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Foreword

Since the objective of Foundations of Fuzzy Control is to explain why fuzzy controllers
behave the way they do, I would like to contribute a historical perspective.

Before the 1960s, a cement kiln operator controlled a cement kiln by looking into its
hot end, the burning zone, and watching the smoke leaving the chimney. The operator used
a blue glass to protect his eyes. He controlled the fuel/air ratio in order to achieve steady
operation of the kiln.

Central control was introduced in the cement industry in the 1960s. PID controllers
were installed, mainly for uniform feeding of the raw materials and the fuel. Computers for
process supervision and control were introduced in the cement industry in the late 1960s.

During experimental work in the 1970s, the fuel control strategy was programmed as
a two-dimensional decision table with an error signal and the change in error as inputs.

The first time we heard about fuzzy logic was at the fourth IFAC/IFIP International
Conference on Digital Computer Applications to Process Control, held in Zürich, Switzer-
land, in 1974. As a postscript to a paper on learning controllers, Seto Assilian and Abe
Mamdani proposed fuzzy logic as an alternative approach to human-like controllers.

Experimental work was carried out at the Technical University of Denmark. The theo-
retical understanding and inspiration in relation to process control was gained mainly from
papers written by Lotfi Zadeh and Abe Mamdani, and control experiments were performed
in laboratory-scale processes such as, for example, a small heat exchanger. The rule-based
approach that underlies the decision tables was also inspired by the instructions we found in
a textbook for cement kiln operators, which contained 27 basic rules for manual operation
of a cement kiln.

The first experiments using a real cement kiln were carried out at the beginning of
1978 at an FL Smidth cement plant in Denmark. At this stage of the development work, the
attitude of the management was sceptical, partly because of the strange name ’fuzzy’. Other
names were suggested, but eventually, with an increasing understanding by the management
of the concept, it was decided to stay with the word fuzzy, a decision that has never been
regretted since.

In 1980, FL Smidth launched the first commercial computer system for automatic kiln
control based on fuzzy logic. To date, hundreds of kilns, mills, and other processes have
been equipped with high-level fuzzy control by FL Smidth and other suppliers of similar
systems.

Jens-Jørgen Østergaard
FL-Soft, Copenhagen



Preface

Abstract The objective of this textbook is to explain the behaviour of fuzzy-
logic controllers. Under certain conditions, a fuzzy controller is equivalent
to a proportional-integral-derivative (PID) controller. The equivalence enables
the use of analysis methods from linear and nonlinear control theory. In the
linear domain, PID tuning methods and stability criteria can be transferred to
linear fuzzy controllers. The Nyquist plot shows the robustness of different
settings of the fuzzy gain parameters. As a result, it can be guaranteed that a
fuzzy controller will perform as well as any PID controller. In the nonlinear
domain, the stability of four standard control surfaces can be analysed by
means of describing functions and Nyquist plots. The self-organizing controller
(SOC) has been shown to be a model reference adaptive controller. There
is a possibility that a nonlinear fuzzy PID controller performs better than a
linear PID controller, but there is no guarantee for the same. Even though a
fuzzy controller is nonlinear in general, and commonly built in a trial-and-error
fashion, we can conclude that control theory does provide tools for explaining
the behaviour of fuzzy-control systems. Further studies are required, however,
to find a design method such that a fuzzy-control system exhibits a particular
behaviour in accordance with a set of performance specifications.

Fuzzy control is an attempt to make computers understand natural language and behave
like a human operator. The first laboratory application (mid-1970s) was a two-input-two-
output steam engine controller by Ebrahim (Abe) Mamdani and Seto Assilian, United
Kingdom, and the first industrial application was a controller for a cement kiln by Holm-
blad and Østergaard, FL Smidth, Denmark. Today there is a tendency to combine the
technology with other techniques. Fuzzy control together with artificial neural networks
provides both the natural language interface from fuzzy logic and the learning capabili-
ties of neural networks. Lately hybrid systems, including machine learning and artificial
intelligence methods, increase the potential for intelligent systems.

As a follow-up on the pioneering work by Holmblad and Østergaard, which started at
the Technical University of Denmark in the 1970s, I have taught fuzzy control over the
Internet to students in more than 20 different countries since 1996. The course is primarily
for graduate students, but senior undergraduates and PhD students also take the course.
The material, a collection of downloadable lecture notes at 10–30 pages each, formed the
basis for this textbook.

A fuzzy controller is in general nonlinear, and therefore the design approach is com-
monly one of trial and error. The objective of this book is to explain the behaviour of
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fuzzy-logic controllers in order to reduce the amount of trial-and-error content in a design
phase.

Much material has been developed by applied mathematicians, especially with regard to
stability analysis. Sophisticated mathematics is often required, which unfortunately makes
the material inaccessible to most of the students of the Internet course. On the other hand,
application-oriented textbooks that are easily accessible and have a wide coverage of the
area are available. The design approach is nevertheless one of trial and error. The present
book is positioned between mathematics and heuristics; it is a blend of control theory and
trial-and-error methods. The key features of the book are summarized in the following four
items.

• Fundamental The chapter on fuzzy reasoning presents not only fuzzy logic, but
also classical set theory, two-valued logic, and two-valued rules of inference. The
chapters concerning nonlinear fuzzy control rely on phase plane analysis, describing
functions, and model reference adaptive control. Thus, the book presents the parts
of control theory that are the most likely candidates for a theoretical foundation for
fuzzy control, it links fuzzy control concepts backwards to the established control
theory, and it presents new views of fuzzy control as a result.

• Coherent The analogy with PID control is the starting point for the analytical treat-
ment of fuzzy control, and it pervades the whole book. Fuzzy controllers can be
designed, equivalent to a P controller, a PD controller, a PID controller, or a PI con-
troller. The PD control table is equivalent to a phase plane, and the stability of the
nonlinear fuzzy controllers can be compared mutually, with their linear approxima-
tion acting as a reference. The self-organizing controller is an adaptive PD controller
or PI controller. In fact, the title of the book could also have been Fuzzy PID Control.

• Companion web site1 Many figures in the book are programmed in Matlab (trademark
of The MathWorks, Inc.), and the programs are available on the companion web site.
For each such figure, the name of the program that produced the figure is provided, in
parentheses, in the caption of the figure. They can be recognized by the syntax *.m,
where the asterisk stands for the name of the program. The list of figures provides a
key and an overview of the programs.

• Companion Internet course The course concerns the control of an inverted pendu-
lum problem or, more specifically, rule-based control by means of fuzzy logic. The
inverted pendulum is rich in content, and therefore a good didactic vehicle used in
courses around the world. In this course, students design and tune a controller that
balances a ball on top of a moving cart. The course is based on a simulator, which
runs in the Matlab environment, and the case is used throughout the whole course.
The objectives of the course are as follows: to teach the basics of fuzzy control,
to show how fuzzy logic is applied, and to teach fuzzy controller design. The core
means of communication is email, and the didactic method is through email tutoring.
An introductory course in automatic control is a prerequisite.

The introductory chapter of the book shows the design approach by means of an
example. The book then presents set theory and logic as a basis for fuzzy logic and

1http://www.oersted.dtu.dk/31361
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fuzzy reasoning, especially the so-called generalized modus ponens. A block-diagram of
controller components and a list of design choices lead to the conditions for obtaining a
linear fuzzy controller, the prerequisite for the fuzzy PID controller.

The following step is into the nonlinear domain, where everything gets more difficult,
but also more interesting. The methods of phase plane analysis, model reference adaptive
control, and describing functions provide a foundation for the design and fine-tuning of a
nonlinear fuzzy PID controller.

The methods are demonstrated in a simulation of the inverted pendulum problem, the
case study in the above-mentioned course on the Internet. Finally, a short chapter presents
ideas for supervisory control based on experience in the process industry.

The book aims at an audience of senior undergraduates, first-year graduate students,
and the practising control engineer. The book and the course assume that the student has
an elementary background in linear differential equations and control theory corresponding
to an introductory course in automatic control. Chapters 1, 2, 3, and 9 can be read with
few prerequisites, however. Chapter 4 requires knowledge of PID control and Laplace
transform, and chapters 5, 6, and 7 increasingly require background knowledge. Even the
simulation study in chapter 8 requires some knowledge of state-space modelling for being
fully appreciated. Mathematical shortcuts have been taken to preserve simplicity and avoid
formalism.

Sections marked by an asterisk (*) may be skipped on a first reading; they are either
very mathematical or very practically oriented, and thus off the main track of the book.

It is of course impossible to cover the entire spectrum of topic areas in one volume. I
have drawn the line between fuzzy control and neuro-fuzzy control. The latter encompasses
topics such as neural networks, learning, and model identification that could be included
in a future edition.

Acknowledgements. I am pleased to acknowledge the many helpful suggestions I re-
ceived from the late Lauritz Peter Holmblad, who acted as external supervisor on Masters
projects at the Technical University of Denmark, and Jens-Jørgen Østergaard. They have
contributed process knowledge, sound engineering solutions, and a historical continuity.
Thanks to Peer Martin Larsen, I inherited all reports from the early days of fuzzy control
at the university. I also had the opportunity to browse the archives of Abe Mamdani,
then at Queen Mary College, London. I am also pleased to acknowledge the many helpful
suggestions from Derek Atherton and Frank Evans, both in the United Kingdom, concerning
nonlinear control, and, in particular, state-space analysis and describing functions. Last, but
not least, former and present students at the university and on the Internet have contributed
collectively with ideas and suggestions.

Jan Jantzen
Technical University of Denmark
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Introduction

Fuzzy controllers appear in consumer products – such as washing machines, video cameras,
cars – and in industry, for controlling cement kilns, underground trains, and robots. A
fuzzy controller is an automatic controller , a self-acting or self-regulating mechanism that
controls an object in accordance with a desired behaviour. The object can be, for instance,
a robot set to follow a certain path. A fuzzy controller acts or regulates by means of rules
in a more or less natural language, based on the distinguishing feature: fuzzy logic. The
rules are invented by plant operators or design engineers, and fuzzy control is thus a branch
of intelligent control.

1.1 What Is Fuzzy Control?

Traditionally, computers make rigid yes or no decisions, by means of decision rules based
on two-valued logic: true – false, yes –no, or 1 − 0. An example is an air conditioner with
thermostat control that recognizes just two states: above the desired temperature or below
the desired temperature. Fuzzy logic, on the other hand, allows a graduation from true to
false. A fuzzy air conditioner may recognize ‘warm’ and ‘cold’ room temperatures. The
rules behind this are less precise, for instance:

If the room temperature is warm and slightly increasing, then increase the cooling.

Many classes or sets have fuzzy rather than sharp boundaries, and this is the mathe-
matical basis of fuzzy logic; the set of ‘warm’ temperature measurements is one example
of a fuzzy set.

The core of a fuzzy controller is a collection of verbal or linguistic rules of the if–then
form. Several variables may occur in each rule, both on the if -side and the then-side.
Reflecting expert opinions, the rules can bring the reasoning used by computers closer to
that of human beings.

In the example of the fuzzy air conditioner, the controller works on the basis of a
temperature measurement. The room temperature is just a number, and more information

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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Figure 1.1: A warm room. The crisp air conditioner considers any temperature above 21 ◦C
warm. The fuzzy air conditioner considers gradually warmer temperatures. (figwarm.m)

is necessary to decide whether the room is warm. Therefore the designer must incorporate
a human’s perception of warm room temperatures. A straightforward implementation is to
evaluate beforehand all possible temperature measurements. For example, on a scale from
0 to 1, warm corresponds to 1 and not warm corresponds to 0:

Measurements (◦C): . . . 15 17 19 21 23 25 27 . . .

| | | | | | |
Grade: . . . 0 0.1 0.3 0.5 0.7 0.9 1 . . .

The example uses discrete temperature measurements, whereas Figure 1.1 shows the
same idea graphically in the form of a continuous mapping of temperature measurements
to truth-values. The mapping is arbitrary, that is, based on preference and not mathematical
reason.

1.2 Why Fuzzy Control?

If PID control (proportional-integral-derivative control) is inadequate – for example, in the
case of higher-order plants, systems with a long deadtime, or systems with oscillatory
modes (Åström and Hägglund 1995) – fuzzy control is an option. But first, let us consider
why one would not use a fuzzy controller:

• The PID controller is well understood, easy to implement – both in its digital and
analog forms – and it is widely used. By contrast, the fuzzy controller requires some
knowledge of fuzzy logic. It also involves building arbitrary membership functions.

• The fuzzy controller is generally nonlinear. It does not have a simple equation like the
PID, and it is more difficult to analyse mathematically; approximations are required,
and it follows that stability is more difficult to guarantee.

• The fuzzy controller has more tuning parameters than the PID controller. Furthermore,
it is difficult to trace the data flow during execution, which makes error correction
more difficult.

On the other hand, fuzzy controllers are used in industry with success. There are several
possible reasons:
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• Since the control strategy consists of if–then rules, it is easy for a plant operator to
read. The rules can be built from a vocabulary containing everyday words such as
‘high’, ‘low’, and ‘increasing’. Plant operators can embed their experience directly.

• The fuzzy controller accommodates many inputs and many outputs. Variables can be
combined in an if–then rule with the connectives and and or. Rules are executed in
parallel, implying a recommended action from each. The recommendations may be
in conflict, but the controller resolves conflicts.

Fuzzy logic enables non-specialists to design control systems, and this may be the main
reason for its success.

1.3 Controller Design

Established design methods such as pole placement, optimal control, and frequency response
shaping only apply to linear systems, whereas fuzzy control is generally nonlinear. Since
our knowledge of the behaviour of nonlinear systems is limited, compared with the situation
in the linear domain, this book is based on a design procedure founded on linear control:

1. Design a PID controller

2. Replace it with a linear fuzzy controller

3. Make it nonlinear

4. Fine-tune it.

The idea is to exploit the design methods within PID control and carry them forward to
fuzzy control. The design procedure is feasible, only because it is possible to build a linear
fuzzy controller that functions exactly as any PID controller does. The following example
introduces the design procedure.

1.4 Introductory Example: Stopping a Car

Consider this problem: Model the behaviour of a human driver stopping a car at a red stop
light by using the brake pedal. Figure 1.2 defines the symbols.

Model the car first. Disregarding engine dynamics, skidding, slip, and friction – other
than the frictional forces in the brake pads – the force F causes an acceleration a according
to Newton’s second law of motion F = ma. Acceleration is the derivative of velocity ẏ,
which is, in turn, the derivative of the position y. Thus a = ÿ, and we can write the
differential equation that models the motion of the car as

F = mÿ ⇔ ÿ = F

m
(1.1)

For a Volkswagen Caddy Van (diesel, 2-L engine) the mass, without load and including the
driver, is approximately 1500 kg. Assume that the stop light changes to red when the car
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Figure 1.2: Stopping a car. Position y is positive towards the right, with zero at the stop
light. The brakes act with a negative force F on the mass m.

is 25 m (82 ft) away at a speed of 10 m/s (36 km/h or 22.7 mph). We have thus identified
the following constants:

m = 1500

y(0) = −25

ẏ(0) = 10

Once the speed is zero, the car will not move anymore. The variable F is thus negative
or zero, since the brake is our only means of control. According to specifications, the
distance at which the brakes have to be applied when the car is at a speed of from 80 km/h
(49.7 mph.) to bring the speed to zero is y = 27.3 m. As all the kinetic energy is converted
to work, we have, on the average,

1

2
mẏ2 = Fy

and thus

F = 1

y

1

2
mẏ2

= 1

27.3

1

2
1500

(
80 000

3600

)2

≈ 13 600

We shall therefore assume that the automatic brake system limits the magnitude of the
brake force to 13 600 N (newton). The control signal is thus subject to the constraints

−13 600 ≤ F ≤ 0

We can now simulate the system, and the objective is to study the behaviour related to
various control strategies.

Step 1: Design a PID controller

Our first choice is to model the driver as a proportional controller,

F = Kpe (1.2)
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where Kp is the proportional gain, that can be adjusted. To interpret, the driver presses the
brake pedal hard when the distance is large, relaxes the pressure as the distance decreases,
and finally releases the pedal when arriving at the stop light. The error e ≥ 0 is the position
error between the stop line Ref and the current position y ≤ 0,

e = Ref − y (1.3)

The force F arises not from the engine, but from an opposite friction force in the brakes.
Therefore Kp must be negative. The closed-loop system equations are obtained by inserting
Equation (1.2) into Equation (1.1):

ÿ = Kpe

m
= Kp

m
Ref − Kp

m
y = −Kp

m
y (1.4)

since Ref = 0.
It turns out that only a particular controller setting (Kp = −240) will work such that

the car stops at the stop light after about 10 s. A smaller magnitude of Kp stops the car
after the light (overshoot), and a larger magnitude of Kp stops the car short of the light.
The solution to Equation (1.4) shows why:

y(t) =




− 5

√ |Kp|
m

− 25

2




 exp−

√ |Kp|
m t +






5
√ |Kp|

m

− 25

2




 exp

√ |Kp|
m t

Setting Kp = −240 suppresses the second exponential term, but if Kp is slightly different,
the second exponential will diverge to plus or minus infinity.

Because of the long stopping time, and the highly sensitive solution, we conclude that
proportional control is unrealistic.

Our second choice is to model the driver as a proportional-derivative (PD) controller,
since it is likely that the driver takes the velocity into account. Figure 1.3 shows a Simulink
(trademark of The MathWorks, Inc.) model, which includes the constraint on the brake
force, and the model is therefore nonlinear. The controller is

F = Kp (e + Td ė) (1.5)

velacc pos
e F

–K–

Td

Saturation

0

Ref Position

6000

Kp

1
s

Integrator2

1
s

Integrator1

1/1500

Gain1

du/dt

Derivative

Control

Figure 1.3: Simulink block diagram. A PD controller brakes the car from initial conditions
y(0) = −25, ẏ(0) = 10. (figcarpd.mdl)
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where Td is the derivative gain, which can be adjusted. To interpret, the derivative action
calls for extra brake force when the velocity is high. The closed-loop system equations are
obtained by inserting Equation (1.5) into Equation (1.1):

ÿ = Kp (e + Td ė)

m
= −KpTd

m
ẏ − Kp

m
y (1.6)

There will be a steady state solution, since in steady state the system is at rest, that is,
ÿ = ẏ = 0, and insertion yields the solution y = 0; this is in accordance with the problem
specification. The transfer function of the closed-loop system is

y(s)

Ref
=

Kp

m

s2 + Kp

m
Tds + Kp

m

= ω2
n

s2 + 2ζωns + ω2
n

(1.7)

The last expression is a general second-order system with natural frequency ωn – the fre-
quency of oscillation of the system without damping – and damping ratio ζ . It is useful,
because we are looking for a solution without overshoot, which is as fast as possible;
this corresponds to the case ζ = 1, which yields a critically damped response. From
Equation (1.7) we derive

ζ = 1

2

√
Kp

m
Td

Applying ζ = 1 gives us an optimal tuning relationship

Td = 2
√

Kp

m

It ensures that the response has no overshoot and there is a horizontal tangent at y = 0;
consequently the velocity will be zero when the car arrives at the stop light.

Figure 1.4 shows the response with

Kp = 6000

Td = 1

The figure also shows a fuzzy controller response for comparison, but we shall refer to
that later. During the first 1.5 s, the control signal is zero, because the proportional action
is positive and larger in magnitude than the derivative action, which is negative. Since the
resultant action is positive, the saturation limits the signal to zero (the car moves owing to
the initial velocity of 10 m/s). At time t = 1.5, the derivative action takes over and starts
to brake the car. To interpret, the controller waits 1.5 s until it kicks in, applies less than
maximum force about half a second later, and then relaxes the brake gently. It takes about
5 s to stop the car.

Step 2: Replace it with a linear fuzzy controller

A fuzzy controller consists of if–then rules describing the action to be taken in various
situations. We will consider the situations where the distance to the stop light is long or
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Figure 1.4: Stopping a car. Comparison between a PID controller and a fuzzy controller.
(figstopcar.m)

short and situations where the car is approaching fast or slowly. A complete rule base of
all possible combinations contains four rules:

if the distance is long and the approach is fast, then brake zero; (1.8)

if the distance is long and the approach is slow, then brake zero; (1.9)

if the distance is short and the approach is fast, then brake hard; (1.10)

if the distance is short and the approach is slow, then brake zero. (1.11)

The linguistic terms must be specified precisely for a computer to execute the rules.
Figure 1.5 shows how to implement ‘long’, as in ‘distance is long’, as a fuzzy membership
function, shaped like the letter ‘s’. The x-axis is the universe, the interval [0,100] % of
the full range of 25 m. The y-axis is the membership grade, that is, how compatible a
distance measurement is with our perception of the term ‘long’. For instance, a distance of
25 m (100 %) has membership 1, because the distance is definitely long, while half that
distance is long to a degree of just 0.5. Note that the x-axis corresponds to the previously
defined error e, scaled onto a standard range of percentages relative to the maximum
distance.

The term ‘fast’, as in ‘approach is fast’, is another membership function. The x-axis
is again percentages of the full range (10 m/s), but the numbers are negative to emphasize
that the speed is decreasing rather than increasing. The x-axis corresponds to the previously
defined time derivative ė scaled onto the universe; when the speed decreases, ė is negative.
The −100 % corresponds to the maximum speed of 10 m/s.

Similarly, the membership function for ‘short’ is just a reflection of the membership
function ‘long’, and the membership function ‘slow’ is a reflection of ‘fast’.
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Figure 1.5: Fuzzy membership functions. The (a) specifies a LONG distance, and the (b)
specifies a FAST approach. The curves correspond to the first rule (1.8). (figmfcar.m)

Turning to the then-side of the rules, the term ‘zero’ is brake force 0, a constant. The
term ‘hard ’ is the full brake force of −100 %, which is also a constant.

The following chapters will show how to design a linear fuzzy controller, with a
performance that is exactly the same as the PD controller in the previous step. It is a
design aid, because the PD controller, with its tuning, settles many design choices for
the fuzzy controller. One requirement is that the membership functions should be lin-
ear.

At the end of this step, we have a fuzzy controller (not shown), with a response exactly
as the dotted PD response in Figure 1.4.

Step 3: Make it nonlinear

Stepping into the nonlinear domain usually entails a trial and error design procedure, but
the following chapters provide methods such that at least some analysis is possible.

The nonlinear fuzzy controller uses the nonlinear membership functions in Figure 1.5.
The response is close to the PD controller response, and is therefore not shown.

Step 4: Fine-tune it

After adjusting one tuning factor (input gain on the error, GE, increased from 10 to 13), the
response is as in Figure 1.4. The response is better than in PD control. The lower plot with
the control signals shows what happens: The fuzzy controller waits longer before it kicks
in, and then it uses all the available brake force. Thereafter it releases the brake quicker
than the PD controller.

The example shows that good knowledge of the plant to be controlled is beneficial; to
analyse stability, a mathematical model is even necessary. But more importantly, the PD
controller design step gave us a tuning (Kp and Td ) that we could transfer to the fuzzy
controller. Thereby, the PD controller constitutes a reference for the assessment of the
performance of the fuzzy controller.
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1.5 Summary

It is quite difficult to design a fuzzy controller, because it is in general nonlinear, and
nonlinear systems are more or less unpredictable. Instead we propose to stay as long as
possible in the linear domain, reflected in the proposed design procedure.

The idea is to start from PID control and design a linear fuzzy controller that is equiv-
alent to the pre-designed PID controller. At this point, all the results from linear control
theory can be applied, including tuning methods and stability calculations. In the next
phase, the fuzzy controller is made nonlinear.

The design procedure has limited scope in the sense that it requires a PID controller be
built to control the plant. As a compensation for the limited scope, the design procedure
provides reliability: it guarantees that the fuzzy controller performs at least as well as its
pre-designed PID controller. There is a possibility, but no guarantee, that it will perform
better.

Some of the following chapters provide tools for analysing the nonlinear fuzzy con-
troller, in particular, phase plane analysis and describing functions. Yet, trial and error is
still a characteristic of the design procedure.

1.6 Notes and references

In the mid-1960s, Lotfi A. Zadeh (born in 1921 in Azerbaijan) of the University of Cal-
ifornia at Berkeley, USA, invented the theory of fuzzy sets. He argued that, more often
than not, the classes of objects encountered in the real physical world have imprecisely
defined criteria for membership (Zadeh 1965). For example, the ‘class of numbers that
are much greater than 1’, or the ‘class of tall human beings’ have ill-defined bound-
aries. Yet, such imprecisely defined classes play an important role in human reasoning and
communication.

Ebrahim (Abe) H. Mamdani, a control engineer at Queen Mary College in London (now
Emeritus Professor at Imperial College), was attempting to develop an adaptive system
that could learn to control an industrial process (Figure 1.6). He used a steam engine as a
laboratory model, and with his colleagues set up a program that would teach the computer
to control the steam engine by monitoring a human operator. At this point, Mamdani’s

Figure 1.6: E.H. Mamdani
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research student, Seto Assilian, tried to apply fuzzy logic. He created a set of simple rules
in fuzzy terms, and Mamdani and Assilian then studied ways to use fuzzy rules of thumb
directly in automating process controls. A few years later, Mamdani and Procyk managed
to develop a linguistic self-organizing controller (Procyk and Mamdani 1979). It was an
adaptive controller that was able to learn how to control a wide variety of processes,
nonlinear and multi-variable, in a relatively short time. It was called ‘self-organizing’
because at that point in time the meaning of the words ‘adaptive’ and ‘learning’ had not
yet been agreed upon.

The work of the pioneers led to a growing literature in fuzzy control and wide-ranging
applications, as Table 1.1 illustrates.

In Japan, Michio Sugeno (1989) developed a self-learning fuzzy controller. Twenty
control rules determined the motion of a model car. Each rule recommends a specific
change in direction, based on the car’s distance from the walls of a corridor. The controller
drives the car through angled corridors, after a learning session where a ‘driving instructor’
pulls it through the route a few times. Self-learning controllers that derive their own rules
automatically are interesting because they could reduce the effort needed for translating
human expertise into a rule base.

The first industrial application was in 1978, where a fuzzy controller was operating in
closed loop on a rotary cement kiln in Denmark. Fuzzy control then became a commercial
product of the Danish cement company F.L. Smidth & Co. The fuzzy control research
program in Denmark was initiated in 1974 (Larsen 1981).

Table 1.1: Milestones in early fuzzy history.

Year Event Reference

1965 First article on fuzzy sets Zadeh (1965)
1972 A rationale for fuzzy control Zadeh (1972)
1973 Linguistic approach Zadeh (1973)
1974 Fuzzy-logic controller Assilian and Mamdani (1974)
1976 Warm-water plant Kickert and van Nauta Lemke (1976)
1977 Table-based controller Mamdani (1977)
1977 Heat exchanger Østergaard (1977)
1977 Self-organizing controller Procyk and Mamdani (1979)
1980 Fuzzy conditional inference Fukami et al. (1980)
1980 Cement kiln controller Holmblad and Østergaard (1982)
1983 Train operation Yasunobu et al. (1983)
1984 Parking control of a model car Sugeno et al. (1989)
1985 Fuzzy chip Togai and Watanabe (1985)
1986 Fuzzy controller hardware system Yamakawa and Miki (1986)
1987 Sendai subway in operation Yasunobu et al. (1983)
1989 Fuzzy home appliances sold in Japan
1989 The LIFE project is started in Japan
1990 Rule learning by neural nets Kosko (1992)
1990 Hierarchical controller Østergaard (1990), (1996)
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The Laboratory for International Fuzzy Engineering (LIFE ), Yokohama, was set up
by the Japanese Ministry of International Trade and Industry in 1989. It had a 6-year
budget of 5 billion yen and a research staff of around 30. LIFE conducted basic research
with universities and member Japanese companies and subsidiaries of U.S. and European
companies, including Matsushita, Hitachi, Omron, and VW, about 50 companies in all.
The research program was trimmed to five major projects: image understanding, fuzzy
associative memory, fuzzy computing, intelligent interface, and the intelligent robot. They
were all carried out with two themes in view: a navigation system for the blind and home
computing.

A European network of excellence called ERUDIT 1 was initiated in 1995 with support
from the European Commission. ERUDIT, which lasted 6 years, was an open network
for uncertainty modelling and fuzzy technology, aimed at putting European industry at the
leading edge. The network was followed by another network EUNITE2 with a broader
scope: smart adaptive systems. And this was in turn followed by a coordinated action
NISIS3 with an even broader scope: nature-inspired systems.

For further information

Beginners may start with two articles in Institute of Electrical and Electronics Engineers
(IEEE) Spectrum (Zadeh 1984, Self 1990) and then move on to the more advanced textbook
by Zimmermann (1993); half of it is dedicated to fuzzy set theory and the other half to
applications.

The terms ‘rule base’ and ‘inference engine’ are loans from the field of expert systems,
and Lee (1990) uses these to give a wide survey of the whole area of fuzzy control. The
article lists 150 references. The book by Ross (1995) is oriented towards applications in
engineering and technology with many calculated examples.

A major reference on fuzzy control is the book by Driankov et al. (1996). It is explicitly
targeted at the control engineering community, in particular, engineers in industry, and
university students. Chapter 3 gives more specific references related to fuzzy control.

Industrial applications are described in a special issue of the journal Fuzzy Sets and
Systems, for instance, the fuzzy car by Sugeno et al. (1989) and an arc welding robot by
Murakami et al. (1989). There are more early applications in the classical book by Sugeno
(1985). Ten years later, Constantin von Altrock (1995) described more than 30 case studies
from companies that employed fuzzy and neuro-fuzzy methods. The FL Smidth controller
is described in detail in Holmblad and Østergaard (1982).

There are more than 10 journals related to fuzzy sets. Two of the major journals are
Fuzzy Sets and Systems and International Journal of Approximate Reasoning, both pub-
lished by Elsevier, and a third one is Journal of Intelligent and Fuzzy Systems, published
by IOS Press, Netherlands. The Institute of Electrical and Electronics Engineers, IEEE,
started a journal in 1992 called IEEE Transactions on Fuzzy Systems. The Int. J. of Uncer-
tainty, Fuzziness and Knowledge-Based Systems is published four times per year by World
Scientific Publishing Co. It is a forum for research on imprecise, vague, uncertain, and
incomplete knowledge. Other journals that occasionally have fuzzy control articles are

1http://www.erudit.de
2http://www.eunite.org
3http://www.nisis.de
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Automatica, the control section of IEE Proceedings, IEEE Transactions on Systems Man
and Cybernetics, IEEE Transactions on Computers, Control Engineering Practice, and the
International Journal of Man-Machine Studies.

There is an active newsgroup called comp.ai.fuzzy4. It supplies useful news, con-
ference announcements, and discussions.

There are two major professional organizations. The International Fuzzy Systems Asso-
ciation (IFSA) is a worldwide organization dedicated to fuzzy sets. IFSA publishes the
International Journal of Fuzzy Sets and Systems (24 issues per year), holds international
conferences, establishes chapters, and sponsors activities. The other organization is the
North American Fuzzy Information Processing Society, NAFIPS5, with roughly the same
purpose.

4http://groups.google.com/group/comp.ai.fuzzy
5http://nafips.ece.ualberta.ca/
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Fuzzy Reasoning

In classical logic, an assertion is either true or false – not something in between – and
fuzzy logic extends classical logic by allowing intermediate truth values between zero and
one. An assertion can be more or less true in fuzzy logic.

A computer can interpret a linguistic statement such as

if the washing machine is half full, then use less water.

Fuzzy logic adds intelligence to the washing machine since the computer infers an
action from a set of if–then rules. Fuzzy logic is ‘computing with words’, to quote the
creator of fuzzy logic, Lotfi A. Zadeh.

The objective of this chapter is to select and emphasize the concepts of fuzzy logic that
are necessary and sufficient from the point of view of a control engineer.

2.1 Fuzzy Sets

Fuzzy sets are a further development of mathematical set theory, first studied formally by
the German mathematician Georg Cantor (1845–1918). It is possible to express most of
mathematics in the language of set theory, and researchers are today looking at the conse-
quences of ‘fuzzifying’ set theory, resulting in, for example, fuzzy logic, fuzzy numbers,
fuzzy intervals, fuzzy arithmetic, and fuzzy integrals. Fuzzy logic is based on fuzzy sets,
and with fuzzy logic a computer can process words from natural language, such as ‘small’,
‘large’, and ‘approximately equal’.

Although elementary, the following sections include the basic definitions of classical
set theory. This is to shed light on the original ideas. But only those basic definitions that
are necessary and sufficient will be presented; students interested in delving deeper into set
theory and logic can, for example, read the comprehensive treatment by Stoll (1979).

Classical sets

According to Cantor, a set X is a collection of definite, distinguishable objects of our
intuition that can be treated as a whole. The objects are the members of X . The concept

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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‘objects of our intuition’ gives us great freedom of choice, even with respect to sets with
infinitely many members. Objects must be ‘definite’: given an object and a set, it must be
possible to determine whether the object is, or is not, a member of the set. Objects must
also be ‘distinguishable’: given a set and its members, it must be possible to determine
whether any two members are different or the same.

The members completely define a set. To determine membership, it is necessary that
the sentence ‘x is a member of X ’, where x is replaced by an object and X by the name of
a set, is either true or false. We use the symbol ∈ and write x ∈ X if object x is a member
of the set X . The assumption that the members determine a set is equivalent to saying,
‘two sets X and Y are equal, X = Y , iff (if and only if) they have the same members’.
The set whose members are the objects x1, x2, . . . , xn is written as

{x1, x2, . . . , xn} .

In particular, the set with no members is the empty set symbolized by ∅. The set X is
included in Y ,

X ⊆ Y

iff each member of X is a member of Y . We also say that X is a subset of Y , and it means
that, for all x, if x ∈ X , then x ∈ Y . The empty set is a subset of every set.

Almost anything called a set in ordinary conversation is acceptable as a mathematical
set, as the next example indicates.

Example 2.1.1 Classical sets
The following are lists or collections of definite and distinguishable objects, and therefore
sets in the mathematical sense:

(a) The set of non-negative integers less than 3. This is a finite set with three members
{0, 1, 2}.

(b) The set of live dinosaurs in the basement of the British Museum. This set has no
members and is the empty set ∅.

(c) The set of measurements greater than 10 volts. Even though this set is infinite, it is
possible to determine whether a given measurement is a member.

(d) The set {0, 1, 2} is the set from (a). Since {0, 1, 2} and {2, 1, 0} have the same mem-
bers, they are equal sets. Moreover, {0, 1, 2} = {0, 1, 1, 2} for the same reason.

(e) The members of a set may themselves be sets. The set

X = {{1, 3} , {2, 4} , {5, 6}}

is a set with three members, namely, {1, 3} , {2, 4} , and {5, 6} . Matlab supports sets of sets,
or nested sets, in cell arrays.

(f) It is possible in Matlab to assign an empty set, for instance, x = {[]}.
Although the brace notation {·} is practical for listing sets of a few elements, it is

impractical for large sets and impossible for infinite sets. How do we then define a set with
a large number of members?

For an answer we require a few more concepts to be defined. A proposition is an
assertion (declarative statement) that can be classified as either true or false. By a predicate
in x we understand an assertion formed using a formula in x. For instance, ‘0 < x ≤ 3’,
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or ‘x > 10 volts’ are predicates. They are not propositions, however, since they are not
necessarily true or false. Only if we assign a value to the variable x, each predicate becomes
a proposition. A predicate P (x) in x defines a set X by the convention that the members
of X are exactly those objects a such that P (a) is true. In mathematical notation,

{x | P (x)} ,

is ‘the set of all x such that P (x)’ is true. Thus a ∈ {x | P (x)} iff P (a) is a true proposition.

Fuzzy sets

A system in which propositions must be either true or false, but not both, uses a two-
valued logic. As a consequence, what is not true is false and vice versa; this is the law of
the excluded middle. But two-valued logic is only an approximation to human reasoning,
as Zadeh observed:

Clearly, the ”class of all real numbers that are much greater than 1,” or
”the class of beautiful women,” or ”the class of tall men,” do not constitute
classes or sets in the usual mathematical sense of these terms. (Zadeh 1965)

We might call it Zadeh’s challenge, because he focuses on the elasticity in the meaning
of terms such as ‘much’, ‘beautiful’, and ‘tall’. To define the set of tall men as a classical
set, one would use a predicate P (x), for instance x ≥ 176, where x is the height of a
person, and the right hand side of the inequality is a threshold value in centimeters (176
cm � 5 ft 9 in.). This is an abrupt approximation to the meaning of ‘tall’.

Following Zadeh a membership grade allows finer detail, such that the transition from
membership to non-membership is gradual rather than abrupt. The membership grade for
all members defines a fuzzy set (Figure 2.1).

Definition Fuzzy set. Given a collection of objects U , a fuzzy set A in U is defined as a
set of ordered pairs

A ≡ {〈x, µA (x)〉 | x ∈ U} , (2.1)

where µA (x) is called the membership function for the set of all objects x in U .

The symbol ‘≡’ stands for ‘defined as’. The membership function relates to each x a
membership grade µA (x), a real number in the closed interval [0, 1]. Notice that it is now
necessary to work with pairs 〈x, µA (x)〉, whereas for classical sets a list of objects suffices,
since their membership is understood. An ordered pair 〈x, y〉 is a list of two objects, in
which the object x is considered as the first and y as the second (note: in the set {x, y} the
order is insignificant).

The term fuzzy (synonymous with indistinct) suggests a boundary zone, rather than an
abrupt frontier. Indeed, fuzzy logicians speak of classical sets being crisp sets, to distinguish
them from fuzzy sets. As with crisp sets, we are only guided by intuition in deciding which
objects are members and which are not; a formal basis for determining the membership
grade of a fuzzy set is absent. The membership grade is a precise, but arbitrary, measure;
it rests on personal preference, and not on reason.

The definition of a fuzzy set extends the definition of a classical set, because membership
values µ are permitted in the interval 0 ≤ µ ≤ 1, and the higher the value, the higher the
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Figure 2.1: Two definitions of the set of “tall men”, a crisp set and a fuzzy set. (figtall.m)

membership. A classical set is consequently a special case of a fuzzy set, with membership
values restricted to µ ∈ {0, 1}.

A single pair 〈x, µ(x)〉 is a fuzzy singleton; thus the whole set can be viewed as the
union of its constituent singletons.

Example 2.1.2 Fuzzy sets
The following are sets that could be described by fuzzy membership functions:

(a) The set of real numbers x 
 1 (x much greater than one).
(b) The set of high temperatures, the set of strong winds, or the set of nice days are fuzzy

sets in weather reports.
(c) The set of young people. A 1-year-old baby will clearly be a member of the set of

young people, and a 100-year-old person will not be a member of this set. A person aged
30 might be young to the degree 0.5.

(d) The set of adults. The Danish railways allow children under the age of 15 to travel
at half-price. Adults are thus defined as the set of passengers aged 15 or older. By this
definition, the set of adults is a crisp set.

(e) A predicate may be crisp but it may be perceived as fuzzy: a speed limit of 60 km/h
is taken to be an elastic range of more or less acceptable speeds within, say, 60–70 km/h
(�37–44 mph) by some drivers. Notice how, on the one hand, the traffic law is crisp while,
on the other hand, those drivers’ understanding of the law is fuzzy.

Universe

Members of a fuzzy set are taken from a universe of discourse, or universe for short. The
universe consists of all objects that can come into consideration, compare the set U in
Equation (2.1). The universe depends on the context, as the next example shows.

Example 2.1.3 Universes
(a) The set x 
 1 could have as a universe all real numbers, alternatively all positive

integers.
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(b) The set of young people could have all human beings in the world as its universe.
Alternatively, it could have the numbers between 0 and 100; these would then represent the
age in years.

(c) The universe depends on the measuring unit; a duration in time depends on whether
it is measured in hours, days, or weeks.

(d) A non-numerical quantity, for instance, taste, must be defined on a psychological
continuum; an example of such a universe is U = {bitter, sweet, sour, salt, hot}.

A programmer can exploit the universe to suppress faulty measurement data, for instance,
negative values for a duration of time, by making the program consult the universe.

Membership function

There are two alternative ways to represent a membership function: continuous or discrete.
A continuous fuzzy set A is defined using a continuous membership function µA (x). A
trapezoidal membership function is a piecewise linear, continuous function, controlled by
four parameters {a, b, c, d} (Jang et al. 1997)

µTrapezoid(x; a, b, c, d) =






0 , x ≤ a
x−a
b−a

, a ≤ x ≤ b

1 , b ≤ x ≤ c
d−x
d−c

, c ≤ x ≤ d

0 , d ≤ x






, x ∈ R (2.2)

The parameters a ≤ b ≤ c ≤ d define four breakpoints, designated as follows: left footpoint
(a), left shoulderpoint (b), right shoulderpoint (c), and right footpoint (d). Figure 2.2 (a)
illustrates a trapezoidal membership function.

A triangular membership function is piecewise linear, and derived from the trapezoidal
membership function by merging the two shoulderpoints into one, that is, setting b = c, as
in Figure 2.2 (b).

Smooth, differentiable versions of the trapezoidal and triangular membership functions
can be obtained by replacing the linear segments corresponding to the intervals a ≤ x ≤ b

and c ≤ x ≤ d by a nonlinear function, for instance, a half period of a cosine function,

µST rapezoid (x; a, b, c, d) =






0 , x ≤ a
1
2 + 1

2 cos( x−b
b−a

π) , a ≤ x ≤ b

1 , b ≤ x ≤ c
1
2 + 1

2 cos( x−c
d−c

π) , c ≤ x ≤ d

0 , d ≤ x






, x ∈ R

We call it STrapezoid, for ‘smooth trapezoid ’ or ‘soft trapezoid ’. Figures 2.2 (c–d) illus-
trate the smooth membership functions. Other possibilities exist for generating smooth
trapezoidal functions, for example, Gaussian, generalized bell, and sigmoidal membership
functions (Jang et al. 1997).

Discrete fuzzy sets are defined by means of a discrete variable xi (i = 1, 2, . . .). A
discrete fuzzy set A is defined by ordered pairs,

A = {〈x1, µ(x1)〉 , 〈x2, µ(x2)〉 , . . . | xi ∈ U, i = 1, 2, . . .}
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Figure 2.2: Around noon. Four possible membership functions representing the time ‘around
noon’: (a) trapezoidal, (b) triangular, (c) smooth trapezoid, and (d) smooth triangular. The
universe is the hours of the day in 24-hour format. (figmf0.m)

Each membership value µ(xi) is an evaluation of the membership function µ at a dis-
crete point xi in the universe U , and the whole set is a collection, usually finite, of pairs
〈xi, µ(xi)〉.
Example 2.1.4 Discrete membership function

To achieve a discrete triangular membership function from the trapezoidal, function
Equation (2.2), assume the universe is a vector u of seven elements. In Matlab notation,

u = [9 10 11 12 13 14 15]

Assume the defining parameters are a = 10, b = 12, c = 12, and d = 14. Then, by Equation
(2.2), the corresponding membership values are a vector of seven elements,

0 0 0.5 1 0.5 0 0

Each membership value corresponds to one element of the universe, more clearly displayed
as (

0 0 0.5 1 0.5 0 0
9 10 11 12 13 14 15

)

with the universe in the bottom row and the membership values in the top row. When this is
impractical, in a program, the universe and the membership values can be kept in separate
vectors.

As a crude rule of thumb, the continuous form is computationally intensive but requires
less storage compared to the discrete form.
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Possibility

According to Zadeh, a fuzzy set induces a possibility distribution on the universe, which
implies that one can interpret the membership values as possibilities. How are then possi-
bilities related to probabilities? First of all, probabilities must add up to one, or the area
under a density curve must be one. Memberships may add up to anything (discrete case),
or the area under the membership function may be anything (continuous case). Secondly,
a probability distribution concerns the likelihood for the occurrence of an event, based on
observations, whereas a possibility distribution (membership function) is subjective. The
word ‘probably’ is synonymous with ‘presumably’, ‘assumably’, ‘doubtless’, ‘likely’, or
‘presumptively’. The word ‘possible’ is synonymous with ‘doable’, ‘feasible’, ‘practica-
ble’, ‘viable’, or ‘workable’. Their relationship is best described in the sentence, ‘what is
probable is always possible, but not vice versa’. This is illustrated next.

Example 2.1.5 Probability versus possibility
(a) Consider the statement ‘Hans ate x eggs for breakfast’, where x ∈ U = 〈1, 2, . . . , 8〉

(Zadeh in Zimmermann 1993). We may associate a probability distribution p by observing
Hans eating breakfast for 100 days:

(
0.1 0.8 0.1 0 0 0 0 0
1 2 3 4 5 6 7 8

)

A fuzzy set expressing the grade of ease with which Hans can eat x eggs may be the following
possibility distribution π:

(
1 1 1 1 0.8 0.6 0.4 0.2
1 2 3 4 5 6 7 8

)

where the possibility π(3) = 1, and the probability p(3) = 0.1.
(b) Consider a universe of four car models

U = {T rabant, F iat Uno, BMW, Ferrari} .

We may associate a probability p(x) of each car model driving 100 mph (161 km/h) on a
motorway, by observing the cars for 100 days:

p(T rabant) = 0, p(F iat Uno) = 0.1, p(BMW) = 0.4, p(Ferrari) = 0.5

The possibilities may be

π(T rabant) = 0, π(F iat Uno) = 0.5, π(BMW) = 1, π(Ferrari) = 1

Notice that each possibility is at least as high as the corresponding probability.

2.2 Fuzzy Set Operations

In order to compare fuzzy sets, equality and inclusion are defined by means of membership
functions.
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Definition Equality and inclusion (subset) of fuzzy sets. Let A and B be two fuzzy sets
defined on a mutual universe U . The two fuzzy sets A and B are equal iff they have
the same membership function:

A = B ≡ µA(x) = µB(x)

for all x. A fuzzy set A is a subset of (included in) a fuzzy set B iff the membership
of A is less than or equal to that of B,

A ⊆ B ≡ µA(x) ≤ µB(x) (2.3)

for all x.

