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Preface 

This volume is a collection of papers presented at a conference held in Shoresh 
Holiday Resort near Jerusalem, Israel, in December 2000 organized by the 
Israeli Ministry of Science, Culture and Sport. The theme of the conference 
was "Foundation of Statistical Inference: Applications in the Medical and 
Social Sciences and in Industry and the Interface of Computer Sciences". 
The following is a quotation from the Program and Abstract booklet of the 
conference. "Over the past several decades, the field of statistics has seen 
tremendous growth and development in theory and methodology. At the same 
time, the advent of computers has facilitated the use of modern statistics in 
all branches of science, making statistics even more interdisciplinary than in 
the past; statistics, thus, has become strongly rooted in all empirical research 
in the medical, social, and engineering sciences. The abundance of computer 
programs and the variety of methods available to users brought to light the 
critical issues of choosing models and, given a data set, the methods most 
suitable for its analysis. Mathematical statisticians have devoted a great deal 
of effort to studying the appropriateness of models for various types of data, 
and defining the conditions under which a particular method work." 

In 1985 an international conference with a similar title* was held in Is­
rael. It provided a platform for a formal debate between the two main schools 
of thought in Statistics, the Bayesian, and the Frequentists. Since that time 
an interesting development in the field has been the narrowing of the gap 
between the two approaches to Statistical Inference. The step towards rec­
onciliation has been facilitated by a breakthrough in computing, that took 
place over the last fifteen years in both hardware and software which made 
it possible to perform long and complicated calculations. The availability of 
newly developed tools necessary for Bayesian applications has enabled the 
specification of more realistic models and the popularization of the Bayesian 
approach in applied studies. At the same time, the development in calculation 
has brought a flourishing of non-parametric methods, whose advantage over 
the classical methods is their abilitity to handle less rigid models. A main 
emphasis of the recent conference was to elaborate on these developments. 

The volume surveys some aspects of the discussion. The papers are pre­
sented in four groups: Part I: Identification with Incomplete Observations, 
Data Mining, Part II: Bayesian Methods and Modelling, Part III: Testing, 

* The econometric oriented papers of the 1985 conference were published by the 
Journal of Econometrics, Vol. 37, No.1, 1988 entitled: Competing Statistical 
Paradigms in Econometrics, Teun Kloek and Yoel Haitovsky (eds). 



VI Preface 

Goodness of Fit and Randomness, Part IV: Statistics of Stationary Processes. 

Sponsoring institutions of the conference in 2000 were US National Sci­
ence Foundation, European Union, The Israeli Academy of Science and Hu­
manities, The Hebrew University, FSTRS - Frontier Science and Technology 
Research Foundation, INTAS - International Association for the Promotion 
of Cooperation with Scientists from the former Soviet Union, Teva Phar­
maceutical Industries, Israeli Central Bureau of Statistics, Israeli Statistical 
Association, The British Council. 

Finally, the appearance of the volume is due to Ines Giers, Monika Hat­
tenbach, and Thomas Lais, who did a masterful job of retyping some of the 
papers and of bringing the volume to uniform format. 

Jerusalem, 
December 2002 

Yoel Haitovsky 
Hans R. Lerche 

Yaacov Ritov 
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Bounding Entries in Multi-way Contingency 
Tables Given a Set of Marginal Totals 

Adrian Dobra! and Stephen E. Fienberg2 

1 National Institute of Statistical Sciences, Research Triangle Park, North 
Carolina, USA 

2 Department of Statistics and Center for Automated Learning and Discovery, 
Carnegie Mellon University, Pittsburgh, USA 

Abstract. We describe new results for sharp upper and lower bounds on the entries 
in multi-way tables of counts based on a set of released and possibly overlapping 
marginal tables. In particular, we present a generalized version of the shuttle algo­
rithm proposed by Buzzigoli and Giusti that computes sharp integer bounds for an 
arbitrary set of fixed marginals. We also present two examples which illustrate the 
practical import of the bounds for assessing disclosure risk. 

1 Introduction 

In this paper, we provide an overview of our recent work to develop bounds 
for entries in contingency and other non-negative tables (see also [8]). Our 
interest in this problem grows out of work to develop a Web-based table 
query system, coordinated by the National Institute of Statistical Sciences 
in the spirit of a pilot system described by Keller-McNulty and Unger [19]. 
The system is being designed to work with a database consisting of a k-way 
contingency table and it allows only those queries that come in the form of 
requests for marginal tables. What is intuitively clear from statistical theory 
is that, as margins are released and cumulated by users, there is increasing 
information available about the table entries. The system must examine each 
new query in combination with those previously released margins and decide 
if the risk of disclosure of individuals in the full unreleased k-way table is 
too great. Then it might offer one of three responses: (1.) yes-release; (2.) 
no-don't release; or perhaps (3.) simulate a new table, which is consistent 
with the previously released margins, and then release the requested margin 
table from it (c.f. [9], [14], [15]). 

There are various approaches to assessing risk of disclosure and most of 
them relate to the inadvertent "release" of small counts in the full k-way 
table (e.g. see [13], [23], [24]). Here we follow the approach of examining 
upper and lower bounds on the cell entries (see [3], [4], [12], [22]). For more 
general background on related methods of disclosure limitation, we refer the 
interested reader to [25], [26]. 

The approach we outline in this paper draws heavily on the ideas asso­
ciated with the theory of log-linear models for contingency tables ([1], [20]), 
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where the minimal sufficient statistics are in fact marginal totals correspond­
ing to the highest-order terms in the model. In Section 2, we give some 
technical background and then, in Section 3, we present results from [7] cor­
responding to decomposable and reducible graphical models. Then, in Section 
4, we outline a general algorithm that computes sharp bounds for margins 
corresponding to any standard log-linear model. This algorithm generalizes 
the "shuttle" algorithm approach suggested by Buzzigoli and Giusti [3]. We 
apply our results to two examples, a 26 table and a 216 table, and we discuss 
some of the possible implications for disclosure. 

2 Technical Background 

Bounds for entries in two-way contingency tables go back to seminal papers by 
Bonferonni [2], Frechet [16], and Hoeffding [17]. For an I x J table with entries 
{nij} and row margins {nH} and column margins {n+j}, these bounds take 
the form 

(1) 

For simplicity, we refer to these as Frechet bounds. Until recently, the only 
multi-dimensional generalizations of this result that have been utilized in­
volved non-overlapping fixed marginals. Our interest has been in deriving 
computationally efficient approaches to computing bounds when the margi­
nals overlap (c.f. the related work described in Joe [18]). 

Any contingency table with non-negative integer entries and fixed margi­
nal totals is a lattice point in the convex polytope Q defined by the linear 
system of equations induced by the released marginals. The constraints given 
by the values in the released marginals induce upper and lower bounds on 
the interior cells of the initial table. These bounds or feasibility intervals can 
be obtained by solving the corresponding linear programming problems. The 
importance of systematically investigating these linear systems of equations 
should be readily apparent. If the number of lattice points in Q is below a 
certain threshold, we have significant evidence that a potential disclosure of 
the entire dataset might have occurred. Moreover, if the induced upper and 
lower bounds are too tight or too close to the actual sensitive value in a cell 
entry, the information associated with the individuals classified in that cell 
may become public knowledge. 

The problem of determining sharp upper and lower bounds for the cell 
entries subject to some linear constraints expressed in this form is known to 
be NP-hard (see Roehrig et al. [22]). Several approaches have been proposed 
for computing bounds: however, almost all of them have drawbacks that show 
the need for alternate solutions. Network models (c.f. [4]) need formal struc­
ture to work even for 3-way tables and besides there is no general formulation 
for higher-way tables. In some ways, the most natural method for solving lin­
ear programming problems is the simplex method. For the bounds problem, 
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we would have to run the procedure twice for every element in the table and 
consequently we overlook the underlying dependencies among the marginals 
by regarding the maximization/minimization problem associated with some 
cell as unrelated to the parallel problems associated with the remainder of the 
cells in the table. Although the simplex method works well for small problems 
and dimensions, by employing it we would ignore the special structure of the 
problem because we would consider every table as a linear list of cells. The 
computational inadequacy of the simplex approach is further augmented by 
the fact that we may get fractional bounds (see Cox [4]), which are very diffi­
cult to interpret. To avoid fractional bounds, one would have to make use of 
integer programming algorithms, but their computational complexity prevent 
their usage even for problems of modest size. These considerations suggest 
the need for more specialized, computationally inexpensive algorithms that 
could fully exploit the special structure of the problem we are dealing with. 

3 Bounds when Marginals Characterize Decomposable 
and Reducible Graphical Models 

We visualize the dependency patterns induced by the released marginals by 
constructing an independence graph for the variables in the underlying cross­
classification. Each variable cross-classified in the table is associated with a 
vertex in this graph. If two variables are not connected, they are conditionally 
independent given the remainder. Models described solely in terms of such 
conditional independencies are said to be graphical (e.g. see Lauritzen [20]). 

3.1 Bound Results 

Decomposable graphical models have closed form structure and special prop­
erties. The expected cell values can be expressed as a function of the fixed 
marginals. To be more explicit, the maximum likelihood estimates are the 
product of the marginals divided by the product of the separators. By in­
duction on the number of MSSs, in [7], we developed generalized Frechet 
bounds for decomposable log-linear models with any number of MSSs. These 
generalized Frechet bounds are sharp in the sense that they are the tightest 
possible bounds given the marginals. In addition, we can determine feasible 
tables for which these bounds are attained. 

Theorem 1 (Frechet Bounds for Decomposable Models) Assume 
that the released set of marginals for a k-way contingency table is the set 
of MSSs of a decomposable log-linear model. Then the upper bounds for the 
cell entries in the initial table are the minimum of relevant margins, while 
the lower bounds are the maximum of zero, or sum of the relevant margins 
minus the separators. 
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When the log-linear model associated with the released set of marginals 
is not decomposable, it is natural to ask ourselves whether we could reduce 
the computational effort needed to determine the tightest bounds by employ­
ing the same strategy used for decomposable graphs, i.e. decompositions of 
graphs by means of complete separators. An independence graph that is not 
necessarily decomposable, but still admits a proper decomposition, is called 
reducible (Leimer [21]). Once again, we point out the link with maximum like­
lihood estimation in log-linear models. We define a reducible log-linear model 
in [7] as one for which the corresponding MSSs are marginals that charac­
terize the components of a reducible independence graph. If we can calculate 
the maximum likelihood estimates for the log-linear models corresponding to 
every component of a reducible graph g, then we can easily derive explicit 
formulae for the maximum likelihood estimates in the reducible log-linear 
model with independence graph 9 [7]. 

Theorem 2 (Frechet Bounds for Reducible Models) Assume that the 
released set of marginals is the set of MSSs of a reducible log-linear model. 
Then the upper bounds for the cell entries in the initial table are the mini­
mum of upper bounds of relevant components, while the lower bounds are the 
maximum of zero, or sum of the lower bounds of relevant components minus 
the separators. 

3.2 Example 1: Risk Factors for Czech Auto Workers 

The data in Table 1 come from a prospective epidemiological study of 1841 
workers in a Czechoslovakian car factory, as part of an investigation of poten­
tial risk factors for coronary thrombosis (see Edwards and Havranek [10]). In 
left-hand panel of Table 1, A indicates whether or not the worker "smokes" , B 
corresponds to "strenuous mental work" , C corresponds to "strenuous phys­
ical work", D corresponds to "systolic blood pressure", E corresponds to 
"ratio of (3 and a: lipoproteins" and F represents "family anamnesis of coro­
nary heart disease" . Assume we are provided with three marginal tables [BF], 
[ABCE], and [ADE] of this 6-way table. These are the marginals correspond­
ing to a graphical model whose independence graph is given in Fig. 1, and 
this model fits the data well. 

Using the result from Theorem 1, we see that the upper bounds for the cell 
entries induced by the marginals [BF], [ABCE], and [ADE] are the minimum 
of the corresponding entries in the fixed marginals, while the lower bounds 
are the sum of the same entries minus the sum of the corresponding entries 
in the marginals associated with the separators of the independence graph, 
i.e., [B] and [AE]. We give these bounds in the right-hand panel of Table 1. 
There are three cell entries containing non-zero "small" counts, i.e. counts 
of "I" and "2" in Table 1. The corresponding bounds are [0,25]' [0,38] and 
[0,20]. Since the latter two of these differ, we see that the upper and lower 
bounds are therefore dependent not only on the fixed marginals, but also on 
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Table 1. Czech autoworkers data from [10]. The left-hand panel contains the 
cell counts and the right-hand panel contains the bounds given the margins [BF], 
[ABCE], and [ADE] 

B no yes B no yes 
F E D C A no yes no yes A no yes no yes 

neg < 3 < 140 no 44 40 112 67 [0,88] [0,62] [0,224] [0,117] 
yes 129145 12 23 [0,261] [0,246] [0,25] [0,38] 

~ 140 no 35 12 80 33 [0,88] [0,62] [0,224] [0,117] 
yes 109 67 7 9 [0,261] [0,151] [0,25] [0,38] 

~ 3 < 140 no 23 32 70 66 [0,58] [0,60] [0,170] [0,148] 
yes 50 80 7 13 [0,115] [0,173] [0,20] [0,36] 

~ 140 no 24 25 73 57 [0,58] [0,60] [0,170] [0,148] 
yes 51 63 7 16 [0,115] [0,173] [0,20] [0,36] 

pos < 3 < 140 no 5 7 21 9 [0,88] [0,62] [0,126] [0,117] 
yes 9 17 1 4 [0,134] [0,134] [0,25] [0,38] 

~ 140 no 4 3 11 8 [0,88] [0,62] [0,126] [0,117] 
yes 14 17 5 2 [0,134] [0,134] [0,25] [0,38] 

~ 3 < 140 no 7 3 14 14 [0,58] [0,60] [0,126] [0,126] 
yes 9 16 2 3 [0,115] [0,134] [0,20] [0,36] 

~ 140 no 4 ° 13 11 [0,58] [0,60] [0,126] [0,126] 
yes 5 14 4 4 [0,115] [0,134] [0,20] [0,36] 

the position they occupy in the cross-classification. Moreover, the bounds for 
the entry of "I" are wider than the bounds for one of the entries of "2". At 
any rate, all three of these pairs of bounds differ quite substantially and thus 
we might conclude that there is little chance of identifying the individuals in 
the small cells. 

F B E D 

c __ ----__ 
Fig. 1. Independence graph induced by the marginals [BF], [ABCE] and [ADE] 

Now we step back and look at an even less problematic release involving 
the margins: [BF], [BC], [BE], [AB], [AC), [AE] , [CE], [DE], [AD]. The in­
dependence graph associated with this set of marginals is the same graph in 
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Fig. 1 but the log-linear model whose MSSs correspond to those marginals 
is not graphical. Since the independence graph decomposes in three compo­
nents, [BF], [ABCE], and [ADE], and two separators, [B] and [AE], as we 
have seen, we can apply the result from Theorem 2. 

The first component, [BF], is assumed fixed; hence there is nothing to 
be done. The other two components are not fixed, however, and we need 
to compute upper and lower bounds for each of them. Using the algorithm 
presented in the next section, we calculated bounds for the cell entries in the 
marginal [ABCE] given the marginals [BCj, [BE],[AB], [AC], [AE], [CE] (see 
Table 2). We did the same for the marginal [ADE] given the marginals [AE], 
[DE], [AD] (see Table 3). 

Table 2. Marginal [ABCE] from Table 1 and bounds for this marginal given all 
2-way totals 

B no yes 
E C A no yes no yes 

< 3 no 88 62 224 117 
yes 261 246 25 38 

;:: 3 no 58 60 170148 
yes 115 173 20 36 

B no yes 
A no yes no yes 

[0,206] [0,167] [0,404] [0,312] 
[0,421] [30,463] [0,119] [0,119] 
[0,181] [0,167] [0,363] [0,339] 
[0,314] [0,344] [0,119] [0,119] 

Table 3. Marginal [AED] from Table 1 and bounds for this marginal given all 
2-way totals 

E D A no yes A no yes 
< 3 no 333312 [182,515] [130,463] 

yes 265 151 [83,416] [0,333] 
;:: 3 no 182227 [0,333] [76,409] 

yes 181190 [30,363] [8,341] 

Since we have upper and lower bounds for each of the components of a 
reducible graph, Theorem 2 allows us to piece together the bounds for the 
components [BF], [ABCE] and [ADE] to obtain sharp integer bounds for the 
original 6-way table - see Table 4. Note that while some of the lower bounds 
in Table 2 and Table 3 are non-zero, when we combine to produce the bounds 
in Table 4 the resulting lower bounds are all zero. 

We emphasize that Theorem 2 is a sound technique for replacing the orig­
inal problem, namely, computing bounds for a 6-way table, by two smaller 
ones, i.e., computing bounds for a 4-way and a 3-way table. The computa­
tional effort required for implementing and using Theorem 2 is minimal once 
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bounds for the components are available, and thus exploiting it in this fashion 
could lead to appreciable computational savings. 

Table 4. Bounds for Czech auto-workers data from Table 1 given the marginals 
~~,~q,~~,~~,~q,~~,~~,~~,~~ 

B no yes 
FED C A no yes no yes 

neg < 3 < 140 no [0,206] [0,167] [0,404] [0,312] 
yes [0,421] [0,463] [0,119] [0,119] 

;::: 140 no [0,206] [0,167] [0,404] [0,312] 
yes [0,416] [0,333] [0,119] [0,119] 

;::: 3 < 140 no [0,181] [0,167] [0,333] [0,339] 
yes [0,314] [0,344] [0,119] [0,119] 

;::: 140 no [0,181] [0,167] [0,363] [0,339] 
yes [0,314] [0,341] [0,119] [0,119] 

pos < 3 < 140 no [0,134] [0,134] [0,126] [0,126] 
yes [0,134] [0,134] [0,119] [0,119] 

;::: 140 no [0,134] [0,134] [0,126] [0,126] 
yes [0,134] [0,134] [0,119] [0,119] 

;::: 3 < 140 no [0,134] [0,134] [0,126] [0,126] 
yes [0,134] [0,134] [0,119] [0,119] 

;::: 140 no [0,134] [0,134] [0,126] [0,126] 
yes [0,134] [0,134] [0,119] [0,119] 

4 A General Bounds Algorithm 

In Section 3, we took advantage of the special structure of the conditional 
independencies "induced" among the variables cross-classified in a table of 
counts by the set of fixed marginals. However, if all (k - I)-way marginal 
tables are given, the corresponding independence graph is complete, hence 
there are no conditional independence relationships to exploit. Fienberg [12] 
noted that, if the table is dichotomous, the log-linear model of no kth-order 
interaction has only one degree of freedom and consequently the counts in 
any cell can be uniquely expressed as a function of one single fixed cell alone. 
By imposing the non-negativity constraints for every cell in our contingency 
table, we are then able to derive sharp upper and lower bounds. It turns out 
that dichotomous tables are the key to derive sharp bounds for a k-way table 
given an arbitrary set of fixed marginals. 

4.1 Terminology and Notation 

Let T denote the set of cells of all possible tables that could be formed by 
collapsing the original k-way table n if not only across variables, but also 
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across categories. The elements in T are essentially blocks formed by joining 
table entries in n. If the set of cell entries in n that define a "super-cell" 
h E T is included in the set of cells defining another "super-cell" t2 E T, 
we write tl -< t2' With this partial ordering, (T, -<) has a maximal element, 
namely the grand total of n and several minimal elements, i.e., the cell entries 
in the initial table n. The grand total of n is maximal because all the cells 
in n "contribute" to it. On the other hand, a cell entry in n is minimal in 
T since any block of cells in T is constructed from one single cell in n or by 
joining at least two other blocks. One can represent t as a hierarchy of cells 
induced by the ordering "-<", with the grand total at the top level and the 
cells in n at the bottom level of the hierarchy. 

Consider three blocks of cells h, t2, and h. If t2 can be formed by joining 
tl and t3, we write 

(2) 

The operator "EEl" is equivalent to joining two blocks of cells in T to form 
a third block. The blocks to be joined have to be composed from the same 
categories in (k - 1) dimensions and they are also required not to share any 
categories in the remaining dimension. If either of these conditions does not 
hold, their union is not going to be a block of cells in T. Denote by L(t) and 
U(t) the current upper and lower bounds for the "super-cell" t E T. Let 

L(T) := {L(t) : t E T} and U(T) := {U(t) : t E T}. (3) 

L(t) and U(t) are the bounds arrays we are trying to determine. Every t E T 
could have a value Vet) assigned to it. If t corresponds to an entry in a fixed 
marginal, we actually "know" the value Vet) of that entry, hence we set the 
current lower bound and the current upper bound of t to be the known value 
Vet). 

Let To be the set of cells in T for which the lower bound is currently 
equal to the upper bound. These are the cells that have a value assigned to 
them: 

Vet) = L(t) = U(t) {::} t E To. (4) 

When the iterative procedure described below starts, To will contain only the 
cells in the fixed marginals. For the remaining cells in T, we could set L(t) 
and U(t) to be the bounds Lo(t), Uo(t) induced by fixing the one-dimensional 
marginals of n . These bounds are looser than the bounds we are trying to cal­
culate since it is reasonable to assume that the one-dimensional marginals can 
be obtained by collapsing the marginals we consider to be fixed. In addition, 
the log-linear model induced by the one-dimensional marginals is decompos­
able, hence Lo(t) and Uo(t) can be easily calculated by employing Theorem 1. 
The intervals [L(t), U(t)], t E T, are the initial feasibility intervals for the it­
erative procedure we will describe below. 

As the algorithm progresses, the bounds for the cells in T are improved 
and more and more cells are added to To. To be more precise, "improving" 
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the bounds means decreasing the upper bounds and increasing the lower 
bounds. When the bounds associated with a cell t become equal, the cell is 
included in To and is assigned a value V(t) := L(t) = U(t). We are now able 
to state the bounds problem in a new equivalent form: 

"Find sharp integer bounds for the cells in T 
if the values of some cells To C T are fixed." 

4.2 The Generalized Shuttle Algorithm 

The fundamental idea behind the "shuttle" algorithm is that the upper and 
lower bounds for the cells in T are interlinked. Although Buzzigoli and 
Giusti [3) sketched this innovative idea for the 3-way table problem given 
the three 2-way marginals, they did not accurately identify and exploit the 
full hierarchical structure of the cells contained in the marginals of a fre­
quency count table n. The method we outline here builds on their approach 
and sequentially improves the bounds for all the cells we are interested in 
until no further adjustment can be made. 

As before, we assume that, for every cell t E T , we know a valid lower 
bound L(t) and a valid upper U(t). With these notations, the initial set of 
fixed cells is 

To := {t E T : L(t) = U(t)}. (5) 

For all the cells t in To, we assign a value V(t) := L(t) = U(t). We let 
Q = Q(T) denote the triplets of cells 

Q(T) := {(ti' t2, t3) E TxT x T : ti EfH3 = t2}, (6) 

which represent the cell dependencies we are trying to satisfy. We sequentially 
go through all these dependencies and update the upper and lower bounds 
in the following way. Consider a triplet (ti' t2, t3) E Q. We have tt -< t2 
and t3 -< t2' If all three cells have fixed values, i.e. ti,t2,t3 E To, we check 
whether we came across an inconsistency. The procedure stops if 

(7) 

Assume that t i , t3 E To and t2 f/. To. Then t2 can only take one value, 
namely V(ti) + V(t3)' If V(ti) + V(t3) f/. [L(t2), U(t2»), we encountered an 
inconsistency and exit the procedure. Otherwise we set 

(8) 

and include t2 in the set To of cells having a fixed value. Similarly, if ti, t2 E 
To and t3 f/. To, t3 can only be equal to V(t2) - V(ti)' If V(t2) - V(td f/. 
[L(t3)' U(t3») , we again discovered an inconsistency. If this is not true, we 
set 
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In the case when t2, t3 E To and tt (j. To, we proceed in an analogous 
manner. Now we examine the situation when at least two of the cells h, t2, t3 
do not have a fixed value. For each of the three cells not having a fixed value, 
we update its upper and lower bounds so that the new bounds satisfy the 
dependency tl EEl t3 = t2' Suppose tt (j. To. Then the updated bounds for tt 
will be 

U(tt) := min{U(tt}, U(t2) - L(t3)} and 

L(tt} := max{L(tt} , L(t2) - U(t3)}. 
(10) 

If ta (j. To , we update L(t3) and U(ta) in the same way. Finally, if t2 (j. To, 
we set 

U(t2) := min{U(t2)' U(tt} + U(t3)} and 

L(t2) := max{L(t2) , L(tt} + L(t3)}. 
(11) 

After updating the bounds of some cell t E T, we check whether the new 
upper bound is equal to the new lower bound. If this is true, i.e. L(t) = U(t), 
we include t in the list of cells having a fixed value: 

To := To U it}, (12) 

and set V(t) := L(t) = U(t). We continue going through all the dependencies 
in Q until the upper bounds no longer decrease, the lower bounds no longer 
increase and no new cells are added to To. The procedure will come to an 
end if and only if an inconsistency is detected or if the upper and lower 
bounds cannot be subsequently improved. Either one of these two events 
will eventually occur, hence the procedure we described stops after a finite 
number of steps. 

Unfortunately, the bounds we end up with are not necessarily sharp, ex­
cept in: (i) the decomposable case, and (ii) the case of a dichotomous k-way 
table with all (k-l)-way marginals fixed. To be more explicit, if the marginals 
we fix are the MSSs of a decomposable log-linear model, the bounds calculated 
by the generalized shuttle algorithm will coincide with the bounds obtained 
by making use of Theorem 1, whereas in case (ii), the generalized shuttle 
algorithm will successfully determine the best integer bounds by expressing 
any cell as a function of any other cell, and then imposing the non-negativity 
conditions on these constraints. 

For the general k-way bounds problem with an arbitrary set of fixed 
marginals, we need to "correct" the bounds by constructing feasible integer 
tables for which those bounds are actually attained. We explore the space Q 
by repeatedly assigning values to the cells in the original table. We do not 
perform an exhaustive search of Q since we immediately adjust the upper 
and lower bounds for the remaining cells in T once we pick a value for a cell 
entry, and consequently the values we attempt to assign to a particular cell 
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are chosen from the current feasibility interval associated with that entry. 
Additional technical details can be found in Dobra [5]. 

We note that each bound can be checked independently of any other 
bound, hence adjusting the bounds can be done in parallel on a multi­
processor machine. The computation time could be further decreased by using 
the following artifice: once a feasible integer table containing a count equal 
to a bound for some cell entry is constructed, we check to see whether other 
upper or lower bounds can also be found in that table. This way, we will 
not have to attempt to construct another table for these bounds. This simple 
trick proves to be very efficient in the case of large sparse contingency tables. 

4.3 Example 1 Revisited 

We have already applied this general algorithm to the separable components 
of the 6-way Czech auto-worker data in Table 1, to get sharp bounds for a 
separable table. Here we note what happens in the other special case when 
no "correction" is required for feasible tables: when all 5-way margins are re­
leased. The space of tables Q in this case contains only two integer tables: the 
original table n itself and a second table whose entries are found by adding 
or subtracting one unit from the corresponding entries in n. Consequently, 
the feasibility intervals [L(t), U(t)] for all the cells in n have length one. This 
means that releasing all 5-way margins could well compromise the confiden­
tiality of the individuals corresponding to the entries containing counts of 
"I" and "2" and perhaps even the entries containing the count of "3". 

4.4 Example 2: The National Long Term Care Survey 

Our second example involves a 216 contingency table n extracted from the 
"analytic" data file for National Long-Term Care Survey created by the Cen­
ter of Demographic Studies at Duke University. Each dimension corresponds 
to a measure of disability defined by an activity of daily leaving, and the 
table contains information cross-classifying individuals aged 65 and above. 
This extract involves data pooled across four waves of a longitudinal survey, 
and it involves sample as opposed to population data. We henceforth act as 
if these were population data. For a detailed description of this extract see 
[11]. 

We have applied the generalized shuttle algorithm of Section 4.2 to com­
pute sharp upper and lower bounds for the entries in this table corresponding 
to a number of different sets of fixed marginals. Here we describe one com­
plex calculation for the set involving three fixed 15-way marginals obtained 
by collapsing n across the variables "managing money", "taking medicine" 
and "telephoning". 

Of the 216 = 65,536 cells in the table, 62,384 contain zero entries. Since 
the target table is so sparse, releasing three marginals of dimension fifteen 
will lead to the exact disclosure of most of the cell entries. To be more exact, 
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only 128 cells have the upper bounds strictly bigger than the lower bounds! 
The difference between the upper and lower bounds is equal to 1 for 96 cells, 
2 for 16 cells, 6 for 8 cells, and 10 for 8 cells. 

We take a closer look to the bounds associated with "small" counts of "I" 
or "2". A number of 1,729 cells contain a count of "1". From these, 1,698 cells 
have the upper bounds equal to the lower bounds. The difference between 
the bounds is 1 for 28 of the remaining counts of "1", is 2 for two other cells 
and is equal to 6 for only one entry. As for the 499 cells with a count of "2" , 
the difference between the bounds is zero for 485 cells, is 1 for 10 cells and 
is 2 for 4 other cells. We need to emphasize that despite the tight bounds in 
this example, there may not be a disclosure concern for these data because 
they come from a sample and have been pooled across waves. 

The generalized shuttle algorithm converged in approximately twenty it­
erations to the "correct" sharp bounds and it took less than six hours to com­
plete on a single-processor machine at the Department of Statistics, Carnegie 
Mellon University. We re-checked these bounds by determining the feasible 
integer tables for which they are attained on the Terascale Computing System 
at the Pittsburgh Supercomputing Center. We used a parallel implementa­
tion of the shuttle algorithm and the computations took almost one hour to 
complete on fifty-six processors. We are currently exploring ways to speed 
up the calculations as well as approximations that will allow us to apply our 
results to larger tables. 

5 Conclusions 

In this paper we have explained how log-linear model statistical theory can 
help identify situations when explicit formulas exist for computing the best 
integer bounds on the entries of a cross-classification of arbitrary dimension 
given a set of marginal totals (the decomposable case). When such formulas 
do not exist, we illustrated how to derive similar formulas that help to re­
duce the computational effort (the reducible case). In addition, we explained 
how log-linear models provide the basis for correcting the shuttle algorithm 
originally proposed by Buzzigoli and Giusti, and transform it into a general 
procedure for computing sharp integer bounds given any set of marginals. 
The generalized shuttle algorithm described here simultaneously computes 
sharp integer bounds for all the cells by fully exploiting the structure of the 
bounds problem for multi-way contingency tables and, in addition, it can 
update the bounds, as more marginals are being released. 
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Abstract. This paper is concerned with identification and estimation of econo­
metric models when the sampling process produces missing observations. Missing 
observations occur frequently in applications due, for example, to non-response 
to questions on a surveyor attrition from a panel. Missing observations usually 
cause population parameters of interest in applications to be unidentified except 
under untestable and often controversial assumptions. However, it is often possi­
ble to find identified, informative, bounds on these parameters that do not rely 
on untestable assumptions about the process through which data become miss­
ing. The bounds contain all logically possible values of the population parameters. 
Moreover, every parameter value within the bounds is consistent with some model 
of the process that generates missing observations. The bounds can be estimated 
consistently from data and often enable substantively important conclusions to be 
drawn without making untestable assumptions about missing observations. There 
are also situations in which the bounds are very wide. This is an indication that 
the data contain little information about the population parameters of interest and 
that substantive conclusions rely mainly on identifying assumptions that cannot be 
tested. 

1 Introduction 

Inference from incomplete data is a common problem in empirical research. 
For example, attrition from a panel and non-response to one or more questions 
on a survey are causes of missing observations and, therefore, incomplete 
data. Incomplete data also arise when responses specify only intervals that 
contain the variable of interest. For example, a survey may ask which of 
several intervals contains the respondent's income. In that case, the exact 
value of a respondent's income is missing. 

Whatever the specific cause of incomplete data, the generic consequence is 
that the population parameters of interest in an application are not identified 
unless one makes untestable and frequently controversial assumptions about 
the distribution of missing data. For example, identification is possible if 
the missing and non-missing data have the same probability distribution 

* The research of Joel L. Horowitz was supported in part by NSF grant SBR-
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** The research of Charles F. Manski was supported in part by NSF grant SES-
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or the same distribution conditional on some observed covariates. However, 
the hypothesis that missing and non-missing data have the same probability 
distribution cannot be tested and may not be plausible in a given application. 

Although missing data make point identification problematic, it is often 
possible to identify informative bounds on population parameters without 
making untestable assumptions about missing data. The bounds on a pa­
rameter contain all logically possible values of that parameter (that is, all 
values that are consistent with the observed data and some process for gen­
erating the missing data), and they exhaust the information on the parameter 
that is available from the data. This paper describes completed and ongoing 
research on obtaining bounds for population parameters in the presence of 
missing data. 

The analysis in this paper is deliberately conservative. We focus mainly 
on "worst case" scenarios in which the researcher has no prior information 
about the parameter of interest or the process that generates missing data. 
Our worst case approach contrasts with the "best case" approach that dom­
inates the literature on inference from incomplete data. For example, it is 
a common practice to assume that data are missing completely at random 
(MCAR) and to perform analyses using only the non-missing data (e.g., sur­
vey responses in which all relevant questions were answered). Conventional 
methods for imputing missing data assume that missingness is random con­
ditional on specified covariates. On occasion, a model of non-random missing 
data may be specified. Either way, the identification problem is solved, and 
efficiency of estimation becomes the central matter of concern to statisticians. 
We have emphasized in [2], [3], [5], and elsewhere that it is not sufficient for 
empirical researchers to know the inferences that can be made if specified 
assumptions hold. It is also important to be able to characterize the infer­
ences that may be made without imposing these assumptions. An especially 
appealing feature of conservative analysis is that it enables establishment of 
a domain of consensus among researchers who may hold disparate beliefs 
about what assumptions are appropriate. A further important feature of our 
approach is that it provides an indication of the relative importance of the 
data and untestable assumptions in uniquely identifying the value of a pa­
rameter (point identification). If the identified bounds are narrow, then the 
data are highly informative about the parameter. However, if the bounds 
are wide, then the data contain little information about the parameter. Point 
identification must then rely heavily on untestable assumptions, and different 
assumptions can lead to very different identified values of the parameter. 

Section 2 of this paper describes non parametric identification of mean 
regressions when outcome or covariate data are missing. This section focuses 
on special cases that are important in applications and in which analytic 
formulae for bounds can be obtained. Section 3 describes ongoing research on 
the analysis of parameters that are general statistical functionals. In general, 
analytic expressions for bounds on such parameters are not available, and we 



Identification and Estimation with Incomplete Data 19 

describe numerical methods. Section 4 presents an empirical example, and 
Sect. 5 presents concluding comments. 

To keep attention focused on the core problem of identification created by 
incomplete data, this paper does not dwell on the problem of estimation from 
finite samples. Most of the discussion supposes that the researcher knows the 
values of population features that are identified by the sampling process. In 
practice, bounds can usually be estimated consistently by replacing identified 
population features with sample analogs in analytic expressions for bounds 
or in numerical procedures for computing bounds. 

2 Regression with Missing Outcome or Covariate Data 

In this section, we consider a population whose members are characterized 
by the vector W = (Y, X) , where Y is a scalar outcome variable and X 
is a vector of covariates. The objective is to learn about the conditional 
expectation E(YIX E A), where A is any measurable subset of the support 
of X. A random sample is drawn, but some data on (Y, X) are missing. 
We assume that Y E [0,1]. Boundedness of Y is necessary if worst-case 
inference of E(YIX E A) is to yield informative conclusions in the presence 
of missing data. Given boundedness of Y, the restriction to the unit interval 
is a normalization that entails no loss of generality. 

We begin by considering three extreme cases: only outcomes are missing 
(Section 2.1), outcomes and covariates are jointly missing (Section 2.2), and 
only covariates are missing (Section 2.3). Section 2.4 discusses more general 
patterns of missing data. An empirical illustration is given in Section 4. 

2.1 Missing Outcome Data 

Manski [4] analyzed the case in which X is always observed but data on Y 
may be missing. Let Z = 1 if (Y, X) is observed, and Z = ° if only X is 
observed. Then 

E(YIX E A) = E(YIX E A, Z = l)P(Z = 11X E A) (1) 

+ E(YIX E A, Z = O)P(Z = 0IX E A) 

The quantities E(YIX E A, Z = 1), P(Z = 11X E A), and P(Z = 0IX E A) 
are identified by the sampling process, but E(YIX E A, Z = 0) is not. The last 
quantity can have any value in [0, 1]. Therefore, we obtain the identification 
region 

E(YIX E A, Z = l)P(Z = 11X E A) (2) 

~ E(YIX E A) 

~ E(YIX E A)P(Z = 11X E A) + P(Z = 0IX E A). 
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These bounds are sharp. That is, they contain every value of E(YIX E A) 
that is consistent with the identified quantities (E(YIX E A, Z = 1), P(Z = 
11X E A), and P(Z = 0IX E A» and some value of the unidentified quantity 
E(YIX E A, Z = O).Moreover, every value of E(YIX E A) that is within 
the bounds is consistent with the values of the identified quantities for some 
value of E(YIX E A, Z = 0). Thus, the bounds exhaust the information 
about E(YIX E A) that is available from the data. The width of the interval 
containing E(YIX E A) increases from 0 to 1 as the probability of a non­
missing observation, P(Z = 11X E A) decreases from 1 to o. 

2.2 Jointly Missing Outcome and Covariate Data 

Horowitz and Manski [2] analyzed the case in which some realizations of 
(Y, X) are entirely missing and the rest are fully observed. Let Z = 1 if 
(Y, X) is observed and Z = 0 otherwise. It follows from Bayes' theorem that 

E(YIX E A) (3) 
7r(A, l)P(Z = 1) 

= E(YIX E A, Z = 1) 7r(A, l)P(Z = 1) + 7r(A, O)P(Z = 0) 

7r(A, O)P(Z = 0) 
+ E(YIX E A, Z = 0) 7r(A, l)P(Z = 1) + 7r(A, O)P(Z = 0) 

where 7r(A,j) = P(X E AIZ = j). The quantities E(YIX E A, Z = 1) , 
7r(A, 1), and P(Z = j) are identified by the sampling process, but E(YIX E 
A, Z = 0) and 7r(A,O) are not. The identification bounds for E(YIX E A) 
are obtained by maximizing and minimizing the right-hand side of (3) over 
all values of E(YIX E A, Z = 0) E [0,1] and 7r(A, 0) E [0,1]. The result is 

E(YIX E A,Z = l)Pe(Z = 11X E A) (4) 

where 

~ E(YIX E A) 

~ E(YIX E A, Z = l)Pe(Z = 11X E A) + Pe(Z = 11X E A), 

P(A, l)P(Z = 1) 
Pe(Z = 11X E A) = 7r(A, l)7r(Z = 1) + P(Z = 0) 

is the effective response probability, and Pe(Z = 0IX E A) = 1 - Pe(Z = 
11X E A). 

The bounds (4) have the same form as (2), except the identified effective 
response probability P e(Z = 11X E A) replaces the unidentified probability 
P(Z = 11X E A). The width of the identification region increases from 0 to 
1 as either 7r(A, 1) or P(Z = 1) decreases from 1 to O. 
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2.3 Missing Covariate Data 

Horowitz and Manski [2] also analyzed the case in which Y is always observed 
but data on X may be missing. Now Z = 1 if (Y, X) is observed, and Z = 0 
if only Y is observed. This case is more complex than those discussed so far. 

To derive the identification region, reconsider the analysis of jointly miss­
ing outcome and covariate data in Sect.2.2. There the available data con­
strained the right-hand side of (3) by identifying E(YIX E A, Z = 1), 
lI'(A, 1), and P(Z = j). If only covariate data are missing, the data also iden­
tify P(YIZ = 0). Knowledge of this probability jointly constrains E(YIX E 
A, Z = 0) and lI'(A, 0) through the equation 

P(YIZ = 0) = P(YIX E A,Z = O)lI'(A,O)+P(YIX E A,z = 0)11'(.1,0), (5) 

where A denotes the complement of A. To determine the implications of (5), 
let p E [0,1], and suppose that lI'(A,O) = p. Let 1J! denote the set of all 
possible distributions of Y. Then the values of P(YIX E A, Z = 0) that are 
consistent with (5) are 

1J!(p) = 1J! n ([P(YIZ = 0) - (1 - p)1/J]/p : 1/J E 1J!} . (6) 

The implied set of feasible values for E(YIX E A, Z = 0) is 

E(YIX E A,Z = 0) E [90(P),91(P)], (7) 

where 

90(P) = inf [J yd1/J : 1/J E 1J!(P)] 

and 

91(P) = sup [J yd1/J : 1/J E 1J!(P)] . 

It can be shown that 90 (p) and 91 (p) are the means of two truncated versions 
of P(YIZ = 0), specifically the distributions formed from the left and right 
tails containing mass p (see [1]). Combining (3) and (7) yields 

pP(Z = 1) 
E(YIX E A, Z = 1) pP(Z = 1) + (1 _ p)P(Z = 0) (8) 

pP(Z = 1) 
+ 90(P) pP(Z = 1) + (1 - p)P(Z = 0) 

~ E(YIX E A) 
pP(Z = 1) 

~ E(YIX E A, Z = 1) pP(Z = 1) + (1 _ p)P(Z = 0) 

pP(Z = 1) 
+ 91(p) pP(Z = 1) + (1- p)P(Z = 0) 
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If it were known that 7r(A,O) = p, then the right-hand side of (8) would give 
the identification bounds for E(YIX E A). However, the sampling process 
places no restrictions on 7r(A,O). Therefore, the identification bounds for 
E(YIX E A) are formed by the union over P E [0,1] of the intervals on the 
right-hand side of (8). 

In general, the resulting region does not have a simple analytic form com­
parable to those given in Sects. 2.1 and 2.2. However, one special case yields 
an exceedingly simple and surprising result. Suppose that P(YIZ = 0) is 
degenerate with all mass at E(YIX E A, Z = 1). Then 9o(P) = 91 (p) = 
E(YIX E A, Z = 1) for all P E [0,1]. Therefore, (8) reduces to E(YIX E 
A) = E(YIX E A, Z = 1). Thus, E(YIX E A) is identified even if X is never 
observed. 

2.4 General Patterns of Missing Data 

Analytic characterization of identification bounds for E(YIX E A) is pos­
sible only in special cases when some sample realizations may have missing 
outcome data, others may have missing covariate data, and still others have 
jointly missing outcomes and covariates. The general problem is discussed in 
Sect. 3. Here, we treat a special case where analytic results are available. 

Let Y be a binary outcome variable so that E(YIX E A) = P(YIX E A). 
Suppose that covariate data are either entirely observed or entirely missing. 
Thus, if X is a vector, then either all of its components are observed or all 
are missing. Let Zy and Zx be indicators of missing data. Y is observed if 
Zy = 1 and missing if Zy = 0. X is observed if Zx = 1 and missing if Zx = 0. 
Define n(A) = E(YIX E A). For j, k = 0,1, define Ejk = E(YIX E A, Zx = 
j, Zy = k), Ajk = E(YIZx = j, Zy = k), Gjk = P(Zx = j, Zy = klX E A), 
Qjk = P(X E AIZx = j, Zy = k), and Pjk = P(Zx = j, Zy = k). Then 

n(A) = L L EjkGjk. 
j k 

Application of Bayes' theorem to Gjk in (9) gives 

n(A) = LLEjkQjkPjk/LLQjkPjk. 
j k j k 

(9) 

(10) 

For j,k E {0,1}, the sampling process identifies Ell, Q1k, Pjk, and AOl • It 
does not identify QOk, Ejo , or EOl . These quantities can have any values in 
[0,1]. However, 

(11) 

where B = E(YIX 'I x, Zx = 0, Zy = 1). B is not identified and can have 
any value in [0,1]. Therefore, it follows from (11) that 

[ A01 - (1 - Qod] . ( AOl ) 
max 0, QOl :::; E01 :::; mm 1, QOl . (12) 
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These bounds are sharp (see [1], Corollary 1.2). Therefore, sharp bounds on 
n(A) can be obtained by minimizing and maximizing the right-hand side 
of (10) with respect to the unidentified quantities subject to 0 :::; QOk :::; 1, 
o :::; Ejo :::; 1 (j, k = 0,1), and (12). To state the result, define 

1 

D = L Q1kPlk + POO + (1 - A01)P01, 
k=O 

1 

R = L Q1kPlk + POO + AOlP01, 
k=O 

S = E11 Q11P11 + QlOPlO + POO + AOlP01, L = E11 Q11P11ID, and U = SIR. 
Then as is shown in [3], sharp bounds on n(x) are 

L:::; n(A) :::; U. (13) 

A necessary and sufficient condition for the bounds in (13) to be informa­
tive (that is, to satisfy U - L < 1) is Q11 > 0 and P11 > O. In other words, 
the bounds are informative if the probability of a complete observation with 
X E A exceeds zero. 

