UNCLASSIFIED

ENGINEERING DESIGN HANDBOOK

SYSTEM ANALYSIS

AND

COST-EFFECTIVENESS

Distribution limited to U.S. Gov't. agencies oniys
Test and Evoluation; / APRIL7/. Othor requests for this dooumont must be roforred to ARMY
MATERIEL COMMAND (AMCRD-TV), washington, D. C. 20315.

Best
 Available Copy

HEADQUARTERS
UNITED STATES ARMY MATERIEL COMMAND
WASHINGTON, D.C. 20315

AMG PAMPHLET
9 April 1971
No. 706-191

ENGLITEVANG DESIGN HANDBOOK
SYSTEM ANALYSIS AND COST-EFFECTJVENESS
FOREWORD viii
CHAPTER I - INTRODICTION 1.
1.1 Detinition of Systems Anelysto 1-:
1.2 Deflultion of cost-Erfetivenese $1-2$
1.2.1 Cost-Effertiveness Antily: $2-2$
1.2.2 Cost-Effectiveness In Generic: Usage この
1.3 Background and History of Symtems Analysis/Cost-Effectiveness $1-2$
1.3.1 History of Systems Analysis $:-6$
1.3.2 History of Cost-Effectiveness 1-6.
1.3.3 Systems Analysis/Cost-Effectiveness (SA/CE) 2-?
1.4 Methodology of Systems Analysis/Cost-Effectlveness 1-?
1.5 Application of Systems Aralysis/Cost-Effectivenecs :-:2
1.5.1 General $:-: 2$
1.5.2 Application of SA/CE to concept Formulation and Contract Definition 2-2.
1.5.3 Conclusion $1-25$
1.6 Limitations of Systems Analysis/Cost-Effectiveness 1-1?
CHAPTER 2 - GENERAL METHODOLOGICAL APFROACH TO SYSTEMS ANALYSIS/ COST-EFFECTIVENESG STUDIES 2-:
2.1 Input Iniormation
2.1.1 Army Forse Development. Plan (AFDP) $2-2$
2.1.? Combat Development Othe:tives Guide (CDOG) 2-3
2.1.3 Gualltativn Materiel Development Onjective (QMDO: 2-3 Approval 2-3
2.1.4 Qualltative Materiel Requirement (QMR) 2-:

AMCP 706.191

Conients (cont?nued)
 2-5
2. 3 Develop Miesion Profiles $2-7$
2. ${ }^{\circ}$ Obtaln Critical Performance Pamaneters 2-9
2.6 Synthesize Alternative System: 2-10
2.5.1 Thn Total System 2-10
2.5.2 System Confiruration Syntheste 2-12
2.5.3 State-of-the-Art Analysis 2-16
2.5.4 Conclusion. 2-17
2.5 Develop Hardware Characteristics 2-17
2.7 Estabilish Basis for Evaluating Effectivaness 2-18
2.7.1 Avallablifty 2-2:
2.7.2 Dependability 2-22
2.7.3 Capab111ty $2 \cdot 23$
2.8 Define measures of Effectiveness 2-24
2.9 Formulate Models 2-25
2.9.1 General 2-25
2.9.2 Assumpさions 2-26
2.9.3 Adequacy 2.-26
2.9.4 Representativeness $2-2 \epsilon$
2.9.5 Uncertainty 2-26
2.9.6 Data 2-27
2.9.7 Validity 2-27
2.9.8 Types of Models 2-27
2.10 Senorate Effectiveness Equations 2-29
2.11 Generate Cost Equations 2.43
2.11.1 Cost-Analjsis Introduction $2-43$
2.11.2 The RAND Method 2-43
2.11.3 Cost-Estimating Relationships 2-48
2.11.4 Probloms in Cost-Analysis $2-49$
2.11 .5 Cost-Analysis Application 2-51

cosnencs (cont inued)

a.l. Exprolse the Model 2-55
?.10.1 General 2-5.,
$\because 12.0$ Analysis of Output Data 2-55
$\therefore 1$ Develop Decision Model 2-62
2.13.1 Optimization Criterion 2-6?
$\therefore 13.2$ Risk and Uncertairety 2-64
2.13:3 Optimsaation Techniques 2-65
2.13.4 Leverage Efferts 2-66
2.13.5 Interpretatior. 2-67
$\therefore 13.6$ Conclusion 2-68
CHAPTER 3 - TECHNTQUES 3-1
3.1 simulatior. 3-2
3.2 Queueing Theory 3-3
$\therefore 3$ Sequencing and Markov Processes 3-7
3.4 Inventory and Feplacement 3-9
3.5 Linear and Dynamic Programming 3-12
3.5.1 Lincar Proe paming 3-12
3.5.2 Dynamic Programming 3-16
3.6 Game Theory 3-17
3.7 Information Theory 3-22
3.9 Analytic Modele 3-28
3.8.1 Lanchester's Equations 3-28
3.8.2 Calculus of Variations 3-30
3.9 Decision Theory 3-30
3.10 Coet-Fstinating Relationships and Confidence Intervals ?-31
3.10.i Cost-Estimating Relationships 3-31
3.10.2 Confldence Intervals 3-32
J.10. Example: Simple Linear Regression (Two Variables) 3-35

AMCP 706.191

CONTEMS (continued)

```
    3.12 Experinnce Curves 3-39
    3.12 Cosi-Sensitivity Argiysis3-41
```

3.12.1 General 3-41
3.12.2 Cost-senclivity-Analysis Problem 3-4
CHAPTER 4 - bAS M MATHEMATICAL AND STATIETICAL CONCETSS
4.1 Introduction 4-1
i..1.1 Preiminary Definitions 4-1
4.1.? Notation 4-1
4.2 Derinitions of Probability

```\(4-2\)
```

4.2.1 Classin 2 Definition $4-2$
4.2.2 Relative-Frequency Definition -. -2
4.3 Algebraic Princlpies and Formuias $4-2$
4.3.1 Two Busic Counting Principles $4-2$
4.3.2 Permutations $4-3$
4.3.3 Combinations 4
4.3.4 Becic Probability Laws

```\(4-4\)
```

+3.5 Applleation of Probability Lews to Rellcblilty -*
4.4 Probaullity Distributions

```\(\cdots-\)4.4.1 Definition:-5
```

4.4.2 Proper: Ies

```- : 04.4.3 Paraneters and Noment:\(\cdots\)
```



```-4
```

6.t. 2 Conthums Ductrinten

4.2 Parcmolt-floms:

CONTENTS (continued)

APPENDIX A: GLOSSARY A-1
B: BIBLIOGRAPHY B-1
C: Statistical tables C-1

- D: GUIDE FOR REVIEWERS OF STUDIES CONTAINING D-1COST-EFFECTIVENESS ANALYSIS
E: AN EXAMPLE OF A RECENT COMMUNICATIONS E-1COST-EFFECTIVENESS ANALYSIS

INDEX

tables and figures

TABIES
2-1 Basic Alternatives for the zenitr System $2-1$,
:-2 Characteristics Pertinent ic A State-o. the-Art $\therefore-16$Analysis (Electronic)
2-3 Partial fist of Techniques for Optimization $2-56$
2-4 Array of Cost-Effectiveness Characteristics 2-71
3-1 Systems Analysis/Cost-Efectiveness Techniques 3-2
4-1 Observations of Time to Fallure and Censored $4-56$Time Following A Failure in A Stmpli: of 50 Items
4-2 Computational Procedure for Estimating the Near 4.5 .7and Standard Deviation of a Normal Distribution,Based on Ordered Observations Involviry, Censorship
4-3 Germanium Power Transistors: Accumulative Percent $4 . .64$ Failure vs. Selected Time Intervals
4-4: Computations for Maintalnability Function $4-70$
FIGURES
1-1 Types of Systems Analysis Studies 1-13
1-2 RLT \& E Cycle 1-13
2-1 Systems Analysis/Cost-Effectiveness Process 2-2
2-2 Mission-Profile Development $2-8$
2-3 The Total System 2-11
2-4 Zenith Missile System - Functional Diagram 2-13
2-5 Hierarchy of Parameters 2-15
2-6* System-Effectiveness Framework 2-20
2-6A Elements of Effectiveness 2-20
2-7 A Submodel Classification Scheme 2-2
2-8 System Cost, Categories $2-1.5$

Ance 203-191

FIOMEs (continued)

$2-9$	Pxpismions of thaerteinty	2-57
2-10	- rade-orf Curyes	3-60
2-11	Interdependencies Between Trade-Off Stulles and Frojfet Obfertives	2-6:
$\therefore-12$	Sonsirivity Anulysis	2-6.
$2-13$	Examies or cost-zifectiveness Curves	2-72
$4-1$	The Exponential Relioblisty Munction	$4=7$
$4-2$	Observed Radiwoility Function*	-34
$4-3$	Kolimgorov-stirrov test tur Exponentiai pistributich	$4-2$
$4-4$	Oraphicsi Estimation of ine Parameters of an Ausimed Hirmal Districution	$4-57$
4-5	Nonperametrbe and Theoreti-a, Korani fesiet:ity Fuicticns	$4-5$
4-6	Weibull Frobat:15ty Paper	$4-62$
4-7	Graphse Prosedure or potaining Estizaies of Faramtars Associatec with the Yeibul: Distribit:cn	$4-65$
4-6	Theoretical Yeibu 1 follalilit.j Funcison	- 6
$4 \cdot 9$	Heloull Hezard-Ra* Functiot	ct
- -10	Plut of Manteraries isth en Log-Rurmal Probab: i: :y Peper	- 7 7:

FOKN:WORD

The purdose of this handbook is to provice a text ard r-ference material In Sys.em Analysis, and Cost-fffectiveness. It is intendec for hose ecuinical, scientific, managenent, and administrative personnel who are responsible for preparing information, making decisions or reviewing decisions mad. by cthers regarding life-cycle cost, system effectiveness (availability, dependability, capability), or techrical frasibility of a system or cquipment at any phase in its life cycle. It is immedfatriy iseful. to persommel who are familiar wich z system or equifment under study but are not familiar with the gethodolog: and techniques of System Analysis and Cost-Effectiveness.

The handbook consists of four chapters: (1) an introduction to the conceft of system analysis and co:t-effectiveness; (2) a basic framewoz? or general methodological approach, for conducting and reviewing cost-effectiveness or system analysis studies; (3) a set of tecinioges (inear programing, queveinf theory, imulation, etc.) that can be used for performing cost-effectiveness and system malysis studies; and (4) a review of the basfc macicantical and sta:.stical concepts that underlie the scientific approach in the system analysis/ cosi-effectiveness process.

The handbook was originally written by ARINC Research Corporacion, 2551 Riva Road, Annapolis, Maryland 21401, in response to line item 0003 Exhibit 4002 of Contract Number DAABO7-68-C-0056 for the Systems/Cost Analysjs Office. U. S Armiz E_ectronics Command, Fort Monmouth, New Jersey 07703. Messrs. J. A. Macinko and R. J. Sanford were the USAECOM Project Engineers and Mr. D. P. Salvano, Chiaf, Systems Evaluation Division, was the Project Advisor. It is now being published as an AMC handbook in this series designated fincip 706-191.

The handbooks are readily available to all clements of AMC including, personnel and contractors who have a need and/or requirement. The U.S. Army Materte! Command policy is to release these Engineering Design Handbnoks to other DOD artivities and their contractors, and other Governnent agencies, in accorciance with current Army kegulation 70-31, 9 September 1966. Procedures for acquiring these handbooks follow:
a. Activities within AMC and other DOD agencies should direct their requesta on an offictal form to:

Commanding officer Letterkenny Army Depot ATTN: AMXLE-ATD Chambersburg, Pennsylvania $1 ? 201$

b. Contractors who have Deparsment of Defense contracts should submit their requests, through their concracting officer with proper justification, to the address indicatec in paragraph a.
c. Government agencics other than DOD having need for the hanubooks may submit their request directly to the Letterkenny A.rmy Depot, as indicated in paragraph a, or to:

Commanding General
U. S. Army Materiel Command

ATTN: AMCAM-ABS
Washington, D. C. 20315
d. Industries not having a Government contrace (this includes Universities) must forward their requests to:

Commanding General
U. S. Army Materiel Command

ATTN: AMCRD-TV
Washington, D. C. 20315
e. All foreign requests must be submitted through the kashington, D. C. Embassy to:

Assistant Chief of Staff for Intelligence Foreign Liaison office
Department of the Army
Washington, D. C. 20310
All requests, other than those originating within the DOD, must be accompanied by a valid justification.

Comments and suggestions on this handbook are welcome and should be addressed to Army Research Office-Durham, Box CM, Duke Ststion, Durham, North Carolina 27706.

CMAPTER 1

INTRODUCTIOM

1.1 BEFMITIEMS Of systems analysis

Generally speaking, the nomenclature of Systems Analysis can be applied to any systematic approach that compares alternate means of attaining a specified objectiva. The specific techniques and methodologies may differ depending on the many factors of each study; those inherent due to the class of problem and those imputed because of problem variation from a "classic casen. However, all of the genoric classes of Systems Analysis studies have the common feature of systematically examining all clasees of problems, whether simple or complex. The application of System Analysis prucesses are directed towarda supplying the decision-makers with maximum information, quantifled when possible, in order to help them in selecting preferred alternatives to the attainment of the etated objective. Also, when no alternative means are clearly visible, the process is capable of imparting cogent information which can be utilized in the formulation of new alternatives.

The concept of Systems Analysis has received considerable attention tixoughout Department of Defense areas of interest; Army, Navy, Marine Corp, and Air Force. However, the eubject and applicability are not exciusively military oriented. Extencive use of Systems Analysis has been utilized by non-military activities, both in-house governmental agencies as well as the pri-ate sector of the economy.

Materiel Systems Analysis has been defined by the United States Army Materiel Command as follnws: ${ }^{1}$

1. Materiel Systems Analysis - A generic term which implies both a technique and a finction which, for the purposes of thls regulation, are defined as follows:
a. As a tashnique -- invoives the analytic investigation and quantitative appraiaal and comparison of materiel programs or courses of action in i:erms of the effectivpness, improvement coefficient or cost benerit expected versus the costs alther required or anticipated to be incurred. Generally,
l-AMCR 1-1; Research and Development Materiel Systems Analysis; U. S. Army Matericl Command, Headquarters, Wastington, D. C., 21 April 1970.
for systems Analysis for materiel items or programs, the berisille and cocte or concern are considered on "life cycle" basis. Systeme Analysis, as a ie:hnique, may be applied at any point in the life cycle.
b. As a function -- involves the staff and operation uctivity receacary and required to discharge the AMC requirement and responsiblilites for Systems Analysis in an organized fashion and to fix responsibility. In general, the conduct of the Systems Analysic function takes the form of studiec, projects, and investigations involving the technique described above and the application of modern analytiss and costing procedures. The studies, projezts, and investigations comprising the function of Systems Analysic may variously taka the form and title of cost-effectiveness, parametirle design/cost-effectiveness ($\mathrm{PD} / \mathrm{CE}$), cost-benefit, cost and performance, trade-off, optimum $m i x$; and quantitative inventory $m i x$ studies and analyses; product-improvement determinations; and qualitative assessments of approaches in functional activities and programs. The techrifques of sjstems Analysis. are equally applicable to all of the above. As a function, Systems Analysis seaks to aid the decision making process throughout the life cycle of materiel programs.

1.2 gefinition of costeffectweness

1.2.1 Cost-Effectiveness Analysis (study) has been derined by the United States Army Materlei Command as follows: ${ }^{2}$
"Cost-effectiveness anaiysis (study) - The process of comparing alternative solutions to mission requirements in terms of value received (effectiveness) for the lesources expended (costs)"
1.2.2 Cost-effectiveness, (C-E) in generic usage, is interpreted as a measure defined implicitiy or explicitly by a decision-maker of the benefits to be derived frcm and the resources expended on a system. ${ }^{3}$

This can be functionally eapressed as:
$C-E=f$ (benefits derived; resources expended)

1.3 encxenound and mistony of sistems amalysis and costeffectivewess

1.3.1 H1story of Systems Analysis

Present day use of the word "Systems Aralysis" 13 varied, depending on tre user. The chionology of its constituent elements could (at least) regress :o:

[^0]Arlototelian logic; then to the rormulation of methods and procedures of ecience durim; the Renalasance ($14 \mathrm{th}-17 \mathrm{th}$ centuries); Fredrick W. Taylor'a inception of Sclentific Management; sporadic use of statistical decision making in certain World War I studies ${ }^{5}$ and introduction of a scientific method consleting of objectives, constraints, conflguration, selaction, implementation, evaluation, feedback and conclusion - known by college students for years as format for problem solving.

Ine nearest historical milestone (within the generic context of systems Analysis) that has major import to the ultimate definition is the development and use of operations research in Great Britain during World War II. These operations research studies were devoted to early warning systems, anti-aircraft gunnery, anti-submarine wartare, civilian defense and conduct of bombing raids.

A group consjating of Professor P.M.S. Blockett, three physiologists, two mathematical physicists, one astro physicist, an Army officer, one surveyor, a general physicist, and two mathemuticians utilized the mixed-group approach In solving operational problems. ${ }^{6}$ This philosophy 18 certainly inherent in what we now call Systems Analysis, with the inter-disciplinary group being necessitated by both the complexity of the problem and 1 ts means of solution.

The main difficulty in describing what "Systems Analysis" is and is not can be gleaned from the newly developed clasilfications of analytical activities which have emerged, namely: operations analysis, operations research, systems research, systems engineering, cost-effectiveness and management soience.

It is most difficult to determine what the exact definition of each is and which one of the subject titles subsumes the others.*
${ }^{4}$ Taylor, F. W., Scientific Management; Haruer \& Bros., New York, 1947
'Srefethen, F.N., Operations Research for Management; The John Hopkins Press, Daltimore, Md., 1954
${ }^{\text {Elagle, C., et.al., Operations Research s Systems Engineering; The John Hopkins }}$ Press, Baltimore, Md., 1950, p. 19.

* In order to explore areas of difference in understaniling about operations Research and Systems Engineering activities, it would be well for the reader to refer to the fs:?owing books and periodicals:

Bronowski, J.; Scientific American, Vol. 185, Octover 1951, pp.75-77.
Machol, R. \&.; Mechanical Engineering, Vol. 79, No. 9, September 1957, pp.890-91.
Flagle, C. st.al.; Operations Research scysteme Engineering: The John Hopkins Press, Baitimore, Ma., 1960, p. 19.
Hall, A. D.; A Mothodology for sybtems bigineering; D. Van Nostrand Co., Inc., Princeton, Nek Jersey, 1962.

Arter World War II, the RAND Corporation interpreted weapone syetems analym sis as a description or those studion which did not have clearly definod inputs for given objectives and whose future uncertainties were recognized to be less well defined than those of earlier studies.

The post war studies in weapons systems analysis by RAND and other companies $1 s$ the genesis of the term Systems Analysis. Cherles Hitch, formerly of RAND, became Assistant Secretary of Defense, Comptrolifr 1.، 1961 and introduced the concept of Systams Analysis within the Department of Defense.

Sinze 1961, the term Systems Analysis has veen used by DoD to describe both the philosophy and some of the techniques and methodology applicable to defense programming and budgeting.

In Analysis for Military Decisions, E. S. Quade describes System Analysis,
"While it does make use of much of the same mathematics (as operations - research) - it is associated with that class of problems where the difficulty lies in deciding what ought to be done - not s imply how to do $1 t$.

The total analysis is thus likely to be more complex and less neat and tidy procedure, one soldom suitable for quarititative optimization. In fact, the process is to a large extent synthesis: the environment will have to be forecast, the alternatives designed and the operational laws invented. Thus with a systems analysis, one associates "brcad", "1ons range", "high level", "choice-of-objectives", problems and "choice of strategy", "qualitative judgment" and "Assistance to logical thinking". ${ }^{\text {" }}$

In a later definition, E. S. Quade states:
"System Analysis - a systematic approach to helping a decision-maker choose a course of action by investigating his full problem, searching out objectives and alternatives and comparing them in light of their consequences, using an approprlate framework - insofar as possible, analytic - to bring expert judgment and intuition to bear on the problem. ${ }^{18}$

This Latter more explicit view of System Analysis seems to be necessary In view of the inereasing sophistication of technical programs and studies which continually cause the decision-maker(s) to need more capacity for under3tanding and recommending, the "best approach". The nature of systems analvais and its objectives are ained towards this goal.

Most of the material presented above relates to the history and interpre. tation of systems analyris as viewed by DoD.

[^1]Nonmilitary use of Bystors Analysis has, today, culminated in development of hanagement information systems. These MIs arc the final output of the efforts of Systems Abialysis with the same stipulated objective as DoD progranming that ci providing the maximum cogent information to a decision-maker for agen purpose.

Nonmilitary organizations, generally, do not have the inherent comple. -ty of detemining the optimum solution to a national defense rosture for a given time perlod, but do have relatively high order of complex problems in such areas as space, management science, planning and forecasting, resources management, product line mixes, transportation, communications and participation in social welfare programs.

As can readily be seen, the problems are somewhat similar in total objective -- The best decision. However, some of the factors alding utility in civilian Systems Analysis are: costs are more readily determinable; competition azpects are more quantifier and the technology is at hand for can be determined within closer limits than can that of the military).

The stated aim of materiel Systems Analysis is to insure that the Army can accomplish its mission within the level of effectiveness specifled and with the minimum expenditure of resources.

This goal encompasses resource management; and although costs have been implied in the foregoing discussion, it now becomes necessary to determine how they were derived and how they interface with systems Analysis.

1.3.2 History of Cost-Effectiveness

'Throughout history, man has reckoned witi the cscu of the item ine acquiren. Somehow, through mutual. agreement, or other philosophy, man decided what the payment (cost) should be for what he recelved.

Early Greek philosophy gave us the word Economics - then defined as household management - which, today, is designated as the branch of social science deallne with the description and analysis of the production, distribution and consumption of goods and services.

Economic philcsophy started with tne "philosophists schocl," Arirtotic and St . Thomas Acquinas (comprehensive codirication of "just-price"): then to the modern age economists and the "classlcal school" (Adam Smith, John stuart Mili, et.al.), then the "Utopian Socialists" (Robert Owen) and "Scientiflc gociallsts" (Karl Marx).

 o: enon.le iusulyala. In ceme of a. M. Keynes: ${ }^{3}$
"1in objec: o: our analysis is not 1.0 proside machine or method of blind manipulation which will furnish ar Infalilble answer, but to proHae curselves wish an organized and orterly method of thinking out our parthcular problers; and, after we have reached a provisional conclusion by lsolutine the complicating factors one by one, we then have to go back on ourselves anc allow, as well as we can, for the probable interactlons o: the fuctors anongst themselves. This is the natare of economic thinking."

Interpreation of the above-mentioned aconomi" phllocophy certalniy shows the gencsis of modern analytical thought that is now embodied in the definition of Systens Analysis tand/or Cost-Effectiveness.

When this philosoph, is combined with the theo y of Production; Theory of Input-oitput Analysis (ief also linear prcrramming); Economic Welfare Theory; and such coconomes-oriented detinitions as Cost (Rusources); coods and Services; Value, Price and Utility, (see also marglial utility), it becomes apparent that within the concept of reo-classical synthesis lies the springboard from our definition of Cost-Effrectiveness.

Morn speitilcally, Economic Welfare Iheory constituents of positive theory and welfare theory describe the e:olution as such:

> Pcsitive theory considers the development of economic principles of operation regardless of desirability or not, Welfare theory 1 ; concerned with the evaluation of the operation of 4., eccnomy in terms of assumed standards.
> The overall cojective of Welfare Economics is stated in the term Benefit-Cost Analysif: A means of estimating the prospective economic returns of a project (or projects) in relation to costa.
> Somparizon of Bungit-Cont Analyals and Cost-Effectivenesb leaves ilttle, dou't an to the apecific genesis of the term Cost-Effectiveness or CostEffoctlueness Ansl:ists as deflned heroin.

The evolution of the term "Cost-Effectivenesn Analysis" occurred after Norld dar It (sec paragraph 1.3 .1 uriter Syctems Analysis). Cost-Effectiveness, per :se, appoar; to hay beon formaliy introduced during the period from 1961

[^2]to 1%. This 19 evidenced by inciuston of coist-erfectiveness requirements formully stipulated in certaln type Requast for Proposal development/procurements contracting efforts in accordance with DoD Directive (series 3900.9; 1964) and The Contract Formulation - Contract Definition Concopt Programing of the DOD during this and ensulng periods of time.

1.3 .3 Systems Analyois/Cost-Erfectiveness

The ilteral combining of the terms Systems Analysis and Cost-Effectiveness, in view of their previousiy developed history arid subsequent definition could, upon examination, ralse much doubt about what each does that the other doesn't.

> Immediate questions are:
> Can they be combined as $S A / C E ?$, What do they each mean in this form?, What methodology combines them?, and Aren't they interpretatively redundant?

Previous history and definition of Systems Anslysis illustrates that it is more likely to deal with that class of problems directed towards what should we done, not the methodology of how to do 1 . . In this sense, then, it is directed at the suitability or implementing a specific method and the consideration of alternatives directed towards the implementation of this method.

When the effort is dilrected towards the costs (and/or rescurces) required between these alternatives, and the effect of changes in either cost or effectiveness, relative to each other and mission objectives, then we use the term cost-effectiveness analyeib.

The objective of cost-effectiveness is, usually, to minimize the cocts (resources) at which a given level of effectiveness can be attained for a given mission. This also includes the various supporting functions.

In order to further clarify the specific definition of each term and to illustrate their integration, the reader is referred to the immeliate following sections, 1.4 (Methodology of SA/CE) and 1.5 (Application of SA/CE). Also, the subsequent chapters of this Guidebook are directed towards defining the role of Systems Analysis and Cost-Effectivenese as they are considered in ine ensuing analytical formats.

1.4 memodotery of systems amalysis/COST.Effectwemss

There isn't any singular formulation nor is there a standard methodology whlch is applicable "acrose-the-board" that. allows Systems Analysis/CostEffectivencsa studies to be performed for all classes or aub-clanses of problems $\operatorname{explicltly}$.

AMCP 706-191

The lmmediate lack of an analytical "cookbook" approach doasn't preciude the impiementation or Systems Analysis/Cost-Erfectiveness uturies however. The main virtue of any stipulated scientific method or programine function is its recosnition of chadge. Comparison of a generalized "x-step" scientific approach with the Systems Analysis/Cose-Effectiveness methodology presented herein reveals ncot: to te dynamic, adaptive processes. The singular discrete difference is in protlem furmulation and solving activities, due primarliy to differences in leveis of abstraction.

In order to perform any analysis. it is necessary to concelve a disciplined rramework, i.e., a systematic approach, with provisions for making comparisons between alternative ways of accomplishing an objective systematically (hopefuliy quantitatively) an logical format that can be retraced and verified.

Systems Analysis and Cost-Effectiveness studies utilize the same basic tramework for thedr cbjectives; therefore, it row becomes necessary to differentiate between them in terms of the definitions given in sections 1.2 .1 and 1.3.2. The main difference appears to be in the degree or applied emphasis. When the study is direcied towards the determination of "costs' between similar systems that can attain a specific objective, the term Cost-Effectiveness analysis is applied. When the problem is one of broader scope; l.e., conslderstion of alfferent types of systems that could attain the apeciflc objective, then the term systems Analysis $1 s$ used.

Decisions pertaining to choices of alternative weapon systems or force structures and the strategies for their employment are essentially matters of economic choice. certain elements have evolved which are common to these finds of decisions and have been contalned in Systems Analysis/Cost-rifectivencss studies. ${ }^{10}$

1. Objective - Systems Analysis/Cost-Effectiveness studies are initiated in order to ald in determining a particular policy and/or procedure. These analyses are directed toward a description of the objectlves - what they should be (or are). This dnne, the various pollcies and procedures are evaiuated, compared and "scaled" in order to determine what treir effectiveness and costs are and to what degree they do "ntta' n " the ob,lective(s).
2. Alternatives - These are the varlour means that can be used to atlain the objective. The alternatives prosented should inciude all known methods (also, within a given time frame, considiration of new means within the "then" known state-of-the-nrt) thet car, ashleve the desired resuits. The alternativeg can be not quite obviova and considers:ion of all types and ways of dolng things must be includer. (ha an example, if the objective of any given period of history was peace onc philosophy was to negotiate - another was war. War was menns of atisining peace by unlfleation.)

[^3]3. Costs - The coets are, also, not roadijy obvious. These are the am total of the rejources expended to attain the objective(s) for each of the proposed alternatives. Resources (costs) are those items consumed In the attainment of the stlpilated objective which cannot be used for other purposes. Total costs must include consideration of all the factors involved in accomplishing an objective. (As an example, the cost of smoking is determinable at " $y^{\prime \prime}$ cents per pack. However, if the U. S. Surgeon Ceneral's Report is correct, in that smoking recuces life by (on the average) 8.3 years, then the value of reduced ilfe is a cost to be determined and applled to the sum total.)
4. Model - The model is a representation of the reality of the situation or condition being studied. Ideally, it would represent the real situation without error or uncertainty. Usually, in Systems Analysis/ Cost Effectiveness etudies it can simulate (at best) most, or eome portion, of the real worlu. The model defines its representation of the real world, and through various exercises, simulations, gaming and mathemutical represeritations, suppiles numerics or information on the effectiveness of the varioun alternatives under consideration for uge in attainment of objectives.

The gtructure and capability of the model is a major limiting feature of an ana?ysis.

A basic requirement of any model is that it should provide correct answere to the stated questions in on economical manner. This causes consideration of the following factors: representativeness, uncertainty, data snurces and validity; l.e., consistency, sensitivity, plausibility, criticality, workability, and suitability.
5. Criteria - The criteria are the standards or accepted rules which are used to determine the relativeness or desirability of one alternative vo, another and allows for choosing one in preferense to others. In a Cost-Effectiveness analysis it provides for weighing and combining cost vs. effectiveness.

At this point in Systems Analysis/Cost-Effectiveness studies we can now interrogate the major operating elements of the scientific methodology within the general frawework of the processes of a systematic analysis. Regardiess which procedure of scientific inquiry in invoked, the anelysis proceeds through the following typical stages:

Hypothesis - At this step, the objective(s) are defined. The constituent elements identified, and the extent of the problem delimited to suit knowledgc, time and cost considerations.

Definition - This step explores the alternate configurataons, policies or programs that can be directed cowaids sciution of the problem (objective). Inherent in this step are considerations of the resources and other interrelationships.

Analysio - Construction of the mocei (s) at the neceseary level of abstraction; and exercisins the model to determinc the consequences or alternate prograns and considered lactore.
Evaluation - This atep examines the derived rasults. It is here that the preferred alternative is identitied. The evaluation is bused on modification of all factors discovered in the iterative analysis.

Conclusion - Thic step is concerned with the verification of the recultant analysis by test and/or experimentation.

The above application of the systematic approach is not new and is quite stralgnt corward. The problems encountered in using the epproach are not caused by its non-applicability, but because o: the ragaries of the environment we are attempting to use it in and for.

In Systems Analysis/Cost-Effectiveness studies the decision-maker und analyjts would like to live and operate in a deterministic atmosphere, and, at worst, in a well behaved s ochastic environment. In this environment, the decision-marerg/analysts car modify hypotheses, which are subjectively probabi11stle at worst, with information eleaned from application of cefined scientific methodology, causing revizion of the original probabilistic furiction. towards a fully descriptive and validated function which expresses the actual ervironment exactly.

Unfortunately, the real world precludes such a standardized and 1deal approach anc solution to problems encountered by present day systems Anslysis/ Cost-Effertiveness studies.

Consider the objective of miiltary posture at some time in the future. wrat should its composition be and what should it be capable of? At once, the objectives are not even known, are certalnly multiple end what can be postulated as a "lgure of merli? Knowing that the systems Analysis function would be to consider not only pure military posture, but with consideration of the interrelationships between socio-economic ari political factors and military affairi, it becomes imediately clear that a "model" would be qujte difficult to construc*.

The analytical framework postulated above connot oncomplish analyses such as lt necessary in view of these objectives in a singie pass-through. In order to maximize the amount of information that can be obtained from such an approach, it $1 s$ necessary to lteratively exercise the framework. Selection of oujectives, alternativer, data collecion, modelling activities, pstablishing measures of effectiveness and flopures of merlt, sensitivity analyeea, evaluations, modiflcations and conclusions should be iterated thrcugh the established oralytical ramawork in an attempt to remove the "impuritirf" of the eirst

$$
1-10
$$

run-througn and reduce the overall complex subsective area dnto guantirlable real world area as near as can be accomplished.

The lterations pruduce: ellmited, rederined or changed obie-tives (pe:haps even cauaing suboptimization to be coneldered in view or total complexity); discovery of new alternatives as by-products of analysis, or mosification oí type and quantlites; redetermination of coste or resources due pertape to consideratior of having to consider non-dollar cost contirgercies; narasity of modelling changes in order to more accurately depi t the "real world" consicering, also, the constralnts and conflgurations in terms of new data or redefinition of objectives and measures of effectiveress and estabilshmerit of new criterla in terms of new data, information andor chanees in ine intierent eitements in the analysis or in more accurate standards or rules sc delineated uy recursion.

Obvlously, the process can continue indefinitely; t normally, it is exercised untll the results are deemed satisfactory or the constraints of time and/or money force discontliuance.

At this point in the dessertation it is necessary to dieress from the prime purpose of this section - Methodology of Systems Anslysin/Cost-Effectiveness which explains the how it is done, and ask why and for whom. Subsequent sestions explain what and when as well as modification of how and why but, for whom needs a brief explanatory section.

Thic entire SA/CE studies-analysis is directed towards improving the quantity, quality, and accuracy of information that is necessary (or would se helpful) for a decision-maker, in order that he may make the best possilie decision with minimum uncertainty und risk - or, if you will - the decision ac to what $1 s$ more effective, economical and timely. As such, SA/CE is a prime morigement tcol, nothing more - but nothing less.

Granted, the genesis of the reason or need for a study is based on speculation of "decision-makers" and that it does contain subjective value sudgents, lack of mracise rnowlece and/or data, urcertalnty of competitive etrategy and other uncertaintles. However, the fiudies can aid the decision-makers by assessment of implications gleased from selection of various alternatives.

Systems Analysin concerns litself with problems of rocource adocation, i.e, what mix of "thinga" should be obtained and how lons arc they to be consitered adequate for thel: purpob:. Cost-Effertiveness reveals the cost varris effectiveness of the "mix" and alds in determination of whet is the resi way to "spend" the resources.

AMCP 706.181

Without programming this philosopily through a systematic analytical fomat, there ts no better way of determining how mariy of what can accomplish a mission 1.e., - it Is not censibie to inthitively prescribe a pusture without considering whatever numerics can be galned from a "study" and what tinetr information content is. It is not the parpoee, ior can it be accomplished by SA/CE, to nase a decision-maker to agree leyond alh doubt that thjs information does ardecd present the course of setion to follow.

The prime purpose is to provide as much quantified information - inciuding Iimiting confieions whether truly quentified or qualitative - as is poesible in order to sharpen the intultion of the decis lon-makers and nelp them arrive at the jest solution in terms of their observation, intuition, experience and value judgments.

Discussiun of limitations of SA/CE will be presented ir the fincl segment of this chapter.

1.5 Aprliention of systems analusis/Cost-Effectueness

1.5.1 General

The concepts and philosophy of Systems Analysis/Ccsi- bffectiveness an be applied tio \ddagger most $a n \because$ system ai any time during the life zycle.

The xrmy Materiel Command (AMC) states that a requirment for a Systems Analysis/cost-Efiectiveness study, ovaluation, or investigaticin may exist or be initiated in support of concept formulutio: (CF), contract definition (CD), progrant change requests (PCR's), program submissions, techocel feasibility studie: (F'S's), aifu studies associated with qualitative material developaent ob.jectives (QMDO's), qualitative material approaches (QMA's), advanced development obientivos (ADO's), ädvanced defelopment plans (ADP's) and těchnjcal uevelopment plans (TDP's).* In addition, other phases in the life cyele where this type of evoluation should be applied are in lone range $R \& D$ systems plan. nira, maintainability and reliability studies, as well is in maicr inventory and loggetios decisions.

The study may take on any of the forms in Figure $1-i$, depending upon where \therefore is in the life cyole as well as what type of decision musi be made.