In order to generate new sets from existing sets, we define two operations, which are
in certain respects analogous to addition and multiplication. The (classical) union of the
sets X and Y , symbolized by X ∪ Y and read ‘X union Y’, is the set of all objects that
are members of X or Y , or both, that is,

X ∪ Y ≡ {x | x ∈ X or x ∈ Y}
Thus, by definition, x ∈ X ∪ Y iff x is a member of at least one of X and Y . For example,

{1, 2, 3} ∪ {1, 3, 4} = {1, 2, 3, 4}
The (classical) intersection of the sets X and Y , symbolized by X ∩ Y and read ‘X inter-
section Y’, is the set of all objects that are members of both X and Y , that is,

X ∩ Y ≡ {x | x ∈ X and y ∈ Y}
For example,

{1, 2, 3} ∩ {1, 3, 4} = {1, 3}
The (classical) complement of a set X , symbolized by X and read ‘the complement of X ’
is

X ≡ {x | x /∈ X }
that is, the set of those members of the universe that are not members (/∈) of X . Venn
diagrams clearly illustrate the set operations (Figure 2.3 (a-c)).

When dealing with fuzzy sets, we must consider gradual membership. Figure 2.3 (d–f)
shows an intuitively acceptable modification of the Venn diagrams. The following fuzzy
set operations are defined accordingly.

Definition Fuzzy union, intersection, and complement. Let A and B be fuzzy sets defined
on a mutual universe U . The fuzzy union of A and B is

A ∪ B ≡ {〈x, µA∪B (x)〉 | x ∈ U and µA∪B (x) = max (µA (x) , µB (x))}
The fuzzy intersection of A and B is

A ∩ B ≡ {〈x, µA∩B (x)〉 | x ∈ U and µA∩B (x) = min (µA (x) , µB (x))}
The fuzzy complement of A is

A ≡ {〈x, µA (x)
〉 | x ∈ U and µA (x) = 1 − µA (x)

}
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Figure 2.3: Set operations. The top row shows classical Venn diagrams; the universe is
represented by the points within the rectangle, and sets by the interiors of the circles. The
bottom row their fuzzy equivalents; the universal set is represented by a horizontal line at
membership µ = 1, and sets by membership functions. The shaded areas are: union A ∪ B

(a, d), intersection A ∩ B (b, e), and complement A ∪ B (c, f). (figvenn2.m)

Although the notation looks cumbersome, it is, in practice, easy to apply the fuzzy set
operations max, min, and 1 − µ.

Example 2.2.1 Buying a house (after Zimmermann 1993)
A four-person family wishes to buy a house. An indication of its level of comfort is the

number of bedrooms in the house. But it also wishes to have a large house. The universe
U = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 is the set of houses to be considered based on the number
of bedrooms. The fuzzy set Comfortable may be described as a vector c in Matlab:

c = [
0.2 0.5 0.8 1 0.7 0.3 0 0 0 0

]

Let l describe the fuzzy set Large, defined as

l = [
0 0 0.2 0.4 0.6 0.8 1 1 1 1

]

The intersection of Comfortable and Large is then min(c,l),

0 0 0.2 0.4 0.6 0.3 0 0 0 0

To interpret, five bedrooms is optimal, having the largest membership value 0.6. It is, how-
ever, not fully satisfactory, since the membership is less than 1. The second best solution is
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four bedrooms, with membership 0.4. If the market is a buyer’s market, the family may wish
to wait until a better offer comes up, hoping to obtain full satisfaction (membership 1).

The union, Comfortable or Large, is max(c,l)

0.2 0.5 0.8 1 0.7 0.8 1 1 1 1

Here four bedrooms is fully satisfactory (membership 1) because it is comfortable. Also 7–10
bedrooms are satisfactory, because the house is large. If the market is a seller’s market, the
family may wish to buy the house, being content that at least one of the criteria is fulfilled.

If the children are about to move away from the family within the next couple of years,
the parents may wish to buy a house that is Comfortable and Not Large, or min(c, 1-l)

0.2 0.5 0.8 0.6 0.4 0.2 0 0 0 0

In this case, three bedrooms is satisfactory to the degree 0.8.

The example indicates how computer-aided decision support systems apply fuzzy sets.
Another application area is information search, for instance, the World Wide Web search
engines.

Linguistic variables

Whereas an algebraic variable takes numbers as values, a linguistic variable takes words or
sentences as values (Zadeh in Zimmermann 1993). The name of such a linguistic variable
is its label. The set of values that it can take is called its term set. Each value in the term
set is a linguistic value or term defined over the universe. In short, a linguistic variable
takes a linguistic value, which is a fuzzy set defined on the universe.

Example 2.2.2 Term set Age
Let x be a linguistic variable labelled ‘Age’ (Figure 2.4). Its term set T could be defined

as
T (Age) = {young, very young, not very young, old, more or less old}

Each term is defined on the universe, for example, the integers from 0 to 100 years.

A hedge is a word that acts on a term and modifies its meaning. For example, in the
sentence ‘very near zero’, the word ‘very’ modifies the term ‘near zero’. Examples of other
hedges are ‘a little’, ‘more or less’, ‘possibly’, and ‘definitely’. In fuzzy reasoning, a hedge
operates on a membership function, and the result is a membership function.

Even though it is difficult to precisely say what effect the hedge ‘very’ has, it does
have an intensifying effect. The hedge ‘more or less’ (or ‘morl’ for short) has the opposite
effect. Given a fuzzy term with the label A and membership function µA(x) defined on
the universe X , the hedges ‘very’ and ‘morl’ are defined as

very A ≡ {〈x, µvery A(x)
〉 | µvery A(x) = µ2

A(x), x ∈ X
}

morl A ≡
{
〈
x, µmorl A(x)

〉 | µmorl A(x) = µ
1
2
A(x), x ∈ X

}
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Figure 2.4: The membership functions for very young and not very young are derived from
young (a), and the membership functions for more or less old from old (b). (figage.m)

We have applied the operations squaring and square root, but a whole family of hedges is

generated by µk
A or µ

1
k
A (with integer k). For example

extremely A ≡ {〈x, µvery A(x)
〉 | µvery A(x) = µ3

A(x), x ∈ X
}

slightly A ≡
{
〈
x, µvery A(x)

〉 | µvery A(x) = µ
1
3
A(x), x ∈ X

}

A derived hedge is, for example, somewhat A, which is defined as morl A and not

slightly A. For the special case where k = 2, the operation µ2 is concentration and µ
1
2 is

dilation. With k = ∞ the hedge µk
A could be named exactly, because it would suppress

all memberships lower than 1.

Example 2.2.3 Very on a discrete membership function
Assume a discrete universe U = 〈0, 20, 40, 60, 80〉 of ages. In Matlab we can assign

u = [0 20 40 60 80]

and
young = [1 .6 .1 0 0]

The discrete membership function for the set ‘very young’ is young.ˆ2,

1 0.36 0.01 0 0

The notation ‘.ˆ’ is Matlab notation for the power operator. The set ‘very very young’ is, by
repeated application, young.ˆ4,

1 0.13 0 0 0

The derived sets inherit the universe of the primary set.
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A primary term is a term that must be defined a priori, for example ‘young’ and ‘old’
in Figure 2.4, whereas the sets ‘very young’ and ‘not very young’ are modified sets. The
primary terms can be modified by negation (‘not’) or hedges (‘very’, ‘more or less’), and
the resulting sets can be connected using connectives (‘and’, ‘or’, ‘implies’, ‘equals’). Long
sentences can be built using this vocabulary, and the result is still a membership function.

Relations

In mathematics, the word relation is used in the sense of relationship. For example, the
predicates: x is less than y, or y is a function of x. A binary relation R is a set of ordered
pairs. We write xRy for ‘x is related to y.’ There are established symbols for various
relations, for example, x = y, x < y. One simple relation is the set of all pairs 〈x, y〉 such
that x is a member of a set X and y is a member of a set Y . This is the (classical) Cartesian
product of X and Y :

X × Y ≡ {〈x, y〉 | x ∈ X , y ∈ Y}
In fact, any binary relation xRy is a subset of the Cartesian product X × Y , and we can
think of those instances of X × Y that are members of R as having membership 1.

By analogy, a binary fuzzy relation consists of pairs 〈x, y〉 with an associated fuzzy
membership value.

Definition Fuzzy binary relation. Let A and B be fuzzy sets defined on X and Y respec-
tively. Then the fuzzy set in X × Y with the membership function

R ≡ {〈〈x, y〉 , µR(x, y)〉 | (x, y) ∈ X × Y}

is a binary fuzzy relation R ⊆ X × Y .

For example, given X = Y = {1, 2, 3}, we can set up a relation ‘approximately equal’
between all pairs of the three numbers, most clearly displayed in a tabular arrangement:

Y
1 2 3

1 1 0.8 0.3
X 2 0.8 1 0.8

3 0.3 0.8 1

It is straightforward to generalize the relations to n-ary relations (n > 2).
In the fuzzy Cartesian product, each object is defined by a pair: the object, which itself

is a pair, and its membership.

Definition Fuzzy Cartesian product. Let A and B be fuzzy sets defined on X and Y
respectively. Then the fuzzy set in X × Y with the membership function

A×B ≡ {〈〈x, y〉 , µA×B(x, y)
〉 | x ∈ X , y ∈ Y, µA×B(x, y) = min (µA(x), µB(y))

}

is the Cartesian product of A and B.
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For example, assume X and Y are given as above, and µA(xi) = 〈0, 0.5, 1〉, with
i = 1, 2, 3, and µB(yj ) = 〈1, 0.5, 0〉 , with j = 1, 2, 3. Then A × B can be arranged as a
two-dimensional fuzzy set:

B
1 0.5 0

0 0 0 0
A 0.5 0.5 0.5 0

1 1 0.5 0

The element at row i and column j is the intersection of µA(xi) and µB(yj ). Again
we note that a membership µA×B(xi, yj ) is associated with each object

〈
xi, yj

〉
, whereas

the classical Cartesian product consists of objects
〈
xi, yj

〉
only.

In order to understand how relations can be combined, let us look at an example from
the cartoon Donald Duck.

Example 2.2.4 Family resemblance
Assume that Donald Duck’s nephew Huey resembles nephew Dewey to the grade 0.8,

and Huey resembles nephew Louie to the grade 0.9. We have therefore a relation between
two subsets of the nephews in the family. This is conveniently represented in a matrix with
one row and two columns (and additional headings):

RRR1 = Dewey Louie
Huey 0.8 0.9

Let us assume another relation between nephews Dewey and Louie on the one side, and
uncle Donald on the other, a matrix with two rows and one column,

RRR2 =
Donald

Dewey 0.5
Louie 0.6

We wish to find out how much Huey resembles Donald by combining the information in the
two matrices:

(i) Huey resembles Dewey (RRR1(1, 1) = 0.8), and Dewey in turn resembles Donald
(RRR2(1, 1) = 0.5); or

(ii) Huey resembles Louie (RRR1(1, 2) = 0.9), and Louie in turn resembles Donald
(RRR2(2, 1) = 0.6).

Assertion (i) contains two relationships combined by ‘and’; it seems reasonable to take
the intersection. With our previous definition, this corresponds to choosing the smallest
membership value for the (transitive) Huey–Donald relationship, or min(0.8, 0.5) = 0.5.
Similar results can be obtained with statement (ii). Thus from (i) and (ii), respectively, we
deduce the following:

(iii) Huey resembles Donald to the degree 0.5; or

(iv) Huey resembles Donald to the degree 0.6.
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Although the results in (iii) and (iv) differ, we are equally confident of either result; we have
to choose either one or the other, so it seems reasonable to take the union. With our previous
definition, this corresponds to choosing the largest membership value, or max (0.5, 0.6) =
0.6. Thus, the answer is that Huey resembles Donald to the degree 0.6.

Mathematically speaking, this was an example of composition of relations.

Definition Fuzzy relational composition. Let R and S be two fuzzy relations defined on
X × Y and Y × Z , respectively. Then the fuzzy set in X × Z with the membership
function

R ◦ S ≡
{〈

〈x, z〉 ,
⋃

y

µR (x, y) ∩ µS (y, z)

〉

| x ∈ X , y ∈ Y, z ∈ Z
}

is the composition of R with S.

When R and S are expressed as matrices RRR and SSS, the composition is equivalent to an
inner product . The inner product is similar to an ordinary matrix (dot) product, except that
multiplication and summation are replaced by other functions. Suppose RRR is an m × p

matrix and SSS is a p × n matrix. Then the inner ∪ − ∩ product (read ‘cup-cap product’) is
an m × n matrix TTT = (tij ) whose ij th entry is obtained by combining the i th row of RRR

with the j th column of SSS, such that

tij = (ri1 ∩ s1j

) ∪ (ri2 ∩ s2j

) ∪ . . . ∪ (rip ∩ spj

) =
p⋃

k=1

rik ∩ skj (2.4)

The notation looks unwieldy, but the operation is essentially a matter of combining rows
with columns successively, as the next example shows.

Example 2.2.5 Inner product
For the matrices RRR1 and RRR2 above, the inner product yields

RRR1 ◦ RRR2 = (0.8 0.9
) ◦
(

0.5
0.6

)
= (0.8 ∩ 0.5) ∪ (0.9 ∩ 0.6) = 0.5 ∪ 0.6 = 0.6

which agrees with the previous result.

With our previous definitions of the set operations, composition is specifically called
max–min composition (Zadeh in Zimmermann 1993). If the min operation is replaced by
* for multiplication, it is called max–star composition .

2.3 Fuzzy Logic

The study of logic began as a study of language in arguments and persuasion, and it can
be used to judge the correctness of a chain of reasoning – in a mathematical proof for
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instance. The goal of the theory is to reduce principles of reasoning to a code. Similar to
a programming language, logic builds on truth-values (constants), connectives (operators),
and rules of inference (programming constructs).

Truth-values

The ‘truth’ or ‘falsity’ assigned to a proposition is its truth-value. In two-valued logic, a
proposition can be either true (1) or false (0), that is, the truth values belong to the set
{0, 1}. The binary logical relations called connectives can be defined by means of 222 = 16
possible tables of truth-values, the truth-tables.

A possible extension is to include an intermediate truth-value ‘undecided’ (0.5). The
result is a three-valued logic. If one tries to identify all possible binary connectives, it would
result in 323 = 729 connectives, which is impractical. There are, nevertheless, a multitude of
three-valued logics (for instance Lukasiewicz logic in Nguyen and Walker 2000), differing
in the specification of truth-tables and the implication connective. Extensions to more
truth-values, finite in number, lead to multi-valued logics (Rescher in Nguyen and Walker
2000).

Fuzzy logic extends the range of truth-values to the continuous interval [0, 1] of real
numbers (Nguyen and Walker 2000). In fuzzy logic a proposition may be true or false,
or any intermediate truth-value. For instance, the sentence ‘John is tall’ may assume an
intermediate truth-value depending on the circumstances.

Originally, Zadeh interpreted a truth-value in fuzzy logic as a fuzzy set, for instance,
Very true (Zadeh 1988). Thus, Zadeh based fuzzy (linguistic) logic on the treatment of Truth
as a linguistic variable that takes words or sentences, rather than numbers, as values (Zadeh
1975). Our approach differs, as it is built on scalar truth-values rather than membership
functions.

Classical connectives

In daily conversation and mathematics, sentences are connected with the words and, or,
if–then (or implies), and if and only if. These are called connectives. A sentence that is
modified by the word ‘not’ is called the negation of the original sentence. The word ‘and’
is used to join two sentences to form the conjunction of the two sentences. The word
‘or’ is used to join two sentences to form the disjunction of the two sentences. From two
sentences we may construct one, of the form ‘If . . . then . . .’; this is called an implication.
The sentence following ‘If’ is the antecedent, and the sentence following ‘then’ is the
consequent. Other idioms (unclear phrases that must be learnt as a whole unit) that we
shall regard as having the same meaning are ‘p implies q’, ‘p only if q’, ‘q if p’, and
so on.

Letters and special symbols make the connective structure stand out. Our choice of
symbols is

¬ for ‘not’
∧ for ‘and’
∨ for ‘or’
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⇒ for ‘if–then’ (implication)
⇔ for ‘if and only if’ (equivalence)

A propositional variable, denoted by a letter, takes truth-values as values. An assertion
that contains at least one propositional variable is called a propositional formula. The main
difference between proposition and propositional formula is that every proposition has a
truth-value, whereas a propositional formula is an assertion whose truth-value cannot be
determined until propositions are substituted for its propositional variables. But when no
confusion results, we will refer to propositional formulae as propositions.

The next example illustrates how the symbolic forms expose the underlying logical
structure.

Example 2.3.1 Baseball betting (Stoll 1979)
Consider the assertion about four baseball teams: if either the Pirates or the Cubs lose and
the Giants win, then the Dodgers will be out of first place, and I will lose a bet. Since it is
an implication, it may be symbolized in the form r ⇒ s. The antecedent is composed from
the three sentences p (The Pirates lose), c (The Cubs lose), and g (The Giants win). The
consequent is the conjunction of d (The Dodgers will be out of first place) and b (I will lose
a bet). The original sentence may thus be represented by ((p ∨ c) ∧ g) ⇒ (d ∧ b).

A truth-table summarizes the possible truth-values of an assertion. Take for example
the truth-table for the two-valued formula p ∨ q. The truth-table below (left) lists all pos-
sible combinations of truth-values – the Cartesian product – of the variables p and q in
the two leftmost columns. The rightmost column holds the truth-values of the formula.
Alternatively, the truth-table can be rearranged into a two-dimensional array, a so-called
Cayley table (below, right).

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

is equivalent to

Or
p ∨ q

0 1 → q

0 0 1
1 1 1
↓
p

Along the vertical axis in the Cayley table, symbolized by arrow ↓, are the possible values
0 and 1 of the first argument p. Along the horizontal axis, symbolized by arrow →, are the
possible values 0 and 1 of the second argument q. Above the table, is the symbolic form
p ∨ q for disjunction. At the intersection of row i and column j (only counting the inside
of the box) is the truth-value of the expression pi ∨ qj . By inspection, one entry renders
p ∨ q false, while three entries render p ∨ q true. Truth-tables for binary connectives are
thus given by two-by-two matrices. A total of 16 such tables can be constructed, and each
is associated with a connective.

We can derive the truth-table for ‘Nand’ (‘not and’) from ‘or’. By the definition
(¬p) ∨ (¬q) we negate each variable of the previous truth-table, which is equivalent to
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reversing the axes,
Nand

(¬p) ∨ (¬q)

0 1 → q

0 1 1
1 1 0
↓
p

From ‘Nand’ (‘not and’) we derive ‘And’ by negating the entries inside the table (‘not not
and’ = ‘And’),

And
¬ ((¬p) ∨ (¬q))

0 1 → q

0 0 0
1 0 1
↓
p

Notice that it was possible to define ‘and’ by means of ‘or’ and ‘not’, rather than assume
its definition given as an axiom.

By means of ‘or’ and ‘not’ we can proceed to define ‘implication’. Classical logic
defines implication ¬p ∨ q, which is called material implication . We negate the p-axis of
the ‘or’ table, which is equivalent to reversing the axis,

Implication
¬p ∨ q

0 1 → q

0 1 1
1 0 1
↓
p

Equivalence is taken to mean (p ⇒ q) ∧ (q ⇒ p), which is equivalent to the conjunction
of each entry of the implication table with the elements of the transposed table, element
by element:

Equivalence
(p ⇒ q) ∧ (q ⇒ p)

0 1 → q

0 1 0
1 0 1
↓
p

It is possible to evaluate, in principle at least, a formula by an exhaustive test of all
combinations of truth-values of the variables, as the next example illustrates.

Example 2.3.2 Array-based logic
In the baseball example, we derived the relation ((p ∨ c) ∧ g) ⇒ (d ∧ b). The proposition
contains five variables, and each variable can take two truth-values. The total number of
possible combinations is therefore 25 = 32. Only 23 are legal, in the sense that the proposi-
tion is true for these combinations, and 32 − 23 = 9 cases are illegal, in the sense that the
proposition is false for those combinations. If we are interested only in the legal combinations
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for which ‘I win the bet’ (b = 0), then the following table is obtained:

p c g d b

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
1 1 0 1 0

There are thus 10 winning outcomes out of 32 possible.
An exhaustive test of all possible combinations is the idea behind array-based logic

(Franksen 1979).

Fuzzy connectives

We would like to define truth-tables for fuzzy logic connectives by analogy, but we face one
problem: the truth-values are defined on a continuous interval, that is, they are uncountable.
We have to make sure that whatever identity we develop is valid for all truth values in
[0, 1].

We shall assume a universe of truth values

U = {0, u, 0.5, v, 1}

with the special constraints that

0 < u < 0.5

0.5 < v < 1

v = ¬u

This is a five-valued logic, but the variable u can take any intermediate value between false
and undecided, and at the same time v varies between undecided and true. Thus all truth
values are accounted for.

If we start again by defining negation and disjunction, we can derive the truth-tables of
other connectives from that point of departure. Let us define negation as set complement,
that is,

¬p ≡ 1 − p.

By this definition v = 1 − u, and therefore u = 1 − v, and we have

v = ¬u

u = ¬v
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as specified. By insertion, we can immediately ascertain the law of involution: ¬ (¬u) = u.
If we define disjunction as set union, that is,

p ∨ q ≡ max(p, q), (2.5)

we can build the truth-table for the fuzzy connective ‘or’:

Or
p ∨ q

0 u 0.5 v 1 →q
0 0 u 0.5 v 1
u u u 0.5 v 1

0.5 0.5 0.5 0.5 v 1
v v v v v 1
1 1 1 1 1 1
↓
p

Like before, the p-axis is vertical and the q-axis horizontal. At the intersection of row i

and column j (only regarding the inside of the box) we have the value of the expression
max(pi, qj ) in accordance with Equation (2.5). When looking for definitions of fuzzy con-
nectives, we will require that such connectives should agree with their classical counterparts
for the truth-domain {0, 1} . In terms of truth-tables, the values in the four corners of the
fuzzy Cayley table should agree with the Cayley table for the classical connective.

The truth-table for ‘Nand’ is derived from ‘Or’ by the definition (¬p) ∨ (¬q) by
negating the variables. This is equivalent to reversing the axes in the Cayley table. Moving
further, ‘And’ is the negation of the entries in the truth-table for ‘Nand’. Thus we have the
following:

Nand
(¬p) ∨ (¬q)

0 u 0.5 v 1 →q
0 1 1 1 1 1
u 1 v v v v

0.5 1 v 0.5 0.5 0.5
v 1 v 0.5 u u

1 1 v 0.5 u 0
↓
p

And
¬((¬p) ∨ (¬q))

0 u 0.5 v 1 →q
0 0 0 0 0 0
u 0 u u u u

0.5 0 u 0.5 0.5 0.5
v 0 u 0.5 v v

1 0 u 0.5 v 1
↓
p

It is reassuring to observe that even though the truth-table for ‘And’ is derived from the
truth-table for ‘Or’, the truth-table for ‘And’ is identical to one generated using the min
operation, set intersection.

Example 2.3.3 Fuzzy baseball
The baseball example illustrates the difference three-valued logic makes. The proposition

((p ∨ c) ∧ g) ⇒ (d ∧ b)
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contains five variables, and now each can take three truth-values. There are 35 = 243 possi-
ble combinations; 148 of these are legal in the sense that the proposition is true (truth-value
1). If we are interested again in the legal combinations for which ‘I win the bet’ (b = 0),
then there are 33 winning outcomes out of 148. Instead of listing all of these, we show one
for illustration:

(p, c, g, d, b) = (0.5, 0.5, 0, 1, 0)

With two-valued logic, we found 10 winning outcomes out of the 32 possible.

The example indicates that fuzzy logic provides more solutions, compared to two-valued
logic, and requires more computational effort.

2.4 Fuzzy Implication

The implication, however, has always troubled fuzzy logicians. If we define it as material
implication , ¬p ∨ q, it causes several useful logical laws to break down. We must make
a design choice at this point in order to proceed with the definition of implication and
equivalence. The choice is to select which logical laws must hold.

Some laws known from two-valued logic do not hold in fuzzy logic. Take for instance
the formula

p ∨ ¬p ⇔ 1 (2.6)

which is equivalent to the law of the excluded middle. Testing with the truth-value p = 0.5
(fuzzy logic), the left-hand side of the equivalence symbol ⇔ yields

0.5 ∨ ¬0.5 = max (0.5, 1 − 0.5) = 0.5.

This is different from the right-hand side, and thus the law of the excluded middle does
not hold in fuzzy logic.

If a proposition is true with a truth-value of 1, for any combination of truth-values
assigned to the variables, we shall say it is valid. Such a proposition is a tautology . If the
proposition is true for some, but not all combinations, we shall say it is satisfiable. Thus
Equation (2.6) is satisfiable, since it is true in two-valued logic, but not in three-valued
logic.

One tautology that we definitely wish to apply in fuzzy logic applications is

Tautology 1:
[
p ∧ (p ⇒ q)

]⇒ q (2.7)

or, in words, if p, and p implies q, then q. We need it later in connection with the modus
ponens rule of inference. Another tautology that we definitely wish to apply in fuzzy logic
applications is the transitive relationship

Tautology 2:
[
(p ⇒ q) ∧ (q ⇒ r)

]⇒ (p ⇒ r) (2.8)

or, in words, from left to right, if p implies q, which in turn implies r , then p implies
r . Whether these propositions are valid in fuzzy logic depends on how we define the
connectives, or rather, we must define the connectives, implication in particular, such that
those propositions become valid.
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Many researchers have proposed implication connectives (e.g. Zadeh 1973, Mizumoto
et al. 1979, Fukami et al. 1980, Wenstøp 1980; see also the survey by Lee 1990). In fact
Kiszka et al. (1985) list 72 alternatives to choose from and Driankov et al. (1996) test
nine implications. Nguyen and Walker (2000) define classes of implications based on three
basic forms.

One candidate, not necessarily the best, is the so-called Gödel implication. It can be
defined as

p ⇒ q ≡ (p ≤ q) ∨ q (2.9)

and the truth-table is

Implication
(p ≤ q) ∨ q

0 u 0.5 v 1 →q
0 1 1 1 1 1
u 0 1 1 1 1

0.5 0 u 1 1 1
v 0 u 0.5 1 1
1 0 u 0.5 v 1
↓
p

Equivalence
(p ⇒ q) ∧ (q ⇒ p)

0 u 0.5 v 1 →q
0 1 0 0 0 0
u 0 1 0 0 0

0.5 0 0 1 0 0
v 0 0 0 1 0
1 0 0 0 0 1
↓
p

(2.10)

The truth-table for equivalence (⇔) is derived from implication and conjunction, once it is
agreed that p ⇔ q is the same as (p ⇒ q) ∧ (q ⇒ p). Further truth-tables can be built on
the previously defined operations, for example exclusive or ¬(p ⇒ q) and ‘nor’ = ‘not or’,
¬(p ∨ q).

It is straightforward to test whether tautologies 1 and 2 are valid, because it is possible
to perform an exhaustive test of all combinations of truth-values of the variables.

Example 2.4.1 Proof of tautology 1
Tautology 1 is

[p ∧ (p ⇒ q)] ⇒ q

Since the proposition contains two variables p and q and each variable can take five truth-
values, there will be 52 = 25 possible combinations to test. The truth-table has 25 rows
(Table 2.1). Columns 1 and 2 are the input combinations of p and q. Column 3 is the result
of Gödel implication (p ≤ q) ∨ q, and column 4 is the left-hand side of tautology 1.

Since the rightmost column is all ones, the proposition is a tautology.

In fact, the example suggests a new tautology. Compare the truth-values for [p ∧ (p ⇒
q)] (column 4 in Table 2.1) with the truth-table for conjunction – they are identical. We
thus have

Tautology 3:
[
p ∧ (p ⇒ q)

]⇔ p ∧ q (2.11)

This is in fact our motivation for choosing the Gödel implication. A test (not shown) with
our definitions of ∧ and ⇒ confirms that all three tautologies are valid.

Since implication can be defined in many possible ways, one has to determine a design
criterion first, namely the tautologies, before choosing a proper definition for the implication
connective. The array approach reduces the proof of any tautology to a test that can be
programmed on a computer.
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Table 2.1: Proof of tautology 1. The tautology is valid since
the rightmost column contains purely 1s.

p q p ⇒ q [p ∧ (p ⇒ q)] [p ∧ (p ⇒ q)] ⇒ q

0 0 1 0 1
0 u 1 0 1
0 0.5 1 0 1
0 v 1 0 1
0 1 1 0 1
u 0 0 0 1
u u 1 u 1
u 0.5 1 u 1
u v 1 u 1
u 1 1 u 1
0.5 0 0 0 1
0.5 u 0 u 1
0.5 0.5 1 0.5 1
0.5 v 1 0.5 1
0.5 1 1 0.5 1
v 0 0 0 1
v u 0 u 1
v 0.5 0 0.5 1
v v 1 v 1
v 1 1 v 1
1 0 0 0 1
1 u 0 u 1
1 0.5 0 0.5 1
1 v 0 v 1
1 1 1 1 1

Example 2.4.2 Mamdani ‘implication’
The so-called Mamdani ‘implication’ (Mamdani 1977), is often used in fuzzy control. Let
A and B be fuzzy sets defined on X and Y respectively. Then the Mamdani ‘implication’ is
a fuzzy set in X × Y with the membership function

{〈〈x, y〉 , µA′⇒′B(x, y)〉 | x ∈ X , y ∈ Y, µA′⇒′B(x, y) = min (µA(x), µB(y))}
Notice the definition is similar to the definition of the fuzzy Cartesian product. Its Cayley
table, in two-valued logic, is

Mamdani ‘implication’
min(p, q)

0 1 →q
0 0 0
1 0 1
↓
p
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Only one out of four truth-values matches the truth-table for two-valued implication; there-
fore it is not an implication.

The logic just employed, is an example of a disproof by the rule of modus tollens. The
argument is as follows: (1) Mamdani ‘implication’ is an implication; (2) all implications
are valid in two-valued logic; and (3) the truth-table shows it is not true, and therefore
Mamdani ‘implication’ is not an implication. It also illustrates the principle of falsification:
proving a hypothesis can be very difficult, but a single counterexample can falsify it (after
Karl Popper).

It would be accurate to call it Mamdani ‘inference’, according to the formal derivation
at the end of this chapter, and we shall do so from here onwards.

2.5 Rules of Inference

Logic provides principles of reasoning, by means of inference, the drawing of conclusions
from assertions. The verb ‘to infer’ means to conclude from evidence, deduce, or to have
as a logical consequence. Rules of inference specify conclusions drawn from assertions
known or assumed to be true.

One such rule of inference is modus ponens . It is often presented in the form of an
argument :

P

P ⇒ Q

Q

In words, if (1) P is known to be true, and (2) we assume that P ⇒ Q is true, then (3) Q

must be true. Restricting for a moment to two-valued logic, we observe from the truth-table
for implication,

Implication
p ⇒ q

0 1 →q
0 1 1
1 0 1
↓
p

,

that whenever P ⇒ Q and P are true, then so is Q; assuming P true takes us to the
second row, which contains only a single 1 leaving Q true as the only solution. In such an
argument, the assertion P is the premise, the assertion P ⇒ Q is the implication, and the
assertion below the line is the conclusion. Notice that the premise and the implication are
considered as true and only true.

On the other hand, underlying the modus ponens is tautology 1, which expresses the
same, but for all truth-values. Modus ponens is thus valid in fuzzy logic, if tautology 1 is
valid in fuzzy logic.

Example 2.5.1 Four useful rules of inference
There are several useful rules of inference, which can be represented by tautological forms.
Four such rules are presented here using examples.
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(a) Modus ponens. Its tautological form is
[
p ∧ (p ⇒ q)

]⇒ p

Let p stand for ‘altitude sickness,’ and let p ⇒ q stand for ‘altitude sickness causes a
headache’. If it is known that John suffers from altitude sickness, p is true, and p ⇒ q is
assumed to be true in this illustration, then the conclusion q is true, that is, John has a
headache.

(b) Modus tollens. Its tautological form is
[¬q ∧ (p ⇒ q)

]⇒ ¬p

Let p and q be as in (a). Thus, if John does not have a headache, then we may infer that
John does not suffer from altitude sickness.

(c) Disjunctive syllogism. Its tautological form is
[
(p ∨ q) ∧ ¬p

]⇒ q

Let p stand for ‘altitude sickness’ as before, but let q stand for ‘dehydration’. Thus, if it is
known for a fact that John’s headache is due to either altitude sickness or dehydration, and
it is not altitude sickness, then we may infer that John suffers from dehydration.

(d ) Hypothetical syllogism. Its tautological form is tautology 2:
[
(p ⇒ q) ∧ (q ⇒ r)

]⇒ (p ⇒ r) .

Let p stand for ‘high altitude and fast ascent’, let q stand for ‘altitude sickness’, and let r

stand for ‘a headache’. Further, assume that high altitude and fast ascent together cause
altitude sickness, and in turn that altitude sickness causes a headache. Thus, we may infer
that John will get a headache in high altitude if John ascends fast.

Testing with our previous definitions of ¬, ∧, ∨, and ⇒ shows that (a), (c), and (d)
are valid, while (b) is only satisfiable. Further logical relationships (31 in total) have been
tested earlier (Jantzen 1995).

Provided the tautological forms are valid in fuzzy logic, the inference rules may be
applied in fuzzy logic as well.

The inference mechanism in modus ponens can be generalized. The pattern is as follows:
given a relation R connecting logical variables p and q, we infer the possible values of q

given a particular instance of p; the procedure is similar to finding the value y1 of a function
y = f (x) given an input value x1 Ṫhe modus ponens inference mechanism is recast into
arrays, to make it operational, that is, executable by a computer. The next example shows
the mechanism.

Example 2.5.2 Array-based modus ponens
Switching to vector–matrix representation, with p as a (column) vector and RRR as a

two-dimensional truth-table, with the p-axis vertical, the inference is defined

qt = pt ◦ RRR

The operation ◦ is an inner ∨ − ∧ product (read ‘or–and product’). The ∧ operation is the
same as in p ∧ (p ⇒ q) and the ∨ operation along the columns yields what can possibly
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be implied about q, confer the rightmost implication in
[
p ∧ (p ⇒ q)

]⇒ p. Assuming p

is true corresponds to setting

p =
(

0
1

)

But the scheme is more general, because we could also assume p is false, compose with R,
and study what can be inferred about q. Take for instance modus ponens. Thus

RRR =
(

1 1
0 1

)

which is the truth-table for p ⇒ q. Assigning p as above,

qt= pt ◦ RRR= (0 1
) ◦
(

1 1
0 1

)
= (0 1

)

The outcome qt is a truth-vector pointing at q true as the only possible conclusion, as
expected.

Trying p = (1 0)t yields

qt= pt ◦ RRR= (1 0
) ◦
(

1 1
0 1

)
= (1 1

)

Thus q could be anything, true or false, as expected.
The inference could even proceed in the reverse direction, from q to p, but then we must

compose from the right side of RRR to match the axes. Assume for instance q is true, or q = (1
0)t , then

p =RRR ◦ q =
(

1 1
0 1

)
◦
(

1
0

)
=
(

1
0

)

To interpret, if q is false and p ⇒ q, then p is false (modus tollens).
The array-based inference mechanism is even more general, because RRR can be any

dimension n (n > 0 and integer). Given the values of n − 1 variables, the possible outcomes
of the remaining variable can be inferred by an n-dimensional inner product. Furthermore,
given the values of n − d variables (d integer and 0 < d < n), then the truth-array connect-
ing the remaining d variables can be inferred. The mechanism is the basis of array-based
technology (Møller 1998).

2.6 Generalized Modus Ponens

Modus ponens generalized to fuzzy logic is the core of fuzzy reasoning. Consider the
argument

A′
A ⇒ B

B ′
(2.12)

It is similar to modus ponens, but the premise A′ is slightly different from A and thus the
conclusion B ′ is slightly different from B. Mizumoto and Zimmermann give an example
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(in Zimmermann 1993):

This tomato is very red
If a tomato is red, then the tomato is ripe

This tomato is very ripe

A fuzzy rule has the following form:

If x is A then y is B,

in which A and B are fuzzy sets, defined on universes X and Y , respectively. This is an
implication, where the antecedent is ‘x is A’, and the consequent is ‘y is B’. The following
are some examples of such rules in everyday conversation:

1. If it is dark, then drive slowly.

2. If the tomato is red, then it is ripe.

3. If it is early, then John can study;

4. If the room is cold, then increase the heat.

5. If the washing machine is half full, then wash for a shorter time.

Other forms can be transcribed into the if–then form, for example ‘when in Rome, do
like the Romans’ becomes ‘if in Rome, then do like the Romans’. Examples 4 and 5 could
be embedded in a computer inside a heating unit or a washing machine.

Example 2.6.1 Student John
To understand how a computer infers a conclusion, consider rule 3:

If it is early, then John can study

Assume that ‘early’ is a fuzzy set defined on the universe

U = 〈4, 8, 12, 16, 20, 24〉

The time of the day is denoted by t , in steps of 4 hours in a 24-hour format to numerically
distinguish night from day. Define ‘early’ as a fuzzy set on U:

early = {〈4, 0〉 , 〈8, 1〉 , 〈12, 0.9〉 , 〈16, 0.7〉 , 〈20, 0.5〉 , 〈24, 0.2〉}

Define ‘can study’ as a singleton fuzzy set µstudy = 1. If the hour is truly early, for instance 8
o’clock in the morning, then µearly (8) = 1, and thus John can study to the fullest degree, that
is µstudy = 1. However, if the hour is 20 (8 p.m.), then µearly(20) = 0.5, and accordingly
John can study to the degree 0.5. The degree of fulfillment of the antecedent (the if side)
weights the degree of fulfillment of the conclusion – a useful mechanism that enables one
rule to cover a range of hours. The procedure is as follows: given a particular time instant
t0, the resulting truth-value is computed as min(µearly (t0), µstudy).
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To make the inference rule operational, we use the following definition.

Definition Generalized modus ponens. Let A and A′ be fuzzy sets defined on X , and let
B be a fuzzy set defined on Y . Then the fuzzy set B′, induced by ‘x is A′’ from the
fuzzy rule

if x is A then y is B,

represented by the relation µA(x)RµB(y), is given by

{〈y, µB′(y)〉 | µB′(y) = µA′(x) ◦ (µA(x)RµB(y)) , x ∈ X , y ∈ Y}
The operation ◦ is the ∨ − ∧ composition.

The generalized modus ponens is thus closely tied to relational composition. Notice
also that x and y are scalars, but the definition applies vectorially as well, if taken element
by element. The next example illustrates the calculations numerically.

Example 2.6.2 Generalized modus ponens
Given the rule ‘if altitude is High, then oxygen is Low’. Let the fuzzy set High be defined

on a range of altitudes from 0 to 4000 m (about 12 000 ft),

High = {〈0, 0〉 , 〈1000, 0.25〉 , 〈2000, 0.5〉 , 〈3000, 0.75〉 , 〈4000, 1〉}
and Low be defined on a set of percentages of normal oxygen content,

Low = {〈0, 1〉 , 〈25, 0.75〉 , 〈50, 0.5〉 , 〈75, 0.25〉 , 〈100, 0〉}
As a shorthand notation we write the rule as a logical proposition High ⇒ Low, where
it is understood that the proposition concerns altitude on the left side and oxygen on the
right side. We construct the relation RRR, connecting High and Low, using Gödel implication(
µHigh(x) ≤ µLow(y)

) ∨ µLow(y):

RRR =

1 0.75 0.5 0.25 0
0 1 1 1 1 1
0.25 1 1 1 1 0
0.5 1 1 1 0.25 0
0.75 1 1 0.5 0.25 0
1 1 0.75 0.5 0.25 0

The boxes and axis annotations make the construction of the table clearer: each element
rxy is the evaluation of µHigh(x) ⇒ µLow(y). The numbers on the vertical axis correspond
to µHigh and the numbers on the horizontal axis correspond to µLow . Assuming altitude is
High, we find by modus ponens that

µt = µt
H igh ◦ RRR

= (0 0.25 0.5 0.75 1
) ◦








1 1 1 1 1
1 1 1 1 0
1 1 1 0.25 0
1 1 0.5 0.25 0
1 0.75 0.5 0.25 0








= (1 0.75 0.5 0.25 0
)
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The result is identical to Low. Thus modus ponens returns a result as expected in this case.
Assume instead that altitude is Very High,

µt
V eryHigh = (0 0.06 0.25 0.56 1

)
,

the square of µt
H igh. Modus ponens yields

µt = µt
V eryHigh ◦ RRR

= (0 0.06 0.25 0.56 1
) ◦







1 1 1 1 1
1 1 1 1 0
1 1 1 0.25 0
1 1 0.5 0.25 0
1 0.75 0.5 0.25 0







= (1 0.75 0.5 0.25 0
)

The result is not identical to the square of µLow. Written as an argument, we have in fact

Very High
High ⇒ Low

Low

This is not as desired; but in fact all implication operators have some inconvenient feature,
and we rest the case.

Several rules

Fuzzy controllers apply several rules at a time:

1. if x is A1 then y is B2

2. if x is A2 then y is B2

· · ·
m. if x is Am then y is Bm

The input x and the output y are the same in all m rules. Formally, we extend the inter-
pretation of rule i as

i. if x is Ai then y is Bi , else

where the ‘else’ is interpreted as a logical disjunction. That is, if rule i is represented by
a relational matrix RRRi, then formally the whole rule base is the element-by-element union

RRR =
m∨

i=1

RRRi

Input x induces output y by means of composition. In case of n inputs, that is, if each if
side contains n variables, the relation matrix RRR generalizes to an n + 1 dimensional array.

It is simpler in practice, as we shall see later.
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2.7 Triangular Norms

There are alternative definitions of conjunction and disjunction, and they are always defined
in pairs. For example,

x ∧ y : x ∗ y algebraic product
x ∨ y : x + y − xy algebraic sum

In fact, any operation that agrees with the truth-table for two-valued conjunction is a
candidate. The so-called t-norms and t-conorms are valid connectives.

For conjunction, a triangular norm or t-norm is an operation � satisfying (Nguyen and
Walker 2000)

1�x = x

x�y = y�x

x� (y�z) = (x�y) �z

If w ≤ x and y ≤ z then w�y ≤ x�z

Some examples are

(a)

{
x ∧ y if x ∨ y = 1

0 otherwise

}

(b) 0 ∨ (x + y − 1)

(c)
xy

2 − (x + y − xy)

(d) xy

(e)
xy

x + y − xy

(f ) x ∧ y

For disjunction, a t-conorm is an operation � satisfying

0�x = x

x�y = y�x

x� (y�z) = (x�y) �z

If w ≤ x and y ≤ z then w�y ≤ x�z

A t-conorm � can be generated from a t-norm � by

x�y = 1 − (x + 1) � (y + 1)

This explains why the definition of fuzzy logic operations may vary from application
to application.

The implication connective illustrates the difficulties with building a consistent system
for fuzzy logic. But leaving implication out, and restricting to negation, conjunction, and
disjunction, it is possible to build a so-called Kleene-algebra (Nguyen and Walker 2000).
Thereby the conjunctive and disjunctive normal forms, of great importance in digital elec-
tronics, can be proved to be valid in fuzzy logic.
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2.8 Formal Derivation of the Mamdani Inference*
Mamdani inference is defined by means of the min operation taken as conjunction.

Definition Mamdani inference. Let A and B be fuzzy sets defined on X and Y respectively,
then the fuzzy set in X × Y with the membership function

{〈〈x, y〉 , µ(x, y)〉 | x ∈ X , y ∈ Y, µ(x, y) = min (µA(x), µB(y))} (2.13)

is the Mamdani inference.

Intuitively, the degree of fulfillment of the premise µA(x) weights, by the min operation,
the membership function of the conclusion µB(y); we saw the mechanism in the ‘Student
John’ example (Example 2.6.1). Formally it rests on Tautology 3,

[
p ∧ (p ⇒ q)

]⇔ p ∧ q (2.14)

which shows that the premise combined with the implication of modus ponens is equivalent
to just conjunction. The relationship is valid under a suitable choice of implication con-
nective, for instance Gödel. To get into further detail, we will introduce the compositional
rule of inference (Zadeh 1975) by an example.

Example 2.8.1 Compositional rule of inference
Generalizing modus ponens to three-valued array logic, p and q are vectors of three

elements, RRR is a 3-by-3 matrix, and the inner ∨ − ∧ product is interpreted as the inner
max–min product. The assumption that p is true corresponds to assigning

p =



0

0.5
1





In modus ponens

RRR =



1 1 1
0 1 1
0 0.5 1



 ,

which is the truth-table for Gödel implication. With p as above,

qt= pt◦RRR= (0 0.5 1
) ◦



1 1 1
0 1 1
0 0.5 1



 = (0 0.5 1
)

To interpret, if p is true and p ⇒ q is true, it implies that q is true, as expected because
tautology 1 is valid in three-valued logic.

The inner product pt ◦ RRR can be decomposed into three operations:

1. A Cartesian product

RRR(1) = p × 1t =



0

0.5
1



× (1 1 1
) =



0 0 0

0.5 0.5 0.5
1 1 1





*Can be skipped in a first reading.
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called the cylindrical extension. The result is a matrix whose columns are the vector
p repeated as many times as necessary to fit the size of R.

2. An element-by-element conjunction

RRR(2) = RRR(1) ∧ RRR =



0 0 0

0.5 0.5 0.5
1 1 1



 ∧



1 1 1
0 1 1
0 0.5 1



 =



0 0 0
0 0.5 0.5
0 0.5 1





This operation does not have a name in the literature.

3. A disjunction along the columns of RRR(2),

qt =
∨

p

r(2)
pq = (0 0.5 1

)

which is the or-projection of RRR(2) on the q-axis.

In general, the ∨ − ∧ composition

bt = at ◦ R

consists of three operations: (1) the cylindrical extension RRR(1) = at × 1b, (2) the element-by-
element conjunction RRR(2) = r

(1)
ab ∧ rab, and (3) the projection onto the b-axis bt =∨

b

r
(2)
ab .

This constitutes the compositional rule of inference, where b is inferred by composing a
with RRR.

In the above example, the matrix RRR is the truth-table for implication, corresponding
to p ⇒ q in Equation (2.14). Operations 1) and 2) together are a vectorized conjunction,
corresponding to p ∧ (p ⇒ q) in Equation (2.14). Clearly, the matrix RRR(2) is equivalent to
the right-hand side of Equation (2.14). Therefore, Mamdani inference is a direct version
of modus ponens (not generalized modus ponens). The next example uses the data in the
altitude example (Example 2.6.2) to illustrate this point.