Horowitz and Manski [3] also find sharp identification bounds for the 
contrast n(B) - n(A) = E(YIX E B) - E(YIX E A), where B and A are 
any two disjoint subsets of the support of X. The analysis is subtle because a 
missing covariate realization cannot be in A and B simultaneously. Therefore, 
the identification region for n(B) - n(A) is a proper subset of the region 
formed by considering all logically possible values of n(B) and n(A). To 
state the result, let EBik and QBik be the quantities obtained from Ejk and 
Qjk by replacing A with B. Define a = EB11 QB11P11 + QB10PlO + A01POl, 
b = QB11Pll + QB10PlO + Ao 1 POl , d = EllQllPll, 1 = QllP11 + QlOPlO + 
(1 - AlO)POl, 

and 

G(z) = Poo(b - a) _ Pood , 
(b + POOZ)2 [1 + Poo(1- z)j2 

{ 
1 if G(O) > 0 and G(1) > 0, 

z* = 0 if G(O) < 0 and G(1) < 0, 
the solution in [0,1] to G(z) = 0, otherwise. 

Then sharp bounds on n(B) - n(A) are are 

LBA :::; n(B) - n(A) :::; UBA, (14) 

a + Pooz* d 
where UBA = b 1 ( )' LBA = -UAB, and UAB is ob-+ Pooz* + Poo 1 - z* 
tained from U BA by exchanging B and A (see [3]). 

Tighter bounds can be obtained if X is missing completely at random 
(MCAR). Although the hypothesis that X is MCAR cannot be tested, there 
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are applications in which enough is known about the causes of missing obser­
vations of X to make MCAR a reasonable assumption. See [3) for an example. 
Formally, X is MCAR if P(Z", = jlY = e, X E A, Zy = k) = P(Z = j) for 
all subsets A of the support of X and all j, k, e = 0,1. Define H = P(Zy = 
11X E A, Z", = 1), Lm = EllH, and Um = 1-H +Lm. Horowitz and Manski 
([3)) show that if X is MCAR, then sharp bounds on n(A) are 

(15) 

The MCAR condition can also be used to obtain bounds on n(B) - n(A) 
that are tighter than those given in the previous paragraph. To state these, 
let HB be the quantity that is obtained from H by replacing A with B. Define 
UBAm = 1 - (1 - EBll)HB - EllH and LABm = -UABm, where UABm is 
obtained from UBAm by exchanging A and B. Horowitz and Manski ([3)) 
show that if X is MCAR, then sharp bounds on n(B) - n(A) are 

(16) 

It is not difficult to show that the bounds in (15) and (16) are informative 
even when B and A are sets of measure zero. In contrast, the bounds in (13) 
and (14), which do not assume that X is MCAR, are uninformative when B 
and A are sets of measure zero. That is, the lower and upper bounds in (13) 
are 0 and 1, and the lower and upper bounds in (14) are -1 and 1 when B 
and A are sets of measure zero. 

3 Identification Bounds on General Statistical 
Functionals 

Most population parameters of interest in applications can be expressed as 
statistical functionals. Specifically, let F be the cumulative distribution func­
tion (CDF) of a random variable X in the sampled population. Then a pa­
rameter 0 typically can be written in the form 0 = G(F) for some known 
functional G. The problem is to infer the scalar quantity h( 0), where h is a 
known function. For example, if 0 is a vector, then h(O) might be one of its 
components. 

This framework encompasses a large class of estimation problems. For 
example, unconditional and conditional means and medians can be written 
as statistical functionals. The same is true for parameters that are identified 
by the solutions to extremum problems. Other familiar examples are the best 
linear predictor (BLP) of the conditional mean of Y and the "slope" coeffi­
cients of a binary logit or probit model. To illustrate, the BLP of E(YIX = x) 
is xO, where 

0= (EX'X)-IEX'Y = (I x'XdFy",) -1/ (I x'YdFy",) , (17) 
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where X is a row vector of explanatory variables and Fyx is the joint CDF 
of (Y,X). In a binary logit model, P(Y = 11X = x) = exp(xB)/[l+exp(xB)), 
and it is not difficult to show that 

B = (EX'X)-I{EX'log[P(Y = 1IX)/P(Y = OIX)]} 

= (/ x'XdFyx ) -1/ / {x'log[P(Y = 11X = x)/P(Y = 0IX = x)]}dFyx. 

When estimating statistical functionals, empirical researchers routinely 
report estimates based only on sample realizations that are completely ob­
served. This practice is justified if the same population probability distribu­
tion generates the realizations that are completely and incompletely observed. 
Otherwise, it is usually not justified and can produce seriously misleading re­
sults. To illustrate, consider the BLP of E(YIX = x). Let Z = 1 if (Y, X) is 
completely observed and Z = 0 otherwise. Let Fyxlz denote the CDF of (Y, X) 
conditional on Z = 1. Then standard practice is to estimate xBe instead of 
xB, where 

Be = (/ x' XdFYXI Z ) -1 / (/ X' YdFYXl z) . 

Except in special cases, Be :f; B unless Fyx = Fyxlz almost surely, in which 
case observations are missing completely at random. It is important to know 
what can be learned about a parameter of interest when the researcher has 
no prior information about the distribution of the missing data or the process 
that causes data to be missing. This motivates the research that is described 
in the remainder of this section. 

Let V = (Y, X) be a random vector. Typically, Y is a scalar dependent 
variable and X E lRd is a vector of explanatory variables, but this distinction 
is not necessary for the general formulation that is presented in this section. 
We assume that B is a continuous functional of the CDF of V and that V is 
a discrete random variable with support {Vi: i = 1, ... , f}. The assumption 
that V is discrete entails no significant loss of generality, because the CDF 
of a continuously distributed random variable can be approximated with 
arbitrary accuracy by a discrete CDF. Let Z (1 ::; Z ::; zmax) be an integer­
valued random variable that indicates the state of missingness of V. Define 
Z = 1 if all components of V are observed and Z = Zmax if none are observed. 
Intermediate values of Z indicate combinations of components of V that are 
observed and missing. For example Z = 2 might indicate that all components 
of V but the last are observed. Also define 7rz = P(Z = z) and Pzi = pev = 
vilZ = z). The sampling process identifies 7rz for all Z E (1, ... , zmax) and Pli 
for all i = 1, ... , f. The remaining Pzi's are not identified. However, there are 
restrictions on the values of the unidentified PZi'S. 

To obtain these, define Sz to be the support of the components of V that 
are observed (non-missing) when Z = z. Suppose that there are Kz distinct 
points in Sz. Let qzk. denote the marginal probability of point kz E Sz 
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conditional on Z = z. These marginal probabilities are identified by the 
sampling process. When Z = z, write Vi E kz if the non-missing components 
of V correspond to the point kz E Sz. Then the following relations hold: 

L:: Pzi = qzk. 
i:lI. Ek. 

J 

L::Pzi = 1 
i=l 

Pzi ~ 0 

(Z = 2, ... , Zmax - 1; kz = 1, ... , K z) (18a) 

(Z = 2, ... ,zmax) (18b) 

(Z = 2, ... , Zmax; i = 1, ... , I) (18c) 

In addition, the probability mass function corresponding to F can be 
written in the form 

Zmax 

P(V = Vi) = L:: 7rzpzi· 
z=l 

Since the probability mass function determines F uniquely, B can be written 
in the form 

(
zmax Zmax zmax) 

B = 9 ~ 7rzpzl, ~ 7rzpz2,···, ~ 7rzpzJ . 

Therefore, h( B) has the form 

h(B) = h [9 (~7rZPZl' ~ 7rzpz2,···, ~ 7rZPZJ)]. 
z=l z=l z=l 

The identification problem is now clear: h( B) depends on probabilities 
Pzi(Z ~ 2) that are not identified by the sampling process. The identified 
sharp bounds on h( B) are the maximum and minimum values of h( B) that 
are consistent with the constraints (18a) - (18c). Thus, the bounds are the 
optimal solutions to 

(NLP) minimize (maximize): 
p •• :z~2;i=l •... ,I 

h(B) = h [9 (~ 7rzpzl, ~ 7rzpz2,···, ~ 7rZPZJ) ] 

subject to: L:: Pzi = qzk. (Z = 2, ... , Zmax - 1; kz = 1, ... , K z) 
i:II.Ek. 

J 

L::Pzi = 1 (Z = 2, ... , zmax) 

i=l 

Pzi ~ 0 (Z = 2, ... ,zmax;i = 1, ... ,1) 
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(NLP) is a mathematical programming problem with linear constraints 
and a nonlinear objective function. It can be solved analytically in special 
cases such as those described in Sect. 2. In general, however, analytic solution 
is not possible and numerical methods must be used. The difficulty of solving 
(NLP) numerically depends on the details of the objective function. This is 
an area of ongoing research. Section 4 presents an empirical example based 
on solving (NLP). 

Before presenting the example, we note that any information about the 
distribution of missing data or the process through which data become miss­
ing can be incorporated into (NLP) by adding constraints. For example, sup­
pose that V can be partitioned (Va, Vb) and that Vb is MCAR. Let Za = 1 if 
Va is observed and Za = 0 otherwise. Let Zb = 1 if Vb is observed and Zb = 0 
otherwise. Define Z = (Za, Zb). The assumption that Vb is MCAR implies 
that 

P(V = lIilZa = Za, Zb = Zb) = P(V = lIilZa = za) 

for Za, Zb = 0 or 1. This is equivalent to 

(M) Pzi = rr,p,i (i = 1, ... , Ii A = 0,1). 
'E{z:za=A} 

Therefore, the assumption that Vb is MCAR can be incorporated in (NLP) 
by adding constraint (M). 

4 An Empirical Example 

This section presents an empirical example that illustrates the ideas devel­
oped in Sects. 2 - 3. Undercover agents of the U.S. Drug Enforcement Ad­
ministration and the Metropolitan Police of the District of Columbia buy 
cocaine to use as evidence in criminal investigations. This section presents 
an example in which the methods described in Sect. 3 are used to compute 
bounds on the BLP of the mean of the logarithm of the cost of cocaine con­
ditional on the logarithm of the quantity purchased. Specifically, bounds are 
found on the parameter (it in the model 

logC = ()o + (h logQ + U, 

where C is cost in dollars, Q is quantity in grams, and U is an unobserved 
random variable. The population values of (}o and (}l minimize E(log C - (}o -

(}1IogQ)2. 
The data are records of purchases of cocaine powder in 1986. There are 

409 records but only 321 are complete. The pattern of missingness is shown 
in Tab. 1. Table 2 shows bounds on (}l that are computed (a) without making 
any assumptions about missing observations, (b) under the assumption that 
logQ is MCAR, and (c) under the assumption that logC and logQ are both 
MCAR. We have no reason for believing that either logC or logQ is MCAR, 
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but we present bounds under these assumptions to illustrate their effects on 
the estimates. As expected, the bounds are widest when no assumptions are 
made about the missing data and narrower when log Q is assumed to be 
MCAR. When log C and log Q are both assumed to be MCAR, (h is point 
identified. Even under no assumptions about missingness, it is clear that 
(h < 1. Thus, the cost per unit of cocaine decreases as the quantity purchased 
increases. In other words, there is quantity discounting in the market for 
cocaine. This is a substantively important finding that is consistent with the 
results of many other studies of markets for illegal drugs. The result shows 
that the procedures of Sect. 3 can be used to obtain substantively important 
results without making untestable assumptions about missing data. 

5 Conclusions 

Missing or incomplete data cause population quantities of interest to be 
unidentified unless untestable assumptions are made about the probability 
distribution of the missing data. This paper has argued that sharp, infor­
mative bounds on population parameters are often available without making 
untestable assumptions about missingness. The bounds exhaust the informa­
tion that is available from the data. In some cases, they can be calculated 
analytically. More generally, the bounds are solutions to nonlinear mathemat­
ical programming problems and must be computed numerically. This paper 
has shown that the computations are tractable in some important leading 
cases, but further research is necessary to develop a complete understanding 
of the computational issues that are involved in solving the general mathe­
matical programming problem. An example based on real data has illustrated 
the ability of the bounding procedure to provide substantively useful results 
without making untestable assumptions about missing data. 

Number 
Percent 

Table 1. Pattern of missingness in the cocaine data 

Complete 
records 

321 
78 

Missing only 
cost 

35 
9 

Missing only 
quantity 

43 
11 

Missing cost 
and quantity 

10 
2 
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Table 2. Bounds on 81 in cocaine example 

Assumption about missingness Lower Bound Upper Bound 

None 

Quantity is MCAR 

Cost and Quantity are MCAR 
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Abstract. The main goal of this note is to introduce the notion of collection 
dependent "same context words". Two (or more) words are the "same context 
words" if they occur in the same (or similar) context across a given text collection. 
Each word w in the collection is associated with a profile pew). The profile pew) 
is the set of words occurring in sentences that contain w. We introduce a distance 
function in the set profiles, and use it to cluster words. Words contained in the 
same cluster are "same context words". We select "same context words" for several 
text collections, and briefly discuss further possible applications of the introduced 
concepts to a number of information retrieval related problems. 

1 Introduction 

A common form of text processing in many information retrieval systems 
is based on analysis of word occurrences across a document collection. The 
number of words used by the system defines the dimension of a vector space 
in which the analysis is carried out. Reduction of the dimension may lead to 
significant savings of computer resources and processing time. At the same 
time the savings may dramatically degrade the quality of retrieval. 

Stemming is on of the best known general methods to reduce the number 
of collection unique words. While a number of efficient stemming algorithms 
are already available they are not specifically designed to conflate words hav­
ing similar meanings. This, in turn, may lead to occasional retrieval failures 
(see e.g. [20]). Latent Semantic Indexing (see e.g. [5], [9] [13]) is another 
noticeable dimension reduction technique based on linear algebra tools. We 
believe that the "same context words" analysis presented in the paper (along 
with stop list removal and stemming) should be used for the initial vector 
space model construction. This construction should precede possible follow­
ing transformations of the vector space. For this reason we do not discuss 
LSI in the paper. 

Rather than consider general-purpose language tools the paper introduces 
corpus based measure of similarity between words (for detailed motivation of 
text dependent approaches in information retrieval we refer to e.g. [20]). Our 
departure point is the definition (attributed to Leibniz): two expressions are 
synonymous if the substitution of one for the other never changes the truth 
value of a sentence in which the substitution is made. Similar recent claims 

* This research was partially supported by CyberTavern.TV LLC 
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"you can begin to know the meaning of a word (or term) by the company it 
keeps" and "words or terms that occur in 'the same context' are 'equivalent'" 
(see [11]), and "the assumption is that words with similar meanings will occur 
with similar neighbors if enough text material is available" (see [18]) provide 
an additional motivation for this line of research. 

We argue that in large text collections words with similar meanings could 
be found in similar contexts. The argument, if true, would imply that words 
that occur in sentences together with a word w may provide valuable infor­
mation concerning w. We define a profile P( w) of a word w as the set of words 
that occur in sentences containing w (for details see Section 2). We introduce 
a distance function in the set of profiles so that the similarity between two 
words Wl and W2 is measured by the distance between the corresponding 
profiles P(wd, and P(W2)' We use the similarity measure between words to 
partition corpus words into clusters. Words in the same cluster are "same 
contexts words." 

"Same context words" w' and W" do not have to occur in the same sen­
tence, our experiments show that, for example, the pairs {wonder, miracle}, 
and {fight, battle} are same contexts words for "A Connecticut Yankee in 
King Arthur's Court" by Mark Twain. Same contexts words should not be 
synonyms. The pairs {mean, kind}, or {shield, horse} are also "same contexts 
words" for the same text. "Same context words" , in general, do not constitute 
association rules (see [1]). 

The paper is organized as follows. Definitions and methodology are pre­
sented in Section 2. Section 3 contains summary of experiments with four 
different text collections. A partial list of potential applications is presented 
in Section 4. Brief conclusions are given in Section 5. 

2 Profiles 

Following Kowalski [14] we apply the following pre-processing operations to 
create a searchable data structure from a text collection T: 

1. stop list words removal (the stop list is available from 
ftp://ftp.cs.comell.edu/pub/smart/english.stop), 

2. punctuation removal, 
3. translation of upper case characters into lower case. 

Stemming algorithms strip word's ending and often conflate words with com­
mon roots. In this paper we shall call an output of a stemming algorithm 
a term. For example, an application of Porter stemming algorithm (to be 
discussed in Section 4) generates term "studi" from each one of the words 
"study", "studying", and "studied". To avoid editing of clustering results 
presented in Section 3 we do not apply stemming to documents discussed in 
this section. 
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Next we construct a sorted list of unique words w = {WI, ... , wn } that 
appear in the text collection T. For each word W on the list w we denote the 
set of sentences in T containing W by s( w). For each word W E w we define 
profile P(w) as follows: 

Definition 1. The profile P( w) of the word w is an alphabetically sorted 
list of words from the list w that occur in sentences together with the word 
w. 

Information concerning the word's w "company" is contained in the profile 
P(w). There is a number of ways to associate a vector p(w) = {PI, ... ,Pn}T 
with the profile P(w). For example, one can define the i-th coordinate Pi 

of the vector p( w) as the number of sentences in the document collection 
that contain both words wand Wi. The definition when applied, for example, 
to Reuters business news collection (to be discussed in details in Section 3) 
identifies the following words as "same context words": 

{white, house}, {margaret, thatcher}, {president, reagan}. 

In order to avoid this type of "same context words" we exclude the "contri­
bution" of the word w into the vector p( w) and define the profile vector p( w) 
as follows: 

Definition 2. The vector p(w) of the profile P(w) is the vector in R n 

where 

Pi = {the number of sentences in s( w) containing Wi ~f Wi =f w 
o If wi = w. 

The definition of the vector p( w) is motivated by the desire to distinguish 
between two different words Wi and w" that often co-occur in sentences across 
a document collection (like, for example, "white" and "house" in the above 
discussion). While the profiles P(w' ) and P(w") may be identical, the corre­
sponding profile vectors p(w' ) and p(w") defined above are different. 

To illustrate the definitions we introduce an example. 

Example 1. Consider the following text T (see [4], p.l): 
"We expect a lot from our search engines. We ask them vague questions 

about topics that we're unfamiliar with ourselves and in turn anticipate a 
concise, organize response. We type in principal when we meant principle." 

1. An application of the stop list words removal transforms the text into: 
"expect lot search engines. ask vague questions topics that unfamiliar turn 
anticipate concise, organize response. type principal meant principle." 
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2. Punctuation removal generates: 
"expect lot search engines ask vague questions topics that unfamiliar turn 
anticipate concise organize response type principal meant principle" 

3. Finally, translation of upper case characters into lower case and sorting 
produces the sorted list of of unique words w = {WI,"" wn } for the 
text: 
{anticipate, concise, engines, expect, lot, meant, organize, principal, 
principle, questions, response, search, topics, turn, type, unfamiliar, 
vague}. 

Since the list w contains 17 words, for each W E w the profile p( w) E R 17. 

For the word W ="principle" the set of sentences s("principle") contains one 
sentence 

s( "principle") = {We type in principal when we meant principle.}. 

The profile of W is 

P("principle") = {meant, principal, principle, type}, 

the vector p( "principle") associated with the profile is 

p("principle") = (0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0, of. 
The coordinates P6 = Ps = P15 = 1 and correspond to W6 = "meant", 
Ws = "principal", W15 = "type". The coordinate P9 corresponding to W9 = 
"principle" is zero. 

Statistical approach to the data forces us to disregard words with small 
profiles. Specifically, we introduce a parameter MinNumSent and select a 
"cut" -a set of words W whose set s( w) is at least as large as the parameter: 

cut = cut (MinNumSent) = {w : wE w, Is(w)1 2: MinNumSent}. 

Most of the experiments described in the paper are conducted with cuts. 
In this paper we use a modified k-means algorithm with the cosine sim­

ilarity measure (for detailed description of the algorithm see [16]). Hence, 
instead of the profile vectors p( w), we shall use normalized profile vectors 

Pn(w). That is Pn(w) = 1:(~iI2' where for two vectors p,q ERn, we denote 

n 1 

the dot product L Piqi by pT q, and Ipl2 stands for (pT p) 2". The similarity 
i=1 

between the words WI and W2 is given by Pn(wt)T Pn(W2). We define the 
variance for a set of k words {Wil' ... , Wik} as follows: 
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where h =~, j = 1, ... ,k. 
k 

We denote L hPn(Wij) bye ({Pn(Wit),.·. ,Pn(Wik)}), and keeping in mind 
j=l 

that {Pn (Wij)} are unit vectors rewrite (1) as follows: 

In the next section the variance defined by (2) is used to evaluate quality of 
same context words clusters. 

3 Experiments 

The experiments in this section are carried out on four English corpora: 

• Tom- "The Adventures of Tom Sawyer" by Mark Twain, 
• Yankee-"A Connecticut Yankee in King Arthur's Court" by Mark Twain, 
• Karenina-"Anna Karenina" by Leo Tolstoy, 
• Reuters-Reuters-21578, distribution 1.0 test collection. 

The first three texts are available from http://www.promo.net/pg/ , the last 
collection of 21578 documents is available from David D. Lewis' home page: 
http://www.research.att.com/lewis. In addition to the pre-processing 
described at the beginning of section 2 all hand-indexed entries were removed 
from Reuters text collection. Only the text between the delimiters <BODY> 
and <jBODY> (excluding the word "Reuters" completing each news item) 
has been processed. Reuters files with empty text have been removed. The 
next table provides some statistics on the texts. The last two rows present 
variance for the four collections and the corresponding cuts (see equation 
(2)). 

corpus Tom Yankee Karenina Reuters 
size (kb) 412 673 2,057 24,000 
number of files 1 1 1 19043 
unique words 7194 10382 12775 44749 
sentences 3709 4802 16996 121696 
mean profile size 41 59 78 140 
max sentences per word 710 440 1560 14220 
MinNumSent 10 30 100 500 
cut(MinNumSent) size 487 183 172 467 
var( collection) 0.97 0.97 0.96 0.96 
var(cut) 0.82 0.63 0.55 0.56 

Next we provide a short list of clusters for each text collection. The "var" 
row indicates the variance of the corresponding cluster. 
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Tom Yankee Karenina Reuters 
cluster 
1 trouble head asked dlrs 

wouldn't hands answered dlr 
var 0.196064 0.207273 0.117762 0.0456933 
2 reckon home conversation fall 

won heart chapter decline 
var 0.198276 0.219147 0.121811 0.0370496 
3 night launcelot face february 

told knight eyes december 
var 0.203541 0.150268 0.123713 0.0333204 
4 head master hands increased 

looked lord hand increase 
var 0.207783 0.216585 0.122147 0.0352877 
5 harper queen home lower .. 

arthur day higher mJun 
var 0.129439 0.210372 0.127368 0.0468052 
6 good sir people period 

thing knights man months 
var 0.199292 0.207819 0.125185 0.0459476 
7 face things put purchase 

moment couldn't long buy 
var 0.202919 0.207673 0.13126 0.0441111 
8 chapter thought smiling reuters 

sawyer mind smile reporters 
var 0.174602 0.196599 0.124248 0.0272061 
9 aunt thousand turned rose 

sid hundred looked fell 
var 0.201479 0.211229 0.124419 0.018597 
10 ain't turned vronsky total 

don't moment dolly estimated 
var 0.141682 0.197751 0.125272 0.049047 

The following are immediate observations concerning the presented clus­
ters: 

1. Better results are generated for larger text collections: the quality of 
clusters (measured by variance) decreases with increase in collection's 
size, and, in the opinion of this writer, words in the same cluster become 
more and more related. Most of our observations are, therefore, related 
to the Reuters collection. 

2. Karenina clusters 4, 8 and Reuters clusters 1, 4 indicate that "same con­
text words" may be used for automatic stemming. 

3. It appears that Reuters collection texts contain different "writing styles". 
For example, in some of the files we observe heavy use of abbreviations. 
The most striking example is probably the words "dollar" and "dlr". 
While it is the impression of this author that the words have exactly the 
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same meaning in the collection, it turns out that their normalized profile 
vectors are not similar at all. In fact 

Pn("dollar,,)T Pn("dlr") = 0.35, and Pn("dollar,,)T Pn("dlrs") = 0.35, 

while 

Pn("dlr,,)T Pn("dlrs") = 0.90, and Pn("dollar,,)T Pn("currency") = 0.74. 

In fact, the words "dollar" and "currency" belong to the same cluster. We 
speculate that, as compared with works of Mark Twain and Leo Tolstoy, 
the Reuters collection contains a mixture of different "writing styles" 
(abbreviations vs. full words). The clustering approach presented in this 
paper is unable to select same context words from "mixed jargon" text 
collections (for additional discussion of related problems see e.g. [8]). 

4. Karenina cluster 10 may lead to amusing interpretations. In the next table 
we display similarity (dot product) between "vronsky" and a number of 
female personalities. 

anna betsy darya dolly kitty lidia woman wife II feeling II 
vronsky 0.677 0.632 0.278 0.749 0.709 0.267 0.608 0.703110.721 II 

The corresponding table for "anna" is given next 

The tables clearly indicate that both, Anna and Vronsky, are no strangers to 
"feeling." 

4 Applications 

We believe that the introduced technique can be useful for a number of 
information retrieval applications. In this section we indicate briefly some 
preliminary results concerning the following two problems: 

1. an automatic corpus dependent stemming, 
2. index terms selection. 

4.1 Stemming 

Following Xu and Croft [20] we refer to corpus-based stemming as genera­
tion of word's "equivalence classes to suit the characteristics of a given text 
corpus." As a preliminary experiment we select words that appear in at least 
100 sentences of the Reuters collections. We then select words that start with 
the letters "cr". The selection contains the following 11 words: 
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{create, created, credit, creditor, creditors, credits, crisis, crop, crops, crowns, 
crude}. 

The means clustering (see [16]) applied to these words generates the fol­
lowing 6 clusters: 
{created, create}, {credits, credit}, {crisis, creditors, creditor}, {crops, crop}, 
{crude}, {crowns}. 

The similarity (dot product) matrix 

create created credit creditor creditors credits crisis crop crops crowns crude 
create 1.00 0.54 0.47 0.33 0.43 0.25 0.42 0.26 0.26 0.34 0.24 
created 1.00 0.49 0.26 0.38 0.30 0.34 0.29 0.26 0.35 0.30 
credit 1.00 0.45 0.56 0.69 0.40 0.45 0.35 0.59 0.35 
creditor 1.00 0.67 0.27 0.58 0.17 0.15 0.28 0.14 
creditors 1.00 0.34 0.70 0.22 0.21 0.39 0.22 
credits 1.00 0.23 0.32 0.24 0.44 0.27 
crisis 1.00 0.24 0.24 0.24 0.22 
crop 1.00 0.71 0.40 0.33 
crops 1.00 0.28 0.28 
crowns 1.00 0.30 
crude 1.00 

clearly indicates strong similarity between the words 

{crisis, creditors, creditor} 

in the Reuters collection (the Reuters documents are short business news and 
words "crisis", "creditors", and "creditor" often occur in the same context). 
At the same time the results generated by Porter stemming (see [17]) 

{ creat }, { credit }, { creditor }, { crisi }, { crop }, { crown }, { crude } 

miss this connection. 

4.2 Index Terms Selection 

A basic step involved in the construction of a vector space model is the 
choice of terms that index documents (see e.g. [4]). If the processing task 
is to partition a given document collection into clusters of similar docu­
ments, then a good choice of index terms is of paramount importance. To 
provide an example of a "good choice of index terms" consider a set of docu­
ments comprised of the following three document collections (available from 
http://www.cs.utk.edu/ lsi/): 

• Medlars Collection (1033 medical abstracts), 
• CISI Collection (1460 information science abstracts), 
• Cranfield Collection (1398 aerodynamics abstracts). 
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When all 3891 documents are mixed together into a single collection, and 
the goal is to partition the collection into three sub-collections to restore 
documents original membership described above the term "blood" is prob­
ably more useful for the task then the term "case". Indeed, while the term 
"case" occurs in 253 Medlars documents, 72 CISI documents, and 365 Cran­
field documents, the term "blood" occurs in 142 Medlars documents, ° CISI 
documents, and ° Cranfield documents. With each term w we associate a 
three dimensional "direction" vector d( w) = (d1 (w), d2 (w), d3 (w)), so that 
di(W) is the number of documents in collection i containing the term w. 
So, for example, d("case") = (253,72,365), and d("blood") = (142,0,0). 
In addition to "blood" terms like "layer" (d("layer") = (6,0,358)), or "re­
triev" (d("retriev") = (0,262,0)) are probably much more useful then terms 
"case", "studi" (d("studi") = (356,341,238)), and "found" (d("found") = 
(211,93,322)). 

When only the "combined" collection of 3891 documents is available the 
above described construction of "direction" vectors is not possible. It is of 
interest to develop algorithms that select "useful" terms when the direction 
vector d(t) is not available. 

The "profile technique" introduced in this paper allows to define a quality 
functional q( w) for each term w in the document collection. The quality q( w) 
is a number between ° and 1. The larger q( w) is the more "useful" the term w 
is for the clustering task. While detailed description of the quality functional 
is beyond the scope of this paper (and will be reported elsewhere), Tables 1 
and 2 present 15 "best" and 15 "worst" terms along with their quality scores 
and direction vectors. 

Stemming of the entire collection of 3891 documents produces 16287 
unique terms. The results are reported for cut(4) (Le. for terms that oc­
cur in at lest four sentences across the collection). The size of the cut is 5154. 

5 Conclusion 

Applications of clustering techniques for retrieval systems performance im­
provement is not new. Already in 1977 in order to enhance the performance 
of full-text retrieval systems Attar and Fraenkel [3] suggested a procedure 
based on iterative local-dynamic clustering. At each iteration the system is 
using retrieved documents to construct "searchonyms". Roughly speaking a 
word w' is a searchonym of a word w if w' can replace w in the set of retrieved 
documents. One of the reasons to make searchonyms dependent on a set of 
retrieved documents (rather than on the entire collection) are computing 
limitations of 1977. 

The same context words introduced in the paper are constructed based on 
the similarity measure provided by the words context throughout the entire 
text collection. Selection of same context words requires clustering of large 
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II term Iquality(term) Idl (term) Id2(term) Id3(term) II 
lenticular 0.186 2 0 0 
layer 0.186 6 0 358 
boundari 0.178 0 7 413 
aortic 0.176 26 0 0 
inform 0.174 28 614 44 
ventricular 0.174 53 0 0 
laminar 0.170 0 0 231 
estron 0.168 4 0 0 
number 0.168 92 204 568 
retriev 0.165 0 262 0 
shell 0.164 0 4 105 
septal 0.163 25 0 0 
blunt 0.162 1 0 119 
nadh2 0.162 2 0 0 
axial 0.162 0 0 136 

Table 1. 15 "best" terms in slice(4) 

II term Iquality(term)ld1 (term)ld2(term) Id3(term) II 
present 0.004 236 314 506 
includ 0.004 75 169 225 
experi 0.004 105 133 152 
work 0.004 17 245 112 
show 0.004 168 97 202 
shown 0.004 58 62 285 
oper 0.004 70 184 67 
found 0.003 211 93 322 
determin 0.003 108 116 299 
larg 0.003 80 175 201 
gener 0.003 76 311 329 
discuss 0.003 142 262 271 
studi 0.002 356 341 238 
develop 0.002 176 366 264 
case 0.002 253 72 365 

Table 2. 15 "worst" terms in slice(4) 

data sets. While a number of clustering algorithms capable of dealing with 
large data collections has been currently reported in the literature (see e.g. [2], 
[6], [10], [15], and [21]), the choice of appropriate clustering algorithms along 
with many other technical details (among them appropriate definitions of the 
profile vectors, and possible choices of the metric) require further research. 
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It is hoped that the introduced technique when combined with existing 
information retrieval tools will provide a useful automatic corpus dependent 
text analysis tool. In particular, we feel that separate construction of same 
context words clusters for nouns, verbs, adjectives, and adverbs has a poten­
tial further enhance dimensionality reduction. Hence, a combination of the 
same context words technique with, for example, Princeton developed Word­
Net may lead to an efficient choice of words for information retrieval related 
problems (for detailed discussion of the issue we refer the reader to [12]). 
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Studying Treatment Response to Inform 
Treatment Choice 
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Abstract. An important practical objective of empirical studies of treatment re­
sponse is to provide decision makers with information useful in choosing treatments. 
Often the decision maker is a planner who must choose treatments for the members 
of a heterogeneous population; for example, a physician may choose medical treat­
ments for a population of patients. Studies of treatment response cannot provide 
all the information that planners would like to have as they choose treatments, but 
researchers can be of service by addressing several questions: How should studies be 
designed in order to be most informative? How should studies report their findings 
so as to be most useful in decision making? How should planners utilize the infor­
mation that studies provide? This paper addresses aspects of these broad questions, 
focusing on pervasive problems of identification that arise when studying treatment 
response and making treatment choices. 

1 Introduction 

An important practical objective of empirical studies of treatment response 
is to provide decision makers with information useful in choosing treatments. 
Often the decision maker is a planner who must chooses treatments for a 
heterogeneous population. The planner might, for example, be a physician 
choosing medical treatments for a population of patients. Physicians use find­
ings of medical research to evaluate the merits of alternative treatment rules. 
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analyzed in Section 3. The Department of Veterans Affairs retains ownership of 
the data. The views expressed in this paper are those of the author and are not 
necessarily endorsed by the Department of Veterans Affairs. 
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It is unrealistic to think that studies of treatment response can provide all 
the information that planners would like to have as they choose treatments. 
However, researchers can aim to improve treatment choice by addressing 
several questions: How should studies be designed in order to be most infor­
mative? How should studies report their findings so as to be most useful in 
decision making? How should planners utilize the information that studies 
provide? This paper draws on the author's research to address aspects of 
these broad questions. 

My starting point is the decision theoretic framework of [16] and [17]. This 
assumes that the planner observes some covariates for each member of the 
population-to-be-treated; for example, a physician may observe a patient's 
demographic attributes, medical history, and the results of diagnostic tests. 
The observed covariates determine the set of treatment rules that are fea­
sible for the planner to implement: the set of feasible rules is the set of all 
functions mapping the observed covariates into treatments. Each member of 
the population has a response function which maps treatments into a real­
valued outcome of interest; perhaps a measure of health status in the case of 
medical treatment. I assume that the planner wants to choose a treatment 
rule that maximizes the population mean outcome; in economic terms, the 
planner wants to maximize a utilitarian social welfare function. Under these 
assumptions, an optimal treatment rule assigns to each member of the popu­
lation a treatment that maximizes mean outcome conditional on the person's 
observed covariates. Hence studies of treatment response are useful to the 
degree that they enable the planner to learn how mean outcomes vary with 
treatments and covariates. 

Section 2 formalizes these ideas, from which I conclude that heterogene­
ity in treatment response should be a central concern in study design. Re­
searchers should bear in mind the planner's problem when deciding what 
population to study and what covariate information to report on study sub­
jects. I reconsider the widely held view that studies of treatment response 
should be judged primarily by their internal validity and only secondarily by 
their external validity. 

Section 3 examines the implications for treatment choice of pervasive iden­
tification problems in studies of treatment response. I first explain in general 
terms how identification problems in the empirical analysis of treatment re­
sponse generate ambiguity about the identity of optimal treatment choices. 
Then, drawing on [8], I examine the particular identification problem created 
by missing outcome and covariate data and use a randomized clinical trial 
(ReT) of treatments for hypertension (see [22]) to illustrate findings. 

Studies of treatment response generally report outcomes for finite samples 
of subjects, not for entire study populations. Hence planners wanting to use 
study findings not only face identification problems but also must perform 
statistical inference from the sample to the population. This short article 
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abstracts from the problem of statistical inference. However, I do address 
this important matter in [15]. 

2 Treatment Choice in Heterogeneous Populations 

Section 2.1 formalizes the planner's problem as in Manski [16] and [17]. With 
this background, Sects. 2.2 and 2.3 draw implications for studies of treatment 
response. 

2.1 The Planner's Problem 

I suppose that there is a finite set T of mutually exclusive and exhaustive 
treatments. A planner must choose a treatment rule assigning a treatment 
in T to each member of a population J. Each person j E J has a response 
function Yi(-) : T ~ Y mapping treatments into real-valued outcomes Yi(t) E 
Y. A treatment rule is a function r(·) : J ~ T specifying which treatment 
each person is assigned. Thus person j's outcome under rule r(·) is Yi[r(j)]. 
This notation maintains the assumption of individualistic treatment made 
commonly in analyses of treatment response; that is, a person's outcome may 
depend on the treatment he is assigned, but not on the treatments assigned 
to others. 

The planner is concerned with the distribution of outcomes across the 
population, not with the outcomes of particular persons. Hence it is conve­
nient to let the population be a probability space, say (J, n, P), with n the 
a-algebra and P the probability measure. Now the population mean outcome, 
or social welfare, under treatment rule r(·) is well-defined as 

(1) 

I assume that the planner wants to choose a treatment rule that maximizes 
E{Yi[r(j)]}. This criterion function has normative, analytical, and practi­
cal appeal. Maximization of a population mean outcome, or perhaps some 
weighted average outcome, is the standard normative criterion of the public 
economics literature on social planning; the outcome of interest measures the 
social benefits minus costs of a treatment. The linearity of the expectation op­
erator yields substantial analytical simplifications, particularly through use 
of the law of iterated expectations. The practical appeal is that a planner 
choosing treatments to maximize the mean population outcome will want 
to learn average treatment effects, the dominant form of treatment effect 
reported in the empirical literature on treatment response. Other criterion 
functions generate interest in other forms of treatment effect. 

The planner observes certain covariates Xi E X for each member of the 
population. The planner cannot distinguish among persons with the same 
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observed covariates and so cannot implement treatment rules that systemat­
ically differentiate among these persons. Hence the feasible non-randomized 
rules are functions mapping the observed covariates into treatments. 

To formalize the planner's problem, let Z denote the space of all functions 
mapping X into T. Let z(·) E Z. Then the feasible treatment rules have the 
form 

j E J. (2) 

Let P[y(·),x] be the probability measure on yT x X induced by P(j). Let 
E{y[z(x)]} == J y[z(x)]dP[y(·), x] denote the expected value of y[z(x)]. Then 
the planner wants to solve the problem 

max E{y[z(x)]}. 
z(')EZ 

(3) 

In practice, institutional constraints may restrict the feasible treatment rules 
to a proper subset of Z. For example, the planner may be precluded from 
using certain covariates (say race or gender) to assign treatments. The anal­
ysis in this paper continues to hold if x is defined to be the covariates that 
the planner is permitted to consider, rather than the full vector of covariates 
that the planner observes. 

It is easy to show that the solution to the planner's problem is to assign 
to each member of the population a treatment that maximizes mean outcome 
conditional on the person's observed covariates. Let 1[·] be the indicator func­
tion taking the value one if the logical condition in the brackets holds and the 
value zero otherwise. For each z(·) E Z, use the law of iterated expectations 
to write 

E{y[z(x)]} = E{E{y[z(x)lIx}} = E{EtETE[y(t)lx]·I[z(x) = t]} (4) 

= I EtETE[y(t)lx], l[z(x) = t]dP(x). 

For each x E X, the integrand EtETE[y(t)lx], l[z(x) = t] is maximized by 
selecting z(x) to maximize E[y(t)lx] on t E T. Hence rule z*(-) is optimal 
if, for x E X, z*(x) solves the problem maxtET E[y(t)lx]. The optimized 
population mean outcome is E{maxtETE[y(t)lx]}. 

The set of feasible treatment rules grows as more covariates are observed. 
Hence the optimal mean outcome achievable by the planner cannot fall, and 
may rise, as more covariates are observed. The value of covariate informa­
tion is appropriately measured by the difference between the optimal mean 
outcome achievable with and without use of this information. This is 

V(X) == E{maxE[y(t)lx]} - maxE[y(t)]. 
tET tET 

(5) 

Inspection of (5) shows that covariate information has no value if there ex­
ists a common optimal treatment; that is, a t* E T such that z* (x) = t*, 
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almost everywhere on X. Covariate information does have value if optimal 
treatments vary with x. 

More generally, we may compare the value of observing distinct covariate 
vectors, say x and w. A planner who knows the conditional mean treatment 
responses E[Y(')lx] and E[Y(')lw] should prefer observation of x to w if and 
only if E{maxtET E[y(t) Ix]} :?: E{maXtET E[y(t)lw]}. This criterion for com­
parison of x and w differs from the prediction criterion familiar in statistical 
decision theory. The prediction criterion supposes that, for each t E T, one 
wants to predict y(t) as well as possible in the sense of minimizing expected 
square loss. The best predictors conditional on x and ware E[y(t)lx] and 
E[y(t)lw] respectively. A statistician who knows E[y(t) Ix] and E[y(t)lw] and 
wants to predict y(t) as well as possible should prefer x to w if and only if 
E{y(t) - E[y(t)lx]F ~ E{y(t) - E[y(t)lw]F. 

2.2 Reporting Covariate Information in Studies of Treatment 
Response 

Researchers should bear in mind the treatment choice problem when decid­
ing what covariate information to report on study subjects. Yet there is often 
a wide disparity between the covariates that planners can observe and the 
covariate information reported in studies of treatment response. For exam­
ple, physicians commonly observe medical histories, diagnostic test findings, 
and demographic attributes for the patients that they treat. Yet the journal 
articles that report on RCTs often provide scant covariate information for 
study subjects, describing outcomes only within broad risk-factor groups. 

There seem to be several reasons why studies of treatment response report 
little covariate information. (I say "seem to" because these reasons are rarely 
stated explicitly.) Some researchers may assume that there exists a common 
optimal treatment across the population of interest; then covariate informa­
tion has no value. Concern for the confidentiality of subjects' identities may 
inhibit reporting covariate data. Editorial restrictions on the lengths of jour­
nal articles may prevent researchers from reporting useful findings. Sampling 
variability may inhibit researchers from reporting treatment response con­
ditional on covariates. In particular, findings may be reported only if they 
meet conventional criteria for statistical precision. Whenever there is rea­
son to think that treatment response may vary with covariates that planners 
can observe, researchers should aim to report findings on mean treatment 
response conditional on these covariates. Subject to considerations of sub­
ject confidentiality and space constraints, research journals should encourage 
publication of such findings. When journal space constraints prevent publi­
cation of useful findings, researchers should make them available on the web 
or through other means. 
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2.3 The Study Population and the Population-to-be-treated 

A longstanding issue in study design concerns the importance of correspon­
dence between the study population and the population-to-be-treated. This 
matter was downplayed in the influential work of Donald Campbell, who ar­
gued that studies of treatment effects should be judged primarily by their 
internal validity and only secondarily by their external validity (see [3], [4]). 
Campbell's view has recently been endorsed by Rosenbaum [25], who recom­
mends that observational studies of human subjects aim to approximate the 
conditions of laboratory experiments. Rosenbaum, like Campbell, downplays 
the importance of having the study population be similar to the population 
of interest, writing (page 259): "Studies of samples that are representative of 
populations may be quite useful in describing those populations, but may be 
ill-suited to inferences about treatment effects". 

From the perspective of treatment choice, the Campbell-Rosenbaum posi­
tion is well grounded if treatment response is homogeneous. Then researchers 
can aim to learn about treatment response in easy-to-analyze study popula­
tions and planners can be confident that research findings can be extrapolated 
to populations of interest. In human populations, however, homogeneity of 
treatment response may be the exception rather than the rule. Whether the 
context be medical or educational or social, there is often reason to think 
that people vary in their response to treatment. To the degree that treat­
ment response is heterogeneous, a planner cannot readily extrapolate research 
findings from a study population to a population of interest, as optimal treat­
ments in the two may differ. Hence correspondence between the study pop­
ulation and the population-to-be-treated assumes considerable importance. 

When the objective is to inform treatment choice in heterogeneous pop­
ulations, I see no reason to give internal validity primacy relative to external 
validity. To be fair, researchers who stress internal validity may have objec­
tives other than to inform treatment choice. For example, Angrist, Imbens, 
Rubin in [1) state their goal to be the discovery of "causal effects", without 
reference to a treatment-choice problem. 

3 Identification Problems and Treatment Choice under 
Ambiguity 

Ideally, a planner facing the treatment choice problem described in Sect. 2 
would like studies of treatment response to reveal in full how mean outcomes 
vary with treatments and covariates. In practice, problems of identification 
and statistical inference limit the information that studies can provide. Sta­
tistical and identification problems are logically distinct, and it is analytically 
useful to consider them sequentially. Here I suppose that researchers are able 
to draw random samples of unlimited size from their study populations and 
hence know (almost surely) whatever population features their sampling pro­
cesses are capable of revealing. In Manski [15], I suppose that researchers are 
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only able to draw random samples of finite size and hence must make sta­
tistical inferences about their study populations. Section 3.1, drawing again 
on [16], [17], continues the formalization of the planner's problem begun in 
Sect. 2.1 and describes in general terms how identification problems generate 
ambiguity about the identity of optimal treatment choices. Section 3.2 dis­
cusses the specific identification problem that arises in studies with missing 
outcome and covariate data. Section 3.3 illustrates with data from an RCT 
of treatments for hypertension. 