[^4]```
(1) Systom-Erfectiveness Studios
- Investigates technical feasibilify
- Fredicts how vell a system will meet misaion requirements
```

(2) Syatem-Analysis Studios

- Teohnical-feasibility stuaies and concept selection
- Effectivenese Analyais $\}$ Inter-System trede-offa
- Cost Anaiyais
(3) Cost-Fffectiveness Studies
- Effectiveness Analysis
- Cost Analysia

Intra-System trade-oifa

FINUE 1-1
TWIE OF SYSTEMS.MMAYSIS STUNES

| Category | Orientation | SA/CE Milestones |
| :---: | :---: | :---: |
| Research (6.11) | Increase knowledge |  |
| Emioratcry Development (6.21) | Technical feasibility | Technical feasibility and concept selection studies |
| Advanced Development (6.31) | Operational and technical suitability | Inter-system C-E studies |
| Engineering Development (6.41) | Design Engineering | Intra-system PD/GE studies |
| Operational Systems Development (6.71) | Production Engineering |  |

fidene 1-2
rdTRE CYCLE

The relationship or the types of studies to the major phases in the RDT s. $E$ cycit is contained In Figure 1-2. During exploratory aevelopment ( 6.21 ) the type of system analysis studies that are conducted are normally concerned with technlcal feasiblilty and concept selection. How'ever, when advan'ed development (6.3:) begins, the primary aim is to conduct inter-system trade-orfs in order to choose amone several alternative systems capable o: performing some biven misaion, assuming that all contending systems are capable of pericimarac at various levels of effectiveness.

In engineering development (6.41) parametric design/cost effectiveness ( $\mathrm{PD} / \mathrm{CE}$ ) studies are conducted. This is a process of formulating and evaluating a complete range of alternative intrasystem trade-offs of components (1.t.,


### 2.5.2 Application of $3 A / C E$ to Concept Formulation and Contract Dofinition

Recent DoD and Ary Directives* which establish the concept formulation and contract definition phases of the system life cycle show an increasine awareness of and need for Army program managers to make scund decieions based upon quantjtative evaluations which should result in economical and operationally effective system designs capable of meeting the desired performfice requirements. In this section, concept formulation and contract derinition wili be described and the requixements for Systems Analyeis/Costi-Effectiveness stuates will te discussed.

The objective of concept formulation is to prcuide the teshnicai, economic, and military basis for a conditional decision to initiate engineering develcpment.

It is accomplished through comprehensive system studies in exploratory and advanced development by means of experimental tests, engineering and analytical studies. This work conctitutes the necessary preliminary threat and operationai analyses, trade-off and cost effectiveness studies, and develupment of components and technology - to assure a firm foundation for Engineering Development. The evidence required for a conditional decision to proceed with Englneering Development includes the following prerequisites:
(a) Primarily enginecring rather than experimental erfort is required, and the technology needed if sufficiently in fiand.
(b) The mission and performance envelopen are defined.
(c) The best, technical approaches have been selected.
(d) A thorough trade-off analysis has been made.

[^5](e) The cost-eifectiveness of the proposed t'em is favorable in relation to that of competing items on a deffenseawide basls.
(a) Cost and schedule estimates are credible and icceptabie.

On the vasis of this intormation, the Army requeste apprcval to initiate Engineering Deve? npment. The request is made eithea wy memorancum to DDR \& $E$,
 msinical Divelopment Plan ( $2 \pi n$ ), specirically addressed to the six preregu:s:tes cited above, which summarizes pertinent cost-effectiveness studies and developments and provides whatever informetion may be required to substantiate the achsevement of these prerequisites.

If the infitiation of Engineering Development receives conditional approval, the Contract Definition phase begins. The cbjective of Contract Definition is to determine whether the conditional decision to proceed with Engineering Deveiopment should be ratified. Its ultimate goal is achievable, firm and realistic performance specifications, backed iy a firm fixed price or fuily stractured Incentive proposal for Engineering Development. In eddition, it embraces the following subsidiary objectives:
(a) Precisely define interfaces and responsibilities.
(b) Identify higt risk areas.
(c) Verify technical approaches.
(d) Establish firm, realistic schedules and cost estimates icr Engineering Developnent, including production engineering, facilities, construction, and production hardware that wili be funded during Engineering Development because of concurrency consideration.
(e) Establish schedules and cost estimates for pianning purposes for the total project, inciuding production, operation, and maintenance.

The Contrac*, Definition procedure is mandatory for all new Engineering Developments or Operational Systems Developments (or major modifications of exlsting ones) that are estimated to require total cumulative research, development, test, and evaluation financing in excess or $\$ 25$ million, or a total production investr.ent in excess of $\$ 100 \mathrm{mllil}$. (However, DOD, DA, or AMC may require Contract Definition on other syetems which are below the $\$ 25 \mathrm{million}$ and $\$ 100$ mlilion threshholds.)

Contract, Definition is normally performed by two or more contractors in competition under the technical direction of the cognizant Army bilivity. It may, nowev:r, te performed by a sole source contractor if necessary.

## AMCP 706.191

The trade-orf atudies that are conducted darine this phase should be cirected toward achieving an optimum bulance between total cost, schedulc, and opera: Lonal efrectiveness for thy system. Total coet (or lire cycle cost) includes the cost of development, protuctica, deployment, oporation, and maintenance. Operational effectivencse includes all the factors that influence erfectiveness In operational use, ab well as inherent or pure performance characterietics (ss in WSEIAC, the ADC matrices).
W.: system inciudes not oniy the hardware but also ali other required items, such as facliltles, data, crainine equipment, and the operational and support personnel who will be required.

The end product of Contract Definition is a complete technical, management, and cost proposal package for Engineering Development. The contractor's paskage shound include such information as a list of the end items required; performance specifications for each item; a work breakdown structure and a PERT network plan; the principal oblectives and features of the overall system de:isn, jncluding recommendations for its operational use; a recommended mainterance plan: detalled cost estimates and milestone schsdules for five years bejond it; quantitative reliability and maintainabijity specifications and tast plans; time/cost performance trade-off decisions on major alternativea; requlred new designs and technology; foreseeriole technical problemi and proposed solutions; technical specifications and performance specifications for support items (facilities, tralning devices, and so on) for which early Engineering Development is required; delivery senedules and requirements for data and iocumentation; and a proposed schedul: of production engineering and production. tooline in relation to Engineering Development, if appropriate.

After a review of the contracicrs' Contract Definition proposal paciages, the Army recommends one of the following actions: to contract for Enginearing Dovelomment on the basis of the proposals received; to contract with an alternatlye source; to continue further contract focinition cffort; to defer or abandon the Engineerines jevelopment effort; or to undertake further Exploratory or nisanced Development of key components andor systems studies.

### 1.5.3 Ccmelitision

The methodology and application of Systams Analysis/Cost-Effectiveness stidies ls directed teward supplying the derision-maker with the maximum mount of guan $\frac{1}{}$ flable information about alternative approaches to attaining a missior. Also, lt stipulates arnas of quallfied conslderations with thic, and allows ine oirturs of a s;fetematic approach - the design and development of propozed objecthog and tholr solutions within a rlecrona, lorlenl, ataptive, dynamic ramework mhl!n can be retraced and verifled.

$$
i-16
$$

## 

There are many advantages to Syetem Analysis and Cost-Erfectiveness. However, th y are not panaceas that handle all problems of the system developer, manacer, or user, nor are thay without limitations. Systems Analysis/CostEffectiveneos studies must be oxamined to recognize the limitations built into them, or the premised generated based on given information.

The more prominent limitations inherent in all but extremely cimple analytical studies are as followe:

- Inadequate Problem Definition
- Improperly Defined Scope
- Restriction of Alternatives
- Improper Criteria
- Interjection of Bias
- Improper Data Usage
- Incompatible Mociol
- Misapplication of Model
- Forcing Problem into Improper Framework
- Improper Handling of Relevant Factors
- Poor Assumptiore
- Ignoring Uncertainties
- Misinterpreting Model Results
- Insufficient Samples
- Failure to Reappraise
- Failure to Communicate
- Measures of Effectiveness Approximate
- Future Uncertainties
- Analysis Never Truly Complete
- Changing Value Systems
- Neglect of Subjective Elements
- Assignment of Value to "Costs" (Economic costs)
- Inability to Verify Decision

Consileration of gach element described as almitation is not the purpose of this section. However, in order to anow relevancy or limitations and the atneers assorlated with their non-consideration, a fow examples will be given.

First, conolder the list of limitine olements deccribed above. If an analysls can never be complete, dun to the state or knowledge, the mind money, It is ral. to assume that this list of elements is not complete.

Consider, also, the statement, "Mustang maikes it happen" as an ald to decision making about buying a car. If I am a car buyer, I must make decision based on what the statement means to me .
(a) I buy a Mustang and wait for it to happen and, unless I am purely adventurois, I assime it is gcod.
(b) I don't buy a Mustang because, 15 it happens, I am in no position to deal with it; or it is bad (in my opinion) and I don't want it to happen.
Now, elther of these decisions can be a misinterpretation depentine on the "true" significance of it.

The real difficulty is in the word (information) 1t; what problem did it answer? The same $1 s$ true with results of analyses. Do they literally answer tho protlem or do I still have to interpret mearing within my bias?

As another example; interpretation of a real weather report which states "Probatility of rain - $90 \%$ in $25 \%$ of the area $10 \%$ of the time". I wous assume that there $1 s \rightarrow$ good chance of rain; that $25 \%$ of the area will get rain; ans of the duration of time (which this event encompasses) it wili rain 10 of that period of time.

Nuw if the problem is where do I go so that I won't get wet, how do I interpret this? It would appear I would, generally, be wrong in whatever I decide, or have minimum confidence that my decision is correct.

This example, also considers dangers from the elements of limitation of roor assumptions, improperly defined "model" and failure to communicate, at leait. Analogous to this problem is the one of forecasting advanced weapciry for us: in, say, 1985. What, how many, why and against whom? Baslcally, the hard information comen from back-feed and is tempered by intuition and judgment to transeend now to the future. However, until the "syetems" are operational, In tholer then environment and we can obtain reedback, we wili always have error terma in the analysis - until we pase inrough the veriricatior/modification stapes.

## AMCP 706.191

Conalder, han, data errors and modeliling problems in detexmining how to attach signiflcance to deterrence. Actually, deterrence is, mostiy, matter of philosophy. What does un unamy consider it to be - and how do you find out? Also, it will be charising value with time.

Quantlfication of numerics is a problem in the area of "cnsta". How accurately can you predlct costs for the future - even in dollars - much leas recognize a variable depletion of resources - with a changing value system?

Ohviousiy, it is impossible to consider all the limitations applicable to SAiCE analytical functions, as some apply and some do, not, depending on the complexity of the probiems.

Yet, the recognit!on of them and the $u=$ amee of their accountability is a by-product of an analysis, and doea supply information as much as the hard numerics. By thi recognition (and measure) of accountability attained, the analytical processes become better by degree and help to sharpen the intuition and judgment functions of the decision-maker.

## CM:PTER 2

## GEMERAL METHODOLOGICAL APPROACH TO SYSTEMS AMALYSIS/COSTEFFECTVENESS STUDIES

The general methodological approach to the systema analysis/cost-erfect:reness process is shown in Figure 2-1.

The approach shown in applicable to both systems aralysib and cost-ffertiveness. The distinction between systems analysis and cost, efferivenees is mainly a difference in the definition of the scope of tie atudy. runtems analysis studies are concerned with problems of large scope and are characterlzed by the comparison of different types of equipmencs or systeme so deiermine the best approach for meeting some stated requirement. Tochnicei feasiblisty, inter-system trade-offs, and the parameterizing of regirements are all asso:lated with systems analysis. Cost-effectiverrebs siudied, on se oiter band. deal with narrower problems. Normally, in cost-effectiveness studles, the ipe of systen to be analyzed will be given, and the probiem is to sonduct 1 r trisystem trade-offs to "optimize" the sybtem, i.e., to develop the best sys.em With respect to performance, cost, sehedule, manpower, et.e.

### 2.1 IMPUT IMFORMATIOR

The initial inputs that lead to the development. of requiremen : and objectives in the systems analysio/cost-erfectiveness process are nomali. a. . tributable to such documents as the Army Force Development plan, the Comba: Levelopment Objective Guide, a Qualitative Miteriel Development or, pect: $\because$, or a Qualitative Materlel Requiremer:.

### 2.1.1 Army Force Development Plan (AFDP)

The AFDP is a responsibllity or the Acsistan Dhief or Starf for fored Development (ACSFOR) and 1 s cenat rained by ancicipated resource 1 imitations. It provides the planning basis for the Five-Year Force Strequre and Financial
 avallable resources. Specifically, il accomplisties the rollowing:

It plans the development or balamed capabili-1et wifhin esoablisted constraints and striven to anlileve the best possitio balance bet vect forces, madiness, and modernization.


 la it reasonarle time.

- : plans En: remental ducretate In capabili+tee in fnveree oider of



### 2.1.2 Comat Development Orgestives Ouide (opor)

The CDOG, prepared by the USACIS, pryides quidane for Amy comba:-



 of stules, fleld experiments, as, teste. fepr onter:s are gryluct as Collows:

- Operational oblect!e. An operational or fective is u:i fimy-approvec nata
 concepts, tantics, testn?ques, and procedures.
- Orsanizational objective. An orezaza:ional objective ia an ismy-approved need for a new on revised oretniza:ion to improve fmy opera:ional annablities.
- Qualltalive Mareriei Development or flcilve (OMDO). A QMDO ie an Army approved statement if a millthry need for the development of new mster:el, the reasibility of which annot be determined suffielently to permi the establishment of a Quallistive Materiel Requirement (QuR).
- Qualltative Materlel Requirement (QMH). A OMR is an Army-approved eatement of milltary need for a new lyem, system, of assemblage, the deveicpment of which is belleved reasible.
- Smail Development Requirement (SDR). An SDR states an Army need for the development of equipment thrt can be devesoped in a relativelv ghort the and does :10* warrar: the major erfort required in developing a th . An SDR is normaliy conaldered the appropriate requidemeris documeris if: (1) development of the item $: 10$ of proven ceasibility: (2) the -ime requined for development 142 years or less: and (3) the fDTE conts will not exceed ;2. million, and the projected trives'ment of PEMA funde will not exceed \$10 mlilion.


### 2.1.3 Qualltative Materiel Development Objective (QMDO) Apprrval

The first formal requidorents document that the Army uces in the researen and derelopment cycle is the QMo. Any indlyidal (milliary or clivilan), umse, or agency may propone a consept. or luea bat migt, ieas to es ablishirg a cmo.

## AMCP 706.191




















vonste:s of:

derelopmen:



flalentiy to mate the proser leatobie

QMDO's may be initlated at any stage in the research-and-development cycle and may resulc from a combat-development otudy, operational experience, levelopmental expertence, technological breakthroughs, or feedback of deficiencies in existing equipment.

The Director of Research, Development, and Engineering, Headquarters, $A M C$, is the AMC focal point for processing all new materiej objectives documents and for ensuring that adequate $Q M O$ plans are prepared. After reviewing all the moments from other agencies on the draft ?NDO, CDC revises it and submits it to $D A$ for rormal staffing and apprcval. ACSFOR has DA staff responsibility for all QMDO's. After DA approval, QDDO's are published in C COO so that all interested commands and agencies can be made aware of the ob\}ect Ives.

## $\therefore \therefore$ ganlitative Materif 1 Regulrement (QMR)

A'te: ramearch and exploratory development have prograbsed to the point where AMC feeds it maj be poscible to tral elate technica, knowiedge acquired by : fo iaboratortes Into a reabible mystem, $1 t$, wlll prepero a drart QMR or rosommon to CDC that a GMR be prepared and isided. The QMR 18 direted toward "tialalse new or :ubstantlally imprexed materiel that will sienilicantiy advance t:e Army abllity to accomplish lis miacion. Inilke the GMDN, thr GMK 13 mush mor. sperifle in describing the requirement. It routes major materiei reede in terens o: m:lltary characteristics und priorities and relates materlel to the operational and orgenizational context in which it will be used.

### 2.2 DEFIME REOMIFEMENTS AND OBJECTIVES

The basic task o: systems analyils $1:$ to ..jaluate aytant in terme of ratieving objectives ard concuming resourees. While this evaluation alght be
 In making such evaluations beforn recources are commitied to ereatine a cyatem. Maior emphasis in this section is thereforc alven to such prior avaluations.

In any syatems analysis, it is essential to tare the information as states In the study directive and define an accuptable set of requiremerts ard obsectives. stating the detalled requirements and obsectives is a major par: of the study effort; they may require updating and redecinitior following evaluation and reedback.

In astablishing the objectlve, it is necessary to deiline the boundarior as the anglysis in terms of systom objectlves, system decinition, assoniat. : oneretions, and influcncing factors. Initlally, the obfective should de stats; In general terms so that a comprehensive analysis can be made. Extreme are and effort must be made to properly state the system's objecidue. It a:
 os the miscions, the synthests of alternatlye cytteme, tre evisuaidom rfierta as wril as dintating the topes of models whith muct be emploved in the etub.
 the dectalon must be madr subjectively, and 10 may be heavily friluencto ty







## AMCP. 706-191

Tc properly stite the system's objectives; the analyst must rely heavily both on past experience gained through corducting and evaluating similar studies as well on his knowledge of the military environment and operation. There are three pitfalls encountered in specifying system otifectives:
(1) che-analyst may state the objectives too broadly, (2) the objectives may be limited in scope, or (3) the vojectives may be stated in such a manner as to describe a partiedlar system zather than a functional need. If the objestives are too broad, this results in an analysis whi ah includes an impractically large number of alternatives. Adiltionally, broad objectives often lead to a large number of assumptions which must de made in order to evaiuate the system(s).

Generally, as the number of assumptio.is increase, the uncertainty ascocieted with the conculsions resched in the study inereases proportionately. If the objectives are limited in scope, good alternative systems or other considerations may be eliminated from the anaiysis which could result in a less than optimum systen selection. Sometimes the objectives are stated in terms of a specific system rather than a functional need. This undoubtedly eiminates worthwhie alternatives from consiceration and biases the outcome o: the stuay.

In addition to estibilshing reasonably complete boundaries for the system, it is necsssary to select-specific factors to be considered in the anajysts. Again, this task cannot be defined for the general eystems anclysis or costeffectiveness problem; however, general assumptions can be suggested, and these can be formalized when the requirements of a specific analysis are given. Tyfi(a) assumptions include the foliowing:

- The system will be in operation for $m$ years.
- All externai factors for which the gross cost estimate i- zess thar $X_{1}$ \% of the estimated cost will not be considered.
 cnly if sample data and knowledge of the relationchip are a uisetio to yield an acceptable degree of conridence ir results.
 ex:ept trat those with leverage effects will be exciuded if their inclusion would entell an additional leval of analytioai compiexity that would threaten the timeliness of the analysis.

All asoumtions should be explicitly :tated and fastified ki sactar ovfonse. If none exists, the reason for molsing the ascumption (r.f., motheratival convenimen, renerai consensus) showit be stated to inairate bow math adat womel study is rupired and to pinpoint aromi where error: mifli pe atraned.

$$
x^{2}-0
$$

## AMCP 706-191

The constraints placed on the system are essentially a set of boundaries for the various factors within which the solution to the problem must be found. They may include a fixed budget, a period of time, a desired effectiveness, or a method of operating with resources. In other words, the constraints associated with the systen serve to designate the amourt of freedom allowed in manipulating system variables to obtain a solution to the problem.

Constraints can often be used as the sole basis for distinguishing between the reasible and unfeasible alternatives. However, a constraint can be so stringent that no feasible alternative can be found, ad thus there is no solution to the problem. There are problems, however; for which a solution must be obtained. An example is a person who must have a personal automobile: His constraints are that the ?ost must not exceed $\$ 2,000$; that the car mast be new; and that it must have an air conditioner, radio, eutomatic transmission, and a leather interior. There is no solution to this problem within these constraints. If the person must have a car, re must reiax one or more of the constraints until at least one reasible alternative can be found.

Thus constraints can be used to reduce the scope of the problem, but they also must be flexible so that they do not preclude solution of the problem.

## 2.3 bevelof mission plefles

Afier the requirements and objectives have been formalized, the next step is for the analyst to develop the missior description. These mission descriptions or profiles translate the requirements and objectives of the system into specific statements of performance. They in fact describe the tasks to be performed by the system in order to meet the stated objectives. Also included in the mission profile are such considerations as threat, environment, and tactics.

If the system being studied were a transport helicopter, the set of mission profiles would represent all of the tasks that the transport helicopter was expected to accomplish. Some of the required missions might te of greater impoi ance than others in the set of mission profiles; however, this possibiilty is taken into acccunt in the presentation of results.

The generation of mission proriles can be characterized by the inow chart shown In Flgure 2-2. I:itially, the operational requirements and objectives are determined by considering such factors as the number of missione required, the functional concepts to be employed, the enemy threat, the spectrim of environments that may be encountered, and any other requirement as stated in the QMR. These requirements and objectives are then translated into specific statements of performance -- for example, the number and type of communications equipments required for a mission, the incormation rate and relifaillty requirements of the communications equipments, and the range and welght constraints.

$$
2-\vec{i}
$$



FICHIE $2-2$

## MISSIOM.PROFILE BEVELOPMENT

Thers are several important factors that must be considered in developing the mission profile:
(1) The mission parameters (or set of boundaries of the mission) should be expressed as minimum goals and maximum values. Care must be exercised to avold undie rigidity in mission parameters and each mission parameter should be assessed as to its criticality in terms of meet'ag the requirements and objectives.
(2) Postulation of missions is not solely a job for analysts, rather it should be dealt with on a team approach with talent drawn from both the technical and military communities.
(3). As the task progresses it may be necessary to eliminate certain missions because the risks associated with meeting the objectives may be too high.

## AMCP 706-101

(4) The missions must be sufficicnt'y detalled to enable the aralyst o test all the significant system parameters.
(5) The missions must be gble to be modeled -- (war gaming/scenarios),

The final step in generating the mission profiles is to combine all the various inputs into a scenario format that represents the combination of system requirements, threat, environment, and tactics. The missions thus serve as transfer functions which relate the system objective to the perfomance of the alternative systems.

## 2.4 outaik chitichl peafonmance pazametens

There is no preise procedure for defining a system and its bouridaries. consequentiy, ail pusibie variables within the system, their expected interactions, and their relevance to the problem being addressed must te examined thoroughiy.

If many variables are considered in the study, a valid sensitivity aralysis can be made. This analysis will show which variabies are critical (end may require more detailed study) and which variebies can be ignored.

Not all performance parameters of a sjster will be needed an the eveication of a system's effectiveness, because some performance requirements interface more closely with the system objectives than do others. The performance requirements of the AN/APN-7OA (a navigaticn reating set) are a gooc examile. The general description of the AN/APi-7CA is that it is a receiving set desiened to furnish navigation information to aircraft up to distences of 2500 nautical miles from special ground transmitters.*

Some of the performance requiromert listed in the specification "or the AN/APN-70A, such as sensitivity, selectivity, securacy, anc itebility, sre directly assoniated with the obiective of the recelver othere, wuth as reichecking funcion and escllater radiation, mat not bs ansitive to the obsectiyes and would, thereforn, be of sooniar, importence in the etce:trones

 achieve the obfective and whith were not. It one of the routremonts the APN-70 is to reselve sienals wirhout beine int vet, tron an item surn as c.illator riliation may be an limortart porametor. Thu it wioh eppear that



 mont nex ae follows:

[^6]
## AMCP 706-181

Communicstions-range, noise characteristics, receiver sensitivities, trensmitter powar outputs, input power requirements, jamaling vulnerability, and number of channels.

Computeri - accuracy, computat Lonal spaed, input-output formats, memory cspacity, retreval speed, languge capability, and analogus to digital capabilley.

Antenns - gain, coverage, transmit and receiver losaes, physical limitations.

Another factor that must be considered in defining the critical performance parameters is the concept of controlled and uncontrolled variables.

Some variables can be controlled early in the system's iffe, For example, the time needed $i o$ repair a failed item during the operational phese can be controlled to some extent during the planning and design phases. Later, during system operation, the tines to repair are distributed according to some observed function. The expense of changing these repair times is generaliy higher in the operational phase than in earlier phases. Other variables must be assumed to be distributed according to an assigned or predicted function during the early phases of life. Later, during system operation, these variables can be controlled. Two examples of variables in tris category are the mission times and mission frequencies for a new helicopter. Still other variabies are never subject to control -- for example, the weather; and there are some variables that can always be controlled -- for example, pay scales.

Some variables that cannot be controlled can be influenced through variables that can be controiled. A comm example is the set of varia.bles representing the opposition's reaction to changes in strategy directed at them. Another example is a battlefield war game in which player A's strategy includes influencing player $B^{\prime}$ s moves through the control $A$ has over his own forces.

The cost parameters will depend on now costs have been defined in the costeffectiveness problem. They may be time, money, lives, distance, or area. The criticality of cost parameters is always subject to change. For example, fuel consumption may be hardly considered unt:l a certain turn of events limits the quantity qualiabie. Hence, a millar.: mi-ston an ti sumvelved of in which the cost of fuel exceeds the cost of amunition evon though the doilar costs of the two are the same.

## 2.5 spminesize altenmative systems

### 2.5.1 The Total System

The turm "System" appears to defy unique definitioni l.e., one man's system may be another man's component. For example, a ompary may have a cont ract to deveiop a radar set. Within the company this ralar may be thought of as a

$$
2-10
$$

system. To the cuntomer, however, this same radar may be visualized as only one element of a larger "syatem" which he ls planning for the control or aircraft over a geugrapilc area. This lateor man's system, in turn, might oe one part of much larger systom which has miesion of nanaging large mase air transportation system. There is really nothing wrone with any one of these persons feeling his own scope of design is a systef. However, a definite danger is involved in not recognizing adequately at any giver level of considere:ion the relationship of the given system to all potential supersystems and the implied interfaces.

It will surfice for the purpose of this Guidebook to derine the total system as it is shown in flgure 2-3. At the center of the total system is what is termed the Object System. The Object system may be defined fragmentaily to colncide with the scope of development responsibility which a prime contractor would normally be charged with. Development of the object System must be accomnlished in consonance with the requirements, constraints, and inverface characterisilcs of the world in which it will ultimately operate. This world is uategorized into four blocks, or syatcms, shown in the figure.


A supporting system 13 one which is neceszary to the performance of the obsect system but not in the direct functional line, for example, a malntenance sjstem. The environment which would tent to degrade system performance (such 2, The physical environment, electromagnetic environment, and others). The temand gyotem charactesizes the need for which the Object Systom is beine devaloped. In a military sltuntion, the demand may take the form or a threat more efeciflcally, it might be the approgen of an enemy aireraft. For an or fect system which provites bervice (such as a commotcations system) the demnef oystem characierizes the potenila: urers of the comunications service and their hablta and technical requifroments. Related oystems are those with whith the Object sybter must cosperate in performing lis intended funcion.

## AMCP 706.191

Thus, wo see that during the development phase, systam analysis hould not be conflrud only to the Object System but should be used to charanterize the :our surrounding system categories.

## $\therefore .7$ Syptum Confleuration Synthes 18

fileer the requ-ements ard objectives have been defined, the critical por:omance parameters obtained, and the mission profile structured, a system or set. of alternative systems can be synthesized. System synthesis requires jevertil ingredients, among which the more important are:

- An adequate understanding of the mission profile;
- Ar sppreciation of the ultimate user's capabilities and limitations;
- Intultive judement concerning the effect of combinations of equipments operatine, as a system;
- A working knowledge of the state-or-the-art capabilities and limitations in technical areas from which the potential new system may be drawn; and
- Common sense to seetr the advice of experts, in questionable or critical tachndenl areas.


## $\therefore$.a.t pastc Functional Subsystens

The : Lrst step past a mission profile definition lis the identification of bas: functions necessary to any system capable of accomplishing the mission. This licntliteation should be carried down to the lowest mission-oriented level. For "xumpl", the functions recessary to support a long-range cearch radar are (i) power suppiv, ( 5 ) antenna, ( 3 ) antenna drive, (4) antenna feeds and match$\therefore$ :a, (5) sicnal formation and amplification, (6) Eingle reception and analysis cinmants, (7) trarismit/recelve diflexing, (8) signal processing, and (9) sigMa: 11.play. Ench of the above functions has a rather direct relationship to
 Whir ir a ground-to-alr missile system. This system le more complex than the ritur wample and in turn the brenkdow is not carried to as low a level of letal. The breardown in Figure 2 -it is shown in block diagram rorm with the

 any primular technionl approach to nonflguring a system.

Gur the hast: rurcitonal olemant: nupronting m minalon have been derined, - rare i, ph;nical ralization that eact function ar le enumerated. Table 2-1 at, w; bach an enumeration for the zendth miselle system. The left-fand column


These arm arranged from top to bottom roughly in a reversed order starting rrom missile detonstion. The first of the basir calejories contains the configuration option which could concelvably accomplish the runction. Next, is a coluan for entering design factors which could influence the selection from anong the options. An example of a design factor is warhead uelght. To accomplish an equivalent effect, a non-nuclear warhead would involve several times the velght of the niclear warhead. The next column includes factors relating to the use of the system (such things as side offects of the selected options). An exampie of a rolated missior. factor can again be given regarding the cnoice of warheads. I: the missile is to be detonated over or near frlenaly forces, a nuclear warhead tas certain disadvantages over non-nuclear wartieada. Some of the factors enterec in these latter two columns will uncoubtedly be the basis for eliminating many of the possible conflguration options. Others will simply require consideration in making a choice. In studying Table $2-1$, sertain


FIGvie 2-4
2EMITM MISSILE SYSTEM - FUNCTIONAL DIAGRAM

| TABLE 2-1 <br> BASIC ALTERMATIYES FOR THE ZENITH SYSTEM |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Baste Puncticns | Options |  |  |  | Design Factors | Related Uission Factcrs |
| Warhead | $\begin{array}{r} \text { Muclear } \\ \text { M1si Distance } \end{array}$ | $\begin{aligned} & \text { Mon-nuclear } \\ & \text { Miss Distarce } \leq 100 \\ & (10) \end{aligned}$ |  |  | Use in all-out or 1imited war? |  |
| Termiral Guluance sensor | opileal | Infrared | HF |  | Backeround noise, sensor respone? time | Susceptible to jarming |
| Mad-Course Guldance Sensor | Raido Lirk to Ground Radar | Alrborne Radar | Doppler Radar | Inertial Position |  |  |
| Missile Control Tecrnique | Pin's | TVC (Vanes) | IVC (1qquid) |  |  |  |
| notor | Solld | Jet | $\begin{aligned} & \text { Throttleable } \\ & \text { Solid } \end{aligned}$ | Liquid |  |  |
| Missile Computer | Analog | Digitaj | tybrid |  |  |  |
| Masile Puizing | Target Doppler | Intensity |  |  |  |  |
| missille arming | Barometric Pressure | Radar and T/M Link | Guldance Output |  |  |  |
| Missile Control Reference | Inertial Platform | Strap-down Comprnents |  |  |  |  |

comtinotions of options will turn out to be impractical s'rom the interfare stanapolnt. For example, the use of thrust vector contral alone may te ruled out if the terminal filleht of the missile is so be unpowered.

## $\therefore .5 .2 .3$ Identify Use:u2 System Levei Performance Parameters

The next step in the process of system synthesis is to define a nifrarchy of parameters which bridee the chasms between mission profiles and runctions: subaystem pertormance. Figure 2-5 depicts a literarchy correapondine to the zentwh aystem. At the top of the fleu:e are wo bacic miseson performance parameters: K11: probablli:y ( $P_{K}$ ) ond time to react and efrect a kill. The nlerurchy in flgure $2-5$ concelvably :ould be continued down to the jever at module and even plecepart output paraneters. I is not neceasary io do so g: this stage of dryelopment, nowever, since the lowest levele in the eleure represent parameters milch easily relate, in most cases, to statements about state-of-the-art and fross characterisilce of design options. The parametere which are underscored with heavy lines represent what, for prectical purposes, coust be called syitam-leve: periomenct parameters. Avolding the question o: what ar system level and what 15 not, surflee 1 : to say that the underscored parametrar are called system level parameters becuse they are the link between miceton pro:ile statements and the bisic :unctional elementa at de:ined in tahie 2-2.


Figune 2-5
menarchy of parameters

### 2.5.3 gtate-of-the-Art Analysis

In state-cf-the-art malysis, each critical design area, or compenent, atould be viewed from three general polnti of view. They are (i) the techalcal witabllity o: proposed techatcal "pprouch, (2) time phase cunslderation duscibing ail of the particular tochnical approach ralating to the mansiream tevelopmen' time frame, and (3) the economic implicatione or incorporatira, tie teandral approach into the system. Taule 2-2 is 1llustrative of the everall 1:em: which wouid be subiect of serutiny in determinine the state-of-ine-o: foxslblily or a glver critical decien arma.
[ABLE 2-2
Chanactenistics pertinewt to a state of.the. art AMALYSIS (ELECTRONIC)

Contlmasts
phrare:ces Dundecs


The malor comperine alternatives must be identiried or cynthesized. The ariaties : 0 b.: uralyzed for quantiflcation of these aternatives are elso :tent: :ibl. Usually, certifn alternatives are well defined at the beginning of aniysic. One of tho major henefite of an analysis is that it can generate new ACrras: ve -- eme of whieh may be comblritions or modifications of existing and -- as ine anslysis propreses. Initial ldentirication and selection or artab:..: euncrally require borecolne, e.e., through preliminary seraitivity ana: al: Lecialons on athrative and variable setection should be continually


Th. evoluilon of a eystem l: g complex procese. It beginu with an idea and




 $\because$ tost on tro tuture of the aystem. selection of one of trese alternatives

 $308 . \mathrm{m}$ fotill. At one tovel, when action is newossary in response to triest. *h a arratives may lnalude the procuroment ot a new missile, artiliery, or alrorate. Thesa nere evaluated in terme ot detense obseretver and resouree







## 2.6 develop mardware characteristics












## AMCP 706-181

(Essentially, a single-engire system coste less in malntenance ard infital Investinent, while the mulifple-angine is egfer ind lege vineratle to enemy ievion.)

The hariware characteristtes for a commandetion syster wold be deterifined by the performance requirementa (range, channal capacit, g, zatem reliability, otc.) ans by the constralnts on welati, mablilty, ete.

### 2.1 ESTABLISM DASIS fOA EVALUATMG EFFECTIYEMESS

Ere' ultimate output of any byeten 1 a the pertomance or some intanded
 deapon: ayeteno For other types of systems, $i$ : may be deateribed by some system-
 :Ior: syatem or neather ldentification in an airborne weather radir. The torn atten uiel to deasrlbe the overall capability of a ayetem to acoomplish ils mitaton is syerem etectiveness. A more precise uefinition of this expreceion
 f"a: lyace: la related to that property of system chiput whach was tho basic ronati icr buylng the aystem: the perfurmance of some intesided func:ion. If tre ay:un la ascetive, $1 t$ perforing this function well. If it is not efective, sicention must be alrected to the system at idbutes that are defichent.

3erase of the variety or systems to which it is epplla, sytem affective nomb nat been darlned in a number or way: The WSELAC* arect producod th. :r abwhe general definition:

Sy un Effectiveness is a measure of the excent io whist a ryotom may
6. expectec to achleve a set of apecille mintion requiromento. It is
; Cunction of the system's avadablify, depencab:i:'y and capablidiy.
Tia hasle approach for evaluating the efrecturnoce as syotem an be aty:r! on or aralytic.


 nen. $\because$ hedr 11 :'e cytas.







"Purely emplrical or purely analytic methodologies are, of course, not very useful. The former yields highly authoritative data t.oo late to be useful, while the latter yields answers unsupported by facts. In practice, a balance is sought. This balance will normally change during the life cysle of a system. As data about the behavior of the system tacomes more avallable, the analytic model graaually merges irito an empirical model; as the data becomes more avallabie and as confidence in their value inereases, statistical sample data supplant the assumptions."

The need for malyt:c models to predict system effestiveness is based on the rued to evaluate the effectiveness of a system before it has been in the field for many years. Although the empirical methods are required to provide inputs to the systems anaiysis/cost-effectiveness process, it is the analytic approac'i that is the most important and useful.

One analytic eifectiveness model that has generaliy been accepted is the WSEIAC mode.. The WSEIAC model is based on a breakdown of the effectiveness parameter into three major components -- avallability, dependability, and capability. Avallability is a measure of the system condition at the beginning of a mission; dependability is a measure of the system condition durlng the mission, given the system condition at the start of the mission; anc capability is the ability of the system to perform its mission, given the system condition during the mission.

To apply the motel, given a mission definition and system description, 1 : is necessary to delineate possible mission outiomes and significant ij sten states. The avalabjlity and dependablijty measures are then reiated to the possible syatem states, and the capability measuro relates these possibie sjisem states to the possible mission cutcomes.

For the very simplest of cases, in which a system mast te in elitier a working or a falled state, the measures of avaliability, dependabijity, anj carability represent tie following fundame:ta questline:

- Is the system working at the start of the micotion?
- If it is working at the start, wit: 14 rotinue workink throagho tre mission?
- If the system works throughout the mlsolor, wlll it antuajiy stheve mission suceess?

As the systems consluered become more ompex -- n.f.. whei there aro more than two possible sy:tem: etatas, ant anditatere at in-misoton ropalr,



## AMCP 706-181

questions may be too dePs. $\because$ to anawer with simplo model construction, but they till represent the fundamental WSEIAC approach towards evaluating effectivenses on mission-oriented basis.

The general framework for the analysis of system effectiveness is given in Figure 2-6. The elements of system effectivensss are discussed briefly in Sections 2.7.1 through 2.7.3, and are outlined in Figure 2-6A.


FIGURE 2-8A
flements of effectiveness

### 2.7.1 Avalisolility

## ANCP 700181

The concept of avellebility concerms the syetem's eondition the the of mieaion. The USEIAC definition is as followe:

## Availability is $\&$ mesare of the syatem condition et the gtart of mission. It ia function of the relationsinips mong hardware, personnel, and procedures.

Availability hes aiso been expressed as the protatility the the eyotem is opereting salitfactorily at any time, when used under stated conditions. Foi this guide book, the more generel WSEIAC definitior is used.

Application of the availability concept requirea clare definition of what is included in the system and of the system's missior. A ailability is a secific measure; it is therefore usially necessary to define more than one system and 1ts asbociated mission and to define availability for each aze.

In estimating a system's availability, cart must be zaken to consider now the "system" has been deflned and bounded. For example, with negerd to a group of 2 : tanks, an analyst may be equally interested in the evallability of a singie sank, several tanks, ard the group of tanks. For the $\boldsymbol{c}$ f tanks, then, geve: $\mathrm{s}_{\mathrm{c}} \mathrm{stems}$ and sevenal colreaponding missions can be derined, arid the measub $=$ of availability will be different iri each case.

Assume that the system 18 defined as a group of rour tanks (frcm the 25) and that the mission is to atiack as a group. If at the start of a nission one Lank is found to be inoperative, the system rill be sounted as being in an unavallable state. However, the aroup mission is not necessartly abortec, since It might be possibie to draw a replacenien: from anorer rovp. In this case, then, avatitility is considered zero, ard yet it is not necessary o abont tre mission.

```
 On the cther rand, if the sys+em corsts's of all 2: tanks and the systcm'e
mlsgion is 'o pro:ide arics for specinic m'ss!ors as requred, ava:labil:ty
might be a measure c!'ta rimber of arks a:g:larle for acstrnment at ary :ime
Ir is not a measure of the nimtor of opera*ional tarke, e!rep ava:larti:*y may
be zero -- Cor example, wher: OC percer: nr be terks are perfurtire opecif:
misulons ani 20 percent ore inoperative. Ir tris cfac, it is sime posaible to
```