Example 2.8.2 Mamdani inference
Given the rule ‘if altitude is High, then oxygen is Low’, let the fuzzy set High be defined

on a range of altitudes from 0 to 4000 m (about 12 000 ft),

High = {〈0, 0〉 , 〈1000, 0.25〉 , 〈2000, 0.5〉 , 〈3000, 0.75〉 , 〈4000, 1〉}
and Low be defined on a set of percentages of normal oxygen content,

Low = {〈0, 1〉 , 〈25, 0.75〉 , 〈50, 0.5〉 , 〈75, 0.25〉 , 〈100, 1〉}
As a shorthand notation, we write the rule as a logical proposition High ⇒ Low, where it
is understood that the proposition concerns altitude on the left side and oxygen on the right
side. We construct the relation RRR(2), connecting High and Low, using Mamdani inference
(min):

RRR(2) =

1 0.75 0.5 0.25 0
0 0 0 0 0 0
0.25 0.25 0.25 0.25 0.25 0
0.5 0.5 0.5 0.5 0.25 0
0.75 0.75 0.75 0.5 0.25 0
1 1 0.75 0.5 0.25 0
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The boxes and axis annotations make the construction of the table clearer: each element rxy

is the evaluation of min
(
µHigh(x), µLow(y)

)
. The numbers on the vertical axis correspond

to µHigh and the numbers on the horizontal axis correspond to µLow .
We interpret RRR(2) as a lookup table: an input µHigh(x) having membership 0 induces an

output
µLow(y) = (0 0 0 0 0

)
(2.15)

(first row), an input µHigh(x) having membership 0.25 induces an output

µLow(y) = (0.25 0.25 0.25 0.25 0
)

(2.16)

(2nd row), and so on, until an input µHigh(x) having membership 1 induces an output

µLow(y) = (1 0.75 0.5 0.25 0
)

(2.17)

(last row). The last instance shows that if the premise is true (truth-value 1), the induced
fuzzy set is Low, as desired. The matrix is thus a listing, or stack, of all possible outputs,
depending on the degree of fulfillment of the input.

This is exactly how a Mamdani controller functions, as we shall see in a later chapter.
The or-projection in the compositional rule of inference is obsolete, because inputs to a
controller are scalar; the or-projection applies to fuzzy input.

2.9 Summary

Fuzzy reasoning is based on fuzzy logic, which is in turn based on fuzzy set theory. The
idea of a fuzzy set is basic and simple: an object is allowed to have a gradual membership
of a set. The idea pervades all derived mathematical aspects of set theory. In fuzzy logic an
assertion is allowed to be more or less true. A truth value in fuzzy logic is a real number
in the interval [0, 1], rather than the set of two truth values {0, 1} of classical logic.

Classical logic can be fuzzified in many ways, but the central problem is to find a
suitable definition for the connective ‘implication’. Fuzzy reasoning is based on the modus
ponens rule of inference, which again rests on the definition of ‘implication’.

Not all laws in classical logic are valid in fuzzy logic, and therefore a fuzzy system is a
trade-off between mathematical rigour and engineering requirements. A backward approach
is recommended:

1. first decide which laws (tautologies) are required;

2. define ‘and’, ‘or’, ‘not’, ‘implication’, and ‘equivalence’;

3. check by means of their truth-tables whether the laws in step 1 hold; and

4. if not, go to 2.

All the derivations are based on the truth-domain {0, u, 0.5, v, 1} with 0 < u < 0.5 and
0.5 < v < 1, such that v is the negation of u. If it turns out in a particular application that
this is an inadequate representation of the continuous truth-domain [0, 1] , care should be
taken to check the results.

Fuzzy logic has seen many applications, one among them being fuzzy control. There
is more to be said about fuzzy logic, and fuzzy control applies just a subset of the arsenal
of operations and definitions.
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2.10 Notes and References

The notes below contain recommendations for beginners as well as for more advanced
reading.

Fuzzy logic For an introduction to fuzzy logic and its applications, see the book by Zim-
mermann (1993). It gives an overview of the mathematics, without being overly
mathematical. For an advanced study of pure fuzzy logic, the book by Nguyen and
Walker (2000) includes algebras, relations, possibility theory, and fuzzy integrals.
The original papers by Zadeh are still relevant and accessible. An article in IEEE
Computer is a good starting point (Zadeh 1988), before reading the two central papers
(Zadeh 1973, 1975). The first original paper is historically interesting (Zadeh 1965).
The array-based approach to logic is founded on the work by Franksen (1979) and
developed for commercial use by Møller (1986, 1998).

Applications There are now many collections describing applications of fuzzy logic. Two
remarkable books by Constantin von Altrock describe case studies related to con-
trol and business (von Altrock 1995, 1996). A collection of contributions, edited
by Zimmermann, gives an overview of the applications to engineering, medicine,
management, and psychology, among others (Zimmermann 1999). An important col-
lection of articles regarding image processing and pattern recognition is Bezdek and
Pal published by IEEE (1992). Regarding automatic control, see the overview article
by Lee (1990).

Tools The Fuzzy Logic Toolbox is a Matlab toolbox for membership functions, connectives,
inference systems, adaptation of the membership functions, Simulink support, and C
code generation. The toolbox includes a tutorial, which is another excellent starting
point for learners. Together with the book by Jang et al. (1997) students of fuzzy
logic and fuzzy control are well equipped. There are many software tools; since
software products develop quickly, the World Wide Web is the best reference for the
same.
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Fuzzy Control

Roughly speaking, fuzzy control is ‘control with rules’. A fuzzy controller can include
empirical rules, and that is especially useful in operator-controlled plants. Consider the
typical fuzzy controller:

1. If error is Neg and change in error is Neg then control is NB

2. If error is Neg and change in error is Zero then control is NM (3.1)

· · ·
The rules are in the familiar if–then format, with the premise on the if -side and the
conclusion on the then-side. The premise value ‘Neg’ is a linguistic term short for the word
‘negative’, the conclusion value ‘NB’ stands for ‘negative big’ and ‘NM’ for ‘negative
medium’. The collection of rules is a rule base. A computer can execute the rules and
compute a control action depending on the measured inputs error and change in error.

The inclusion of fuzzy rules in a controller raises more design questions than usual.
The objective here is to identify and explain those design choices.

In a rule-based controller the control strategy is in a more or less natural language.
A rule-based controller is intelligible and maintainable for a non-specialist. An equivalent
controller could be implemented using conventional techniques – it is just more convenient
to isolate the control strategy in a rule base when operators control the plant.

In the direct control scheme in Figure 3.1 the fuzzy controller is in the forward path
of a feedback control system. The plant output y is compared with a reference Ref, and if
there is a deviation e = Ref − y, the controller takes action according to the control strategy
embedded in the rule base. In the figure, the arrows can be hyper-arrows containing several
signals at a time for multi-loop control.

There are at least four main sources for finding control rules (Takagi and Sugeno in
Lee 1990):

• Expert experience and control engineering knowledge. One classical example is a
handbook for cement kiln operators implemented in the FLS controller, by the cement
company FL Smidth (Holmblad and Østergaard 1982, 1995). The most common
approach is to question experts or operators with a carefully organized questionnaire.

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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Figure 3.1: Direct control.

• Based on the operator’s control actions. Observing an operator’s control actions or
examining a logbook may reveal fuzzy if–then rules of input–output relationships.

• Based on a fuzzy model of the plant. A linguistic rule base may be viewed as an
inverse model of the controlled plant. Thus the fuzzy control rules can perhaps be
obtained by inverting a fuzzy model of the plant, if fuzzy models of the open and
closed-loop systems are available (Braae and Rutherford in Lee 1990). This method
is restricted to low order systems. Another approach is fuzzy identification (Tong;
Takagi and Sugeno; Sugeno – all in Lee 1990, Pedrycz 1993).

• Based on learning. The self-organizing controller is an example of a controller that
finds the rules itself. It is an example of the more general control scheme: model
reference adaptive control.

The chapter describes the basic components and functions of fuzzy controllers.

3.1 Controller Components

In the block diagram Figure 3.2, the controller is between a pre-processing block and a
post-processing block. The following explains the diagram block by block.

Pre-processing block

Let us assume the inputs are crisp measurements from measuring equipment, rather than
linguistic. A pre-processor, the first block in Figure 3.2, conditions the measurements before
they enter the controller. Examples of pre-processing are

• quantization in connection with sampling or rounding to integers;

• normalization or scaling onto a particular, standard range;

• filtering in order to remove noise;

• averaging to obtain long-term or short-term tendencies;
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Figure 3.2: Building blocks of a fuzzy controller.

• a combination of several measurements to obtain key indicators; and

• differentiation and integration, or their approximations in discrete time.

A quantizer converts an inbound measurement in order to fit it to a discrete universe.
Assume, for instance, that the variable error is 4.6, but the universe is U = 〈−5, −4, . . . , 0,

. . . , 4, 5〉. The quantizer thus rounds to 5, the nearest level. Quantization is a means to
reduce data, but if the quantization is too coarse the controller may oscillate around the
reference or even become unstable.

The FL Smidth (FLS) controller applies nonlinear scaling (Figure 3.3). The operator
supplies a value for a typical small measurement, a typical normal measurement, and
a typical large measurement according to experience (Holmblad and Østergaard 1982).
The combined effect of the scaling and the membership functions is a distortion of the
membership functions. In fact, over the years, only the break points have been adjusted,
while the primary sets have remained unchanged.

A dynamic controller has additional time-related inputs: derivatives, integrals, or pre-
vious values of measurements backwards in time. The pre-processor forms these.

Fuzzification block

The first block inside the controller is fuzzification, which is a lookup in the membership
functions to derive the membership grades. The fuzzification block thus evaluates the input
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Figure 3.3: Example of nonlinear scaling of an input measurement to a standard universe
[−100, 100]. Circles indicate a typical small, a typical normal, and a typical large mea-
surement acquired from a skilled operator. (figscal.m)
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measurements according to the premises of the rules. Each premise produces a membership
grade expressing the degree of fulfilment of the premise.

Rule base block

A rule allows for several variables both in the premise and the conclusion. A controller can
therefore be multi-input–multi-output (MIMO) or single-input–single-output (SISO). The
typical SISO controller regulates a control signal according to an error signal. A controller
may actually apply the error, the change in error, and the integral error, but we will still
call it SISO control, because the inputs are based on a single feedback loop. This section
assumes that the control objective is to regulate a plant output around a prescribed setpoint
(reference) using a SISO controller.

A linguistic controller contains rules in the if–then format, but they can appear in
other formats. Matlab’s Fuzzy Logic Toolbox presents the rules to the end-user in a format
similar to the one below:

1. If error is Neg and change in error is Neg then control is NB

2. If error is Neg and change in error is Zero then control is NM

3. If error is Neg and change in error is Pos then control is Zero

4. If error is Zero and change in error is Neg then control is NM

5. If error is Zero and change in error is Zero then control is Zero (3.2)

6. If error is Zero and change in error is Pos then control is PM

7. If error is Pos and change in error is Neg then control is Zero

8. If error is Pos and change in error is Zero then control is PM

9. If error is Pos and change in error is Pos then control is PB

The rules are an example for the sake of illustration, but we shall use it throughout the
book. The names Zero, Pos, Neg are labels of fuzzy sets as well as NB, NM, PB and
PM (negative big, negative medium, positive big, and positive medium respectively). The
designer assigns the names. The example has two inputs, error and change in error. The
latter is based on the time derivative of the former. These are the inputs to the controller.
The conclusion side of each rule prescribes a value for the variable control, the output of
the controller. The same set of rules is presented here in a relational format.

Error Change in error Control

Neg Neg NB
Neg Zero NM
Neg Pos Zero
Zero Neg NM
Zero Zero Zero
Zero Pos PM
Pos Neg Zero
Pos Zero PM
Pos Pos PB

(3.3)
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The top row is a heading. It is understood that the two leftmost columns constitute the
premises, the rightmost the conclusions, and each row represents one rule. This format is
more compact, and it provides an overview of the rule base quickly. The relational format is
certainly suited for storing in a relational database. The relational format implicitly assumes
that the premise variables are connected by a connective – logical ‘and’ or logical ‘or’. The
same connective applies to all rules, not a mixture of connectives. Incidentally, a fuzzy rule
with an ‘or’ combination of terms can be converted into an equivalent ‘and’ combination
of terms using the laws of logic (foremost DeMorgan’s laws).

A third, even more compact format is the tabular format,

Change in error
Neg Zero Pos

Neg NB NM Zero
Error Zero NM Zero PM

Pos Zero PM PB

(3.4)

The premise variables error and change in error are laid out along the axes, and the
conclusions are inside the table. Symmetries can be discovered readily, and an empty cell
is an indication of a missing rule; thus the format is useful for checking completeness.
When the premise variables are error and change in error, that format is also called a
linguistic phase plane. In case the number of premise variables is n > 2, the table grows
to an n-dimensional array.

A nested arrangement can accommodate several conclusions. A rule with several con-
clusions can alternatively be broken down into several rules, each having one conclusion.

Lastly, a graphical format displays the fuzzy membership curves (see Example 3.1.2).
This graphical user interface illustrates the inference mechanism better than the other for-
mats, but uses more space on a computer monitor.

The most prominent connective is the ‘and’ connective, often implemented as multipli-
cation instead of minimum. The examples, so far, only contained ‘and’ operations, but a
rule such as ‘If error is very Neg and not Zero or change in error is Zero then . . .’ is also
possible.

The connectives ‘and’ and ‘or’ are always defined in pairs. For example, loosely written,

A ∧ B ≡ min (µA(x), µB(x)) minimum
A ∨ B ≡ max (µA(x), µB(x)) maximum

or
A ∧ B ≡ µA(x) ∗ µB(x) algebraic product
A ∨ B ≡ µA(x) + µB(x) − µA(x) ∗ µB(x) probabilistic sum

There are other, more complex, definitions (e.g. Zimmermann 1993).
Before designing the membership functions it is necessary to consider the universes for

the premises and conclusions. Take, for example, the rule

If error is Neg and change in error is Pos then control is Zero

The membership functions for Neg and Pos must be defined for all acceptable measurements
of error and change in error, nevertheless, a standard universe may be convenient.

Premise membership functions can be continuous or discrete. A continuous membership
function is a function defined on a continuous universe. A discrete membership function
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is a vector with a finite number of elements. The latter case requires specification of the
range of the universe and the value at each discrete sampling point. The choice between fine
and coarse resolution is a trade-off between accuracy, computational speed, and memory
space. The quantizer takes time to execute, and if this time is too precious, continuous
membership functions will make the quantizer obsolete.

Example 3.1.1 Standard universes
Many authors and several commercial controllers use standard universes.

• The FLS controller uses the real number interval [−1, 1].

• Authors of the early papers on fuzzy control used the short integer range [−6, 6],
because computer memory was scarce at that time.

• Another possibility is the interval [−100, 100] corresponding to the percentage of full
range of a measurement.

• Yet another possibility is the integer range [0, 4095] arising from a 12 bit conversion
of an analogue signal to digital representation.

• A variant is the integer range [−2047, 2048] , where the interval is shifted in order
to accommodate negative numbers.

The choice of data type may govern the choice of universe. For example, the voltage
range [−5, 5] volts could be represented as an integer range [−50, 50], or as a floating point
range [−5.0, 5.0]; a signed byte data type has an allowable integer range [−128, 127].

Scaling is a means to expand the range of operation of a variable. If a controller input
mostly operates within a small interval, increasing the scaling factor increases the range of
operation within the universe.

The designer is inevitably faced with the problem of how to design the term sets,
for example, the family of terms Neg, Zero, and Pos. There are two specific questions to
consider: (1) How does one determine the shape of the sets? and (2) How many sets are
necessary and sufficient?

According to fuzzy set theory the choice of shape and width is subjective, thus a solution
is to ask the plant operators to draw their personal preferences for the membership curves;
but operators likely find it difficult to settle on particular curves. A few rules of thumb
apply, however:

• A term set should be sufficiently wide to allow for noise in the measurement.

• A certain amount of overlap is desirable; otherwise the controller may run into poorly
defined states, where it does not return a well-defined output.

• If there is a gap between two neighbouring sets, no rules fire for values in the gap.
Consequently the controller is undefined in that gap.

• The necessary and sufficient number of sets in a family depends on the width of the
sets, and vice versa.
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Figure 3.4: Examples of primary sets. Columnwise: families of smooth triangular (a–c),
triangular (d–f), smooth trapezoidal (g–i), trapezoidal functions (j–l). The last column is
the set anything (m), a crisp set (n), and a singleton set (o). (figsets.m)

Membership functions can be flat on the top, piece-wise linear and triangular, trapezoidal,
or ramps with horizontal shoulders. Figure 3.4 shows some typical shapes of membership
functions.

A constant in the conclusion is theoretically a singleton conclusion. For example, in
the rule base

1. If error is Pos then control is 10 volts

2. If error is Zero then control is 0 volts

3. If error is Neg then control is − 10 volts

the control action is a constant. There are at least three advantages to this: (1) the compu-
tations are simpler; (2) it is possible to drive the control signal to its extreme values; and
(3) it is more intuitive. The constant can be represented as a fuzzy singleton 〈x, µA(x)〉
placed in position x. For example, 10 volts would be equivalent to the fuzzy membership
function 〈0, 0, 0, 0, 1〉 defined on the universe 〈−10, −5, 0, 5, 10〉 volts.
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Example 3.1.2 Membership functions
Fuzzy controllers use a variety of membership functions. A common example is the Gaussian
curve based on the exponential function,

µGauss(x) = exp

[−(x − x0)
2

2σ 2

]

This is a standard Gaussian curve with a maximum value of 1; x is the independent variable
on the universe, x0 is the position of the peak relative to the universe, and σ is the standard
deviation.

The bell membership function does not use the exponential,

µBell(x) =
[

1 +
(

x − x0

σ

)2a
]−1

The extra parameter a, usually positive, affects the width of the membership function and
the slope of the sides. The FLS controller uses the equation

µFLS(x) = 1 − exp

[
−

(
σ

x0 − x

)a]

It is also possible to use other functions, for example, the sigmoid known from neural
networks, or the cosine-based trapezoids from the previous chapter.

Inference engine block

Figure 3.5 is a graphical construction of the inference, where each of the nine rows repre-
sents one rule. Consider, for instance, the first row: if the error is negative (row 1, column
1) and the change in error is negative (row 1, column 2) then the control action should
be negative big (row 1, column 3). The chart corresponds to the rule base (3.2). Since the
controller combines the error and the change in error, the controller is a fuzzy version of
a proportional-derivative (PD) controller.

The instances of the error and the change in error are indicated by the vertical lines
through the first and second columns of the chart. For each rule, the inference engine looks
up the membership value where the vertical line intersects a membership function.

The firing strength αk of a rule k is the degree of fulfilment of the rule premise.
Rule k causes a fuzzy membership value µA,k(error) corresponding to the error measure-
ment, and a membership value µB,k(change in error) corresponding to the change in error
measurement. Their aggregation is the combination,

αk = µA,k(error) ∧ µB,k(change in error)

The ∧-operation is the ‘and’ connective combining the two propositions in Equation (3.2);
in general, it can be a combination of many propositions connected by ∧ or ∨.

The activation of a rule is the derivation of a conclusion depending on the firing strength.
Only a portion of each singleton is activated, and min or ∗ (multiplication) is applied as
the activation operator. The result is the same, when the conclusions are singletons 〈Sk, 1〉
(k = 1, 2, . . . , 9), but in general, ∗ scales the membership curves, thus preserving the
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Figure 3.5: Graphical construction of the control signal in a fuzzy PD controller (generated
in the Matlab Fuzzy Logic Toolbox)

initial shape, while min clips them. Both methods work well in practice, although the
multiplication results in a slightly smoother control signal. In Figure 3.5, only rules 4 and
5 contribute.

A rule k can be weighted a priori by a weighting factor ωk ∈ [0, 1], which is its degree
of confidence. In that case the firing strength is modified to

α∗
k = ωk ∗ αk

The degree of confidence ωk is determined by the designer, or an optimization program.
All activated conclusions are accumulated, using the set union operation, to the final

graph on the bottom right (Figure 3.5). Usually max-accumulation is applied, but alter-
natively sum-accumulation can be applied, if it makes sense to count overlapping areas
more than once. In the figure, ∗-activation followed by max-accumulation results in the
membership function

µc(Sk) = 〈
0, α∗

4 ∗ s4, α∗
5 ∗ s5, 0, 0

〉

The conclusions may contain several control actions. An example of a one-input-two-
output rule is ‘If error is A then u1 is B and u2 is C’. The inference engine executes two
conclusions in parallel by applying the firing strength to both conclusion sets µB and µC .
In practice, one would implement this situation as two rules rather than one: ‘If error is
A then u1 is B’ and ‘If error is A then u2 is C’.

Defuzzification block

The resulting fuzzy set µc (Figure 3.5, bottom right) must be converted to a single number
in order to form a control signal to the plant. This is defuzzification. In the figure the
defuzzified control signal is the x-coordinate marked by a dashed, vertical line. Several
defuzzification methods exist.
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The crisp control value uCOG is the abscissa of the centre of gravity of the fuzzy set.
For discrete sets, its name is centre of gravity for singletons, COGS,

uCOGS =
∑

i µc (xi) xi∑
i µc (xi)

(3.5)

where xi is a point in the universe U of the conclusion (i = 1, 2, . . .), and µc (xi) its
membership of the resulting conclusion set. The expression is the membership weighted
average of the elements of the set. For continuous sets, replace summations by integrals and
call it COG. The method is much used, although its computational complexity is relatively
high.

With singleton conclusions (Figure 3.5) and sum-accumulation, the resulting defuzzified
value is

u =
∑

k α∗
kSk∑

k α∗
k

(3.6)

Here Sk is the position of the singleton in rule k in U , and α∗
k is the firing strength of rule

k. It has the advantage that u is differentiable with respect to the singletons Sk , a useful
property for optimization algorithms.

The bisector of area method, BOA, finds the abscissa x of the vertical line that partitions
the area under the membership function into two areas of equal size. For discrete sets, uBOA

is the abscissa xj that minimizes
∣
∣∣
∣
∣∣

j∑

i=1

µc (xi) −
imax∑

i=j+1

µc (xi)

∣
∣∣
∣
∣∣
, 1 < j < imax (3.7)

Here imax is the index of the largest abscissa ximax ∈ U . Its computational complexity is
relatively high. There may be several solutions xj .

An intuitive approach is to choose the point of the universe with the highest membership.
Several such points may exist, and it is common practice to take the mean of maxima
(MOM),

uMOM =

∑

i∈I
xi

|I| , I = {
i | µc (xi) = µmax

}

where I is the (crisp) set of indices i where µc(xi) reaches its maximum µmax, and |I|
is its cardinality (the number of members). This method disregards the shape of the fuzzy
set, but the computational complexity is relatively good.

Another possibility is to choose the position in the universe of the leftmost maximum
(LM),

uLM = xmin(I)

or the position in the universe of the rightmost maximum (RM)

uRM = xmax(I)

A robot, for example, must choose left or right to avoid an obstacle in front of it; thus
the defuzzifier must choose one (LM) or the other (RM), not something in between. These
defuzzification methods are indifferent to the shape of the fuzzy set, but the computational
complexity is relatively small.
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Post-processing block

If the inferred control value is defined on a standard universe, it must be scaled to engi-
neering units, for instance: volts, meters, or tons per hour. An example is the scaling from
the standard universe [−1, 1] to the physical units [−10, 10] volts. The post-processing
block contains an output gain that can be tuned.

3.2 Rule-Based Controllers

Three distinct variants of controller have evolved historically: the Mamdani, the FLS, and
the Sugeno controllers. They use the same general inference scheme, but they differ with
respect to activation method and conclusion membership functions.

A SISO rule base will pinpoint the essential differences,

If error is Neg then control is Neg

If error is Zero then control is Zero

If error is Pos then control is Pos

The input is error, proportional to the deviation from the setpoint. The control action has
the same sign as error, linguistically. Thus the rule base expresses a fuzzy proportionality
between error and control, and the controller is a fuzzy version of a proportional (P-)
controller. The following paragraphs explain the characteristics of the controller variants
by means of graphical construction.

The Mamdani controller

Figure 3.6 illustrates the Mamdani controller. Each of the three rows refers to one rule.
A particular instance of an error measurement (error = −50) is indicated by a vertical
dashed line intersecting all three rules. Firing strengths are indicated by horizontal dashed
lines.

The Mamdani controller applies activation function min, resulting in a clipping of the
conclusion sets. The accumulated conclusion on the far right of the figure thus contains
sharp breakpoints. Defuzzification method COG results in the control signal u = −25.7 in
the figure.

The inference mechanism is motivated by intuitive clarity: it is evident how gradual
fulfilment of a rule contributes to the accumulated conclusion.

Example 3.2.1 Mamdani inference
Take the inference in Figure 3.6; how is it implemented? Behind the scenes the premise
membership functions are continuous, while the conclusion functions are discrete, divided
into 201 integer points in [−100, 100]. But for brevity, let us just use five points here. Assume
the conclusion universe U is defined by the Matlab vector

u = [−100 − 50 0 50 100]
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Figure 3.6: Mamdani inference. (figrbase.m)

A smooth trapezoid function µST rapezoid (x; a, b, c, d) defines the membership functions with

µNeg = µSTrapezoid(x; −100, −100, −60, 0)

µZero = µSTrapezoid(x; −90, −20, 20, 90)

µPos = µSTrapezoid(x; −100, 0, 60, 100)

where a is the left footpoint, b is the left shoulderpoint, c is the right shoulderpoint, and d is
the right footpoint. Inserting u for x the conclusion term set is represented by three vectors

Neg = [1 0.93 0.05 0 0]

Zero = [0 0.61 1 0.61 0]

Pos = [0 0 0.05 0.93 1]

Here we inserted the whole vector u in place of the running point x; the result is thus a
vector for each set. In the figure error = −50, the unit is a percentage of the full range.
Thus the firing strength of the first rule is α1 = Neg(2) = 0.93. Using min as the activation
function, the conclusion is in Matlab min(0.93, Neg), which yields

0.93 0.93 0.05 0 0

The firing strength of the second rule is α2 = Zero(2) = 0.61, and the firing strength of
the third rule is α3 = Pos(2) = 0. Activate the two remaining rules, and stack all three
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contributions on top of each other,



0.93 0.93 0.05 0 0

0 0.61 0.61 0.61 0
0 0 0 0 0





Accumulation using max down each column yields the vector

0.93 0.93 0.61 0.61 0

The COGS yields

uCOGS =
∑

i µc (xi) xi∑
i µc (xi)

= 0.93 ∗ (−100) + 0.93 ∗ (−50) + 0.61 ∗ 0 + 0.61 ∗ 50 + 0 ∗ 100

0.93 + 0.93 + 0.61 + 0.61 + 0

= −35.4

which is the defuzzified control signal (before post-processing). The number differs from the
number in the figure, because of the lower resolution of five element vectors rather than 201.

The FLS controller

Figure 3.7 illustrates the FLS controller. The membership functions are the same as earlier,
and the error measurement is the same.

But the FLS controller applies the activation function ‘product’, causing a scaling of
the conclusion sets. The defuzzification method is again COGS for the sake of comparison,
although the real FLS controller applies the BOA method. The defuzzified control signal
is u = −29.7, which is less negative than the Mamdani control signal.

The ∗-activation is motivated by a wish to preserve the shape of the conclusion sets.

The Sugeno controller

We saw that conclusions can be singletons, but they can also be linear combinations of the
inputs, or even a complex function of the inputs (Takagi and Sugeno 1985). The general
Sugeno rule structure is

If f (e1 is A1, e2 is A2, . . . , ek is Ak) then y = g(e1, e2, . . . , ek)

Here f is a logical function that connects the sentences forming the premise, y is the
conclusion, and g is a function of the inputs. A simple example is

If error is Zero and change in error is Zero then control y = c

where c is a constant, or in other words, a singleton
〈
xi, µy(xi)

〉 = 〈c, 1〉. This is a zero-order
conclusion. A slightly more complex rule is

If E is A and CE is B then u = a ∗ E + b ∗ CE + c
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Figure 3.7: FLS inference. (figrbase.m)

where a, b, and c are all constants, and (E, CE) are abbreviations for error and change in
error respectively. This is a first-order conclusion. Inference with several rules proceeds
as before, but each control action is linearly dependent on the inputs. The control action
from each rule is a dependent singleton, and the defuzzified control signal is the weighted
average of the contributions from each rule (sum-accumulation and COGS).

The controller in the example can be extended to interpolate between linear PD con-
trollers, each controller dominated by one rule, with a weighting depending on the overlap
of the premise membership functions. This is useful in a nonlinear control system, where
each controller operates in a subspace of the operating envelope. Higher-order conclusions
y = g(e1, e2, . . . , ek) are also possible.

Example 3.2.2 Rule-based interpolation (after Takagi and Sugeno 1985)
Suppose we have two rules

1. If error is Large then output is Line 1

2. If error is Small then output is Line 2

Line 1 is defined as 0.2 ∗ error + 90 and line 2 is defined as 0.6 ∗ error + 20. The rules
interpolate between the two lines in the interval where the membership functions overlap
(Figure 3.8). Outside of that interval the conclusion is a linear function of the error.

The Sugeno controller is illustrated in Figure 3.9. The premise membership functions
are the same as before, but the Sugeno controller applies singleton conclusions. The accu-
mulation operation is +, and the defuzzification method is COGS; the overall operation
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Figure 3.8: Interpolation between two lines (a), in the interval of overlap of two membership
functions (b). (figsug2.m)
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Figure 3.9: Sugeno inference with singleton output. (figrbase.m)

is a firing strength weighted average of the singleton conclusions. The defuzzified control
signal is u = −36.3, which is more negative than the two previous controllers.

The singleton conclusions are motivated by simplicity and differentiability for opti-
mization algorithms.
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3.3 Table-Based Controller

With discrete premise universes, it is possible to infer all possible control actions offline,
before putting the controller into operation. In a table-based controller the relation between
all combinations of the premise universe points (Cartesian product) and their corresponding
control actions are arranged in a table. With two controller inputs and one control action,
the table is a two-dimensional lookup table. With three inputs the table becomes a three-
dimensional array. The pre-calculation improves execution speed, as the runtime inference
is reduced to a table lookup that is normally faster. Below is a small example of a lookup
table corresponding to the rulebase (3.2) with the membership functions in Figure 3.5,

Change in error
−100 −50 0 50 100

100 0 40 100 160 200
50 −40 0 61 121 160

Error 0 −100 −61 0 61 100
−50 −160 −121 −61 0 40

−100 −200 −160 −100 −40 0

(3.8)

A typical application for the table-based controller is to embed it in a processing unit,
in a car, for instance, where the table is downloaded to a controller that performs the table
look-up.

With two inputs and one output the input–output mapping is a surface, the control
surface. Figure 3.10 is a mesh plot of the relationship between error and change in error
on the premise side, and control action u on the conclusion side, resulting from a rule base
with nine rules (Figure 3.5). The horizontal plateaus are due to maxima of the premise
sets. The plateau in the centre implies a low sensitivity towards changes in either error or
change in error near the steady state. This is an advantage if noise sensitivity must be low
when the plant is near the reference. On the other hand, if the plant is open-loop unstable
near the reference, it will be necessary to have a larger gain around the centre.

A negative value of error implies the plant output y is above the reference Ref. A
positive value of error implies the plant output y is below the reference Ref. A negative
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Figure 3.10: Control surface corresponding to the rule base in Figure 3.5. (figsurfs.m)
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value of change in error implies an increasing plant output y (for constant Ref), while a
positive value implies a decreasing plant output y.

The table in the preceding text contains several regions of interest. The cell in the centre
of the table has error equal to zero, that is, the plant is on the reference. Furthermore, the
change in error is zero here, that is, the plant is steady. Thus the centre cell is the stable
point where the plant has settled on the reference in steady state. The diagonal is zero;
all these are the favourable states, where the plant is either stable on the reference or
approaching the reference. Should the plant move away a little from the zero diagonal,
because of noise or a disturbance, the table values are small, and the controller will make
small corrections to get it back. Should the plant be far off the reference and, furthermore,
heading away from it, we are in the upper left and lower right corners: here the controller
calls for drastic changes. Generally, the numerical values on the two sides of the zero
diagonal may be any values, portraying an asymmetric control strategy.

During a response with overshoot, after a positive step in the reference, a plot of the
point (error, change in error) will follow a trajectory in the table that spirals clockwise from
the lower left corner of the table towards the centre. It is similar to a phase plane trajectory,
the plot of a variable against its own derivative. A skilled designer, or an optimization
algorithm, may adjust the numbers during a tuning session to obtain a particular response.

If the resolution in the table is too coarse it will cause limit cycles, oscillations about
the reference. The table allows the error to drift away from the centre cell until it jumps
into a neighbouring cell with a non-zero control action. This can be solved with bilinear
interpolation between the cells instead of rounding to the nearest cell.

Example 3.3.1 Bilinear interpolation
Considering a two-dimensional table, a computed error E may fall between two neigh-

bouring discrete values in the universe, Ei and Ei+1, such that Ei < E < Ei+1. The com-
puted change in error CE may fall between two neighbouring discrete values in its universe,
CEj and CEj+1, such that CEj < CE < CEj+1. The resulting control signal is found by
interpolating linearly in the E axis direction between the first pair,

u1 = g (E; F(i, j), F (i + 1, j))

and the second pair,
u2 = g (E; F(i, j + 1), F (i + 1, j + 1))

and then in the CE-axis direction,

u = g (CE; u1, u2)

The function g is linear interpolation, and Fij is the fuzzy lookup table (i, j = 1, 2, . . .).

A three-input controller implies a three-dimensional lookup table. Assuming a resolution
of, say, 21 points in each universe, the table holds 213 = 9261 elements. The choice of 21
points is from a standard universe [−100, 100] with steps of 10, but the choice of resolution
is arbitrary. It would be a tremendous task to fill these in manually, but it is manageable
with rules.

A three-dimensional table can be reshaped into a two-dimensional relational represen-
tation. Rearrange the table into four columns: one for each of the three inputs (x, y, z)

and one for the control action u, see, for example, Table 3.1. The table lookup is now a
question of finding the correct row, and picking the corresponding u value.
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Table 3.1: Relational representation of
a three-dimensional lookup table.

x y z u

−100 −100 −100 −100
−100 −100 −67 −89
−100 −100 0 −67
−100 −100 67 −44
−100 −100 100 −33
−100 −67 −100 −89
−100 −67 −67 −78
−100 −67 0 −56
· · · · · · · · · · · ·
100 100 100 100

3.4 Linear Controller

There are three sources of nonlinearity in a fuzzy controller. First, the rule base. The
position, shape, and number of membership functions on the premise side, as well as
nonlinear input scaling, cause nonlinear characteristics. Even the rules themselves can
express a nonlinear control strategy. Second, the inference engine. If the connectives ∧
and ∨ are implemented as min and max respectively, they are nonlinear. The same applies
to min-activation and max-accumulation. And third, the defuzzification method. Several
defuzzification methods are nonlinear.

It is possible to construct a rule base, however, with a linear input–output characteristic
(Siler and Ying 1989, Mizumoto 1992, Qiao and Mizumoto 1996):

• The premise universes must be large enough for the inputs to stay within the limits,
in other words, to avoid saturation. Each premise family should contain a number
of terms, with an overlap such that the sum of membership values for any particular
input instance is 1. This is achieved with duplicates of symmetric, triangular sets
that cross their neighbour sets at the membership value µ = 0.5. Their peaks will
thus be equidistant. Any input instance can thus be a member of at most two sets
simultaneously, and the membership of each is a piece-wise linear function of the
input.

• The number of terms in each family determines the number of rules, since the rule
base must consist of the ∧-combination of all terms to ensure completeness. With
singleton conclusion sets 〈si, 1〉 , si must be the sum of the peak positions of the
premise sets. Take, for example, the first of the nine rules in (3.2),

If error is Neg and change in error is Neg, then control is NB.

Assuming the peak of Neg is in −100, then the constant NB must equal −100 +
(−100) = −200, if the rule base is to act like a summation.
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Figure 3.11: Linear control surface. The controller acts like a summation: u = E + CE.
(figsurfs.m)

• We must choose multiplication for the connective ∧. Using sum-accumulation and
COGS the denominator vanishes, because all firing strengths add up to 1.

It is an advantage to use conclusion singletons; then the rule base becomes equivalent
to a plain summation of the inputs. The following list summarizes five design choices for
achieving a fuzzy rule base equivalent to a summation.

Conditions In order to achieve a fuzzy controller u = F(E, CE) equivalent to the sum-
mation u = E + CE, the following conditions must be fulfilled:

1. Use triangular premise sets that cross at µ = 0.5.

2. Build a rule base containing all possible ∧− combinations of the premise terms.

3. Use multiplication (∗) for the ∧− connective.

4. Use conclusion singletons, positioned at the sum of the peak positions of the premise
sets.

5. Use sum-accumulation and COGS defuzzification.

With these design choices the control surface is a diagonal plane (Figure 3.11). Such a
fuzzy controller is two controllers in one: (1) it has the design of a fuzzy controller, and
(2) it is equivalent to a summation. It has a transfer function, and the usual methods for
tuning and calculating stability of the closed-loop system apply.

3.5 Analytical Simplification of the Inference*

Given the conditions in the form of design choices mentioned earlier, the inferred output
has a simple analytical expression, even for the nonlinear case. We shall use the shorthand

*Can be skipped in a first reading.
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notation

NE for µNeg(E) corresponding to ‘error is Neg’,

ZE for µNeg(E) corresponding to ‘error is Zero’,

PE for µNeg(E) corresponding to ‘error is Pos’,

NCE for µNeg(CE) corresponding to ‘change in error is Neg’,

ZCE for µNeg(CE) corresponding to ‘change in error is Zero’

PCE for µNeg(CE) corresponding to ‘change in error is Pos’, and

Si for the singleton of rule i.

Four rules

Take the rule base with four rules,

If error is Neg and change in error is Neg then control is NB

If error is Neg and change in error is Pos then control is Zero

If error is Pos and change in error is Neg then control is Zero

If error is Pos and change in error is Pos then control is PB

corresponding to rules 1, 3, 7, and 9 in (3.2). The rule base is constructed in accordance
with design choice 2. The controller output is by design choice 5 and Equation (3.6),

u =
∑

k α∗
kSk∑

k α∗
k

where Sk is the position of the conclusion singleton of rule k, and α∗
k is the firing strength

of rule k. The expression is the activation weighted average of the conclusion singletons.
For example, the first rule (k = 1) is activated to the degree

α∗
1 = NE ∗ NCE

by design choice 3. Singleton S1 = sNB, and the contribution from the first rule to the
numerator is

α∗
1 ∗ sNB

by design choices 4 and 5. Similar results can be derived for the remaining rules. We can
in fact write the inferred controller output directly.

The numerator is,

4∑

k=1

α∗
kSk = NE ∗ NCE ∗ sNB + NE ∗ PCE ∗ sZero

+PE ∗ NCE ∗ sZero + PE ∗ PCE ∗ sPB
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Singleton sZero is 0 by design choice 4, therefore two terms vanish. Furthermore, sNB =
−sPB, and by design choice 1, N(x) = 1 − P (x) where x is either E or CE. The numerator
can therefore be reduced,

4∑

k=1

α∗
kSk = NE ∗ NCE ∗ sNB + PE ∗ PCE ∗ sPB

= (1 − PE)(1 − PCE) ∗ (−sPB) + PE ∗ PCE ∗ sPB

= (PE + PCE − 1) ∗ sPB

The denominator is

4∑

k=1

α∗
k = NE ∗ NCE + NE ∗ PCE + PE ∗ NCE + PE ∗ PCE

Or,

4∑

k=1

α∗
k = (1 − PE) ∗ (1 − PCE) + (1 − PE) ∗ PCE

+PE ∗ (1 − PCE) + PE ∗ PCE

= 1

In summary, the controller output can be written

u = (PE + PCE − 1) ∗ sPB

Singleton sPB = 200 when using standard universes, and the final expression is clearly linear
when PE and PCE are linear. The expression is valid even for nonlinear PCE and PE , that is,
nonlinear fuzzy membership functions µPos and µNeg, as long as µPos(x) + µNeg(x) = 1.

Nine rules

For the rule base with nine rules (3.2) we can derive a similar result, only slightly more
complex.

Again we note that the rule base is constructed in accordance with design choice 2.
The numerator is, in this case,

9∑

k=1

α∗
kSk = NE ∗ NCE ∗ sNB + NE ∗ ZCE ∗ sNM + NE ∗ PCE ∗ sZero

+ZE ∗ NCE ∗ sNM + ZE ∗ ZCE ∗ sZero + ZE ∗ PCE ∗ sPM

+PE ∗ NCE ∗ sZero + PE ∗ ZCE ∗ sPM + PE ∗ PCE ∗ sPB

Singleton sZero is 0 by design choice 4, therefore three terms vanish. Furthermore, sNB =
−sPB, sNM = −0.5 ∗ sPB, and sPM = 0.5 ∗ sPB. By design choice 1, we have Z(x) = 1 −
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(P (x) + N(x)), where x is either E or CE. The numerator reduces to,
9∑

k=1

α∗
kSk = NE ∗ NCE ∗ sNB + NE ∗ ZCE ∗ sNM

+ZE ∗ NCE ∗ sNM + ZE ∗ PCE ∗ sPM

+PE ∗ ZCE ∗ sPM + PE ∗ PCE ∗ sPB

= NE ∗ NCE ∗ (−sPB)

+NE ∗ (1 − (PCE + NCE)) ∗ (− 1
2 ∗ sPB)

+(1 − (PE + NE)) ∗ NCE ∗ (− 1
2 ∗ sPB)

+(1 − (PE + NE)) ∗ PCE ∗ 1
2 ∗ sPB

+PE ∗ (1 − (PCE + NCE)) ∗ 1
2 ∗ sPB

+PE ∗ PCE ∗ sPB

= 1
2 (PE − NE + PCE − NCE) sBP

The denominator is
9∑

k=1

α∗
k = NE ∗ NCE + NE ∗ ZCE + NE ∗ PCE

+ZE ∗ NCE + ZE ∗ ZCE + ZE ∗ PCE

+PE ∗ NCE + PE ∗ ZCE + PE ∗ PCE

= NE ∗ NCE + NE ∗ (1 − (PCE + NCE)) + NE ∗ PCE

+(1 − (PE + NE)) ∗ NCE

+(1 − (PE + NE)) ∗ (1 − (PCE + NCE))

+(1 − (PE + NE)) ∗ PCE

+PE ∗ NCE + PE ∗ (1 − (PCE + NCE)) + PE ∗ PCE

= 1

In summary, the controller output can be written

u = 1
2 (PE − NE + PCE − NCE) sPB

Singleton sPB = 200 when using standard universes, and the final expression is clearly
linear when PCE, PE, NCE, and NE are linear. The expression is valid even for nonlinear
PCE, PE, NCE, and NE , that is, nonlinear fuzzy membership functions µPos, µZero and
µNeg, as long as µPos(x) + µZero(x) + µNeg(x) = 1.

3.6 Summary

In a fuzzy controller the measurement data passes through a pre-processing block, a con-
troller, and a post-processing block. Pre-processing consists of a linear or nonlinear scaling,
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as well as a quantization when using discrete membership functions (vectors). When using
continuous membership functions, the membership of each input measurement is looked
up in a function.

With all other choices being equal, it is recommended to apply continuous premise
membership functions, but discrete conclusion membership functions, preferably singletons.

When designing the rule base, the designer must consider the number of term sets,
their shape, and their overlap. The rules themselves must be established, unless more
advanced means such as adaptation are available. There is a choice between multiplication
and minimum in the activation function. There is also a choice regarding defuzzification.
The post-processing consists in a scaling of the control action to engineering units. The
following is a checklist of design choices to make:

� Rule base–related choices. Number of inputs and outputs, rules, universes, continuous
or discrete, the number of membership functions, their overlap and width, singleton
conclusions.

� Inference engine–related choices. Connectives, modifiers, activation operation, aggre-
gation operation, and accumulation operation.

� Defuzzification method. COG, COGS, BOA, MOM, LM, and RM.

� Pre- and post-processing. Scaling, gain factors, quantization, and sampling time.

Some of these items must always be considered, others may not play a role in a particular
design.

The control surface provides insight, because it is a picture of the input–output charac-
teristics of the controller; it is the central object that governs the behaviour of the controller.
Changing the membership functions causes the control surface to change shape. A linear
control surface settles several design choices and opens up for a fuzzy proportional-integral-
derivative (PID) type of control, as the next chapter shows.

3.7 Notes and References

Theory The overview by Lee (1990) is still a good starting point to gain insight into the
inner workings of fuzzy controllers. The most efficient way to learn is to study the
Fuzzy Logic Toolbox for Matlab, especially the Fuzzy Inference System (Mathworks
2006). The book by Driankov et al. (1996) is explicitly aimed at the control engineer-
ing community, in particular, engineers in industry and university students, with the
intention of covering just the relevant parts of the theory and focusing on principles
rather than particular applications or tools. Another central reference is the book by
Passino and Yurkovich (1998), which provides case studies and a wide coverage of
the control area, including identification, adaptive control, and supervisory control.
Another wide coverage of the control area is the book by Wang (1997). Fuzzy model
identification is treated thoroughly by Babuska (1998), who also offers a related
Matlab toolbox for download1. Another central reference for modelling is Jang et al.
(1997), which combines neural networks and machine learning in the so-called soft

1http://www.dcsc.tudelft.nl/˜babuska/klbook.htm
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computing approach. Model-based fuzzy control with gain scheduling and sliding
mode control is treated by Palm et al. (1997). Fuzzy control has been merged with
the learning capabilities of artificial neural networks into neuro-fuzzy control (e.g.
Nauck et al. 1997, Lin and Lee 1996) or intelligent control systems (Gupta and Sinha
1996), and with further techniques such as genetic algorithms into soft computing
(Jang et al. 1997). For an overview of theoretically oriented work, see the collection
edited by Farinwata et al. (2000). For future perspectives see the article by Sala et al.
(2005).

Applications The book by Constantin von Altrock (1995) describes case studies related to
appliances (air conditioning, heating, washing machine, clothes dryer), the automotive
industry (brakes, engine, transmission, skidding, air conditioning), process control
(decanter, incineration, ethylene production, cooling, waste water, food processing),
and other applications (battery charger, optical disk drive, camcorder, climate con-
trol, elevator, camera, anaesthesia, aircraft landing). Many related reports are easily
accessible from the Fuzzy Application Library on the World Wide Web site2 of the
software product fuzzyTECH. The collection of intelligent control systems (Gupta
and Sinha 1996) mentioned here presents applications within robot control, adaptive
control, knowledge-based systems, robust control, expert systems, and discrete event
systems. There is an international standard for Programmable Controllers defining
programming methodology, environment, and functional characteristics (IEC 2000).