3.1 The Planner's Problem, Continued 

By equations (3) and (4), the planner would like to choose a treatment rule 
that solves the problem 

max / L'tETE[y(t)lx]· l[z(x) = t]dP(x). 
z(·)EZ 

(6) 

The covariates x are observable, so it is realistic to assume that the planner 
can learn the distribution P(x) of covariates in the population-to-be-treated. 
Research on treatment response is motivated by the planner'S desire to learn 
{E[y(·)lx)],x EX}. 

Identification problems limit the information that studies of treatment 
response provide. Considering the matter in abstraction, suppose a plan­
ner learns from the available studies that mean treatment response condi­
tional on the observed covariates lies in some identification region H; that 
is, {E[y(·)lx],x E X} E H, for some H C yT X X. This information may 
not suffice to solve problem (6), in which case the planner faces a problem of 
treatment choice under ambiguity. 

What should a planner do in such a situation? Clearly he should not 
choose a dominated treatment rule: a rule z(·) is dominated if there exists 
another feasible rule, say z'(·), which necessarily yields at least the social 
welfare of z(·) and which performs strictly better than z(·) in some state of 
nature. Thus, z(·) is dominated if there exists a z'(·) E Z such that 

/ L T}(t, x) . l[z(x) = t]dP(x) (7a) 
tET 

~ /LT}(t,X) ·1[z'(x) = t]dP(x), "IT} E H 
tET 

and /LT}(t,X) ·l[z(x) = t]dP(x) (7b) 
tET 

< /LT}(t,X) ·l[z'(x) = t]dP(x), some T} E H, 
tET 

where [T}(·,x),x E X] denotes a feasible value of {E[y(·)lx],x E X}. The 
central difficulty of treatment choice under ambiguity is that there is no 
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clearly best way to choose among undominated treatment rules. The most 
that can be said is that decision theory suggests a variety of "reasonable" 
procedures, including the maximin rule and Bayes rules. 

An unfortunate characteristic of empirical research on treatment response 
has been that it gives planners little sense of how identification problems limit 
inference. Researchers commonly report point estimates of mean treatment 
response, not estimates of identification regions. The reported estimates of­
ten have fragile foundations, as becomes plain from observing the persistent 
disagreements among researchers about the credibility of alternative iden­
tifying assumptions. I have long argued that researchers and planners alike 
would be better served if the customary practice were to first report the 
limited inferences that are possible using only knowledge of the sampling 
process generating the data, and then report tighter inferences that combine 
the available data with highly credible assumptions about treatment selection 
and response. See [11], [13], [18], and [19]. 

3.2 Treatment Choice Using Studies with Missing Outcome and 
Covariate Data 

A particularly important source of incomplete identification is missing data, 
which afflicts every study of treatment response in one way or another. All 
studies have missing outcome data due to the fact that counterfactual (aka 
latent or potential) outcomes are unobservable - at most one can observe the 
outcomes that persons experience under the treatments that they actually 
receive. Outcome data may also be missing due to attrition of subjects from 
randomized trials or due to nonresponse in observational studies. 

The specific form of H implied by missing outcome data depends on the 
prior information that one can combine with the available empirical evidence. 
The classical assumption that outcome data are missing completely at ran­
dom (MCAR) implies that H is a point; in this best case scenario, an analyst 
can simply ignore sample realizations with missing data. Intent-to-treat (ITT) 
analysis of RCTs with noncompliance is based on another best-case scenario: 
one assumes that the compliance behavior of subjects in the trial correctly 
predicts the compliance behavior that would occur when treatments are as­
signed in practice. [11], [12] characterized the worst-case scenario in which 
one has no prior information about the missing data process. Middle-ground 
cases which bring to bear some prior information but not enough to reduce 
H to a point have been studied in [2], [9], [12], [13], [14], [19], [20], and [23]. 

Missing covariate data is a common occurrence in studies of treatment 
response, but has received much less research attention than has missing 
outcome data. [10], [24], and [26] pose best-case scenarios asserting enough 
prior information to achieve point identification. The worst-case scenario was 
first studied in [7]. For any specified value of x, this article gives sharp bounds 
on E[Y(')lx] in two observational settings: only covariate data are missing, 
and (covariate, outcome) data are jointly missing. 
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Horowitz and Manski in [8] have analyzed identification of mean treat­
ment response when outcome and/or covariate data may be missing. We 
suppose that outcomes are binary and derive sharp bounds on E[Y(')lx] in 
two informational settings - the worst-case scenario (Theorem 1) and the 
partial information setting where it is known that covariate data are MCAR 
(Theorem 3). These theorems apply to general missing data problems - some 
observations may be complete, some may have missing outcome data, others 
may have missing covariate data, and still others may have jointly missing 
(covariate, outcome) data. I illustrate below. 

3.3 Choosing Treatments for Hypertension Using Data from a 
Trial with Missing Data 

Physicians routinely choose treatments for hypertension. Medical research 
has sought to provide guidance through the conduct of RCTs comparing 
alternative treatments. Such trials inevitably have missing data. I illustrate 
here how physicians might use the data from a recent trial to inform treatment 
choice, without imposing untenable assumptions about the distribution of the 
missing data. 

Materson et al. in [21] presented findings from a RCT of treatments for 
hypertension sponsored by the U.S. Department of Veteran Affairs (DVA). 
Male veteran patients at 15 DVA hospitals were randomly assigned to one of 6 
antihypertensive drug treatments or to placebo: hydrochlorothiazide (t = 1), 
atenolol (t = 2), captopril (t = 3), clonidine (t = 4), diltiazem (t = 5), pra­
zosin (t = 6), placebo (t = 7). The trial had two phases. In the first, the 
dosage that brought diastolic blood pressure (DBP) below 90 mm Hg was 
determined. In the second, it was determined whether DBP could be kept 
below 95 mm Hg for a long time. Treatment was defined to be successful if 
DBP < 90 mm Hg on two consecutive measurement occasions in the first 
phase and DBP ~ 95 mm Hg in the second. Treatment was deemed unsuc­
cessful otherwise. Thus the outcome of interest was binary, with Y = 1 if 
the criterion for success is met and Y = 0 otherwise. [21] recommended that 
physicians making treatment choices should consider this medical outcome 
variable as well as patient's quality of life and the cost of treatment. 

The [21] article examined how treatment response varies with the race and 
age of the patient. There were no missing data on the race and age covariates. 
The authors performed an ITT analysis that interpreted attrition from the 
trial as lack of success; from this perspective there were no missing outcome 
data either. Horowitz and Manski in [8] obtained the trial data and used 
them to examine how treatment response varies with another covariate that 
does have missing data. This was the biochemical indicator "renin response" , 
taking the values x =(low, medium, high), which had previously been studied 
as a factor that might be related to successful treatment (see [6]). Renin­
response was measured at the time of randomization, but data were missing 
for some subjects in the trial. Horowitz and Manski also stepped back from 
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the ITT interpretation of attrition as lack of success. Instead, we viewed 
subjects who leave the trial as having missing outcome data. The pattern of 
missing covariate and outcome data is shown in [8], Table 1, reproduced here. 

Table 1. Missing data in the DVA hypertension trial 

Treat- Number Observed None Missing Missing Missing 
ment Randomized Successes Missing Only y Only x (y,x) 
1 188 100 173 4 11 0 
2 178 106 158 11 9 0 
3 188 96 169 6 13 0 
4 178 110 159 5 13 1 
5 185 130 164 6 14 1 
6 188 97 164 12 10 2 
7 187 57 178 3 6 0 

Horowitz and Manski in [8] used their Theorems 1 and 3 to estimate sharp 
bounds on the success probabilities {P[y(t) = 1Ix], t = 1, ... , 7}, first without 
imposing assumptions on the distribution of missing data and then assuming 
that missing covariate data are MCAR. Rather than report the bounds on the 
success probabilities directly, the article reported the implied bounds on the 
average treatment effects {P[y(t) = 1Ix]-P[y(7) = 1Ix],t = 1, ... ,6}, which 
measure the efficacy of each treatment relative to the placebo. This reporting 
decision was motivated by the traditional research problem of testing the 
hypothesis of zero treatment effect. The problem of treatment choice was not 
explicitly examined. 

Table 2 reports the estimates of the worst-case bounds on the success 
probabilities. To keep attention focused on the identification problem, sup­
pose that the estimates are the actual bounds rather than finite-sample esti­
mates. Consider a physician who accepts the DVA success criterion, observes 
renin response, and has no prior information on mean treatment response or 
the distribution of missing data. How might this physician choose treatments 
in a population analogous to that studied in the DVA trial? 

First, the physician should eliminate the dominated treatments. For pa­
tients with low renin response, treatments 1, 2, 3, 4, 6, and 7 are all dominated 
by treatment 5, which has the greatest lower bound (.66). For patients with 
medium renin response, treatments 1, 3, 6, and 7 are dominated by treatment 
5, which again has the greatest lowest bound (.68). For patients with high 
renin response, treatments 1, 6, and 7 are dominated by treatment 2, which 
has the greatest lowest bound (.64). Thus, without imposing any assumptions 
on the distribution of missing data, the physician can reject treatments 1, 6, 
and 7 for all patients, can reject treatment 3 for patients with medium renin 
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Table 2. Worst-case bounds on success probabilities conditional on renin response 

Renin Treatment 
Reponse 1 2 3 4 5 6 7 
Low [.54, .61] [.52, .62] [.43, .53] [.58, .66] [.66, .76] [.54, .65] [.29, .32] 
Medium [.47, .62] [.60, .74] [.53, .68] [.50, .69] [.68, .85] [.41, .65] [.27, .32] 
High [.28, .50] [.64, .86] [.56, .75] [.63, .84] [.55, .78] [.34, .59] [.28, .40] 

response, and can determine that treatment 5 is optimal for patients with 
low renin response. 

In the absence of assumptions about the distribution of missing data, 
there is no single "right" way for the physician to choose among undominated 
treatments for patients with medium and high renin response. A physician 
using the maximin rule would choose treatment 5 for patients with medium 
renin response and treatment 2 for patients with high renin response. This is 
a reasonable treatment rule, but one cannot say that it is an optimal rule. 

Exploring the reasons for missing data in the DVA trial, Horowitz and 
Manski in [8] did not find a credible basis to impose assumptions on the 
distribution of missing outcome data, but did find it plausible to assume 
that missing covariate data are MCAR. This assumption generates tighter 
bounds on mean treatment response. Table 3 presents the resulting estimates 
of bounds on success probabilities. 

Table 3. MCAR-covariates bounds on success probabilities conditional on renin 
response 

Renin Treatment 
Reponse 1 2 3 4 5 6 7 

Low [.57, .58] [.54, .60] [.44, .49] [.61, .63] [.69, .74] [.56, .62] [.31, .32] 

Medium [.52, .57] [.66, .71] [.59, .59] [.55, .63] [.81, .81] [.46, .57] [.32, .32] 
High [.35, .35] [.75, .83] [.65, .65] [.77, .77] [.67, .70] [.40, .47] [.33, .40] 

These tighter bounds resolve most of the ambiguity in treatment choice. 
A physician who accepts the assumption that covariate data are MCAR can 
conclude that treatment 5 is optimal for patients with low and medium renin 
response. This physician can narrow consideration to treatments 2 and 4 for 
patients with high renin response, but the data combined with the MCAR 
assumption do not suffice to choose between these two treatments. 
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4 Conclusion 

The objective of informing treatment choice provides an explicit practical 
motivation for empirical study of treatment response. The treatment-choice 
perspective systematically affects how one should select a study population 
and cope with identification problems. It also systematically affects how one 
should make use of finite-sample data (see [15]). 

I would particularly stress that empirical research seeking to inform treat­
ment choices differs from analyses that aim to perform classical hypothesis 
tests. Empirical research on treatment response has been strongly influenced 
by the classical theory of hypothesis testing, especially by the idea of testing 
the null hypothesis of zero average treatment effect in the study popula­
tion. This hypothesis is institutionalized in the Food and Drug Administra­
tion drug approval process, which calls for comparison of a treatment under 
study (t = 1) with a placebo or an approved treatment (t = 0). Approval of 
treatment 1 normally requires rejection of the null hypothesis of zero average 
treatment effect {Ho : E[y(I)] = E[y(O)]} in two independent RCTs (see [5]). 
The null hypothesis of zero treatment effect is prominent in experimental 
design, as researchers use norms for statistical power to choose sample sizes. 
Moreover, when studies are performed, findings may go unreported or may 
be deemed to be "insignificant" if they do not meet test-based criteria for 
statistical precision. It would be of much interest to reconsider the present 
FDA drug approval process and current norms for experimental design from 
the treatment-choice perspective. 
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Abstract. We consider games which arise when two statisticians must make a 
decision simultaneously, and the loss function depends on both decisions. We are 
interested, in particular, in situations when information is detrimental, in a sense 
to be made precise. We show that in certain problems related to Bayesian testing 
and prediction the phenomenon of information rejection occurs for certain values 
of the parameters involved. 

1 Introduction 

In this note we expand on previous work by the same authors [4] concerning 
the possibility that two interacting statisticians might prefer to refuse free 
information. This phenomenon of information rejection may occur when the 
loss of a statistician depends not only on his action and on the state of 
Nature, but also on the decision made by another statistician. We refer to 
[4] for general considerations on the problem, and also for references on the 
relation between statistics and game theory. 

Some real situations fit into the scheme of interacting statisticians. For 
example, the so-called "inspection games" , where the statistician of the in­
spected party is trying to cheat the inspecting colleague (see [1]). Think also 
of a buyer and a seller simultaneously testing a sample each from a stock of 
items. 

We consider here two examples that were presented in [4], drawn from the 
theory of Bayesian testing and Bayesian prediction, and we rephrase them in 
greater generality. 

2 Two Interacting Statisticians and Information 
Refusal 

We shall consider two examples, relevant in statistics, of games in which 
information rejection occurs, in the sense specified below. We shall use the 
terms "player" and "statistician" indifferently. 

The games considered are as follows: 
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1. Nature chooses between the following bimatrices of payoffs: 

GB : (1) 

We shall refer to G A and G B as state-games. The probability with which 
Nature selects each state-game is not exactly known to the players. 

2. The two players have a common prior IP about the behavior of Nature. 
3. Each player acquires private information about the choice of Nature. This 

information will be assumed to be binary. Thus, each player can be of 
two types, in the sense of Harsanyi ([5]). We shall say that player I is 
of type 10 or of type It according to whether he has seen, say, a Tailor 
a Head. Analogously for player II. For k E {I, II}, we shall denote by 
IPlk the conditional probability given the private information acquired by 
player 1k. We may think of IPlk as the updated beliefs of 1k about the 
realized choice of Nature. 

4. A binary public signal is shown to both players. 
5. Each player chooses his action. 
6. The state-game chosen by Nature is revealed and payoffs are collected 

accordingly. 

Several criteria can be taken into account to select actions; among these, 
we consider the following: 

CRITERION A: Each player chooses al if and only if he thinks that G B 

is more likely than G A, conditionally on all the information available, private 
and public. 

CRITERION B: The same as above, but not taking into account the 
public signal (namely, conditioning on private information only). 

We may say that the phenomenon of information rejection occurs when 
both criteria lead to Nash equilibria and Criterion B is more favorable than 
Criterion A for at least one player. Recall that a Nash equilibrium is a strategy 
profile such that no player can profit from unilaterally deviating from his 
strategy in the profile. 

Remark 1. Private information plays a crucial role. In fact, it is proved in 
[3] that in games with the structure described above, if the players have the 
same information they want as much information as possible. A more general 
result, relating positive value of information to uniqueness of Pareto optimal 
Nash equilibria is given in [2]. 

Remark 2. Although the game presented here is somehow artificial, it is in a 
sense the simplest possible example in which information refusal may occur. 
Private information (which is necessary, as we mentioned above) is binary, 
the action space is binary, public information is binary, the bimatrices of 
payoff have only one non-zero entry. 
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Remark 9. The rationale underlying the examples of information refusal 
which we are going to show can be phrased as follows. The games are coor­
dination games, and the prior law is such that both players believe that G B 

is more likely than GA. It is known that one observation is not enough to 
reverse this opinion, but two observations may lead a player to believe that 
G A is more likely. Thus, after one private observation is taken, the players 
may prefer to avoid an additional observation, in order not to run the risk of 
disrupting the initial coordination. 

In order to characterize games as described above, we need to specify: 

(a) The prior law IP' and the way it relates to the mechanism of choice by 
Nature 

(b) The structure of private information and the way it helps to understand 
the unknown probability distribution of Nature on the two state-games. 

( c) The structure of the public signal. 

2.1 First Example: Hypothesis Testing 

In this example we want to describe the situation when two (Bayesian) statis­
ticians need to simultaneously test a simple hypothesis vs another simple 
hypothesis, and their payoff is positive iff both make the correct choice. We 
may think of GA (resp.:GB) as the payoffs when the true hypothesis is the 
null (resp.: the alternative). 

We characterize the game along the lines sketched above. 

(a) Description of the prior. The prior law IP' is a distribution on the param­
eter space IJI := {Oo'(h}, with 0 < 00 < 01 < 1. The value 00 corresponds 
to the null hypothesis, and 01 to the alternative. 
We denote by 11"0 the probability IP' that the state-game G A is selected by 
Nature, Le. that the null hypothesis holds true. 

(b) Structure of private information. Let 8 be a IJI-valued random variable 
such that 8 = 00 iff G A is selected by Nature. Let also XI, Xu, Y be ran­
dom variables such that, conditionally on 8 = 0, they are LLd. Bernoulli 
with parameter 0, VO E IJI (Le. IP'(XI = 118 = 0) = 0). It is common 
knowledge that the value of XI is shown to player I only, and that the 
value of Xu is shown to player II only. Thus, each statistician has a pri­
vate sample of size one from the population to be tested. Y is the public 
signal. 

( c) Structure of the public signal. The value of Y is shown to both players. 
Thus, an additional sample of size one is observed by both statisticians. 

A strategy profile in this game is a string of 8 actions: the first two are 
the actions taken by 10 (Le. Player I with private information XI = 0) if 
Y = 0 and Y = 1, respectively, and so on. The following proposition shows 
that information refusal may occur. 
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Proposition 1. Consider the game previously described. If the parameters 
00 , (h and 11"0 satisfy 

-- max -- <--<--mm ( 1-01)2 {01 I} 11"0 1-01 . { (Od2 I} 
1 - 00 1 - 00' - 1 - 11"0 - 1 - 00 00 (1 - 00)' , 

then: 

1. The following strategy profile 

(2) 

is an equilibrium. Each action is the same that a single statistician would 
have taken if he were to maximize his expected utility based on all avail­
able information, namely, if he were to choose his action according to 
Criterion A. 

2. The following strategy profile 

(3) 

is an equilibrium. Each action is the same that a single statistician would 
have taken if he were to maximize his expected utility based on private 
information only, namely, if he were to choose his action according to 
Criterion B. 

3. The payoff for 10 if (2) is played is less than his payoff when (3) is played 
if and only if 

11"0 (1-01)2 1 (4) 
1 - 11"0:2: 1 - 00 (1 - 00 ) 

4. The payoff for 11 if (2) is played is always less than his payoff when (3) 
is played. 

Proof. First, we write the expressions for the payoffs: 

• The expected payoff for 10 if (2) is played is 

A(1I"0,00,Od := IP'Io (8 = 00, Y = 0, XII = 0) + IP'Io (8 = 01, Y = 1). (5) 

• If player 10 deviates from (2) and plays alaI (other moves are dearly not 
advantageous) his expected payoff is 

• The expected payoff for It if (2) is played is 
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• If player 11 deviates from (2) and plays aOa1 (other moves are clearly not 
advantageous) his expected payoff is 

D(7ro,Oo,(h) := IP'Il (8 = 00 , Y = 0, XII = 0) + IP'Il (8 = 01 , Y = 1). (8) 

• The expected payoff for 10 if (3) is played is 

E(7ro,Oo,Od := IP'Io (8 = Od 

• The expected payoff for 11 if (3) is played is 

(9) 

(10) 

It is clear that (3) is an equilibrium. In order to show that (2) is an 
equilibrium, we need to show that A - B 2': 0 and C - D 2': O. In fact, 

A(7rO,OO,Ol) - B(7ro, 00 , Od 
= IP'Io (8 = OoY = 0, XII = 0) -IP'Io (8 = 01Y = 0, XII = 1) 

= IP'Io (8 = ( 0 ) IP'Io (Y = 0, XII = 018 = ( 0 ) 

-IP'Io (8 = OdlP'Io (Y = 0, XII = 118 = Od 

= 7ro (1 - ( 0 ) (1 _ ( 0 )2 

7ro (1 - ( 0 ) + (1 - 7ro)(l - ( 1 ) 

_ (1 - 7ro) (1- ( 1 ) 01(1- Od 
7ro (1 - ( 0 ) + (1 - 7ro) (1 - Od 

O 7ro 01 (1 -01 ) 2 > ¢}-->-- --
- 1 - 7ro - 1 - 00 1 - 00 

and 

Next, we show that the actions in (2) (resp.: (3» are those that a single 
statistician following Criterion A (resp.: Criterion B) would have chosen. 

Preliminarily, we observe the following: if 00 < 01 and if Zl, Z2, ... are 
Li.d. conditionally on 8 = 0, for 0 E {Oo, Od, with conditional distribution 
Bernoulli with parameter 0, then IP'( 8 = 01 1 2:: Zi = z) is increasing in z, as 
it is easy to check. 

In view of these considerations, it is clear that we need only to show 

(11) 
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In fact, 

IPIo (8 = (hlY = 0) = IP(8 = (1)IP(XI = O,Y = 018 = Od 
IP (XI = 0, Y = 0) 

(1 - ~0)(1 -(1)2 
= 2 2 

(1 - ~o) (1 - ( 1 ) + ~o (1 - ( 0 ) 

1 ~o (1-(1)2 <-¢:}--> --
2 1- ~o 1- 00 

Furthermore, 

IPlo(8=Od= (1-~0)(1-01) >!¢:}~< 1-01. 
(1 - ~0)(1 - Od + ~o (1 - ( 0 ) 2 1 - ~o 1 - 00 

Thus, (11) is proved, and the claim follows. 

Now, we compare the payoffs of 10 and h in the two equilibria (2) and 
(3). It is easy to check that C - F < 0 for all values of the parameters. Hence, 
if given the choice, player 11 would choose that the additional information Y 
not be revealed. 

As far as 10 is concerned, we must compare A and E: 

Hence, only for high enough values of ~o the payoff in the equilibrium emerg­
ing when Y is considered is higher. Thus, if given the choice, player 10 would 
prefer that information be revealed for certain values of ~o and would prefer 
that it be withheld for other values. 

2.2 Second Example: Prediction 

We want to describe here a situation in which two statisticians must si­
multaneously predict correctly a binary outcome in order to guarantee for 
themselves a positive reward. 

The setup can be described as follows. Nature chooses repeatedly a state­
game, each time with a probability 8 which is unknown to the players. They 
must predict which state-game Nature will choose next. Preliminary obser­
vations will help the players in assessing the value of 8. 
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As we shall see below, we shall include in this example the possibility of 
partial signaling. 

Here is a description of the game. 

(a) Description of the prior. The prior law IP' determines the "a priori" dis­
tribution of e. We assume that this distribution is a Beta( 0:, (3). 

(b) Structure of private information. Let Y, X, XI, X II be exchangeable Ber­
noulli random variables, LLd. conditionally on e, with IP'(X = lie = 0) = 
O. It is common knowledge that the value of Xl is shown to player I only, 
and that the value of XlI is shown to player II only. Y is the public signal 
(see below), and X represents the choice of Nature to be predicted: X = 1 
if and only if the state-game G B is selected. 

(c) Structure of the public signal. A binary signal ep is shown to both players 
(0 ~ p ~ 1). It is such that, independently of the values of Y and of all 
random variables involved, 

IP' (ep = Y) = p = 1 - IP' (ep = Z) 

where Z is the outcome of a fair coin independent of X; thus, with prob­
ability p the r.v. ep yields valuable information, namely Y, and with 
probability 1 - p it gives irrelevant information, namely the outcome of 
an independent coin toss ; for an example of such a variable, see the 
Remark below. 
We may think of p as the clarity of the signal revealed. For each value of 
p we have a game, say Gp • 

A strategy profile is described by a string of 8 actions. The first two are 
the actions taken by In when ep = ° and ep = 1, respectively, and so forth. 

Remark 4. In order to describe the public signalling mechanism, consider 
first three independent Bernoulli random variables Y, W, Z such that 

- Y, Xl, XlI, X are exchangeable; 
- W is independent of Xl, XlI, X and IP' (W = 1) = p; 
- Z is independent of Xl, XlI, X and IP' (Z = 1) = !. 

The Bernoulli random variable ep is described as follows: the coin W is 
tossed by a referee; if W = 1, then the value of Y is revealed, otherwise the 
fair coin Z is tossed and the result of the toss is revealed. Thus 

e {Y if W = 1, 
p - Z if W = 0, (12) 

Le. 

{ep = k} = {W = 1, Y = k} U {W = 0, Z = k}, kE{O,l}. 

This mechanism is common knowledge, but the players don't know the out­
come of W. They are only told the value of ep (in addition to their private 
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information). Observe that relevant information is given only when W = 1, 
which happens with probability p. If p = 1, then the players have an addi­
tional observation (exchangeable with X) before predicting X. If p = 0, then 
the additional observation Y is not available to the players. 

Proposition 2. Consider the games Gp as described above. If the parameters 
of the prior law of e satisfy the relation 

2 ::; (3 + 1 < 0: < (3 + 2, 

then: 

1. The following strategy profile 

is an equilibrium. For 

(10) (I,) (110) (II,) 
aOal alaI aOal alaI· 

1 2~ - 0+.8+1 
P>PO:= ~ a ' 

1 - 4 a+.8+1 a+.8+2 

(13) 

each action is the same that a single statistician would have taken if he 
were to maximize his expected utility based on private information only, 
namely, if he were to choose his action according to Criterion A. 

2. The following strategy profile 

(10) (I,) (110) (II,) 
alaI alaI alaI alaI· (14) 

is an equilibrium. Each action is the same that a single statistician would 
have taken if he were to maximize his expected utility based on private 
information only, namely, if he were to choose his action according to 
Criterion B. Furthermore, for p < Po, each action is the same that a 
single statistician following Criterion A would have taken. 

3. For p > Po, Criterion A is Pareto-dominated by Criterion B. Obviously, 
it leads to the same payoff for other values of p. 

Proof. First of all, since (3 + 1 < 0:, we have 

0: + k 1 
IP'Ik (X = 1) = 0: + (3 + 1 > 2' k = 0,1. 

Hence, it is obvious that Criterion B leads to (14), and this is clearly an 
equilibrium. 

Next, we consider Criterion A. We have 

IP'Io (~p = 0) = IP'Io (~p = Y, Y = 0) + IP'Io (~p = Z, Z = 0) 
(3 + 1 1 

=p 0:+(3+1 +(I-P)2' 
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and 

JIP (X - 0 c - 0) _ 13 + 1 13 + 2 + (1 _ ) ~ 13 + 1 
10 -, <"p - - P a + 13 + 1 a + 13 + 2 P 2 a + 13 + 1 

Hence, 

---'2.±.L [p~ + (1 - p)!] 
JlPlo (X = Ol~p = 0) = a+i3+1~.6+2 1 2 

Pa+.6+1 + (1- P)2 

1 1- 2&t-h 
> 2" ¢:} P > ---'2.±.L a = Po· 

1 - 4 a+.6+1 a+.6+2 

Thus, the action of fo if he sees ~p = 0 is ao. The other strategies in the 
profile can be established similarly. 

Next, we show that the strategy profile (13) yields a Nash equilibrium of 
Gp , for every P > Po. First, we write the expressions of the relevant payoffs: 

• The payoff of 10 in Gp if (13) is played is 

JlPlo(~p = O,Xn = O,X = 0) + JlPlo(~p = 1,X = 1) (15) 

1-p = -2- JlPlo(Xn = O,X = 0) + P JlPlo(Y = O,fnteractiveXn = O,X = 0) 

+ JlPlo (~p = 1, X = 1) 

• The payoff of 10 in Gp if he deviates and plays a1a1 is 

JlPlo(~p = O,Xn = 1,X = 1) +JlPlo(~p = 1,X = 1) (16) 
1-p = -2- JlPlo(Xn = 1,X = 1) +p JlPlo(Y = O,Xn = 1,X = 1) 

+ JlPlo(~p = 1, X = 1) 

We show now that the difference between (13) and (14), namely 

( 1- p) [ 13 + 1 13 + 2 a a + 1 ] 
2 a+t3+1a+t3+2 a+t3+1a+t3+2 

[ 13+1 (13+2 13+3 a a+1)] 
+p a+t3+1 a+t3+2a+t3+3 - a+t3+2a+t3+3 

is positive iff p > Po. In fact, the above quantity is positive if and only if 

_a_ -itlL. _ ---'2.±.L ~ 
p > a+.6+1 a+.6+2 a+.6+1 a+.6+2 

a+~+1 a~t~2 - a!!~l a!!!2 + 2 a!!~l (a!!!2 a!!!3 - a+~+2 a~t~3) 
Now, we see after some straightforward calculations that the right hand side 
equals Po. 
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Next, we repeat the same arguments for player It. If (13) is played, his 
payoff is 

!Ph (~p = 1, X = 1) + !Ph (~p = 0, XII = 1, X = 1), 

whereas if he deviates and plays aOa1 his payoff becomes 

It is a simple matter to check that for every value of p there is no interest in 
deviating. 

In order to prove the last claim of the Proposition, we first show that the 
payoff for 10 if (14) is played, namely !Plo(X = 1), is greater than (15). In 
fact, their difference yields 

!PIO(~p = O,X = 1) -!Plo(~p = 0, XII = O,X = 0) 
,8+1 

= p 3 [a(a + ,8 + 3) - (,8 + 2)(,8 + 3)] 
I1k=l (a + ,8 + k) 

I-p 
+ 2 [a(a + ,8 + 2) - (,8 + 1)(,8 + 2)] 

2 I1k=l (a +,8 + k) 

This difference is positive, since 

a(a+,8+3)-(,8+2)(,8+3) ~ (,8+1)(2,8+4)-(,8+2)(,8+3) = (,8+2)(,8-1) ~ 0, 

and 
a(a + ,8 + 2) - (,8 + 1)(,8 + 2) ~ (,8 + l)a > O. 

It is even simpler to show that the payoff for 11 is greater in the equilibrium 
(14) than in (15) In fact, if (14) is played, player 11 collects a non-zero reward 
if and only if the event {X = I} occurs, whereas in (15) his reward is non-zero 
iff a proper subset of {X = I} occurs. 
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Abstract. This paper is about the conflict between the modern formal treatment 
of statistical inference and the role of subjectivity, inventiveness and personal in­
volvement which, I ciaim, should be allowed in any non trivial applied probabilistic 
modelling. I concentrate, intentionally, on the limitations of the formal treatment 
and try to overemphasize the qualitative, informal judgments involved in applied 
inference. Overdispersion and Item Response models are used as an illustration. 

1 A way from Formal Statistical Inference 

By Formal Inference I roughly mean the cultural paradigm underlying almost 
all theoretical formulations about drawing statistical inferences. The usual 
story goes like this: we have observations about a random variable whose 
distribution depends on unknown parameters. I have no objection to this 
for the situations where the probability distribution under consideration is 
produced by sampling from a finite population or by random assignment of 
treatments to units, where modelling is indeed trivial. In most other cases, 
as I will try to show below, to describe the randomness within which the 
data may be embedded is like inventing a story which, however, has to be 
consistent in its own terms. 

Formal Inference deals with idealized situations; as such the relevance 
of its results for those who work with applications may be similar to the 
relevance of grammar for good writing. The most common form in which the 
tools from mathematical statistics may be used is that, if we pretend that a 
set of very restrictive assumptions hold true, then we can assess how much 
the data support a single hypothesis of interest. This is fine as long as we do 
not forget that it is based on a good deal of fiction. 

1.1 A Brief Historical Digression 

I wish I had the competence to trace the origins of this paradigm since the 
early formulations of the method of least squares until when Fisher in [3] 
phrased it in a way which is essentially the same that we use today. Roughly 
speaking, in the formulation of astronomical problems whose solutions led to 
the method ofleast squares (see for instance Stigler [11], Chap. 1), there were 
rather well defined physical quantities which could not be observed without 
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error and they were treated as unknowns in a system of linear equations, with 
each equation corresponding to an observation. 

It may be of interest to notice that the problem of estimating, for a given 
earthquake, the coordinates of the hypocenter and the time of the event, 
which is a genuine statistical problem, is formulated in modern seismology 
([6], p. 221-224) in exactly the same way. Let T be the time of the event and 
ti the time of arrival of the P-wave at the ith station, A be the coordinates of 
the hypocenter and Yi those of the ith station. Under the assumption that the 
waves travel at constant speed /L, one can write down a system of equations 
of the form 

..j(Yi - A)'(Yi - A) 
ti = T + , i = 1, ... ,n 

/L 

which expresses the relation between the time of departure of the wave, the 
distance, the time of arrival and the speed. Here T and A are what we call pa­
rameters but to the seismologist they are just unknowns in a over determined 
system of equations. 

When parameters are no longer well defined physical quantities, we enter 
into the realm of fantasy. In itself this is not a bad thing as long as we 
keep in mind that, though parameters should provide the answer to relevant 
questions of interest in the problem at hand, often they exist only in the 
model which is defined through them. For a study about the origin of the 
word 'parameter' see the contribution of [10] to the discussion of Leonard. 
My impression is that Fisher and his contemporaries while using the word 
parameter were aware of real applications of which they had direct personal 
experience. Today instead we have many theoretical statisticians who are 
very familiar with the formal properties of the theory but have very little 
contact and interest for the problems to which the theory could be applied. 

1.2 Keynes or Coming Back to the Real Thing 

An important part of Keynes' book A Treatise on Probability, which first 
appeared in 1920, is devoted to a criticism of Statistical Inference. Though 
the discussion is based on works published before 1920 and thus Keynes does 
not seem to be aware of Fisher's contributions, the main points in his criticism 
of Statistical Inference, contained in Part V of the book, seem to me to be 
extremely relevant to a modern statistician. In a way, Keynes' criticism brings 
us back to the real issues underlying any inference, including those based on 
statistical methods. However, my assessment of the relevance of Keynes in 
this respect is probably not shared by many statisticians: see for example [12] 
for additional references and a very critical evaluation. 

According to Keynes, the statistician is faced with all the difficulties which 
are inherent to inductive reasoning: a good deal of the knowledge which 
must be taken into account is of a vague nature and incapable of numerical 
treatment ([5], p. 328). What makes the life of the statistician easier is that, 
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part of the information which is to be taken into account, is available in a 
convenient and manageable form, summarized into statistics. This situation, 
however, may be misleading if one believe that statistics is all that one needs 
to consider. Keynes in [5], p. 391, wrote: 

No one supposes that a good induction can be arrived at merely by 
counting cases. The business of strengthening the argument chiefly 
consists in determining whether the alleged association is stable when 
the accompanying conditions are varied. This process of improving 
the Analogy, as I have called it in Part III, is, both logically and 
practically, at the essence of the argument. 

In other words, the strength of an inductive conclusion must increase with 
the diversity and complexity of the experimental conditions under which, for 
example, a given treatment is effective. Often these issues will be discussed 
when planning the data collection or designing an experiment and involve a 
lot of qualitative assessments about which set of circumstances might affect 
the result or association of interest. Now, according to the formal treatment of 
the subject in statistics, it seems that, by simply increasing the number of ob­
servations, we can also increase the strength of an empirical finding. Suppose 
for instance that we want to compare two fertilizers; if all the observations 
are taken in the same area, in a given period and under similar conditions, we 
clearly have very little support for extending what has been observed, even if 
the number of trees used in the experiment is very large. Moreover, usually, 
once the data have been collected, only very simple information will be avail­
able concerning the design and the methods of observation. The problem is 
even more serious when, as it is customary in scientific papers, one tries to 
reanalyze popular data sets which are, usually, almost completely abstracted 
from the context in which they were produced. 

A closely connected problem is that the strength of an inference must also 
depend on how wide and general is the statement we are willing to assert. 
The fact is that there is no way for expressing such features within Formal 
Statistical Inference. Consider again the example of a designed experiment to 
examine the effectiveness of different fertilizers; our conclusions might be valid 
for predicting the results for the same area, in the same period and possibly 
under very similar atmospheric conditions. But with these restrictions there 
is almost no inference but simply a description of what did happen in a very 
specific context. 

Though these issues are usually ignored in the statistical literature, I 
think that they are somehow related to the notion of over fitting. I do not 
know of any generally accepted definition of over fitting, but I have seen the 
notion used occasionally by referees to mean roughly that, if the model fits 
very well, it is likely that some dirty trick has been used. A more serious 
assessment of overfitting should look for indirect signs that the model is 
likely to be making statements about accidental facts specific of the observed 
data. To take an extreme example, in a linear model context, by inspecting 
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a large number of possible contrasts, it should not be difficult to find a small 
subset of these contrasts whose estimates are highly significant and a model 
stating that the remaining linearly independent contrasts are 0 will probably 
fit very well. Thus, the essential quality of over fitting is not that the model 
fits well, but that it is making assertions about randomness and this should 
be revealed by the fact that what the model asserts looks complicated and 
uninteresting. 

2 Where Do Models Come From? 

The title of this section echoes a similar title in a paper by Lehmann [7] that 
complained that Fisher had apparently very little to say but "As regards 
problems of specification, these are entirely a matter for the practical statis­
tician". In the following I will try to discuss the issue from a very personal 
point of view and highlight certain connections between Statistics and the 
Arts. 

In many instances probabilistic models may be seen as the outcome of a 
dialog between two parties which I will call the statistician and the scientist 
with the understanding that more than one person may be involved on both 
sides. The statistician will usually know very little about the specific field until 
the scientist comes along with the data or a research project. The quality of 
the dialog that will be established will affect the quality of the resulting work 
to an extent which is comparable to that due to the technical abilities of 
each party in their own fields. To begin with, each side will be speaking in a 
different language. So, it is likely that the scientist, when asked to describe the 
applied context, will describe how things should behave according to some 
preliminary model which is not acknowledged as such. The starting point of 
the scientific investigation or the scientist's expectations may be inconsistent 
or rely on assumptions which, once translated into a probabilistic framework, 
may turn out to be vague or meaningless. 

On the other hand, the statistician will often be tempted to pay little at­
tention to details that do not fit easily into the probabilistic framework which 
seemed initially appropriate. Indeed it is often the case that something which 
initially may seem irrelevant or simply a nuisance, at a closer look may reveal 
interesting features. For instance, in a study of the population dynamics of 
a species of crustacea, an excess of variability, initially accommodated into 
a model of overdispersion, led later to examine more closely the sampling 
process. It turned out that the scientists had provided an over simplified de­
scription of the sampling process and that what had been explained by a 
strange feature of the spatial distribution of the crustacea was instead due to 
the fact that only a small proportion of the material collected from the lake 
was actually examined. So, while the scientist may forget to disclose impor­
tant piece of information, especially if this could bring discredit upon her Ihis 
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work, the statistician is likely to be reassuringly inaccurate when asked to 
translate the probabilistic assumptions into the scientist own language. 

The way of questioning the other party and of being alerted against the 
potential misunderstandings described above is something that can only be 
learned by watching other people doing it and is an instance of what Polanyi 
[9] calls personal skills. Two other important notions which are particularly 
relevant here and were also developed by Polanyi are those of personal in­
volvement and intellectual passions. Even in a simple context, if we do not 
take anything for granted, the actual class of possible models would be very 
wide and even if we were able to explore all of them, we would hardly find 
our way out of the Labyrinth. If some structure will eventually emerge, this 
will be to some extent an invention rooted in the reality as well as into our 
own curiosity and obsessions. 

2.1 Is Statistics an Art? 

This is again a quote from [7]: 

Is applied statistics, and particularly model building, an art with each 
new case having to be treated from scratch (although even artistic 
endeavors require technique that can be systematized and learned), 
completely on its own or does theory has a contribution to make to 
this process? 

Consider how, within our community, we decide which are the relevant fields 
of research and how we assess the merits of single research projects: certainly 
not on the basis of formal or objective criteria, rather more often we are 
guided by our emotional response telling us that something goes into the 
right direction. So this is another instance of Polanyi's intellectual passions 
which however may be trained and it is mainly through personal contacts 
that we statisticians come to share some common feelings about the style of 
probabilistic modelling. It is easy to see that these attitudes have much in 
common with the poetics of artistic movements. 

The main issue here is: how much space there is for subjectivity and in­
ventiveness in applied probabilistic modelling and how tight is the constraint 
that the model has to fit the data after all. If the model has to contain a 
generalization, it must aim to catch only those features of the data which are 
of interest. So, for instance, if there is no reason to suspect that the order 
with which cases are observed makes any difference, this information will not 
even be taken into account and even if we noticed an apparent systematic 
effect, this will probably be attributed to chance. In other cases it is the 
model itself that says how its adequacy should be assessed; a particularly 
interesting instance is that of binomial models with overdispersion: it is as if 
these models were born with an alibi for not fitting as expected. 
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2.2 Models or Fantasies? An Example from Item Response 
Models 

To make my discussion more specific I will try to apply it to item response 
theory. This is essentially a flexible set of probabilistic models aimed to repre­
sent the behavior of n subjects, selected at random from a given population, 
who submit to an examination made up of J dichotomous items (questions). 
In the latent class version of these models, one imagines that the population 
is made up of C different latent classes of individuals which are homogeneous 
with respect to the abilities needed to answer the items correctly. Let x de­
note a J x 1 vector of possible responses, that is a string of O's and 1 's that will 
be called response configuration; clearly there are 2J possible configurations 
and we may denote with Pc the vector whose elements are the probabilities of 
providing all possible response configuration (ordered, say, lexicographically) 
conditionally on latent class C; this vector describes completely the behavior 
of subjects in latent class c. 

Most item response models assume that the events of giving a correct 
answer to different items are independent, conditionally on a given latent 
class and that latent classes may be ordered in a unique way from the worst 
to the best (with respect to the probability of answering correctly any given 
item). A substantial simplification is achieved by the Rasch model which, in 
the context of finite mixtures (see [8]), assumes that the difference between 
the conditional logits for any pair of items is constant across latent classes 
and depends only on the differential difficulties of the items. 

2.3 Over or Underdispersion? 

Clearly, latent classes are just fiction and any inference will have to be based 
on the so-called manifest distribution, that is marginally on latent classes; 
the corresponding data are contained in the vector of observed frequencies y 
giving the number of subjects classified according to the response configura­
tion they provide, irrespective of the latent class to which they belong. Now 
the question is: what is the probability distribution of y or, at least, what is 
its variance matrix? Clearly, if this distribution was multinomial, we would 
have 

Var(y) = n[diag(p) - pp'] = n[}(p), 

where p is an appropriate vector of marginal probabilities having the same 
structure as Pc. The matter is not so trivial as it may appear and in fact 
[2] in the context of capture recapture data, devoted an Appendix to show 
that the distribution is almost multinomial though dispersion is less than 
multinomial. A simple proof of this last statement is as follows. Let Yc be the 
frequency distribution for the nc subjects belonging to latent class c. If we 
let p = E ncpcl n, the variance of y conditionally on n = (nl ... nc) and P 
= (Pl ... pc), is simply the sum of the (conditional) multinomial variances 
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and may be transformed by adding and subtracting npp' so that 

L nc[diag(pc) - Pcp~] = nO(p) - L nc(pc - p)(Pc _ p)' 

and the claim follows from the fact that the first component is a multinomial 
variance and the second component is a positive definite matrix. 

What is not clear, however, is why we should condition to so many quan­
tities which are unobservable and exist only in our fiction. A different model 
arise if we assume, for instance, that the nc (the number of subjects sam­
pled from each latent class) are fixed but the Pc are random with E(pc) 
= p and Var(pc) = V. Computations are straightforward but a lot more 
tedious in this case and are omitted, however the result is well know and 
has been used, for instance, by Brown and Payne ([1]) to model overdisper­
sion in the context of electoral data. The variance of y may be written as 
n{O(p) + [L(n~/n - 1)]V} and the amount of overdispersion depends on 
the second component. 