```
and performing thetr assigned misaione.
```

```
 In another g!'ia*ior the meas re of !r'prof ma% ye 're mem of tarke
```

```
 In another g!'ia*ior the meas re of !r'prof ma% ye 're mem of tarke
```






## AMCP 706-191

It : © joseible that avaliability will be 100 percent and yet a apacifis mpason will be borted because all tanke are already ferforming epecific miseliont.

## 2.\%.2 Dependabil1ty

The aecond major element in the system-errectiveness fremewarik is dependablli:y. The WSEIAC derinition is as followe:

> Dependability ie a measure of the system cond:tion at one or more points during the misaton, given tre syotem cond:tion at the atart of the mission.

The nature of thls concep: is aimilar :o whe ta commony referred 10 a rellabillty, except that milability is usuily der'send ae ne probabilisy fhat a system wlll perform satiotactorlly for at least a giver period of time When sed under stated conditions. The more getieral WEFIfC defini:ion is used herein olnce the byotem's malntainabiligy characteristics also furluence its dependabllly.
 concept sequires an exact statement of the system s composi:ton andmiasion.
a atngle ea: imate of dependabill:y ror tre sysem in ques:ion may not convey all that should be known abo: : and relayed apteme. For inalarce.







 constder the Mromeanias surroundinis follim.
 woe several yeare azo, one of the mos imporyan proreqiantra onppiyirr :
 since to say what is satiofantory performance arder piver cordilora, : "io
 under boee same condltions.

 nicationn spetem, an equipment in the syetam, or a arop of rifonar Dact


 syatem or mission. On the ether hand, $I f$ ntantion $i s$ fccuser ren a ankie

chameteriselics of the related syeters and miasion. Measurement of dependabillty requires identification not only of each critioal systmand misision but also of the lmplicarione of success or fallure in each instance. Trien the ceverel eatimates of deperidubility are displayed in the form of a vector. Although thia type of dioplay does not facilitate the decision-making proceas (if onything, it maken the process more difficult), it does leaf to more accurate deciaion-making.

### 2.7.3 Capabil:y

The third major olemen: tn the system-erfec:iveness concept, capability, 1a defined in the USEIAC report an followo:
the misaion objectives, eiven the aystem cond:ion during the
missior. Capaolily spenifically accounc for t.e perfomance
spectrum of the sybiem.

A olmilar concept shat eapresses $:$ :is anarmeterisilc of syatem ir. probabilistic terms is Desigr. Adequacy, which has been defined as the protabijily that a system will osceessfuliv accomplish i:s mission, fiven that ife rystem is operating within deaigr, specifications. In tha guade look, the more general
 exprosied as a probatil.". I: slo. :J te no:ed trat capability or deaspr adequacy is not solely an interen charactertaty or systur taraware. Capability depends to signtrlcant degree on rem:ssion asaloried io the syotem. h mystem that was des:gned to accomplish a sper: r!e agix ra: very well bave a hagh raphtisi:y

 for rhis naw misaion may be low.




 standard sechniques.







 enviroments, and to withatand high impact lenin, than the liowout (ralium) in


## Amce 70.-181

setinfactery operation ware defined to thelude these severe environmentw. On the other hand, dit the blowout occurs on atire designed to operate in mich lepe severe environmante (jorhaps 40 mph at $80^{\circ} \mathrm{F}$ ), then the fallure is attributed to lack of capability. In the first cate the tire (aystom) hod adequate capablilty, but its dependebility was low. In the second case the syatem's dependability may heve been $h i g h$, but its capability fror the particuiar miesion) was less than acequate. In elther case, li is lepportant to nate that the system effectiveness of the tire la below the acceptable level.

## 

The measures of effectiveness** for sme systems art easy to obian and comonly accepted -. such as ton-miles/uay for a transportation byster, and single-shot kill probablilty for an anti-tank wisaile. However, for other systems, including many electronies sjstems, ${ }^{\dagger}$ no overail measures of effectiven ness have been develo: 1. For exampie, the e:"ectiveness of comunication system may be measured in terms of infurmation rate, information reilability, system rellability, and system avallability however, it is no: possible to combine these four factors into une overall measure of effe"tiveness. This is not necessarily a disadvantage, oecause the decision-maker can still make a chotee even if the effectiveness is presented as four separate numbers; of course, the sholce may not be as simpie or clear-ciut.

The measures of effectivencos are subjent tc change with time in a battlefleid situation. At one time, effectiveness may be measured in terms o: the damage inflicted on enemy suppij routes. it ancther time, li may be measured in terms of how long $1:$ fakes to intercept arj intruaing tank column.

If the mission prorides twe been speitiondy defired, the problem of defining measures of effectiveness is g.eatiy reduced in that the effectiveness can now be expressed as a protetii:ty oi nompishine ait or aven part of the system missici. In other cuses, wicere set of spectic miesion profiles cannot be obtcined, the efrectivenes, must be reiated to the physicai character1stlcs of the syster. .- for exam: :-, rarge, zhanc: capa:ity, speet, etc.

[^7]
### 2.1 Moment matis

## 2.9 .1 oenaral

A bystm model if eaventially matharstical, logical, or physieal represontation of the intordopendencies betwen the objectives and the resources essociated with the systos and its une. For dealing with the erfectiveness of complex systems, the madel to wually in the form of mathmatical equations (mathemetcal model) or computer prograss for simalating system operation (asmulation modei), or both.

On the assumption that set of systom objectives has been translated into an optimization criterion, the mete: builder is required, minimally, to construct mudel that will cnable quantificailor of the critical effectiveness and cost parameters as function of the resource variables.

The overal: costeffectiveness model is usually one that consista of several sub-models, each of which may be based on modals at still lower levels. Figure 2-7 indicstes one means for sub-model classification. It should be noted that there are many other schemes for classifying models.

There is, naturaliy, a great deal of interaction anora the sut-models, and mojel integration is required in the same sense that system integration is required.

Conatrieting sub-modele (and integrating them into an overail model) is, for most "real wo: $\ d$ " situations, still more of an art than a science, largely hecause the vaidity of the model cannot be tested tnrough controlled experimentation; thus the coliaboration of people with wide experience in the areas of cuncern is an important requirement.

fHy童 8-1

- sumant caassimicariom scorne


## AMCP 706-181

### 2.9.2 Asisumptions

All manmpinas required for the mudel should be explicitily steted and, if posilble, upported by factual eviuence. If no such evidence exista, it is advisable to etate the reacon ror the asmupion, e.g., mathematical aimilcity or consensun of opinion, In order to indicate the degree to which the maumptions will require further fustirication and to pinpoint tise areas in whict. errors might be introduced.

### 2.9.3 Adeguacy

A model must b3 adequate in the sense tlat all major varjables to which the solution is sensitive are quantatatively considered whe:e possible. Many of these variables will have been preselected. Through nanifliletan of the model, some of the variablea may te excluded or restricted, and others may be introjuced. Non-quantifiable fertables must be accounted for by modification o: the solution ratioer than by direct incorporation intc the model. In this sense they are quantlfable.

## 2.\%.4 Representativeress

 that the model reasonabiy repratent the true wituation. For cumplex problems, this maj be posilble only for tur-parts of the protlem, which must be pleced together ehrough appropriate mciestre teciniquts. As ar example, analytic representation may be possioie :cr varicos phaces c: b cumplex maintenance activity. The outputs frm nowe araty:ce may then te wod ab inpute to a


## 2.. ${ }^{\text {Jrartalnty }}$

 noret, nor san they be "assumad" col:; fin; mise to fices tguarely. There may





 urcortainty, functions-oc-randcm-variatine reory or sid procedured as Monte








### 2.9.6 Daca

The avollablifty or relevant jatu fay wimportar role in the aevelopment and application or a mode:. Data are require to suppori assumptioric, select alternatives, and derine constraitits, we weil as qo define tre cual mid effectiveness constants in the propoied meded. sifot miteine dala may prevent





 errort.

### 2.9.7 Validity



 waknesses clat can be eorrecied:
 ¥ar!ot?




(2) $\because, \cdots, \cdots, \cdots$

2.7 .2 Ences si Moda:

 descritod beicw.
2.2.0.1 Mathemtica: Mctoso

Mathemat:cai modoss arm
to represent the characor: =:






## AMCP 708-181

### 2.9.8.2 Gaming Mocels

In the gaming-model technique, operations and resource usage are simulated through scale models, computer programs, or physical analogs. Personnel in operational decision-making capacities are participants as an integral part of the model. Examples of gaming models are military war games and the une of alrcraft aimulators.

### 2.9.8.3 Simalation Modelis

In the simulation-model technique, ell aspects of the systen, its resourse usage, and its operations are simulated in an abstract form, usually through compute: programs. The basic operational flow is structured and probabilistic paths are determined through appropriate random-variaple genersting procedures. Such computer models are popularly callec Monte Carlo procedures. An example is the simulation of component failure and repaif times to provide estimates of system availaioility and maintenance and logisilic requirements.

### 2.9.8.4 Operational Exercise

In the operational exercise, actual system resources are used, generally in a simulated operating anvironnent. Examples are a concrolled experiment of weapon firings involving military personnel and resourees, and a military ileld maneuver between red and blue forces. The costs of such exercises are geicerally high, and thus the number and extent of the trials must necessarily be limited.

## 

The basic USEIAC system-effeotivenoss equation is the product of an avaliability vector, a copendability matrix, and a apability vector, wioh are defined as follows:
$A=\left[a_{1}, a_{2}, \ldots a_{n}\right]$, the avaliability vector
$a_{1}=$ probability cyatem is in atate 1 at the beginning of the misaion

$$
D=\left[\begin{array}{lllll}
d_{11} & d_{12} & \ldots & a_{1 n} \\
d_{21} & a_{22} & \ldots & . & a_{2 n} \\
a_{n 1} & d_{n 2} & \cdots & & a_{n n}
\end{array}\right] \text {, the dopendability metrix }
$$

$d_{i j}=$ probability of a system-atate transition from state 1 to stage $J$ over a fixed period of time
$\underline{C}=\left[\begin{array}{l}c_{1} \\ c_{2} \\ \cdot \\ \cdot \\ c_{n}\end{array}\right]$, the capability vector
$c_{1}$ - the capability of the syatem for performing the miasion, given the system is in state $j$

A typical term of the product is $\perp \underline{D}$

$$
a_{1} d_{1 j} c_{j}
$$

where
$a_{1}$ is the probability that the watem is in atate 1 at the beginaing of the miseion
$d_{i j}$ is the probability that the systam will make the tranalition from atate 1 to etate 1 ovar a fixed time poriod
$0_{j} 15$ the probability (or expeoted value ascociated with mieaion
acoomplishment) that the aystem can perform ite masion, given atate $g$
It is emphasized that the WBEIAC Model is not a celf-oontained, direotly applioable mathematical equation fo: afiectivemen. Ae atated many times in several ways in the WSEIA: Taak Group II report, the "model" is acturily a framework for effectiveness quanjificition -- a basio routing for construoting an approysiate model. Alliousi the mode: frameworic, represented by the

## AMCP 70n-191

product $\mathcal{A}$ D C, can in come inmtances be used direotiy, this almple product will not work for a partioular systan-niesion osmbination. It wa not intended that this product be almays diseotily applicable -- only that the elements of avaliability, dopendability, and ampability be incorporsted in tuish a maner thet the model framowork sould be applied.

As a simple example, ti, product $A \underline{D} \underline{\text { in actuality is baced on the }}$ agumption that miscion performance is eveluated at a angle point in time .. the ond of the mission. For many osces, this is not reaconable. If $\underline{D}\left(t_{p}, t_{\rho}\right)$ is defined to be the dopendability metrix over the time interval $\left(t_{F}, t_{f}\right)$, and if the Markov aesumption holds, 1.e.,

$$
\left[\underline{D}\left(t_{1}, t_{0}\right)\right]=\left[\underline{D}\left(t_{5}, t_{1}\right)\right]\left[\underline{D}\left(t_{1}, t_{1}\right)\right]
$$

for all $t_{1}$ such that $t_{1}<t_{1}<t_{g}$, then the effectivences of the syatem at time $t_{k}$ is represented by

$$
\boldsymbol{E}\left(t_{k}\right)=\underline{A}\left[\underline{\underline{D}}\left(0, t_{k}\right)\right]\left[\underline{c}\left(t_{k}\right)\right]
$$

If the miasion 10 one in which continuove performance is required over the miesion length $t_{m}$, the offectivenest of the ayctem, eseuming well-beheved functions, may posaibly be quantified es the time average of $\bar{s}\left(t_{\mathbf{x}}\right)=$ thet is,

$$
E=\frac{1}{t_{m}} \int_{0}^{t m} E(t) d t
$$

Note that if at each performance time the oapability co-sfficient of equals one, and if state $f$ belongs to the eft of satisfactory atates and 15 ero otherwise, the above equation for E reduces to the expected frection of the miesion performance time that the syatem is in a eatisfuctory etete.

An extension to the USEIAC methodology is neouscary if the Markov aseumption does not hold. In this osse, the aapability witrix munt be writton as an ack Matrix ( $\mathcal{F}=$ number of syatem stetes), with an ontry for each state transition.

Exhibit 1 presente a aystem-affeotivaness probiem, withits eolution, that illuetrates the appliaution of this technique.

## ExMerl 1 <br> EXAMPLE OF SYSTEW-EFFECTNEMESS PRBOLEM

Two comunications aysteat, $A$ and $B$, are ueed simultaneoully to tranamit information. Blould either of the syatema fail, the reabining one is capable of tranmitting slone ( $A$ and 8 are statistically indspendent; . Fallures in either for both) syituas are not repaired during a trangaiseion period, but are repelred during a period when the equipeents are normally shat down.

A trangisaion will be started whenevar at leist one of the systens is available (in other worde, it is not necestary that both $A$ and $B$ be in operable coraition in order to atart - tranemission).

The seapective man failuce times, mean ropair timen, and bit rates for $A$ and $B$ are given below:

| 8yctes | Mean Failure Time, ${ }^{\text {a }}$ | Moan Ropale and Ting | Pranculsalen Rate, r |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$ | 12 hours (exponentiai) <br> 24 hourn (exponential) | 8 houre 6 hours | 12C,000 b1te/hour 100,000 bite/hour |

A momal tranamiacion pariod consiste of 3 undintessupted hours.

## wesmuns

## cration I

That is the offectivones. of $A$ and $B$ ccmbinod, if effectiveness 15 defined as the frobablity of tranatitins at leant 300,000 bits during a nomal tranmisaion periods

## (nexam 2

That is the affectiveness of $A$ and $A$ combined, it erfectivenesi is defined an the expected (average) nimber of bite tranmaited during normal tranmianion period?

## canmmis

That is the answer to duation 1 if both values of $\overline{2}$ are inereaced 50\%

## ciman 4

that is the mawar to giestion 2 if noth vilues of $\frac{7}{7}$ ere incromed 50, 1

## -annul

Thet is the andivor to grastion 1 if, inatead of chacisis the valuoe of F, the valuen of I are both decreaced solf

## Cution 1

What is the enawer to question 2 if, inatead of changing the valuos of F , the values of T are both decreased $50 / \mathrm{m}$

| For all queations, the syetell etate declenation will be: |  |
| :---: | :---: |
| Contiuration | State Mmber |
| A. 8 | 1 |
| A - \% | 2 |
| \%.8 | 3 |
| T•E | 4 |

2-38

## 

Hotsy 411 calcuietion rounded off to 2 places as they occur.

## mandire

Axalimility calculations: Tie araliebility ( $A$ ) of a syotem is the probatility this a syates is sperating at ary point in time axd is given by the equation:

$$
A=\frac{\pi}{T+\bar{x}}
$$

In particular, the avalleblility of subsyatens $A_{A}$ ard $A_{B}$ are es follows:

$$
\begin{aligned}
& A_{A}=\frac{12}{12+8}=0.60 \\
& A_{B}=\frac{24}{24+6}=0.80
\end{aligned}
$$

> Definition: $a_{i}=p$ (state 1 exists at atart of tranmisision $-\infty$ a function of the eveliebilities of aubsysteme $A$ and $B$ ):

$$
\begin{aligned}
& a_{2}=\left(A_{A}\right)\left(A_{3}\right)^{*}=(0.60)(0.80)=0.48 \\
& a_{2}=\left(A_{A}\right)\left(2-A_{B}\right)=(0.60)(0.20)=0.12 \\
& a_{3}=\left(2-A_{A}\right)\left(A_{3}\right)=(0.40)(0.30)=0.32 \\
& a_{4}=\left(1-A_{A}\right)\left(2-A_{B}\right)=(0.40)(0.20)=0.08
\end{aligned}
$$

where $A_{A}$ and $A_{8}$ are the avalibilities of subsystams $A$ and $B$, respectively.

$$
A \text { Matrix: } A=\left[\begin{array}{llll}
0.48 & 0.12 & 0.32 & 0.08
\end{array}\right]
$$

pepeninhility caloulationa: Th noacure of dependebility that will be used in thic exmple ia the rolicbility manure acsociated with the cperation of aubsytent A and A. Rollability, then, is definen as the p:obability that a cyatem vill satiarectorily perform its functions for a civen period of tine. Beceuse electronic ayptins are beins coneldorel in this oxmple, the reliability function is angumed to be exponantial and is given by the equation $R(t)=$ " where is the misaion time. Thas the reliabilities for subayateme $A$ and $B$ are as followes

$$
\begin{aligned}
& \text { Relicolility }_{A}(3 \text { roure })=e^{-\frac{t}{4}}=-\frac{3}{12}=-0.25=0.78 \\
& \text { Relindility }(3 \text { nourn })=0^{-\frac{1}{3}}=e^{-\frac{3}{4}}=e^{-0.125}=0.88
\end{aligned}
$$

- Reforence Miltipileation Law, p. 4-5 of thit guidebook.


## Plomental Tranoltion Frobibilitices

$$
\begin{array}{ll}
p(A-A)_{3}=0.78 & p(B-B)_{3}=0.88 \\
p(A-\pi)_{3}=0.22 & p(B-D)_{3}=0.12 \\
p(\pi-A)_{3}=0 & p(\bar{B}-B)_{3}=0 \\
p(\pi-\pi)_{3}=1 & p(D-D)_{7}=1
\end{array}
$$

Definition: $d_{1 j}=p(\text { coing from atate } 1 \text { to state } \mathrm{g})_{3 \text { nouse }}$
8tate Tranaltion Mobablilties:

$$
\begin{aligned}
& a_{11}=(0.78)(0.88)=0.69 \quad d_{31}=(0)(0.28)=0 \\
& a_{12}=(0.78)(0.12)=0.09 \quad a_{32}=(0)(0.12)=0 \\
& a_{13}=(0.22)(0.88)=0.19 \quad d_{33}=(1)(0.88)=0.88 \\
& d_{14}=(0.22)(0.12)=0.03 \quad a_{34}=(1)(0.12)=0.12 \\
& d_{21}=(0.78)(0)=0 \quad d_{41}=(0)(0)=0 \\
& d_{22}=(0.78)(1) \quad=0.78 \quad d_{42}=(0)(1)=0 \\
& a_{23}=(0.22)(0)=0 \quad a_{43}-(2)(0)=0 \\
& a_{24}=(0.22)(1)=0.22 \quad a_{44}=(1)(1)=1 \\
& \underline{D} \text { Matrix: } D=\left[\begin{array}{cccc}
0.69 & 0.09 & 0.19 & 0.03 \\
0 & 0.78 & 0 & 0.22 \\
0 & 0 & 0.88 & 0.22 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

## Capabiisity cajoulations

Dofinition: $C_{1 j}=p(t r a n m i t t i n g=300,000$ bita under the atate tranaltions $(1-j)_{3}$.
$a_{11}=1$
$a_{12}=1$
$c_{13}=1$
$c_{14}=(c e n$ below)
$c_{21}=0$
$a_{22}=1$
$a_{23}=0$
$a_{24}=(000$ belun)

$$
\begin{aligned}
& c_{32}=0 \\
& c_{32}=0 \\
& c_{33}=1 \\
& c_{34}=0 \\
& c_{41}=0 \\
& c_{42}=0 \\
& c_{43}=0 \\
& c_{44}=0
\end{aligned}
$$

Enerys 1





2then

$$
\begin{aligned}
& \text { - 0. } 15 \text { (for the minere involved) }
\end{aligned}
$$

- 0.55 (ter the numbers invoived)
 - froper 7 plece omtrica ase necend to mane 2 plece coeurnev of spmit)

$$
c_{1} \text { metrir } c_{1} \quad\left[\begin{array}{llll}
1 & 1 & 1 & 0.55 \\
0 & 1 & 0 & 0.25 \\
0 & 0 & 1 & 0 \\
0 & 0 & 3 & 0
\end{array}\right]
$$

## 

The affoctiveceat equation is diven by:


$$
=\left[\begin{array}{ccc}
\sum_{1} & a_{1 j} & a_{2 j} \\
\vdots & & \\
\sum_{j=1}^{\infty} & & a_{2 j} \\
c_{2 j} \\
\sum_{j=1}^{6} & & \\
a_{3 j} & { }^{3} 3 j
\end{array}\right]
$$

(3)

$$
\begin{aligned}
& \sum_{j=2}^{4} a_{1 j} a_{1 j}=(0.69)(1)+(0.09)(1)+(0.19)(1)+(0.03)(0.55)-0.99 \\
& \sum_{j=1}^{h} \dot{x}_{2 j}+2 j-(0)(0)+(0.70)(1)+(0)(0)+(0.22)(0.72)=0.22 \\
& \sum_{j=1}^{4} e_{2 j} 0_{3 j}(0)(0)+(0)(0)+(0.20)(j)+(0.22)(0)=0.00 \\
& \sum_{j=1}^{n} a_{i j} 0_{2 j}-(0)(0)+(0)(0)+(0)(0)+(1)(0)=0 \\
& \mathbf{E}=\left[\begin{array}{llll}
0.48 & 0.12 & c .32 & 6.08
\end{array}\right] \times\left[\begin{array}{l}
0 . \\
0.69 \\
0 . \\
0 . \\
0
\end{array}\right] \\
& -0.10 \cdot 0.10+0.20+0-0.85+0.2 \operatorname{mar}
\end{aligned}
$$

un

## crivime 2

Senmat
The only chanw sxam anestion 1 coourt in the mathodolong, cerinity ont, and calleniations suleted to the $C_{2 j}$ materix.

 have relied on tam 3 .


$$
\begin{equation*}
F \left\lvert\,=F-\int_{t-0}^{T} \frac{w^{-\lambda t}}{1-e^{-x t}} d t-\frac{1}{x} \frac{e^{-\lambda t}}{2-e^{-\lambda t}}\right. \tag{4}
\end{equation*}
$$



$$
F_{A} \mid<2-2-4 \text { menere }
$$

(foe the numery invoived)
据 $<7=2.5$ boure




If follow Aurnotion that

Thena, for moter 1 man
$B_{a}<j=(200,000)(2.5)=204,000$ nate
E $1<3=(100, \infty)(1.5)=150,000$ wete

 resien m

## AMCP 706-191

## EXHIBTH 1

It follows directly that
$\bar{B} \mid T=T$
(6)
so that
$\bar{B}_{A} l \geq 3=(120,000)(3)=360,000 \mathrm{blta}$
$\bar{\beta}_{\mathrm{B}} \mid \geq 3=(100,000)(3)-300,000$ bite

Definition: $C_{i j}=$ expected number of bits transmitted under the transition: $(1 \rightarrow j)_{3}$

| $c_{11}=360,000+300,000=660,000$ | $c_{31}=0+0=0$ |
| :--- | :--- |
| $c_{12}=360,000+150,000=510,000$ | $c_{32}=0+0=0$ |
| $c_{13}=158,000+300,000=468,000$ | $c_{33}=0+300,000=300,000$ |
| $c_{14}=168,000+150,000=318,000$ | $c_{34}=0+150,000=150,000$ |
| $c_{21}=0+0=0$ | $c_{11}=0+0=0$ |
| $c_{22}=360,000+0=360,000$ | $c_{42}=0+0=0$ |
| $c_{23}=0=0+0=0$ |  |
| $c_{24}=168,000+0=0$ | $c_{43}=0+0=0$ |

$$
C_{1 j} \operatorname{Matrix:}: C_{1 j}=\left[\begin{array}{cccc}
660,000 & 510,000 & 468,000 & 318,000 \\
0 & 360,000 & 0 & 168,000 \\
0 & 0 & 300,000 & 150,000 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

## Effectiveness Calculations

Equation 3 atill holds, and the D Matrix is urchanged:
$\sum_{j=1}^{4} d_{1 j} c_{1 j}=(0.69)(660,000)+(0.09)(510,000)+(0.19)(468,000)+(0.03)(318,000)=599,760$
$\sum^{4} d_{2 j} c_{2 j}=(0)(0)+(0.78)(360,000)+(0)(0)+(0.22)(168,000)=317,760$

## AMCP 706-191

EXCHBIT 1

$$
\begin{aligned}
& \sum_{j=1}^{4} a_{3 j} 0_{3 j}=(0)(0)+(0)(0)+(0.88)(300,000)+(0.12)(150,000)=282,000 \\
& \sum_{j=1}^{4} a_{41} 0_{4 j}=(0)(0)+(0)(0)+(0)(0)+(1 ;(0)=0
\end{aligned}
$$

$$
\text { and } \begin{aligned}
E & =[0.4 P ; 0.32 \cdot 0.08] \times\left[\begin{array}{c}
599,760 \\
317,760 \\
282,000 \\
0
\end{array}\right] \\
& =287,885+38,1 z+90,240+0=416,256 \text { bits }=\text { Answer }
\end{aligned}
$$

## mermait

## Dommate

- 508 anorease in $T$ values results in: $T_{A}=18 ; T_{B}=36$
- The withodology is identical to that of question 1.


## Availability Caluulations

Availability $_{A}=\frac{18}{26}=0.69$
Availability $_{B}=\frac{36}{42}=0.86$
A Matrix: $A=\left[\begin{array}{llll}0.59 & 0.10 & 0.27 & 0.04\end{array}\right]$

$$
\begin{aligned}
& \text { Dependability Calculations } \\
& \text { Rellability } A(3 \text { hours })=0^{-\frac{3}{18}}=e^{-0.167}=0.84 \\
& \text { Reliablilty }{ }_{B}(3 \text { hours })=0^{-\frac{3}{36}}=e^{-0: 083}=0.92 \\
& \text { IMatrix: } \underline{2}=\left[\begin{array}{cccc}
0.77 & 0.07 & 0.15 & 0.01 \\
0 & 0.84 & 0 & 0.16 \\
0 & 0 & 0.92 & 0.02 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Exastaris

## Capability Calculations

## Comment:

All $c_{1 j}$ vajues, except for $0_{14}$ and $0_{24}$, are identical to those in Querition 1.

$$
\text { From Equation 1, } c_{24}=0.19
$$

$$
\text { From Equation } 2, c_{14}=0.56
$$

$$
c_{1:} \text { Matrix: } c_{1, j}=\left[\begin{array}{llll}
1 & 1 & 1 & 0.56 \\
0 & 1 & 0 & 0.19 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

## Effectivenese Celculations

Prom Equation 3,

$$
\begin{aligned}
E & =\left[\begin{array}{llll}
0.59 & 0.30 & 0.27 & 0 .{ }^{-4}
\end{array}\right] \times\left[\begin{array}{c}
1 \\
1 \\
0.87 \\
0.92 \\
0
\end{array}\right] \\
& =0.59+0.09+0.25+0=0.93=\text { Answor }
\end{aligned}
$$

## vissmew 4

Compents

- $50 \%$ increase $1 \mathrm{in} T$ voluas resuite $1 \mathrm{n}: T_{A}=18 ; T_{B}=36$
- A and I Matrices art those of Question 3
- $\mathrm{C}_{11}$ Matrix methodology is identical to that of Question 2


## Capability Salculations

## From Equation 5,

$$
\begin{aligned}
& E_{A} i<3=(120,000)(1.5)=180,000 \\
& E_{B} \mid<3=(100,000)(1.5)=150,000
\end{aligned}
$$

$$
c_{1,1} \text { Matrix: } c_{1 j}=\left[\begin{array}{cccc}
660,000 & 510,000 & 480,6) 0 & 330,000 \\
0 & 300,000 & 0 & 180,000 \\
0 & 0 & 30 \bar{c},(100 & 150,000 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

## Sifoctivenge Celoulation

From Fquation 3,

$$
\begin{aligned}
\mathbf{x} & =\left[\begin{array}{llll}
0.59 & 0.10 & 0.27 & 0.04
\end{array}\right] \times\left[\begin{array}{c}
619,200 \\
331,200 \\
288,000 \\
0
\end{array}\right] \\
& =365,328+33,120+77,760=476,208 \text { bita }=\text { Angmer }
\end{aligned}
$$

## cursmex 8

Qommente:

- $50 \%$ deorease in K valuse results in: $\mathrm{F}_{\mathrm{A}}=4 ; \mathrm{K}_{\mathrm{B}}=3$
- The only ohange from question 1 ocours in the aaloulation of the A Matrix
- The methodology is identical so that of question 1


## Avallability Culaulationa

$$
\begin{aligned}
& \text { Availability } A=\frac{12}{16}=0.75 \\
& \text { Availability }{ }_{B}=\frac{24}{27}=0.29 \\
& \text { A Matrix: } A=\left(\begin{array}{llll}
0.67 & 0.08 & 0.22 & 0.03
\end{array}\right)
\end{aligned}
$$

## Effectivonees Calculations

$$
\mathrm{E}=\left(\begin{array}{llll}
0.67 & 0.08 & 0.22 & 0.03
\end{array}\right) \times\left[\begin{array}{c}
0.99 \\
0.81 \\
0.88 \\
0
\end{array}\right]=0.92=\text { Anewer }
$$

## castin

## Comments

- $50 \%$ decrease in $\bar{K}$ values results in: $\bar{K}_{A}=4 ; \bar{K}_{\mathrm{B}}=3$
- The oniy change from question 2 oocurs in the evaluation of the 1 Matrix.
- The methodology is identioal to that of question 2
- The 1 herrix is identical to that caloulated in question 5


## AMCP 786-191

## Exfectrunarncescpistions

$$
E=\left[\begin{array}{lllll}
0.67 & 0.08 & 0.22 & 0.03
\end{array}\right] \times\left[\begin{array}{c}
599,760 \\
317,760 \\
282,000 \\
0
\end{array}\right]
$$

$401,839+25,481+62,040=499,300$ bits - Anewar

| 里A | ${ }^{1}$ |  | ${ }^{5}$ | $\begin{gathered} \mathrm{s}_{2} \\ p\left(: \begin{array}{l} 300,000) \end{array}\right) \end{gathered}$ | ${ }_{\text {Avace }}^{\mathrm{E}_{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 24 | 8 | 6 | 0.86 | 416,256 |
| 18 | 35 | 8 | 6 | 0.93 | 476,208 |
| 12 | 24 | 4 | 3 | 0.99 | 489,300 |

## 

AMCP 706-191

### 2.21.2 contoasily yitantroduction

The mothod foliowed in wisy comt prediction is atraightiorward oncugh but is apt to be gulte laborious. Furthawore, the date on which any prediction mumis be based are difficult to collect, and the gross estimates that it is naceamary to 4 mplog auat be treated with a sood deal of ratarve. To make any cost pradiction at ali; it is necessary (1) to broat the expendituras down into rativer mall categories, (2) to collect as much paet exporience on expenditurea in each cateroory an possible; and (3) to prodict from this information how much is likely to be apent in each catecory for the project being costed. Thereafter, all the cacegorion mut sain be costined to obtain the system cost as a function of time.

### 2.11.2 The RNO Mothod

 anmyeis ank daveloping costing methodolosy. The RABD Corporation las been one of the leoder: in the costing fleld. The major costing concopts rroposed by the RAND Corporation are ae follows:

- Categorization of costi into recearch and development, initial inveutment, and operating conts
- Use of inaividual-iystem costing and total-force-pcructure costing
- Use of incrmental costing
- Concentration on most important cost factor

These concepts are Geacribed briefly below, and eeverel of them are diacussed in more dutiall in the followinc eections.

The catagorisation of costs into research and development, initial investment, and operating cosis is consistent with the Dob procramins syatem. some advantages of this categorization are that the time phaing of the costs are readily apparent, the total lifotime cost for altornative syotem lifotimes is easily obtained, and the impect that chasses in the research, dovelopisent, and initial investaent costs have on oporatiry coste can be observed and traded off.

Total-force-structure costive is much more imolved than individunl-system costing. Individual-syeten costing does not examire the intoractions between itself and othar aystens in tim total force. This makes the coat amiyat's tack eimpler, and is particularly uaeful in costing future syateme (whare intinractions with other aystens are not well defined anywa). Total-force-atructure costins axinines the cost of a aysten in the framework of the total force. This requires information on interacicions mong the ayatems in the total force, and also cost date for the total force.

## AMCP 706-191

Incremental costing is sin approach that patesimins the chacse in cost ascociated witn achioving some change in effoctiveness. If a decision is made todey to develog a new syitem; incrementel costing is usad to daterming the cost to cevolop that syatem starting frem today. Conts that have been 1meurred previously are not counted, and the coste for exieting equipmant and facilitios that can be utilized in the nem syatem are not counted. In most acces, incremental costing is the type of costing that deciaion-makers are aeking for when they say, "What will I be getting for my meney?"

A consitivity apalysiu cuisista of changlng each of tis varlabies in the atudy in turn, while the reabining variables ars hela constant, to detertine how mall changes in each variable can affect the study result.

A cost-sensitivity anaiysis is nomally uced to daternine which parametere mave the creatsist fapect on the total cost. The cost analyst can then concentrate his offorts on the most important cost factors.

### 2.11.2.1 Cost Cateroriention

System costs have been categorized in a number of ways, depending to a greai extent on the type and applicability of avallable date. The objective in an of these categorizetions is to focus attention on the major resources that will be consumed during the life of the system. Information on resources is prcduced that can be compared with information on availeble resources; altermative courses of action can be evaluated according to the mount of rescurce conamption they involve.

The military grouping of coste corresponds to the progras phases in which the costs are incurred:
; Pesearch arm Devolopent Gosits. All the costa necessary to bring a system into readineas for !itroduction into active inventory.

- Inltioi Investaent conts. All costs incurred in phaing a system into the oparational force. Thay include the coste of procureant of prime and apacial equipment, facility construction, personnel trainine, and procurenent of initial spares.
- Operating cooin. All costs necessary to the uperation of the syuten once it has been phased into the operational inventory. Thile both Rad and investment costa are incurred just once, the operatin costa continue throughout the life of the syaten.

The cupves of Figure $2-8$ show typical aistributione of thene conts over the 1ife cycle of a systen. Murther alibliviaions of trese coats are ehown in the following paregrapha.

sume 2.4
systell cast emitiniss

Bremplas of the types if costs in each nefor category are as follows: Resegrch and Develcuent Conts

- Design and develogment

Prelininary research and demign studies
Development engineering and mardmare fabrication
Developent instrumantation
Captive test operations
Tuels, propeliante, and gases
Inductrial facilitie.

- Systen test

Test-vehicie farrication
Vehicle epares
Tett operstion
Test eround support equipment
Test facilities
Test inatrumentation
Tuels, prepallants, and eaces
Date reductior and analyis
Malntenarce, ouppis, Elecellament

- syater managhent aríl tochnical dirertion

Intetas Imestrant contis

- Inetalitetons

Contruetion of niv builaing, atrfielde, otc.

AMCP 70G-181

- Equipment

Primary-miesion equipeent
spectalizod equipment
other equipmant
-8tock.
Initial ellomances
Maintenance float
Equipment spares and apare perts
Combet consumption stocks
maunition

- Initial training
- Miscellaneous investment

Initial tranpordation of equipmont and apares
Initial travel
Initial propeliants, oils, and lubricante
Opareting Conts

- Equipment and inatallation replecment

Primary-alesion equiptant
8pecialined equipacnt
Other equipmert
Installation

- Training
- Pay and allowances
- Propellants, oile, and lubricanta

Primary mission equipment
othar propellants, olle, ad lutoricants

- Bervicest and sifecelianorut


## rraneportation

## Trevel

cther corvicea and miecollanoous

- Mondirect adinditrative and sipport cotte


## 


(2) themietion, with thrime aod etwiroment: (2) the whod of operationg and
(3) a ceecriptiza of the physical makeup of the syote and lte ouppot tyeten.

If thane thee elanote are cefiond, an there are no interrelationships whth other aretem that mat the consilarod, then the igpe of cost mangele that


Indivional syatincoont acalysis is lase lavolved and requirat fomer date thina mule be neeacary $1 x^{*}$ the systen ware not isoleted frcm the total force.
the Alfromnce betmeen 1 ediviemi-myoten an total-force-structure cost crayraes is the lovel at mhich the anigste it oarried out. The total-force-
 ognteme with the asocisted loberactions moos the individual oystime.
 without the we of a totel-force-structure cont amareis. For exprile, the sevelopmat of a gem anti-alveraft mespon would require a totai-force-sínvcture cost enirsic. The outire airmatence emporlity could be conted ( 1 ) with, and (2) witroat the aninivitenal syeteli. The difference in ccet betwesn (1) and (2) would be the cost of the nem anti-aircrart momon.

### 2.21.2.3 Tespantal Contis

Incrmantel costiv cocounte for eacitiosel coste associated with the

 velue.

Inhmited asets are thoce exlating oquipmente, exisiins facilitiet, and
 not incinced in the cont comperison for elternative gystems, for exmple, if a now rehar uypto can utilise exiotins ropeir inetalintion, the initili cont of
 are free.

Suth coeth are thom comea thet here teea expended prior to a siren decioion print, In time, and thane coals are not leciuded in a cest ecmparison. For










## AMCP 20e-181

Another factor included in the inermental conting coaeept is maivap reive. Salvage value takes into account the cost saving that may je roalised frem selilue or traneforriy a myeten to a future organiabtion mber the mytan is phaced out, or the cost seving from selling the uysten actap.

## 2.1之.3 Gost-Patintin Peiationahts

The noat leportant tool evalinble ic the ceat acalyst is the cont-netimeties reiationihif (Cis). Thea provide a enthod of proiletify the oost of a now
 on sialiar aystems and correlation anch colte to eqpecpriate akmeateritotics at

 been cenerated to permit developmeai of cine for uee on now afthmear; bowever, for more advancel uyoteme thet ineorporate a matantial aumber of atetomot-tho-
 th* needed securacy.

The standery method for developins cost-astinatig relationanipe is throngh the ube of multiplc-regreasion analyis. To use the multiple-represtion -ppronch, - general asoumption is mede that the depaphent varisble -- in this case, a cost category -- is related to the piedictor varinoles by a limer equasion of the tollowing form: -

$$
\begin{aligned}
f_{0}(c)=b_{r} & +t_{1} f_{i}\left(x_{11}, x_{12}, \ldots, x_{r_{1}}\right)+2^{f}\left(x_{12}, x_{12} \ldots \ldots x_{r_{2}}\right) \\
& +\ldots+b_{n} f_{n}\left(x_{2 n^{\prime}} x_{2 n^{\prime}} \ldots \ldots x_{r^{n}}\right)
\end{aligned}
$$

nhere
$F_{0}(c)$ is a function of the cott
$x_{1}$, is the $j^{\text {th }}$ prediction parceter in the $f^{\text {th }}$ ubsot
$\mathrm{f}_{2}, \mathrm{f}_{2}, \ldots, \ldots \mathrm{t}_{\mathrm{n}}$ are sumeticm of the $x^{\prime}=$


 for sxapie, st equation of the form

$$
c=a x_{1} \cdot x_{2} x_{2}
$$

trantorta to the required itrear form

$$
\operatorname{lac} c-\log a \cdot b_{1} \tan x_{1}+b_{2} X_{2}
$$






Hocmily, segerate Gis are Coveloped fur each of the major cont. categorius (Inmanch men berolopmeat, Imfial Investmant, and Oparatise Costs). Factors that



 marefters, permotern melatiss to reliability will beve a poaitive developnonicost melationahly best a angetive aperatiapel-cost reletionahip. It would be



 acmiynis.

## 

## 

There are twe main techniques for makion conte commeraurebla: mortization not iscocusting. mortimation it the mpreadiog of the orstem rescareh and covelop-
 23 mond to reflect the creater ralue of prosent moner over future mony, bececce of the poasibilit: of lavectins preent mecey for a min.
 sor the follerife reanere:

- coverment directives call for ymarly antsonter or actual expeciltures; this informatice alde in the properation of the anovil beseat.
 be Irem 1 percent to 20 percmat.
 consleterations.



## 








 Nati.

$$
2-13
$$

## AMCP ${ }^{706}-10$

Contiontimation uscertainty is the otatistical uncortaicty canyed by aster
 The cost-mniysis appronch.

The anclyst hould develcy not onky the cost octinates, but ino an ialletelon of the confidence level or possible range of the costs. Vae of the centronal-
它放 final coat ontinntos.

### 2.11.4.3 Data Collection

 and accurate data. The besic date congiled to mppowt the raguirmannos of the cost analysis should mest the folloning rignormenta:
 sample sizes of the various mytia charantersetices and gow parataters being tudied. The contidence in cheulte inemeste with the amantsy of
 data frcm actual surveiliance of mytems in an operaslonal mayroment. If, however, adequate datin of this type are not avirilinle. th ay be necessary to resort to estimating technieques. sequriz provin etechinquas are available for various equipments.

- They should refiect current ayatem condtiona. Timply coliection os input data in required if the cont arnaysin it to degict eurxent condinkme in
 operating, and maintairirs a zodern yyetem, Unfortsnmtely, at lowit fret e cost-development atandpoint, alnost all of thee factoze are dyamic.
- They should b: mccurate. The importance of using sho mont accurate dats available canrot be crevemphasized. The tringene requiftuent for cocurth date is related to the intrinsic nature of the mathecselical apgrosion. May compound surming operations (or multiplingtione ) wila pe sccomplishen
 compounded during tivese matheuretical marispulatione.
- They should be representative of the operatioxal ituation of isiterent, The system-cost characteristics are knewn to be affetad by wo operathonai a d mintenance envirorment. Until mah time se the diraction and mxene of the various influencing factorm upon the nystsen are walicsent defined, it will be desirable to collect dats from the riseltic operstionat estuation in the cost analyeis.


### 2.11 .5 Cosp-Amirais \& Applicetion

### 2.31.5.1 Probice Pormuation*

2ne specieta form that axy coot sasilytis vily tate ldpende on the particular syisten beins stridiod. however; in general, thare are thee factors that must be condideref in overy castine problen: (i) the costirge methode that will be chioyed, (2) the type of dace that will be required, and (3) the sources of the data. Thine factore are diteryeced below.

The conting method employed if nomplily ore of three general types -- a catulogue price, a costiestinatine relationship, or an estimate based on a similar syatiem. The catalogue price le uses where the component if an off-the-shelf item, The coet-entimating relationaifip can be, developed on the basis of design and perforsance characteristics, or paevious cost. The estimete of cost based on a similar system is used when the sytem being analysed is sufficientiy similar to an exictinc syetem that valld cost sinalogy can he made.

The type of data that is required for a cost analysis may be categorized into the asowaptions and constraints; the description of the system, and the cost infoxmation. As an exmple of the types of daja required for a cost analysis, assume that the avionics on a group of helicopters is maintained by a dual maintenance organizatioa, coniefiting of organizational maintenance and direct support aaintersazce.

If a conplaiat against an avionic system is received, organizationsl personnel try to verify the ccop?eint; if they verify it, they (I) perform some maintenance st the reiteogter (this mas constst of changing a black box) and (2) in a certain pareentiase of the ceses, generate sonfe direct support maintenance.

If they do hot verify the complaint, they have, of ccurse, spent some time in the invtstigation; hovever, that campiaint is disposed of.

The following dete sea reauired in the cost analysls of this system:

- Nuber of complaints per month
- Fraction verifiod
- Manpower needed to vertiy
- Fraction istyoyed of wt the helicoptar
- Manyower needed to diapose of the complaint at the helicopter
- Cost of the bits and pleces needed at the helscopter
- Mapower needed to provide the bitis and pieces at the helicopter
- Marpower needed to replace the black box
- Vost of the raplacement black tox
"From "Raliablinzy Engineering", copyrighted 1964 by ARINC Research Corporation, Publisher - Prentice-Hall, Inc., Englewood Clisfs. New Jersey.
- Manporer neaded to obtain the black boe
- Tine delay before the faulty box ia repatred and sundy for maj
- Time needed to repaie the bitw box at diseot memport
- Cont of the bits and pieces nocoded et diract support
- Mangover neaded to provice the blts and paleol at dirwat emperit
- Cost of loaded manpower for various categreries of Alrect labor
- Average lifetine of a black box
- Cont of various catecories of loaded mangower

Sources of data include publiobed reporte (and unpublinhed beck-up anterial); equipment catalogues, and IInancial mumaries. Iypical sources of data for tha exmple given preyiously are indicated below.

## The nuber of complaints per month. I

The quantity is composed of usage rate, reliability, and tha number or black boxes in use. If $n$ black bckes are being used, each an averege of hourf a month, and if the complaint reliability, i.e., the mean time between comprainta (HIBC) on the black box, is $\lambda_{c}$ complaints per hour of use, then

$$
\mathbf{N}=\frac{\partial t}{\lambda_{c}}
$$

The MXBC can be estimated from fieldurailure data.

The usage rate, $t$, must be estimated from deployment plans, as mut the number, $n$, of boxes in use. On projected system, all these factors will be available. Hence $N$ can be estimated.

## The fraction of verifled complants

The Iraction of verified complainte, $v$, is another output of the observetion of field fallure data. If $\lambda_{f}$ is the mean time between verified complaints, then,

$$
v=\frac{c}{\lambda_{f}}
$$

## The fraction of verificd complainte that onn be dipposed of at 3he helloopter

The fraction of verified complicints that can be diaposed of at the helloopter, $f$, is estimated essentinily from two pieces of informstion:
(1) A maintenance plan that definee the repairs that will be made at the helloopter. (Adjustmente, for ingtance, will often be made there.)
(2) A reliability prediction in greater detall than thow needed for $\lambda_{0}$ and $\lambda_{f}$, namely, breaxdown of $\lambda$ into thore alses which will be dieposed of at the helicopter and those which will have to ro ts direot eupporit.

Such pridictionk aen bo ofteiped frem a nore detalled knowledge of the ogatipunts or, altarnately, statiotical veluec of the fraction for a inilat equiginenty now in sorvice can be uced as ostimatos.

## 

Dixect-maintenance marpower is ootainabio frem maintainatility preaictione. suppone the direct-mintenate tine required and the corrosponding hourly pay required on the evereg to eccemplich the maintenance actions are, reapectively,

$$
t_{1} \text { and } c_{1}
$$

where the subscript 1 refers to the akill class. Then $t_{i}$ can be obtained from maintainoility predictions; $C_{1}$ can he obtained from lists of pay claases, together with an estimate of the userul lift of Eaintenance men in grade. Here a mitable cofinition of useful life might be the porcentege of the time in grade during which the man is ectually assigned to maintenance duties.