2http://www.fuzzytech.com
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Linear Fuzzy PID Control

A fuzzy PID controller is a fuzzified proportional-integral-derivative (PID) controller. It
acts on the same input signals, but the control strategy is formulated as fuzzy rules.

If a control engineer changes the rules, or the tuning gains to be discussed later, it is
difficult to predict the effect on rise time, overshoot, and settling time of a closed-loop step
response, because the controller is generally nonlinear and its structure is complex.

In contrast, a PID controller is a simple, linear combination of three signals: the P-
action proportional to the error e, the I-action proportional to the integral of the error

∫
edt ,

and the D-action proportional to the time derivative of the error de/dt , or ė for short. This
chapter introduces a systematic tuning procedure for fuzzy PID type controllers.

Assume that the control objective (Figure 4.1) is to control the controlled output y =
x + n, which includes measurement noise n, around a reference input Ref, either after a
change in the reference, a change in the load l, or due to the noise n. Assume for simplicity
that the plant is monotonous such that the plant output x increases when the plant input
u + l increases. The controller must increase the control signal u when the controlled output
y is below the reference and decrease u when the controlled output y is above the reference.
This is negative feedback since the control signal moves in the opposite direction of the
plant output.

It is natural to choose the error e = Ref − y as an input to a fuzzy controller, as in PID
control, and let the controller act on the magnitude and the sign of e. It follows that the
integral of the error and the derivative of the error are useful signals to act on as well. A
simple fuzzy control strategy with only four rules, based on error and its derivative, is

1. If error is Neg and change in error is Neg then control is NB

2. If error is Neg and change in error is Pos then control is Zero (4.1)

3. If error is Pos and change in error is Neg then control is Zero

4. If error is Pos and change in error is Pos then control is PB

The premise variable error is proportional to e, change in error is proportional to de/dt = ė,
and the conclusion variable control is proportional to the control signal. We shall distinguish

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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Figure 4.1: Feedback loop with load l and noise n.

between error and e, and change in error and de/dt ; when possible we reserve the terms
error and change in error for rule bases and e and de/dt for the signals derived from
e = Ref − y; the difference in each case is a gain factor. The names Pos and Neg are
labels of fuzzy sets, and likewise NB (negative big), Zero (control signal is zero), and PB
(positive big).

There are methods for tuning PID controllers, for example: hand-tuning,
Ziegler–Nichols tuning, optimal design, pole placement design, and auto-tuning (Åström
and Hägglund 1995). There is much to gain, if these methods are carried forward to fuzzy
controllers.

Fuzzy PID controllers are similar to PID controllers under certain assumptions about
the shape of the membership functions and the inference method (Siler and Ying 1989,
Mizumoto 1992, Qiao and Mizumoto 1996, Tso and Fung 1997). A design procedure for
fuzzy controllers of the PID type, based on PID tuning, is the following:

Procedure Design fuzzy PID

1. Build and tune a conventional PID controller first.

2. Replace it with an equivalent linear fuzzy controller.

3. Make the fuzzy controller nonlinear.

4. Fine-tune it.

The idea is to start the controller design with a crisp PID controller, stabilize the closed-
loop system, and tune it to a satisfactory performance. With a linear controller, and given a
linear model of the plant, it is even possible at this stage to carry out stability calculations,
for instance: gain margins, eigenvalues, and Nyquist plots. From the solid foundation of
linear control theory, it is safer to move to fuzzy control, rather than starting from scratch.
Such a procedure has a scope limited by PID control:

Scope The procedure is relevant whenever PID control is possible, or already implemented.

Our starting point is the ideal continuous PID controller,

u = Kp

(
e + 1

Ti

∫
e (t) dt + Td

de

dt

)
. (4.2)
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The control signal u is a linear combination of the error e, its integral and its derivative.
The parameter Kp is the proportional gain , Ti is the integral time, and Td the derivative
time.

In digital controllers, the equation must be approximated. Replacing the derivative term
by a backward difference and the integral by a sum using rectangular integration, and given
a constant – preferably small – sampling time Ts , the simplest approximation is,

u(n) = Kp



e(n) + 1

Ti

n∑

j=1

e(j)Ts + Td

e(n) − e(n − 1)

Ts



 (4.3)

Index n refers to the time instant. By tuning we shall mean the activity of adjusting the
parameters Kp, Ti, and Td in order to achieve a good closed-loop performance.

4.1 Fuzzy P Controller

In discrete time, a proportional controller is defined by

u(n) = Kpe(n) (4.4)

It is derived from the PID controller in Equation (4.3) with the I-action set to zero (1/Ti =
0) and the D-action set to zero (Td = 0). The fuzzy proportional (FP) controller in the
block diagram in Figure 4.2 accordingly acts on the error e, and its control signal is U .

Signals are represented by lower case symbols before gains and upper case symbols
after gains. Thus the notation E represents the term error, and E = GE ∗ e (the symbol ∗
is multiplication), and u represents control, where GU ∗ u = U .

The FP controller has two tuning gains GE and GU, where the crisp proportional
controller has just one, Kp. The control signal U(n), at the time instant n is generally a
nonlinear function of the input e(n),

U(n) = f (GE ∗ e(n)) ∗ GU (4.5)

The function f denotes the rule base mapping. It is generally nonlinear, as mentioned; but
with a favourable choice of design, a linear approximation is

f (GE ∗ e(n)) ≈ GE ∗ e(n) (4.6)

Insertion into Equation (4.5) yields the control signal

U(n) = GE ∗ e(n) ∗ GU = GE ∗ GU ∗ e(n) (4.7)

f

Rule base

u
GU

U
GE

Ee

Figure 4.2: Fuzzy proportional controller, FP.
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Comparing with Equation (4.4) the product of the gain factors for the linear controller
corresponds to the proportional gain,

GE ∗ GU = Kp (4.8)

The linear approximation is exact if, firstly, we choose the same universe for premise sets
and conclusion sets, for example, percentages of full scale [−100, 100]. Secondly, the rule
base

1. If E(n) is Pos then u(n) is 100

2. If E(n) is Zero then u(n) is 0 (4.9)

3. If E(n) is Neg then u(n) is −100

with Pos, Zero, and Neg implemented appropriately – that is, according to the conditions
in the previous chapter – provides a linear input–output mapping. The controller is thus
equivalent to a crisp P controller.

Given a target proportional gain Kp – from a tuned, crisp P controller – Equation (4.8)
determines one fuzzy gain factor when the other is chosen. The equation has one degree
of freedom, since the fuzzy P controller has one more gain factor to adjust than the crisp P
controller. This can be used to exploit the full range of the premise universe. For example,
assume that the maximal reference step is 1, whereby the maximal e(n) is 1, and assume
the universe for E(n) is [−100, 100], then GE should be close to 100. When GE is chosen,
Equation (4.8) determines GU.

4.2 Fuzzy PD Controller

Because of the plant dynamics, it will take some time before a change in the control signal
is noticeable in the plant output, and the proportional controller will be equally late in
correcting for an error. Derivative action helps to predict the future error, and the PD
controller uses the derivative action to improve closed-loop stability. The discrete time PD
controller is,

u(n) = Kp

(
e(n) + Td

e(n) − e(n − 1)

Ts

)
(4.10)

by Equation (4.3) with the I-action set to zero (1/Ti = 0).
The second term in the parenthesis is proportional to an estimate of the error, Td seconds

ahead of the time instant n, where the estimate is obtained by linear extrapolation of the
straight line connecting e(n − 1) and e(n).

With Td = 0 the controller is purely proportional, but when Td is gradually increased,
it will dampen possible oscillations. If Td is increased too much the step response of the
closed-loop system becomes overdamped, and it will start to oscillate again.

Input to the fuzzy proportional-derivative (FPD) controller in Figure 4.3 is e(n) and
ė(n), where

ė(n) ≈ e(n) − e(n − 1)

Ts

(4.11)

The backward difference is a simple discrete approximation to the differential quotient,
and more accurate digital implementations are available (e.g. Åström and Hägglund 1995,
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e
GE

GCE
de/dt

f

Rule base

CE

u
GU

U

E

Figure 4.3: Fuzzy PD controller, FPD.

p. 93). The notation CE represents the term change in error, and CE = GCE ∗ ė. Notice
that Equation (4.11) deviates from the straight difference e(n) − e(n − 1) used in the early
days of fuzzy control.

The control signal U(n), at the time instant n, is a nonlinear function of error and
change in error,

U(n) = f (GE ∗ e(n), GCE ∗ ė(n)) ∗ GU (4.12)

Again the function f is the rule base mapping, only this time it is a surface depending
on two variables. It is usually nonlinear, but with a favourable choice of design, a linear
approximation is

f (GE ∗ e(n), GCE ∗ ė(n)) ≈ GE ∗ e(n) + GCE ∗ ė(n) (4.13)

Insertion into Equation (4.12) yields the control action for the linear controller,

U(n) = (GE ∗ e(n) + GCE ∗ ė(n)) ∗ GU (4.14)

= GE ∗ GU ∗ (e(n) + GCE

GE
ė(n)) (4.15)

Comparing Equations (4.10) and (4.15), the gains are related as follows:

GE ∗ GU = Kp (4.16)

GCE

GE
= Td (4.17)

The linear approximation is exact when the fuzzy control surface is a plane acting like
a summation; compare the conditions in the previous chapter. Thus the rule base (4.1),
with Pos and Neg implemented appropriately, provides a linear input–output mapping.
The conclusion universe must be defined as the sum of the premise universes. Assume,
for instance, that the premise universes are both [−100, 100] , and we choose singleton
conclusions NB = −200 and PB = 200, then the control surface will be the plane u(n) =
E(n) + CE(n). By that choice, the controller is equivalent to a crisp PD controller, and we
can exploit Equations (4.16) and (4.17).

The fuzzy PD controller may be applied when proportional control is inadequate. The
derivative term reduces overshoot, but it may be sensitive to noise as well as abrupt changes
of the reference causing derivative kick in Equation (4.11).
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4.3 Fuzzy PD+I Controller

If the closed-loop system exhibits a sustained error in steady state, integral action is nec-
essary. The integral action will increase (decrease) the control signal if there is a positive
(negative) error, even for small magnitudes of the error. Thus, a controller with integral
action will always return to the reference in steady state.

A fuzzy PID controller acts on three inputs: error, integral error, and change in error.
A rule base with three premise inputs can be a problem. With three premise inputs, and, for
example, three linguistic terms for each input, the complete rule base consists of 33 = 27
rules, making it cumbersome to maintain. Furthermore, it is difficult to settle on rules
concerning the integral action, because the initial and final values of the integral depends
on the load l. The integral action in the crisp PID controller serves its purpose, however,
and a simple design is to combine crisp integral action and a fuzzy PD rule base in the
fuzzy PD+I (FPD+I) controller (see Figure 4.4).

The integral error IE = GIE
∫
edt is proportional to the accumulation of all previous

error measurements in discrete time, with

∫
edt ≈

n∑

j=1

e(j)Ts

Rectangular integration is a simple approximation to the integral, and more accurate approx-
imations exist (e.g. Åström and Hägglund 1995, p 93). The control signal U(n) after the
gain GU, at the time instant n, is a nonlinear function of error, change in error, and integral
error,

U(n) =


f (GE ∗ e(n), GCE ∗ ė(n)) + GIE
n∑

j=1

e(j)Ts



 ∗ GU (4.18)

The function f is again the control surface of a PD rule base. The mapping is usually non-
linear, but with a favourable choice of design, a linear approximation is Equation (4.13).
Insertion into Equation (4.18) yields the control action,

U(n) ≈


GE ∗ e(n) + GCE ∗ ė(n) + GIE
n∑

j=1

e(j)Ts



 ∗ GU

= GE ∗ GU ∗


e(n) + GCE

GE
∗ ė(n) + GIE

GE

n∑

j=1

e(j)Ts



 (4.19)

In the last line we have assumed that GE is non-zero. Comparing Equations (4.3) and (4.19)
the gains are related as follows:

GE ∗ GU = Kp (4.20)

GCE

GE
= Td (4.21)

GIE

GE
= 1

Ti

(4.22)
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u U
de /dt

e dt

Figure 4.4: Fuzzy PID controller, FPD+I.

The FPD+I controller provides all the benefits of PID control, but also the disadvantages
regarding derivative kick. The integral error removes any steady state error, but can also
cause integrator windup.

4.4 Fuzzy Incremental Controller
An incremental controller adds a change in control signal �u to the current control signal,

u(n) = u(n − 1) + �u(n)Ts ⇒

�u(n) = Kp

(
e(n) − e(n − 1)

Ts

+ 1

Ti

e(n)

)

using Equation (4.3) with Td = 0. The controller output is an increment to the current
control signal.

The fuzzy incremental (FInc) controller in Figure 4.5 is of almost the same configuration
as the FPD controller except for the added integrator. The conclusion in the rule base is
now called change in output (cu), and the gain on the output is, accordingly, GCU. The
control signal U(n) at time instant n is the sum of all previous increments,

U(n) =
n∑

j=1

(cu(j) ∗ GCU ∗ Ts)

=
n∑

j=1

(f (GE ∗ e(j), GCE ∗ ė(j)) ∗ GCU ∗ Ts) (4.23)

e
GE

GCE

f

Rule base

E

CE
GCU 1/s U

CUcu

de /dt

Figure 4.5: Incremental fuzzy controller, FInc.
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Notice again that this definition deviates from the historical fuzzy controllers, where the
sampling period Ts was left out. The function f is again the control surface of a PD rule
base. The mapping is usually nonlinear, but with the usual favourable choice of design,
Equation (4.13) is a linear approximation. Insertion into Equation (4.23) yields the control
action,

U(n) ≈
n∑

j=1

(GE ∗ e(j) + GCE ∗ ė(j)) ∗ GCU ∗ Ts

= GCU ∗
n∑

j=1

[
GE ∗ e(j) + GCE ∗ e(j) − e(j − 1)

Ts

]
∗ Ts

= GCU ∗


GE ∗
n∑

j=1

e(j) ∗ Ts + GCE ∗
n∑

j=1

(e(j) − e(j − 1))





= GCE ∗ GCU ∗


 GE

GCE

n∑

j=1

(e(j) ∗ Ts) + e(n)



 (4.24)

By comparing Equations (4.3) and (4.24) it is clear that the linear controller is a crisp PI
controller (Td = 0), and the gains are related as follows:

GCE ∗ GCU = Kp

GE

GCE
= 1

Ti

Notice that the proportional gain Kp now depends on GCE. The gain 1/Ti is determined
by the ratio between the two fuzzy input gains, and is the inverse of the derivative gain Td

in FPD control; the gains GE and GCE change roles in FPD and FInc controllers.
It is an advantage that the controller output is driven directly from an integrator, because

(1) simply limiting the integrator prevents integrator windup, and (2) the integrator cancels
noise to an extent that smooths the control signal.

To summarize, Table 4.1 shows for each of the four controller types the relationships
between the PID tuning parameters and fuzzy gain factors valid for fuzzy linear controllers
acting like a summation.

Table 4.1: Relationships between linear fuzzy
and PID gains.

Controller Kp 1/Ti Td

FP GE ∗ GU
FInc GCE ∗ GCU GE/GCE
FPD GE ∗ GU GCE/GE
FPD+I GE ∗ GU GIE/GE GCE/GE
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4.5 Tuning

Several tuning aspects may be illustrated by static considerations (Åström and Hägglund
1995). For purely proportional control, consider the feedback loop in Figure 4.1, where the
controller has the proportional gain Kp and the plant has the gain K in steady state. The
plant output x is related to the reference Ref, the load l, and the measurement noise n by
the equation

x = KpK

1 + KpK
(Ref − n) + K

1 + KpK
l

If n and l are zero, then Kp should be high in order to ensure that the plant output x is
close to the reference Ref. Furthermore, if the load l is non-zero, a high value will make
the system less sensitive to changes in the load. But if the noise n is non-zero, Kp should
be moderate – otherwise the system will be too sensitive to noise. If the plant dynamics
are considered, the closed-loop system will normally be unstable if Kp is high. Obviously
the tuning of Kp is a balance between the control objectives: stability, noise sensitivity,
reference following, and load regulation.

Ziegler–Nichols tuning

A PID controller may be tuned using the Ziegler–Nichols frequency response method
(Ziegler and Nichols in Åström and Hägglund 1995).

Procedure Ziegler–Nichols frequency response method

1. Increase the proportional gain until the system oscillates; the resulting gain is
the ultimate gain Ku.

2. Read the time between peaks Tu at this setting.

3. Use Table 4.2 to achieve approximate values for the controller gains.

The sample period may be related to the derivative gain Td . Åström and Wittenmark
(1984) suggest that the sample period should be between 1/10 and 1/2 of Td . Combining
with the Ziegler–Nichols rules, Ts should be approximately equal to 1–5 % of the ultimate
period Tu. Another rule of thumb is that Ts should be chosen to be slightly smaller than
the dominating time constant in the plant, for instance, between 1/10 and 1/5 of that time
constant.

Table 4.2: The Ziegler–Nichols rules
(frequency response method).

Controller Kp Ti Td

P 0.5Ku

PI 0.45Ku Tu/1.2
PID 0.6Ku Tu/2 Tu/8
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Ziegler and Nichols also give another method called the reaction curve or step response
method (see, e.g., Åström & Hägglund 1995). That method uses the open-loop step response
to find the gains, and this is an advantage if oscillations in the closed-loop system should
be avoided for safety reasons.

Example 4.5.1 Ziegler–Nichols frequency response method
Assume the plant in Figure 4.1 has the transfer function

G(s) = 1

(s + 1)3

Insert a PID controller with differential and integral action removed by setting Td = 0 and
1/Ti = 0. Gradually increase the proportional gain until the closed-loop system reaches a
stable oscillation (Figure 4.6). This gain is Ku = 8 and the ultimate period, read from the
plot, is 4 peaks in about 15 seconds, or Tu = 15/4.

There is a unit load on the system, therefore, the controller must employ integral action.
The third row in Table 4.2 implies Kp = 0.6 ∗ Ku = 4.8, Ti = Tu/2 = 15/8, and Td =
Tu/8 = 15/32.

Figure 4.7 shows the closed-loop response after a step in the reference at time equal to
zero, and a step in the load at time equal to 20 seconds. The initial overshoot is fairly large
and the load response is slightly overdamped.

Ziegler and Nichols aimed at a response to a load change with a decay ratio of one
quarter. Decay ratio is the ratio between two consecutive peaks of the error after a step
change in reference or load; thus in a quarter-decay response the second overshoot is
25 % of the first − a compromise between a fast response and a small overshoot. The
relationships of Table 4.2 therefore do not fit all situations.

The results are poor for systems with a time lag much greater than the dominating
time constant. In general, the rules often result in rather poor damping. The table generally
works better for PID control than for PI control, and it does not give guidance for PD con-
trol. A related, more accurate, but also slightly more cumbersome, method is Kappa-Tau
tuning based on the dimensionless parameters: the relative gain Kappa (κ) and the relative
deadtime Tau (τ ) (Åström and Hägglund 1995, p. 217, Åström et al. 1992).

0 10 20 30 40
0

0.5

1

1.5

2

Time [s]

P
la

nt
 o

ut
pu

t

Figure 4.6: Ziegler–Nichols oscillation of plant 1/ (1 + s)3 . (figzn.m)
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Figure 4.7: PID control of the plant 1/(1 + s)3. A reference step at 0 seconds is followed by
a load step at 20 seconds. Ziegler-Nichols settings: Kp = 4.8, Ti = 15/8, and Td = 15/32.

(figzn.m)

Hand-tuning

Hand-tuning is based on rules of thumb used by experienced process engineers (see
Table 4.3). The tuning is a compromise between fast reaction and stability. There are
exceptions to the rules in the table; if the plant contains an integrator, an increase in Kp

often results in more stable control. The following is a hand-tuning procedure adapted from
Smith (1979).

Procedure Hand-tuning

1. Remove all integral and derivative action by setting Td = 0 and 1/Ti = 0.

2. Tune the proportional gain Kp to give the desired response, ignoring any final
value offset from the setpoint.

3. Increase the proportional gain further and adjust the derivative gain Td to
dampen the overshoot.

Table 4.3: Rules of thumb for tuning PID con-
trollers.

Action Rise time Overshoot Stability

Increase Kp Faster Increases Decreases
Increase Td Slower Decreases Increases
Increase 1/Ti Faster Increases Decreases
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4. Adjust the integral gain 1/Ti to remove any final value offset.

5. Repeat from step 3 until the proportional gain Kp is as large as possible.

The procedure adjusts the derivative gain before the integral gain, but in practice the
sequence may be reversed. A process engineer can use the procedure right away, online,
and develop a feel for how the closed-loop system behaves. A disadvantage is that it may
take a long time to develop this feel, and it is difficult to sense whether the final settings
are optimal.

Example 4.5.2 Load requires integrator
In a water rig the control objective is to adjust the water level in a tank after a step in the
reference. The rig consists of a feed pump and a tank, and the tank has an outlet.

(a) Assume first that the outlet is closed. For this problem a P controller is sufficient. As
soon as the water reaches the setpoint level, the error becomes zero, and the controller
will stop the feed pump.

(b) If there is overshoot, for example, if the feed pump reacts sluggishly, the controller
should slow down the pump well before the water reaches the setpoint. A PD controller
is then appropriate.

(c) Assume now that the outlet is open. The controller must try and reach the setpoint
and keep pumping to compensate for the water running out of the outlet. A sustained
control signal in steady state is necessary to balance the outflow. Thus, integral action
is necessary and a PI or PID controller will be appropriate.

The second step in the design procedure is to replace the PID controller with an equiv-
alent linear fuzzy controller, in accordance with the requirements for linearity from the
previous chapter, and gain factors in accordance with Table 4.1. The closed-loop system
should show exactly the same step response; the implementation is correct when the fuzzy
rule base can be taken out and replaced with a pure summation block.

Table 4.4 summarizes advantages and disadvantages of all four fuzzy controllers. The
fuzzy P controller may be used as a starting point. To improve the settling time and reduce
overshoot, fuzzy PD is the choice. If there is a steady state error, a FInc controller or a
fuzzy PD+I is the choice.

Table 4.4: Quick reference to controller characteristics.

Controller Advantage Disadvantage

FP Simple Maybe too simple
FPD Less overshoot Noise sensitive,

derivative kick
FInc Removes steady state error, Slow

smooths control signal
FPD+I All in one Windup, derivative kick
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To emphasize, the controllers with f replaced by a summation are linear approximations
to the corresponding fuzzy configurations; the relations hold for the approximations only.
Also, for fixed universe controllers, the conclusion universe must be the sum of the premise
universes. With premise universes [−100, 100], for instance, the conclusion universe of an
FPD controller should be [−200, 200].

Example 4.5.3 Gain transfer in other implementations
What if we come across controller implementations other than the above? How are the gains
related then?

(a) In a particular fuzzy PD controller ė is implemented as a straight difference �e =
e(n) − e(n − 1). Comparing Equations (4.3) and (4.14) implies (GCE/GE) ∗ �e = Td ∗
�e/Ts , and this implies in turn Td = (GCE/GE) ∗ Ts . Similarly with the FPD+I controller.
Then the last column in Table 4.1 should be multiplied by Ts . As a consequence an increase
in the sampling period will increase the differential time.

(b) In a particular FInc controller ė = �e/Ts , but U(n) = ∑
ui ∗ GCU (without the

multiplication by Ts). Then (4.24) must be modified to

U(n) = GCE

Ts

∗ GCU ∗
[

GE

GCE

n∑

i=1

e(i) ∗ Ts + e(n)

]

Comparison with (4.3) yields Kp = GCE ∗ GCU/Ts, and the integral time is unchanged.
As a consequence an increasing sampling period implies a decreasing proportional gain.

(c) A particular fuzzy PD has the premise and conclusion universes [−100, 100]. The
linear controller is equivalent to the usual linear approximation, but with half the output
gain. Thus Table 4.1 must be used with GU/2 instead of GU. The general rule is to use the
table with GU/r (or GCU/r) where r is the number of inputs when the conclusion universe
equals the premise universes.

(d) The PID controller can be given on the so-called parallel form,

u = Kpe + Ki

∫
e (t) ∗ dt + Kd

de

dt

where the control signal is a linear combination of three terms. The proportional gain Kp has
been multiplied through in the parenthesis, such that Ki = Kp ∗ 1/Ti and Kd = Kp ∗ Td.

By inspection, the gains of the linear FPD+I controller are related in the following manner:
Kp = GE ∗ GU, Ki = GIE ∗ GU, and Kd = GE ∗ GU.

4.6 Scaling

Saturation of the input signals in the premise universes upsets the linearity of the fuzzy
controller. Take the third-order plant 1/ (s + 1)3 from Figure 4.7. A suitable value of the
gain on error is GE = 100. But if the gain is increased to GE = 400, and all other gains
adjusted in accordance with Table 4.1, whereby the proportional gain, differential time, and
integral time remain the same, the controller saturates in the premise universes.

Scaling is a means to avoid saturation, but the relationships in Table 4.1 must still be
observed in order to preserve the tuning. Consider, for example, the FPD controller in
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Figure 4.8: Scaling of gains in an FPD controller by means of a scaling factor α.

Equation (4.14). We may scale the input gains by a factor α without altering the tuning,
because

(GE ∗ e(n) + GCE ∗ ė(n)) ∗ GU

= (α ∗ GE ∗ e(n) + α ∗ GCE ∗ ė(n)) ∗ GU ∗ 1

α
(4.25)

That is, we multiply by α on the premise side, and cancel out by 1/α on the conclusion
side. This is not valid for nonlinear controllers, only their linear approximations. Figure 4.8
illustrates the scaling in a block diagram. Given a linear rule base, the values of Kp and Td

are independent of α. If saturation occurs in the premise universes, α must be decreased in
magnitude until signals E and CE do not saturate during a step response. The phase plot
clearly shows the effect.

Scaling is introduced analogously in the other fuzzy PID controllers.

4.7 Simulation Study: Higher-Order Process

When the plant is of order higher than two, the PID controller starts to experience dif-
ficulties, and better responses can be achieved with more complex controllers. Consider
therefore the third-order plant

G(s) = 1

(s + 1)3

The plant is given a unit reference step at time t = 0, and a unit step on the load at time
t = 20 seconds. We shall apply the design procedure from the introductory section of this
chapter.

Step 1. Build and tune a conventional PID controller

The plant is identical to the plant in the Ziegler–Nichols example earlier. Therefore we will
use the results from the Ziegler–Nichols frequency response method, that is, Kp = 4.8,
Ti = 15/8, and Td = 15/32. An earlier figure (Figure 4.7) shows the response. There is a
load on the system, therefore integral action is required to remove steady state offset, and
the third row of the Ziegler–Nichols table (Table 4.2) was used.

The response could possibly be improved by hand-tuning, but we shall settle on the
Ziegler–Nichols settings for now.

Since we are in the linear domain, with a linear plant and a linear PID controller, we can
plot the frequency response of the closed-loop system. The frequency response characterizes
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Figure 4.9: Partial Nyquist plot. The plant G(s) = 1/(s + 1)3 is controlled by a PID con-
troller with parameters Kp = 4.8, Ti = 15/8, and Td = 15/32. The frequency ω increases
from 0.1 to 20 towards the origin of the coordinate system. (fignyqs.m)

the dynamics by the way sine waves propagate through the system. A Nyquist plot provides
a complete description of the system for the chosen input frequencies. In principle, it is
determined by sending sinusoids of varying angular frequencies ω through the system, and
then analyzing the frequency phase shift φ (ω) and amplitude gain a (ω) by comparing
the input with the response. It is equivalent to Bode plots of φ (ω) and a (ω), except the
information is merged into one plot instead of two with ω as an independent parameter: It
is a polar plot of the complex transfer function GN (iω), with a (ω) = |GN (iω)| the length
of the locus vector and φ (ω) = ∠GN (iω) the angle.

Figure 4.9 is a Nyquist plot of the transfer function GN (iω) = Gc (iω) G (iω), where
G (iω) is the plant and Gc (iω) the ideal controller transfer function,

Gc (iω) = Kp

(
1 + 1

Ti

1

iω
+ Tdiω

)

The controller parameters are the Ziegler–Nichols parameters found previously. The addi-
tional circle around the critical point (−1 + i0), marked by a ‘+’ sign, has diameter 0.5. In
order to achieve a good dampening of the closed-loop response, the Nyquist curve should
pass by the critical point in a safe distance, which is equivalent to having closed-loop poles
in a safe distance from the imaginary axis of a pole plot. A reasonable distance is in the
range 0.5 to 0.77 (corresponding to the sensitivity range 2 to 1.3, Åström and Hägglund
1995, p 125). Thus the circle marks the lower limit of the range. The plot shows that with
the Ziegler–Nichols settings the Nyquist curve just about touches the circle at a tangent.

The three parameters of the PID controller affect the Nyquist curve in specific manners,
and by varying them a designer can in principle shape the curve. Increasing the proportional
gain Kp will map a point GN (iω) to an image farther away from the origin, in the direction
of its radius vector. Increasing the integral gain 1/Ti will map the same point to an image,
found by adding a vector in the direction −iGN (iω) orthogonally towards the right seen
from the origin. Increasing the derivative gain Td will map the same point to an image,
found by adding a vector in the direction iGN (iω) orthogonally towards the left seen from
the origin.

Figure 4.10 is a tuning map showing the consequences of changing the Ziegler–Nichols
settings by ±20 %. Since the Ziegler–Nichols settings only give approximate values, the
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Figure 4.10: Tuning map for PID control of G (s) = 1/ (s + 1)3. Each plot is a Nyquist
curve of the transfer function round the closed loop. The three parameters Kp , Ti , and Td

are changed successively by +20 %, indicated by a 1, or −20 %, indicated by a 0, relative
to the Ziegler–Nichols settings. For instance, the indicator 001 (above b) shows that Kp

and Ti are decreased while Td is increased. (fignyqs.m)

tuning map provides empirical knowledge about how changes affect the behaviour of the
closed-loop system. It provides a visual overview, which can otherwise be difficult to
achieve.

The figure shows that some changes are unfortunate (subfigures a, c, e, g), while one
change is particularly favourable (subfigure d): decreasing Kp while increasing Ti and Td .
To interpret, it is advantageous to slow down the controller (Kp), reduce the integral action
(increase Ti), and increase the damping (Td ). A test will show that this indeed results in a
better response, reducing the initial overshoot to roughly one-third, and at the same time
improving the creeping appearance of the load response.

Step 2. Replace it with an equivalent linear fuzzy controller

We will apply fuzzy PD+I control, since it is the only configuration of those previously
mentioned that can be made equivalent to crisp PID control. The fuzzy PD sub-controller
must be implemented as a Sugeno type controller, in order to achieve linearity. We shall
follow the checklist given in the summary of the previous chapter.

Rule base–related choices The number of inputs and outputs are given by the PID imple-
mentation, and we shall use the same inputs. The rule base must provide for a linear
control surface. The simplest rule base with two inputs consists of the four rules



LINEAR FUZZY PID CONTROL 87

(4.1). The premise universes are arbitrarily chosen to be the generic percentages of
full scale, [−100, 100]. They are continuous, since we will apply continuous mem-
bership functions on the premise side. The input families are already hinted at in
the rule base: on the premise side we shall use membership functions Neg and Pos,
and on the conclusion side we shall use NB, Zero (control signal is zero), and PB.
In order to achieve linearity and a rule base equivalent to a pure summation, Neg
and Pos must be triangular and overlap by 50% stretching over the full length of
the universe. Furthermore, the conclusion universe must be [−200, 200], since there
are two inputs, and the membership functions must be singletons at NB = −200,
PB = 200.

Inference engine–related choices The two premise variables error and change in error
must be combined with the connective ‘and’. Furthermore ‘and’ must be implemented
as multiplication in order to achieve linearity. For activation we apply multiplication
and for accumulation we apply sum. Hedges are not relevant for this case.

Defuzzification method For defuzzification we apply centre of gravity for singletons
(COGS). Since we are implementing a Sugeno type controller, the combined acti-
vation, accumulation, and defuzzification operation simplifies to weighted average,
with the activation strengths weighting the singleton positions.

Pre- and post-processing For keeping the design general, we shall implement the
α-scaling in Equation (4.25), but keep α = 1 as long as we are in the linear domain.
Quantization is not relevant, because we are employing continuous premise mem-
bership functions and it will not be necessary to implement a table-based controller.
Regarding the choice of gain factors, we are guided by the PID settings. We choose
GE = 100 since the error universe is [−100, 100], and according to the plot in
Figure 4.7, the maximal error is 1. By Equation (4.20) GU is now fixed by the
relation

GU = Kp/GE = 4.8/100

The gain GCE is then determined by Equation (4.21),

GCE = GE ∗ Td = 100 ∗ 15/32

The last gain is, by Equation (4.22),

GIE = GE ∗ 1/Ti = 100 ∗ 8/15

The sample time Ts is chosen at 0.05 seconds, since Td is near 0.5 and one-tenth of
that should be appropriate.

The step response with the linear FPD+I (Figure 4.11, left column) is exactly identical
to that of the PID controller (Figure 4.7). The right-hand column of Figure 4.11 shows
the phase trajectory of the control signal mapped onto the control surface. It shows that
|Emax| ≤ 100 and |CEmax| ≤ 55 – thus there was no saturation in the universes.

The two final steps of the design procedure will be skipped here, because they concern
the nonlinear aspects of fuzzy control.
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Figure 4.11: Fuzzy FPD+I control of the plant 1/(s + 1)3. The left column shows the
response (a) and the control signal (b). The right column shows the control surface is
linear as well as the trajectory of the control signal (c). The bottom plot shows (d) the
input family Neg and Pos. (figfpdi4.m)

4.8 Practical Considerations*

The previous sections assume the ideal controller given by Equation (4.2), but in practice the
equation is modified. Differentiation in a digital controller, for example, can be implemented
in a number of ways to avoid problems with noise. Modifications pertaining to PID control
can also be transferred to fuzzy controllers.

Setpoint weighting

The ideal PID controller in Equation (4.3) is sensitive to abrupt changes in the reference. For
example, a unit step in the reference causes the proportional action to jump by the amount
Kp and the derivative action to jump to a large magnitude, when the sampling time is
small. Setpoint weighting modifies the error signal used in the proportional action ep and
the derivative action ed such that the effect of a sudden change in the reference signal will
be attenuated. The modified controller based on ep and ed is (Åström and Hägglund 1995),

u(n) = Kp



ep(n) + 1

Ti

n∑

j=1

e(j)Ts + Td

ed(n) − ed(n − 1)

Ts



 (4.26)

*Can be skipped in a first reading.
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The error signal in the proportional action is

ep(n) = b ∗ Ref(n) − y(n) (4.27)

and the error signal in the derivative action is

ed(n) = c ∗ Ref(n) − y(n) (4.28)

The error signal in the integral action remains unmodified. For constant Ref the closed-loop
response to load changes will be independent of the values of the parameters b and c. The
response to changes in the reference signal, however, will depend on b and c. For b = 0 the
proportional action reacts to changes in the controller output only, which generally reduces
the overshoot. For c = 0 the derivative action reacts to changes in the controlled output
only, thus completely avoiding differentiation of a discontinuous jump in the reference
signal. With b = c = 1 we achieve the original configuration.

The configuration of the equivalent linear fuzzy controller is unaffected, as long as it is
understood that e is replaced by ep from Equation (4.27) and ė by ed from Equation (4.28).

Filtered derivative

In the presence of high frequency noise, the derivative action causes unwanted spikes in
the control signal. A low-pass filter in combination with the pure derivative in the ideal
controller in Equation (4.2) attenuates the spikes. The derivative action is modified to
(Åström and Hägglund 1995),

ud = − sKpTd

1 + s
Td

N

y (4.29)

where s is the Laplace operator for differentiation, and
(−sKpTdy

)
is the ideal D-action.

It is multiplied by a first order transfer function 1/(1 + sTd/N), which is a low-pass filter
with the cut-off frequency N/Td . High frequency noise (s → ∞) is amplified at most by a
factor KpN, and in steady state (s = 0) the D-action vanishes. For N → ∞ the expression
in Equation (4.29) tends towards the ideal derivative action. Typical values in practice are
8 ≤ N ≤ 20.

Replacing s with backward differences leads to a digital implementation. Note first
that the factor KpTd in the numerator of Equation (4.29) is the gain on the derivative of
the ideal differential, which is equivalent to GCE ∗ GU in the linear FPD controller. The
remainder is

z = − s

1 + s
Td

N

y

A discrete time approximation is

z(n) + Td

N

z(n) − z(n − 1)

Ts

= −y(n) − y(n − 1)

Ts

⇔

z(n)(Ts + Td

N
) = Td

N
z(n − 1) − (y(n) − y(n − 1)) ⇔

z(n) = Td

NTs + Td

z(n − 1) − y(n) − y(n − 1)

Ts + Td

N
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Thus z(n) is the signal to feed into the FPD controller in place of ė(n), with Td replaced
by GCE/GE. It is a linear combination of the previous value z(n − 1) and the change in
controlled output y(n) − y(n − 1). Again it is seen that for N → ∞, z(n) tends towards
the unfiltered difference quotient −(y(n) − y(n − 1))/Ts arising from the combination of
Equations (4.26) and (4.28).

Anti-windup

The integrator in the I-action can sum up to a large magnitude, much larger than called
for; it winds up. Integrator windup occurs when the actuator after the controller along the
signal path has limits, such as a maximum opening of a valve. The actuator remains at
its limit corresponding to ulim, while the integrator keeps integrating causing a control
signal u(n) > ulim. When the error changes sign, the integrator starts to wind down, but the
actuator stays at its limit until u(n) passes ulim as the control signal returns to the operating
range of the actuator. Windup can cause a large overshoot, or an oscillation, where the
actuator bounces from one extreme to the other, the so-called chattering.

One remedy (Rundqwist 1991) is to apply conditional integration, where the integrator
is switched off at a prescribed condition, for example,

• to stop integrating when the control error is large, or |e| > e0;
• to stop integrating when the controller saturates, or u(n) > ulim;
• to stop integrating as before and the control error has the same sign as the control

signal, sgn(u(n)) = sgn(e(n));
• to limit the integrator I , such that |I (n)| ≤ I0; or

• to stop integrating and assign a prescribed value to the integrator when a condition
is true.

Another approach is to use feedback from the control signal and the saturation value,
such that their difference drives the controller. Finally, a last approach is to limit the
controller input such that the control signal never saturates. This will often lead to a
conservative, sluggish behaviour of the closed-loop system.

4.9 Summary

We have achieved a tuning procedure for fuzzy controllers. Referring to the FPD+I con-
troller – because it covers both proportional, integral, and derivative action – the procedure
is as follows.

Procedure Fuzzy controller design, especially steps 1 and 2

1. Design a crisp PID controller. Use a PID tuning method to find Kp, 1/Ti , and Td .

2. Replace it with a linear fuzzy. Use the FPD+I configuration, transfer Kp, 1/Ti , and Td

to GE, GCE, GIE, and GU (GCU) using Table 4.1. Run the controller, and check
for saturation in the premise universes. When it is removed, by means of α-scaling,
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check that the closed-loop response is exactly the same with the fuzzy rule base
replaced by a pure summation.

3. Make it nonlinear. See next chapter.

4. Fine-tune it. See next chapter.

The FPD+I controller has one degree of freedom, since it has one more gain factor
than the crisp PID. This is used to exploit the full range of one premise universe. If, for
example, the reference step is 1 and the universe for E is [−100, 100], then fix GE at 100
in order to exploit the full range. The free variable should be GE or GCE, whichever signal
has the largest magnitude after multiplication by its gain factor. A scaling factor α on the
gains addresses the problem elegantly.

The performance depends on the control surface. With a linear control surface the fuzzy
FPD+I controller can be made to perform exactly like a crisp PID controller.

Perhaps a nonlinear control table will perform better than a linear one, but it depends on
the plant. Since an FPD+I controller contains a crisp PID controller as a special case, the
fuzzy controller performs at least as well as the PID. Starting with a crisp PID controller
and gradually making it fuzzy is safer than starting from scratch – and linear control theory
applies. Steps 3 and 4 of the design procedure concern nonlinear control, which will be
treated in the following chapter.

4.10 Notes and References

The link between the fuzzy and the PID gains has been sought by various authors (e.g. Siler
and Ying 1989, Mizumoto 1992, Qiao and Mizumoto 1996). With the specially crafted linear
fuzzy control surface in this chapter, the relationship is particularly transparent, opening
up for a transfer of PID tuning methods.

The authoritative reference on PID control by Åström and Hägglund (1995) presents
implementation algorithms and tuning methods, and develops the so-called kappa-tau tuning
method. The methods are illustrated by simulation examples, one of them being the third-
order plant used in this chapter. Recent tuning methods include Ziegler–Nichols, kappa-tau,
pole placement, stability margins, D-partitioning, polynomial, Nyquist, genetic algorithms,
adaptive interaction, cancellation, K-B parametrization, multiple integration, and frequency
loop shaping; see the overview article by Cominos and Munro (2002). The article is part
of a special issue on PID control (Isaksson and Hägglund 2002). For shaping the frequency
response, we would ideally like the Nyquist curve to be the vertical line passing through
−0.5 on the real axis, as that would mean unity closed-loop gain at all frequencies and an
infinitely fast response (Gyöngy and Clarke 2006).

Historically, Ziegler and Nichols were the first to publish optimum settings found from
open-loop tests and closed-loop tests (1942, 1943). Cohen and Coon recognized, however,
that alternatives were necessary for certain types of plant (1953). For a historical account
of the events and the instrumentation leading up to that point, see the article by Bennett
(1993) or the summary in Åström and Hägglund (1995, p 117).
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Nonlinear Fuzzy PID Control

The designer must brace himself for the next step into nonlinear control. The analytical
methods lack generality in the nonlinear domain, and it is difficult to predict the behaviour
of a nonlinear system.

The chapter focuses on phase plane analysis, known from nonlinear differential equation
theory. The outcome is a map of a vector field and a trajectory plot, which together shed
light on the global behaviour of a closed-loop system. The plots provide valuable hints to
the design of the fuzzy controller, even for systems of higher order than two.

It is characteristic for a linear time-invariant system of the form

ẋ̇ẋx = AAAx + BBBu (5.1)

where x is the state variable vector, AAA is the system matrix, and BBB the input matrix, that
(1) the response has an analytical solution, and (2) a sinusoidal input causes a sinusoidal
output of the same frequency. Nonlinear systems do not possess similar characteristics; on
the contrary, it is characteristic that the superposition principle does not hold (superposition
is briefly: y1 + y2 = G(u1 + u2), when y = G(u) is a transfer function from input u to
output y). It is further characteristic that the output depends not only on the frequency of
the input, but also on amplitude. Therefore we cannot easily use Nyquist plots anymore,
or at least several plots must be drawn: one for each chosen amplitude.

The overall plan for the following sections is to approach the final two steps of the
design procedure: (3) insert a nonlinear rule base, and (4) fine-tune using hand-tuning.
Basic knowledge of the state-space approach is a prerequisite.

5.1 Phase Plane Analysis

A phase plot is generally a plot of a variable and its time derivative plotted against each
other. The fuzzy PD (FPD) controller operates with error and its time derivative, hence our
interest in the phase plots. In fact, the control surface is a plot of change in error against
error, and can therefore be regarded as a phase plot.

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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Phase plane analysis is a graphical method providing valuable visual overview. It has a
drawback, however: it is limited to two-dimensional plots. Systems of order higher than two
are normally excluded from phase plane analysis, but the chapter suggests an engineering
shortcut in order to get some information, even for higher-order systems.

We can apply phase plane analysis without having to solve the differential equations
analytically. Furthermore, it accommodates discontinuous (hard) nonlinearities.

Phase trajectory

Our starting point is a second-order autonomous system

ẋ̇ẋx = AAAx (5.2)

or written out,

ẋ1 = a11x1 + a12x2 (5.3)

ẋ2 = a21x1 + a22x2 (5.4)

where x1 and x2 are the state variables of the system, and AAA the system matrix. An
autonomous system is a system without inputs, and the usual input term is missing.

Geometrically, the variables x1 and x2 span a two-dimensional space, called the phase
plane. The solution in time x(t) to Equation (5.2), given an initial value x(0) of the state
vector, is a curve in the phase plane with x2 along the y-axis and x1 along the x -axis. The
curve is called a phase trajectory.

Equilibrium point

If the system settles down to an equilibrium state, as the result of some initial state, the
equilibrium is characterized by zero motion in the phase plane. Such an equilibrium point
(singular point) must satisfy the equation

0 = AAAx

If the AAA matrix is nonsingular (determinant is not zero), then the origin x = 0 is an equi-
librium point. Otherwise, there may be a collection of equilibrium points lying on a line
through the origin. Nonlinear systems can have several equilibrium points, one, or none
at all.

The ratio of Equation (5.4) to Equation (5.3) is the slope of the phase trajectory, since
we have

ẋ2

ẋ1
=

dx2
dt

dx1
dt

= dx2

dx1

The slope S at a given point (x1, x2) is therefore

S = dx2

dx1
= a21x1 + a22x2

a11x1 + a12x2
(5.5)

Conversely, given a particular slope S = S∗, and solving the equation for x2, results in an
equation for a line along which the slope of all trajectories crossing it is the same. Such a
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curve is called an isocline, and a collection of isoclines can be used to graphically construct
phase plane trajectories (see Slotine and Li 1991 for example).

Drawing isoclines is the classical route to take, but we shall deviate slightly and apply
a view from differential geometry instead. Geometrically, the vector differential Equation
(5.2) expresses the rate of change ẋ̇ẋx(t) at the time t of the state x(t) of the system. As
x(t) is the locus vector of a point in the phase plane travelling along a trajectory, ẋ̇ẋx(t) is
its velocity vector. The velocity vector is tangential to the phase trajectory. Physically, the
velocity vector indicates the speed (its length) and the direction (its angle) along which the
motion takes place.

The matrix AAA can be viewed as an operator that maps x to ẋ̇ẋx. For almost all vectors in
the plane, the operation is a composition of rotation and multiplication, such that ẋ̇ẋx is at an
angle with x and it has a different length. For an eigenvector v, however, AAAv = λv where
λ is the corresponding eigenvalue; thus the mapping is just a multiplication, the rotation is
absent.

