertz-Makeham hazard is used extensively in insurance problems 
(Jordan 19, page 21). A linear approximation to the logarithm of the baseline 
hazard is successful in a number of chronic diseases problems (Meshalkin and 
Kagan 2 4 ) . Also, the Weibull baseline is widely used in both biostatistical 
and reliability applications, e.g. Lawless 21. The covariate effect, however, 
is rarely specified by a completely parameterized model. For instance, in a 
clinical trial study, when Z is a treatment covariate and X is a covariate 
describing characteristic of the patients, B can be interpreted as a measure of 
the treatment effect after adjusting for the effect of X. The effect of X can 
be modeled in a nonparametric way. Fleming and Lin 13 provide an overall 
review for the developments of survival analysis in clinical trials. Hence, this 
model allows flexible modeling of the covariate effect in many applications 
including clinical trials. We assume that the covariates are time-independent 
due to the fact that this type of data arises often in practice and the technical 
details involved in time-dependent covariate models are hard to tackle. 

Nielsen et al. 26 study model (1) without the linear part zTf3 and they 
assume the covariate x is time-dependent. As they mention in their paper, 
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the partial likelihood principle fails to estimate the parametric part in model 
(1). A generally applicable approach for this type of semiparametric model is 
that of profile likelihood, which is discussed extensively in Severini and Wong 
31 and Bickel et al. 4 . 

When X(x) has a parametric form, for example, \(x) = xTj, it is well 
known that one can use maximum likelihood methods to analyze the model. 
Kalbfleisch and Prentice 20 and Lawless 21 give a detailed introduction to the 
use of maximum likelihood methods in the analysis of parametric regression 
models in the context of survival analysis. Most statistical software, for exam
ple, SAS and SPLUS, can analyze the Cox model, but they lack the ability to 
estimate the parameters in the baseline hazard function when the covariates 
are modeled in a nonparametric or semiparametric manner. That is, when 
the regression function A(a;) is not parameterized as a linear form or is an 
unknown regression function. This paper discusses how to estimate both the 
parametric and nonparametric parts in model (1). 

The paper is organized as follows. Section 2 of the paper introduces the 
likelihood for the survival model under right-censoring. Section 3 describes 
the local likelihood and local linear fit method. Section 4 proposes the one-
step estimation method. Section 5 studies the asymptotic distributions for 
both parametric and nonparametric parts. Section 6 gives some conclusion 
remarks on the proposed method. Finally, the Appendix gives the technical 
proofs. 

2 Likelihood Function for A Parametric Survival Model 

Let f(t\z, x) denote the conditional density function of lifetime T given 
(Z,X) = (z,x), and let S(t\z,x) = P{T > t\(Z,X) = (z,x)} be its con
ditional survival function. The conditional distribution function of a random 
censoring variable C given {Z,X) = (z,x) is denoted by G(t\z,x). Then un
der independent and noninformative censoring (i.e., G(t\z, x) does not involve 
the unknown parameters), the conditional likelihood function is given by 

L^UfWZuXjUsiYilZuXi), (2) 
u c 

where Y[u
 a n d Ylc denote, respectively, the products involving the uncensored 

and the censored observations. 
Given that Ho(t;a) is the cumulative baseline hazard function and that 

\(x) is parameterized as A(a;) = A(a;;7), the conditional survivor function for 
T at (Z, X) = (z, x), under the survival model (1), is of the form 

S(t\z, x; a, (3,7) = exp[-# 0 ( i ; a) exp{zT/3 + X(x; 7)}]. 
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The hazard function and cumulative hazard functions are given by 
h(t\z,x;a,p,j) = h0(t;a)exp{zTP + X(x;j)} and H(t\z,x;<r,f3,~/) = 
Ho(t; a) exp{2T/3 + X(x; 7)}, respectively. 

If we let Si represent the censoring indicator, i.e. Si = I[Ti < d], and Yi 
represent a lifetime or a censoring time for ith individual, i.e. Yi — min(Ti, Cj), 
the likelihood function (2) for samples {(Zi, Xi,Yi,8i), i = 1, • • • , n} can be 
written as 

n 

L{0,l) = HihiYilZuXi^SiYilZuXi), 
1 

remembering that 6 = (/?T, <jT)T. Under the survival model (1), we have the 
log-likelihood for the sample 

i„(«.7) = S{«iiog/(yi|zilxo + (i-«i)iogS(yi|zi,xi)} 
i 

= ] > > { l o g h0(Yi; a) + {Z?P + A(Xi; 7))} 
i 

+ exp{Z?P + \(Xi;1)}logSo(Yi;cj)) 

= ^[« i{ log h0(Yi; a) + {Zf (3 + A(Xi; 7))} 
i 

-exp{Z?P + \(Xi;i)}Ho{Yi;iT)], (3) 

using Ho(t;a) = — logSo(t; a). Maximization of (3) leads to the maximum 
likelihood estimators of a, (3 and 7. 

3 Local Likelihood 

Suppose that the form of X(x) is not specified, and that the first order deriv
ative of X(x) at the point x exists. If we let ao — X(x), 01 = X'(x), then, by 
Taylor's expansion, 

X(X)aa0+a1{X-x), 

for X in a neighborhood of x. 
Let b be the bandwidth parameter that controls the size of the local 

neighborhood and let W be a kernel function. Using this local model, one 
would find ao, a^ and 6 = (/3T,aT)T to maximize the local (log) likelihood 

n 

ln(a0,a1,(3,a)=Y,k{<T,Z?p + ao + a1{Xi-x),(Yi,6i)}Wb{Xi-x),(4) 
i=l 
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where h{a, Zj(3 + a0 + ax{Xi - x), (Y{, Si)} = &[logh0{Yi; a) + {ZT/3 + a0 + 
ai{Xi - x))] - Ho{Yi;a)eXp\ZT(3 + (Zf'/? + a0 + ax{Xi - x))}, Wb{t) = 
b-lW(t/b). 

But the estimates of the true parameters 9Q = (f3j, &£)T from this local 
likelihood are not efficient since we use only a fraction of all data points. Lu et 
al. 22 consider model (1) using the generalized profile likelihood method with 
local constant fit and obtained an efficient estimate of (/?o, 0"o) which achieves 
the semiparametric information bound. But that approach requires a fully 
iterated algorithm and is not computationally convenient. In this paper, we 
provide the one-step algorithm with local linear fit. Application of the local 
linear fit enables us to reduce the bias of the estimator for the nonparametric 
component and to avoid boundary effects. In some important applications, 
we show that one-step algorithm achieves the same efficiency. 

4 The One Step Estimation Method 

Under model (1), the primary interest is to estimate the true parameters <TO 
and Po and the true function Ao(-). Since Ao(-) is modeled nonparametrically, 
it is natural to consider local likelihood. However, efficient estimation of the 
global parameters CTO and /3o requires using all data points. 

One approach is that we first find So, a\ and 6 to maximize the local 
(log) likelihood (4). Denote \{x) = \{x; b) = a0 and 6 = 6(x; b). Having con
structed the function A(a;; b), estimate the global parameters 9 by maximizing 
the global likelihood. The following one-step algorithm makes it work. 

Step 0: Fit a parametric linear model to obtain the initial estimates 9. 

Step 1: Find \(x; b) by maximizing the local likelihood (4). We take b to 
be an estimate of the bandwidth that is optimal for estimation of 90. 

Step 2: With the estimated X(x;b), find 9 by maximizing the global 
likelihood 

n 

Y.lifaZj'P + XiXi-MAYuSi)}. (5) 
i=l 

Step 3: Fix 9 at its estimated value from Step 2. The final estimate of 
A0(-) is A(a;; b, 9) = a0 where (So, &o) maximizes 

n 

Y^ k{°, ZU + ao + ai(Xi - x), (Yi,6i)}Wb(Xi - x). (6) 
i = l 
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At this final step we take b to be an estimate of the bandwidth that is 
optimal for estimation of Ao(-) when 90 is known. 

To compare the one-step algorithm with the generalized profile likelihood 
method or the fully iterated algorithm, we also give the fully iterated algorithm 
as follows: 

Step 0: Fit a parametric linear model to obtain the initial estimates 9. 

Step 1: Find A(a:; b, a, /3) by maximizing the local likelihood (4). We take 
b to be an estimate of the bandwidth that is optimal for estimation of 9Q. 

Step 2: Update 9 by maximizing 

n 

J2 hW, ZTf3 + \(x; b, a, 0), (Yh Si)}. (7) 

Step 3: Fix 6 at its estimated value from Step 2. The final estimate of 
Ao(-) is \(x; b, 9) = a$ where (&o, oi) maximizes (6). At this final step we 
take b to be an estimate of the bandwidth that is optimal for estimation 
of Ao() when 6Q is known. 

Instead of maximizing (7), an alternative approach is to update the cur
rent 6 by maximizing 

n 

Y.idczTp + Xfab&JiiYiji)}. 
i = l 

We conjecture that the estimators resulting from this type of updating 
are equivalent to those obtained by maximizing (7); this would be interesting 
to verify. 

5 Distribution Theory 

5.1 One-Step Estimator of the Nonparametric Part 

In this subsection, we investigate properties of the estimators of the nonpara
metric part Ao(-) of (1) under two cases: (1) the one-step approach when 9Q 
is estimated locally as in (4); and (2) the final estimate as in (6) when 9Q 
is estimated globally. In case (1), we are using only 0(nh) data points to 
estimate both 90 and Ao(-). In case (2), #o is estimated at parametric rates, 
and thus AQ(-) can be estimated asymptotically as well as if #o were known. 
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We consider case (1) first. Let /(•) be the density of X. Define 

£(*) X = x 

mi = Ao(Xi) + Z?P; 

( {Si - HQ(Yi; (To) exp(mi)}Ui 
{Si - H0(Yi; do) exp(mj)}Zi 
6ih'0{Yi; CT0) - H'0(Yi; CT0) exp(m;) y 

i>(:r) = first diagonal element of the matrix S_1(a;); 

ho(t;<r) =\og{h0(t;(r)} and ft,'0(t;(T) — dho(t;cr)/d<J. 

Theorem 5.1. Under condition A given in the appendix, as n —> oo, b —> 0 
and nb —> oo and n&5 is bounded, for the the maximizer of the local likelihood 
(4), we have 

1/2 (nb) 

Hence 

N 

\(x) - A0(x) 

P~Po 
a - (T0 

« 2 -^A^E-1^ |A" = a; 

0, 

ô (^)1 / 2{A(x) - A0(x) - ^A0'(:r)&2} ^ N(Q, -£?v{x)). m (8) 

5.2 Fully Iterated Estimator of the Nonparmetric Part 

One-step estimation of the parameters <To and po requires a smaller band
width than the one that is optimal for estimating the nonparametric 
component Ao(-). Thus, the estimate is undersmoothed. If one is interested 
in obtaining a good estimate of A0(-), a final step in the algorithm (6) should 
be carried out. In this case, (8) continues to hold if we replace v(x) by 
t;«(a:) = {E(6\X = x)}"1. The result is given as follows: 
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Theorem 5.2. 

(nb)^{\(x)~X0(x)-^b2}^N 0, 
f(x)E(S\X = x) 

The asymptotic variance in this result coincides with the univariate result 
given in Nielsen et al. 26 and Lu et al. 22 when covariates are time-independent, 
but the bias here is different, because we use the local linear fit. This result 
suggests bandwidth estimators in the spirit of that of Ruppert, Sheather and 
Wand 28. Following the discussions made in Carroll et al. 5 '6, for example, 
consider estimation of Ao(-) at the final step, for a given function w(-) with 
compact support, minimizing the asymptotic weighted mean squared error 
with weight f{-)w(-) yields the optimal global bandwidth 

bopt = C(W)n -1/5 | . / v*(x)w(x) dx "J 
f\%(x)2f{x)w{x)dx 

where C(W) = ( ^ 0 K ^ 2 ) 1 / 5 . 

For the one-step algorithm in Step 1, a relatively ad hoc choice of b is 

bopt x n1 /5 x n " 1 / 3 = bopt x n _ 2 / 1 5 . 

On the other hand, for the fully iterated algorithm (7), we have shown that or
dinary bandwidth rates are permissible (Lu et al., 22). Severini and Staniswal-
lis 32, Hunsberger 18, Severini and Wong 31 show the same thing for generalized 
partially linear model. 

5.3 One-Step Estimator for the Parametric Part 

We now study the global estimators for the parametric components (CTOJPO)-

Theorem 5.3. Let J3 and a be the one-step estimates which maximizes the 
likelihood (5). Under conditions A given in the appendix, as n —• oo, nb4 —» 0 
and nb2/ log(l/6) —> oo, 

nW^-M^o.ir^ir1), 
\ a - a a J 

where 
B = E(6VVT), 

Ex=B + E{1(X)1
T(X)ejE-1(X)eJ}, 

-y(x) = E(6V\X = x), V = {ZT, h'Q(Y;cr0)
T)T, ex is the unit vector with 1 in 

the first position. 
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Therefore, one iteration leads already to a root-n consistent estimator of 
0o = (/30VoT)T-

We have derived the results using local constant fit for the fully iterated 
estimator defined by (7) (see Theorem 5.2, Lu et al., 2 2 ) . The results also 
hold for the local linear fit in this paper. For the sake of completeness, we 
cite the result as follows: 

Theorem 5.4. Let 6 = (/3T, aT)T be the fully iterated estimates which max
imizes the likelihood (7). Under Condition I, S and A given in Lu et al. 22, 
assume ig0 is positive definite and finite, then 

where ig0 is the marginal Fisher information matrix for 6Q given by 

dl,„ , v 81 x ® 2 

ieo=E0^—(60,\0) + —(e0,\0)(v*) 

v* = X'go is the least favorable direction. ig0 can be consistently estimated by 

ig0 has the following simple expression: 

ie0 = E0 j ^ | g r ( t , Z, X)h0(t; a0) exp[ZT/30 + X0(X)]I(t) dt 

-E0J^^(t,Z,X)dN(t) 

= Eo[6{d-^dJ^(Y,Z,X)}} 

where n8{t,z,x) = log[/io(i;0-)exp{zT/3 + Xg(x)}}, Xe(x) = X0(x) + rBo(x) -
rg(x) and rg{x) = \ogE{exp(ZT(3)Ho(Y;cr)\X = x}. We have proved ig0 is 
the semiparametric information bound. 

R e m a r k 5.1. The fully iterated estimator is uniformly as or more efficient 
than the one-step estimator. However, when X and Z are independent and 
6 = 1 (there is no censoring), the one-step estimator is as efficient as the fully 
iterated estimator. Therefore, iteration is not necessary when X and Z are 
weakly correlated and the censoring is not heavy. In fact, if we set E(Z) = 0 
without loss of generality, then, when X and Z are independent and 6 = 1, 
we have E(SZ\X) = E(Z) = 0, and the asymptotic variance for the one-step 
estimator of /? equal to {E(ZZT)}~1, which is also the asymptotic variance 
for the fully iterated estimator given in (7). 
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6 Conclusions 

For the generalized partially linear single-index models, the asymptotic dis
tribution theory for the one-step and the fully iterated estimator, based on 
the local linear fit, has been established by Carroll et al. 5 . In this paper, we 
formulate our approach in the frame work of proportional hazards regression 
models. We can draw some similar conclusions from our study: 

(i) estimation of the nonparametric part Ao(-) of model (1) can be done just 
as well as if the parameters (<70, /?o) were known; 

(ii) the parametric parts can be estimated at the usual parametric rate of 
convergence; 

(iii) the fully iterative estimator can have a smaller variance-covariance matrix 
than the one-step estimator, but for the case without censoring and with 
weakly correlated X and Z both estimators share the same variance-
covariance matrix; 

(iv) estimation of the nonparametric part in the model has an effect on the 
distribution of the estimates for the parametric parts; 

(v) best estimation of the parametric parts requires undersmoothing of the 
nonparametric part. 

Our model (1) is restricted on univariate in the nonparametric part. When 
there are several covariates in the nonparametric part, dimensionality reducing 
strategies such as additive and index models can be used. For instance, one 
could fit the following partially linear single-index model: 

h{(t; z, x) = h0(t, a) exp{zT(3 + A(xT
7)}, 

where A(-) is of unknown form and, a, /3 and 7 are unknown parameters. 
Further development of this issue needs to be investigated. 

Appendix: Technical Proofs 

The following conditions will be needed: 
Condition A: 

(i). 6Q = (<rj,fla)T is an interior point of the parameter space 0 . 

(ii). Z is bounded. X takes values in X, a compact set in R. 

For any x G X, 
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(iii). There exists £ > 0 such that 

E[{H0(Y; <70) exp(Z rA,)}2+«|X], E{\H0(Y; a0) exp(ZTf30)Z\2+^\X} 

and 

E{\h'0(Y;ao)\2+t\X}, E{\H'0(Y;a0)exp(ZTPo)\2+i\X} 

are finite and continuous at the point X = x, where ho(Y;(To) = 
log h0(Y;a0). 

(iv). The functions E{H0(Y; a0) exp{ZT/30)\X}, E{H0(Y; <x0) exp{ZTPo)\X}, 
E{H'0(Y; a0) exp(ZTpo)Z\X), E{H0(Y; a0) exp(ZT/30)ZZT\X}, 
E{H'Q'(Y;a0)exp(ZTp0)\X}, E{fh'0{Y;a0)\X} and E{6h%(Y;a0)\X} 
are all continuous at the point X = x. The function E(5\X) is positive 
and has a continuous 2nd derivative around the point x . 

(v). There exists a function M(y), with E{M(Y)} < oo, such that 

d3 

daAdakda{ 
h0{y,(j) < M(y), 

d3 

dcrjdffkdcTi 
•H0{y;c) < M(y), 

for all y, and for all cr in a neighborhood of OQ. 

(vi). The kernel function W > 0 is a bounded density supported on [—1,1] 
symmetric about zero. 

(vii). The function XQ(X) has a continuous 2nd derivative around the point 

(viii). The density /(•) of X has a continuous 2nd derivative around the 
point x and f(x) > 0. 

Let go — ho(Y;ao), define 

S0(x) = E < 
0 K2 0 0 
Z 0 ZZT Zgl 

{ \<7o 0 g0Z
T gf2 ) 

X 

and 

Si(x) =E< 

( v0 0 VQZT v0go \ 
0 v2 0 vo0 

v0Z 0 vaZZT v^Zgl 
V go 0 <70Z

T ^ o ^ 2 / 

X = , > . 
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Proof of Theorem 5.1: Let cn = (n/i)"1/2 , 

1 \ / c-^a-Xoix)} 
X! = \(Xi - x)/b ) , /3* = I c~\{& - A'0(o:)} , Ui=( l ) 

and let 

a* = cn {o - o-o), 

Denote A{ = A^o;) = Ao(a;) + Zf(30 + X'0(x)(Xi — x). If (ao, a\,6)T maxi
mizes (4) then 9* maximizes 

5 3 Z;(cra<x* + (T0, cnp*TX* + Xi, (Yit 6i))Wb(Xi - x) 

with respect to 0*. Consider the normalized function 
n 

/„(r) = ^53[zi(c„(r*+fT0,cni3*Tx;+Ai,(yi,<5i))-/i((To,Ai,(yi,^))]wb(xi-x), 
t = i 

which is maximized by 6*. ln(9*) is a concave function, we can apply the 
Convexity Lemma (see Pollard 27) to it. By a Taylor expansion of the function 
h{-, -, {Yi, Si)) we obtain that 

in(9*) = wis* - ~e*TAne*{i + 0p(i)}, 0) 
where 

n /{6i- Ho{Yi;a0)exp(Xi)}Ui 
Wn = hcn ^ {6i - H0(Yi; a0) exp(Ai)}^ _ ] Wb(Xi - x) 

i=i \6ih'0(Yi;<T0) - if0(y i ;CTo)exp(Ai) 

and 

i = 1 \ e ^ ^ ( V , 

_ i H o ( n 
•>0)ZiVj c* iH ( | ( y i ; »o )2 i2 j ' oXi ZiH

l
a(Yi;"Si)

r ) Wb(Xi ~ x). 
\°0)ZT -6ih'^Yi;<,0) + Hl^Yi;^0)e

x 

It is shown that 

An = f(x)S0(x) + op(l) = A + op(l). 

Therefore, by (9), 

ln(G*) = WZe*-^e*TA6* + op(l). (10) 
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By applying the Convexity Lemma, we obtain that 

0*=A-1Wn + op(l). 

Hence, the asymptotic normality of 9* will follow from that of Wn. Since 
Wn is a sum of i.i.d. random vectors, we only need to compute the first two 
moments and check Liapounov's conditions. It can be shown that 

E{Wn) = Vri{f(x)^\'0\x)b2 + o(b2)}, 

Therefore, we have 

Var(Wn)=f(x)S1(x) + o(l). 

Wn-EWn^N{0,f(x)S1(x)}. 

Proof of Theorem 5.3: We need two lemmas, Lemma A.l and Lemma 
A.2, given by Carroll et al. 5 in order to prove Theorem 5.2. 

By Lemma A.2, each element in An converges uniformly to its corre
sponding element in A. Hence, expression (9) holds uniformly in x G X. By 
the Convexity Lemma, it also holds uniformly in 6* G C and x G X for any 
compact set C. Lemma A.l then yields 

sup\6*{x) - A~lWn{x)\ ^ Q, 
xex 

(11) 

where 9*(x) and Wn(x) are defined in the proof of Theorem 5.1, both depend 
on x. By considering the first element of the vectors in (11), we have 

sup 
xex 

1 
X(x) - Ao(ar) - - — V WiWb(Xi - x) 

nf(x) ^ 

where W; is the first element of the vector 

= op(cn), 

f{6i-H0(Yi;a0)exp(Xi)}Ui 

E - 1 ^ ) {6i-Ho(Yi;<To)exp&)}Zi 
\6ih'0(Yi; (To) - H'0(Yi; (T0) exp(A;); 

By a result of Carroll et al. 5 , the following stronger result holds: 

sup 
xex 

X(x) - \0(x) - — L - £ WiWb(Xi - x] 
nf(x) 

t = i 

0P{b2cn + c2
n\og^2(l/b)}. 

Let §! = nll2C$ - /?o), k = n^2(a - a0), and 9 = (Of, 6%)T. Denote by 

rhi = \(Xi) + Zfpo, and rm = A0 {X{) + Zj (30 • 
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Then, 9 maximizes 

n 

UO) = ^ [ ^ ( " " 1 / 2 ^ i + °o, n-l'2Zf92 + rhu (Yu S{)) - h(a0, mu (Yu Si))], 

By Taylor's expansion, we have 

ln(9) = n-1'2 £ tffc, (Yi> 5 ^ ~ \tTBj, (12) 

yhere 

<*, ( V . K \ \ - { {6i-H0(Yi;a0)exp(mi)}Zi 
i{miAxl,oi}} - \s.^Yi;<T0) - F 0 (y i ;a 0 )exp(m i ) 

where b\x = exp(m; + n 1^2Zi9ii)H0(Yi;ao + n 1/292i)ZiZ?, b[2 = exp(rhi + 
n-^ZiO^ZiH'oiYi; a0 + n~1/292i)

T, b21 = exp(mi + n-1^Zi91i)H'0(Yi; a0 + 
n~V292i)Zj and b\2 = -&/#(* ; ; <r0 + rTxl292i) + #0 ' (Yi;a0 + 
n~1/292i) exp(rhi + n~1l2Zi9n) with 9u is between 0 and #i and 92i is be
tween 0 an 62. 

It can be shown that 

_(E{SZZT} E{SZh'0(Y;a0)
T} \ 

Bn ~ {E{Sh'0(Y;a0)Z
T} E{S(h'0(Y;a0))®

2}) + ° ^ 1 } = ~B + °p{1>-

As for the first term in (12), we have 

n n 

n~1/2 £ <t>i{mi, (Yh Si)) = n-1'2 £ ^(rm, (YuSi)) 
1=1 1=1 

n 

+ n-ll2Y,^J{mi,{Yi,Si)){\{Xi)-\0(Xi)} 
t = i 

+ Op(n1 /2 | |A-A0 | |^o) , 

where 

Mrnu (Yi, Si)) = ^(rm, (Yi, Si)) = - ( Hf^ f * ) . 
dmC \ H0(Yi;<T0)eyLp(mi) J 



183 

The second term in the above expression can be expressed as 
n n 

n-3/2 £ ^ ^ {Yu ( 5 i ) ) / ( x i ) - 1 Y, WjWbiXj - Xi) 
t= l 1=1 

+0P{nl/2c2
n l o g ^ l / f c ) } = Tnl + 0P{n^cl l o g ^ l / f c ) } . 

Define ẑ - = v(Xj,Zj, (Yj,6j)) as the first element of 

( Sj - HQ(YJ; <TQ) exp(mj) 
{Sj-HoiYj-^expim^Zj 

Sj h'0 (Yj; <x0) - H'0(Yj; cr0) exp(mJ) 

= 5T1(X j) / Zj dM(t). 
J \h0(t;a0)J 

Using the definition of Xj(Xi), we obtain A, — rrij = 0((Xj — Xi)2) and 
therefore 

n n 

Tnl = n-3/2 5 3 ^ 2 Vf K , (YuSiWiXiy^MXj - Xi) + 0P{nl'2h2) 
i = l j = l 

By a similar procedure used in Carroll et al. 5, it can be shown that 

T„2 - T„3 £ 0, (13) 

where 

j = i 

with 

IV i?o(yi;cro)exp(??2i) y 1 j 

It is seen that 

Hrni^YiA)) = j <KK{t^Q)T)) dMi{t) 

Combining (12)-(13) we obtain that 
n 

Zn(0) - n " 1 / 2 ^ J2 tyXi, (Y, Si), Zi) - -6TB9 + oP(l), 
t = i 
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where 

n(xu (Yh Si), Zi) = Mm, W, st)) - 7(*iH 
By the Convexity Lemma we have 

n 

from which it follows that 

6^ N(Q,B~llliB-1). 

This establishes the result in Theorem 5.3. 
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We consider a nested frailty Cox proportional hazards model for recurrent events. 
We adopt a Poisson modelling approach and the principal results depend only on 
the first and second moments of the unobserved frailties. The use of the proposed 
methods is illustrated through the reanalysis of chronic granulotomous disease data 
previously reported by Fleming and Harrington 5. 

1 Introduction 

Recurrent events often arise naturally in practice. Examples of such events 
include disease onsets and emergency room visits in medical studies, process 
stoppages in reliability studies, as well as criminal offences and unemployment 
in social studies. Such recurrent events are often clustered by subjects and 
their residential areas or other groupings. Until recently, the recurrent events 
are usually modelled by incorporating a single level of subject frailties, or 
random effects, into the survival models, while ignoring other level of cluster
ing effects (Yau 1 6 ) . Furthermore, the existing approaches to frailty survival 
models generally rely on specific distributional assumption of frailties such as 
gamma, inverse Gaussian and log-normal (Sastry 13, Yau 1 6 ) . 

In this paper, we consider a nested frailty Cox proportional hazards model 
for recurrent events where the nested frailties are specified only up to the first 
and second moments. The treatment of ties and stratification is explicitly 
incorporated in our approach in the same way as in the standard Cox model. 
Our estimation procedure is based on a characterisation of this frailty Cox 
model as an auxiliary random effects Poisson regression model (Ma et al. u ) . 

186 

mailto:renjun@unb.ca
mailto:willms@unb.ca
mailto:rick-burnett@hc-sc.gc.ca


187 

This approach gives optimal and consistent parameter estimators based on 
the orthodox best linear unbiased predictor approach to the auxiliary random 
effects Poisson models. For a single level of gamma frailty, given the frailty 
parameter, our approach coincides with the hierarchical likelihood approach 
(Ha et al. 6) and the EM algorithm approach (Klein10, Nielsen et al. 12 and 
Andersen et al. 2 ) . 

We introduce the nested frailty Cox proportional hazards model and its 
auxiliary random effects Poisson models in sections 2 and 3, respectively. In 
section 4, we discuss the estimation of the nested frailty Cox models, using 
the orthodox best linear unbiased predictor approach to the auxiliary random 
effects Poisson models. An application of our approach to the chronic gran-
ulotomous disease data is illustrated in section 5. Some alternative frailty 
models are discussed in section 6. Some comparisons of our approach with 
others in the literature are discussed in section 7. 

2 Nested Frailty Cox Model 

In this section, we consider a Cox model with two levels of nested frailties. 
Suppose that the cohort of interest is composed of m independent clusters 
indexed by i. Within the ith cluster, there are Ji correlated subjects indexed 
by (i,j). Specifically, we assume that the cluster-level frailties Ui,..., Um are 
positive, independent and identically distributed with 

E(Ui) = 1 and var(Ui) -a2, i - l , . . . ,m. (1) 

We also assume that there is a subject frailty Uij associated with the subject j 
from the ith cluster, j — 1,..., J;; i = 1 , . . . , m. We further assume that, given 
the cluster-level frailties U* = u* = (u\,... ,um), the subject-level frailties 
Wij},j = 1, ••., Ji',i = l , . . . , m are positive and conditionally independent, 
and that the conditional distribution of Uij, given {/* = u*, depends on Ui 
only, with 

E(Uij\U* = u«) = Ui and var(Uij\U* = «») = u2Ui, (2) 

j = l,...,Ji and i = l , . . . , m . Furthermore, assume that there are n^ 
recurrent events within the subject (i,j) where the A;th recurrent event time 
of the j the subject in the ith cluster is given by 

_ J time to infection/censoring first episode (k = 1) 
y (̂  time to infection/censoring since latest event (k > 1) 

Let the hazard function for the fcth recurrent event time of the jth subject 
in the ith cluster at time t be denoted by Xijk{t). Given both the cluster 
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and subject level frailties U = u, we assume that the hazard functions are 
conditionally independent, with 

A«*(t) = ^k)(t)uij exp{pTxijk(t)}, (3) 

where k = 1,2,. . . , a with a being the maximum number of observed recur
rences of the event, where AQ (t) denotes the unspecified baseline hazard 
function (Cox and Oakes 4) and Xijk{t) denotes the time-dependent covariate 
vector for the kth recurrent event time of subject i, j at time t. The compo
nents of this time-dependent covariate vector Xijk (t) will be approximated by 
piecewise constants described in the next section. The distribution of frail
ties is assumed not to depend on the regression parameter /?. Clearly, the 
recurrent event times, either observed or censored, within the same cluster 
are correlated. An implication of this model is that the subject riij is not at 
risk of (k + l ) th event until this subject has experienced the fcth event. A 
Cox proportional hazards model with a single level of frailties is obtained as 
a special case of the Cox model with two levels of frailties by setting v2 — 0 
and Ji — 1 for all i. 

Our model only requires the specification of the first two moments of frail
ties since it is generally impractical to assume that the random mechanism by 
which the unobserved frailties were generated is entirely known. On the other 
hand, our assumptions (1) and (2) on random effects do cover a wide range 
of frailty distributions including gamma, inverse Gaussian and log-normal. 

3 Auxiliary Random Effects Poisson Models 

Let Sk be the set such that (i, j) € Sk if and only if the subject (i,j) has 
experienced his (fc-l)th recurrent event time. Let TH < . . . < Tkgh denote the 
distinct fcth recurrent event times in Sk, with rrikh indicating the multiplicity 
of fcth recurrent events occurring at time 7>/, (k — 1 , . . . , a). The risk set at 
time Tkh is a subset of Sk such that TZ{Tkh) — {(i,j) '• Ujk > Tkh}, where Ujk 
is the feth observed recurrent event time for the jth subject in the ith cluster. 
In addition, for any (i,j) € 5^, let Yy/b,/, be 1 if the fcth recurrent event 
occurs for subject (i,j) at time Tkh and 0 otherwise. Let Y and U denote the 
vectors of the Yijk,h and the random effects (frailties) Uij, respectively. Given 
the random effects U = u, Peto's version of the conditional partial likelihood 
(Cox & Oakes, 1984, p. 103) is 

/ (B-Y\u) - 17 ft n ^ ^ ^ ^ ^ ^ i e x p ^ ^ ^ ) ) } ^ , , ^ ! ) 
W ' ^ MM iZiiJWr^eM^iATkh))}^ ' 

(4) 
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where the time-dependent covariate Xijk(t) is approximated by a piecewise 
constant function Xijk(t) - xijk(Tkh) t e [rk{h-i), Tkh] for h = 1 , . . . , qk with 
Tfco = 0. The value of Xijk{Tkh) can be taken as any reasonable quantity such 
as the median of Xijk(t) over the interval (^^-1),^^]-

We now define an auxiliary random effects Poisson regression model. As
sume that the components of Y are conditionally independent, given random 
effects U = u, with 

Yijk,h ~ Poisson{itij exp{akh + prxijk(Tkh))} {i,j) & Tl{Tkh). (5) 

This auxiliary random effects Poisson model extends that of Whitehead (1980) 
for standard Cox models to frailty Cox models. Given the random effects, the 
conditional likelihood for the random effects Poisson model is 

a qk 

£li M eXP{E(i,i)eK(rfch) UH exP(afch + PTXijk(Tkh))} ' 
(6) 

It has been shown by Ma et al. 1X that 

t i Uii mkh- J 
where the term in parentheses on the right-hand side does not depend on the 
parameters of interest. This demonstrates that the maximum joint Poisson 
likelihood estimators for the regression parameter vector /3 from (6) are the 
maximum joint partial likelihood estimators for the regression parameter vec
tor P from (4). We may therefore make inferences on the frailty Cox models 
by fitting random effects Poisson models. 

In the remainder of this paper, we focus on the nested frailty Cox pro
portional hazards models specified by (1), (2) and (3) by way of fitting the 
auxiliary nested random effects Poisson models specified by (1), (2) and (5). 

4 Orthodox Best Linear Unbiased Predictor Approach 

4-1 Prediction of random effects 

We predict the random effects by the orthodox best linear unbiased predictor 
of U given Y. If we let U and Y be random vectors with finite second moments, 
the orthodox best linear unbiased predictor of U given Y is 

u = E(U) + Cov(t/,y)(Cov(r))-1 {Y - E(Y)} . 
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This is the linear unbiased predictor of U given Y which minimises the mean 
squared distance between the random effects U and their predictor within the 
class of linear functions of Y. 

The cluster random effects predictor can be expressed as 

fT _ 1 + CT Sfc=l Eft=l S(i,j)€TC(rth)
 wijYijk,h 

i -1 _i 2 V ^ a V^^fc V"* ' ^ ' 

where (i, j) runs over the risk set TZ(Tkh) for any given i. Here, 

Vijk,h = exp (akh + PTxijk) 

= exp {(aT,0T)xijk,h} , 

and, for fixed (i, j), 

( a qk 
1 + ^ 5353 53 Vijk,h 

k=i h=i (i,j)en(Tkh) 

The right-hand side of the equation (7) clearly involves unknown quantities 7, 
a2 and v2. These quantities together with random effects predictors will be 
iteratively estimated. At each iteration, the Ui will be updated by evaluating 
those unknown quantities on the right-hand sides at their current values. The 
detailed discussion on the iterative algorithm will be presented in section 4.4. 
The unknown quantities involved in the following equations will be understood 
similarly. The subject random effects predictors are 

a Qk 

Uij =WijUi + V2WiJY^'%2 5 3 Yijk,h- (8) 
k=l h=l (i,j)e1Z(rkh) 

4-2 Estimation of regression parameters 

Consider first estimation of the regression parameters in the case of known 
dispersion parameters. Estimation of unknown dispersion parameters will be 
discussed in section 4.3. Differentiating the joint log-likelihood of the auxiliary 
model for the data and random effects yields the joint score function. Replac
ing the random effects with their predictors, we have an unbiased estimating 
function for the regression parameters 7 = ( a T , / ? T ) T : 

a 9k 

^(7) = 53 53 53 XW<* {YHk,h - Uii{l)»ijk,h{l)\ 
fc=l h = l (i,j)€K(Tkh) 
m 
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This estimating function 1/1(7) is then a vector function of the same dimension 
as that of 7. The second equality is simply a rearrangement of terms under 
summation by clusters where 

a «k 

*/>i(l) = E E E Xiik>h \Yiik,h - Uij(l)Hijk,h(l)} 

corresponds to the ith cluster. For each i, it is clear from (7) and (8) that 
the random effect predictor Uij (7) is unbiased and involves only the induced 
observations, yijk,h, within the ith cluster, and so is the estimating func
tion ipi(y). Therefore the unbiased estimating functions ipi{'y),---,il>m('y) are 
independent. The solutions of the estimating equation ^2^L1 V'JIT) = 0 pro
vide estimators of the regression parameters. Noting that the dimension of 
parameter 7 increases with the number of clusters, the standard estimating 
equations theory based on the fixed number of parameters would apply if the 
dimension of parameter 7 is bounded. Otherwise, it can be shown that, under 
some regularity conditions, the component-wise asymptotically normality of 
parameter estimator, 7, remains valid if the dimension of parameter 7 grows 
slowly (He and Shao 7 ) . Specifically we have, for any scalar vector b of dimen
sion of 7 such that bTb = 1, 6T7 is asymptotically normal with asymptotic 
mean bTj and asymptotic variance given by &T5(7) -1 V(-y)S('y)~rb. Here, 
the sensitivity matrix 5(7) and the variability matrix V(y) are given by 

*r)=i><7)=i:s,{^}, 
i=l i = l K ! J 

m m 

vh) = E v ^ = E ^ {^(7)^(7)} • 
i = l t= l 

It has been verified that S(^) — — V{p() for the nested random effects Pois-
son model (Ma et al. u ) ; therefore the asymptotic variance of bTj is simply 
-6 T 5(7) _ 1 6 . If the dimension of parameter 7 is bounded, the regression 
parameter estimator, 7, itself can be shown to be asymptotically normal 
with asymptotic mean 7 and asymptotic variance given by — -S'(7)_1 under 
mild regularity conditions (Artes and J0rgensen 3 ) . The estimating function 
Y^iLi V'iM c a n easily be shown to be optimal in the sense that it attains the 
minimum asymptotic covariance for the estimator bTj among a certain class 
of linear functions of Y. 

This estimating equation Y^T=i "4>i{l) — 0 c a n 'De solved by the Newton 
scoring algorithm introduced by J0rgensen et al. 9: 

7 * = 7 - ^ 1 ( 7 M 7 ) , 



192 

where 7* denotes the updated value for 7. Here negative sensitivity matrix 
plays a role similar to that of the Fisher information matrix in the Fisher 
scoring algorithm. In fact, the negative sensitivity matrix here corresponds 
to the so-called Godambe information matrix. The exact expression of the 
sensitivity matrix is given by 

m m Ji 

i - \ «=1 j = l 

a qk 

— ^ , 2 - f Z-( Viik,hXiik,h{Xijk,h) , (9) 

fc=i />=i (i,j)en(Thh) 

where 

( a qk \ 

5Z ]C 5Z wijtJ'ijk,hXijk,h , (10) 
*=1 h=l (ij)€7e(rfch) / 

/«J = I 2 J Z_/ X/ V>ijk,hXijk,h J • 
\fc=i h=i (i,j)en{Tkh) J 

Here, the index (i,j) in (10) runs over the risk set IZfah) for fixed i, and 
(i, j ) runs freely over the risk set Tl(Tkh) in the last term of (9). In addition, 
c(i) denotes the mean squared distances between the random effect Ui and its 
predictor, specifically 

a = E(Ui - Uif 

a2 

1 + a 2_)fc=l 2J/i=l z2(i,j)<EK(Tkh)
 wijixiik,h 

where (i,j) runs over the risk set TZ(rkh) for fixed i. 
An analog of Wald's test is available for testing the hypothesis Ho : /3(!) = 

0, where f}(i) is a subvector of /3. The test statistic is 

^ = % { J 1 1 ( 7 ) } " 1 ^ ( i ) , 

where J11 (7) is the block of the asymptotic covariance matrix of 7 corre
sponding to /?(!). Asymptotically, W follows a x2(fc) distribution, where k is 
the size of the subvector /?(i). 
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4-3 Estimation of dispersion parameters 

We now suppose that the dispersion parameters are unknown. By analogy 
with generalized linear models, we adopt the following adjusted Pearson esti
mator for the dispersion parameter a2: 

i m 

the first term being the Pearson estimator and the second term being a bias 
correction term. 

The corresponding adjusted Pearson estimator for v2 is 

v1 =—^2 y y^ {0ij - Oi)2+a,+ct- iciWij i . 
m i=l Ji j = l l } 

Again, the first term is the Pearson estimator and the remaining terms are 
bias correction terms where Cy denotes the mean squared distance between 
the random effect Uij and its predictor, specifically 

dj = EiUij - Uij)2 

= Wij (j/2 + CiWij) . 

These dispersion parameter estimators can also be shown to be consistent 
as m —> oo. Unlike previous approaches in the literature, the asymptotic 
variance of our regression parameter estimator is not affected by variability 
in the dispersion parameter estimators. 

4-4 Computational procedures 

Due to the lack of closed-form solutions for those unknown parameters, the 
computational algorithms for random effects modeling are inevitably itera
tive. Initial values for the regression parameters are taken as the regression 
parameter estimates obtained from standard Poisson regression techniques as
suming independent responses, Yijk,h- Initial random effects predictions Ui 
and Uij are given by the average of the responses within cluster i divided by 
the average of all responses, and the average of the responses within subject 
(i,j) divided by the average of all responses, respectively. The initial disper
sion parameter estimates are calculated from the adjusted Pearson estimators, 
omitting the bias-correction terms. 

After initial values are given, the algorithm then iterates between up
dating the regression parameter estimates via the Newton scoring algorithm, 
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updating random effect predictors via the orthodox best linear unbiased pre
dictor, and updating dispersion parameter estimates via the adjusted Pearson 
estimators until the algorithm converges. At each iteration, the left-hand sides 
in the above equations are updated by evaluating those unknown quantities 
on the right-hand sides at their current values. 

5 An example 

Fleming and Harrington 5 presented the chronic granulotomous disease (CGD) 
data of 128 patients from 14 medical clusters. These patients were randomized 
to either interferon gamma (rIFN-g, t r t= l ) or placebo (trt=0). Other vari
ables such as age and sex were also recorded. The disorders were characterized 
by recurrent infections and the maximum number of infections observed was 
7. Fourteen of the 63 patients in the treatment group had at least one infec
tion and the total number of infections in this group was 20. On the other 
hand, 30 of the 65 patients in the placebo group had at least one infection and 
the total number of infections in the placebo group was 56. The question is if 
the treatment is effective in reducing the frequency of serious infections in pa
tients. This problem is complicated by the possible intra-subject correlation 
and clustering effects of medical centres on these patients. 

To account for possible centre and subject effects, we consider four ver
sions of the Cox models with both centre and subject level frailties specified by 
(1), (2) and (3). The treatment effect was taken as the only covariate. These 
four models are the standard Cox model without frailties (a2 = v2 = 0), 
centre frailty Cox model (i/2 = 0), subject frailty Cox model (a2 = 0) and 
the Cox model with both centre and subject frailties, respectively. The para
meter estimates corresponding to these four models are displayed in the first, 
second, third and last row of table 1. 

This table shows that the dispersion parameter estimates for both centre 
and subject frailties in the fourth model are essentially zero. That is, there is 
little centre or subject effect. This conclusion has also been confirmed by the 
results based on the Cox models with a single level of frailties at either centre 
or subject level. This result is not surprising. In the literature, Therneau 
and Grambsch 14 found that there is little subject effect based on the Cox 
model with a single level of gamma frailties and Yau 16 found that there is 
little centre effect, but some subject effect based on the Cox model with both 
centre and subject level lognormal frailties. 
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Table 1. Parameter estimates for the chronic granulotomous disease data. 