Besides direct inbor, there is in any organization a great deal of overhead labor. Mach of this is concermed with scheduling and supervision, and some with management; and a cood deal goen to leave, training, and nermaintenance duties of the men themselves.

In gemmal, the loeded tine will be a limar sunction of the direct-iahor time. If $T_{i}$ is the louded time (direct and overbead) apent in labor clase is then

$$
T_{1}=a_{i}+b_{i} t_{i}
$$

The coat of labor is then given by

$$
c(T)=\sum T_{1} c_{1}=\sum a_{1} c_{1}+\sum b_{1} t_{1} c_{1}
$$

The constants involved in the equation above are the overhead coefficients, $a_{1}$ and $h_{1}$. Rough estimetes of thase can be ande from tables of organizations and frem entimated work-lome.

A cood approximation to the equation above can be cbtainad in the form

$$
c(T)=c_{a}+c_{b} \cdot t
$$

where $t$ is the total active-rapair time in all labor glesecs.

## The matorials costs at auphy

The materiale cont. at aupply are the parmeter: that connect the dafferent eshelons. To estimate them, two kinde of information are meaded: (1) the average mount and kinde of materiale needed so perform repairs, and (2) the cost of these Enterialn to supply. Tixsee emtegorias are discuased below.

## AMCP 706-191

Estimates of the kioda and quantitien ot moteriais can be obtminac either
 or frem detelled raliebilits ralysis, baced on oetual sehemation.

The cost of these matoriale at the mupply eaheion in quastion will conalat of the following:

- Cost at the higher supply cobeloa, vitioh muplias the one in quastion
- Coat of the labor meaded at the hiciomp echeloa end at the echaion in question to move the raterials.
- Cost of trangportation

The materials cont at one achelon then contaling mplicitly the mecrued arpiy costs at all higher echelons thus the whole aystem-support cons will accounter for.

## 

The labor cont at axply muat be obtaitod by an azaiyois sinilar to that described for the maintenance manpower. It detailed analyia is not avilisble, probably the best entimata obtalinable is to asaume that every action, i.e., every requisition and every insue, takes, on the average, about at auch labor ee every other. Then if the total payroll ol the aupply orcanication ie divided by the number of pieces of paper genersted, an estiate of the labor cont of requiaitions and iseue is obtained.

## The tive delvi: the evereme life of a biact box

The cost of time delay [involving ar, L , and $\mathrm{C}_{\mathrm{C}}$-- the time delay, the average ilfe of a bleck box in the (partial) mysten, and the cost of the bleck box to supply, reapectively] has been siven as

$$
\frac{\Delta T}{L} C_{c}
$$

The estination of $\mathrm{C}_{\mathrm{C}}$ has been discussod above, Tirs deiays muat be eatimatod by observations on aliliar uupport organizations. The average life can be estimated from condemnation rates, return ratee to higher echelone of maintenance, and the total ramber in circuiation.

If on an averace a bleak boxes a month are condmmed, and 8 aro raturned to higher echalons of maintenanse for repair, then if there are $n$ boxes in circliation,

$$
L=\frac{a}{a+b}
$$

Agein a and g can be estinated frem a detalied reliability amalyia and a maintename plin, or from atatistical raice for similar oquipent. The number $n$ is cetermined by the verified failure rate and by loylatie policy.

## 

### 2.18 .1 gearez

The methed uacd in expreteling the model if depondent on the type and complaxlty of model and the time, equipmant, permocasi, and monay availebio.

For couplex model, the time and coet involved in arerciaing the roodel on a computer may be mach less than the time and cont for using people with sildo rulve. Rovever, if thie mocel is caly required to be axorelaed once, this cost of set-up time for the computer may preclurig its use." In genoral, the computer
 case the rodel has bem precremme. In actual prectice, however, the abalyst hae an ovarall time coustraint on the atuly sffort, and if a computer is avallable, the tied to axareise the model will not change, becauce the analyst will use any additicoal time to conduct sensitivity analymes or expard the origincl model.

The baile pcint to be made in exerciaing the model is that no mates what process is uscd -e dcik calcuiator, cremputer, or slide rule .. the final result will be coly an good the model and the information put into the model. The use of a computer does not in itsell enoure a more valld result.

### 2.12.2 Anelvale of output Dete

When an malytical model has been developed and aufficient inplit data gathered, the model cen be exerciend, oither mancalis or by mane of computer. In the aimpleet of cases, a aingle dependent varieble will .ecult fron the proceas. In most ayatem andyees, however, a whole fenily of depwadent variables will be generated

### 2.12.2.1 Anslvels of a sing2 Depandent Varinole

Each model equation will yield one output paremeter (the dependent variable) when coe eet of input parameters (indepencent variables) is used. The output parmetor alifht reprefint an average, predicted, or estimated value. The value could represent a meanur of cost, effectivences, reliebility or any other parameter of interent upon which the moviel was beced.

The aingle ousput parmater could of course be malyzed by comparing it to sowe previounly known stasdard of acceptebility. For exaple the objective of the enalyels may havg bean to eatimate the rolisbility of a product to deternine compliance vith a pro-astablished iqquirment. in this initance, a judgment of seccoptabili:y of the product mand be mede by simply comparinc the eetimated value with the required velue.

In may cases, howover; it is desirablo (and orton necencery) to enalyze the resultant frem the etentpoint of tho essoelated uncertainties.

[^8]
## AMCP 706-181

While often difficult to admit, varloes reacone contribute to modetalithbie which affect the mature of entimatet, macmarmante, of expectce outecnin. gheo
 procoduren, but rather are refiective to the diffien1ts in oherativeriain the real world. From previove axpartomet aple widenet metetn that the peopee of.

 bullt nuclear power plente have beva tulle of shet ther oveatmally womed eonto ing.
 tion, the actual procurment cowt per article was more then three tinve mearly eatimate of conts and in two cacoe the retwal cent mee more than ten thmo an eariy estieate.
 teme carp of courbe, nover be olinisated. bomever, the malyt can minimize une certainty and -- more ibportant -- can account for it in provialing inforcation to the decision-mater. This; of course, requiree bewiecge of the thpee of uneortainty maici. aifht be apcomentere.

Charles Hitch and Rolend Meroan, in their bookstan mepentes of Defmen in the nueloar Are, (Barvard univaraity Preat, 1903) coseribe five bactc typee of uncertainty ascociated with cetimates:
(a) theortainty cbouk plemaise and cont facters
(b) nicertainty about etrategic context
(c) Tochoological mpec Ptalinty
(d) Docertalnty about whe oumy and mecticas
(e) statistical uncortatney

The analyat in conrionted mith the telk of declaling how mpeortalatioe are to be treeted. the mouk ipportent edvice is of course, "Don't impore them". Incesiss he mut be able to racopise the tipe of unectalaty involvad. ghind, heme be able to distinguish between the important and minportent userptaintien in ocmtext with the particular anlysis. Mnally, be mot be cele to apend on ale
 creat ed by the uncurtalaty. Thia may matalis
(a) Bopreening the dependeat varicile ae a reage of vaiman, seoh relop maving a probsbility of cecturramet.
(\&) Aasigning confldace intervale abowt the aptimete.
(c) subjectivoly quallifion the patury of the eatimated or meaurat value.
 beh urceosive mpreesion form repreaente ohytor angre of apacifielty in treating uncertainty.

| EXPRESSION FORM | DPOREE OF SPECIFICITY |
| :---: | :---: |
| 1. Byatem A in ostimited to cost 115 M . <br> 2. Bystem $A$ is eatlmated to cost $\$ 15 \mathrm{M}$; nowever, the analyst is not oure (uncertain) about the IIgure. | 1. Ho uncertainty expression. <br> 2. A vague qualitative expression of uncortainty is given. |
| 3. System A is entimated to cost botweon $\$ 11 \mathrm{M}$ and $\$ 19 \mathrm{M}$. | 3. A range is given to express thi magnitude of uncertainty. Hownver, no probability information is given; it is not stated whether the analyst belleves there is a 1\%, a 10\% or a $100 \%$ chance that the cost will fall between \$11M and \$19M, nor is it indicated whethor the cost is ilkely to be closer to \$11M or \$19M. |
| 4. There 1s a "strong probability" that System A's cost will be: \$11M - \$15M - \$19M. The \$15M is some masure of central tendency (msan, mode or man). The $\$ 11 M$ and $\$ 19 \mathrm{M}$ are the estimated iower and upper cost limits. | 4. An adjective deacriptor is added to convey a rough indication of probability. |
| 5. With a . 95 probability, System A's cost is oatimated: \$21M \$15M - \$19M. The numorical expreselions have the same meaning as in 4 above. | 5. The adjective descriptor is replaced by the mare uefinitive rumeral. |
| 6. | 6. A complete probability distribution is given, and this is depicted by a curve. (Both the pioblems in getting the case 6 type intiormation and the amount of additional information prom vided by case 6 are of a greater magnitude vs Case 5 than Case 5 18 vs Case 4 , Case 4 is vs Case 3, etc. |

HRURE 2-8

## Expmessuns © wermianty

### 2.12.2.2 Aialysis of Several Dependent Variables

Nost systems analysis problems encountored will involve the treatment of more than one dependent variable. For exampie, quite often two alternative systems or altarnative designs are the aubject of the analysis. Purther, at least two dependent parameters, -- e.g., ccst and effectiveness -- (and probably many moro) are of intorest in making the comparison. An even more complex situation arises when the study objectives involve "trade-offs" where the dependent vtriables of intarest can assume a broad range of values. In general, the task of rnalyzing data outputs can be subilvided into:

[^9]
## ance 7e8-101

 ratch of two or more altomatives is better (or bait). If a alople depmenems
 oas. Hapes, the problem alpet be:

## - Musch of two aystem is more effectivet or <br> - mich of two aystem if cheopert or <br> - Which of two system is chenper and butcost

 reccumand a siocle choice frim anoge the alternativec. Litele is left for the decision-mberf execjt to seeft or rejeet the teoules of the malyis.

In mear ceceat, howover, the malret't objective is to preceat mort then oce alternative to tha deciaion-miker. For oxaric, the terme of the anijaie may require that scparate valuen of cost med afrastivnees be prosented for cech syoten conaldered, with final choice of the "better coe" belus the fecinjon-
 cost morc that syiten A -- but is wiso more affoctive. in thin sumple, the Judmant of the relative worth of the two aystem could, by intent, be that of the decision-maker.

| System | cent | Ptectingeen |
| :---: | :---: | :---: |
| $A$ | 41.0n | . 95 |
| B | 81.54 | . 98 |

\& sinilar exceple is one moreln the decielon-maker desires to aubjectively consider certain facters mith, by intent, baze not ween incimieo in the moded. (ithece factors is celled "1evsrage effects" and will be diecuaged in crantor detall in section 2.17.) an exaple of such a cese is evident in tive combricel procet recentiy oployed to select a cetiff of police fur the citiv of won Angelea In that situation, there wers sarerrit candidatee frr the puatition. By mans of a vicorove analyticel epyroech (entually a model was devolcopd with wich to estlante the "offcetivmetr" of cech candidate), the mumer of cholcee mat reduced to three. she siltimate asietion of the beat anc, for the job man mede by choice of the decision-mater in thit case, the top city orficialij. the the exmple citec, if is to te noted thit the andytical codel mat und to adrialse
 the rinad eecision.

Orten, the ob:ccilve of the malyst in to conduct tratwory stidiee merv




cesl for the dupandent variabies of interest. He then must aralyze the many altornatires within the givan envelope in order to reduce the number of choices to ons -- or to mome minimum muber. Trude-offe can involve weiching one performance parmeter egaingt another or weiching porformance against coat. Examion of ach ituation are fiven bejow:

## (2) Performance Phrevtor IFede-offy

One of the major paraseters in sowt effectivenese models is availebility, Avallability is in turn e function of reliability anc maintainab111ty. When rellability iv expressed a a frequency of failure (MIBP) and maintalnability expressed ws the length of tisse required to restore ( 100 N ) a fulled item, avaliability in some cases can be expressed as

$$
A=M M E \frac{M P R}{4}+M W I
$$

If a fixed level of avaliability is the donirod output, it is apparent that mray and mur can be traded off in achieving the deaired value.
(2) Parformance Vthous cost Trado-orf:

Another form of trade-off problem involves performance versus cost. In this type of trade-oif problem the principle osjective is to weigh varying levela of performance asainst varying lefole of cost. Comon trede-off: in this category include:

- speed verrue cost
- Payload versus cost
- Reliability veraus cont

Uonside. emphasia has been directed recenily to the consideration of total iffe-cycle coste when formulating sjstem level decisions. The reasoning bohind the whasis is that ircomplete consideration of the iniluencing factors often can lead to erroneoue decision. A case in point can be illustrated by the following exanple.

It is assumed that she cecision-makar mat choose betweer twe systems
of differing avalisulilty on the beala of cost. It may be
gsia wally hown that development cost and initial investment
cost incresee with increas rellability (see Figure 2.10a).
on the other hand enmual opereting costs (and hence total recur-
ring coste) decrean with increased reliability (bec Figure
2.106). It raalily bocomes apparent that the eheaper syetem
can only bo determined by combined consideration of all
coste (Figure 2.10c).
(a)

(b)

(a)


## 




(a) Saimolsea pexuircemen for envelopea!.
(0) beiect athimes of teeling elisernativet.
(c) Prove the tetmical, comole, milliary fuelibility of zolected dopian iltemativet.

$$
2-60
$$

The interdenwadencien betwoen trads-cif atudses und the above objectives are shown in plequre 2.11. Any trafe-otf study must be besod on a et of dapendint and independent va-lableg. The gtatus of a given projeri in ueits or accorplishment of the objentivas would idontify the dependent and incepaident variables zor the trads-otr study effort. For exampls, if requireseot, envalopaq hava been esitablishod, theae constitute the set ot independent varlables for the trede-of" tudy. The cijective of the atudy might then be the silection of ainiman set of assign eitemitives.


F18"追2-11
 stubtes aip platey enketmes

## नMCP 706-191

## (ब) Sunsitivity Analysie

An imporiant toci in performing trade-off studien is the analyaie of senaitivity. In general, sensitivity analyals involvee detayuining the signifticance of a given variabla uithin sowe prescribed range of interent. A simple iljustration of sanaitivity is aiven in Fisure 2-12, which describee the relationship between total arstem cost and the endurance for a ripothetical anned aircraft. The analyst would conclude from the curve that:
(a) Cost is highly sensitive to endurance at low levels of indurance.
(b) Cost is relatively insensitive to endurance of higher valuef of endurence.


## 

### 2.23.1 Optimization conterion

Ir defining an optimizing criterion, the systom analyat is faced with a prohlem similar to thet of plinting in precine, quantifiable terms the rules or criteris ror choosing the "best" painting or sbest" autamobile. These example? do have a antifiahle characteristics, sucin the size of the painting $0_{1}$ cos: of the automobile; however, artistic judgement and user experience, rescnctively, are factors in the final choice. In the game ens ri, the choice : che bast system is greatly influenced yy the usa of good enginamring, economic, and operationsi judgment.

$$
2-62
$$

## AMCF 708-101

It is most important, however, that the optimizing criterion be derined to the maxdm axtent posisole, for the follewing reasons:
(e) The inputs provided to the analyst through use of the crite:ion can reduce the liza of thie problen to a point where a judicious cheice can be made.
(b) Defleing a cricerion forces the analyst to exmenine all posible alternatives in an objective manner so that the criterion can be adapted to matbematical roprasentation and unalysin.
(c) It is eesier to incorporate the ideas and experience of others is a formal basis fir optiaization is establisher,
(d) The (partial) basis for tinal anoice is in pracian, quantifiable terme and can therefore be reyiexed and revised, and can provide inpute to a learning-process for future opi:imization problevs.

When a criterion for optimization is ceing cormulated, the sigtem and the bomparies must ve explictty dapined. This definition will influence the cholce of parameter: in the optinization model. The purchaser ot a new automobile, for exemple, may or may not concider the service poilicies of the manufecturar and dealor. If the dess, the systam is both the automobile and service policies; if he coes niot, the eystery le only the automobile. In atterepting to optimize a meapon system auch as a boubcr, the analyat has to consider whether: the systam is to be defined as a aingle boikisy, a squadron of bombers, or the complete bomber fleet, It is possibletiat optimizing with respect to a siugle plane (a sub-optiaization) may not yield the optimum "squadron" system.
fs part of the syatea-definition process, the anaiyst also determines the fixed and variable factors pertineat to the system. This task requirus a prelisinary analysis, siace consideration of all poraibie alternatizes will usually lead to probloms of unmaneable sieg. Some factors may be considcred fixed if remits of previcus analyses, perhaps sub-cpifizations, indicata the values that bevi attained the best results in the past. Ths maintenance troubleshooting routine, for example, might normally be considered as veriable factor, but past research in this area may be used to select a particular routine spplicabie to the oystrm under study, or perhaps to rebtrict the range to several alternatives.

Once the mission profile is defined, consideration can be given to the physical and cconomic limitations that will have to be imposed. These limitstions are based on requirecienta and availabilities, and may involve such factors as minimum systere output, maximum rellability; maximum development time, maximum welght and volume, and type and number of support and operational personnel. Through such consideration and snvelope of design, development, operational, ank support, alternatives can be established in auch a way that each overall corifiguration within the envelope will meet physicai and economic limitations as well os minjmum performance goals.


#### Abstract

AMCP 708.181

Now the analyst must solect a decisior. eriterion by epecifying the types of offectivenest and coit parasotera to be inventigated and by asigning numerical values where required. Tha cholce of objectives end eriteria is permepe the most difficult task in aystem effectivoness optimization. It is expected, however, that current rescarch in the optimizing of ayntem effoctivanese will develop theory and accumulate experiance to help ovarcome scme of the difficulties of this task.


It would be lupoosible to estabilish rietid ground rules or proceduras for formulating a criterion for optimizing aystem affectiveness. The ancwers to the foliowing two basic queations, however, will provide a great deal of insight for such formilation:
(1) Why is the system being developed?
(2) What physical and economic iimitations expstit

The answer to the first question essentially defines the mission profile of the system. Where possible, the definition chould ba transiated into quantitative farmmeters -- a difficult task in many cascs. A performance measure such as kill-probability for a SAC bomber may be assignabla, but the bomber may also have a mission to act as a deterrent -- \& measure that is difficult, if not impossible, to quantify. It is for this type of multi-mission case that judgment will become especially important. Even if quantitative requirements can be placed on all mission types, weighting factors would have to be introduced to quantify the relative importance of each mission.

Factors that have relatively littile impact on overall effectiveness or cost can be considered to be fixed or, possibly, can be ignored. There 1s, of course, a risk involved if factors chosen to be fized or unimportant would have had a significant effect if they had been allowed to vary. Factors that fall in this "gray erea" may have constraints imposed upon them in such a manner that the more detailed analysis to be performed in the optimization process will indicate final ilsposition. For example, if a quesionabla factor might have a monctonic influence on effectiveness, consideration of only extreme values might be all that is necessary to determine the significance of this influence.

It is important that factor selaction, variability, and the final choice of syatem definition be clearly indicated so that the scope of the outimization process will be known and areas for possible modification of the furmai mathematical solution will be made explicit.

### 2.13.2 Risk and Uncertainty

It is rare for a decision not to include some degree of risk and uncertainty. In many cases, the risks can be identifiad before the decision is made, and their effects can be included in the analysis. Some degree of control is thus obtained over risks and uncertainties, makiug it posible, for instance, to specify how much risk cen be tolerated.
A. Alitimetion ahould bt made betwem riske and uncertaintion. A probelbility can be aselcoed to any owent that if considored a ribk, but no probability can be masluted to m uncertaloty. An umpple of atek is a gatbior making a bet that be will frwa red bell from un contalains 5 red balle and 10 white balls. The peseliole outccmet are mova, and the probebilities are $1 / 3$ for a rod bell sad $2 / 3$ for a rolte bail. An cusemple of mecortainty is mating the same bot where the mabor of red halls and the masher or white balls are unknow. In this sece, all that cen be mald about the outcime is that a red bail or a maite ball will be drawn.

In prectics, the distipetica is not slmays ciear. It may be knoma, for oxacap: E , that the mubar of red belle is between $f$ Ive and ten and the numbor of white balls equal tran. siree manyec mader conditions of rime ars preferred to thone woder conditions of uxcertainty, some affort mat be xade to learn more about the aystem and thereby reduce the amount of uncortainty in the decision.

### 2.13.3 optivization fochateues

The : Bechnique for optinisation ereentially lavolven the application of offectiveness and cost models to all fcasibie designs and selection of the deeign which, eccording to the eriterica, is optimeri.

While thie approach ia concoptusily almple, ite implamentation is virtsalily imposeible, except for the mont simple problems. Coasider a problen invoiving fifteen variables, each of which may tate coe of ocily two rossible velues. more then 32,000 posaible ayetem denigne mould have to be conmidered, amgitude that would tax evem the largent of the available computern.

Techniques are therefore needed to reduce the amount of mathematics and computation to a size reamonable for computer, ceametrical, or even hand solution. In a sense, these techniques are sophinticated trial-and-error routines. sane of the more comoniy unci techniques, or fielde from which euch techniques are derived, are listed in Table 2-3. The list is by no mans camplete. A briof deccription of eeveral of these techniques is contained in section 3 of the Unidebour.

AMCP 20e-181


### 2.13.4 Loverere yifects

During the analysis of syaten coat or cont-affoctivanese, at deal of aimhesis is necesaarily pleced on the thres basic typen of cost: resuarch and development, investment, and operating. However, coste and beactite in mothor category are often overlooked during these malyaec. They are overloowed because they to not increase or diminimh the total cost and effectivenese of the
 In that they come into play when an eltornative aseciated with the getem being analyzed infiuence (acte an lever onj the cost or some other charac.
 olevante whah are aternal to the aybtea belos etudied but gay bave a sionifi-


Leverap effwot need ato be expreaed as a quantity of doliars, tim, or


 array of obareatertatice mathcon theroin.

Ioverage affecti cen be ilinotrated by a simple axaple. A military acemey It to select for develogment ose of three altarnative powerpleats, $A, B$, sed $C$, for une is a now bellecpter. It is wat wet thet the total ayatem coet and offectivenses have bam estimated for sech altornative as follows:

|  | Pounelint A | Powerieat ${ }^{\text {a }}$ | poucreleat C |
| :---: | :---: | :---: | :---: |
| Toted systen cont | \$00,000,000 | \$70,000,000 | 480,000,000 |
| effectivmese | 0.95 | 0.95 | 0.95 |

It is appareat that a is the bent ebolee aince it is the loeet cootly and provictes the sam affoctivenass. Bownver, Powerplant $C$ may have certain qualitien sant wald pernit ith affective use in a nem tenk that is being dovelopen. IV in asdume that the total coet of a new pemorplent developed for the tomk alone would alen be $100,000,200$, wut thet is romerplast $C$ ware selected ad dovelcped for the hellcopter, ite tetal ceet moald be redreced to $\$ 50,000,000$ becuree of ahared acrelegment costa. This aaving of $\mathbf{3 3 0 , 0 0 0 , 0 0 0}$ in the developmant of the seak nom zared $C$ appear to be the beet buy. tha $\$ 30,000,000$ in a leverage affert, eince the powerplent for the mellcopter will atill coet $\$ 80,000,000$, wit ite acvelappent will offect $a \$ 30,000,000$ saving in the allied timat prexrem.

It minht be argued thit le rarege erfecte could be included in alther the cont or effectivenses values of the syetem. However, the malyst is foread to leolate the problem and defina aysten ascociatsd with it in order to perrorm tre analyite at a mangeable lovel. Although the leverage effecte are momi to influmen the decsiolong many fuctore ant be oxeluded if the gyaten io to be reprosented by model and pertiacat informatica is to be extrected froe that modil. Thas, ifter the modol is applid to the various alteratives, some of the excluded sectori, e. 6. , leverage effecte, are reconeldered for the final decralica.

## 

AB intionted propicuely, andel of complex procee is unvally incomplete becmate of uncertainelice, nca-quantitative fectory, inedequete date, and inadephate connifiarntion of the erreste of the proceen on ayetene aperations at

 and andenicos required to efrexmeat the velie.

 nay revel ceme orition catleluactee that oes to rretifict.
monover, wem the meet modern mathmatieal tectantueas and countert nall


 We the have the miarged proplen of lisot colveting the optiman obsubive mid the ascoelated eptinn out of cenatrainte.
 clalea. It the procene in banel ca a scrract fosmidetica of the pretion and


 siblty for the figal crolce.

### 2.13 .6 concimaters



 yrevall and becmee of ilintations of avalicile mothode. Twe inotesse, a atatemat about the rolicbility of a device ie montigiees unlese a stemdard of mece-


 of the method, and atout whether the criterfte are proper in the firet piact, furthar caplicaty the eoteblimbent of deciaten exiteria.

The apropriateape o: decision criteria for nilltary aythen 10 a ceatrovareicl polat. the muber of affminive mapen for fixed cent, tme auber of



 a the completity of critceria is semential.




## ANCP 703-181

the retio of effectivmene to coet. The ratio of offoctiveaess to cost is not generally an aloquate eriterion for melise a choice asous competing aytem.
 offectirmaces. It meen that at min irformetica ac poesible on the oyetem mut te dortved for considerntion by the decinion-makerw. Although the information ocmot bo "riopged vpe into a siasle valid critarici, it can be dieplaved in a momer that fanilitates ite uee in coufunction with the declelca-ziker's expert

 hle calyale adupteble to chming informeticr requirmmett.

## 

The mafor fusotilen of the ovalantion end fogabeck information procees is to previde constant updatine of previon sapute and anelysis by ueing the informisica geined from the atudy procese sat it became avillable.

For aremple, it my become apparent after axercising the offectivenes. model that the elternatives conaldered in the malyais are all extremely ralLerable to mamy estich. At this point in the aystem malysis/cont-et foctivenees proceet, the malyst abould resexmaine the alealco proriles, threate, and martmere charecteriatice so dotanine mich fectore are coctributing to the hish valmarablifty. If the mienicn prapliat are caibing the hifh vilnerability to cone avolacble tectle, thil information abould je fed beck, to the decialenmaking level if neceanary, to that the zilaicon profilee cen be chocked ror poesible chasges. If the threat appeare to be causing the hich ruiserability, the aoluticn my be to co beok and conalder a new elternative aysten, cr poeallay cherge the performmee requirmmote of the ayatpa. Other considerations to be includud in tim evaluation and seadbek procees are the following:

- Pasare that all asoumetign and mbjective judponta uned in the andyais are laentified. The major asouptione should be explicitly atated at the beglaning of the stusy effort and, if fealible, examined at the decisicn-making level to deternine if the abonpidone are valid.
- meury that all the uneortainties that oreur in the analysis are treated. The uncertalatios of fcture thrwate, cavircpmatt, and performane characterletice my have probebilities and copfidence ievels anoelated with tham, and chese ahould be expllelity ataces
- Beathe the output te overy atage i) the syotmonalyale/eoat-offectiveneet proceps to deceratie if the remult appoar: to bo correct, Reculte that are intustivoly unexpected may lead to a deterathation the meose factor in the trmiyais mas inedvertentiy colt:ed.
- melude parmotric trmentmat of savimptione men varicibles foum to se smanitive. If ube rosults of a atuny are scositive to the momption
 recelculate for coes, two, und five yoars ca elther side of fiftem.


## 2.4 minn minn





secentialiy, milyit lavoiven providing the bert pocalble cotimate of the effecte of aelecting varicus courses of ecticn. The decibiciemeter matat decide
 Jwae the validity of the antimatee procented to him.)

Onc pitfull that mat be evolded in the oyotemenalysio/coat offectivenses proceen ctocconse the amovat of detell the malyat preceate to the d6eleion-minor
 to be sure that the decisich-mator is emave of ay rolevent fretore that were not conslaered to the malyile or that my heve boma obecurrd by the dateinductice procese or by the exalynit itcelf. In abort, elince date radection and
 that more properly beleng in the furiediction of the decialon-mater.
 not rupreceat a deciaivaj it is a procece thet coseludee by prosenting to the deciluloa-maker, ta a mectul formet, informition and ateta that are eecential is
 throe compoting aybiem repreceat a ant of date cobeldered by the enalyat to be
 step -- adveloping a single cont-affectivensal indax from some or all of thane
 If, for axmels, the enaigat decidee that the indur 1s, in esosece, effoctiveoses
 Lis five tipet an inportent of the excoodary-atasion effoctivenest (coodition I),

 tence* of the prime mex secondary atacions. In the sxemple juet given (copalition 1) $x_{1}=5 x_{2}$.

| 1415 2-4 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cost (c) |  | zereat | 49ymane | In |  |  |
| nepe | Rim | paster | frest |  |  | $\begin{aligned} & 1 \text { pegap } \\ & (1) \end{aligned}$ | $\binom{c-1}{\left(\sigma_{1}-I_{2}\right)}$ |  |
| $\cdots$ | 0.0 | 7nct | 相 | 0.90 | 0.70 | 2 | 0.0098 | 0.0670 |
| - | 0.71 | 6 | 明 | 0.95 | 0.06 | 3 | 0.0306 | 0.0086 |
| 0 | 2.8n | 14in | T | 0.70 | 0.90 | 2.5 | 0.0210 | 0. $\operatorname{cosg}^{2}$ |



$$
c-s \cdot \frac{r_{1} z_{1}+r_{2}}{\left(r_{1}+r_{2}\right) 0 T}
$$

For condition $I_{1} \mathrm{I}_{1}=5 \mathrm{~K}_{2}$
For condition $I_{y}, I_{1}-E_{2}$


$$
\begin{aligned}
c-z & =\frac{x_{1} F_{1}+E_{2}^{2}}{\left(I_{1}+X_{2}\right) c z} \\
& =\frac{5(.90)+1(.70)}{(5+1)(14.8)(2)} \\
& =\frac{5.2}{17.6} \\
& =.0292
\end{aligned}
$$

And the C-I of syetem a for condition IT is calculeted on follow:

$$
\begin{aligned}
c-1 & =\frac{x_{1} t_{0}+E_{2} E_{n}}{\left(r_{2}+x_{2}\right) t_{5}} \\
& =\frac{1(.90)+1(.70)}{(1+1)(14.5)(2)}
\end{aligned}
$$

## AMCP 70-191

$$
\begin{aligned}
& =\frac{1.6}{59.2} \\
& =.0<10
\end{aligned}
$$

Tharefore, if the malyot decides that primary alentom affectivmone is


 upeary to be the proforreil oyste.

A favortte method for pronestint the realte of cont-effentivenee etedy
 ordsente.





 ness greater thes 96 percent, ae sare thm 13,000 ahoale be spent on this auspmant.


$$
2-76
$$

The prim functica of the aysten malyut is to provide the decielan-inker vith an mon rgenised, felovant information at pousible. However, thie infory: tion dom not autenaticaily identify the preforred alternative, because a cormon valnot repure casact elwgys de developsd. In maring auch final eelecilen, the decialisa-mater mat aleo arcount for tho linitutions in the quatificd analyels,
 selectica, therefore, mat be baced primarjif or tie docimico-maker's judgant, the information is the C-S array provitina oupport for ouch judcaent.

## emarte 3

## TECMMEDES

Thare are three broad claseas $0:$ techniques that can be applied in gyetomeunalyels and cest-effectivonses atudies. The flygt class conaiets of techniques that are ued to roprecent ayetem's soinavior as a function of time unually in a atatiotical masee. mik desoription is generaliy probabilistic in form and thus relies heavily un the theorier ci probability and statintica. Moreover, since the representations are often ocmplox (both mathematically and phereically), a computer is often required to mipuiate or solve tham.

Within finis firat olsas, thore are four techniques that are gensrady appliasble in the ayteray-aneiyais/coat-effectiveneas process.

- Simuiation
- Sequenaing
- Queuting Theory - Inventory and Replacemont

The second clase of techniques applicable to aystoms analyeis/costeffectivenass is concurned with finding optimal solutions, i.e., the maxdmization or minimisation of some objective function within epscified nonstreints. Within this claws are the following techniques:

- Innear and Drnamic Programening
- Anelytic Models
- Game Theory
- Decision ineory
- Information Theory

Whe third class of tectniques consiats of those statistical and methematical tools used by the analyet to identify relationships amorg such systam parametere 3t cost, performanca, etc., and deteruine how critical t'ie parametora are in the decision-making procass. This class includes the follcwing techniques:

- Rgtimating relationships
- Exparionce Curves
- Confidence Intervals - Senaitivity Analyais

Table 3-1 ilste the various techniques introduced above, indicates the general application of each one, and identifien the eection in thia guidebook in which the technique is तiscussed,

AMCP 70G-191

| max 8.1 <br>  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | App 3 cattani |  |  |  |  |  |
| Technique | Interse and Intrastystem Contr Effeotivenens Comparisons | Seloo- tion of Optimum inxes | $\left\lvert\, \begin{aligned} & \text { byatia } \\ & \text { yfocs } \\ & \text { fivenass } \\ & \text { studies } \end{aligned}\right.$ | $\left\|\begin{array}{c} \text { Cont } \\ \text { studien } \end{array}\right\|$ | Identiplaction of Critical Parametores and syitem Problem Arat. | Iopa- tion In Culda Eooic |
| simuzation | X | $\mathbf{x}$ | X | 2 | X | 3.1 |
| Queuting Theory | X | $x$ | I |  | X | 3.2 |
| Soquancing and Markov Processes | X | $\dot{x}$ | X |  | $x$ | 3.3 |
| Inventory and Replacement | $x$ | X | - | $\mathbf{x}$ |  | 3.4 |
| innear and <br> Dymmic Programing | $\mathbf{x}$ | $x$ | $\mathbf{x}$ | x |  | 3.5 |
| Gene Theory | x | $x$ |  |  | X | 3.6 |
| Information Theory | $\mathbf{x}$ | $\mathbf{x}$ | $x$ |  |  | 3.7 |
| Analytic Models | E | X | X | x |  | 3.8 |
| Dacieion Theory | X | X |  |  |  | 3.9 |
| Cont-Eatimating Relationahips and Contidence Intampala | $\mathbf{x}$ |  | $\boldsymbol{x}$ | X | X | 3.10 |
| Eryerience Curyes | $\mathbf{x}$ |  |  | x |  | 3.11 |
| Cost-Senaitivity Analysis | X |  |  | X | X | 3.12 |

## 3.1 simalation

A aimulation is a model (usually computier) that duplicates a gytem's bohavion without actually employins the aystem.

A simulation can be employei in many types of ayatems analyaia. Some of the more imporiant areas and ciroumatances are:

- Pnvirormental probleme
- Mathesetical formulation
- Lak of analytical aolution technique
- Experimental impossibility -- e.g., large-ficele oonflict
- Cost
- Time
- Training
samulotitem ack be olther minjot of digital, and both heve been appliod to a hoot of zreblema. Mothia the cet of sutmiation are eaverel other concepte


Aralog mimultions are most oftom uced as a man of colving sets of differential equatlons or problem doaling with contimxous runotione. comereily,
 exeroler of hill studies.

The quastion macht properiy be acked: how is a difital similation of a complex ayntem obtitined, say, for forward-arva air-defonse probleat The fcllowing atepa we moemeary:
(1) The charactecistics of the offense, dafence, and environment are deteryinea.
(2) A genaral flow diagres for the almalation 1s developod -- for example, the flow betmen the threat, detection and treaing radars, and the intercepting micaile.
(3) Letalied flow diagrane and aubmodele are developed - for wample, the mothod of somputins the louk-on probability $f(a$ the tracking radar.
(4) Space and time coordination are developed throughout the almilation for each atmulation elment.
(5) Statisilical alses and constraints are determaned.
(6) Inpute are inoorporated.
(7) The almulation model is exercised.

An Ixportant aspect of Monte Carlo game simulations is the Deaign of sropriments for teating numerous variables and reducing output variance while reduoing the required sample aixe. A formal branch of atatistios is devoted to thie problem.

The applications of simulation techniques are manifold. They range from utrategic or tactical operatione to manamement, to asmply ayetem operation. Thoy provide a mane by which the analyat can handle lagge mumber: of variablea, mathematicalis intractable relationohips, and, most impostant, uncortaintios and alfernative etops.

## 3.2 amiame tmany

Quouting problem may develop whenwver there are demande for morvice from a number of more or lese independent sources. Quouing theory is a teannique, based on probability theory, that supplies a mana for mathematioal anolyule of this class of problems.

## AMCP 70n-181








- The mumber of wationg linas
- The manber of morioting feotilitios
- The queve dieaipline
 inportant peoulte as the averace lensth of the wat'ing line and the average 1die tim for a marice faolility during any eptoifled time interval.

The utility of thin gethod cin te dmonntrated by an exmple. Mesaages arrive at a commaioations center on the average once overy 10 airutes and with Porecon distribution:

$$
R_{r}(n)=\frac{(\lambda r)^{n} e^{-\lambda r}}{n!}
$$

The aervice time for grocesaing the mesagee are accumed to be oxmonentialiy dietributed $\left[p\left(t_{s}\right)=\mu e^{-\mu t}\right]$ with meane of 3 minuten.

The quentions to be anowered are:
(1) What is the averace number of meacaces in the communioations contert
(2) mat is the avarage length of the queut that may formi
(3) Ascuming that another mascage cloxk will be put on when a masage would have to wait at least 3 minutes before being proceseed, what highar rate of arrivals can be telerated before another man mat be aundmed?

For this partioular type of a queve the following relatienahipa onn be derivod by monne of queuing theory:

- Average number of meacages in the comminioations center $=\frac{\lambda}{\mu-\lambda}$,
whers
$\lambda=$ average arrival rate $=0.1$ per ain.
$\mu=$ crerage eurvice rate $=0.33$ per min.

[^10]- Avesage lometh of "non-amploy" quever $=\frac{\mu}{\mu-\lambda}$
- Average maiting timo $=\frac{\lambda}{\mu(\mu-\lambda)}$

The anownre to the three quections poced, then, ases


(3) Tolerable appival rate $=\frac{\lambda_{0}}{0.33(0.33-\lambda)}=3-\lambda^{\prime}=0.16$ managae par mante

So ortain some inalift into the underiying theory, conaldar the anglent case -- that of the eingle-merver guve wath Poisecn arrivala, juat discusced. The rumber of units in the ajotem is foum by doveloping recursion selatsonehipe, which are poverned by the previously aited fantors."
 number in the quova), and $P_{n}$. the probability of thare being $n$ unite in the ayaten. Angum that the queve armoipline is suah that an arriyal movea immaintely into the service area if the area is vacant.

The yrobability of an arrival in a mall tim inarmant; $\Delta t$, is Net.
The probability of a mastiecd unit leaving in the interval $t$, $\%+$ At int
0 if no unita are in the aratem at $t$
ust if there are one cs more unita in the gyaten at $t$
The probabilities of more than one arrivel or marvice, or both, oocuryibe in the interval are taken to be sero sinoe they are proportional to $\Delta t^{2}$ or hifmar.

Conalder the following two conditions:
(i) 0 unite in waten at $t_{t}+\Delta t$
(2) 0 unite at tim $t$, $n$ aprival, in $\Delta t+1$ unit at $t$ and 1 corvioc completed in $\Delta t$

Them two evente are equivalent and thus their probebilities of ocourronce must be the eane.

$$
\text { Thue } P_{0}=P_{0}(1-\lambda \Delta t)+P_{1} \| \Delta t, \text { or } P_{1}=\frac{\lambda}{\mu} P_{0}
$$

*R. Sacieni, tt. al., 0parations Remearoh -- Methode and Frobleng, John Miloy anf Sown, Ino. 1959, p. 上28.

## ANCP 7ee-191



$$
P_{1}-P_{1}[1-(\lambda+\mu) \Delta t]+P_{0}(2 m)+P_{2} \text { (nat) }
$$

or

$$
\left.s_{2}=\frac{\lambda+\mu}{\mu} r_{1}-\frac{\lambda}{\mu} s_{0}-\frac{1}{\mu}\right)_{0}^{2}
$$

ants ans ubpa de concerelieve to

$$
P_{n}=\frac{\lambda+H}{H} P_{n-2}-\frac{\lambda}{H} P_{n-e^{j}} n \in E
$$

and, by indeotion, this ase be wirition as

$$
P_{n}=\left(\frac{\lambda}{\mu}\right)^{n} p_{0} ; n=0
$$

Howner,

$$
\sum_{D=0}^{\infty} p_{A}=1
$$

$\infty$ that

$$
p_{0}=1-\sum_{n=1}^{\infty} p_{n}
$$

bat

$$
\sum_{n=1}^{\infty} p_{n}-1-\frac{\lambda}{1}
$$

5700

$$
P_{n}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}
$$

 axmple onn to fourd. As tho arpival and mervice diatributicy boocme more
 the quove disoipline boocman mope complex, and the ancoointed mithemetion beocman corroupondingly sore disfioult.

Wen the methentios beocmes too complex for a elomed anelytiond molution
 the aluple once of two empontinl eervioe feoilitien, enoh perforedisf te mam knowa but not moocearily simple diatribution. sindieris, the areivale have some known but not meosaearily aluple alotribution. Por aiplioity, acalin asoum


## AMCP 706-101


 10 throuitout the aybtim, the time owh item apende in the arotem carr be doterrised and, af eliple averacting, the seoulting expeoted tim in the ajotura oan be acoertalion (mabjeot, of ocusen, to asatiotionl conficonoe requiremonta).
 poimbe, varice dictinbutions, avi quouine dicoiplipen can be anelyrod.

## 

Sequenaing is celated to the ortar in mith ur te sequirins corvioing ase
 1e a fumetion of the eoquones or orcor in thich a mubar of tacke are performed.

 - list of $n$ tacive with $\operatorname{E}$ mehtres, with the docsaton of the $\mathrm{n}+1$ teck belng made at the ocepletion of the $n^{\text {th }}$ tame.

Defortanately, both typee of probleas are axceedingly dirficult; at present, colutions are bown only for some roalal cames of tin first type.

A clacatome axample of the mequonoing problen is the "traveling salemen" problen in fitioh the salomen mist visit a cerine of locations, wogpine at each iocation only once and roturning to his atarting poitt at the conciuacon of his trevele. An analogous operatione problan is the melcotion of menenger routec within a dipiaton.

A further potential application is to uee enquercing se ampenent tool
 facilitiee or remources. The objectives are to deteruine the optimin uee of the facilitiee through proper equmnoung of the tark performe.