The geometrical view allows us to visually inspect the phase plane as a vector field.

Stability

Stability requires that the angle ϕ between the locus vector x and the velocity vector ẋ̇ẋx is
larger than 90 degrees, such that the velocity has a component which points towards the
origin (with the other component being orthogonal to the locus vector). Mathematically,
this can be expressed as

xT ẋ̇ẋx
|x| |ẋ̇ẋx| = cos ϕ < 0 (5.6)

Since ẋ̇ẋx =AAAx, stability requires xT AAAxxx <0, which is equivalent to the usual criterion that
all the eigenvalues of AAA must have negative real parts.

Equations (5.3 and 5.4) enable us, for any particular instance
(
x∗

1 , x∗
2

)
of the state

vector, to find the direction of movement
(
ẋ∗

1 , ẋ∗
2

)
. Taking a number of discrete points(

x∗
1 , x∗

2

)
, distributed in the phase plane in an even manner, and plotting the velocity vector

at each point, the designer will acquire an overview of the behaviour of the system in the
region under consideration. Figure 5.1 shows six different types of behaviour around the
equilibrium point of various AAA matrices:

Node If the eigenvalues of the AAA matrix are real and negative, the equilibrium is a stable
node, because x(t) converges to 0 in an exponential decay. If both eigenvalues are
positive, the equilibrium is an unstable node, because x(t) diverges exponentially.
Since the eigenvalues are real, there are no oscillations in the motion; compare the
plots of x1 (t) in the time domain (Figure 5.1, first row).

Focus If the eigenvalues of the AAA matrix are complex conjugates, with negative real parts,
the equilibrium is a stable focus. The state vector x(t) converges to 0, but in an
oscillatory manner, whereby the trajectory in the phase plane encircles the origin one
or more times, unlike the stable node. If both eigenvalues have positive real parts,
the equilibrium is an unstable focus, because x(t) diverges in an oscillatory manner;
compare the plots of x1 (t) in the time domain (Figure 5.1, second row).



96 NONLINEAR FUZZY PID CONTROL

x1

x 2

Stable node   

x 1
Time x1

x 2

Unstable node 

x 1

Time

x1

x 2

Stable focus  

x 1

Time x1

x 2

Unstable focus

x 1

Time

x1

x 2

Center point  

x 1

Time x1

x 2

Saddle point  

x 1

Time

Figure 5.1: Equilibrium points. Read columnwise, columns 1 and 2 are stable or marginally
stable, while columns 3 and 4 are unstable. The trajectory in an (x1, x2)-plane is equivalent
to the time response on its right resulting from an individual initial state. (figequil.m)

Centre point If the eigenvalues of the AAA matrix are complex conjugates, with real parts
equal to zero, the equilibrium is a centre point (vortex), because x(t) encircles the
equilibrium point, without converging or diverging. The plot of x1 (t) in the time
domain shows a sustained oscillation, a marginally stable system (Figure 5.1, third
row, columns 1 and 2).

Saddle point If the eigenvalues of the AAA matrix are real, but one is negative and the
other is positive, the equilibrium is a saddle point. Because of the unstable positive
eigenvalue, almost all trajectories will diverge to infinity; see the plot of x1 (t) in the
time domain (Figure 5.1, third row, columns 3 and 4).

The eigenvalues completely determine the type of the equilibrium point, and the plots
provide a visual clue to the behaviour around the equilibrium point.
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Example 5.1.1 Double integrator
Consider a plant that can be modelled as a double integrator with the transfer function

y

u
= 1

s2
⇔ ÿ = u

Here u is the input, y is the output, and s is the Laplace operator for differentiation. It is
a short step to arrive at a state-space model of the system. By the choice of state variables
x1 = y, and x2 = ẏ, we rewrite into a set of equations

ẋ1 = x2 (5.7)

ẋ2 = u

Comparing with the state-space form, Equation (5.1), the matrices are,

AAA =
[

0 1
0 0

]
, b =

[
0
1

]

By setting ẋ1 = ẋ2 = 0 in Equation (5.7), and u = 0 as well, because we are considering
the autonomous system, we find that in equilibrium x2 = 0, while x1 can be anything. Thus
the equilibrium is a line, the x1-axis. Intuitively, any point on the x1-axis has zero velocity
and will stay there. Any point above or below the x1-axis has a constant velocity that will
move the point towards infinity.

The eigenvalues of the AAA matrix (λ = 0) are real, indicating an unstable node.

Even though the method is restricted to autonomous systems, it can be applied to closed-
loop systems, especially if the reference is constant. If the local behaviour of a nonlinear
system can be approximated by that of a linear system, the equilibrium types are the same.

Closed-loop system

Consider the system in Figure 5.2. Assume for now that both the plant and the controller are
linear. Furthermore assume that the plant is of second order, the reference Ref is constant,

−

u x

l n

yeRef
Controller Plant

Figure 5.2: Feedback loop with load l and noise n.
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Figure 5.3: Velocity vectors along a trajectory. The velocity vector at each point is the sum
of two vectors: the open-loop velocity plus the controller action. Compare Equation (5.10).
(figs2load.m)

the plant has only a single input u, and there is no load or noise (l = 0, n = 0). The plant
is then characterized by the state-space equations

ẋ̇ẋx = AAAx + bu (5.8)

y = CCCx + du

The controller delivers a control signal u, related to the error e by a transfer function Gc,

u = Gce (5.9)

Substituting Equation (5.9) into Equation (5.8), the closed-loop system equations appear,

ẋ̇ẋx = AAAx + bGce (5.10)

Thus the velocity vector ẋ̇ẋx is a sum of two vector components: the open-loop velocity
vector AAAx plus a contribution from the controller bGce. A plot of the two components
shows the influence of the controller at various stages of the closed-loop response and thus
provides a visual tuning aid (Figure 5.3).

Example 5.1.2 Double integrator, trying proportional control
For the double integrator in the previous example, we will investigate whether a propor-

tional controller can stabilize the system. Assume therefore a P-controller u = Kpe, where
Kp is the proportional gain and e the error,

e = Ref − x1 (5.11)

Inserting into Equation (5.8) yields the system equations

ẋ̇ẋx = AAAx + bu = AAAx + bKpe (5.12)

with the same AAA matrix and b vector as in the open-loop system. Writing the equations out,
the closed-loop system is,

ẋ1 = x2

ẋ2 = Kp(Ref − x1) = −Kpx1 + KpRef
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Figure 5.4: Stopping a car. The controller warps the vector field (a) such that the trajectory
ends in the centre. Braking starts at a distance of 10 metres (b). (figcar.m)

The closed-loop system matrix and input vector are thus

AAAcl =
[

0 1
−Kp 0

]
, bcl =

[
0

Kp

]
(5.13)

The eigenvalues of AAAcl

(
λ = √−Kp

)
are either complex conjugates on the imaginary axis

(Kp > 0), indicating a marginally stable centre point in equilibrium, or the eigenvalues are
real with one negative eigenvalue and one positive (Kp < 0), indicating an unstable saddle
point. We can conclude it is impossible to stabilize the system with proportional control.

This explains the very sensitive solution to the problem of stopping a car using just a
proportional controller (see Chapter 1).

Example 5.1.3 Stopping a car, PD control
Consider again the problem of stopping a car in front of a red stop light (see Chapter

1). We saw that a PD controller resulted in a good response; let us take a look at the motion
in the phase plane.

Figure 5.4 shows that the controller distorts the vector field, especially in the upper half
of the phase plane, while the rest of the plane remains unchanged because of the constraints
on the control signal.

The example shows first of all that the phase plane provides valuable overview. Sec-
ondly, the phase plane method could also accommodate the nonlinear constraints on the
control signal.

5.2 Fuzzy PD Control

The FPD controller lends itself to phase plane analysis. Its configuration is repeated in
Figure 5.5; it has only two inputs, which makes it suitable for two-dimensional plotting.
Furthermore, the FPD is important, because it is a component in two other controller
configurations: FPD+I and FInc.
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Figure 5.5: Fuzzy PD controller, FPD.

Table 5.1: Relationships between linear fuzzy
and PID gains.

Controller Kp 1/Ti Td

FP GE ∗ GU
FInc GCE ∗ GCU GE/GCE
FPD GE ∗ GU GCE/GE
FPD+I GE ∗ GU GIE/GE GCE/GE

Again, the starting point is the linear state-space model in Equation (5.8). Only this
time, the controller is nonlinear in general, and the control signal U is the result of a
nonlinear function F of the error and the change in error,

U = F(E, CE) ∗ GU (5.14)

Recall that there is a relationship between the PID tuning parameters and the fuzzy gains
(Table 5.1, a copy of a previous table).

Substituting Equation (5.14) into Equation (5.8) the closed-loop system equations are,

ẋ̇ẋx = AAAx + bF(E, CE) ∗ GU (5.15)

We shall investigate how the controller component bF(E, CE) ∗ GU affects the vector field
of the phase plane.

Phase plane

With two inputs and one output the rule base mapping is the relationship between error and
change in error on the premise side, and control action on the conclusion side, as portrayed
in the control surface. To be precise, the control surface concerns the signals E and CE
after the gains GE and GCE, and the rule base output u before the gain GU (Figure 5.5).
Variables E and CE span a plane, which we regard as a phase plane between e and ė having
axes scaled by GE and GCE respectively. After a dynamic response, the sequence of errors
and change in errors can be plotted, CE(t) against E(t), to form a phase trajectory. The
(E, CE)-plane is bounded by the universes, and the trajectory will always stay within the
boundary. In a table-based controller, the trajectory points to the cells in the control table
visited by the controller.
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To summarize, we have three different variants of a phase plane: (1) the original (x1, x2)-
plane between two state variables, (2) the (e, ė)-plane between error and its derivative, and
(3) the (E, CE)-plane corresponding to a control table. All three are equivalent, in the sense
that we can transform one into the other by means of a linear transformation based on the
relationships: e = Ref − x1, E = GE ∗ e, and CE = GCE ∗ ė.

Figure 5.6 shows a typical step response with overshoot. It has four consecutive stages
marked by circles in the plots:

Stage 1: E > 0, CE < 0 Initially the error is large and positive, and the plant output is
moving towards the reference. The error E = GE ∗ e = GE ∗ (Ref − y) is positive
(for GE > 0) as long as the plant output is below the reference. Furthermore, the
change in error is negative (for GCE > 0), since ė = −ẏ, as long as the plant output
is increasing. The situation corresponds to the fourth quadrant of the phase plane.
The phase trajectory spirals in a clockwise direction.

Stage 2: E < 0, CE < 0 The plant output has overshot the reference and is still moving
away from the reference. The error is negative, since the plant output is above the
reference. Furthermore, the change in error is negative, since the plant output is still
increasing. The situation corresponds to the third quadrant of the phase plane.

Stage 3: E < 0, CE > 0 The plant output is returning towards the reference. The error is
negative, since the plant output is above the reference. Furthermore, the change in
error is positive, since the plant output is now decreasing. The situation corresponds
to the second quadrant of the phase plane.

Stage 4: E > 0, CE > 0 The plant output is moving away from the reference during an
undershoot. The error is positive, and the plant output is below the reference. Fur-
thermore, the change in error is positive, and the plant output is decreasing. The
situation corresponds to the first quadrant of the phase plane.

Each stage corresponds to a quadrant in the phase plane, and the trajectory of the
response can be affected or shaped to an extent by local rules in each quadrant. Take for
example the nine rules fuzzy PD controller,

1. If error is Neg and change in error is Neg then control is NB

2. If error is Neg and change in error is Zero then control is NM

3. If error is Neg and change in error is Pos then control is Zero

4. If error is Zero and change in error is Neg then control is NM

5. If error is Zero and change in error is Zero then control is Zero (5.16)

6. If error is Zero and change in error is Pos then control is PM

7. If error is Pos and change in error is Neg then control is Zero

8. If error is Pos and change in error is Zero then control is PM

9. If error is Pos and change in error is Pos then control is PB
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Figure 5.6: Phase plane regions. The four circles indicate four typical stages of a step
response. (figregio.m)

Rule 1 concerns a negative error and a negative change in error, and this is a rule for
stage 2 above. A designer can adjust the value of negative big (NB) in order to adjust
the control (compare Figure 5.4) in the region of influence, which is roughly the third
quadrant of the phase plane. Similarly for the other rules: rule 3 concerns stage 3 and
quadrant 2; rule 7 concerns stage 1 and quadrant 4; rule 9 concerns stage 4 and quadrant 1;
and rule 5 concerns the centre. The remaining rules concern the boundary zones between
quadrants.

In Figure 5.6 the phase trajectory (upper right) is the projection of the trajectory on
the control surface (lower right) onto the phase plane. By comparison, the diagonal in the
northwest–southeast direction of the phase plane corresponds to zero control signal, and
points above the diagonal correspond to positive control signals, while those below the
diagonal correspond to negative control signals. The diagonal is thus a switching line, that
is, the control signal changes sign when the trajectory crosses the line.

If the trajectory ends in the centre (origin), the plant is on the reference and not moving;
that is an equilibrium. But a plant does not necessarily settle in the centre: a steady-state
error results in an endpoint on the CE = 0 axis, but off the centre.



NONLINEAR FUZZY PID CONTROL 103

−100
0

100

−100

0

100
−200

0

200

E
CE

u

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

Input family

M
em

be
rs

hi
p

−100
0

100

−100

0

100
−200

0

200

E
CE

u

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

Input family

M
em

be
rs

hi
p

(b)

(d)

(a)

(c)

Figure 5.7: Linear surface (a) and saturation surface (c) with the input families that gener-
ated them (b and d respectively). (figsurfs.m)

Surface shaping

If an input family consists of the terms Pos, Zero, and Neg, then the complete combination
of the two inputs consists of 3 × 3 = 9 rules. The shape of the sets affect the dynamics of
the closed-loop system.

Figures 5.7 and 5.8 are examples of four surfaces. The three nonlinear surfaces are
soft versions of the common nonlinearities saturation, deadzone, and quantizer, only in two
dimensions:

Linear A linear surface (Figure 5.7, a and b) results from the rule base (5.16) using only
rules 1, 3, 7, and 9, with triangular premise sets (Chapter 2) shown in the figure,

µNeg = µTrapezoid(x; −100, −100, −100, 100)

µPos = µTrapezoid(x; −100, 100, 100, 100)

The surface in the figure is equivalent to the summation E + CE; compare the values
on the axes. Since the surface is equivalent to a summation, the controller is similar
to a crisp PD controller.
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Saturation The saturation surface (Figure 5.7, c and d) is built using only rules 1, 3, 7,
and 9, together with the premise sets shown in the figure,

µNeg = µSTrapezoid(x; −100, −100, −100, 100)

‘µPos = µSTrapezoid(x; −100, 100, 100, 100)

They are smooth trapezoids, built from segments of cosine functions (Chapter 2).
Notice the absence of the central rule (number 5) with zero error and zero change
in error. When the error is near zero, an increase will increase the control signal; but
when the error reaches a certain level, a further increase causes little or no increase
of the control signal. The same can be said for the change in error. That surface has
a steeper slope – higher gain – near the centre of the table than the linear surface
has. It has the same values pairwise in the four corners as the linear surface.

Deadzone The deadzone surface (Figure 5.8, a and b) is built from all nine rules. The
figure shows the premise sets, defined as

µNeg = 2µSTrapezoid(x; −200, −200, −200, 0)

µZero = 2µSTrapezoid(x; −200, 0, 0, 200)

µPos = 2µSTrapezoid(x; 0, 200, 200, 200)

They are smooth trapezoids, built from segments of cosine functions with half the
frequency and twice the amplitude of the previous. That surface has a more gentle
slope – lower gain – near the centre of the table. When the error is near zero, it
affects the control signal little until the error exceeds a certain value. It also has the
same values pairwise in the four corners as the linear surface.

Quantizer The quantizer surface (Figure 5.8, c and d) is a blend of the previous two
surfaces. It is built using all nine rules, with nonlinear membership functions, defined
as,

µNeg = µSTrapezoid(x; −100, −100, −100, 0)

µZero = µSTrapezoid(x; −100, 0, 0, 100)

µPos = µSTrapezoid(x; 0, 100, 100, 100)

They are smooth trapezoids, built from segments of cosine functions. It has a flat
plateau near the centre and other plateaus in several places. Even this surface has the
same values as the other surfaces in the four corners.

The next example applies a nonlinear surface to the double integrator treated earlier.

Example 5.2.1 Double integrator, FPD control
Previous examples showed that the double integrator 1/s2 is open loop unstable, but

possible to stabilize with PD control. Let us try with fuzzy PD control.
The open-loop system is Equation (5.7) and the closed-loop system will have a state-

space model of the form of Equation (5.15). Figure 5.9 shows two simulations with crisp
and fuzzy PD controllers respectively. The sampling time is Ts = 0.05 seconds everywhere.
We followed the standard design procedure:
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Figure 5.8: Deadzone surface (a) and quantizer surface (c) with the input families that
generated them (b and d respectively). (figsurfs.m)

Step 1 Crisp PD control. The closed-loop system equations are

ẋ̇ẋx = AAAx + bu = AAAx + bKp(e + Td ė)

Hand-tuning resulted in the controller parameters

Kp = 0.5, Td = 1

The response to a unit step in the reference is shown in Figure 5.9 (row 2, column 1).
It is a loose setting, with 31% overshoot and some oscillation. The phase plane (row
1, column 1) shows that the controller has turned the vector field into a stable focus.

Step 2 Replace with a linear FPD. The error is less than or equal to one, and to accommo-
date the whole range, the gain on the error is chosen to be GE = 100. The remaining
gains are given by the gain relationships for a linear controller (Table 5.1),

GU = Kp/GE = 0.5/100 = 0.005

GCE = GE ∗ Td = 100 ∗ 1 = 100

With a linear control surface (Figure 5.7) the response was identical to that of the
crisp PD controller.
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Figure 5.9: Step response of the plant 1/s2 with FPD control. Read columnwise, column
1 is crisp PD control, column 2 is FPD control, and column 3 its control surface with
the generating membership functions underneath. The standard membership functions are
squared. (figs2.m)

Step 3 Make the FPD nonlinear. Inserting a saturation type surface diminished the over-
shoot, indicating that this was a good choice. In fact an even more pronounced shape
was produced by squaring the membership functions, corresponding to the rule base

If error is very Neg and change in error is very Neg then control is NB

If error is very Neg and change in error is very Pos then control is Zero

If error is very Pos and change in error is very Neg then control is Zero

If error is very Pos and change in error is very Pos then control is PB

The control surface is shown (row 1, column 3) together with the squared membership
functions (row 2, column 3). The response in column 2 shows an overshoot of 8% and
well dampened settling.

The fuzzy controller phase plot shows that the controller turns the velocity vectors slightly
more inwards towards the centre, and the trajectory comes closer to the centre, compared
to the linear controller.



NONLINEAR FUZZY PID CONTROL 107

CE

e
GE

f

PD rules

GCE

+
+ GU

E

GIE
IE

u U
de/dt

∫ edt

Figure 5.10: Fuzzy PID controller, FPD+I.

The example shows that the fuzzy controller can warp the vector field in a favourable
direction. Two important questions arise: (1) is that always possible? and (2) what should
a designer do to achieve that? These questions are still open.

5.3 Fuzzy PD+I Control

We would like to apply a similar analysis to FPD+I control in order to accommodate
integral action. Figure 5.10, a copy of a previous figure, shows its configuration.

But the integrator creates problems by increasing the order of the closed loop system,
which calls for three-dimensional plots, or multi-dimensional ones in the general case.
That will be cumbersome. From an engineer’s point of view, it may suffice to give up on
completeness and make do with two-dimensional plots.

Again, the starting point is the linear state-space model, Equation (5.8). The controller
is, in this case, a function of the integral error IE,

U = (F (E, CE) + IE) ∗ GU (5.17)

Insertion into Equation (5.8) the closed-loop system equations are,

ẋ̇ẋx = AAAx + b (F (E, CE) + IE) ∗ GU (5.18)

We can still in principle draw the vector field in the (e, ė)-plane, but it depends on the
integral action IE as well. Two strategies are possible, if the designer is willing to settle
for a compromise:

Strategy 1 Plot vector field. Set IE = k in Equation (5.18), where k is an arbitrary con-
stant – such as 0, an estimate of the mean value of IE(t) over time t , or an estimate
of the final value of IE(t). The plot of the two-dimensional vector field will thus be
an approximation. However, for a particular time response, the phase trajectory and
the value of IE(t) is known at all sampling instances, and the committed error can be
calculated and assessed. Geometrically, the plot is a section of a three-dimensional
vector field parallel to the (e, ė)-plane. The strategy entails a loss of accuracy, but it
does provide an overview.
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Strategy 2 Plot trajectory components. Refrain from drawing the whole vector field and
instead, for each step of the time response, draw the component vectors (compare
Figure 5.3). The plot will show the effect of the control vector locally along the
trajectory. The strategy entails a loss of overview, but it does provide the full accuracy
locally.

The next example applies both strategies to the same problem, in order to illustrate the
strengths and weaknesses of either strategy.

Example 5.3.1 Double integrator, FPD+I control
As in the previous example, we are concerned with the double integrator 1/s2, only

this time we will add a load l = 0.5 after 20 seconds, such that integral action becomes
mandatory in order to remove the steady-state error. Let us try with fuzzy PD+I control.

For convenience, use the same PD parameters as in the previous example, and add
integral action by hand-tuning. The final parameters are

Kp = 0.5, Td = 1, Ti = 10

The equivalent fuzzy gain settings are (Table 5.1),

GE = 100, GCE = 100, GIE = 10, GU = 0.005

Now explore the two strategies outlined above.

Strategy 1 Plot vector field. Figure 5.11 shows the response with the crisp PID controller
(column 1) and the fuzzy PD+I controller (column 2) in the phase plane (upper) and
the time domain (lower). The PID settings are somewhat loose, as in the previous
example, and the crisp PID response is somewhat oscillatory. The phase plot shows
two larger loops: one arising from the initial change of reference, the other arising
from the step on the load at t = 20. The fuzzy controller shows an improved response
with smaller overshoot and a smaller dip when the load kicks in. The phase plots show
the relationship between e and ė, and the integral error is ignored by choosing k = 0
in the above description of strategy 1. The plots are therefore approximations to the
actual vector field. In fact, the phase trajectories cross the direction of some arrows
instead of following their direction, especially just after the load kicks in.

Strategy 2 Plot trajectory components. Figure 5.12 shows the trajectory in the (e, ė)-plane.
At every tenth sample point it shows how the true velocity is composed of the sum of the
open-loop velocity and the controller component, which includes the integrator. All
open loop velocities are horizontal, which is characteristic of the double integrator,
because ė is constant while e diverges to ±∞ with time, as a result of integrating a zero
input signal. The controller component is always vertical, pointing either up or down,
because the input affects acceleration only; compare the vector b in Equation (5.13).
At the early stage of the response (e ≈ 1, ė ≈ 0) the controller component points
down while the open-loop component points left; it seems some improvement could
be achieved by suppressing the control signal here, because the open-loop system by
itself will move the locus point closer to the origin. At the initial stage of the load
response, a similar situation occurs, with reverse directions.
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Figure 5.11: Step and load response of the plant 1/s2 with FPD+I control. (figs2load.m)

The vector field provides a global overview within the plane, but is not accurate in the
detail. The trajectory components, however, are accurate, since the integral action is known
precisely at each point for that particular response. They are local views, and therefore do
not show the whole picture.

As an observation, the trajectory in the vector field ends in an equilibrium in the centre,
but the trajectory is not always directed inwards. A sufficient condition for stability is that
the trajectory always approaches the equilibrium point, but the observation shows it is not
a necessary condition. Both the crisp and the fuzzy responses pass through areas where
the vector field temporarily points away from the equilibrium, or in other words, the angle
between the locus vector and the velocity vector in the (e, ė)-plane is sometimes less than
90 degrees – compare Equation (5.6) – nevertheless, the system is stable.

The example shows there is a trade-off between accuracy and overview. The two types
of plot provide one or the other as a hint to the designer on how to shape the control signal.
In crisp PID control, changes to the parameters affect the response globally, whereas in
fuzzy control changes to the rules affect the response locally.

5.4 Fine-tuning

The last step in the design procedure is to fine-tune the gains, now that the fuzzy controller
is nonlinear. The final choice of gains is based on intuition and experience. However, a few
rules of thumb can be derived from the linear approximations of PID control (Table 5.1):
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Figure 5.12: Phase plane trajectory. It is the same trajectory as in Figure 5.11, upper row,
centre. (figs2load.m)

GE If the controller is to exploit the whole range of its universe, then the maximal E =
GE ∗ e should equal the limit of the universe, that is

|emax ∗ GE| = |Universemax|

With a unit reference step and the generic universe [−100, 100] % of full range,
the equation implies GE = 100. If GE is too high, all other settings being equal, the
incremental controller will become less stable, because the integral gain is too high.
In an FPD controller, GE affects the proportional gain and the derivative gain. One
would like to have GE as large as possible to dampen noise and still have a fast
response. In the FPD+I controller, one would also prefer GE as large as possible to
promote the proportional gain at the expense of the integral gain and the derivative
gain.

GCE Similarly if change in error is to exploit the whole range of its universe,

|ėmax ∗ GCE| = |Universemax|

In an FPD controller, a larger GCE means a larger derivative gain with no side
effect on the proportional gain. To dampen noise to a minimum, one will therefore
prefer GCE as small as possible. In the FInc controller an increase in GCE will
decrease the integral gain and increase the proportional gain; thus one would like
to keep GCE as large as possible to preserve stability. In the FPD+I controller, an
increase in GCE will increase the derivative gain, so one would keep it as small as
possible.

GCU/GU These affect the proportional gain, therefore one would like to have them as
large as possible without creating too much overshoot. If too small, the system will
be too slow, and if too large the system might become unstable.

A procedure for hand-tuning an FPD+I controller is the following (with trivial modi-
fications this procedure covers the FPD and FInc controllers as well).
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Procedure Hand-tuning FPD+I

1. Adjust GE (or GCE) according to step size and universe to exploit the range of
the universe of E (or CE) fully.

2. Remove integral action and derivative action by setting GIE = GCE = 0. Tune
GU to give the desired response, ignoring any final value offset.

3. Increase the proportional gain by means of GU, and adjust the derivative gain by
means of GCE to dampen the overshoot.

4. Adjust the integral gain by means of GIE to remove any final value offset.

5. Repeat the whole procedure until GU is as large as possible.

Analytically, the stability will be similar to the stability of the system’s linear approx-
imation resulting from a Taylor series expansion near an equilibrium. In simulation, it is
possible to experiment with different controller surfaces to find the stability margin and the
sensitivity to dead times. The responses are amplitude dependent, however, and thereby
dependent on the step size.

5.5 Higher-Order Systems

A question arises whether the method can be applied to systems of order higher than two,
with some modification.

Consider a plant that can be modelled as a third-order system with the transfer function

y

u
= 1

(s + 1)3 (5.19)

Here u is the input, y is the output, and s is the Laplace operator for differentiation. We
wish a state-space model of the system. Writing out Equation (5.19) we get,

(s + 1)3 y = u ⇔
(
s3 + 3s2 + 3s + 1

)
y = u ⇔

...
y + 3ÿ + 3ẏ + y = u

By the choice of state variables x1 = y, x2 = ẏ, and ignoring the usual third substitution
x3 = ÿ we rewrite into a set of equations

ẋ1 = x2

ẋ2 = ÿ

= 1

3

(−...
y − 3ẏ − y

) + 1

3
u

or

ẋ1 = x2

ẋ2 = 1

3

(−...
y − 3x2 − x1

) + 1

3
u
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We now have not only two equations in x1 and x2, but also a
...
y appearing in the second

equation. Nevertheless, the situation is similar to the previous situation arising from integral
action, therefore we can follow the same strategies.

Following strategy 1, we set
...
y = k, where k is an arbitrary constant. Now we can

plot the vector field spanned by x1 and x2 or, alternatively, e and ė since e = Ref − x1 (for
‘position’ control) and ė = −x2. The control signal u will be a function of e and ė. Possibly
also

∫
edt , and in that case we make yet another approximation according to strategy 1.

Following strategy 2, we simulate a step response and thus the value of
...
y is known

at all points of the phase plane trajectory. The control signal u is also known, and we can
plot the trajectory and velocity components in the (e, ė)-plane. That is ’only’ a section of
a multi-dimensional trajectory, but the movement in the (e, ė)-plane is still an important
facet of the closed-loop behaviour.

5.6 Practical Considerations

Up to this point, we have ignored a number of practical points for the sake of clarity. Thus
we now turn to some suggestions and heuristics to consider in a practical implementation.

Limit cycles

A limit cycle is a periodic motion in a quasi-steady state of the system. It is a unique feature
of nonlinear systems. It can occur, for example, if there is a deadzone such that the plant
drifts away from the equilibrium until a certain point, where the controller takes action to
move it back towards the equilibrium.

In the phase plane a limit cycle is defined as a closed and isolated curve. The trajectory
must be both closed, indicating its periodic nature, and isolated indicating that nearby
trajectories converge towards it or diverge from it.

Limit cycles can appear in fuzzy control systems. Take for example the double integrator
controlled by an FPD controller in Figure 5.13. The control surface, to emphasize the
phenomenon, has a flat plateau near the centre. This causes a standing oscillation in quasi-
steady state, and it shows in the phase plane as a closed curve. The figure also shows the
equivalent crisp PID control. By comparison, the fuzzy controller has warped the vector field
near the centre such that the arrows run around the centre, rather than towards the centre.

Saturation in the universes

Saturation in the premise universes affects the dynamic response, and if it is unintended, it
can be removed. For the sake of illustration Figure 5.14 shows what happens in the case
of the double integrator 1/s2; with the scaling factor α = 2 the error E saturates. The
corresponding PID gains are the same as in Figure 5.11.

The error signal saturates early in the transient response as the control surface plot
shows. The result is larger overshoot, slower response, and a sluggish load response.

Quantization

When the premise universes in a controller are discrete, it is possible to calculate all pos-
sible combinations of E(n) with CE(n) before putting the controller into operation; that is
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Figure 5.13: Limit cycle. The controller can cause a standing oscillation. (figs2limit.m)
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Figure 5.14: Saturation. FPD+I control of 1/s2, with α = 2. (figs2load.m)
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the principle underlying the table-based controller. The quantization in the table affects the
performance.

With a quantum size of 10 in the premise universes the resolution is 5 % of full range.
The result is a limit cycle, because the controller allows the plant to drift within a cell in the
lookup table, until it shifts to another cell with a different control action. This is especially
noticeable in steady state. The amplitude of the limit cycle is affected by the input gains.

There are three ways to reduce the limit cycle: (1) to increase the input gains, (2) to
make the resolution finer, and (3) to use interpolation. The first option makes the controller
more sensitive to small deviations from the set point, and may also cause saturation that
changes the dynamics. A variant of the second option is to use a new table with a finer res-
olution when the plant approaches the set point. The third option removes the quantization
effect altogether.

Noise

Measurement noise causes an oscillatory behaviour. If the noise frequency is high it will
drive the phase plot to the edges of the change in error universe; beyond, the input uni-
verse will limit spikes. If the noise causes instability or disturbs the control, a filter may
be necessary.

Another option is to use the fuzzy incremental controller, FInc. The integrator in the
final block of the block diagram makes the control signal more smooth.

5.7 Summary

We set out to find a tuning procedure for fuzzy controllers, and the procedure we arrived
at is given here. It refers to an FPD+I controller, because it is the most general controller,
but it covers the other controllers as well with slight modifications.

Procedure Fuzzy controller design

1. Design a crisp PID controller. Use a PID tuning method to find Kp, 1/Ti , and Td .

2. Replace it with a linear fuzzy controller. Use the FPD+I configuration, transfer Kp,
1/Ti , and Td to GE, GCE, GIE, and GU (GCU) using Table 5.1. Run the controller,
and check for saturation in the premise universes. When it is removed, by means of
α–scaling, check that the closed-loop response is exactly the same with the fuzzy
rule base replaced by a pure summation.

3. Make it nonlinear. Follow strategy 1 to get an overview of the vector field in the phase
plane. Adjust the rules to change the vector field locally. Then follow strategy 2 for
finer adjustments to the rule base.

4. Fine-tune it. Use hand-tuning: use GE to improve the rise time, use GCE to dampen
overshoot, and use GIE to remove any steady-state error.

The accuracy of the vector field in step 3 decreases with increasing order of the plant
to be controlled; it is an approximation for coping with plants of order higher than two.

Another strategy would be to apply adaptation, see the following chapter, in the hopes
that it will be faster and easier to tune the closed-loop system.
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5.8 Notes and References

Aracil, Garcı́a-Cerezo, and Ollero introduced in 1988 the idea of studying the vector field,
with the plant and controller represented by vectors (Aracil et al. in Driankov et al. 1996).
Being geometrical, the approach lends itself to graphical illustration. Furthermore, the
robustness can be assessed by means of indices of stability (Aracil, Ollero and Garcia-
Cerezo in Driankov et al. 1996).

The book by Slotine and Li (1991) contains an easy introduction to phase plane analysis.
Atherton (1975) gives the topic a deeper treatment with many interesting interpretations.
The traditional focus is on isoclines in order to draw the phase trajectories, while today
this is easily done by computer.

An early attempt to apply the phase plane to estimate stability is based on the linguistic
phase plane (Braae and Rutherford 1979a, 1979b). The phase plane has been applied in
attempts to overcome time delays by shifting the phase plane (Li and Gatland 1995) or
rotating it (Tanaka et al. 1991).



6

The Self-Organizing Controller

Mamdani and his PhD students developed the self-organizing controller (SOC) as an exten-
sion to the original fuzzy controller. They called it self-organizing, because it was able to
adjust the control table of a fuzzy controller without human intervention. It was developed
specifically to cope with time delays in a plant.

At that time, the distinction between the terms self-organizing and adaptive was unclear.
Today, self-organization refers to a changing structure, such as the connections in a network.
In daily conversation to adapt means to modify according to changing circumstances, for
example, ’they adapted themselves to the warmer climate’. Today, the SOC is regarded as
an adaptive controller.

An example of an adaptive controller is a ship’s roll damper that adapts to changing sea
waves. An adaptive controller is intuitively a controller that can modify its behaviour if the
plant varies nonlinearly, or if the disturbances vary nonlinearly, or if the same controller is
to be used under different conditions. Lacking a formal definition, a pragmatic definition
is as follows:

Definition Adaptive controller. This is a controller with adjustable parameters and a mech-
anism for adjusting the parameters (Åström and Wittenmark 1995).

An adaptive controller has a distinct architecture consisting of two loops: (1) an inner
control loop, which is the basic feedback loop; and (2) an outer loop, which adjusts the
parameters of the controller (Figure 6.1).

6.1 Model Reference Adaptive Systems

In a model reference adaptive system (MRAS), a reference model specifies the desired output
of the inner loop. There are some general assumptions concerning the blocks in Figure 6.1:

Plant We assume that we know the structure of the plant, although the parameters are
unknown. For linear plants, this means knowing the number of zeros and the number
of poles, but not the exact locations. For nonlinear plants, this means knowing the
structure of the equations, but some parameters are unknown.

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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Model

Controller Plant

Adjustment
mechanism

Ref
yu

ym

Parameters

Figure 6.1: Model reference adaptive system, MRAS. The outer loop (dashed line) adjusts
the controller parameters such that the error ε = y − ym becomes close to zero.

Model The reference model provides a performance specification. The choice of the ref-
erence model is part of the design. It should reflect the desired performance, such
as rise time, settling time, and overshoot. This ideal behaviour should be achiev-
able, which means there are some constraints on the structure of the reference model
(order, type, relative degree) given the assumed structure of the plant. The model
returns the desired response ym to a reference signal Ref.

Controller The controller should have perfect model-following capacity, that is, the closed-
loop transfer function of the inner loop should be identical to the model, when the
plant is known. This imposes some constraints on the structure of the controller. When
the plant parameters are unknown, the controller parameters will achieve perfect
model-following asymptotically.

Adjustment mechanism The adjustment mechanism adjusts the parameters of the con-
troller. The model error ε, which is the deviation of the plant response from the
desired response, governs the adjustment of the parameters. A strategy, the adap-
tation law, adjusts the parameters such that the error ε – or a function of ε – is
minimized.

It is a challenge to design the adjustment mechanism such that the inner-loop system
remains stable. If the performance criterion can be optimized analytically, it may also be
possible to analytically guarantee stability. Noise may cause problems, however, for the
adaptation mechanism.

First-order systems

We shall use an example (Åström and Wittenmark 1995) with a first-order plant to illustrate
how an adaptive control system can be designed, and to introduce the concepts in model
reference adaptive control. The first-order system is chosen not only owing to its simplicity
but also because we shall use the results later in connection with the fuzzy SOC.
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The room temperature, the level of liquid in a tank being emptied, or the discharge
of an electronic flash, are examples of systems that may be approximated by a first-order
differential equation

ẏ(t) = −ay(t) + bu(t)

where u(t) is the control signal, y(t) is the measured output, and a and b are constant plant
parameters that are unknown. The negative sign of a emphasizes that the plant is stable
when a is positive.

Let a first-order reference model specify the desired performance of the inner-loop
system,

ẏm(t) = −amym(t) + bmRef(t)

where am and bm are constant parameters and Ref(t) is a bounded reference signal. The
parameter am must be positive in order to ensure that the model is stable, and bm is chosen
positive without loss of generality. Using Laplace notation, where s is the Laplace variable
and ignoring initial conditions, the model is represented by

sym(s) = −amym(s) + bmRef(s) ⇔
(s + am)ym(s) = bmRef(s) ⇔

ym(s) = bm

(s + am)
Ref(s)

In other words, the model has the transfer function

Gm(s) = ym(s)

Ref(s)
= bm

(s + am)
(6.1)

In order to simplify the notation, we shall omit the argument (s) in the Laplace domain
and (t) in the time domain, except when we wish to distinguish parameters from signals.

The objective is to form a control law and an adaptation law such that the model error
ε = y − ym converges to zero.

The MIT rule

One strategy is to define a positive objective function to be minimized according to the
MIT rule (invented at the Massachusetts Institute of Technology, MIT). Define an objective
function

J (θ) = 1

2
ε2

that depends on the adjustable parameter θ . This objective function is always non-negative,
and minimizing J (θ) will also minimize ε. The MIT rule suggests to change the parameter
θ in the direction of the negative gradient of J , that is,

dθ

dt
= −γ

∂J

∂θ
= −γ ε

∂ε

∂θ

The adaptation gain γ is a parameter that the designer chooses; it determines the step
length during the iterative search for the minimum. The sensitivity derivative ∂ε/∂θ is the
sensitivity of the error to changes in the parameter θ ; if the sensitivity is large, then the
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parameter change will be large – all other parameters being equal. The parameter change
also depends directly on the magnitude of the error ε. Assuming that the parameter θ

changes much slower than the other dynamics, derivatives can be calculated assuming θ

as a constant. For example d(θu)/dt = (dθ/dt)u + θ(du/dt) using the product rule for
differentiation, but if θ is assumed as a constant, an approximation is θ(du/dt). In general,
approximation is necessary to evaluate the sensitivity derivative.

The objective function is arbitrary. For example, the alternative function J (θ) = |ε|
results in the parameter rate of change dθ/dt = −γ (∂ε/∂θ)sign(ε). An even simpler adap-
tation law is dθ/dt = −γ sign(∂ε/∂θ)sign(ε) which avoids the evaluation of the sensitivity
derivative.

Choice of control law

To continue the design, choose the control law

u(t) = θ1Ref(t) − θ2y(t) (6.2)

This choice of structure allows for perfect model-following. The closed-loop dynamics are

ẏ(t) = −ay(t) + bu(t)

= −ay(t) + b(θ1Ref(t) − θ2y(t))

= (−a − bθ2)y(t) + bθ1Ref(t) (6.3)

Indeed, if the plant parameters were known, the parameter values

θ1 = bm

b

θ2 = am − a

b

would make the dynamics of the inner loop and the model identical, and provide a zero
model-following error. Since a and b are unknown, the controller must achieve this objec-
tive adaptively.

Choice of adaptation law

To apply the MIT rule, introduce the model error

ε = y − ym

The sensitivity derivative is
∂ε

∂θ
= ∂(y − ym)

∂θ
= ∂y

∂θ

since the model output ym does not depend on the controller parameter θ . It follows from
Equation (6.3) that the closed-loop plant output y is determined by

y(s) = bθ1

s + a + bθ2
Ref(s) (6.4)
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Now differentiate with respect to the controller parameters:

∂y

∂θ1
= b

s + a + bθ2
Ref(s)

∂y

∂θ2
= − b2θ1

(s + a + bθ2)
2 Ref(s) = − b

s + a + bθ2
y(s)

The switch from signal Ref(s) to signal y(s) in the last equation used Equation (6.4). But
the equations still contain the plant parameters a and b, which are unknown; we would like
to dispose of these parameters. An approximation is therefore required. We observe that
the denominator s + a + bθ2 is the closed-loop denominator, which will be the same as the
model denominator under perfect model-following. Therefore, we apply the approximation

s + a + bθ2 ≈ s + am

The approximation will be reasonable when the parameters are close to their correct values.
We thus achieve the following adaptation laws for adjusting the parameters:

dθ1

dt
= −γ ε

∂ε

∂θ1
= −γ ε

[
b

s + a + bθ2
Ref(s)

]
≈ −γ ε

[
b

s + am

Ref(s)

]

dθ2

dt
= −γ ε

∂ε

∂θ2
= −γ ε

[
− b

s + a + bθ2
y(s)

]
≈ γ ε

[
b

s + am

y(s)

]

The final step is to dispose of the unknown parameter b. Since it is constant, it can be
absorbed in the adaptation gain, but we have to know the sign of b in order to use the
correct sign for the adaptation gain. This is a mild condition in practice, since it can be
determined experimentally: if a positive step on the reference increases y(t), then the sign
is positive, and if it decreases, the sign is negative. By the substitution γ b = γ ′sign(b)am,
we achieve the adaptation laws

dθ1

dt
≈ −γ ′sign(b)ε

[
am

s + am

Ref(s)

]

dθ2

dt
≈ γ ′sign(b)ε

[
am

s + am

y(s)

]

The expressions in square brackets are filtered versions of the signals Ref(s) and y(s), such
that the steady-state gain of the filter is 1. Thus the change in θ1 depends on Ref, which is
the signal that θ1 multiplies, and the change in θ2 depends on y, which is the signal that
θ2 multiplies; this is a consequence of the sensitivity derivative.

Convergence

The behaviour of the system is now illustrated in simulation. The parameters are chosen to
be a = 1, b = 0.5, am = bm = 2, γ = 1. The input signal is a square wave with amplitude
1, and Figure 6.2 shows the response. The control is quite good as early as the second or
third step in the reference. The plant output (row 1 in the figure, solid line) follows the
model (dashed) with increasing accuracy. The control signal (row 2) becomes more and
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Figure 6.2: First-order MRAS with the parameters am = bm = 2, a = 1, b = 0.5, γ = 1.

The system is stable, and the plant output and the system output converges towards the
model (top, dashed). (figadap1.m)

more articulated as the parameters θ1 and θ2 increase (rows 3 and 4). They are far from the
correct values θ1 = 4 and θ2 = 2, but they will converge given a longer simulation period.

The system is stable and it converges towards perfect model-following, which can be
shown by means of Lyapunov theory (see, for example, Åström and Wittenmark 1995, or
Slotine and Li 1991).

In general, the model error can converge even though the parameters do not converge
to their correct values; the controller may work for a subset of frequencies if only the ratio
of θ1 to θ2 is correct. The parameters change more when the control signal switches, which
illustrates the requirement for an input signal sufficiently rich in frequencies, so-called per-
sistently exciting. It is particularly apparent in the fuzzy SOC, which makes local changes
in the state space; the system must, in principle, visit the whole state space in order to
complete the adaptation.

6.2 The Original SOC

The SOC has a hierarchical structure in which the inner loop is a table-based controller and
the outer loop is the adjustment mechanism (Figure 6.3). The idea behind the adaptation
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de/dt
GCE

GE
e E

GCUF

Array1

P

Array2

M

Modifier

CE

cu
1/s

Integrator

CU U

Figure 6.3: Self-organizing controller, SOC. The outer loop adjusts the controller lookup
table FFF according to the performance measure in PPP .

is to let the adjustment mechanism update the values in the control table FFF on the basis of
the current performance of the controller. If the performance is undesirable, the cell in FFF

that is believed to be responsible receives a penalty, such that next time that cell is visited,
the performance specification will be closer to or even equal to zero. Explanations based
on the MRAS are as follows:

Plant The developers of SOC made no assumptions about the structure of the plant, but
they required that the step response be monotonous, in other words, a minimum-phase
system. The plant can be nonlinear, and may contain a large deadtime. The dominant
time constant and any deadtime must be known approximately, for example, as a
result of a step response experiment.

Model A performance specification p governs the magnitude of each change to FFF . The
performance specification depends on the current values of error and the change in
error. The performance specifications are preset numbers organized in a performance
table PPP the size of FFF . Table PPP expresses what is desirable, or undesirable rather,
in a transient response. Table PPP can be built using linguistic rules, but is often built
by hand; see the two examples in Figures 6.4 and 6.5. The same performance table
PPP may be used with a different plant, without prior knowledge of the plant, since it
just expresses the desired transient response.

Controller The inner loop is an incremental, digital controller. The change in output CUn

at the current time n is added to the control signal Un−1 from the previous time
instant, modelled as a summation in Figure 6.3. The two inputs to the controller are
the error e and its derivative ė. The signals are multiplied by tuning gains, GE and
GCE respectively, before entering the rule base block FFF . In the original SOC, FFF is a
lookup table, possibly generated from a linguistic rule base. The table lookup value,
called change in output, cu, is multiplied by the output gain GCU and digitally
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integrated to become the control signal U . The integrator block can be omitted,
however; then the table value is usually called u (not cu), multiplied by a gain GU
(not GCU), and used directly as the control signal U (not CU).

Adjustment mechanism The outer loop monitors error E and change in error CE, and
it modifies table FFF through a modifier algorithm M. The controller can start from
scratch with an FFF -table of zeros; but it will converge faster towards a steady table,
if FFF is primed with sensible numbers to begin with.

The SOC was developed in the 1970s on the basis of sound engineering intuition in
an attempt at simplicity. Compared to an MRAS, it lacks the principle of minimizing an
objective function, and analytical treatment is difficult. On the other hand, the assumptions
are milder.