Cox model 

Standard 
Center level 
Subject level 
Two levels 

Treatment 
fi s.e. 

-0.8759 0.2782 
-0.8759 0.2782 
-0.8759 0.2782 
-0.8771 0.2785 

Dispersion parameter 
Center 

0 

0.0013 

Subject 

0 
0.0009 

6 Alternative Models 

We analyzed the CGD data based on our model specified by (1), (2) and (3) 
where recurrent events times are stratified on the basis of event type, that is, 
the number of recurrences. More specifically, all the first event times form the 
first stratum, all the second event times form the second stratum, and so on. 
It implies that a patient's risk of the next infection might have been changed 
after he experienced his latest infection. If the occurrence of each infection 
has permanently compromised the immune system, the risk of the subsequent 
infections will be increased. However, some clinical scientists believe that the 
risk of recurrent CGD infection remains unchanged regardless of the number 
of previous infections (Therneau and Grambsch 1 4) . The data can then be 
modeled by assuming that all the event times share the same baseline hazard 
as follows (Andersen and Gill 1): 

Kjk(t) = Xo(t)uij exp{{3xijk(t)}, (11) 

where the centre and subject frailties are still specified by (1) and (2). We 
fit the CGD data with the above model specified by (1), (2) and (11) with 
treatment as the sole covariate. The centre and subject level dispersion para
meter estimates are 0.097 and 0.545, respectively. This result indicates some 
subject effects and relatively small centre effects. The regression parameter 
estimates standard error for treatment effect are now —1.1183 and 0.30465 in 
comparison with -1.0829 and 0.26763 for the standard Cox model without 
frailty. The standard error has increased slightly. 

The difference between (3) and (11) is that the recurrent event times are 
stratified on the basis of the number of recurrences in the former model, but 
not in the latter one. So the latter model can be mathematically viewed as 
a special case of (3) by setting a = 1. However, there is some conceptual 
difference between these two models in terms of risk sets. Suppose a patient 
has experienced his (k + l ) th recurrent event at time r , then every patient 
who is under observation at time r is at risk at that time in the latter model. 
But in the former model, among all subjects who are under observation at 
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time r , only those who have experienced their feth recurrent event, but have 
not yet experienced their (k + l)th recurrent event are at risk at time T. 

The extension of both models to include extra stratification based on cer
tain external variables is straightforward. Suppose these models are extended 
to include extra stratification based on, say gender; therefore the former model 
is still in the form of (3), but with 2a strata based on both gender and event 
type being indexed by k = 1,... ,2a. On the other hand, the latter model is 
also in the form of (3), but with only 2 strata based on gender being indexed 
byfc = l ,2 . 

7 Discussion 

Yau 16 has recently proposed a best linear unbiased predictor approach to the 
Cox model with nested log-normal frailties. His approach was a generalization 
of the linear mixed model equations of Henderson 8 where the estimating equa
tions are obtained by differentiating the joint partial likelihood with respect 
to the regression parameters and the frailties. It is an analytically tractable 
analog of best linear unbiased predictors; therefore the corresponding frailties 
predictors are still called best linear unbiased predictors (Yau 1 6) . However, 
these frailty predictors actually correspond to the conditional mode of the 
frailty given the data, and are thus neither linear nor unbiased in general 
for non-normal distributions. In fact, these pseudo best linear unbiased pre
dictors often lead to biased estimating equations and inconsistent parameter 
estimators. This approach remains controversial, especially for cases where 
the number of centres increases with the sample size (Ha et al. 6 ) . 

On the other hand, our approach to the nested frailty Cox model for 
recurrent events is based on a truly best linear unbiased predictor approach to 
the random effects Poisson models. Our approach gives unbiased estimating 
equations and leads to optimal and consistent parameter estimators. The 
extension of our approach to the Cox models with more levels of nesting 
effects is also straightforward. 
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MULTIPLE COMPARISON PROCEDURES FOR LINEAR 
MODELS U N D E R ORDER RESTRICTIONS 
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Multiple comparison procedures are some of the most frequently use statistical 
methods. Although, there exists an extensive amount of literature on multiple 
comparison procedures, few articles have addressed the problem of multiple com
parisons under order restrictions. Currently available procedures are mainly devel
oped for the one-way layouts and hence are not applicable to more complex designs 
such as unbalanced factorial designs or analysis of covariance models. To achieve 
these extensions, the focus of the present investigation is to develop simultaneous 
multiple comparison procedures for linear models under order restrictions of the 
parameters. 

1 In t roduc t ion 

Consider the linear model 

Y = X/3 + e, (1) 

where Y is an nx 1 observation vector, J i s a n n x p known matrix, (3 is apX 1 
vector of unknown parameters, and e is an n x 1 vector of independent and 
identically distributed random variables having a normal distribution with 
mean 0 and variance a2 > 0. 

A common problem of interest is to make simultaneous inferences about 
components of a linear function C/3, where C is a r x p matrix with known 
elements. Focusing on simultaneous testing of the constrained parameters, 
suppose that we are interested in testing the hypothesis 

H0:C/3 = d (2) 

against the one-sided alternatives Hi — Ho, where 

Hi:CP>d (3) 

Without loss of generality it can be assumed that d = 0. 
Depending on dimensionality of C, we are dealing with a different class 

of tests. For instance, for testing subhypotheses against ordered alternatives 
in regression models or testing for main effects in factorial analysis of vari
ance models, then r < p, and for simultaneous one-sided multiple comparison 
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procedures r > p. A third class of tests which is the main focus of this in
vestigation, is the problem of simultaneous multiple comparisons under the 
assumption that the parameter space is constrained a priori. Although the 
first two problems are well developed, at least theoretically, not much is avail
able on the third problem. 

Simultaneous tests for the order restricted (one-sided) hypotheses are well 
developed. Well-known tests are the likelihood ratio test, Wald's test, and 
Rao's efficient scores test. These are discussed in detail in Robertson et al. 10. 
Shapiro 12 presented a unified approach by assuming the parameter space 
to be a closed convex cone and the observations follow a multivariate nor
mal distribution with a known dispersion matrix. Mansouri 4 proposed a 
test based on the aligned ranking approach. One-sided simultaneous multiple 
comparison procedures for linear models, although not discussed explicitly 
can be derived from the results in Hochberg and Tamhane 3 and is outlined 
in Westfall et al. 13. 

Simultaneous multiple comparison procedures under order restrictions of 
the parameters has not received much attention in the literature. The existing 
techniques are mainly developed for the one-way layouts under the assumption 
of simple order restriction of the means. Marcus and Peritz 8 proposed one
sided Scheffe-type simultaneous confidence intervals for monotone contrasts in 
the means of normal distributions, Williams 14 proposed a Tukey-type range 
test for monotone contrasts for the balanced one-way layouts, Marcus 7 pro
posed a two-sided Scheffe-type simultaneous confidence intervals for monotone 
contrasts for the means of normal distributions. Hayter 2 argued that simul
taneous inference for monotone contrasts does not extend to simultaneous 
pairwise comparisons and developed a one-sided studentized range technique 
under the assumption of simple order without the restriction on monotonicity 
of the contrasts. Recently, Mansouri and Shaw 6 proposed distribution-free 
simultaneous multiple comparison tests under the assumption of simple or
der for the balanced complete and incomplete randomized blocks. Mansouri 
5 extended the latter results for repeated measures designs with incomplete 
observations. 

The main focus of this article is to develop a technique for simultaneous 
multiple comparisons in linear models. This technique provides a procedure 
that is applicable to balanced as well as unbalanced designs in analysis of 
variance and analysis of covariance models. In addition, we consider both the 
one-sided inferences without assuming monotonicity of the contrasts. 

In Section2, a brief summary of simultaneous one-sided inference in linear 
models is presented. In Section 3, simultaneous multiple comparison proce
dures are proposed and their distributions are discussed. 
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2 One-Sided Tests 

In this section, a brief discussion of one-sided tests for subhypotheses, (q = 
r < p) and simultaneous one-sided multiple comparisons, (r > q,q < p) will 
be presented. 

2.1 One-Sided Test for Subhypotheses 

Let X = (Xi,X2) and P = {P'x, /3'2)', where Xx is n x q, X2 is n x p - q, j3\ 
and P2 are g x 1 and (p — q) x 1, respectively. Then the linear model in (1), 
can be written as 

Y = X1p1+X2p2 + e (4) 

Without loss of generality, the linear hypotheses in (2) and (3) can be 
written as H0 : f31 =0 and Hi : /31 > 0. 

Let 

3 = (3'i, #>)' 
be the unrestricted maximum likelihood estimator (MLE) of /3. 

Let 

S=(Y- X0)'(Y - Xp) + (3 - P)'X'X(J3 - p) 

Then the likelihood ratio statistic is equivalent to 

min S — min S 
PeH0 PeHi 

= m i n ( 3 1 - / 3 1 ) ' A r 1
1 ( 3 i - / 5 i ) PeH0 

- m i n ( 3 1 - j 3 1 ) ' A n 1 ( 3 1 - / 3 1 ) 
/3€H, 

= 3'1An13i - 0i - fiY*uX@i - Fx) 
^Pl'A^Pl 

where P\ is the MLE of Pi under Hi and 

A n = (-X1-X1 — XXX2{X2X2)~ X2Xi) . 

Under Ho and known a2, the test statistic 

X2=o-2pl'A^P*i 

has a ^-distribution given by 
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9 

where the weights Uj are nonnegative satisfying X^LQWJ
 = ^ arK* Xo = 0-

Computation of these weights depend on q, A n and the alternative hypothesis 
Hi. More details on o/j-'s are provided in Shapiro 12 sec. 5. For the one-way 
layouts, uij 's are called level probabilities and are discussed in detail in Barlow 
et al. 1. 

2.2 One-Sided Multiple Comparisons 

Again consider the linear model (4), and assume that we are interested in 
testing Hio and Hu where 

Hi0 : ctfi = 0 and Ha : d£x > 0, i = 1, • • • , r > « 

Let /3 = (JSJ, /32)' be the unrestricted MLE of/3 and let S2 be an unbiased 
estimator of a2. Define the test statistics 

Ti = t@1/S(dikllCi)1/2, i = l , - - - , r . 

Then we reject H,o in favor of Hu — H^ if 

where ca is upper a-th quantile of the distribution of max; T;. 
We note that Ti, • • • , Tr have a joint r-dimensional t-distribution 

with dispersion matrix R = D _ 1 / 2 C'AnC-D~ 1 / 2 , where D = 
diag^AnCi, • • • , c^Ancv), see Westfall et al. (1999), chapter 5. 

3 Multiple Comparisons Under Order 
Restrictions 

Consider the linear model in (4) and assume further that the parameter space 
is subject to the constraint that (31 s K., where /C is a closed convex cone. 
The simple order restriction, considered in the cited literature in Section 1 is 
a member of /C. Suppose that we are interested in testing H^ against Hu 
where 

Hi0 : ci/31 = 0 and Hn : ci/31 > 0, i = 1 , . . . , r > q 
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Let P{ denote the orthogonal projection of /31 onto /C, i.e. /3j is the solution 
of 

min ( 3 i - ^ i ) A n ( 3 i - / 3 , ) . 

Define the test statistics 

T* = cfijo (c-AnCi) , i = l , . . . , r . 

Using the Union-Intersection principle of Roy (1953), we reject HIQ in favor 
of HiX - iifjo if 

T*>ca, i = !,••• ,r 

where ca is upper a-th quantile of the distribution of max; T*. By converting 
the simultaneous testing problem to simultaneous confidence region, we obtain 
simultaneous upper confidence limits with family confidence coefficient 1 — a 
given by 

c ^ ^ c ^ i - c ^ K A n C ; ) 1 / 2 , i = l , . . . ,r 

To find the critical values of the sampling distribution of max; T*, in most 
cases one has to resort to simulation techniques. This is a common practice 
in testing under order restrictions as well as situations where simultaneous 
multiple comparison techniques are used. This is the case because in both 
inferential approaches, except for the balanced analysis of variance designs, 
the sampling distribution of the resulting statistic is intractable, hence there 
is no choice but to resort to simulation. Similarly, if we are testing HM against 
the alternative 

Hii-.difa^O, i = l,--- ,r>q 

we reject Hi0 if \T*\ > da/2, where da is the upper a-th quantile of the 
distribution of max;|T*|. Finally, a simultaneous confidence region with a 
family confidence coefficient 1 — a is given by 

cjfr € {<$[ ± ^ ^ ( ^ n c ) 1 / 2 } , i = l,---,q. 

To simulate the null distribution of the test statistics, the following algorithm 
may be used. 

1. Generate E\, • • • ,en from a standard normal distribution. 
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2. Generate Y\, • • • ,Yn using the model Y = XR/3R+£ which is the reduced 
model under the Ho — f]t #;o-

3. Calculate Tf, • • • , Tr* (\T;\, ••• , \T*\). 

4. Calculate maxi<j<r maxi<;< r \T*\T* for the one-sided (maxi<;<r \T*\ for 
the two-sided) simultaneous confidence interval. 

5. Repeat the process M times. 

6. Find ca(da/2) the upper a-th (a/2-th)quantile of 
m&xi<i<rT* maxi<,< r \T*\ based on M simulated values. 

4 Example 

Our dataset comes from Montgomery 9( pp. 170). Here, an engineer is study
ing the effect of cutting speed on the rate of metal removal in a machining 
operation. However, the rate of metal removal is also related to the hardness 
of the test specimen. Five observations are taken at each cutting speed. The 
amount of metal removed (y) and the hardness of the specimen (x) are shown 
in the following table: 

Cutting Speed (rpm) 
1000 1200 1400 

X 

68 
90 
98 
77 
88 

W e assumed analysis 

V 
120 
140 
150 
125 
136 

X 

112 
94 
65 
74 
85 

y 
165 
140 
120 
125 
133 

of covariance model 

X 

118 
82 
73 
92 
80 

y 
175 
132 
124 
141 
130 

y{j = (j, + Ti + 7 (xij -x..) + Eij for i = 1, 2,3 and j = 1 , . . . ,5 

where e^ ~ N (0, CT2) . Since the rate of metal removal can be expected to be 
monotonically increasing in cutting speed it is conceivable that 

Ti < T 2 < T 3 . 

We then considered the following sets of hypotheses: 

#10 : r2 - ri = 0 #11 : r2 - n > 0 
#20 : r3 - n = 0 #21 : r3 - ri > 0 (5) 
#30 : T3 - r2 = 0 #31 : r3 - T2 > 0 
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1.6-

0.5 - / 

0.0 J f^ 1 1 1 1 ' 

0.0 0.6 1.0 1.5 2.0 

Figure 1: Density Plot of max; T* 

Next, identifiability constraint ^ ; T; = 0 was imposed. Under this, con
straint our omnibus null hypothesis was 

H0:TI=T2=T3= 0. 

For the reduced model, under the omnibus null, we obtained the following 
parameter estimates: 

7 = 0.9299 

fi = y = 86.40 

a = 2.744 

We simulated from the estimated reduced model. Statistics Z\*, T% and T£, as
sociated with following hypotheses sets (Hw, Hn), (H20, #21) and (H30, #31) 
respectively, were computed and the quantity max;T* was obtained. This 
process was repeated 9,999 times to yield a total of 10,000 simulated max; T* 
values. 

Next, ca, an estimate for ca, the upper a-th quantile of the max;T*, 
was obtained by first ordering the max;T/ values from smallest to largest 
and taking our estimate to be the realization of the 10,000 (1 — a)-th order 
statistic. Note that, for our example a was set at 0.05 which guaranteed an 
integral 10,000 (1 — a) value. Our simulated 0.05-th quantile of the max; T* 
turned out to be 1.1652. 

Figure 1 shows the S-Plus density plot of the simulated max; T* values. 
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For our example, the observed values of the T*s were as follows: 

i 2? 
1 0.4157 
2 0.4237 
3 0.2638 

resulting in failure to reject Hio for i = 1,2,3. 

5 Conclusion 

In this article, we have proposed a method for making simultaneous one-sided 
and two-sided multiple comparisons for linear models, when the parameters of 
interest belong to a closed convex cone. The exact distributions for the result
ing statistics are derived. However, because of complexity of the distributions 
for all except the balanced analysis of variance designs, one must obtain the 
critical values by simulation. An algorithm for generating the approximate 
values of these quantiles is proposed. Lastly, we applied this procedure to a 
data set. 
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Gamma models are extensively employed in statistical analyses, especially for re
liability and lifetime data. Assessing the appropriateness of these models is of 
obvious importance. While characterization theorems in probability and statistics 
are widely appreciated for their role in clarifying the structures of families of prob
ability distributions, they are not as well recognized for being natural, logical and 
effective starting points for constructing tests for goodness-of-fit problems. It is 
well known that two independent identically distributed random variables (X i , X2) 
have a gamma distribution if, and only if, X i + X% and X1/X2 are independent. 
This characterization is used by Locke 1 8 to propose a method for testing the com
posite gamma hypothesis. It is based upon the random creation of n pairs from a 
sample of size 2n, and using tests of bivariate independence, such as those based 
on the rank correlation coefficient or Kendall's tau, for testing independence of the 
sums and the ratios. However, the tests of bivariate independence he considered 
are consistent against only some dependence alternatives. Instead, we propose em
ploying the classical rank test due to Hoeffding 9 or its asymptotic equivalent due 
to Blum, Kiefer and Rosenblatt 2 , which are known to be consistent against all 
dependence alternatives. The resulting goodness-of-fit tests are consistent against 
all non-gamma alternatives and, in moderate size samples, offer substantial power 
advantages. Additionally, an alternative approach, which does not suffer from the 
caprice of chance implicit in the random pairing, is also considered. 

1 Introduction and Summary 

Characterization theorems in probability and statistics are generally well ap
preciated for their aesthetic appeal, mathematical completeness and the light 
they shed on the structures of the probability distributions. Although logi
cally self evident, but not well recognized, is the fact that they can be natural 
and effective bases for constructing goodness-of-fit (GOF) tests needed for 
assessing the validity of models based on parametric families, such as normal, 
exponential, and inverse Gaussian (IG), commonly used in statistical practice. 

The earliest explicit use of a characterization theorem for constructing a 
goodness-of-fit test is by Vasicek 37, who used Shannon's maximum entropy 
characterization to construct a test for the composite hypothesis of normality. 
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Now there exists a substantial body of literature on the goodness-of-fit tests 
based on characterization theorems. Maximum entropy characterizations have 
been used by Gokhale 7 and Mudholkar and Lin 27 to construct goodness-of-
fit tests for exponentiality, and more recently by Mudholkar and Tian 30 to 
construct a GOF test for the inverse Gaussian model. Characterization results 
based on the statistical independence of sample statistics have been used by 
Lin and Mudholkar 15 and Mudholkar, Marchetti and Lin 28 to construct 
GOF tests for normality, and by Mudholkar, Natarajan and Chaubey 29 to 
test inverse Gaussian goodness-of-fit. For an overview of characterizations 
and goodness-of-fit, see Marchetti and Mudholkar 20. 

The gamma family of unimodal, right-skewed distributions with nonneg-
ative support, has been used to model a wide variety of applications in diverse 
fields such as geology (McCullagh and Lang 2 5 ) , ecology (Matis, Rubink, and 
Makela 2 3 ) , inventory control and queuing (Yeh 4 0 ) , economics (McDonald 
and Jensen 2 6 ) , meteorology (Bougeault 3 ) , reliability (Reiser and Rocke 3 5 ) , 
biomedical studies (Tan 36) and genetics (Yang 3 9 ) . Testing the appropriate
ness of the gamma models for use in these applications is vital. 

Empirical distribution function (EDF) tests for the composite gamma hy
pothesis have been developed by Pettitt and Stephens 34 and Lockhart and 
Stephens 16. For an account of these, see D'Agostino and Stephens 4 . It 
is well known that the distribution of two IID random variables (X\,X2) is 
gamma if and only if X\ + X2 and X\jX2 are independent (see Lukacs, 1 9) . 
Locke 17,Locke76 proposed testing the composite gamma hypothesis by cre
ating n pairs from a sample of size 2n and testing the independence using 
procedures such as the one based on Kendall's tau. Since the rank tests of 
bivariate independence he considered are consistent against only some depen
dence alternatives, the resulting gamma GOF tests lack consistency against 
all non-gamma alternatives. 

The existing goodness-of-fit tests of the composite gamma hypotheses are 
reviewed in Section 2. A modification of one of these tests, together with 
a comparative study of its power function is presented in Section 3. The 
modified test, which is consistent against all non-gamma alternatives, offers 
a power advantage with moderate sample sizes. In Section 4, an alternative 
approach is considered. Section 5 is given to conclusions. 

2 The Gamma Goodness-of-Fit Tests 

The literature on testing goodness-of-fit for the gamma models is rather scant, 
and most of the proposed solutions lack simplicity for use in practice. The 
tests available, which may be grouped as the EDF tests and the tests based 
on characterization results, are now reviewed. 
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2.1 The Empirical Distribution Function Tests 

The empirical distribution function for a sample Xi,X%, ...,X„ is defined by 
Fn(x) = #(Xj < x)/n. To test that the sample is from a population with a 
distribution function F(x) = F0(x), where F0(x) is fully specified, one may 
measure the discrepancy between the Fn(x) and F0(x). 

Kolmogorov 13 introduced the first EDF statistic, D, by defining 

D+ = sup{Fn{x) - F0{x)}, (1) 
X 

£>_ = sup{F0(a;) - Fn(x)}, and (2) 
X 

D = sup \Fn{x) - F0(x)\ = max(D+ , DJ). (3) 
X 

The Cramer-von Mises family is a class of statistics of the form 

/

oo 

{Fn(x)-F0{x)}21>{x)dF[x). (4) 

-oo 

When ip(x) = 1, the Cramer-von Mises W2 statistic is obtained; when i[>(x) = 
[F(x)(l — F(x))}~1, one obtains the Anderson-Darling * statistic A2. 

The EDF tests have been adapted for the composite goodness-of-fit hy
pothesis F(x) = F0(x, 6), where F0 is known but 6 is not, by plugging in 
estimated 0 for 6. Pettitt and Stephens 34 considered the problem of testing 
the composite gamma hypothesis in which the shape parameter a is known 
and scale parameter /? is unknown. They provide asymptotic percentiles for 
three EDF statistics for the problem. Lockhart and Stephens 16 examined 
the situation of a gamma distribution with unknown shape parameter and 
scale parameter either known or unknown. They suggest using a maximum 
likelihood estimator of a and give asymptotic percentiles for the resulting 
EDF statistics. D'Agostino and Stephens 4 provide an excellent overview of 
goodness-of-fit for the gamma and other distributions. 

2.2 Characterizations and Gamma GOF Tests 

A nice summary of characterizations of the gamma family, from the earliest 
results due to Nabeya 33, Goodman 8 , Mauldon 24 and Laha 14, appears in 
Johnson, Kotz and Balakrishnan 12. The simplest of these, the following result 
due to Lukacs 19, is the basis of Locke's 18 test. 

Proposition 2.1: Two independent random variables (X\,X2) have a 
common gamma distribution iff X\ + X-i and X\jXi are independent. 
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Extensions, applications and reviews of the above characterization may 
be found in Findeisen 6 , Marsaglia 21,22 and Wang 38. Since this character
ization is asymmetric in Xt and X2, Locke 17 considers the dependence in 
terms of U = Xi + X2 and V = ma.x(X1/X2, X2/X1). 

Before discussing the specifics of Locke's test we note a general maxi
mum entropy result, from which characterizations of several members of the 
exponential family have been fruitfully used to develop consistent goodness-
of-fit tests. The examples include the maximum entropy tests of the compos
ite hypotheses of normality (Vasicek 3 7 ) , uniformity (Dudewicz and van der 
Meulen 5 ) , exponentiality (Gokhale 7, Mudholkar and Lin 27) and the inverse 
Gaussian distribution (Mudholkar and Tian 30>31). Gokhale 7 presents a gen
eral discussion of construction and suggests a GOF test for the gamma model, 
but offers no details. The following is a relatively recent characterization due 
to Hwang and Hu n which will be considered in Section 4. 

Proposition 2.2: The mean x and coefficient of variation s/x of a ran
dom sample are independent iff the population is gamma. 

2.3 Locke's Tests 

Specifically, Locke 18 proposed testing the composite gamma hypothesis by 
randomly pairing observations from a sample of size 2n, to obtain n pairs 
(Yi,Zi), where 

Yi = X2i + X2i-i, Zi = m&x{X2i/X2i-i,X2i-i/X2i}, (5) 

i = 1,2, ...,n. Then testing the composite gamma hypothesis is equivalent 
to testing the independence of Y and Z. Locke employs the quadrant tests 
and tests based on the rank correlation coefficient and Kendall's tau for this 
purpose. 

An obvious drawback to this method is that with random pairing, the 
same data set can produce different results. However, more importantly the 
rank tests that Locke considers are consistent against only some dependence 
alternatives. In the next section, we propose a modification of Locke's proce
dure that addresses the consistency issue. 

3 A Consistent Modification of Locke's Procedure 

Locke's 18 approach of randomly pairing the observations in the sample can 
be combined with use of the consistent tests of bivariate independence due 
to Hoeffding 9 and Blum, Kiefer and Rosenblatt 2 to construct gamma GOF 
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tests which would be consistent against all non-gamma alternatives. These 
modifications would be considered improvements over Locke's test provided 
they show power advantages with moderate size samples. In this section, we 
first describe the consistent tests of bivariate independence, the modification 
of Locke's procedure, and then present the results of a study of the power 
functions. 

3.1 Two Consistent Tests of Bivariate Independence 

Hoeffding's 9 notes that 

D(x, y) = FX,Y ( * , » ) - FX (x) FY (y) = 0, (6) 

if and only if X and Y are independent. Nonparameteric estimation of the 
quantity J D2(x, y)dF(x, y) results in the statistic, 

_Q-2(n-2)R+(n-2)(n-3)S 
n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) ' ^' 

in which 
n 

Q = J2(Ri - !)(*i - 2)(Si ~ !)(£ - 2), (8) 
1 = 1 

71 

22 = 5^(i2i-2)(5 i-2)c i, (9) 
i= i 
n 

s = I > < - 1)Ci- (10) 
t = i 

where Ri and Si are the respective ranks of Xi among the A"'s and Yi among 
the y ' s , and Ci is the number of bivariate observations (Xj,Yj) for which 
Xj < Xi and Yj < Yi. Hoeffding 9 provides the exact null distribution of 
nDn for sample sizes n = 5,6,7 which is extended to n = 8,9 by Hollander 
and Wolfe 10. However, Hoeffding 9 was unable to obtain the asymptotic 
distribution of nDn. 

Blum, Kiefer and Rosenblatt 2 consider a computationally simpler statis
tic, 

n 

Bn = n-5 J2 Wi(i)N4(i) - N2(i)N3(i)f, (11) 
t = i 

where N\(i), N2(i), Ns(i), and JV4(i) are the number of points lying in the 
four quadrants determined by the vertical and horizontal lines through the 
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bivariate point (Xi, Yj). Independence is rejected for large values of the test 
statistic. 

Blum, Kiefer and Rosenblatt 2 show that nBn is asymptotically equivalent 
to Hoeffding's 9 statistic and provide the asymptotic percentiles. Mudholkar 
and Wilding 32 obtain the empirical distribution of the two statistics for small 
and moderate size samples. A selection of the 10%, 5% and 1% points of the 
nDn and nBn statistics appears in Table 1. 

A Gaussian approximation for the nBn statistic, which can be used to 
obtain both the associated percentiles and probabilities, is currently under 
development by Mudholkar and Wilding. 

3.2 The Modified Test 

The tests of bivariate independence due to Hoeffding 9 and due to Blum, 
Kiefer and Rosenblatt 2 may be used for testing the independence of Y and 
Z. Since the two rank tests are consistent against all dependence alternatives, 
it is obvious that the modified versions of Locke's procedure using these tests 
will produce goodness-of-fit tests which are consistent against all non-gamma 
alternatives. 

Let Xi,X2,..., Xin be a random sample from a population with d.f. F and 
consider the problem of testing the composite hypothesis that F(-) is the d.f. 
of a gamma random variable. If the sample size is odd, as in Locke 18, delete 
an observation at random. We propose testing the composite hypothesis by 
randomly pairing observations from the sample, to obtain n pairs (Yi, Zi), as 
given in (5). Testing the composite gamma hypothesis is equivalent to testing 
the independence of Y and Z. The rank tests due to Hoeffding 9 and to Blum, 
Kiefer and Rosenblatt 2 are employed for this purpose. 

3.3 A Monte Carlo Experiment 

A Monte Carlo experiment was conducted using 100,000 simulated samples 
of size n = 20,30,50,100 from a variety of non-negative populations. Each 
sample was subjected to the above tests of the composite gamma hypothesis 
which are based on Locke's premise and use tests of bivariate independence 
due to Kendall, Spearman, Hoeffding and Blum et al. 

A selection of the results of the simulation experiment are shown in Table 
2. In the population column, GTL stands for Generalized Tukey-Lambda 
family. Where parameters are unspecified, the standard distribution is used. 
The Spearman, Hoeffding and Blum et al. tests have excellent Type I Error 
control, but the Kendall test is not so accurate in this respect for small or 
even moderate sample sizes. For most of the populations, but not all, the tests 
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4 An Alternative Approach 

To remove the caprice inherent in the random pairing of observations, another 
approach to testing goodness-of-fit for the gamma distribution is in progress. 
It is based upon the following recent characterization of the gamma distribu
tion due to Hwang and Hu u , given in Proposition 2.2. 

For developing the test we use the technique introduced by Lin and Mud-
holkar 15 in their test for normality. Given a random sample x\, X2, • ••, xn, we 
create n pairs (£_i, c_;) by removing one observation at a time from the sam
ple. The product moment correlation between the pairs is used to measure 
dependence between x and c. We therefore consider the statistic 

r = E i U ( 5 - i - g ) ( c - i - c ) (12x 

> /£"= i ( 2 - i - S)2 E L i ( c - i - c)2 

where c = n _ 1 £ " = 1 c_j. The asymptotic null distribution of r, however, 
depends on the shape parameter of the gamma distribution a. 

y/nr-+N(o,3+™). (13) 

One can compute the maximum likelihood estimate & and substitute to obtain 
a measure of the standard error, but such estimation requires solving a non
linear equation involving the di-gamma function. There is also the question 
of use with small samples. Investigation of these issues is in progress. 

5 Conclusion 

In this paper we have examined the use of Hoeffding's 9 test of bivariate inde
pendence and its asymptotic equivalent due to Blum, Kiefer and Rosenblatt 2, 
to obtain consistent modifications of Locke's test of the composite gamma hy
pothesis. It is seen that the modified tests have substantial power advantages 
over the original. 
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ON FRAILTY MODELS A N D COPULAS 
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We review the connection between archimedean copula models and frailty models 
for bivariate failure-time data, emphasizing applications in biostatistics, reliability 
and extreme value theory. A new method for semiparametric estimation of the 
dependence parameter in an archimedean copula model is proposed. 

1 Bivariate Frailty Models 

Many models have been proposed for multivariate data failure-time data 
(Ti,T2) arising in biostatistics, reliability and other applications. The clas
sical model of Marshall and Olkin 16 has a discontinuity along the diagonal 
Ti = Ti which may be appropriate if the Tj represent times to failure of a 
machine component and failure of one component results in increased stress 
on the other component. However this model would not be appropriate for the 
data reported in Table 1 of Oakes 21 from Lawless 12 (p. 477) in which Ti is 
the time to appearance of a fracture in a component and T2 is the subsequent 
time to failure. A plot of the data, shown in Oakes 21 (Figure 2) suggests that 
Ti and T2 are not independent so that a model is needed which allows the 
bivariate survivor function pr(Ti > t\,Ti > £2) = S{t\,t-i) to be continuous 
over the whole positive quadrant while still allowing dependence between T\ 
and T2. Oakes 22 analyzed an example of Gumbel and MustafA 8 from extreme 
value theory. Here T\ is the height in inches of the flood of the Fox River at 
Berlin, WI (upstream) and T2 the height at Wrightstown WI (downstream). 

Of the many possible models we focus on one class, bivariate frailty mod
els, which allow for very flexible modeling of the marginal distributions of T\ 
and T2 and, separately, of the dependence between them. We assume that 
there is an unobserved random variable W, called here a frailty, common to 
Ti and T2, and such that Ti and T2 are conditionally independent given W. 
In the reliability example above, W might represent the susceptibility or in
herent weakness of the component. In studies of human populations W might 
represent the influence on mortality of unmeasured genetic or environmen
tal factors common to two related individuals. Each of Ti and T2 follows a 
proportional hazards model in W, so that 

Pv(Tj>tj\W = w) = Bj(tJr, 
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where the Bj(tj) are baseline survivor functions, corresponding to a compo
nent with unit frailty W = 1. 

The law of iterated expectations gives 

S(tut2) = E{pr(T! > tuT2 > h\W)} = E{B1{tl)
wB2{t2)

w) 

= p[- log{fl i ( i i )}- log{B2( i2)}] . 

where p{-) = E{exp(- • W)} is the Laplace transform of the distribution of 
W. 

Often the Bj(tj) will not be observable. However if we write q(-) for the 
inverse function to p(-) we obtain the expression 

S(h,t2) =p[q{S1(t1)} +q{S2(t2)}} 

for S(ti,t2) in terms of its marginal survivor functions Si(ti) = S(ti,0) and 
52(42) = S(0,t2). Genest and MacKay 5 described these as "archimedean 
copula models". 

When W follows a gamma distribution with unit scale parameter and 
index K, we have p{s) = (1 + s)~K and 

S{tut2) ~ [ l - log{Bi (* i )} - log{B 2 ( t 2 )}J 

.5i(«i)(-1/*) +S2(t2)(-i/*) - 1 _ ' 

When Bj(tj) = exp(-pjtj) we obtain the bivariate Pareto distribution 
S(h,t2) = (1 4- pih + p2t2)~

K. The form of S{ti,t2) with exponential mar
ginals is mentioned in Johnson and Kotz u (p. 288), but the general form 
appears to have been first proposed by Clayton 2, who also gave an alternative 
derivation via local odds ratios that is described below. The model was later 
given independently by Lindley and Singpurwalla14 who viewed the W as the 
equivalent of a "random environment". 

By allowing W to have the so-called "positive stable distribution" (Feller, 
3 Chapter XII) with Laplace transform p(s) — exp(—sa), for some 0 < a < 1, 
we obtain a family considered by Gumbel, 7 with 

S(tut2) = exp{-([-log{51(t1)}](1/a) + {-\og{S2(t2)}]^r}. 

Hougaard 9 gave the derivation via frailties. See also Oakes and Manatunga 
23 
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2 Local Odds ratios 

The question arises as to whether the distribution of W is determined by 
5(^1,^2)- Oakes 22 answered this question in the affirmative, by considering 
the local odds ratio 

Here the superscripts denote order of differentiation in h and t2 so that the 
terms in the numerator are the joint density and survivor functions of (Ti, T2) 
and those in the denominator are the two mixed survivor-density functions. 
The function 9*(ti,t2) may be thought of as the odds ratio of the 2 x 2 table 
formed by dichotomizing each side of the region above and to the right of the 
point (ti,t2) at ti + Ai and t2 + A2 respectively, where the Aj are small. 
It also equals the ratio of the conditional hazard functions at i2 of T2 given 
Ti = *i and of T2 given Ti > h. 

It is easily seen that 

p'{s)z 

where s = q{Si(ti)} + q{S2(t2)} = q{S(h,t2)}, and so depends on (ti,t2) 
only through the value v say of S(t\,t2). That is 6*{t-\_,t2) — 0{S{t\,ti)} for 
some function 9(v). Moreover, since s = q(v), the inverse function theorem 
gives 

q'(v) 

which can be integrated twice, showing that 9(v) determines q(v) up to an 
arbitrary multiplicative factor. Hence p(s) is determined up to a scale factor 
by 9(v). 

For Clayton's model, with a gamma frailty distribution, we find that 
9(v) = 1/K + 1, i.e. free of (^1,^2), while for Hougaard's model, 

9{v) = 1 + 1~a 

a log(w)' 

which declines from infinity to unity as v declines from v — 1 to v = 0. 
Hougaard's model seems more realistic in most applications. 



221 

3 The Kendall Distribution 

An alternative approach to characterizing archimedean copula models, which 
include frailty models, was proposed by Genest and Rivest 6. They considered 
the (univariate) distribution function K(v) and density k(v) of the random 
variable V = S(T\,T2), analogous to the usual univariate probability integral 
transform. Here the distribution of V is not uniform, but has 

V ' « ' ( « ) ' V ' q'(v)2 

The similarity of the functional forms of 9(s) in terms of p(s) and k(v) in 
terms of q(v) is purely coincidental. It is clear however that either K{v) or 
k(v) determines q(v) up to a constant factor. For Clayton's model we find 
that 

K(V) = (K + 1)V-KV1+1'K, 

and for Hougaard's model 

K(v) = v(l — alogv). 

For Hougaard's model it turns out that Z — — log(F) has the simple mixed 
gamma density f(z) = (1 - a + az)exp(-z), a result originally given by 
Lee 13. An immediate corollary of Lee's result is that if Z has the mixed 
gamma density f(z) and U is uniform (0,1), with Z and U independent, then 
T = UaZ has a unit exponential distribution. This amusing result can be 
shown directly from the facts that 

E{Tn) = E(Una)E{Zn) = —^—-{(1 - a)n! + a(n + 1)!} = n\, 
na + 1 

and that the exponential distribution is determined by its moments (Feller, 3 

p. 234). 
To see the reason for the name Kendall distribution, note that the pop

ulation analog r of Kendall's coefficient of concordance f can be written 
T = 4pr(Tj' > TUT^ > T2) - 1 where the pairs (TUT2) and (T{,T£) are 
drawn independently from S(ti,t2). We have 

r = 4£{pr(T1' > TUT!, > T2)\TUT2) - 1 = 4£S(T1 ,T2) - 1 = 4E(V) - 1. 

For bivariate frailty models r = 4 J sp"(s)p(s) - 1. Clayton's model has 
r = 1/(1 + 2K), while Hougaard's model has r = 1 - a. 

Given a random sample {(T{1>,Tj,1'), i = l , . . . , n } from the bivari
ate distribution, a simple analog estimator K(v) of K(v) can be calculated 
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as the empirical distribution function K(v) = n _ 1 # { i : Vi < v], where 
Vi = (n + l)-x#{j : T^ > T^,TP > T2

W}. Plots of K(v) against v 
or possibly K(v)/v - 1 against v may be useful diagnostics. Barbe et al. x 

prove weak convergence of a suitably normalized version of Kendall's process 
{K(v), 0 < J) < 1} to a Gaussian process and give an expression for the 
covariance function. Note that the limiting covariance exhibits long-range 
dependence. 

A smoother plot may be obtained from risk sets formed from the compo
nentwise minima of two pairs of observations, i.e. from the n(n - l ) /2 pairs 
( T W ) i r W ) ) w h ere T™ = m i n ( T ^ T ^ ) and T^'j) = min(T2

W,T2
0)). Let 

Rij denote the size of the corresponding bivariate risk set, i.e. 

Rij =#{k: T[k) > T^j\T^] > T f j ) } . 

and 

Aij=sign{(T^-T^)(T^-T^)}, 

the indicator of concordance or discordance for the pair (i,j). It is easily seen 
that 

n r . / A _ i | T ( « . J ) _ f T(i,3) _ 4. D _ r \ _ 0 * ( * 1 , * 2 ) 

p r C A ^ - l I T , -tl,T2 -h,B*j-T)-r_l + e.{hM). 

This approach relates closely to the original proposal of Clayton (1978) for 
estimation of 6 in his model: here the conditional probability that a pair is 
concordant given the size of the bivariate risk set is simply 

p 

pr(A y = l\Rtj =r) = r _ 1 + e-

For general archimedean copula models 

6(r/n) 
pr(Ay = l\Rij = r) 

r - 1 + 6(r/n)' 

Oakes 22 gave the exact probability for the positive stable frailty model. 

4 Estimation of a Dependence Parameter 

Suppose that a copula model is specified up to a single parameter a indexing 
the dependence and the marginal distributions are either parameterized fully 
or are kept arbitrary. Then the following strategies are possible for estimating 
Q. 
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(a) (Semi)parametric maximum likelihood or an equivalent technique. Re
sults of Murphy 17 '18 and Parner 24 for special frailty models and of Murphy 
and van der Vaart 19 for general semiparametric profile likelihood functions 
suggest that this approach can be expected to be consistent, asymptotically 
normal, and asymptotically fully efficient. However there are some questions 
about its performance in small samples. The EM algorithm can sometimes 
be used to assist computation. 

(b) Marginal profile ("pseudo-")likelihood estimation. Fit each marginal 
separately, either by parametric or nonparametric maximum likelihood, and 
then assume that each marginal is fixed at its estimated value and maximize 
the likelihood in a. See, for example, Shih and Louis, 25 Genest, Ghoudi and 
Rivest 4 and Hougaard 1 0 ) . This approach appears to work well in practice, 
has a relatively simple asymptotic theory, but is not fully efficient. 

(c) Use an analog estimator based on Kendall's r or another similar sum
mary measure of correlation (Oakes, 20 Manatunga and Oakes 15 and Genest 
and Rivest 6 ) . 

(d) Derive estimating equations based on bivariate risk sets, i.e. consider 
pr(Ay = l\Rij) - see the discussion at the end of the previous section. 

(e) Fit the Kendall density k(v) to the distribution of the empirical es
timates Vi defined in Section 3. Asymptotic theory needs to be modified to 
account for the correlations among the Vi. Properties of this estimator are 
being studied by A. Wang and D.O. It seems to work quite well. Details will 
be given elsewhere. We used this approach to compute estimates K, and d 
and the corresponding values f of Kendall's tau from fitting the gamma and 
positive stable frailty models to the data for the two examples mentioned in 
Section 1. 

For the cable insulation data (with f = 0.46) the estimates from the 
gamma model and positive stable model are respectively 

Gamma Model: h = 0.46 f = 0.52, Stable Model: a = 0.45 f = 0.55 . 
For the Fox river data (with f = 0.52) we follow Gumbel and Mustafi 8 and 
Oakes 22 in applying our models to the inverted ranks, which gives, 

Gamma Model: k = 0.38 f = 0.57, Stable Model: a - 0.43 f = 0.57 . 
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Statistical analysis of fractional Brownian motion is difficult because it exhibits 
long range dependence. In this paper, we describe experiments that show that the 
method of surrogate data can help with this problem. 

1 Introduction 

Fractional Brownian motion (Mandelbrot and Van Ness 7) has become one of 
the standard models of telecommunications traffic due to three facts. When 
appropriate, it is a parsimonious model, as it is parameterized by three pa
rameters; it has Gaussian marginal distributions; and it exhibits long range 
dependence, as many real traffic streams do. 

The long range dependence, while necessary for accurate modeling, 
presents statistical difficulties. For example, the standard way of proving the 
Central Limit Theorem (CLT) for dependent random variables (see Resnick 
11) is to find an integer m such that random variables further apart than m 
are independent. Then, in essence, one applies the regular, independent CLT 
and estimates the error term introduced by leaving out blocks of m random 
variables, and shows that this error term can be made as small as desired. 
However, in the long range dependent setting, finding such an m may not be 
possible. 

One could also appeal to the generalizations of the bootstrap to dependent 
data, such as the moving blocks bootstrap. However, it is a known result 
(Lahiri 6) that the moving blocks bootstrap does not necessarily work with 
long range dependent data. 