To illugtrate the technique, conaider a mampger-route peoblea in wioh Eive otops are to be made and the requirement is to find the route involving the andimin total distance to traveles. For this type of problem there an ( $\mathrm{n}-1$ ) ! aubete that must be searahed for a colution -- in thie oase, 4: o. 24 .

This proble could also be viewed at an allooation problen, but compionted With the addet oonctraint that the macerger muat not pase the emmpoint tuloe.

[^11]|  | 20 | 4 | 2 | 0 | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 0 | 2 | 5 | 7 | 1 |  |
| 2 | 2 | 0 | 3 | 8 | 2 |  |
| 0 | 5 | 3 | 0 | 4 | 7 |  |
| 0 | 7 | 8 | 4 | 0 | 5 |  |
| 2 | 1 | 2 | 7 | 5 | 0 |  |

Alame the Atemee matiolx on the 1aft, tivese the eptolee (nta)

 In cirosel eases the meed mot be mo.
 infint velum to swowe the frow the probian)


|  |  |  | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 |  |  |
| 0 | 0 | 1 | 6 | 0 |
| 3 | 4 | 0 | 0 | 1 |
| 0 | 1 | 6 | 4 | 0 |

This is ccocupliamed to the following etoper

(2) Mart anacotaped soms.
(3) Narly colunas mevisy moses in marited rewe.
(d) mert rem havige acodgimata in mitued ooluman.
(5) ampat (3) un (4).
(6) Drew line throush unmatred rowe.
(7) Draw 14 me cheough makeod oolunga.
 from umarted.



Ance 7ec-181


 resth is 8.




 se a mint surte.





 en ite sullity milue in mash mato.

## 2.4 mevimit men micuran




(1) mo oost of arderine poots
(2) ind oute of holding spoale in invantory

The pookin seatint the coblaton-miker is twofold:
(1) Wow often mould he moplanish?
(2) Mow mata mouic meplentint

 the evirell ooet of calatalinty the invwitory.



## AMCP 7erisil






$$
\left.x(t)-x_{0}+\int_{0}^{t}[x i s)-\Delta(t)\right] d t
$$

 tim intargele mat be Ilixte.

 thace:
(1) Ocmitimiove in time
(a) Dacorete and aquidioten: in tion
(3) bicorate and swrequar in time

 or untrova sad manot probabilistsa.

Nurithry, if the pleventery art oondant mith time, the problim is mid to
 in mathemeloal efffioulty.
 and pareliel) and varioue luvols. in aditeion, the lipke botwonn atitions sea very in form (ainile, altornative, fuaica). fraben an mole, the arated oan be coculcario analogecia to a antwork.


 the sectiolion and the arrival of roplaomente mutt be oosalcurod.

 every I days and the rearder cost is C. Tmore if no approolasle toler in
 zero.

[^12]me cost of inmmtory is angina to peopertional to the maber of malte


 nov tane
$$
a_{1}-a_{1} \int_{0}^{2} I-a_{2} 2 \int_{0}^{2}(x 1-1) d t-1 o_{2} \sec ^{2}
$$

In evorne rotal coet per wilt time is

$$
c_{1}=\frac{1}{1} c_{2}=+\frac{c_{2}}{2}
$$



$$
\frac{d C_{2}}{d t^{2}}=1 c_{1}=-\frac{C_{1}}{T^{2}}=0
$$

$\boldsymbol{\sigma}$

The guantity to be ro-egderod is then

$$
a-E=\sqrt{\frac{2 x c_{1}}{c_{1}}}
$$

and the denime 2 yerege total cont in

$$
\begin{aligned}
c_{2} & =4 a_{2} z \sqrt{\frac{2 c_{1}}{2}}+\frac{c_{r}}{\frac{2 c_{r}}{c_{1}^{2}}} \\
& =\sqrt{\frac{c_{1} \sigma_{2}}{2}}+\sqrt{\frac{c_{1} G_{r}}{2}} \\
& =\sqrt{2 c_{1} c_{5}}
\end{aligned}
$$



 shoula to tram.

## AMCP 706.19:

### 3.5 Limen me stianic precaamume

### 3.5.1 Lingar Programmivg

Linear programaing is uged to determine the valuen of a set of variablan fos a Innear equatio. that produce an extroma in the objective while the variables are subject to a set of linear conatraints.

Linear programoing problom generwily fall into two outegroies, mendgment and iranaportation, although the latter is actualiy generajization of the former. Ascignment problems generally deel with distribution ietween a number of alternatives in such a manner as to maximize or minimize the totel worth or obseotive. Transportaticn problems generaliy doal with routing of unity between number of sources and receivers in bich a msnnex as to moximize on minimize the worth of the opsration.

However, the problems need not concern only aseignaent or transportation for line:r-programing techniaues to be applied. Any probicm that can se formed as optimisin a innear expression subject to innear constreintis can be tiseated.

A matheraticai representation of the Inear-programming problem is simply

$$
M_{\max }=\sum_{n=1}^{N} a_{n} x_{n}
$$

subject to

$$
x_{n} \geq 0 \text { and }
$$

$$
\sum_{n=1}^{N} b_{m n} x_{n} \leqslant d_{n} ; \quad m=0,1, \ldots, N
$$

Trere arc number of variations in forming these rolationships, suah oa the direction of the inequality and whether the purpose is maximizing or minimizinf

A number of techniques has; baen developed for solving lirear-programming problems. Two of theae, one gaphinal and one analytical, are treated below.

Consider the problem of twc types of helicopters, $A$ and $B$, and the following circumstances:

- Type A carries 30 troops; B carries 20 troops.
- There are fifty pilots availatle.
- Trpe A requires iwo p1iots; B requires one pilot
- There are 40 of the $A$-type helluopter and 20 of the $R$ type,
- The objective 2 a to move the maximum number of troopr.

The aiove statoments oun be ahanged into the following mathematical exyresedion:

Maximize $30 x_{A}+20 x_{B}$ are the number of the typee $A$ and $B$ ured, subject to the follcwing conatreinte:
(1) $2 x_{A}+x_{B}=50$
(2) $x_{k}=40$
(3) $x_{B} \leq 20$

Pirat consider the graphical solusion shown below.


The procedure followed to find the optimal solution is as follows:

- Plot inequalities - Equations 1, 2, and 3.
- Hote region allowed by each - inside crosshatuhed lines.
- Wote solution region.
- Plot objective function.
- Move objective function (parallel to itseif) away from the origin.
- Note maximum distance point (last point in the aolution region that the objective function touches).

The solution here it to use 20 of $\mathrm{B},-5$ of A .
It should be noted that constraint number 2 could ave been neglected without changing the solution in this example.

The graphical method is a quick and easy method for solving inear-programcing problems: previded there are oniy two variables. For three or more variables, analytical technicues are required because the solution apace 1 n no longer twodimensional.

## AMCP 706-191

The analytic sechalaue demoribed bere is the implex technigie, The theory berind it is complicated, but the application if melatively miaple, although tediout. (The teohnique is readily programad for wolution by oomputers.)

To solve the mapie probican, it is first reousary to write the aystem of inequalitien (conatraint equations) af equilitien, by intraducing a cet of slask variables $-S_{1}, S_{2}$, and $S_{3}$ :

$$
\begin{align*}
& 2 x_{A}+x_{B}+s_{1}=50  \tag{1}\\
& x_{A}+s_{2}=40  \tag{e}\\
& x_{B}+g_{3}=20 \tag{3}
\end{align*}
$$

Then, rewrite the objective function as

$$
\begin{equation*}
-30 x_{A}-20 x_{B}+i=0 \tag{4}
\end{equation*}
$$

where M represents the tern to te narimized.
How construct matrix of the coefficients of Equations 3. through 4:

| $\mathrm{X}_{\mathrm{A}}$ | ${ }^{x_{\text {E }}}$ | $S_{2}$ | $\mathrm{S}_{2}$ | S3 | $\xrightarrow{-}$ | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 1 | 0 | 0 | 0 | 50 |
| 1 | 0 | 0 | 1 | 0 | 0 | 40 |
| 0 | 1 | 0 | 0 | 1 | 0 | 20 |
| -30 | -20 | 0 | 0 | 0 | 2 | 0 |

Designate the $M$ column as the objective column and the last row (objective function) as the objestive row. A feasible solution is present when least two of the cclumns, other ins the $M$ and $N$ columns, contain exactly one 1 and all the other entries are zeroes and all the l's are not in the same rows.

For the matrix shown, there is feasible solution: $S_{1}=50, S_{2}=40$, $S_{3}=20$, thus making $X_{A}, X_{B}, M=0$. However, this is nct the optimum nolution; i.e., no trocps are moved.

To check whether the polution is optamum, axamine the objective row to see if there are any negative entries. If there are no negative en ries, the solution 1s the optimum one. In this case, there is a -30 and a -20 ; thun the solution is not oftimum, and the following procedure is carried out:
(1) Determine the most negative element in the objective row and identify its column (the $X_{A}$ column 1.n this probeem).
(2) Divide each positive lement in the aelecised colum into its coszumponding ror velue in the N colum.
(3) Cirele tine Iemont prodvoing the mallest ratio (the element 2
 the "plyot" mumef.
(4) dext noxmalize the pivot number and ration all other entries in tho pivot colvan sero. This is dony by firyt dividing every elernent in the pivot row by the pivot number to obtain a new, mormilzed psvot wow. Second, for sich other row, multiply the nosmalized pivot now by the negative of the correspondirg pivotcolumn eiement, and mdd the two rows to obtain a new sow having a zero in the correstonding prosition in the pivot column.

For this probler, the normalizing is accomplished by dividing the pivot rov by two, then multigiying the new pivot row by -1 and adding element by eiement, to row 2 to obtain a new row 2. Row 3 is already 0 in the pivot column, there= fore, nothing has to be done to it. Finaliy, nultiply the nomelized row by 30 and add it to row 4. The resulting matrix 1 as follows:

| $\mathbf{X}_{A}$ | $X_{B}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $M$ | $\mathbf{N}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $-\frac{1}{2}$ | $\frac{1}{2}$ | 0 | 0 | 0 | 25 |
| 0 | $-\frac{1}{2}$ | $-\frac{1}{2}$ | 1 | 0 | 0 | 15 |
| 0 | 1 | 0 | 0 | 1 | 0 | 20 |
| 0 | -5 | 15 | 0 | 0 | 1 | 750 |

This procedure is repested until there are no ionger negative entries in the objective $c$ an, and the resulting solution is optimal.

The next pivot element 3 row $3, X_{B}$ columr. The resultant matrix is as follows:

| $X_{A}$ | $X_{B}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $M$ | $N$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | $\frac{1}{2}$ | 0 | $-\frac{1}{2}$ | 0 | 15 |
| 0 | 0 | $-\frac{1}{2}$ | 1 | $-\frac{1}{2}$ | 0 | 25 |
| 0 | 1 | 0 | 0 | 1 | 0 | 20 |
| 0 | 0 | 15 | 0 | 5 | 1 | 850 |

Since there is no longer a negative element in the objective row, tive solution is optimal and equal to $X_{A}=15, X_{B}=20$ anc $M=850$.

A necessary conaition for the formulation of linesr programing problems if linear set of objective functions and constiaints. However, there are many siturifons in systems analysis - when one or more of the functions are expressed as a product equation in the :ariables -in which this qechnique can be applied

## AACP 706-191

but not all tri equations an inear. This often ocours when icill probabilisice of targets are being determined. In such a oase, the equation is linearised by oonverting to the loyarithin of the function and optimising on the lof (yind in is monotonis to ite antilos).

To iliuatrate, consider the ouse in whioh there are two typed of weapons and three types of tasgets, with $P_{1 g}$ being the kill probability of the $j^{\text {th }}$ terget type by the $1^{\text {th }}$ weapon type. The objective is to deternane the allocation of weapons to targets to meximize xill probability for at least one target. This is the wame as minimizing the probability of not killing any target. Lat $P$ denote this probability. Thus

$$
P=\left(1-P_{11}\right)^{N 11}\left(1-P_{12}\right)^{N 12}\left(1-P_{13}\right)^{N 1 S}\left(1-P_{21}\right)^{N 21}\left(1-P_{22}\right)^{N 22}\left(1-P_{23}\right)^{N 23}
$$

Taking the logarithim results in


This can be minimized by maximizing $\log \frac{1}{P}=-\log P$. Thus the objective function is to maximize

$$
\operatorname{Iog} P=\sum_{\substack{i=1 \\ j=1}}^{\substack{i=2 \\ j=3}} N_{1 j} Q_{1 j}
$$

subject to the constraints cited.

### 3.5.2 Dynamic Programming

In dynamic programing, there are no restrictions on the set of equations, nor are there any general algorithims for problem solution. Dynamic programing was developed as a means of studying deciaion processen and determiniag the sequence of aerisions that results in optimizing a predetermined objective function.

In jefining this sequence, Beliman (who is the originator of this method) set rorth a principle of optimality stating that an optinal polioy xss one which insured that each decision, in the sequence of decisions whis the ontimu decieion with respect to the conditions resulting from the prics de $\quad$ aniois.

So ie recent applications of dynamic-programing techniques include:

- Determining thrust-control policies and fuel consumption regimss for puttins satellites into apecifled orbit altitudes with maximun horizontal oomponents of velocity

[^13]- Deternining optims atcelins retio for mianien (how many boontor atages of what elsan recult in most eifiolent minailes)
- Batablishing optimal inventory control schemes for interacting inventories at diffaront locations

In sumasy, dynamio progemming selects the optimum sequance of decisions to establiah polioy that will brinu a maximula return.

## 3.1 cane turanv

ame theory is mathenatical theory cf decision-making by contestants with various stratagies. Originally, it was developed to handle business and economic problems; however, it hat found extenaive application in military systems and operations analysis.

The theory is dafined as a mathematical demonstration that if opposing interests act rationaily to achieve desired ends that can be set forth validiy in a numerical scale of expected returns, returns that vary according to the success of various plans, the appropriate atrategy for each side can be deduced mathemetical.ly."

The folloring texms are used in discussing game theory:

- Game ... the set of rules that define what can or carnot be done, the size of the beta or penalties, and the payoff methods
- Play of the Came -- one complete run through the game, including payoffs
- Zero-Sum aame -- game in which the gaina of one aide equal the losses on the other
- Strategy -- plan of action that is ccumplete and ready to use kefore the gane commences
- Person - one of the opposing interests
- N-Sided Game -- N onnoaing perfors
- Pure Strategy -- a decision always to follow particular course of act:Ion
- Mixed Strategy .- a dacision to choose a course of action for each play in accordanoe with some probability distribution
- Value ... the erpected gain in one play of the game with all players uaing strible optimum strategies
* competitive gam has severai chssacteristias worth noting**:
- There ia a finite number of perions.
- Each person has a finite aet of atrategics.

[^14]
## AMCP 700-181



- There is an outocme of a play that detexndree of of pibyofis to enah ctayer.
 by a problem in whioh the comander of anit it planntre to tmploy acmanication syitem and he has sour onndidete syitoms, while the meny commander bas five types of jaming equigment to eaploy. The payoff for each oombination of comanication gaton'jamer in menared in terwe of the expected orror probubility. The problem is fo seleot the trategy to be amployed by esen orrmander. Anmume that through analysis the following payoff matrix wes deterianed:

| Jauning Sysicem | I | II | III | IV | V | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 10.1 | 0.7 | 0.8 | 0.6 | 0.4 | 0.8(III) |
| B | 0.4 | 0.5 | 0.6 | 0.3 | 0.3 | 0,6(III) |
| c | 0.8 | 0.6 | 0.7 | 0.7 | 0.1 | 0.3(I) |
| D | 0.4 | 0.4 | 0.8 | 0.8 | 0.2 | 0.8(III) |
| Minimum Exxor | 0.1(A) | 0.4(b) | (0.6) (B) | 0.3(B) | 0.1 (c) |  |

The commander's objective 1a to select the strategy that gives him the minimun error probability, while the opposition desires to choose the strategy that meximizes the error probability.

The appmoach taken is to examine each communications strategy and detarmine which results in the poore it return, thas reflecting the pooreat expected return. This infarmation ia shown to the right of the matrix, Similarly, each jamming etrategy is examined for its worst oase, and the values are shom below the matrix.

Each commendez then seleots ithe best of his worst solutions an strategy (circlea appropriate values). Thus, in the rows, lcok for man-mpsolution and in the columns, Mex-Min sclution.

From the matrix observe that communiontions aystem $B$ and Jraver cvacem III would the choser.

Note that in this asee both atrategies are defined by the sme elemant. Such solution is known as a Sadde Point, and the resulting atrategien af Pure Stretegies, The value of the game 100.6 , and if either side uses aifferent strateg.; his expected return will be reduced (in thit dase the emror probability wusld increase to the communidatcr or deorease to the jammer).

If no Saddle Polnt ocourm, the becu strategien are mixed strategies, and the gare ausution is the eet that maximizes the expected reium. To illuatrite
this, consider the aame problem an abuve, but with the (B, III) element osanged ts say, 0.1. The new matrix is as follows:

| tes | I | II | III | I | v | $\underset{\text { Error }}{\text { Maximum }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | 0.1 | 0.7 | 0.8 | 0.6 | 0.4 | 0.8(III) |
| 3 | 0.4 | 0.5 | 0.1 | 0.3 | 0.3 | 0.5) 5 II |
| 0 | 0.8 | 0.6 | 0.7 | 0.7 | 0.1 | 0.8(I) |
| D | 0.4 |  | 0.8 | 0.8 | 0.2 | 0.f(III, TV) |
| Minimum Error | 0,1(A) | (0.4) $0^{2}$ | 0.1 (B) | 0.3(B) | $0.2(\mathrm{c})$ |  |

From the matrix observe that system B rapresents the optimum stratesy and jammez II represents the best counter-strategy. However, there is no saddle Point; hence, pure strategies no longer exist.

The first step to the solution of this problem is to try to reduce the dimensicuslity of the game. It can be seen that no strategy dominater within the rows. However, within the columns, column IV dominates column $V$ in every row. Hence, column $V$ is dropped from further consideration. of the remaining matrix, row $B$ is now seen to dominate min C. Carrying the elimination procedure to its inmit results in the following:

|  | II |  |
| :--- | :--- | :--- |
|  | IV |  |
| $B$ | 0.5 | 0.3 |
| $D$ | 0.4 | 0.8 |

Now let $X=\left(X_{B}, X_{D}\right)$ and $Y=\left(Y_{I I}, Y_{I V}\right)$ equal the optimum mixed strategiea of the two sides.

The gain 13 now random variable, $g$, and the expected value to each aide 1s

$$
\begin{aligned}
& E(g ; x, y)=\sum_{i j} a_{1 j} x_{i} y_{j} \\
& E(-g ; x, y)=\sum_{i j}\left(-e_{1 j}\right) x_{1} y_{j}
\end{aligned}
$$

Let $V_{1}$ end $V_{2}$ represent the expectation of esch aide, which is to bo optimuri.

## AMCP 706-191

Thut atzutegies mut be chocen to that:
$Y\left(g_{1} ; X_{0}, X\right)$ \& $V_{1}$ given $X_{0}$ ia optine comamiontion oyoten atrutegy



 sised.

Thus

$$
\begin{aligned}
& I\left(s ; x_{0}, x\right) \in V \\
& T\left(\varepsilon ; x, y_{0}\right) \in V
\end{aligned}
$$

Subetituting for the expected payoffe yields

$$
\begin{aligned}
& X_{I I}\left(0.5 x_{B}+0.4 x_{D}\right)+X_{I V}\left(0.3 x_{D}+0.8 x_{D}\right) s V \\
& x_{D}\left(0.5 y_{I I}+0.5 x_{I V}\right)+x_{D}\left(0.4 x_{I I}+0.8 x_{I V}\right) \geqq V
\end{aligned}
$$

In adition,

$$
\begin{aligned}
& x_{Y}+y_{D}=1 \\
& Y_{I I}+Y_{I Y}=1, \text { and } \\
& x_{1} \text { and } Y_{1}=0
\end{aligned}
$$

The above inequalities imply the fellowing relationchipe:

$$
\begin{aligned}
& 0.5 x_{B}+0.4 x_{D} v \\
& 0.3 x_{B}+0.8 x_{D} v \\
& 0.5 x_{I I}+0.3 x_{I V} v v \\
& 0.4 y_{I}+0.8 y_{I V} v v
\end{aligned}
$$

Thus there are five wimpoma and ten relationatipa. Not all element can be sero, but it is possible for oqualities to hold in the four inequilities. Thus

$$
\begin{aligned}
& 0.5 x_{B}+0.4 x_{D}=v \\
& 0.3 x_{B}+0.8 x_{D}=v \\
& 0.5 Y_{I I}+0.3 x_{I V}=v \\
& 0.4 Y_{I I}+0.8 Y_{I V}=v
\end{aligned}
$$

$$
\begin{aligned}
& x_{z}+y_{D}=1 \\
& y_{I I}+y_{I V}=1
\end{aligned}
$$

Solving this ajsten leede to

$$
\begin{aligned}
& x_{D}=2 / 3 \\
& x_{D}=1 / 3 \\
& x_{I I}=5 / 6 \\
& x_{I V}=1 / 5
\end{aligned}
$$

Stuxn by unine compungoutions ent E tmo-thirds of the time and art $D$ the remainder, the comander will realise a pajoft of 0.457 , whereas if he were to have atajed with his best pure stretegy, be would have been sure of no better than 0.5 . similariy, by gowning with jomer number II five-sixthe of the time and jamaer IY the realidier, the eneng is ascured of a pagoff of 0.467 , whoreas by following his purce stretegy, be would not beve been oure of doing better then 0.4.

Oomes with larye metricen are often tedious to solve by use of the sechnique juat desorebed. Bowerer, it is relatively aimple to obtain an approximation of the ecant colution
consider the racuod eitrix of the ample proble:

| II | IV |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 | 0.3 | 0.3 | 0.8 | 1.3 | 1.8 | 2.3 | (2.8) |  | $\rightarrow 2 / 3$ |
| D 0.4 | 0.8 | $(9.5)$ | (1.2) | (1.6) | (2.0) | (2.4) | 2.8 |  | $\rightarrow 1 / 3$ |
| 0.5 | 6.3 |  |  |  |  |  |  |  |  |
| 0.5 | 1.1 |  |  |  |  |  |  |  |  |
| .3) | 1.9 |  |  |  |  |  |  |  |  |
| (1.7) | 2.7 |  |  |  |  |  |  |  |  |
| $1)$ | 3.5 |  |  |  |  |  |  |  |  |
| (2.5) | 4.3 |  |  |  |  |  |  |  |  |



[^15]
## AMCP 700-181

## Solution mien are as followes

(1) Seleot the rom and place under asirgy ( $0.5,0.3$ ).
(2) Circle andlest value in the fow and weite corresponcine colvm So right of the metrix $(0.3,0.8)$.
(3) circle largest vilue in colum and write corrempending roy and add to last now
(4) Circle mallest vilue in row and write correapondive notim and add to lent oolyma
(5) Repeat prootsa M times.

The approximate strateg:ed after M iteretions are then the number of airoled values ilvided by N for eech choico.

Solving this syatem leace to the following values:

$$
\begin{array}{ll}
X_{B}=0.667 & x_{B}=0.667 \\
X_{D}=0.333 & X_{D}=0.333 \\
\Psi_{I I}=0.723 & Y_{I I}=0.833 \\
\bar{Y}_{I V}=0.277 & Y_{I V}=0.167
\end{array}
$$

Note that the values are of the right orjer, but theis convergence is not particulazly rapid.

The reper and lower bound for the gase can be determined by dividing the nigheat number in the last colvin $(8.4$ after 18$)$ by the number of iterations, and by dividing the lowest number in the lact row ( 8.3 arter 18 ) by the number of iterations. Thus, for iniz example, the velue is

$$
0.45 \in V \in 0.458
$$

while the predetemalned unower was $\mathrm{V}=0.4 \overline{\mathrm{C}}$.
As the rumber of sifes, the number of meve per piay, and the dimensionhilis incretse, the emplexity of the came solution increate sorreapordintiy.

## 

 1nitia, and most fraquent aplloations rave, or course, betn in somadifition syatem proble-s. however, it hes received other gpillestion in muoh tiveree arga



In fumpris, the theory oen be applied to any astuation in which there is

 the source outpotte.
 amily the encont of unsertelaty thet hat been reduced.

A poasible apilcation of inforwation theory it to meature affeotivenead for a commaication byeter, i.t., row mah inrometion is oonveyed by the byitem, or mow fent it is oopreyed.

For g gmantitative treatment of thie eubject, eeveral concepte mat be
 by I - -Log $P_{1}$, where $P_{1}$ it the probebility of having miected mesege 1 frome souree contcining myebis. The most iroquentiy ueed oeet is tive jinary, in undon thare are two ajabole -- $\{1,0\rangle$. Thas for a mesege concisting of a ingle eymbi, the informetion is expreseed in binery units and written as

$$
I=\operatorname{Lot}_{2} P_{i}
$$

Por exemple, the information oonveyed by flipping a legitifite coin it

$$
x=-\log _{2}(\hat{y})-1 \text { bit, }
$$

while the inforgation conveyed by tionticaded coin is

$$
I=-\log _{2}(1)=0 \text { bits; }
$$

1.e., the outsome is brovn in advance.

An taportant sencept in the stuey of unformetion : ethat of entropy; simply etated, this is the average unoertainty of mource or atioage. This

$$
A=\sum_{i} I_{1} Z_{1}=\sum_{i} P_{1} \log P_{1}
$$




| Pitsear | Probatiliex Sendict |
| :---: | :---: |
| 11 | $1 \%$ |
| 02 | 12 |
| 30 | 13 |
| $\infty$ | 1.4 |

AMCP 706.191
Thus

$$
H=\frac{1}{2} \log _{2} 2+1 / 8 \log _{2} \theta+1 / 8 \log _{2} 8+\frac{1}{4} \log _{2} 4=13 / 4
$$

bits of information on the average 1 a tranamitted by mesnage from this mouroc.
It can be proved that the maximum entropy is achieved when all of the messages are equally likely. Purther, when the mbols are independent with the same distributions, the entropy of a message of length $n$ is $n$ times the entropy of a singie symbol.

The next concept to be defined is that of a channel. A channel le dasoribed by an input alphabet $A$ and an output alphabit $B$ and a set of conditional probabilit:es $\left[P\left(B_{j} \mid A_{i}\right)\right]$, termed the channel matrix, that are the probebilitien of receiving message $B_{j}$ given $A_{1}$ was sent.

To 1llustrate, consider a simple binary source having a symmetric channel -that is, the probability of an error's being introduced on a one is the tame as the probability of its being introcuced on a zero. Symbolically this is expresmed as follows:

whers the chanaci matrix is:

$$
\left|\begin{array}{ll}
\mathrm{F} & \overline{\mathrm{P}} \\
\overline{\mathrm{P}} & \mathrm{P}
\end{array}\right|
$$

Associated with the notion of a channel are several other quantities worth mentioning:

- The a peifori entropy of $A=E(A)=-\sum_{A} P(a) \log P(a)$.
- The posteriori entropy of $A=H\left(A \mid b_{j}\right)=-\sum_{A} P\left(a \mid b_{j}\right)$ Los $P\left(A \mid b_{f}\right)$.
- Conditional entriyy $H(A \mid B)=\sum_{B} H\left(A \mid b_{j}\right) P\left(b_{j}\right)$, which is called the
equivacation.
- Mutual Information (the information provided by the obr ruation of an output eymbol $=I(A ; B)=H(A)-H^{\prime}(A \mid B)$


Some interesting properties of mutual information are the following:

- It is always non-negative, $1 . e ., I(A ; B) \geq 0$.
- If ohannels are cascaded, they will tend to leak information, 1.e., $I(A ; B) \geq I(A ; C)$.
- Mutual information is additive 1.e., $I(A ; B, C)=I(A ; C)+I(A ; B \mid C)$.

Channel capacity is a measure of the ability of the channel to tranamit information; it 18 defined matheratically as $C=\operatorname{Max} I(A ; B)$.

$$
P\left(a_{1}\right)
$$

Chancel cepacity is commonly expressed in information unita per unit of time. The notion of channei cacacity leads to one of the fundamental theorems of infomation theory: "If tie average amount of information per message from a source is $H$ and the channel has a capacity of $C$, then it is cossible to encode the messages so that tney may be transmitted over the channej at a rate $R$ which has a maximum vilue of $N / H^{*}$ "

If the concept of a noisy channel is now instroduced, the preceding can be modified to "if the rate of transmission is less than the channel capacity, it is possible to encode a message for transmiseion so that an arbitrarily small percentage of errors may be obtained."**

The preseding discussion concerns discrete messages. However, a completely analogous development exists for the continuous case, wherein summations are replaced by integrals and discrete probabilities by density functions. Thus the entropy of a continuous source would be given by***

$$
H=-\int_{-\infty}^{\infty} p(x) \log p(x) d x
$$

Here entropy will not be unique but will depend on the co-ordinate system used to represent the variable. However, in the noisy-channel situation, it is the mutual information that is of interest:

$$
\begin{aligned}
I .(x ; y) & =H(y)-H(y x) \\
& =-\int_{-\infty}^{\infty} p(x) \log p(y) d y-\left[-\int_{-\infty}^{\infty} p(x) d x \int_{-\infty}^{\infty} p_{x}(y) \log p_{x}(y) d y\right]
\end{aligned}
$$

This equation represents the difference in entropies -- one tern representing the received signal and the other term representing the effects of the noise. Then, as long as both terys puesess the same units, the solution will be unique and hence not de-enoent on the co-ordinate system employed.

[^16]
## AMCP 706.191

According to Shannon's Theorem, an mount of information per emple point can be sent over a noisy channel as given by tha aximum of the equation above. However, the chnimel must be evalusted in torme of the upecific channel uead The channel is restricted by the bandwidth availabis and the powar aytileble for the signal waveform. Fow a signal of average power $P$ in the presence of narrowband Gaussian noise of average power $N$ and bandwidth $W$, the channel capacity is given by:

$$
C=W \log \left(1+\frac{P}{N}\right)
$$

Thus the trade-off between power and randwidth is shown.

When the basic relationships of information theory discussed above are applied to a systems-analysis problem, the components of the ayatom are represented as channels with appropriate characteristics and the inputs and outputs correspond to the information passed by the system.

To denonstrate the application of these techniques, consider sighty different example -- a maintenance syatem. A simple system experiences three types of failures and exhibits four types of symptoms. Anaiysis of symptom/filure frequency data yields the following matrix, where each element is the numer of tir.ss the corresponding failure/symptom combination was experienced:

| Fatlure Symptom | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{1}$ | 5 | 4 | 1 | 0 | 10 |
| $\mathrm{~F}_{2}$ | 2 | 1 | 2 | 5 | 10 |
| $F_{3}$ | 1 | 2 | 5 | 2 | 10 |
| Totals | 8 | 7 | 8 | 7 | 30 |

The first atep in the arialysis 10 to convert the elemental values to probe abilities.

| Fa1lure Symptom | $s_{1}$ | $s_{2}$ | $S_{3}$ | $s_{4}$ | Totala |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{1}$ | $1 / 6$ | $2 / 15$ | $1 / 30$ | 0 | $1 / 3$ |
| $F_{2}$ | $1 / 15$ | $1 / 30$ | $1 / 15$ | $1 / 5$ | $1 / 3$ |
| $F_{3}$ | $1 / 30$ | $1 / 15$ | $1 / 6$ | $1 / 15$ | $1 / 3$ |
| Totals | $4 / 15$ | $7 / 30$ | $4 / 15$ | $7 / 30$ | 1 |

The averme information conteined in agmptom it

$$
\begin{aligned}
H(s) & =-\sum_{1=1}^{4} P\left(s_{1}\right) \log _{2} P\left(s_{1}\right) \\
& =-\frac{-8}{25} \log _{2} \frac{4}{15}-\frac{7}{15} \log _{2} \frac{7}{30} \\
& =\frac{8}{15}(3.907-2.000)+\frac{7}{15}(4.907-2.807) \\
& =\frac{8}{15}(1.907)+\frac{7}{15} \text { (2.100) } \\
& =1.997 \text { b1ts per syaptom }
\end{aligned}
$$

Similarly, the entropy contained in the failures is

$$
H(F)=-\sum_{j=1}^{3} P\left(F_{j}\right) \log _{2} P\left(F_{j}\right)=-\log _{2} \quad \frac{1}{3}=1.585 \text { bits per failure }
$$

The joint entropy in ayptom is found directi: from the aymptom/failure matrix (note that in this case the matrix is not the channel metrix):

$$
\begin{aligned}
H(S, F) & =-\sum_{1=1}^{4} \sum_{j=1}^{3} P\left(S_{1}, P_{j}\right) \log _{2} P\left(S_{1}, F_{j}\right) \\
& =-\frac{1}{2} \log _{2} \frac{1}{6}-\frac{2}{15} \log _{2} \frac{2}{15}-\frac{1}{10} \log _{2} \frac{1}{30}-\frac{4}{15} \log _{2} \frac{1}{15} \\
& =\frac{1}{2}(2.585)+\frac{2}{15}(2.907)+\frac{1}{10}(4.907)+\frac{4}{15} \log 3.907 \\
& =3.213 \text { bits }
\end{aligned}
$$

The information tranmitted from symptom to failure (1.e., the mutual information) is given by

$$
I(S, F)=n(N)+H(P)-H(S, F)
$$

(This can be derived from the earlier expression for $I$ that inciuded equivocation.)

Thus,

$$
I(S, P)=1.997+1.585-3.21=0.369 \text { biis }
$$

One oriterion that can be applied is the efficienoy of transmisalon, defined by

$$
\mathrm{E}=\frac{I\left(S_{p} F\right)}{H(F)}=\frac{0 . j 69}{1.585}-0.233 \text { or } 23.3 \%
$$

## AMCP $\mathbf{7 0 6} .191$

Other items that can be determined ere the equivocation,

$$
H(A \mid B)=H(\therefore, B)-H(B)=1.628 b 2 t \Delta,
$$

the channel matrix, and the capaciiy

The syotem car now be investigated to detarmine the value of troubleshooting strategies; the efiects of regrouping of components to reduce troubleshooting cimes; and, in the case of AIDS type systems, the cffectiveness of the system.

## 3.1 amalyic meotis

Strictiy analytic methods are another meens of optimizing that the system analyst can employ. One such technique tiat is common in calculus is equating the derivative to zero. However, two other tuchniques are worthy of mention: Lanchester's argetions, and the calculus of variations.

### 3.8.1 Lanchelftar's Equations

Lanchester's equations deal with the interactions of opposing sides in a dynamic battie. In their simplest rorm, Inchester's equations atate thet in a mijitiple engagement "the $\because$ :ali effectiveneas of force equals the average effectiveness of the individual unite multiplied by the square of the number of "nits engaged.* In mathematical terma this means that

$$
\begin{aligned}
& \frac{d B}{d E}=-k_{1} R \\
& \frac{d R}{d t}=-k_{2} B
\end{aligned}
$$

where $B$ and $R$ are the numbers of blue and red units, rebpectively, $t$ is time, and $k_{1}$ and $k_{2}$ are unit effectiveness factors.

This signifiles that on the average each unit will in given time score a certain number of offective nits, thereby eausing the number of units killed to be drectly froportional to the numerinal strength of the cpposing force.
'hese equations have been bubsequently modifiea to incorporate ouher factors affentine fore trongth, with as piviuchion rates.

For example, one uch modification is tu write the two equadions as being expressive of iational effectiveness in a whofe war. ** These are written as fol"us:

$$
\begin{aligned}
& \frac{d R}{d E}=P_{H} \cdot O_{L} N_{B}-e_{B} N_{B} \\
& \frac{d B}{d}=P_{B}-C_{L} N_{B}-e_{R} N_{R}
\end{aligned}
$$

[^17]
## where $P=$ production

$O_{L}=$ operational loss percentage
e = effectiveness $=\frac{\text { jumber of enemy deatroyed }}{\text { Number of } \operatorname{friendlies~engaged~}}$
$N=$ number of forces engaged
$B, R=$ blue and red, respectively.
The ecuations may be further complicated by introducing probablilities into the picture and by exercising them through a simulation, using Monte-carlo tecnniques to detemine engagement outcomes under more realiatic condti..7s and with more variables introduced.

To 1llustrate the equetions aiaply, consider the follewing nus.orical examples. Sides $A$ and $B$ have 10 units each. If ali uilta have equal effectiveness per unit of time, the engagement will be a draw. Let the effectiveness (kills per unit of time) of $A$ be 0.1 and $B 0.2$.

Thus,

$$
\begin{array}{ll}
\frac{d A}{d t}=0.2 B & A_{0}=10 \\
\frac{d B}{d t}=0.1 A_{0} & B_{0}=10
\end{array}
$$

The resulting time historles for the two sides are approximately as foilewa:


Thus in this simple example $B$ wns, losing but three units while all ten of the opposing A are lost, and yet its unit effectivenges was only twice as good as A's. If B's effectiveneso were raised to 0.4 while A's remeined the same, $A$ would lose all ten again, but $B$ would lose oniy 2. Purthermore, the engagement would requirs three time unite wherens before it required seven.

AMCP 706.19:
 time) ore gepeqpit. Thus, oy wor of these equetione optimal strategies could be devisen.

## 3.9 .2 Calcuias of Yariation

The oflculus of veriotions is an onsiytic method for dealing with probleme of moxim and minina, In particula*, it deale with finding the trema of integrala af one or nore unknown functions. Thus, In the calcu'ut of iariations, the


$$
\int_{t=1}^{82} F\left(x, y, t, x^{2}, y^{\prime}, z^{\prime}, t\right) d t \quad \text { Maxdmum or Minimua }
$$

The mathematics Involved in solving ereriational problem is quite somplex; however, electrical or mechanical ersineers have probably encountered problezg that could be solvel by the alouius of yariatione or hase applied realts effic were derived fiom the application of the calculus of variations. For amale, the derivation ( $f$ the optimun filter 1t alec applicacion. In thie eav, a tris aignin, $Y(t)$, and cocelvol signal, $\hat{y}(t)$ (et the filter cutput) are siven, and it 1s desired to find the fiztax trangfer funotions usch that

$$
\int_{r, 1}^{t ?}(y-\hat{j})^{2} d t-\operatorname{ain} 1 m u m
$$

A secunt example of the use of this techmique is the derivation of the equatisns of motion of vibrating mambenes, plates, eto., frow an mergy atand-
 ae

$$
\int_{t I}^{r t c}[v(x, y, z, t)-K(x, y, z, t)-A(x, y, z, t)] d t-M \lim \left(u^{n}\right.
$$

where $U, K, A$, ve antively, repreaent the potential, kinetie, ard applied energiey in the sysum.

The pr cry. az. tic the solmiton $u^{*}$ these pruolems is to consider the functioss saius at tred. end points but fres to yary mall amounta ang the pathe of integration.

## 3. Gicist

Decinion theory raprements one of the woot recent developmente in operationa reaearch. It hat found conkiderive prive appisection ae part of cocmunications, rader, ans pattean-recgendtion syteas. fonever, iss applioations to the atual decision procest have been relatively reczat wid few.

In docision theory two factors cantribute to daalalon:
(2) The probability of tis outcosef if given decision is ade
(i) The vaiwe of she outcomen

The thoory, then, attempts -o define the decision process in terms of number of states, values being associated with each. Application of the theory resuits in identisying a best course of action, generating alternative states, establishing new values, and providing dynumic framevork for the decision process.

## 

### 3.10.1 Cost-Estimating Relationahiph

When the system is complex, there is ususily no simpie tio-parameter fomula that relates system characteristics co syatem performance or aysiem cost. However, through the use of the statistical technique known as linear regression, the equations or relationchips of interest can be approxinated by a etreight inne or by hyperplane -- that 18 , straight 1 ine $i n n$ dimensions.

The firsit step in the procedure is to establish a 118 of systrm perametirs on the basis of engineering judgment; this list includes system characteristics that are expected to contribute sicnifinantly to the varisbility of aystem performance or system cost ot any time during the research and developinent, iritial investment, or operating phases of the system's life yole, for exampie, if the system were a radio receiver, the list of system farameters would include elich items as weight, volume, sens!tivity, selectivity, signal rijic ratio, surese cramacteristics, and onst.

Oreat care should be taken in compiling these lists, because the eqse of computation and the adequacy of the resulting prediction tepend primarily on the discrimination exercised at ti:is point. The foilowi:s are the uoulai prioxities for parameter selection in the regression analysea:
(1) Parameters that are sonsidered, on a cosf/ingineering baiss, to have a second-order effect on the spplicable coet catezor; are excludel initially.
(2) Parameters that exhibit $1 \div: t l e$ variation anong the sysems in the stiudy are excluded initially.
(3) Pa;meters that might be difficult to quantify turis. the in:tial precnjerent etages mare lower priority thar uthern.
(4) Parameters that ere ingh.' correlated ith one or mor? other parimeteri lave lover priority.
'5) Farameters are gelectud so mint, if fassitle, et leat one inom eth of the following cotegorice if initimliy investigated:

- Nasion oharacterist os


- Errectuenew charguteristion


## AMCP 706.191

One parmeter ney regresent two of the bove sharecteristice. or example, complexity charecteristic ouch as morbur of actipe elements will often correlite well with relifbility.
(6) Where there 10 choice between two or wore equelly impiriant correlated parametcre, the perameter or partueter combination that 1 a moat conducive to establishing trade-off relationshipt is seiected iritialiy.
 ragrearion equation. ith regremainn quation in Section 2-12 can be writien an

$$
X_{1} \cdot A+B X_{2}=C X_{3}+D X_{4}
$$

where $A, B, C$, and $D$ are coerfinients, or constanta, that have to be deterained and the $X$ 's are tre systew parmanters or combination of syines parametere. Ima constants can be artermined b) wiving the foiluwing wet of equations simultane. susiy:

$$
\begin{aligned}
& E X_{1}-N A+E \sum X_{2}+C X_{3}+\operatorname{CEX} X_{4} \\
& \Sigma x_{1} x_{2}=A \Sigma x_{2}+E v x_{2}^{2}+\operatorname{EN} x_{2} x_{3}+D E x_{2} x_{4}
\end{aligned}
$$

$$
\begin{aligned}
& E X_{1} X_{4}=A \operatorname{AX} X_{4}+\operatorname{EE} X_{2} X_{4}+\operatorname{ES}_{3} X_{4}+\operatorname{DEX}_{4}^{2}
\end{aligned}
$$

where $N$ it the nunber of amplef.
Once the conetants $A, B, C$, and $D$ have Deen found. the regreamion eqution is determindi, and the wajue of tret multiple comalation coetricient, $r$, can be calcuiated from the followirg formule:

$$
\frac{\left.r-g_{1} i x_{1} x_{3}-\Sigma x_{1} \sum x_{2}\right)+c\left(x_{1} x_{3}-I x_{1} I x_{3}\right)+D\left(x x_{1} x_{4}-E x_{2} t x_{4}\right)}{N x_{2}^{2}-\left(\Sigma x_{1}\right)^{2}}
$$




 equation whty be Erict.

## 



 orfor of the ostimte, $\mathrm{E}:$

$$
s=o \sqrt{\frac{n-1}{y+1}\left(1-r^{2}\right)}
$$

then


$$
\begin{aligned}
& x \text { - mumber oin periablet used in predicting } x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - worrviltior ocirrialent }
\end{aligned}
$$

Approximitaly 68 peroent of the saple points $1: 0$ uthin $4 S$ of the flane dovermined by the segreceion equation, and gs perocnt of the sample pointe lie Witin t 23 (xemured in the x antection).

 aruation ic weed to prediot the cost of new piece of equipment, the predictioni intermel or corfiotnoe interrici io given by
mbint





I if the mumbe of pormetert weed in the prodiction eque ton
$\nabla_{1 j} 12$ *x.juned 0 low



## AMCP 706-191

calculate the quantities $V$, using the foilowing equations:

$$
\begin{aligned}
& v_{22}=N \Sigma x_{2}^{2}-\left(\Sigma x_{2}\right)^{2} \\
& v_{33}=N \Sigma x_{3}^{2}-\left(\Sigma x_{3}\right)^{2} \\
& v_{44}=N \Sigma x_{4}^{2}-\left(\Sigma x_{4}\right)^{2} \\
& v_{23}=v_{32}=N \Sigma x_{2} x_{3}-\Sigma x_{2} \Sigma x_{3} \\
& v_{27}=v_{42}=N \Sigma x_{2} x_{4}-\Sigma x_{2} \Sigma x_{4} \\
& v_{34}=v_{43}=N \Sigma x_{3} x_{4}-\Sigma x_{3} \Sigma x_{4}
\end{aligned}
$$

Now, to determine the values for $U_{22}, U_{23}$, and $U_{24}$, the values of $V$ are substituted in the following equstions, which are solved simulteneossiy:

$$
\begin{aligned}
& v_{22} u_{22}+v_{23} v_{23}+v_{24} u_{24}=1 \\
& v_{32} v_{22}+v_{33} v_{23}+v_{34} v_{24}=0 \\
& v_{42} v_{22}+v_{233} u_{23}+v_{44} u_{24}=0
\end{aligned}
$$

To determine the values for $v_{32}, v_{35}$, and $v_{34}$, the valuen of vare subu stituted in the following equationn, which again are soived simutaneourl:

$$
\begin{aligned}
& v_{22} J_{32}+v_{23} v_{23}+v_{24} u_{34}=0 \\
& v_{32} u_{32}+v_{33} v_{33}+v_{34} u_{34}=1 \\
& v_{42} u_{32}+v_{43} u_{33}+v_{44} v_{34}=0
\end{aligned}
$$

Finaliy, to determine the values for $U_{42}, U_{43}$, and $U_{44}$, the same values of $V$ are substituted into the foilowing equationa, whica are solve simitaneoualy:

$$
\begin{aligned}
& v_{22} u_{46}+v_{23} U_{43}+v_{24} J_{44}=0 \\
& v_{32} J_{42}+v_{33} U_{43}+v_{34} U_{44}=0 \\
& v_{42} J_{42}+v_{43} U_{43}+v_{44} v_{44}=1
\end{aligned}
$$

The confidence intervais can now be found. For example, if the 95 percent confidence interval is desired, the values of $S, N, X$, and $U$ are substitutea in the confidence interval equation, along with the vaiue of to (based on a 95 . r cent confidence level and the number of samples, $N$ ). The relevant statement that
den now be made 1 a that the estimated cost of the nev equipment is $X_{1}$, and there 1s a 95 percent probability that the coat whil be somewhere bstueen the upper and lower nonfidence limats.

### 3.10.3 Example: Syple Linear hegress: on (Tro Yariables)

Given the information in the following table, determine the cost for a now piece of similar-type equipment, the $x y z-2$, which has $s$ voiume of 30 subic feet.

| 3xiacing Bquipuent | $\begin{aligned} & \text { Volume } \\ & \text { (Cub1c Ft.) } \end{aligned}$ | $\begin{gathered} \text { Cost } \\ \text { (Dilars) } \end{gathered}$ |
| :---: | :---: | :---: |
| URC-32 | 20 | 10,392 |
| WET-2 | 34 | 12,278 |
| R-390 | 2 | 1,036 |
| URC-35 | 3 | 6,628 |
| WhC-S | 12 | 3.307 |
| SRC-21 | 14 | 4,366 |
| SRC-20 | 18 | 7,588 |
| URT-1 | 36 | 1.4,580 |
| XYZ-2 | 30 | $\mathrm{X}_{1}$ |

The procedure to be followed consists initially of linear regressicr, using the method of least squares. If it is found that the data are not essentialiy lirear, then other methods are tried, such as logerithmic, fuacratic, etc., until an appropriate prediction equation can be obtained.

The form of the linear equation is

$$
X_{1}=A+B X_{2}
$$

where $X_{1}$ representa the cost and $X_{2}$ represents the volume.
The values of the cooffielentes A and $B$ can be found by simultaneously sedving the foliowing equationc. Sinve there are only two varitbles, the relevant equations (excluding any terme containing $X_{3}$ or $X_{4}$ ) are

$$
\begin{gathered}
\Sigma X_{1}=N A+B \Sigma X_{2} \\
\Sigma X_{1} X_{2}=A \Sigma X_{2}+B \Sigma X_{2}^{2}
\end{gathered}
$$

## AMACP 706-191

prom the information in the preceding table,

$$
\begin{aligned}
\Sigma x_{1} & =10,3 y 2+12,278+\ldots=60,335 \\
\Sigma x_{2} & =20+34+2+\ldots=139 \\