Adaptation law

The SOC adapts the system in accordance with the desired response. At the sampling
instant n,

1. it records the deviation from the desired state and

2. it corrects table FFF accordingly.

The performance table PPP evaluates the current state and returns a performance specifi-
cation PPP (in, jn). Index in corresponds to En, such that En = Ue(in), where Ue is the input
universe. Index jn corresponds to CEn, such that CEn = Uce(jn), where Uce is the other
input universe.

Figures 6.4 and 6.5 are examples of early performance tables. Intuitively, a zero per-
formance specification PPP (in, jn) = 0 implies that the state (En, CEn) is satisfactory. If the
performance specification is non-zero that state is unsatisfactory, to a degree indicated by
the magnitude of the number pn. When pn is non-zero, the modifier M assumes the con-
trol signal must be adjusted by the amount pn. The current control signal cannot be held
responsible, however, because it takes some time before a control action shows up in the
plant output.

The simple strategy is to go back a number of samplings d in time to correct an earlier
control signal. The modifier must therefore know the time lag in the plant. The integer d

is comparable to the plant time lag; here d is called the delay-in-penalty (in the literature
it is called delay-in-reward, but that seems slightly misleading).

It is required that an increase in plant output calls for an adjustment of the control
signal always in the same direction, whether it be an increase or a decrease. The modifier
thus assumes that the plant output depends monotonously on the input.

The precise adjustment mechanism is simply

un−d = un−d + pn

In terms of the tables FFF and PPP , the adjustment rule is

FFF (i, j)n−d = FFF (i, j)n−d + PPP (i, j)n
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CE

E −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6 −6 −6 −6 −6 −6 −6 −6 0 0 0 0 0 0
−5 −6 −6 −6 −6 −6 −6 −6 −3 −2 −2 0 0 0
−4 −6 −6 −6 −6 −6 −6 −6 −5 −4 −2 0 0 0
−3 −6 −5 −5 −4 −4 −4 −4 −3 −2 0 0 0 0
−2 −6 −5 −4 −3 −2 −2 −2 0 0 0 0 0 0
−1 −5 −4 −3 −2 −1 −1 −1 0 0 0 0 0 0

0 −4 −3 −2 −1 0 0 0 0 0 1 2 3 4
1 0 0 0 0 0 0 1 1 1 2 3 4 5
2 0 0 0 0 0 0 2 2 2 3 4 5 6
3 0 0 0 0 2 3 4 4 4 4 5 5 6
4 0 0 0 2 4 5 6 6 6 6 6 6 6
5 0 0 0 2 2 3 6 6 6 6 6 6 6
6 0 0 0 0 0 0 6 6 6 6 6 6 6

Figure 6.4: Performance table adapted from Procyk and Mamdani (1979). Note the uni-
verses.

CE

E −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6 −6 −6 −6 −6 −6 −6 −6 −5 −4 −3 −2 −1 0
−5 −6 −6 −6 −6 −5 −4 −4 −4 −3 −2 −1 0 0
−4 −6 −6 −6 −5 −4 −3 −3 −3 −2 −1 0 0 1
−3 −6 −6 −5 −4 −3 −2 −2 −2 −1 0 0 1 2
−2 −6 −5 −4 −3 −2 −1 −1 −1 0 0 1 2 3
−1 −5 −4 −3 −2 −1 −1 0 0 0 1 2 3 4

0 −5 −4 −3 −2 −1 0 0 0 1 2 3 4 5
1 −3 −2 −1 0 0 0 0 1 1 2 3 4 5
2 −2 −1 0 0 0 1 1 1 2 3 4 5 6
3 −1 0 0 0 1 2 2 2 3 4 5 6 6
4 0 0 0 1 2 3 3 3 4 5 6 6 6
5 0 0 1 2 3 4 4 4 5 6 6 6 6
6 0 1 2 3 4 5 6 6 6 6 6 6 6

Figure 6.5: Performance table adapted from Yamazaki (1982).

Notice the subscripts: The time subscript n denotes the current sampling instant, and sub-
script n − d denotes the sampling instant d samples earlier.
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Table 6.1: Performance data for Example 6.2.1.

Time instance

Variable t = 1 t = 2 t = 3 t = 4 t = 5

E 6 3 1 0 −1
CE −3 −2 −1 −1
u 0 −1 −1 −2
p 0 0 0 −1

Example 6.2.1 Adjustment mechanism
Assume d = 2 and variables as in Table 6.1 after a step in the setpoint. From t = 1 to

t = 4, the plant moves up towards the setpoint. Apparently it follows the desired trajectory,
because the performance specification p is 0. At t = 5, error changes sign indicating an
overshoot, and the performance table reacts by dictating p5 = −1. Since d is 2, the entry
to be adjusted in FFF will be at the position corresponding to t = n − d = 5 − 2 = 3. At that
sampling instant, the state was (E3, CE3) = (1, −2) and the element FFF(i, j)3 was u3 = −1.
The adjusted entry is u3 = u3 + p5 = −1 − 1 = −2, which is to be inserted into FFF(i, j)3.

6.3 A Linear Performance Measure
The original performance tables in Figures 6.4 and 6.5 were built by hand, by trial and
error. Presumably, if the numbers in the table PPP are small in magnitude, many updates
are required before FFF converges to a steady table. On the other hand, if the numbers in PPP

are large in magnitude, the convergence should be faster, but it may also be unstable. The
following analysis leads to a simplification of the adaptation mechanism.

Procyk and Mamdani (Figure 6.4) preferred to keep the zeros in a z-shaped region,
while Yamazaki (Figure 6.5) kept the zeros in a more or less diagonal band. As the zeros
indicate no penalty, those states are desired. Assuming that the system stays within a zero
band along the diagonal, what does it imply?

Noticing the numbers on the axes, a zero diagonal is equivalent to keeping the sum of
the rule base inputs at zero in that region. It is a discrete version of the continuous relation,

GE ∗ e + GCE ∗ ė = 0 (6.5)

The right-hand side corresponds to the entries ’zero’ in the table, the term GE ∗ e is the
rule base input E (error), and GCE ∗ ė is the rule base input CE (change in error). This
is an ordinary differential equation that determines the ratio between the variable e and its
own time derivative. Its solution is

e(t) = e(0) exp(− t

GCE/GE
)

That is a first-order exponential decay with time constant GCE/GE; the error e will
gradually decrease by a fixed ratio determined by the time constant, and after t = GCE/GE
seconds it decreases to exp−1 or 37 % of the initial value e(0). Note that the equation
concerns the error e = Ref − y, such that the plant output y after a step input will reach
63 % of its final value in t = GCE/GE seconds.
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To interpret, the modifier M tries to adapt the system to a first-order behaviour of the
error.

The z-shaped table (Figure 6.4) is more generous, because it allows a zero slope to
begin with, for instance PPP (100, 0) = 0, and some overshoot near the final value, around
the centre of the table. This behaviour is similar to a second-order transient response.

Apparently, a simpler way to build a performance table is to use Equation (6.5) replacing
the zero on the right-hand side by p. The time constant of the desired response would thus
be GCE/GE, but this is an impractical constraint, because we would like to tune GCE and
GE independently, without affecting the desired time constant directly.

Instead we introduce the desired time constant τ . A simple approximation to the table
PPP is the performance specification

p(n) = γ
(
e(n) + τ ∗ ė(n)

) ∗ Ts (6.6)

The adaptation gain γ affects the convergence rate. The index n is the time instant in
discrete time, and Ts is the sample period. In fact, Equation (6.6) is an incremental update
− because the output is a change to an existing value − and therefore the multiplication
by the sample period Ts . The longer the sample period, the fewer the updates within a
given time span and the larger the penalty per update in order to keep the convergence rate
independent of the choice of sample period.

6.4 Example with a Long Deadtime

Consider the plant

y(s) = exp−9s 1

s(s + 1)2
u(s)

It is difficult to control, because the deadtime of 9 seconds is large (approximately 1/3)
compared to the apparent time constant of the plant, and the plant contains an integrator,
which has a destabilizing effect. The strategy is to do the following:

1. tune a fuzzy controller with a linear control surface;

2. start adaptation without changing the tuning; and

3. measure the performance of the resulting response.

At time t = 0, the reference changes abruptly from 0 to 1 and after 500 seconds, a load
of 0.05 units is forced on the system. We are using the sampling time Ts = 1 seconds.

Tuning

Since the test system includes a load, it will be necessary to maintain a non-zero control
signal in the steady state while the load is on; therefore, the controller must contain integral
action. The choice is between a fuzzy PD+I controller and a fuzzy incremental controller,
FInc; the latter is chosen, because it has one gain less to tune, and derivative action is
of little help when there is a large deadtime. The control table is a 21 × 21 lookup table,
which is an arbitrary choice of resolution. The initial table is linear and the lookup table
is with interpolation.
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A loose hand-tuning of an incremental PD controller, equivalent to a PI controller,
resulted in the gains

Kp = 2 ∗ 10−3

Td = 20

The gain Kp is the proportional gain and Td is the differential gain, but since the controller
output is integrated, Td is in effect the gain on the error term and Kp is the gain on the
integral term, corresponding to the integral gain 1/Ti . The equivalent fuzzy gains are

GE = 100

GCE = GE ∗ Td = 2000

GCU = Kp

GE
= 2 ∗ 10−5

Figure 6.6 shows the response. The FInc response is the same as the incremental PD
controller response, which is omitted to save space. During the initial seconds of the
response, the deadtime appears as a horizontal section. When the load comes on at t = 500,
there is a large dip in the response followed by some oscillation. It is possible to tune the
system better, and achieve less oscillation and less overshoot, but it is fairly difficult to
achieve damping of both the reference step response and the load response at the same time.

Adaptation

Three parameters control the adaptation: the desired time constant τ in seconds, the delay-
in-penalty Tdip in seconds, and the adaptation gain γ . The dashed line in Figure 6.6 shows a
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Figure 6.6: Incremental PD control of plant e−9s/s (s + 1)2 . The plant output y, desired
response ym (top), and the control signal u (bottom) before sef-organization. (figsocdelay.m)
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Figure 6.7: SOC performance. Step response after first run of self-organization (solid) in
comparison with the performance measure (dashed). (figsocdelay.m)

response corresponding to a desired time constant of τ = 60 s. This choice is arbitrary, but
it appears to be achievable. If the desired time constant is too fast, the response will begin
to oscillate during adaptation. The desired response is slower than the current response, but
without the overshoot and oscillations.

A plot (Figure 6.7) of the performance specification, Equation (6.6), with an arbitrary
adaptation gain to be determined in a moment, shows the phase advance of the performance
specification p relative to the plant output y. The figure shows the response of the plant,
like the previous figure, but this time with the performance specification as a dashed line.
A closer study shows that the performance specification peaks about 14–17 s earlier than
the plant output, due to the differential term in Equation (6.6).

By inspection it is seen that the time constant of the closed-loop system is about 27 s.
This is the time it takes to reach 63 % of the steady-state value, after the deadtime of 9 s,
during the initial seconds of the response. We may thus reason that it takes approximately
9 + 27 = 36 s for a control signal to show on the output of the plant. We can now make
a guess at the delay-in-penalty Tdip, but we observed that the performance specification is
ahead of the plant output; thus Tdip may be less than 36 s. Indeed, Tdip = 20 s is chosen;
the difference is 16 s, which is within the interval 14–17 s. With a sampling period of 1
s, the delay-in-penalty is d = Tdip/Ts = 20/1 = 20 samples.

The adaptation gain is, by trial and error, set to γ = 1.5. The strategy is to choose it to
be as high as possible, but still keep the response steady. With these choices, the adaptation
can be switched on.

Performance

The SOC is able to dampen the oscillations after a few runs, and the performance improves
after each run. Figure 6.8 shows the step response after 29 runs. The oscillations have
disappeared and the load dip at t = 500 is smaller. The system is clearly nonlinear. The
plant more or less follows the desired response, but owing to the deadtime and the higher
order of the plant, it is unable to follow the desired response perfectly.

The modified control surface contains several jagged peaks (see Figure 6.9). During
each run the controller visited a number of cells in the lookup table, sometimes the same
cell several times; the accumulated changes result in the sharp peaks. One might expect
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Figure 6.8: After 29 runs. The plant output y is close to the desired output ym (a). The
control signal u (b indicates less control effort than during the first run. (figsocdelay.m)

−100

0

100

−100

0

100
−200

−100

0

100

200

300

E
CE

u

0 10 20 30
200

300

400

500

600

700

800

IS
P

Runs
(b)(a)

Figure 6.9: Convergence. After 29 runs the control surface (a) has an irregular shape. The
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jumps in the control signal as a consequence, but in fact it is rather smooth thanks to the
integrator in the output end of the incremental controller.

When the response is close to the desired response there will be only small corrections
to the control table. The SOC seeks to minimize the performance specification pn at each
time instant n, and the discretized Integral Squared Performance (ISP) index,

ISP =
∑

n

p2
n ∗ Ts
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the activity during each run. The smaller the ISP the better. The plot of ISP for each run
(Figure 6.9b) levels out, indicating that the adaptation is stable.

Experiments on laboratory models have shown that various plants can be stabilized,
but the rule modifier is sensitive to noise on the plant output − it cannot tell if a poor
performance specification is due to noise or an undesired state.

6.5 Tuning and Time Lock

In practice, additional questions arise, for example, how to tune the gains, how to choose
the design parameters, how to stop the adaptation if it behaves unintentionally, and how to
cope with noise. Such problems may seem inferior, but they do deserve attention, since they
may finally stand in the way for a successful implementation. The SOC works ’surprisingly
well’ to quote Mamdani, but cases exist where the SOC becomes impractical.

Tuning of the SOC parameters

We associate the term tuning with the adjustment of the gains and design parameters, while
the term self-organization is associated with adjusting the parameters of the control table.

GE, GCE, G(C)U The controller gains must be set near some sensible settings, with the
exact choice being less important compared to a conventional fuzzy controller. Imag-
ine, for example, that the output gain is lowered between two training sessions. The
adjustment mechanism will then compensate by producing an FFF -table with numbers
of larger magnitude. Even if the input gains were changed, it would still manage to
adapt. It is therefore possible to start with a linear FFF -table, and set the gains loosely
according to a PID tuning rule or hand-tuning. That is a good starting point for the
self-organization.

Desired time constant τττ The smaller the τ , the faster the desired response. If it is too
small, however, the inner loop cannot possibly follow the desired trajectory, but the
modifier will try anyway. As a result the FFF -table winds up, and the consequence is
an overshoot. The lower bound for τ is when this overshoot starts to occur. A plant
with a time constant τp and a deadtime Tp requires that

Tp ≤ τ ≤ Tp + τp

A value somewhat smaller than the right-hand side of the inequality is often achiev-
able, because the closed-loop system is usually faster than the open-loop system.

Delay-in-penalty d Parameter d, measured in samplings, should be chosen with due respect
to the sample period. The delay should, in principle, be the desired time constant
divided by the sample period and rounded to the nearest integer:

d = round(τ/Ts)

The results are often better, however, with a somewhat smaller value.
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Adaptation gain γγγ The larger the γ , the faster the F -table winds up, but if it is too large,
the training becomes unstable. A reasonable magnitude of a large p is less than
one-fifth of the maximum value in the output universe. This rule results in the upper
bound:

γ ≤ 0.2 ∗ |F (i, j)|max

|(en + τ ∗ ėn)|max ∗ Ts

Compared to conventional fuzzy control, the tuning task is shifted from having to tune
accurately {GE, GCE, G(C)U} to tuning {τ , d, γ } loosely.

Time lock

The delay-in-penalty d causes a problem when the reference or the load changes abruptly.
Consider this case. If the error and the change in error, for a time period longer than

d samples, have been zero, then the controller is in an allowed state (the steady state).
Suddenly there is a disturbance from the outside, the performance specification p becomes
non-zero, and the modifier will modify the FFF -table d samples back in time. It should not
do so, however, because the state was acceptable there. The next time the controller visits
that state, the control signal will fluctuate. The problem appears also after step changes in
the reference or the load.

A solution is to implement a time lock (Jespersen 1981). The time lock stops the
self-organization for the next d samples; if it is activated at the sampling instant Tn, self-
organization stops until the sampling instant Tn + d + 1. In order to trigger the time lock,
it is necessary to detect disturbances, abrupt changes in the load, and abrupt changes in
the reference. If these events cannot be measured directly and fed forward into the SOC,
it is necessary to try and detect it in the plant output. If the output changes more than a
predefined threshold, or if the combination of error and change in error indicates an abrupt
change, then activate the time lock.

The time lock is conveniently implemented by means of a queue, a vector of length
d + 1 samples.

q = 〈
(i, j)n−d , . . . , (i, j)n−1 , (i, j)n

〉

The element to update in FFF is indicated by the front (leftmost) element in q. At the next
sampling instant, the current index pair is appended to the (rightmost) end of the queue,
while the first index pair is removed. If an event triggers the time lock, flush the queue;
that is, reset all cells to zero. New updates to FFF will only be possible after the queue is
full again, that is, when the first element in the queue is non-zero, d + 1 samplings after
the flush.

An extra precaution is to protect the centre of FFF from updates; this is the steady state
(E, CE) = (0, 0) in which the control action must always be zero.

If necessary the time lock can be activated each time the modifier makes a change in
FFF . In other words, the modifier waits to see the influence of the change before making a
new change.
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6.6 Analytical Derivation of the Adaptation Law*

The adjustment mechanism can be interpreted from the viewpoint of model reference adap-
tive control, which provides a deeper insight into the mechanism.

Reference model

Equation (6.6) expresses the adjustment to the parameters. When the adjustment is zero,
the inner-loop behaviour is ideal, or

0 = γ (em + τsem) (6.7)

We have switched to continuous time for convenience, and s is the Laplace variable. The
subscript m refers to the model and em = Ref − ym. Insertion and division by γ yields

0 = Ref − ym + τs(Ref − ym) ⇒

ym = 1

τs + 1
Ref (6.8)

We assumed that Ref is constant in the last step, so that its derivative vanishes. Thus the
desired behaviour, specified by a zero penalty in Equation (6.6), is equivalent to having a
reference model, which returns a first-order desired response ym to a step in the reference
Ref in accordance with Equation (6.8).

Adjustment mechanism

The question now is, what is the interpretation of pn in Equation (6.6) when it is nonzero?
In continuous time, Equation (6.6) is

p = γ (e + τse) (6.9)

Subtracting Equation (6.7) from (6.9) we have

p = γ (e + τse) − γ (em + τsem)

= γ (Ref − y + τs (Ref − y)) − γ (Ref − ym + τs(Ref − ym))

= γ ((ym − y) + τs(ym − y))

By insertion of the model error ε = y − ym,

p = γ ((−ε) + τs(−ε)) ⇔
p = −γ (ε + τsε)

We have thus transformed the performance specification p into an expression in the model
error ε. The expression in parentheses is the model error ε plus a term proportional to the
change in error sε; this can be interpreted as the first-order prediction ε̂ of the future model
error τ seconds ahead of current time. Thus

p = −γ ε̂, ε̂ = (ε + τsε) (6.10)

*Can be skipped in a first reading.
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To recapitulate, the performance specification p is equivalent to a parameter adjustment
proportional to the predicted model error ε̂, with adaptation gain γ . Since the adjustment
p is an incremental adjustment dθ/dt , the parameter θ itself is the integral of Equation
(6.10) plus the initial value. The adjustment mechanism is thus a proportional-integral type,
instead of just integral.

What happens if we use ε̂ (instead of ε) from Equation (6.10) in the objective function?
For comparison, we will take the previously worked out first-order example, and proceed
in the same manner, step by step.

Error function The model error function is

ε̂ = ε + τsε = y − ym + τs(y − ym) (6.11)

Objective function We choose the quadratic objective function

J (θ) = 1

2
ε̂2

Minimizing J (θ) will minimize ε̂. It may happen that ε̂ is zero while ε is non-zero.
Nevertheless ε + τsε = 0 is a differential equation that will drive ε to zero, given
that τ is positive. The adaptation stops, but the model error tends to zero in an
equilibrium.

MIT rule The MIT rule suggests the parameter change

dθ

dt
= −γ

∂J

∂θ
= −γ ε̂

∂ε̂

∂θ

Model The model is, as before,

ẏm(t) = −amym(t) + bmRef(t) (6.12)

Control law We choose the same control law,

u(t) = θ1Ref(t) − θ2y(t)

Closed-loop dynamics With that control law, the closed-loop dynamics of the inner loop
is

ẏ(t) = (−a − θ2)y(t) + bθ1Ref(t) (6.13)

On transfer function form,

y(s) = bθ1

s + a + bθ2
Ref(s) (6.14)

Perfect model-following We know from the previous investigation that the control law
allows perfect model-following.
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Sensitivity derivative The sensitivity derivative is

∂ε̂

∂θ
= ∂(y − ym + τs(y − ym))

∂θ
= ∂(y + τsy)

∂θ
= (1 + τs)

∂y

∂θ

since the model output ym is independent of the controller parameter θ . Differentiating
y in Equation (6.14) with respect to the controller parameters,

∂y

∂θ1
= b

s + a + bθ2
Ref(s)

∂y

∂θ2
= − b2θ1

(s + a + bθ2)
2 Ref(s)

Closed-loop substitution In the equation for ∂y/∂θ2 we make use of the inner-loop trans-
fer function from Equation (6.13),

∂y

∂θ2
= − b2θ1

(s + a + bθ2)
2 Ref(s) = − b

s + a + bθ2
y(s)

Adaptation law We arrive at the following adaptation laws for adjusting the parameters:

dθ1

dt
= −γ ε̂

∂ε̂

∂θ1
= −γ ε̂ (1 + τs)

[
b

s + a + bθ2
Ref(s)

]

dθ2

dt
= −γ ε̂

∂ε̂

∂θ2
= −γ ε̂ (1 + τs)

[
− b

s + a + bθ2
y(s)

]

Approximation Again, we approximate the inner-loop characteristic polynomial with the
model characteristic polynomial,

s + a + bθ2 ≈ s + am

After approximation, the adaptation laws are therefore

dθ1

dt
≈ −γ ε̂ (1 + τs)

[
b

s + am

Ref(s)

]

dθ2

dt
≈ γ ε̂ (1 + τs)

[
b

s + am

y(s)

]

Disposal of plant parameters Since the unknown parameter b is constant, it can be
absorbed in the adaptation gain, but we have to know the sign of b in order to
use the correct sign for the adaptation gain. By the substitution γ b = γ ′sign(b)am,

dθ1

dt
≈ −γ ′sign(b)̂ε (1 + τs)

[
am

s + am

Ref(s)

]
(6.15)

dθ2

dt
≈ γ ′sign(b)̂ε (1 + τs)

[
am

s + am

y(s)

]
(6.16)

The square brackets are filtered versions of the signals Ref and y, and the steady-state
gain of the filter is 1.
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Cancellation Since τ is the prediction horizon for the predicted model error, it is a design
parameter. If we choose

τ = 1

am

the adaptation laws are simply,

dθ1

dt
≈ −γ ′sign(b)̂ε(t)Ref(t) (6.17)

dθ2

dt
≈ γ ′sign(b)̂ε(t)y(t) (6.18)

We notice that the adaptation law Equation (6.17) is similar to Equation (6.10), except
for the factor sign(b), which is just a convenience, and the factor Ref. We have earlier
assumed that Ref is constant, and therefore it can be absorbed in γ ′.

We can conclude that our choice of error function ε̂ in Equation (6.11) caused a cancel-
lation of the denominators in Equations (6.15) and (6.16), which simplified the adaptation
law; this is possible whenever the polynomial of the model error function Equation (6.11) is
chosen to be proportional to the denominator polynomial of the model transfer function Gm.

Controller

Does this work for a fuzzy controller, and how does it compare with the SOC? So far we
have chosen a control law that has a structure different from the one used in fuzzy PD
control. Let us now try a PD structure and model the SOC adjustment by an increment δ

to the control table.

Error function The model error function is

ε̂ = ε + τsε = y − ym + τs(y − ym) (6.19)

Objective function We choose the quadratic objective function

J (θ) = 1

2
ε̂2

Minimizing J (θ) will minimize ε̂ and ε.

MIT rule The MIT rule suggests the parameter changes

dθ

dt
= −γ

∂J

∂θ
= −γ ε̂

∂ε̂

∂θ

Model The model is, as before,

ẏm(t) = −amym(t) + bmRef(t) (6.20)

with the transfer function
ym(s)

Ref(s)
= bm

s + am
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Control law We choose the control law,

u = (GE ∗ e + GCE ∗ ė + δ) ∗ GU

Notice the adjustable parameter δ. We assume the SOC starts from a linear controller
with δ = 0. For each cell in the lookup table, δ models the adjustment that the SOC
makes. The control law is a local model of each cell in the lookup table. There are
thus a number of δ′s, one for each cell, but we will only consider one such cell in
order to keep the derivations simple and transparent.

Closed-loop dynamics With that control law, the closed-loop dynamics of the inner loop
are

ẏ(t) = −ay(t) + bu(t)

= −ay(t) + b ∗ (GE ∗ e + GCE ∗ ė(t) + δ ∗ u0(t)) ∗ GU

= −b ∗ GCE ∗ GU ∗ ẏ(t) − (a + b ∗ GE ∗ GU)y(t) (6.21)

+b ∗ δ ∗ u0(t) ∗ GU + b ∗ GE ∗ GU ∗ Ref(t)

Here we have assumed that Ref(t) is constant, so that its time derivative vanishes.
We have modelled δ as a gain on an external input signal u0, which is always equal
to 1. Solving with respect to y, and using the Laplace variable,

y(s) = b ∗ δ ∗ GU

(1 + b ∗ GCE ∗ GU)s + (a + b ∗ GE ∗ GU)
u0(s) (6.22)

+ b ∗ GE ∗ GU

(1 + b ∗ GCE ∗ GU)s + (a + b ∗ GE ∗ GU)
Ref(s)

Perfect model-following We hope to achieve perfect model-following. Assume for a
moment that δ = 0. By a comparison of Equations (6.21) and (6.20),

a + b ∗ GE ∗ GU

1 + b ∗ GCE ∗ GU
= am

b ∗ GE ∗ GU

1 + b ∗ GCE ∗ GU
= bm

Notice that GU multiplies gains GE and GCE, so we can regard it as a scaling factor.
Reorganize into two equations in two unknowns,

b ∗ GE ∗ GU − am ∗ b ∗ GCE ∗ GU = am − a

b ∗ GE ∗ GU − bm ∗ b ∗ GCE ∗ GU = bm

The determinant −b2bm + b2am is non-zero if bm �= am and then the system has a
unique solution for GE ∗ GU and GCE ∗ GU. Therefore, perfect model-following is
possible as long as the model is such that bm �= am. The solution requires certain
settings of especially GE and GCE, and since these are tuned by other means, it is
unlikely that we will actually achieve perfect model-following.
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Sensitivity derivative The sensitivity derivative is

∂ε̂

∂θ
= ∂(y − ym + τs(y − ym))

∂θ
= ∂(y + τsy)

∂θ
= (1 + τs)

∂y

∂θ

since the model output ym is independent of the parameter. Differentiating y in
Equation (6.22) with respect to the adjustable parameter,

∂y

∂δ
= b ∗ GU

(1 + b ∗ GCE ∗ GU)s + (a + b ∗ GE ∗ GU)
u0(s)

Closed-loop substitution We do not make use of the inner-loop transfer function.

Adaptation law We arrive at the following adaptation law for adjusting the parameter:

dδ

dt
= −γ ε̂

∂ε̂

∂δ
= −γ ε̂ (1 + τs)

[
b ∗ GU

(1 + b ∗ GCE ∗ GU)s + (a + b ∗ GE ∗ GU)
u0(s)

]

Approximation We approximate the inner-loop characteristic polynomial, the denominator
in square brackets, with the model characteristic polynomial

s + am

After insertion, the adaptation law is

dδ

dt
= −γ ε̂ (1 + τs)

[
b ∗ GU

s + am

u0(s)

]

Disposal of plant parameters Since the unknown parameter b is constant, it can be
absorbed in the adaptation gain, but we have to know the sign of b in order to
use the correct sign for the adaptation gain. By the substitution γ b = γ ′sign(b)am ,

dδ

dt
≈ −γ ′sign(b)̂ε (1 + τs)

[
am

s + am

u0(s)

]
∗ GU (6.23)

The square bracket above is a filtered version of the signal u0, and the steady-state
gain of the filter is 1.

Cancellation Since τ is the prediction horizon for the predicted model error, it is a design
parameter. If we choose

τ = 1

am

the adaptation law is simply (u0 = 1)

dδ

dt
≈ −γ ′sign(b)̂ε(t) ∗ GU

This is similar to the adaptation law in the original SOC, apart from the factors
GU and sign(b). These could be absorbed in the adaptation gain, to make the two
expressions identical, but they are left out for convenience and as an emphasis.
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To summarize, the derivations are based on three observations. First, the performance
specification Equation (6.9) implicitly expresses the desired behaviour (p = 0), which can
be interpreted as a first-order reference model. Second, the performance specification (p �=
0) is interpreted as the predicted model error τ seconds ahead of current time. Third,
choosing τ equal to the model time constant 1/am simplifies the adaptation law.

The theoretical considerations show that the SOC adjustment mechanism minimizes an
objective function. Since we are adjusting only parameter δ, and not the gains, we cannot
guarantee perfect model-following or stability.

6.7 Summary

The adjustment mechanism is simple, but, in practice, the design is complicated by the
time lock and noise precautions. Also, if the resolution of the control table is too low,
the adaptive system may become unsteady or even unstable. Although the tuning of the
traditional input and output gains (GE, GCE, G(C)U ) is made less cumbersome by the
adjustment mechanism, it introduces other parameters that are to be tuned (delay-in-penalty,
learning gain, desired time constant). The tuning task is nevertheless easier, because these
can be loosely tuned.

The SOC is based on the assumption that the plant responds monotonously (is minimum-
phase), and an example showed that it works for a plant with a large deadtime and an
integrator. There is no guarantee, however, that the adaptive system will be stable. To
prove stability, further theoretical research is necessary, but will be difficult because the
updates to the control table are local updates rather than global with regard to the whole
state space. The following chapter looks at stability from a fundamental point of view.

One may ask where fuzzy logic enters the picture, since the adjustment law is an
equation and the control table is automatically adjusted. Fuzzy logic is absent, but his-
torically the design sprang from the fuzzy controller. Any control table, derived from
fuzzy rules, can be used as the initial table to be adapted. It is conceivable, also, to use a
performance specification based on fuzzy rules.

6.8 Notes and References

It is possible, and this has been done in practice, to adjust the consequence singletons in a
Sugeno controller. This will make the adjustments less local, because each singleton affects
a region of the phase plane determined by the premise membership functions of that rule.
The corresponding adjustments to the control table cover several cells at the same time,
and the modified control surface will be smoother. If there is sufficient computing time to
execute a rule base, the control table does not have to be calculated at all.

Adaptive fuzzy controllers can be classified according to what they adjust. Systems
that adjust the gains are called self-tuning, and systems that adjust the rule base are self-
organizing. For an overview of the techniques, see Driankov et al. (1996). A third class
adjusts the parameters of the membership functions, both on the premise side and on the
conclusion side (e.g. Jang et al. 1997).

The performance measure in Equation (6.9)

p = γ (e + τ se)
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is similar to the switching function

s(y, ẏ) = my + ẏ

in sliding mode control (Edwards and Spurgeon 1998). It would be interesting to explore
whether there is a mathematical connection.

Research in adaptive control started in the early 1950s. Control engineers have tried to
agree on a formal definition of adaptive control. For example, in 1973 a committee under
the Institute of Electrical and Electronics Engineers (IEEE) proposed a vocabulary including
the terms ’self-organizing control (SOC) system’, ’parameter adaptive SOC’, ’performance
adaptive SOC’, and ’learning control system’ (Åström and Wittenmark 1995). These terms
were never widely accepted, however, but the story does explain why the adaptive fuzzy
controller is called a self-organizing controller (SOC).

The fuzzy self-organizing controller (Mamdani and Baaklini 1975, Procyk and Mamdani
1979, Yamazaki and Mamdani 1982), was developed specifically to cope with deadtime.
To the inventors, it was a further development of the original fuzzy controller (Assilian
and Mamdani, 1974a, 1974b).



7

Stability Analysis by Describing
Functions

A describing function is an approximate transfer function for a nonlinear element, and, in
general, it depends on both frequency and amplitude. It can be viewed as an equivalent
linear gain, amplitude and frequency dependent, which is optimal in the sense of a least
squares linearization of the nonlinearity. From the describing function, we achieve the
frequency response.

A sinusoidal input to a linear system in steady state generates a sinusoidal response
of the same frequency. Even though it is of the same frequency, it differs in amplitude
and phase angle from the input. The difference is a function of the frequency, and the
magnitude frequency response is the ratio of the output sinusoid magnitude to the input
sinusoid magnitude. The phase response is the difference in phase angle between the output
and the input sinusoids. The frequency response is powerful, since it describes the system
performance completely.

We are concerned with a feedback loop with a structure as in Figure 7.1. The controller
is based on the error signal e, and it is placed in the forward path. The controller is in
general nonlinear.

The response of a nonlinear system is a composite function depending on amplitude
as well as frequency. It is therefore necessary to examine the response by means of its
expansion into a Fourier series, consisting of several sinusoidal terms.

The complex ratio of the fundamental frequency of the output to the sinusoidal input
is the describing function.

The frequency response, particularly in the form of the Nyquist plot, provides (1) a clear
criterion for stability, (2) a prediction of limit cycles, and (3) a graphical visualization. These
are useful analysis tools.

7.1 Describing Functions
Certain assumptions have to be fulfilled in order to apply the describing function method
(Slotine and Li 1991, Atherton 1975):

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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u x

l n

yeRef

−

Controller Plant

Figure 7.1: Feedback loop with load l and noise n.

Single nonlinear element The method is developed for a single nonlinearity, and in our
case the controller is the nonlinearity (Figure 7.1). The method requires that the model
of the plant be linear. If not, the block diagram must somehow be transformed.

Time-invariant nonlinearity The Nyquist criterion applies only to linear, time-invariant
systems. We shall restrict the analysis to the FPD+I controller. It is dynamic, since
it depends on the derivative of the error and the integral error; but it does not change
over time, and is thus time-invariant.

Filtering hypothesis The describing function is only valid for sinusoidal inputs. In a
closed-loop operation, the output signal, which contains higher-order components,
is fed back and mixed with the reference signal. It is therefore unclear whether the
input to the controller is sinusoidal, but for a step on the reference the assumption is
valid if the plant acts like a filter. The output of the nonlinearity contains higher-order
harmonics, besides the fundamental frequency, but we consider only the fundamental
frequency as an approximation. The approximation is good when the plant acts as
a low-pass filter, suppressing higher-order frequencies. Many physical plants have
this property (the degree of the numerator polynomial is less than the degree of the
denominator polynomial). For example, if the plant is a double integrator, the con-
tent of the nth (odd) harmonic fed back to the controller is 1/n3; the third harmonic
content is thus only 3.7 % of the fundamental component.

Let the input x(t) to the nonlinearity be a sinusoid:

x(t) = A sin(ωt)

with amplitude A and angular frequency ω. The output y(t) is periodic, but not sinusoidal.
Its Fourier expansion, however, is an infinite sum of sinusoidal signals:

y(t) =
∞∑

n=0

[an cos (nωt) + bn sin (nωt)]

= a0 +
∞∑

n=1

[an cos (nωt) + bn sin (nωt)]
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The summation is over the n integer multiples of the fundamental frequency. The first term
(n = 0), corresponding to the coefficient a0, is the mean value of the signal y(t), the next
term (n = 1) is the fundamental frequency , and the remaining terms (n > 1) are higher
harmonics.

By the filtering hypothesis stated earlier, we neglect all higher harmonics and consider
only the fundamental,

y1(t) = a1 cos (ωt) + b1 sin (ωt) = M sin(ωt + ϕ)

which is a sinusoid with the same frequency as the input signal and amplitude M . The
ratio of the fundamental to the input is the describing function:

N(A, ω) = y1

x

Its magnitude is

|N(A, ω)| = M

A

and its phase angle is
∠N(A, ω) = ∠y1 − ∠x = ϕ

The Fourier coefficients are the convolution integrals

a0 = 1

2π

∫ 2π

0
x(t)d(ωt) (7.1)

an = 1

π

∫ 2π

0
x(t) cos(nωt)d(ωt) (7.2)

bn = 1

π

∫ 2π

0
x(t) sin(nωt)d(ωt) (7.3)

Intuitively, coefficient bn is large if the signal x(t) varies in phase with sin(nωt) and the area
under the product curve is large; then the nth harmonic in-phase component (in-phase with
the input) is large. Similarly, coefficient an is large if x(t) varies in phase with cos(nωt);
then the nth harmonic quadrature component (proportional to the derivative of the input
sinusoid) is large. Coefficient a0 amounts to the mean value of the signal, which is often
zero. Coefficient b0 vanishes. Furthermore,

M =
√

a2
1 + b2

1

ϕ = tan−1
(

a1

b1

)

In general, the describing function depends on both amplitude A and frequency ω, but for
static linearities it only depends on A.

Static nonlinearity

Figure 7.2 shows an example of a static nonlinearity. It is a proportional controller with the
gain k, but it saturates when the amplitude of the error signal is larger than a. It is called
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Figure 7.2: Ideal saturation u = F(e). The nonlinearity (b) has the gain k in the linear
region. A sinusoidal input e = Asin(ωt) (a) results in the nonlinear output u = F(Asin(ωt))

(c). (figsat.m)

an ideal saturation , and is a static nonlinearity, because it depends on the error only, while
a dynamic nonlinearity would depend on the time derivative of its input signal. The input
e(t) to the nonlinearity is a sinusoid:

e(t) = A sin(ωt)

with amplitude A and angular frequency ω. The resulting output u(t) is periodic, but not
sinusoidal.

Figure 7.3 shows the integrands of Equations (7.2) and (7.3) of the two components
of the fundamental. The in-phase component is positive everywhere, while the quadrature
component is symmetric about the zero line. A general property of nonlinearities described
by an odd function f (−x) = −f (x) is that all the coefficients an will be zero. The mean
value, the DC-component (direct current) a0, is zero since the output signal u is symmetric
about the zero line. What remains is to integrate the sin integrand.

An analytical solution exists for the ideal saturation; it can be looked up in any textbook
on nonlinear control (e.g. Slotine and Li 1991). The describing function for the ideal

Angle wt0 2p

Cos integrand

Angle wt0 2p

Sin integrand

(a) (b)

Figure 7.3: Fourier integrands. The in-phase integrand of the fundamental frequency (a)
and the quadrature integrand (b). (figsat.m)
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saturation is

N(A) = b1

A
= 2k

π

(

sin−1 a

A
+ a

A

√

1 − a2

A2

)

Notice that the describing function, in this case, does not depend on the frequency ω. A plot
of N(A)/k versus A/a will show (Slotine and Li 1991) that (1) N(A) = k if the amplitude
A is within the linear range of the saturation, (2) N(A) decreases as the amplitude A

increases, and (3) there is no phase shift. The first observation is expected, and can be used
to check the correctness of the integration. The second is intuitively correct, since for large
amplitudes, the output has constant amplitude, and therefore the gain decreases. The third
is also intuitively correct, because saturation does not cause any delay.

The fact that any signal can be expanded into a sum of sinusoidal components is
extremely useful, and many researchers have calculated analytically or charted the describ-
ing functions of common linearities (see, for example, the tables in Atherton 1975, Šiljak
1968). Many other common nonlinearities have been calculated analytically, for example,
quantizer, deadzone, relay, relay with deadzone, preload, piece-wise linear, gain changing,
saturation with deadzone, hysteresis, and double-valued nonlinearities.

Numerical integration is another possibility. Although it is an approximation, rectangular
integration can be a sufficiently good approximation if the sampling interval is small. Other
more accurate integration methods exist (trapezoidal rule, Simpson’s rule, see also function
quad in Matlab).

7.2 Fuzzy PD Controller

We wish to find the describing function for the controller in Figure 7.1. It is a dynamic
nonlinearity , since it depends on the derivative ė, or se in Laplace notation where s = d/dt

is the Laplace operator. It may also depend on the integrated error, but we will deal with
that case later.

A fuzzy PD (FPD) controller is a nonlinearity u = F(e, se) with two inputs, but the
two inputs are dependent. We expect the describing function to be frequency dependent,
owing to the differentiation, and therefore also the Fourier coefficient a1 to be non-zero.
Let the error signal be the sinusoid

e(t) = A sin(ωt)

Then the derivative signal is
ė(t) = ωA cos(ωt)

and the controller output is

u = F(e, se) = F(A sin(ωt), ωA cos(ωt))

Now rewrite the fundamental to reflect differentiation:

u1(t) = a1 cos (ωt) + b1 sin (ωt)

= a1
1

ω

d

dt
sin (ωt) + b1 sin (ωt)
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Using the Laplace operator s the describing function is

N(A, s) = u1

e
= b1

A
+ a1

A

1

ω
s (7.4)

This is a first-order transfer function depending on ω. The first term is the in-phase com-
ponent and the second term is the quadrature component.

Its frequency response is obtained in the usual manner by the substitution s = jω, where
j is the complex variable, j2 = −1,

N(A, jω) = b1

A
+ j

a1

A
(7.5)

A notational detail indicates the difference between the transfer function in Equation (7.4)
and the frequency response in Equation (7.5): N(A, s) refers to the transfer function, and
N(A, jω) refers to the frequency response. To recall, the frequency response is the steady
state response of an element to a sinusoidal input; it is determined by a mapping of the
transfer function by replacing s by jω.

Example 7.2.1 Linear FPD
Let us try and find the describing function for a linear FPD controller, for which we

already know the result. Given a linear fuzzy controller that acts like a summation, the
controller signal is

U = F(GE ∗ e, GCE ∗ se) ∗ GU

Here, GE and GCE are the input gains and GU is the output gain. Since the controller
is linear, its transfer function is for small amplitudes (there is no saturation in the input
universes)

U

e
= (GE + (GCE ∗ s)) ∗ GU

= GE ∗ GU + GCE ∗ GU ∗ s (7.6)

Given a sinusoidal input
e(t) = A sin(ωt)

the Fourier coefficient a1 is from Equation (7.2),

a1 = 1

π

∫ 2π

0
F(e, se) cos(ωt) d(ωt)

= 1

π

∫ 2π

0
GE ∗ GU ∗ A sin(ωt) cos(ωt) d(ωt)

+ 1

π

∫ 2π

0
GCE ∗ GU ∗ ωA cos(ωt) cos(ωt) d(ωt)

= 0 + GCE ∗ GU ∗ ωA
4

π

∫ π/2

0
cos2(ωt) d(ωt)

= GCE ∗ GU ∗ ωA
4

π
∗

[
1

2
(ωt) + 1

4
sin(2ωt)

]π/2

0

= GCE ∗ GU ∗ Aω
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During integration, ω is considered a constant scaling parameter, since we integrate one
period with ωt going from 0 to 2π. The coefficient b1 is from (7.3)

b1 = 1

π

∫ 2π

0
F(e, se) sin(ωt) d(ωt)

= 1

π

∫ 2π

0
GE ∗ GU ∗ A sin(ωt) sin(ωt) d(ωt)

+ 1

π

∫ 2π

0
GCE ∗ GU ∗ ωA cos(ωt) sin(ωt) d(ωt)

= GE ∗ GU ∗ A
4

π

∫ π/2

0
sin2(ωt) d(ωt) + 0

= GE ∗ GU ∗ A
4

π

[
1

2
(ωt) − 1

4
sin(2ωt)

]π/2

0

= GE ∗ GU ∗ A

The describing function is thus

N(A, s) = b1

A
+ a1

A

1

ω
s

= GE ∗ GU + GCE ∗ GU ∗ s

which is identical to Equation (7.6) as expected.

The example demonstrates how to evaluate the integrals. It also shows that the describ-
ing function reduces to the linear transfer function, when the controller is linear.

Example 7.2.2 Linear FPD frequency response
The FPD controller includes an ideal saturation since the input signals are confined

to the input universes. We therefore expect a frequency response different from the crisp
PD controller whenever saturation occurs. Let us examine the frequency response using
numerical integration for convenience.

In the linear region, we derive from the previous example that the frequency response is

N(jω) = GE ∗ GU + GCE ∗ GU ∗ (jω)

which is independent of amplitude. But when saturation is active, we expect the frequency
response to be amplitude dependent. In terms of the Fourier coefficients, the frequency
response is

N(A, jω) = b1

A
+ j

a1

A

= 1

A

1

π

∫ 2π

0
F(A sin(ωt), ωA cos(ωt)) sin(ωt) d(ωt)

+j
1

A

∫ 2π

0
F(A sin(ωt), ωA cos(ωt)) cos(ωt) d(ωt)
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With PD gains, say,

Kp = 1

Td = 1

a set of equivalent fuzzy gain settings are

GE = 100

GU = Kp/GE = 0.01

GCE = Td/GU = 100

The plot in Figure 7.4 shows the magnitude frequency response |N(A, jω)| and the phase
frequency response ∠N(A, jω) for the amplitude A = 1. In comparison with the corre-
sponding PD controller, the FPD controller has a constant magnitude above the frequency
ω = 1, while the crisp PD controller magnitude is ever increasing. The FPD controller has
a maximum phase shift of about 52 ◦, while the crisp PD has a maximal phase shift of 90 ◦
at high frequencies. This is due to the saturation of the change in error signal. At ω = 1 the
change in error is

CE = GCE ∗ se = GCE ∗ Aω cos(ωt) = 100 ∗ 1 ∗ 1 ∗ sin(t)

The amplitude is 100, which is the limit of the universe, and the phase is 45 ◦ (ω = 1). At
higher frequencies, the saturation sets in.
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Figure 7.4: Bode diagram. Frequency response of a linear fuzzy PD controller (solid) in
comparison with a crisp PD controller (dotted). The frequency axis is logarithmic and the
magnitude response is in decibels (dB). (figfreqres.m)
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The example clearly shows how the fuzzy PD cuts off at frequencies higher than a
threshold determined by the input universe of change in error. The effect is useful for
suppressing noise, but it also implies that the fuzzy PD achieves less phase advance at
higher frequencies. At low frequencies, the performance is the same as that of the crisp
PD controller.