A somehow surprising result arise if we assume that the Pc are constant 
while the number of subjects sampled from each latent class follow a multi­
nomial distribution: in this case the variance of the manifest distribution 
is exactly multinomial. Essentially this is so because the additional disper­
sion induced by the sampling variation of the nc compensate exactly the 
underdispersion of the initial model, which was equivalent to a mixture of 
conditional multinomial distributions. More precisely, if we let the nc have 
a multinomial distribution with expectation mr c and 7r denote the vector 
of probabilities with elements 7rc , then the variance of E(y) = Pn may be 
written as nPO(7r)P' and this is equal to n L 7rc(Pc - p)(Pc _ p)'. 

All of these models, and many others, were described by Gini ([4]), pp 
151-154, in his study of the distribution of sexes in human births. Each 

model is formulated without ambiguity by specifying in detail the random 
procedure that can generate the data. For instance, for the second model 
above he assumes that we first select with replacement a given number n 
of balls from a box containing balls numbered from 1 to C and obtain the 
sample sizes n c; then, for each c from 1 to C, select nc balls from a box 
having a composition based on Pc. However, in Gini's applications, over or 
under dispersion are testable assumptions because he was considering the 
distribution of families with a given number of children according to the 
number of sons and daughters and not according to all possible configurations 
of sex in the children ordered by age. In other words, in Gini's context the 
manifest distribution may be compared against the binomial distribution. 
Instead, in the context of item response (or capture-recapture) data, with 
the single table y the issue is undecidable. 
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A Bayesian View on Sampling the 2 X 2 Table 

Seymour Geisser 

School of Statistics, University of Minnesota, Minneapolis, USA 

Abstract. We study exact and approximate inferential procedures for the 2 x 2 
table from both the frequentist and Bayesian mode mediated by Likelihood Prin­
ciples. In particular, for a variety of sampling rules, inferential procedures for a 
Bayesian approach are the same while differences ensue for various exact and some 
approximate conditional frequentist methods. In fact, for certain sensible sampling 
rules, no exact conditional frequentist procedure is available. In a hypothetical situ­
ation where it is assumed that the sampling rule that led to the table was unknown, 
suggestions are made to handle this case, that indicate the general superiority and 
versatility of the Bayesian approach. 

1 Introduction 

Inference from the 2 x 2 table has been a source of interest and dispute 
for almost as long as statistics has been a modern discipline. Initially there 
was the Fisher-Pearson dispute over the proper degrees of freedom for the 
chi-squared test of independence (or equality of two population proportions). 
Later came the Fisher-Neyman dispute, see Barnard [1], [2], on an appropriate 
exact small sample test. It would appear that Fisher [12] had always claimed 
that whether one was sampling from a multinomial or two binomials the 
appropriate exact test of significance for independence in the former and 
equality of the population proportions in the latter was to condition on the 
marginals. The sampled values and true probabilities are displayed in Table 1. 
In this paper we discuss the various sampling approaches that would give rise 
to such a table and methods of analysis for particular parameters involved in 
the table. 

Table 1. 

A A 

B PH P12 nl 
rl nl - Tt 

13 P21 P22 
n2 

r2 n2 - T2 

r n-r n 
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If we are dealing with this classical 2 x 2 table then the random values 
within the table have the multinomial probability function 

subject to the four arguments summing to nand LPij = 1, with prescribed 
i,j 

sampling size n. 
If we reparametrize to 

then 

fn = f(rl,r2I nl,n2)f(nlln) 

= (;~)P?(l- Pl)n1-r1 (;:)P~2(1_ P2)n2-r2 (:J,n1 (1- ,)n2. 
(2) 

Now inference about a function g(Pl,P2), will be the same from fn as from 
the first two factors or the rhs of (2) by invoking an extension of the usual 
Likelihood Principle, LP (see Appendix), that was proposed by Barnard et al. 
[7] and formulated explicitly by Barnard and Sprott [6], which owed a great 
deal to Fisherian ideas. Potential restrictions and extensions and variations 
were discussed by Barnard [3], [4], Barnard and Sprott [6], Basu [8] and Berger 
and Wolpert [9]. Here invoking one extension termed ELP (see Appendix) is 
equivalent to conditioning on say nl so that n2 is also given since n was 
already fixed, which yields the first two terms of (2). 

If we now condition one of the other marginal sums, say r = rl + r2, then 
n - r is also fixed and we have, as Fisher indicated, conditioned on all of the 
marginals. This yields 

b = min(r, nl) and a = max(r - n2, 0) Iff = Pl(1- P2)/P2(1 - pd. 
Equal tailed conditional confidence limits can be obtained numerically by 

obtaining solutions Iff = 1ff2 the upper limit and Iff = Iffl the lower limit from 

c nl 

L f(rt/r,nl,n2) =~, L f(rllr,nl,n2) = ~ 
rl=O rl=C 

(4) 

respectively, so that with at least confidence 1 - a, we obtain an interval 
(lffl, 1ff2). Approximate large sample conditional confidence intervals for Iff 
using (3) were obtained by Cornfield [11] as well. 
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He showed that in the limit, using Sterling's formula 

where '11 is the mode of the distribution of rl and 

2 [ 1 1 1 1] -1 
7 =:::-+ _ +--_-+ _ 

rl nl - rl r - rl n2 - r - rl 

By approximating a sum by an integral he showed that in the limit 

thus demonstrating that the limiting distribution of (3) is N(fl' 7 2). Hence, 
accommodating a correction for continuity, he set 

( - 1)2 -2 2 
rl - rl - 2" 7 = Xa 

(
A 1)2 -2 2 
rl - rl + 2" 7 = Xa 

(5) 

(6) 

where X~ is the upper 0: percent point of the chi-square distribution with one 
degree of freedom. The largest real root ru of the equation (5) in '11 and the 
smallest real root rs of the equation (6) form the 1 - 0: confidence limits on 
fl· 

He then showed that for sufficiently large samples 

lfJ == '11 (n2 - r + ft) . 
(nl - fl)(r - ft) 

(7) 

Therefore lfJ is a monotonic function of '11 and approximate conditional con­
fidence limits on lfJ, (lfJl , lfJ2 ) are obtained by substituting rs and ru in (7). 

At this point we note that the likelihood of the first two factors of (2) 
which are independent binomials, is 

Hence the ELP would be contravened for estimation about lfJ because as 
a function of lfJ (3) and (8) are not proportional. Here a Bayesian analysis 
would in general yield different inferences for lfJ depending on whether (3) or 
(8) was used with the same prior density for lfJ. 

Fisher's exact significance test for independence in the 2 x 2 table for 
the equality of PI and P2 from the independent binomials, where under the 
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null hypothesis lJ! = 1, reduces to the use of the standard hypergeometric 
probability function 

(9) 

so there is a disconnect in terms of consistently applying the ELP to simple 
significance testing and estimation with regard to Fisherian inference. This 
was already noted by Barnard [5] who nevertheless supported the exact test 
because he claimed that little information was lost in conditioning on the 
marginals. However it also turned out that this conditional test is basically 
a similar test if, within the Neyman-Pearson corpus of hypothesis testing 
randomization is included (see Tocher [16]). 

2 Sampling Issues 

There are many other ways of sampling that would lead to a 2 x 2 table. For 
example, we can allow n to be random (negative multinomial sampling) and 
condition on anyone of the marginals or tabular entries. Suppose then for n 
random we stop sampling until a fixed value of ni is achieved. We then find 

However the likelihood for PI and P2 is still the same although the overall 
sampling distribution is obviously different than the usual multinomial. Hence 
inference about functions of PI and P2, according to the ELP, is still the same 
as when we assumed multinomial sampling. 

Negative multinomial sampling can also occur if one sampled n until a 
fixed r is achieved. In this case we get 

!r = !(rl,nl,n2Ir) (11) 

= !(nl,n2IrI,r2)!(rIlr) 

= (ni -1)pP(1_ PI)n1-r1 (n2 -1)p;2(1_ P2)n2-r2 (r)o:rl(1_ o:r2 
rl - 1 r2 - 1 rl 

where 0: = Pl1/(Pl1 + P21). 
Although the likelihood for PI and P2 arises from two independent negative 

binomials it is the same as in the positive multinomial and the independent 
binomials case. However, a frequentist can condition on ni + n2 yielding a 
sampling probability function 

(12) 
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where 0 = ~:::~~, i.e. the ratio of the failure probabilities. Conditional confi­
dence intervals can be obtained for 0 along the lines of Cornfield's treatment 
of.p. (By reversing the definition of failure and success one can parametrize 
to the ratio of success probabilities). Here the parametricization differs from 
(3) and the likelihood from (2) which is also the likelihood for independent 
negative binomials. Again the ELP is not sustained. But a simple frequentist 
significance test for 0 = 1 is equivalent to PI = P2 and results in the standard 
negative hypergeometric probability function 

(13) 

Such a solution has been implicitly suggested by Lehmann [15]. Whether 
or not this adheres to the Fisherian significance testing outlook, of course, 
cannot readily be determined-but it would appear so. Further, it can be 
shown to be basically a similar test in Neyman-Pearson framework, if ran­
domization is included, as was Fisher's exact test (5). 

Conditional confidence levels can be obtained numerically from solutions 
0= O2 , the upper limit, and 0 = 01 , the lower limit from 

c b 

L f(nllrl,r2,n) =~, L f(nlh,r2,n) = ~. (14) 
nl=a nl==C 

Large sample conditional confidence limits can be obtained in a manner 
similar to Cornfield's treatment described in section 1. We note that for large 
samples it is easy to ascertain that 

0== (n - ih)(ii l - rI) (15) 
iil(n - iiI - r2) , 

where iiI is the mode of nl. Further, the limiting distribution of nl is normal 
with mean iiI and variance 

[ 1 1 1 1] -1 
r2= ~+ _ + ___ -+--_--

nl nl - rl n - nl n - nl - r2 

Hence denote nu as the largest real root of the equation in iiI of 

(iiI - nl - -21 )2 
-'-----;;---"'-'- = x~ 

r2 

and ns as the smallest real root of 

(iiI - nl + -21 )2 
..:...-----::---!:.:.- = X~ 

r2 

(16) 

(17) 

(18) 

where nl is observed and X~ defined as the upper a per cent point of the chi­
square distribution with one degree of freedom. Then solutions for upper and 
lower 1- a limits on 0 are obtained by substituting the limits on iiI, (ii s , iiu) 
from (17) and (18) in (15) to obtain (01 ,02 ). 
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3 The Mixed Sampling Case 

Another negative multinomial sampling approach stops when rl attains a 
given value. Here 

frl = f(r2,nl,nlrd = f(r2,nlnl,rdf(nllrl) (19) 

= f(nIlrdf(r2In, nl, rl)f(nlnl, rl) 

= (nl - l)pp (1 _ PI)nl-rl (n2)p~2 (1 _ P2)n2-r2 (n - 1) 'Ynl (1 _ 'Y)n2 
rl - 1 r2 nl - 1 

Again, the likelihood for PI and P2 is preserved for Bayesian inference 
but here we now encounter a difficulty for conditonal frequentist inference 
regarding PI and P2. What does one condition on to obtain an exact signifi­
cance test on PI = P2, or a similar test in Neyman-Pearson setup? Of course 
this would also occur when we start with one sample that is Binomial, say a 
control, and the other negative Binomial, for say a new treatment where one 
would like to stop the latter trial after a given number of failures. 

In this situation, while Bayesian inference is not altered, exact frequentist 
inference appears to be stymied, whether for testing or estimation. So we have 
not only a disconnect between testing and estimation for conditional Fishe­
rian frequentist inference if the ELP is to be obeyed, but more disconcerting 
a stonewall for the mixed case. 

However, the Bayesian approach also suffers from a slight disconnect for 
these testing cases as the usual continuous prior for PI and P2 for estimation 
is no longer appropriate for testing PI = P2 because the posterior probability 
for the null hypothesis would be zero. The usual method to circumvent this 
is to put a lump of probability on the null hypothesis (see Jeffreys [14]). 
So even though this Bayesian approach is not completely seamless, a slight 
modification also turns the testing procedure into one of model selection, see 
also Geisser [13], Bernardo and Smith [10]. 

4 What Equal Likelihoods Entail 

Suppose we are only told that in a series of independent and identically 
distributed binary trials there were r successes and n - r failures, and the 
sampling was conducted in one of three ways: 

1. The number of trials was fixed at n. 
2. Sampling was stopped at the r - th success. 
3. Sampling was stopped when n - r failures were obtained. 

Now while the three sampling probabilities differ they all have the same 
likelihood 
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The probability of r successes and n-r failures under these sampling methods 
are 

fn=(;)L, fr=(;=DL, fn-r=(n~~~1)L 
where fa denotes the probability where a is fixed for sampling. 

Suppose we are to infer which one of these 3 sampling rules was used 
in the absence of any other information. This would be of interest since a 
frequentist analysis would depend on the sampling rule. 

If prior probabilities of the rules are assumed and denoted as Pn,Pn and 
Pn-r where Pn + Pr + Pn-r = 1, then the probability of the rule that gave 
rise to the table is 

n 1 1 
P(Sn) <X ( )Pn, P(Sr) <X --Pr, P(Sn-r) <X -Pn-r rn-r n-r r 

respectively, where Sa denotes the sampling rule with a fixed. If we assume 
Pn = Pr = Pn-r = 1/3, a "possible" ignorance assumption, then clearly 

1 r n - r 
P(Sn) = 2' P(Sr) = 2n and P(Sn-r) = ~ 

so that 
P(Sn) ~ max(P(Sr}, P(Sn-r» 

with equality holding for either r = n or 0 (this result informs us which of 
the two negative binomial sampling rules could not have occurred). 

On the other hand one might intuit that one really should not discriminate 
between the rules based on the information given so that a posteriori P(Sn) = 
P(Sr) = P(Sn-r) = 1/3, for r :f 0 or n, then Pn <X r(n - r),Pr <X n(n - r) 
and Pn-r <X rn. One could easily object to such a set of prior probabilities 
(aside from their peculiarity) because of their dependence on the values of 
the data. 

A third view is that statistical inference is incalculable in such a situation 
except subjectively since in this hypothetical situation no other information 
is presumed. However a subjective view, that could accept the largest prob­
ability for sampling rule Sn, is that this guarantees that the experiment will 
terminate whereas the other two plans cannot guarantee that the experi­
ment will not be indefinitely long. Since Sn does have the largest likelihood 
and subsequent largest probability under prior ignorance this appears to be 
a reasonable inference. Note also that if r > n - r that sampling rule Sr 
denominates Sn-r and vice-versa if n - r > r. 

Next we examine these issues for the 2 x 2 table. Here we list the various 
ways one can sample in constructing a 2 x 2 table such that one of the 
9 values that are seen is fixed in the sense that when that value appears 
sampling ceases. For 7 out of the 9 cases the entire likelihood is the same 
where 

2 

L = ')'nl(1_ ')')n2 IIp~i(1- Pi)ni-ri = L(,),)L(PI,P2) 
i-I 
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with sampling probability 

In2-r2 = (;:) (n2 ~ ~ ~ 1) (~~ II)L. 
The other two whose total likelihoods differ from the above are still equiv­

alent to the above for inference on (PI, P2) by the virtue of the ELP. But for 
inference on the sampling rules one requires the non-extended LP, since ELP 
does not apply. They are 

Ir = (;: =:) (;: =:) (~)L(PbP2)arl(I-ar2 
In-r = ( ni -1 ) ( n2 -1 ) (n - r)L(PI,P2){3n1-r1(I- {3)n2-r2 

ni - rl - 1 n2 - r2 - 1 n - rl 

where 
a = Pll/(Pll + P2t}, {3 = PI2/(PI2 + P22). 

Restricting our attention to the initial 7 sampling rules whose totallikeli­
hoods are equal we consider the same issue as previously. Can we infer, upon 
being presented only with the entries of a 2 x 2 table, which of the 7 sampling 
rules were used to generate the table, assuming only one of those 7 rules was 
actually used. 

If we assume all of the 7 were equally likely to be used then the probability 
of each of the sampling rules is 

ni - rl n2 - r2 
P(Snl-rJ = 3n ,P(Sn2-r2) = 3n 

where Sa represents the sampling rule until a is achieved. Clearly Sn domi­
nates all the others except in the unusual case where there are at least two 
zeros among the tabulated values involved with table 1, then at least one 
other rule will also have a 1/3 probability. Other than this unusual case, the 
second most probable is Sn, where ni = max(nl,n2). 



A Bayesian View on Sampling 85 

After that the probability of Sa depends on the size of a - the larger a the 
larger the posterior probability of Sa. On the other hand we could force the 
posterior probabilities to be all equal - but as before there are arguments that 
appear to mitigate against such a view. Of course the third possibility that a 
reasonable inference without further information, (such as the knowledge of 
the sequence of trials) and some subjective information, is unavailable. It is 
also clear that fr2' fnl-rl and f n2-r2 are in the same category as frl in that 
an exact conditional frequentist approach is unavailable, while all the others 
can be handled by the methods detailed in sections 1 and 2. 

5 Remarks 

In summary it is to be noted that for the Bayesian who is inferring about 
g(Pi,P2) it really does not matter which of the 9 sampling rules generated 
the data as long as g(Pi,P2) is independent of'Y or a or (3. However, a fre­
quentist interested in exact or in approximating exact inference would be in 
difficulty when ignorant of the sampling rule. Although this is a situation that 
admittedly does not occur with great frequency (assuming contact with the 
generator of the table), but when it does a Bayesian approach can be used 
to decide on the sampling rule, i.e. select the rule with largest probability 
or base it on the resulting mixture. However, willingness to use a Bayesian 
approach for deciding on the sampling rule should also favor the use of the 
Bayesian approach on g(Pi,P2) and in fact avoid deciding on the sampling 
rule. When the prior distribution of Pi and P2 is assumed independent of the 
remaining parameter of the reparamatrization then the ELP is completely 
in accord with the Bayesian approach. This reinforces the view that there 
are cogent theoretical and practical reasons for treating the 2 x 2 table in a 
Bayesian mode. 

Appendix 

Likelihood Principle (LP) 

Preliminaries 

The model for experiment £ consists of a sample space S and a parametric 
space e and a family of probability functions f : S x e ---+ R+ such that 
for all () E e 



86 Seymour Geisser 

LP 

For two such experiments modeled as £ = {S,p"e,f} £' = {S',p,',e,f'}, 
and for realization XES and X' E S', if 

f(xIO) = g(x,x')f'(x'IO) for 9 > 0 

for all 0 and the choice of £ or £' is uniformative with regard to 0 then 
inference or information Inf (£ , X) = Inf ( £' , X') concerning O. 

Note this implies that all of the statistical evidence provided by the data 
is conveyed by the likelihood function. There is an often useful extension 
namely: 

ELP 

When 0 = (p, ')') and 

f(xlp,,),) = g(x,x',')')f'(x'lp) 

it is plausible to extend LP to 

Inf(£, X) = Inf(£', X') concerning p, 

assuming that p and ')' are unrelated. 
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Abstract. Calculating the size of the sample required for an experiment is of 
paramount importance in statistical theory. We describe a new methodology for 
calculating the optimal sample size when a hypothesis test between two or more 
binomial proportions takes place. The posterior risk is computed and should not 
exceed a pre-specified level. A second constraint examines the likelihood of the 
unknown data not satisfying the bound on the risk. 

1 Introduction 

The heuristic argument for deriving the optimal sample design is straightfor­
ward but powerful. Initially, we place a constraint in the desired precision . 
Then, this precision is expressed mathematically in terms of the sample size 
n. When conducting a hypothesis test between two binomial proportions, the 
normal approximation to the binomial distribution is utilized and the power 
of the test involves n. 

Several criteria have so far been proposed for Bayesian sample size estima­
tion in the binomial setting. In [1], [2] and [3] a tolerance region is proposed 
where the parameters of a multinomial distribution will be contained with a 
certain probability. In [8] the sample sizes are obtained by imposing precision 
conditions on the posterior variance and Bayes risk whereas in [5] the pre­
posterior marginal distribution of the data is employed to derive the sample 
size for intervals with either fixed length or fixed probability of coverage. 

Generally, in a Bayesian development, there is no interest in Type I or 
Type II error probabilities. Precision is measured through posterior accuracy 
as in [4] in the context of one way ANOVA. Using the "0 - 1" loss function, 
the posterior risk is: min{Pr(Holy),Pr(H1Iy)}. For this to be small, the 
following upper bound condition is imposed: 

min{Pr(Holy),Pr(H1Iy)} ~ c (1) 

Furthermore, since sample size calculation occurs before any data collection 
an additional condition is necessary to ensure that the set K = TC of all the 
data not satisfying (1) has a small probability of occurrence. i.e., 

Pr(y ~ T) = Pr(y E K) < J (2) 

where J is a small constant and the probability in (2) is calculated based on 
the marginal distribution of y. 
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2 Formulation of the Problem 

Let Yl and Y2 be independent binomial random variables with parameters 
nl,Pl and n2,P2 respectively. We wish to derive the optimal total sample 
size, n, for performing the test of hypotheses: 

Ho : PI = P2 = P VB 

where n = nl + n2. We shall consider the case when P is a fixed number, and 
the case when P is not specified. The allocation ratio will be maintained as 
nl = n2 =~. 

The prior probability of Ho is 1fo and of HI is 1fl = 1 - 1fo. The prior 
information on the two proportions is expressed in terms of two independent 
Beta distributions, i.e., Pi '" Beta(O:i, .8i). As stated before, the posterior 
risk should be bounded i.e., min{P(Holy), P(Hdy)} ~ € and the data y = 
(Yl, Y2) must satisfy this bound with a high probability, i.e. Pr(y ¢. T) < 8 
where T is the set of all y satisfying (1). The latter condition ensures that it 
is unlikely that data contradicting (1) will appear. 

2.1 Case 1: p Is Known 

Let us first examine the case that the proportion P has a known value. Under 
the null hypothesis the posterior density of PI and P2 is: 

(rr;=1 (n~2)) pYl+Y2qn-Yl-Y21f0 

g(P,ply) = m(y) 

Under the alternative hypothesis, the joint posterior density of PI and P2 is 
given by: 

rr2 (n/2) O<i+Yi-1 n/2+f3i-Yi-1 r O<i+f3i 
( I) 1fl i=1 Yi Pi qi F( O<i F(f3i) 

9 Pl,P2 Y = m(y) 

where qi = 1 - Pi and 

The posterior odds are then given by 

P(Holy) = B 1fo 

P(Hdy) 1fl 
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where the Bayes factor B is given by 

B _ pYl+Y2qn-Yl-Y2 I1:=1 r(O:i + n/2 + f3i)r(O:i)r(f3i) 
- 2 I1i=1 r(O:i + Yi)r(n/2 + f3i - Yi)r(O:i + f3i) 

Next, it is necessary to find the set K = Te. It is clear that 

P(Holy) = (1fo/1fdB 
1 + (1fo/1fI)B 

1 
P(HIly) = 1 + (1fo/1fdB 

Hence, it is straightforward to show that 

K _ { . E: 1fl B 1 - E: 1fl } - y.---< <---
I - E: 1fo E: 1fo 

(3) 

The following general result by [6] establishes that the marginal proba­
bility of the set K converges to zero as the sample size increases to infinity: 

Theorem 1. Let n denote the sample size. As n -t 00, the Bayes factor B 
converges to 0 or 00. 

The exact sample size is determined by solving for n in the following equation: 

P { E: 1fl B 1 - E: 1f1 } _ s: ---< <--- -u 
1 - E: 1fo E: 1fo 

(4) 

By considering O:i'S and f3i'S to be integers and using Sterling's approximation, 
we can write (4) approximately as follows: P(WI < !(YI, Y2) < W2) = 8 
where WI and W2 are constants with respect to the data the data y and 

2 pYi 
!(Yl,Y2) = g qYi(O:i + Yi -1)(O:i+Yi-o.5)(n/2 + f3i - Yi _1)(n/2+i3i-Yi-o.5) 

By taking the natural logarithms of WI,W2, and !(YI,Y2) we obtain the 
following expression for the sample size: 

(5) 

where Wi = InWl , W~ = InW2 and g(YI,Y2) = In!(Yl,Y2). We will use 
Taylor's theorem to approximate (5). By evaluating all the partial derivatives 
at Yi = T = ';f, the Taylor approximation of g(Yl, Y2) yields: 
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where 

89 (n n) P O:i + ~ - 0.5 (3i - ~ - 0.5 - - - = In- - + --.:.,---
8Yi 4 ' 4 q O:i + ~ - 1 (3i - ~ - 1 

- In ( O:i + ~ - 1) + In ((3i - ~ - 1 ) 

829 (n n) 1 1 
8y; 4' 4 = - O:i + ~ - 1 + 2(O:i + ~ - 1)2 

1 1 
- (3i - ~ - 1 + 2((3i - ~ - 1)2 

Note that 882
89 = O. Now, if we define the following quantities: 

Yl Y2 
_ (n n) n ~2 ~ n2 ~2 8 2 9 -.!!JL n 8 2 9 _ .!!JL 

C1 - 9 4' 4 - 4 L..ti=l 8y, + 32 L..ti=l 8il{' C2 - 8Yl - 4avr' C3 - 8Y2 -
n 829 _ 1 8 29 _ 1 829 ( ) . 
4 8YI' C4 - 2 avr' C5 - 2 8YI' we have that 5 can be wntten as 

P(W{' < Y1C2 + Y2C3 + yrc4 + y~C5 < W~') = J (6) 

where WI' = W{ - C1, and W~' = W~ - Cl. 

The quantities C4 and C5 are almost always negative. For negative C4 and 
C5 the expression h(Y1, Y2) = Y1C2 + Y2C3 + Y~C4 + Y~C5 represents a quadratic 

2 3 
surface in Y1 and Y2 with a maximum at M = - ..::2...4C - ..::2...4C • A solution to this 

C4 C5 

inequality exists in the following cases: 

• For WI' < M < W~' the inequality is satisfied for the points Y1 and Y2 
that fall in the interior of the ellipse defined by h(Y1, Y2) = W{'. 

• For W{' < W~' < M the inequality is satisfied for the points Y1 and Y2 
that fall in the interior of the ellipse defined by h(Y1, Y2) = W{' and the 
exterior of the ellipse defined by h(Y1' Y2) = W~' 

From the above analysis, we conclude the following. 
P(K) = P(Y1,Y2 E interior h(Y1,Y2) = W{'IW{' < M < W~')+ 

P(Y1, Y2 E interior h(Y1, Y2) = WI' and 
Y1, Y2 fJ. interior h(Y1, Y2) = W~'I w{' < W~' < M). 

Optimal sample sizes are now approximately found by solving: P(K) = J. 

2.2 Case 2: Ho : Pl = P2, P Unknown 

In this situation, we are interested in testing Ho : P1 = P2, the common value 
P is not of particular interest. This can be modelled by letting a priori P '" 
Beta(o:, (3). The prior information on the proportions Pi'S is still expressed 
with Beta distributions, i.e., Pi '" Beta(O:i' (3i). Following the same method­
ology as before, the posterior odds are given by 

B1 = P(Holy) = B ?To 
P(H1 Iy) ?T1 
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where the Bayes factor B is 

B = rur (ai)r(f3i)r(ai + n/2 + f3i)]r(a + f3)r(L. Yi + a)r(n + 13 - L. Yi) 
TIi[r(ai + f3i)r(ai + Yi)r(n/2 + f3i - Yi)]r(a)r(f3)r(n + a + 13) 

Using the same reasoning as before we obtain the set K: 

K - { . € 1l"1 B 1 - € 1l"1 } - y.---< <---
I- € 1l"0 € 1l"0 

(7) 

Again, as a direct consequence of the result by [6] the marginal probability 
of the set K converges to zero as the sample size increases to infinity. 

Using the Taylor expansion the sample size equation is transformed to 

where VI and V2 are constants with respect to the data and 

h(Yl, Y2) = (t, Yi + a - 0.5) In (t Yi + a-I) 

+ (n + 13 - t Yi - 0.5) In ( n + 13 - t Yi - 1) 

2 

- L {(al + Yi - 0.5) In(ai + Yi - 1) 
i=l 

-(n/2 + f3i - Yi - 0.5) In(n/2 + f3i - Yi - I)} 

d v, 1 TT h(n n) n( 8h 8h) n4 (82h 82h) n2 82h d an i = n Vi - 4"' 4" - 4" 8Yl + 8Y2 + 32 8iii + ~ + 16 8Y18Y2' 1 = 
8h n 8h d _ 8h n 8h d _ 1 8h d _ 1 8h d d _ 8 2 h 
8Yl - 4"8iii' 2 - 8Y2 - 4"~' 3 - 28iii' 4 - 2~ an 5 - 8Y18Y2· 

All the partial derivatives are evaluated at ~. In this case the sign of the 
coefficients of the quadratic terms cannot be easily determined. The proba­
bility in (8) is transformed to: 

P (d3 y; + dlYl + d5YlY2 + d4Y~ + d2Y2 - V{ > 0 and 

~~+~~+~~~+~~+~~-~<~ 

= L P(d3y; + dlYl + d5YlY2 + d4Y~ + d2Y2 - V{ > 0 and 
Y2 

The roots of the quadratic forms with respect to Yl and Y2 are denoted by 
Yl,+, Yl,- and Y2,+, and Y2,- respectively. We use the following notation: 
X+ = max(Yl,+,Yl,-), X_ = min(Yl,+,Yl,-), Z+ = max(Y2,+,Y2,-), and 
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Z_ = min(Y2,+, Y2,-). Examining the signs of the quadratic forms we obtain 
the following: 

P(K) = L P(Z_ < Yl < Z+/Y2)!(Y2) 
{Y2:d3>O/\L1 <O/\L2>0} 

+ L P(X_ < Yl < X+/Y2)!(Y2) 
{Y2:d3<O/\L 1 >O/\L2<0} 

+ L P(Z_ < Yl < X-/Y2)!(Y2) 
{Y2:d3>O/\L1 >O/\L2>0} 

+ L P(X+ < Yl < Z+/Y2)!(Y2) 
{Y2:d3 >O/\L1 >O/\L2 >o} 

+ L P(X_ < Yl < Z-/Y2)!(Y2) 
{Y2:d3 <O/\L1 >O/\L2>0} 

+ L P(Z+ < Yl < X+/Y2)!(Y2) = 8 
{Y2:d3 <O/\L1 >O/\L2>0} 

Hence, the optimal sample sizes are obtained by solving for n in P(K) = 8. 

3 Results 

In this section, the method previously presented is illustrated by some specific 
examples. The algorithm is based on the argument used in section 2.2. The 
optimal sample size is found when P(K) = 8. The program is written in SAS. 

Table 1 shows the optimal sample sizes for the case presented in section 
2.1. The parameters p, ai and (3i are given in the table, while we have set 
11'0 = 0.5, € = 0.1 and 8 = 0.3. 

The specific cases presented in Table 1 highlight the features of the prior 
specification which have the greatest effect on the optimal sample size. Firstly, 
for a given precision 8, we need a bigger sample size to detect any significant 
differences when a priori the two proportions are expected to be closer to each 
other than when they are expected to be more distant. As an example, we 
consider the following two cases: In the first case, the prior mean proportions 
are 0.2 and 0.3 whereas in the second case they are set at 0.2 and 0.5. The 
fixed value p is 0.2 in both cases. As expected, the former situation requires 
three times the sample size ofthe latter (120 to 40) since the distance between 
the prior means increases considerably (0.1 to 0.3). 

Another feature of the prior specification that determines the sample size 
is the distance between the prior mean proportions and the fixed value p. As 
this distance becomes smaller, it is increasingly more difficult to distinguish 
between the two proportions and p, hence the sample size increases. The 
following example illustrates this fact: Assume that in both cases the two 
proportions have the same prior mean 0.2, but in one case p is 0.2 and in 
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the other is 0.5. The former case yields a sample size of n = 152 whereas the 
latter one needs only 20 observations. 

There is an interplay between sample sizes and the prior variances of the 
Pi's. Consider, the case when P = 0.5, PI = 0.5 and P2 = 0.6 and also when 
P = 0.2, PI = 0.2 and P2 = 0.3. The sample sizes are somewhat different (138 
to 120). The differences between the prior mean proportions and P are the 
same in both cases. Hence, the difference in sample sizes can be attributed to 
the differences of the prior variances. In the former case the prior variances are 
0.036 and 0.022 for PI and P2 respectively while in the latter case the variances 
are 0.027 and 0.019. In this situation a larger sample is required to detect a 
difference when there is more uncertainty about the prior proportions. 

Another observation can be made. Let's examine the two cases when P = 
0.2, while the prior means are either both 0.3 or both 0.1. The sample sizes 
are somewhat different (116 to 134). When E(Pi) = 0.3, the prior variance is 
0.019, while in the case of E(Pi) = 0.1, it is a much smaller 0.004. Thus, in 
the second case although we are more certain about the prior information, 
more sampling is required to detect a difference. This is explained by the small 
values of the prior mean proportions (E(Pi) = 0.1 in the latter case compared 
to E(Pi) = 0.3 initially). Therefore, the prior probabilities of "success" in 
the second case are very small and we need a bigger sample size to detect 
a significant difference than in the first case. Finally, note that when the 
prior variances are not different, and the distances between the prior mean 
proportions and P are the same, we do not observe any difference in the 
resulting sample size (n = 40 for P = 0.2, E(PI) = 0.2, E(P2) = 0.5, as well 
as for P = 0.5, E(PI) = 0.5, E(P2) = 0.8). Thus the effect of size of the prior 
mean proportions appears to be the weakest of the four factors. 

The results when the null hypothesis is Ho : PI = P2 can be summarized 
as follows. The general behavior of the optimal sample size is again governed 
by the distance of the prior means E(Pd and E(P2). The further apart these 
are, the smaller the optimal sample size is. 

Comparing the above results to the ones obtained when testing among 
three or more binomial populations (see [7]) , we note that the overall sample 
sizes tend to be smaller as the number of populations increase. This is a rather 
intuitive conclusion, since in order to establish HI in the case of, say, three 
populations a difference needs to be detected in just one of the three pairs 
among PI, P2 and P3, whereas in the case of two distributions the comparison 
was strictly between PI and P2. 

In conclusion, the method presented in this article provides a fully Bayes­
ian solution to the problem of sample size determination for hypothesis test­
ing in the case of two binomial proportions. 
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Table 1. Sample size values for fixed p and c = 0.10, ~ = 0.30 

p E(Pt) Var(pt) E(P2} Var(P2} 01,/31 02,/32 n 

0.2 0.2 0.027 0.2 0.027 1,2 1,4 152 

0.5 0.5 0.036 0.5 0.036 3,3 3,3 152 

0.8 0.8 0.027 0.8 0.027 4,1 4,1 152 

0.2 0.2 0.027 0.3 0.019 1,4 3,7 120 

0.5 0.5 0.036 0.6 0.022 3,3 4,6 138 

0.8 0.8 0.027 0.9 0.004 4,1 18,2 130 

0.2 0.2 0.027 0.1 0.004 1,4 2,18 152 

0.5 0.5 0.036 0.4 0.022 3,3 4,6 146 

0.8 0.8 0.027 0.7 0.019 4,1 7,3 128 

0.2 0.3 0.019 0.3 0.019 3,7 3,7 116 

0.5 0.6 0.022 0.6 0.022 6,4 6,4 140 

0.8 0.9 0.004 0.9 0.004 18,2 18,2 130 

0.2 0.1 0.004 0.1 0.004 2,18 2,18 134 

0.5 0.4 0.022 0.4 0.022 4,6 4,6 138 

0.8 0.7 0.019 0.7 0.019 7,3 7,3 116 

0.2 0.2 0.027 0.5 0.036 1,4 3,3 40 

0.5 0.5 0.036 0.8 0.027 3,3 4,1 40 

0.5 0.5 0.036 0.2 0.027 3,3 1,4 40 

0.8 0.8 0.027 0.5 0.036 4,1 3,3 42 

0.2 0.5 0.036 0.5 0.036 3,3 3,3 20 

0.5 0.8 0.027 0.8 0.027 4,1 4,1 20 

0.5 0.2 0.027 0.2 0.027 1,4 1,4 20 

0.8 0.5 0.036 0.5 0.036 3,3 3,3 20 
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Abstract. We consider the problem of the second order minimax improvement of 
the sample mean in the estimation of the mean value of the Exponential Dispersion 
Family (EDF), when the space of all possible values of mean is nonrestricted. We 
show a necessary and sufficient conditions for the possibility of such an improve­
ment. 

1 Introduction 

This paper represents a brief review of the results given in [12]. 
We study the problem of second order minimax estimation of the mean 

value, J-t, of the Exponential Dispersion Family (EDF) 

dPo,>. = e>.(xO-k(O))dQ>.(x), () E e c R I ,>.. E R+, 

where () is a canonical parameter, >.. is a dispersion parameter. For references 
on the EDF see [6], [7], [8], [9],[21] and [22]. EDF includes many standard 
families such as Normal, Gamma, Inverse Gaussian, Stable and others. We 
suppose that the Normal Exponential Family (NEF) which generates the 
EDF (see [9], Sect. 3.1) is regular (see [3], Ch.3) or at least steep. Then the 
mean function by Theorem 3.6 of [3] 

I" = J-t(()) = E9,~X = I xdPo,>. = k'(()) 

is one-to-one ( X is a random variable distributed according to Po,>.). The 
variance is 

(1) 

where V(J-t) is called the variance function. 
Let Xl, ... , Xn be LLd. observations from the EDF. Then 

Xn = lin L:~=l Xi, being the maximum likelihood estimator (MLE) of J-t, 
is a first order optimal estimator. We focus attention on the problem of 
improving the efficiency of Xn in the second order for a nonrestricted space 
of all possible values of J-t. We show that this improvement depends on the 
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property of a pair of measures, determined by the model variance function 
V(JL) and some weight function q(JL), to be a strong type pair for an integral 
operator. This property, investigated in [1), (2), (19) (Sect. 1.3.1), complements 
and generalizes a well-known Hardy inequality (see (4)). Applying their results 
we obtain a necessary and sufficient condition for such a possibility, and as 
an application we test the Tweedie model, one of the important submodels 
of the EDF, which contains the most popular distributions: Normal, Gamma, 
Inverse Gauss and others. 

In Section 2 we study the asymptotic properties of generalized second 
order Bayes estimators of the mean in the case of the EDF. In Section 3 
we analyze the second order minimaxity property on unrestricted intervals. 
Section 4 is devoted to the application of the previous results to Tweedie 
EDF models. 

Current interest in estimating the mean value, JL, is due to the attractive 
role the EDF plays in actuarial science, in the context of credible estimation 
of JL,"credibility formula" (see (5), [10) (Sect. 5), (15), (16)). 

2 Second Order Generalized Bayes Estimator of the 
Mean 

Generalized Bayes estimator (g.B.e.) is the main tool in the minimax inves­
tigation. g.B.e. of the mean parameter JL = k'(O), in the case of NEF, was 
considered in ([3), Ch. 4). In this section we obtain the asymptotics of g.B.e. 
and their risks up to the term O(~), defined for the quadratic loss, for EDF. 
Our treatment, taking into account the definition of EDF and based on the 
asymptotics of a well-known Laplace integral, gives the asymptotics of gen­
eralized Bayes estimator under weaker conditions than those in (13) and (18). 
For random variable Yn we write Yn = oL2(an ) if EY; = o(an ). 

Theorem 1. Let 7r(O) be a generalized prior density and 7r(O) exp( -k(O)) be 
absolutely continuous on R. Suppose that for A E R+ and xES 

Ie exp(A(OX - k(O))7r(O)dO < 00, 

Ie 17r'(O) I exp(A(OX - k(O))dO < 00, 

Ie Ik'(O)1 exp(A(OX - k(O))7r(O)dO < 00. 

(2) 

(3) 

(4) 

Let supp(7r(O)) = [a, b) c e for some -00 ::; a < b ::; 00. Then the generalized 
Bayes estimator of JL = JL( 0), 0 E (a, b) has the asymptotic expansion 

(5) 
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where ir(J.t(O» = 11"(0), and this asymptotic expansion is uniform with respect 
to 0 on any finite subinterval of [a, b]. 

The proves of this and following theorems are given in Landsman ([12]). 

Definition 1. . The estimator 

which coincides with the generalized Bayes estimator J.tn up to the term 
o L2 ( ~) (see (5)), is called the second order generalized Bayes estimator. 

Defining 

w(J.t) = v'ir(J.t) (6) 

and substituting (6) into the first formula in Definition 1 we can redesignate 
fi,n by J.tn,w and give its representation in terms of w as 

The risk function of J.tn,w can be given in terms of w by the following: 

Theorem 2 •. In addition to the assumptions of Theorem 1, let ir(J.t) be three 
times continuously differentiable on [a, b]. Then for J.t E (a, b) 

2 1 V(J.t) Lw 1 
E/J,>.(J.tn,w-J.t) =,V(J.t)+ 2\2-(-)+0("2) 

An n A w J.t n 

uniformly in J.t on any closed subinterval of (a, b), where 

(7) 

is the Sturme-Liouville differential operator. 

3 Second Order Minimaxity on the Infinite Interval of 
Values of JL. 

Let the set of all possible values of the mean J.t, K = k'(e), be either the 
positive half line of R or R. Let q(J.t) > 0 be some weight function. Define 
the second order minimax constant with respect to q 
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Here /-Ln is any estimator of /-L, and E/J,).(-) = EO(/J),).(·). Let us say that JL~ 
is a second order minimax estimator of /-L with respect to the weight q(/-L), if 
for any /-L E K 

Here and further on we assume that the weight function q(.) is in C1(K). 
Special cases of weight functions are q(/-L) = 1 or q(/-L) = V(/-L)/)... The last 
one reduces 8(q, K) to the following form 

It is clear that 
c5(q, K) ::; 0 

and /-L~ yields a smaller risk than X n, if 

c5(q, K) < o. (9) 

Let us first consider the case K = R+. We say, following [1), that a pair of 
measures (v, 'Y) defined on set K is a strong type pair for the linear operator 
T : L2 (-y, K) -+ L2 (v, K), if there exists a constant C, independent on f, 
such that 

(10) 

Here L 2 (-y, K) and L 2 (v, K) are Hilbert spaces offunctions which are square 
integrable on K with respect to measures 'Y and v respectively. The smallest 
choice of the constant C is called the strong norm of the operator T and is 
denoted by IITlls. We show that (9) is related to the property that the pair 
of measures on K, (v, 'Y), defined by the model variance function V(/-L) and a 
weight function q(/-L) as 

dv = q(x)V(x)-ldx,d'Y = V(x)dx (11) 

is a strong type pair for the integral operator Pof(x) = J; f(t)dt or for its 
dual operator Qof(x) = Jxoo f(t)dt. 

Suppose .11, I = 1,2 ... is a sequence of bounded intervals in K such that 

.11 t K, as I -+ 00. 

With this sequence let us associate the following sequence of positive numbers 
al (.11)' being the first eigenvalues of the corresponding sequence of Dirichlet 
problems 

{ Lw + a t«:)w(x) = 0 

w(x) 18.::11 = 0 
(12) 
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with L given in ( 7). 
For a regular or steep EDF, the variance function V(x) is positive on K. 

Then the Dirichlet problem (12) has the first eigenvalue Al (.11) > O. The 
well-known Dirichlet principle (see e.g. [11], Ch.3, Sec. 17) says that 

(13) 

and the infimum is attained by the corresponding to 0:1 (.11) eigenfunction 
wLdx) , which is positive on .11 and smooth because V(x) and q(x) are 
smooth. As .11,1 = 1,2, .. is a monotone sequence of intervals, 0:1(.11),1 = 
1,2, ... is a non-increasing sequence of positive numbers. Let 

(14) 

Theorem 3. If the pair of measures (1/, 1'), defined in (11), is a strong type 
pair for the integral operator Po, i.e. 1IP01ls < 00, then 

0:1 
J(q K) >--, - A2 (15) 

and 0:1 = 4/11P011; > o. If 11P01I; = 00, but (1/, 1') is a strong type pair for a 
dual operator Qo, then 0:1 = 4/IIQoll; > 0, otherwise 0:1 = O. 

Theorem 4. Let the two measures 1/,1' be defined by (11), and let 

B = min{sup(l/([r, 00)) r V(x)-ldx), 
r>O 10 

sup(I/((O,r]) ('X) V(x)-ldx)}. 
r>O 1r 

Then, if B = 00 , Xn is a second order minimax estimator of mean JL. If 
B < 00, 0:1 in (14) is positive, and the estimator 

where w*(x) is a positive solution of equation 

q(x) 
Lw + 0:1 V(x) w(x) = 0, x E K, (16) 

is a second order minimax estimator of JL and 
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4 Tweedie Models 

In this section we apply the previous results to the important subclass of 
EDF - Tweedie models, for which 

V(p,) = p,P,p, E Kp, pEP C R 

(see (9), Ch. 4). Many popular distributions, such as Normal, Gamma, Inverse 
Gauss, are members of the Tweedie family with (p = 0, Kp = R), (p = 
2, Kp = R+), (p = 3, Kp = R+) respectively. A full description of Tweedie­
EDF is given in (9), Table 4.l. 