\Sigma x_{1} x_{2} & =20(10,392)+34(12,278)+\ldots=1,411,620 \\
\Sigma x_{2}^{2} & =(20)^{2}+(34)^{2}+\ldots=3529 \\
N & =8
\end{aligned}
$$

Substituting these inses into the above equations give:

$$
\begin{aligned}
60,331 & =8 A+B(139) \\
1,411,620 & =A(139)+B(3529)
\end{aligned}
$$

Solving thes equations almultaneously for $A$ and $B$ jelds

$$
\begin{aligned}
& A=1840, B=326 \text { and } \\
& x_{1}=1840+326 x_{2}
\end{aligned}
$$

Thus the cost for an rquif ent with a volume of 30 is

$$
x_{1}=1340+326(30)=\$ 11,600
$$

Ari alternate method of solution, whict determines the value of the correlation coerificient $x$ before soiving for $A$ and $B$, does not require the starultaneous solution of two equations.

The gestelation cotificefent, $r$, for two variables is given by

$$
=n \frac{\Sigma x_{1} x_{2}-N x_{1} x_{2}}{N r_{x_{1}}{ }^{7} x_{2}}
$$

where
the grandard deviation. $\sigma_{x}$, of a number or amples; $N$, is

$$
\sigma_{x}=\sqrt{\frac{N\left(x^{2}-(\Sigma x)^{2}\right.}{N(N-1)}}
$$

the mean or average of the N sample points, X . is

$$
x=\frac{2 x}{N}
$$

Rote: the absolute value of the correlation coeffiolent will be somewhere betwes : and zaro. It han been fornd eppiricalis that an absolute value of r gemater than 0.7 will yield an aogptable zemult; $1 . e$. , the data points are egsentidily linear. If the dita poines actumily do lie on a straight isne, the ebsclute velue of $r$ will be 1 . A negative value for $r$ indisaten ine with a negative slope.

The values of $A$ and $B$ can now be calosiated by using the following equatiuns

$$
\begin{aligned}
& B=\frac{\sigma_{x_{1}}}{\sigma_{x_{2}}} \\
& A=X_{1}-B x_{2}
\end{aligned}
$$

For this example, the information from the table is substituted into the above expremsions to yield the following:

$$
\begin{aligned}
& \Sigma x_{1}=10,392+12,278+\ldots=60,335 \\
& \Sigma\left(x_{1}\right)^{2}=(10,392)^{2}+(12,278)^{2}+\ldots=605,554.500 \\
& x_{1}=\frac{60,335}{8}=7,542 \\
& \sigma_{x_{1}}=\sqrt{\frac{8(605,554,500)-(60,335)^{2}}{8(8-1)}=4,637} \\
& \Sigma x_{2}=20+34+2+\ldots=139 \\
& \Sigma\left(x_{2}\right)^{2}=(20)^{2}+(34)^{2}+(2)^{2}+\ldots=3529 \\
& x_{2}=\frac{139}{8}=17.4 \\
& \sigma x_{2}=\sqrt{\frac{8(3569)-(139)^{2}}{8(8-1)}=12.6} \\
& \Sigma=[(20)(10,396)+(34)(12,278)+\ldots .0]-8(7,542)(17.4) \\
& 8(4,637)(12.6) \\
& B=0.89 \\
& A=7542-326(17.4)=1840
\end{aligned}
$$

Therefore $x_{1}=1840+326 x_{2}$ and aa before, for an equipment with a volume of 30 ,

$$
x_{1}=1840+326(30)-\$ 11,600
$$

## AMCP 708-191

Detemine the standard error of estimate for the above data, and the 95 perm cent confidence intersal for the $x y z-2$ equipment.

The vertical scatter of the data pointa about the regreseion ine $X_{i}=1840+326 X_{2}$ is measured in terms of the standard error of estimatc, $S$ where

$$
s=\sigma_{x_{1}} \sqrt{1-r^{2}}
$$

It has been deteimined previousiy that
$\quad \sigma_{x_{1}}=4637, r=0.89$
therefore $S=4637 \quad \sqrt{1-(0.89)^{2}}=2130$

Note: Approximately 68 percent of the data peints lie within $\pm S$ of the regression line, and 95 percent lie within $\pm 2 S$. Therefore, if a graphical plot of the data points is made, the parallel lines at a vertical distance of 2130 from the regression line $X_{1}=1840+326 X_{2}$ sontain approximately 68 percent of the data points and the parallel lines at a vertical distance of 4260 from the regucsion line contain approximately 95 percent of the data points. As the sample size increases, the number of data points within $\pm S$ and $\pm 2 S$ would become closer to 68 percent and 95 percent, respectivels.

To calculate the confidence interval ios the cost of the $x y z-2$ equipment, the following equation is used:*

$$
x_{1}=t_{e} s \sqrt{1+\frac{1}{N}=\frac{\left(\hat{x}_{2}-x_{2}\right)^{2}}{(N-1)\left(\sigma_{x_{2}}\right)^{2}}}
$$

where
$t_{e}$ is a value obtained from the $t$ distribution tables
$\hat{x}_{2}$ is the ordirate of the regression line for which the confidence
interval is to be found

Other symbols are as in the previous example.

[^18]For the xys-2 equipment,

$$
\begin{aligned}
& x_{1}= 11,600 \\
& s= 2130 \\
& t_{0}=(0.025,6)=2.45 \text { (from "t" table for } 95 \text { percont confidence and } \\
& 8 \text { date points) } \\
& \hat{x}_{2}=30 \text { cubic rt } \\
& x_{2}=17.4 \\
& 0 x_{2}=12.6 \\
& N=8 \\
& \text { Whe 95-percent confidence interval is }
\end{aligned}
$$



- $11,600 * 5900$

Therefore, the astimated cost of the xyz-2 mulpment $14 \$ 12,600$, and $t^{2}$ sre is a 95 percent sonfidence that the cost will be somewhere between $\$ 17,500$ and 45,700 .

This ride range for the confidence interval is quite largc. However, the significant fact is that without an indication of the range of probable valusu, the decision-maker mould have no feelang for the accuracy of any predicted paramater. It is better, of course, to have a narrow range for the 95 -porcent ooni'fderce interval, bat this oan be aabieved only if afisitional supporting data are avallable.

### 3.11 Exptanner curves

There are several factora that can reduce the init cost of an equippenit as the total zumber of equipmente purchased is isoreased. Two ouch factors are the initial tooling cost, which can be apread out over a larger number of equipmente; and the cost of moterials, whish can be reduced for a quantity purchase.

Another factor that oan reduce the unit cont of an equipment (unrelated to the two factorn above) ia the leamins ourve, or experience ourve $y=a a^{b}$, where
$Y$ = cont to manufacture equipment $X$
a - coat to meniufacture equipment number 1
$x=$ equipment nuaber
$b$ - exponent of experienee-curve shope

## AMCP 706-191

Empirias data have ghom that the uxperiende ourve is approperiate for predictiag the costa of aircraft enginge and airframe end ceveral typen of electronic equipmenta. Normaily, the experience ourves are developed by the equipment menufacturer. The expesitenoe curve is based on the faot that as the quantity of equipmente beivg menuractured is doubled, the cost to manufacture each muccessive equipment is reduced by a nonstant peroentage. If cne eouipwent costs $\$ 1000$ to manufacture, the seoond equigment is following a 90 -percent learning ourve, and the eighth, sixteenth, and thirty-second equipment emoh oont 90-percent leas than the previous quantity.

Normaliy, the cost reduciion dencribed by the experience curve is due entirely to tine reduction in man-houra neoeseary to produce an equipment, through the natural proceiss of man learning his job better by repetition. There are, however, fully automated production ilnes with experience curves based on the fact that as the production line is operated, supervisors can develop improvements and chort-cuts in the prooese.

The mathematical method for fitting data to the experience curve $\mathbf{y}=a x^{b}$ is jrig-log least-squerts regression. Once the constints "a" and "b" have been found by using the regression teohnique, the unit oost of any equipaent can now be found. For example, suppose, " ${ }^{2}$, the cost of the ilrat equipment, is $\$ 20,000$, and the value of " 6 " $18-0.322^{*}$. The cost for the sixteenth equipment 1s given by

$$
y_{16}=(20,000)(16)^{-0.322}=\$ 8,200
$$

Tables have been developed by several Army agencies that can be used to reduce the 2 m , int of calculation for unit, average, and cumulative costs for any number of equipmente with any slope.

Another method that is usually gond approximation for detcymining the experience curve is the "eyeball" method, i.e., plotting the data pointe and then drewing a straight line through the spread of points with a straigint edge. Ortphs cally, the data points are plotted on log-log paper, and if the 2 elation $Y$ ax $x^{2}$ exists, then the data points will fall cssentialiy along a straight line. The alope of this experience curve can be found readily from any two pointa on the atraight line whose ordinates are separked by a factor of two (one equipment quantity dowble the other). Por example, if it is found frow the ourve the ninth equipmer: costs $\$ 500$ and the eighteenth equiperent costs $\$ 450$, then the clope of the experience curve is 90 percent. To establish the valups of "e" sind "b" (in the equation $x=a x^{b}$ ) from the graph, note that "a" represents the oont of the

[^19]firat equipant, and that "b" oan be netermined from the slope. The slope of the experience orrve and the exponent b axe ralated by the formula
$$
\$ \text { slope }=(2)^{b} \times 100 \%
$$
which foliow logioally from the obi rrvation that the cont of the firat equipwent (for $X=j$ ) is equal to " $a^{n}$ and, by definit:inn, the cost of the second equipment is equal to "an times the alope; therefore $2^{b}$ (for $X=2$ ) must be equal to the slope.

### 8.12 cest-bensinmity amalis's

### 3.12.1 Genaral

There are two main areas of usage in which cost-sensitivity analysie is used. Pirst, the individual cost sonstituents should be oheoked to determise how changes in them affect the total cost. For example, a 5 -percent ahange in the maintranace cost of an avionic aystem mey change the total lifetime oost of the aystem by 15 percent, while a 10 -percent change in the equipment cost ohangea the total lifetire cost by less than 1 percent. The implication here is that the cost analyst should concentrate on refining the maintenance-cost prediotion, whereas a relatively gross eatimate of the equipmant cout will be aufficient.

Secondiy, any essunptions thut mere made in the anciysia ahould te obeoked to determine how ahanges in the asamptions affeot the total cont. For example, if it was ansumed that the equipment would be operated for 100 hours per month, the total costs should be calculated for operating timen of may 75 and 125 houre per month to determine the effect of this anmmption on the overall cost. of course, if the total cost is sensitive to any ansumption, the resulte of the oensitivity analysis ahould be shown to the decision-maker with the range of the assumed value indicated.

### 3.12.2 Coat-Senaitivity-Anelyaiy Problen

The cont information given below for two alternative commeniontione ayatera is oseed on recresition andyale.

| Cost Cntegories | Totel System cont (1लyear ilfetime) |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} \text { Cominioution } \\ \text { Syatem } A \end{gathered}$ | $\begin{aligned} & \text { Commensoution } \\ & \text { syatem } 8 \end{aligned}$ |
| R\&D | \$ 10,000,000 | ( 12,000,000 |
| Equipment Acquialtion | 300,000,000 | 320,000,503 |
| Spares and Spare Perte | 14,000,000 | 8,000,000 |
| Initial Maintenanoe modilete: | 4,500,000 | 6,000,000 |
| Rutilsations | 500,000 | 800,000 |
| maintenteno | 160,000,00n | 120,000,000 |
| Annual Treining | :,000,000 | 900,000 |
| Annuel Peoplitien | 2,000,000 | 2,500,000 |

AMCP 708-191
The cout figures reprecent average (or expected) valuel, with some oteadard eryor of sitimate. On cost-ustimiting relationahip was developed for each antegorys therefore, the atandard erms: for each ontegory in the eame for aysten $A$ and $\mathrm{B}_{\text {, }}$ but the categorite will ceneraliy have different atandard errors. In other morth, the atanderd orrose are identical horizontaliy, but not necescarily varticaliy.

Cuastion is In which cost oatecory doen cost unourtainty have the greatent impact on the cost comparison, and how great is this impact?

Cuection 2: Ase the reculte censitive to the acsumption thet the ayiten will be in operation for 10 ymars?

## Anemers

## Ancmar to opegtion 1

The cost totals for each syotem are:
A) 492,000,000

Bi $4770,200,000$
A, then, is ostasibly more expenaive timn $E$. However, beoause of the exiatence of stencard errors, a cost-inveraing 3ay be posaible, so thet $y$, in faot, is the more expensive oysten.

Equipment Loguicition and Smintenacoce are the two blesent oatecories; betwen the they acsount for more than 90 percent of the total wyterin wout.

Aserme that if a cost-invernion exiets, it is tue either to Aequiaition os
 (in terme of money) that they are easentially conatants.

The aifferenow betreen eyaten costa ia $\{21,800,000$. Tiul if at least onehalf of $\$ 21,800,000$, or $\$ 10,900,000$ mere elmulteneously added to the wotcl ocot of B and mibtreoted from the totel oon of $A$, minvereion mould recult.

Now, the total cont for ayutan $\&$ an be grittion at

$$
000 t_{A}=32,000,000+\left(\Sigma_{A}+m_{A}\right)
$$

where
$H_{A}$ - Equipent Aoquisition Oont
$M_{n}$ - Minteneno Oost
She tetal noet for wyeisa 2 san the written an

$$
000 \varepsilon_{2}=30,200,000+\left(z_{3}+x_{3}\right)
$$

The probability that gyoten 8 costs more than system $A$ is given by

$$
\begin{aligned}
p\left(000 t_{B}>\alpha \infty t_{A}:\right. & =p\left[30,200,000+\left(z_{B}+\mu_{B}\right)>32,000,000+\left(z_{A}+M_{A}\right)\right] \\
& =p\left[\left(k_{B}+n_{B}\right)-\left(z_{A}+n_{A}\right)>i, 200,000\right]=p[2>1,800,000]
\end{aligned}
$$

sance the tenulated values of $\varepsilon_{A}, E_{B}, A_{A}$, and $X_{B}$ were obtained by refresaion techniques, these values ase the expeoted vaiues.

Thus if 2 to the randa variable

$$
2=\left(E_{B}+m_{B}\right)-\left(E_{A}+m_{A}\right)
$$

then the expectea value of $Z$ is given by

$$
\begin{aligned}
2=\left(\tilde{B}_{B}+\tilde{B}_{B}\right)-\left(E_{A}+n_{A}\right)- & (320,000,000+120,000,000)-[(300,000,000) \\
& +(160,000,000)]
\end{aligned}
$$

or $Z=-20,000,000$
Ideelly. the stancifd errors of estimate for $E_{A}, E_{B}, M_{A}$, and $M_{B}$ (and the other costa as we11; abould have been fumished. Since they have not, a "worat" case estimate is obtainec as follewe:

Ascume thet the percentage errory in $E$ and $X$ do not exceed some nominal velue, eav 10 percent; thus 10 percent $0: E_{A}-30,000,000$, and 10 percent of $I_{B}=32,000,000$. If these velues are ocnsidered to represent three standart errors, whioh almost guarantees that the error will be leas than 10 percent, then

$$
S_{Z_{h}}=10,000,000 \text { and } S_{z_{B}}=10,700,000
$$

However, froe the aesupption that the aase regreselion equation was used, ${ }^{\prime} \mathrm{I}_{\mathrm{A}}$ mast equal $S_{z_{B}}$. 0 thet if $S_{S_{A}}$ and $S_{E_{B}}$ are "avereged",

$$
s_{v_{A}}-\varepsilon_{\Sigma_{B}}=20,300,000
$$

siadiarly,

$$
s_{n_{A}}=s_{h_{b}}-4,7 \infty, 00
$$

Then $s_{2}-\sqrt{5_{z_{A}}^{2}+5_{8}^{2}+5_{x_{x}}^{2}+5_{x}^{2}}-\sqrt{\left[2(10.3)^{2}+2(4.7)^{2}\right] \times 10^{12}}$

$$
\begin{aligned}
& -\sqrt{256.36} \times 10^{6} \\
& =16.060 .000 \\
& 3.43
\end{aligned}
$$

## AMCP 706-191

The protion is ahow craphically below. The ourve reprecents the distribution of equipaent acquisition and maintenanse costis; $1 . e$. , the equipaent equisition asd masitenance cont ut ajptean in "expected" to be $20,000,000$ lens than the eqיipment aquisition and maintenance ous; of' syotem $A$, and the oiandard error of this distribution is $\$ 16,000,000$. The zor0 line reyreeente that point at which the equipment noquisition and manienance costs for $A$ and $B$ are equis. The \$1,800,000 line represents that poins at which the walal wyotem coste for $A$ and 8 w11l be equal.

 inversion) is given by

$$
\frac{n_{1}-\mu}{0}
$$

where $n_{1}$ is the value of interent on the normal density function
u it the mean of the function
o is the tandard deviation
substitatine the values free the extaric froblem into the abure equitione ylelina

$$
\frac{1,800,000-(-20,200,000)}{16,00,000}=1,30
$$






$$
3-82
$$

mendan error of 100 peionent, the oalcu.intions lead to the result that the


The answer to puestion 1 , that, is that uncertiluty in the preaictions of cquigmant wequiation and mantenano cout rave the greatest innact on the oont somparam; and if it is aesumed thet these predictiona may be off by apmah an 100 peroent, there is et:ill only a 33 -percent chance tint the wost or syetea B vill be bow than the ocet of mytum $A$.

## Ansurt tis cuation ?

 *ime-beed coeti, and eserm further thet they mre livenr with time (althouch any frnct: 7 otion than ingear could alwo ve handiac eadily with, for exampe, - emphionl oulution).

Then oosta rould be outegr-ized as follows:

| Opota | Sxitem A |  |
| :---: | :---: | :---: |
| Mxed Oonte | 8329,00n,000 | \$346,800,000 |
| Ancual Cost: (per yenr) | $26,300,000$ | 12,340,000 |

Por $y$ years, the cost of byoten m, therrione, will be

$$
\operatorname{cont}_{\mathrm{A}}=329,000,000+\cdot, 300,000 \mathrm{y}
$$

Sisilarly,

$$
\operatorname{cose}_{8}=346,80 c, 000+23,340,000 y
$$

Thus $\operatorname{cost}_{A} \leqslant \operatorname{cost}_{B}$ whe.

$$
\begin{gathered}
329,000,000+26,300,200 \div 546,800,000+12,340,000 \mathrm{y}, \\
\text { or when } 56-4.5 \text { yeart }
\end{gathered}
$$

The moner to Guation 2 , thes., is that the resilts for not anative to

 to ve in operation for lees "tian $4 . j$ yesre.

 vei: $n c$ te ersel

## cumpta 4 MASIC MATHEMATIEAL AMB STATISTKGL COMCEPTS*

### 4.1 INTRODUCTION

Basic mathematical and statistical concepts are reviewed in this chapter. Topics incluce algebraic principles and formalas, the various types of probability distributions, and procedures for statistical estimation.
4.1.1 Preliminary Definitions

Some of the principal terms used in this discuesion are defined as follows:
Random outcome. The value of an empiricri observation that cainot be predicted (lack of deterministic legularity) but has statisticel regularity in that the value has a relative frequency of occurresce in a series of independent observations of the phenomenon (the resuit of tosaing a die, the time-to-faliure of a device, etc.).

Trial. An action or experiment that yialds a random outcome (tossing a die, lffe-testing a device).

Indeperdent Trials. Trials of which the outcome of one hes no exfect on the outcome of others that follow.

Event. A set of outcomes. The event has occurred if one of the outcames of the set is observed on a trial. (If the event is an even number on the toss of a die, it nccurs if the number 2,4 , or 6 is observea.

Independent zvents. Sets of outcomes basei on independent trials.
Mutuaily Srcluzive Events. Two or more events that cannot occur simultaneously (odd and even numbers on one toss of ale).

### 4.1.2 Notation

The ollowing prooability notation afplies:
$P(E)=$ probability of event $E$, where $0 \leq P(E) x 1$
$P(E)=$ probability of event not $E^{n}=1-P(E)$
*Some of the material used in this chapter was develrped by ARINC Research Corporation for the U. S. Weather Bureau under Contract Cwb-11349. Reproduced by permission of tine J. S. Weather Bureau.

## AMCP 708.191

$$
\begin{aligned}
P\left(E_{1}+E_{2}\right)= & \text { probability of aventia } E_{1} \text { or } \mathrm{E}_{2} \text { ior beth if they are not } \\
& \text { mutualig exclusive) } \\
P\left(E_{1} E_{2}\right)= & \text { probability of soth events } E_{1} \text { and } E_{2}
\end{aligned}
$$

### 4.2 BEFIRTINAS OF PROMACLITI

### 4.2.1 Classical Def'nition

The classical definition of probebility is as follows:
If an experiment can result in $n$ different, equally likely and rautually exclusive outcomes, and if $r$ of these outcomas correapond to event $\mathrm{E}_{3}$ the probability of E , ceneted by $\mathrm{P}(\mathrm{E})$, in the ratio

$$
\begin{equation*}
P(E)=r / n \tag{1}
\end{equation*}
$$

Exarole: If a card is drom at random from a full deck, there are $n=52$ mutuaily exclusive and equally likely outcomes; $m=4$ of these are the evant of drawing a king. The proiability of drawing a king, from squation 1, is 4/52 m 1/13.

The clasaical ferinition of probability is one that involves an apriori evaluation and is useful only if all the possibie outcomes can se enumorated and are equaily likely and mutually exciusive. "Equally likely" san be described as the lack of any bias favoring one outione over another in a trial.

### 4.2.2 Relat ive-Frequency Definition

The relative-frequency definttion is as follow:

> The probability of an event is the limiting ratlo of the rumber of outcomes favorable to an event (r) to the number of. trials performed ( $n$ ) as the number or trials approaches infinity. If $n$ is large, the ratio r $/ n$ can be used to estimate the probability.

Example: In the iffe-testing of 100 devices, it wad observed that 15 fallures occurred before 20 hours. Tha estimated probsbility of fallure before 20 hours is therefore $15 / 100=0.15$. The relative-irezuency definition of probsijility requires a statiotical eatimation involving valid experiments and sufficient data to gield an estimate that is fairly stable.

## 

The following aigebraic principles and formulas are userul for applying the classical definition of probahility in those cases in which it is valid.

### 4.3.1 Two Basic Counting Princ:

The two baicic counting principles are as follows:
(1) If event $A$ can occur in " $a$ " ways, vent $B$ can occur in "b" ways, and both can occur together in " $c$ " ways, then $A$ or $B$ or both can occur in $(a+b-c)$ ways.

Example s: Spade or heart in one dram: $A$ apace, $8=$ heart. $=13, b=13, c=0$. A or $B$ in $13+13=$ 26 ways.

Example R: Spade or 200 in one draw: $A=$ space, $B=$ ace. $=13, b=4, c=1$. $A$ or $B$ in $13+4-1=$ 16 ways.
(2) If there are "a" ways of performing the first operation and "b" ways of performing the second operation, given that the first operation has occurred, there is a total of $a \times b$ possible ways for both operations.

Example a: Throwing an even number on a die and drawing an ace from e deck: $a=3, b=4$. Total number of ways $=3 \times 4=12$.

Example b: Drawing two spades from a deck of cards: $a=13, b=12$. Total number of possible ways $=13 \times 12=$ 156.

### 4.3.2 Permutations

A permutation is a particular arrangement of a collection of objects. The total number of permutations of $n$ different objects is

$$
\begin{align*}
P(n, n) & =n(n-1)(n-2) \ldots 3 \times 2 \times 1  \tag{2}\\
& =n!
\end{align*}
$$

The total number of permutations of $n$ object .n taken $k$ at a time is

$$
\begin{equation*}
P(n, x)=\frac{n!}{(n-x)!} \tag{3}
\end{equation*}
$$

The total number of permutations of $n$ objects; $k_{1}$ of which are nike, $k_{2}$
of which are alike, . . . k of which ere alike
$\left\{\sum^{r} x_{1}=n\right\}$ is $1=1$

$$
\begin{equation*}
k_{1}!k_{2} \frac{n!}{n} \cdot k_{r} \tag{4}
\end{equation*}
$$

(Note: 0: de defined as equal to 1.)

Bxempe a: For the letters $A B C D E$, there are 5: $=120$ permutations. There are $\frac{5 \text { 立 }}{5-3)!}=\infty$ permutations if three of the five letters are to be selected.

Exernie $b:$ In the word stocises, there is one $0\left(k_{1}=1\right)$, one $\mathrm{E}\left(\mathrm{k}_{2}-1\right)$, two $\mathrm{c} \cdot\left(k_{3}=2\right)$, and three $\mathrm{e} \cdot\left(\mathrm{k}_{4}-3\right)$. From Equation 4, the total number of penaiole permatations of all seven 2ettere in the word SUCCBes in

$$
\frac{7!}{1!1!2!3!}=420
$$

### 4.3.3 Combinations

- combination is the number of wang in whioh $k$ out of $n$ olfferent itome can be selected without ricgard to order, aymbolieed by

$$
\begin{equation*}
\binom{x_{n}}{x} \text { r } c_{x}^{n} \tag{5}
\end{equation*}
$$

## wher

$$
\left(\frac{n}{x}\right)=\frac{n!}{k!(n-k) T}
$$

Example: For a unit composed of five componentm, at least three must be successfui. How inany ways can the unit be succesaful?

## From Equintion 5,

$$
\begin{aligned}
\binom{5}{3}+\left(\frac{5}{4}\right)+\left(\frac{5}{5}\right) & =\frac{5!}{3!}+\frac{5!}{2!!!}+5!0! \\
& =10+5+1=16
\end{aligned}
$$

### 4.3.4 Besic Probebllity Lams

### 4.3.4.1 Addition Lay

If $A$ and $B$ are two mutually axclusive events, the protability that either of them will occur in acingle erial is the sum of their reanective probarilities; 25

$$
\begin{equation*}
P(A+B)=P(A)+P(B) \tag{6}
\end{equation*}
$$

In generel, if there ore $k$ mutually exciusite evente,

$$
\begin{equation*}
P\left(A_{1}+A_{2}+\cdots+A_{k}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{k}\right) \tag{i}
\end{equation*}
$$

It the two zent: $A$ and $B$ are not mutually exciusiw, the probebsisky that at least one of them wili occur is

$$
\begin{equation*}
P(A+B)-P(A)+P(B) \quad P(A B) \tag{6}
\end{equation*}
$$

## AMC 908191

For three non-mutucily exclualve events,

$$
\begin{equation*}
P(A+B+C)=P(A)+P(B)+P(C)-P(A S)-P(A C)-P(B C)+P(A B C) \tag{9}
\end{equation*}
$$

The mort general form of the addition lam ataras that the prebability of an event is the eum of its mutually excluaive forme. It it if asaumed that $A$ and $B$ are not matually exclusive but timet the iree vents ( $A$ and B), ( $A$ and not $B$ ), and (B and not A) are mutually exelueivt, thon

$$
\begin{equation*}
P(A+B)=P(A B)+P(A B)+P(\bar{A} B) \tag{10}
\end{equation*}
$$

### 4.3.4.2 Multiplication Law

If evente $A$ and $B$ are independent, the probability of the compound ovent $A$ exd $B$ is equal to the product of their reopective irobebilitien, or

$$
\begin{equation*}
P(A B)=P(A) P(B) \tag{11}
\end{equation*}
$$

The cxtension to more than tho event follows directiy.

### 4.3.4.3 Conditional Probability

If events $A$ and $B$ are not independent -- 1.e., the occurrence of one affeots the orourrence of the other -- then conditional probabilities exiet. The conditional probability of $A$ given that $B$ has occurred is denoted by $P(A \mid B)$; similarly, the probability of $B$ given that $A$ hes occurfed in denotad by $P(B \mid A)$. If evente $A$ and $B$ are not independent,

$$
\begin{equation*}
P(A B)=P(A) P(B \mid A)=F(B) P(A \mid B), \tag{12}
\end{equation*}
$$

which reduces to $P(A) P(B)$ if $A$ and $B$ are independent.
For three eventa,

$$
\begin{equation*}
P(A B C)=P(A) P(B \mid A) P(C \mid A B) \tag{13}
\end{equation*}
$$

Almo,

$$
\begin{align*}
& P(A \mid B)=\frac{P(A B)}{P(B)}  \tag{14}\\
& P(B \mid A)=P(A B)
\end{align*}
$$

## AMCP 706-181

Equetions 14 and 15 laed to a form of Rape' Thapres:

$$
\begin{equation*}
P(A \mid B)=\frac{B(A) P(B \mid A)}{Y(B)}=P(A) P(D \mid A)+P(B \mid A) Y(B \mid A) \tag{16}
\end{equation*}
$$

In this application, $P(A)$ and $P(X)$ are usualy anploy, probabilities of the ovents $A$ and not $A$. It is nocessary to modify $P(A)$ on the besis thet ovent $B$ hee ocourred in scm experiment whoee outocme is known to be influenoed by $A$, as reflected by the term $P(B \mid A)$ and $P(B \mid X)$.

Erepele: Aasum that a box of 100 outwardy indistinguiohable part: If ccipoeed an followe:

| Quallty | Mapuseoturer |  |  | Totals |
| :---: | :---: | :---: | :---: | :---: |
|  | A | B | c |  |
| 0000, 0 | 40 | 27 | 3 | 75 |
| Ben, © | 10 | 3 | 12 | 25 |
| Totale | 50 | 30 | 20 | 100 |

The followine proidbilities are based on the olessic definition

and on the probability lam aisounced move.
Cese 1: For a random eelection from the box, what is the frobability of:
(a) Dreming a pert manfactured by A? From Equation 1,

$$
P(A)=\frac{50}{100}-\frac{1}{2}
$$

(b) Draurinis a bed part?

$$
r(0)-\frac{25}{20}=\frac{1}{4}
$$

(c) Draming a pari samafactured by $C$ which is aino bed?

$$
P(A)-\frac{12}{12} \cdot 0.12
$$

(d) Drains a bed part monfactured by C. Eiven that o part mamfectured by C wae selected"

Counting indicates that there ase total of 20 posaible wase for aeleoting a C part, and in 12 casen bed parte will be colocted; honce, frem Equatioc 1 ,

$$
P(\mathrm{C} \mid c)=\frac{19}{20}=0.60
$$

Sinilarly, fron Equation 14,

$$
P(\overline{0} \mid c)-\frac{P(6 C)}{f(c)}-\frac{0.10}{0.20}=0.60
$$

Cese 2: If one part is drem rendiong, Equation 6 yielde

$$
P(A+B)=P(A)+P(B)=\frac{50}{100}+\frac{39}{100}=0.8-1-P(c)=1-\frac{20}{200}=0.8
$$

From Equation 8,

$$
P(A+\sigma)=P(A)+P(\bar{\sigma})-P(A D)=\frac{1}{2}+\frac{1}{4}-\frac{1}{10}=0.65
$$

Counting indicates that the number ( $A$ or $\sigma ;=50+25-10=6 \%$. The number of possible outcomes $=100$.

$$
P(A+\pi)=\frac{60}{100}=0.65
$$

Geep is If two drew are made, what io the probability that both itece seleoted are manfactured by $A$, for the followins:
(a) Drawing with replaoegent, indepemiont evente?

$$
\begin{aligned}
& -100 \times 50=100=14
\end{aligned}
$$

nr, from Equation 12,

$$
P\left(A_{1} L_{1}\right)-P\left(A_{1}\right) P\left(A_{2}\right)-1 / 2 \times 1 / 2 \cdot 1 / 4
$$

(b) Drowing eithout ropicoment, dopement evense?

$$
P\left(A, A_{2}\right) \cdot \frac{50 \times 19}{100 \times 99}=\frac{19}{18}
$$

or. from Equation 2 .

$$
F\left(A_{2} A_{2}\right)=P\left(A_{1}\right): P\left(A_{2} \mid A_{1}\right)=\frac{1}{2} \times \frac{49}{4}=\frac{40}{108}
$$

## ANCP 708-181

Gems: What in the probebility of celopting a pert protuoud by

(a) with repleocment:

$$
P\left(A_{1} W_{8}\right)=P\left(A_{1}\right) P\left(X_{2}\right)=1 / 2 \times 1 / 4-1 / 0=0.1250
$$

(b) withoat ropleoment:

$$
P\left(A_{1} \delta_{2}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{2}\right)
$$

 arm) or $A_{1} \mathbb{T}_{2}(A \operatorname{and} \delta$ on the flrut drw), then

$$
\begin{aligned}
& P\left(A_{1} \bar{\sigma}_{2}\right)=P\left(A_{1} O_{2}\right) P\left(a_{2} \mid A_{2} a_{1}\right)+P\left(A_{1} \bar{\sigma}_{2}\right) P\left(C_{2} \mid A_{1} \bar{D}_{1}\right) \\
& -\left(\frac{40}{10}\right) \times\left(\frac{20}{90}\right)+(100)\left(\frac{94}{9}\right) \\
& \text { - } 0.1253
\end{aligned}
$$

 two lonntical breat al follemet

| memraner A |  |
| :---: | :---: |
| 0 | 40 |
| 6 | 10 |
| rotal | 50 |


| Pot rer. $A(I)$ |  |
| :---: | :---: |
| 0 | 35 |
| 0 | 25 |
| sotal | 50 |

 probability that the part it manfactared by $A$ if it is fown to be poces

 bespe are isentionl and see part is medeniy ahoean. Frew bave moorma
 enleated, is

Emper, by Bayen Praorta, the pride paobelility that part
 Pentarior gropetility of 0.533 a the besis of the information that a good part wat ellocted fou the choer bor.

### 4.3.5 Arghicition of Probeblitity Vans to Relichility


 Blisties thmolve an not ecumbate but are funotion of tim, donoted by $t$.

an an oxaple, the gellability at time tiveraivalent to $=$ probebility of no fallars before t. If we have two equipmonte, and $b$, the probebility that both aperate is, by themitiplicaxion 1 (Iquation 2i) and under the moumption of incopendones,

$$
R_{a b}(t)=R_{d}(t) \cdot R_{b}(t)
$$

vier $R_{1}(t)$ is the reliebility at tine $t$ of equipent 1 .
 tim $t$ if either of $b$ or both are ogerable, then by the addtion lav (Equation 8), the syetem mability $s_{5}(t)$ it

$$
B_{n}(t)-n_{a}(t)+R_{b}(t)-M_{a b}(t)
$$

## 44 Facumatill

## 4.4 .1 Definition

The following definttion are pertinant to a decuesion of probability dintribaticne or denteles:

Eaga fariande. A quantsty; $x$; for which-Eor every real number C-there exiete $a$ probability that $x$ is lese than $r$ equal to $C$.
 fin:t or eoenteble mombr of dietinet velues. The ranto vansable "nomber of

 velve uithin an interval (equivilent se tamin on anf one of a mon-dervmproble






## AMCP 303-191

 is defined to be sero (e.g., the probability that a corioe will fall at pratis 98.000 . . . bours equale arso). Intervale rather thma pointe suot be cociniserve for the uspal contimoon cacus.

 some velve so dotermaned from the probability dowity froction.
 lomer isat is L , the ormalative dieteibation functica, $\mathrm{F}(\mathrm{X})$, io

$$
\begin{equation*}
y(x)=\sum_{x=1}^{x} f(x) \tag{17}
\end{equation*}
$$

For a oontimaces razion variable,

$$
\begin{equation*}
y(x)=\int_{0}^{x} f(x) d x \tag{18}
\end{equation*}
$$

## 4. A. 2 Propartias

If $x$ reprocesto the rendin variable, $\rightarrow f(x)$ wiproents the prokebility density function of $x$, then $f(x)$ han the roslortise propertiec:
(1) $f(x)=080^{+} .11 x$
(2) $\left\{\begin{array}{l}\sum_{x} f(x) \cdot 1 \ldots \text { if } x \text { is diserete* } \\ \int_{-\infty}^{e} f(x) d x=: \text { if } x \text { is continurueo }\end{array}\right.$

The probability that $x$-ill take on value in the interval ( $\mathrm{a}, \mathrm{y}$; is (190)

[^20]$$
+-10
$$

A:1 cualetiv dietribution functiont have the fol:owlriz properiles:
$y(x)=0$ for all $x$
$F(x)=0$ for $a 11 X<I_{\text {; }}$ the lower 12 itit of the range of $x$
$Y(x)=1$ for $11 x \geqslant 0$, the upper 1 init of the range of $x$
$P\left(x_{1}\right)=F\left(X_{2}\right)$ if $X_{1}$ " $X_{2}$; benoe, the cumative aiatribution function to nonotomically irereasing.

### 4.4.2.1 5xpenple

Fhe function $f(x)$, shron greph-


Sketch A


Sketch B
ically in Sketoh A and ataced el

$$
f(x)=\left\{\begin{array}{l}
1 / 2,==1 \\
i / 4, x=2 \\
i / 2, x=3 \\
i / 9, x=4 \\
0, \text { otherwise }
\end{array}\right.
$$

is diacrete probabil:ty dens: $\ddagger 5$
function, since $f(x)$ \& 0 fis all $x$ and $\sum_{x=1}^{4} f(x)=1.0$.

The sureilative function ia

$$
f(x)= \begin{cases}1 / 2, & x=1 \\ 3 / 4, & x=2 \\ 7 / 0, & x=3 \\ 1, & x=4\end{cases}
$$

Ehich, vion plotted, yielis she atepHanction shom in Sketch 3 .

The prodallity that $x$ is greater than 1 and les. than or equel to 3 is, from Equation 19a,
$\sum_{x^{2}}^{3} f(x)=f(2)+f(3)=1 / 4+18=3 / 8$,
or is equal to the probabil:ty that $x$ is lest than or equal to 3 alris tha probabilisty thet it is leat than ot


$$
F(3)-F(\vdots)-\because=- \pm-3,
$$


4.4.2.2 Example 3

The fupletion $f(x)$, shown graph1caliy in Sxetch $C$ and stated as

$$
f(x)= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

is a continuous probability density runction, since $x$ is a continuous variablm, and $f(x) \geqslant 0$ for all $x$, and

$$
\left.\int_{0}^{1} 2 x d x=x^{2}\right]_{0}^{1}=1
$$

The cumulative distribution is $F(X)=\int_{-\infty}^{X} I^{\prime}(x) d x=\int_{0}^{X} 2 x d x=\because^{2}$,
whish io nlotted in Sketch D.


The probabillty that $x$ is between any twe values in the range of $x$, say betwaen $a$ and $b$, 18 (frcin Equation 19b)

$$
\int_{a}^{h} f(x) d x=F(b)-P(a)
$$

Thus the probability that $x$ will be between 0.3 and 0.6 1s

Sket,ch D

$$
\begin{aligned}
\bar{z}: 0.3<x \leq 0.6) & =F(0.6-P(0.3) \\
& =(0.6)^{2}-(0.3)^{2} \\
& =0.27
\end{aligned}
$$

### 4.4.3.1 Leflnilione

A parameter is a constant that appears in the probability density function. I: is more generaliy derined as ocme meanurable chaxacteriatic of the poviation, airh as the mean or range.
 defined as followe:
(1) $\boldsymbol{r}^{\text {th }}$ moment nbout zero:

$$
\mu_{r}=\left\{\begin{array}{l}
\sum_{x} x^{\mathrm{P}} f(x), \text { for alesxete variables }  \tag{20a}\\
\int_{-\infty}^{\infty} x^{P^{f} f(x) d x, \text { for continuous vaciables }}
\end{array}\right.
$$

(2) $r^{\text {th }}$ momunt about point "ar:
$\mu_{r}^{\prime}=\left\{\begin{array}{l}\sum_{x^{\prime}}(x-a)^{r} f(x), \text { for aiacrets variabies } \\ \int_{-\infty}^{\infty}(x-a)^{r^{r}} f(x) d x ; \text { for contimous varieblen }\end{array}\right.$
The Eirat mopent about zero ( $\mu$ or $\mu$ ) is the gapy of the diatribution and sa a mesmure of central tendency. Mathenatically, the mean in the oxpected or avepage palue in the population; it is derined by the equation

$$
\mu=\left\{\begin{array}{l}
\sum_{x} x f(x), \text { for discrete variablen }  \tag{22ia}\\
\int_{-\infty}^{\infty} x f(x) d \ddot{a}, \text { ror contlinous variables }
\end{array}\right.
$$

The sacond mpanat ebout $\mu$ is called the raplenes, denoted usually by $\sigma^{2}$ ( $\mu_{2}^{\prime}$ in the previous notation). It is a measure of dimpersion about the man, Watherraticaliy, the varience is the expected or average value of the square of deviations of all possible values from the mean; it is derined by

$$
\sigma^{2}=\left\{\begin{array}{l}
\sum^{(x-\mu)^{2} f(x), \text { for dincrete variables }}  \tag{23a}\\
\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x, \text { for continuous variablee }
\end{array}\right.
$$

The greater the variance, the more variability there is in the distribution. The square root of the veriance is known as the stenderad deviation.

### 4.4.3.2 Relationghip of Parameters and Momente to Rellablilty Theory

To relate the above concepts to an important area of rellability $-=$ namely; the time-to-fallure density function and the reliability function -- let $t$ denote the random variatle time-tomfullure and $f(t)$ the time-to-railuse probability

## AMCP 700-191

denaity function, $(f(t)=0$ for $t<0)$. The rellability over a time intervel. $t$, denoted ty $R(t)$, is, by definition,
$R(t)=$ probability that fallure occure after $t$ (the reliability function)

- 1 minus probability that fallure occurs before \&
$=1$ minus $\int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime}\left(t^{\circ}\right.$ is simply a duramy variable of integrestion),
$=\int_{t}^{\infty} r(t) d t^{\circ}$
Since the derivative of the cumulative distribution function is the probability density function for continuous variates,

$$
f(x)=\frac{d p(x)}{d x},
$$

then

$$
f(t)=\frac{d F(t)}{d t}=\frac{d[1-R(t)]}{d t}=\frac{-d R(t)}{d t}
$$

The probability that an 1 tem will fail within the ilme interval $t_{1}$ te $t_{2}$ is equal to the probability that it will fail before $t_{2}$ minus the probability that 1t will fall before $t_{1}$; or, firom Equation 19k,

$$
\begin{aligned}
P\left[t_{1}<t \leqslant t_{2}\right] & =\int_{t_{1}}^{t_{2}} P(t) d t \\
& =F\left(t_{2}\right)-F\left(t_{1}\right) \\
& =\left[1-R\left(t_{2}\right)\right]-\left[1-R\left(t_{1}\right)\right] \\
& =R\left(t_{1}\right)-R\left(t_{2}\right)
\end{aligned}
$$

The mean time to failure 1 s , from Equation $22 b_{\text {, }}$.

$$
\mu=\int_{0}^{\infty} t f(t) d t
$$

which for most density functions is equivalent to

$$
\mu=\int_{0}^{\infty} R(t) d t
$$

The variance ss, from Equation 23b,

$$
\begin{equation*}
\sigma^{2}=\int_{0}^{\infty}(t-\mu)^{2} f(t) d t \tag{25}
\end{equation*}
$$

For mellability problems, the following definitions are friportant:
Mean ilfe. The first moment of a time-to-failure density function -- 1.e., the avorage (in the sense of arithmetic mean) time that an item will iunction fatiafactorily before fallure.
 repainable items.

Neen rime patuen failusen (hfEP). The term often used for the meen life of repairable items.
(Wote: The reliability for a time pariod equal to the mean life varies with the type of fallure distribution; e.g., the reliability at the raen life of a normal fallure-time distribution is 0.5 , but it is 0.37 for the exponential distribution.)

Median Life. The time interval for which there is a 0.50 reliability (e.g., 50 percent of items that have been life-tetted would be expectad to fail before the median life and the other 50 percent rould be expected to fail after the median life).

Pailure Rate. The rute at which failures occur per unit time in the interval $t$ to $t+h$, defined by

$$
\begin{equation*}
\lambda(t ; h)=\frac{R(t)-R(t+h)}{\operatorname{Ri}(t)} \tag{26}
\end{equation*}
$$

(Note: The term "failure rate" can be coll ving becsuse it is used in parious ways. It sometimes reprecents the expected pioportion of failures in an interval, provided all failures are instentily replaced -- especiaily in connection with the expangntial distidbution, which ia discussed in a subsequent saction. Sometimes the term is used to mean the conditional probailits of failure during an interval, given survival at the begiming of the interval, in which case the divisor $h$ in the above definition is omitted. In mddition, the tem is often used to algnify the instantaneous failiare rate ur huzand rato as defined below.)

Hazard fate. The instantaneous fallure rate, dofined as follows:

$$
\begin{align*}
z(t) & =\lim _{h \rightarrow 0} \lambda(t ; h) \\
& =\frac{-d \log R(t)}{d t} \\
& =\frac{f(t)}{h(t)} \tag{27}
\end{align*}
$$

Note that $R(t)$ can bewn to equal to the following expression:

$$
\begin{equation*}
n(t)=e^{-} \int_{0}^{t} z(t) d t \tag{28}
\end{equation*}
$$

## AMCP 706-181

### 4.4.4 Diacrate Probecillity Distributions

### 4.4.4.3 Hpargecsetric Distribution

The requirements of the hypergeometric diatribuilion are a follows:
(1) There are only two ponalble outeomes me 0.n.; oucome or fallure, defective or not defcotive.
(2) There is a finite population sise.
(3) Seripling ie performed without replacoment (depondent triate).

Assum that a somple of $n$ iceme is drem from a population of sive $X$ that contalins ip auccesces (an integer) and $x(1-p)$ - Mq failures (an integer). The hypergeceetric probebility density sunction gives the probebility of obtainius $x$ fallures and ( $n-x$ ) successes in the sample. It is experesend as foliowa:

$$
\begin{equation*}
f(x)=\frac{\binom{n p}{x}\binom{n q}{n=x}}{\binom{n}{n}}, \quad x=0,1, \ldots, n \tag{29}
\end{equation*}
$$

The cimulative distribution is

$$
\begin{equation*}
P(x)=\sum_{k=0}^{n} \frac{\binom{n v}{k}}{\binom{\mathrm{Na}}{n=k}}\binom{n}{n}, \quad x=0,1, \ldots, n \tag{30}
\end{equation*}
$$

The mean is np, ain the variance is npa ( FR ) .
If $I$ is large, so that the ratio $n / M$ is mall (eay of $<.05$ ), Ayjerytometric probabilitive can be closely eqproxirated by the bincolal prebabillty diatifibution, diecussed below.

Eremple: $\omega$ ts of 30 1teme each have experienoed ar. avorafe portion defective of 20 pefoent, or 6 defectives thus, $u_{p}=(30)(0.20)-6, ~ \% q=(30)(0.80)=24$. If 5 itens ire sampled from a los, wht in the probability of getting (a) exeatly 2 defeotives, (b) 2 or fewor defeotivenf, and ( $n$ ) mere than 2 defectives?
(a) Exactly two defectives:

From Equation 29,

(b) Two or fomer defectives:

P [2 or leas defectivas) - F(2); from Equation 30,

$$
\begin{aligned}
P(2) & =\sum_{k=0}^{2} \frac{\binom{6}{1}\binom{24}{5}}{\binom{23}{5}}-\frac{\binom{24}{5}}{\binom{30}{5}}+\frac{\binom{6}{3}\binom{34}{4}}{\binom{30}{5}}+\frac{\binom{6}{2}\binom{24}{3}}{\binom{30}{5}} \\
& =0.298+0.447+0.213 \\
& =0.958
\end{aligned}
$$

(c) Now than two defnctives:

P [more then ? defectives] = 1-p [2 or leas defe:tive] $=1-P(2)=1-0.958=0.048$
4.4.4.2 Binamial Diatribution

The smquiremente of the bincialel dietsitition are follows:
(1) There are only two poseible outcomes, succese or fullure.
(2) The probability of aech outcose is constant for all trials.
(3) The trials are independent (equivalent to ampling with replecement).

For $n$ triale with corstant probability $p$ for success and (l-p) for fallurt, the probebility danity function for obtaining $x$ succesmes is

$$
\begin{equation*}
f(x)=\binom{n}{x}_{p} x(1-p)^{n-x}, x=0,1,2, \ldots, n \tag{31}
\end{equation*}
$$

and the probability of $x$ or fewer fallurea is given by the cumulative dietribution function

$$
\begin{equation*}
P(x)=\sum_{k=0}^{x}\binom{n}{k}_{0} x(1-p)^{n-x}, x-0,1,2, \ldots, n \tag{32}
\end{equation*}
$$

whert

$$
\begin{aligned}
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& k!=k(k-3)(-2) \ldots(3)(2)(i) \\
& 0!=1
\end{aligned}
$$

The man number or fallures if nip, and the veriance is no(1-y).

## ANCP 706-181

Fireale: Aeaum that past experionces isaicaten that
parte prodacod from a contimusue production procese yiold
3 peroent cofective. In a smaion sexple of 30 parta ( 30
triala), what is the probedility that 2 or somur dofoctives
vill bo found
The foilowing information is avallable:

$$
\begin{aligned}
& \text { Probabilities: Probability of aucceas }=9=1-p=0.95 \\
& \text { Probsbllity of rallure - } D=0.05 \\
& \text { seaple aise, } n \text {, is } 30 \\
& \text { Zynoe, from Equation 32, } \\
& P[x \leq 2]=P[x-0,1 \text {, or 2] }=P(2) \\
& -\sum_{k=0}^{2}\binom{n}{k} D^{k} Q^{n-k} \\
& =0.391!(0.05)^{0}(0.95)^{30}+\frac{301}{1!29!}\left(0.0 .1^{1}(0.55)^{29}\right. \\
& +\frac{391}{2!28!}(0.05)^{2}(0.95)^{28} \\
& -0.812
\end{aligned}
$$

### 4.4.4.3 Polation Distribution

The Poiseon dietribution can be ueed as an epprorimction of the hingaial diatribution or at the distribution of muber of independent occurrences in a contimule, guch es tive, length, of volun.

For an eppraximation of che bincalal, the cordition arei
(1) The blnomiel lam applies.
(2) The scaple fise, $n$, if large; and treprobability of fallure, $p$, is eanll. A practical rule of trant is $p \leqslant 0.10 \mathrm{ard} \mathrm{mp} 10$.
se probedility density function is

$$
\begin{equation*}
r(x)-\frac{e^{-n p}(x)^{x}}{2}(x: 0,0>0, n>0) \tag{33}
\end{equation*}
$$

The parmeter no mpresente the empeted or average number of filiuret in $n$ trials.
emaninies hasun that e semple of 25 itmu is selected fram ander lot in mich 10 percent of the 1 terac are cofoetiv. What is the probubility of two defectiven in the remple?

From the Foleson mproxinaticn io the bincmial,

$$
f(2)=\frac{-(25)(0.10)}{\left.\frac{i}{2!}(25)(0.10)\right)^{2}}=0.2565
$$

The binomial probability is

$$
f(2)=\binom{2 \pi}{2}(0.10)^{2}(0.90)^{23}=0.2659
$$

If the Foisecon in molopec at the distribution of the number of independent oocurroncse in a sontipurs, such an time, length, or volum, the conditions are:
(1) The nubbr of expected occurrencec (any axccesses) per civen ergent of the continum (e.c., an interval of time) is a cmatant.