The solution to this problem comes from an unlikely source, nonlinear 
dynamics. Surrogate data (also known as "phase scrambling", "Fourier boot
strap methods", etc.) was developed for hypothesis testing in nonlinear dy
namics in the early 1990's. At that time, many papers were published claiming 
that some observational set of data had a particular fractional correlation di
mension, and therefore that the data was chaotic. The surrogate data method 
was developed (Theiler et al. 13) to be able to test this claim, by generating 
many linear, Gaussian synthetic data sets that had the same first and second 
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order statistics as the original data. One could then compare a statistic, such 
as correlation dimension, of the original data set to a histogram of the same 
statistic of the synthetic data sets, and if they were significantly different, one 
could reject the null hypothesis that the original data could be generated by 
a linear, Gaussian process. 

We will present evidence, both by referring to the research literature, 
and by numerical experiments, that the surrogate data method captures the 
relevant characteristics of fractional Brownian motion, including long range 
dependence. Pointer to S+ source code is provided so that the readers can 
perform their own experiments. 

2 Fractional Brownian Motion 

Definition 2.1. A stochastic process {X(t),t > 0} is said to be a fractional 
Brownian motion with Hurst parameter H if 

1. X(t) has stationary increments for t > 0; 

2. X(t) is normally distributed with mean 0; 

3. X(0) = 0 almost surely; and 

4. The increments of X(t),Z(j) := X(j + 1) - X(j),j = 0,1, . . . satisfy, 

Pz(k) = ±{\k + l\2H + \k-l\2H-2h?h} 

where pz denotes the autocorrelation function of Z. 

Remark 2.1. Let {X(t), t > 0} be a fractional Brownian motion with Hurst 
parameter H > 1/2. Then the increments of X(t) are long range dependent. 

There are many ways to simulate fractional Brownian motion, such as ran
dom mid-point displacement; superposition of heavy tailed on/off processes, 
wavelet methods, and Fourier methods. In this paper we use the last method, 
as described in Paxson 8. 

A common model for long range dependent network traffic is 

W(t) = Xt + aXH(t), 

where W(t) represents the total amount of traffic that has arrived by time t, 
A and a are parameters representing the mean and standard deviation of the 
arrivals, and Xn(t) is a fractional Brownian motion with Hurst parameter H. 
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3 Surrogate Data 

Theiler et al. 13 proposed a method of generating synthetic data that preserves 
the mean and the autocorrelation of the original series. The mean is preserved 
by subtracting it from the original series, and then adding it back to the syn
thetic series. This is standard, as it is frequently also a step in moving blocks 
bootstrap, or even classical time series analysis [ARMA modeling, etc.). For 
the autocorrelation, they proposed taking the Fourier transform of the series, 
and then scrambling the phases of the transformed data, while ensuring that 
the phases remain symmetric so that when the data is transformed back it 
is real valued. The phases can be either sampled with replacement from the 
original phases (i.e. bootstrapped), or they can be sampled uniformly on the 
interval. Here, we use the latter choice for its simplicity. 

Now, because the autocorrelation function of a time series is determined 
by the power of its Fourier transform [i.e. the square of the coefficients), and 
that the power of the Fourier transform does not depend on the phase of the 
data, the output of this procedure has the same autocorrelation as the input 
does. Furthermore, this procedure requires only that the data be a realization 
of a linear Gaussian process, and a particular such process does not have to 
be specified. 

Here is how we generate a single Surrogate Data Sample. 

Algorithm : To Generate a Surrogate Data Sample with Gaussian Marginals 

• 1. Input a time series y[t],t = 1...N. 

• 2. Compute the discrete Fourier transform of the data: z\t] := DFT[y[t\). 
Note that z[t] has both real and imaginary parts. 

• 3. Randomize the phases: z'[t] := z ^ e ^ ' l where <f>[t] where is uniformly 
distributed on (0,2w]. 

• 4. Symmetrize the phases to ensure that z'[t] := z"[t]. The mechanics of 
this will depend on the way in which your software stores the components 
of the FFT. 

• 5. Invert the discrete Fourier transform: y'[t] :— DFT~1z"[t\. . Note 
that because of the symmetry of the phases, the resulting time series y'[t] 
is real. 

• 6. Output y'[i\. 
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Suppose we want to generate a surrogate data set for the time series 
(0.707,1.0,0.707,0.0, -0.707, -1.0, -0.707,0.0,0.707,1.0,0.707,0.0, -0.707, 
-1 .0 , -0.707,0.0). The DFT of this series is approximately (0,0,1.414+1.414i, 
0,0, 0,0,0, 0,0, 0, 0,0,0,1.414-1.414i, 0). Random, symmetric phases are (0.0, 
1.433,4.543,1.996,0.878,4.724,2.792,0.736,0.0, -0.736,-2.792, -4.724, -0.878, 
— 1.996,-4.543,-1.433). Our data to inverse transform is then 
(0.0,0.0,1.155 - 1.632J, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.155 + 
1.632i,0.0). Finally, our inverse DFT'd data, i.e. our surro
gate data set, is (0.577,0.985,0.816,0.169,-0.577,-0.985,-0.816, 
-0.169,0.577,0.985,0.816,0.169, -0.577, -0.985, -0.816, -0.169). In or
der to calculate a statistic, one would normally generate many surrogate 
data sets of the original, calculate the statistic of each, assemble them into a 
histogram, and proceed as in the bootstrap methods. 

This method is frequently used in nonlinear time series analysis to perform 
hypothesis tests, however little theoretical work has been done to assess it's 
limits. The following two results are notable exceptions. 
Theorem 3 .1. (Braun and Kulperger x) Suppose the autocovariance func
tion of the original process is absolutely summable. Let 

then 

a s n -> co, where / is the spectral density of the original process (which 
determines the autocorrelation of the process), and Y* is a surrogate data 
version of the original process. 

In other words, the surrogate data has the same Fourier spectrum as 
the original data, asymptotically. The next result says that (roughly) the 
marginal distribution of the surrogate data converges in distribution to a 
Gaussian distribution. 

Theorem 3.2. (Braun and Kulperger 1) If {Y/j, h > 1} is a stationary ergodic 
sequence such that {Yfi, h > l } is ergodic with E\Y2) = a2, then then 

Y* % JV(0, o-2)almost surely for j = 1,2,... 

Remark 3.1. The surrogate data method generates synthetic data that has 
the same sample autocorrelation structure as the original series, not the same 
autocorrelation as the population, i. e. we may be reproducing artifacts of the 
sample, and not the true distribution we are seeking. 
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Remark 3.2. The autocorrelation we are talking about is the circular auto
correlation, defined by which in the limit of infinite sample size approaches 
the population autocorrelation function, but in the case of finite sample size is 
only approximately equal to the population autocorrelation function, defined 
by 

1 /N-t N 

PC(T) •= -jy ( 5Z Xtx*+T + 5 3 xtXt+T-N 
\t=l t=N-T+l 

Remark 3.3. The documentation for the source code that we use for the 
surrogate data method (Davison and Hinkley 4) says "The types of statistic 
for which this method produces reasonable results is very limited and the 
other methods seem to do better in most situations." Although this may be 
true, surrogate data seems to work well in this case. 

In Percival, Sardi and Davison, 9 the following two claims about this 
method are made. 

Remark 3.4. "Unfortunately this resampling scheme and its variants apply 
to a very limited range of statistics, because they mimic only second-order 
properties of the original data." This is true, but fractional Brownian motion is 
determined by second-order properties, thus in this case, it is not a limitation. 

Remark 3.5. "Moreover variability is underestimated because this resam
pling scheme fixes the periodogram, unlike for the original series whose peri-
odogram is random, and statistics that can be computed from the periodigram 
such as , display no variation across samples." This fixed periodigram problem 
may be able to be overcome by i) resampling the phases of the data, or ii) 
applying more sophisticated methods, such as those of Schreiber and Schmitz 
12 

Also, it is the purpose of this note to encourage research into this method, 
and thus the above criticisms of the method should be seen as challenges and 
opportunities for further research. 

4 Fractional Brownian Motion and Surrogate Data 

The fact that the surrogate data method generates synthetic data sets that 
are linear and have Gaussian marginals is not as restrictive as it seems, as "a 
long-memory process can always be approximated by an ARMA(p, q) process" 
(Brockwell and Davis, 2 p 520), i.e. a sufficiently complicated linear Gaussian 
process. Also, a linear, Gaussian time series is determined by its autocorrela
tion function, so we have the following chain of reasoning. 
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• A fractional Brownian motion (long memory process) can be approxi
mated arbitrarily well by an ARMA(p, q) process with sufficiently large 
p and q. It is determined by its mean and autocovariance function. 

• The approximating ARMA(p, q) process is a linear process with Gaussian 
marginals, and as such it is determined by its mean and autocovariance 
function. 

• The surrogate data method outputs a series with the same autocovariance 
as its input, and approximately Gaussian marginals. 

• Therefore, the output is a fractional Brownian motion with the same long 
range dependence properties as the input. 

The only obstacle to proving this is that the proof of Theorem 1 requires that 
the autocovariance function of the series must be absolutely summable, which 
is not the case for long range dependent data. In fact it is sometimes used as 
the definition of long range dependence! 

However, in the next section, we present experimental results that suggest 
that the surrogate data method does, in fact, work for fractional Brownian 
motion. 

5 Experimental Results 

For the following experiments, all trace lengths were 215, Hurst parameters 
were estimated with the periodigram method, and for the Moving Blocks 
Bootstrap, a block length of 32 was used (trace length 1/3, as suggested in 
Kunsch 5 ) . 

In the graph that follows for each target Hurst parameter in the set 
0.5,0.525„0.975, we generated one fractional Brownian motion. Then 100 
surrogate versions of the data were generated, and a 95% confidence interval 
for the Hurst parameter of the surrogate data sets is presented. Similarly, 
100 moving block bootstrap versions of the data were generated, and a 95% 
confidence interval for the Hurst parameter of these moving block bootstrap 
data sets is presented. 

Note that the surrogate data confidence intervals are right on line with 
the actual Hurst parameters, those of the moving blocks bootstrap are signif
icantly low. We see that the moving blocks bootstrap becomes more biased 
as the Hurst parameter increases, which is to be expected, as the moving 
blocks bootstrap works for independent data (H = 0.5) and does not for long 
range dependent data (H > 0.5). The surrogate data method has only small 
fluctuations in bias as the Hurst parameter increases. 
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95% Confidence Intervals 

• 

^ CO 
~° • 
m 

-#-• as 
E t> 
t i ° 
LLI 

ta 
a 

0.B 0.7 OB 0.9 

H 

Figure 1: 95% Confidence Intervals of Hurst Parameter 

6 Conclusion 

It seems that the absolute summability hypothesis of Theorem 1 may be 
stronger than is needed to achieve the result, and that the method of surro
gate data may work in the long range dependent case too. In all cases, the 
Surrogate Data method has less bias than the Moving Blocks Bootstrap. 

In this paper we used, as our point estimator, the periodogram estimator 
of the Hurst parameter. However, it is expected that the surrogate data 
method provides a method to calculate confidence intervals for a much larger 
variety of statistics for long range dependent processes. An example of this 
is the Dembo estimator of the effective bandwidth of a fractional Brownian 
motion traffic stream, discussed in Rabinovitch 10. Also, note that the same 
experiments were run with the Veitch-Abry wavelet estimator of the Hurst 
parameter, and Mandelbrot's method of generating a fractional Brownian 
motion with essentially the same results. 

7 Source Code 

Code to calculate the Hurst parameter of a data set by using the peri
odogram method, (and others) is available from Murad Taqqu's web site at 

Surrogate Data 
Confidence Intervals 

Moving Blocks Bootstrap 
Confidence Intervals 



232 

http://math.bu.edu/INDIVIDUAL/murad/methods/index.html. Vern Pax-
son's source code to generate a fractional Brownian motion was obtained from 
http://ita.ee.lbl.gov/html/contrib/fft-fgn.html, and is described in Paxson 8. 
Code for the surrogate data method, as well as the moving blocks bootstrap 
was written by Angelo Canty and is included and described in Davison and 
Hinkley 4. It is also available at http://lib.stat.emu.edu/S/DH/bootlib.sh.Z. 
Code for Mandelbrot's method of generating a fractional Brownian motion 
and for the Veitch-Abry wavelet estimator of the Hurst parameter are avail
able in Coeurjolly 3. 
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The primary motivation for this work is drawn from problems arising in the analy
sis of incomplete data. Although data can be incomplete in many ways, we are 
most interested in those situations where an intermediate event, which is of prime 
importance, cannot be observed. For example, in the analysis of data from occult 
tumour trials, the time of tumour onset is not known. Due to incompleteness of 
the data, analyses become very complex and many assumptions are often required 
to develop a basis for inference concerning the tumour incidence. We briefly dis
cuss the assumptions made that lead to many different analyses of occult tumour 
trial data in the past two decades. From the prospect of reducing the sample size 
in occult tumour trials, some models have been proposed. These semi-parametric 
models assume relationships in tumor-bearing and tumor-free animals and have 
impact on tumor onset rates and potency measures of carcinogenic substances 
that we have explored further. 

1 In t roduc t ion 

Rodent tumorigenicity experiments are commonly used to screen chemicals, 
drugs, and food additives for carcinogenic effects. Experiments of this type 
have three different, though related, purposes; these are: 

(a) to estimate the rate of tumour development, which is assumed to be 
irreversible, 

(b) to estimate the effect of tumour presence on the death rate, and 

(c) to estimate carcinogenic potency, i.e., the magnitude of the dose effect of 
the substance of interest. 

In addition, with respect to (b) one is interested in estimating how tumour 
presence alters the rate of death in tumour-bearing subjects; in other words, 
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how lethal is the tumour? Generally, the lethality of a tumour can be classified 
as incidental, lethal or intermediate. An incidental tumour does not alter the 
death rate in tumour-bearing subjects, i.e, the death rates in tumour-bearing 
and tumour-free animals are the same. On the other hand, if an experimental 
animal dies almost immediately after tumour onset, the corresponding tumour 
is known to be one of the lethal type. Tumours which are neither lethal nor 
incidental are known as tumours of intermediate lethality. 

Another interesting aspect of this type of experiment is the problem of 
estimating the rate at which tumour develops in a specific environment on 
specific sets of subjects. However, the most important focus of this type of 
experiment is to compare a potentially carcinogenic agent to its absence in 
relation to the rate of tumor onset. 

We now turn our attention to those trials which involve occult tumours, 
i.e., the presence of a tumour is determined only at the time of postmortem. 
A typical experiment involves about 600 experimental animals of both sexes 
in each of two strains randomized to a control group or one of two or three 
exposure groups. In most of these experiments, the animals, which are usually 
mice or rats, are maintained in a controlled environment and dosed with 
the potential carcinogen according to the experimental protocol. During the 
experiment, animals may be selected for interim sacrifice according to the 
protocol in order to determine their tumour status. At the conclusion of the 
study, all surviving animals are killed for humane reasons and to discover their 
tumour status as well; this is known as the terminal sacrifice. In experiments 
which involve smaller sample sizes, often only a terminal sacrifice is performed. 

Occult tumour studies represent an important source of information con
cerning the possible carcinogenic effect of potentially hazardous substances 
such as chemicals, drugs and food additives. Animal survival/sacrifice exper
iments are commonly used in such studies, and furnish data that typically 
include the administered dose of the suspected carcinogen, the age of the an
imal at death and indicators of the presence or absence, at death, of various 
tumours. These data are frequently both grouped and incomplete, and are 
invariably difficult to analyze. 

Hoel and Walburg n were the first investigators to consider the analysis of 
data from carcinogenicity studies involving occult tumours in living animals, 
and made a useful distinction between rapidly lethal tumours and incidental 
tumours. In the former, the time to death following tumour onset is short, 
and therefore time to death is a good proxy for the time of tumour onset. 
Accordingly, an analysis based on time to death with tumour is indicated. In 
the incidental tumour case, the tumour has no effect on the death rate and the 
proportion of deaths with tumour provides an estimate of the tumour preva-
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lence at that time. Most tumours, however, are neither lethal nor incidental; 
consequently, neither of these methods is appropriate. Under the assumption 
that the cause of death can be identified, i.e., whether death is principally due 
to tumour or due to competing risks, Kodell and Nelson 14 consider a semi-
Markov model with Weibull transition intensity functions. They estimate 
the parameters by maximizing the likelihood function for the model, and il
lustrate their results by analyzing a carcinogenicity trial involving the toxic 
substance benzidine dihydrochloride. Kalbfieisch, Krewski and Van Ryzin 12 

provide a thorough review of the field, and describe the construction of the 
full likelihood function in detail. Other related articles include Kodell, Shaw 
and Johnson 15, Dinse and Lagakos 7, Turnbull and Mitchell 26 and Portier 
20; in these papers, the authors are interested in estimating the tumour onset 
distribution based on a multiple decrement analysis. 

Another key assumption used in the development of methods for the 
analysis of occult tumour trials is cause of death. That is the deaths can 
be classified as due to tumour or due to competing causes. Although the con
text of observation is a fairly common assumption on which the analysis of 
carcinogenicity experiments is based, the cause of death is not always known, 
or it may be uncertain (see Finkelstein and Ryan 10, Lagakos and Ryan 16 or 
Kodell, Shaw and Johnson 1 5) . For example, in an empirical investigation of 
the EDQI data, Lagakos and Ryan 16 found the cause of death information to 
be inadequate for several tumour types occurring in that experiment. Con
sequently, it seems unwise to assume that reliable information of this type is 
likely to be available. Alternative to the assumption of the cause of death in
formation, there are some procedures that are based on estimating the number 
of deaths due to fatal tumours and non-fatal tumours first and then estimat
ing the tumour onset rates and testing the effects of the potential carcinogen 
on the tumour onset rates (Ahn et al. 1). 

McKnight and Crowley 18 and Dewanji and Kalbfieisch 5 both provide 
an extensive survey of nonparametric methods of estimation in occult tumour 
studies. McKnight and Crowley 18 argue that the tumour incidence rate 
should be the principal quantity of interest in carcinogenicity experiments, and 
propose a nonparametric estimator of this quantity. Dewanji and Kalbfieisch 
5 derive a nonparametric estimate of this rate using the EM algorithm. In 
both papers, information from numerous interim sacrifices is essential in esti
mating this key rate. Some other results which also require numerous interim 
sacrifices may be found in the papers by Williams and Portier 27-28. 

From the perspective of an experimentalist, interim sacrifices represent an 
undesirable aspect of the nonparametric approach, because they frequently 
inflate the size and cost of a proposed trial. One approach which reduces 
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the necessity for interim sacrifices involves the use of parametric models for 
the death rates experienced by tumour-free and tumour-bearing animals. Al
though many different parametric models might be possible, two particular 
forms were considered quite naturally in this occult tumour context. 

In the first parametric form, which is referred as the constant risk ratio 
(CRR) model (Dinse 7 , s , and Lindsey and Ryan 17) and multiplicative failure 
rate (MFR) model (Rai and Matthews 2 3 ) , are based on the Cox proportional 
hazards model (Cox 3 ) . In the second, which corresponds to a cause-separable 
hazards model, the rates of death for tumour-bearing and tumour-free animals 
differ by a constant, referred as constant risk difference (CRD) model (Dinse 
7,8) and additive failure rate (AFR) model by Rai and Matthews 23; when the 
death process is a discrete random variable, there is not any preferred version 
of the AFR model proposed in the occult tumour trials. In all these semi-
parametric models, the lethality is assumed to be constant over time. When 
time to tumour onset is considered a continuous random variable and time to 
death is considered a discrete random variable, all these semi-parametric ap
proaches provide estimates of tumour onset rates in experiments that have as 
few as only a terminal sacrifice. But in some experiments these rates are heav
ily dependent on the form of the lethality parameter (Rai et al. 2 4 ) , suggesting 
that the relationship is too restrictive and model dependent. Therefore when 
there is at least one more interim sacrifice, a more general model for lethality 
can be accommodated, that we consider in this manuscript. 

In the remainder of this manuscript, we organize the remaining sections 
as follows. In Section 2 we define quantities of interest in occult tumour trials 
and construction of the likelihood. In Section 3 we define some additional 
notations for nonparametric estimation and also suggest some parametric re
lationship for describing lethality. The estimation is discussed very briefly 
in Section 4. In the penultimate section, we reanalyzed a subset of a data 
set which was previously analyzed by Dewanji and Kalbfleisch 5 and Rai and 
Matthews 23. Some discussions are presented in Section 6. 

2 Preliminary Considerations 

Consider a carcinogenicity trial in which the presence of tumour is not clini
cally observable, i.e., tumour status can be determined only at necropsy. At 
the time of observation, an experimental unit can occupy any of the three 
states illustrated in Figure 1. Let the stochastic process {X(t)} identify the 
state occupied by an animal at time t. 

For simplicity, we suppose that n animals in state 1 at time t = 0 are 
randomly selected as experimental units and are observed for the duration 
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Alive without 
tumour 

AiW 

Aa(t) 

Alive with 
tumour 

Figure 1. An illness-death model involving three states. State 1 corresponds to animals 
which are alive without tumour. Tumour-bearing animals which are alive are in state 2, 
which is frequently unobservable in carcinogenicity experiments involving occult tumours. 
State 3 is an absorbing state and corresponds to death. 

of the trial. Let the random variable T denote the time of death and U the 
time of tumour onset. We also assume that the development of a tumour is 
an irreversible event, and therefore transitions from state 2 to state 1 do not 
occur, as illustrated in Figure 1. 

From time to time, experimental units are sacrificed to determine their 
status. These animals are chosen for sacrifice independent of their health 
status, etc., to ensure that sacrifices can be regarded as independent of the 
times of the events of interest. 

The intensities shown in Figure 1 are defined as the limits 

A,(i) = lim Pr{X(t + At) = 2\X(t) = 1}/At, (1) 

\2{t) = lim Pr{T e[t,t + At)\X{t) = I}/At, 

and 

A3(*|u) lim Pr{T€ [t,t + At)\X(t) 2,U = u}/At, 

(2) 

(3) 

for u < t; otherwise Aa(i|w) = 0. We now define various quantities of interest, 
as functions of the three hazard rates Ai(i), A2(i) and \3(t\u). The marginal 
distribution of T, the time to failure, can be determined from the survivor 
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function 

S(t) = E exp 

where the expectation E is taken with respect to the distribution of U, the 
onset time. The pseudo-survival functions corresponding to the intensities 
Ai(.), A2(.) and A3(i|u) are 

Qi(t) = exp < - / \i(v)dv > 

Q3(t\u) = exp I - / \3(v\u)dv I, (4) 

for i = 1,2 and 

whereas 

Q(t) = exp { - /" (Ai(u) + \2{v))dv\ - Q i ( i )g 2 (*) 

denotes the probability that the time to the first event — tumour onset or 
death without tumour — exceeds t. Note that 

S(t) = Pr{X{t) = 1} + Pr{X(t) = 2} 

= Q(t) + I Ai(«)Q(«)Q3(t|u)d«. 
Jo 

Following the work of McKnight and Crowley 18, we can define an average 
hazard associated with the transition from state 2 to state 3 as 

\D\T(t) = lim Pr{T € [t,t + At)\X(t) = 2}/At 

,. Pr{Te[t,t + At),X(t) = 2}/At 
= lim 

At-o Pr{X(t) = 2} 

J* XiMQMXaitMQiWuldu 
J0 Ai(u)Q(u)Q3(t\u)du 

Similarly, the tumour prevalence function, which is the proportion of live 
animals with tumour in the population, is defined to be 

7r(t) = Pr{X(t) = 2 | r > *} 
Pr{X(t) = 2} 

Pr{X(t) = 1} + Pr{X(t) = 2} 

f0M{u)Q(u)Qz{t\u)du 

S{t) 
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Finally, we define the lethality function, l(t), to be either the difference 
of death rates, ADlT(i) - X2(t), or the relative death rate, XDlT(t)/X2{t), for 
different forms of A3(£|u). With respect to the analysis of data from a car
cinogenicity trial, there are two special cases, based on lethality assumptions, 
which are easily handled; these correspond to tumours which are rapidly lethal 
and, at the other extreme, tumours which are incidental. In the case of tu
mours which are rapidly lethal, A3(£|u) is very large, and death occurs im
mediately after tumour onset. In this situation, the time of death can be 
regarded as a surrogate for the time of tumour development. On the other 
hand, if the tumour is incidental, tumour development has no effect on the 
death rate and A3(£|u) =X2(t). In this case, the analysis of data from the trial 
can be based on the fact that the proportion of deaths at time t which involve 
tumour-bearing animals provides an estimate of the tumour prevalence in the 
population at that time. 

2.1 Constructing the Likelihood Function 

Now, we outline a general framework for constructing the likelihood function. 
Let 0 represent the full parametric vector. Thus, 0 includes parameters which 
specify the general form of the transition intensities, c.f. Figure 1. In general, 
the data arising from a carcinogenicity trial will consist of the time and type 
of failure, i.e., natural death or sacrifice, and an indication of tumour presence 
or absence at autopsy. Let U be the realization of the random variable T for 
the ith experimental animal, i = 1,2,... , n. If d represents the contribution 
to the likelihood due to the ith animal, then the likelihood function for 6 is 
-k(^) = n"=i C« • Table 1 identifies the various types of observations which 
occur and the corresponding contribution to the likelihood. 

The terms A(t) and B(t) which appear in Table 1 represent the integrals 

A(t) = I Ai(u)Q(u)A3(<|u)Q3(t|tOdu 
Jo 

and 

B(t) = f Ai(«)Q(u)Q3(t|«)d«, 
Jo 

respectively. These same terms can also be expressed in other familiar forms. 
Let the random variable W = T — U denote the time between tumour onset 
and subsequent failure. For t>u, i.e., w > 0, we can write 

Pr{W E [w,w + dw)\U = u] = A3(w + u\u)G(w\u)dw 
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Table 1. Contributions to the likelihood function, arising in the analysis of data from a 
carcinogenicity trial 

Observation Type 
Death without 

tumour 

Sacrifice without 
tumour 

Death with 
tumour 

Sacrifice with 
tumour 

Outcome 
T = t,X(t~) = l 

T>t,X(t) = l 

T = t,X(t~) = 2 

T>t,X(t) = 2 

Likelihood Contribution 
X2(t)Q(t) 

Q(t) 

A{t) 

B(t) 

where 

G(w\u) = Pr{W > w\U = u) = Q3(u + w\u) 

is the probability of survival to time t given tumour onset at u. Then, 

A{t)= / \3(w + u\u)f(u)G{w\u)du 
Jo 

and 

B{t) = f f(u)G(w\u)du, 
Jo 

where /( .) is the (sub)density function of U, i.e., f(u) = Xi(u)Q(u). 
Using parametric formulation for intensities or related quantities, one can 

analyze data (Dewanji et al. 6 ) . A nonparametric method of estimation based 
on the likelihood approach is considered in the next section. 

3 Non-Parametric Estimation 

The observed data for each animal consist of the time of death or sacrifice 
and an indicator of tumour presence or absence. Suppose there are M distinct 
death times, denoted by ti < • • • < tM, and let Ij = (tj-\,tj],j = 1,2, ...,M, 
where, for completeness, we define to = 0 and *M is the time of terminal 
sacrifice. Without loss of generality, set tj = j for j = 0,1,...,M. The 
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argument of Kaplan and Meier 13 can be used to show that, without the 
imposition of distributional restrictions, the likelihood is maximized when the 
death rates place mass only at the observed times of death. Following Dewanji 
and Kalbfleisch 5, we can treat death as a discrete process and T as a discrete 
random variable, and we identify the range of T as {1,2 , . . . , M}. Since there 
is no restriction on the choice of scale for the tumour onset process, it can 
be considered discrete or continuous. We suppose that the random variable 
U, which denotes the time of tumour onset, is continuous. Therefore, the 
resulting model is a mixed scale model for occult tumour trial data (Rai et 
al. 2 4 ) . When the time to death variable, T, the time to onset variable U, are 
both considered discrete, the resulting model is a discrete scale model (Rai 
and Matthews 2 3 ) . Here we are interested in a mixed scale model. 

For animal i, there is an associated time of sacrifice, Yi, which is chosen 
in advance of the experiment with Pr(Yi = j) = qj ( j = 1,2,... , M) and 
J^ qj = 1. This random sacrifice model is analogous to a random censorship 
model. The event Yi = j corresponds to a planned sacrifice of animal i 
at time j + , so that sacrifices at j are presumed to follow other events that 
may occur at j . At time M the experiment is terminated and all surviving 
animals are sacrificed. For this reason, such experiments are referred to as 
survival/sacrifice experiments. 

Let u and t be realizations of U and T respectively. The discrete version 
of the intensities related to death rates are defined as 

\*2{t) =Pr{T = t\X{t)=0,T>t} and 

\*3{t\u) = Pr{T = t\X(t) = l,U = u,T>t>u} 

for t = 1,2,... ,M and u > 0. Furthermore, we define the tumour incidence 
rate 

XIU) = Pr{U e Ij\T >j-l, X(j - 1) = 0} 

= 1 — exp{— / Xi(u)du} 
Jj-i 

3 

Xi(u)du, 

for interval j = 1 , . . . , M. By assuming that U is a continuous random vari
able, we exclude the possibility that tumour onset and death with tumour 
occur simultaneously. 

If there are many sacrifices (Dewanji and Kalbfleisch, 5 , McKnight and 
Crowley l s , parameters of the full model can be estimated non-parametrically 

/ 
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without any further assumption about the form of death rates in tumour-
bearing and tumour-free animals. However, most of the tumorigenicity ex
periments have a few interim sacrifices. Therefore some relationship between 
these death rates are required. The relationships in the instantaneous death 
rates (when T and U are assumed to be continuous random variables) in 
tumour-free and tumour-bearing animals that are proposed by Dinse 7 and 
Lindsey and Ryan 17 are 

A3(*|u) = A2(t)eT (5) 

and 

X3(t\u)=\2(t)+7. (6) 

Since estimation is based on nonparametric formulation, a discrete ver
sion of the death rates in tumour-free and tumour-bearing animals using equa
tions (5) or (6) are needed. The model described in equation (5) has some 
constraints that may not be very realistic (Rai 2 2 ) . 

Rai and Matthews 21 have proposed the models 

W\u) = \*2(t) 
i-\ut\u) i-xm {) 

and 

\*3{t\u)=\*(t)+1, (8) 

for t = 1,2,... , M, which are based on discrete scale for T. 
The former model, which we refer to as the multiplicative failure (MFR) 

model, corresponds to the discrete version of the proportional hazards model 
(Cox 3 ) . The model given in equation (5), the constant risk ratio (CRR) 
model, is closer to the continuous proportional hazards model. The latter 
formulation, which we call the additive failure rate (AFR) model, represents 
a cause-separable hazards model for \l(t\u). For notational convenience, we 
refer to both models by X3(t). Note that these models assume that the death 
rate does not depend on the tumour onset time. A detailed comparison of 
these models is given in Rai 22. 

Since both the tumour incidence rate and the death rate without tumour 
are completely unspecified and events may occur at any time t = 1 , . . . , M, we 
must estimate the 2M values of \\{t) and A^t). If Ag(t) was also unspecified, 
corresponding to a fully nonparametric model of the experiment, we would 
have to estimate 3M parameters; however, the parametric forms for A^(i) 
prescribed in equations (1) and (2) reduce that total to 2M + 1. 

These relationships were helpful to estimate the parameters even when 
there is no interim sacrifice. But sometimes different models lead to very 
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different estimates for tumour onset rates, the primary quantity of interest in 
tumorigenicity experiments. 

In all these models the lethality parameter is considered constant over 
time. This assumption may not be very realistic. In some experiments there 
may be more information than just the indicator of tumour presence (Ryan 
and Orav 25, Parise et al. 1 9) . For example, we may know the grade of the 
tumour at the time of death and sacrifice. This grade information can be 
directly linked to model lethality of the tumour. We propose the following 
semi-parametric models for lethality: 

7 = 7o + 7i*> (9) 

7 = 7o + 7i ( * - " ) , (10) 

7 = 7o + 7i* + 72-^, (11) 

and 

7 = 7o + 7 i ( * - « ) + 7 2 ^ (12) 

fort = 1,2,... ,M. 
The first relationship leads to a Markov model whereas the second rela

tionship is a semi-Markov model. The last two models incorporate covariate 
information. This covariate is related to development of tumour and there
fore is an internal covariate. Accommodating contributions to the likelihood 
function from internal covariates can sometimes be cumbersome. In this man
uscript we, for simplicity, we consider the first model and other possibilities 
are considered somewhere else. 

We conclude this section by defining some additional notation which will 
be used in later sections of the paper. Let 

Q(t) =Pr{T>t,X(t)=0} 

= 1[{1-M)}i[{l-K(j)} 
j = i j = i 

and 

Qz{t\u) = Pr{T > t,X(t) = 1\U £ In} 

= I[{1-A5(J)}, 
j>u 

for u < t = 1,2,... ,M. The function Q(t) represents the probability that an 
experimental animal is alive and tumour-free at time t. This quantity is the 
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product of two separate terms involving A*(.) and A^.). This is due to the fact 
that the variable U is treated as continuous and T is discrete, as described in 
Rai et al. 24. The quantity Q3(t\u) corresponds to the conditional probability 
that an animal which developed a tumour in Iu is still alive at time t. The 
functions Q(.) and Q3(-|.) will be used to calculate prevalence and survival 
functions. 

4 Fitting the Semi-parametric Model 

We use the EMI algorithm (Rai and Matthews 21) to estimate the parameters 
of the model. This method of estimation is an algorithm of the EM type which 
was first described by Dempster, Laird, and Rubin 4. As with all such algo
rithms, maximum likelihood estimation of the parameters in the model using 
the observed data (the incomplete data problem) is accomplished by maxi
mizing the conditional expectation, given the data, of the likelihood function 
generated by the corresponding complete data formulation. Our complete 
data formulation is based on the procedure given in Rai et al. 24. Note that 
our complete data formulation provides variance estimates for tumour onset 
rates and death rates. Here, we briefly describe the estimation procedure. 

A Complete Data Formulation 
We assume that the time of tumour onset is known to belong to one of 

the intervals It, and that sacrifice is simply a right-censoring of the multistate 
process. In that case, the data from a sample of n experimental animals can 
be summarized as the observed values of the counting processes Ni(t), N2{t), 
N3(t), Y0(t) and Yi(t) for t = 1 , . . . ,M. The quantity Ni(t) represents the 
number of animals with tumour onset time in It, whereas iV2(t) identifies the 
number of tumour-free animals which die at time t. Likewise, N3 (t) indicates 
the number of tumour-bearing animals which die at time t. The random 
variables Y\(t) and Yo(t) summarize the number of animals with and without 
tumour, respectively, which are sacrificed at t; thus n = Y!,tLi{Ni(t) + N2(t) + 
Yo(t)}. 

In addition, the variable Ri (t) represents the number of animals at risk 
of developing a tumour in It; likewise, i?2(t) and i?3(t) be the number of 
tumour-free and tumour-bearing animals, respectively, which are at risk of 
death at t. Note that due to mixed scale assumption, 

R2(t) = Ri(t) - Nttf). 

The complete data may be divided into two groups, depending on the 
type of information available. The first group corresponds to animals in state 
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1; these either remain in state 1 or move into one of the other two states, 
i.e., state 2 or state 3. For such animals, the contribution to the likelihood 
function at time t is 

Li(t) <x \{{t)NlW{l - Xl(t)}R^-N^ x A5(t)JVa(t>{l - \*2{t)}R^-N^l 

The second group corresponds to animals in state 2; these either remain 
in state 2 or move into state 3. Thus, animals in state 2 at time t contribute 

L2{t) oc \*3{t)N^{l - \l{t)}R3{t)-N3{t) (13) 

to the likelihood function. 
Combining these two groups, we obtain the likelihood function for the 

semi-parametric model based on the complete data, viz., 

M 

L a J J L!(t)L2(t). (14) 
t= i 

An explicit version of this likelihood function is obtained by replacing \%{t) 
with various model-specific forms. 

The Incomplete Data Problem 
Since tumour information can be obtained only at autopsy, the complete 

data are not available; instead, the observations consist of N2{t), Yb(i), Ns(t), 
and Yi(t). Let 6T = (Xi(j), X2(j),70,71; t = 1 , . . . ,M) be the vector of para
meters in the semi-parametric model. A modified version of the EM algorithm 
(Rai and Matthews 21) provides a simple method for estimating 6 in two steps: 
E (expectation) and Ml (one-step maximization). Starting with an initial es
timate of 0, say 6(°\ these steps are applied in a strictly alternating sequence 
until the parameter estimates converge and the log likelihood function of the 
observed data is maximized. 

Suppose that 0( ,_1) represents the value of 6 which was obtained at it
eration i — 1 of the algorithm. At the next E-step, we have to evaluate the 
conditional expectation 

iVf( j ) - E{N1(j)\N3(t),Y1(t),t = j,j + l,...,M,9 = flt*-1)} 

for j = 1 , . . . , M. To compute this expectation, the conditional probability 

P^Ult) = Pr{U G Ij\T = t,X(t) = 1} 

= Ai(j)Q0" ~ l)AS(t|j)Q3(t - l]j) 

E!=iAi(0<?('-i)A5(t|0Q3(t-i|0 
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and 

PtX){j\t) = Pr{U G Ij\Y = t,X(t) = 1} 

= Af ( j )QC?- l )Q 3 W) ( 1 6 ) 

ELiAI(0Q('-i)Q3(t|0 
for j < £, is required. Note that Q3(t — \\t) = 1, i.e., the probability of 
surviving at least up to time t — 1 given that the animal develops a tumour 
in the interval It is one. The dependence of the right-hand side of expression 
(15) and (16) on (i — 1) has been suppressed for notational convenience. 

Consequently, 

^i(l)(i) - E ^ C ) ^ " 1 ' + Yitt)}Ptl\j\t)-
t>j 

At the ith iteration, the expected values of the risk sets -Ri(-), -R2O) a n d 
Rs(.) are evaluated by substituting the quantities N^ (.), N%(.), A^O), YQ(.) 
and Yi(.) in equations (3), (4) and (5), respectively. These expectations are 
required in order to proceed with the succeeding maximization step. 

At the next step of the algorithm we maximize the complete data likeli
hood specified in equation (7) with respect to the parameter vector 9 to obtain 
the updated value 6^l\ It can easily be seen that the maximum likelihood es
timates for the parameters \\{j) are 

A*«(j) = ( ^ i ( < ~ 1 ) ( j )M i " 1 ) ( j ) , if *tl){3) * 0 
1 \ 0 otherwise 

(j = 1 , . . . ,M). The other parameter estimates A2 (.), % and 7}^ are 
updated using an one-step maximization algorithm described in Rai and 
Matthews 21 , as there are no closed-form expressions for these parameters. 

Now we summarize our experience concerning the problem of identifiabil-
ity. As noted previously, the generalized MFR and AFR models discussed in 
this paper each involve 1M + 2 unknown parameters. In order to uniquely 
estimate 6, we therefore require at least 2M + 2 independent observations. 
According to the design of the experiment, only two types of event can oc
cur at any time: death with tumour or death without tumour. The data on 
death information form a multinomial table with 2M cell frequencies which 
specifies the number of deaths with and without tumour at M time points. If 
there are C interim sacrifices including the terminal sacrifice at M, the data 
on sacrifice information form C binomial tables with 2 cell frequencies which 
specifies the number of sacrificed animals with and without tumour. Thus, we 
will have 2M + C independent informations in the data to use in estimating 
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2M + 2 parameters in either semi-parametric model. Note that we need at 
least one interim sacrifice in addition to the terminal sacrifice for estimating 
parameters of the general model. 

5 Example: Ionizing Radiation and the Occurrence of 
Glomerulosclerosis 

A few tumorigenicity experiments supplement the terminal kill with numer
ous interim sacrifices; however, many occult tumour studies involve only one 
interim sacrifice. The requirements of fully nonparametric methods such as 
those proposed by Dewanji and Kalbfleisch 5 and others are rarely met in 
these commonly-occurring experimental designs. In this section we have cho
sen to analyze the data from an occult tumour study in order to illustrate 
the merits of the proposed semi-parametric methods. The example involves a 
number of interim sacrifices. 

Data for this example is extracted from Table 2 in Dewanji and Kalbfleisch 
5. The data represent a summary, in intervals of 100 days, of the information 
gleaned from deaths and sacrifices concerning the presence or absence of the 
disease glomerulosclerosis. This data was also analyzed using discrete scale 
models in our previous work (Rai and Matthews 2 3 ) . Further information con
cerning this comparative assay regarding the occurrence of glomerulosclerosis 
following exposure to ionizing radiation may be found in the report of Berlin 
et al. 2. The results of fitting the basic and generalized versions of MFR and 
AFR models to these data are summarized below. 

The Kaplan-Meier estimate of the survival function for both the control 
and irradiated groups of mice and the corresponding estimates of the survival 
function which were derived from the basic and generalized versions of MFR 
and AFR models are almost identical, except for some time points where the 
generalized models produce better results than the basic models (due to lack 
of space these 8 graphs are not produced here). On this basis, it appears that 
both types of the basic semi-parametric models appear to fit the observed 
data well, but the generalized versions produce some improvement. 

Estimates of the cumulative tumour incidence rate in each of the dose 
groups for various models are presented in Table 2. As a basis for compar
ison, the corresponding nonparametric estimates obtained by Dewanji and 
Kalbfleisch 5, and denoted by the symbol DK, are also included in Table 2. 
Note that their model is a saturated model for these data. While agreement 
between the estimates based on the basic MFR and AFR models and the 
nonparametric estimates (DK) is not so bad in the control group and the 
irradiated group of mice, the estimates based on generalized versions of the 
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Table 2. Estimated cumulative tumour incidence rates for the glomerulosclerosis data based 
on various mixed scale models 

Age in 
Days 

0-100 
101-200 
201-300 
301-400 
401-500 
501-600 
601-700 
701-

D K ° 
0.195 
0.420 
0.961 
1.266 
2.034 
2.442 
2.750 
3.537 

Control group 
M 
0.198 
0.432 
0.980 
1.360 
1.894 
2.385 
3.035 
3.813 

A 
0.160 
0.433 
1.040 
1.481 
2.044 
2.529 
3.094 
3.672 

GM 
0.195 
0.410 
0.962 
1.380 
1.958 
2.497 
3.130 
3.747 

GA 
0.193 
0.427 
0.984 
1.333 
1.894 
2.429 
3.086 
3.789 

DK 
0.166 
0.469 
1.104 
1.794 
1.794 
1.794 
1.794 
1.794 

Ir radiated group 
M 
0.190 
0.623 
1.077 
1.649 
2.074 
2.431 
2.431 
2.431 

A 
0.121 
0.637 
1.119 
1.676 
2.047 
2.220 
2.220 
2.220 

GM 
0.173 
0.538 
1.052 
1.692 
2.163 
2.183 
2.183 
2.183 

GA 
0.130 
0.642 
1.117 
1.670 
2.044 
2.262 
2.262 
2.262 

a DK = Dewanji and Kalbfleisch approach, M = MFR model, A = AFR model, GM = generalized 
MFR model, GA = generalized AFR model 

Table 3. Estimated prevalence functions for the glomerulosclerosis data based on various 
mixed scale models 

Age in 
Days 
0-100 
101-200 
201-300 
301-400 
401-500 
501-600 
601-700 
701-

D K * 
0.194 
0.369 
0.698 
0.775 
0.949 
0.970 
0.970 
1.000 

Control group 
M 

0.198 
0.387 
0.715 
0.814 
0.904 
0.940 
0.965 
0.963 

A 
0.157 
0.381 
0.752 
0.858 
0.937 
0.966 
0.985 
0.992 

GM 
0.194 
0.360 
0.701 
0.817 
0.917 
0.958 
0.983 
0.994 

GA 
0.193 
0.375 
0.713 
0.802 
0.905 
0.949 
0.978 
0.984 

DK 
0.164 
0.368 
0.758 
0.939 
0.945 
0.937 
0.941 
1.000 

Irradiated group 
M 

0.194 
0.553 
0.728 
0.868 
0.910 
0.928 
0.895 
0.775 

A 
0.116 
0.561 
0.763 
0.889 
0.926 
0.935 
0.928 
0.911 

GM 
0.171 
0.438 
0.692 
0.880 
0.938 
0.949 
0.969 
0.988 

GA 
0.127 
0.562 
0.759 
0.885 
0.922 
0.933 
0.921 
0.886 

" as in Table 2 

Table 4. Values of the maximized log likelihood and the corresponding number of parame
ters estimated when the glomerulosclerosis data were fitted with the mixed scale MFR and 
AFR models involving 7 = 70 + 71* 

Dose 
group 

Control 
I rradiated 

71 = 0 
Maximized 

Number of log likelihood 
parameters M F R A F R 

17 -1778.50 -1782.06 
17 -2886.39 -2886.79 

7 1 5 * 0 
Maximized 

Number of log likelihood 
parameters M F R A F R 

18 -1777.78 -1778.41 
18 -2880.87 -2886.72 

MFR and AFR models are a bit closer to the estimates based on the saturated 
model. Estimates of the tumour prevalence function, n(t), based on vari
ous semi-parametric models are summarized in Table 3. The corresponding 
values derived by Dewanji and Kalbfleisch 5 are once again included for com-
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parison purposes. Relative to the nonparametric estimates of 7r(£), the basic 
MFR model appears to estimate a higher prevalence during the initial periods 
and lower towards the end. On the contrary, the revers pattern is observed 
when comparing the estimates obtained using the basic AFR model with the 
saturated model. The estimates obtained using the generalized versions of 
these models bridge the gap with those obtained using the saturated model, 
expect for the first and last time intervals for the irradiated group when using 
the AFR model. 