As the variance function V is a power function of p" it is natural to 
investigate a second order minimax problem with respect to the power weight 
function 

(17) 

Theorem 5. Let the classification parameter p for a Tweedie EDF satisfy 
p :j:. 1, and Kp = R+. Then Xn can be improved in the minimax sense in 
second order with respect to the power weight q(p,) = p,t iff t = 2(p - 1); the 
second order minimax estimator, which improves Xn for any p, E R+, is 

p,~ = Xn(1 - p ~ 1 X!:-2) (18) 

and the risk of p,~ is 

1 (1)2 1 
E >..(p,* - p,)2 = -p,P(1 - P - p,p-2 + o( - )). (19) 

,.., n An nA n 

Kp = R is the only case of a normal distribution, then p = 0, and Xn cannot 
be improved in second order on whole R for any q. 

Example 1. Gamma distribution with shape parameter a and scale parame­
ter f3 is EDF with p, = af3 and A = a. It is a member of the Tweedie class 
with p = 2, Kp = R+. Theorem 5 says that 

- 1 
p,~ = Xn(1- n) 

is a second order minimax estimator, which uniformly reduces the second 
order of the relative risk, Le., 

E ~* ~2 1 1 
,..,>.. n ~ = 1 - - + o( -), n -+ 00. 
V,..,,\(Xn ) nA n 

Example 2. The Inverse Gauss distribution belongs to the Tweedie model 
with p = 3, Kp = R+. From Theorem 5 we have that 

- 2 -
p,~ = Xn(1 - nA Xn) 

is a second order minimax estimator with the relative risk 

EJ.I,>"(p,~ - p,)2 = (1 _ ...!.p, + o(.!:. )). 
V,..,,\(Xn) nA n 
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Abstract. We analyze experimental time series from phase contrast microscopy 
of cells moving on a 2D substrate. Using Bayesian analysis a statistical model is 
developed which allows to characterize cell migration with a few parameters. 

1 Introduction 

Cell migration plays a key role in many medical questions, as for example 
during wound healing and the transmigration of leukocytes or tumor cells. 
However, it shows to be a highly complex process involving the cooperative 
interaction of a large variety of biomolecular components. Up to now math­
ematical models were mainly developed on two scales of description. On the 
molecular scale, migration is correlated with many biochemical reactions in 
the cell, i.e. the polymerization and depolymerization of actin or iontransport 
across cell membranes. In general, this approach could provide full descrip­
tion, though at the end it may be far too complicated and one is in danger of 
losing the complete picture. Contrarily, on a larger scale, it is focused on the 
movement of the center of mass of the cell only, e.g. with simple stochastic 
models. Unfortunately this phenomenological approach may prove to be too 
crude to allow for differentiated statements about the cell behavior. 

We therefore want to pursue a 'middle way' in between the above ap­
proaches. We analyze experimental time series from phase contrast micro­
scopy of cells moving on a 2D substrate. These data do not allow to give 
insight on the microscopic level, but deliver far more information than only 
the center of mass, e.g. they take account of subcellular processes like the 
dynamics of protrusions and adhesion releases. Considering this information 
content a model is developed which allows to characterize cell migration with 
a few parameters. 

The analysis is performed using Bayesian probability theory. Within this 
framework it is possible to determine which of the above models describe 
the data best. Though more sophisticated models with larger parameter sets 
easily fit the data better, the experimental quality may not allow to draw 
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such complicate conclusions and already a simpler model may take full ac­
count of the information in the data. Bayesian model comparison automat­
ically includes this principle, called Occam's Razor. The model parameters 
themselves are evaluated in the form of expectation values over the poste­
rior distribution. Both the model comparison and the parameter estimation 
are performed numerically involving computation methods like Markov chain 
Monte Carlo. 

2 The Problem 

Nearly all biological cells are 'on the move' during their live cycle. In addition, 
cell migration is of central medical relevance. Examples are embryo genesis, 
the spreading of tumor cells, transmigration of leukocytes, and wound healing. 
Thus, it is important to look for criteria to find and quantify changes of cell 
migration. 

However, as schematically shown in Fig. 1 cell migration is a highly cor­
related process, where a huge and even unknown number of molecular com­
ponents contributes to a physically coordinated motion of the whole cell [1). 

substrate 

Fig. 1. The cell is a complex system with many interacting components. Some of 
them which are known to be involved in the machinery of cell migration are labeled 
with names. 

How to gain insight in such complex systems? The system is far too com­
plicated to calculate the dynamics of molecular processes from first principles, 
e.g. from microscopic laws as the Schrodinger equation. In addition, hierar­
chical (temporal and spatial) organization on various scales might disallow 
this in principle [2). Furthermore modification of components takes place 
at molecular (microscopic) level, whereas the medical relevance occurs at 
macroscopic lengths, e.g. a cell missing a certain type of protein can show a 
completely different migration behavior. 
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Thus experimental information is necessary to find and model the essential 
components during cell migration. A typical experiment is shown in Fig. 3. 
Cells are moving on a 2D-substrate and can be observed with microscopic 
techniques. Fig. 3 shows a typical result, where snapshots of a single cell are 
displayed at different times together with the segmented cell boundary. 

Fig. 2. The cell images are analyzed with a border detection method. 

A closer look at the time-lapse series leads to several (known) observa­
tions: 

• Cells change their state between resting and migrating in a nearly time­
periodic way. 

• Moving cells are elongated, resting (unpolarized) cells show circular struc­
tures. 

• Extrusions, so-called lamellipodia, try to pull cells forward. 

Many additional phenomena have been observed and can provide an ex­
perimental based starting point of modeling the system. Bayesian approach 
offers criteria to select the model which is most appropriate with respect to 
the experimental results. 

3 The Model 

Time-lapse observations of migrating cells deliver information about the cell 
contours as shown in Fig. 2. From these contours further parameters can be 
derived, e.g. cell centers, area changes, positions of extrusions. From the ob­
servation of time-lapse series a simple model for cell migration is constructed 
in the following way. 
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t",38.633 min 

t·~,71.22!3 min 

Fig. 3. Migrating cell on a 2D-substrate. 

Extrusions of the cell membrane, so-called lamellipodia, generate forces F 
which drive a cell of mass m and lead to a complex motion of the cell center. 
The cell is adhesive to the substrate with adherence coefficient {3, which 
captures the complex and dynamical cell-substrate interaction (especially via 
integrins) in a mean single parameter. 

area decrease 

Fig. 4. Cell displacement after one time slice. The light area is new, the dark area 
vanishes. Summing up all light (dark) pixels at the cell border results in the force 
j+ (r)· 

The forces are derived from the time series of cell area displacement (see 
Fig. 4) in two different ways: 

Modell: The force results from the sum of all vectors going from the 
center of mass to point of area increases: Fl = f+ 
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Model 2: In addition to Fl the vector sum from the center of mass to 
points of area decreases is taken into account: F2 = f+ - f-

Whereas model 1 only captures the pulling forces of lamellipodia, model 
2 in addition takes into account the effect of retraction releases of the trailing 
cell part. The resulting equation of motion is 

(1) 

with r i = (Xi, Yi) T. This constitutes a second-order differential equation 
which can be transformed by substitution of 

a 
(2) v= -r at 

into a 
(3) -v = -bv+eF at 

where b = (3lm and e = 'Y 1m. Eq. (2) and Eq. (3) are two first-order dif­
ferential equations and can be easily accessed with numerical methods like 
Runge-Kutta. 

4 Bayesian Formalism 

4.1 Parameter Estimation 

The data consist of the (x,y)-positions of the cell center for every time slice 
i, which is determined from experiment with measurement error e. 

(4) 

With the assumption of (e) = 0 and (e2 ) = a 2 we get by the maximum 
entropy principle [3] a Gaussian likelihood 

1 {1 N 2} p(Dlb,e,J) = N exp --2 2 L Idi - ri(b,e)1 
(21l'a2 ) "2 a i=l 

(5) 

The following prior for the parameters is obtained again by invoking the 
maximum entropy principle, where we use a first estimate bo and Co derived 
from other experiments and principle considerations as a constraint 

(6) 

The two parameters band e are determined in the form of expectation values 

(b) = J b p(bID, 1) db = J b p(b, elD, J) db de 
J p(bID, J) db J p(b, elD, J) db de 

(7) 
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With the help of Bayes theorem 

pCb, ell) 
pCb, elD, I) = p(DII) p(Dlb, c) (8) 

and inserting (5) and (6) we get 

J exp {-b L:~lldi - ri(b,e)1 2 - .!L - .L} 
(b) = b 200 bo Co db de 

Jexp {-~,,~ Id· - r·(b' c')1 2 - K. - £...} db' dc' 200' L..z=l ~ ~, bo Co 

. (9) 

The fraction in Eq. (9) can be regarded as a sampling density for the Markov 
chain Monte Carlo method in order to calculate the expectation values nu­
merically. 

4.2 Model Comparison 

In order to compare different models, we are looking for the probability of a 
model Mk given the data D. Employing Bayes theorem again delivers 

(10) 

Since no model is preferred a priori, p(MkII) = canst. The evidence cancels 
out in comparing two model probabilities obtained for the same data and we 
are left with the determination of the global likelihood p( DIM k, 1). The latter 
is assigned to the probability functions of Eq. (5) and (6) by marginalization 
of the parameters OT = (b, c): 

p(DIMk,I) = ! p(D,OIMk,I) dO 

= ! p(DIO, Mk,I)p(OII)dO (11) 

The integrand in equation (11) is mainly of Gaussian shape and can be ap­
proximated by expanding the exponent cI>(O) around its maximum cI>(Oo) 
using Laplace approximation ([3]): 

(12) 

Now it is possible to perform the integration analytically which results in 

(DIM I) - t. exp {cI>(Oo)} 
p k, - cans rT::TT 

vdetH 
(13) 
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70 90 110 
x 

Fig. 5. Resulting cell path for model 1 (thick black line) and model 2 (thin black 
line compared to the actual path (gray line). 

5 Results 

For the two models the resulting cell path for the three cells is shown in Fig. 
5. Already eye sight tells us that model 2 wins clearly over model 1. The 
actual calculation shows that the model probability for model 1 is negligible 
compared to model 2. Further results of the model parameters are therefore 
only shown for model 2 (see table 1). In order to get f3 and 'Y the resulting 

Table 1. Parameter values for the three cells under consideration 

Cell A (# pixels) (3 (a.u.) 'Y (a.u.) DJ 

1 5000 995 ± 100 1000 ± 100 1.17 

2 10500 1050 ± 105 630 ± 63 1.32 

3 3500 700 ± 70 525 ± 53 1.27 

expectation values (blm) and (elm) have to be multiplied with the mass of 
each cell. Assuming, that the mass of the cell is proportional to the area 
coverage A which can be determined by counting the pixels within the cell 
boundaries of Fig. 2, the area delivers a simple estimate of the cell mass. A is 
given in table 1 where the number of pixels is the unit. Multiplying this value 
with (blm) and (elm) results in the desired quantities f3 and 'Y, however in 
arbitrary units (a.u.) (see third and forth column of Table 1, an error of 10% 
is assumed for deviations in A <X m). 

Let us first discuss f3 which reveals more or less the same value for the 
three cells. This should be the case since all three cells are from the same cell 
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culture and face the same substrate conditions. f3 is therefore an appropriate 
parameter. 

But what is the meaning of "y? "y is the proportionality constant between 
the force derived from the respective model 1 or 2 and the actual force in the 
equation of motion. A larger "y means a larger influence of the force generating 
lamellipodium on the cell migration and thereby a higher efficiency (the cells 
knows where to go to). This statement is supported by looking at the fractal 
dimension D" a quantity that is obtained by analyzing the cell path. It is 
proportional to the cell path covering the substrate, where random motion is 
D, = 2 and a linear trajectory is D, = 1, and thereby indirect proportional 
to the efficiency of the cell migration. A small D, should point to a higher 
efficiency and therefore a larger "y. Comparing the values for the three cells 
in the last two columns of table 1, this can be seen. 

6 Conclusion 

The present work derives simple models describing cell migration with two 
parameters where driving forces were constructed from areas of increases and 
decreases. Bayesian model comparison was able to prefer by far the model 
which includes the effects of driving lamellipodia forces and retractions of 
trailing ends. 

In future we will extend our approach to more distinguished models and 
apply the technique to a larger number and variety of cells. 
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Abstract. Let Wt (0 ::; t < 00) denote a Brownian motion process which has 
zero drift during the time interval [0, v) and drift B during the time interval [v, 00), 
where B and v are unknown. The process W is observed sequentially. The general 
goal is to find a stopping time T of W that 'detects' the unknown time point v 
as soon and as reliably as possible on the basis of this information. We work in a 
Bayesian framework and discuss a loss structure that is closely connected to that of 
the Bayes tests of power one of Lerche ([4]). This work extends Beibel's ([2]) where 
only normal priors on B were studied. An important ingredient in our proof is the 
comparison of the process of the posterior variance under different priors similar to 
the arguments in Paulsen ([6]). 

1 Introduction 

In the study of financial markets the quick detection of changes of market 
trends is an important issue for prognosis. The question rises which are good 
indicators. Of course the answer depends on the setting under study. For 
instance it has been shown that the Cusum-statistic has a minimax property 
when one assumes that nature choses the change-point as unfavorable as 
possible (see Ritov ([7]) and Beibel ([1])). Here we study this problem from 
a Bayesian point of view in a classical setting. We assume that the market 
under observation moves at first like a Brownian motion with a known drift. 
At an unknown random time the drift changes to an unknown size. The task 
is to detect this change as quickly and as reliable as possible. We solve this 
problem for rather arbitrary priors of drift size and time of change. In the 
paper of Beibel ([2]) the distribution of the drift was assumed to be normal. 
Here we combine the approach of Beibel with ideas of Paulsen ([6]). We 
consider the following setting. Let Wt, t ~ 0 denote a Brownian motion with 
drift zero up to time v and drift 0 during the time interval [v, 00). We denote 
by P(8,v) the corresponding probability measure and by Poo the probability 
measure when no change of the drift occurs. This means that Poo = P(8,00) 
for all 0 E (-00,00) and P 00 is the measure of standard Brownian motion. 
Let E(8,v) denote the expectation with respect to P(8,v) and Eoo with respect 
to Poo. We look for a stopping time T of W which will stop soon after v 
with low probability of alarm under Poo. Following Lerche ([4]) we study the 
Bayes risk 

1+00 {02 1 +} L(c,T) =Poo(T< oo)+c 2 E(8,v)(T-v) p(dv) G(dO), 
-00 [0,00) 
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where p and G are probability distributions on [0,00) and (-00, +00) respec­
tively. The goal is to minimize L(e, T) over all stopping rules. We provide 
an asymptotic expansion of the minimal Bayes risk when the costs e tend to 
zero. We also show that certain mixture stopping rules are asymptotically 
optimal. For related results when G is normal and for some history see [2]. 

2 Assumptions and Results 

Throughout this article we assume that fooo vp(dv) < 00. We further assume 
that G satisfies 
(A 1) The distribution G has an absolutely continuous Lebesgue density 

9 on (-00,00). That is G((-oo,x]) = f~oog(y)dy, where g(y) = 
g(O) + f~ g'(z)dz. 

(A 2) f~:: JyJ 2+Og(y)dy < 00 for some 8 > O. 

(A 3) f~:: IH(Y) log JH(Y)Jlg(y)dy < 00, where H(y) = ~/:? 
Let L~ = infT L(e, T), where the infimum is taken over all stopping times 

T ofW. Let 

Sb = inf {t > ° 11:00 100 eY(W,-Wt/,,)-~(t-s)+ p(ds)g(y)dy > b} 

and (3(e) = lie. 

Theorem 1 IfG satisfies (A1) to (A 3), then 
L (c, S{3(c)) = e (log ~ + log log ~ + K(p, G)) +o(e) as e -t 0. The constant 
K(p, G) is given in detail in section 4. 

Theorem 2 If G satisfies (A1) to (A 3), then L~ = L (e, S{3(c)) +o(c) as 
e -t O. 

We note that the stopping time Sb has a simple interpretation. Namely, one 
stops as soon as the mixture of likelihoods 

100 1+00 2 ey(W,-w,,,.)-lIi(t-s)+ g(y)dyp(ds) 
o -00 

exceeds b. In the one-sided case, when e = [0,00) similar results hold (see 
[3]). The proofs of the corresponding results are a little more difficult than 
in the two-sided case. This is due to the possible discontinuity of 9 at zero. 
Instead of (AI)-(A3) one can assume that (AI') to (A3') hold, which are 
stated as following: 
(A l' ) The distribution G has an absolutely continuous Lebesgue density 9 

(Aff ) 
(A:1 ) 

on [0,00). That is G(( -00,0]) = ° and G((O, x]) = f; g(y)dy, where 
g(y) = g(O) + f~ g'(z)dz. 
fo+ OO y2+og(y)dy < 00 for some 8 > 0. 

fo+ oo IH(y) log JH(Y)Jlg(y)dy < 00, with H(y) = ~m· 
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3 Rewriting the Bayes Risk 

Let B denote a standard Brownian motion. Let Y be a random variable with 
P(Y ~ y) = f~oo G(ds) and T be a nonnegative random variable with P(T > 
t) = f(t,oo) p(ds) for all t ~ O. Let B, Y and T be independent. We assume 
further that G satisfies condition (AI) to (A3). The process which is observed 
is 

Wt = Bt + Y(t - T)+ = Bt + lot Rsds , 

with Rs = YI{T~s}. The distribution of W is given by 

P = r~: /ro,oo) p(IJ,II)p(dv)g(f))df). Let 

1+00100 2 'ljJt = ey(W,-w,,,.)-lIi-(t-s)+ p(ds)g(y)dy. 
-00 0 

Let F t = F tW = a(Ws; 0 ~ s ~ t). Obviously it holds 

dP I 'ljJt = dP, 
00 F, 

Let P 00 denote the probability measure under which W is a standard Brow­
nian motion. Now we have: 

L(c,T) = Poo(T < 00) + cE {~2 (T - T)+} . (1) 

To rewrite this risk we derive a stochastic differential equation for log'ljJt 
in terms of observable quantities. Let 

and 

Let W denote the innovation process 

Wt = Wt - lot Rsds . 

This process is a standard Brownian motion under the probability measure 
P relative to the filtration F (see Liptser and Shiryaev ([5]), 297-299). We 
now obtain: 
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Proposition 1 

(2) 

Proof. Let 

{ rt A-I t A 2 } Zr = exp - 10 RsdWs - "210 (Rs) ds . 

Since E J; IRslds < 00 for all t > 0, we obtain from Wong and Hajek ([9], 
254-257) that '¢t = Zr. 

We will now use Proposition 1 to rewrite L(c, T). Fubinis theorem yields 
for all F W -stopping times T 

Moreover by a standard likelihood-ratio argument of sequential statistics 
Poo(T < 00) = E(lNTl{T<oo}). Therefore we have for all F W -stopping 
times T with L(c, T) < 00 

{ Ie rT - } L(c,T) = E '¢T +"210 R;ds . (3) 

Combining Proposition 1 and Equation (3) yields the following representa­
tion. 

Proposition 2 For all stopping times T with E(y2(T - r)+) < 00 it holds 

and 

[ Ie rT 
(- A 2) 1 L(c, T) = E '¢T + clog'¢T + "210 R; - (Rs) ds . 

In the next sextion we study the third term on the right-hand side. 

4 The Integrated Posterior Variance 

Let lit denote the integrated posterior variance (up to a factor ~) 

1 rt (- A 2) lit = "210 R; - (Rs) ds. (4) 
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To study E(Vt) we need some further notation. Let :l"t,r denote the a­
algebra a(Ws; 0 ~ s ~ t, 7). The filtration FW,r corresponds to a hypothetical 
observer who knows 7 in advance but is still ignorant about the magnitude 
of the drift Y. Let 

2 
, r f~: yey(W,-WT)-T(t-r)g(y)dy 

R( ) = 1 - J.L(W, - W t - 7)1 t f+oo (W -W )_I2.( _ ) {r~t} - t r, {r~t}' 
-00 eY , T 2 t r g(y)dy 

with 
+00 JC. Loo yeYX - 2 tg(y)dy 

J.L(x, t) = 2 

f~: eYX-Ttg(y)dy 

We have E(RtIFt'r) = f4r ). Let 

W (r) - TXT W it 6(r) t - ryt - tAr - .L't. 
o 

The process W~r) is a Brownian motion with respect to the filtration Ft,r 
-(r) 

for 7 ~ t < 00 starting at W r = O. Let 

2(r) _ f~: y2eY(W,-WT)-~(t-r)g(y)dy _ 
R t - + 2 l{r<t} - p(Wt - Wn t - 7)1{r<t}' L: ey(W,-WT)-lIi-(t-r)g(y)dy - -

with 

It holds E(R;IFt,r) 
posterior variance. 

Lemma 1 

-(r) 
R; Let vex, t) = p(x, t) - J.L(x, t)2 denote the 

_1 r T 1 rT('(r) ,)2 
E(VT) - "2E 10 v(Ws - Wr,s - 7)1{r~s}ds +"2E 10 Rs - Rs ds. 

Proof. It holds that 

E((Rt-R~r)fIFt,r) =v(Wt -Wn t-7)1{r9}. (5) 

Since 

E{ (Rt - R~r)) (R~r) - R t ) I Ft,r } = 0 

a Fubini type of argument yields 

E loT (m - (Rs f) ds = E loT (Rs - Rir) f ds + E loT (Rir ) - Rs) 2 ds . 
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To calculate E (JoT (R~r) - Rs) 2 dS), we have to introduce one more 

probability measure on a(Ws; 0 ~ S < 00, Y, r). Let Po denote the probability 
measure under which the process (Wt - Y t; 0 ~ t < 00) is a standard Brown­
ian motion. The distribution of W under Po is given by f~: p(lJ,o)G(dO). We 
will use the likelihood ratio of P with respect to Po relative to the filtrations 
F and FW,r later on. The probability measures P and Po are equivalent on 
the a-algebra a(Ws;O ~ S < oo,r). Let 

N - dP I and N(r) _ dP I 
00 - dPo u(W.;O:Ss<oo) 00 - dPo u(W.;O:Ss<oo,r) . 

The quantities E(logNoo) and E(logNt») appear below (see Equation (8)). 
We have 

Noo = fooo e-Yw,+ Y2
2 s p(ds) 

It is easy to see that 

and 

E(logNt») = (i:ooY22g(Y)dY) (fo+oo SP(dS)) <00. (6) 

Since F t = a(Ws;O ~ S < 00) C a(Ws;O ~ S < oo,r) = Ft,r we get 

E(logNoo) ~ E(logNt»)· 

Moreover 

E (log Noo ) (7) 

= foo r {E(IJ'II) log ( r e-lJw.+~s P(dS)) } p(dv)G(dO). 
-00 1[0,00) 1[0,00) 

Similar arguments as in [2], p. 473, with Us = (~'1) provide 

Therefore 

~E (fot (Rs - Us t dS) = E(logNt) and 

~E (fot (Rir ) - Us t dS) = E (log Nt») . 

~E (foOO (Rir) - Rs r dS) = E (log Nt») - E (logNoo) < 00. (8) 

The following Proposition 3 will be proved in the Appendix. 
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Proposition 3 

r+oo 1 
E ir Iv(Ws-Wr,s-r)- s_r+1Ids <+00. 

We note that in the case of a standard normal prior G, the posterior variance 
v(x, t) is equal to l/(t + 1). Then E (1; S-~+l dS) = Elog ((T - r)+ + 1). 

Combining Lemma 1, equation 8 and Proposition 3 then yields 

Proposition 4 For all stopping times T with E(y2(T - r)+) < 00 

E(VT) = ~E[log((T-r)++l)] 

+~E(l:T[v(Ws-Wr),s-r)- S_!+l]dS) 

+ ~E (faT (Rir) -RsrdS). (9) 

Moreover 

iT 1 
E [v(Ws-Wns-r)- l]ds 

rAT S - r+ 
roo 1 

~ E ir Iv(Ws - Wn S - r) - s _ r + lids < 00 

and 

E faT(Rir ) - Rs)2ds 

~ E faoo(Rir ) - Rs)2ds = E (logN~)) - E(logNoo ) < 00. 

5 Mixture Stopping Rules 

We now study the stopping times Sb more closely. The following arguments 
are similar to those of [2]. We recall that Sb = inf{t > 011Pt 2:: b}. We have 
P(Sb < 00) = 1 for all b > 1 since the probabilities Poo and P are orthogonal 
on a(Ws, 0 ~ s < 00). The event n~l {Sk < oo} has probability 1. Therefore 
since Sk = k holds, it follows 

P (lim Sb = +00) = 1. b-too 
The next lemma describes the asymptotic behavior of Sb. 
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Lemma 2 

P C~~ l:~ b = :2 ) = 1 
Proof. We have with probability one 

10gb = 10g'lPt = lSb [RsJ 2ds + lSb RadWs. 

The process f; RadWa is a time-transformed Brownian motion and therefore 

( lit A - ) P lim - RsdW s = 0 = 1. 
t--too t 0 

Moreover 

P (lim Wt = Y) = P (lim B t - Y (t 1\ T) = 0) = 1. 
t--too t t--too t 

Hence P(limHoo Rt = Y) = 1 and thus 

(. lit A 2 2) P hm - [RaJ ds = Y = 1. 
t--too t 0 

The preceeding lemma suggests the following result. 

Proposition 5 As b -+ 00 

Proof. Let 

It is sufficient to show that Elog~b = 0(1) as b -+ 00. We split Elog~b into 
three parts. 

i) Let M > 1. Then, by Lemma 3 (below) 

E (l{~b~M} log~b) ~ (SUPE~b) sup [lOgx] < 00 
b~2 x~M X 

and therefore 

ii) On the event Ef we have ~b < 1/12 and so by Lemma 4 (below) 

limsupE (lEf log~b) ~ 10g(1/12)limsupP(Ef) = O. 
b--too b--too 
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Moreover 

E ( 1 Ef log ~b ) 

= (log log b)P(Ef) + E (lEf log ~2) + E (lEf 10g(Sb - r)+ + 1) 

~ (log log b)P(Ef) + E (lEf log ~2) . 
Therefore lim infb-foo E (1 Ef log ~b) ~ O. 

iii) The random variable log~b stays bounded on the event Ebn{~b S M}. 
By Lemma 2 ~b --+ 1 and implies lEbl{eb::oM} log~b --+ O. Hence 

Lemma 3 There exists a constant A ~ 0 such that for all b ~ 1 

Proof. Proposition 2 yields for all positive integers n 

Proposition 4 now gives 

where 

A = E (lOOIV(Ws - Wns - r) - s _ ~ + lidS) + E (fo'(RiT ) - Rs)2dS) 
< 00. 

Since logx S x and IElog(y2)1 < 00, we obtain the assertion. 

Lemma 4 As b --+ 00 

p(~2 (Sb - r)+ S 112 10g b) = 0 CO~b) 
The proof is exactly the same as that of Lemma 4 of [2]. Now we can state 

Theorem 1 with the precise constant. 
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Theorem 1: 
If G satisfies (AJ) to (AS), then 

[ 1 III L(e, S{3(c») = e log ~ + 2 log log ~ + K(p, G) + o(e) 

when e -+ O. Here K is given by 

K(p, G) = 1 - ~ [:00 log (0;) g(O)dO 

100 1 
+E [v(Ws - Wns - 7) - ]ds 

r s-7+1 

+ ([:00 0; g(O)dO) (1+00 SP(dS)) 

-100 
{ {E((J,/I) log ( ( e-(Jw.+~s P(dS)) } p(dv)g(O)dO. -00 Jro,oo) Jro,oo) 

Proof. Proposition 2 yields 

L(c, S{3(c») = E (~ + elog'l/Jsf3(C) + CVSf3(C») . 
'Ps{3(c) 

For sufficiently small e it holds that 

E (~ + clOg 'l/JS{3(C») = e + cloge. 
'Ps{3(c) 

From Proposition 5 we obtain 

1 1 1100 (y2) E (VS{3(C») = 2 log log ~ - 2 -00 log 2" g(y)dy 

100 1 
+ E [V(Ws - Wr , S - 7) - 1] l{r:'Ss}ds 

o S-7+ 

+ E (log Nt,») - E (log Noo ) + 0(1), 

as e -+ o. The quantities E (log Nt,») and E (logNoo ) are evaluated in Equa­

tions (6) and (7) above. This yields the assertion. 

6 Asymptotic Optimality 

We now compare the performance of the stopping times S{3(c) with the per­
formance of e2-optimal solutions. This leads to a proof of the asymptotic 
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optimality of the stopping times S{3(e)' The following two lemma correspond 
to Lemma 6 of [1]. The proof can be found there. 

Let Be for 0 < e ~ 1 be an e2-optimal stopping rule, that is a stopping time 
with L(e, Be) ~ L~ + e2 • We may assume Be ~ S{3(e). Let j3(e) = (3(e)j(l -
loge). 

Lemma 5 Let (Be; 0 < e ~ 1) be stopping times ofW with L(e, Be) ~ L~ +e2 

and Be ~ S{3(e). Then 

1· E (1 (S{3(e) - r)+ + 1) -0 1m og _ - . 
e-+O (Se - r)+ + 1 

Theorem 2: 

L; = L( e, S{3(e)) + o(e) when e -t 0 . 

Proof. The function ge(X) = 1jx + clog x assumes its unique minimum over 
the interval (0,1) at x = (3(e). Proposition 2 and Proposition 4 therefore yield 
together 

Proposition 4 now yields 

limE(fOQ [v(Ws-Wns-r)- 11]dS)=0. 
e-+O }ScVT S - r + 

Lemma 5 provides 

. ( (S{3(e) - r)+ + 1) hm E log _ = O. 
e-+O (Se - r)+ + 1 
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Appendix 

Here we study the approximation of the integrated posterior variance by the 
one of a standard normal prior. This leads to the proof of Proposition 4. Let 
a E (0,2). Then 

1+
00 

Iv(ws - Wr,S - T) - S _ ~ + lids (10) 

::; (sup [V(Ws - Wr, s - T) _ 1 1] 1-0) 
r::S;s<oo S - T + 

.1+00 Iv(ws - T, S - T) _ 1 1
0 ds. 

r s-T+1 

The Holder inequality with p = 2/(2 - a) and q = 2/a yields 

1+00 Iv(ws - Wr, S - T) _ 1 10 ds 
r s-T+1 

(11) 

( 
+00 ) (2-0)/2 ::; 1 (s - T + 1)-20/(2-0) 

. (1+00 [(s + l)v(Ws - Wr , S - T) - If dS) ~ 
In order to bound the second term on the right-hand side in (11), we first 

derive stochastic differential equations for lit) and [(t - T)+ + l]Rt (r) -
(Wt - WtM ). We have 

Oxp,(x, t) = v(x, t) 
and 

1 
20xOxP,(x, t) + Otp,(x, t) = -p,(x, t)v(x, t). 

Therefore Ito's formula implies (see [6]) 

dRt) = d (p,(Wt - Wr, t - T) 1 {r:::;t} ) = [v( Wt - Wtl\r, (t - T)+)] dW~r) 
and further 

d ([(t - T)+ + l]Rt (r) - (Wt - WtM )) (12) 

= [(t - T)+ + 1 )v(Wt - WtM , (t - T)+) -1] dW~r). 
We will now prove an alternative representation of [(t - T)+ + l].R;(r) -

(Wt - WtM ). We first note two useful facts. Since EIH(Y) log IH(Y)II < 00, 

Doob's inequality provides 

E [ sup E(H(Y)IFt,r)] < 00. 
O::S;t<oo 

(13) 
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Moreover E (y2) < 00 implies 

E [ sup E(YIFt,r)] < 00. 09<00 (14) 

Lemma 6 If G satisfies (A1) to (A3), then 

( ( )1 w,r) +-(r) E H Y Ft l{r:S:t} = (t - r) R t - (Wt - WtAr ). (15) 

In particular [(t - r)+ + l)R;(r) - (Wt - WtAr ) is a martingale with respect 
to the filtration Ft,r under P for r ~ t < 00. Moreover 

[ 1 
+ -(r) I] E sup [(t - r) + l)Rt - (Wt - WtAr ) 

O:S:t<oo 
<00 (16) 

and thus 

E [100 (s - r + l)v(Ws - wns - r) - lr dsf/2 < 00. (17) 

Proof. Let 

1+00 2 

f(x, t) = -00 eYX-~tg(y)dy. 

We have 

(t - r)+R;(r) - (Wt - WtAr ) 

= E(t - r)+Y - (Wt - WtAr)IFt,r) 

J~: (t - r)y - (Wt - Wr )eY(Wt-w,.)-~(t-r)g(y)dy 
= f(Wt - Wn t - r) 1{r9}' 

Lemma 1 of [8) yields for all B > 0 and A E (-00, +00) 

(By - A)eAy-BlIi- g(y)dy = -- eAy-B~ g(y)dy. 1+00 2 1+00 [gl (y)] 2 

-00 -00 g(y) 

This provides 

+-(r) _ J~: H(y)eY(Wt-w,.)-~(t-r)g(y)dy 
(t-r) Rt -(Wt-WtAr )- f(Wt-Wnt-r) l{r:S:t} 

= E( H(Y)IFt,r) l{r:S:t}. 

Representation (12), (13), (14), and the Davis-inequality now yield (17). 

The proof of Proposition 1 follows now by (7) with a = 1 and by (14). 
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Box-Cox Transformation for Semiparametric 
Comparison of Two Samples 

Konstantinos Fokianos 

Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus 

Abstract. We consider the density ratio model which specifies a linear parametric 
function of the log-likelihood ratio of two densities without assuming any specific 
form about them and has been found useful for semi parametric comparison of two 
samples. We study the Box-Cox family of transformations in the context of the 
density ratio model to suggest a data driven method for identification of the model's 
true parametric part. The methodology is illustrated by a real data example. 

1 Introduction 

Quite often in applications we come across with the problem of comparing 
two samples. The parametric theory resolves the question by appealing to the 
well known t-test. Accordingly, if {Xt"",Xno } and {Xno+I, ... ,Xn} are 
two independent samples with Xo = E~l Xi/no and Xl = E~=no+l Xi/nl 
denoting their respective sample means, then it is well known that the two 
sample t-test rejects the hypothesis of means equality when 

where 

XO-XI 
--7==== ~ c 
sf.l+.l V no nl 

S2 = E~~l (Xi - XO)2 + E~no+1 (Xi - XI) 2 , 
n-2 

(1) 

and nl = n - no. The critical value c is determined by the t distribution with 
n-2 degrees offreedom. To carry out test (1), both samples are assumed to be 
normally distributed with common unknown variance and unknown means. 
The two sample t-test enjoys several optimality properties, for instance it is 
an uniformly most powerful unbiased test (see [4]). 

Occasionally some (or all) of the needed assumptions fail so that (1) 
cannot be applied directly. A case in point is illustrated by Fig. 1(a) which 
displays boxplots of rainfall amounts from two groups of clouds. One group 
has been seeded with silver nitrate while the other has not. There is a total 
of 26 observations in each group and the purpose of the experiment was to 
determine whether cloud seeding increases rainfall. The data are available at 
http://lib.stat.cmu.edu/DASL/Stories/CloudSeeding.html. 

Figure 1(a) shows that both groups follow skewed distributions with 
large positive values. Clearly both assumptions of normality and equality of 
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variances fail and therefore application of the two sample t-test is question­
able. The problem may be bypassed after a logarithmic transformation which 
leads to symmetric distributions for both groups of clouds with approximately 
equal variances-see Fig. l(b). 

(0) (b) 

Un'~ 

Fig.!. (a) Boxplots of the clouds data. (b) Boxplots of the clouds data after log 
transformation. 

If a logarithmic (or any other) transformation is not desirable, then we 
can appeal to the nonparametric theory which approaches the problem of 
comparing two samples by the so called Mann-Whitney-Wilcoxon test 

n 

W= L Ri, (2) 
i=no+l 

where Ri denotes the rank of {Xno+1, ... , Xn} among all n observations. 
For instance, the hypothesis of nO shift between the two samples against 
the alternative of positive shift is rejected for large values of W. For further 
discussion On test (2), see [7]. 

Here we consider a quite different approach to the two samples comparison 
problem. The methodology is relatively new and appeals On the so called 
density ratio model for semiparametric comparison of two samples. To be 
more specific assume that 

Xl, ... , Xno '" fo(x) 
X no+l, ... , Xn '" It (x) = exp (a + (3h(x)) fo(x). (3) 

where fi(X), i = 0,1 are probability densities, h is a known function and a, 
(3 are two unknown parameters. In principle, h(x) can be multivariate but 
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we assume for simplicity that it is an univariate function throughout the 
presentation. 

We refer to (3) as the density ratio model since it specifies a parametric 
function of the log likelihood ratio of two densities without assuming any 
specific form about them. Hence it is a semi parametric model and it is easy 
to see that under the hypothesis (3 = 0, both of the distributions are identical. 
Consequently if /3 stands for the maximum likelihood estimator of (3 (see (8)) 
then the following test procedure 

(4) 

..-
where Var(/3) denotes the estimated variance of /3, rejects the hypothesis 
(3 = 0 when I Z I> c*. The critical value c* is determined by the standard 
normal distribution. Recent contributions on semiparametric inference about 
the density ratio model include [5],[6], and more recently [3]. 

2 The Density Ratio Model 

To motivate (3) consider the logistic model which has been widely used in 
applications for the analysis of binary data (see [1] for example). Suppose 
that Y is a binary response variable and let X be a covariate. The simple 
logistic regression model is of the form 

P[Y = 11 X] = exp(a* + (3h(x)) , 
1 + exp(a* + (3h(x)) 

(5) 

where a* and (3 are scalar parameters. Notice that the marginal distribution 
of X is left completely unspecified. Assume that Xl"'" Xno is a random 
sample from F(x I Y = 0). Independent of the Xi, assume that Xno+1' ... , Xn 
is a random sample from F(x I Y = 1), and let nl = n - no. Put 7r = P(Y = 
1) = 1 - P(Y = 0) and assume that f(x I Y = i) = dF(x I Y = i)/dx exists 
and represents the conditional density function of X given Y = i for i = 0, 1. 
A straightforward application of the Bayes theorem shows that 

f(x I Y = 1) 
f(x I Y = 0) = exp(a + (3h(x)) 

with a = a* + 10g[(1 - 7r)/7r]. In other words, model (5) is equivalent to the 
following two sample semiparametric model 

Xl, ... , Xno '" f(x I Y = 0) 

X no+b ... , Xn '" f(x I Y = 1) = exp (a + (3h(x)) f(x I Y = 0), 

with a = a* + 10g[(I- 7r)/7r]-a fact that leads to (3). 



134 Konstantinos Fokianos 

2.1 An Example 

To show that (3) and (5) are not meaningless, let Y be a binary random 
variable with P(Y = 1) = 1r. Suppose that given Y = 0, X follows the 
lognormal distribution with parameters ILo and 0-2 , and given Y = 1, X 

follows the lognormal distribution with parameters ILl and 0-2 • Then, the 
ratio of conditional densities is exponential: 

f(xlY = 1) 
f(xlY = 0) = exp(o: + ,Blogx) 

with 
2 2 

0: = ILo - ILl 
20-2 ' 

,B = ILl - ILo 
0-2 ' 

h(x) = logx. (6) 

This implies the logistic regression model (5) because upon defining 0:* by 
the equation 0:* = log[(1 - 1T)/1T] + 0:, Bayes rule gives 

P(Y = 11 X) * 
P(Y = 0 I X) = exp(o: + ,Blogx) 

and since P(Y = 0 I X) = 1 - P(Y = 1 I X) we obtain (5). 

2.2 Box-Cox Transformation for the Density Ratio Model 

Recall (3) and assume that the data are positive, that is all X > O. The 
density ratio model (3) depends clearly on the choice of the function h which 
needs to be known. To relax this assumption, we assume that h is parame­
terized according the so called Box-Cox family of transformations (see [2]) 

{ 
x)o,-1 

h)o,(x) = -oX- when oX t- 0 
logx when oX = o. 

Thus expression (3) becomes 

Xl, ... , Xno '" fo(x) 

Xno+1, .. ·,Xn '" /1(x) = exp(o: +,Bh)o,(x))fo(x). (7) 

It turns out that the Box-Cox family of transformations enlarges the density 
ratio model by providing a data driven choice of h(x). In this respect the 
data analyst can identify the appropriate h(x) in applications. The following 
section discusses inference regarding model (7). Extensions for multivariate 
h(x) are briefly sketched in Section 4. 
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3 Inference 

Inference can be carried out along the lines of [6]. Accordingly, it can be 
shown that inference for model (7) is based on the following empirical log 
likelihood 

n n 

l(a, (3, >.) = - 2)og [1 + PI exp (a + (3h>.(Xi))] + :E (a + (3h>.(Xi)) , (8) 
i=1 i=no+1 

with PI = ndno. Expression (8) has been derived after profiling out an 
infinite dimensional parameter, namely the cumulative distribution function 
of !o(x), say Fo(x). The key concept is that of the empirical likelihood (see 
[8]). 

Estimation of>. proceeds by following a standard procedure. To be more 
specific we maximize equation (8) for given>. with respect to a and (3. If 
we denote by lmax(>') the maximized log likelihood for a given value of >., 
then a plot of lmax(>') against>. for a trial series of values will reveal .x-the 
maximum likelihood estimator of >.. An approximate 100(1- a)% confidence 
interval for>. consists of those values of>. which satisfy the inequality 

A 1 2 
lmax(>') -lmax(>') ~ "2 XI ;I-a (9) 

where XL-a is the percentage point of the chi-squared distribution with 
one degree of freedom which leaves an area of a in the upper tail of the 
distribution. 

3.1 Application 

Figure 2 illustrates the above methodology applied to clouds data. In other 
words this is a plot of the maximized log likelihood as >. varies in [-2,2] 
with step equal to 0.01. The maximum value is obtained at .x = 0.18. The 
horizontal line indicates a 90% confidence interval for >.-according to (9)­
which turns out to be [-0.58,1.50]. Consequently, values of >. equal to -1/2, 
0, 1/2, 1 and 3/2 are not excluded as possibilities by the data. Apparently 
the relative small number of observations lead to negligible changes to the 
log likelihood for different >. and therefore the obtained confidence interval is 
rather large. Hence it is preferable to use values that fall near the viscinity 
of the maximum. For the clouds data we choose>. = 0,1/2. This discussion 
confirms from another point of view that log transformation is appropriate 
for the data at hand. 

Table 1 lists the testing results for the clouds data. That is, the first two 
rows report the results of the ordinary t-test (1) for both raw and log trans­
formed data, and the third row refers to the output of the Mann-Whitney­
Wilcoxon test (2). The last two rows of Table 1 list the values of the test 
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Fig. 2. Values of the log likelihood for the clouds data when A varies in [-2, 2). The 
horizontal line indicates a 90% confidence interval for A. 

statistic (4) for h(x) = log(x) (A=O) and h(x) = Vx (A=1/2), respectively. 
Notice that all the test procedures-besides the ordinary t-test-reject the hy­
pothesis of identical population. In addition both t, after log transformation 
of the data, and Wilcoxon tests support the rejection slightly stronger than 
(4) for A = O. To conclude the example we point out that the estimator of f3 
is equal to 0.450 (0.036 respectively) with an estimated standard error 0.192 
(0.016 respectively) for A = 0 (A = 0.5 respectively). The positive sign of /J 
in both cases indicates that the population of seeded clouds assumes larger 
values than the population of unseeded clouds. This is an indication that 
cloud seeding increases rainfall. 

Table 1. Testing for the clouds data 

Procedure Test Statistic p-value 

t-test -1.998 0.0511 

t-test after log transformation -2.544 0.0141 

Wilcoxon -2.461 0.0138 

Z with A = 0 2.343 0.0191 

Z with A = 0.5 2.250 0.0244 
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3.2 Further Results 

If it is desirable to calculate the exact value of A, then maximization of (8) 
with respect to all the parameters leads to the maximum empirical likelihood 
estimator of the parameter vector (0:, (3, A)' -say (&, S, A)'. Under suitable reg­
ularity condition, the maximum likelihood estimator of the parameter vector 
(0:, (3, A)' is asymptotically normally distributed. That is 

(
& - 0:) Vn ~ - (3 -+ Normal(O, E) 
A-A 

as n -+ 00 where 17 is the asymptotic covariance matrix. An empirical as­
sessment of this fact is manifested by Fig. 3 which displays Q-Q plots of 
estimators based on 100 simulations with no = 300 and nl = 500. Those are 
derived by assuming that fo(x) is lognormal with parameters 1 and 1 and 
h(x) is lognormal with parameters 4 and 1. Obviously, equation (6) yields 
0: = -7.5, (3 = 3 and A = o. The Q-Q plots indicate that the asymptotic 
normality is valid at least for large sample sizes. 