(2) The number of ocourronces produced in any subeegent is independent of the mumber of ocourronces in any other subsegent.
(3) No meining can be acribed to the gryber of non-occurrences; e.c., the number of telephooe calle not mede durirs a day, or the number of mon-doffect in a sheet of ateel, can- it be eraluated.

If E is the expected muber of occurrences per civen megent of the continuum, the probability denality runction is

$$
\begin{equation*}
f(x)=\frac{e^{-3} x^{x}}{x!} \tag{34}
\end{equation*}
$$

Both the man and the varlance are equal to m ;
Hxamio: Auever that an item oisi experience an arerayort faliuree per hour if en fallure is inatenty repelred ur repleced. If in genired to find the probability tinat g falluwe will xecur if enis item is 1ise-tested for Ehours and fallurea are rapelred or replaced ath idmentical icema.

If 2 is the average number of callures for on hour, then : - At io the average mimbet of raliume for 2 hours. hase, if $x$ :-preeenta the muber or fallure (occurrences), from zquation 3t:

$$
f(x)=\frac{e^{-\lambda t}(\lambda t)^{x}}{x!}, x=0,1,2, \ldots
$$

ANCP 706-19:
 or

$$
I(x)-\frac{e^{-n \lambda t}(n \lambda t)^{2}}{x}, x=0,2,2, \ldots
$$

 $10(0.001)(50)=0.5$. The probablility of obeproine tuo faliurse it

$$
r(2)=\frac{-0.5(0.5)^{2}}{2!}=0.076
$$

### 4.4.5 Contlonous Diatributions

### 4.4.5.2 Epounatial Eistribution

The prebebility danaity of the exponeatici fietelbation is civen of

$$
f(t) \begin{cases}=\frac{1}{e^{-t /}}, & t a 0,0>0  \tag{35a}\\ =\lambda e^{-\lambda t}, & \lambda=1 / 0\end{cases}
$$

where
men - 0
Varimen $=\theta^{2}$
The exponential aiptributica is primerily uned an formia for uniting
 Tre latter une 10 a alrect copeequence of asevaing that the probability of failure in the interval $t$ to $t+h$, given marrival to $t$, is a function caly of $h$, the length of the interyal, and is independent of the age of the produet, $t$. Thia, in turn, implion that if a covice pee not failed arter som period of operation, it is as 5000 ae new, wich is equivalent to the statement that the makard rate of the exporential is a cometant that equale the reciprosel of the meen lift, usuanis denoted by $\lambda$.

The nilleblilty naretion le

$$
\begin{align*}
n(t) & =\int_{t}^{\infty} f(t) d t \\
& =e^{-t i j} \\
& =e^{-\lambda t} \tag{36}
\end{align*}
$$

At the meen life, 0 , the rellebility is

$$
h(t=\theta)=e^{-1 / \theta}=e^{-1}=0.368
$$

alvan the relisbillty gwer a tive interval, the man ilfe can be found from the equotion

$$
\begin{equation*}
\theta=\frac{-t}{10_{0}} x(t) \tag{37}
\end{equation*}
$$

 a ohort teble of the expopential is civen in Apperilx c.








$$
4-\frac{2 i}{}
$$

## ANCP 709-181

 hesed rate (or the coulitimal probability $x$ faliure in mintirpel, givas survival st the begipning of the interval) it indeperiont of the aoomniatiod 1ife.



 that produce failures rentomy in tim moonding to the oponomtal fallure itio.

 regardless of the faliare pattern ue injivianal parte. This otate oecurs as a realt of tre sixtix of parts of 11fterent age mon faciod elomente in the eym.




 poneration" parte begin to ege. true, over a period of time, tho syoum hatard

 age. THun, over aperiod of tive, themptin mand rete oscillatep, but this
 hasard rate.

- third iumtipleation for aeoring the exponentios diskrimetion is that the
 interval of time for which the tree hacard rate is faiply acostant. for oxumie,
 mytem in sobuispd), emmetion of an exponential for the period from 0 to 250 roure Fill give menonable epproxtmation.


Thate argimate motrithstending, indiacrininate uat of the exponential (or imenarrasimete of gry diatribation, for thet matter) can lead only to consuation and inoorrretnees. It in tharsforw obligatory on the part of the aneljat to relicate the une of ary particular distribution function. arsediy spaking, there ate two appenohoe to validation: (1) Historical -- 1.e., expalimition or the patt performace, where avallable; of tho item; (2) statiatical -- 1.e.,


### 4.4.5.2 Ontend platribution

Tze prombility cmalify of the two-parmiter Weibull distribution is given by

$$
\begin{equation*}
f(c)=\frac{1}{a} t^{p-1} e^{t / 6} \tag{38}
\end{equation*}
$$

thesp

$$
\begin{gathered}
\operatorname{man}-a^{2 / p} r\left(\frac{1}{6}+2\right) \\
V=-\operatorname{sen}=a^{(2 / \beta+1)}\left[r(2 / 8+1)-r^{2}(1 / 6+1)\right]
\end{gathered}
$$

## Charncteriatice

Tre flexdbility of this domaits is one of ite desirede characteristics. a is a seeie parmoter and 0 is a shape parmetar. When $B$ - 1 , this distribution raduces tc the exposential.

## Rellability Applications

3te Walball distribution is recoivins ride application as tre fallure pattern of omicontuator derioes and mehenical dovicest, and because of ita flexibility, it is aleo being umed to deeoribe f-iflure pattoma af the unit and equipment jevela. The hasart rete is constant men $\theta=1$, is an tneroaning function of tim mina $\beta>1$, and 1 a decreasing function men $\beta<1$.

### 4.4.5.3 ganen Dictribution

The probebility fonality of the geme distrioution is given oy

$$
r(t)=\frac{e^{-t / 0} t^{a-1}}{(a-1): b^{*}}, t a 0, \pm \pm 0, \pm \pm 0
$$

whe


## AMCP 723-is1

## Characteristics

The critical parsajeter is " $a{ }^{n}$, whith controis the shape of the curve; "b" is a scalc parametar that detormines the sbeciase ecale (1.e., ohmeging $b$ mesely narrows or bromens tim curve). Wren a is equal to 1 , the distribution reduces in the exponantial.

## Reliabiity Applications

The gemma diatribution is importent in reilability for two reasoss. Firet, it is an extrameis flexible distribution and can tharefore be used to fit the fuilure pattems of tidman in their varicus atages of development. Whon $2=1$, the hagard rate is zonstant. It increasm with itme when a is mreater than ose and decreases with time whan a is less than one.

The second reesor: is that the estinated mean life of the commonly uses axponential distilbution has a garma density, which can be used to make probability statements for eatimatey axa teats of the mean iife.

### 4.4.5.4 Hormal Distribution

The probability density of the normal diatribution is given by"

$$
\begin{equation*}
f(t)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-1 / 2\left(\frac{(t-x)}{\sigma}\right)^{2},-\infty<t<\infty} \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { Mean }=\mu \\
& \text { Vartance }=\sigma^{2}
\end{aligned}
$$

Characterisitics
The normal is one of the most widely used continuous densities. The denaity funciion is a symmetrical bell-shaped curva, as shown on the left. The cumulative function is not directly integrable, but tables of the normal cumulative
 distribution with mean of zero and a variance of one (called the stendard or normalized form) are widely avallable. These tables can be used for any normal distribution by transferring the original $t$ variable to a new variable, $y$, ry the equation

$$
\begin{equation*}
y=\frac{t-\mu}{\sigma} \tag{41}
\end{equation*}
$$

[^21]$$
4-24
$$

The variable $y$ ic nomaeliy distributed with a mean of zero and a variance of one. Thas, to find the probebility that $t$ is luca than asy, $c$, one can usa the tables
 tebles. A comensed table of the standard romel is given in Appendix C . Under appropriste conditions the norwal distribution can be used to approxomato the binceila? and Poifsut probability law (see any stanaard statisticai text).

Nxample: Assume $4=100$ and $0=5$. It is deslued to ind the probibility of ortaining a velue between 95 and 110 on a single trial.

Lat

$$
\begin{aligned}
& r_{1}=\frac{95-100}{5}=-1 \\
& y_{2}=\frac{110-100}{5}=2
\end{aligned}
$$

Then

$$
\begin{aligned}
p[95<t<110] & =p[-1<y<2] \\
& =F(2)-P(-1) \\
& =0.977-0.159 \\
& =0.818
\end{aligned}
$$

## Reliability Applicaitions

Frequently, the normal distribution applies to items in which the failure occurs as a result of some wear-out phenomenon, aince the hazard rate of the normal distribution increases with time, in a manner consistent with a wear-cut process. Since the normal diatribution implies both negative and positive values, it should not be used unless one of the following three conditions is met:
(1) $\mu / \sigma \& 3$ (thia condition establishes that the probability of a negative failure time is small enough to ignore)
(2) all negative times observed as zero-hour fallures are the reault of wear-out during prodiction testing, chenkouts, installations, etc.

## MASCP 70.-181

(3) A trunoated normal distribution is amployed that Aletributes the probability area from -e to 0 over the poaltive range 0 to $\omega_{\text {. }}$ The diatribution's density is

$$
f(t)=\left\{\begin{array}{l}
0, \text { for } t<0  \tag{42}\\
\frac{-1}{a} \frac{1}{d} e^{-1 / 2}\left(\frac{t-\mu}{\sigma}\right)^{2}, \text { for } t>0
\end{array}\right.
$$

where

$$
a=j_{-\infty}^{0} \frac{1}{\sigma \sqrt{2 \pi}} e^{-1 / 2}\left(\frac{t-\mu}{\sigma}\right)^{2}
$$

A onaracteristic of the normal diatribution is that the moan $11 f$ and median lift are each equal to the time interval for which the reliability is 0.50 .

Example: Rosume that an iten wit. a normal time-tofailure distribution has a mean life of 300 hours and a standard deviatic: of 40 houre $(\mu=300>30=120)$. What 18 the probability that this item will operate at least 250 hours without failings?

$$
\begin{aligned}
R(250) & =1-F(250) \\
& =1-\int_{-\infty}^{250} \frac{1}{40 \sqrt{2 \pi}} e^{-1 / 2\left(\frac{t}{20}\right)^{2}} d t \\
\text { If } y & =\frac{t-300}{40}, \text { the } 11 \text { mit } x=250 \text { traneforme to } \\
y & =\frac{250-300}{40}=-1.25
\end{aligned}
$$

and

$$
R(t=250)=R(y=-1.25)=1-\int_{-\infty}^{-1.25} \frac{1}{J L^{2}}-e^{-y^{2} / 2 d y}
$$

- $1-0.106$
$=0.894$

The probatility denaity of tize log-normal distribution is given by

$$
\begin{equation*}
f(t)=\frac{1}{\omega t+c^{2}} e^{-1 / 2}\left(\frac{\log t-y}{\omega}\right)^{2} t, 0>n_{0} \tag{43}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { Mean }=e^{\gamma}+\omega^{2 / 2} \\
& \text { Median }=e^{\gamma} ; \text { log (median) }=\gamma \\
& \text { Variance } m e^{2 \gamma+\infty^{2}\left(e^{\omega^{2}}-1\right)}
\end{aligned}
$$

## Characteristics

If the logarithm of a variable is normally distributed, the variable has a log-normal provability distribution. The probability denaity function is positively gkewed, a large variance being associated with much skemess. Three lognomal distributions with identical means but different variances are plotted at the left.


## Reilabllity Applications

The hazard iate of the log-normal increases with tiue unitil the mode (most likely fallure time) is reached (the time correaponding tc the maximum ordinate of the density functioni, after which it decreases. The median life is the more convenient and usual measure of central tendency aince -unlike the mean -- it is independent of the variance.

The use of the loy-normal distribution has been found to reflect adequately the failu pattern of many semiconductor devices and is also often appropriate for system or equipment time-to-repair distributions.

### 4.4.5.6 Other Distributions

There are many other important probability dibtributions that have not been discussed. Such distributions as the $x^{2}$ (chi square) and the $t$ are often used

$$
4-27
$$

## AMCP 706-191

 seliability and maintainability azalysis are diccuesid in the followir, "eation.

## 

This section reotew funjortant etatistical ampects of the evaluatien of tests conducted to make reilability and maintalnability inftrences abvat a poynulation of items through eistimation prooedures, The purpone of estimation is to describe pertinent characturistio abcut a population through analyisis of daine 0.s samples. The two matur approachem to estiantion ase as foilows:

Nomprametric entimetag, those which ure made without manuption of ay particular form for the probmbility dintribution.

Rurametric estimates, those which are based on a known or asumed distribution of the population characteristic of intervat. The conatants in the equation shat describe the probahility distribution are called paraminis.

As an example of these two appreaches, suppose it ie dicired to entimate the prodability that an 1 tem will aurvive for 50 howse. Twenty sumple itmes are tested unifil they ail fail. For the parmetric eatimate of the 50-hour urvival probasility, $\mathrm{R}(50)$, if az exponential distribution is manued, $\mathrm{R}(50)$ cas be obtained from the expression $-50 \hat{\theta}$, where $\hat{\theta}$ is the entimate of the mean time to failure based on an exponential distribution of failure fides. -ar the nonparsuetric estimate, the satimate of $\mathrm{F}(50)$ is simply the proporiz of the sample that survived 50 hours.
senerally, nomparametric estimates are not as efficient a parmetric estimates, since the former require greator sample sizes to achieve the same preciaion as the latter. On the other hand, since ro assumption about the popuration dietribution is made for nomparametric teatw, errome ariaing from incormect assunptions are not encountered.

The three common types of estimates are:
(1) Point estimate -- a single-velue astimate of a parameter or chareoteriatic
(2) Interval estimate -- an estimate of an interval that is beliered to contain the true value of the parameter or characteriatic
(3) Distrybution astimate -- an estimate of the probability disimbution of a characteriat*e

The most common type of point eatimate is the maximurilikelinood entinate 1.0., the value that has the maximum probability of producing the obsorved emple results. A confidence-interval entimate, the mont common type of intervel estimate, is one for which them is a known degree of confidence (in a probability
gense) that the tive velue of the unlonown parmater or charactaristic lies within a computed inforval. Whonever posaible, a confldenoe-interval estimate wheuld be elven aleng with the point estimate, for then the degree of precision in the point eatinate can be assouced. For exmple, mesum that a 100 -hour MiF is desired. sarples of two Aifforent dongens are tosted and the results are as follow:


Althouch the point estimate for Itici B is above the 100 -hour sequirement, it In seen that the preaiaion of toe eatimate an determined from the length of the cosridence interval is poor is comparison with that of Item $A$. In this cace, since it in more ourtaln that Itrai $A$ will be slose to or exceed the requirement then it is that Item B will, the formar may bo chomen. If only the point estimates were considered, the revkme decision probebly would be made.

Twe atopa ase eporaily involvad in making a diatribuition estimate: (1) hypotheaseing or detormaning tbrough data anajysis the form of the distribution, and (2) makins point astiratas of appropriate parmeters that will completely describe the distribution.

Sections 4.5.1 and 4.5.2 summerize varioun types of estimation procedures. The soneral approach for analyzing test data for estimation purposes consicts of the following stepa:

- State objectives for test data analysin
- Dettraine appropriate forms of atatiatioal eatimaten to meet objectives
- Perform any necessary preliminary anaiyses auch as analysis of the distributional form
- Determine if paramotric or ncrparametric procedures are to re used
- Afply eppropriate procudures or equations to obtaln estimates
- Note cnusual data results and set up test plan for confirming auy new nypothesea
- Report on maulte ompletely, describing test desiga, data collection, ram date, and deta anelyois
4.5.1 Monparemetric Estimation

A sumary of variou nomparametric eatimates is presented in this section.

## AMCP 70\%-191

### 4.5.1.1 Point anc Intervel Eatimates of Rellobility or Manceimbillty

The simplest eatimate of reliakilicy for a tim interval ( $t$ ), denoted by $R(t)$, is to calculase the proportion of iteme that ourvive over that time intersval. Thus if $n$ itams are put on tast, and feilures ocour before time $t$,

$$
\begin{equation*}
N(t)=\frac{n-t}{n} \tag{4n}
\end{equation*}
$$

Siailariy, the probebility of ocmpletins a apeoisicd maintonapoe acticn by time $t 10$

$$
\begin{equation*}
\mathfrak{M}(t)=\frac{r}{n} \tag{45}
\end{equation*}
$$

where $r$ is the number of auch sction completed by time $t$ out of a total of $n$ repair actions.

These equatictic are for the oase of no withdraval of itme (oenesrehip) during the tast.

Conetruction of a confidenoe interval about $\hat{R}(t)$ or $\hat{f}(t)$ in beeed on the fact that these estimates sorrospond to a bincmial paremeter. The equations for confidence linita are an follows:

Lower (1-a)及 Limit*

$$
\begin{equation*}
\hat{R}_{L, a}=\left[\frac{1}{1+\frac{1}{n-f}{ }_{a}(2 t+2,2 n-2 t)}\right] \tag{46}
\end{equation*}
$$

where
$p_{a}(2 f+2,2 n-2 f)$ is the upper of point of the $y$ distribution with $3+2$, and $2 n-28$ degrees of freedom. A cocdensed eet of $y$ values is piesented in appendix $C$.
opper (1-a)\% Linit

$$
\begin{equation*}
\hat{R}_{0,1-a}=\frac{1}{1+\frac{P_{n}}{n+1}-F_{a}\left(\ln ^{n}-21+2,2 T+2\right)} \tag{47}
\end{equation*}
$$

Por a two-aided (1-a)及 limit, the interval is

$$
\begin{equation*}
\left(\hat{R}_{L, a / 2}, \hat{R}_{0,1}-a / 2\right) \tag{+8}
\end{equation*}
$$

[^22]$$
4-30
$$
 atom morisental adis in the pointmazimate ralue, e.g., I or M . 8tarting at this cetimate and proceading westionily to the appropriate ample-alice curve and then

 gitinate of $(60)$. (2) the 200 hours. Find (1) the point

(1) From Ifpution ht,
$$
\mathrm{f}(\infty)=\frac{50030}{50}=0.80
$$
(2) Now Equation 46,
$$
\hat{i}_{L}, 0.10^{=}=W\left[1+\frac{1}{10} y_{0.10}(22,80)\right]
$$

Ircm neble C-d,

$$
{ }^{5} 0.10(22,80)=1.5
$$

and

$$
\begin{aligned}
\hat{n}_{2,0.10} & =1 /\left[1+\frac{11}{40}(1.5)\right] \\
& =0.71
\end{aligned}
$$

In Piaure $0-1$, for $A=0.8$, the $90 \%$-lowen 21 ant ourve yields a value of approzarately 0.58 .
(3) From Equation 47,

$$
\begin{aligned}
& \hat{r}_{1,0.05}=1 /\left[1+\frac{1}{10} Y_{0.05}(22,80)\right]=0.684 \\
& \hat{r}_{0,0.95}=1 /\left[1+\frac{10}{41} \frac{1}{0.05(8,20)}\right]=0.888
\end{aligned}
$$

Prom P1sure $0-1$, tio epproximate gen interval is
$(0.69,0.68)$

## AMCP 700.181

 tiae date rather then failure-tive date ase beine askiced.

### 4.5.1.2 Relichility Fanctions

If point ostimates of $R(t)$ are mato for varlows valued of $t$, sulaticmahif of \& to tim, $t$, wioh is the niliability fration, on be tewicope. The sell-
 are uead for malntrigability.

## Ho Cenarantp

Two methode are pocaible mim no item are omporsd -s 1.e., no itmed ase withrean for rescoss other then faliure.
(1) Estimation at fixed pointe in tim, $t_{1}$

$$
\begin{equation*}
\hat{n}\left(t_{1}\right)=\frac{n-\sum_{j=1}^{i} t_{j}}{n}=\frac{n-P\left(t_{1}\right)}{n} \tag{49}
\end{equation*}
$$

where

$$
\begin{aligned}
n & =\text { number of item oricinalis on test } \\
f_{j} & =\text { number of raclures in the interval } t_{j-1}<t \in t_{j} \\
y\left(t_{1}\right) & =\text { number of fallures occurring on or before } t_{1}
\end{aligned}
$$

(2) Estivation of $\mathrm{f}(\mathrm{t})$ at fallure timet, $\mathrm{t}_{\mathrm{x}}$ :

$$
\begin{equation*}
n\left(t_{k}\right)=\frac{n-k+1}{n} \tag{50}
\end{equation*}
$$

viere

* is the number of influret veeurrine on or before the ondered
 $t_{1} \leq t_{2}=t_{3} \leqslant \ldots$

Thus if the fourth faliure out of 20 obeervationa oceure it 20 nours, $t_{t}=20$ and $f(20)=\frac{10-\frac{1}{0}+1}{10+i}-7 / 1$


## AMCP 106-19:

Erions In a tent of 50 1tene, falluren occurred at the followir cinpead bunvi $7,18,25,27,35,41,47,50,54,60$, oftals the obeorvo soliability surnetion at (1) every 10-hour perto ve to 60 hours, and (2) ecol. sallure time.
(1) obeerved rellabi:ity sucotione at 10 -hour intervale, froe Equation 49:

| $t_{1}$ | $t_{j}$ | $F\left(e_{1}\right)$ | $\cdots-9\left(t_{1}\right)$ | $R\left(t_{1}\right)=\frac{n-r\left(L_{1}\right)}{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 50 | 1.00 |
| 10 | 1 | 1 | 49 | 0.98 |
| 20 | 1 | 2 | 48 | 0.96 |
| 30 | 2 | 4 | 46 | 0.92 |
| 40 | 1 | 5 | 45 | 0.90 |
| 50 | 3 | 8 | 42 | 0.84 |
| 60 | 2 | 10 | 40 | 0.80 |

(2) Obeerved reliability functiona at ash fallure tiee; from Equation (cJ):

| $\underline{K}$ | $\underline{5}$ | $n-k+1$ | $n\left(t_{k}\right)-\frac{n-1}{n+1}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 51 | 1.00 |
| 1 | 7 | 50 | 0.980 |
| $?$ | 28 | 49 | $0.00_{1}$ |
| 3 | 25 | 48 | 0.941 |
| 4 | 27 | 47 | 0.922 |
| 5 | 35 | 46 | 0.902 |
| 6 | 41 | 45 | U. 582 |
| 7 | 47 | 44 | 0.863 |
| 8 | 50 | 43 | $0.8{ }^{6}$ |
| 9 | 54 | 42 | 0.824 |
| 10 | $\infty$ | 41 | 0.804 |

Fth wo sunctiont are plotted in Fligure -2 .

## Consorahys

If tarulnated or eer.met opestration oceur, and eoneorthif takes piace at frued timet, than

$$
\begin{equation*}
n\left(i_{1}\right)-\prod_{j=1}^{!} \frac{n_{i}-y_{i}}{i_{i}} \tag{51}
\end{equation*}
$$

where $n_{j}$ is the muber of iteme otartias the $j^{\text {th }}$ interveis $f_{j}$ is the miver of fallures in the intarval $\left(t_{j-1}, t_{j}\right)$. at $t_{j-1}$, the and of the ( $j-1$ ) ot ingerves,
 coneored iters at $t_{j-1}$ ).

If obeorvation as ternimeted or

finme 42

omporval at faciury, a casimet of the pelinosilty at the elio of the $i^{\text {th }}$ felluse 10

$$
\begin{equation*}
A\left(x_{i}\right) \cdot \prod_{j=1}^{2} \frac{n_{j}}{n_{j}+1} \tag{9e}
\end{equation*}
$$

Whan $n_{f}$ is the mamer of iteme starte ing the $j$ th interval. If un thom and fallure oocurs at givan tien, th minereter boomet $n_{j}-I_{j}+1$, were $I_{f}$ is the moner of fallure ooenrobst st the $j$ th fallure tiv.

For terminited or vencond Itwa
 val betamen fatlures,

$$
\begin{equation*}
\hat{H}\left(t_{i}\right)=\prod_{j=1}^{1} \frac{n_{1}-n_{1} / 2}{n_{1}-n_{1} / 2+1} \tag{53}
\end{equation*}
$$

vita
(1) the muber of withiremale during the $i^{\text {th }}$ tim int:rval

 poure. Calculate the milability ranction ot ten-hour Intervais.

The rellowits raluet are cerfred from Equation ;h;

| 4 | Inearral (houre) | ${ }^{5}$ | * | $\xrightarrow{n}$ | $\frac{i_{1}-r_{1}}{r_{1}}$ | 1 | $\pm$ | $\underline{N\left(z_{1}\right)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0310 | 1 | ) | 50 | 0.980 | : | 10 | 0.980 |
| 2 | ie 20 | 1 | 1 | 48 | 0.979 | 2 | 20 | 0.959 |
| 三 | $x-30$ | 2 | $i$ | 46 | 0.956 | 3 | 30 | 0.917 |
| \% | \$ 30 | 1 | 2 | 4 | $0.97 \%$ | * | 40 | 0.896 |
| 5 | $\cdots 5$ | 3 | $!$ | 41 | 0.967 | 5 | $\infty$ | 0.831 |
| 6 | S 60 | 2 | - | F | 0.976 | 6 | 60 | 0.706 |

$$
4-\text { fa }
$$

 -mileulity fintion it the falux timen.


| 1 | Interver | 5 |  | ${ }_{1}$ | $3-8+2$ | $\frac{n_{y}-n_{1} / 2}{n_{1}-n_{1} / n+1}$ | ${ }^{4}$ | $\underline{i}\left(t_{j}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.7 | 1 | 2 | 50 | 49 | 0.900 | 7 | 0.980 |
| 2 | 7820 | 1 | 0 | 47 | 47 | 0.975 | 18 | 0.959 |
| 3 | 18.85 | 1 | 3 | 4 | 4.5 | 0.978 | 25 | 0.938 |
| 4 | 25-7 | 1 | 0 | 42 | 42 | 0.977 | 27 | 0.916 |
| 5 | 87 $\times 15$ | 1 | 0 | 12 | 41 | 0.976 | 35 | 2.894 |
| 6 | 58 ¢ 4 | 1 | 0 | 10 | 10 | 0.976 | 41 | 6.873 |
| 7 | 42.47 | 1 | 1 | 39 | 30.5 | 0.975 | 47 | 0.851 |
| 8 | 47 * 50 | 1 | 0 | 37 | 37 | 0.974 | 50 | 0.829 |
| 9 | 50 . 5 | 1 | 0 | 36 | 36 | C. 973 | 54 | 0.806 |
| 10 | 94.60 | 1 | 1 | 35 | 34.5 | 0.972 | 60 | 0.784 |

### 4.5.1.3 Yaptalunility Puncions


 explete. The maparmetrio eazinatee of tho prciability that a maintenanco Ention afli te comploted by time $t$ as axacily the complement of the reliebility formelen if $f$, the number of fellures, in ropleced of $r$, the number of campleted sepale cotices.

Imat, for vetiantin $\boldsymbol{n}(t)$ at rised pointe 1,1 time $t_{1}$, the folloring is oftatned for the nomompormhip cace:

$$
\begin{equation*}
\hat{n}\left(t_{1}\right)-\frac{k}{n} \sum_{j=1}^{1} r_{j} \tag{isㅇ}
\end{equation*}
$$

utere

$$
\begin{aligned}
& \text { n - mubber of malnterence metione obelerwo }
\end{aligned}
$$

Tor eetimese at mpeir ilmet, f ,

$$
\begin{equation*}
\hat{H}\left(x_{x}\right) \frac{x}{n+I} \tag{55}
\end{equation*}
$$

Whan $k$ la the sumser of ropair actions sumpeted on or tefore tre siterel reptit time.

Exemper Aosum that nine repuir eotion are observed as followis: $0.2,0.2,0.4,0.4,0.5,0.6,0.8,1.2,2.0$

Then, from Equation 55, the following is obtainod:

| $t$ | $\mathbf{k}$ | $\underline{2(t)}$ |
| :---: | :---: | :---: |
| 0.2 | 1 | 0.90 |
| 0.3 | 2 | 0.20 |
| 0.4 | 4 | 0.40 |
| 0.5 | 5 | 0.50 |
| 0.6 | 6 | 0.60 |
| 0.8 | 7 | 0.70 |
| 1.2 | 8 | 0.80 |
| 2.0 | 9 | 0.99 |


¿ =.1.4 Gonfidence Imits for Rellability and Maintainatility Funciions
Estivajing reliability or maintainability at fixei poines in time without censocship corresponds to estimating a bincmial jarsaeter. zquations 46, 47, and 48 can be used to citain limits for the observed functions for casea of ro censorship. If censorship takes place, the number of sample items varies. If the total number as censored items, $x$, is amsil compared with $n$ (say $w / n<0.10$ ), then, as a rough approximaition, ths ample-size value to be used is $n-1 / 2$.

## 4. Measurcs of Sentral Terdency and Dispersion

The ueusi measure of cencral tendency is the mean or average value; and the messure of disparsicn is the variance $f$ its squars root, the siandard deviation. For the nonparametric case, these measures are valid only if the data ant not truncated or censored -- that is. for the rellabtility case all sample icems ane tested to failure, and for the maintainability case all started repair actiona are completed.

If $t_{\text {: }}$ represents aithar a failure +1 m or a repair time, the mean or average value is estimated by

$$
\begin{equation*}
E=\frac{1}{n} \sum_{1=1}^{n} t_{1} \tag{56}
\end{equation*}
$$

where in is the numbe: of observed timss. The variance is eatimated jy

$$
\begin{equation*}
s^{2}=\frac{1}{(n-1)} \sum_{1=1}^{n}\left(t_{1}-E\right)^{2} \tag{57}
\end{equation*}
$$

For larye $n$ (ang grouter then 30), the central-linit thoozern may we uned; thie states shat the quantity

$$
\begin{equation*}
Y_{n}=\frac{t-\mu}{\sigma / \sqrt{n}} \tag{58}
\end{equation*}
$$

has approximately a norzal distribution with mean 0 and vaciance 1 where $\mu$ and $\sigma$ are the population mess and variance, respectively.

For large $n$, can de und an antimate for $\sigma$, and an approximate $(1-a) \%$ twonsiced onfidence intervel for $\mu$ is obtained from the equation

$$
\begin{equation*}
E\left[\left(E=t_{\alpha / 2, n-1} s / \sqrt{n} \leqslant H \leqslant E+t_{\alpha / 2, n-1} s / v n\right]\right. \tag{59}
\end{equation*}
$$

where
$t_{a / k, n-1}$ is the $\alpha / 2$ percentuge point of the $t$ ataitistic with $\mathrm{I-1}$ degrecs
of freedom. these values are tabuiated in Table C-2. A one-sided linit
is obtained by replacing $t_{\alpha / 2, n-1}$ by $t_{\alpha, n-1}$ for the inmit desired.
Exomole: Assume that 30 failure times are observed and that $E=150,=40$. Then the lower $95 \%$ conficence 11 mit for the rean failure time, $\theta$. is

$$
P\left[\begin{array}{lll}
E-t_{0.05}, 29^{s} / \sqrt{\pi} & \pi & \sigma
\end{array}\right]
$$

or

$$
\hat{\theta}_{L, 0.05}=150-1.70 \frac{40}{\sqrt{30}}=137.4
$$

For the nonparametric case, the more usual trpe of central-tendency measure is tire median; for dispersion, it is the difference between two percentage points on the estimatied distribution.

## Median-Point and Interval Estimates

The median is that value which divides the distribution in half. Thus the median fallure time, $t_{0.50}$, is that value of $t$ for which

$$
R(t)=0.50
$$

The estimate of $t_{0.50}$ is obtained by constructing the reliability or maintainebility function by the methods deacribed and by plotting the distribution to find the value of $t$ for which $h(t)$ or $M(t)=0.50$. For the rellability case, this procedure requiren that testing continue until at least nalf of the 1 vens fail.

Confidence intervals for $t_{0.50}$ arm obtained srom the equation

$$
\begin{equation*}
P\left[t_{2}<t_{0.50}<t_{n-r+1}\right]=\sum_{1=r}^{n-r} \frac{n!}{1\left(\frac{n-1)!}{n}\right.}\left(\frac{1}{2}\right)^{n} \tag{60}
\end{equation*}
$$

where $t_{r}$ and ${ }_{n-r+1}$ are the $r^{\text {th }}$ and $(n-r+1)^{\text {th }}$ observed ordored times in the sample. Note that the confidence levels that can be used are restricted to the values obtainable from the right-hand side of Bquation 60.

One-siled limits are given as follcwn:

$$
\begin{align*}
& P\left[t_{r}<t_{0.50}\right]=\sum_{i=r}^{n}\left(\frac{n}{1}\right)\left(\frac{1}{2}\right)^{n}  \tag{61}\\
& P\left[t_{0.50}<t_{s}\right]=\sum_{1=0}^{\operatorname{s-1}}\binom{n}{1}\left(\frac{1}{2}\right)^{n} \tag{62}
\end{align*}
$$

where

$$
\binom{n}{1}=\frac{n!}{1!(n-1)!}=\frac{n(n-1)(n-2) \cdots(n-1-1)}{1(1-1) \cdots 3 \cdot 2 \cdot 1}
$$

Example: From the data of the example given in Subsection 4.5.1.3, the median repair time $t_{0.50}=0.5$. From Equation 60 ,

$$
P\left[t_{3}<t_{0.50}<t_{7}\right]=\sum_{i=3}^{6} \frac{9!}{19-1)!}\left(\frac{1}{2}\right)^{9}=0.8203
$$

Tables of the binomial distribution can be used to evaluate the oum on the right to yield a $90.82 \%$ two-sided interval of ( $0.4,0.8$ ). For a ore-sided upper interval, from. Equation 62,

$$
\begin{aligned}
P\left[t_{0.50}<t_{8}\right] & =\sum_{1=0}^{7} \frac{9:}{1!9-}\left(\frac{1}{2}\right)^{9} \\
& =0.9805
\end{aligned}
$$

or a $98.05 \%$ upper 11 mit for $t_{0.50}=1.2$.

$$
4-38
$$

## P-Parcent 男ng: A Measure of Disparsion

The $50 \%$ or intexquatile range detined by

$$
\begin{equation*}
t_{0.50}=t_{0.75} \cdot t_{0.25} \tag{63}
\end{equation*}
$$

is ofter uged to neature alspersion in nomparenetric estimation procedures. For reliebility th it the valuc of $t$ for wilch $\hat{f}(t)=1-P$, wille for maintainability 1t is the value of $t$ for which $M(t)=P$. ${ }^{\circ} 0.50$ is the number of hours over which the midile $50 \%$ of the maple observations were recorded. For the data of Example 5 , $T_{50}=1.0-0.325=0.675$.

Valuea of $P$ other than $50 \%$ can be used. For example, the 90 -percent range $T_{0.90}=t_{0.95}=t_{0.05 . ~ M o r ~ t h e ~ r e l l a b i l i t y ~ c a s e, ~ w i t h ~ t r u n c a t e d ~(n o n-f a l l e d) i t e m s, ~}^{\text {. }}$ the g -percent rance cin be used if only the mininum value of $\hat{R}(t)$ is less than 0.50 and the maximum value of $P$ is $[i-2$ min $\hat{f}(t)]$.

### 4.5.2 Parametric Estimates

Statistical estimation procedures usad on a known or assumed form of the probability distribution tunction are presented in this section. The characteristics of the distributions chaidered hare aze discussed in section 4.4.

### 4.5.2.1 Deterinining the Form of the Disiribution

The validity of parametric estimetea depend greatiy on the validity of the assumed diatributional form. In sone cases, the knowledge of the anperiment that. produced the date will dictate what the diatribution snould be, for example, in testing for defects, the number of defective items in a s.mple of $n$ items is distributed binomiaily if each sany ic item is randomly and independentiy selected from a lot and tested, and if the outcome is either good or defective. In most cases, however, there is no indication of what the true population distribution 1s. Two fairly simple procedures for analyzing tont data to determine the dietributioral form are presented below. These procedures are called goodness-of-fit tests.

## Graphical Procedures

The graphical procedures for goodness of fit involve plotting the sample distribution and comparing it visually with the generic forms of known distribution functions. To aid in such types of analyais, apecial graph papers have been constractec so that whan the observed distribution is plotted, a straight lins will result if the distribution conforms.
T. teat for the exporiential distribution, where $R(t)=e^{-t / \theta}$, it is noted that in $7(t) m-t / A$. Thus if $\cdots$ it observed reliability cata conform to the exponantial failure law, the naturai logerithm of the observed reliability function w111 plot as a traight line againgt $t$.

## AMCP 706-191

Special typen of graph paper for the normal, log-nosmil, and soibuil distrabutionc can be usad for goodnass-of-sit teatis.

## Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is an anajytioal procedure fer tenting poodrass of fit, although the easieat matin for performiny euch a test is ginphioel. The procedure involves comparing the obsorved distribution with a complefely apeoified theoreticai distribution and finaing the maximum wevigtion. This deviation 10 then compared with a oritical value that is dependent on a preselested level of significance.

The steps are as followa:
( I ) Completely specify the theoratical diatribution; tiat is, if the distribution to be tested has $k$ parameters in the density function, values of each of the $k$ parameters must be apecifisd."
(a) Obtain the observed reliability or maintainability function and plot on a graph.
(3) Find the critical value d from Table C-5, Appendix 6 , for the seleoted significance level and observed number of failures. A signifioance level of a me. s s that $\alpha \%$ of the time the test will reject the hypothesis that the distribution conferms to the one under test when in fact it does. Often this is stated as the $100(1,-\alpha) \%$ conidence level.
(4) Draw curves at a distanco of $d$ abpve and below the specified theoretical distribution. These curves then make up a decision band.
(5) On the same graph, plot the observed distribution.
(6) If the observed disiribution falls completely within the deciaion band, the conolusion is thac the cosumed distribution is correat. If any point of the observed function falls outeide the deciaion band, the assumed atstribution is rejected.

In many cases, one is interested only in the form of the distribution and has no basis for parameter specifioution. In these cases, the parameiers can be eatimated from the tent data to obtain the theoretical cumulative function. However, the critical d valued in Table C-5 are too large and villl lead to conservative results (lower nignifioance level) cince if the observed d value is greater: than the critical d value, there is high asmurance that the hypothesizci population form is incorrect. However, the chances of acceptius the rypotheain if it is false is also increased. Results of Monte Carlo investigations heve shown thet the following adju*tmente to Table $C-5$ oan be made to yield approximateiy valued cricical values for the normal and exponential diaiributions.

Normai distribution - sstimate $\mu \& \sigma$ from fic data Multiply d values in Table c-5 by 0.67

[^23]Exponential Dsatribution - wetimate $\theta$ from tho data
multiply a valuas in 23 ble c-5 by 0.80
Fresple: Asause that the followirg failure times are observed when a total of 20 items are teated:
$18,25,28,39,40,48,60,56,80,81,83,96,105$,
108, 130 ( 5 items ancovived past 130 :20urs)
(1) obtain Theopitica: Distribution

Suppowe a tant is being made for an exponantial
diatribution. Since the reliability function for the exponential is $R(t)=e^{-t / \theta}$, where $\theta$ is the mean failure time, the following edtimats can be used:
$\hat{\theta}=\frac{\text { Total Observed Life* }}{\text { sumber or Fallures }}$

- Total Time for Zailed Itemn + Total Time for Non-Failed Items.

Number of Fallures
08
$\hat{o}=\frac{962+650}{15}=107.5$ hours
Then the estimated thenretical reliability function is

$$
\hat{R}(t)=e^{-t / 107.5}
$$

This function is also plotted in Figur. 4-3.
(2) Calculate Obsorved-Reliability Function

Equation 49 provides the following calculation for the observad reliability function (plotted in Figure 4-3):

| ts | $\underline{k}$ | $\xrightarrow{\text { n-k+1}}$ | $\underline{R\left(t_{k}\right)=\frac{n-k+1}{n+1}}$ |
| :---: | :---: | :---: | :---: |
| 8 | 1 | 20 | 0.952 |
| 10 | 2 | 19 | 0.905 |
| 18 | 3 | 18 | 0.857 |
| 19 | 4 | 17 | C.810 |
| 40 | 5 | 16 | 0.762 |
| 48 | 6 | 15 | 0.714 |
| 60 | 7 | 14 | 0.667 |
| 66 | 8 | 13 | 0.619 |
| 80 | 9 | 12 | 0.571 |
| 81 | 10 | 11 | 0.523 |
| 83 | 11 | 10 | 0.4 ? ${ }^{\text {c }}$ |
| 96 | 12 | 9 | 2.428 |
| 105 | 13 | 8 | 0.380 |
| 108 | 14 | 7 | 0.333 |
| 130 | 15 | 6 | 0.285 |

-See Subsection 4.5.2.3.

pronite 4.3

(3) obtain Critical a Value

From Mable C-5, Appendix C. tize unadjusted oritisal d value for a sample size of 20 is 0.304 when teating 15 being done at the $10 \%$ significance level. By uee of the correotion factor 0.80 (aince $\theta$ is astimated from the data) ths adjuatad critical value become 0.243 .
(4) Plot Deciaion Curve

The unaduatse decision curvas are constructed by adding nd subtraoting 0.304 to the theoretical curve, and the adjuated curves are obtained by addirg 0.243 to the theoretical curve. These curves are also shomi in Pigury 4-3.

## (5) Dapition

8inoe the obwryed rellability function falla within the deoistion cusvel, the hypotheale of exponentielity cannot be rejeated. For emil maple alren, the deoletion ousves aw quite wide. For thin exmaple, it is 11kedy that othor dimtzibutions, such as the normal or Moibull, wil: eleo not be rejeotad.

### 4.5.2.2 Diacrate Distributions

The two most common discrete distributiona invoived in reliability and maingainability telling are the binomial and Poiason distributions.

## Binonial

The random variable, $x$, is the number of occurrences of an attribute in $n$ indopeniont teisals when the attribute is olaasifsed by either of two mutually exclusive categories. For reliability and maintainability, the attribute of interent if normaliy a siccessful outcome, that in, non-feilure or setisfactory reparir.

The probabillty denaity function is expresser as foliows:

$$
\begin{equation*}
P(x ; p, n)=\binom{n}{p} p^{x}(1-p)^{n-x} \tag{64}
\end{equation*}
$$

where
$P(x: p, n)=$ probability of $x$ occurrences in $n$ trials when the constant occurrence probability on one trial 1s p .

For the binomial distribution, the mean and variance are:

Mean: $\mu=\mathrm{mp}$
whowe
$\mu$ it tise expeotod number of occurrences in $n$ trials

$$
\text { Variance: } s^{2}=\operatorname{mp}(1 \cdot p)
$$

Esilmated of these values ane followa:

$$
\begin{align*}
& \hat{p}=\frac{r}{\hat{n}}  \tag{65}\\
& \hat{\mu}=r  \tag{65A}\\
& \hat{\sigma}^{2}=(n-r) \frac{r}{\hat{n}} \tag{66}
\end{align*}
$$

chere

$$
r \text { if the number of observed occurrences in } n \text { triale }
$$

## AMCP 700-191

Equations 46, 47, and 48 ax ubed to obtain confidence 11mite an For n z 30, Figure $C-1$, Appendix $C_{x}$ can be used.

Exemole: in a test of 50 itoms, 46 sucsensas were
observer. That is the point entimate of success probal biilty and the ascociated 90\%-oonfidence iimity

$$
\hat{p}=r / n=46 / 50=0.92
$$

From Figure C-1, Appendix C, the gop-confidence intexval is

$$
(0.83,0.97)
$$

## Polsbon Distribution

The randon variable, $x$, is the number of occurrences of an attribute per unit eegment (e.g., per unit time). If an itom extibite a constant fallure rate, the number of failures in a fixed period of time is Foisson-distributed if fail. ures and raplaced as thay occur.

The protability density function is oxpressed as foilow:
$+$

$$
\begin{equation*}
P(x ; m, t)=\frac{e^{-m t}(m t)^{x}}{x!} \tag{67}
\end{equation*}
$$

where

$$
\begin{aligned}
P(x ; m, t)= & \text { probability of } x \text { occurrences in } t \text { segpents if } \\
& \text { Poisaon paramotoc is } m \\
m= & \text { the mean number of occurrences per unit segment }
\end{aligned}
$$

For the Polsacn distribution, the mean and variance are:

Xant mit
Variance: mt

The estimate ot the mean is a: follows:

$$
\begin{equation*}
\hat{m}=\frac{r}{t} \tag{68}
\end{equation*}
$$

where
I is the number if obeerved occarrences in t undt eegmenta

To find ( $1-x$ ) conridence imits on $m$, given $r$ occurrencen ir $t$ unit
segments, $m_{2}$ and $m_{U}$ must be solved for the following equations:

For a 2 ower $(1-a) /$ Jinit, noive for $X_{L}$ in the equation

$$
\begin{equation*}
\sum_{k=0}^{x=1} \frac{e^{-k_{2} n_{L}^{k}}}{k!} \cdot 1 \ldots \tag{69}
\end{equation*}
$$

Shen

$$
\hat{n}_{L}=\frac{K_{L}}{E}
$$



$$
\begin{equation*}
\sum_{k=0}^{r} \frac{e^{-k t} x_{0}^{k}}{k!}=a \tag{70}
\end{equation*}
$$

Then

$$
{\hat{a_{\mathrm{M}}}}=\frac{\mu_{ \pm}}{t}
$$

For two-sided ilmits, use $1-a / 2$ and $\alpha / 2$ in Kauations 59 and 70 , reapectively. Tablea of the Poisan function ars available for cuch calculations.*

Exampie: Asaum that ten constent-fallurs-race iteas ars put on teat, each ror a period of $2 x$ hours. When they fall, they are roplaced hy new itean. A totel of 15 fallures occurred. Obtain the estimate of E , the man minber of fallures per 100-hour intervel, and obtin the 958 . confidence licite.

The estimate of in $\mathrm{r} / \mathrm{s}$. Sinse 5 fallures have been observed in ton 100-hour inte:val.s,

$$
\hat{m}-\frac{r}{t}-\frac{15}{i 0}-1.5
$$

Hence, 1.5 fallurea per 100 hours can be expected.


$$
(0.64: \pm 2.47)
$$




## AMCP 706.18:

### 4.5.2.3 Continupus Disteributions

Descripticns of and estimation procedures for contsulus distributions are presented in this section. specitic dietribution considuret ore the exponatiaj, normis, los normal, and Vefbull.

## Expengntlal Distribution

The rando variabis, $t$, is the aumber of unit cegmento oocurring before an svent. In milability, $t$ reprecenta houre or oycles, and the ovent is itim fallure. In naintainability, $t$ oen be mefntonence downtime, and the evoat is "be complrtion of a maintenase uction. It is asumel here that $t$ represents hoise and the arente ropresent sailures.


$$
\begin{equation*}
f(t ; \lambda)=z e^{-\lambda t} \tag{73}
\end{equation*}
$$

where
$t \geqslant U$ and $\lambda$ is the man namber of failurwa par inst time (per nour), comanly called the railure or hasand rate

Since $\lambda$ if equal ta the reaproces of the man nurber of houre mefore a fellure, the following can be writtoris

$$
\begin{equation*}
s(t, 0)=\frac{1}{\theta} e^{-t / \theta} \tag{72}
\end{equation*}
$$

whery

$$
g=1 / \lambda=\operatorname{men} \text { follure time }
$$

For the exporintial diatribution. the mear, verimion: and nasard rate aro:

$$
\begin{align*}
& 0=1 / \lambda  \tag{73}\\
& v^{2}=1 \lambda^{2} \\
& h(t)=\lambda, a \text { conslant } \tag{75}
\end{align*}
$$



## Eapedireti Teat until $r$ failure: oceuri

To obtain I, the following proceduret are used:
Imonduy Ia: fizlacoment Tost (failures repaired or replaced)

$$
\begin{equation*}
r \times n t_{t} \tag{77}
\end{equation*}
$$

where

## Rcogotune_Ib: Nonsoplacement Test

$$
T=\sum_{\substack{=\\ 1=2}}^{T} t_{1}+(n-r) t_{r}
$$

whe ere
a Mat

$$
\begin{aligned}
& \text { t. is the tise of } 4^{\text {th }} \text {-o.dered rallure }
\end{aligned}
$$

$$
\begin{aligned}
& \text { is z suaber of } 1 \text { ters on sest } \\
& t_{r}=\text { time at which the } r \text { tr. rallure sccurred }
\end{aligned}
$$

### 4.5.2.3 Continuous Dietributions

Descriptions of and estimation procedures for continuous distributions are presented in this section. Specific distributions considered are the exponential, normal, log normal, and Weibull.

## Exponential Distribution

The random variable, $t$, is the number of unit eegments occurring before an event. In reliability, $t$ represents hours or cycles, and the event is item failure. In maintainability, $t$ can be maintenance downime, and the cveat is the completion of a maintenance action. It is assumed here that $t$ represents houre and the events :3present fallures.

The probability distribution function is expressed as follows:

$$
\begin{equation*}
f(t ; \lambda)=\lambda e^{-\lambda t} \tag{71}
\end{equation*}
$$

where
$t \geq 0$ and $\lambda$ is the mean number of foilures per unit time (per hour), commonly called the fallure or hazard rate

Since $\lambda$ is equal to the recirrocal oi the mear. number of houre jefore a failure, the following can be written:

$$
\begin{equation*}
f(t, \theta)=\frac{1}{\theta} e^{-t / \theta} \tag{72}
\end{equation*}
$$

where

$$
\theta=1 / \lambda=\text { mean sailure time }
$$

For the exponential distribation, the mean, variance, and hazand rate are:

$$
\begin{align*}
\theta & =1 / \lambda  \tag{73}\\
\sigma^{2} & =1 / \lambda^{2}  \tag{74}\\
n(t) & =\lambda, a \text { constant } \tag{75}
\end{align*}
$$

[^24]8.

AMCP 706-191

Procedure I: Test until r failures occur:

$$
\begin{equation*}
\theta=\frac{\text { Total Life observed }}{\text { Numbor or }} \text { Observed Failures }=\frac{T}{r} \tag{76}
\end{equation*}
$$

To obtain T, che following procedunes are used:
Procedure Is: Replacement Test (failures repaired or replaced)

$$
\begin{equation*}
T=n t_{r} \tag{77}
\end{equation*}
$$

where

$$
\begin{aligned}
n & =\text { number of items on test } \\
t_{r} & =\text { time at which the } r^{\text {th }} \text { fallure occurred }