Table 4 summarizes the values of the maximized log likelihoods and the 
numbers of parameters estimated for each semi-parametric model that was 
fitted to the data. The values in the table provide a basis for examining the 
adequacy of the simpler model for 7 with respect to the glomerulosclerosis 
data. In the case of the MFR model, it appears that the hypothesis 71 = 0 is 
not contradicted by the data for the control group of mice (p=0.230); however, 
the same test yields a significance level of 0.001 when applied to the results of 
fitting the MFR model to the irradiated mice. Somewhat curiously, the reverse 
of the above remarks summarize the conclusions based on the likelihood ratio 
tests when the AFR model is fitted to the same data set. 

Finally, we also found that incidence rates are different in both the groups 
for basic and generalized versions of the MFR and AFR models. The results 
are very similar to those obtained using discrete scale models for tumour onset 
and death rates (Rai and Matthews 2 3 ) . 

6 Discussion 

As we have previously indicated, in the absence of supplementary informa
tion such as that provided by interim sacrifices or the cause of death, realistic 
approaches to the estimation of tumour incidence rates and carcinogenic po
tency will necessarily involve modeling assumptions. For the most part, the 
assumptions on which the discrete scale models of Rai and Matthews 23 were 
based continue to apply with respect to the mixed scale models which we have 
just described in preceding sections of this paper. The principle difference has 
been the choice of scale on which tumour onset is deemed to have occurred. 

A benefit which is realized through selection of the mixed scale model 
concerns the form of the likelihood function. In this case, the complete data 
formulation can be factored into two components; one of these involves pa
rameters related to tumour onset, while the remaining factor concerns the 
death rates with and without tumour. Such a separation is not achieved in 
the corresponding complete data likelihood generated by the discrete scale 
model. 
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Note that the choice of a mixed scale model induces a natural preference 
or ordering of the two events, tumour onset and death, which is not present in 
corresponding discrete scale models. In effect, because tumour onset occurs 
on a continuous scale whereas the time to death is a discrete random variable, 
tumour-free animals are at risk of developing tumour at any time, whereas the 
same animals are only at risk of death immediately prior to the next point on 
the discrete scale of the random variable T after remaining tumour-free for the 
intervening interval. This natural ordering has implications for the resulting 
estimates of the tumour incidence rate, and the death rates with and without 
tumour, which we believe are deserving of further study. For example, in the 
mixed scale model it is possible for animals to die with tumour at the first 
value in the range of T, i.e., the time of the first observed death or sacrifice, 
whereas the same event is impossible in a discrete scale model. Consequently, 
at least one interim sacrifice is required in order to obtain unique parameter 
estimates in the discrete scale models, whereas no interim sacrifice is required 
in the case of the mixed scale models. 

When there are interim sacrifices in additional to the terminal sacrifice, 
our generalization of the lethality function using one additional parameter 
provides adequate results - good fit to the data and comparable estimates of 
the tumour onset and prevalence rates. 
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Illustrations of nonlinear models with fixed and random effects along with their ap
plications for different practical situations are presented. Least squares, maximum 
likelihood and other procedures suggested in the literature for estimating the fixed 
effects and variance components are described. Approximations suggested for the 
likelihood procedure are summarized. Suitable transformations required for these 
procedures are also presented. 

i 

1 Introduction 

Nonlinear models are extensively employed, for instance, in bioassay, in 
radioimmunoassay, for the analysis of dose-response measurements related 
to medical treatments, for the examination of concentrations and absorptions 
of chemical compounds in Pharmacokinetics, and to evaluate the effects of 
herbicides. They are also widely used to study the degradation and reliability 
of electronic components and integrated systems, to describe time-to-failure 
distributions and to predict the plateaus of deterioration of the above types 
of components and systems. Nonlinear models are also suggested to examine 
the departures from the assumptions such as normality of the linear models. 

As in the linear case, some of the coefficients in a nonlinear model can be 
fixed and the others random. The Analysis of Variance (ANOVA), Minimum 
Norm and Minimum Variance Quadratic Unbiased Estimation, (MINQUE 
and MIVQUE), Maximum Likelihood and Restricted Maximum Likelihood 
(ML and REML) procedures and their modifications are widely used to es
timate the variance components and fixed effects of a linear mixed effects 
model. However, these approaches have to be modified and adapted in the 
case of a nonlinear mixed effects model. Suitable transformation followed by 
modifications of the above procedures may provide acceptable estimates for 
some types of nonlinear models. 

The major motivation for the present article comes from Solomon and 
Cox 20, who have presented examples of nonlinear mixed effects models, ex
amined some transformations to estimate the variance components and fixed 
effects, suggested an approximation to the likelihood function, and evaluated 
its appropriateness for estimating the parameters of an exponential regression 

252 

mailto:raos@troi.cc.rochester.edu


253 

model and also for testing a hypothesis related to the 2 x 2 contingency tables 
through the logistic regression model. An overview of these and other illus
trations and estimation procedures suggested in the literature are presented 
in the following sections. 

Illustrations of nonlinear models along with some of the suggested esti
mation procedures are presented in Sections 2 and 3. Linear mixed effects 
models, the corresponding marginal distributions along with the MIVQUE, 
ML and REML procedures for the fixed effects and variance components are 
briefly summarized in Section 4. The description in this section leads into 
Section 5, where a general description of the nonlinear mixed effects model, 
an approximation to the marginal distribution and the likelihood function for 
the nonlinear model along with the suggested estimation procedure are pre
sented. Section 6 presents illustrations of the degradation models employed 
to improve the reliability of electronic and other types of components and sys
tems, and a two-stage procedure of estimation. A summary with discussion 
appears in Section 7. 

2 Four Illustrations of Nonlinear Models 

Two commonly used models in a number of applications are the exponential 
regression model 

Vij = exp(ctj + fcxi) + e{j, (2.1) 

and the logistic regression model 

Vij = exp(«i + PixCj + ei:j, (2.2) 

For both the models, i = 1,2, ...,k denotes the experimental units and j = 
1,2,..., 7i; denotes the number of observations on the ith unit. 

In these models, the response yij is related to the fixed variable Xi, which 
can be the covariate or the concomitant variable. The error etj is usually 
assumed to follow the normal distribution with zero mean and unit standard 
deviation. When the coefficients a; and fii are fixed parameters, they can be 
estimated through the nonlinear estimation and similar procedures. However, 
in some applications, one or both the coefficients are assumed to be fixed or 
random. 

A model used in economic analysis for relating production (P) to labor 
(L) and capital (C) is the Cobb-Douglas production function 

Jr{j — Ct{yL/ij j y^ij) ~r ^ij > (2.3) 
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i = 1,2, ...,m industries, and j = 1,2, ...,£ time periods, for instance. One 
or more of the coefficients o^, /?, and 7; may be assumed to be random to 
perform meta-analysis, for instance. 

To analyze the effects of herbicides, the dose-response model considered 
by Rudemo et al. 16 takes the form of 

Vij =C+(D- C)/[l + (xij/xoi)0'] + vtij , (2.4) 

i = 1,2, ...,8 herbicides, and j = 1,2, ...6 doses. In this model, the 
concentration of herbicide, xoi is the half-effect of the herbicide, and y^ is the 
weight of plants. The coefficients C and D are the same for all the herbicides, 
and a.i represents the fixed effect. The random error ê - is assumed to have 
mean zero and unit variance. 

When the half-effect varies with the herbicide absorption by the plants, 
the random-coefficient model considered by the above authors takes the form 
of 

VH =C+(D- C)/[l + ( f t i« ) a ' l + °tih (2-5) 

where ai is fixed and f3i random. For the case of replications, with the addi
tional subscript k, the random effect rk was added to the model. 

Box-Cox type transformation, Taylor's approximation to the right side of 
the model and suitably weighting the error term followed by the likelihood 
procedure were examined to estimate the parameter of the transformation. 
Data on four pairs of herbicides and the dry weights (y) of 150 plants were 
used for this purpose. 

The above authors have also mentioned that when there are errors of 
measurement in the controlled variable Xij, it can be replaced in the above 
models by Xij(obs) = Xij(true) + crx6. Now the model would contain an 
additional random effect. 

3 Nonlinear Models to test normality or to validate 
transformations 

In the one-way mixed effects model, yis = /j, + Ai + Bis, the random effect Ai 
and the error term B« are usually assumed to be independently normally dis
tributed with zero means and variances a\ and a\ respectively. To represent 
departures from normality, Solomon and Cox 20 considered 

yis = fj, + Ai + Bis + a20A
2
is + anAiBis + a02Bfs , (3.1) 

where i = 1,2, ...m represents the units and s = 1,2,..., r represents measure
ments on the ith unit. The above authors have demonstrated that "skewness 
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of the random effects and heterogeneity of the within-group variation" are 
related to the fixed parameters 0:20, « n and ao2 • To test the hypothesis that 
these coefficients are zero, it was suggested that a suitable permutation test 
or the likelihood ratio procedure can be employed. Estimation of these pa
rameters and the variance components a\ and a\ through the third order 
moments obtained from the observations yis was described. 

To discuss transformations, Solomon 19 considered the mixed-effects 
model y\'s = fi + A* + B*s, where A* is the random effect and B*s is the 
error term. Solomon and Cox 20 noted that retaining the quadratic terms, 
this model can be expressed approximately as the nonlinear model in (3.1) 
with ai2o = c*02 = <2n/2, and examined the approximation with data from 
16 systolic and diastolic blood pressure measurements on each of 25 patients. 
This relationship for the three fixed parameters was found to be satisfactory 
for their estimates obtained as described above with the actual measurements 
as well as their square root and log transformations. 

4 Linear Mixed Effects Model, Marginal Distribution and the 
Likelihood Estimation 

This section briefly summarizes the estimation procedures for the linear mixed 
effects model, and it is intended as an introduction to the estimation proce
dures described in the following two sections. 

Consider the case in which f(yij\ai) is normal with mean fii = fi + a.i 
and variance a2 , and /(OJJ) is normal with mean zero and variance <r2. This 
situation can be expressed in terms of the linear model 

V%j = Mi + tij = n + oti + €ij , (4.1) 

i = 1,2,..., k and j = 1,2,..., m, where e^ and a* follow independent normal 
distributions with zero means and variances a2 and a2

a respectively. 
The joint distribution of the n — km observations is 

f(yu,-,Vkm. I a>i,a2,...,ak)f(ai,a2,...,ak) , (4.2) 

which can be expressed as 

£1(2/11, •••, Vkm\ M> v2)g2{ai, Vi,H, a2, G\), (4.3) 

where y~i is the mean of the m observations of the ith group. 
The marginal distribution of (j/u,..., j/fcm), which provides the likelihood 

function L(/i, a2, a\), is obtained by integrating the joint distribution in (4.2) 
with respect to c^, that is, by integrating out g2 in (4.3). As pointed by 
Solomon and Cox 20, this integral is the same as E[L(fi, a2, a2

a, a,-)] where the 
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expectation is taken with respect to cti. ^From this integration, the marginal 
distribution of (yn, •••, Vkm) becomes the product of k multinormal distribu
tions each with mean fi, variance a\ + u2 and covariance <r̂ , and it provides 
the above likelihood function. Note that this likelihood corresponds to the 
linear mixed effects model j/y = p, + ai + eij in (4.1). 

In general, the Linear Mixed Effects Model can be expressed as 

Y = X/3 + e = Xj3 + U£ + UoSo . (4.4) 

In this model, Y is an n-vector of observations, e is an n-vector which includes 
the random effects and the residuals, X is an (n x p) known matrix, and (3 
is the (p x 1) vector of the fixed parameters. In the right hand side of (4.4), 
suggested by C.R. Rao 13, £ represents the random effects and £o the residuals. 

As suggested by Harville 5 , the Linear Mixed Effects Model can also be 
expressed as 

Y = Xf3 + Zb + e . (4.5) 

In this representation, the vector of the random effects b is assumed to have 
mean zero and dispersion D(b) = D, and the vector of residuals e is assumed 
to have mean zero and dispersion D(e) = R. As a result, the dispersion of Y 
becomes V = ZDZ' + R. 

The marginal distribution of Y is obtained by integrating the joint distrib
ution f(Y\b)f(b) with respect to b. When f(Y\b) and f(b) follow the multivari
ate normal distributions, this marginal distribution becomes the multivariate 
normal distribution with mean X/3 and covariance V given by 

f(Y; (3, a) = ( 2 n ) - " / 2 | V | - < 1 ^ exp[- ( l /2) (y - X(3)'W(Y - X(3)] . (4.6) 

In this expression, a = (Cy)) denotes the elements of D and R, and W = V". 
This distribution provides the likelihood function for (3 and a, L = L(/3,a). 

^From (4.6), the likelihood estimates of f3 and a are obtained from 

P = {X'WX)-X'WY (4.7) 

and 

trlVidV/daij)} = (Y- X(3)'W{dV/doi:j)W{Y - Xf3) . (4.8) 

Note that if V = ECT^V;, (dV/daf) = Vt. 
The joint density f(Y\b)f(b) was considered by Hartley and J.N.K. Rao 

4 for the estimation of the fixed effects and the variance components and by 
Henderson 7 for the estimation of (3 and predicting the random effect b. 

The MINQUE and MIVQUE procedures as well as the REML method 
for estimating the variance components are presented in C.R. Rao and Kleffe 
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14 and P.S.R.S. Rao 15, and the REML method by Harville 6. As shown by 
all these authors, the Best Linear Unbiased Predictor (BLUP) of the ran
dom effect vector b is obtained from DZ'W(Y — X/3). With the normality 
assumption for b and e, the BLUP is the same as E(b\Y). For the variance 
components of the Generalized Linear Model (GLM) considered by Schall17, 
Lee and Chaubey 8 examined the MINQUE type of estimation. 

5 Nonlinear Mixed Effects Models and an Approximate 
Likelihood Estimation 

Following (4.5), for the nonlinear case, Vonesh and Carter 23 and Gumpertz 
and Pantula 3, for instance, consider mixed effects models of the type 

Y = F(X(3) + Zb + e, (5.1) 

where F(X[5) is a nonlinear function of the fixed effects (3. Note that Zb with 
the random effect b and the error e are additive. 

Sheiner and Beal1 8 , Lindstrom and Bates 9, Solomon and Cox 20, Wolfin-
ger 24, and others consider models of the form 

Y = F{Xp + b) + e (5.2) 

and 

Y = F(X,p,Z,b) + e = F + e. (5.3) 

The nonlinear models of the type presented in Sections 2 and 3 can be 
represented through these general models or their modifications. As in Section 
4, the dispersions of b and e can be represented by D and R respectively. 

5.1 Estimation through the Approximate Likelihood 

For the estimation of the fixed effects and variance components of the nonlin
ear models in Section 2, 3 and 5, least squares, Analysis of Variance, Maximum 
Likelihood and similar methods may be adapted. For instance, for the estima
tion of the fixed effects of the model in (3.1), Solomon and Cox 20 considered 
the method of moments approach. Transformations of one or both sides of 
the models before applying these types of approaches may provide acceptable 
estimates in some situations. 

However, unlike in the linear case described in Section 4, for the nonlinear 
mixed-effects models of the types in Sections 2, 3 and 5, the integral of g2 

can not be expressed in an explicit form. As a consequence, the marginal 
distribution of the observations and the corresponding likelihood function will 
not be available. 
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Solomon and Cox 20 suggest expressing gi in a Taylor's series and retain
ing the leading terms, before integrating out the random effects. If g^ is of 
the exponential type, these terms correspond to the Laplace expansion. Now, 
the fixed effects and variance components can be estimated from the resulting 
marginal distribution obtained as described in Section 4. The validity of this 
approximate procedure was examined by the above authors for the likelihood 
corresponding to the exponential model 

Yjs = exp (6 + Aj)xs + Bjs, (5.4) 

j = 1,2, ...,m and s — 1, 2,..., r. The random effect Aj and the error term 
Bjs were assumed to be independently normally distributed with zero means 
and variances o\ and a\ respectively. The approximate likelihood was found 
to be close to the exact likelihood, unless o~\ is very large. 

The above authors have also investigated the approximation to the like
lihood for testing the difference between the effects of two treatments with 
the responses arranged in several 2 x 2 tables. For the hypothesis of equality 
of the means of the effects of the treatments, the above type of approxima
tion for the likelihood corresponding to the logistic model was considered. 
The power of the score test with the approximation was compared with the 
Mantel-Haenszel test. 

To adopt the approach for the approximate likelihood L(/3,cr) of (5.3), 
Wolfinger and Lin 25 consider the joint distribution 

g = C|J? |_ 1 / 2 exp{-(Y - F)'R'l(Y - F)/2} 

|£>|-1 /2exp{-6'Z)-16/2} . (5.5) 

Let, F0 = F0{X,(3) = F[(X,P,Z,b)\b = 0], Z0 = dF/db'\b = 0 and Vo = 
ZQDZQ + R. The approximation results in the maximization of the likelihood 
corresponding to the mixed effects model 

Y = F0(X,(3) + Z0b + e. (5.6) 

With the "pseudo observations", Y0 = Y - F0(X,P) + X0/3, where XQ = 
dFo/d/3, the estimate of 0 is now obtained from 

p0 = (X'0WoX0r(X'0W0YQ), (5.7) 

where Wo = (Vb)_1. This expression resembles (4.7) for the linear mixed 
effects models. Estimates of the variance components a for (5.1), (5.2) and 
(5.3) are obtained from (4.8) with X0, YQ, VO and (30. The same approximation 
can be considered for the REML estimates of the variance components. The 
BLUP for b is obtained from b0 = DZQW0(Y0 - X0(3). For the empirical 
BLUP, P in this expression is replaced by the estimate in (5.7). 
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The above authors examined the approximation in (5.6) for two models. 
The first model considered was the logistic model 

Vij = (A + bn)/{l + exp[-( t y - /?2 - 6«2)//?3} + e tf) (5.8) 

for i = 1,2,..., 15 subjects, with j = 1,2, ...10 observations on the ith subject. 
The coefficients /3i and /32 are the fixed effects, (bn, ^2) are the random effects 
and ey is the error. Ten different values were considered for £y; same for each 
subject. This model was examined earlier by Pinheiro and Bates n . The 
second model examined was the pharmacokinetic model for the concentration 
of a drug given by 

logyij = log F + 6ij, (5.9) 

where F = {10fca[exp(-fcj£y) - exp(-katij)]/vi(ka - ki)}exp(eij). In this 
model ka is the fixed effect and fcj is the random effect. The investigation 
showed that for the approximate likelihood method, estimators of the fixed 
effects are almost unbiased for the first model, but biased for the second. 

Shun and McCullagh 21 discuss the conditions suitable for the Laplace 
approximation. Vonesh 22 applied the Laplace approximation only to the 
random effects, and found that the resulting estimates are consistent; the rate 
of convergence was found to depend on both the number of subjects (i) and 
the number of observations (j). 

For the repeated measures data, Lindstrom and Bates 9 considered the 
model 

Vij = F(Xi(3 + Zibi) + etf . (5.10) 

For the Taylor's approximation, the derivative of F at the current estimate of 
b' = (61, 621 •••) was considered; Sheiner and Beal 18 considered the derivative 
at b' = 0. Ramos and Pantula 12 also discuss the estimation procedures for 
the nonlinear random coefficient models. 

6 Nonlinear Models for Reliability and Degradation 

Degradation, which is the cumulative damage or deterioration, provides valu
able information on the reliability, for instance, of an electronic component. 
An important aspect of degradation is the estimation of the time-to-failure 
distribution for a specified level of deterioration. Degradation over time can 
be linear or nonlinear. We describe below one illustration for the linear case 
and two illustrations for the nonlinear case. 

Linear degradation can be described by the model 

Vij ~ a{ + Pitj + dj, (6.1) 
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for i = 1,2, ...,n components (sample paths), and j = l ,2, . . . ,mj measure
ments on the ith component, where tj represents the time of the j t h measure
ment. When pi in (6.1) follows the Weibull, normal or lognormal distribution 
or when (ai,fii) follow the bivariate normal distribution, Lu and Meeker 10 

present explicit expressions for the time-to-failure distributions. 
A simple description of nonlinear degradation can be obtained from the 

Paris Law, g = csm, where g is the growth of fatigue cracks, 5 is the stress 
intensity factor, and (c,m) are constants. Starting with this equation, the 
above authors considered the model 

VH = - ( 1 / # K ) log[l - (.90)^Pu^itj] + e y . (6.2) 

In this model, yy is log (crack length at time tj), and (/3H,/?2;) are random. 
The time-to-failure distribution was obtained through a two-stage procedure. 
At the first stage, estimates of (Pu, /?2i) were obtained. For the second stage, 
the sampling variances and covariances of these estimates along with the vari
ances and covariances of (pu, /?2i) were considered. Estimates of the expected 
values of (pu, p2i) and the time-to-failure distribution were obtained with the 
weights obtained from the between and within variances and covariances. We 
note that for the linear mixed effects model, the estimator obtained from (4.7) 
for the fixed parameter is a weighted average of the least squares estimators, 
where the weights are inversely proportional to the unconditional variances of 
the least squares estimators. A similar procedure was followed for the above 
two-stage estimation. 

The second illustration is related to the Plateau, maximum degradation 
over time. Highly reliable systems such as lasers, integrated circuits and 
optical communication devices do not fail over time, but their performance 
can deteriorate and reach a plateau. Boulanger and Escobar 1 describe the 
experiment of Gumpertz and Pantula 3 and consider the Weibull sigmoidal 
random coefficient model for degradation, 

Vij(t) = a« [ l - exp(-(/3yt)T] + e^t). (6.3) 

In this model, y^ (t) is the change in propagation delay up to time t of the 
j t h device at the ith stress level x,-, ay is the plateau for the j t h device which 
is random over the devices, /3y is related to a y , and 7 is a fixed constant. 

The problems of importance considered by the above authors were to (a) 
estimate a y , (b) optimize the stress levels and the proportion of devices to 
allocate for each stress level, and (c) optimize the times for measuring the 
degradation at each stress level. At the first stage, Maximum Likelihood 
Estimates of (ay,/3y) for each device at the ith stress level Xi were obtained. 
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At the second stage, the model 

log(a«) = A + Bxi + Sij (6.4) 

was considered. In this model, V(6ij) includes the sampling variance from the 
first stage and the variation across the devices. Estimates of A and B were 
obtained from this model. 

7 Summary and Discussion 

Nonlinear mixed effects models are applicable in several practical situations, 
and some of the important illustrations are presented in this article. To es
timate the variance and covariance components of the linear mixed effects 
models, the ANOVA, MIVQUE, ML and REML procedures or some of their 
modifications are known to have desirable properties. To adapt the above type 
of procedures for a nonlinear mixed effects model, suitable transformations of 
the model or approximations to the likelihood function are required, as seen 
in the previous sections. In addition, we note that C.R.Rao 13 presents a 
nonlinear model for the two-way classification, along with the approximations 
to the ANOVA type of sums of squares and the corresponding estimation 
procedure. 

As expected, some of the approximations have been found to perform 
well under suitable conditions. For the computations, programs such as SAS 
NLINMIX can be used. For some types of nonlinear models, acceptable es
timates are obtained through the two-stage procedures of the type described 
in Section 6. However, it was mentioned that these procedures may require 
a large amount of computer time to obtain confidence limits for the fixed 
effects. For the different types of nonlinear mixed effects models employed 
in practical situations, further research is required to evaluate the suitability 
of the transformations and estimation procedures briefly summarized in this 
article. 
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Heckman's two-step estimator for sample selection models can be poorly be
haved in some situations due to a form of multicollinearity. The high dispersion 
of the estimator in these contexts can be deduced by inspection of the asymptotic 
covariance matrix. However, large-sample theory suggests that the estimator is 
asymptotically unbiased. In this paper, we derive the second—order bias of Heck
man's estimator and demonstrate that this is substantial in similar circumstances. 
This is reflected in reported simulations. 

1 Introduction 

Numerous authors, including Wales and Woodland 14, Nelson 5 , Paarsch 8 , 
Nawata and Nagase 6 , have provided substantial practical and simulation 
evidence that Heckman's 4 two-step estimator for sample selection models 
can be poorly behaved in certain circumstances. This typically occurs when 
the variables in "Heckman's lambda" are a subset of the other explanatory 
variables, resulting in a form of multicollinearity. The impact of this on the 
dispersion of Heckman's estimator can be seen by inspection of the asymptotic 
covariance matrix of the estimator. However, the standard distributional 
results from large-sample theory indicate that the estimator is asymptotically 
unbiased, implying that "on average" the estimator is correct. In this paper 
we derive the second-order bias of Heckman's estimator and demonstrate that, 
in finite samples, the bias can also be quite substantial. 

We consider the basic sample selection model which consists of a linear 
regression equation (referred to as the "wage equation" given its predominant 
use in this sort of analysis) and a decision equation which determines whether 
the dependent variable of the wage equation is observed. To estimate the 
parameters of this model it is usually assumed that the disturbances from 
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these two equations have a joint normal distribution. a The parameters of 
the decision equation are estimated in a first-stage probit approach. The 
inverse Mills's ratio or "Heckman's lambda" is evaluated at the estimated 
parameter values and this is then inserted as an additional regressor into the 
wage equation. 

Several researchers have considered the effects on the sampling proper
ties of Heckman-like corrections when the normality assumptions are relaxed. 
Goldberger 3 and Arabmazar and Schmidt l<2 have shown that the simple To-
bit estimator may be biased in the presence of nonnormality or heteroscedas-
ticity. Schafgans 12 has shown that this bias carries over to Heckman's model, 
as one would expect. Our concern is with the bias of this estimator, even in 
the context of a correctly specified model. The results we derive are applicable 
to more general models with the normal distribution of the disturbances of 
the decision equation replaced by another. Our results depend on the non-
linearities in the model and multicollinearity problems, rather than with any 
particular distributional assumptions. 

The discussion proceeds as follows. In Section 2 we derive the second-
order bias of the Heckman estimator. In Section 3 we examine the finite 
sample bias with a simulated model and apply the bias corrections to a data 
set. Section 4 summarizes the conclusions. 

2 Derivation of the second—order bias 

The higher-order properties of nonlinear estimators have been considered by 
several authors including Pfanzagl and Wefelmeyer 9, Skovgaard 13 and Ril-
stone, Srivastava and Ullah u . In this paper we find it convenient to use the 
approach in Rilstone, Srivastava and Ullah n to derive the second-order bias 
of Heckman's estimator. The equation of interest is written 

Yi = X[a + ei (1) 

where Y; is observed only if a latent variable Z* —W^ + Vi is greater than 
zero. Xi and Wi are fcxxl and fc^xl observable vectors of explanatory vari
ables. Also observed is an indicator variable Zi = 1 [W-'y + Vi > 0]. e; and V{ 
have a joint normal distribution with correlation coefficient p. ê  has variance 
of and the variance of Ui is normalized to one. 

"Olsen 7 showed that Heckman's estimator is still consistent if the joint normality as
sumption is relaxed to an assumption of normality of the disturbance term in the decision 
equation combined with linearity of the expectation of the wage equation conditional on 
the decision equation disturbance. 
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It is well known that, conditional on Z{ — 1, €j has a truncated normal 
distribution and that E[e; | Zi = 1] = pcreAj where 

is the inverse Mills's ratio, <f> and $ denoting the density and distribution 
functions of a standard normal random variable. We denote the first- and 
second-order derivatives of A; by AJ 'and \\ ' respectively, noting that x\ ' = 
-A; (Aj + Wrf). It is also useful to define 

K ( 1 - * ( W 7 7 ) ) " { ) 

Augmenting the right hand side of (1) with the inverse Mills's ratio we have 
the regression: 

Yi = X{a + ijA(Wi'7) + «* (4) 

where rj = p<re and «; is a residual. Note that Var[«i | Zi — 1] = af = 

cr2(1 + p2\\ '). The score function for probit estimation of 7 is 

5<(7) - (ZjAi - (1 - Zi)Ai)Wi. (5) 

Heckman's estimator for this model may be written as the solution to 

^£«( f t=° (6) 
where 

qi{(3)=\Zi\{W'il)um\ (7) 
V Sib) j 

and 0 = (a', rj, 7') ' is a k x 1 vector of parameters with A: = kx + kw + 1. 
The expressions derived in Rilstone, Srivastava and Ullah n are functions 

of the derivatives of <&(/?) and their expectations. We indicate the k x k and 
kxk2 matrices of first- and second-order derivatives by S/Qi(P) and \/2qi(/3)b 

respectively. The second-order bias is obtained via a second-order stochastic 
expansion of the difference between /? and the true value of /? and then taking 
the expectation of that difference. In Rilstone, Srivastava and Ullah n it is 

6We note that these are defined such that the / ' th row of V9i(/5) contains the gradient 
vector of the Vth element of g;(/3), the i'th row of V2<fc (fl) contains the vectorized Hessian 
matrix of the Vth element of <ji(/3). 
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shown that the second-order bias of estimators solving moment equations of 
the form given in equation (6) can be written 

B0) = j;(£ [V^])"1 [ f [Vidi] - \e [v2%] £ [di ® * ] } (8) 

in which 

Vi = ^qi-£ [s/qi], di = (£ [V9i]) 1 Qi- (9) 

Sufficient conditions under which B(/3) is a valid expression for the second-
order bias are discussed in Rilstone, Srivastava and Ullah u and consist of 
smoothness restrictions on the model as well as existence, uniformly in /3, of 
the fourth moments of the random variables appearing in \7qi(/3) and \/2qi((3). 
Since qi((3) is infinitely differentiable in this case, the smoothness conditions 
are satisfied. We assume that the moment conditions are satisfied. 

The matrix of first derivatives is 
ZiXi v Ui (p) 

Xjqi (/?) = | Zi (Xi V Ui (/?) + Ui (/?) V Ai) 
V5i(7) 

-ZiTiXiX^W! 

-Zii-Uiifl-vXjxVw! 

SZiXV - (1 - ZJX^WiW 

Since U{ has zero mean, the expectation of this last expression may be written 

(10) 

£ [Vft] 

-vXiX^WtZi 

-riK^WtZi 
-XiXiWiW! 

(11) 

= -£ 
XrxfZi vxWjCtWfZi 

0 XiXiWiW' 

where X* = (X[, Xi)'. The inverse of (11) may be written as 

(£[Vft]) - 1 = 
a b 
0 c 

(12) 

where 

a = (e [xtxfz^y -r,(e [x;x?z§~ 
b = £ [X^X*W[Z^ (£ [XiXiWiW;])-1, 

a n d c = (f [-AiAiWiW-])"1. 
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We also have 

£&<& = 
a?x:xr'Zi 

p£ \\WiX* Zi 

p£ 

£ 

XfXfWlZi 
(13) 

With expressions (12) and (13) it is useful to review what is known about the 
asymptotic distribution of 0. Heckman 4 showed that y/N(0 — 0) —>N(0, V) 
where, using our notation, we can write 

v = ( f [v*])_1f fe«;i(f [v*])-1' = md'ii (14) 
Bv inspection, we can characterize when the standard errors associated 

with 0, that is the square roots of the diagonal elements of V, may be large. 
We concentrate on the first kx + 1 elements of V. There are several standard 
situations, such as when the X^s are collinear and/or a2 is large. What is 
of interest are those situations which are particular to the sample selection 
model: there are two such interesting cases. The standard errors will be large 
(£[V9i] approaches singularity) when the columns of X* are closely collinear; 
in particular when A; can be written as a linear combination of the Xi's. 
Since A; can be well approximated by a linear function of its argument,0 W/7, 
collinearity will be a problem when the Wf's are a subset of the X^s or are 
highly correlated with them.d 

The second instance where the asymptotic standard errors may be large 
is, again by inspection, when p is large. This corresponds to situations when 
there is a large degree of simultaneity in the model. The hypothesis that p 
is zero is one that is often tested via significance tests on the estimator of 77. 
We note that both of these situations when the standard errors may be large 
are quite common in empirical studies. There is often very little theoretical 
justification for assuming that, for example, there are elements of Wi which 
are not contained in Xi or that there is no simultaneity between the wage and 
decision equations. 

As is evident from equation (8), the second-order derivatives of the mo
ment equations may make a substantial contribution to the second-order bias. 
We derive explicit representations for these in the following equations. Put 

V29i(/?) 

g l l g 1 2 g 1 3 > 

q21 q22 q23 

q31 q32 q33 

cTobin recognized this in his original work on his model. 
''Some authors state as an identification condition that the Wi's contain at least one element 
not in the Xi's. Strictly speaking this is not necessary, although from a practical perspective, 
if this is not the case, one can expect to have large standard errors. 

file:////WiX*
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1 — OfcxX(fc:rfc), qu = (ofcxX* Jkxxl X; iX^Wi) , 

qU = (Ofc.x{fc.few) - XiX^Wi - vXiX™ {W[ ® W/)) , 

g21 = (0lxfc2 ( W - Af (*{ ® W/)) , g 2 2 = ( 0 l x f e 0 l x i - 2 A i A f V / ) 

«23 = (-Ai1 )(W/®X<)-A iAJV/£>) ) 

£> = («i(/?)A<2> - r ^ ) 2 - A,A<2) - (AJ1*)2) {W> ® W*), 

9 = (Ofc„XfcJ Ofc^xfc* Ofc^xfc^fc^j , 9 = (Ofc^xfca, O f c ^ x l O f c ^ x f c ^ ) ) 

<Z33 = (Ofc.xfc.fc,,, Ofc„xu (ZiX^ + (1 - Zi)AJ2V<(W/ ® W/)) • 

It is readily shown that 

£ [va»] 
(Ofc.xfcOlfc.xi-XiAi

(1)W/) g 1 3 . 

V 
( o l x , 2 dx/c - A(

(1) {X[ ® W/)) ( o l x f c 0 1 x i - 2 A i A f ) ^ / ) g23 , 

g33 

where 

913 = e (Ofc.x(*.*„) XiA]1 V ; ^ A f > (w/ ® w / ) ) , 

fa = e(-\?\w'i®xi) -x^wa-x^P -(x^rxw^w'), 

t 3 = s(0kwxk^ 0kwXkw ($iX™ + (l-$i)xf))Wi(Wl®W!)), 

Hn HnH13' 
(^[V%])_1= I H21H22H23 

0 0 H33 

Since 

£[Vidi\=£\xjqi(e[x7qi]) l q{ 

http://Ofc.xfc.fc
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and 

(£[v<n\) 1ii 

/HnXiUi + Hu\iUi + H13Si 
H21XiUi + H22XiUi + H23Si 

V H33Si 

£ [Vidi] 

( 

V 

-e XiX'^St + XiXiH^Si + XiX^W-H^Si \ 

XiXiH^Si + X2H23Si + XiX^W!H33Si - m (/?) X^W'^Si 

, T ( ^ (Z^ - (1 - Z^XY^WiWlH^Si J 
We can now examine in what circumstances the second-order bias may be 
large. It is not possible to put a sign on the terms of this bias, but several 
qualitative observations may be made in this respect. There are two terms 
in B((3), both scaled by (£ [V9i])~ • The first term, £ [Vidi], is essentially 
the correlation between the residual v% — £ [V<fc] a n d 9i- The second term 
is a linear combination of £ [di ® df], where the weights are functions of the 
Hessian of qi {(3). Note that £[d{ ® di] is simply the vectorization of V, the 
asymptotic covariance matrix of (3. Therefore, in a qualitative sense, the 
second-order bias will be large in those cases where the estimators have large 
standard errors. From above, we note that this corresponds to situations of 
near non-identification and simultaneity. (The parameters of the wage equa
tion are identified if there is a unique minimum to the sum of squared residuals 
from the wage equation. This will not be the case if A; is linear and Wi is 
contained in Xi.) The first problem is very similar to that of multicollinearity, 
but this is not a completely accurate depiction of the problem, since even in 
the presence of severe (but not perfect) collinearity, least squares estimates 
are unbiased, even if poorly behaved. 

3 Simulation and Empirical Results 

To get a sense for how well the second-order bias derived in Section 2 reflects 
the sampling bias of the Heckman estimators we conducted a small set of sim
ulation experiments consisting of a wage equation in the form of equation (1) 
and a decision equation. Each has an intercept and one conditioning variable. 
The disturbances are constructed as jointly normal. This was parameterized 
so that there were five regression parameters including the coefficient on Â  
and the variance from the wage equation. (This was set equal to unity. Re
call that the variance term from the decision equation is normalized to one 
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in these models.) The intercept terms are set to zero, the coefficients on Xi 
and Wi set to one. We altered two components of the model across the exper
iments. First for obvious reasons, the correlation between the disturbances 
was set at a variety of values. Second, as noted, the bias and variance of the 
parameters of interest depend on the collinearity of the Xi's and A*. Since 
the latter is roughly linear in its argument, the correlation between the Wi's 
and the Xi's is crucial. The Wi's were constructed as uniform on [-1,1]. The 
Xi 's were then constructed as a linear combination mixture of the Wi's and 
another independent, mean zero, uniform random variable: Xi = pxwWi + Vi. 
The support of the distribution of Vi was altered across experiments in or
der to keep the variance of Xi constant and equal to that of Wi, across the 
experiments. 

The observed sampling properties of the estimators are summarized in the 
following tables for a variety of values for p and pxw as well as sample sizes 
of N = 50, 100. We focus on the estimates of the regression parameters of 
the wage equation and consider their properties relative to what would be an 
unbiased least squares estimator (albeit infeasible in this case), a "Heckman 
estimator" with the true values of 7 used in the wage equation.6 The tables are 
self-explanatory. The sampling bias (i.e. averaging over the 1000 replications 
of the experiment) of the estimates is given in Table 1. We note that these 
reflect the analytical results of the previous section: the biases are absolutely 
increasing functions of p and pxw, and decreasing functions of the sample 
size. Note that the intercept and the coefficient on the inverse Mills's ratio 
are particularly affected. Since it is often the case in practice that the Xi's and 
the Wi's in these kinds of models contain almost the same random variables, 
we would often be in situations corresponding to pxw=.75. With the sample 
size N — 50, the bias can be particularly large. 

Table 2 gives the mean squared error of the estimates of the usual Heck
man estimators, relative to the infeasible estimators. As would be expected, 
these are also increasing functions of the correlation parameters. 

To provide an empirical example we used a data set of 50 observations 
taken from the 1990 Integrated Public Use Microdata series employed in a 
study of white-black wage differentials by Chia-Hui Chiu. The variables in the 
decision equation consisted of an intercept, marital status and working status. 
The dependent variable of the wage equation was log wages, the explanatory 
variables consisted of an intercept and experience. This is undoubtably a 
rather simplistic model, but one that qualitatively reflects many which are 

e T h e comparison could have been made with other benchmark estimators, notably effi
cient maximum likelihood estimators, but we feel that this benchmark is more comparable. 
Moreover, the MLE is not necessarily unbiased. 
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Table 1. Sampling Bias of (3. 

Parameter 

a i 
Q 2 

•n 
71 
72 

Parameter 

Ctl 

V 
71 
72 

iV = 50 
Pi Pxw 

.25, .25 
-0.02882 
-0.00258 
0.03511 
-0.00165 
0.05878 

.25, .75 
-0.03893 
-0.00222 
0.04815 
-0.00165 
0.05878 

.75, .25 
-0.09583 
0.00019 
0.11268 
-0.00165 
0.05878 

.75, .75 
-0.11844 
0.00152 
0.13676 
-0.00165 
0.05878 

N= 100 
Pi Pxw 

.25, .25 
0.00222 
0.00491 
-0.00216 
0.00380 
0.02578 

.25, .75 
-0.00540 
0.00746 
0.00730 
0.00380 
0.02578 

.75, .25 
-0.01935 
0.00637 
0.02655 
0.00380 
0.02578 

.75, .75 
-0.03019 
0.01001 
0.03942 
0.00380 
0.02578 

used in empirical work where identification might be rather tenuous. Table 
3 reports the usual point estimates and standard errors as well as the bias 
estimates. Since the bias depends on the true parameters and population 
moments, the bias estimates themselves are based on the point estimates and 
sample moments. * We notice that the bias estimates are quite large relative 
to the point estimates and the standard errors. Such a situation could lead 
one to make substantially different inferences. 

One final point should be made here. One should interpret these esti
mates very carefully. It is well known that higher-order approximations can 
be very poor, be they based on stochastic expansions as done here or via other 
techniques such as Edgeworth expansions. Phillips and Park 10 have a discus
sion of this. It is a reasonable conjecture that this corresponds to situations 
where the higher terms in the expansions make a strong contribution to the 
sampling biases. In the course of the Monte Carlo experiments we calculated 
the analytic second—order biases and bootstrap estimates of the biases. Both 
of these approaches performed very poorly, particularly in those cases when 
the results in Section 2 would indicate potentially high biases. 

f In principle, using these estimated values rather than true population values should not 
effect the rate of convergence of the bias estimate since the estimates themselves are 
consistent. 
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Table 2. Sampling Inefficiency of /3 

Parameter 

Q l 

Q2 

V 
71 
72 

Parameter 

Q l 

ai 
V 

71 
72 

AT = 50 

Pi pxw 
.25, .25 
2.09845 
1.00134 
1.67572 
1.00000 
1.00000 

.25, .75 
1.95023 
1.00014 
1.72793 
1.00000 
1.00000 

.75, .25 
4.16079 
1.00092 
2.87769 
1.00000 
1.00000 

.75, .75 
3.61555 
0.99973 
2.78589 
1.00000 
1.00000 

AT = 100 
Pi Pxw 

.25, .25 
1.23581 
0.99946 
1.67572 
1.00000 
1.00000 

.25, .75 
1.18577 
0.99866 
1.72793 
1.00000 
1.00000 

.75, .25 
1.39542 
0.99979 
2.87769 
1.00000 
1.00000 

.75, .75 
1.27143 
1.00024 
2.78589 
1.00000 
1.00000 

Table 3. Parameter point and bias estimates, standard errors 

Parameter 
Q l 

Q2 

V 
71 
72 
73 

Point Estimate 

-0.39561 
0.06672 
5.65843 
-0.28100 
0.64172 
0.12921 

Bias Estimate 

-2.70729 
-0.12628 
13.81740 
-0.47202 
0.24726 
0.17037 

Standard Error 

0.59017 
0.05453 
2.92799 
0.73259 
0.27583 
0.25398 

4 Conclusion 

This paper has derived the second-order bias of Heckman's sample selection 
estimator. The message, from the analytical results which are reflected in 
the simulations, is that this bias can be large when the estimators have large 
standard errors and/or the parameters are poorly identified. The lesson for 
applied researchers is that there is even more reason to be careful in inter
preting point estimates in these situations. 
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In genomics, and more generally, in computational biology, principles of molecular 
genetics govern computational sequence analysis, providing room for stochastics to 
comprehend the basic differences between mathematical exactness and biological 
diversity. With a large number of sites having categorical (qualitative) responses 
with imprecise interrelationships, conventional (discrete or continuous) multivari
ate statistical modeling and analysis may encounter roadblocks of various kinds. 
Limitations of likelihoods and their variants are appraised in this context. Alter
native approaches that take into account underlying biological implications to a 
greater (and parametrics to a lesser) extent are appraised in the light of validity 
and robustness perspectives. 