(a) (b) (c) 

00 

Fig. 3. Q-Q plots of estimators based on 100 simulations assuming fo(x) is lognor­
mal with parameters 1 and 1 and /I (x) is lognormal with parameters 4 and 1 with 
no = 300 and nl = 500. (a) Q (b) [J (c) >.. 
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4 Extensions 

4.1 Multivariate h(x) 

Consider the following situation 

Xl, ... , Xno '" fo(x) 

X no+l , ... ,Xn '" h(x) = exp (a + {3' h(x)) fo(x). 

where {3 is a p-dimensional vector of parameters and h (x) is a p-dimensional 
function. Assuming that the data are positive, then the Box-Cox transfor­
mation can be applied to h(x) componentwise for identification of the true 
functional form of the model. However the issues of estimation and testing 
become more complicated. 

4.2 Semiparametric ANOVA 

Model (3) can be generalized by considering more than two samples. Indeed, 
suppose that 

XOl , .•. , XOno '" fo(x) 
Xu, ... ,Xln1 '" h(x) = exp (al + {3lh(x)) fo(x) 
X 2l , .•. , X 2n2 '" h(x) = exp (a2 + {32h(x)) fo(x). 

In other words suppose that 3 samples (or more generally m) follow the 
density ratio model. Then testing {3l = {32 = 0 reduces to the hypothesis 
that all populations are identical (see (3)). The Box-Cox transformation can 
be introduced following the methodology of the two sample problem and 
estimation proceeds in a similar manner. 
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Abstract. We discuss and study minimax nonparametric goodness-of-fit testing 
problems under Gaussian models in the sequence space and in the functional space. 
The unknown signal is assumed to vanish under the null-hypothesis. We consider 
alternatives under two-side constraints determined by Besov norms. We present the 
description of the types of sharp asymptotics under the sequence space model and of 
the rate asymptotics under the functional model. The structures of asymptotically 
minimax and minimax consistent test procedures are given. These results extend 
recent results of the paper [12]. The results for an adaptive setting are presented 
as well. 

1 Minimax Setting in Goodness-of-Fit Testing 

Let the unknown signal s be observed overlapped with white Gaussian noise. 
This is the classical Gaussian functional model which corresponds to the 
random process 

dXe(t) = s(t)dt + cdW(t), t E [0,1]' s E £2(0,1) (1) 

where W is the standard Wiener process and c > 0 is the noise level. We want 
to detect a signal, that is, to test the null-hypothesis Ho : s = O. Certainly 
the model 1 is equivalent to the Gaussian sequence model: we observe an 
infinite-dimensional random vector x with unknown mean vector () 

x=()+c~, ()Ee2 , ~={~d, ~ifVN(O,I), ~i areLLd. (2) 

To obtain the equivalence it suffices to fix an orthonormal basis {¢>i} in 
£2(0,1) and consider the Fourier transform ~i = J; ¢>i(t)dXe(t), ()i = (s, ¢>i). 
Under the model 2 we test the null-hypothesis Ho : () = O. 

We consider an asymptotic variant of the minimax setting in hypothesis 
testing. Let us present definitions for the model 1; the translation for the 
model 2 is evident. 

Let alternatives HI : sESe be given; here Se C £2(0,1). For a test ¢e 
we consider type I error and maximal type II error: 

ae(¢e) = Ee,o¢e, !3e(¢e) = sup Ee,s(1- ¢e); 
sES. 

* Research was partially supported by RFFI Grants No 99-01-00111, No 00-15-
96019 and by RFFI - DFG (Russia - Germany) Grant No 98-01-04108 
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here Ee,s is the expectation over the measure Pe,s which corresponds to ob­
servation 1. Let /'1£ ('l/Je) = G e ('l/Je) + f3e ('l/Je) be the total error for the test 'l/Je. 
Denote by /'1£ the minimal total error /'1£ = inf /'1£ ('l/Je) where the infimum is 
taken over all possible tests 'l/Je. Clearly, 0 ~ /'1£ ~ 1 *and /'1£ = /'1£ (Se) depends 
on the set Se. We call a minimax hypothesis testing problem trivial, if /'1£ = 1 
for £ < £0 small enough. For the non-trivial case the sharp asymptotics 
problem is to study the asymptotics of minimax total errors /'1£ as £ -t 0 up 
to vanishing terms and to construct asymptotically minimax tests 'l/Je such 
that /,e('l/Je) = /'1£ + 0(1) as £ -t O. The rate asymptotic problem is to study 
conditions on the sets Se either for /'1£ -t 1 or for /'1£ -t 0; in the last case we 
would like to construct minimax consistent tests 'l/Je such that /'e('l/Je) -t 0 as 
£ -t O. 

There are some difficulties to use the minimax approach in goodness­
of-fit testing problem where only the null-hypothesis is given. The natural 
alternative HI : s :p 0 corresponds to the set Se = L 2(0, 1) \ {OJ. However 
the minimax problem is trivial in this case because the alternative contains 
points s "arbitrary close" to the point O. To overcome this difficulty we need to 
remove some small neighborhood of the null-hypothesis, that is, to consider 
an one-side constraint IIsll(1) 2: Pe where II . 11(1) is some norm defined on 
the linear space L2 (0,1) (this may be no L2-norm) and Pe is a family of 
radii. However for main norms of interest the problem is trivial as well. In 
particular, this holds for Lp-norms with 1 ~ p ~ 00 and for all £ > 0, Pe > O. 
This fact was shown by [6] for p = 2 and this follows from [1] for p :P 2; see 
[10]. The reason is that there are not any regularity conditions for unknown 
signals. 

For this reason we need to add some regularity constraint. It is convenient 
to characterize regularity of a signal by some other norm II ·11(2)' This leads 
to alternatives under two-side constraints: 

(3) 

Analogously, under the model 2 we consider the alternatives 

ee = {8 E £2: 181(1) 2: Pe' 181(2) ~ R} (4) 

where I . 1(1), I· 1(2) are some norms in the sequence space £2. 

2 Comparing with the Minimax Estimation Problem 

Thus, we have two norms which determine the problem. Analogous norms are 
used in the minimax estimation problem. Namely, in the estimation problem 
the quality of an estimator Se = se(Xe) for a signal s is characterized by a 
risk function Re(s, se) = Ee,sl(s, se). Here I is a loss-function which typically 

* To obtain the right-hand side inequality it suffices to consider the trivial test 
t/J.(X.) = a, a E [0,1]. 



Minimax Nonparametric Goodness-of-Fit Testing 143 

is of the form l(s, Se) = F(lIs - sell(l)); this is determined by a non-decreasing 
function F(t), t ~ 0; F(O) = 0 and by a distance between the signal s and 
the estimator Se in some norm II . 11(1). Minimax quality of an estimator Se 
is characterized by maximal risk Re(se,S) = sUPsEsRe(s,se) where S c 
L2 (0,1) is a given set of unknown signals. The object of the study is the 
asymptotics of minimax risk Re(S) = infs• Re(se, S) where the infimum is 
taken over all possible estimators. If S = L2 (0, 1), then for the main losses 
of interest it is impossible to construct minimax consistent estimators such 
that Re(se, S) -+ 0 (see [7]). For this reason one adds a regularity constraint 
which typically is of the form 

S = {s E L2 (0, 1): Ilsll(2):::; R}; 

here the norm II· 11(2) characterizes a regularity of a signal. 
Usually one determines losses either by L 2-norm or by Lp-norms. However 

sometimes one is interested in estimation not only a signal, but its derivatives 
of degree a. These corresponds to the losses determined by the Sobolev norm 
11·lIu,p or by the Besov norm 11·lIu,p,h (see [22] for definitions of the norms, for 
its properties and embedding theorems). Usually a regularity is characterized 
by a Sobolev norm II . 11 11 ,q or by a Besov norm II . 1111,Q,t with some other 
parameters, that is, one has 

11·11(1) = 1I·lIu,p or 11·11(1) = 11·llu,p,h; 11·11(2) = 1I·lll1,q or 11·11(2) = 1I·lIl1,Q,t. (5) 

The minimax signal estimation problem and related estimation problems 
under the regression function model and the probability density model were 
studied very intensively. The main problems of interest were the study of 
rates of the minimax risk Re(S) and the construction of estimators Se such 
that Re(S) "" Re(se, S). Typically the rates are of the form Re(S) = F(Pe); 
here F is the function which determines losses and the quantities Pe = Pe(S) 
characterizes the rates of possible accuracy of estimation in the norm II . 
11(1) for the set S. Typically the rates Pc are essentially larger than classical 
parametrical rates Pe = € and these depend on the norm II· 11(1) and on the 
norm 11·11(2) which determines the set S. For the norms 5 with a ~ 0, TJ - a > 
min(p-1 - q-1, 0), the estimation rates Pe are of the form 

where 

if TJ/p - a/q > 1/2q - 1/2p, 
if TJ/p - a/q < 1/2q - 1/2p, 

Sharp asymptotics in minimax estimation have been studied for special 
cases only. Often estimators Se, which provide optimal rates, depend on pa­
rameters of the norms", = (a,TJ,p,q) in the problem, which often are not 
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specified in problems of interest. This leads to an adaptive setting: to con­
struct estimators which provide optimal or nearly optimal rates for a wide 
range of parameters K. Adaptive estimation problems have been studied as 
well. It was shown that often it is impossible to construct adaptive estimators 
without some losses in the rates; however these loses are small enough (one 
needs to add log factor to the rates). See papers [2], [4], [15], [16], [13], [14], 
[19] and references in these papers. 

One of the main methods for the study of minimax estimation problems 
has been proposed by Donoho and Johnstone. This is based on the wavelet 
transform of the model 2 which corresponds to a regular wavelet basis {<Pij}. 
The problem is studied in the sequence space £2 of pyramidal structure: 
() = {()ij, j > 0, i = 1, ... , 2j } with Besov norms in the sequence space: 

11·11(1) = 1·lr,p,h, 11'11(2) = 1·ls,q,t; r = a+l/2-1/p, s = 11+1/2-1/q (6) 

which are defined by the equality 

IOlr,p,h = (L:2jrh (L: l()ijIP)h/P//h; 0 < p, h < 00; -00 < r < 00 

j i 

with a simple modification for p, h = 00; the norms IOls,q,t are analogous. 
The Besov norms in the sequence space 6 are equivalent to the Besov norms 
in the functional space 5 (at least for a ~ 0, 11 ~ 0, P ~ 1, q ~ 1 and up to 
a finite-dimensional subspace** ; see [4], [5]). 

3 Types of Asymptotics in Goodness-of-Fit Testing 

By natural analogy between estimation and hypothesis testing problems un­
der the functional Gaussian noise model 1 we study the alternatives deter­
mined by the norms 5 with a, 11 ~ 0, 1 ~ p, q, h, t ~ 00. Under the model 2 
we consider the alternatives 4 for the norms 6; however we study not only 
classical norms, but quasi-norms with -00 < a,11 < 00, 0 < p, q, h, t ~ 00 as 
well. Note that a negative parameter a < 0 corresponds to the estimation of 
the integral of the a signal; in particular under the probability density model 
the case 11 = -1 corresponds to estimation of the distribution function. 

We obtain the sharp asymptotics for the norms 6 with h ~ p, t ~ q 
and the rate asymptotics without the last constraints. These lead to the rate 
asymptotics for the norms 5. Note that analogous problems have been studied 
before; see [10], [12], [18], [17], [20], [21] for references. 

The study is based on the constructions of asymptotically least favorable 
priors in the problem. The results that we present below are an extension of 

** It seems that these constraints are not essential for equivalence between Besov 
norms in functional space and ones in the sequence space under the regular 
wavelet transform. However we do not know any references on this topic. 
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the results of the paper [12] where sharp asymptotics are presented for power 
norms in the sequence space I . iu) = I . Ir,p, I· b) = I . Is,q of the form 

IBlr,p = (I>rPIBiIPr/P. (7) 
i=l 

We are basing on methods developed in [12] which provide a reduction of 
the minimax hypothesis testing problem to a convex extreme problem on a 
specific Hilbert space. An extension to the adaptive problem is given in [11]. 

Let us start from the main types of the asymptotics for alternatives of 
the type 4. (The partitions of the space of parameters into regions of various 
types of asymptotics is presented in Fig. 1 - 6 below). 

Trivial type coresponds to the trivial problem (that is, 'Ye == 1). This type 
arises for a ~ ap without the second constraint in 4 (that is, for R = 00) 
where 

{
-1/4, 

ap = 1/(2p) _ 1/2, 
p~2 

p>2 

Under the second constraint triviality is possible, in particular, for TJ - a ~ 
min(q-l - p-l, 0). We denote this type by T. 

For non-trivial problems the main questions of interest are: what are the 
radii Pe to obtain either 'Ye (Be) --t 0 or 'Ye (Be) --t I? A typical answer is given 
in terms of rates of testing (or critical radii) P;: 

(8) 

If alternatives are simple or of finite dimension, typical rates are classical: 
this corresponds to P; = c. We call this case classical and denote this type 
by C. This corresponds to a < ap ; the second constraint is not necessary in 
this case. 

The main types of the asymptotics are Gaussian: these correspond to the 
asymptotics of the type 

(9) 

The quantities U e = ue(r,Pe,R) (here and below r = (K"h,t)) characterize 
the quality of testing in the problem; the rates P; are determined by the 
relation: U e '" 1. Asymptotically least favorable priors are of product type: 

1re(dB) = II II 1re,ij(dBij ) 
j i 

where the factors 1re,ij = 1r(ze,j, he,j) do not depend on i and these are 
symmetrical three-point measures on the real line: 

h 
1r(z, h) = (1 - h)t5o + 2(Lz + t5z ), hE [0,1], z ~ 0 (10) 
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(or two-points measure for h = 1). The sequences ze = {ze,j}, he = {he,j} are 
determined as the solution of a specific extreme problem. The log-likelihood 
ratio for the priors is asymptotically Gaussian in this case. The quantities U e 
are of the form 

U; =u;(T,Pe,R) = :E2j+lh;,jsinh2(z;,j/2) 
j 

(11) 

and these depend essentially On parameters", which determine the constraints 
On the alternative (the dependence On parameters h, t is not too essential). 

We have different types of Gaussian asymptotics (two main types denoted 
by GI and G2 and "boundary" types denoted by G3 - G5 ). The main types 
correspond to the following relations: 

where 

where 

{
CImU+I/2z0 = Pe/e, 
c2m1/+l/2zo = R/e, 

{ CInU+l/2h~/P = pe/e, 
c2n1/+1/2h~/q = R/,e 

(12) 

(13) 

The quantities m = me -t 00, n = ne -t 00 have the sense of "effective 
dimensions" in the problem. For the type G I the main term consists offactors 
with he,j = 1 and typical quantities Ze,j '" Zo = ZOe; on the other hand, for the 
type G2 the main term consists of factors with Ze ,j '" 1 and typical quantities 
he,j '" ho = hoe. For h ~ P, t ~ q the quantities Cl = CLUe, T), I = 0,1,2 
are positive I-periodical functions on ie = log2 me for the type G I and on 
ie = log2 ne for the type G2. 

Using 12, 13 we have 

(14) 

where the constants At, Bl correspond to the types Gl , 1= 1,2 

Al = 47] + 1, BI = 4a + 1, 
7]-a 7]-a 

A 2 - 27]+I-I/q B 2 = 2a+I-I/p . 
- 7]/p - a/q + I/2p - I/2q' 7]/p - a/q + I/2p - I/2q 

The function d = d( T, Pe, R) = d l (T, x) is positive and periodic on x 
log2(R/Pe) for the type G I and On x = log2(RQp;PeP- q) for the type G2. 
These lead to the rates (we assume R be fixed) 

7]-a 
CI = 7] + 1/4' (15) 

Frontier types G3 - G5 correspond to relations analogous to 14 with 
additional logarithmic factors on ho, m or n; the degrees of logarithmic factors 
depend On parameters h, t; the quantities d = d( T) do not depend On Pe, R, e. 
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Note that for the region of parameters corresponding to the Gaussian 
asymptotics the rates in the hypothesis testing problem are usually smaller 
than the rates in the estimation problem: P; = o(Po)' 

For example, let p = q = 2, a = 0, 1] > 0, that is, we consider 1]-smooth 
functions in L 2-norm and removed L2-ball; this corresponds to the type GI • 

Then the rates of estimations are Pc = c21//(21/+1) and the rates of testing are 
P; = c41//(41/+1). 

This means we can distinguish between the null-hypothesis and the alter­
native which are closer than the rates of the estimation accuracy. Moreover 
tests based on distance statistics between the null-hypothesis and the best 
estimators does not provide good rates of testing. 

Degenerate asymptotics (we denote this type by D) are possible for 

a> l/p -1/2, 1] - a> l/q - l/p, 1]/p - a/q ~ 1/2q - 1/2p. 

For power norms 7 this type is characterized by the relations 

'Yo = p( V210gno - n;r Po/c) + 0(1); (16) 

where the quantities no = (R/ po)l/(s-r) --+ 00 have the sense of "efficient 
dimensions". The asymptotically least favorable priors 7fo are supported on 
specific orthogonal collections in (2. The likelihood ratio L n , is asymptotically 
degenerate (that is, L n , = Co + 0(1) under the null-hypothesis where Co are 
non-random). The rates p; = p;(K" Ro) are defined by the relation n;r Po = 
cy210gno + 0(1) which yields 

( ) 
(s-r)/2s 

p; = c(s-r)/s R r/ s (2/8) 10g(R/c) . 

These lead to sharper distinguishability conditions than in 8: 

'Yo--+o, as liminfpo/p;>I; 

'Yo --+ 1, as lim sup pel p; < 1. 

For Besov norms 6 we have analogous relations: 

'Yo --+ 0, as lim inf Po / p; > Cl; 

'Yo --+ 1, as lim sup pel p; < Co 

(17) 

(18) 
(19) 

(20) 
(21) 

with some constants ° < Co ~ Cl < 00, Analogous relations hold true under 
the functional Gaussian model. It was show in the paper [18) that, Co = Cl 

for the case of Sobolev norms in 5 where 1] ~ 1 is an integer, 1]q > 1 and 
a = 0, p = 00. 

If R is a constant, then the rates 17 are the same as in the estimation 
problem: p; '" Pc in the region of degenerate asymptotics. 



148 Yuri I. Ingster and Irina A. Suslina 

Fig. I: p S; 2, p < q S; 00 Fig. 2: 2 < p = q < 00 

7J 

c C -+-~If-----+- u 

T y. 

Fig. 3: q S; p = 00 Fig. 4: 2 < p < q S; 00; p S; 4 

7J 

TJ - q = llq - lip 

c 
'1' 

Fig. 5: p > q, p ~ 2 Fig. 6: 2 > p > q 
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In Fig. 1-6 we describe the partitions of the plane of parameters {a, 1]} 
into the regions of the asymptotics of different types for fixed values p, q. The 
partition is determined by the quantities A, I which are linear functions of 
a,1] for fixed p, q: 

A = (1] + 1/2)/p - (a + 1/2)/q, 1= 2(1] - a) - 4(1]/p - a/q) + l/q - l/p. 

We denote by x* = X;,q and y* = Y;,q the points on the plane {a, 1]} with the 
coordinates x* = (-1/4, -1/4), y* = (1/(2p) - 1/2, 1/(2q) - 1/2). Under 
the Gaussian functional model and for Sobolev and Besov norms we have 
similar partitions (at least for a ~ 0, 1] ~ 0, p ~ 1, q ~ 1). 

4 Test Procedures 

In the region D asymptotical minimax tests for pt :S qh (and consistent tests 
for pt < qh, sip < r/q) could be based on the simple threshold procedures: 

x;hr = {x: sup IXijI/Q",j > 1}; 
i,j 

here Q",j = cJ2(j + logj) log 2 + loglogc-1. 

(22) 

On the other hand, for the regions of Gaussian asymptotics asymptotically 
minimax test procedures (for h :S p, t ~ q) or minimax consistent tests are 
of the form ,¢",O/ = lx.U{t.>T",}. These are based on statistics 

00 

t,,(x) = U;l Lh",jtj(Xj,Z",j), 
j=l 

where 

2i 
tj(Xj,z) = L~(Xij/C,Z), 

i=l 

1 (dPz dP- z ( ) 2/2 () ~(t, z) ="2 dPo (t) + dPo t) - 1 = e-z cosh tz - 1. 

(23) 

Here u" is determined by 11 and h",j E (0,1], Z",j ~ ° are families of 
sequences which correspond to asymptotically least favorable priors. For 
p:S 2, q ~ p we have h",j = 1 and we can use statistics of x2-type 

00 

t,,(x) = U;l L Z~,jX2(Xj), 
j=l 

2i 
X2(Xj) = ~ L(c-2X;j - 1), 

i=l 
00 

u; = L 2j - 1 zi,j· (24) 
j=l 

Applying wavelet transforms we obtain minimax consistent test procedures 
for alternatives 3, 5 under the Gaussian functional model. Since the rate 
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asymptotics do not depend on parameters h, t (excepting boundary types of 
the Gaussian asymptotics), well known relationships between Sobolev and 
Besov norms lead to minimax consistent test procedures for alternatives 
which are determined by Sobolev norms for the regions of the main types 
of the Gaussian asymptotics. 

5 Adaptive Setting 

As it was noted above, the structure of asymptotical minimax or minimax 
consistent tests for the regions of Gaussian asymptotics is determined by 
families of sequences he = {he,j}, ze = {ze,j}. These families depend essen­
tially on parameters T = (K" h, t), K, = (a, 'fJ,p, q) which determine norms 6 
in the constraints 4. The dependence is not simple. Usually exact knowledge 
on these parameters is not available for the statistician. 

The situation is analogous to that in estimation theory where the structure 
of the estimators which provide the minimax rates depends essentially on 
parameters which determine losses and constraints. 

For these reasons we would like to construct tests which provide good 
minimax properties for wide enough regions of unknown parameters. First 
this problem has been studied by [20], [21]. Formal setting corresponds to 
alternatives of the form (we assume a quantity R be fixed) 

Be(r) = U Be(T,Pe(T),R); 
rEr 

here the sets Be (T, P, R) are defined by 4 with the norms defined by 6; r = 
K x ,12, K and ,12 C R~ are compacts, K C Sal U Sa2; the sets Sap Sa2 
are regions of parameters K, which correspond to the main types of Gaussian 
asymptotics and Pe (T) is a family of radii of removing balls. It means we 
would like to obtain good quality of testing for all T E r. 

Clearly, the functions Pe ( T) should satisfy Pe ( T ) j P; (K,) -t 00 uniformly on 
r. It is the same that 

However it is not sufficient. Define adaptive rate functions P;,ad = P;,ad(K" R) 
by the relation 

Ue(T,P;,ad,R) = y'2loglog(Rjc) + 0(1); 

where the quantities Ue (T, Pe, R) are determined by 14 and, up to factor d '" 1 
these do not depend on h, t. Then we have the conditions for 'Ye (Be (r)) -t 1 
and 'Ye(Be(r)) -t 0 analogous to 18, 19. These lead to losses in adaptive 
rates with respect to non-adaptive rates Pe = p;(K,) defined by 15 in the 
factor (log log(Rjc))l/AI(I<), K, E Sa" l = 1,2. One can interpret the losses 
as "price to pay for adaptation". 
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It is important that one can use "Bonferroni methods" to construct adap­
tive consistent tests families: it suffices to combine the thresholding 22 and 
collections of tests based on x2-statistics to,o of the form 24 and on the 
statistics to,k of the form 23 for specially selected sequences {zj,d, k = 
O,l, ... ,Ke,j, Jo,o ::; j::; Je -+ 00, JO,e = o(Jo) and increased thresholds. 
Namely, we take tj,O = (2i+2Iog j)-1/2X2(Xj), 

tj,k = ((2j+2sinh2(z;,k/2)logj)-1/2tj(Xj,Zj,k) 

and we consider tests of the form 

.I,ad - 1 
'¥e - X., 

For the cases p ::; 2, q ~ p it suffices to consider combinations of collections 
of tests based on normalized statistics te,o of x2-type 24 only. 

The wavelet transform provides the translation of results onto Besov and 
Sobolev norms in the functional space under the Gaussian functional model 
as well. 
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Abstract. The problem of randomness testing gained importance because of the 
need to assess the quality of different random number generators. The wide use 
of public key cryptography necessitated testing for randomness binary strings pro­
duced by such generators. The evaluation of random nature of various generators 
outputs became vital for communications industry where digital signatures and key 
management are crucial for information processing and for computer security. 

The tests discussed here are based on the observed numbers of patterns which 
appear with a given frequency. Our results are based on some properties of the so­
called pattern correlation matrices which are useful in statistical analysis of random 
sequences. 

1 Introduction and Summary 

Consider a random text formed by realizations of letters chosen from a finite 
alphabet. For a given set of patterns it is of interest to determine the prob­
ability of the prescribed number of occurrences of the patterns in the text. 
This problem appears in different areas of information theory like source 
coding, code synchronization, randomness testing, etc. It also is important in 
molecular biology in DNA analysis and for gene recognition. 

The wide use of public key cryptography makes it necessary to test for 
randomness strings produced by such generators. Also common secure en­
cryption algorithms are based on a generator of (pseudo) random numbers. 
The testing of such generators for randomness is quite important for commu­
nications industry. 

A number of classic tests of randomness are reviewed in Knuth ([4]). How­
ever, some of these tests pass patently nonrandom sequences a( see discussion 
in Marsaglia, [6]). The most popular collection of tests for randomness, the 
Diehard Battery, demands fairly long strings (up to 224 bits). A commer­
cial product, called CRYPT-X, (Gustafson et al. [3]) includes some of tests 
for randomness. A more recent battery of randomness tests is described in 
Rukhin ([10]). 

Since many conventional pseudo random numbers generators because of 
their deterministic recursive algorithms exhibit patterned outputs, it is natu­
ral to employ statistical tests based on the occurrences of patterns (patterns) 
of a given length. The test discussed here utilizes the observed numbers of 
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patterns which appear a given number of times (Le. which are missing, ap­
pear exactly once, exactly twice, etc.) The number of missing two-letter pat­
terns is used in the "OPSO Theory" which is a part of the Diehard Battery 
(Marsaglia ([7])). Also a similar test has been investigated by Tikhomirova 
and Chistyakov ([12]). The usefulness of similar procedures in quality control 
was demonstrated by Shmueli and Cohen ([11]). 

In this paper in Section 2 we derive the necessary results for the generating 
functions of probabilities for patterns from a given collection to occur in 
random text a given number of times. These results extend the previous 
formulas obtained by Guibas and Odlyzko ([2]), and by Fudos, Pitoura and 
Szpankowski ([1]). Section 3 deals with the expected value of the number 
of patterns occurring a given number of times, and the covariance structure 
of the corresponding random variables. In Section 4 the optimal linear test 
based on these statistics is given. 

2 Correlation Polynomials and Generating Functions 

Denote by E1, ••• ,En a sequence of Li.d. random variables each taking values 
in the finite set {I, ... , q} such that P(Ei = f) = Pi, f = 1, ... , q. We will 
be interested in occurrences of patterns of the form i = (i1 ..• i m ) whose 
probability is P(i) = Pil ... Pim. The situation when Pi == q-1 corresponds to 
the randomness hypothesis. We will need the probability 1f[(n) that a fixed 
pattern i appears in the string of length n exactly r times. 

The following correlation polynomial of two patterns is needed to obtain 
the distribution of the numbers of patterns occurring with a given frequency. 
Let i = (i1 ... i m) and j = (it ... jm) be two patterns of length m. Put 

m 

Cij(z) = Lb(im-k+1".im),(jl".jk)Pjk+l ···Pjm Zk- 1. 
k=l 

We denote by C(z) the correlation matrix, 

For aperiodic patterns i oflength m, Cii(Z) = zm-1. 

(1) 

According to Theorem 3.3 in Guibas and Odlyzko (1981) the probability 
generating function FP(z) = L:n 1f?(n)z-n of probabilities 1f?(n) 
= P (pattern i is missing), has the form 

F~( ) = zCii(z) 
,z B(z) , (2) 

where 
m 

B(z) = Bi(Z) = (z - I)Cii (z) + P(i) = II (z - Zj). 
j=l 
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For r ~ 1 a formula for the generating function F[(z) for probabilities 
'IT[(n) has been reported by Fudos, Pitoura and Szpankowski (1995). It has 
the form 

F!'( ) = zmp(i)[(z -1)(Cii (z) - zm-l) + P(iW-1 (3) 
~ z [B(z)]r+l 

The probabilities of the form, 'IT?? (n) = P (patterns i and j are missing), 
also can be determined from the generating function the form of which follows 
from the simultaneous equations of Theorem 3.3, p 195 in Guibas and Odlyzko 
([2]). These equations are applicable for any finite set of different patterns 
fl = {A, B, ... ,T} (each of positive probability). According to this theorem 
the generating function for probabilities of two specific patterns i and j to 
be missing in the string of length n depends on the correlation matrix C (z ) 
in the following way 

Fi~O(Z) = L P(patterns i,j arez:issing in n-string) 

n 

_ zIC(z)1 
- (z - 1)IC(z)1 + P(j)Cii(z) + P(i)Cjj(z) - P(i)Cij(z) - P(j)Cji(z)' 

Here IC(z)1 = Cii(z)Cjj(z) - Cij(Z)Cji(z) denotes the determinant of C(z). 
We give now an extension of this formula to the generating function for 

the probabilities 'lTij(n), that a given pattern i occurs in the string of length 
n exactly r times and a pattern j occurs t times. 

These probabilities refer to a random string f of length n and to a set 
fl = {A, B, ... ,T} of patterns which have the same length m. Put 

(4) 

= P (Gf ends with H and Gf does not contain any other patterns from fl ) . 

Observe that when G = 0, 

P0H(n) = P (H is the only pattern from fl, appearing at the end of f). 

When H = 0, PG0(n) = P (the only pattern from fl in fG is G). Observe 
that PG0(0) = 1, but PGH(O) = 0 for G, H E fl. Also if PGH(n) > 0, then 
for any £ = 1, ... , m - n, (Gm-Hl ... Gm ) = (Hm-l-n +1 ... Hm - n ), so that 
PGH(n) = 8(Gm_t+l ... Gm),(Hm_t_n+l ... Hm_n)PGH(n). 
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Theorem 1. For any A E n the generating functions FGH of probabilities 
PGH(n) in (4) satisfy the following simultaneous equations 

(z - 1)FA0(Z) + ZFAA(Z) + ... + ZFAT(Z) = z 
P(A)FA0(Z) - ZCAA(Z)FAA(Z) - ... - ZCTA(Z)FAT(Z) = zm - ZCAA(Z) 

As the main Corollary of Theorem 1 we give the form of the generating 
functions for a two-element set n. 

Theorem 2. Let n = {i,j} with positive P(i),P(j). Then 

D .( ) _ P(i)Cjj(z) - P(j)Cji(Z) _ P0i(Z) 
.r00 z - -, 

Bij(Z) Bij(Z) 

D .. ( ) _ zm-l((z - 1)Cij (z) + P(j)) _ Pij(z) 
.r0J Z - ) - ()' Bij(Z Bij Z 

D .. ( ) _ 1- zm-l((z - 1)Cjj (z) + P(j)) _ Pii(z) 
.rn z - - , 

Bij(Z) Bij(Z) 

with similar formulas for Fj0, F0j' Fji and Fjj . 

Theorem 2 leads to an explicit form of the generating function F[/(z) for 
the probabilities 7rij(n) of patterns i and j to occur in the string of length n, 
rand t times respectively. In particular, it gives the desired formula for the 
case r = t = r. 

Theorem 3. For rAt 2: 1 one has 

r-2 ( ) ( ) rt _ 1 r-1 t-1 
Fij (z) - [B, . (z))r+t+1 I: k r - k - 2 

OJ k=OV(r-t-l) 

x [Pii(Z)t [Pjj (z))t- r+k+1 [Pij(Z)Pji(ZW-k-l P0i(Z)Pi0(Z) 

+ ~ (r ~ 1) (~:= ~) [Pii(z))k [Pjj(z))t-r+k-1 
k=OV(r-t+1) 

x [Pij(Z)Pji(Z)r-k P0j(Z)Pj0(Z) 
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+ ~ (r ~ 1) (r ~ ~ ~ 1) [Pii(Z)]k [Pjj(z)]t-rH [Pij(Z)Pji(ZW-k-1 
k=OV{r-t) 

X [P0i(Z)Pij (z)Pj0(Z) + P0j(Z)Pji (Z)Pi0(Z)] . (6) 

Also 

When r = t = r 

F[/(z) = [Bij (:)j2rH 

~ (r 1)2 k k ~ ~ [Pii(Z)Pjj(z)] [Pij(Z)Pij(zW- -1 
k=O 

X [P0i(Z )Pij (z )Pj0 (z) + P0j (z)Pji (z )Pi0(Z)] 

~(r-1)(r-1) k r-k-1 + t:o k k + 1 [Pii (z)Pjj (z)] [Pij (z)Pij (z)] 

X [P0i(Z)Pjj (Z)Pi0(Z) + P0j(z)Pii (Z)Pj0(Z)] . (7) 

3 Asymptotic Formulas for the Expected Number of 
Patterns Appearing a Given Number of Times and 
for Their Covariances 

The formulas for the generating functions discussed in the previous Section 
lead to the asymptotic behavior of the first two moments of the number of 
patterns appearing a given number of times. In this asymptotic study it will 
be assumed that as n --+ 00, n/qm --+ a with a fixed positive a. To study 
asymptotic efficiency of tests for randomness, we consider the case when the 
distribution of the alphabet letters is close to the uniform in the sense that 
Pi = q-1 + q-3/217i with L:~=1 17k = o. It will be assumed that as n --+ 00, 

q-1 L:k 17~ --+ D > o. 
Let s, s ~ 1, denote the period of i, i.e. the smallest positive integer for 

which (isH··· im) = (i1 •.. im- s). Let P(is) = Pim-.+l ... Pim. If i is an 
aperiodic word, i.e. Gii(z) = zm-1, then there is no such positive integer, 
and we put s = 00 with P(ioo ) = O. 

Under our convention about the probabilities of the letters, one has 

P(is) = ~ + 17im -.+l + ... + 17im + L:m-sH<k<j<m 17ik17ij + 0(_1_) 
qS qS+1/2 qS+1 qS+3/2 

and 
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The polynomial B(z) in (2) has the form 

B(z) = zm-l(z - 1) + p(is)zm-s-l(z - 1) 

m-s-l m 
+ L o(im_k+l· .. im),(it ... ik)Pik+l··· Pimzk-1(z - 1) + P(i) = II (z - Zj). 

k=l j=l 

It is not difficult to show that the largest root Zl of the equation B(z) = 0 is 
real, Zl < 1, Zl --+ 1 as q --+ 00, and all other roots tend to zero, maxj~2lzjl ~ 
q-l. 

By using this facts one obtains for r ~ 1 

1I'Qn) = aTe-a [1 + (r - a) Ek % 
, r! ql/2 

(r(r -1) - 2ar + ( 2) (E'T7iJ 2 + 2(r - a) El<k<j<m TJikTJi; 
+ 2q 

+r(r-1)-2ar+a2 +0(_1_)]. 
aqS q3/2 (8) 

When TJi == 0, 

T( )_aTe-a [1 r(r-1)-2ar+a2 (1)] 
11'. n - -- + +0 - , 'r! aqS qS 

and for aperiodic patterns i 

[ 1 (( 1) r(4mr+2m-3r-3)) 
x 1 - qm m - '2 a - m(2r + 1) + r + 1 + 2a 

Also 

(9) 

As in the previous case, for the uniform distribution on the alphabet and 
periodic patterns i with period s 



Testing Randomness 159 

and for aperiodic patterns 

o( ) _ -a [1 (2m - 1)0: m - 1 o( 1 )] 1r. n - e - + -- + - . 
t 2qm qm q2m 

The form of the probabilities (8) and (9) leads to the formula for the 
expected value of the number of m-patterns, which occur exactly r times in 
a string of length n, XT = X~. 

As Lk<j TJikTJij = 0, Li(Lk TJik)2 = Li Lk TJ;k = mqm-l L~=l TJ~ 
mqmD. Therefore, with 1ri(n) determined from (9), one gets for any r = 
0,1, ... 

(10) 

Actually, when TJi == 0, one can get a much more accurate asymptotic formula. 
Let Qs = Qs(m), s = 1, ... , m - 1,00 denote the total number of patterns 
whose correlation polynomial has the form (1) (with s = 00 corresponding to 
aperiodic patterns). Then 

and one can prove that as q -+ 00 for s = 1, ... , m - 1 

As the asymptotic behavior of 1ri is determined by the period of the pattern 
i, these formulas imply that for any fixed r = 0, 1, ... 

s 

o:Te-a [m 0: 1 r(2mr+4m-r-5)] 0 (1) =-- q --+m+r- - + -. 
r! 2 20: q 

(11) 

The derivation of the asymptotic formula for the covariance is more cum­
bersome. To obtain it, note that XT = Lj xj where xj is ° or 1 according to 
occurrence of the pattern j in the string of length n exactly r times. Thus, 
Exi x} = 1ri} (n) = P (i appears r times, j appears t times), so that 

Var(XT) = LVar(xi) + LCOV(Xi,Xj) 
i i#j 

= L 1ri(n) [1 - 1ri(n)] + L[1ri!(n) - 1ri(n)1rj(n)] (12) 
i#j 
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and for r ¥- t 

Cov(xr,xt) = 2)rr[J(n) - 7r[(n)7r;(n)). 
i#-i 

(13) 

The probabilities 7r[(n) have been determined in (9) and (8). The remain­
ing probabilities 7r[J(n) can be found from the generating functions in The­
orem 3. They are determined by the periods sand u of the autocorre­
lation polynomials Cii(z) and Cjj(z), and by the degrees m - 1 - v and 
m -1- w of the polynomials Cij(z) and Cji(z) respectively. (Then for i ¥- j, 
Cij(z) = zm-l-vp(jv) + ... + i5imit P(jm-d and Cji(z) = zm-l-wp(iw) + 
... + i5itimP(im-l) with 1::; v,w::; m -1.) One can show that 

7r[J(n) - 7r[(n)7r;(n) 

e-2aat+t [( r(r - 1) ( t(t - 1) 
= II 0: + r - 1 + -- P(is) + 0: + t - 1 + -- P(ju) r.t. 0: 0: 

(14) 

The main term of the asymptotic expansion ofVar(xr) and Cov(xr, xt) 
is determined by the sums of terms proportional to P(is),P(ju), P(jv) and 
P ( iw ). Denote by Q~::' the number of pairs of different patterns i, j for which 
the autocorrelation polynomials have periods sand u, and the correlation 
polynomials Cij(z) and Cji(z) have the degrees m - 1 - v and m - 1 - w 
respectively. Clearly, 

qS+U s /\ U < 00 

qm+u S = OO,U < 00 QVw 
su '" qm+v S = U = 00, v < 00 

q2m S = U = v = w = 00 

It follows that the main contribution to the sum in (12) is due to the 
pairs of aperiodic patterns such that at least one of the polynomials Cij (z) 
or Cji(z) vanishes. Thus one can put 'fJi == o. 

One gets for r ¥- t 

Cov(xr, xt) = L Q~::'[7rrJ(n) - 7r[(n)7r;(n))- L Qs7r[(n)7rf(n) 

e-2ao:r +t [ 
= _qm , , (2m - 1)0: - (r + t)(2m - 1) + 1 

r.t. 

+ : (4m - 3) _ 2(m _ 1) (0: - r~o: - t)] + o( qm-l) 

e-2a o:r +t [ rt] ( ) = _qm r!t! 0: - r - t + 1 + -;; + 0 qm-l . (15) 
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Similarly 

Var(xr) = L QS 1Ti{n) [1 - 1Ti{n)] + L Q~::'[pii;(n) - 1Ti{n)1Tj(n)] 
S 

Theorem 4. The probability 1Ti (n) admits the asymptotic representations 
(9) and (8) when n -+ 00, n/qm -+ 0 with a fixed positive o. The expected 
value of the number of patterns appearing exactly r times in a random text 
has the form (10) with a more accurate formula (11) in the case 17i == 0. The 
covariance between the number of patterns appearing exactly rand t times has 
the form (15), and the variance of the number of patterns appearing exactly 
r times has the form (16). 

Kolchin, Sevastyanov and Chistyakov ([5]) in Theorem 6 of Chapter III give 
the formulas for the first two moments of the joint distribution of the number 
of patterns appearing a prescribed number of times when the occurrences of 
these patterns are independent, i.e. when the patterns appearances in the 
non-overlapping m-blocks are counted. A rather surprising fact is that the 
asymptotic behavior of the expected value and of the covariance matrix is 
the same for overlapping and non-overlapping occurrences. 

4 Asymptotic Normality and the Optimal Linear Test 

The theoretical justification for approximate normality of the distribution of 
x r when n -+ 00, n/qm '" 0 follows from a limit theorem by Mikhailov ([9]). 
According to Theorem 4, Var(Xr) -+ 00, so that the crucial condition in 
Mikhailov's theorem is satisfied. 

For a fixed positive integer R, denote by E the covariance matrix of the 
limiting distribution of the random variables XO, Xl, ... , X R. According to 
the next theorem this distribution is normal. 

Theorem 5. The random number of m-patterns, xr = X~, which appear 
exactly r times in a string of length n when n -+ 00, n/qm -+ a with a 
fixed positive 0, is asymptotically normal. If the probability of the i-th letter 
(i = 1, ... , q) is of the form q-l + 17iq-3/2, 2:%=1 17k = 0, then the asymptotic 
mean is given by (10) with D = q-l 2:k 17~, and by (11) for the uniform dis­
tribution. In both cases the variance is determined from (16). The asymptotic 
joint distribution of the random variables XO, Xl, ... , X R is normal with the 
covariance matrix E. 

With Pr(a) = o:r:!-a denoting the Poisson probabilitites, the elements of 
matrix E have the form 

(T rr = Pr (0) [1 - Pr (a) ( 0 - 2r + 1 + :) ] , 



162 Andrew L. Rukhin 

and for r "f:. t 

art = -Pr(a)pt(a) [a - r - t + 1 + :] 

= -Pr(a)pt(a) [1 + (a - r~a - t)] . 

Thus with a diagonal matrix D formed by elements Pr(a), and 

uT _ ( po(a), ... ,PR(a) ) 
- JQpo(a), ... ,PR(a)(a - R)/JQ 

being of rank two, one obtains the following representation 

E=D-UUT . (17) 

We use Theorem 5 to derive the optimal test of the null hypothesis Ho : 
'fJi == 0 within the class of linear statistics of the form 

with some constants W r . 

According to Theorem 5 S is asymptotically normal both under the null 
hypothesis and the alternative Hi : D > O. The Pitman efficiency of this 
statistic is determined by its efficacy, i.e. by the difference between the means 
under the null hypothesis and the alternative, divided by the standard devi­
ation (which is common to the null hypothesis and the alternative), 

Here (R + 1 )-dimensional vector w has coordinates wo, ... , W Rand b has 
coordinates Pr(a)(a2 - 2ar + r(r -1)) = a2[Pr(a) - 2pr-i (a) + Pr-2(a)], r = 
O,I, ... ,R. 

Maximization of this ratio leads to the solution 

(or a scalar factor thereof.) Because of (17) the inverse of the matrix E has 
the following form 



Testing Randomness 163 

With 0 = OR = PR(a) [I:R+1 Pr(a)] -1 and D = 1 + (R - a + 1)0 - a02, this 
representation leads to the formula for the coordinates of w 

2 [(a - R)2 + aO(a - R) + R] 
Wr = a - 2ar + r(r - 1) + (a - r)O.!:...:----.:..-___ ....:----.:..----=-

D 

+ (a - R; aO)aO. (18) 

This formula can be used to show that for the value of a = a*(R), which 
maximizes the efficacy, the following limits exists 

and for a = a*(R) 

lim a*(R) = 1 
R-too R 

lim eff(S) = ~. 
R-too R V2 

(19) 

(20) 

Theorem 6. The weights Wr of the optimal linear test statistic S are given 
by (18). The value of a = a*(R), which maximizes the efficacy, has the 
asymptotic expansion (19), and the limiting formula (20) holds. 

Following Section 3 of Chapter V of Kolchin, Sevastyanov and Chistyakov 
([5]), one can show that the corrresponding statistic is asymptotically opti­
mal not only within the class of linear functions, but also in the class of all 
statistics of XO, ... , X R. 