Example 7.2.3 Nonlinear FPD frequency response
We can now compare different nonlinear controllers with respect to their frequency

response. Figure 7.5 shows the frequency responses of the four standard fuzzy controllers.
The four controllers have the same fuzzy gains:

GE = 100

GCE = 100

GU = 0.01

The amplitude is A = 1.The four surfaces are the standard surfaces: linear, saturation,
deadzone, and quantizer (Chapter 5).

Figure 7.5 shows that overall, the saturation and the deadzone surfaces are the two
extremes, with the linear and the quantizer in between. Relative to the linear surface, the
saturation surface has a higher magnitude, while the deadzone surface has a lower mag-
nitude. The phase advance for the saturation surface is high at low frequencies and low at
higher frequencies, while for the deadzone surface the converse is true.

At ω = 1 all surfaces have a phase advance of 45 ◦. Thus, a1 = b1 (ω = 1, A = 1, and
GE = GCE).
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Figure 7.5: Bode diagram. Frequency response of the four standard control surfaces, one
linear and three nonlinear. The frequency axis is logarithmic, but the magnitude and phase
axes are linear. (figfreqnl.m)
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Table 7.1: Frequency responses at low amplitude A = 1 and low, medium,
and high frequency ω.

ω PID Linear Saturation Deadzone Quantizer

0.1 1 + j0.10 1 + j0.10 1.13 + j0.16 0.89 + j0.01 1.05 + j0.02
1 1 + j1 1 + j1 1.13 + j1.13 0.89 + j0.89 1.05 + j1.05
10 1 + j10 1 + j1.27 1.13 + j1.27 0.89 + j1.27 1.05 + j1.27

Table 7.1 compares the frequency responses N(A, jω) for the four surfaces numerically.
The table reflects that the real part – corresponding to the proportional action – for each
controller is independent of frequency. At high frequencies (ω = 10), all surfaces have the
same imaginary part, and at ω = 1, all real parts are equal to the imaginary parts (45 ◦
phase).

Dividing the imaginary part by frequency in each case brings out each describing
function.

The example shows that the four different surfaces have distinct characteristics and also
that saturation in the universe of change in error occurs at higher frequencies.

7.3 Fuzzy PD+I Controller

Integral action affects the frequency response in a known manner for the PID controller,
and naturally we would like to include integral action in the describing function of a fuzzy
controller. We shall restrict ourselves to the fuzzy PD+I controller, since it encompasses
the crisp PID controller.

To begin with, let us examine the ideal crisp PID controller

u = Kp

(
e + 1

Ti

∫
e (t) dt + Td

de

dt

)

with the transfer function

Gc(s) = u

e
= Kp

(
1 + 1

Ti

1

s
+ Tds

)
(7.7)

Its frequency response is obtained by the substitution s = jω :

Gc(jω) = Kp

(
1 + 1

Ti

1

jω
+ Tdjω

)

= Kp + jKp

(
Tdω − 1

Tiω

)

In other words, the integral term contributes phase lag to the frequency response at lower
frequencies.

The fuzzy PD+I controller delivers the control signal

U =
(

F(GE ∗ e, GCE ∗ se) + GIE ∗ 1

s
e

)
∗ GU
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It is a linear combination. Therefore, the Fourier integrals can be evaluated for each sum-
mand and the results added together. Its describing function is simply

N(A, s) = U1

e
= b1

A
+ a1

A

1

ω
s + GIE ∗ GU ∗ 1

s
(7.8)

where a1 and b1 are the Fourier coefficients for the fuzzy PD controller. Compared with
crisp PID control (see Equation (7.7)), the gain GIE ∗ GU plays the same role as Kp ∗ 1/Ti ,
which checks with the equivalent gains for the linear fuzzy controller. Furthermore, we can
deduce that b1/A corresponds to Kp, and a1/ωA to KpTd.

Its frequency response is obtained by the substitution s = jω,

N(A, jω) = b1

A
+ a1

A

1

ω
(jω) + GIE ∗ GU ∗ 1

jω

= b1

A
+ j

(
a1

A
− GIE ∗ GU

ω

)

In comparison with the frequency response of the FPD controller, repeated here for con-
venience,

N(A, jω) = b1

A
+ j

a1

A
(7.9)

the integral term contributes phase lag to the frequency response at lower frequencies.

7.4 The Nyquist Criterion for Stability

We are now in a position to study stability using the Nyquist criterion. Consider the system
in Figure 7.1, and assume for a moment that it is linear. The closed-loop transfer function is

Gcl = GcGp

1 + GcGp

where Gc is the controller transfer function and Gp is the plant transfer function. The
denominator is the characteristic polynomial, and the characteristic equation, which governs
the stability, is

1 + GcGp = 0

The closed-loop system is marginally stable when the magnitude frequency response∣∣GcGp

∣∣ = 1, while, at the same time, the phase frequency response ∠GcGp is ±180◦
degrees. This is equivalent to saying that the Nyquist diagram in the complex GcGp plane
passes through the critical point (−1, 0).

Figure 7.6 shows the Nyquist diagram of the plant Gp = 1/(1 + s)3. The curve does
not pass through the critical point. The curve is drawn in the complex Gp-plane, which is
a mapping of the complex s-plane. The plot is a polar plot, and each point on the curve
represents a vector with magnitude

∣
∣Gp

∣
∣ and the angle ∠Gp counted counterclockwise

from the positive real axis. The frequency is implicit, but the upper half of the diagram
corresponds to negative frequencies (ω < 0) while the lower half corresponds to positive
frequencies (ω > 0). The arrows show the direction of increasing frequency. We focus on
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Figure 7.6: Nyquist diagram of plant Gp = 1/(s + 1)3. (fignyquist.m)

the lower half of the Nyquist diagram, because it is the plot of the frequency response
Gp(jω) with ω > 0.

Inserting a proportional controller with the gain Kp in front of the plant will change
the diagram such that the new diagram of KpGp will be a scaling of the Gp diagram
by the factor Kp. If Kp is sufficiently large, corresponding to the ultimate gain Ku in
the Ziegler–Nichols tuning method, the curve will pass through the critical point, and the
system will be marginally stable. The frequency of oscillation will be the frequency that
corresponds to the intersection point on Gp(jω).

Stability

The Nyquist criterion relates the stability of the closed-loop system to the open-loop fre-
quency response and open-loop pole locations. The Nyquist criterion is

Z = N + P

The symbols are explained below:

Z The number of roots of the characteristic equation in the right half-plane, or equivalently,
the number of poles of the closed-loop transfer function in the right half-plane.
For the closed-loop system to be stable, Z must be zero. Note that Z cannot be
negative.

N The number of clockwise encirclements of the critical point by the Nyquist diagram.
If the encirclements are in a counterclockwise direction, N is the negative of the
number of encirclements. Thus, N may be either positive or negative. If the Nyquist
diagram intersects the critical point, the closed-loop system has poles on the jω-
axis.

P The number of poles of the forward path transfer function Gc(s)Gp(s) in the right
half-plane. Thus, P cannot be a negative number. Note that the closed-loop system
may be stable (Z = 0) with the open-loop system unstable (P > 0) , provided N =
−P .
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In Figure 7.6, the Nyquist diagram does not encircle the critical point. Hence N = 0,

and since there are no open-loop poles in the right half-plane P = 0. Thus Z = 0 and the
closed-loop system is stable. On the other hand, if Gc = Kp = 8, the Nyquist diagram will
pass through the critical point, and the closed-loop system will be marginally stable.

Even if the model of a system is stable, the physical system could be unstable because
of inaccuracies and disturbances. Therefore, the controller Gc should be designed with suf-
ficient tolerance to variations in the plant dynamics. One stability indicator is the function(
1 + GcGp

)
, called the return difference, which is the denominator of the closed-loop trans-

fer function. In the Nyquist diagram of Gc(jω)Gp(jω), the vector
[
1 + Gc(jω)Gp(jω)

]
is

a vector pointing from the critical point to the current point of the Nyquist diagram. There-
fore, the minimum return difference is the shortest distance from the Nyquist diagram to
the critical point, or

1

Ms

= inf
∣
∣1 + Gc(jω)Gp(jω)

∣
∣ , 0 < ω < ∞

A design criterion is therefore that the Nyquist diagram of GcGp be outside a circle with
its centre in the critical point and with the radius 1/Ms . The sensitivity function Ms is
the inverse of the shortest distance from the Nyquist diagram to the critical point, and a
reasonable value of Ms is in the range 1.3–2 (Åström & Hägglund 1995, p 126), which
corresponds to a radius in the range 0.5–0.77.

Limit cycle

A limit cycle is any isolated closed trajectory in the phase plane that is approached asymp-
totically both from within and without by other trajectories. A motion started on this curve
will stay on it forever, circling periodically around the origin. The trajectory must be both
closed, indicating periodicity, and isolated, indicating the limiting nature of the cycle. A
limit cycle can be stable, unstable, or semi-stable.

Limit cycling is a unique feature of nonlinear systems, and the trajectory in the phase
plane must enclose at least one equilibrium point. A limit cycle occurs if the closed-loop
denominator is zero:

1 + N(A, jω)Gp(jω) = 0 (7.10)

Here, N(A, jω) is the frequency response of a nonlinear controller. When the frequency
response locus N(A, jω)Gp(jω) is plotted, any intersection with the critical point will be a
solution of Equation (7.10). In general N(A, jω) depends on both amplitude and frequency,
and therefore a family of curves can be drawn, each curve corresponding to a particular
amplitude. The amplitude A0 and the frequency ω0 corresponding to an intersection are
the amplitude and frequency of the oscillation. If n curves intersect, then the system has
n possible limit cycles. The oscillation may be stable or unstable, where, in this context,
semi-stable cases are classified as unstable. If Equation (7.10) does not have a solution,
then the nonlinear system has no limit cycles.

7.5 Closed-Loop Simulation Examples

To illustrate the effect of various control surfaces, we shall study the Nyquist plot related
to four different plants: a third-order plant, a double integrator, a first-order plus deadtime
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Figure 7.7: Linear surface (a) and saturation surface (b) with the input families that gener-
ated them (c and d respectively). (figsurfs.m)

(FODT) plant, and an oscillatory plant. For each plant, we loosely tune a PID controller,
convert the gains to the equivalent fuzzy gains, and plot the Nyquist diagram for four
different control surfaces.

Chapter 5 introduces the four standard control surfaces, repeated in Figures 7.7–7.8.
They are odd functions, that is, F(−e, −se) = −F(e, se) and the Fourier coefficient a0 = 0.
Each control surface is inserted in turn in the control loop without changing the tuning.
Hand-tuning of a PID controller for each plant provides the settings of the gains for all
controllers. The hand-tuning is loose, because the objective is to compare the relative
performance of each standard control surface rather than find a controller that provides the
best response.

The performance is measured by means of the sensitivity

Ms = 2

which is equivalent to a minimal distance to the critical point of 0.5. The farther the
Nyquist curve is from the 0.5-circle, the more robust is the closed-loop system. In sum-
mary, we are only changing the shape of the control surface, not the tuning, in order to
make a fair comparison. With four plants and four control surfaces, we set out to make
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Figure 7.8: Deadzone surface (a) and quantizer surface (b) with the input families that
generated them (c and d respectively). (figsurfs.m)

4 × 4 = 16 frequency responses. All describing functions assume a sinusoidal amplitude
A = 1.

Third-order plant

The third-order plant

Gp = 1

(s + 1)3

is an example of a plant of higher order (greater than two). For the PID gains, we reuse
the gains found earlier by Ziegler–Nichols tuning (Chapter 4):

Kp = 4.8

1

Ti

= 8

15

Td = 15

32



156 STABILITY ANALYSIS BY DESCRIBING FUNCTIONS

−2 −1 0 1 2
−2

−1

0

1

2
Kp = 4.8, Ti = 15/8, Td = 15/32

Quantizer
Saturation
Deadzone
Linear

Figure 7.9: Nyquist diagram for the plant 1/(s + 1)3 with four FPD+I controllers. (figdf.m)

The equivalent fuzzy gains are

GE = 100

GCE = Td ∗ GE = 46.9

GIE = 1

Ti

∗ GE = 53.3

GU = Kp

GE
= 0.048

Thus, the linear fuzzy PD+I controller acts like a summation, as long as there is no
saturation in the input universes. The expression for the describing function is given in
Equation (7.5).

The plot in Figure 7.9 shows the Nyquist diagram with the four controllers inserted
in the loop. Only a portion of the plot is shown in order to study the behaviour as the
Nyquist curve passes by the sensitivity circle. The frequency increases from ω = 0.1 to
ω = 100, and the direction of increasing frequency is towards the origin (0, 0). The integrals
for the Fourier coefficients are evaluated by means of numerical integration (rectangular
integration).

The figure shows that the linear FPD+I controller touches the sensitivity circle tangen-
tially. The deadzone controller cuts through the sensitivity circle, while its opposite, the
saturation controller, has the best robustness of all four controllers. The quantizer is less
robust than the linear controller. For lower frequencies, the saturation controller provides
the most phase margin.

In this case, the saturation controller performs better than the linear controller.

Double integrator plant

The double integrator plant

Gp = 1

s2
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is an example of a plant with integration. Thus a PD controller is sufficient, and by hand-
tuning we arrive at the gains

Kp = 0.5

1

Ti

= 0

Td = 1

The equivalent fuzzy gains are

GE = 100

GCE = Td ∗ GE = 100

GIE = 0

GU = Kp

GE
= 0.05

We use a fuzzy PD controller (without integral action), and the expression for the describing
function is given in Equation (7.8).

The plot in Figure 7.10 shows the Nyquist diagram with the four surfaces. The deadzone
controller provides the worst robustness, while the other three provide almost the same
robustness. At lower frequencies, however, the saturation controller provides the most
robustness.

In this case the saturation controller performs better than the linear controller.

Time delay plant

The FODT plant

Gp = e−2s

s + 1
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Figure 7.10: Nyquist diagram for the plant 1/s2 with four FPD controllers. (figdf.m)
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is an example of a plant with a time delay. In order to simulate the system, the time delay is
approximated by a polynomial, the first-order Pade approximation (e.g. the function pade
in Matlab),

e−2s ≈ −s + 1

s + 1
The plant requires integral action in order to remove steady state error, and by hand-tuning,

Kp = 0.5

1

Ti

= 1

Td = 0.25

The equivalent fuzzy gains are

GE = 100

GCE = Td ∗ GE = 25

GIE = 1

Ti

∗ GE = 100

GU = Kp

GE
= 0.05

The expression for the describing function is given in Equation (7.8).
The plot in Figure 7.11 shows the Nyquist diagram with the four controllers. The figure

shows that the deadzone controller again provides the worst robustness, while the saturation
controller provides the best robustness, but the differences are minor.

In this case, the saturation controller again performs better than the linear controller.

Oscillatory modes

The plant

Gp = 25

(s + 1)(s2 + 25)
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−2

−1

0

1

2
Kp = 4.8, 1/Ti = 1, Td = 0.46875

Quantizer
Saturation
Deadzone
Linear

Figure 7.11: Nyquist diagram for the plant e−2s/(s + 1) with four FPD+I controllers.
(figdf.m)
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is an example of a plant with two undamped poles on the imaginary axis (±j5) causing an
oscillatory response. Apart from these two poles, the system is simply a first-order system.
It can be controlled by a PI controller with the parameters (Åström and Hägglund 1995)

Kp = −0.25

1

Ti

= −1

The equivalent fuzzy gains are

GE = 100

GCE = 0

GIE = 1

Ti

∗ GE = −100

GU = Kp

GE
= −0.0025

The expression for the describing function is given in Equation (7.8) with a1 = 0.
The plot in Figure 7.12 shows the Nyquist diagram with the four controllers. The figure

shows that in this case the deadzone controller provides the best robustness, whereas the
saturation controller provides the worst robustness.

The deadzone controller does not dampen the oscillations, however, and it causes limit
cycling (see the following text).

Limit cycle

The describing function depends on amplitude, but the preceding diagrams were all based
on the amplitude A = 1. The diagrams change with a change in the amplitude of the input
sinusoid. For example, consider the third-order plant

Gp = 1

(s + 1)3

−2 −1 0 1 2
−2

−1

0

1

2
Kp = 0.25, 1/Ti = 1, Td = 0

Quantizer
Saturation
Deadzone
Linear

Figure 7.12: Nyquist diagram for the plant 25/(s + 1)(s2 + 25) with four fuzzy PI con-
trollers. (figdf.m)
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with the settings, as before,

Kp = 0.5

1

Ti

= 0

Td = 1

and the equivalent fuzzy gains

GE = 100

GCE = Td ∗ GE = 100

GIE = 0

GU = Kp

GE
= 0.05

However, now the amplitude is chosen to be

A = 0.45

Figure 7.13 shows that the Nyquist diagram has moved closer to the critical point. In
fact, the Nyquist curve corresponding to the deadzone surface passes through the critical
point, indicating a limit cycle, and therefore the plot predicts a limit cycle with an amplitude
of 0.45. The frequency corresponding to the frequency at the intersection of the critical
point is ω = 1.04 rad/ s or 0.17 Hz (obtained from the run that produced the plot). The
remaining three surfaces are more robust.

Figure 7.14 shows the step response with the deadzone controller, and indeed, a limit
cycle is present. Closer inspection of the plot reveals that its amplitude is 0.46 (0.45
predicted) and its frequency is 0.17 Hz (0.17 Hz predicted).

The accuracy depends on whether the input to the nonlinearity is sinusoidal, or in other
words, whether the filtering hypothesis is satisfied. The reference is constant, except for
the initial step, and therefore the error signal has the shape of the controlled output y

(Figure 7.14, upper left), which in fact looks sinusoidal by inspection.

−2 1 0 1 2
−2

−1

0

1

2
Kp = 4.8, 1/Ti = 0.53333, Td = 0.46875, A = 0.45

Quantizer
Saturation
Deadzone
Linear

Figure 7.13: Nyquist diagram for the plant 1/(s + 1)3 with four FPD+I controllers and
amplitude A = 0.45. (figdf.m)



STABILITY ANALYSIS BY DESCRIBING FUNCTIONS 161

0 20 40 60
0

0.5

1

1.5

2

C
on

tr
ol

le
d 

ou
tp

ut
 y

0 20 40 60
−2

0

2

4

6

C
on

tr
ol

 s
ig

na
l u

Seconds

−100
0

100

−100

0

100
−200

0

200

ece

u

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

Input family: Neg, Zero, Pos

M
em

be
rs

hi
p

Figure 7.14: Step response (left column) of the plant 1/(s + 1)3 with a deadzone FPD
controller (right column). The dotted line (left) is the response with the equivalent PD
controller. (figlimcyc.m)

The example shows that it was possible to predict a limit cycle, and that the deadzone
surface in this case was less robust than the three other standard control surfaces. The
predicted amplitude and frequency were quite accurate.

7.6 Analytical Derivation of the Describing Function*

It is possible to analytically derive the describing functions for the nonlinear standard control
surfaces. Under the given conditions, formulated as design rules earlier, the Fourier inte-
grals can be evaluated. We can therefore assess the accuracy of the numerically calculated
frequency responses.

Assumptions

The following checklist summarizes the five conditions, formulated as design choices, under
which the four surfaces are built:

1. Use triangular premise sets that cross at membership µ = 0.5.

2. Build a rule base containing all possible ∧-combinations of the premise terms.

3. Use multiplication (∗) for the ∧-connective.

*Can be skipped in a first reading.
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4. Use conclusion singletons, positioned at the sum of the peak positions of the premise
sets.

5. Use sum-accumulation and COGS defuzzification.

For the nonlinear rule bases, item 1 is relaxed such that the premise sets are smooth
versions of triangular sets that cross at µ = 0.5. Under these assumptions, we were able to
analytically simplify the inference procedure, and this enables the analytical derivation of
the describing functions.

Saturation surface

The saturation surface (Figure 7.7) is based on the rule base with four rules:

If error is Neg and change in error is Neg then control is NB

If error is Neg and change in error is Pos then control is Zero

If error is Pos and change in error is Neg then control is Zero

If error is Pos and change in error is Pos then control is PB

and it was shown (Chapter 3) that the inferred controller output can be written directly as

u = (PE + PCE − 1) ∗ sPB (7.11)

The symbol PE is shorthand notation for µPos(GE ∗ e), the membership of error signal E =
GE ∗ e of fuzzy set Pos; PCE is shorthand notation for µPos(GCE ∗ se), the membership of
the change in error signal CE = GCE ∗ se of fuzzy set Pos; and sPB is shorthand notation
for 〈sPB, 1〉, the singleton corresponding to the conclusion PB. The value of sPB is 200
when standard universes are used. The expression is valid even for nonlinear membership
functions µPos and µNeg, as long as µPos(x) + µNeg(x) = 1. Therefore, we can evaluate the
Fourier integrals as a sum of integrals.

Take the in-phase coefficient first:

b1 = 1

π

∫ 2π

0
F(e, se) sin(ωt) d(ωt)

= 1

π

∫ 2π

0
(PE + PCE − 1) ∗ sPB ∗ GU ∗ sin(ωt) d(ωt)

= 1

π

∫ 2π

0

(
PE − 1

2

)
∗ sPB ∗ GU ∗ sin(ωt) d(ωt)

+ 1

π

∫ 2π

0

(
PCE − 1

2

)
∗ sPB ∗ GU ∗ sin(ωt) d(ωt)

We notice in passing that the integral related to PCE will vanish, owing to its cosine
content. The membership function µPos is defined as a smooth trapezoidal membership
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function (Chapter 2):

µSTrapezoid(x; a, b, c, d) =






0 , x ≤ a
1
2 + 1

2 cos
(

x−b
b−a

π
)

, a ≤ x ≤ b

1 , b ≤ x ≤ c
1
2 + 1

2 cos
(

x−c
d−c

π
)

, c ≤ x ≤ d

0 , d ≤ x






, x ∈ R

with the breakpoints a = −100, b = 100, c = 100, and d = 100. Using the standard uni-
verse U = [−100, 100], the fuzzy set Pos is thus defined by the membership function

µPos(x) = 1

2
+ 1

2
cos

(
x − 100

100 − (−100)
π

)

= 1

2
+ 1

2
sin

(
π

x

200

)

which is valid for the whole universe −100 ≤ x ≤ 100. Observe that the describing function
for a sinusoidal (harmonic) nonlinearity can be looked up in a table.

The membership function µNeg is defined as a smooth trapezoidal membership function,
with the breakpoints a = −100, b = −100, c = −100, and d = 100. Thus,

µNeg(x) = 1

2
+ 1

2
cos

(
x + 100

100 − (−100)
π

)

= 1

2
− 1

2
sin

(
π

x

200

)

Indeed, the condition µPos(x) + µNeg(x) = 1 is satisfied, since the sinusoidal terms cancel
each other after summation.

We inject a sinusoidal input signal e = A sin(ωt), 0 ≤ ωt ≤ 2π . Since E = GE ∗ e,
and CE = GCE ∗ se, their firing strengths are PE = 1/2 + 1/2 sin(π ∗ GE ∗ e/200) and
PCE = 1/2 + 1/2 sin(π ∗ GCE ∗ se/200). Thus,

b1 = 1

π

∫ 2π

0

1

2
sin

(
π ∗ GE ∗ e

200

)
∗ sPB ∗ GU ∗ sin(ωt) d(ωt)

+ 1

π

∫ 2π

0

1

2
sin

(
π ∗ GCE ∗ se

200

)
∗ sPB ∗ GU ∗ sin(ωt) d(ωt)

= sPB ∗ GU ∗ 1

π

∫ 2π

0

1

2
sin

(
π ∗ GE ∗ e

200

)
∗ sin(ωt) d(ωt)

= sPB ∗ GU ∗ 1

π

∫ 2π

0

1

2
sin

(
π ∗ GE

200
A sin(ωt)

)
∗ sin(ωt) d(ωt)

The integral occurs in the evaluation of the describing function for the harmonic nonlinearity
(Atherton 1975), and we directly get

b1 = sPB ∗ GU ∗ J1

(
π

2

GE

100
A

)
, −100 ≤ GE ∗ A ≤ 100
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Here J1 is the so-called Bessel function of order 1, defined as the solution to the integral

J1(x) = 1

2π

∫ 2π

0
cos(ωt − x sin(ωt)) d(ωt)

= 1

2π

∫ 2π

0
[sin(ωt) sin(x sin(ωt)) + cos(ωt) cos(x sin(ωt))] d(ωt)

Its power series expansion is (see also the Matlab function besselj),

J1(x) = x

2
− x3

23 ∗ 1!2!
+ x5

25 ∗ 2!3!
− x7

27 ∗ 3!4!
+ x9

29 ∗ 4!5!
− · · ·

We have only considered amplitudes within the operating region −100 ≤ GE ∗ A ≤ 100,

that is, we assume there is no saturation in the input universe. It is possible to include
larger amplitudes also (compare the introductory example of an ideal saturation), but it will
complicate the expressions.

For the quadrature coefficient, we get

a1 = 1

π

∫ 2π

0

1

2
sin

(
π ∗ GE ∗ e

200

)
∗ sPB ∗ GU ∗ cos(ωt) d(ωt)

+ 1

π

∫ 2π

0

1

2
sin

(
π ∗ GCE ∗ se

200

)
∗ sPB ∗ GU ∗ cos(ωt) d(ωt)

= sPB ∗ GU ∗ 1

π

∫ 2π

0

1

2
sin

(
π ∗ GCE ∗ se

200

)
∗ cos(ωt) d(ωt)

= sPB ∗ GU ∗ 1

π

∫ 2π

0

1

2
sin

(
π ∗ GCE

200
ωA cos(ωt)

)
∗ cos(ωt) d(ωt)

The integral corresponds to injecting a cosine with a frequency dependent amplitude ωA

into the harmonic nonlinearity. The solution is

a1 = sPB ∗ GU ∗ J1

(
π

2

GCE

100
ωA

)
, −100 ≤ GCE ∗ ωA ≤ 100

Again, we have excluded, for simplicity, amplitudes where the signal saturates in the input
universe.

We can now write the describing function in the form of Equation (7.4):

N(A, s) = b1

A
+ a1

A

1

ω
s

= sPB ∗ GU ∗ 1

A
∗ J1

(
π

2

GE

100
A

)

+sPB ∗ GU ∗ 1

ωA
∗ J1

(
π

2

GCE

100
ωA

)
∗ s

valid for
−100 ≤ GE ∗ A ≤ 100 and − 100 ≤ GCE ∗ ωA ≤ 100
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with J1(x) being the Bessel function of order 1 given above. The frequency response
appears after the substitution s = jω :

N(A, jω) = b1

A
+ j

a1

A

= 1

A
∗ sPB ∗ GU ∗

[
J1

(
π

2

GE

100
A

)
+ j ∗ J1

(
π

2

GCE

100
ωA

)]

A comparison with the frequency response in Figure 7.5, with sPB = 200, GU = 0.1,

GE = 100, GCE = 100, A = 1, and 0.1 ≤ ω ≤ 1, showed negligible deviations in the order
of 10−15.

Deadzone surface

The deadzone surface (Figure 7.8) is based on the rule base with nine rules, and it was
shown (Chapter 3) that under the above assumptions, the inferred controller output can be
written directly as

u = 1

2
(PE − NE + PCE − NCE) sPB

Singleton sPB = 200 when standard universes are used. The expression is valid even
for nonlinear fuzzy membership functions µPos, µZero and µNeg, as long as µPos(x) +
µZero(x) + µNeg(x) = 1.

The membership function µPos is a smooth trapezoidal membership function with the
breakpoints a = 0, b = 200, c = 200, and d = 200, and

µPos(x) =

{
1 + cos

(
x−200
200−0 π

)

= 1 − cos
(

x
100

π
2

)

}

for 0 ≤ x ≤ 100

0 for − 100 ≤ x < 0

The membership function µZero is a smooth trapezoidal membership function with the
breakpoints a = −200, b = 0, c = 0, and d = 200, and

µZero(x) = cos
(

x
100

π
2

)
for − 100 ≤ x ≤ 100

The membership function µNeg is a smooth trapezoidal membership function with the
breakpoints a = −200, b = −200, c = −200, and d = 0.

µNeg(x) =

{
1 + cos

(
x−(−200)
0−(−200)

π
2

)

= 1 − cos
(

x
100

π
2

)

}

for − 100 ≤ x ≤ 0

0 for 0 < x ≤ 100

It is clear that indeed µPos(x) + µZero(x) + µNeg(x) = 1.



166 STABILITY ANALYSIS BY DESCRIBING FUNCTIONS

Now we can proceed with the Fourier coefficients. Take the in-phase coefficient first:

b1 = 1

π

∫ 2π

0
F(e, se) sin(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PE − NE + PCE − NCE) sPB ∗ GU ∗ sin(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PE − NE)sPB ∗ GU ∗ sin(ωt) d(ωt)

The problem can be restated as that of finding the Fourier expansion for a nonlinearity of
the form sgn(x)

[
1 − cos

(
x

100
π
2

)]
, where sgn is the signum function, which is −1 if x is

negative and 1 otherwise. This is not straightforward, and therefore we resort to the power
series expansion. Owing to symmetry, we can shrink the integration limit to π/2, and

b1 = 1

π
4

∫ π/2

0

1

2
PE ∗ sPB ∗ GU ∗ sin(ωt) d(ωt)

= sPB ∗ GU ∗ 2

π

∫ π/2

0

(
1 − cos

(
GE ∗ A sin(ωt)

100

π

2

))
∗ sin(ωt) d(ωt)

The cosine power series expansion is

cos ϕ ≈ 1 − ϕ2

2!
+ ϕ4

4!
− ϕ6

6!
+ ϕ8

8!
− · · · (7.12)

Thus the integral becomes an alternating series of powers of sinusoids of equal frequency,
which makes integration feasible, although it is an approximation. The error is arbitrarily
small, however; it depends on the number of terms included in the series expansion, and the
error increases as the magnitude of ϕ increases. For the eighth-degree polynomial shown,
and the worst case where the amplitude of the sinusoidal input is maximum (ϕ = ±π/2),
the error is 2.5 ∗ 10−5. With ϕ = GE ∗ A ∗ π/200 ∗ sin(ωt) = Ab sin(ωt), the coefficient
is approximately

b1 ≈ sPB ∗ GU ∗ 2

π

∗
∫ π/2

0

(
1 −

(
1 − ϕ2

2!
+ ϕ4

4!
− ϕ6

6!
+ ϕ8

8!

))
sin(ωt) d(ωt)

= sPB ∗ GU ∗ 2

π

∫ π/2

0

(
ϕ2

2!
+ ϕ4

4!
− ϕ6

6!
+ ϕ8

8!

)
sin(ωt) d(ωt)

Insertion of the value ϕ = Ab sin(ωt) and evaluation is a complex task and prone to error,
and we shall resort to a symbolic math package (Maple, trademark of Waterloo Maple Inc).
Thus,

b1 ≈ sPB ∗ GU ∗ 2

π

(
1

3
A2

b − 1

45
A4

b + 1

1575
A6

b − 1

99 225
A8

b

)
,
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with

Ab = GE ∗ A

100

π

2
and

−100 ≤ GE ∗ A ≤ 100

We have added the last constraint to avoid considering saturation in the input universe, for
simplicity.

The quadrature coefficient is

a1 = 2

π

∫ 2π

0
F(e, se) cos(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PE − NE + PCE − NCE) ∗ sPB ∗ GU ∗ cos(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PCE − NCE) ∗ sPB ∗ GU ∗ cos(ωt) d(ωt)

= sPB ∗ GU ∗ 2

π

∫ π/2

0
PCE cos(ωt) d(ωt)

The membership function PCE is the same as PE , but the input to the nonlinearity is now
ϕ = GCE ∗ se = GCE ∗ π/200 ∗ ωA cos(ωt) = Aa cos(ωt). Therefore, we can approxi-
mate

a1 ≈ sPB ∗ GU ∗ 2

π

∫ π/2

0

(
ϕ2

2!
+ ϕ4

4!
− ϕ6

6!
+ ϕ8

8!

)
cos(ωt) d(ωt)

Using the symbolic math package, with ϕ = Aa cos(ωt), we have

a1 ≈ sPB ∗ GU ∗ 1

π

(
1

3
A2

a − 1

45
A4

a + 1

1575
A6

a − 1

99 225
A8

a

)
,

with

Aa = GCE ∗ ωA

100

π

2
and

−100 ≤ GCE ∗ ωA ≤ 100

We have added the last constraint to avoid considering saturation in the input universe, for
simplicity.

Summarizing, we can write the describing function in the form of Equation (7.4):

N(A, s) = b1

A
+ a1

A

1

ω
s (7.13)

= 1

A
∗ sPB ∗ GU ∗ 2

π
∗ S(Ab)

+ 1

ωA
∗ sPB ∗ GU ∗ 2

π
∗ S(Aa) ∗ s
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with

S(z) = z2

3
− z4

45
+ z6

1575
− z8

99 225

Ab = GE ∗ A

100

π

2

Aa = GCE ∗ ωA

100

π

2

The describing function is valid for

−100 ≤ GE ∗ A ≤ 100 and − 100 ≤ GCE ∗ ωA ≤ 100

The frequency response appears after the substitution s = jω :

N(A, jω) = b1

A
+ j

a1

A

= 1

A
∗ sPB ∗ GU ∗ 2

π
∗ (S(Ab) + jS(Aa))

A comparison with the frequency response in Figure 7.5, with sPB = 200, GU = 0.1, GE =
100, GCE = 100, A = 1, and 0.1 ≤ ω ≤ 1, showed a maximum deviation of 0.0013 %,
regarding both magnitude and phase.

Quantizer surface

The quantizer surface (Figure 7.8) is based on the rule base with nine rules, and again we
exploit the fact that the inferred controller output can be written directly as

u = 1

2
(PE − NE + PCE − NCE) sPB

Singleton sPB = 200 when standard universes are used. The expression is valid even
for nonlinear fuzzy membership functions µPos, µZero and µNeg, as long as µPos(x) +
µZero(x) + µNeg(x) = 1.

The membership function µPos is a smooth trapezoidal membership function with the
breakpoints a = 0, b = 100, c = 100, and d = 100 :

µPos(x) =






1
2 + 1

2 cos
(

x−100
100−0 π

)

= 1
2 − 1

2 cos
(

x
100π

)

= sin2 (
π
2

x
100

)





for 0 ≤ x ≤ 100

0 for − 100 ≤ x < 0

The double angle relationship cos 2α = 1 − 2 sin2 α was applied in the above calculation.
The membership function µZero is a smooth trapezoidal membership function with the
breakpoints a = −100, b = 0, c = 0, and d = 100,

µZero(x) =
{

1
2 + 1

2 cos
(

x
100π

)

= cos2
(

π
2

x
100

)

}

for − 100 ≤ x ≤ 100
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Another double angle relationship cos 2α = 2 cos2 α − 1 was applied above. The mem-
bership function µNeg is a smooth trapezoidal membership function with the breakpoints
a = −100, b = −100, c = −100, and d = 0.

µNeg(x) =






1
2 + 1

2 cos
(

x−(−100)
0−(−100)

π
)

= 1
2 − 1

2 cos
(

x
100π

)

= sin2 (
π
2

x
100

)





for − 100 ≤ x ≤ 0

0 for 0 < x ≤ 100

By the Pythagorean relation sin2 α + cos2 α = 1, it is clear that indeed µPos(x) + µZero(x) +
µNeg(x) = 1.

Now we can proceed with the Fourier coefficients. Take the in-phase coefficient first:

b1 = 1

π

∫ 2π

0
F(e, se) sin(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PE − NE + PCE − NCE) sPB ∗ GU ∗ sin(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PE − NE)sPB ∗ GU ∗ sin(ωt) d(ωt)

The problem can be restated as that of finding the Fourier expansion for a nonlinearity
of the form sgn(x)

[ 1
2 − 1

2 cos
(

x
100π

)]
, where sgn is the signum function. This is not

straightforward, and therefore we resort to power series expansion. Owing to symmetry,
we can shrink the integration limit to π/2, and

b1 = 1

π
4

∫ π/2

0

1

2
PE ∗ sPB ∗ GU ∗ sin(ωt) d(ωt)

= sPB ∗ GU ∗ 2

π

∫ π/2

0

(
1

2
− 1

2
cos

(
GE ∗ A sin(ωt)

100
π

))
∗ sin(ωt) d(ωt)

Using the cosine power series expansion again (Equation (7.12)) and with ϕ = GE ∗ A sin
(ωt)π/100 = Ab sin(ωt), the coefficient is approximately

b1 ≈ sPB ∗ GU ∗ 2

π

∗
∫ π/2

0

(
1

2
− 1

2

(
1 − ϕ2

2!
+ ϕ4

4!
− ϕ6

6!
+ ϕ8

8!

))
sin(ωt) d(ωt)

= sPB ∗ GU ∗ 1

π

∫ π/2

0

(
ϕ2

2!
− ϕ4

4!
+ ϕ6

6!
− ϕ8

8!

)
sin(ωt) d(ωt)

We have evaluated the integral earlier, and get

b1 ≈ sPB ∗ GU ∗ 1

π

(
1

3
A2

b − 1

45
A4

b + 1

1575
A6

b − 1

99 225
A8

b

)
,
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with

Ab = GE ∗ A

100
π

and
−100 ≤ GE ∗ A ≤ 100

We have added the last constraint to avoid considering saturation in the input universe, for
simplicity.

The quadrature coefficient is

a1 = 1

π

∫ 2π

0
F(e, se) cos(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PE − NE + PCE − NCE) ∗ sPB ∗ GU ∗ cos(ωt) d(ωt)

= 1

π

∫ 2π

0

1

2
(PCE − NCE) ∗ sPB ∗ GU ∗ cos(ωt) d(ωt)

= sPB ∗ GU ∗ 2

π

∫ π/2

0
PCE cos(ωt) d(ωt)

The membership functions PCE is the same as PE , but the input to the nonlinearity is now
ϕ = GCE ∗ ωA cos(ωt)π/100 = Aa cos(ωt). Therefore, we can approximate

a1 ≈ sPB ∗ GU ∗ 1

π

∫ π/2

0

(
ϕ2

2!
− ϕ4

4!
+ ϕ6

6!
− ϕ8

8!

)
cos(ωt) d(ωt)

with x = ωAa cos(ωt). Using the symbolic math package,

a1 ≈ sPB ∗ GU ∗ 1

π

(
1

3
A2

a − 1

45
A4

a + 1

1575
A6

a − 1

99 225
A8

a

)
,

with

Aa = GCE ∗ ωA

100
π

and
−100 ≤ GCE ∗ ωA ≤ 100

We have added the last constraint to avoid considering saturation in the input universe, for
simplicity.

Summarizing, the describing function is

N(A, s) = b1

A
+ a1

A

1

ω
s (7.14)

= 1

A
∗ sPB ∗ GU ∗ 1

π
∗ S(Ab)

+ 1

ωA
∗ sPB ∗ GU ∗ 1

π
∗ S(Aa) ∗ s
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with

S(z) = z2

3
− z4

45
+ z6

1575
− z8

99 225

Ab = GE ∗ A

100
π

Aa = GCE ∗ ωA

100
π

The describing function is valid for

−100 ≤ GE ∗ A ≤ 100 and − 100 ≤ GCE ∗ ωA ≤ 100

The frequency response appears after the substitution s = jω,

N(A, jω) = b1

A
+ j

a1

A

= 1

A
∗ sPB ∗ GU ∗ 1

π
∗ (S(Ab) + jS(Aa))

A comparison with the frequency response in Figure 7.5, with sPB = 200, GU = 0.1,

GE = 100, GCE = 100, A = 1, and 0.1 ≤ ω ≤ 1, showed a maximum deviation of 0.54
% for both magnitude and phase.

Comparing the describing function of the quantizer with that of the deadzone (see
Equations (7.13) and (7.14)), we find the expressions are identical. But the constants Aa, Ab

for the quantizer are larger than the ones for the deadzone by a factor of two.

7.7 Summary

While stability of a linear system rests on a single concept, namely, the eigenvalues, the
stability of a nonlinear system is more complex. The describing function of a nonlinearity is
a simplification, a linear approximation to a transfer function. It enables a Nyquist analysis,
which is convenient, because one single plot shows whether the closed-loop system is stable,
and it shows the stability margin. It was thus possible to assess the relative robustness of
the standard control surfaces: the linear, the deadzone, the saturation, and the quantization
surfaces.

Since it is an approximation, the results may be inaccurate in certain cases. The appli-
cability of the describing functions depends mainly on whether the input to the nonlinearity
is really sinusoidal, during closed loop operation; this is not the case if, for instance, the
reference varies in a non-sinusoidal manner. The results in the chapter are valid for sym-
metric, odd functions only. Non-symmetric control surfaces, for instance, one generated by
an SOC mechanism, result in a non-zero average term in the Fourier series. This is a case
for future research.

The describing functions are a step towards an answer to the more general question,
What kind of control surface suits which kind of plant?
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7.8 Notes and References

Aracil and Gordillo (2003) show in an article how describing functions may be applied to
a saturation type of FPD controller, and Gordillo et al. (1997) examine the same relative
to a quantizer type of controller. The article by Cuesta et al. (1999) is more rigorous.

For an easy introduction to describing functions, see the book by Slotine and Li (1991).
For an impressive in-depth exposition, see Atherton (1975, 1982). Another option is the
book by Gelb and Vander Velde (1968) available on the World Wide Web. Treatments of
dynamic nonlinearities are sparse, but Šiljak (1969, p 126) mentions functions of the form
F(x, ẋ), and Gelb and Vander Velde show the proportional plus derivative form of the
describing function (1968, Ch. 2, Eq. 2.2–30).

Kickert and Mamdani (1978) attempted to apply describing functions on a fuzzy con-
troller seen as a multi-level relay.



8

Simulation Study: Cart–Ball
Balancer

The simulation study in this chapter concerns a controller for balancing a steel ball on a
cart. The ball balancer, or cart–ball system is a demonstration of the basic concepts of
a nonlinear, multivariable, and non-minimum phase control. It is an inverted pendulum
problem, which is a widely used benchmark problem.

In this chapter, a linear controller stabilizes the ball balancer. With certain design
choices, a fuzzy controller is equivalent to a summation, and thus it can replace the linear
controller. The design approach makes it somewhat easier to design a fuzzy controller.

8.1 Laboratory Rig

Figure 8.1 shows the cart–ball system with the cart, and an arc made of two parallel pipes
on which a steel ball rolls. The cart moves on a pair of tracks horizontally mounted on a
heavy support. The control objective is to balance the ball on the top of the arc and at the
same time place the cart in a desired position.

The controller design will be based on a linearized model of the system,

ẋ̇ẋx = AAAx + BBBu (8.1)

y = CCCx

The model is a linear state-space model, where x is a vector of state variables, ẋ̇ẋx is a vector
of time derivatives dx/dt , u is a vector of inputs to the system, and y is a vector of output
variables. The matrices AAA,BBB, and CCC are matrices of appropriate dimensions containing real
numbers. We will develop a mathematical model from first principles, the basic laws of
physics, and then linearize the model.

The laboratory rig is 1.5 m long, and is equipped with power supply and equipment for
both analog and digital control. By pushing the cart left and right manually, it is possible
to get the ball near the top of the arc, but it is impossible to position the cart at a particular
position at the same time.

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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Figure 8.1: Laboratory rig. The cart moves back and forth, at the command of a controller,
in order to balance the ball.

− 5 V + 5 V

Figure 8.2: Measurement of the ball’s position. The steel ball acts as a voltage divider.

However, an automatic-controller system is capable of achieving this balance. The
position of the cart and angle of the ball from the vertical are measured variables, and the
manipulated variable is the horizontal force acting on the cart.

The ball rolls on two curved pipes: one is made of aluminium, while the other is a coil
of resistance wire. The angle of the ball from the vertical is determined by measuring its
position on the pipes. The ball, being made of steel, connects the pipes electrically, and
acts as a voltage divider, producing a voltage proportional to the position (Figure 8.2).

The position of the cart is measured the same way using a carbon wheel contact,
mounted on the cart, which rolls on a coil alongside the rails.

The rails are cylindrical bars mounted on the support, and the wheels of the cart are
small, low-friction ball-bearings that roll on the bars. A wire pulls the cart, passing over a
pulley at one end and a wire drum at the other end, both attached to the support. The wire
drum is driven by a current-driven direct current (DC) print-motor. Although the motor is
current-driven, we assume that the voltage is proportional to the current and in turn that
the force is proportional to the current. This is an approximation, but it is a relatively fast
DC motor with small electrical and mechanical time-constants.

8.2 Mathematical Model

The current to the motor is a function of the controlled variables y, ẏ, ϕ, and ϕ̇, where y

is the position of the cart and ϕ is the angular deviation from the vertical of the position
of the ball. The velocity signals are not directly measured, but obtained by differentiation
in operational amplifiers.
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R

r1

r

y

j

j mg

F

y

H

V

Figure 8.3: Definition of symbols and directions.

All directions are assumed positive towards the right. We apply the basic physical
equations related to the vertical reaction force V and the horizontal reaction force H .
Friction forces are neglected. The symbols are defined in Figure 8.3.

By Newton’s second law, the horizontal movement of the ball is

m
d2

dt2

[
y + (R + r) sin ϕ

] = H (8.2)

the vertical movement of the ball is

m
d2

dt2
[(R + r) cos ϕ] = V − mg (8.3)

the rotational movement of the ball is

I ψ̈ = r (V sin ϕ − H cos ϕ) (8.4)

and the horizontal movement of the cart is

Mÿ = F − H (8.5)

The geometrical relationship between ϕ and ψ is

ϕR = r (ψ − ϕ) ⇔ ψ = R + r

r
ϕ (8.6)

The variables ψ, V , and H can be eliminated from Equations (8.2)–(8.6), yielding two
second-order differential equations in ϕ and y:

(M + m) ÿ = −m (R + r)
(
ϕ̈ cos ϕ − ϕ̇2 sin ϕ

) + F (8.7)

I
R + r

r
ϕ̈ = mr (R + r)

(−ϕ̈ sin2 ϕ − ϕ̇2 cos ϕ sin ϕ
)

(8.8)

+mgr sin ϕ + Mrÿ cos ϕ − Fr cos ϕ
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They are nonlinear owing to the trigonometric functions. They are coupled such that ÿ

appears on the left side of (8.7) and on the right side of (8.8), and the converse is true of
ϕ̈. According to the first equation, the force F directly affects the acceleration of the cart
ÿ, which is also affected by the ball. According to the second equation, the force causes
a torque Fr cos ϕ on the ball, affecting the angular acceleration of the ball directly. The
acceleration of the cart ÿ also affects the angular acceleration of the ball.