1 Introduction 

At the dawn of bioinformatics (and genomic science too), biostochastics is in 
an interdisciplinary phase. The conventional approach of planning biomed
ical studies (in a reasonably controlled setup), formulating statistical models 
(from an existing pool of standard ones), and carrying out standard statistical 
analysis may no longer be universally adoptable in bioinformatics setups. At 
the present it is not precisely known what constitutes the core of bioinformat
ics. We may quote from a very recent text by Ewens and Grant 9: 

We take bioinformatics to mean the emerging field of science grow
ing from the application of mathematics, statistics, and information 
technology, including computers and the theory surrounding them, 
to study and analysis of very large biological and in particular, ge
netic data sets. The field has been fueled by the increase in the DNA 
data generation. 

As such, within the broader setup of bioinformatics, we consider here some 
aspects of computational sequence analysis (CSA) pertaining to human 
genomes. Principles of molecular genetics, as well as, various environmen
tal factors govern CSA. At the current stage, gene scientists can not scramble 
fast enough to keep up with the genomics, emerging at a furious rate and in 
astounding detail. The data dusts need to be settled in their proper places 

274 

mailto:pksen@bios.unc.edu


275 

before methodological issues can be viewed in a proper perspective. CSA, and 
bioinformatics in general, do not aim to lay down fundamental mathematical 
laws that govern biological systems parallel to those laid down in physics. 
Such laws, if they exist, are a long way from being determined for biological 
systems. Biodiversity, extreme variability in human immunity, and genetic 
complexities (in number and activity) have rather confounding impacts on 
such biological (theoretical) laws. There is, at this stage, mathematical utility 
in the creation of tools that investigators can use to analyze biological sys
tems data. Because of underlying stochastic evolutionary forces, such tools 
involve statistical modeling of biological systems, which in turn, requires the 
incorporation of probability theory, statistics, and stochastic processes. Al
though knowledge discovery and data mining (KDDM) procedures (or statis
tical learning, by another name, Hastie et al. n ) are increasingly being used 
in CSA, it might not be proper to jump on statistical conclusions based on 
data analysis alone (Cox 7 , Breiman 5) unless the algorithms could be justified 
from statistical perspectives. There is a genuine need to grasp the genetic and 
molecular biologic bases of CSA, and in the light of that to formulate statis
tical modeling and analysis schemes. Primarily driven by this motivation, we 
(Sen 21) designate Biostochastics to deal with stochastic modeling and analy
sis (i.e., stochastics) for very large biological (including genetic and genomic) 
data sets. As such, biostochastics extends to large biological systems which 
may not have predominant genetic factors; neuronal spatio-temporal model 
(Sen 22)s are noteworthy examples. In this study, however, we confine our
selves to biostochastics pertaining to CSA that has a dominant genetic and 
genomics flavor; but our inclination is to emphasize the underlying method
ology with a view to facilitate applications. 

With a large number of sites, with categorical responses, statistical model
ing may become quite complex, for which classical likelihood approaches may 
stumble into conceptual as well as computational difficulties. Conventional 
(discrete or continuous) multivariate analysis may also encounter roadblocks 
due to excessively high dimensionality as well as imprecise specification of un
derlying dependence patterns. Without an acceptable topology that defines 
neighborhoods, there might not be enough incentive for standard statistical 
modeling and analysis. Alternative approaches that take into account under
lying biological implications to a greater (and parametrics to a lesser) extent 
are appraised on validity and robustness considerations. 

Section 2 outlines the molecular biological background, and based on this 
motivation, statistical approaches are outlined in Section 3. Variants of like
lihoods, such as the pseudolikelihood, are discussed in Section 4. Section 5 
deals with some nonparametrics along with some general remarks. 
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2 Molecular Biological Perspectives 

Within the broader domain of computational biology, we pay especial atten
tion to CSA pertaining to human genomes. Gene, in the Mendelian setup, is 
the basic unit of inheritance. Genes occur at definite sites or loci, on chro
mosomes, which are strings of DNA (Deoxyrinucleic acid), the basic genetic 
material in a cell and the carrier of genetic information for all organisms, 
except for some viruses. DNA is a double-helical model; it is a polymer, 
madeup of nucleotides which are four in number, and can be distinguished by 
the four bases: A (adenine), C (cytosine), G (guanine) and T (thymine). Like 
the DNA, Ribonucleic acid (RNA) and proteins are also macromolecules of 
a cell, though they differ in their forms and constitution. Like DNA, RNA is 
a nucleic acid, but with T replaced by U (uracil), and it has a single strand. 
Proteins are also polymers, and there are 20 amino acids. Most human cells 
contain 46 chromosomes, in 23 pairs; one pair relates to the sex chromosomes, 
while the other 22 homologous pairs are termed autosomes. There are about 
30,000 to 40,000 genes embedded within the human genome. Genetic data, 
for duploid organisms, relate to traits determined by autosomal Mendelian 
loci, so that DNA plays a basic role in genetic data analysis (Waterman 25, 
Lange 14, Ewens and Grant 9 ) . 

Principles of molecular genetics, such as the central dogma that DNA 
makes RNA makes protein, govern CSA. The transfer of genetic informa
tion from DNA to DNA (called replication) means that the molecule can be 
copied; the loop from DNA to RNA called transcription precedes the loop 
from RNA to protein, called translation. The RNA which is translated into 
protein is termed the messenger RNA (or mRNA), and the transfer RNA (or 
tRNA) translates the genetic code into amino acids. If we accept the basic 
role of DNA as the genetic information carrier, then it is natural to conclude 
that evolution is directly related to changes in DNA This is the genesis of 
molecular evolution. Substitutions, such as A «-» G or C <-» T are called tran
sitions, while A <-> C, A <-> T, G «-> C, and G <-> T are called transversions 
(recall that in a DNA, A pairs with T and G pairs with C). 

Physiochemical studies, electron microscopy, and X-ray diffraction ana
lyzes have established that most DNA molecules are long, flexible, threadlike 
structures, having a nearly constant diameter with regularly spaced and re
peated structures, irrespective of the base composition (A, C, G, T) or their 
order. In the usual form of the double-helix structured DNA, the purine and 
pyrimidine rings in each chain are stacked 0.34nm, i.e., every ten base pairs. 
There are two external grooves: major (wider) and minor (narrower). Next, 
note that amino acids are encoded by triplets of nucleotides, called codons. Let 
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us define MR = {A, C, G, U}, and let C = {(xi, x2, x3) : Xj € MR,j = 1,2,3} 
be the codon. Finally, let A be the set of aminoacids and termination codon. 
Then the genetic code can be defined as a map: g : C —+ A, g £ Q, so that Q 
is the set of all genetic codes. As the human genome project is heading for 
a completion, there are some formidable statistical tasks which are surfacing 
into the research efforts to fathom out the mystery of the genomic code. 

3 Statistical Motivation 

Most problems in CSA are essentially statistical. Amidst a chaos of random 
mutation and natural selection, stochastic evolutionary forces act on genomes, 
resulting in genetic drifts, and thus requiring stochastic modeling and analysis 
for quantitative studies. In genomic sequence analysis, typically, we encounter 
data on a large number (K) of positions or sites, and in each position, we have 
a purely qualitative (nucleotides or amino acid labels) categorical response 
with 4 to 20 categories depending on the DNA or protein sequence, the 
spatial (functional as well as stochastic) dependence (or association) patterns 
of these sites may not be known, nor can they be taken to be stochastically 
independent. Also, as has been mentioned before, regular and nearly identical 
structures of the DNA solicitate statistical appraisal based on other varia
tional properties which exhibit more statistical variation and information too. 
In this way, we are more in the domain of biostochastics than biomathematics 
or purely computer algorithms. 

In this high-dimensional qualitative response setup, it is difficult to in
corporate standard (discrete or continuous) multivariate analysis tools, in a 
parametric formulation (as the number of associated parameters may be ex
ceedingly large and the underlying model may not be that well specified or 
anticipated). As such a (complete/partial/conditional/profile/pseudo) likeli
hood approach may be hopeless, unless there is a sample, drawn objectively, 
of enormously large size. On both counts, we may have difficulties in adopt
ing conventional tools. If we restrict ourselves to a single site, in most cases 
(particularly, for viral sequences), there is little statistical information. In a 
multiple site context, treating the sites as independent could lead to serious 
misspecification of the model. As such, we need to consider high-dimensional 
qualitative categorical data models preserving intersite dependence, and then 
to proceed to CSA statistical appraisals. There has been some attempts to 
incorporate suitable quasi-likelihood methods based on generalized estimating 
equations (GEE) and invoking Markov chain monte Carlo (MCMC) method
ology that amends easily to Gibbs sampling and Metropolis-Hastings algo
rithms (Durbin et al. 8 ) . However, these procedures are yet to have a solid 
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methodological foundation in such a complex setup. In this study, we confine 
ourselves to some specific models, and appraise variants of likelihoods and 
alternative approaches towards their resolutions. 

4 CSA : Likelihoods and Alternatives. 

Let us consider a setup of K sites, and let X = [X\,...,XK) be the response 
(stochastic) vector, where each Xj is categorical with anywhere between 4 
and 20 qualitative categories. If we denote the joint probability function of X 
by p(x), we may express it as 

K 

P(x) =p(xi)'[[p(xj\xi,i <j). (1) 
3=2 

If these sites were ordered in some way and had a Markov chain (MC) property, 
then we could have written 

p(x) =p{xi)-p{x2\xl)---p(xK\x(K_l)). (2) 

Things could have been even simpler if these conditional probabilities 
p(xj\x(j_i)) were the same for all j = 2,...,K. However, lacking such an 
ordering, a MC property can not be taken for granted, and on top of that the 
stationarity of the transition probabilities may need critical appraisals. If we 
are able to validate the MC property, but stationarity may not hold, then the 
number of parameters associated with the joint probability law jumps from 
C(C +1)— to C — 1 + (K — 1)C2, and this in turn may demand an excessively 
large same size (as K is large) to justify conventional statistical methods to 
be valid and efficient. In the more likely event, we do not even have an or
dered index set J = { 1 , . . . , K}, so that it may not be feasible to adopt a MC 
model. 

Of prime scientific interest is the statistical comparison of sets of genomic 
sequences from human immunodeficiency virus (HIV). It may be noted that 
a retrovirus, like HIV, has the ability to reverse the normal flow of genetic 
information from genomic DNA, and that the genetic variability of HIV is 
relatively high compared to other retroviruses. In this way, we have a spa
tial (or spatio-temporal) model in a general multivariate analysis of variance 
(MANOVA) setup. Typically, there are molecular epidemiologic studies of 
genomic sequences that pertain to different epidemiologic strata, so that ex
ternal CSA like MANOVA becomes pertinent. On the other hand, comparing 
the variability at different sites for the same individual (or their covariabil-
ity) constitutes the internal CSA (like the canonical analysis in multivariate 
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statistical analysis). In this way, we encounter both MANOVA and canonical 
analysis type problems in a very high dimensional categorical data model. 

The conventional product multinomial model can be adopted to formulate 
suitable likelihood functions. With K sites and C(> 4) categories for each 
site response, we have typically CK cells, so that the number of parameters 
involved in a single multinomial law is equal to CK — 1, and if there are G 
groups, this number jumps to G{CK — 1). Clearly, in this setup, with large 
K the above number increases exponentially (even for G = 1 or 2 and C = 2. 
This in turn requires the sample size(s) astronomically large in order that 
standard discrete multivariate analysis tools (Agresti 1 , Sen and Singer 23) 
can be validly used to draw statistical conclusions from acquired data sets 
(satisfying suitable objective sampling schemes). Faced with this roadblock, 
one may naturally wonder whether the model can be represented in terms of 
a comparatively smaller number of parameters, and suitable pseudolikelihood 
formulations can be made instead of the classical likelihood one to avoid some 
of these difficulties. We present some of these in a very simple setup, and 
appraise their suitability in CSA. 

For the K-site model, we introduce a vector Y = (Yj , . . . ,YK) where 
Y/t is equal to 1 or 0 according as there is a mutation at site k or not, for 
k = 1 , . . . , K. Also, let Q = { ( i j , . . . ,iK) : ik = 0,1, k = 1 , . . . , K}; note that 
the cardinality of fl is 2K. Further let P(y) = P{Y = y} ,y £ (1. Let us 
define then Q(y) = log{P(y)/P(0)}, so that by definition, 

P ( y ) = e Q ( y ) / ^ e Q ( z ) ( 3 ) 

zgfi 

Led by a basic representation of multivariate binary random variables due to 
Bahadur 3, Liang, Zeger and Qaqish 15 advocated the following representation: 

K 

P(y) = expi^UkVk + ^2 yaVkUsk + --- + yi---VKUi...,K}, (4) 
fc=l l<s<k<K 

where the u^ are the conditional logits, usk are the conditional log -odd ratio, 
etc.. If in this representation, we let all the second and higher order interaction 
coefficients (uijfe..) to be null, we end up with a pairwise dependence model 
wherein 

K 

Q(y) = '^2akyk+ ^2 iskVsVk, (5) 
fe=l \<s<k<K 

where the otk and jsk are respectively the main effect and first order interac
tions. 
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We conceive of n independent sequences Yj, i = 1 , . . . , n and denote the 
K x n matrix of observations by Y = (Yi, . . . , Y n ) , and denote its fcth row 
(vector) by Y„(fc), k = 1 , . . . , K. Then, following Besag 4, we formulate a 
pseudolikelihood function as 

K 

LP{0, Y) = [ J P(Yn(k) = yfc|Ys(n), a ± k, 9), (6) 
fc=i 

where 9 = (c*i,... ,0^,712,- • • ,1K-I,K)- Writing j k k = 0, k = 1 , . . . , K, we 
may show that for this pairwise dependence model, 

M«,Y)=nn - — T T ^ — 7 
l = i " 1 [ 1 + e»"<0,*+2^=i ^»«> 

This is termed the autologistic model. It is not clear how in general, can 
this pseudolikelihood function be interpreted as a conditional, partial or even 
profile likelihood function ? 

The maximum pseudolikelihood estimator (MPLE) 9n of 6 is a point of 
maxima of the pseudolikelihood function. This MPLE can be taken more in 
the spirit of generalized M-estimators (as it is based on a model different from 
the likelihood function); moreover, using the structure in (7), it can be shown 
that the MPLE is consistent and asymptotically normal. However, because 
of the basic model difference, robustness perspectives of such MPLEs need 
to be assessed properly. Further, for the same reason, the MPLE's efficacy 
is unknown, and expected to be lower than that of the MLE if the latter 
were obtainable from the data. Moreover, this also raises the robustness 
issues for the MPLE for model departures and distortion due to the choice 
of the particular autologistic model. For the MPLE, there are computational 
difficulties, and moreover, there is no direct way of obtaining the (asymptotic) 
dispersion matrix of the MPLE (which depends on the unknown likelihood 
function). The deficiency of the MPLE stems from the fact that the associated 
estimating equations (EE) are not isomorphic (even asymptotically) to the EE 
for the MLE. Also, the observed information (matrix) may not be available in 
this formulation. Thus, there are some genuine concern over the use of MPLE 
on the ground of robustness and efficiency. From the EE perspectives, one 
may use the results in Liang et al. 15 to study large sample properties of the 
MPLE, although for large values of K, it remains to appraise how far such 
asymptotic properties are tenable. 

We may notice that in the above formulation of the autologistic function 

(7) 

P(9,Y) = C(9)F(Y,0), (8) 
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where C(6) = P(Y = 0,0) and 

n K K 

logF(y,e) = ̂ 2Y^yik^ak+ Y^ IkiVii). (9) 
i=l k=l j=k+l 

This representation makes it possible to use the simulated likelihood ratio 
technique, using the Gibbs sampling or the Metropolis algorithm (or more 
generally the Hastings algorithm) to generate a simulated sequence of random 
vectors to carry out the maximization on simulated data. Note that the 
above sketched MCMC procedure, advocated by Geyer and Thompson 10, is 
highly computation incentive, and as in the current CSA setup, usually we 
have a very large dimensional 0 even such MCMC techniques may run into 
computational complexities. 

If we consider internal CSA problems, in an autologistic model, we need 
to confine our attention to the sub-vector 7 = ( 7 ^ , 1 < j < k < K), there 
being (^) such parameters. As such, for large K we have a larger number 
of parameters, and all the problems referred to in connection with 6 show 
up in this case too. In addition, for testing independence of the K positions 
an autologistic model may have good relevance, but for canonical analysis, 
such models may be questionable. The basic difficulty in incorporating the 
classical canonical analysis (Anderson 2) in this context is the lack of linearly 
combinability of the coordinates of Y; so as to justify the basic interpretation 
of canonical correlations and canonical variates. We may refer to Sen 22 for 
some discussion of canonical analysis in neuronal spatio-temporal models, and 
the present setup is quite akin to it. 

If we want to have external CSA, such as the MANOVA for several in
dependent groups of sequences, for testing homogeneity of the groups, the 
autologistic model may serve a good purpose. If we denote the 5th group 
parameter vector by 0g = (ag,jg) , g = 1, G, then primarily we may be 
interested in testing for the homogeneity of the ctg. As in the normal theory 
MANOVA, we may be tempted to assume that the j g are homogeneous, but 
in view of a lack of parametric orthogonality of ag and 7 such an assumption 
may have to carefully appraised. Since these parameters are not directly re
lated to the full likelihood functions, the usual likelihood ratio type test may 
not work out well in this setup. Pseudolikelihood based inference would be 
subject to the same criticism as in internal CSA. Wald-type test based on the 
MPLE of the ag may conceived of. But, as it is cumbersome to estimate the 
(asymptotic) covariance matrix of the 0g, a formulation of the Wald-type test 
statistic may not be that convenient either. Moreover, with such estimated 
covariance matrices, we may have genuine concern regarding their robustness 
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properties (against plausible model departures), and as a result, such tests 
are not expected to be robust. However, it is possible to introduce a suitable 
permutation test for the homogeneity that we shall consider later on. 

Suppose now that instead of the binary response we consider the full 
model involving CK possible response vectors for K positions, each with C 
possible (qualitative) outcomes. Even for a single position, instead of a con
ventional logit model (for binary outcome), we need to consider a generalized 
logit model for polychotomous responses. For multiple sites, a precise formu
lation of the pseudolikelihood function becomes quite involved, involving too 
many parameters. Neither the Bahadur 3 representation nor the Liang , Zeger 
and Qaqish 15 formulation (for the binary case) provides a good resolution. 
Besides, the question of robustness, validity and efficacy of such procedures 
becomes even more pertinent in this general case. As such, we take recourse 
to suitable alternative external CSA procedure. 

Let us now consider a permutation test for homogeneity of G groups 
of independent sequences in an external CSA setup. Consider G groups, 
where the gth group consists of ng independent sequences, for g = 1 , . . . , G. 
In a pseudolikelihood formulation, we consider the autologistic model, and 
denote the parameter vector for the <?th group by 9g, g = 1,...,G. We 
further let n = ni + • • • + TIG, SO that if we pool all these groups together, 
we would have a set of n sequences. Because of the complications in the 
computation of the (asymptotic) covariance matrix of these estimates, the 
usual pseudolikelihood approach may stumble into impasses. As such, we 
deemphasize the likelihood formulation, but, nevertheless use the individual 
group estimates in a permutation setup to generate suitable (conditional) 
permutation tests which might have simplicity in formulation and affinity to 
the Wald type of test based on the MPLE's for the pooled sequences. We 
denote the ith sequence in the gth group by Y5;, for i = 1 , . . . ,ng, g = 
1 , . . . , G. We denote the collection matrix (of order K x n) for the pooled 
sample by Y" = (Yi i , . . . , Y i n i , . . . , Y G 1 , . . . , YGnG). Thus under the null 
hypothesis of homogeneity of the G groups, the columns of Y° are independent 
and identically distributed random vectors (i.i.d.r.v.), each vector can have 
2K possible realizations (over the set of mutation or not, at each site). We 
write 

Y° = ( Y ? , . . . , Y ° ) . (10) 

Let now R„ = ( i ? i , . . . , Rn) be any permutation of ( 1 , . . . , n), so that there 
are n! possible realizations of R„; we denote this set by 1Z. Let then 

Y°(Rn) = (Y°Rl,...,Y°RJ, (11) 
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for R n G 7c. Thus, corresponding to the sample point Y°, we generate an 
orbit of n! sample points, and we denote this orbit by 0 (Y°) . It follows by 
standard rank-permutation arguments (Chatterjee and Sen 6) that under the 
null hypothesis {Ho) of homogeneity of the G groups, 

P{Y° = Y°(Rn)\0(Y°)} = ( n ! ) - \ (12) 

for every R n G 7c. This (discrete) uniform permutation (conditional) proba
bility measure is denoted by Vn. 

For the autologistic model, the pseudolikelihood function (for the 5th 

group), Lp (9g,Yg) is defined as in (7), and this leads to the pseudo-score 

statistic (vector) U„0 (9) at 6 as 

uff w = E E ( w ) [(vift*+E Wfi) 
i=\ fc=i j = i 

- log( l+eXp{^ ){a f c + ^ 7 ^ ) } )]}, (13) 

for g = 1 , . . . , G. Next, we consider the pooled sample of n sequences, and 
using (7) we compute the pooled MPLE of 6, denoted by Gn; we may need to 
use the Gibbs sampling or MCMC tools for numerically achieving this. But 
this is to be done only for the pooled sample, not for the G samples separately. 
Let us then denote the aligned pseudo-scores by 

V%=VM(dn),g = l)...,G. (14) 

Note that by construction, the MPLE 6 is a symmetric function of the n 
stochastic vectors Y°, r = 1 , . . . , n, and hence, the MPLE is T^-invariant, i.e., 
for every point on the orbit 0(Y°), the MPLE remains the same. Therefore, 
under the null hypothesis, for each g(= 1 , . . . , G), the ng terms appearing as 

summands of U„*' are marginally identically distributed and they are inter
changeable or exchangeable random vectors (across the G groups as well). As 
such, we express the aligned pseudo-scores as 

U £ > = £ u ( Y f l i ) 0 n ) = ] T u n s i i , say, 5 = 1,. . . ,G, (15) 
i= l i = l 

where under the permutation setup, the MPLE is invariant, and hence, per
mutation distribution of the Un„ can be generated by the same permutation 
law , formulated in (12), but applied to the Un< ^ instead of the Ygi. 
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We define the pooled sample vector U° in the same manner as in Y°, 
and this way, the orbit 0(Y°) is mapped onto an orbit (9(U°), and hence, 
the permutation law Vn is generated by the column permutations of R„ over 
the set 7£, i.e., permutations of ( 1 , . . . , n). Note that by virtue of the choice 
of the MPLE, we have 

n 

£ U ° = 0, (16) 

so that we have 

£ p n { U # } = 0 , g = l,...,G. (17) 

Let us further define the permutation pseudo-score covariance matrix by 

C n 
v» = ^ i E E M - . . i . as) 

9=1 i = l 

and note that this matrix is Pn-invariant. Also, let A„ be a G x G matrix 
with elements 

Xgg',n = (ng(n6gg> - ng>))/n, g, g' = 1 , . . . , G, (19) 

where Sij is the Kronecker delta (i.e., equal to 1 or 0 according as i = j or 
not). Then, by standard argument (as in Chatterjee and Sen 6 ) , we obtain 
on writing the rolled-out vector U„ = (Uj,/ , . . . , U i G ' )' that 

J B P „(U„ul) = V „ ( g ) A r i , (20) 

where (££) refers to the Kronecker product of the two matrices. Note that 
An is of rank G — 1, and noting that n _ 1 A n has the same structure as the 
multinomial sample covariance matrix, its generalized inverse can be taken as 

A ; = d i a g ( — , . . . , — ) - - l l ' . (21) 
ni no n 

Note that 0 has K{K + l ) /2 = M (say) elements, so that the pseudo-scores 
U„i; are M-dimensional vectors, and as a result V n is an M x M matrix. 
We denote the generalized inverse of V n by V~, and note that under fairly 
general regularity conditions (as the elements of 0 are linearly independent), 
V„ is positive definite, in probability, as n increases, and hence, it is of full 
rank in probability. Further, note that by (16), 

l 'Un = 0, (22) 
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so that we may consider the following quadratic form as a suitable (Wald-type) 
aligned test statistic: 

£« = E ^ V - U n 3 . (23) 
9 = 1 u 

Note that essential for the computation of the test statistic Cn is the MPLE 
9n which can be obtained by using the algorithms mentioned before. Once 
this is done, the computation of the aligned pseudo scores vectors U„B and 
the covariance matrix V„ does not pose any horrendous task, so that like the 
Rao score test statistic in the classical likelihood ratio type tests, computa
tionally the major task is the MPLE for the pooled sample. In this sense, 
Ln is more like an aligned M-statistic; we refer to Rao and Sen 19 for the 
general asymptotics for such aligned pseudo-score statistics, considered in a 
directional data model setup. 

For finite sample sizes, the exact permutation distribution of £„ , under 
Vn, can be obtained by direct enumeration. This task becomes prohibitively 
laborious as the ng increase. For this reason, there is a genuine need to 
consider suitable large sample approximation to the permutation distribution 
of Cn In the present setup, note that the VA9' are binary, and hence, the 
coordinates of each U„ • are all bounded random variables. This makes 

Tig,l 

it possible to use the celebrated Wald-Wolfowitz-Noether-Hoeffding-Motoo 
permutational central limit theorem on the individual pseudo-scores statistics. 
Omitting these details of algebraic manipulations (quite similar to those in 
Puri and Sen 18 (Ch. 5, p. 186)), we arrive at the following : 
When the individual sample sizes ng,g = 1,...,G all increase, subject to 
the condition that ng/n —> pg, g = 1 , . . . , G, where the pg are positive numbers 
adding upto one, the permutational (conditional) distribution of Cn converges, 
in probability, to the central chi-square distribution with degrees of freedom 
(DF) M* = {G- 1)K(K + l ) /2 . 
Based on this basic convergence result, asymptotically, the permutation test 
can be replaced by an unconditional test based on Cn having the central chi-
square distribution with M* DF (under the null hypothesis of homogeneity 
of the G groups). Consistency properties and asymptotic power under local 
alternatives follow conventional lines of arguments, and hence, the details are 
omitted. 

In the context of genomics, usually K is large, and hence, (even for G as 
low as 2 or 3) M* may be quite large. For example, often K is in the range 
of 200 to 500, so that even for G = 2, M* may be in the range of 20,000 to 
75,000. Even, for K as small as 50, and G = 2, M* is more than 750. With 
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larger DF, the accuracy of the chi-square approximation to the permutation 
distribution of the test statistic may generally require increasing large sample 
sizes. Although in some cases in CSA this can be justified, in general, it might 
create some roadblocks. One alternative is to partition the parameter vector 
0g = (a f l, 7 ) , for each g = 1 , . . . , G, and then to test for the null hypothesis 
of homogeneity of the ag assuming further that the 7 9 are homogeneous. This 
is quite analogous to the multivariate normal compound symmetry testing 
problem (Anderson 2) where the overall hypothesis HMVC is partitioned into 
HM and H.VC-, and while testing for the null hypothesis HM (of homogeneity 
of the means), the homogeneity of the variances and covariances is presumed, 
although here we are to deal with multivariate binary data model where the 
parametric orthogonality does not hold, and exact likelihood formulations 
are difficult. Thus, we need to proceed through appropriate permutation 
formulations with suitable alignments. In the present case, again we need to 
consider the MPLE of 6 from the pooled sample (of all the n sequences), and 
then consider the pseudo scores pertaining to the a component, for individual 
groups, aligned at the pooled MPLE. The rest of the manipulations are quite 
similar, and the resulting test statistic, denoted by £ n , would have then a 
permutation distribution which is asymptotically, in probability, chi-square 
with (G - 1)K DF. 

5 Nonparametrics and General Comments 

As has been mentioned earlier, the autologistic model may lack proper sta
tistical justifications from genuine likelihood perspectives. As such, routinely 
using the autologistic model may lead to nonrobust and inefficient statistical 
resolutions, and this is particularly of serious concern when K is large. Fur
ther, in the more general case of very high dimensional categorical data with 
C categories for each position (and C > 4), an autologistic model needs con
siderable modifications (to accommodate such categorical outcomes, instead 
of binary ones), resulting in a much larger number of associated parameters. 
While such a case may still be treated in a permutation setup, much of the 
charm of the autologistic model would disappear, and the inefficiency and 
nonrobustness aspects may even be more pertinent. Because of this reason, 
we consider some alternative procedures that attach less emphasis on the 
likelihood approach, and more on alternative measures that deal with sim
ilar homogeneity problems. We may refer to Pinheiro et al. 16 ,17 for some 
resolutions, and we will mainly add some further comments to their work. 

Consider a general CSA with K sites, each one having a categorical re
sponse with C{> 2) qualitative categories, indexed as 1 , . . . ,C. For the ith 
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sequence, let X; = (Xn,..., Xm)' be a random vector of responses where X^ 
denotes the category outcome c(= 1 , . . . , C) at site k(= 1 , . . . , K). Recalling 
that these sites may not be stochastically independent, we need to have a 
measure of divergence which takes into account the inter-site stochastic de
pendence to a certain extent. The primary motivation for using a diversity 
measure stems from the fact that HIV or some other retrovirus have the abil
ity to have higher mutation rates which can be traced with a diversity index, 
without going through some likelihood formulations. With that in mind, we 
define the Hamming distance between a pair (i,i') of sequences as 

1 K 

fc=i 

so that Da* is the proportion of sites where X; and Xi' do not match. Since 
the K coordinate indicator functions are not necessarily independent, this 
measure attempts to take into account their dependence, albeit in a symmetric 
manner. It is easy to see that the expected value of Dai is the average (over the 
K positions) Gini-Simpson 24 diversity indexes, which we denote by AH • It is 
also possible to employ other measures of diversity which have nonparametric 
flavour; for details, we refer to Pinheiro et al. 1 6) . 

It may be remarked that an optimal nonparametric estimator of AH is 
the Hoeffding 12 {/-statistic (corresponding to the kernel Dij of degree 2): 

^ ' l<i<j<n 

This {/-statistic formulation enables us to use conventional statistical tools 
for testing homogeneity of the AH for different groups. In conventional way 
of using ANOVA procedures based on [/-statistics, such tests for homogeneity 
of the AH for the different groups were considered by Pinheiro et al. 16>17; 
their test is based on the 'between group' and 'within group' sum of squares 
of the sample Hamming distances. Since the kernel is bounded, asymptotic 
results were not so difficult to derive. However, because of the fact that 
under the null hypothesis of homogeneity, for the ANOVA test statistic based 
on the divergence of the statistics in (25), we have stationarity of order 1 
(Hoeffding 1 2 ) , and as a result, the asymptotic null hypothesis distribution 
is not a conventional chi-squared or variance ratio distribution, and its use 
needs further simulation results. 

Following the decomposition of the Gini-Simpson index (Sen 2 0 ) , we con
sider here a somewhat different formulation. For the 5th group of ng indepen
dent sequences, we define the sample Hamming distance as in (25) and denote 
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it by DnJ, for g = 1 , . . . , G. Also, we pool the G groups into a combined set 

of n sequences, and compute the Hamming distance, denoted by Z?„ . Note 
that the Hamming distances are nonnegative quantities, bounded from above 
by 1, and it is possible to express 

D^' = within group component + between group component 
G 

= E K / " ) ^ + Dn(B), say, (26) 
9=1 

where Dn{B) is nonnegative and is stochastically small when the G groups of 
sequences are homogeneous. Denoting the first term on the right hand side 
of (26) as Dn(W), we may compare the two and formulate a test statistic as 

CH = Dn(B)/Dn(W). (27) 

The same permutation principle invoked in Section 4 can be incorporated to 
find the critical level. However, for large sample sizes, such a test may not 
have a desired chi-square or normal approximation (mainly due to the fact that 
Dn{B) when standardized may not be asymptotically normal or chi-square). 
For that reason, some alternative test procedures have been considered by 
Sen 21; these have simple asymptotic distributions under the permutation 
setup, as well as, unconditionally. 

For the internal CSA, as a very first step, Karnoub et al. 13 formulated a 
conditional test for independence of mutations in the case of K = 2. This area 
merits specific statistical attention to handle the case of general K. Likeli
hoods are difficult to be formulated precisely, and hence, autologistic or other 
models may stumble into conceptual difficulties. Nonparametrics have a much 
better prospect. High-dimensionality and categorical data setups pose the ba
sic challenges for such resolutions. 
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It is reasonable to expect that in a completely randomized design when the number 
of experimental units is not a multiple of the number of treatments, the most 
symmetrical allocation would be optimal. However, the available proofs are w.r.t. 
specific optimality criteria and are not always straightforward. In this paper, we 
show that the most symmetrical allocation is universally optimal both for the 
estimation of the treatment effects as well as for the estimation of the treatment 
contrasts. 

1. Introduction 

We consider the problem of comparing v treatments using n experimental 
units when the design adopted is the completely randomized design (CRD). 
When n is a multiple of v, it is easy to see that the design where every 
treatment is applied to n/v e.u.'s is optimal. When n is not a multiple of v, 
the design where every treatment is applied to [^] or to [-] + 1 e.u.'s may be 
expected to be optimal. Such a design is known as the design with the most 
symmetrical allocation (MSA) 

Known optimality results for the MSA relate only to the specific optimal
ity criteria. For some criteria such as the distance optimality criterion, the 
proof is somewhat involved (Liski et al. 2 ) . 

In this paper, we use a theorem of Shah and Sinha 4 to show that the MSA 
is in fact universally optimal (UO) both for the estimation of the treatment 
effects as well as for the estimation of the treatment contrasts. 

2. Universal Optimality 

The concept of universal optimality (UO) was first introduced by Kiefer 1. The 
motivation is that for some settings a particular design is optimal w.r.t. very 
many optimality criteria. In such cases it would be useful to try to establish 
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optimality w.r.t. a class of optimality criteria. This would obviate the need 
for establishing optimality w.r.t. specific criteria. When the class of criteria 
is the set of all criteria satisfying some minimal reasonable conditions, if a 
design is optimal w.r.t each of these criteria, it is called universally optimal. 
Kiefer * exploited this idea to establish UO of the balanced block designs and 
of the generalized Youden design within the appropriate design classes. 

Kiefer's notion of UO was somewhat modified by Shah and Sinha 3 who 
used a slightly different set of conditions on the class of optimality criteria. 
We present these here for the sake of completeness. 

Let V denote the class of designs and for d 6 V, let d denote the 
information matrix for the set of effects to be estimated. Let <fi(Cd) denote 
an optimality functional which we seek to minimize. In what follows, we shall 
omit the suffix d. The conditions to be satisfied by <!>(•) are 

(i) 0(C) = <A(Cg) for all g £ Q where Cg is obtained by applying permuta
tion g to the rows and the columns of C. (This reflects the symmetry of 
the problem. The choice of Q depends upon the set up at hand. In most 
cases, it is the entire permutation group). 

(ii) If C\ > C2 i.e. if C\ — C2 is non-negative definite then, <j>{C\) < (C2). 
(This condition is very appealing. In fact, one would wish to impose 
only this condition and no others. Unfortunately, this leaves the class of 
designs much too wide which makes it hard to find optimal designs.) 

(hi) (j)(Ci) > (f>(C2) = > (f>(tCi) > 4>{tC2) for all positive integers t. (This 
is reasonable. If d2 is better than d\, then t copies of d2 are better than 
the same number of copies of d{). 

(iy) <KS*3 Cg) — </>((S*a)C) where ig 's are non-negative integers. (This is 
a form of convexity which is very appealing. It is weaker than the usual 
convexity condition. See Shah and Sinha 3 for a detailed discussion of 
this). 

A well known result due to Kiefer l states that if a design d* is such that 
(i) Cd* is completely symmetric and (ii) C<z» has a maximum trace, then d* 
is UO. (A matrix of the form al + (3J is called completely symmetric.) This 
has been the most widely used result for proving universal optimality. This 
result is considerably strengthened by the following result due to Shah and 
Sinha 4. 
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Theorem 2..1. Let d* £ V. If for a design d, we can get non-negative 
integers tg (not all zero) such that 

( 2~] tg) Cd* — 2_. tgCdg is non-negative definite, 

then d* is at least as good as d w.r.t. every criterion satisfying conditions (i) 
to (iv). 

If this holds for all d G X>, d* is said to be universally optimal. The above 
theorem is an extension of a result due to Yeh 5 modified for the Shah-Sinha 
formulation. Yeh required the difference to be a null matrix. In fact, he 
conjectured that this condition is necessary. However, in our application to 
CRD, the difference is a non-null matrix. 

3. Optimality of MSA CRD's 

Here, we have a total of n experimental units to be used for studying the 
effects of v treatments. If n is divisible by v, it is easy to show that the design 
where each treatment is equally replicated is UO. 

We shall now assume that n is not divisible by v. Let 7ij denote the num
ber of e.u.'s receiving the treatment i. For the most symmetrical allocation 
(MSA), ri; = x or x + 1 where x is the largest integer not exceeding n/v. 
Thus, \rii — rij\ < 1 for all i,j for the MSA design. 

We now show that the MSA design is UO. We deal separately with the 
following two cases. 

Case I: Estimation of the treatment effects 

Our model here is 

E(Vij) = HiJ = !. 2 . •• -,ni;i = 1,2,..., v 
V(yij)=a2. 

Here y,j denotes the j'-th observation on treatment i and the observations 
are assumed to be uncorrelated. 

It is easy to see that the C-matrix for the estimation of the fi^s is 
diag (n1,n2,...,nv). 

For the MSA design, let p denote the number of treatments for which 
ni = x + 1. Thus, n = J^ 7i; = p(x + 1) + qx where q = v — p. 

For the competing design, we assume that n\ > n^ > • • • > nv. Let 
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p v 

y = Y^Ui/p and let z — Yl, ni/<l- By successive applications of condition 
i p+i 

(iv) for optimality criteria, it follows that the design with replication numbers 
given by (plql)y for the first p treatments and (plql)z for the remaining q 
treatments is at least as good as p\q\ repetitions of the original design. Thus, 
it is enough to compare the MSA design with a design with y replications for 
the first p treatments and z for the others. In view of condition (iii) we may 
ignore the fact that y and z may not be integers. 

We now try to express (x +1,..., x +1, x,..., x) as a convex combination 
of permutations of (y,..., y, z,..., z) where the coefficients are non-negative 
rational numbers. Here, the vectors are partitioned in two parts containing p 
and q terms respectively. We can then apply our theorem to show that the 
MSA design is superior to (y,..., y, z,..., z) and hence to {n\, n<i, • • •, nv). 
Here, the term "superior" should be interpreted as "at least as good as" 
w.r.t. any criterion satisfying conditions (i) to (iv). 

We first deal with the case where p> q. The case where p < q is handled 
similarly. 

We consider the case where q of the j/'s go to the last q positions and 
these are replaced by the .z's. Number of such permutations is s = (p). We 
give weight (5 to each of these and weight a to (y,..., y, z,..., z). All others 
are given weight zero so that a + s/3 = 1. We try to see if this combination 
gives {x + 1 , . . . , x + 1, x,..., x). Equating these, we get, 

ay + f3(tz +(s- t)y) = x + 1 

az + j3sy = x 

where s = (p) and t = (Pz{). It can be shown that these have solution 
a = (y — x)/(y — z) and /3 = (x — z)/s(y — z). Since y > x > z and since 
y > z, it follows that we can get non-negative integers tg such that 

(^2 tg){x + l,...,x + l,x,...,x) = ^ i 3 ( n i , . . . , nv)g 

where (TH, . . . , nv)g is a permutation of {n\,..., nv). This establishes the UO 
property of the MSA design for the estimation of the treatment effects. 

Case II: Estimation of the treatment differences 

The same model as above is still applicable. It is easy to see that the 
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information matrix for the estimation of the contrasts in the fii's is given by 

Cd = diag(ni,n2,..., n„) 
n2 ( n i , n 2 , . . . , n „ ) 

\nvJ 
Let d* denote the MSA design. It is enough to show that given a design d, 
for a suitable choice of non-negative integers tg 

where Cdg is obtained by applying permutation g to the rows and columns of 
the matrix Cd-

Again we assume that n\ > n2 > • • • > nv and take the same choice of 
£3's as in the previous case. If we define Xd = (ni,ri2,... ,nv), it is enough to 
show that 

Y^tgGgxdxdGa > (^tg)xd.xd, 

where Gg is the permutation matrix for the permutation g. (This follows 
from the fact that Y,tgGgXd = (%2tg)xd*). 

We now consider a u-variate distribution where we assign probability 
tg/C^tg) to GgXd with the tg's as described above. We have seen that 

Since the dispersion matrix of GgXd is non-negative definite, it follows 
that 

J2 (Yt ) G9XdX'dG'g > xd*Xd.. 

It now follows that (^2tg)Cd* — Y^^g^dg is a non-negative definite matrix. 
This establishes the UO property of the MSA design for the estimation of 
the treatment effects differences. 

Remark 3..1. The above establishes the optimality of the MSA with respect 
to all the known criteria such as A-, D-, E-, MV-, (M,S)- and SD- optimality. 
Though most of these were known, the derivation for some of these such as 
SD- optimality were rather involved. 
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Yeh 5 had conjectured that 

Cd* ~ / (lg Cdg = 0 

is a necessary condition for the universal optimality of the design d*. Here, 
ag 's are non-negative real numbers. Our above result for the CRD shows that 
the above matrix could be non-null. However, this leaves open the possibility 
that for some other choice of a9 's the difference matrix is null. 

We now give a revised conjecture that for d* to be universally optimal for 
any design d, there exist non-negative integers tg such that 

2_j^a^d* ~ /] tg Cdg is a n.n.d. matrix. 

The application to the CRD set up appears to be the first known case 
where the matrix is non-null. 

In any case, The theorem used here is a powerful tool for establishing UO. 
It is hoped that it will be found useful in many investigations. 
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The comparison of incidence rates of occult tumors is usually one of main objectives 
of tumorigenicity experiments. For the problem, a common practice is usually to 
assume that tumors are lethal or nonlethal (Hoel and Walburg 9 ; Sun 1 7 ) , to fit 
incidence rate data to certain parametric or semiparametric models (Dewanji et 
al. ), or to treat tumors with intermediate, but known lethality (Lagakos and 
Louis n ) . In this paper, a simple nonparametric test, which allows tumors to have 
intermediate and unknown lethality, is proposed for the comparison of incidence 
rates. The method also allows distributions of death times to depend on treatments 
or doses. The proposed method is applied to data arising from a tumorigenicity 
experiment. 