4.1 Example: Two-Letter Patterns 

The number of missing pairs has been used by Tikhomirova and Chistyakov 
([12]). This statistic is also employed in the so-called "OPSO Theory" intro­
duced in Marsaglia ([6]) and used in the OPSO test of randomness in the 
Diehard Battery (Marsaglia [7]). In this test one takes non-overlapping sub­
strings formed by zeros and ones of given length P to represent the letters of 
the new alphabet, so that there are q = 2P new letters. In OPSO test one 
counts the number of two-letter patterns (the original substrings of length 
2p) which never occurred. (In the Diehard test P = 10, q = 210 .) 

If the probabilities of alphabet letters have the form 1ri = q-1 + q-3/2r/i, 
then for aperiodic patterns j = (A, B), A # B, 

Z2 
F~(z) = . 

J PAPB + (z - l)z 
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With s = ! + Vl- PAPB, t = ! - Vl- PAPB, 

7rA,B = --s---t--
ae-a ae-a a 2e-a 

= e-a - In (rJA + rJB) - --rJArJB + -2-(rJA + rJB)2 
yq q q 

a 2e-a [ 2 2 a 2] 
+ q3/2 rJArJB + rJArJB - 6(rJA + rJB) 

e-a [ 3a a 2 a 3 a 4 ] +7 1 - ""2 + ""2rJ~rJ1- ""2 rJArJB (rJA + rJB)2 + 24 (rJA + rJB)4 

+O(q51/2). (21) 

For periodic templates, j = (A, A), a similar formula for the generating func­
tion shows that 

2ae-a ae-a ( 1 ) 
7rA,A = e-a - ..;q rJA + -q- [1 + a(2a - 1)rJ~] + 0 q3/2 . (22) 

The approximate formulas (21) and (22) lead to very accurate answers 
for the expected value and the variance. The calculations according to the 
formulas above show that in Marsaglia's example when when n = 221 , q = 210 

(so that a = 2), 

7r(A,A) = 0.13559935200020, 7r(A,B) = 0.13533502510527. 

The worst is approximation in (22) which gives the value 

7ro (n) = 0.13559922276433. 

For example, while the exact value of the mean is EX = 141909.3299555, 
the value determined from (10) is 141909.3299551. 
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Abstract. In this paper the 7r* index of fit introduced by Rudas et al. [9] is applied 
to the model of logistic regression. First, the original definition of 7r* is given with 
its interpretation, then a review is given on logistic regression focusing on how to 
assess model fit in traditional ways. Assessing fit often requires grouping of the data 
and the main part of this paper is concerned with methods for grouping the data 
and choosing computational technics. These are illustrated using a standard set of 
data. 

1 The 7r* Index of Fit 

The 7r* index was introduced by Rudas et al. [9] for contingency table ana­
lysis to propose an alternative of the chi squared measures, especially in the 
cases, where the traditional measures are not appropriate. If P is an observed 
contingency table and M is a model then the 7r* index is defined by 

7r*(P,M) = inf{7r: P = (1-7r)M + 7rR, ME M,R E P, 0 S; 7r S; I}, (1) 

where P, M and R are contingency tables of the same size and P is the set of 
all contingency tables of this size. Roughly speaking, the goal is to decompose 
an observed table into two parts, a first, that fits the model exactly, and a 
second one that is unrestricted, in the best possible way, namely that the sum 
of the cell entries in the first part will be maximal. The proportion of the sum 
of the cell entries in the second part is the 7r* value. This is the fraction of the 
population that cannot be described by the model in the best case. Hence if 
7r* is small, we will conlude that we are close to the model M, as only a small 
fraction of the population cannot be described by this model. On the contrary, 
if 7r* is big, we will say, that we are not so close to the model M. Note, that 
P can be both table of probabilities and table of frequencies. This approach 
can be applied to the whole population or to a sample. Also note, that in 
the second case we obtain an estimate for the true population parameter 7r* . 
This measure has several advantages over the traditional chi squared based 
goodness of fit measures. It does not depend on sample size in the sense that 
multiplying an observed table with a constant the 7r* will not change the 
estimate, it gives a nice impression about the discrepancy between the model 
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and the data and can be extended for any statistical model. Moreover, we 
can think of P, M and R as probability measures. From this follows, that 
if p, m and r are density functions on a statistical space (st, A, P), then the 
definition of 11'* can be reformulated in the sense that the density p can be 
represented as a mixture of two densities of the form 

p = (1 - 11')m + 11'r, (2) 

where m comes from the model and r is the density of an unrestricted R from 
P. In statistical models for continuous variables, one usually distinguishes 
between the test of significance of an effect and the estimate for the size of 
this effect. Much of the criticism concerning the performance and applicability 
of chi squared based statistics is related to the fact that they are appropriate 
as tests of significance and perform very poorly as estimated effect size. The 
11'* is clearly an effect size and has attractive features as such. As confidence 
intervals may be constructed for its true value (see Rudas et al. [9]), it may 
also be used in testing. 

2 Logistic Regression 

Logistic regression is an increasingly popular statistical method used in many 
areas, e.g. in the social sciences. Here a binary response variable is related 
to one or more potential explanatory variables through the so called logistic 
function 

P(Y = 1) . 
log P(Y = 0) = D(z, .)0, (3) 

where Y is the response variable, D(i,·) is the i-th row of the design matrix 
(the i-th setting of the explanatory variables) and () is the vector of the model 
parameters. () is estimated by the ML method. However, evaluating goodness 
of fit is not so easy. There are different methods proposed. When the number 
of distinct covariate vectors is relatively small comparing to the sample size 
n, the traditional chi squared method (Agresti [1]) can be applied. Difficul­
ties arise with continuous covariates where the number of distinct covariate 
vectors is close to n. In these cases, very often the observations are grouped 
using some grouping strategy. The most popular test, that is used by most 
of the computer packages is Hosmer and Lemeshow's test [5]. They group 
the observations according to the predicted probabilities of the event putting 
approximately the same number of subjects in each group and then com­
pare the expected and observed frequencies using the chi squared statistic. 
Problems arise when the estimated probabilities approach either zero or one 
which is the case in many applications due to the above grouping strategy. 
Another problem is that different computing packages form different groups 
and altough all of them apply Hosmer and Lemeshow's test, they conclude to 
different results [7]. Another possibility is to compute a measure in the spirit 
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of R2 of ordinary least squares regression. A traditional way of it to compute 
the proportion of cases predicted correctly. Let the predicted value of the re­
sponse variable be 1 if the predicted probability of the event is greater than 
0.5 and let it be 0 otherwise. This measure has several problems (Weisberg 
[13)). In particular, there is no baseline or null expectation to compare the 
correct prediction rate with. Other measures of this type, called pseudo R2 
measures are outlined in Aldrich and Nelson [2] and McKelvey and Zavoina 
[6]. The backdraw of these measures is, that they are based on the assumption 
that a dichotomous dependent variable is only a proxy for the true interval 
level dependent variable that cannot be measured properly and whenever 
the dependent variable is truly binary, this assumption is not valid. Our 11"* 

approach belongs to the first group of indices. First an appropriate grouping 
strategy will be chosen based on the theory of multivariate histograms and 
then the 11"* index will be computed using these groups. 

3 The Data 

As a numerical example, we consider Finney's data [3] used in many textbooks 
to illustrate logistic regression. The data consist of 39 observations with two 
covariables. The response is the occurence of restriction on the skin of the 
digits, and the covariables are the rate and volume of inspired air. After 
fitting a logistic regression model to the data we have the following results 
indicating that both covariables are significant. 

Table 1. Logistic regression results 

f) SE Wald Sig. 

-25.89 9.32 7.71 0.005 

12.12 4.33 7.81 0.005 

10.79 4.19 6.63 0.001 

Assessing goodness of fit the Hosmer-Lemeshow test gives different results 
using different statistical packages as shown in Table 2. Altough all the five 
software packages are performing the same goodness of fit test, they are 
obviously using different algorithms to form the groups, which results in 
radically different conclusion about the goodness of fit. 

Pigeon and Heyse [7] reanalised these data. They formed only 4 groups 
of the observations (instead of 10 formed by the above statistical packages) 
as they found the number of observations were too small for more groups. 
The test statistic they used was a modification of the Pearson chi squared 
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Table 2. Results of the Hosmer-Lemeshow test using different computer packages 

computer package number of groups X2 df Sig. 

SAS 10 24.23 8 0.002 

Minitab 10 7.81 8 0.453 

SPSS 10 11.10 8 0.195 

BMDP 10 17.25 8 0.028 

SYSTAT 10 20.92 8 0.007 

statistic: 
J2 = tt (O(i,j) - E(i,j))2 

i=lj=l ¢(j)E(i,j) 
(4) 

where ¢(j) is an adjustment factor handling the underdisperSion in the chi 
squared distribution, O( i, j) and E( i, j) are the observed and expected fre­
quencies for the events and the nonevents in the 9 groups. Pigeon and Heyse 
has proved [8] that this statistic has an asymptotic chi squared distribution 
with 9 - 1 degrees of freedom. Their grouping strategy was also different, 
they grouped the data according to a chosen covariable. The authors argued 
that modifications were needed as in the Hosmer-Lemeshow test very often 
the estimated probabilities approach either 0 or 1 for the first and the last 
groups according to the grouping strategy putting the low probabilities and 
high probabilities for events together and so the chi squared test has failed. 
Pigeon and Heyse's results sorting and grouping the observations by the first 
or the second covariable can be found in Table 3. As no significant lack of 
fit could be detected under any of their two grouping strategies the authors 
concluded that the model provided a reasonable fit of the data. 

Table 3. Results of the test proposed by Pigeon and Heyse 

covariable used for grouping number of groups J2 df Sig. 

Xl 4 0.49 3 0.920 

X2 4 3.28 3 0.350 

4 The 1r* Index of Fit for Logistic Regression 

The question is how to divide the observations into two parts, a first one that 
fits the model exactly and a second, unrestricted part optimally, i.e. so, that 
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the number of the observations in the first part will be maximal. In contin­
gency tables a possible way is the minimax algorithm proposed by Verdes 
[12]. When the observations are grouped in logistic regression, the problem is 
very similar as we have a 2 x 9 two-way table with observed frequencies given 
by the data, and estimated frequencies expressed by the model parameters 
using (3). So everything is given to prepare the functions of the minimax 
algorithm. Based on a theorem in [10] these functions are the ratios of the 
observed and expected frequencies in the 2 x 9 cells depending on the model 
parameters () (Verdes [12] ). The problem now is to form groups. Choosing 
different grouping strategies and forming different numbers of groups affects 
the 11"* value as well as it did the chi squared statistic. Then, what is a good 
grouping strategy, or putting it another way, what is a good estimate of the 
empirical distribution? The answer will be based on the theory of multivari­
ate histograms (Scott [11]). There are different rules and suggestions about 
how many groups to choose for a multivariate histogram. Most of these rules 
suggest to make three groups by each covariable in our data. Preparing now 
the histograms for the observations Y = 1 (and similarly Y = 0) we see that 
this is a very rough approximation of the empirical density, moreover there 
are bins where the observed frequency is 0 and that causes problems also in 
the 7r* theory. (Fig. 1) 

Fig. I. Histogram for Finney's data (Y = 1, 9 = 3 x 3) 

A smoothing is possible by preparing the so called Averaged Shifted His­
togram (ASH) based on the above histogram. The idea of this is to divide 
each bin into m parts and choose the value of the histogram depending not 
only on the number of the counts in the small bins, but with decreasing 
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weight, on the counts in the near and further small neighbouring bins. It can 
be shown (Scott [11]) that as m -+ 00, the limiting ASH is the kernel den­
sity estimator with the kernel function of the isosceles triangle density. Thus 
the ASH provides a direct link to the well known kernel methods. As kernel 
estimators are usually slow to compute, the ASH is a natural candidate for 
computation. 

4.1 The Minimax Algorithm 

The minimax algorithm for computing the 1f* index is based on the following 
theorem of Rudas [10]: 

Theorem 1. For the densities m(O) and p defined in (2) 

1 - 1f* = sup inf ~, 
oEesuppm(O) m(O) 

(5) 

where supp m( 0) stands for the support of m( 0), and 0 is the vector of model 
parameters. 

Having done 9 groups of the observations, the above support consists of 2g 
points. p and m(O) will be the observed and estimated probabilities in these 
discrete points that we can consider as cells of a 2 x 9 table, where the first row 
stands for the probabilities of the event, and the second for the probabilities 
of the nonevent in the 9 groups. Then (5) can be rewritten as 

i = 1,2 j = 1, ... , g} . (6) 

As the above set is finite, one can also write 

1 . {m(O,i,j) --=mmmax . 
1 - 1f* i,j OEe p(i,j) ' 

i = 1,2 j = 1, ... , g} . (7) 

According to the logistic regression model, the conditional probabilities in 
the s-th column are 

(0 1 . I . = ) = exp(D(s, .)8) 
m , ,}} s 1 + exp(D(s, .)8) (8) 

m(O, 2,j I j = s) = 1 + exp(~(s, .)0) (9) 

where D(s,') denotes the s-th row of the design matrix and 0 is the vector 
of the model parameters. The probability of falling in the s-th group can be 
estimated from the sample. Denoting by n(l, s) the observed frequency of 
the event and by n(2, s) the observed frequency of the nonevent in the s-th 
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group, it is (n(l, 8) + n(2, 8)) In. Substituting these expressions into (7) we 
get 

, ~ 1, ... , g} (10) 

which is a minimax problem that can be solved by the MAT LAB package. 

4.2 Averaged Shifted Histograms (ASHs) 

In the univariate case, ASHs are constructed in the following way. Consider 
a collection of m histograms, h,h."',!m, each with bin width h, but with 
bin origins O,!ii, ... , (m~l)h, respectively. The naive or unweighted averaged 
shifted histogram is defined as 

1 m 

!O = - Lf(')' 
m i=l 

(11) 

Multivariate ASHs are constructed by averaging shifted multivariate his­
tograms, each with bin width hl x h2 X ••• X hd. Then, the multivariate ASH is 
the average of ml . m2 ..... md shifted histograms shifted by the d coordinate 
axes all possible ways. In the bivariate case the ASH is given by 

(12) 

For a univariate ASH, let (a, b) denote the interval the observations fall into, 
and let g denote the number of bins with length h in the above interval. 
Dividing each bin into m equal parts, one can obtain mg bins. Denote them 
by BI and let VI be the bin count in B I , 1 = 1, ... ,mg. Define further Vj = 0 
for j < 1 and j > mg. The height of the ASH in BI is the average of the 
heights of the m shifted histograms, each of width h: 

VI+!-m + ... + VI 

nh 
V/+2-m + ... + V/+l 

nh 
... , 

Hence, a general expression for the naive ASH is 

lex; m) =!.. I: (m - liDv/+i 
mi=l_m nh 

1 m-l Iii 
= - L (1- -)VI+i, 

nhi=l_m m 

VI + ... + VI+m-l 

nh 

x E BI. 

(13) 

(14) 
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The weights on the bin counts in (14 ) take on the shape of an isosceles 
triangle with base (-1, 1). However, other weights are also possible. The 
general ASH uses arbitrary weights wm(i) and is defined by 

~ 1 m-l 

f(x; m) = - L Wm(i)VI+i, 
nhi=l_m 

x E BI. (15) 

In order that f i(x; m)dx = 1, the weights must sum to m in (15). An easy 
way to define the general weights is 

W (i) = m x -----:::-K-;-,-( i I:.......m--:)'---_ 
m ,,~ 1 K(.I ) , 

L....t=l-m t m 
i = 1 - m, ... , m - 1, (16) 

where K is a continuous function defined on (-1, 1). K is often chosen to be 
a probability density function, such as 

15 2 2 15 2 2 
K(t) = 16 (1 - t )+ = 16 (1 - t ) I[-l,lj(t), (17) 

which is called the biweight kernel or quartic kernel. Hence an algorithm for 
the generalized ASH can be given the following way. Step 1. Construct an 
equally spaced mesh of width 8 = him over the interval (a, b), and compute 
the corresponding bin counts {VI, I = 1, ... , mg} for the n data points. Typ­
ically, 8 « h. Step 2. Compute the weight vector, {wm(i)} , as in (16). Step 
3. Compute {II, I = 1, ... , mg}. This can be done in an efficient manner 
reordering the operations in (15). Rather than computing the ASH estimates 
individually in each bin, a single pass is made through the bin counts, and 
the 'effects' of the bins on fl' I = 1, ... , mg are computed. This modifica­
tion avoids repeated weighting of empty bins. Note that the algorithm for 
the univariate ASH can be easily extended to the multivariate case, the only 
difference is that the parameters in the univariate ASH become vectors. In 
the above algorithm, the precise choice of m is unimportant as long as it 
is greater than 2 and h is well chosen (Scott [11]). However, many authors 
studied the limiting behavior of the ASH as m -+ 00. It can be showed, that 
the limiting ASH can be written as 

(18) 

where Xi is the i-th data point and K (.) is the kernel function of the isosceles 
triangle density defined by 

K(t) = (1 -ltj)I[-l,lj(t). (19) 

The estimator (18) is called the general kernel density estimator with kernel 
K, corresponding to the generalized ASH defined in (15). 
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Fig. 2. ASH for Finney's data (Y = 1, 9 = 3 x 3, m = 2) 

Fig. 3. ASH for Finney's data (Y = 1, 9 = 3 x 3, m = 3) 

Fig. 4. ASH for Finney's data (Y = 1, 9 = 3 x 3, m = 4) 
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Graphically, what happens is that the kernel estimate places a proba­
bility mass of size lin in the shape of the kernel, which has been scaled by 
the smoothing parameter h, centered on each data point. These probability 
masses are then added vertically to give the kernel estimate. So the arbitrary 
grouping of the observations are avoided and a good estimate of the empirical 
density can be given. Note, that other kernels such as the normal density can 
be also used. Based on this connection of ASH and kernel density estimators, 
our computational method for computing the 11"* index of fit is a reasonable 
choice, especially as kernel estimators are notoriously slow to compute (Scott 
[11]). The ASH is a 'bona fide' density estimator and a natural candidate to 
computation. It is a special case of a more general framework called WARPing 
developed by HardIe and Scott [4] where the computational efficiency of the 
ASH is discussed in more detail. The only problem can be dimensionality, 
as for dimensions more than 4, it is generally not possible to fit arrays of 
sufficient dimension directly in computer memory. 

5 Results 

Starting from the histogram shown in Figure 1, the ASHs with m = 2,3 and 
4 can be seen on Fig. 2-4. Table 4 shows the corresponding estimates of the 
model parameters and the 11"* values. 

Table 4. Parameter estimates and 11"* values based on the ASH with m = 1,2,3 
and 4 

m (} 11"* 

1 (-3, -2, -2) 0.55 

2 (-13,7,4) 0.3 

3 (-22,11,8) 0.32 

4 (-24,12,10) 0.36 

Note that as m increases, both () and 11"* tend to stabilise and () is getting 
close to the maximum likelihood estimate which was () = (-25,12,10). The 
11"* value is around 0.3. We can join Heyse and Pigeon concluding that this 
model fits the data reasonably well. 
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Abstract. We address two types of processes with change points that often arise in 
practical situations. These are processes with early change points and processes with 
frequent change points. Early change points may occur after very few observations 
and may be followed by additional change points or more complicated patterns. Fre­
quent change points separate different homogeneous phases of the observed process 
with the possibility of very short phases. 

Uncertainty of the considered processes during their later phases forces the use 
of sequential tools, in order to minimize samples from later phases. Change-point 
detection and post-estimation schemes for these situations are developed. They 
possess a number of desired properties, not satisfied by procedures proposed in the 
earlier literature. One of them is distribution-consistency. Unlike the traditional 
concept of consistency, it implies convergence of small-sample change-point estima­
tors to the corresponding parameters as the magnitude of changes tends to infinity. 

1 Introduction and Examples 

In classical change-point problems, the distribution of observed data changes 
at an unknown moment, which is the parameter of interest. Sample X = 
(Xl, X2) consists of two subsamples from distributions f and g, respectively, 
separated by an unknown change point v. A vast amount of literature covers 
sequential and retrospective methods of change-point estimation. Classical 
references are ego [7], [8], [9], [10], [14], [15], [23], [24], [26]; also see [5], [6], 
[16], and [29] for a survey of on-line and off-line algorithms. 

Most of the proposed estimation schemes assume exactly one change point 
in the observed process and sufficiently large pre-change and post-change 
sample sizes. However, both assumptions are violated in a number of ap­
plications including developmental, cognitive, and educational psychology, 
energy pricing, meteorology, and quality control. 

In problem solving processes, the first insight about a solution can occur 
after only a few solution attempts. Consequently, the first change point in 
the distribution of solution times represents the moment of the first discovery 
and the end of a trial-and-error phase. It may occur after very few solutions, 
leading to a problem of change-point detection from small data sets ([3], see 
Fig. 1). 
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Fig. 1. Early change points in problem solving processes. Two participants in an 
experiment, David and Ted, repeatedly take twisted nails apart and put them to­
gether until they know the solution thoroughly. Solution times in each task (in sec) 
are plotted against the experiment's time scale (in hrs). The first discovery occurs 
after very few solutions and yields significant reduction of the solution times. After 
that, the distribution of David's solution times stabilizes, whereas Ted has at least 
one additional change point and a further reduction of solution times. 

Typical processes of learning and development consist of several phases, 
separated by change points. A phase can be short (e.g., fast learning in [2]). 
Such a process is often associated with frequent changes of strategies ([2]). 
Fig. 2 presents results of an experiment where participants had to learn the 
functions of a given robot. Different strategies included observing the robot, 
turning it on and observing its performance, dismantling the robot and ex­
ploring its parts. Participants of the study used different strategies subse­
quently. The frequency of the alternation of strategies changed repeatedly, 
indicating different phases in the learning process. The times of a continuous 
use of the same strategy are depicted on Fig. 2. Periods of short single­
strategy use times indicate phases of frequent alternation of strategies. 

M ' .... 00 

!' 1200 

I!!!·O= 
BOO 

-Ii eoo 

eo 100 120 
_tr __ gy ....... Itch Ind .... 

Fig. 2. Multiple, possibly frequent change points in a learning process. The single­
strategy use times (sec) are plotted against the number of a strategy switch. 
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We define a process with an early change point to be a sequence of random 
variables X = (Xl, X2 , ••• ), where 

(1) 

After the first change point v, observations come from distribution 9 :I f 
until some unknown moment ,..,. After ,.." no tractable model is assumed, as 
the later part of the process may contain further change points or even more 
complicated patterns and trends. The objective is to estimate the first change 
point v. 

A process with multiple change points will then be described as X = 
(Xl ,X2 ,X3 , ••• ,XA), where 

{
Xl = (Xvo,···,XV1 ) "'II 

X:2. ~ .(.~~~ :.1.' ...... .' .~~~! '" 12 
X A = (XVA _ 1 +1, ... , X VA ) '" fA 

(2) 

where 1I, ... ,iA are either known or unknown densities (fi:l fHr), VI, •.• , 

V A-1 are change points (with a convention that VA = N is the total sample 
size and Vo = 1), and A is the unknown number of homogeneous subsamples. 
If IVk+l - vkl is small for some k, we will call this model a process with 
frequent change points. 

Notice that densities Ii and Ii may coincide if Ii - jl 2: 2. In the extreme 
case, all the odd subsamples come from the same distribution II, and all 
the even subsamples come from the same distribution 12, so that the process 
oscillates between two densities II and h. Such a model is suitable for de­
trended electricity prices, where relatively long "regular" or "control" periods 
alternate with short-term "spikes" ([4], [12], see Fig. 3). 

Fig.3. Time plot of energy prices in New England (from [11)). Detrended and 
deseasonalized prices have multiple change points, representing first and last hours 
of "spikes". The process shifts from the regular mode to the spike mode and vice 
versa, and it is described by just two distributions. 
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The objective here is to estimate (A; /11, ••. ,/IA-d, a parameter of an 
unknown dimension. The possibility of a homogeneous sample with no change 
points (A = 1) is not excluded. 

In both (1) and (2), the search for the first change point is complicated 
by uncertain behavior of the process after the end of the second phase. Thus, 
although the problems of estimating early or frequent change points are retro­
spective (not sequential) in general, it is not recommended to use retrospective 
statistical procedures, because they utilize the entire data set including the 
uncertain phases of the process. Conversely, it is desirable to use sequential 
tools that will utilize the minimum number of observations and stop as soon 
as the change point is detected. 

Essentially, for the process with an early change point, one can resample 
one observation at a time until the first change is detected. In a situation with 
multiple change points, one will estimate the detected change point, discard 
all the pre-change observations, and search for the next change point se­
quentially. Therefore, both types of estimation problems, early change points 
and frequent change points, can be treated by similar techniques based on 
sequential detection and post-estimation of change points. 

Many competing sequential schemes can be proposed. We select an op­
timal procedure according to the introduced principle of distribution con­
sistency. It implies convergence of each change-point estimator to the cor­
responding parameter when sample sizes are fixed, but the magnitude of a 
change becomes more and more significant. In problems with early and fre­
quent change points yielding short phases, we find this property at least as 
important as consistency in the classical sense. 

The algorithm and its optimal properties are described in Section 2. In 
Section 3, we use the proposed scheme to detect possible global climate 
changes, spikes of electricity prices, and different phases in learning and prob­
lem solving processes. 

2 Sequential Estimation of Multiple Change Points: A 
Distribution Consistent Scheme 

Several multiple change-point estimation schemes have been described in the 
literature. A maximum likelihood based procedure is proposed in [13]. How­
ever, especially in the case of unknown distributions, the naive maximum 
likelihood scheme is likely to return a change at every point, unless restric­
tions are enforced on the number of change points A or the minimum dis­
tance Ll between them ([17], [18]). Still, this restricted maximum likelihood 
scheme tends to detect too many change points. For example, in the case of 
Bernoulli(p) observations, it will detect change points in any sample of size 
N > 2Ll if and only if at least two observations are different ([3]). Thus, the 
probability of a false alarm is as high as 1 - pN - (1 - p)N in this case. 
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A conceptually different binary segmentation scheme ([28]) is an iterative 
procedure that divides the observed sample into two most distant subsam­
pIes, then divides each subsample, etc., until all the obtained subsamples 
are homogeneous. The disadvantage of this scheme is that no more than one 
change point is assumed at each step. For example, in the case of two inter­
mittent distributions, as on Fig. 3, it is unlikely to find a point separating 
two significantly different subsamples. 

These problems can be resolved by a sequential estimation scheme that 
(1) considers increasing subsamples instead of the entire sample that may 
contain complicated patterns; (2) detects one change point at a time and 
does not assume its uniqueness in the observed data; (3) has an option of 
detecting 0 change points; (4) is sufficiently sensitive in order to detect a 
change point occurring after a short phase. 

For the process with an early change point, the scheme consists of several 
steps outlined below. For the process with frequent change points, these steps 
are repeated until the entire data set is resampled. 

2.1 Step 1: Sequential Detection 

Observations are sampled sequentially until a stopping rule detects a change 
point. For the examples in Section 1, we used a stopping rule 

T(h) = inf {n : Wn 2: h}, 

based on a cusum process 

where f and g are the pre- and post-change densities or probability mass 
functions. Optimality ofT(h) is shown in [19] and [25]. In the case of unknown 
densities, one uses their best estimates for each "potential" value k of a change 
point, computes the generalized likelihood ratio based cumulative sums 

(3) 

and defines the stopping rule T(h) similarly to T(h). This stopping rule 
achieves asymptotically equivalent mean delay and mean time between false 
alarms ([1]). 

Facing a possibility of early or frequent change points, one should increase 
sensitivity of the algorithm by choosing a low threshold h or a high probability 
of type I error a. The price to be paid is the increasing rate of false alarms, 
however, false change points will (hopefully) be eliminated at Step 3. 
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If only a sample of size N is available, all abovementioned stopping rules 
are curtailed so that P{T ~ N} = 1. In the case when T(h) = Nand 
Urn < h, the scheme results in zero detected change points. In all the other 
cases, a change point is detected and its location needs to be estimated. 

2.2 Step 2: Post-Estimation 

Notice that the stopping rule T itself is a poor estimator of the change point 
v. Indeed, if T ~ v, it is a false alarm. If T > v, it is a biased estimator that 
always overestimates the parameter. Therefore, the detected change point 
has to be post-estimated, Le., estimated after its occurrence is detected by a 
stopping rule. 

One way of obtaining an approximately unbiased estimator of v is to 
estimate the bias of T(h) and subtract it from T(h). According to [1], this 
bias, also known as mean delay, is asymptotically (h+C)/ K(f, g), as h ~ 00, 

where K(f,g) is the Kullback information number, and C is independent of 
h. In the case of sufficiently long phases before and after the change point, 
subtracting the estimated bias from T(h) yields an approximately unbiased 
estimator of v. However, in the case of frequent change points and unknown 
densities, no reliable estimators of C and K are available. 

A last-zero estimator 

/lLZ = sup {k < T(h), Wk = O}, 

proposed in [21] and [27], is essentially the maximum likelihood estimator 
of v, assuming a fixed-size sample rather than a sample of a random size 
T, which is the stopping rule. The corresponding estimator in the case of 
unknown densities is 

It can be shown that this estimator fails to satisfy an important property of 
distribution consistency ([3]). 

Definition 1. Consider a family of distributions F and a nonnegative 
function V on F x F with 

M = sup{V(f,g)lf,g E F} ~ 00. 

Let X be a fixed-size sample generated according to the multiple change-point 
model (2) with A ~ 1 and Ii E F for j = 1, ... , A. Let (.x; /11"", /I~) be an 
estimator of (A; V1, ... , v,x). A change-point estimation scheme will be called 
distribution consistent (with respect to V) if 

and 
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as 

This property means that all the change-point estimators converge to 
the corresponding parameters, as changes become more and more signifi­
cant but the sample size and all the change points remain fixed. It is implied 
that function V measures discrepancy between two distributions. Therefore, a 
distribution-consistent scheme estimates change points very accurately when 
any two consecutive phases are generated by significantly different distribu­
tions. 

This property of a multiple change-point estimation scheme is desirable 
in all the examples of Section 1, where short phases are followed by entirely 
different patterns. Certainly, if the magnitude of a change is very significant, 
one would like to estimate the time of change very accurately, even from small 
samples. 

Notice that for integer-valued ,\ and {Vj}, distribution consistency is 
equivalent to convergence in probability. It also implies that a sample with 
no change points (,\ = 0) provides no false alarms with the probability con­
verging to 1, and the probability of not detecting a change point in a sample 
with change points converges to O. 

The W -based last-zero estimator fhz is not distribution consistent. In­
deed, any time when the last zero of W occurs before the true change point v, 
the estimator fhz is based on a sample from the pre-change distribution II 
only. If II remains fixed while 12 drifts away from it so that V(II, h) ~ M, 
the distribution of VNZ does not change and VNZ does not converge to v. 

For example, consider a change in the parameter of Exponential distri­
bution from 80 to 81 . In this case, the nuisance parameters are estimated by 
the respective sample means, and according to (3), 

Wn = max{(n - k)(~kn -log~kn -I)}, 
k~n 

where ~kn = Xkn/XOk and Xij = I:{+! xt/(j - i). As 81 + 0 or 81 too while 
80 remains constant, ~","+1 -log~v,v+! - 1 ~ 00 in probability. Hence, 

P(T(h) > v + 1) ~ P(W,,+! ~ h) ~ 0, (4) 

that is, the change at v will be detected no later than at (v + 1) with proba­
bility converging to 1. Therefore, for any to < 1, 

P(lvLZ - vi < to) = P(VLZ = v) = peW = 0 n T(h) = v + 1) + 0(1) 

-7 POa (max(v - k)(~kv -log~kv - 1) = 0) < 1, 
k~v 

as 81 + 0 or 81 t 00. Thus, VLZ (in presence of nuisance parameters) is not 
distribution consistent. 
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However, distribution-consistent schemes exist. One of them is based on 
the cusum stopping rule t and the minimum p-value estimator 

/IMP = arg min_p(k,t,X), 
15,k<T 

where p(k, t, X) is the p-value of the likelihood ratio test comparing subsam­
pIes Xl = (X1 , ••• ,Xk) and X2 = (Xk+1, ... ,Xt). 

2.3 Step 3: Tests of Significance 

To eliminate false alarms, significance of each detected change point has to be 
tested. Likelihood ratio tests are easy to implement here, and significance of 
the detected change point is measured by the minimum p-valuep(vMP, t, X). 

If the test is significant, one applies steps 1-3 to the post-change subsam­
pIe {Xk' k > /IMP}, searching for the next change point. Otherwise, we have 
a false alarm, and the search continues based on the initial sample, or a part 
of it starting after the last change point that was found significant. 

2.4 The Case of Gamma Distributions 

Gamma family is a suitable model for solution times and single-strategy use 
times (Fig. 1 and Fig. 2), see [3] for the results of goodness-of-fit tests. 

The assumption of independence of solution times is justified by the fol­
lowing nonparametric test that was applied to the processes of problem solv­
ing. For each of the participants who had at least two solutions, we counted 
the number of pairs (Xi, XHd of consecutive solution times that are on one 
side of their sample median m, and the number of pairs that are on different 
sides. If solution times are independent in each pair, then XH1 > m with 
probability 0.5, independently of Xi. However, if Xi and X i+1 are positively 
(negatively) dependent, the probability of (Xi - m)(Xi+1 - m) > 0 is greater 
(smaller) than 0.5. This sign test that is expressed as a simple test about the 
population proportion did not reject the hypothesis of independence (against 
a short-term dependence) with a p-value of 0.13. 

For simplicity, consider a family of Gamma distributions with the same 
known shape parameter a and unknown scale parameter (3 that changes at 
every change point. For any two members of this family, it is natural to 
consider the discrepancy function 

V(f{3,f{3') = max{f3/ (3*, (3* / (3}. 

For each k ~ t, the p-value is computed as 

p(k, t, R) = 1 - { fJ (b ! l' m, n) - fJ (a: l' m, n) } 
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where a and b are the only two positive roots ofthe equation A(R) = Aobserved 
for the likelihood ratio test statistic A(R), 

and fJ denotes the incomplete Beta function. The statistic is computed as 

and graphed on Fig. 4. 
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Fig. 4. The likelihood ratio test statistic as a function of R. If the horizontal line 
represents the observed value of A, we have exactly two roots a and b of the equation 
A(R) = Aobserved. 

Theorem 1. (Distribution consistency of the proposed scheme) Suppose that 

(i) Gamma(Qj, OJ) distribution changes to Gamma(Qj+l,(}j+l) at a change 
point Vj, j < >..; 

(ii) Qj are known, OJ are unknown, and Pj = OJ+lIOj; 
(iii) h -t 00 and hi minj I log pi -t 0 as P -t o. 

Then the following probabilities converge to 1 as P -t 0: 

(a) the probability of no false alarms, 1 - P(T ~ v), 
(b) the probability of detecting a change, P(T < N I v ~ N), 
(c) the probability of a minimal delay, P(T = v + 1), 
(d) the probability that the detected change point is found significant, 

P(p(vMP,T, X) < 8), for any 8> 0, 
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(e) the probability of estimating with no error, P(VMP = II). 

Corollary 1. The multiple change-point estimation scheme (T, VM p) is 
distribution-consistent. 

In fact, Theorem 1 establishes a stronger property than the distribution 
consistency. That is, detection of each change point requires just one post­
change observation with the probability converging to 1. It is a valuable 
property in any problem where complicated patterns force to use minimum 
data to detect a change point. For the proof of Theorem 1, see [3]. 

2.5 Classical Consistency 

It is generally known (see [14]) that change-point estimators are not consistent 
in a classical sense. It agrees with the intuition, since increasing the sample 
size at the expense of remote (in time) observations barely helps to estimate 
the change point more accurately. The smallest asymptotic error of estimation 
is attained by the maximum likelihood estimator VMLE. Even in the case of 
known distributions and exactly one change point, it has IVMLE-III = Op(I), 
as lI,n - II -t 00. 

To obtain a similar asymptotic error in presence of nuisance parameters 
and multiple change points, we have to modify the stopping rule, 

T(€, h) = inf {n: max :t log ~(Xj) ~ h} 
<9<n-< j=k+l f(X j ) 

for some € > 0. This ensures that unknown densities are estimated from suffi­
ciently large samples. The next theorem states that our three-step algorithm 
(with the threshold h being a function of the sample size N) provides the 
same asymptotic error of multiple change-point estimators. At the same time, 
the number of change points A-I is estimated consistently in the classical 
sense. 

Theorem 2. (Sample consistency) Assume that 

(i) all the densities in (2) belong to a canonical exponential family 

Ji(x) = f(xIOj) = f(xIO) exp{Ojx - 1jJ(Oj)}; 

(ii) there are no fake change points, i.e., OJ = Ok yields Ii - kl ~ 2; 
(iii) all nuisance parameters are estimated by the method of maximum likeli­

hood; 
(iv) sample size N, threshold h, and the smallest distance between change 

points .1 = minj {lIj+! - IIj} satisfy the following conditions, 

.1 -t 00, N exp { - €(N)~€(N))} -t 0, 

as N -t 00. 

h(N) 
N _ €(N) -t 0, 

h(N) 
.1(N) -t 0, 
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Then 
(a) >. is consistent, i.e., Pi>' = A} --+ 1, as N --+ 00, for any A ~ 0; 
(b) maxl:::;j<>.lvj - vjl = Op(I), as N --+ 00, where {Vj} are change point 

estimates in their ascending order. 

Conditions of this theorem are trivially satisfied if, say, t(N) = tN, 
Ll(N) = LlN, and h(N) is any function whose rate of growth is between 
log(N) and N. The Theorem is proved by induction in A, A = 0,1, ... , through 
Chernoff-type inequalities for generalized likelihood ratios in the case of ex­
ponential families. For the detailed proof, see [2]. 

3 Applications and Practical Results 

We used the described algorithm to identify global changes of climate, spikes 
in hourly electricity prices, and different phases in development, learning, and 
problem solving processes. 

Analysis of Central England Temperatures data (see [20],[22]) shows sig­
nificant changes of climate around 1730, 1830, and in the 1940s. The former 
two may be attributed to the Little Ice Age period whereas the latter is likely 
to be related to a greenhouse effect ([1]). 

Analysis of detrended electricity prices (Fig. 3) allows to separate spikes 
and to fit a suitable Markovian model with transitions from the regular state 
to the spike state and vice versa. Then, an appropriate ARMA model is 
fit to the transformed interspike prices, whereas spikes are modeled by a 
compound lognormal distribution ([4]). Such a stochastic model is necessary 
for the prediction of prices, evaluation of futures and forward options, etc. 

Analysis of the solution times and single-strategy use times shows a num­
ber of different phases in microdevelopmental processes. Comparison of differ­
ent phases discovers that some earlier patterns are repeated later. A cluster­
ing algorithm is then used to match similar patterns and to identify different 
"types of behavior" ([2]). 
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Abstract. A sequence of first-order integer-valued autoregressive type (INAR(l)) 
processes is investigated, where the autoregressive type coefficients converge to 1. It 
is shown that the limiting distribution of the joint conditional least squares estima­
tors for this coefficient and for the mean of the innovation is normal. Consequences 
for sequences of Galton-Watson branching processes with unobservable immigra­
tion, where the mean of the offspring distribution converges to 1 (which is the 
critical value), are discussed. 

1 Introduction 

In many practical situations one has to deal with non-negative integer-valued 
time series. Examples of such time series, known as counting processes, arise 
in several fields of medicine (see, e.g., Cardinal et.al. [5) and Franke and Selig­
mann [9)). To construct counting processes AI-Osh and Alzaid [1) proposed 
a particular class of models, the so-called INAR(l) model. Later AI-Osh and 
Alzaid [2), Du and Li [8) and Latour [12) generalized this model by introducing 
the INAR(P) and GINAR(p) models. These processes can be considered as 
discrete analogues of the scalar- and vector-valued AR(P) processes, because 
their correlation structure is similar. 

The present paper deals with so-called nearly unstable INAR(l) models. 
It is, in fact, a sequence of INAR(l) models where the autoregressive type 
coefficient an is close to one, more precisely, an = 1- '"Yn/n with '"Yn -t '"Y, 
where '"Y;::: O. This parametrization has been suggested by Chan and Wei 
[6) for the usual AR(l) model. The main motivation of our investigation 
comes from econometrics, where the so-called 'unit root problem' plays an 
important role (see, e.g., the monograph of Tanaka [15)). We considered in 
[10) the conditional least squares estimate (CLSE) for an assuming that the 
mean J.tc of the innovation is known. In this paper we do not suppose that 
J.tc is known, and we show asymptotic normality of the joint CLSE of an 
and J.tc. 

* This research has been supported by the Hungarian Scientific Research Fund 
under Grant No. OTKA-T032361/2000 and OTKA-F032060/2000. 
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To define the INAR(l) model let us recall the definition of the ao oper­
ator which is due to Steutel and van Harn [14]. 

Definition 1.1 Let X be a non-negative integer-valued random variable. 
Let (lj )iEN be a sequence of independent and identically distributed (i.i.d.) 
Bernoulli random variables with mean a. We assume that the sequence 
(lj )iEN is independent of X. The non-negative integer-valued random 
variable a 0 X is defined by 

aoX:= {itllj , X> 0, 

0, X=O. 

The sequence (lj)iEN is called a counting sequence. 
Let (ck)kEN is an Li.d. sequence of non-negative integer-valued random 

variables with mean f..Le and variance a;. The zero start INAR(l) time 
series model is defined as 

Xk = {a 0 X k- l + Ck, k = 1,2, ... , 
0, k = 0, 

where the counting sequences (lj )iEN involved in a 0 X k - l for k = 1,2, ... 
are mutually independent and independent of (ck)kEN. We suppose that 
f..Le > ° (otherwise X k = 0 for all kEN). 

It is easy to show (see [10]), that 

lim EXk = -If..Le , 
k--+oo - a 

1· V X a; + af..Le 
1m ar k = 2 ' k--+oo 1 - a 

for all a E [0,1), 

and that limk--+oo EXk = limk--+oo VarXk = 00 if a = 1. The case a E [0,1) 
is called stable or asymptotically stationary, while the case a = 1 is called 
unstable. 

First we recall the results concerning the estimation of the parameter a 
in case if the value of f..Le is supposed to be known. Let :h be the a-algebra 
generated by the random variables Xl' ... ' Xk. Clearly E(Xk I Yk-d = 
aXk - 1 + f..Le, thus the conditional least squares estimator (CLSE) a of a 
based on the observations (Xkh::;k::;n (assuming that f..Le is known) can be 
obtained by minimizing the sum of squares 

n 

~)Xk - aXk-l - f..Le)2 (1) 
k=l 

with respect to a, and it has the form 
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In the stable case under the assumption Ed < +00 we have 

1/2(~ ) v N( 2) n an - a --t O,aa,c' 

where (ZkhEZ is a stationary solution of the INAR(I) model 

k E Z, 

see Klimko and Nelson [11]. 
Let us consider now a nearly unstable sequence of INAR(I) models 

xin) = an 0 k-l + ck' =" ... , { 
X (n) (n) k 1 2 

0, k = 0, 
n = 1,2, ... , 

where the autoregressive type coefficient has the form an = 1 -In/n with 
In -t I such that I ~ 0. In [10] the authors have proved that (an)nEN is 
asymptotically normal, namely, 

3/2(~ ) v N( 2) n an - an --t O,a,",!,c· 

In this case it suffices to assume Eci < +00. We draw the attention to the 
normalizing factor n3/ 2 , which is different from the stable case. 

In the present paper we suppose that both the parameters a and Pc 
are unknown. By minimizing the sum of squares (1) with respect to a and 
Pc, we obtain the joint conditional least squares estimator (an, Ji,c,n) of the 
vector (an, Pc) based on the observations (Xin)h:::;k:::;n: 

where 

"n X(n) (X(n) _ X(n)) 
- L..Jk=l k-l k 
an = "n (X(n) _ X(n))2 ' 

L..Jk=l k-l * 

- _ X(n) - X(n) 
Pc,n - - an * , 

x(n) ._ .!. ~ X(n) 
·-n~ k' 

k=l 

x(n) ._ .!. ~ X(n) 
* .- n ~ k-l· 

k=l 

In Section 3 we show that (an, Ji,c,n)nEN is asymptotically normal, namely, 

(2) 

and the covariance matrix E'"'!,c will be given explicitly. 
It is easy to observe that the INAR(l) process is a special case of the 

Galton-Watson branching process with immigration if the offspring distribu­
tion is a Bernoulli distribution (see, e.g., Franke and Seligmann [9]). We recall 
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that a Galton-Watson process is said to be subcritical, critical or supercriti­
cal if the expectation of the offspring distribution is less than 1, equals 1 or 
greater than 1, respectively. The result (2) can be reformulated as follows. 

Corollary 1.2 Consider a sequence of Galton-Watson branching processes 
with Bernoulli offspring distribution with parameter an = 1-"In/n, "In --* "I 
where "I ~ 0, and (unobservable) immigration with expectation Jie > 0 and 
variance 0'; < 00. Then the joint conditional least squares estimator of an 
and Jie is asymptotically normal. 