We linearize at this point by introducing the following approximations:

cos ϕ ≈ 1, sin ϕ ≈ ϕ, cos2 ϕ ≈ 1, sin2 ϕ ≈ 0, ϕ̇2 ≈ 0 (8.9)

with |ϕ| ≤ 0.22 rad. Consequently, we achieve a reduced system of equations:

(M + m) ÿ = −m (R + r) ϕ̈ + F

I
R + r

r
ϕ̈ = mgrϕ + Mrÿ − Fr

After rearranging,

ÿ = − m2r2g

MI + mI + mr2M
ϕ + mr2 + I

MI + mI + mr2M
F

ϕ̈ = mr2g (M + m)

(R + r)
(
MI + mI + mr2M

)ϕ − mr2

(R + r)
(
MI + mI + mr2M

)F

and introducing the substitution variables,

a = − m2r2g

MI + mI + mr2M

b = mr2 + I

MI + mI + mr2M

c = mr2g (M + m)

(R + r)
(
MI + mI + mr2M

)

d = − mr2

(R + r)
(
MI + mI + mr2M

)

and the state variables x1 = y, x2 = ẏ, x3 = ϕ, and x4 = ϕ̇, a simple linear state-space
model emerges:

ẋ1 = ẏ

ẋ2 = aϕ + bF

ẋ3 = ϕ̇

ẋ4 = cϕ + dF

or, in matrix form,

ẋ̇ẋx =







0 1 0 0
0 0 a 0
0 0 0 1
0 0 c 0





 x+







0
b

0
d





 u (8.10)
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The input u comprises just one input, the driving force F , which can be substituted by the
voltage U to the motor, as their relationship is 1 V to 1 N; this is how the motor and the
gear were designed.

With the data in Table 8.1 the actual values of the constants are

〈a, b, c, d〉 = 〈−1.34, 0.301, 14.3, −0.386〉 (8.11)

A signal flow graph provides an overview. Given a state-space model with matrices
containing zeros and non-zero elements, the flow of the signals can be mapped into a
directed graph, or digraph; the digraph portrays the couplings in the model (Figure 8.4).

The node set is given by one input node and four state nodes; the arc set is given by
the non-zero entries in the matrices, that is, if aij �= 0, then there exists an arc from the
j th state node to the ith state node; if bij �= 0, then there exists an arc from the j th input
node to ith state node. The numbers aij and bij are assigned to the arcs as weights. Each
weight aij and bij is implicitly associated with an integration as well.

Table 8.1: Physical data for the cart–ball rig.

Object Measure Symbol Ratings

Cart Length 0.35 [ m]
Width 0.12 [ m]
Radius of the arc R 0.50 [ m]
Mass (including equivalent mass
of motor and transmission) M 3.1 [ kg]

Ball Maximum angle ϕ ±0.22 [ rad]
Radius r1 0.0275 [ m]
Rolling radius r 0.025 [ m]
Mass m 0.675 [ kg]
Moment of inertia, 2

5mr2
1 I 0.204 ∗ 10−3 [ kg m2]

Support Bar length 1.4 [ m]
Bar diameter 0.025 [ m]
Motor power Max 21 [ W]
Motor voltage U Max 13 [ V]
Motor transmission ratio U :F 1:1
Motor speed 3700 [r.p.m.]
Gravity g 9.81 [ m/ s−2]

y
.

y

F

j j
.

Figure 8.4: Signal flow in the state-space model.
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A feedback connection from the node ϕ to the input node F will create a loop ϕ −
F − ϕ̇ − ϕ. Alternatively, a feedback connection from the output node y to the input node
F creates a larger loop, y − F − ϕ̇ − ϕ − ẏ − y, as well as another loop, y − F − ẏ − y.

In the first case, there is no feedback from the cart {y, ẏ} to the ball {ϕ, ϕ̇}, while in the
second case, there is feedback through the ball into the cart. Therefore, a ball controller
can be designed and tuned independent of how the cart behaves, while a cart controller
will be influenced by the behaviour of the ball.

Since state-space models are not unique – a given physical plant may be modelled
by several state-space models – the digraph reflects the flow of signals in the model, and
not necessarily the physical plant itself. However, in this case, the state variables have a
physical interpretation.

The control task is to design a controller that balances the ball and places the cart in
the middle of the track, given the following initial values (Table 8.1)

x0 = [0.525 0 −0.22 0]T

The cart is thus placed at the far right end of the track: the bar length is 1.40 m, the cart
length is 0.35 m, and the position y is half the bar length minus half the cart length or
0.525 m. The ball is on the left, leaning against its endstop: the angle ϕ is negative, and
the max angle is 0.22 rad. Therefore, the controller must initially pull the cart left to get
the ball up on top.

8.3 Step 1: Design a Crisp PID Controller

To find a set of feedback gains, we shall apply state feedback control, before designing a
PID controller. A state feedback controller generates a control signal from the values of
the state variables,

F = kT x

or,
F = k1y + k2ẏ + k3ϕ + k4ϕ̇ (8.12)

The force can be viewed as having a cart component Fc and a ball component Fb, simply
by placing two sets of parentheses,

F = Fc + Fb = (k1y + k2ẏ) + (
k3ϕ + k4

.
ϕ
)

The feedback gains k1, . . . , k4 are tuning constants, and the linear control problem is the
following: to design a set of feedback gains k such that the system

ẋ̇ẋx = AAAx + BBBF (8.13)

F = kT x (8.14)

is stable. Note that at this point we approximate the real system with a linear model,
and especially that the limitation of 13 V on the motor voltage is missing in the given
formulation.

By inserting Equation (8.14) in Equation (8.13), the closed-loop system equations are
obtained:

ẋ̇ẋx = AAAx + BBBkT x = (
AAA + BBBkT

)
x
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Stability of the closed-loop system is guaranteed if all eigenvalues of the closed-loop system
matrix AAA + BBBkT are in the left half of the complex plane. A closer investigation will show
that all ks must be strictly positive (apply, for example, Routh’s stability criterion). Con-
sequently, all four state variables must be available to the controller. In the laboratory rig,
only the positions are directly measurable, but the velocities are computed electronically,
and therefore indirectly measurable.

It is important to realize that the cart has positive feedback. Since k1 must be positive,
a positive (negative) position y will generate a positive (negative) contribution Fc to the
control signal. As all directions are assumed positive towards the right, the position term of
Fc will try to push it right when it is on the right side of the centre of the track, that is, away
from the centre. Whenever Fc pushes the cart away, the ball will fall to the opposite side,
and Fb will provide a signal of opposite sign, pulling the cart back again towards the centre.

It is a tremendous task, if at all possible, to find four stabilizing gains by hand-tuning;
this is a reason for taking this detour around state-space modelling. One possibility is to
optimize the frequency response with respect to the sensitivity circle defined earlier (using
the function fminsearch in Matlab). A controller with the sensitivity Ms = 2 results
from the following values:

kT = [
21 21 194 46

]
(8.15)

Figure 8.5 shows the response of both the cart and the ball. The two control signal com-
ponents Fc and Fb are more or less in counter-phase. Other settings are possible, depending
on the choice of sensitivity, and other design methods are also possible, for example, pole
placement or optimal control (see, e.g. the lqr function in the Control Toolbox of Matlab).

We will assume

Fb = 194ϕ + 46ϕ̇,

0 1 2 3 4 5
−0.5

0

0.5

1

Times [s]
(a)

(c)

(b)

y

0 1 2 3 4 5
−0.5

0

0.5

Times [s]

f

0 1 2 3 4 5
− 50

0

50

Times [s]

F
 =

 F
c 

+ 
F

b

Figure 8.5: Response with kT = [
21 21 194 46

]
and no limitation on the control sig-

nal. The cart (a) starts at 0.525 m and settles after about 4 seconds. The ball (b) starts
at −0.22 rad and settles a little earlier. The control signal (c) is the sum of two large
components. (figpend.m)
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using the gains k3 and k4 as above, and design a PD controller for Fc on the basis of the
gains k1 and k2 as above. Using Equation (8.13), we have

ẋ̇ẋx = AAAx + BBBF

= AAAx + BBB (Fc + Fb)

= AAAx + BBB (194ϕ + 46ϕ̇) + BBBFc

For Fc, we use
Fc = Kp(e + Td ė)

which we can substitute with a fuzzy controller later. Define

e = Ref − y

With Ref = 0, corresponding to the centre of the track, substitution yields

Fc = Kp(−y + Td (−ẏ))

= −Kpy − KpTdẏ

We see that −Kp corresponds to k1 and −KpTd corresponds to k2. Therefore,

Kp = −21

Td = 1

k3 = 194

k4 = 46

Thus we have achieved a set of tuning parameters to start with.

8.4 Step 2: Replace It with a Linear Fuzzy

A linear fuzzy controller, built in accordance with the five particular design choices
(Chapter 3), with the fuzzy gains

GE = 21

GU = Kp/GE = −1

GCE = Td ∗ GE = 21

provides the same response as the PD controller dealt with earlier. The magnitude of the
position y is at most 0.525 m, and therefore the magnitude of the error E = GE ∗ e is
at most 21 ∗ 0.525 = 11, which is inside the 100-limit of the universe. For the change in
error CE = GCE ∗ ė, the magnitude of ė is at most 1.22 m/ s (from simulation), and CE
is at most 21 ∗ 1.22 = 26, which is also within the limit of the universe. Thus, there is no
saturation in the universe, and the controller is equivalent to the PD controller. We could
apply α-scaling to exploit the full universe, but it is not necessary when the controller is
linear; the main point is to avoid saturation in the premise universes.
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8.5 Step 3: Make It Nonlinear

The linear control surface can now be replaced by the nonlinear standard control surfaces
successively.

The Nyquist plot in Figure 8.6 shows the relative robustness of the four surfaces. The
linear frequency response touches the sensitivity circle, as desired. The saturation surface
is less robust, and the two remaining surfaces cut through the sensitivity circle: we can
disregard those from now on. The gain settings are as stated earlier. The linear surface is
the most robust at these settings when amplitude equals 1.

8.6 Step 4: Fine-tune It

We now go on to study the step response in the time domain, with the control action limited
by the amplifier to ±13 V or, equivalently, ±13 N. We fine-tune the gains by minimizing
the integral absolute error (IAE),

IAE =
∫

|e|dt

or rather its discrete approximation using rectangular integration. This can be done using
multi-dimensional nonlinear optimization (fminsearch again), given a function IAE =
g(GE, GCE, GU). The function g simulates a response and calculates the IAE for a given set
of tuning gains {GE, GCE, GU}. The optimizer adjusts all three gains to find the least IAE.

Figure 8.7 shows the response resulting from the linear surface, and Figure 8.8 shows
the response resulting from the saturation surface.

For the linear surface, the optimizer finds a set of gains such that there is no satu-
ration in the premise universes, and the response of the linear fuzzy is identical to the
response resulting from the equivalent PD controller. For the saturation surface, the opti-
mizer decreases the premise gains and increases the conclusion gain. The response is
almost identical to the linear surface controller, and the IAE is only slightly improved.
The optimizer chooses low values of GE, such that the control action is almost exclusively
derivative action.

−2 −1 0 1 2
−2

−1

0

1

2
Kp = −21, 1/Ti = 0, Td = 1.0048

Quantizer
Saturation
Deadzone
Linear

Figure 8.6: Nyquist plot. Cart–ball system controlled by the four standard control surfaces
with gains GE = 21, GCE = 21, and GU = −1. (figdf.m)
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Figure 8.7: Response with settings GE = 7.87, GCE = 28.9, GU = −1.07, and IAE =
0.2556. The equivalent PD controller (first column), the FPD controller (second column),
and the control surface (third column). (figpend.m)
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Figure 8.8: Response with GE = 0.464, GCE = 15.8, GU = −1.23, and IAE = 0.2541.
The equivalent PD controller (first column), the FPD controller (second column), and the
control surface (third column). (figpend.m)



SIMULATION STUDY: CART–BALL BALANCER 183

Given the IAE criterion, the optimizer approach seems to be a fair comparison of con-
trollers when there are several design factors present. In our case, the saturation surface
provides an IAE = 0.2541 compared to an IAE = 0.2556 for the linear controller. The per-
formance is thus better. But judging from the step response by inspection, the improvement
is hardly noticeable.

8.7 Further State-Space Analysis*
The linear state-space model provides further insight into the controllability and stability
of the system.

Open loop

Using Laplace notation s = d/dt , the general state-space model is

sx = AAAx + BBBu

y = CCCx

Rearranging the state equations,
(sIII − AAA)x =BBBu

where III is the identity matrix, and solving for x, we get

x = (sIII − AAA)−1 BBBu

By substituting this value into the output equations , we obtain

y = CCC (sIII − AAA)−1 BBBu

Thus, the transfer functions from the inputs to the outputs are

y
u

= CCC (sIII − AAA)−1 BBB

= CCC
adj (sIII − AAA)

det (sIII − AAA)
BBB (8.16)

where adj is the adjoint of the matrix and det is the determinant. It is a matrix expression
representing several transfer functions, one from each input to each output in general.
The denominator governs the stability of the system. Therefore, we are interested in the
characteristic equation

det (sIII − AAA) = 0 (8.17)

It is a polynomial whose roots are the poles of the system, and it is an eigenvalue problem.
An eigenvalue λ of AAA satisfies

AAAv =λv

where v is the eigenvector corresponding to λ. Rearranging, we get

(AAA − λIII)v =0

*Can be skipped in a first reading.



184 SIMULATION STUDY: CART–BALL BALANCER

For any proper solution to exist, the matrix (AAA − λIII ) must be singular, or

det(AAA − λIII ) = 0

which is equivalent to Equation (8.17). Thus, the eigenvalues of AAA are the solutions to the
characteristic equation, and therefore the eigenvalues of AAA are also the poles of the system.

In our case, the characteristic polynomial is

det (sIII − AAA) = det













s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 s





 −







0 1 0 0
0 0 a 0
0 0 0 1
0 0 c 0













= det







s −1 0 0
0 s −a 0
0 0 s −1
0 0 −c s







= s2(s2 − c)

The matrix is block triangular, with three blocks in the diagonal, indicated by boxes, and
the determinant of the whole is just the product of the determinants of each diagonal block.
The roots are λ = {

0, ±√
c
}
, and we observe that the constant a is not present. Thus, in

the presence of uncertainty, an inaccurate a does not affect the stability of the model, while
an inaccurate c does.

We can also directly relate the eigenvalues to physics. The double eigenvalue in zero
results from the movement of the cart – compare Newton’s second law Equation (8.5) – and
the second-degree polynomial (s2 − c) results from the internal loop concerning the ball.
We are thus dealing with a double integrator, which we have studied earlier, combined
with an unstable second-order system.

The adjoint is

adj (sIII − AAA) = adj







s −1 0 0
0 s −a 0
0 0 s −1
0 0 −c s







=







−cs + s3 −c + s2 as a

0 −cs + s3 as2 as

0 0 s3 s2

0 0 cs2 s3







The adjoint of any n-by-n matrix MMM is the transpose of the matrix of cofactors of the
elements mij . A cofactor is the signed minor of the element mij and the sign is (−1)i+j .
The minor is the determinant of the (n − 1)-square submatrix obtained by deleting row i

and column j . Because of the structure of BBB,

BBB =







0
b

0
d
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we are only interested in the second and fourth column of the adjoint, and furthermore just
the first row, in order to find the transfer function from the input to the cart position y, the
first state variable. Thus,

y

F
= CCC

adj (sIII − AAA)

det (sIII − AAA)
BBB

= (
1 0 0 0

)







−cs + s3 −c + s2 as a

0 −cs + s3 as2 as

0 0 s3 s2

0 0 cs2 s3







s2(s2 − c)






0
b

0
d






=
(−c + s2

)
b + ad

s2(s2 − c)

The numerator is second degree, and the roots are

±
√

−ad

b
+ c = ±3.549

Thus, we have a zero in the right half-plane, and the system is a non-minimum phase
system, which means that its step response will initially set out in the ‘wrong’ direction,
away from the final value.

Closed loop

With a control law
u = kT x

the closed-loop system equations are

sx = AAAx + BBBu

= AAAx + BBBkT x

= (
AAA + BBBkT

)
x

The control problem is to construct the vector k such that the closed-loop system matrix
has all its eigenvalues in the left half-plane. If, and only if, the pair (AAA,BBB) is controllable,
the eigenvalues can be assigned to any values in the complex plane arbitrarily by means
of static state feedback. The pair is controllable if

rank
[
AAA0BBB,AAA1BBB, . . . ,AAAn−1BBB

]
= n

where n is the order of the system and the comma notation signifies that the matrices are
concatenated (’glued’) with each other. In our case,

AAA0BBB = IIIBBB =







0
b

0
d
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AAA1BBB =






0 1 0 0
0 0 a 0
0 0 0 1
0 0 c 0











0
b

0
d




 =






b

0
d

0






AAA2BBB =






0 0 a 0
0 0 0 a

0 0 c 0
0 0 0 c











0
b

0
d




 =






0
ad
0
cd






AAA3BBB =







0 0 0 a

0 0 ac 0
0 0 0 c

0 0 c2 0













0
b

0
d





 =







ad
0
cd
0







Thus, we test whether

rank







0 b 0 ad
b 0 ad 0
0 d 0 cd
d 0 cd 0







is equal to the system order. By inserting numbers, it is seen that the rank is indeed 4, and
the system is therefore pole assignable. The constant d appears in many locations, and if
d were close to zero, the determinant would be close to zero; this would occur if the mass
of the cart was much larger than the mass of the ball.

Knowing that we can place the poles arbitrarily, we would like to place a set of poles
in a ’good’ location and work backwards to find a corresponding feedback vector k. The
closed-loop characteristic polynomial is

P = det
(
sIII − AAA − BBBkT

)

= det













s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 s





 −







0 1 0 0
0 0 a 0
0 0 0 1
0 0 c 0





 −







0
b

0
d







(
k1 k2 k3 k4

)







= det








s −1 0 0

−bk1 s − bk2 −a − bk3 −bk4

0 0 s −1

−dk1 −dk2 −c − dk3 s − dk4








= s4 + s3 (−bk2 − dk4) + s2 (−c − bk1 − dk3) (8.18)

+s (bck2 − adk2) + bck1 − adk1
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The characteristic polynomial can also be written in terms of the desired poles:

P = (s − λ1) (s − λ2) (s − λ3) (s − λ4) (8.19)

= s4

+s3 (−λ1 − λ2 − λ3 − λ4) (8.20)

+s2 (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

+s (−λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4) + λ1λ2λ3λ4

Matching the coefficients in Equations (8.18) and (8.19), we have four linear equations in
the unknowns k1, . . . , k4:

−bk2 − dk4 = −λ1 − λ2 − λ3 − λ4

−c − bk1 − dk3 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

bck2 − adk2 = −λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4

bck1 − adk1 = λ1λ2λ3λ4

or, in matrix form,






0 −b 0 −d

−b 0 −d 0
0 bc − ad 0 0

bc − ad 0 0 0













k1

k2

k3

k4







=







−λ1 − λ2 − λ3 − λ4

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

−λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4

λ1λ2λ3λ4





 +







0
c

0
0







The system of equations has a solution since the determinant d2(bc − ad)2 is non-zero
(the coefficient matrix is upper triangular, and thus the determinant is the product of the
diagonal elements). Given a set of desired poles λ1, . . . , λ4, we can thus find a unique
solution k1, . . . , k4.

How do we then decide what ‘good’ pole locations are? As a rule of thumb, the farther
away the pole is from the origin, the larger is the magnitude of the control signal required. If
a pole λ is located at σ + jω, then, roughly speaking, ω affects the frequency of the response
and σ affects the damping. Thus, poles on the real axis cause purely exponential terms in
the impulse response, and complex poles may cause sinusoidal components. For a stable
system, the closed-loop poles must be in the left half of the complex plane. Poles at the
origin are allowed, but should be restricted in number; a single pole at the origin generates
a constant term in the impulse response, two poles generate a ramp and a constant term,
and so on. Poles on the imaginary axis are not desirable, since they generate undamped
sinusoidal components.
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A simple way to select the poles is to use prototype response poles (Franklin et al.
1991, p 388, Table 6.1b),

λ1 = −0.6573 − j0.8302

λ2 = −0.6573 + j0.8302

λ3 = −0.9047 − j0.2711

λ4 = −0.9047 + j0.2711

These refer to a prototype response of a fourth-order system with little overshoot. The
four poles can be multiplied by a constant w in order to obtain some variation in the speed
of the response. With w = 1, a set of gains is

k1 = 0.26

k2 = 0.84

k3 = 48.6

k4 = 8.74

These are rather low values, compared to the ones we used earlier in Equation (8.15),
and consequently the control action will be rather low. A faster response can be obtained
by applying the desired eigenvalues {wλ1, wλ2, wλ3, wλ4} with w > 1. In practice, the
obtainable speed of the response is limited by the limits of the amplifier (±13 V), and w

should be in the range 1 < w < 2 to minimize the IAE performance index.

Nonlinear equations

The motor has friction between the brushes and commutator as well as in the bearings.
There is also friction in the drum grooves, where the transmission wire is seated. Both
static and dynamic friction must be expected, and sustained limit cycles in closed loop are
a clear indication. The linear model ignores friction.

As a first approximation, we may model friction as viscous friction proportional to the
velocity of the cart directed in the direction opposite to that of the driving force. In the
equations we may then apply, instead of the driving force F , a reduced force

F − f
·
y (8.21)

Here, f is a physical constant that models the magnitude of the frictional effect. The
constant f can be measured at constant velocity (F = 0). We are, however, just interested
in discovering how friction affects the system matrix AAA.

Substitution of Equation (8.21) for F in (8.13) results in two new non-zero terms in AAA,

AAA(2, 2) = −bf

AAA(4, 2) = −df

As a result, one eigenvalue will remain zero, whereas the other three will be non-zero.
Friction in fact has a stabilizing effect.

Another question is the magnitude of the error introduced by the linearization by
Equation (8.9). If we instead omit the approximation, and rearrange Equations (8.7) and
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(8.8), we obtain the nonlinear state-space equations:

.
x1 = x2

.
x2 = −m2r2g cos x3 sin x3 − (

RmI + mrI + m2r3 + Rm2r2
)
x2

4 sin x3

MI + mI + mr2M + m2r2 sin2 x3

+ mr2 + I

MI + mI + mr2M + m2r2 sin2 x3
F (8.22)

.
x3 = x4

.
x4 = mr2g (M + m) sin x3 − m2r2 (R + r) x2

4 cos x3 sin x3

(R + r)
(
MI + mI + mr2M + r2m2 sin2 x3

)

− mr2 cos x3

(R + r)
(
MI + mI + mr2M + r2m2 sin2 x3

)F

A simulation using the nonlinear state Equations (8.22) rather than the linear Equa-
tions (8.10) shows that the difference in the peak values of a response is less than 3%.

8.8 Summary

The simulation study demonstrates there is much to gain from the linear control theory. The
recommendation is to extract as much process knowledge as possible, when a mathematical
model is available. For example, knowing that the system is pole assignable, and that all
four feedback gains in the closed-loop linear model must be strictly positive, is valuable
information. Furthermore, the linear model enables several approaches for tuning the gains.

Again, we can conclude that the fuzzy controller performs at least as well as the PD
controller. It has a more complex structure, but then it provides more options for improving
the performance.

8.9 Notes and References

The ball balancer was built for teaching students of electrical engineering automatic con-
trol, originally with a focus on state-space control theory. It is educational, because the
laboratory rig is sufficiently slow for visual inspection of different control strategies and
the mathematical model is sufficiently complex to be challenging.

The system was built during an M.Sc. project, and later the mathematical model was
published in an educational journal (Jørgensen 1974). A simulator of the same system was
built in Matlab much later for a course on the Internet (Jantzen 2003).



9

Supervisory Control*

Human operators in the process industry are faced with nonlinear and time-varying behav-
iour, many inner loops, and much interaction between the control loops. Owing to sheer
complexity it is impossible, or at least very expensive, to build a mathematical model of
the plant, and furthermore the control is normally a combination of sequential, parallel, and
feedback control actions.

Operators, however, are able to control complicated plants using their experience and
training, and thus fuzzy control is a relevant method within supervisory control. The cement
kiln controller by FL Smidth (FLS) was based on rules of thumb for manual control of a
cement kiln. In a further development, several controllers are combined in a hierarchy by
means of a priority management system.

9.1 Process Control

By process control we shall understand the automation of a large-scale, industrial plant of
such complexity, that the satisfaction of a control specification requires compromise. Typical
examples are the control of distillation columns, glass, cement, and plastic production, and
electric power plants. Some typical goals for a supervisory controller are safe operation,
highest product quality, and economic operation. The three goals are in conflict, so they
must be prioritized, with human safety accorded the highest priority. A supervisory system
is a system that evaluates whether local controllers satisfy prespecified performance criteria,
diagnoses causes for deviation from the performance criteria, plans actions, and executes
the planned actions (Yazdi 1997).

The so-called Supervisory Control Theory (Ramadge and Wonham in Yazdi 1997) is
based on finite state machines. Here, the supervisor is viewed as a controller that restricts
the plant behaviour to a subset of all possible behaviours by starting or stopping events.
To avoid generating the large space of possible behaviours, a more compact logic-based
approach can be applied. Petri nets for discrete event systems allow intuitive modelling
of the plant; see the survey by David and Alla (1992). The Petri net is the basis for

*Can be skipped in a first reading.

Foundations of Fuzzy Control Jan Jantzen
 2007 John Wiley & Sons, Ltd. ISBN: 0-470-02963-3
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the GRAFCET, a graphical language for modelling sequential controllers (David 1995). A
version of GRAFCET, Sequential Function Charts, has been adopted as an international
standard (IEC 2002) that is widely used in connection with programmable logic controllers
(PLCs). Another modelling technique that is also associated with a graphical language,
Multi-Level Flow Modelling, requires an explicit goal for each task and emphasizes the
means to reach that goal (Lind 1994, 1999).

The FLS controller

A cement kiln is a rotating chamber with a light slope. It is sometimes 160 m long, although
modern kilns are shorter because of preheating. Ground limestone, clay, and sand react
chemically at temperatures around 1430 ◦C. The material advances slowly down the kiln
in three to four hours. The process is difficult to control, because only a few measurements
of the internal state are possible because of the heat and the complexity of the chemical
reaction. Nevertheless, a skilled operator can be rather successful in maximizing clinker
output (the product), while minimizing fuel and raw material consumption.

The operator monitors mainly four quantities: oxygen and carbon monoxide content
in the exhaust gases, the temperature of the exhaust, free-lime content (indicator for the
temperature in the burning zone and the quality of the product), and the change in kiln
drive torque. The operator then applies 40–50 rules of thumb to control the coal feed rate,
and the flow of air into the kiln. An example of a rule is the following:

If the oxygen percentage is low, and the temperature is in the upper part of the range,

then decrease the air flow and reduce fuel slightly.

The FLS controller contains predefined fuzzy terms – Low, High, and OK – for the
measured quantities. Similarly, the program contains terms for the control actions: Medium,
Negative, Large Negative, Small Negative, Medium Positive, and so on. The operator can
display the rules, and the rule above may appear as

IF LOW(O2) AND (OK(TEMP) OR HIGH(TEMP))

THEN MNEG(DAMPER), MNEG(COAL)

The controller weights the control action from each rule depending on the degree of match.
It determines the resulting control signal as a weighted average of all actions dictated by
the rules.

An operator screen and keyboard are normally placed in the control room as an integral
part of the control desk. The operator can request colour displays of time series, selected
measure points, alarm surveys, and diagrams. A printer produces 24-hour reports, alarm
reports, and hardcopies of graphical screens. In order to trace the data flow, one side of the
screen displays the current value of each input or output variable, as well as the current
force of each rule. Changing a rule requires special authority.

A skilled operator must tune the controller for a new kiln. Each kiln has its own
operating behaviour, so the operator monitors its initial performance and adds or deletes
rules of thumb as necessary. Since the rule language is somewhat close to natural language,
the operator needs little or no computer expertise to instruct the controller.
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Operators have reported savings in fuel and a more stable product quality and oper-
ation. The controller also eliminates differences in operation among various operators.
FL Smidth has implemented similar process controllers for a variety of other industrial
processes.

Further details are available in the articles by Holmblad and Ostergaard (1982, 1995).

Control tasks

To structure the process knowledge, a practical approach is to decompose the supervisory
problem into hierarchical sub-systems or tasks, each having a specific purpose. For instance,
to reach a specific state of the plant. Yazdi (1997) specified a standard control task in terms
of a set of necessary properties:

Specification of a control task

Name. A name describing a task goal.

Goal. For example: safe operation, high quality, low energy consumption.

Strategic conditions. A condition set that only has to be valid for initiating the task. The
strategic condition set is normally a process requirement before the task starts.

Execution conditions. A set of conditions that has to be valid during task execution. The
condition set is normally related to the operational constraints, for example, physical
limitations and safety conditions. Information about these properties is derived by
combining operator knowledge of the operational conditions with design knowledge.

Initial actions. A set of actions that has to be carried out to prepare the task for control
structuring. This property contains most binary actions (on/off, start/stop).

Control actions. A set of sensors and actuators through which proper control can be
designed in order to achieve the task objective. This property describes the resources
of the control function.

Achievement indicator. An indicator for the degree of goal achievement during the task
operation.

Final action. A task can end with a set of final actions, initiated when the task goal has
been achieved.

A control task should be defined for each (fuzzy) controller. Each control task describes
a detailed strategy for reaching a specific sub-goal. Execution of a control task is only
allowed if execution conditions are valid at each sampling instant, while strategic conditions
are checked only at the first sampling of the task.

9.2 High-Level Fuzzy Control
The problem is to ensure that a particular overall goal is reached when all control tasks are
combined. The FLS design procedure, associated with the company’s second-generation
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fuzzy controller, Fuzzy II (Østergaard 1990, 1996), includes, for this reason, a priority
management system.

A high-level controller works on the level below that of the human operator. It coordi-
nates control loop setpoints, which were previously coordinated by a human operator. The
basic component of fuzzy high-level control is a set of rules for automatic operation based
on practical experience and knowledge about manual control. Examples of fuzzy control
rules are as follows:

IF Temperature is High and Pressure is Ok THEN Medium Flow

IF Temperature is Ok and Pressure is Ok THEN Small Flow

Since the condition of a rule is fulfilled to a degree, each rule will influence the result of
the set of rules in accordance with its activation.

This heuristic design approach is useful – even if it is not the only practical
approach – when the process is partly unknown, difficult to describe by a mathematical
model, if few measurements are available, or if the process is highly nonlinear.

High-level control performance

The meaning of improved performance is not always obvious, and it may depend on local
conditions such as the present market situation, raw material costs, and overall strategic
goals.

In most cases, performance will relate to profit in terms of reduced costs or increased
productivity. The consumption of energy and raw materials depends on the supervisory
control. In general, improved performance can be defined as

• having a more stable (i.e. steady) operation;

• running closer to the limits for acceptable product quality; and

• running closer to the environmental emission limits.

Steady operation is the most important key for improving performance. Oscillations
require energy and raw materials, reduce the quality of the product, and increase emissions.
If the process oscillates, average values must be kept within safe bounds. The standard
deviation STD may be calculated on a daily basis, and an average standard deviation is
then calculated for a period that is representative of the performance.

If the measurements and the quality parameters have target values, then a more feasible
measure of steady operation is obtained by calculating the target value deviation (TVD)

(Østergaard in Jantzen et al. 1999) around the target value SP, instead of the variations
around the average value AVR, as in STD. The index is calculated as follows:

TVD =
√

STD2 + (SP − AVR)2 (9.1)

For a cement plant, it is realistic to expect reductions of 50 %, or more in STD and/or
TVD, as the result of a high-level control system.
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High-level control configurations

Fuzzy controllers are combined with other controllers in various configurations in
Figure 9.1. The PID block consists of independent or coupled PID loops, and the fuzzy
block employs a high-level control strategy. Normally, both the PID and the fuzzy blocks
have more than one input and one output.

Fuzzy replaces PID In this configuration (Figure 9.1a), the operator may select between a
high-level control strategy and conventional control loops. The operator has to decide
which of the two most likely produces the best control performance.

Fuzzy replaces operator This configuration (Figure 9.1b) represents the original high-
level control idea, where manual control carried out by a human operator is replaced
by automatic control. Normally, the existing control loops are still active, and the
high-level control strategy makes adjustments of the controller setpoints in the same
way as the operator does. Again it is up to the operator to decide whether manual or
automatic control will result in the best possible operation of the process, which, of
course, may create conflicts.

Fuzzy adjusts PID parameters In this configuration (Figure 9.1c), the high-level strategy
adjusts the parameters of the conventional control loops. A common problem with
linear PID control of highly nonlinear processes is that the set of controller parameters
are satisfactory only when the process is within a narrow operational window. Outside
this, it is necessary to use other parameters or setpoints, and these adjustments may
be done automatically by a high-level strategy.

PlantPID

Fuzzy

PlantPID

Fuzzy

PlantPID

Fuzzy

PlantPID

(a) (b)

(c) (d)

Figure 9.1: Fuzzy controller configurations. Fuzzy replaces PID (a), fuzzy replaces operator
(b), fuzzy adjusts PID parameters (c), and fuzzy adds to PID control.
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Fuzzy adds to PID control Normally, control systems based on PID controllers are capa-
ble of controlling the process when the operation is steady and close to normal
conditions. However, if sudden changes occur, or if the process enters abnormal
states, then the configuration in Figure 9.1(d) may be applied to bring the process
back to normal operation as fast as possible. For normal operation, the fuzzy con-
tribution is zero, whereas the PID outputs are compensated in abnormal situations,
often referred to as abnormal situation management (ASM).

Configurations (a) and (b) directly change the routines of the operator, which is a crucial
point to take into account when the system is developed and installed.

The FLS design procedure

For an operator, control of the process consists in achieving various goals, more or less well-
defined, such as, maximum output, minimum consumption of raw materials and energy,
high product quality, and safe process operation. Different processes have different control
objectives but, in general, good process control may be defined through a list of control
objectives that should be fulfilled to the extent possible. The concept of control objectives
is a key element in a high-level control strategy.

For a cement kiln, typical control objectives are the following: stable (steady) operation,
good cement clinker quality, high production, complete combustion, low fuel consumption,
and low energy consumption. As control objectives are frequently in conflict, a high-level
coordination is required.

In other words, priorities have to be assigned to the various control objectives, specifying
which objectives are considered the most important to fulfil. The elements of the FLS design
procedure for a process control strategy (Østergaard 1990, 1996) are cited below:

State index calculations Find the current process state. The calculation combines mea-
surements into an index for the current process stability, product quality, production
level, and so on. Normally, a state index combines various measurements into a sin-
gle figure. The degree of process stability, the product quality, and the production
level are typical examples of state indices for a kiln control strategy.

Control groups Arrange the overall control strategy into groups of control objectives. A
control group, a subset of the control strategy, is a group of objectives that are related
through priority numbers.

Priority management Determine the extent to which the control actions should be exe-
cuted to fulfil the individual objectives. The priority management system manages
the scheduling of control actions in the order of importance.

Control objectives Specify the goals of the control strategy. A control objective consists
of tasks.

The state indices are important to the structure of the FLS design scheme for a high-
level control strategy, as they form the basis for dividing the overall strategy into control
groups that can be treated independently. The state indices are used to coordinate control
actions from the various control groups.
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Priority
management
task

Rule task
Deviation
task

Timing
task

Output
task

Figure 9.2: Control objective module in Fuzzy II.

Every control objective is implemented in accordance with the so-called objective mod-
ule, which consists of five tasks, as shown in Figure 9.2.

Deviation task This task involves calculating and evaluating the degree to which the objec-
tive is fulfilled. Normally, the calculation results in an error value ei ∈ [−1, 1], which
expresses how far the current process state is from the objective; a value of 0 signifies
that the objective is fulfilled.

Rule task Normally, this block contains a set of fuzzy control rules, and the output of the
rule block is normally a change in action in the interval [−1, 1]. Other techniques
may also be used, such as PID, neural nets, and mathematical models.

Priority management task The rule block for each control objective results in control
actions, which are multiplied by a weight factor between 0 and 1. The weight factor
wi generated by objective i is calculated as

wi = 1 − |ei | (9.2)

The weight factor is thus a function of the deviation ei of the objective. The smaller
the weight factor, the more the lower control actions, below objective i, are sup-
pressed. The total weighting of an objective’s output is the product of all higher
priority weight factors (Figure 9.3); it will be 1 if all objectives with a higher pri-
ority are fulfilled, and 0 if one or several objectives are not fulfilled. The priorities
reflect built-in knowledge about optimal interaction of rule blocks.

Output task The output task involves evaluation of process constraints and selection
among alternative control actions based upon the current index values; in this task,
fuzzy output is converted to engineering units, that is, denormalized physical units.
The logic for selecting alternative adjustments may be fuzzy or non-fuzzy depending
on whether a gradual or a hard switch is the most appropriate. In most cases, the
fuzzy-logic approach gives the best control performance, simply because no physical
process operates with sudden changes between alternative control actions.

Timing calculation task The timing calculation consists in determining when and how
often control actions are to be executed. It is just as important as the rule block for



198 SUPERVISORY CONTROL

2

1

2 3

1 1 2

3

(a) (b) (c)

Figure 9.3: Priority management: (a) objective 1 higher than 2; (b) objective 1 affects two
objectives on a lower level; (c) objectives 1 and 2 both affect an objective on a lower level.

determining the proper function of the control strategy. Even the timing calculation
is normally fuzzy in the sense that the time interval between control actions changes
gradually as a function of the deviation value. The larger the deviation, the more
frequent the control actions.

Each objective has several tuning parameters: an output gain, input normalization, and
tuning of the timing calculation. The control objective output must be a change in control
action, an incremental controller. A suppressive weight wi = 0 thus results in no change,
which is equivalent to maintaining status quo.

9.3 Summary

This chapter illustrates the problems in practical process control due to the complexity of
multi-loop systems, rather than the robustness of single-loop control.

On a small scale, the suggested fuzzy controller configurations (Figure 9.1) are appro-
priate; on a medium scale, the FLS priority system is appropriate and, on a large scale, the
GRAFCET can be an option. Compared to the FLS priority system, GRAFCET is a more
general type of priority manager.

9.4 Notes and References

The original work on supervisory control is due to Hassan Yazdi and Jens-Jørgen Øster-
gaard. Yazdi developed a design procedure during his PhD project, supervised by Jens-
Jørgen Østergaard, Sten Bay-Jørgensen, and myself.

There is a chapter on fuzzy supervisory control in the textbook by Passino and Yurkovich
(1998).
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Gordillo F, Aracil J and Álamo T 1997 Determining limit cycles in fuzzy control systems Proceedings
of 6th International Fuzzy Systems Conference, vol. 1. IEEE, pp. 193 –198.

Gupta MM and Sinha NK (eds.) 1996 Intelligent Control Systems: Theory and Practice. IEEE Press.
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Accumulation, 55
Activation, 54
Adaptation gain, 119
Adaptive controller

convergence, 121
defined, 117

Adjoint, 184
Adjustment mechanism, 118
Aggregation, 54
Anti-windup, 90
Argument

modus ponens, 35
Array-based logic example, 29
Array-based modus ponens, 36
Automatic controller, 1

Baseball example
three-valued logic, 31
two-valued logic, 28

Bilinear interpolation
example, 63

Bisector of area, 56
BOA, 56
Buying a house example, 21

Cart–ball
data, 177
nonlinear equations, 189

Cart–ball system, 173
linear model, 176
positive feedback, 179

Cartesian product
classical, defined, 24
fuzzy, defined, 24

Centre of gravity, 56
Centre of gravity for singletons, 56

Centre point, 95
Characteristic equation, 183
Classical sets, 13
Classical sets example, 14
COG, 56
COGS, 56
Composition of relations, 26

max–min, 26
max–star, 26

Connectives, 27, 51
classical, 27
fuzzy, 30

Control surface, 62, 100
Control tasks, 193
Controllability, 185
Controller type

FLS, 59
linear, 64
Mamdani, 57
Sugeno, 59
table-based, 62

Crisp sets, 15
Critical point, 85
Cylindrical extension, 43

Defuzzification, 55
bisector of area, BOA, 56
centre of gravity for singletons,

COGS, 56
centre of gravity, COG,

56
leftmost maximum, LM, 56
mean of maxima, MOM, 56
rightmost maximum, RM, 56

Derivative time, 73
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Describing function
deadzone surface, 165
defined, 141
FPD, 146
FPD+I, 151
linear FPD example, 146
quantizer surface, 168
saturation surface, 162

Design choices
list, 69

Direct control, 47
Disjunction, 31
Double integrator

example, 97
FPD control, 104
FPD+I control, 108
proportional control, 98

Dynamic nonlinearity, 145

Egg-eating example, 19
Eigenvalues and poles, 184
Empty set, 14
Engineering units, 57
Equilibrium point, 94

centre point, 95
focus, 95
node, 95
saddle point, 95

Equivalence, 33

Family of terms, 52
Family resemblance example, 25
Filtered derivative, 89
Filtering hypothesis, 142
FInc controller, 77
Fine-tuning, 109
FLS controller, 59
Focus, 95
Four rule FPD, 71
Fourier integrals, 143
FP controller, 73
FPD controller, 74, 99
FPD+I control, 107
FPD+I controller, 76
Frequency response, 84, 141

FPD, 146
FPD+I, 151

linear FPD example, 147
nonlinear FPD example, 149

Friction, 188
Fundamental frequency, 143
Fuzzification, 49
Fuzzy connectives, 30
Fuzzy controller, 1
Fuzzy implication, 32
Fuzzy logic, 1, 26
Fuzzy reasoning, 13
Fuzzy set, 13

defined, 15
examples, 16

Fuzzy sets
equality defined, 20
inclusion defined, 20

Gödel implication, 33
Gains

fuzzy vs PID table, 78
transfer in other situations, 83

Generalized modus ponens, 37
defined, 39
example, 39

Hand-tuning, 81
table, 81

Harmonics, 143
Hedges, 22
High-level control, 193

configurations, 195
FLS design procedure, 196
objective module, 197

High-level control
performance, 194

Ideal PID controller, 72
Ideal saturation, 144
Implication

fuzzy, 32
Gödel, 33
material, 29, 32

In-phase component, 143
Inference

defined, 35
modus ponens, 35

Inference engine, 54
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Inner product, 26
example, 26

Integral action
example, 82

Integral time, 73
Interpolation, 63

bilinear, 63
rule-based, 60

Laboratory rig, 173
Law of involution, 31
Law of the excluded middle, 15, 32
Leftmost maximum, 56
Limit cycle, 112, 153

example, 159
Linear fuzzy controller, 64

design choices, 86
Linguistic rules, 1
Linguistic term, 47
Linguistic variable, 22
LM, 56
Long deadtime example, 127
Lookup table, 62, 63

Mamdani controller, 57
Mamdani implication, 34
Mamdani inference, 57

defined, 42
example, 43

Material implication, 29, 32
Max–min composition, 26
Max–star composition, 26
Mean of maxima, 56
Member, 13
Membership function, 7, 17

bell, 54
defined, 15
example, 18
FLS, 54
Gauss, 54
smooth trapezoid, 17
trapezoidal, 17
triangular, 17

Membership grade, 7, 15
MIT rule, 119
Model reference adaptive system,

117

Modus ponens
argument, 35
array based, 36
generalized, 37

MOM, 56

Nand, 31
negation, 30
Node, 95
Noise, 114
Non-minimum phase, 185
Nyquist criterion, 151
Nyquist plot, 85

Or-projection, 43
Ordered pair

defined, 15

Perfect model-following,
118

Performance table, 123
Phase plane, 100
Phase plane analysis, 93
Phase plot, 93
Phase trajectory, 94
Pole assignability, 185
Pole placement, 185
Possibility distribution, 19

example, 19
Post-processing, 57
Pre-processing, 48
Predicate, 14
Primary terms, 24
Procedure

design fuzzy PID, 72
fuzzy controller design, 114
fuzzy controller design, especially

steps 1 and 2, 90
hand-tuning, 81
Ziegler–Nichols, 79

Proportional gain, 73
Proposition, 14, 28
Prototype response poles,

188

Quadrature component, 143
Quantization, 112
Quantizer, 49
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Relation, 24
binary, 24
fuzzy, 24

Return difference, 153
Rightmost maximum, 56
RM, 56
Rule base

four rules, 66
nine rules, 50, 67

Rule-based interpolation example, 60
Rule format

graphical, 51
if–then, 50
relational, 50
tabular, 51

Rule of inference
compositional, 42
disjunctive syllogism, 35
examples, 35
hypothetical syllogism, 35
modus ponens, 35
modus tollens, 35

Saddle point, 95
Saturation in the universes, 112
Scaling

alpha-scaling, 83
nonlinear, 49

Self-organizing controller, 117
Sensitivity derivative, 119
Set defined

classical, 13
fuzzy, 15

Set operations defined
classical, 20
fuzzy, 20

Setpoint weighting, 88
Signal flow graph, 177
Singleton, 16
Singleton conclusion, 53
Sliding mode control, 140
Smooth trapezoidal membership

function, 17
SOC, 122

tuning, 131
SOC adjustment mechanism

adaptation gain, 127

defined, 124
desired time constant, 127
example, 126
time lock, 132

Stability
deadzone surface, 165
double integrator example, 156
linear, 95
oscillatory modes example, 158
quantizer surface, 168
third-order plant example, 155
time delay example, 157

Stability margin, 153
Standard universe, 51

examples, 52
Static nonlinearity, 143
Stopping a car example, 3

PD control, 99
Student John

example, 38
Subset

classical, 14
Sugeno controller, 59
Supervisory control, 191
Supervisory system, 191
Surface shaping, 103
Surfaces

deadzone, 103
linear, 103
quantizer, 103
saturation, 103

t-conorm, 41
t-norm, 41
Table-based controller, 62
Target value deviation TVD, 194
Tautology

defined, 32
proof, 33

Term set, 52
age example, 22

Time lock, 132
Transfer function from state space,

183
Trapezoidal membership function,

17
Triangular membership function, 17



INDEX 209

Triangular norms, 41
Truth table

classical, 28
fuzzy, 30

Truth-value, 27
Tuning

defined, 73
map, 85
Ziegler–Nichols,

79

Ziegler–Nichols example,
80

Universe, 7, 16, 54
example, 16

Universes, 51

Venn diagrams, 20
Very

example, 23
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