1 Introduction 

This paper considers statistical analysis of tumorigenicity experiments with 
focus on the comparison of different treatments or doses with respect to rates 
of development of tumor (e.g., Dinse and Lagakos 7; Dewanji and Kalbfleisch 
3; Dinse 6 ) . In these situations, the variable of interest is usually the time to 
tumor onset, which is often not directly observable. Instead, only death time 
of animals under study and the status of tumor onset at the death time are 
observed. For such treatment comparison problems, an important factor that 
has to be considered and has a great deal of impact on the comparison is tumor 
lethality, measuring the effect of tumor onset on the death rate of animals. 
Two extreme cases are that tumors are lethal and nonlethal, respectively. The 
former means that tumor onset kills the animal right away, while the latter 
means that tumor onset has no effect on the death rate and does not alter the 
risk of death from other causes. 

If tumors are lethal or nonlethal, there exist a number of parametric and 
nonparametric test procedures. This is especially the case for lethal tumors 
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since tumor onset time and death time can be treated as being identical and 
thus are observed or right-censored. In other words, many existing survival 
methods could be directly applied for the comparison of tumor rates in this 
case (Kalbfleisch and Prentice 1 0) . For discussion on nonlethal tumors, see, 
among others, Dinse 6 , Dinse and Lagakos 7, Peto and Peto 13, Sun 17 and 
Sun and Kalbfleisch 18. If tumor is between lethal and nonlethal, for the 
comparison, a common method is to fit some parametric or semiparametric 
three-states regression models to observed data and then to apply the resulting 
score test (Dinse and Lagakos 7, Dewanji and Kalbfleisch 3; Rai, Matthews and 
Krewski 1 5) . The three-states model includes alive without tumor, alive with 
tumor and dead. Animals could move from either of the first two states to the 
last state. A detailed description of the three-state model for tumorigenicity 
experiments is given in the article by Rai, Sun and Hunt in this volume. 
The goal of this paper is to develop a nonparametric test procedure without 
making any model assumption about tumor rates. 

To compare tumor rates, another factor that needs to be considered is 
animal death time, which serves as observation or censoring time and could 
depend on treatments. A comparison not accounting for animal death time 
difference could overestimate or underestimate treatment difference (Dinse 
and Lagakos 7 ) . For example, consider a situation in which animals in one 
group have longer survival times and higher tumor rates than animals in 
the other group. Then tests assuming the same death distribution could 
overestimate tumor rate difference. In other words, the survival difference if 
existing needs to be adjusted for treatment comparison. 

The remainder of the paper is organized as follows. We begin in Section 2 
with introducing notation and assumptions that will be used throughout the 
paper. Section 3 discusses the comparison of incidence rates of occult tumors 
with intermediate lethality and presents a simple nonparametric test proce
dure. For the problem, the Cox 2 proportional hazards model is assumed for 
tumor lethality and treatment effect on death rates. The proposed method
ology allows estimation and test of tumor lethality as well as treatment effect 
on animal death. The method is a generalization of that proposed in Sun 
17, who considered the same problem for nonlethal tumors. In Section 4 the 
methodology is applied to a real data set from a tumorigenicity experiment. 
Some discussions and concluding remarks are given in Section 5. 

2 Nota t ion and Assumpt ions 

Consider a tumorigenicity experiment involving n independent animals who 
are tumor-free at time t = 0 and are randomly assigned to one of p + 1 
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treatment or dose groups. For the ith animal, let C7, denote the time of tumor 
onset, T* the time of death and C; the censoring or sacrifice time. It will be 
assumed that the development of a tumor is an irreversible event. In practice, 
since tumors are occult, we do not observe the Ui's. Instead, we observe 
only Ti = min{ T* , Ci }, the smallest of death and sacrifice times. Define 
Ni{t) = I(Ui < t), the indicator of the absence (Ni(t) = 0) or presence 
(Ni(t) = 1) of a tumor in animal i at time t, and Ni(t) = 7(7} < t), 
indicating if the animal is dead (by 1) at time t, i = 1, ...,n. Then observed 
data are {T{, Ni{Ti), 6i = I{T{ = T*); i = l , . . . , n} . Let Z{ denote the 
p-dimensional vector of treatment or dose group indicators associated with 
the ith animal. Our main goal is to test the hypothesis Ho : E{ Ni{t) \Zi} is 
independent of i. 

As mentioned before, in the following, we will focus on tumors that are 
between lethal and nonlethal. To model tumor lethality, we will assume that 
given Zi and Ui, the hazard function of the death times T*'s is given by the 
following proportional hazards model (Cox, 1972), 

Xi(t) = \iit\Zi) = I(Ti > t)X0(t)e
T'Zi+^^^ , (1) 

where Xo(t) denotes the baseline hazard function, r is a p-dimensional vector 
of unknown regression parameters characterizing the group or dose effect on 
death rate, and (3 is a scalar parameter describing tumor lethality, i = 1,..., n. 
The above model allows that animal death rates could be affected by both 
doses and the onset of a tumor. Note that /? = 0 means that the tumor is 
nonlethal and r = 0 means that the dose has no effect on the death rate. If 
both/? = 0 and r = 0, the death times T*'s then follow the same distribution 
and are independent of the Ni's and the Z;'s for all animals. Thus the model 
allows both the assessment and estimation of possible dose effect and tumor 
lethality. 

Models similar to model (1) have been discussed, for example, by Dinse 
5 , Lindsey and Ryan 12 and Rai and Matthews 14. In particular, Sun 17 

considered the problem of testing the hypothesis Ho under model (1) with 
/? = 0, that is, for nonlethal tumors. To test Ho for current situation, there 
exist several difficulties compared to the case of /? = 0. One major problem is 
estimation of the parameter r , which can be easily obtained if (3 = 0, and the 
parameter (3. This is because model (1) involves the unknown tumor onset 
times UiS. In the following, we will develop an EM-type algorithm for this. It 
will be assumed that the censoring times C;'s are independent of tumor onset 
and death times and that they follow the same distribution as the death times 
when there is no dose and tumor effect. 

file:///iit/Zi
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3 Statistical Methods 

In this section, we discuss the test of the hypothesis HQ and estimation of para
meters T and p. Let So(t) = exp{- JQ Ao(s) ds} be the baseline survival func
tion for the T*'s. To construct a test statistic for H0, first assume that r , P and 
So are known. Note that we can rewrite Ni(Ti) as N^Tt) = J0°° Ni(t)dNi(t). 
Thus under H0 and the assumptions, 

/ • O O 

E{Ni{Ti)\Zi} = {elT'Zi + V + l} / A 0 ( i ){5o( t )} e x p ( T ' z ' + / 3 ) / iW5o( t )^ 
Jo 

conditional on Z,, where fi{t) denotes the mean function of the Ni(t)'s under 
HQ. Therefore, under HQ, we have that 

J i W H e ^ + W + l}-* , , W r t M < f r . w , *}-f M 

This motivated the following test statistic 

X(r,P,S0) =Y(Zi- Z)^^-—-±^-
^ ~ - ' s 0 (T i )«p( ' - 'Z i + /9) (2) 

which has expectation zero under Ho, where Z = Y^i=i %i /n. 
Among others, Charles and Wei x discussed similar test statistics for the 

comparison of two treatments in the context of balanced repeated measure
ments. Sun 17 considered the test of HQ and proposed a test statistic similar 
to X(T,(3,SQ) replacing unknown parameters by their consistent estimates. 
Let a = (T,P, SO). It can be shown using the method in Sun 17 that under 
Ho, X(a) has asymptotically a normal distribution with mean zero. Thus 
using the statistic X(a), the hypothesis HQ should be rejected for large values 
of X(a), where a denotes a consistent estimate of a. 

To apply the statistic X(a), we need to estimate a under HQ. For this 
purpose, note that if the C/j's are known, r and P can be easily estimated by 
the solution to equations XT(r,p) = 0 and Xp(r,P) = 0, where 

E" , /(t<r,-)eT%-+w^t>z,-) 
XT(r,P) = > J / \ Z i - ^ i J ( t"<r. )er>gj+g/^<«) } dN^) 

and 

X(3(T,P) 
n ,.00 ( E " , lit < T,)e''zi*muiS>l(Ui < t) 1 
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which are score functions from the partial likelihood function of r and (3. In 
the above, N?(t) = I{T < t,6t = 1) and N*(t) = ^ = 1 N?(t). Given r 
and (3, the baseline survival function 5*0 can be conveniently estimated by the 
consistent estimator 

S o f t r . f l = e x p j - I E ; = i / ( s < ^ ) ( ; U + ^ < 4 • 

This motivates the following algorithm for estimating a under HQ. 
Step 0. Choose initial values for the £/,'s. 
Step 1. Estimate the marginal survival distribution of the tumor onset time 
under Ho based on the U's and denote it by Su-
Step 2. Estimate r and (3 by solving the equations XT(T,(3) = 0 and 
Xf}{T,(3) = 0 and then estimate 5o by So{t;f,J3). This yields an estimate, 
say §T*\U> °f the conditional survival function of the T* given the £/j's. 
Step 3. Let Ui be equal to its conditional expectation 
E{Ui\Ti,Ni(Ti),Su,ST*\u} under the current values of the parame
ters, i = 1, ...,n. 
Step 4. Go back to step 1 until the convergence of the estimates of r , (3 and 
So. 

In the above algorithm, a natural choice for the initial value of U is to 
set Ui = Tifl if Si = 1 and £/; = Tj if Si = 0. Steps 2 and 3 correspond 
to the maximization step of EM algorithm and Step 4 can be regarded as 
the expectation step of EM algorithm. An alternative to steps 0 and 1 is to 
estimate SJJ based on interval-censored data [ (Tt, Ni(Ti)} ; i = 1,..., n] on the 
UiS (Sun 16; Turnbull 1 9) . In this way, in step 1 after the first iteration, Su 
can be estimated by the Kaplan-Meier estimate (Kalbfleisch and Prentice 1 0) . 

Once estimates a are obtained, we propose to use the simple bootstrap 
procedure given in Efron 8 to determine the p-value for testing HQ using 
X(a) as well as the distributions and variance estimates of a. Specifically, 
the bootstrap procedure can be carried as follows. For a given integer K and 
each fc = 1, ...,K, 
Step 1. Draw from observed data {Ti,Ni(Ti),6i , i = 1, . . . ,n} with replace
ment n random samples { T^k) ,N^(T}h)), s\k) , i = l , . . . , n } . 
Step 2. Obtain an estimate of a denoted by d'fc) = (f (fc>,/3<fc\ s£fc)) and let 
X<*> = X(&W). 
Step 3. Go back to step 1 if fc < K. 

The distribution of a and X(a) can be estimated by a'1 ' , . . . , d ^ ' and 
X^, ...,X(K^ for large enough K, respectively. For the test of the hypothesis 
H0, the p-value can be calculated as £ * = 1 I(\X^\ > \X(a)\)/K. Some-
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times it is also interest to test r = 0 and 0 = 0, which correspond to no 
treatment effect on death rate and the tumor under study being nonlethal, 
respectively. Suppose that we accept Ho- Then for the test of r = 0, the 
p-value can be calculated as 2fc=i I(\T^\ > \f\)/K for large K and the 
same can be done for 0 = 0. Note that here both estimation and test about 
r and 0 are performed under HQ, which is the main interest of the paper. The 
general inference about r and 0 could be carried out in the similar way. 

4 An Application 

To illustrate the proposed method in the previous section, we apply it to the 
tumorigenicity experiment reported by Hoel and Walburg 9 on lung tumors on 
144 male RFM mice. The experiment involves two treatments, conventional 
environment (96 mice) and germfree environment (48 mice). The observed 
data include observation times (Ti's) of the mice, lung tumor presence or ab
sence indicators at the observation times (JVi(Ti)'s) and treatment indicators. 
Note that the observation times here are either the death or sacrifice times of 
the animals. The data were given in Table 5 of Hoel and Walburg 9 and also 
analyzed by Lagakos and Louis 16 and Sun 17. One of the objectives of the 
study was to compare the lung tumor incidence rates of the two treatments. 

To compare lung tumor incidence rates, define Z; = 0 if an animal was 
given conventional environment and Zi = 1 otherwise. Applying the method 
given in Section 3, we got that f = -2.0314, 0 = 0.4008 and X(a) = 
38.1738. To obtain the p-value for testing the equality of tumor development 
rates between the two groups, the bootstrap procedure given in Section 3 
with K = 10000 was used and yielded a p-value of 0.0673 for HQ. The results 
indicate that there is a moderate difference between the lung tumor incidence 
rates of the mice under the two treatments and that the mice in germfree 
environment had a little higher rate of tumor development. These are similar 
to those given by Hoel and Walburg 9, Lagakos and Louis u and Sun 17. 
Assuming the nonlethality, Hoel and Walburg 9 and Sun 17 gave p-values of 
0.01 and 0.028, respectively. Note that the difference between the methods 
used in Hoel and Walburg 9 and Sun 17 is that the latter adjusts for survival 
difference between the two groups, while the former does not. In contrast, 
the method given here adjusts for both the survival difference and lethality. 
Lagakos and Louis n assumed known lethalities and obtained p-values of 
around 0.07. 

We also considered the tests of the hypotheses T = 0 and 0 = 0. Using 
the same bootstrap samples as those for X(a), we obtained a p-value of al
most zero for testing T = 0, indicating that the two groups had significantly 
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different survival rates. The same was also pointed out by Lagakos and Louis 
11 and Sun 17. In particular, the latter obtained and plotted the separate 
Kaplan-Meier estimates of the survival functions for death times of the mice 
in the two treatment groups, which suggested that the mice in the germfree 
environment had significantly longer survival time than those in the conven
tional environment. For 8 = 0, the bootstrap procedure yielded a p-value of 
0.3722. This is consistent with the fact that lung tumors are usually regarded 
as relatively nonlethal (Hoel and Walburg 9 ) . 

5 Concluding Remarks 

A nonparametric test procedure is proposed for the comparison of tumor in
cidence rates, which is often one of the main objectives of tumorigenicity 
experiments. Compared to the existing methods, a main feature of the pre
sented approach is that it allows tumors having unknown intermediate lethal
ity. Also it adjusts for the possible effect of doses or treatments on animal 
survival rates. To implement the method, a bootstrap procedure is developed 
for the determination of p-values. 

Note that in the above, Zi was assumed to be treatment indicators for 
simplicity. In fact, the presented method also applies to the situation where 
the vector Zi includes some covariates whose effect one may want to examine. 
The focus of this paper is on the comparison of tumor development rates. 
Sometimes it may be of interest to describe and estimate tumor development 
rates. For these situations, certain models usually need to be assumed (De-
wanji et al. 4; Lindsey and Ryan 12; Rai, Matthews and Krewski 1 5 ) . 

More work remains to be done. One problem for future research is to 
study asymptotic properties of the proposed test procedure and the point 
estimates of r and /?. In this paper, we have assumed that death time of an 
animal can be described by the proportional hazards model (1). It would be 
useful to develop similar test procedures for other commonly used models such 
as additive failure rate model and multiplicative failure rate model studied by 
Rai, Matthews and Krewski 15 among others. A related problem is model 
checking or selection, for which there seems no established method. 
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Recently there has been a growing interest in the estimation of intensity of contin
uous time analog of regression models (semimartingales). Counting process model, 
a special case of the semimatingale models, is widely used to study the estimate 
of the hazard function in Aalen x, Ramlau-Hansen 8 etc.. Following a recent work 
of Novak 5 on generalized kernel density estimators, a new class of nonparametric 
estimators for the intensity of a semimartingale process is introduced. It includes 
the kernel smoother for the hazard rate based on optimal estimating function stud
ied in Thavaneswaran and Singh 12 as a special case. The asymptotic properties 
of the smoothed estimator with censored observations are also discussed in some 
detail. 

1 Introduction 

A semimartingale is a stochastic process which can be represented as the 
sum of a process of bounded variation and a local martingale. In the case of 
continuous time, a typical example of semimartingale is a process (X(t), t > 
0) with independent increments for which E|X(i) | is finite and a function 
of locally bounded variation. The class of semimartingales includes point 
processes, Ito processes, diffusion processes, etc. Consider a continuous time 
stochastic process (X(t), t > 0) defined on (Q,A, P), a complete probability 
space for each P in a family {V} of probability measures, and a family F = 
[Ft, t > 0], of a algebras Fs C Ft C A for s < t, F0 augmented by sets 
of measure zero of A, and Ft = Ft+, where Ft+ = r\s>tFs . We denote by 
D the space of right-continuous functions {x(t), t > 0) having limit on the 
left and use X — (X(t),Ft) to denote an Ft -adapted random process (X(t)) 
with trajectories in the space D. For simplicity we assume that X(0) = 0. 
We shall denote by Mfoc{F, P) a class of locally square integrable martingales 
(H(t), Ft). Assume that the process (X(t), Ft) is a semimartingale for each P, 
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that is for each P it can be represented in the form 

X(t) = V(t) + H(t) (1) 

where V(t) is a locally bounded variation process and H(t) € Mfoc(F,P). 
When we allow V(t) and H(t) to depend on P e {V} only through 6, the 
model (refeql.l) can be written as 

X(t,e)=V(t,O) + H(t,0) 

When 6 £ TZ, optimal as well as recursive estimates have been studied in 
Thavaneswaran and Thompson n . Asymptotic properties of the parametric 
estimators for vector valued multiparameter semimartingales had been studied 
in Hutton and Nelson 3 .Here we consider the following semimartingale model 
of the form 

dX(t) = a(t)Y(t-)dR(t) + dM(t). (2) 

where a(t) is an unobservable deterministic part of the intensity process of the 
semimartingale X(t), {X(s),Y(s),R(s),0 < s < t} are observable processes, 
M(t) £ Mf0C(F, P) with predictable variance process < M >t= /„' C(s)dR(s), 
and C(s)is a known function of the observations and a(s). For a similar re
striction that the conditional mean and the conditional variance of X(t) are 
absolutely continuous with respect to R(t), see Hutton and Nelson 3. When 
R(t) = t, equation (2) turns out to be the Aalen's * multiplicative intensity 
model for counting processes. 

Example 1.1. Poisson process: When X(t) is a right continuous process 
having jumps of size 1 and X(t) = Jo a(s)Y(s)ds, with Y(s) = 1, is a deter
ministic function, the semimartingale model (2) becomes a non homogeneous 
Poisson process model with cumulative intensity \(t) . 

Example 1.2. Multiplicative intensity model: When X(i) denotes the num
ber of deaths up to time t, a(t) is a hazard rate, Y(t—) is the number of indi
viduals at risk before time t, then the semimartingale model (2) turns out to be 
the multiplicative intensity model introduced by Aalen *. The process M(t) is 
a zero mean square integrable with variance process< M >t— J0 a(s)Y(s)ds 
provided there are no simultaneous deaths. This model has been widely ap
plied to such phenomena as life history data or arrivals at an intensive care 
unit of a hospital. The counting process model and the martingale limit the
ory have been used to study the asymptotic properties of the estimators of 
the hazard function and the survival function with censored observations. 

In a recent paper, Novak 5 discussed the problem of obtaining a general
ized kernel density estimator with independent observations. The kernel func
tion smoothing approach is a useful tool for hazard function estimation as well. 



306 

Recently, efforts have been made to extend the smoothing methodology in var
ious directions, see Ramlau-Hansen 8, Thavaneswaran 10, Thavaneswaran and 
Singh 12. The purpose of this paper is to explore the implications of the result 
of Novak 5 for estimating the intensity function of a semimartingale model. 
We also apply it to hazard function estimation with censored observations by 
generalizing the Novak's 5 result. 

Let Xi, , X n be a random sample from the distribution of a random 
variable (r.v.) X with density f(x) > 0 . The classical kernel density estimator 
of f(x), at any given x , proposed by Rosenblatt 7, and studied by Parzen 6 

and Nadaraya 4 is: 

>-M = ; s X : / , ( ^ ) . »«" 
i=l x ' 

The kernel / 7 , the density of some symmetric r.v. 7, and the smoothing 
parameter (band width) h = h(n) are to be chosen by the statistician. It 
is assumed that the density / is continuous at x, / 7 vanishes outside the 
interval [-T, T] and has at most a finite number of discontinuity points. The 
generalized kernel estimator studied in Novak 5 is: 

fn,a (*) = - £ /J* «*< ~ ^f" (**)) S" (Xi) h (3) 
« = 1 

where a 6 11, It = I{\x — Xi\fa(x) < hT+}, and T+ is a constant greater 
than T . 

For any continuous function g of / we propose the following extended 
version of the Novak's estimator as 

fn,o (*) = \ E M ((Xi ~ x)g(f{Xi))) g(f(Xi))Ii (4) 
i = i 

where U = I{\x - Xi\g(f(x)) < hT+). 
If g(x) = fa(x), then estimator (1.6) reduces to the estimator (3) and for 

a = I it coincides with Abramson 2 estimator. Thus, the class of proposed 
estimators {fn,g {x)} generalizes that of kernel density estimators including 
Novak's as well. In order to compute the estimator, Novak suggested that one 
can substitute a consistent estimator of f{Xi). In the case of censored data it 
is more appropriate to substitute an estimate which incorporates censoring. 
Thus, it is of interest to note that our approach allows to smooth the density 
with censored data by letting g {f(x)) as the survival function and substituting 
the product limit estimator in the kernel. The following lemma will be used 
in Section 2. 
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Lemma 1.1. As n -> oo 

Efn,g {x) -> / (x) 

nhDfUig (x) ->• i// (x) 5 (x) (5) 

where D denotes the variance and v = J & [x) dx. 

The proof of the lemma follows by the dominated convergence theorem. 

In the next section, a modified version of this generalized kernel density 
estimator is studied for a semimartingale intensity. 

2 Estimating function based kernel estimate 

Based on a single realization, a smoothed optimal estimating equation studied 
in Thavaneswaran and Singh 12 for estimating the semimartingale intensity 
a(t) at io is: 

l 

j ^{{t0-8)hr1)br1d<fi = o (6) 
o 

where 

(i) (7° = J0a°s gdMSie, as in Thavaneswaran and Thompson u , is an 

optimal estimating function defined through a°se = ( c o o ) ' w n e r e 

J(s) = I(Y(s) > 0,C(s) > 0), and 

(ii) / 7 is a non-negative integrable kernel function with band width h . 

In analogy with (6), we propose a smoothed estimate for a(io) as a solution 
of 

L 
i 

o _ /fc^((*o - s)g(a(X{s))))9(a(X(s)))dG» = 0, (7) 

where g is a continuous function of a(t) through the observations as in (4). 
When g{x) = 1, (7) reduces to (6). The explicit form of the resulting estimator 
from the estimating equation (2.2) can be written as: 

0O = Jo h-y ((to ~ s)g(X(S))) g(X{8))Z$$*dX(8) 

So fh-r ((to - s)g(X(s))) g(X(s))^m^dR(s) 
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2.1 Asymptotics: Strong consistency and asymptotic normality 

The optimal smoother for a(to) = 90 for fixed t0 from a sequence of semi-
martingales indexed by n, (i.e.) 

dXn{t) = a(t)Yn(t-)dR(t) + dMn{t), 

for 0 < t < 1, can be written as 

°°n(t) = 
So A7((*o - s)g(Xn(S)))g(Xn(s))Y^lJ

{;f
sUxn(S) 

So /fc7((«o " s ) s ( X „ ( s ) ) ) f f ( * n ( » ) ) £ g ^ d f l ( s ) 

Jo A 7 ((to ~ s)g(Xn(s))) g(Xn(s)) y-gfcC> dM„(s) 

Jo A T ((*o - s)g(Xn(s))) g{Xn(s))^i^dR(s) 

An 

= e0 + 

= 9o + 

where 

and 

Mn = ^ h-y ((to ~ s)g(Xn(s)))g(Xn(s))Yn{")'ln{s)dMn(s) 
J0 ^n\S) 

An = f fhy ((to - s)g(Xn(s)))g(Xn(s))Y"{")fn{s)dR(s) 
JO ^n{s) 

For any sample size n, it can be easily shown that the estimate is un
biased for models with deterministic intensity. The following two theorems, 
analogous to the ones given in Thavaneswaran and Singh u are established. 

Theorem 2.1. Let mn = S"= 1(AMi/i4i) . Under the assumptions that 

(i) the predictable variance process of m„ , < mn >oo< °o a-s. and 

(ii) for the predictable process An, A,*, = oo a.s. . 

The optimal smoother 9^(t) —> a(t) a.s. for all fixed t as n —>• oo 

The assumptions (i) and (ii) are somewhat restrictive for a general semi-
martingale model. However these can be easily verified for an autoregressive 
model of order one as in Shiryayev 9(p. 489). 
Proof: The process 

Hn(s) = fhl ((t0 - s)g(Xn(s)))g(Xn(s))Yn{^)
{s) 
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is predictable and Mn(s) is a zero mean square integrable martingale. Hence 
it follows from the properties of stochastic integrals, the integral 

Mn= [ Hn(s)dMn( 
Jo 

arable martingale. Fui 

An= f fhydh - s)g(Xn(s)))g(Xn(s))Y^^n{s)dR(s) 
Jo w ( s ) 

is a zero mean square integrable martingale. Furthermore, 

is a Lebesgue-Stieltjes integral of a predictable process with respect to a 
bounded variation function R(s) and is predictable. Therefore, Mn/An is 
a martingale sequence. The proof now follows by applying the strong law of 
large numbers for the martingale sequence Mn/An, as in Shiryayev 9(p. 487). 
Theorem 2.2. Assume that 

( i ) 9(xn(s)Y„(s)jn(s) _^_i_jasn^OQin probability, 

(ii) the functions a, g and a are continuous at the point t, 

(iii) R{t) = t, lim g ( X " ( ^ y j " ( s ) = 7 s in probability uniformly in a neigh
borhood of t. 

Then, 

A A M 0 ° ( £ ) - 6>o) 4 N (0, — J as n - * oo, 

where i /= £ fi(t)dt as in (5). 

Proof: We apply the martingale central limit theorem given in Shiryayev 9(p. 
511). In order to apply the theorem we verify the necessary conditions. Recall 
that 

V^K(d°n(t) ~ Oo) 

tiHn(s)dMn(s) 
/nhn Mn Mn 

nhn 

where Hn(s), An are as defined earlier and{M„} is a sequence of martingales 
with variance process, 

< Mn >= 4 - / Hl{s)d <M>n(s)=^- f Hl{s)Cn{s)ds 
nn-n Jo nnn j 0 

= r1f2
h-y((to-s)g(Xn(s)))g2(Xn(s))Y^s)Jn(s)Cn(s)dc 

Jo Cn(s) nhn 
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= / 
1 ,/* {{u)g{Xn{t - hnu))) g2{Xn(t - hnu)Y%{t - hnu)Jn{t - hnu) Cn(t - hnu) 

C£(t-hnu) n 

-» v "it-

du 

Thus the corresponding variance process converges in probability and sat
isfies one of the necessary conditions for the martingale central limit theorem. 

In order to verify the second condition, consider 

[\Hn(s)\ > e^/nhn] = \fhl ((t - s)g(Xn(s))) g(Xn(s))Yn^n{s) | > t^hn 

as n ->• oo, hn -> 0, g(*"(a)|Ms?-Ms) _^ _i_^ uniformly in a neighborhood 

of t. Thus 

[I\Hn(s)\ > e ] - ^ 0 

in probability. 
Applying the martingale central limit theorem, as n —> oo, Mn(t) —> 

N(0,u 74) in distribution. Moreover, Bn ->• 74 in probability. Hence, 

y/nfc(0°n(t) - Oo) -*N(O,-
\ It 

in distribution. 

3 Conclusion 

In this paper we have introduced generalized kernel estimators for the intensity 
of a semimartingale process. It extends the results of Thavaneswaran and 
Singh 12 on strong consistency and asymptotic normality. Generalized kernel 
estimator of the hazard function with censored observations turns out to be 
a special case. 
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This article discusses the large sample asymptotic properties of three estimators, 
viz., OLS, TSLS and LIML, for the coefficients of a single structural equation. 

1 Introduction 

For the coefficients in a single structural equation of a complete simultane
ous equation model, Nagar 5 has considered fc- class estimators and has de
rived large sample asymptotic approximations for their bias vector and mean 
squared error matrix. He has restricted his attention to those fc - class estima
tors which are consistent and have same asymptotic distribution according to 
large sample asymptotic theory. These estimators are specified by the charac
terizing scalar fc such that fc is nonstochastic and (1 — fc) is of order C^T - 1 ) , 
T being the number of observations. Such estimators do include the case 
of two stage least squares (TSLS) estimator but fail to include two popular 
estimators. One is the ordinary least squares estimator for which the value 
of fc is nonstochastic but (1 — fc) does not satisfy the requirement of being of 
order 0(T~l). The other is limited information maximum likelihood (LIML) 
estimator for which the value of (1 — fc) is of order 0p{T~l) but the value 
of fc is stochastic. The purpose of this paper is to provide large sample as
ymptotic approximations for the bias vector and mean squared error matrix 
for these two estimators and to make a comparative study of the performance 
properties of the three popular estimators {viz., ordinary least squares, two 
stage least squares and limited information maximum likelihood) employing 
the large sample asymptotic theory. 

The plan of this paper is as follows. Section 2 describes the simultaneous 
equations model and presents the estimators for the coefficients in a structural 
equation. Section 3 discusses the asymptotic properties of the ordinary least 
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squares estimator while Section 4 provides the large sample asymptotic prop
erties of the limited information maximum likelihood estimator and compares 
them with those of the two stage least squares estimators. Lastly, Section 5 
gives the derivation of the results. 

2 Model Specification And Estimators 

Consider a simultaneous equation model consisting of a set of M linear struc
tural equations in M jointly dependent and A predetermined variables. 

YB + XT = U (1) 

Where Y is aT x M matrix of T observations on M jointly dependent vari
ables, B is a M x M nonsingular matrix of coefficients associated with them, 
X is a T x A matrix of T observations on A predetermined variables, T is a 
Ax M matrix of coefficients associated with them and U is a T x M matrix of 
structural disturbances. It is assumed that the row vectors of U are indepen
dently and identically distributed, each following a multivariate distribution 
with mean vector 0 and variance covariance matrix S. 

With no loss of generality, let us suppose that we are interested in the 
estimation of parameters in the first structural equation of the model (1), 
expressible as 

Y = Yi0 + Xxl + u 

= A6 + u; A = (Y1:X1) ; S=\... 
\ 7 

where y is a T x 1 vector of T observations on the jointly dependent variable to 
be explained, Y\ i s a T x m submatrix of V, j3 is a m x 1 vector of coefficients 
associated with m(< M) explanatory jointly dependent variables, X\ is a 
T x I submatrix of X, 7 is a I x 1 vector of coefficients associated with l(< A) 
explanatory predetermined variables and u is the first column vector of U. 

The reduced form corresponding to explanatory jointly dependent vari
ables in (2) is expressible as 

Yi = XUt + UHi (3) 

where III is a A x TO matrix of reduced form coefficients determined by the 
elements of the matrix —TB~1 and H1 is a M x m matrix obtained from the 
elements of the inverse matrix B. 

(2) 
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We can write 

A = (n; xx) 

x n i : Xi ) + [ UHi : 0 

XU + UH 

(4) 

where 

n = IL 
o 

and H=[H1:0 

Assuming the structural equation (2) to be identifiable, the fc-class esti
mator of 6 in (2) is defined by 

6k 
- l 

A'{I-kPx)A A'{I-kPx)Y (5) 

with Px = I — X(X'X)~1X' and fc as the characterizing scalar. 
The family (5) encompasses three popular estimators, viz., ordinary least 
squares estimators(OLS), two stage least squares (TSLS) and limited infor
mation maximum likelihood (LIML) estimators. The OLS and TSLS estima
tors are specified by fc = 0 and fc = 1 respectively while LIML estimator is 
specified by fc = A where 

A = : (6) Tiy-YipyPxiy-Yrf) 
with PXl=I- Xi{X[Xi)-1 X'± ; see, e.g., Kadane 3 . 

3 Asymptotic Properties of OLS Estimator 

In order to examine the properties of estimators of structural coefficients in 
(2), we assume that the structural disturbances are normally distributed and 
the model does not contain any lagged endogenous variable. Further, it is 
assumed that all the exogenous variables in the model are asymptotically 
cooperative in the sense that T~1(X'X) tends to a finite nonsingular matrix 
as T tends to infinity. This rules out, for instance the presence of any trend 
variable in the model; see Kramer 4. 

In order to present the large sample asymptotic results by following the 
approach of Nagar 5 , let us introduce the following quantities: 

d = H'crn ( i ) (7) 
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Q = (^n'x'xn) 
- i 

(8) 

where a^ denotes the first column vector of the variance-covariance matrix 
S of disturbances. 

Resul t I: The large sample asymptotic approximations, upto order 0(T~l), 
for the bias vector and variance covariance matrix of the OLS estimators <§o 
of 6 are given by 

B(60) = E{60 - 6) 
1 

Sd+- {(tr Q^S) - ljSQ^Sd + SQ^SQ^Sd 

V(S0) 

where 

E 

T 

60-E{60) S0-E(So) 

(an - d'Sd)S - (d'SQ-1Sd)SQ-1S - SQ'1 Sdd'SQ'1 S 

(9) 

(10) 

S = (^jU'X'XU + H'T,H\ 
(11) 

and o\\ is the ( l , l ) th element of £. 
From(9), it is observed that the OLS estimator is generally inconsistent 

and biased unlike the TSLS and LIML estimators which are consistent though 
generally biased. 

If we examine the asymptotic variance covariance matrix of the three 
estimators, it is well known that the TSLS and LIML estimators have the 
same asymptotic variance covariance which is given by T~1<T\iQ. Comparing 
it with (10) , we observe that 

V(61)-V(60) = V(6X)-V(60) 

^(Q-S) + ±\(d'Sd)S 

As the matrix 

+ {d'SQ-1Sd)SQ~1S + SQ^Sdd'SQ^S 

{Q-s) = (^u'x'xnY1 - (^u'x'xu + H'XH^J 
, - l 

(12) 

(13) 
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is at least positive semidefinite, it follows that the matrix expression (12) is 
also at least positive semidefinite. This implies that OLS estimator is gener
ally asymptotically more efficient than TSLS and LIML estimators. 
It may be remarked that if we employ small disturbance asymptotic theory, 
all the three estimators are consistent and share the same asymptotic distri
bution; see Kadane 3 and Srivastava and Giles 6. 

4 Comparison of TSLS and LIML Estimators 

Both the TSLS and LIML estimators are known to be consistent and to possess 
the same asymptotic distribution. In order to study the differences in their 
performance properties in finite samples, we need to examine higher order 
asymptotic approximations. 
Let us first consider the case of TSLS estimator. The large sample asymptotic 
approximations for its bias vector to order 0{T~l) and its mean squared error 
matrix to order 0(T~2) have been obtained by Nagar 5 . His results are as 
follows: 

B{k) = E{8X - 5) 

M(Si) = E(6! - S)(Si - 6)' 

{(Tn(trQH'Y,H) - 2(L - l)d'Qd}Q 

+ (L2 -3L + 4)Qdd'Q - (L - 2)a11QH'T,HQ 

where 

L = (A-e-m) 

denotes the degree of over-identification of the structural equation (2) 

(14) 

j , Q + j , 2 (15) 

(16) 

From (14) and (15) , we can obtain the variance covariance matrix upto 
order 0{T~l) as follows: 

V(Si) = E <5i-£(<5i) <5i-£(<5i) 

{an{trQH'Y,H) - 2(L - \)d'Qd}Q 

-{L- 3)Qdd'Q -{L- 2)anQHhLHQ 

T w^ T2 
(17) 
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Resul t I I : For the LIML estimator 6\ of 6, the large sample asymptotic 
approximations for the bias vector to order 0(T~l) and the mean squared 
error matrix to order 0(T~2) are given by 

B(6x) = -±Qd, (18) 

and 

M(6X) = ~ Q + p |{ffn(tr QH'ZH) + 2d'Qd}Q - (L - A)Qdd'Q 
(19) 

+ (L + 2)crnQH'T,HQ . 

From (18) and (19), the variance covariance matrix to order 0(T~2) is 
given by 

V(6X) = ^-Q + ^ [{an(tr QH'HH) + 2d'Qd}Q - (L - 3)Qdd'Q 

+ {L + 2)anQH"£HQ 
(20) 

It may be noticed that these results tally with the results obtained by Fuller 
2 for a special case; see Lemma 1 and equation (12) of Fuller 2. 

Comparing (14) and (18), we conclude that both the TSLS and LIML 
estimators are generally biased though consistent. As expected, both have 
identical biases to order 0(T~l) for exactly identified equation (2). If the 
equation is overidentified and the degree of overidentification exceeds one, 
the bias of TSLS estimator has a sign opposite to that of LIML estimator. 
Further, the magnitude of bias of TSLS estimator is larger in comparison to 
that of LIML estimator. 

Next, we observe from (17) and (20) that 

2L r 1 
(d'Qd)Q + 2anQH'Y,HQ V(6X) - V(6i) = 

y2 
(21) 

which is always a positive definite matrix for L > 0. This implies that the 
TSLS estimator dominates the LIML estimator according to the criterion of 
asymptotic variance covariance matrix to order 0(T~2) provided that the 
structural equation is overidentified. 

Similarly, if we compare the expressions (15) and (19) we get 

M(SX) - Af («i) = ^\2(d'Qd)Q - (L - 2)Qdd'Q + 2cmQH"EHQ (22) 

Now we notice that the matrix 2(d'Qd)Q -{L- 2)Qdd'Q\ is positive definite 

if and only if L < 4; see, e.g. Dube et al. 1 (Lemma 1) . It thus follows 
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from (22) that the TSLS estimator dominates the LIML estimator according 
to the asymptotic mean squared error matrix criterion to the order of our 
approximation at least as long as the structural equation (2) is overidentified 
and the degree of overidentification is less than four. 

It may be mentioned that the expression (18) is identical with the small 
disturbance asymptotic approximation of bias vector of LIML estimator; see 
Kadane 3(Theorem 1). Similarly, if we retain the terms upto order 0(T~2) 
only in the expression for the small disturbance asymptotic approximation of 
the mean squared error matrix obtained by Kadane 3(Theorem 2) , we get the 
same expression as (19). Finally, for the dominance of TSLS estimator over 
the LIML estimator with respect to the criterion of small disturbance asymp
totic approximation for the mean squared error matrix, Kadane 3 (Corollary 
1, p.728) has found the condition that the degree of overidentification should 
be less than six provided (T — A) > 2. 

5 Derivation of Results 

First of all, we present the following expectation results. 
Lemma: We have 

E(UCU) = C'E , E{U'CU) = (trC)E 

E(UCU') = (trCT,)I , E(U'CU') = EC" 

E{U'UCU'U) =T\(T+ 1)ECE + (trCE)EJ (23) 

where C is a nonstochastic matrix of suitable order in each case. 
For proof, see Kadane 3 (Appendix) or Srivastava and Tiwari 7. 
Now for the results related to OLS estimator, we observe that 

(60 -6) = (A'A^A'u 

where 

/ + ^S(H'U'XU + U'X'UH) + SH'AH] * (24) 

SH'(T{1) + s(Jpl'X'u + H'c) 

S = ( i n ' X ' X n + H"EHy\ (25) 

A = ( ! [ / ' [ / - E ) , (26) 
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and 

e = ( r C / ' u - f r ( 1 ) ) - (27) 

Observing that the elements of the matrix expression ^S{H'U'XU + 
U'X'UH) + SH'AH are of order O p (T - 1 / 2 ) and expanding the expression in 
the first square brackets on the right hand side of (24), we get 

(So -S)=g0 + g_1/2 + fl_x + Op(T-3 /2) 

where 

go = SH'(T(i), 

g_1/2 = ^SU'X'u + SH'e - ^S(H'U'XU + U'X'UH)Sd 

- SH'AHSd, 

(28) 

(29) 

(30) 

and 

5-1 -(H'U'XU + U'X'UH) + H'AH 9-1/2- (31) 

Here the suffixes of g indicate the order of magnitude in probability. 
Thus the bias vector to order O^T~x) is given by 

B(60) =g0 + E(g_1/2 + g-i). 

It is straightforward to see that 

£(2-1/2) = 0. 

Similarly, using the results in Lemma along with normality of disturbances, 
it is easy to see that 

E{g-i) = \tr(Q-lS) - l\sQ~1Sd + SQ^SQ^Sd. 

(32) 

(33) 

(34) 

Substituting (33) and (34) in (32), we obtain the result (9) 
Next, we consider the variance covariance matrix upto order 0{T~l): 

V(60) = E\60- E(60)\ [«0 - £(*>)]' 

= -E(S-i/2£-i/2) - E{g_l/2)E{g'_l/2) 

From the results mentioned in the Lemma, it can be shown that 

^(5-1/2^-1/2) = i f f a i - d'Sd)S-(d'SQ-1Sd)SQ-1S 

SQ^Sdd'SQ^s] 

(35) 

(36) 
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Substituting (33) and (36) in (35), we obtain the result in (10) 
For similar results in the context of LIML estimator, we first observe 

from (6) that A can be expressed as 

A = min (v-YrfyPxAv-YiP) 
p {y-YrfyPxiy-Yrf) 

= i . .(y-ASY(PXl-Px)(y-A6) 
s {y-AS)'Px(y-AS) 

i | (y - A6x)'(PXl - Px)(y - A6X) 

(y-ASxyp~x(y-ASx) 

(37) 

Now we can write 

(y - A6X) = u - A{8X - 8) 

u - (XII + UH) (n'X'XU)-lU'X'u + Op(T~l) 

i - xu(u'x'xu)-lu'x' u - uHiu'x'xuym'x'u + 
(38) 

so that 

i ( y - ASxy(PXl - Px){y - A8X) = ^u'RU - ^u'RUHQYl'X'u 

+ Op(T~2) 

where R = X{X'X)-lX' - XU(W X'XU)'1^ X'. 

Similarly, we have 

(y - ASx)'Px(y - A6xj\"' = — [l - (-^u'u - l) + -1-d'QTl'X'i 

+ Op(T-1). 

Employing (39) and (40) in (37), we find 

A = 1 + t - i - £-3/2 + Op(T~2) 

where 

t-i = —u'Ru, 
<TUT 

(40) 

(41) 

(42) 
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and 

i_3/2 = -^u'RUHQTl'X'u + -l-u'Rui-^—u'u - l) 

o\xTi 
u'Ru.d'QU'X'u 

(43) 

(44) 

Here the suffixes of t indicate the orders of magnitude in probability. 
Next, using (4) and (41), we notice that 

±A'(I - XPx)u = ^U'X'u + (^H'U'Pxu - t-xd) 

+ (-t_1H'e + t_3/2d) + Op(T-2) 

where e = {hU'u - <r(1)) is of order 0 p ( r _ 1 / 2 ) . 