Remark that the asymptotic normality in the sub-critical case with gen­
eral offspring distribution and observed immigration is proved by Venkatara­
man and Nanthi [16]. The rate of convergence is n 1/ 2 in this case. We con­
jecture that our result can be extended for Galton-Watson processes with a 
more general offspring distribution. For this, the limit theorem (3) in Section 
2 has to be generalized. 

We note that Sriram [13] considered a nearly critical sequence of Galton­
Watson branching processes with a general offspring distribution. However, 
the immigration was supposed to be observable. That is the reason why 
Sriram [13] investigated the limiting behaviour of another joint estimator for 
the offspring mean and for the mean of the immigration distribution. 

2 Preliminaries 

We shall need a simple lemma, which gives a sufficient condition for con­
vergence to a functional of a continuous process. The proof is based on the 
Continuous Mapping Theorem (see Billingsley [4, Theorem 5.5]), and it can 
be found in Arata, Pap and Zuijlen [3]. 

The appropriate function spaces are the following Skorokhod spaces. De­
fine lIJ)(~+ , ~k) to be the set of all functions f: ~ --* ~k for which 
limstt f (s) exists and f (t) = lims.).t f (s). The set lIJ)(~+ , ~k ) can be 
endowed with a metric making it a complete and separable space. For mea­
surable mappings ~'~n: lIJ)(~+,~k) --* lIJ)(~+,~i), n = 1,2, ... we shall 
write ~n""-"+~ if lI~n(xn)-~(x)lIoo--*O for all x,xnElIJ)(~+,~k) with 
IIxn - xll oo --* 0, where II· 1100 denotes the supremum norm. 

Lemma 2.1 Let ~,~n: lIJ)(~+,~k) --* lIJ)(~+,~i), n = 1,2, ... be measur­
able mappings such that ~n""-"+~. Let Z, Zn, n = 1,2,... be stochastic 
processes with values in lIJ)(~+, ~k) such that Zn ~ Z in lIJ)(~+ , ~k) 
and almost all trajectories of Z are continuous. Then, ~n(Zn) ~ ~(Z) 
in lIJ)(~+, ~i). 

Let 
M (n) X(n) X(n) 

k := k -an k-l -Jie' 
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Let us introduce the random step functions 

x(n)(t) .- X(n) . - [ntl' 

In [10] we have shown that 

[ntl 
M(n)(t) := L Mkn), 

k=l 

t ~ O • 

(3) 

in the Skorokhod space j[J)(JR+,JR2), where (M(t)k~o is a time-changed 
Wiener process, namely, M(t) = W(TM(t)) with 

( ) .- 2 (1 -"(IL) {!/,e: U .- ae: + ILe: - e , 

and (W(t)k~o is a standard Wiener process, and 

X(t):= lot e-/(t-s) dM(s), t ~ ° 
is a continuous zero mean Gaussian martingale (which is an Ornstein-Uhlen­
beck type process driven by M). The main idea was first to prove that 

M(n) ~ M by the help of the Martingale Central Limit Theorem, and 
then to show that x(n) is a measurable function of M(n), namely, 
(M(n),x(n») = 4in(M(n») with 4in : j[J)(JR+,JR) -t j[J)(JR+,JR2), 

( ( [nt]) l[ntl/n • ) 4in(x)(t) = x(t), x n - 'Y~ 0 e-/,,([ntl/n-s)x(s) ds , 

where 'Y~:= -nlogan -t 'Y. Clearly 4in - 4i, where 

By Lemma 2.1, (M(n), x(n») ~ (M, X), since Ito's formula yields 

lot e-/(t-s) dM(s) = M(t) - 'Y lot e-/(t-s) M(s) ds, 

hence (M, X) = 4i(X). 
Moreover, based on (3), we proved in [10] that 

3/2(~ _ ) v f; ILx(t) dM(t) :£ N(O 2 ) n an an ----t 1 -, a"( e: , 
fo ILx(t)2 dt ' 



200 Marton Ispany et al. 

where 

Introducing 

/L';)(t) := ~Ex(n)(t) = ~EX[~~, 

"I> 0, 

"I = 0, 

it is easy to show (see (10)) that /L';) --+ /Lx locally uniformly on lR.r., hence 
also in JD(IR+, 1R). 

If an --+ 1 but not in the specified rate of n-1 then we have the following 
conjecture: assuming that the distribution of 6'1 belongs to the domain of 
normal attraction of a p-stable law then a similar result is valid with rate 
n-2/ p and with a stable process instead of the Wiener process. 

We note that Sriram [13] proved a limit theorem for the process n-1x(n) 
for a nearly critical sequence of Galton-Watson branching processes with a 
general offspring distribution. However, the result of Sriram [13] is not ap­
plicable for a nearly critical sequence of branching processes with Bernoulli 
offspring distribution, since the variance a(l - a) of the Bernoulli distribu­
tion tends to 0 as a tends to its critical value 1. In fact, (3) implies that in 

this case we have n-1 x(n) ~ /Lx in the Skorokhod space JD(IR+, 1R), but 
this limiting relationship is not sufficient for deriving the limiting behaviour 
of the sequence (Qn, iLe , n) . 

3 J oint Estimator 

The main result of the paper is that the joint conditional least squares esti­
mator (Qn , iLe, n) of the vector ( an, /Le) for a nearly unstable sequence of 
INAR(l) models is asymptotically normal. 

Theorem 3.1 Consider a sequence of INAR(l) models with parameters 
an = 1 - 'Yn/n such that "In --+ "I with "I ~ 0, and suppose that /Le > 0 
and a; < 00. Then 

/LX,2 - (/LX,l)2 g N(O E ) ( 
J; /Lx(t) dM(t) - /Lx,lM(l) 1 

1 ' ",,(,€' 

/Lx,2 M (1) - /LX,l Jo /Lx(t) dM(t) 
/LX,2 - (/LX,l)2 
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where JiX,1 := J01 J.Lx(t) dt, JiX,2:= J;(J.LX(t))2 dt, and 

with 

(J"~~~1) = 1\J.LX(t) - JiX,1)2 O"Y,c(t) dt, 

(J"~~~2) = -11 (J.Lx(t) - JiX,1) (Jix, 1 J.Lx (t) - JiX,2)O"Y,c(t) dt, 

(J"~:~2) = 11 (JiX,1J.LX (t) - JiX,2)2 lh ,c(t) dt. 

Proof. We have 

"n x(n) x(n) _ -1 "n X(n) "n X(n) 
- L-k=1 k-1 k n L-k=1 k-1 L-k=1 k 
an = "n (X(n))2 _ -1 ("n X(n))2 ' 

L-k=1 k-1 n L-k=1 k-1 

where 

Applying x(n)(t) = nJ.L~)(t) + n1/2 x(n)(t) and M(n)(t) = n1/2 M(n)(t), 
we obtain 

Un = Un,1n3/2 + Un,2n , 
TT _ T T 3 T T 5/2 T T 2 vn - Vn,1n + Vn,2n + Vn,3n , 
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where 

Next we investigate 

Clearly we have 
_ Wn 
J.Le,n - J.Le = Vn ' 

where 

n n n n 

Wn:= n-1 L (Xkn) -J.Le) L (Xk~1)2 _n-1 LXk~1 LXk~1 (Xkn) -J.Le). 
k=1 k=1 k=1 k=1 

B X (n) X(n) M(n) . W . h C Y k - J.Le = an k-1 + k , we can wnte n ill t e lorm 

n n n n 

Wn = n-1 L Mkn) L (Xk~1)2 - n-1 L Xk~1 L Xk~1 Mkn) 
k=1 k=1 k=1 k=1 

= M(n)(l) 11 (x(n)(t»)2 dt -11 x(n)(t) dt 11 x(n)(t) dM(n)(t). 

Applying again x(n)(t) = nJ.L<;)(t)+n1/2 x(n)(t) and M(n)(t) = n1/2 M(n)(t), 
we obtain that 

W W 5/2 W 2 W 3/2 n = n,1 n + n,2n + n,3n , 
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where 

Wn,1 := M(n)(l) 11 (JL~)(t»)2dt -11 JL~>Ct) dt 11 JL~)(t) dM(n)(t), 

Wn,2 := 2M(n)(1) 11 JL~)(t)x(n)(t) dt -11 JL~)(t) dt 11 x(n)(t) dM(n)(t) 

-11 x(n)(t)dt 11 JL~)(t)dM(n)(t), 
Wn,3 := M(n)(l) 11 (x(n)(t»)2dt -11 x(n)(t) dt 11 x(n)(t) dM(n) (t). 

We can notice that 

can be expressed as a continuous function of the random vector 

In:= (M(n)(l), 11 JL~)(t)dt, 11 x(n)(t)dt, 11 (JL~)(t»)2dt, 
11 (x(n)(t»)2dt, 11 JL~)(t)x(n)(t)dt, 11 JL~>Ct)dM(n)(t») 

and the random variable 

In [10] it is shown that there exist measurable functionals P, Pn : Jl))(JR+, JR) --t 

JR, n E N, such that 

and Pn .... P in the sense that Ipn(xn) - p(x)1 --t 0 for all x, Xn E 
Jl))(JR+, JR) with IIxn - xlloo --t O. Hence we conclude the existence of mea­
surable functionals tJI, tJln : Jl))(JR+, JR3) --t JR7, n E N, such that In = 
tJln(JL~), M(n), x(n», and tJln .... tJI in the sense that IItJln(xn) - tJI(X) II --t 0 

for all x, Xn E Jl))(JR+, JR3) with IIxn - xlloo --t O. Thus (3), JL~) --t JLx in 

Jl))(JR+, JR), and an appropriate analogue of Lemma 2.1 imply In ..E.t I with 

I:= ( M(l), 11 JLx(t) dt, 11 X(t) dt, 11 (JLX(t»)2dt , 

11 (X(t»)2dt, 11 JLx(t)X(t) dt, 11 JLx(t) dM(t»). 



204 Marton Ispany et aI. 

In [10] we have shown that 

11 x(n)(t) dM(n)(t) = An + Bn, 

where 

An:= ~(x(n)(I))2 + (1 + anhn r1 (x(n)(t))2 dt, 
2 2 10 

Bn := 2~:t (Mkn))2 ~ ~TM(I). 
k=l 

Consequently, applying Slutsky's theorem and its corollary in Chow and Te­
icher [7, 8.1], we obtain Zn ~ Z with 

where 

Z := (U(l), U(2), V(l), V(2), V(3), W(l), W(2), W(3)), 

U(l) := 11 J-tx(t) dM(t) - M(I) 11 J-tx(t) dt, 

U(2) := 11 X(t) dM(t) - M(I) 11 X(t) dt, 

V(l) := 11 (J-tX(t))2 dt _ (11 J-tx(t) dt) 2, 

v(2) := 211 J-tx(t)X(t) dt - 2 11 J-tx(t) dt 11 X(t) dt, 

V(3) := 11 (X(t))2dt _ (11 X(t) dt) 2 

W(l) := M(I) 11 (J-tX(t))2dt - 11 J-tx(t) dt 11 J-tx(t) dM(t) 

W(2) := 2M(I) 11 J-tx(t)X(t) dt - 11 J-tx(t) dt 11 X(t) dM(t) 

-11 X(t) dt 11 J-tx(t) dM(t), 

W(3) := M(I) 11 (X(t))2dt - 11 X(t) dt 11 X(t) dM(t). 

Again by Slutsky's argument we obtain 

( 3/2 _ 1/2 _ ) _ (n-3/2Un n- 5 / 2Wn) 
n (an - an), n (J-te,n - J-te) - n-3Vn' n-3Vn 

V (U(l) W(l)) 
----t V(l)' V(l) . 
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The covariance matrix E"(,c of the limiting normal distribution can be cal­
culated using dM(t) = J lh,c(t) dW(t) (see [10]). This relationship implies 

( M(l) ) 1) 

J;/Lx(t)dM(t) =N(O,E) 

with 

( 
J; lh,c(t) dt - J; /Lx (t)lh,c(t) dt ) 

E:= _ Jo1 /Lx (t)lh,c (t) dt Jo1 (/Lx (t») 2 lh,c (t) dt . 

Now the formula for E"(,c follows, since U(1) and W(1) are linear combi­
nations of M(l) and Jo1 /Lx(t) dM(t). 0 
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Guessing the Output of a Stationary Binary 
Time Series 

Gusztav Morvai* 

Department of Computer Science and Information Theory, Technical University of 
Budapest, Hungary 

Abstract. The forward prediction problem for a binary time series {Xn}~=o is to 
estimate the probability that X n+1 = 1 based on the observations Xi, 0 $ i $ n 
without prior knowledge of the distribution of the process {Xn }. It is known that 
this is not possible if one estimates at all values of n. We present a simple procedure 
which will attempt to make such a prediction infinitely often at carefully selected 
stopping times chosen by the algorithm. The growth rate of the stopping times is 
also studied. 

1 Introduction 

T. Cover in [3] asked two fundamental questions concerning estimation for 
stationary and ergodic binary processes. Cover's first question was as follows. 

Question 1 Is there an estimation scheme f n+1 for the value 
P(XI = lIXo,X-1 , ... ,X-n ) such that fn+1 depends solely on the observed 
data segment XO, X-I"'" X-n and 

almost surely for all stationary and ergodic binary time series {Xn}? 

This question was answered by Ornstein [7] by constructing such a scheme. 
(See also Bailey [2].) Ornstein's scheme is not a simple one and the proof 
of consistency is rather sophisticated. A much simpler scheme and proof of 
consistency were provided by Morvai, Yakowitz, Gyorfi [6]. (See also Weiss 
[12].) 

Here is Cover's second question. 

Question 2 Is there an estimation scheme fn+l for the value 
P(Xn+1 = lIXo,XI, ... ,Xn ) such that fn+1 depends solely on the data seg­
ment X O, Xl"'" Xn and 

almost surely for all stationary and ergodic binary time series {Xn}? 

* This paper has been written by the auspices of the Hungarian National Eotvos 
Fund. Ez a cikk a Magyar Allami Eotvos Osztondij tamogatasaval kesziilt. 
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This question was answered by Bailey (2) in a negative way, that is, he 
showed that there is no such scheme. (Also see Ryabko (10), Gyorfi, Morvai, 
Yakowitz (4) and Weiss (12).) Bailey used the technique of cutting and stack­
ing developed by Ornstein (8) (see also Shields (11)). Ryabko's construction 
was based on a function of an infinite state Markov-chain. This negative re­
sult can be interpreted as follows. Consider a weather forecaster whose task 
it is to predict the probability of the event 'there will be rain tomorrow' 
given the observations up to the present day. Bailey's result says that the 
difference between the estimate and the true conditional probability cannot 
eventually be small for all stationary weather processes. The difference will 
be big infinitely often. These results show that there is a great difference 
between Questions 1 and 2. Question 1 was addressed by Morvai, Yakowitz, 
Algoet (5) and a very simple estimation scheme was given which satisfies the 
statement in Question refquestl in probability instead of almost surely. Now 
consider a less ambitious goal than Question 2: 

Question 3 Is there a sequence of stopping times {An} and an estimation 
scheme f n which depends on the observed data segment (Xo , Xl, ... , X An) 
such that 

almost surely for all stationary binary time series {Xn}? 

It turns out that the answer is affirmative and such a scheme will be 
exhibited below. This result can be interpreted as if the weather forecaster 
can refrain from predicting, that is, he may say that he does not want to 
predict today, but will predict at infinitely many time instances, and the 
difference between the prediction and the true conditional probability will 
vanish almost surely at the stopping times. 

2 Forward Estimation for Stationary Binary Time 
Series 

Let {Xn}~_oo denote a two-sided stationary binary time series. For n 2: m, 
it will be convenient to use the notation X~ = (Xm, ... , Xn). For k = 1,2, ... , 
define the sequences {Tk} and {Ak} recursively. Set Ao = O. Let 

- . {t > 0 . X Ak - 1 +t - X Ak - 1 } Tk -mm . t - 0 

and 
Ak = Tk + Ak-l. 

(By stationarity, the string X;k-l must appear in the sequence Xi'" almost 
surely. ) The kth estimate of P(XAk+l = 1IX~k) is denoted by Pk , and is 
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defined as 

(1) 

For an arbitrary stationary binary time series {Yn}~=-oo' for k = 1,2, ... , 
define the sequence Tk and ~k recursively. Set ~o = O. Let 

Tk=min{t>O:y-;t =y~;} 
-Ak_l-t Ak_l 

and let 

When there is ambiguity as to which time series Tk and ~k are to be applied, 
we will use the notation Tk(Y~oo) and ~k(Y~oo). 

It will be useful to define another time series {Xn}~=_oo as 

(2) 

Since X~k+l , = XOAk the above definition is correct. Notice that it is im-Ak+l-Ak 
mediate that Tk(X~oo) = Tk and ~k(X~oo) = )..k. 

Lemma 1 The two time series {Xn}~=_oo and {Xn}~=_oo have identical 
distribution, that is, for all n ~ 0, and x~n E {O, l}nH, 

P(XO = X O ) = P(XO = X O ). -n -n -n-n 

PROOF First we prove that 

Indeed, by (2), X~'\k(X~<x» = X~k, and it yields 

and by stationarity, 
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and (3) is proved, Apply (3) in order to get 

P(XO = X O ) -n -n 
00 

'"' -0 0 A -0 ' = ~ P(X_n = X_n, An (X-ex,) = J) 
j=n 
00 

=L 
j=n ",:j-1E{0,1}i-n 

00 

=L P(XO . = xO . 5. (XO ) = J') -J -J' n -00 

j=n "':j-1E{0,1}i-n 

00 

= '"' P(XO = X O 5. (XO ) = J') ~ -n -n' n -00 

j=n 
= P(XO = xO ) -n -n 

and Lemma 1 is proved, 
Since {Xn}~=_oo is a stationary time series, by Lemma 1 so is {Xn}~=_oo' 

Since a stationary time series can always be extended to be a two-sided 
time series we have also defined {Xn}~=_oo' Now we prove the universal 
consistency of the estimator Pk , 

Theorem 1 For all stationary binary time series {Xn} and estimator de­
fined in (1), 

Moreover, 

almost surely, 

PROOF 

Pk - P(XAk+1 = lIX~k) 
k-l 

1 '"' A) = k -1 ~{XAi+1 - P(XAi+1 = lIX o')} 
j=l 

k-l 

+ k: 1 L {P(XAi+1 = lIX;i) - P(XAk+1 = lIX~k)} 
j=l 

1 k-l 1 k-l 

= k - 1 L rj + k _ 1 L(dj - dk), 
j=l j=l 

(4) 
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Observe that {rj , a(X;;+1)} is a bounded martingale difference sequence for 
1 ~ j < 00. To see this note that a(X;;+1) is monotone increasing, and rj is 
measurable with respect to a(X;;+l), and E(rj IX;;-l+1) = 0 for 1 ~ j < 00. 

Now apply Azuma's exponential bound for bounded martingale differences 
in [1] to get that for any E > 0, 

After summing the right side over k, and appealing to the Borel-Cantelli 
lemma for a sequence of E'S tending to zero we get 

It remains to show 

Define 

1 k-l 

(k _ 1) ~ rj ---+ 0 almost surely. 

1 k-l 

k _ 1 L L1j - L1k ---+ 0 almost surely. 
j=l 

Pk,n(X~n) = P(XAk+1 = 11X;k = x~n' Ak = n) 

and (applying Ak to the time series {Xn}~=_(x,) 

Now the fact that Ak = Ak and Lemma 1 together imply 

By (2) and (6), 

Pk,Ak (xt) = Pk'~k (X~~). 
Combine (6) and (7) in order to get 

(6) 

(7) 

Notice that {P(XI = 1IX~~),a(X~~)} is a bounded martingale and so it 
- - A 

converges almost surely to P(XI = 1IX~o(')' and so does P(XAk+1 = 11X o k). 
We have proved that L1j converges almost surely. Now Toeplitz lemma yields 
that k~l 'E;~: (L1j - L1k) ---+ 0 almost surely. The proof of Theorem 1 is 
complete. 
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3 The Growth Rate of the Stopping Times 

The next result shows that the growth of the stopping times {Ak} is rather 
rapid. Let p(x~n) = P(Xl!.n = x~n)' 

Theorem 2 Let {Xn} be a stationary and ergodic binary time series. Sup­
pose that H > 0 where 

H = lim __ l-Elogp(Xo, ... ,Xn) 
n.-.+oo n + 1 

is the process entropy. Let 0 < E < H be arbitrary. Then for k large enough, 

.c 

Ak(W) ~ ce· almost surely, (8) 

where the height of the tower is k- K, K(w) is a finite number which depends 
on w, and c = 2H -t' • 

PROOF Since by (2), Ak = ~k(X~oo), and by Lemma 1 the time series 
{Xn}~oo and {Xn}~oo have identical distributions, and hence the same en­
tropy, it is enough to prove the result for ~k(X~oo)' Now Tk and ~k are 
evaluated on the process {Xn}~=_oo' 

For 0 < 1 < 00 define 

R(l) = min{j ~ 1 + 1 : x=Lj = X~tl. 

By Ornstein and Weiss [9], 

1 
1 + 1 log R(l) -t H almost surely. (9) 

First we show that if H > 0 then for k large enough Tk+ 1 > ~k almost 
surely. We argue by contradiction. Suppose that Tk+l -t 00 and Tk+l ::; ~k 
infinitely often. Then 

and Tk+1 ::; ~k infinitely often. Hence 

infinitely often and R(Tk+1 - 1) ::; Tk+1 infinitely often. Then by (9), 

H = lim ~ logR(Tk+1 -1) 
k.-.+oo Tk+l 

1· 1 1 ~ ::; 1m -~ - og Tk+1 
k.-.+oo Tk+1 

=0 



Guessing the Output of a Stationary Binary Time Series 213 

provided that 7k -1 00. Now assume that 17 = sUPO<k<oo 7k is finite. Then 
R(n17 - 1) = n17. Now by (9), 

H = lim ~logR(n17 -1) 
n-+oo n17 

::; lim ~ log(n17) 
n-+oo n17 

= O. 

We have shown that H > 0 implies that for k large enough 7k+l > ).k almost 
surely and hence for k large enough R().k) = 7k+1 almost surely. Hence by (9), 

-A _1_ log 7k+l -1 H almost surely. 
Ak + 1 

Thus for almost every wEn there exists a positive finite integer K(w) such 
that for k ~ K(w), Xk~l IOg7k+l > H - f and 

A .x 
Ak+1 > 7k+1 > c k for k ~ K(w) 

and the proof of Theorem 2 is complete. 

4 Guessing the Output at Stopping Time Instances 

If the weather forecaster is pressed to say simply will it rain or not tomorrow 
then we need a guessing scheme, rather than a predictor. Define the guessing 
scheme {XAk } for the values {XAk+1} as 

XAk = I{Pk~o.5}' 

Let X~k denote the Bayes rule, that is, 

Theorem 3 Let {Xn}~=_oo be a stationary binary time series. The proposed 
guessing scheme XAk works in the average at stopping times Ak just as well 
as the Bayes rule, that is, 

1 n 1 n 
lim - ~ I{x, =XA + } - - ~ I{x' =XA +d = 0 (10) n-+oo n ~ Ak kIn ~ Ak k 

k=l k=l 

almost surely. Moreover, 

almost surely. 
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PROOF 

n 1 n 

L I{XAk =XAk +d - :;:; L I{X~k =XAk+d = 
k=l k=l 

1 ~ - A 
:;:; L)I{XAk=xAk+l} -P(XAk = XAk+1I XOk)) 

k=l 

- ~ i)I{X~k =XAk+d - P(X~k = XAk+lIX;k)) 
k=l 

+ ~ t[P(XAk = XAk+1IX;k) - P(X~k = XAk+lIX;k)) 
k=l 

= rn + en + !J!n. 

Now rn and en tend to zero since they are averages of bounded martingale 
differences (cf. Azuma [1]). Concerning the third term !J!n, it is enough to 
prove that 

almost surely. To see this recall the result in Theorem 1, 

almost surely, and apply this in order to get 

lim [P(XAk = XAk+1IX;k) - P(X~k = XAk+1IX;k)) = 
k-too 

• - -0 - A 
hmk-too [P(P(X1 = lIX_oo ) =f. 0.5,XAk = XAk+lIXok) 

- -0 * A P(P(X1 = 1IX_oo ) =f. 0.5,XAk = XAk+1I XOk)) 
- -0 - A + [P(P(X1 = lIX_oo) = 0.5, X Ak = X Ak+1IXo k) 

P(P(X1 = lIX~oo) = 0.5,Xt = XAk+dX;k)) 

= o. 

The proof of Theorem 3 is now complete. 
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Abstract. This paper surveys results recently obtained by the authors on higher­
order asymptotic expansions for stationary Gaussian processes with long memory, 
that is, with a hyperbolically decaying autocovariance function. Such processes 
have been used to model time series data in various fields. Frequentist-type results 
presented include the following: an Edgeworth expansion for the sample autocovari­
ance function, an Edgeworth expansion for the log-likelihood derivatives and the 
maximum likelihood estimator in parametric time series models, and a Bartlett cor­
rected likelihood ratio test for the fractional integration parameter in the ARFIMA 
model. Bayesian-type results presented include the following: an Edgeworth ex­
pansion for the posterior density of the parameter vector in parametric models, 
identification of matching priors under which frequentist and Bayesian inferences 
approximately agree, and identification of approximate reference priors in the sense 
of Bernardo, which carry minimum initial information on the parameter vector in 
a certain Kullback-Leibler sense. The key tools are theorems concerning the limit­
ing behavior of the trace of the product of certain Toeplitz matrices and a general 
theorem of Durbin on Edgeworth expansions for dependent data. The results and 
proofs are briefly sketched, with references to the original papers for further details. 

1 Introduction 

This paper reviews recent results obtained by the authors on asymptotic 
expansions for a long-memory stationary Gaussian process {Xt, t E .IZ}. As 
discussed by Brockwell and Davis ([9], Sec. 13.2), a stationary process may be 
classified as short, intermediate, or long memory on the basis of the behavior 
of the auto covariance function l'(u) as follows (K being a constant): 

Short memory: l'(u) '" Kp-1u l with p E (0,1) as u ~ 00 

Intermediate memory: l'(u) '" Klul 2d- l with d E (-~,O) as u ~ 00 

Long memory: l'(u) '" Klul 2d- l with dE (O,~) as u ~ 00 

Under long memory, the autcovariance function is not absolutely summable. 
Long memory Gaussian processes have been used to model long range de­
pendence in various fields, such as hydrology, economics, and finance (see 
Robinson [27]). 
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Very slow decay in the auto covariance function leading to nonsumma­
bility corresponds to a pole at the origin in the spectral density function. 
Accordingly, Robinson and others have used the term strongly dependent 
process or long memory process to refer to a process whose spectral density 
f (>.) satisfies 

f(>.) '" I>'I-a A(>') as>. -+ 0 , (1) 

with 0 < a < 1 and A(>') slowly varying at 0 in the sense that >.6 A(>') is 
bounded for every 8 > O. For parametric models, a and A usually will depend 
on the model parameter vector (). The quantity a in (1) corresponds to 2d 
for d as in the Brockwell-Davis formulation above. 

The most well known long memory time series model is the fractionally 
integrated autoregressive - moving average (ARFIMA) model (Granger and 
Joyaeux [16]; Hosking [19]). The ARFIMA model is an extension of the clas­
sical Box-Jenkins ([8]) ARMA model, which is a short memory model. With 
B denoting the backshift operator (BXt = BXt- I ), the ARFIMA model is 
defined by p(B)(1 - B)dXt = IJ!(B)ct, where the ct'S are LLd. N(0,a2 ), P 
and IJ! are polynomials (whose coefficients are parameters of the process), 
and d E (-~, ~). When d = 0 we get an ARMA model. For d =I 0 we have 
')'(u) '" Klul 2d- 1 and the process is intermediate or long memory according 
to whether d E (-~,O) or dE (0, ~). 

Our work deals with the sample autocovariance function (SACF), which is 
a key tool in preliminary analysis of time series data, and with the maximum 
likelihood estimator (MLE) in parametric time series models such as the 
ARFIMA model. Both involve quadratic forms in correlated normal random 
variables. Prior literature provides asymptotic normality results for the SACF 
and the MLE for long memory Gaussian processes: the SACF and related 
quadratic forms have been treated by Fox and Taqqu ([15]) and Avram ([2]), 
while the MLE has been treated by Dahlhaus ([10]). We take the analysis a 
step further by developing Edgeworth-type asymptotic expansions. 

We present both frequentist and Bayesian results. The frequentist results 
are in the form of asymptotic approximations to sampling distributions. The 
Bayesian results are in the form of asymptotic approximations to posterior 
distributions. In the Bayesian setting we also discuss matching priors in the 
sense of Welch and Peers ([31]) and Peers ([25]), i.e., priors under which 
posterior probabilities equal frequentist p-values up to some order of approx­
imation, and reference priors in the sense of Bernardo ([5]). 

Our main tool is a theorem of Durbin ([12]) giving conditions for valid­
ity of the Edgeworth expansion for dependent data. Some modifications to 
Durbin's theorem are necessary to apply the theorem in our setting. In veri­
fying Durbin's conditions, we have to deal with traces of products of Toeplitz 
matrices. We exploit results of Fox and Taqqu ([14]) and Dahlhaus ([10]) on 
the behavior of such quantities. For the analysis of the MLE, we establish a 
uniform version of these Toeplitz matrix theorems. 
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2 Background 

We work with n consecutive observations from the process {Xt}. The data 
vector is represented by x = (Xl, ... ,Xn )'. The auto covariance function 
(ACF) ')'(u) and spectral density function f(>..) are related by ')'(u) = F(f)(u), 
where 

F(h)(u) = [: h(>..)eiAUd>... 

The basic model assumption is that x'" N(O, En), where En = Tn(f), with 
Tn(h) = [F(h)(j - k)ll ~ j k ~ n. In this work we deal with the mean zero 
case; O. Lieberman and'D: A-;drews are currently working on extension to 
the non-zero mean case. The sample auto covariance function (SACF) is 

i(u) = _1_ 'f XtXt+u 
n - u t=l 

This function is a common tool for initial examination of data. 
The log likelihood in a parametric model with parameter vector B is 

The analysis of the MLE of B involves analysis of the log likelihood deriva­
tives (LLD's). 

Both the SACF and the LLD's are quadratic forms in x. The SACF for 
u > 0 can be written as i(u) = (n - U)-l X ' An,u x with [An,ub,k equal 
to ~ when Ii - kl = u and equal to 0 otherwise. It may be shown that 
An,u = Tn(gu) with gu(>") = cos(u>")/(21T). For u = 0, i(O) = n-1x'x. 

The LLD 8L(B)/8Br1 •. ·8Brq takes the form 

with 

v = (r1 ... r q ), 

1 8q E-1 

Bv(B) = -"28B .. ~8B 
rl rq 

Fv(B) = _~ 8q logdet(En ). 

2 8Br1 ••• 8Brq 

Using classical matrix derivative results (Harville, [18]), it may be seen that 

Bv(B) = E~~la1k [lIf,;1T;1(fO)Tn(gl,O,j)] T;l(fO) 

Fv(B) = E~~l a2k tr [lIf~1 T;1(fe)Tn(g2,O,j)] 

where the gm,O,/s are derivatives of the spectral density with respect to B. 
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3 Basic Frequentist Results 

Let w denote a parameter of interest and w a corresponding estimate. In our 
setting, w may represent a vector of ACF values l'(u) for a fixed set of u's or 
the parameter () of a parametric model, with w being correspondingly a vector 
of SACF values or the MLE of (). Classical first-order asymptotics typically 
leads to a result to the effect that .jii(w - w) is approximately distributed as 
N(O, M) for large n. An Edgeworth expansion is a result of the form 

Pr(.jii(w - w)) E C) = fc 'PM (u)rn,r(u)du + o(n-!S+l) (2) 

with C being any Borel set, 'PM being the N(O, M) density, and 

rn,r(U) = 1 + E:=3n-!r+1qn,r(U), 

where qn,r are polynomials whose coefficients involve normalized cumulants 
ofw. 

Edgeworth expansion is a classical topic. Some basic references are Bhat­
tacharya and Rao ([7)), which gives a comprehensive treatment for sums of 
LLd. random variables and vectors, and Barndorff-Nielsen and Cox (see [4], 
Chapters 4 and 6). In particular, these references discuss the form of the 
polynomials qn,r' Taniguchi ([29)) and Taniguchi and Kakizawa ([30)) dis­
cuss Edgeworth expansions for ARMA and other short memory time series 
models (these monographs summarize a series of papers by Taniguchi and 
co-workers in this area). We have obtained the following results for the long 
memory case, that is, for a process satisfying (1) with 0 :::; a < 1. 

Theorem 1. Under suitable technical conditions, the vector of SACF values 
i'(u) for a fixed finite set of u values admits a valid Edgeworth expansion of 
the form (2). 

Theorem 2. Under suitable technical conditions, the vector of LLD 's (omit­
ting redundant ones) and the MLE vector admit a valid Edgeworth expansion 
of the form (2). 

Theorem 1 on the SACF is proven in Lieberman, Rousseau, and Zucker 
([23)), which also gives a result on more general quadratic forms. A similar 
result holds for the sample autocorrelation function fJ(u) = i'(u)/i'(O). Theo­
rem 2 on the LLD's and MLE is proven in Lieberman, Rousseau, and Zucker 
([24]). The next two sections briefly describe the main pieces of the proof: 
a theorem on products of Toeplitz matrices and Durbin's Edgeworth expan­
sion theorem for dependent data (see [12]). For the analysis of the MLE, an 
Edgeworth expansion for the LLD's is established first, and then arguments 
along the lines of Bhattacharya and Ghosh ([6]), based on a Taylor expansion 
of the first-order LLD's, are used to pass to the Edgeworth expansion results 
for the MLE (see [24] for details). 
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4 A Result on Products of Toeplitz Matrices 

In Theorems 3 and 4 we present results on the limiting behavior of the trace of 
the product of Toeplitz matrices (TPTM). Such quantities appear extensively 
in the asymptotic analysis of the SACF and the MLE, as will become apparent 
in the next section. The behavior of such quantities is a topic of longstanding 
interest going back to Grenander and Szego ([17]). Taniguchi ([28]) presented 
results in the ARMA setting. For the long memory setting, the non-uniform 
versions of Theorems 3 and 4 are due to Fox and Taqqu's Theorem La in 
[15] and Dahlhaus's Theorem 5.1, respectively. The uniform version, which is 
needed in the analysis of the MLE, is proven in [24]. 

Theorem 3. Let e be an open subset of ffim. For 0 E e, let j(},l, ... , j(},p 
and gO,l, ... ,g(},p be symmetric real-valued functions defined on [-11',11'] and 
continuous on {A : IAI > t}, Vt > O. Suppose that V() E e,36 > 0, such that 
\;18> 0, 3Mo ~ 0 for which SUP!(}'_(}!<e 1!9',i(A)1 ~ M(}IAI-a((})-o, i = 1, ... ,p, 
and SUP!(}I_(}!<e Ig(}l,i(A)1 ~ M(}IAI-,8((})-o, i = 1, ... ,p, for all A > 0, where 
a(O) < 1 and f3(0) < 1. Also suppose that \;It> 0,3Mt,(} such that 

sup Id!9l,i(A) I ~Mt(} and sup Id9(}I,i(A) I ~Mt,(}, 
!(}'_(}!<e;!.x!>t dA ' !9'-(}!<e;!.x!>t dA 

i = 1, ... ,p. 

Assume further that p(a(O)+f3(O)) < 1 for all O. Then for any compact subset 
e* ofe, 

=0. 

Theorem 4. Let e be a open subset offfim and let e* be a compact subset of 
e. Let p be a positive integer and let a(O) and f3(0) be continuous functions 
on e* with range in (0,1) satisfying f3(0) - a(O) < Ij(2p). Suppose that 
!9,j(A),j ~ p, are symmetric nonnegative functions and that g(},j(A),j ~ p, 
are symmetric real-valued functions satisfying the following conditions: 

A. Each j(},j(A) is differentiable with respect to 0, with the derivative be­
ing continuous in (A, 0) over 0 E e and A i' O. The function !9,j (A)-l 
is continuous in (A, 0) for all A and O. The derivatives (8j8A)fo,j(A)-1 and 
(82 j8A2 )j(},j(A)-1 are continuous in (A, 0) for Ai' O. There exist a(O) E (0,1) 
and C1 (8), C2 (8) such that for all 8 > 0 

I (:A) k j(},j(A)-l ~ c1(0,8)IAla((})-k-O, k = 0,1,2, 
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and Ifo,j(A)1 ~ c2(8)IAI-a(O)-o over A E (0,11'). 
B. The 90,j 's are continuous at all A =I- 0 and for each 8 > 0 there exists 

c*(8) such that 190,j(A)1 ~ c*(8)IAI- 13(O)-o for all () E fJ*. 
Then 

=0. 

In our application of these theorems, the fo,j will be the spectral density 
function of the process. In the SACF case, the functions 90,j will be the 
function 9u(A) = cos(uA)j(211'). In the MLE case, the function fo,j will be 
derivatives of the spectral density function. In the MLE case, part of the 
analysis involves the spectral density function and its derivatives for values 
of () different from, but in a neighbourhood of, the true value. 

5 Application of Durbin's Theorem 

Durbin in [12] presents a general theorem on the validity of Edgeworth expan­
sions for dependent data. Let Sn be a random vector with cumulants of order 
O(n). Put Wn = n-~ (Sn - E[Sn]) and Dn = Cov(Wn). Also let <Pn(z) denote 
the characteristic function of Sn. Durbin shows that Wn admits a valid Edge­
worth expansion if Dn converges to a positive definite matrix and if certain 
conditions on the behavior of <Pn(zjVii) and derivatives of log <Pn(zjVii) are 
satisfied. Durbin's proof is very similar to that in Feller ([13]) for the case of 
sums of i.i.d. random variables. 

For the SACF and LLD's, Sec. 2 shows that we need to work with 
Snj = x'Cjx - J.Lj, where Cj is a product of Toeplitz matrices. By classi­
cal multivariate normal theory (see Anderson [1]) we find that 

2 - - -Dn(j, k) = - tr(CjCk ), Cj = CjEn, 
n 

1 

<Pn(z) = exp(i Ej::lJ.LjZj) det [In - 2i Ej::lZ/5j]-2" 

It may be seen further that the cumulants of Sn are of TPTM form, and 
thus of order O(n) by the theorems in the preceding section. We now discuss 
briefly the verification of Durbin's Assumptions in this context. See [23] and 
[24] for the full details. 

Durbin's Assumption 1 is that Dn converges to a positive definite ma­
trix. Because the elements of Dn are TPTM's, the theorems in the preceding 
section imply convergence to some matrix D. For the SACF, positive defi­
niteness is shown by a simple argument. For the MLE, [24] gives a condition 
for positive definiteness that is easily checked. 
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Durbin's Assumption 2 is as follows: For any <5 > 0, we have, uniformly 
over 8, 

r l<Pn(z/yn, 8)ldz = o(n-(S-2)/2). 
J{llzll>ovn} 

The idea of the proof is as follows. Let PI, ... , Pn be the eigenvalues of 
E~IZ/jj. Then l<Pn(z/y'n,8)1-4 equals 

1 + ~ L P; + (~) 2 L P;P;' + ... + (~) n IT P; (3) 
r r#-r' r=1 

We have 

This quantity converges to 2z'D(8)z. The remaining terms in (3) may be 
bounded by quantities involving TPTM's and shown to be negligible. This 
yields an adequate lower bound for I <Pn (z / yn, 8) I. 

For analysis of the LLD's, for certain technical reasons we work with a 
modified version of Durbin's Assumption 3, as follows: 

a. Foranyr = (rl,'" ,rd), with Irl :::; s, thederivatives8 Ir1 log<pn(w;8)/8wr 
exist for w in a neighbourhood of the origin. 

b. For r as above, the quantity n-18Irllog<Pn(0;8)/8wr has a limit as 
n -t 00. 

c. For any vector ~ with II~II = 1, the quantity n-Ids<Pn(y~;8)/dy8 has a 
limit as n -t 00 and y -t 0, with convergence uniform over~. 

In [24] it is shown, by tracing step by step through Durbin's proof, that 
Durbin's result goes through with this assumption replacing his original As­
sumption 3. For analysis of the SACF, we need to work with a more elaborate 
modified version of Durbin's Assumption 3; see [23] for details. 

The main job is to prove (c). The idea of the proof is as follows. We have 

m 1 
log<Pn(Y~) = iy L~jJ-lj - "2logdet(!l(y)) 

j=1 

with !l(y) = I - yG, where G = 2i E~I~/Jj. Thus 

~ log<Pn(Y~) = i E~I~jJ-lj + ~tr(!l-IG) 

In examining the higher order derivatives of log <Pn (y~), the main type of term 
to deal with looks like 

Such terms may handled using the TPTM theorem. 
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6 Bartlett-Corrected Likelihood Ratio Tests 

Lieberman, Rousseau, and Zucker in [22] discuss small-sample inference for 
the the fractional integration parameter d in the ARFIMA(p, d, q) model. 
In particular, they present a Bartlett-corrected likelihood ratio (LR) test 
for the hypothesis Ho : d = do. Bartlett correction involves expressing the 
expectation of the LR statistic A(d) in an expansion E[A(d)] = 1 + H«()) + 
O(n-~), where H«()) is O(1/n), and then forming a corrected LR statistic 
.J(d) = {1 + H«())} -1 A(d). Here () denotes the vector comprising all the 
ARFIMA model parameters. In practice, one uses an estimate of H«()). 

Barndorff-Nielsen and Cox in [4] showed in a general likelihood setting 
that if the LLD's and MLE admit an Edgeworth expansion, then the cor­
rected statistic is distributed as xi under Ho to order O(n-2) (as opposed 
to O(n-1 ) for the uncorrected statistic). The Edgeworth expansion results of 
[24] establish the necessary conditions for this result to apply. 

Lawley ([21]) and DiCiccio and Stern ([11], Eqn. (14)) presented a general 
formula for H«()) in the general maximum likelihood setting. For testing d in 
the ARFIMA model, [22] provide expressions for the expected log-likelihood 
derivatives appearing in this formula and for the derivatives of the autoco­
variance function that appear in these expected log-likelihood derivatives. 
They present a numerical study showing that the accuracy of the LR test is 
improved substantially with the correction. 

7 Bayesian Asymptotics for Parametric Models 

We now discuss our Bayesian results for parametric models. Let 7r«()) be a 
prior density for () (positive at the true value ()o). The likelihood function is 

e-"f 1:;;1"/2 
p(J(x) = det[EnJ1/2(27r)n/2 

and the posterior density of () is 

lI«()lx) = ! 7r«())p(J(x)d(). 

The main result is as follows. 

Theorem 5. Under the same type of conditions as in Theorem 2, for any 
Borel set C we have, up to an error ofoP9o(n-!S+1), 

fa lI«()lx)d() == fa <PM (u;,/) r~,r (Ufo°) du, 
where 0 is the MLE of (), M is the inverse of n-1 times the observed infor­
mation matrix, and 

r * () 1 {""'s - 1 r+ 1 * ( ) n,r U = + LJr=3n 2 qn,r U , 



Long-Memory Stationary Gaussian Processes 225 

where q~,r are polynomials whose coefficients involve x. 

This result is proved in [26) (PR). The prooffollows the pattern of Johnson 
([20)) for the i.i.d. case, and is based on Laplace expansion of the posterior 
integral. A Taylor expansion of the log-likelihood function is used. Terms 
in the Taylor expansion involve quantities of TPTM form. Use is made of 
frequentist results at certain stages of the proof. 

Using frequentist and Bayesian asymptotic results, we can express fre­
quentist probabilities as a function of posterior probabilities in an approxi­
mate sense. In particular, for a given parameter of interest, under a special 
"matching prior" we have p-value = posterior probability + O(n-1 ). The 
matching prior for parameter j is the solution to the equation 

where Mjk is the j, k-th element of the inverse ofthe limiting expected infor­
mation matrix, i. e., the limit as n goes to infinity of the expected information 
matrix of n observations divided by n. For the one-dimensional case, we get 
the Jeffreys prior. In higher dimensions, the situation is generally very compli­
cated. For the ARFIMA(O, d, 0) model, however, we get the following closed 
form solution: 

7r(d,a) = ae-Cdh(a2e-cd), 

where c is a known constant and h is any smooth function. See [26) for further 
discussion. 

Philippe and Rousseau have also obtained an asymptotic expansion for 
the Kullback-Leibler divergence between the density p~(x) (as a function of 
x) and the marginal distribution of x (after integrating over the prior). This 
allows for the construction of a reference prior in the sense of Bernardo ([5)), 
i.e., a prior that maximizes the asymptotic Kullback-Leibler divergence. See 
[26) for details. 
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