Similarly, observing that the elements of are of order 

Op(T-1/2),we have 

^U'(I - \PX)U = ^U'PXU - i _ iS + O p(T- 3 / 2) 

whence we can express 

r l - I " 1 1 

-A'(I - XPx)A\ =Q- -Q{U'X'UH + H'U'XU)Q 

-QH'(±U'PxU-t_^)HQ 

+ ^Q(n'X'UH + H'UXU) 
Q(n'X'UH + H'UXU)Q + Op(T-^2). (46) 

Now using (44) and (46), we can express the estimation error of LIML 
estimator as follows: 

(45) 

i - i 

where 

(6X -S)= [A'(I - \P~X)A\ A'{I - \Px)u 

= e_i / 2 + (e_i + /_ i ) + (e_3 / 2 + /_ 3 / 2 ) + 0P(T~2) 

e_i / 2 = -QU'X'u, 

e_x = ^QH'U'Ru - ^rQU'X'UHQU'X'u, 
T Ti 

(47) 

(48) 

(49) 
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/_ ! = - t_ iQd, (50) 

e_3 / 2 = ^QU'X'UHQU'X'u - ^QH'U'RUHQU'X'u 

- ^QU'X'UHQH'U'Ru - ^QH'U'XllQH'U'Ru, (51) 

and 

/_3/2 = ii_1(Qif/sfi-Qn'x'u + Qn/x'c/JH'gd 

+ QH'U'XUQd) - t-iQH'e + t_3/2Qd (52) 

It may be observed that the sum (e_!/2 + e_i + e_3/2) provides the 
expression for the estimation error of TSLS estimator to order 0 ( T - 3 / 2 ) . 
Thus the bias vector of LIML estimator to order 0{T~l) is given by 

B(8x) = E(e_1/2 + e_1)-E(t_l)Qd (53) 

The first expectation on the right hand side of the above equation is essentially 
equal to the bias vector of TSLS estimator to order 0{T~l) and is given by 
(14). 
As E(t-i) = (L/T), we have 

B(Sx) = -^Qd (54) 

which is the result (18). 
In a similar manner, the mean squared error matrix to order 0(T~2) is 

given by 

M(6X) = £ , (e_i / 2 e '_ 1 / 2 + e_1e'_1 / 2 + e_1 /2e'_i + e_ie'_i + e_ 3 / 2e '_ 1 / 2 

+ e_1 / 2e'_3 / 2) + E ( / _ i e ' _ i / 2 + e_ 1 / 2 / '_ 1) + E(f_3/2e'_1/2 

+ e - i /2 / ' -3 / 2 ) + ^ ( e - i / ' - i + f-ie'-x + f-d'-i)- (55) 

The first expectation on the right hand side of the above equation is the 
mean squared error matrix of TSLS estimator and is given by (15). For the 
remaining expectations, it can be verified that 

£ ( / - i e ' _ i / 2 ) = 0, (56) 

£( / -3 /2e '_ i / 2 ) = ^ [(d'Qd)Q + Qdd'Q + vuQH'ZHQ], (57) 
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£ ( e - i / ' _ i ) = ^T^-Qdd'Q, (58) 

and 

£ ( / - i / ' - i ) = m^-Qdd'Q. (59) 

Using these alonwith (15) in (55), we obtain the result (19). 
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Let {Xn,n > 1} be an i.i.d. sequence such that P{X\ > 0] > 0 and 
P[Xi < x] = 1 for all large x. For a positive real sequence {a„}, define 
Zn = m a x { a i X i , - - - ,anXn} for n > 1. Necessary and sufficient conditions are 

given for {Zn} to be relatively stable; i.e., for > 1 in probability for some real 
cn 

sequence {c„}. 

Let Xi,X2, • • • be an i.i.d. sequence with distribution function (d.f.) F such 
that F(0) < 1 and F(a) = 1 for some a > 0. For a positive real sequence 
{an,n > 1}, define the random sequence 

Zn = max{aiXi,a2X2, • • • ,anXn}, n > 1. (1) 

This paper will present necessary and sufficient conditions for {Zn,n > 1} 
to be relatively stable; i.e., Zn/cn —> 1 for some real sequence {c„}, where 
"—>" denotes convergence in probability, and will show that the norming 
sequence may be assumed to be cn — max{ai, ••• ,an} ,n > 1. As will be 
seen, these results may be viewed as part of the process of generalizing a 
well-known theorem of Gnedenko x to situations involving the maxima of an 
independent sequence. 

Notice that Zn < Zn+i almost surely (a.s.), n > 1, so that lim Zn exists 
n—»oo 

a.s. Tomkins 2 proved that lim Zn = oo a.s. if and only if (iff) supa„ = oo. 

Unless otherwise noted, the focus of this article is on the case where sup an = 
n>l 

oo and X\ is not degenerate. 
Define the constant XQ = vai{x : F{x) = 1}. By hypothesis, 0 < x$ < oo. 

The following five lemmas will lead to the main result: {Zn} is relatively 
stable iff max{ai, • • • , a n + i } ~ max{ai, • • • , a„} , where "6„+i ~ 6„" means 
that bn+\/bn —• 1 as n —> oo. 
Lemma 1. Without loss of generality, it may be assumed that Xn > 0 a.s., 
n > 1, and hence that Zn > 0 a.s., n > 1, if Zn/cn -̂ -> 1 and c„ —> oo. 
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Proof: Define X+ = max(Xn,0),n > 1. Note that F(0) < 1 by hypothesis, 
so P[Xn > 0 infinitely often (i.o.) ] = 1 by the Borel Zero-one Law. But 
then P[Zn < 0 i.o. ] = 0. Therefore, P[Zn ^ Z'n i.o.] = 0, where Z'n = 
max{aiX*, • • • , a n X + } . Hence (Z'n — Zn)/cn —> 0 a.s. for any sequence 
{Cn} such that c„ —> oo. rj 

Lemma 2. Let {in} be any integer sequence such that 1 < in < n. Then 

liminf — -̂ > x0 if —— —> 1. 
n->oo ain Cn 

Proof: Let e > 0. Then 
n 

F ( ( l + £ ) C n / a i J > n F ( ( l + £ ) c „ / a i ) = P [ Z n < ( l + e j c ] — 1, 

since Zn/cn —• 1. Hence F ((1 + e)cn/ain) —> 1 as n —> oo for every e > 0. 
If liminf c„/oin < zo, then a number rj > 0 exists such that cn/a,in < x0 — ^ 

n—>oo 

for an infinite number of values of n and, therefore, 

liminf F ( ( l + e)cn/ain) < F(( l + e){x0 - »? ) )< 1 
n—>oo 

if e is chosen to be so small that (1 + E)(XQ — v) < ^o- This is a contradiction, 
so liminf Cn/a^ > XQ. n 

Lemma 3. If Zn/cn —> 1 then cn —> oo and cn ~ cn_i. 

Proof: As noted earlier, Zn —> oo a.s. since supan = oo. But Zn/cn —> 1, 
n > l 

from which it follows easily that c„ —> oo. 
Now, since X\ is non-degenerate, one may choose e\ > 0 so that F ( ( l — 

£i)2zo) > 0. For every e > 0, 

P[Zn < (1 - e)cn] = P[Z„_! < (1 - e)cn]F((l - e)c„/a„). (2) 

By Lemma 2 (with i„ = n), cn/an > (1 — e)a;o for all large n (say, n > N). 
But then, if e < ex and n > N, F((l - e)cn/an) > F( ( l - e)2x0) > 0. Since 
Zn/cn —> 1, it follows from (2) that P\Zn-\ < (1 - e)cn) —> oo for every 
£ < £i, from which fact it is clear that P\Zn_\ < (1 — e)cn} —> 0 for every 
e > 0. But P[Z„_i < (1 + e)c„] > P[Zn < (1 + e ) c ] -» 1, e > 0, so 
Zn-i/cn —> 1. It is easy to see that c„ ~ c„_i, because Z„_i/c„_i —> 1 by 
hypothesis. r-i 
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Lemma 4. If Zn/cn -?-> 1 then c„ ~ a-nxo a n d a* ~ a^_i, where 
a* =max{a! , - - - , a„} . 

Proof: For each n > 1, choose in, 1 < i„ < n, such that a^n = a*. By Lemma 
2, liminf c„/a* > XQ. 

n—>oo 

Now, Zn < a* XQ a.s., n > 1, so, for every e > 0, 

P[<:ro < (1 - e)cn) < P[Zn < (1 - e)c„] -> 0. 

It follows that P[a*nxQ < (1 -e)c„] = 0, i.e., cn/a*n < (1 - e ) - 1 ^ , for all large 
n. Hence lim sup cn/a*n < x0. Thus c„ ~ a*a;0, and it is an easy consequence 

of Lemma 3 that o* ~ a; 
n-V U 

Lemma 5. Suppose that 0 < a\ < a^ < • • • ] oo. For 8 £ (0,1) and all n so 
large that an > 6 _ 1 a i , define 

kn = kn(6) = max{j : a,j < San} and 

Un = Un(6) = max{X,- : kn < j < n}. 

The following statements are equivalent: 

(i) {Zn,n > 1} is relatively stable; 

(ii) an ~ a„_i; 

(iii) n — kn(8) —> oo as n —> oo for every 6 £ (0,1); 

(iv) Un(6) —> a;o as n —> oo for every 6 S (0,1). 

Proof: That (i) implies (ii) is immediate from Lemma 4, since a* = a„, n > 1. 
m 

Suppose an ~ a n _i . Then, for each integer m > 1, — — = TT "~ ' + 

1. If n — kn(6) = m, then 
_ ^ _ = ^IL > S~

l > i. 

i = l 

Thus, if n — kn(6) = m for an infinite number of values of n and some fixed 
m > 1 and 6 € (0,1), then it would follow that lim sup an/an-m > <5-1 > 1, a 

contradiction. Hence, n - kn(6) —> oo for every 6 € (0,1); that is, (ii) implies 
(iii). 
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Note that Un(6) < x0 a.s. for every n > 1 and 0 < 8 < 1, so 

Un(8) - ^ x0 iff P[Un(8) < (1 - e)a;o] — 0 for every e > 0 

iff F n _ f c"(( l - e)x0) -> 0 for every e > 0 

iff n — fc„(<5) —• oo for every 6 G (0,1). 

Therefore, (iii) and (iv) are equivalent. 
Finally, suppose that Un(6) -̂ -> XQ for all 0 < 8 < 1. In view of Lemma 

1 and the definition of kn{8), 

x0>^> ™*{°sXr-kn{S)<j<nY >6Un{g) as 

for every 5 G (0,1). For any e > 0, choose 8 such that 1 — e < 8 < 1. Then 

-P[Zn < (1 - e K ^ o ] < P[£4(<5) < (1 - e)x0/8] - • 0, 

since £/n(<5) -*U l. But Z n / a n < xo a.s., so Zn/an —• XQ. Hence, (iv) implies 

(0- • 

Here is the main result of the paper. 

Theorem 1. Let Xi, X2, • • • be non-degenerate i.i.d. random variables with 
d.f. F such that F(0) < 1 and F(a) = 1 for some a > 0. Let {an} be a positive 

real sequence such that supa„ = 00, and define {Zn} by (1). Then — - ^ 1 
n>l Cn 

for some real sequence {cn} iff a* ~ a£_i, where a* = max{ax, • • • , o„}, n > 
1. Moreover, without loss of generality, c„ = o-nxo-
Proof: In view of Lemma 4, it will suffice to show that {Zn} is relatively 
stable if a* ~ a*_j . To do so, define mj = 1 and, for j > 1, mj + i = minjn : 
a-n > ami}- Then ami < am2 < • • • | 00; a* = a^. = amj. if rrij < n < mj+i; 
and amj = a*^ ~ aj^ -1 = am -_t

 = amJ_1 as j —» 00, using the assumption 
a* ~ a^-i- I* n o w follows immediately from Lemma 5 that 

maxamjXmj/(amNx0) -^-» 1 as iV -> 00. (3) 

But, for each n > 1, there is a unique JV > 1 such that mjv < n < mjv+i. 
Therefore, 

maxj<jv aTO X m . ^, Zn Zn , ,.s 
— - < = — < xo a.s. (4) 

It is an easy consequence of (3) and (4) that Znj(a*nxo) -^-> 1. rj 
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Remark 1. If X\ were degenerate and finite, then Xn = XQ a.s. Thus Zn = 
a*xo a.s. in this case. If supa„ < oo, then Zn —» A a.s. for a constant A iff 

sup an = supa„ for every m > 1, in which case A = a*xo (see Tomkins 2 ) ; 

clearly, a£ ~ a*_j and Zn/(a^xo) —> 1 a.s. in this case. 

Remark 2. If XQ = oo and an = 1, n > 1, then the relative stability of 
max{Xi, • • • , Xn} was completely solved by Gnedenko l. The author intends 
to address the relative stability of {Zn} when xo = oo in a future publication. 

Remark 3. As noted above, the relative stability problem for the maximum 
sequence Mn = max{Xi, • • • ,Xn} has been fully resolved in the case where 
X\,X2, • • • are i.i.d. with F(x) < 1 for all x. A natural extension is to ask 
what happens to Mn as n —> oo where X\,X2,-" a r e merely independent 
with P[Xn < x] < 1 for all n > 1 and all real x. Theorem 1 above may be 
interpreted as a first step towards the solution of this general problem. 
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In this paper, it is demonstrated using generating function arguments that the 
transient distribution of the number of customers in the system in many Mx /G/oo 
queues may be computed in a straightforward manner for a wide variety of bulk 
arrival size distributions. Numerical examples illustrate the ease of implementation 
of the computational procedure. 

In this paper, we consider an infinite server queueing system in which cus
tomers arrive according to a Poisson process at rate A > 0. We assume that 
the bulk arrival size random variable X is distributed with q^ = Pr{X = 
k},k > 1, and probability generating function (pgf) Q(z) = Y^k^i^^. 
We assume that the individual service times are independent and identi
cally distributed positive random variables with distribution function (df) 
F{y) = 1 - F(y) = Pr{Y < y}. 

This is the Mx/G/oo queue and the purpose of this paper is to present 
a computational procedure for determining the distribution of the number of 
customers in the system (equivalently, the number of busy servers) at time 
t for a particular class of service time distributions. The Mx/G/oo queue 
can be used to model any system involving delays with no congestion, and is 
thus quite general in scope. In particular, the Mx/G/oo queue has important 
applications in a variety of information transmission and storage systems. It 
has also been used to model the number of incurred but not reported (IBNR) 
claims in an insurance context (see Willmot and Lin 1). Theoretical results 
concerning the transient analysis of this system are contained in the excellent 
reference by Chaudhry and Templeton 2, and much of this is attributed to 
the pioneering work of Shanbag 3, Abol'nikov 4 , Reynolds 5 , and Brown and 
Ross 6. These references do not place much emphasis on the computational 
aspects of the problem. However, Willmot and Drekic 7 have recently in
troduced a straightforward approach to computing the transient distribution 
of the number in system in the Mx /M/oo queue for a wide variety of bulk 
arrival size distributions. 

Let Nt represent the number of customers in the system at time t, with 
pn(t) = Pr{Nt — n}, n > 0. Assuming TVn = 0, it follows that Nt has a 
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compound Poisson distribution with pgf 
CO 

Pt(z) = J2Pn(t)zn=extlQ<^-V (1) 
n = 0 

where 
oo -i pt 

Qt(z) = J2<lk(t)zk = 7 Q[F(x) + zF(x)]dx. (2) 
fc=0 J° 

The derivation of this result follows that of Brown and Ross 6 , who ac
tually consider a more general model. We reproduce this derivation here for 
completeness. The probability that m > 1 batches of customers arrive by 
time t is (Xt)me~xt/m\. The conditional distribution of the (unordered) ar
rival times of these m batches are independent and uniformly distributed over 
(0,t) with constant probability density function 1/t (see Ross 8 , section 5.3). 
If a batch arrives at time x where 0 < x < t, a customer from this batch 
is still in the system with probability F(t — x) and has left the system with 
probability F(t — x). Therefore, the number of customers remaining in the 
system at time t from a batch arriving at time x has conditional pgf 

/ Q[F{t-x) + zF{t-x)]— = - Q[F(x) + zF(x)}dx, 
Jo * * Jo 

which is, with probabilities {qm(t); m = 1,2,3, . . .}, equation (2). The total 
number in the system at time t is obtained by summing over the m (indepen
dent) batches, i.e. the pgf is thus raised to the power m, so that 

m „—At 

m! 

which is equation (1). 
In the case of the compound Poisson with pgf (1), the following recursive 

formula can be used to compute {pn(t); n = 0,1,2, . . .} (see Klugman et al. 9 , 
pp. 239-240 or Tijms 10, p. 37): 

oo 

Po{t)=exp{-\tY,qk{t)}, (3) 
k=i 

xt n 

Pn{t) = —Y,k<lk(t)Pn-k(t), n = 1 ,2 ,3, . . . . (4) 
n fc=i 

Also, moments of Nt are easily obtainable from (1) and (factorial) moments 
associated with (2) (see Klugman et al. 9 ) . 



331 

In this paper, our goal is to demonstrate that numerical evaluation of the 
probabilities {pn{t)', n = 0,1,2, . . .} using (3) and (4) is relatively straightfor
ward. In what follows, we shall show that under certain conditions a recursive 
formula may be used to obtain {qk(t); k = 1,2,3, . . .}. This formula normally 
requires evaluation of qo(t) = Qt(0). Simplification results if a closed-form ex
pression for Qt{x) is available. We briefly review some situations where this is 
the case, and then proceed to the derivation of the recursive formula alluded 
to above. We then reconsider evaluation of qo(t) in light of the recursion, and 
follow this with three examples. 

In general, it is difficult to obtain a simple form for the pgf (2). However, 
this may be done in some special cases. For example, suppose that (see 
Willmot n ) 

aT(k - a) 
qk~ fcir(i-a)' * - 1 ^ ^ . - - - . 

where 0 < a < 1, so that 

Q(z) = 1 - (1 - z)a. (5) 

Then from (2), it follows that 

Qt{z) = \ [ {1 - [1 - F(x) - zF(x)]a) dx 
* Jo 

= \j\l-{l-zYF{xY]dx 

= i-et{\-z)a 

where 

et = \ I F{x)adx. 
t Jo 

Evidently, 0 < 6t < 1, and from (5) one has Qt(z) = 1 — 9t + 0tQ{z), from 
which it follows that 

qo{t) = i-et 

and 

qk(t) = 6tqk, fc = l , 2 , 3 , . . . . 

In the case of exponential service, Willmot and Drekic 7 (see p. 142 for 
details) have shown that if X has a zero-truncated geometric distribution (see 
Klugman et al. 9, p. 590), both (1) and (2) simplify to reveal that Nt has a 
compound negative binomial - geometric distribution with easily calculable 
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parameters. As another example where service times are exponentially dis
tributed at rate fi > 0, suppose that X has an extended truncated negative 
binomial (ETNB) distribution with pgf (see Willmot n , p. 18) 

[1 - 2 / ^ - 1 ) ] 4 - ( 1 + 2/3)4 
V ' 1 - ( 1 + 2/8)4 

Subsequent substitution into (2) then yields 

Qt(z) = I r [ 1 - 2 ^ - ^ ( ^ - 1 ) 1 * - d + 2/?)*dx 
t Jo 

= 1 + 

1 - (1+2 /3 )2 

2/3e-'iX(z - 1)]4 - ln{l + [1 - 2/3e~'lx(z - 1) ]4}\ 

/**[(!+ 2/3)4-1] ) 

• ( [1 - 2pe-»\z - 1)] i - [1 - 2/3(2 - 1)]* 

x=0 

,rf[(l + 2 / 3 ) 4 - 1 ] 

, 1 + [ 1 - W , - I ) H , \ 

U + [ l - 2 ^ e - ^ ( z - l ) ] 4 / y 

Hence, from (1), we get 

{1 + [1 - 2/3(z - l)]i}e-[i-«»(*-i)]* \ ,.[(1+2/3)4-!, 
^ ( * ) 

.{1 + [1 - 2pe~^{z - i)]4}e-[i-2/3e-/"(*-D]4 

It is clear from this last example that it may be difficult to extract the co
efficient of zn in Qt(z) as defined by (2). (Of course, one could expand the 
integrand in powers of zn and integrate term by term, but this is not very 
suitable, since the resulting expression is cumbersome). 

However, if the service time distribution has a failure rate whose recipro
cal is a linear function, a simple computational formula for the probabilities 
{qk(t); k = 1,2,3,...} is obtainable. That is, let us assume that the failure 
rate of the service time distribution has the form 

Note that differentiation of (2) yields 

Q't(z) = ^Qt(z) = j j Q'[F(x) + zF(x)]F(x)dx 

I f — 
tJo (1 

F ^ -Q'[F(x) + zF{x)]{\ - z)F'{x)dx 
- z)F'{x) 
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By substituting (8) into (9), multiplying both sides by 1 — z, and applying 
integration by parts, we obtain that Qt{z) satisfies the differential equation 

Q't(z)(l -Z) = (l + e) Q[F(t) + zF(t)} - lQ(z) - 6Qt(z). (10) 

Although we intend to use (10) to derive a computational formula for 
the probabilities {%(£); k = 1,2,3, . . .}, we remark that moments also follow 
easily from (10). In particular, by differentiating both sides of (10) r times, 
r > 0, we immediately get 

Q{
t
r+1)(z)(l - z) - rQt\z) =(j+0) F(t)TQ{r)[F(t) + zF(t)] - ^Q{r){z) 

-0Q(;\z). (11) 

Evaluating (11) at z = 1 gives rise to the following expression: 

QV{i) = 9^-[j{i-F{ty)-eF{ty + r. (12) 

Of course, it is always the case that moments may be evaluated directly from 
(2), giving 

Q(r){1)=Q^J*F(xydx. (13) 

Equation (10) may be used to derive a recursive relationship between the 
coefficients qn{t) of zn in the expansion of Qt(z). First of all, define q„t by 
introducing the pgf 

oo 

Q*t(z) = Q[F(t) + zF(t)} = J£(ln,tZn, * > 0 . (14) 
n=0 

The probabilities {<j£t; n = 0,1,2, . . .} can be readily obtained for a wide 
variety of bulk arrival size distributions of practical interest. In particular, let 
us consider distributions [qk] k = 1,2,3,...} whose pgf is of the form 

Q{z)=±q(k,T)z^m^m (15) 
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where r is a parameter and B(-) is a function not depending on r . This 
includes many standard distributions such as the truncated negative bino
mial, truncated Poisson, truncated binomial, and logarithmic series (see Will-
mot n ) . Thus, qk = q(k,r), and from (14) 

B[TF(t){l-z)]-B{T) 
Qt{z) = T^W) ' 

We then obtain that 

0«-»w^-')^f';'i;('-'>i <„> 
and 

„*(»), . , (-mrF(t)}nBM[rF(t)(l - z)} 
Qt W - T=W) ' 

from which it follows by setting 2 = 0 and dividing by n! that 

B[rF{t)\ ~ B(T) 
%,t = 

1-B(T) 

< t = LT^fg K^ ( t ) 1 ' n = 1,2,3, 

qn+i(t) = ̂ -{ [(n - 6)qn(t) +(j+0) Qn,t - Jin] , n = 0 ,1 ,2 , . . . . (18) 

If one now equates coefficients of zn in (10), one obtains 
J_ 

n + 1 
This is a first order linear difference equation which is easy to solve ana
lytically, but the resulting solution offers little insight. Thus, for 9^0, 
our intention is to use (18) to generate qn(t) numerically. Note that (18) 
is the only place where the starting point qo(t) is needed (unless we have 
exponential service where 9 = 0, in which case considerable simplification re
sults - see Example 1 below). Assuming qo(t) is available, the probabilities 
{qn(t); n = 1,2,3,...} may be obtained recursively via (18). For a discussion 
of numerical issues related to recursions of this nature, see Press et al. 12, 
section 5.4. 

In general, two approaches suggest themselves as a means of computing 
<?()(£)• First of all, if it is possible to obtain a simple analytical expression for 
Qt{z), as in the example which gave rise to (7), then one can substitute z = 0 
easily in Qt(z) to get q0(t) = Qt(0). Otherwise, a Taylor series expansion of 
Qt{z) about z = 1 yields 

Qt{z) = l + Yj^fL{z-l)k, (19) 
fc=i 
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!(*) where Q\ '{1) is given by (12) or (13). Then, we set z = 0 in (19) and use 
(13) to obtain 

9o 
1 ° ° 

(*) = i + 7 £(- i ) f c Q
(fc)(l) 

fc=i 
k\ 

ak(t) (20) 

where ak{t) = JQ F(x)kdx. We point out that: (i) Q ^ ( l ) may be computed 
quite readily via (16) for Q(z) satisfying (15), and (ii) a,k(t) may be evaluated 
explicitly for F(x) satisfying (8). Moreover, since the infinite series in (20) is 
an alternating one, an effective and efficient means of computing this series is 
to employ Euler summation. For details regarding Euler summation and the 
control of the approximation error, the reader is referred to Abate et al. 13, 
p. 270 or Press et al. 12, section 5.1. 

We now present three special cases: 

Example 1: Exponential Service Time Distribution. If F(y) — l - e _ w / 

for y > 0 where /J. > 0, one obtains r(y) = fi and so (18) is applicable with 
a = /it-1 and 9 = 0. Substituting these parameters into (18) immediately 
yields 

(n + l)qn+i(t) - nqn(t) = — (q^t - qn) . (21) 

Summing both sides of (21) from n = 0 t o n = fc — 1 easily gives rise to the 
following explicit expression for qk(t), namely 

Qk(t) = 
E n = o ( g n , t ~ gn) 

k\it 
k — 1, 2,6,..., (22) 

in agreement with the result found by Willmot and Drekic 7, p. 139, eq. (8). 

Example 2: Pareto Service Time Distribution. If F(y) = 1 — ( - + - ) 

for y > 0 where a, ^ > 0, it is easy to verify that 

r(y) = a 
v + y 

and so (18) is applicable with a = fi/a and 8 = 1/a. To compute qo(t), we 
employ (20) with 

ak(t) l-ak 

-ak+l 
- 1 : ak^l 

: ak = 1 
(23) 
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We remark that the Pareto distribution may be a good alternative to the 
exponential if it is felt that a more heavily tailed service time distribution is 
better suited to the model (for example, see Harris 1 4 ) . 

Example 3: Complementary Power Function Service Time Distrib
ution. The power function df (see Evans et al. 15, p. 161) is H(v) = Pr{V < 
v} = (^) for 0 < v < u> where (3, u> > 0. Suppose that the service time 
random variable Y is given by Y = u> — V with df F(y) = 1 — H(CJ — y), that 

is F(y) = 1 — (l — ^j) for 0 < y < CJ. This subclass of the beta distribution 
includes the continuous uniform as the special case Q = 1. It is easy to verify 
that 

P 
"(y) = 

ui-y 
0<y<uj, 

and so (18) is applicable with a = w//3 and 6 = —1//3 if 0 < t < w. Note that 
if t > u, (2) becomes 

Qt{z) -HI: Q dy + J Q(l)dy} 

(24) 

l ' - 0 - £ ) - ( ' - 5 ) 

Substitution of (24) into (1) then yields (for t > CJ) 

Pt(z) = exp{\t[jQ„(z) + 1 - j - l] } = eMMQUz) ~ 1]} = P«(*), 

and so the results also extend to the case t > w. Finally, to compute qo(t), 
we employ (20) with 

ak(t) = 
1 + Pk ' - | i-£) (25) 

To illustrate the effectiveness of the computational procedure, we consider 
a simple numerical example in which A = 2 and X has a zero-truncated 
negative binomial distribution given by 

qn = 
fn(m,p) 

l - / o ( m , p ) ' 
n = 1,2,3,. 

where 

fn{m,p) = 
771 + n — 1 

pm(l-p)n, n = 0,1,2, (26) 



337 

In this case, (15) is satisfied with T = (1 — p)/p and B(x) — (1 + x)~m. Con
sider m = 4 and p = 0.8, so that the mean bulk arrival size is 625/369 ~ 1.69 
customers. Tables 1 and 2 display the results (to seven decimal places of ac
curacy) for pn(t),n = 0 ,1 ,2 , . . . , 10, for values of t = 0.125, 0.25, 0.5, 1, 5, and 
10 under the assumptions that: (i) service times are Pareto distributed with 
parameters a = 2 and fi = 5, and (ii) uniformly distributed on the interval 
(0,10) (i.e. the complementary power function distribution with parameters 
(3 = 1 and ui — 10). The mean service time in both cases is 5. The sums of 
the first 11 probabilities corresponding to these values of t are also included 
in the tables for comparative purposes. 

Table 1. Results for pn(t) under Pareto service with a = 2 and \i = 5. 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
Sum 

t = 0.125 
0.7814843 
0.1083984 
0.0606528 
0.0285572 
0.0123726 
0.0051287 
0.0020698 
0.0008195 
0.0003194 
0.0001228 
0.0000466 
0.9999721 

t = 0.25 
0.6148611 
0.1704123 
0.1055363 
0.0564078 
0.0281093 
0.0134367 
0.0062313 
0.0028187 
0.0012478 
0.0005420 
0.0002315 
0.9998348 

£ = 0.5 
0.3881397 
0.2143892 
0.1584359 
0.1025238 
0.0616352 
0.0351694 
0.0192524 
0.0101812 
0.0052278 
0.0026166 
0.0012805 
0.9988517 

t = 1 
0.1664161 
0.1815371 
0.1772388 
0.1485030 
0.1127000 
0.0794752 
0.0528923 
0.0335707 
0.0204739 
0.0120659 
0.0069013 
0.9917743 

i = 5 
0.0021185 
0.0093877 
0.0235195 
0.0434800 
0.0657831 
0.0859879 
0.1003555 
0.1068854 
0.1055072 
0.0976337 
0.0854428 
0.7261013 

t = 10 
0.0001672 
0.0011223 
0.0040202 
0.0101899 
0.0204642 
0.0345967 
0.0511161 
0.0676914 
0.0818113 
0.0914660 
0.0955872 
0.4582325 

Table 2. Results for pn(t) under Uniform service on (0,10). 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
Sum 

t = 0.125 
0.7794793 
0.1081531 
0.0613089 
0.0292273 
0.0128160 
0.0053756 
0.0021951 
0.0008794 
0.0003469 
0.0001350 
0.0000519 
0.9999685 

t = 0.25 
0.6086560 
0.1688919 
0.1070310 
0.0584697 
0.0297673 
0.0145380 
0.0068900 
0.0031859 
0.0014420 
0.0006405 
0.0002798 
0.9997921 

t = 0.5 
0.3731071 
0.2070083 
0.1588470 
0.1066481 
0.0665646 
0.0394700 
0.0224708 
0.0123660 
0.0066108 
0.0034462 
0.0017572 
0.9982961 

t = 1 
0.1433320 
0.1588770 
0.1642742 
0.1462919 
0.1183933 
0.0892471 
0.0636007 
0.0432810 
0.0283298 
0.0179332 
0.0110248 
0.9845850 

t = 5 
0.0002386 
0.0012633 
0.0038446 
0.0087131 
0.0162544 
0.0262992 
0.0380937 
0.0504483 
0.0619999 
0.0714954 
0.0780155 
0.3566660 

t = 10 
0.0000073 
0.0000592 
0.0002609 
0.0008191 
0.0020490 
0.0043339 
0.0080387 
0.0133999 
0.0204284 
0.0288568 
0.0381517 
0.1164049 



338 

Acknowledgments 

This research was supported by the Natural Sciences and Engineering Re
search Council of Canada. 

References 

1. G.E. Willmot and X.S. Lin, Lundberg Approximations for Compound 
Distributions with Insurance Applications (Springer-Verlag, New York, 
2001). 

2. M.L. Chaudhry and J.G.C. Templeton, A First Course in Bulk Queues 
(John Wiley & Sons, New York, 1983). 

3. D.N. Shanbag, Journal of Applied Probability 3, 274 (1966). 
4. L.M. Abol'nikov, Probl. Inform. Transm. 4, 82 (1968). 
5. J.F. Reynolds, Operations Research 16, 186 (1968). 
6. M. Brown and S.M. Ross, Journal of Applied Probability 6604 1969. 
7. G.E. Willmot and S. Drekic, Operations Research Letters 28, 137 (2001). 
8. S.M. Ross, Introduction to Probability Models, 7th Edition (Academic 

Press, San Diego, 2000). 
9. S.A. Klugman, H.H. Panjer and G.E. Willmot, Loss Models: From Data 

to Decisions (John Wiley & Sons, New York, 1998). 
10. H. Tijms, Stochastic Modelling and Analysis: A Computational Approach 

(John Wiley & Sons, Chichester, 1986). 
11. G.E. Willmot, ASTIN Bulletin 18, 17 (1988). 
12. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numer

ical Recipes - The Art of Scientific Computing (Cambridge University 
Press, New York, 1986). 

13. J. Abate, G.L. Choudhury and W. Whitt, In Computational Probability, 
ed. W.K. Grassmann (Kluwer Academic Publishers, Boston, 2000). 

14. CM. Harris, Operations Research 16, 307 (1968). 
15. M. Evans, N. Hastings and B. Peacock, Statistical Distributions, 3rd Edi

tion (John Wiley & Sons, New York, 2000). 



E M P I R I C A L L I K E L I H O O D M E T H O D F O R F I N I T E 
P O P U L A T I O N S 

C H A N G B A O W U 

Department of Statistics and Actuarial Science 

University of Waterloo 

Waterloo ON N2L 3G1 Canada 

E-mail: cbwu@uwaterloo.ca 

This article provides an overview on recent developments of empirical likelihood 
methods in estimating the finite population means and totals, distribution function 
and quantiles, variance and other quadratic functions in the presence of auxiliary 
information. Major results are unified under the general framework of optimal 
estimation and model-calibration. Applications of the method to obtaining range-
restricted weights in regression estimators and estimation under measurement error 
models are also presented. 

1 Introduction 

The empirical likelihood method was proposed by Owen 11,12 as a device for 
constructing confidence regions with independent observations. Owen proved 
that the empirical likelihood ratio statistic has an asymptotic x2 distribution 
and therefore is useful for interval estimation and hypothesis testing. Qin and 
Lawless 15,16 discovered that the empirical likelihood method is also a power
ful tool for point estimation when side information can be incorporated into 
constrained maximization of the empirical likelihood function. The method 
soon became popular and major developments have been summarized in the 
recent book by Owen 13. 

Historically, the first application of the concept behind empirical like
lihood was suggested by Hartley and Rao 10 for finite populations. They 
assume that the study variable y takes only a finite set of scale points 
y[i], Z/[2], • • • , y[k]- For a given sample {yi,i € s}, let rij be the number of 
j/i's in s that take scale point y[j]. Under simple random sampling (SRS), 
(ni,---,7ifc) follows a multivariate hyper-geometric distribution. When the 
population size TV is large, one can use the likelihood function from a multino
mial distribution. Auxiliary information can be incorporated to find the con
strained maximum likelihood estimators of the population proportions for 
each of the scale points. These estimated proportions can then be used to 
construct the so-called scale-load estimators for the finite population mean 
Y = N-^liyi. 

The first formal application of the empirical likelihood method in sur-
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vey sampling was introduced by Chen and Qin 3 under SRS. Let p, be the 
probability mass at yi for i £ s and X be the known population means for 
the (vector-valued) auxiliary variable x. The empirical maximum likelihood 
estimator of Y is defined as YEL — YliesPiVi w n e r e the p,'s maximize the 
empirical likelihood function L(p) = Ylies Pi subject to 

^2pi — 1 (pi > 0) and ~^2lpiXi=X. (1) 

Chen and Qin 3 showed that YEL ls asymptotically equivalent to the conven
tional regression estimator and therefore is very efficient. 

The rest of this paper is organized as follows. In Section 2, we introduce 
the pseudo empirical likelihood approach under a general sampling design for 
the estimation of Y (Chen and Sitter 4 ) . The concept of optimal calibration 
estimation is presented along with the model-calibrated pseudo empirical like
lihood (MCPE) approach of Wu and Sitter 21. In Sections 3 and 4, the MCPE 
estimators are applied naturally to the estimation of distribution functions 
and quadratic finite population functions including the population variance. 
A simple solution to obtain range-restricted weights in regression estimators 
using the empirical likelihood method is presented in Section 5. In Section 
6, we discuss how the empirical likelihood method can be applied to various 
measurement error problems. We conclude with some remarks in Section 7. 

2 Pseudo Empirical Likelihood Approach 

Sample data from a finite population obtained through an unequal proba
bility sampling scheme are usually highly correlated with each other. What 
will be the "empirical likelihood function" to use under a general sampling 
design? Chen and Sitter 4 proposed a pseudo empirical likelihood function 
based on a two-stage argument which can be viewed as a non-parametric 
version of the estimation strategy discussed in Binder 1 and Godambe and 
Thompson 9: if the data from the entire finite population, {2/1,2/2, • • • ,VN}, 
is known, the correct empirical likelihood function would be L(p) — n»=iP»-
The corresponding empirical log-likelihood function l(p) = ^2i=i l°g(P») is a 

population total! The design-based unbiased (Horvitz-Thompson) estimator 
for this total is given by 

?(p)=X>lo8(P0. (2) 

where di = l/iti are the basic design weights and 7T; = P(i £ s) are the inclu
sion probabilities. The l(p) was referred to as pseudo empirical (log) likelihood 
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function. The pseudo empirical maximum likelihood estimator (PEML) of Y 

(Chen and Sitter 4) was defined as YPE = YliesPiVi w n e r e t n e Pi's maximize 

l(p) subject to constraints (1), assuming X is known. 
The p^s are given by pi = <%/[l + \'(xi - X) ] , where d? = d{/ £ i £ s

 di 
and the vector Lagrange multiplier, A, is the solution to g(X) = ^2ies[d*(xi — 
X)]/[ l + \'(xi — X)] = 0. A modified Newton-Raphson algorithm has been 
developed by Chen et al. 6 for finding this solution. The algorithm is guar
anteed to converge if a solution exists. 

A crucial component in the (pseudo) empirical likelihood estimation is 
the use of constraints (1) in the maximization process. There are two issues 
related to this and any other estimation procedures: efficiency and consis
tency. Efficiency is measured by the overall performance of the estimator in 
terms of bias and variance or mean square error; consistency refers to some 
internal conditions and requirements imposed by the surveyor. The second 
constraint in (1) is a commonly used consistency requirement called bench
mark constraints. Benchmark constraints are often imposed in practice for 
two reasons: the surveyor believes that the weights which give perfect es
timates for the auxiliary variables should also give a good estimate for the 
study variable; the auxiliary information is only available at the aggregate 
level, i.e. only X is known. On the other hand, if complete auxiliary infor
mation X\, • • •, XN is known, a compelling question to ask would be "what is 
the best constraint to use in the (pseudo) empirical likelihood estimation?" 

To put this more formally, let itj = u(xi), i — 1, • • • ,7V, where u(-) is a 
known function. We use u; as a calibration variable and replace the second 
constraint in (1) by 

1 N 

The question becomes "what kind of choice of u; will make Ypg most effi
cient"? It is very unfortunate that in survey sampling uniformly minimum 
variance (unbiased) estimators do not exist. Indeed the only choice of U; that 
results in a YPE with minimum variance is Ui = yi and this of course cannot 
be used. 

The model-assisted optimal estimators using the criterion of minimum 
expected design variance under a superpopulation model have been discussed 
by several authors. See, for example, the work by Godambe 7, Godambe and 
Thompson 8 , and Cassel et al. 2. Suppose that 2/1,2/2, • • • ,VN is a random 
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sample from a superpopulation such that 

E((Vi) = IM . V((vi) = of , i = 1, 2, • • •, N, 

and yi, £/2, • • •, VN are independent of each other. Here E$ and V£ denote the 
expectation and variance under the superpopulation model. The following 
result has been established by Wu 20. 

Theorem. Under proper asymptotic settings and for any regular sam
pling designs, the use of u; = fii as a calibration variable in (1) will re
sult in an estimator Y p% with minimum expected asymptotic design vari
ance E(\AVP{YPE)] among all possible choices of («i, U2, • • •, % ) such that 

Here AVP refers to the asymptotic design-based variance and U = 
N~l Y2i=i ui- See Wu 20 for a detailed discussion on the asymptotic frame
work and a definition of regular sampling designs. Note that Y'PE is robust 
against model misspecification, since YPE is asymptotically design unbiased 
irrespective of the model but will be particularly efficient if the model ade
quately depicts the finite population. The gain of efficiency depends on the 
correlation between the response variable and the covariates. 

Assume complete auxiliary information is available, Wu and Sitter 21 

proposed a model-calibration approach to implement this optimal estimator. 
They adapted a semi-parametric model 

Ez{yi\xi) = ^ =fj,(xi,0), Vt(yi\xi) = crf , i = 1,2, • • •, N. 

The fitted value fn — H{xi,0) is used as the calibration variable in constraints 
(1), where 0 is a design-based estimator for the model parameter 6. The 
resulting PEML estimator was termed a model-calibrated pseudo empirical 
maximum likelihood (MCPE) estimator, denoted by YMC- They also showed 
that replacing 9 by 0 in yu, = n(xi, 9) does not change the resulting estimator 
asymptotically. In addition, with probability close to 1, the MCPE estimator 
exists and can be computed using a simple bi-section algorithm (Chen et al. 
6 ) . 

This optimal model-calibration approach clarified several fundamental is
sues in using auxiliary information from surveys: 

(i) The effective use of auxiliary information depends on both the parameters 
to be estimated and the actual relationship between the response variable 
and the covariates. Blindly calibrating over auxiliary variables is usually not 
a good approach. 
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(ii) The benchmark constraints used in (1) are justifiable if the relationship 
between y and x is close to linear. In this case the resulting PEML estimator 
is asymptotically equivalent to the optimal MCPE estimator obtained using 
jj,i = x'fi as the calibration variable (Wu and Sitter 2 1 ) . So benchmarking 
implies efficient estimation. 
(iii) If the relationship between y and x is linear, knowing X is "sufficient" 
for efficient estimation of population mean Y or total Y. If the relationship 
is nonlinear, or the parameters of interest involve a nonlinear function, com
plete auxiliary information and/or more advanced modeling are essential for 
"optimal" estimation. 
(iv) The optimal model-calibration approach provides a unified framework 
for the estimation of distribution function and quantiles, variance and other 
quadratic functions in the presence of auxiliary information. In particular, 
the intrinsically positive weights, pi > 0, associated with the pseudo empirical 
likelihood method turn out to be a very valuable asset, as evidenced in the 
following sections. 

Under stratified random sampling, Zhong and Rao 22 used a different 
formulation of the empirical likelihood function by noting that observations 
from different strata are independent of each other. Each stratum is therefore 
assigned with an independent empirical distribution and the "overall" em
pirical (log) likelihood function is the sum of all these strata (log) likelihood 
functions. We will return to this formulation in Section 6. 

3 Estimating the Distribution Function and Quantiles 

The finite population distribution function Fy{t) = iV - 1 Y^i=i (̂j/» — *) is a^so 

a finite population mean defined over an indicator variable z; = /(?/, < t). 
Without using any auxiliary information, estimation of Fy(t) is a special 
case of estimating the population mean and is usually straightforward. In 
the presence of auxiliary information, special attention needs be given to the 
following: 

(a) While benchmark constraints sometimes are justifiable for the estimation 
of Y, this consistency requirement is not needed for the estimation of Fy(t). 
Efficiency will be the primary concern. 
(b) It is the indicator variable Zi = I(yi < t) that we have to work with. 
There is also an issue of local efficiency (particular value of t) versus global 
efficiency (an arbitrary t) in estimating Fy(t). 
(c) It is desirable that an estimator of Fy(t), say F(t), is itself a distribution 
function, so quantile estimates can be obtained through direct inversion of 
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F(t). 

Many techniques for estimating Y, when applied directly to the estimation 
of FY(t), will produce unsatisfactory results. For instance, in the case of a 
scalar x variable, a regression-type estimator for FY(t) will have the form 
Freg(t) = FY(t) + {Fx(t) - Fx(t)}B, where FY(t) and Fx(t) are Horvitz-
Thompson type estimators for FY{t) and Fx(t) = TV-1 Yli=\ I(xi — *)i a n ^ 
B is the estimated slope of regressing I(yi < t) on I(xi < t), Freg(t) suffers 
from several drawbacks. The obvious one is that Freg(t) is not a distribution 
function and it can take values outside of [0, 1]. The model-assisted difference 
estimator proposed by Rao et al. 18 and the regression-type estimators or the 
bias-adjusted estimators discussed in Rao 17 have similar problems. 

The pseudo empirical likelihood method combined with the optimal 
model-calibration approach can be readily applied here. The MCPE estima
tor of FY(t) defined by Chen and Wu 5 is given by FMC(t) = ^Zies Pil(yi < t) 
where the p^s maximize l(p) subject to 

1 N 

Y^Pi = l(pi> ° ) a n d Yspi9i = jjYj9i- (4) 

For a fixed t, the optimal choice of g± is given by 

gi = E^Ilyi < t\xi\ = P(yt < t\xi). 

It is now clear that no single set of weights p, is optimal for an arbitrary t. 
Chen and Wu 5 proposed to use a fixed t = to in computing the Qi while 
the resulting weights pi are used for any t. With this treatment the MCPE 
estimator FMc{t) will D e a genuine distribution function and is very efficient 
for t in the neighborhood of t0. Three different ways in computing the g^s 
were proposed by Chen and Wu 5. 

(1) Compute (ft under a regression model 

Vi= n(xi,0) + Viei, i = l,2,---,N, 

where V{ = v(xi) is a known function , the Ei are independent and identically 
distributed (iid) random variates with mean 0 and variance a2. If the model is 
linear, /j,(xi,9) — x'fi, but other non-linear regression models will also work. 
Under this model one can use #; = P{yi < t§\xi) = G{[to — fi(xi,6)]/vi}, 
where G(-) is the cumulative distribution function of the e^s. Finally, one 
can replace 0 by 9, and estimate G(-) using the fitted residuals ii if G( ) is 
unspecified. 
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(2) Compute g; using a logistic regression model 

log[gi/(l-gi)] = x'ie, t = 1,2, • • - , # , 

with variance function V(g) = g{l — g). The fitted values, gi, are then used. 
(3) Use pseudo fitted values en = 7[/i(xj, 6) < to], where fi(xi, 6) = E^(yi\xi). 

A simulation study reported by Chen and Wu 5 showed that the resulting 
estimators perform well in all three cases, with cases (1) and (2) slightly better 
than (3). 

Estimation for the population quantile £Q = Fy1{a) = inf{£ : Fy(t) > a} 
can be obtained through direct inversion of FMc(t)'- €a = V c ( « ) , where 
0 < Q < 1. A Bahadur representation for the quantile process £Q has been 
established by Chen and Wu 5 under certain sampling designs. 

4 Estimation of Variance and Quadratic Functions 

Estimation of variance and other second-order finite population quantities 
using auxiliary information has been addressed by many survey researchers. 
Various techniques, such as regression, ratio and calibration estimation, have 
been attempted. See Sitter and Wu 19 for a literature review. A common 
weakness of these approaches is the ad hoc argument of applying certain 
techniques, which were originally developed for estimating Y, to estimate the 
variance without a common framework that unifies the two types of finite 
population parameters. 

The model-calibrated pseudo empirical likelihood method can be ex
tended to handle variances and other second-order finite population para
meters through a batch approach (Sitter and Wu 1 9) . Let y be the (pos
sibly vector-valued) study variable(s). For parameters in a quadratic form, 
T = Yli=i 2 j = i + i 0(lfi> Vj)> which includes the population variance, covari-
ance, and variance of a linear estimator as special cases, a unified estimation 
strategy is as follows. 

(1) View T as a total over a synthetic finite population, i.e. T = Yla=i *« 
where a = (ij) = 1,2, • • •, W , t„ = 0(y i t y,) for a = (ij), and N* = N(N -
l ) /2 is the total number of pairs. 
(2) The sample over the synthetic population consists of all the pairs from the 
original sample: s* = {(ij) : i < j , i,j € s}. 
(3) The "first-order" inclusion probabilities under this setting are 7Tjj = 
P(hJ € s)> a n d the "basic design weights" are d,j = l/7r,j. 
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(4) The pseudo empirical (log) likelihood function is modified to accommodate 
all the pairs (ij) using the d^'s. 

where the pij is the probability mass assigned for {y^Vj)-
The MCPE estimator of T is defined as 

where the p^ ' s maximize the modified l(p) subject to 

1 JV N 

51 Z)p« = l (pa > °). 5Z & ^ ( & ' »j)=
 JF 51 5Z <^> »j) • 

Here the y^s are the fitted values for the j/ f ' s , as discussed in Section 2. 
The above approach brings a unified framework to the estimation of lin

ear and quadratic parameters using auxiliary information. The approach is 
also model-assisted in that the resulting estimator TMC is approximately de
sign unbiased irrespective of the working (superpopulation) model used and 
will be very efficient if the model is adequate. Also, since the weights p^ 
are always positive, the method ensures positive estimation for some known 
positive parameters such as variances. 

The optimality of the MCPE approach for quadratic finite population 
parameters has also been established by Wu 20. The method is generally 
applicable and improvement over the naive Horvitz-Thompson estimator is 
guaranteed. Results of a simulation study reported in Sitter and Wu 19 showed 
that TMC performs very well for samples of small and moderate size. 

5 Range-restricted Weights in Regression Estimation 

The pseudo empirical likelihood method, combined with a novel idea of Chen 
et al. 6 , provides a simple solution to the range-restricted weights problem in 
regression estimation. The generalized regression estimator YQR for the pop
ulation mean Y is probably the most popular one used by survey practitioners. 
It is computationally simple, very efficient if the relationship between y and 
x is nearly linear, and requires only X to be known to compute the estimate. 

If one rewrites YQR in the form of a weighted average, YQR = Y^i£swiVi> 
the so-called GREG weights u>; also satisfy the benchmark constraints, i.e. 

T,ieswixi=X-
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The GREG weights Wi, however, possess a very undesirable property: 
they can be very small or very large, and sometimes can even be negative. This 
has long been recognized by survey statisticians. Several iterative algorithms 
have been proposed to adjust the GREG weights so that the adjusted weights 
will satisfy the range-restrictions: 71 < Wi/d* < 72, where 0 < 71 < 1 < 72 
are pre-specified, and d* is the standardized basic design weights. The basic 
design weights di can be interpreted as the number of units in the popula
tion represented by unit i in the sample. Range restrictions state that the 
adjusted weights obtained from incorporating auxiliary information are not 
allowed to deviate too far away from the basic design weights. In particular, 
the minimum restriction of positive weights should be imposed whenever is 
possible. 

The PEML and MCPE estimators discussed in Section 2 are asymp
totically equivalent to the GREG and the weights, pi, are always positive. 
The weights may, however, not satisfy a more restricted range specified by 
0 < 71 < 1 < 72. Chen et al. 6 proposed a simple solution to this. The 
idea is to relax the benchmark constraints a little bit while still make good 
use of auxiliary information. Taking the PEML estimator as an example, 
if we replace X by XHT = J2ies^iXi m t n e constraints (1), the resulting 
PEML weights would be pi = d* which will automatically satisfy any range-
restrictions. In general, if we replace X by X + S(XHT — X), the smallest 
6 G (0,1) can be found through a simple bi-section algorithm such that the 
resulting PEML weights will satisfy the pre-specified range-restriction. The 
algorithm is simple and guaranteed to converge. The adjustment is "optimal" 
in the sense of minimum relaxation of the benchmark constraints. 

6 Estimation Under Measurement Error Models 

In many practical situations the cost to obtain exact measurements of a study 
variable can be high, but "inaccurate" measurements may be gathered quite 
easily. Let j/i be the exact measurement and Zi be the inaccurate measurement, 
i.e. measurement with error. 

The empirical likelihood method provides useful tools for inference under 
measurement error models. The general framework is to treat the distribution 
of the study variable non-parametrically while modeling the measurement 
error parametrically or semi-parametrically. Depending on the structure of 
the sample data, different approaches can be applied. 

Two general sampling schemes are often used with measurement error 
problems. One scheme is to take two (or more) independent samples, a rela-
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tively small sample si with exact measurement and a large sample S2 measured 
with error. Another popular scheme is two-phase sampling where a large first 
phase sample s2 is taken and inaccurate measurement Z; are obtained and 
then a much smaller second phase sample si is drawn and the exact y^s are 
measured. An extreme case for two-phase sampling is to take s2 as the en
tire finite population. Let the parameter of interest be the finite population 
distribution function Fy (t) and assume all samples are obtained using simple 
random sampling. 

With two (or more) independent samples, Zhong et al. 2 3 proposed to 
formulate an empirical (log) likelihood function similar to the one used under 
stratified sampling (Zhong and Rao 2 2 ) . Let p» be the probability mass at 
2/i, i £ s\, and qi be the probability mass at Z{, i £ s2. The empirical (log) 
likelihood function is defined as 

i(P. 9) = X) logfo) + X) log(*) • (5) 

Extra model information regarding the measurement error can be used as con
straints when one maximizes l(p, q). For instance, the inaccurate instrument 
and the accurate instrument may have a common average reading, one can 
then obtain j3j and qi by maximizing l(p, q) subject to 

Xpi = l> X q i = *' and 12Piyi = XqiZi • 
The pi's and the exact measurements are used to construct estimators, i.e. 

FY(t) = ZiesiPiI(yi<t)-
Under a two-phase sample Si C S2, measurement errors can be modeled 

more explicitly. There are two commonly used models for measurement errors: 
the regression calibration model and the classical measurement error model. 

The regression calibration (RC) model treats Zi as a predictor of J/J: 

yt = a + (3zi + £i, i = 1,2, • • •, N, 

where the e;'s are i.i.d. random variates with E^(Si) — 0 and V^(£i) = cr2. 
Further model information may suggest that a — 0 or (3 — 1. Including both 
a and (3 in the model can accommodate systematic bias and/or departure 
accompanied with the error measurements. The role of Zi in the model is the 
same as an auxiliary variable discussed in Sections 2, 3 and 4. Methodologies 
developed in these sections can be used here with a minor modification. For 
instance, the second constraint in (4) should be replaced by ^2ies Pi9i = 
n2_1 ^2iea gi, where n-i is the first phase sample size. The model parameters a, 
P and <r2 are estimated from the second phase sample data {(yi, z{) : i £ s\). 
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The classical measurement error (CM) model is a conditional model for 
Zi given ?/;: 

Zi — a + fiyi + £i, i = 1,2, •• •, N. 

The £j's are assumed i.i.d. N(0,cr2). The RC model and the CM model look 
similar to each other but are fundamentally different. Under the CM model, 
the distribution of y, which is of primary interest, appears as a marginal 
distribution in the condition. A mixed likelihood function needs to be used to 
bring together the non-parametric likelihood function of y and the conditional 
parametric likelihood function of z given y. 

Let f(y,z) be the joint distribution function of (y, z), f(y) be the mar
ginal distribution of y, and f(z\y) be the conditional distribution of z given 
y. The full likelihood function based on (y;,z;), i £ s\ can be written as 
Ilie.i fiVi'Zi) = Ui€si /(Wi)ILe . i f(zi\Vi)- Denoting f(Vi) b y P i and f{zi\yi) 
by 4>(zi, yi,9), the log-likelihood function is given by 

KP, 0) = J2 1 O § ^ ) + Yl l°g0(*> Vi, 9). 

This log-likelihood function is based on the small second-phase sample s\ 
only. Information contained in the large first-phase sample S2 can be used for 
formulating constraints. Once again the pi's and the y;'s (i 6 s\) will be used 
to construct estimators. The p; and 0 are obtained through simultaneous 
maximization of l(p, 8) subject to 

5 > i = 1 (ft > 0) and Y,PiE{z\\vi) = E(zr). 

The second constraint comes from E(zT) = E[E(zr\y)] for r — 1,2,3, •••, 
and reduces to Y^ies Pi = 1 for r = 0. E(zr) should be replaced by the 
sample moments from the large sample S2 and E{zi\yi) = a + Pyi, E(zf\yi) = 
a1 + (a + Pyi)2, etc, are obtained from the conditional normal model. 

7 Concluding Remarks 

It has been shown by Owen 13 that the empirical likelihood method is a pow
erful non-parametric approach to inference with applications in many areas of 
statistics for infinite populations. This article presents an overview of various 
applications of the method to finite population problems. The optimal MCPE 
estimators under non-linear situations require complete auxiliary information 
for implementing the method. When such information is not available, a two-
phase sampling scheme may be used where the large first-phase sample of x 
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serves as "complete" auxiliary information. Variance estimation under this 
scenario has been investigated by Prasad and Thach 14. The use of empir
ical likelihood methods for measurement error problems needs to be further 
investigated. Questions that need to be addressed include: (1) How to assess 
the method under different models; (2) What order of moment, r, to use in 
the CM model; and (3) How to use the inaccurate measurement Zi, i G s2 

directly in the construction of estimators. The idea of using a mixed likeli
hood function with one component non-parametric and the other parametric 
or semi-parametric might be very useful for other finite population problems. 
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For incomplete longitudinal data Robins et al. l s developed inverse probability 
weighted generalized estimating equations for the marginal mean parameters. In 
many cases, however, the repeated measurements themselves may arise in clus
ters, which leads to both a cross-sectional and a longitudinal correlation structure. 
In some applications the correlation structure may become of interest itself. In 
this paper we describe second order inverse probability weighted generalized esti
mating equations for association parameters characterizing the dependence among 
observations within clusters. The inverse probability weights are estimated from 
conditional logistic models for the missing data process. The methods are applied 
to data from the Waterloo Smoking Prevention Project for illustrative purposes. 

1 Introduction 

Generalized estimating equations (GEE) have been widely used for the analy
sis of data from longitudinal studies and other settings featuring clustered data 
(Liang and Zeger 8, Crowder 2 ) . This marginal approach is widely viewed as 
attractive because it does not require complete specification of the joint distri
bution of the longitudinal responses but rather is based only on specification 
of the means and variances of the responses. Perhaps most frequently it is of 
primary interest to make inferences about the parameters in regression models 
for the marginal means, but there has been increasing interest in association 
parameters in recent years. When the association parameters are of central 
importance second order generalized estimating equations can be constructed 
to facilitate their estimation. Prentice 14 developed moment-based GEE meth
ods which model the association between a pair of binary responses in terms 
of the correlation, whereas Lipsitz et al. 10, Liang et al. 9 and Fitzmaurice 
and Lipsitz 3 modeled the association in terms of the marginal odds ratio. 

Missing data occur frequently in longitudinal studies. Although studies 
are frequently designed to collect data on every individual in the sample at 
each assessment, often not all responses are observed at all occasions. For 
example, some individuals may withdraw from the study after a number of 
visits and never return. This results in a so-called monotone missing data 
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pattern which has been the focus of much of the literature on missing data 
methodology. In other settings more general missing data patterns may exist. 
Such patterns arise when individuals who have one or more missing visits may 
return to the study leading to so-called intermittently missing data. 

When the data are missing completely at random (MCAR), the GEE 
approach can produce consistent estimates for the parameters because missing 
data processes are not related to the processes of generating responses. In 
contrast, when the data are missing at random (MAR) or nonignorable, the 
estimating equations are not unbiased and they fail to provide consistent 
estimates. Robins et al. 15 proposed a modified GEE approach which leads 
to unbiased estimating equations for the estimation of parameters involved 
in the marginal means. Inverse probability weights are incorporated into the 
estimating equations to account for the effects of the missing data processes 
(e.g. Fitzmaurice et al. 4 ) . 

In this paper we focus on methods for the analysis of incomplete binary 
responses which arise in clusters. Clustered longitudinal binary data feature 
both a cross-sectional and a longitudinal correlation structure and interest 
often lies in the strengths of both types of association. Examples include 
longitudinal community intervention studies and family studies which involve 
repeated assessments of individual members over time. Our problem is moti
vated by a school-based cluster-randomized longitudinal smoking study. 

We describe second order generalized estimating equations with the in
verse probability weights that are used to estimate the parameters associated 
with both longitudinal and cross-sectional effects. The mean response is char
acterized by a regression model, the variance is expressed as a function of 
the mean, and the form of the correlation structure is assumed. The inverse 
probability weights are estimated from conditional logistic regression models 
for the missing data process. In Section 2 we introduce notation and model 
assumptions. In Section 3 we describe estimation of interest parameters and 
robust variance estimation. Section 4 presents an application to a smoking 
prevention study in which the data are intermittently missing and involve 
both a longitudinal dependence in the repeated measurements and a cross-
sectional dependence arising from between school variation. General remarks 
are made in Section 5. 
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2 Notation and Model Assumptions 

2.1 The Response Process 

Suppose there are / clusters and J, subjects within cluster i, i = 1, 2 , . . . , I. 
Further suppose there are K visits planned and let Yijk denote the bi
nary response for subject j in cluster i at the visit k, k = 1,2, ...,K, 
Yij = (YijUYij2,...,YijKy, j = 1,2,..., Ju and Y{ = (Y^ , Y'i2,.... Y'UJ, 
i — 1,2,...,/. Let lower case letters yijk,Uij, a n d 2/; denote the realizations 
of Yijk, Y^, and Yt, respectively. Let xtjk = (l,Xijk,i, ...,Xijk,p-i)' be the 
p x 1 covariate vector for subject j in cluster i at time k, k = 1,2, ...,K; 
the covariates may be time-dependent or fixed across the entire observa
tion times. Let x{j = {x'i61,x'ij2,...,x'ijK)', and x{ = (x'n,x'i2, ....sc^.)', 
j = 1,2,.., Ji,i = 1,2, . . , / . 

Let 

Hijk = E(Yijk\xi) = P(Yijk = l\xi), 

and let y,^ = (piji,Pij2, - , Mtj/r)', J = 1,2, . . . , J ; , and ^ = 
(Mu> A*i2>..., ̂ 'ij^', i = l , 2 , . . . , J . We consider the logistic regression model 
for the mean response 

logit Mijfc = a ; ^ (1) 

for i = 1,2, . . , / , j = 1,2,.., J;, fc = 1,2,...,K, where ^ = (/30,/3i, . . , /3P- i ) ' 
is the vector of regression parameters. The variance for the response Y^k is 
specified as 

Vijk = va.v(Yijk\xi) = fiijk(l - Hijk), 

which depends on the regression parameter vector j3. 
The most general representation of the correlation structure is 

corr(Y;jfc, Yi>j>k>) = 4>jkj'k' if z = z' and 0 otherwise. A more specific structure 
could be specified as 

{ Pkk>, if j = / , k^k', 
Ik, if j ^f, k = k', 

with p = (pkfc/,1 < k < k' < K)',i = (7fc,l < fc < K)', S = {6kk>,l < 
k < k' < K)', and denoted <j> — (p ' ,7 ' , ^O' I a q x 1 vector containing all 
association parameters. That is, p reflects the correlation among repeated 
measurements within subjects, 7 represents the cross-sectional association 
between concurrent responses from subjects within the same cluster at each 
visit, and S represents the association between responses from subjects within 
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the same cluster, but for responses taken at different time points. As may be 
inferred from the notation, in general the association parameters pertaining to 
responses at different time points may be functions of the span of time between 
visits. One may, for example, specify an autoregressive correlation structure 
for p by introducing the constraint pkk> — p],k~k '. A simpler exchangeable 
structure results by letting pkki = p for k ^ k'. Analogous specifications for 
8kk' can be made. The exchangeable structure seems most appropriate for the 
cross-sectional association within clusters and indeed it is frequently realistic 
to constrain the 7fc terms to be equal to a common parameter 7. 

We remark that other parametric correlation structures may be adopted 
to take into account constraints on the second moments (e.g. Oman and 
Zucker 1 3) . The following constructions of the estimating equations for the 
mean and association parameters may be adapted to accommodate alternative 
correlation structures such as these. 

2.2 The Missing Data Process 

Let Rijk be the indicator variable taking the value 1 if the response Y ^ is 
observed and 0 otherwise, k = 1,2, ...,K, let Rij = (Riji, Rij2, •••, Rijx)', 
j = 1,2,..., Ji, and Ri = {R'n, R'i2,..., R'ij.)', i = 1,2,...,/. Let lower letters 
fijkirij, and ri denote the realizations of Rijk, Rij, and Ri, respectively. 
Monotone missing data patterns have been the focus of much of the work in the 
analysis of longitudinal incomplete data. In practice however, subjects may 
miss one or more visits before returning for a subsequent visit creating what 
is termed intermittently missing data. We shall consider arbitrary missing 
data patterns where Rijk = 0 does not necessarily imply Rijk' = 0 for k < k'. 
We let Hijk = {yiji,Vij2, • • • > Vij,k-i} denote the history of the responses from 
subject j in cluster i up to but not including visit k, H\°'k denote the history of 
the observed components in Hijk, and H\-k = {riji,rij2, • • • ,rij^-i} denote 
the history of the missing data indicators for subject j in cluster i up to but 
not including visit k, k — 1,2,... ,K, j = 1,2,... ,Ji, and 1 = 1 ,2 , . . . , / . 

Three types of missing mechanism have been distinguished (Laird 7) based 
on how missing data processes depend on the responses. When the missing 
data process is independent of all responses (both observed and unobserved) 
given relevant covariates and auxiliary variables, the data are said to be miss
ing completely at random (MCAR). When the missing data process is condi
tionally independent of the unobserved responses given the covariates, auxil
iary variables, and observed responses, the missing data are said to be missing 
at random (MAR). Finally the missing mechanism is called nonignorable or 
informative where the missing data process depends on the unobserved re-
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sponses. This last type of mechanism can be addressed only by sensitivity 
analyses (Rotnitzky et al. 1 6 ) , and so we shall focus on methods for deal
ing with missing at random mechanism in marginal models. Moreover, we 
assume P(Rijk = l l - H ^ y y , ^ ) = P(Rijk = l\Hljk,H>jl,Xi). This assump
tion states that the probability of observing subject j in cluster i at visit k, 
given Hfjk, the full set of responses y^ for subject j , and covariates Xi, does 
not depend on the unobserved past responses or on the future responses. This 
additional assumption is not necessary when we simply restrict attention to 
monotone missing data patterns but facilitates the derivations that follow. As 
noted in Robins et al., 15 this assumption implies that the data are missing at 
random, although missing at random does not imply such an equation. We 
further assume that subjects are assessed at the first visit and so Rtj\ = 1, 
3 ~ *-, z , . . . , Ji, % = i , . 4 , . . . , i . 

Suppose that the conditional probability Xijk — P(Rijk = 
l\Hljk,H>°l,Xi) for being observed at time k is known up to a vector of 
unknown parameters ak, k — 2,3, ...,K. That is, we assume that there ex
ists a function \ijk{ctk) of H\jk, H\yk and xt such that Xijk = \i:jk(ak); 
typically a logistic link may relate a linear function of variables summa
rizing HLk, Hijli a n d xi to the probability of being observed at visit k. 
Let a. = (a'2,a'3,...,a'K)' and define irij(a) = P(Rij = rij\yi:j,Xi) = 

K 

Y[[Xijk(ak)riik(I-Xijk(cxk))1~rijl']. Since every subject is observed at k = 1, 
fc=2 

•ffij(at.) is the conditional probability of missingness over the entire observation 
period for subject j in cluster i given the vector y^ and the covariates Xi. 

We assume that within each cluster the indicator variables are condition
ally independent given the whole set of observed responses within this cluster 
and cluster level covariates and that the conditional probability for missing
ness for one subject given the whole set of responses and covariates in cluster i 
does not depend on the responses of other subjects in the same cluster. These 
assumptions enable us to write 

Ji Ji 

P(Ri = ri\yit Xi) = Y[ P{Rij = rijfoi, x^ = J J P(Rij = r^y^, Xi), 

and the MAR assumption discussed earlier leads to the partial likelihood 
contribution from cluster i, 

Ji K Hoc)=n n Nfc(«)rij" • (i - ^(cc))1-^], 
j=i k=i 
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and the overall partial likelihood is L(a.) — Yli=1 Li(a). The contribution to 
the partial score vector from cluster i is 

M « ) = t i>«* - ̂ )f°^k{a), (2) 
3 = 1 fc=2 

and Uo(a) = X^=i Uoi(a), which may be solved by letting Uo(a) = 0 to give 
the partial maximum likelihood estimator d. 

3 Inference Procedures 

3.1 Estimating Equations for (3 and <p with Complete Data 

Our primary interest lies in estimating parameters associated with mean re
sponses as well as correlation between responses. In this subsection we de
scribe how to construct the estimating equations for both (3 and <p when the 
data are complete. We let 6 = ((3',<j>')'. 

Let D{ = dfxyd/3 be the p x JiK derivative matrix of the mean vector 
/x{ with respect to f3, and Vi be the covariance matrix for the response Yi 
for cluster i, i = 1, 2,..., / . Note that Vi is comprised of sub-matrices Vijji of 
two types. The K x K matrix V^j is the covariance matrix for the repeated 
measurements for subject j in cluster i where its (k, k') entry is Vijk when 
k = k' and ^/WjkVijk' • Pkk' when k ^ k''. The K x K block matrix V^ji 
U 7̂  J') contains the covariance terms between the responses from subject 
j and subject j ' in cluster i, and have as (k, k') entry y/VijkVij>k • 7^ when 
k = k', and y/VijkVij'k1 • ^kk' when k ^ k'. 

The generalized estimating equations for /3 are given by 

UX{B) = ] T Uu(0)=0, (3) 

where Uu(0) = DiV~l • (Yi - p.). 
To estimate association parameters 0, we consider pairwise products 

among responses within clusters. For subject j in cluster i define Z^ — 
{YijiYij2, YijiYij3, •••,Yij:K^1YijK)', a vector of K(K - l ) /2 components con
sisting of the pairwise products over repeated measurements of subject j . For 
subjects j and f > j in cluster i define Z^^ = (YijiYij'i,..., YjjiYij'K , 
YijiYj'i, •••, YijxYij'K)', a vector of K2 components consisting of all pairwise 
products of responses between subjects j and j ' within cluster i. Let Z% 
be the vector consisting of all vectors Z^ and Z^jji) defined as Zi = 
(z'i(1),...,z 

i{Ji)> Z'i(i,2)>—>Zi{Ji-i,Ji))'> t m s 1S a vector of Qi components, 
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where Qi = KJi{KJ{ - l ) /2 . Let Ci be the expectation vector of Z» with 
components determined by the relation 

E(YijkYij'k') = 4>jkj'k'y Hijk{1 - Pijk)Hij'k'0- - fJ-ij'k') + Hijk^ij'k', 

and Ci = dC'i/dcj) be the q x Qi derivative matrix of the mean vector d with 
respect to (p. Lipsitz et al. 10 proposed a set of unbiased estimating equations 
to estimate association parameters. Since the variance covariance matrix of 
Zi involves third and fourth moments of the responses, they suggested a 
"working" covariance matrix Wi = diag((^(l - (u)), where C,u is the Ith. 
element of Ci, which gives 

/ 
U2{9) = YJU2i{0) = 0, (4) 

i=l 

where U2i(9) = dWf1 • (Zi - <4). 
The efficiency of estimation of the mean parameters (3 was discussed by 

Sutradhar and Das 17 and Sutradhar and Kumar 18. Their findings suggested 
that independence working covariance matrix performs generally well when it 
is not possible to specify the true covariance matrix as is the case with the 
second order equations in (4). 

If data are incomplete, unbiased estimating equations (Godambe and Kale 
6) of the form (3) and (4) may be constructed to accommodate a variable 
number of assessments per subject by making a suitable modification to the 
covariance matrix for (3). Because the estimating equations are unbiased the 
resulting estimators are consistent when the data are missing completely at 
random, but not otherwise. 

3.2 Estimating Equations for (3 and (\> with Incomplete Data 

To obtain unbiased estimating equations for incomplete data with observa
tions missing at random, we modify the estimating equations by incorporat
ing inverse probability weights. We begin with the case that the weights are 
specified by fixing a at a 0 . We do this to provide insight into the sources 
of variation in the estimators resulting from the estimating equations with 
estimated weights. Let Ai(a0) = diag(Ay(a0)) be the JiK x JiK block 
diagonal matrix, where the j th diagonal matrix Aij(a0) = diag(I(Rijk = 
l)/iTij(oc0),k = 1,2, ...,K) is the K x K matrix with the diagonal elements 
being inverse probabilities Try ( a 0 ) _ 1 for observed data points, or zeroes if the 
corresponding observations are missing; /(•) is the indicator function. Recall 



359 

9 = (/3 ,(f>)' denotes the parameter of interest. The generalized estimating 
equations for (3 are then given by 

U1(0,ao) = J2uu(9,ao)=0, (5) 
i= i 

where Uu(6,a0) = DiV'1 • A;(a 0 ) • (Yt - M;)-
Let A*(j)(a0) = diag(I(Rijk = l,Rijk> = l)/7r i j(a0) , 1 < k < k' < 

K) be the (K(K - l)/2) x (K(K - l)/2) diagonal matrix corresponding 
to the elements in Z i ( j ) , and A ^ ^ a , , ) = diag(/(.Rjjfc = \,Riyk> = 

l)/(7rij(ao)7''ij'(Q;o))I fc, fc' = 1,2,..., if) be the K2 x X 2 diagonal matrix cor
responding to the elements in Z^jjiy Consequently the Qi x Qi diagonal 
matrix corresponding to the elements in Z,- is written as 

A*(«)=f d i a g ( A ^ ( a o ) ) ° "i 
A o ) [ 0 diag(A:UJI)(a0))) ' 

and the inverse probability weighted estimating equations for 0 are given by 

U2(9,ao) = ^2U2i(e,ao)=0, (6) 
»=i 

where U2i(9, a0) = dW'1 • A*(aD) • (Z{ - CJ. 
When a is unspecified it may be estimated by solving the sum of the 

score equations given in (2) and (5) and (6) can be modified by replacing a 0 

with a . A Fisher-scoring algorithm may be used to obtain 9. Specifically, for 
(f) = cj>(s' at the sth iteration, recursively apply 

0W = ^ - u + [MxOge-1), «<•>, a ) ] - 1 . tfl(jg<«-D,<f,i>), &), 

where Mi(9, a) = - £ f = 1 DiVr1 • A;(a) • £><, until /3 ( t ) converges to /3 ( s ) , 

say. Then given /3 = /3^ , recursively apply 

^(t) = 0(t-i) + [M2(/3(.)(0(t-i))d)]-i . ̂ (^l^C-D.d) , 

where M2(0, a ) = - £ [ = i dWr1 • Af (a) • C7{, until it converges to 4>{s+1), 
say. These two steps may be cycled through until convergence is achieved for 
9 at 9. 
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3.3 Robust Variance Estimation 

Let Ui(0,a) = ([/^(0, a ) , [7.^(0, a ) ) ' and U(9,a) = I'1/2 E L i W , " ) -
When a is specified to be a0, under standard regularity conditions for 
estimating functions U(0,ao) is asymptotically normally distributed with 
mean zero and covariance E(Ui(0,ao)U-(8,ao)), and Il/2{6 — 0) is asymp
totically normally distributed with mean zero and covariance matrix given 
by r j 1 £(E/ i (0 ,a o )£ / ; (0 ,a o ) ) [ r j 1 ] ,

> where T0 = E(dUi(0, ao)/d0'). When 
a is unspecified, the variation in the estimator a must be taken into ac
count, and under the regularity conditions, U(0,a) and 71/2(0 — 8) are as
ymptotically normal with mean zero and respective asymptotic variances E 
and r ^ E f r - 1 ] ' , where r = E [dUi(0,a)/d8'], E = E{Ui(0,a)U!(0,a)} -
E{dUi(0, a)/da') • {var(C/oi(a))}-1 • {E(dUi(0, a)/da')}'. We can also write 
E = var{Resid(£/i, U0i)}, where Resid(A;, B;) = A i - E ^ ^ H - E ^ B - ) } " 1 ^ 
is the residual from the population least squares regression of A; on Bi. The 
proof is sketched in the Appendix, which appears in Robins et al. 15. 

The matrix E is consistently estimated by 

E = / - ^ [ R e s i d ^ i , (70i)][Resid([/i, U0i)}', 
»=i 

i i 

where Resid( ,̂ Uoi) = & - ( ^ t ^ G C ^ o * ) " 1 ^ , & = Ui(0,a), and 
t=i t=i 

Uoi — Uoi(a). And the matrix F is consistently estimated by 

r = T-i ( Mifra) 0 \ 
\M21(0,a)M2(0,a)), 

where M21{8,a) = E -= i CiWr1 • A?(a) • (SC/0/3'). 

4 Application to a Smoking Prevention Study 

The Waterloo Smoking Prevention Project (WSPP) consists of a series of 
longitudinal cluster-randomized school-based smoking prevention studies co
ordinated at the University of Waterloo (Cameron et al. 1). We report here 
on the results of some analyses of data from WSPP4, the fourth study in the 
series. 

In WSPP4 100 schools from 7 school boards in Ontario were random
ized to dispense either the regular health education program provided by the 
school or a more intensive anti-smoking program delivered either by a specially 
trained teacher or a public health nurse. The program was first delivered to 
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children in grade 6 at the start of the study, and so-called "booster sessions" 
were administered to these same students when they were in grades 7 and 8. 
The purpose of the booster sessions was to reinforce the material presented 
when they were in grade 6. Attitudes towards smoking as well as actual smok
ing behavior were assessed annually by questionaire. A response of interest is 
a binary indicator of whether the child was a smoker at each of the assessment 
periods. For the purpose of this analysis, we define a current smoker as a stu
dent who has indicated they are a regular or occasional smoker. If we wish to 
use data from grades 6, 7 and 8 from all students in participating schools we 
have at most K = 3 visits for each of Ji students in school i, i = 1,2,... ,1. 
The cluster randomized nature of the design suggests the need to deal with 
the cross-sectional within school correlation. Hence we have both the longitu
dinal and cross-sectional correlation structure discussed in previous sections. 
For illustrative purposes we consider data from 2006 students in 45 schools 
from WSPP4. 13.86% of the data are incomplete where 4.74% of students 
have no observations in both grade 7 and grade 8 and 9.12% of students have 
no observations either in grade 7 or in grade 8. 

Let Yijk = 1 if student j in school i is a smoker at assessment k, and let 
Yijk = 0 otherwise. Given the relatively small number of visits we consider 
exchangeable correlations by letting pkk' = P and dkk1 = 8 and a common 
cross-sectional correlation parameter 7fc — 7. To avoid the need for intro
ducing any constraints on the parameters in the algorithm we reparameterize 
from 0 to r where 

TP = log( ( l+p) / ( l -p ) ) , r7 = l o g ( ( l + 7 ) / ( l - 7 ) ) , TS = log((l+«5)/(l-<5)), 

and T = {Tp,Tj,Ts)'. 
The logistic regression model for the mean response is specified as 

logit fJ,ijk = Po + PlXijkl + PlXijk2 + @3Xijk3 + ^Xijki, (7) 

where Xijki — 1 if school i was randomized to the treatment arm and zero 
otherwise, Xijk2 = 1 if student j in school i is male and zero otherwise, 
Xijkz = 1 if k = 2 (i.e. the response is from a grade 7 assessment) and 
zero otherwise, and Xijki = 1 if A; = 3 (i.e. the response is from a grade 8 
assessment) and zero otherwise. 

The logistic regression models for the missing data process are specified 
in equations (8) and (9) that follow, 

logi t Xij2 = CH20 + OL2iViji, (8) 
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and 

logit Xij3 = a3o+a3iyij1+a32rij2+a33rij2yij2+a34r*j2+a35r*j2xij2+a3Qr*j2Xij3, 

(9) 
where Xij2 = 1 if the school received a medium social models risk score in 
grade 7 and zero otherwise, x ^ = 1 if the school received a high social 
models risk score in grade 7 and zero otherwise, and r*j2 = 1 if the social 
models risk score was available in grade 7 and zero otherwise. 

Table 1 contains the estimates and standard errors for the regression 
coefficients for three logistic models for the responses. Model 1 is the full 
model in which p, 7, and 6 are estimated, and Models 2 and 3 involve the 
constraints 5 = 0 and 7 = 6 = 0 respectively. For each model a weighted set 
of generalized estimating equations of the form of (5) and (6) was solved with 
a0 replaced with a estimated from the sum of the score equations from (2), 
and an unweighted set of equations was solved according to (3) and (4). 

By comparing the estimates of the treatment effect arising from the 
weighted and unweighted estimating equations for Model 1 one can see that 
for several of the regression parameters the weighting has little effect on the 
point estimates. The estimate of the treatment coefficient however is consid
erably smaller when weights are used and, while not statistically significant, 
is not inconsistent with a modest treatment benefit. As one would expect 
due to the sampling variation in the estimated weights, the standard errors 
are considerably greater in the weighted analyses than in the unweighted 
analyses. The estimates of the correlation parameters are somewhat larger 
in the weighted analyses than the unweighted analyses. The weighted and 
unweighted analyses of Models 2 and 3 yield broadly consistent relationships. 

5 Discussion 

Second order estimating equations are used to provide estimates of associ
ation parameters simultaneously with estimates of regression coefficients for 
marginal means and have been advocated for use on the grounds of improved 
efficiency for estimation of association parameters (Liang et al. 9 ) . Interest 
may lie in precise estimation of the correlation coefficients to facilitate sam
ple size calculations for example, or perhaps simply to obtain understanding 
about the nature of the various types of associations. We formulate esti
mating equations for regression coefficients in logistic models for longitudinal 
binary data and related association parameters for the problem in which the 
longitudinal series occur in clusters. We modify these first and second order 
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Table 1. Estimates from several weighted and unweighted models 

Covariate 
Intercept (/3o) 
Treatment {Pi) 
Gender (/32) 
Grade 7 (/33) 
Grade 8 (/34) 
Longitudinal (rp) 
Cross-sectional (r7) 
Mixed {TS) 

Covariate 
Intercept {Po) 
Treatment {Pi) 
Gender (/32) 
Grade 7 (/33) 
Grade 8 (/34) 
Longitudinal (rp) 
Cross-sectional (r7) 

Covariate 
Intercept (/3o) 
Treatment (/3i) 
Gender (/32) 
Grade 7 {p3) 
Grade 8 (/34) 
Longitudinal (TP) 

Model 1 
Weighted 

est. s.e. 
-2.553 0.308 
-0.409 0.312 
-0.121 0.205 
0.489 0.103 
1.769 0.146 
0.970 0.147 
0.244 0.070 
0.232 0.067 

Unweighted 
est. s.e. 

-2.826 0.237 
0.007 0.214 
-0.034 0.075 
0.540 0.085 
1.465 0.116 
0.623 0.068 
0.075 0.035 
0.050 0.034 

Model 2 (J = 0) 
Weighted 

est. s.e. 
-2.701 0.258 
-0.158 0.265 
-0.145 0.201 
0.597 0.122 
1.728 0.185 
0.885 0.115 
0.220 0.058 

Unweighted 
est. s.e. 

-2.819 0.253 
0.008 0.236 
-0.025 0.076 
0.542 0.091 
1.458 0.121 
0.612 0.059 
0.070 0.028 

Model 3 (7 = 8 = 0) 
Weighted 

est. s.e. 
-2.512 0.241 
-0.182 0.232 
-0.093 0.155 
0.442 0.079 
1.686 0.134 
0.725 0.073 

Unweighted 
est. s.e. 

-2.781 0.249 
0.029 0.232 
-0.013 0.075 
0.495 0.071 
1.421 0.109 
0.581 0.048 

equations by the introduction of weights to deal with the possibility that the 
missing data are missing for reasons related to the past observed responses 
and the history of the missing data process (i.e. missing at random). As 
noted earlier, the estimating equations are unbiased and hence generate con
sistent estimates of the mean and association parameters. We have shown 
empirically via simulation studies that accurate estimates of the mean and 
association parameters are obtained in many practical situations. For ex
ample, when the clustered binary data are simulated using the multivariate 
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Plackett distribution (Molenberghs and Lesaffre n ) under a broad range of 
configurations with the association characterized through odds ratios, the rel
ative differences between the true value and the mean estimate was always 
less than 2.9% for regression parameters and less than 4.7% for the associa
tion parameters. These simulation studies were computed based on estimating 
equations described in Yi and Cook 19 which are computationally efficient and 
designed specifically for associations parameterized through odds ratios. We 
anticipate that similar findings would be observed based on equations with 
associations parameterized through correlations. 

When applied to data from the Waterloo Smoking Prevention Project 
(WSPP4) we find the weighted analyses provide mild suggestive evidence of 
a treatment effect which is not suggested in the unweighted analysis. 

We describe these methods in the context of a study in which the subjects 
remain in the same cluster for all longitudinal assessments. This was quite rea
sonable since we examined responses from students when they were in grades 
6, 7 and 8. These grades were chosen in part because the intervention was ap
plied during this time period. However, students in participating elementary 
schools were tracked during high school for grades 9 to 12 to enable study 
of the the long-term effects of the intervention. When students move from 
elementary schools to secondary schools it is natural to consider that they 
have moved from one cluster of individuals to another. One may, for exam
ple, wish to accommodate a residual long-term correlation during secondary 
school grades for students sharing the same elementary schools. In addition, 
it would seem natural to introduce another correlation parameter for cross-
sectional correlations for response from students within the same secondary 
schools. The methods described here can easily handle this complication by 
introducing a slightly more general correlation structure. 

In some problems it may be of interest to examine how explanatory co-
variates modulate the cross-sectional or longitudinal associations and for such 
settings Liang et al. 9 described how to formulate such models. One may alter
natively use odds ratios to model the association between the binary responses 
as discussed by many authors (e.g. Fitzmaurice et al. 3 ) , and introduce the 
dependence on the covariates by regression models. 

The weighted estimating equations described in Section 3 are conditional 
on the specification of parameters that index the missing data processes. In 
Section 4 we propose logistic regression models to characterize the presence of 
responses via their past history of presence and observed outcomes, however 
unlike in the marginal models for the response, no cross-sectional correlation 
is addressed. One could include cluster effects for the drop-out process how
ever, by modeling within cluster dependences with odds ratios and using the 
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Plackett distribution (Molenberghs and Lesaffre n ) . The estimation of the 
parameters involved in the missing data processes can be carried out using 
the GEE2 approach (Liang et al. 9) . 
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Appendix 

Let Hi{0,a) = (C/^O.aJ . l /o^a)) ' , then E(Hi(0,a)) = 0. If Hi(0,a) 
further satisfies regularity conditions stated in Appendix A of Robins et al. 15, 
then by Theorem 3.4 of Newey and McFadden 12 with probability approaching 

1, there is a unique solution, say (6 ,cx')', to $ 3 i = 1 Hi(6,a) = 0, and it 
satisfies 

/1 /2 ( & - a ) = ~E\.dHW>a) W ' a ')]_ 1 • I~1/2 £ HW>a) + °P(1)-

Therefore, we obtain 

pl\% _ 0) = -i-V2{E(dUi{0, cx)/d0')-1 • J2 Ui(0> <*) ~ E(dUi{0, cx)/d9')-1 

t = i 

i 

•E(dUi{9,a)/da') • [E(dU oi{cx) / dcx'))'1 • ^ £ / 0 i ( < * ) } + op(l) 
t = i 

i 

= -T^T1'2 • ^Resid( t / i ,C/ o i ) + op(l) , 
i=X 

where Ui = Ui(d, ex), U0i = Uoi(ex), U0 = 7 - 1 / 2 ]T\ U0i(cx). The central limit 
theorem then leads to the asymptotic distribution for I1/2 (6 — 8). 

In deriving the last equation, we used the identities E(dUoi/da') = 
-E{U0iU'0i) and E(dUi/da') = -E(UiU'0i). The latter one is obtained by 
differentiating E{Ui(0,a)} = 0 with respect to ex under the integral sign. 
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