\end{aligned}
$$

Procedure Ib: Nonreplacement Test

$$
\begin{equation*}
T=\sum_{1=1}^{r} t_{1}+(n-r) t_{r} \tag{78}
\end{equation*}
$$

where

$$
t_{1} \text { is the time of } 1^{\text {th }} \text {-oxdered fallure }
$$

Procedure Ta: Censored Items (withdrawal or icss of non-failed items)

$$
\begin{equation*}
\text { Fallures Replaced: } T=\sum_{j \times I}^{c} t_{j}+(n-c) t_{r} \tag{79}
\end{equation*}
$$

where

$$
\begin{aligned}
& t_{j}=\text { time of } f^{\text {th }} \text {-orderie cansorship } \\
& c=\text { number of censored items }
\end{aligned}
$$

$$
\begin{equation*}
\text { Foilures Not repiacel: } T=\sum_{1=1}^{r} t_{i}+\sum_{j=1}^{c} t_{j}+(n-r-c) t_{r} \tag{80}
\end{equation*}
$$

## AMCP 706-191

## Procedure II: Testing Terminated by Stopping Rule on Test Time:

If the test plan is suc: that the test terminates after a erocirled number of test hours, $t^{*}$, hava acsumulated, it is possible that no failures have been observed. Then Equation 76 cannot be used, since $1 t$ implies that the estimated $\theta$ is infinite.

In general, E:Or Procedure II testing, if the numier of failures, $r$, 1s small (say $r \leq 5$ ), a better estimate of $\theta$ can be obtained by the equation

$$
\begin{equation*}
\tilde{\theta}=\frac{T}{F+I} \tag{81}
\end{equation*}
$$

## where

T is calculated as in Procedure I excapt that $t_{r}$ is now replaced by $t *$, the time at which tosting is stopped.

Example 1: Twonty items are placed on test. Testing continues until 10 failures are observed. Calculate the estimated maan ilfe of the items as based on (1) a replacement test, with the loth failure occurring after 80 hours; (2) a nonreplasement test, with fallures occurring at 10,11 , 17, $25,31,46,52,65,79$, and 100 hours; (3) the same nonroplacement test with 4 items censored: 2 at 30 hours: 1 at 50 hours, and 1 at 60 hours.
(1) From Equations 76 and 77,

$$
\theta=\frac{T}{r}=\frac{n t}{r} r=\frac{20(80)}{10}=160 \text { hours }
$$

(2) From Equations 76 and 78,

$$
\begin{aligned}
\theta & =\frac{\sum_{=1}^{r} t_{1}+(n-r) t_{r}}{r}=\frac{1=1}{r} \\
& =\frac{442+10(100)}{10}=144.2 \text { hours }
\end{aligned}
$$

(3) From Equations 76 and 30 ,

$=\frac{442+170+6(100)}{10}$

- 121.2 hours

Example 2: Twenty items are plased on tent and the teat is teminatsd artar 100 hours. Calculate the estimated mear life of the items based on (1) a replacement teat, with 8 1tems failing before 100 hours; (2) a non-seplacement test, with failures occurring as in Example $1(2)$.
(1) From Equations 76 and 77,

$$
\theta=\frac{n t}{r}=\frac{20(100)}{8}=250 \text { hours }
$$

(2) Calculations are the same as for Example 1 (2).

Confidence-Interval Estimates on $\theta$. Two situations have to be considered for ectimgting cc.midence intervals: one in which the test $1 s$ run until a preassigned number of failures $\left(r^{*}\right)$ occur, and one in which the test is stopped after a preassigned number of test hours ( $t^{*}$ ) are accumulated. The formula for the confidence interval employs the $\chi^{2}$ (chi square) distribution. A short table of $\chi^{〔}$ values is given in Appendix C. The general notation used is

$$
x^{2}(p, d)
$$

where $p$ and $d$ are two constiants used to chocse th. cosrect value irom the table.
The quantity $p$ is a function of the confidence ccefficient; $d$, knom as the degrees of freedom, is a function of the rumber of fallures. Equations 82 and 83 are fur one-sided and two-sided $100(1-\alpha)$ percent confidence intervals, respectively. For nonreplacement tests with a flxed truncation time, the limits are only approximate. These confidence limits on mean life are as follows:

+For non-replacement tests, only one-sided intarvals are possible when $r=0$. Jse $2 n$ degrees of freedom for the lower limit if all n 1 tems on test rail.

Example 1: Twenty itoms undergo a replacement test. Testing continues until ten fallures are observed. The tenth failure occurs at 80 hours. Determine (1) the mean ife of the items; and (2) the one-sided and two-aided $95 \%$ confidence intervals.
(1) Prom Equations 76 and 77 ,

$$
\theta=\frac{n t}{r}=\frac{(20)(80)}{10}=160 \text { houre (s0 that } T=1600 \text { hours) }
$$

(2) Pron Equation 82,

$$
\begin{aligned}
\left(\frac{2 T}{x^{2}(\alpha, 2 r)}, \infty\right) & =\left(\frac{2(1600)}{x^{2}(0.05,20)}, \omega\right)-\left(\frac{3200}{31.41}, \omega\right) \\
& =(101.88, \infty)
\end{aligned}
$$

(3) From Equation 83,

$$
\begin{gathered}
\left(\frac{2 r}{x^{2}\left(\frac{a}{2}, 2 r\right)}, \frac{2 T}{x^{2}\left(1 \frac{a}{2}, 2 r\right)}\right)=\left(\frac{3200}{34.17}, \frac{3200}{9.591}\right) \\
=(93.65,333.65)
\end{gathered}
$$

Exemple 2: Twenty 1 tems undergo a nonreplacement test, which is teminated at 100 nours. Failure imes observed are $10,16,17,25,31,46$, and 65 houra. Calculate (1) the one-aided approximate 908 confidenceinterval $(\alpha=0.10)$, and (2) the two-Fided approximate 90\%-confidence iimits:
(1) Fron Equation 82,

$$
\begin{aligned}
\left(\frac{2 T}{x^{2}(\alpha, 21+2)}, \infty\right) & =\left(\frac{2\left[\sum_{1=1}^{7} t_{1}+(20-7)(100)\right]}{x^{2}(.10,16)}, \infty\right) \\
& =\left(\frac{30,20}{23.54}, \infty\right) \\
& =(128.29, \cdots)
\end{aligned}
$$

(2) From Eọuation 33,

$$
\begin{aligned}
\left(\frac{2 T}{x^{2}\left(\frac{a}{2}, 2 r+2\right)} \cdot \frac{2 T}{x^{2}\left(1 \frac{a}{2}, 2 r\right)}\right) & =\left(\frac{3020}{26.30}, \frac{3020}{6.57}\right) \\
& =(114.83,459.67)
\end{aligned}
$$

Tabie C-7, Apperilx c, Extracted from the RADC Roliability Hotebook, presents the factor $2 x^{2}(y ; a)$ for orie-sided and twoeldod oonfidonse limits, at ix conifitence luvels of each. Multiplying the uppropriate factor oy the observed totad j.1fe T gives a confidence limit about $\%$.

Semple-sizi Consideration. Since the length of the coritidence interval depends on the number of fallures, it is possible to calculate the required number of fallures to ensure -- with a specified confidence -- that th. estimate of $\theta$ is within a specified percentage of the true mean time to fallure. If a normel approximation to the $x^{2}$ distribution is used in oxder to be ( $\left.1-a\right) x$ confident that $\hat{\theta}$ is within $\delta \%$ of the true mean, $\theta$, that is $P\left(\left|\frac{\theta-\theta}{\theta}\right| \leq \delta\right)=1-a$, the required number of fallures, $\mathrm{r}^{*}, ~ \mathrm{Ls}$

$$
\begin{equation*}
r^{\#}=\frac{z_{\alpha}{ }^{2}}{\delta^{2}} \tag{84}
\end{equation*}
$$

where $Z_{a}$ is the standardized normal deviate corresponding to the as point of the normal distribution. $Z_{\alpha}$ is twbulated in Table $C-1$, Appendix $C$.

Once $\mathrm{r}^{*}$ is determined, the approximate total test time required can be estimated by the equation $T^{*}=r^{*} \theta^{\prime}$, where $\theta^{\prime}$ is an initial estimate of $\theta$.

Example. fiuw many faili jes are requirea to give 90 -percent confidence that the estimate $\dot{\theta}$ is within 20 -percent of the true vaiue? What will be the total test time if $\theta=100$ hours?

From Equation 81 , for 90 -percent confidence, $z_{\alpha}=z_{0.10}=$ 1,645 and

$$
z^{4}=\frac{(1.645)^{2}}{(0.20)^{2}}=67
$$

If $\theta^{\circ}=100$ hours, then

$$
T^{*}=r^{* *} \theta^{\prime}=67(100)=6,700 \text { hours }
$$

Table C-B, Appendix C, presents values of $r^{*}$ for selected confidence and precision levela.

Reliebility Eatimates, $\hat{( }(t)$. To estimate the probability of survi;iai for a $t$ ime $t$, the estmates of $\theta$ (Equation 2-76) can ba used in the equation

$$
\begin{equation*}
\hat{R}(t)=e^{-t / \theta} \tag{85}
\end{equation*}
$$

This entimate is bianed (peosimisticsily if $R(t)>1 / Q=0.367$ ), eapeciaily if $r$ is amaly. An urbiased estimate is

$$
\begin{equation*}
\hat{n}(t)=(1-t / T)^{r-1}, r>1, t<T \tag{86}
\end{equation*}
$$

where $r$ st the number of observed fallures in $T$ total test hourw
Example: If 10 fail res are obsorved in 1600 hours, calculate the rellability entimate for a 30 -hour period (note that $=160$ hours)

From Equation 85,

$$
\hat{R}(30)=e^{-30 / 160}=0.829
$$

From Equation 86,

$$
\hat{R}(30)=(1-30 / 1600)^{9}=0.843
$$

Confidence LImits on $R(t)$. The confidence $\operatorname{limits}$ on $\theta$ can be used to obtain corifidence lim.1ts on $K(t)$ by the equation

$$
\begin{equation*}
P\left[e^{-t / \hat{\theta}_{L}}, a / 2 \leq R(t) \leq e^{-t \hat{\theta}_{v}}, 1-a / 2\right]=1-a \tag{87}
\end{equation*}
$$

Por a one-sided lower 11mit,

$$
\begin{equation*}
P\left[e^{-t / \hat{\theta}} L, \alpha \leq R(t)\right]=1-a \tag{88}
\end{equation*}
$$

Exerople: For a mean 119e of 160 hours, (1) what
1s the probability of an item surviving 100 hours?
(2) What are the two-sided $95 \%$ confidence 1 imita on this probability?
(1) From Equation 85,

$$
\hat{R}(1 \infty)=e^{-100 \hat{\theta}}=e^{-100 / 160}=0.535
$$

(2) Prom Bquation 87, the two-sided 95\% sonfidence limita are

$$
\left(e^{-95.65}, e^{\frac{100}{-335.65}}\right) \cdot(0.344,0.741)
$$

Procentile Estimates. To estimate the time period. $A_{n}$, for which there is a relicbility of $R$, the eatimate $\hat{T}_{R}$ is

$$
\begin{equation*}
\hat{\mathfrak{F}}_{\hat{F}}=\hat{\theta} \ln \frac{1}{h} \tag{89}
\end{equation*}
$$

The confidence limits on $T_{R}$ define a tolerance interval, since these limita permit the statement that there $1 s 100(1-a)$ percent confidence that $R$ percent or more of the items in tiso proulation will nurvive $T_{R} 2 r$ more tima units. the $100(1-a)$ percent corfidence imits on $T_{R}$ are given below:
Two-Sided

$$
\begin{aligned}
& \text { Exemple: Por a mean life of } 160 \text { hourg, wnat is the } \\
& \text { eatimated time period for which the reliability } 180.80 \text { ? } \\
& \text { What are the } 95 \text {-percent one-and two-sided confldence } \\
& \text { limits on } T_{R} \text { ? } \\
& \text { Since } \hat{\theta}=: 60 \text { hours, Equation } 89 \text { yields } T_{0} 80 \\
& \therefore \hat{\theta} \text { in } \frac{1}{j ष}=160(0.22314)=35.70 \text { heurs }
\end{aligned}
$$

The 95-percent one-sided and two-bided confidence lumits on $T_{R}$, from Equations 90 and 91 , are

$$
\left(\frac{2(1600)(0.22314)}{31.41}, \infty\right)-(22.73, \infty)
$$

and

$$
\left(-\frac{\left.2(1600) \frac{10,22314)}{34.17}, \frac{2(1600)(0.22324)}{3.591}\right)=(20.90,74.45)}{}\right)
$$

## Morasl Diatribution

The sormai diatribution in one of the most viouly ueed continuoue cenitied beceuce ( 2 ' it approximaten the dietribution of many random variables and $i<j$ the angle estimatet tend to nomeliy dietributed with increasins sample siae.

## AMCP 706.191

If en iten rae normal distribution of follure time, its falluse oharecteristic is consiotoni with a wearput procees.

The nomal probability distidbition Anction is expreaced eo follow:

$$
\begin{equation*}
r(t ; \mu, 0)=\frac{1}{d t_{\pi}} e^{-\frac{1}{2}\left(\frac{t-\mu}{\pi}\right)^{2}}-\infty x t x \tag{92}
\end{equation*}
$$

jet memn, variance, and hezard ate are expressed as rollows:

> Mean $=11$
> Variance $=\pi^{2}$

Haz: Gate (incroases with $t$ ).

Where

$$
g(t)=\sqrt{2} e^{-2 / 2\left(\frac{k-1}{\sigma}\right)^{2}}, r(t)=\left[1-e^{\frac{2(t-\mu}{\pi \sigma^{2}}}\right]^{1 / 2}
$$

The man is estimed as shom in cases I and II.

Cace I All tested item rali:

$$
\begin{equation*}
\hat{\mu}=\frac{\sum_{i=1}^{n} t_{1}}{n} \tag{94}
\end{equation*}
$$

and

$$
\begin{equation*}
0^{2}=\frac{n \sum_{i=1}^{n} t_{i}^{2}-\left(\sum_{i=1}^{n} t_{i}\right)^{2}}{n(n-1)} \tag{95}
\end{equation*}
$$

there
is is time to rallure of the ith item
 satimating the wean.- the (imphical matiod and the Nreseion mothod:

(1) Culculate the noparmetric reliebijity funotion, $\hat{f}(=)$, utins the most appiopuriate of the equations ( 49 to 53).
(2) Plot $\hat{R}(t)$ on norual probability paper and fit atraight line vieldLus the estimeted norsul reliability function $R_{m}(t)$.
Then

$$
\begin{equation*}
\hat{\mu}=t_{0.50} \tag{56}
\end{equation*}
$$

whero

$$
\begin{gather*}
t_{0.50}=\text { vilue of } t \text { ior mion } \hat{B}_{y}(t)=0.50 \\
\hat{j}=t_{0.50}=t_{0.84} \tag{97}
\end{gather*}
$$

where

$$
t_{0.84}=\text { value of } t \text { for which } \hat{\mathrm{a}}_{4}(t)=0.84
$$

## Rercresacen method

(1) Othain $f\left(t_{1}\right)$ by an approctiate nonparmetric equation sthers $t_{i}$ is the $1^{\text {th }}$ eallure tim.
(2) Yor ecoh fallure time, $t_{1}$, find the rorsal deviate $z_{\text {; }}$, corroeponding to $\hat{\mathbf{R}}\left(t_{1}\right)$, uelse Table $\mathrm{c}-1 . \mathrm{I}\left(t_{1}\right)$ ocrresponde to $1-\hat{F}\left(t_{1}\right)$. Then, for $\hat{R}\left(t_{1}\right)=0.971, z_{1}-1.9 ;$ for $\hat{R}\left(t_{i}\right)=0.50, z_{1}-0$.

Then

$$
\begin{align*}
& \dot{u}=\frac{b-c s}{b^{2}-x a} \text { and }  \tag{98}\\
& \hat{\sigma}=\frac{c p-x t}{y^{2}-r 0} \tag{99}
\end{align*}
$$

where
r- number of fallures

$$
0=\sum_{i=1}^{r} z_{i} \quad \in=\sum_{i=1}^{r} i_{i} \quad a-\sum_{i=1}^{r} z_{1} t i \quad \sum_{i=1}^{r} z_{i}^{2}
$$

$$
3.35
$$

## AMCP 706 ; 91

Exaple: Assume that failure data are generatad as chown In Table $4-1$.

| TAME 4.1 <br>  follamen a fallual im a sample of 5a items |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { Houms to } \\ & \text { Pailure, } t_{1} \end{aligned}$ | Number of Completed Observations, $r_{1}$ | Humber of Censored Observations at $t_{1}, w_{1}$ |
| 1300 | 1 | 4 |
| 1692 | 1 | 3 |
| 2243 | 1 | 4 |
| 2278 | 1 | 3 |
| 2832 | 1 | 3 |
| 2862 | 1 | 3 |
| 2931 | 1 | 4 |
| 3212 | 1 | 4 |
| 3256 | 1 | 4 |
| 3410 | 1 | 4 |
| 3651 | 1 | 3 |
| Total | $\Sigma r_{1}=11$ | $\Sigma \mathrm{k}_{1}=39$ |

## Graphical Method

The graphical method is shown in Figure 4-4:

$$
\begin{gathered}
\hat{\mu}=t_{0.50}=4000 \\
\sigma=t_{0.50}-t_{0.84}=4000-2740=1260
\end{gathered}
$$

## Rexression Metinod

The calc $\cdot a \leqslant 10 n s$ for $\hat{\mu}$ and $\hat{\alpha}$ using Equations 98 and 99 are ahown in Table 4-2.
The two-sided $100(1-\alpha)$ percent confidence interval on $\mu$ is

$$
\begin{equation*}
\left(\hat{\mu}-t_{\alpha / 2, r-1} \times \frac{\sigma}{\sqrt{r}}, \mu+t_{\alpha / 2, r-1} \times \frac{\sigma}{\sqrt{r}},\right) \tag{100}
\end{equation*}
$$

where $t_{\alpha / 2, r-1}$ is the ra/2 percentage point of the $t$ distri ition with r-i degrees of fisedom. This interval is only approximate for truncated tests. Values of $t$ are given in Table C-2, Appendix C. For $t>30$, Table C-1, Appendix $C$, of the standardized normal deviate, $z$, can be used.

ceapmical egtimation of the paramettor of has assumet meamal mistaideticu

Thus 4.2




| Hours to pallure, $t_{1}$ | Observed Reliability Turiction, $R\left(t_{1}\right)$ | Normal Deviate Corresponding $\mathrm{z}_{1}$ to $\mathrm{R}\left(\mathrm{t}_{\mathrm{j}}\right)$, |
| :---: | :---: | :---: |
| 1300 | 0.980 | -2.06 |
| 1692 | 0.958 | -1.73 |
| 243 | 0.935 | -1.51 |
| c278 | 0.910 | -1.34 |
| 2832 | 0.883 | -1.19 |
| 2862 | 0.853 | -1.05 |
| 2331 | 0.819 | -0.92 |
| 3212 | 0.778 | 0.77 |
| 3256 | 0.726 | -0.6n |
| 3410 | 0.653 | -0.39 |
| 3651 | 0.522 | -0.06 |
| $\Sigma t_{1}=29,667$ |  | $22_{4}=12 . \epsilon_{2}$ |
| $\begin{array}{lll} c=\Sigma t_{1}=29,6 \kappa 7 & v=\Sigma \Sigma_{1}=-11.61 & r=11 \\ d=\Sigma t_{1} \Sigma_{1}=-27,062.8 & e=\Sigma \Sigma_{1}^{2}=1577 & \end{array}$ |  |  |
|  |  |  |
| $\hat{\mu}=\frac{b d-c e}{b^{2}-r}=3972$ |  |  |
| $\partial=\frac{c b-r t}{b^{2}-r e}-208$ |  |  |

Exumple. Frum the data for the preceding exmple, calculate the 95-percent confidence intervil fur 9 .

For $x=11$, and $\alpha=0.05, t_{0.025,10=2.23}$
Than, frox Equation 100 the 5 fercent interval is

$$
\left(3972-2.23 \frac{1208}{\sqrt{1!}}, 3972+2.23 \frac{1208}{\sqrt{11}}\right)
$$

$=(3161,4783)$

Given $\mu$ and $\sigma$, the reliability function 1 obtained from the oquation

$$
\begin{equation*}
\hat{R}(t)=\int_{z}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y=1-1(z) \tag{101}
\end{equation*}
$$

wisert

$$
z=\underbrace{t-\hat{\mu}}_{\sigma}, F(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
$$

Values for cumulative normal distribution $\bar{F}(Z)$ are given in Table $C-1$, Appendix $C$.
Example: The reliability function or the fallure data given in tajle 4-1 $-s$ presented in Figure 4-5.

For example, to obtatil r(2000)
$\mathrm{z}=\frac{2000-3972}{126 \mathrm{~K}}=-1.63$
$F(-1.63)=0.072 ; R(2000)=1-F(-1.63)=0.928$



## AMCP 706-191

## Heibull Distribution

Many random varlables of fallures and repairs can be described by the Weibull distribution, which, because of its three parameters, is quite flexibje.

The felbull probability distribution function 18 expressed as follows:

$$
\begin{equation*}
f(t)=\frac{\beta(t-\alpha)^{\beta-1}}{\alpha} e^{-(t-\gamma)^{\beta / \alpha}} t \geqslant \gamma, \alpha, \beta, \gamma>0 \tag{102}
\end{equation*}
$$

where
$\alpha=$ scale parameter
$\beta=$ shape parameter
$\gamma=$ location parameter
The location parameter $y$ represents tne minimum failure or repair time. Often it is set equal to zero, and the density is then

$$
\begin{equation*}
f(t)=\frac{\beta t^{\beta-2}}{\alpha} e^{-t^{\beta} / \alpha} t \geqslant 0, \alpha, \beta>0 \tag{103}
\end{equation*}
$$

If $\beta=1$, the Weibull reduces to the exponential. If $\beta$ is known, analysis may proceed exactly as for the exponentlel except that all times $t_{i}$ are seplaced by the values $t_{1}^{8}$.

The mean, variance, and hazard rate for the Weibuli distribution are as follows:

$$
\begin{equation*}
\text { Mean }=\mu+\gamma+\alpha^{1 / \beta} r(1 / \beta+1) \tag{104}
\end{equation*}
$$

## where

$\Gamma(1 / \beta+1)$ is the garma function, which for integer values of $(1 / \beta+1)$ is equal to ( $1 / \beta$ ):

Variance $=\sigma^{2}+\alpha^{2 / \beta}\left[\Gamma(2 / \beta+1)-\Gamma^{2}(1 / \beta+1)\right]$

Hasand Rate $=h(t)={\underset{0}{0}}_{t^{\beta-1}}$

Note.
$h(i)$ decreases witn $t$ if $\beta<1$
$h(t)$ is constant if $\beta=1$
$h(t)$ increases witn $t$ if $p>1$

Estimates of $\gamma, \beta$, and $\alpha$. Analytical procedures are available for estimating the $\alpha, \beta$, and $\gamma$ paramcters of the Weibuli distribution from test data*, but they involve fairly complex interative procedures.

A relatively simple graphica: procedure is usually used to obtain estimates from Weibull probability paper. A sample of such paper is shown in Figure $4-6$. Two sets of scales are used. The left scale, $F(t)$, and botton scale, $t$, are for plotting the raw falluce or repair data. The right scale, $Y$, and the upper scale, $X$, are calied tne principal ordinate and principal abscisaa scales and are wed for obtaining the $\alpha$ and $\beta$ estimates. The principal abscisse is that horizontal ine for which $X=0$ on the right scale, and the principal ordinate is that vertical line for which $Y=0$ on the upper scale.

The procedure is described below for the case in which $r$ failures are observed out of a sample of $n$.
(1) Compuice tne failure prcbability function by the equation

$$
\begin{equation*}
F\left(t_{1}\right)=\frac{1}{n+1} \tag{107}
\end{equation*}
$$

where
$t_{i}$ is tne time of the $1^{\text {th }}$ failure
$n$ is the number of items originally on test
(2) Plot $F\left(t_{1}\right)$ versus $t$ on Weibull probability paper and fit a smooth curve through the points
(3) Estimate $\gamma$. If $F\left(t_{1}\right)$ plots as a straight line, $\hat{\gamma}=0$. If $F\left(t_{1}\right)$ plots as a curve, a constant value, $k$, is to be subtracted fron $t_{1}$ such that the plot of $F\left(t_{1}-k\right)$ versus $\left\{t_{1}-k\right)$ is best fitted by a straight ine. The initial vaiue of $k$ can be either the first failure time, $t_{1}$, or the $t$ intercept of the curve. Several values of $k$ mas have to be tried before a reasonably linear plot of points is obtained. The eatimate of $\gamma$ is then the value of $k$ that.produces a linear fit.
(4) Estimate $\beta$. The estimate of $\beta$ is the slope of the fitted curve. It can be obtained directly from the equation

$$
\begin{equation*}
\hat{\beta}=-\frac{Y_{0}}{X_{0}} \tag{1c9}
\end{equation*}
$$

where $Y_{0}$ is tie intercept with the principal ordinete $\left(Y_{0}<0\right)$ and $X_{0}$ is the intercept wath the principal abscissa.

[^25]$$
4-61
$$


[^26](5) Estimate a. The intercept of the fitted line with the principal ordinate is equal to $-\ln \hat{\alpha}$. Hence, if $Y_{0}$ is the intercept (which is negative).
\[

$$
\begin{equation*}
\hat{a}=e^{-y_{0}} \tag{109}
\end{equation*}
$$

\]

$\hat{\alpha}$ can also be obtained from the equatior $\hat{\ln } \hat{\alpha}=\hat{\beta}$ in $t *$, where $t *$ is the value of $t$ for whioh $F(t)=0.628$.
$Y_{0}$ or $X_{0}$ or both, may 11 outside the graph:
(1) $Y_{0}$ outside the grapn
$\beta$ can still be eftimated by pleking any two points on $X$, aay $X_{1}$ und $X_{2}$, and finding the corresponding $Y^{\prime} B, e .5 ., Y_{1}$ and $Y_{2}$. Then

$$
\begin{equation*}
\hat{\beta}=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}} \tag{110}
\end{equation*}
$$

$a$ is then estimated by the equation

$$
\begin{equation*}
\hat{a}=e^{\hat{\beta} X_{0}} \tag{211}
\end{equation*}
$$

(2) $X_{0}$ outside the graph

Since $\hat{a}$ does not depend on $X_{0}$ and $\hat{\beta}$ can be obtained by Equation 110, this case piesents no difficulties.
(3) $X_{0}$ and $Y_{0}$ rutside the plot

Miltiply the $t$ acale ly an appropriate power of 10 , e.g., $10^{1}, 10^{-1}$, $10^{-2}$, etc. The slope is independent of the scale, and tiorerore $\beta$ is estimated as before. The estimste for $a$ is obtained by the equation

$$
\begin{equation*}
\hat{a}=30 \dot{0} \hat{a} \hat{a} \tag{112}
\end{equation*}
$$

where $\mathcal{J}$ is the soale factor and $\hat{a}$ is the grepical estimate of a when the date are plotted on the besia of the $t \times 10^{j}$ scale.

Another possibility is that the Veibull plot appara a tuo intersecting 1ines. For this case, two sets of $a, B$, and $y$ ostimates iremade, one for bach

## AMCP 706-191

IInear portion. Tie estimated density is then

$$
\begin{equation*}
f(t)={\frac{\beta_{1}\left(t-\gamma_{1}\right)^{\beta}}{\alpha_{1-1}}}_{a_{1}} e^{-\left(t-\gamma_{1}\right)^{\beta} / \alpha_{1}} \tag{113}
\end{equation*}
$$

$1=1$ for $t \leqslant t$
1 - 2 for $t>t^{*}$
and $t$ * is the time at which the two lines intersect.
Example: Table 4-3 presents faslure data (grouped) for germanium power transistors. Soventy-five transistors were put on test for 7000 hours and 44 fallures ware observed. Fallures were noted avery 250 hours for the flxat 1000 hours and every 1000 hours theren rter. Since the =amã $1+20$ iz large, the formula for $F(t)$ can be slightly modified by using n in the denominetor of Equation 107 rather than $n+1$.

Step (1)
$F\left(t_{f}\right)$ is celculated as shown in Table 4-3.

| tane 0.3 <br>  <br>  |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Pallure-Age } \\ \text { (hours) } \end{gathered}$ | Fallures | Accumulative Falluras/sample Size of 75 | Accurulative Percent Failure |
| 250 | 17 | $17 / 75$ | 22.7 |
| 500 | 8 | $25 / 75$ | 33.3 |
| 750 | 1 | 26,75 | 34.7 |
| 1000 | 1 | $27 / 75$ | 36.0 |
| 2000 | 0 | $27 / 75$ | 36.9 |
| 3000 | 5 | 32.75 | 42.7 |
| 4000 | 3 | 35/75 | 46.7 |
| 5000 | 4 | 39/75 | 52.0 |
| 6000 | 3 | 42,75 | 56.0 |
| 7000 | 2 | 44/75 | 58.7 |

## Step (3)

Pigure h-7 how the plot af the Gata on Veibuil probablisty popar. The cala ip multiplied by $10^{3} \mathrm{t}$ mecomodate the rajlure timen. A etraght line fits the dete well.


Fravis 4.7

## 



## 2 ten (3)

Since the pointe are fitted by atraight $11 \mathrm{ne}, \hat{y}=0$.

## 3terp (4)

The intreropt of the fittol line witw the principai ioscisea, $x_{0}$, is epprocimately 2.85 ; and the principal ordinate intercept, $T_{0}$, is appraxisatw $25-0.95$. Thut, from Equation 108 ,

$$
d-\frac{-2.8}{2.8}=0.30
$$

## stere (5)

The thetmept of the fittec iln fith the prinelpal ordinate is appoxisately -0.85. Xence, frow Equation 109,

$$
0=e^{-(-0.85)}-e^{0.05}-2.34
$$

and the urectel estimete if, from tquition 112,

$$
a-10^{3(0.30)}(2.34)-18.6
$$

$$
4-65
$$

## AMCP 708-191

Entimate of the Mean ( $\hat{H}$ ). The mean can be estimated by replacine the estimates for $a, \beta$, and $\gamma$ in Equation 104. Then

$$
\begin{equation*}
\hat{\mu}=\hat{\gamma}+\hat{a}^{1 / p} r(1 / \hat{\beta}+1) \tag{114}
\end{equation*}
$$

A ahort table of $\Gamma(x) \ldots 1 \leqslant x \leqslant 2$ is precented in Table C-9, Appendix C. The y slationshi $\quad r(x+1)=x \Gamma(x$; oan be leed for $x>2$.

Expmple: From the data of the precodine example,
entimate $\hat{\mu}$.
From Equation 114

$$
\begin{aligned}
a & =10.6^{1 / 0.30} r\left(\frac{1}{0.30}+1\right) \\
& =16,900 r(4.33)
\end{aligned}
$$

Since

$$
r(4.33)=(3.33)(2.33)(1.33) r(1.33)-9.216
$$

then

$$
\hat{\mu}=(16,900)\left(2.216^{\prime}-157,000\right. \text { noure }
$$


mand 2 -



Point and Lowe: Conilanoe Lindt on R(2). The point estinete and lower confitance 1 indt on $R(t)$ for untonow a and $\beta$, when $r$ faliures out of $n$ are nbeerwed, are obtalned as followet
(1) Cumpute

$$
\begin{align*}
& z_{a}=\sum_{i=i}^{T} \varepsilon_{i} \ln t_{i}-\ln t  \tag{117}\\
& z_{b}=\sum_{i=1}^{5} t_{1} \ln t_{1} \tag{118}
\end{align*}
$$

there
$t$ is the tiee period of interest
$t_{1}$ is the $1^{\text {th }}$ falure time
$a_{i}$ axd $b_{i}$ are constente given by Jorme and ilabermai, "Tible II.
(2) The eatimated reliebility is

$$
\begin{equation*}
R(t)=e^{-a_{a} z_{b}} \tag{119}
\end{equation*}
$$



[^27]$$
4-57
$$

## AMCP 706.191

## Log-normal Distribution

A random variable whose logarithm is normaily distributed is sald to have a log-noimal distribution. This distribution frequentiy describes repair-time distrioutions.

The iog-nortial probability disiribution function is expressed as follows:

$$
\begin{equation*}
f(t ; v, w)=\frac{1}{\omega t \sqrt{27}} e^{-1 / 2}(\ln t-v)^{2} / \omega^{2}, t>0 \tag{i21}
\end{equation*}
$$

The mean, median, variance, and hazard rate of the log-noxmal distribution are:

Mean: $\mu=e^{1+\omega^{2} / 2}$
Median: $m=e^{v}$
The median is of ten used es a centrai-tendency measure for the log-normal since it is indepeidert of $\omega$.

Variance: $0^{2}=e^{2 v+\omega^{2}}\left(e^{\omega^{2}}-1\right)$
Hazard Rate: The hazard rate of the $\log$-normal increases urtil the mode $\left(e^{v-w^{2}}\right)$ is resched, and then it decreases.

Estimates. The simplest procedure for estimating the reliability or maintainability function for $r$ data points out of a sample of $n$ is to employ log-normal. prooability paper. By fitting a streight ilne through the nonparametric function (Equations 49 tirough 53), tre following ertimates are obtained:

$$
\begin{align*}
& \therefore=\ln t_{0.50}  \tag{125}\\
& \hat{m}=t_{0.50} \tag{125}
\end{align*}
$$

where
$t_{0.50} 18$ the time for which $k(t)$ or $M(t)=0.50$

For $\omega$,

$$
\begin{equation*}
\hat{a}=\ln t_{0.50}-\ln t_{n} .84(0.16) \tag{127}
\end{equation*}
$$

where
${ }^{i} 0.84$ is the time for which $R(t)=0.84$ or $M(t)=0.16$

Then

$$
\begin{gather*}
\hat{\omega}=m \hat{e}^{2 / 2}  \tag{128}\\
\hat{\sigma}^{2}=\hat{m}^{2} e^{\hat{\omega}}\left(e^{2} \hat{\omega}^{2}-1\right) \tag{129}
\end{gather*}
$$

Confidence Limita on Median. Confldence itmits on $y$ can be obtained from the equation

$$
\begin{equation*}
\left[\left[\hat{v}-t_{\alpha / 2, r-1} \frac{\omega}{\sqrt{r}} \leq v \leq \hat{v}+t_{\alpha / 2}, r-1 \frac{\hat{\omega}}{\sqrt{r}}\right]=1-\alpha\right. \tag{130}
\end{equation*}
$$

where $t_{\alpha / 2, r-1}{ }^{1 s}$ the $(\alpha / 2$ ) $\%$ point of the $t$ statistic with ( $r-1$ ) degrees of freedom (Table $0-2$, Appendix 0 ). This represents a confidence interval on the logarithm of the time for which rellability or maintainability is 0.50. Then for tre median, $m=t_{0.50}$, for a ( $1-\alpha$ ) ss confidence interval

$$
\begin{equation*}
\left(e^{\hat{v}_{L}, \alpha / 2}, e^{\hat{v}_{U}, 1-\alpha / \bar{c}}\right) \tag{131}
\end{equation*}
$$

where
$\hat{y}_{L}$ and $\hat{v}_{U}$ are lower and uppe: limits on $v$, respectively.
Example: Forty-six maintenance-actior times on an atroomo comunications receiver are shown in Table 4-4, along with the nonpararetric maintainability function. This function is potted on log normal probability paper in Figure 4-10.

It is seen that a straight line fits the dats points fairly weli. The value of $t_{0.50}=1.95$, and the value of ${ }^{t} 0.16=0.56$.

From Equations 125, 126, and 127,

$$
\begin{aligned}
& \hat{v}=\ln t_{l .50}=0608 \\
& \hat{m}=t_{0.50}=1.95 \\
& \hat{\omega}=\ln t_{0.50} \cdot \ln t_{0.10}=0.668+0.579=1.2 \frac{2}{7} 7
\end{aligned}
$$

## AMCP 706-191

Then, from Equations 128 and 129,

$$
\begin{aligned}
\hat{\mu} & =1.95 e^{0.78}=4.25 \\
\hat{\sigma}^{2} & =(1.95)^{2} e^{1.562}\left(e^{1.562}-1\right)=68.06
\end{aligned}
$$

From Equation 130,

$$
\begin{aligned}
& \hat{v}_{\mathrm{L}, .025}=0.668-1.95 \frac{1.247}{6.78}=.308 \\
& \hat{v}_{\mathrm{U}, .975}=0.668+1.96 \frac{1.27}{6.78}=1.028
\end{aligned}
$$

and the 95 -percent confidence interval on $m$ is, by Equation 131,

$$
(1.35,2.80)
$$

| Theme 4.4 <br> computhinis for mamtainability fanction |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Observed Data |  | Non- <br> Parametric Function | Observed Data |  | NonParametric Function |
| $\mathrm{t}_{1}$ | $r_{1}$ | $\hat{M}\left(t_{1}\right)$ | ${ }^{\text {t }}$ | $r_{1}$ | $\hat{M}\left(t_{1}\right)$ |
| 0.2 | 1 | 0.021 | 3.3 | 2 | 0.681 |
| 0.3 | 1 | 0.043 | 4.0 | 2 | 0.723 |
| 0.5 | 4 | 0.128 | 4.5 | 1 | 0.745 |
| 0.6 | 2 | 0.170 | 4.7 | 1 | 0.766 |
| 0.7 | 3 | 0.234 | 5.0 | 1 | 0.787 |
| c. 3 | 2 | 0.277 | 5.4 | 1 | 0.808 |
| 1.0 | 4 | 0.362 | 5.5 | 1 | 0.030 |
| 1.1 | 1 | 0.383 | 7.0 | 1 | 0.851 |
| 1.3 | 1 | 0.404 | 7.5 | i | 0.872 |
| 1.5 | 4 | 0.489 | 8.8 | 1 | 0.894 |
| 2.0 | 2 | 0.532 | 9.0 | I | 0.915 |
| 2.2 | 1 | 0.553 | 10.3 | 1 | 0.036 |
| 2.5 | 1 | 0.574 | 22.0 | 1 | 0.957 |
| 2.7 | 1 | 0.596 | 24.5 | 1 | 0.979 |
| 3.0 | 2 | 0.638 |  |  |  |

AMCP 706-19i

figsie 4-18
plot of mamtenance data on log-wenimal peosablity paper
:
凡
\& \& \& ㅇ
요 오 요
$\stackrel{\curvearrowright}{i}$ $\underset{\sim}{n} 0$
(x) (7) $w$

## clossipy *

A FORTIORI ANALYSIS. An analyaiz delibezately made to Eavor an alternative ayntem when comp.red to a judgrental "best" system. If the "bast" syzem receives a favorable compurison under the weighted analysis, its position is strengthened.

Asscrssa: The horizontal distance fror the vertical axis of a graph, usually designated $x$.

ACCEPTANCE SAMPLING: Inspectºn of amplas of incoming lots to determine acceptance or rejection of the lot. It is characterized by the seaple siza $n$ and the accaptance number $c$, or by the average outgoing quality limit.

ACCRUAL ACCOUNTING: The recording and reporting of expens:s as the operating transactions occur. This method, in contrast to obligations and disbursements, provides a realistic measurement. of resources consumed in doing the work.

ACCLMULATOR: The register and associaced equipment in the arithmetic unit of the computer in which aritimetical and logical operations are performed.
active repair time The portion of the down time during which one or more technicians are working on the system to effect a repair. This time includes preparation time, faslt locatior time, fault correction tine, and final check out time for the system.

ADDRESS: An identification, represented by a name, label or number, for a register or location in storage. Addresses are also a part of an instruction word along with commands, tags, and other symbols.

ADMINISTRATIVE TIME: The portion of the down tine not included under active rerair time and logistic time.

ALGCRITHM: An orderly, atep-by-atep procedure for performing a mathernatical operation in finite number of steps. The 1040 form is an algorithm for computing personal income tax.

ALLOCATION: (1) The distribution of available resources to the various activities which musi be performed in ach a way thet total of iectivonese will be optimized. Allocation is necassary when there are limitations on either the amount of resources avallable or on the way in which they can be expended auch that each eparate activity cannot bs performed in the mos'. effective way conceivable. (2) An authorization by $a$ desiynated official of department making funds available within - prescribed amoint to an operating agenc: enr the purpose of making allotments.

[^28]ALLOTMENT: An authorization granted by an operating agency to another office to incur obligations within aspecified amount pursuant to an appropriation or othar atatutory provision and subject to specific procedurici, bookkeoping, and reporting requirements.

ALTERNATIVES: The means by which objectives can be attained. They need not be obvious ubstitutes for one another or perform the same specific function. Thus, to protect civilians against air attack, sheiters, "shooting" defenses, and retallatory striking fower are all alternatives.

ANALOG COAPUTER: An electronic device that performe methematical operations on numbers whith are expressad at directly measurable quantitias, generally voltages and resistances. pnalog computers are lass accurate than digital computers, but they are more readily adaptsble to changes in the data and structure of a problem. They are especially well suited to problems involving differential equations.

ANALYSIS OF VARIANCE (ANOVA): The basic idea of ANOVA is to express a measure of the total variability of a get of data as a sum of terms, each of which can be attributed to a specific source or causa of variation.

ADPORTIONMENT: A distribution made by the Bureau of the Budget of nomounts available for obligation or expenditure in an approf-iation or fund account into amounts available for spocified time periods, activities, functions, projects, objecis, or combinations thereof. The amounts so apportioned limit the obligations to be incurred or, when so specified, expenditures to be accrued.

AFPRAISAL: Impartial analysis of information sonducted at each responsible management and control leval to measure the effectiveness and efficiency of the total process and determine preventive/corrective action.

ARGUMENT: (1) An indepencent variable; e.g., in looking up quartity in a table, the number or any of the numbers which identifies the location of the deaired value; or in a mathematical function, the variable which when a certain valuc io bisitituted for st the value of the function is determined. (2) An operand in an operacion on one cr more variables.

ARTIFICIAL INTELLIGNCE: The study of compiter and related techniques to applement the intellectual capabilities of man. As man has invented and used tools to incrase his physical powers, ho now is begirining to use artificial inteiligence to increase tis mental powers. In a more restricted sense, the study of techniques for more effective use of digital computer: by improving programming techniques.

2SSEmbler: A computar program which operates un aymbolic input data to produce from auch data machine instructions by carrying out sush functions as: translation $O$ : aymbolic operation cocen into computer operating instructions, assigning locations in stcrage ior auccessive instructions: or computation of absolute addresees from nymbolic addresses. An mseembler gonerally translates input symbolic codes into machine instructions item for item, and produces as outpu: the same number of inatructions or constante which were defined in the input symbolic codas.

Abailubility: The probability that the systam is operating satisfacturily at any point in time when used under stated conditions, whare the total time considered includes operating time, cetive repair time, administrative time, and logiutic time.

AVERHGE OUTGOING QUALITY LIMIT: The average maximum fraction defective leaving an acceptance eampling plan.
balance of international, payments: a systematic record of the eco.،omic transactions of a country during a given period which involve a t-ansfer of currency between the country's residents ar.a the residents of the rest of the world.
batesian statistics: eatimatea of (prior) probability distributions, subsequently revised (posterior diseribution) to incorporate new lata by means of bayes equation:

$$
P\left(A_{2} \mid B\right)=\frac{P\left(B \mid A_{1}\right) P\left(A_{1}\right)}{P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)}
$$

BREMOULLI PROCESS: A random grocane that yialds an either-or outcrae on each trial with known probatillty or occurrence, and reaults fror titiatically incependent trials.

BIAS: An unbalanced range of error such that the average error is not zero.
aIMARY: A characteristic, property, or condition in which there are but two possible aliernatives; e.g., the binary number system using 2 as its base and using only the digits zerc (0) and one (1).
bINOMIAL DISTRIBUTION: The distribution of many two-valued processes such as heads and tails, or acceptable and unacceptatle unita.
Prob ( $x$ heada in $n$ tosses $)=\frac{n^{1}}{(n-x)!x^{r}} P^{x}(1-p)^{1-x}$

BIONICS: The application of xnowledge gained from the analyais of $:$ :uing system to the creation of hardware thet will perform functions in manner analogous to the more sophicticated functions of the living system.

BIT: A unit of information capacity of a storage jevice.
BLACK BOX: An unknown and often inknowable mechanism or syetem whose operation is judged solely by observation of its infuts ind outputs.
bOOLEAN ALGEBRA: A process of reasoning, or a deductive system of theorems using a syabolic logic, and dealing with classes, propositions, or on-off clicuit element.s. It amploys symbols to represent operators such as AND, OR, NOT, EXCEPT, IF...THEN, etc., to purmit mathematical caiculation.

SRANCH: The selection of one of two or more possible paths in the flow of control based on some criterion. The instructions which mechanize this concept axt sometimes called branch instructions; however, the terms "trannfar of contrcl" and "jump" are more widely used.
break-even point: In engineering-economic stuaies, tie point at which twe alte civer become equaliy econmical by aitering the valug of one of the variables in a situation.
aUDGET: A proposed plan by as. organization for a given period of time reflecting anticipated resorrces and their extimateas expenditure in the pursuit of obtgetives.
building bloce CCST: Cie kind of a rough eatimate of the cost of an slternasive iou planning purposes. The etimite is not time-phased and does not provide for variat lons such as in the manning of the unit or zost-guantity relationships.
青-4
 the sampling distribution of the means, $x$, can be approximated cloeely with a normal distribution. Furthereore, this theorem also applies when $n<30$ provided that the distribution of the population fron which ths amples are taken ran be ipproximeted closely uith a normal curve.
cshrarinyt the state of absolute confidence in which outcomes are cure and predentined.

Cxitutus paritus: The aseuption that all conditions other aman ase one mpecifically being analyzed ramin conetant or unchanged.

Cil soman rext $A$ statistical test for relatednes of two discrete variables, my height and might of officars.

CLEAR: To erace the contente of a storage device by replacing tre contente with blanks, or zeroj.
 taken $c$ at $a$ time if tequanie is igrored.
$\left(\begin{array}{l}\left(\frac{1}{c}\right)=\frac{n!}{(n-c)!c!}\end{array}\right.$

Cominmotisilify: the oapubility of two qualitios or values to be menured by a maningful relevant common index. For exmple, mehise guns and rifles are comanourable -ither in dollar cont or in offactiveness, e.g., ennent cmevaltien. However, machine guns and friendly casualtien are not conmensurable in teras of dollars.

COMPILER: A confuter progran more powertul than an aseabler. In adiltion to its translating furction which is generally the ase process as that uaed in in asembler, it is able to replace certain item of inpat vitn astias of inatructions, usually callod subroutines. This, whert an sismbier trinsiates item for ites, and produces as outpit the ams number of instructiors or constants wich were put into 1t. a complier vilil do more than this. The progran wich reaults from compliing in transiated and expanded verision of the original.

Conttrens a device capeble of acrepting information, arplying pratcribed proceseds to the informatior, and mppiying the resulte of thete processes.

CONDITIONAL PROBABILITY: The probebility that A will oceur, given that $B$ has occurred: $P(A \mid E)$.

CONFIDENCE: The degree of trust or aseurance placed in a given rueult.

CONPIDENCE INTERVALS: A measure of effectivenes in testing, expressed in quantitative terms; e.g., the value of a apecific factor (yariable) lies within apecified interval 950 of the time.

CONFIDMCE LEVEL: The probablifty that tho true value of a parameter liea within a etated interval.

Console: $A$ portion of the computer wich may be used to control the mechine manuliy, correte errore, deternine the status of machine circuite, fegiaters, and counters, determine the contents of etorage, and manuliy reviae the contents of itorage.

CONSTAMT DOLLARS: $\lambda$ itatiutical serien it eaid to be axpreamed in "constant dollari" when the cifact of changes in the purchasing power of the doller has been yamoved. Usually the data are expressed in terze of nomesected year or eet of yearc.

CONSUKER PRICE INDEX. A menure of the period-to period fluctuatione 1 r. tha prices of a quantitatirely conetent market backec of goode and services erlected at repretentative of apecific level of living. Hence, it can be thought of as the cost of malntiliniag a ixed acale of living.

COHSTN.IET: $k$ resource limitation, which ma be specijic (e.g., the supply of sixilled minporar or a partioular metali. or gonersi (e.g., total avallalle funde).

COHSURER hisk. The probability of accepting an itam which ia, in fact, unatiffactory.

CONTINGEACY AN.EYSI3: Repetition of an analysis with different gualitative assumptions such se theater, or type of conflict, to determinc their effects on the resulte of the initial analyale.

CONTRACT DEFINITIOA PRASE (CDP): The epecification, in competing contracting etudies, of detailed twehnicil performance ciarazteribtice, coets, and timand-cont schedalet for engineering devalopant and prodection of a military end item.

CORmsumions In general sease in statistics, correlation denotes the romralation of covariation between two variables.

CORnsLATIOA CORFFICIEAT: $A$ numbor that attempts to measure the interdependency of variabies.
cosr. coods or services used or consumed.
Cost Munrsis: The syetematic avarinetion of cost (total resource inplications) of interralated artivities and equigmant to deternine the relative coste of alternative mystens, organisations, and force tructares. Comt analysis is not deslgned to provide the prectse meseurasents required for modgotary purposes.

COST CAgsconiss: Three major progran cost cacegeries are: (1) semarch and Development. Those program costs primarily misocinted with reuench and dovelopment efforts, including the develorment of a new or improved capability to the point of operation. These costs include oquipment costs funded under the prose appropriations and related Miltary Construction appropriation costs. They exclude coste that appear in the Militery Persennez, Operation and Minntenasce, and Precurcment appropriations.
(2) Invuethart, Those-progran-coste required beyond the deveropment phase to introdece into oparational use now capability, to procure initial, additional, or replacement equipeent for opezational forces or to provide for major modification of an existing capability. They include froeuremant appropristion costa and all Whilary consluction appropriation coste excect those aftociated with Rad. That exclude Rotar, Military Parsonnel, and OGM appropriation costa.
(j) Dperating. Thoso progran costs necesalary to jparate and mintalf the capability. These costs include Military Permonnel and OGM appropriacion coste, inciuding funds for obtaininy replenianment epares frow tock funds. They axclude korte and military constrastion appropriation corte.

COSt EfRCTIVEwzs Amalysis: The quantitative examination of aliernative prompective aystem for the purpose of ldentifylng preferred ojetem and lis associated equipwnt, orgenimaelem, tec. Aise exanimation aims at Euding unawer to a question and nut af futtifying a concluaion. The apalytical process includen irade-oiss cmong alternatives, design of aditionel al'ornatives, and the mateuresent of the effectiveress and colt of the siternative.

COSY ESTIMATE: Thy estimated cost of a component os 2ggregation of components. The cnalysis and determination of cost of interrelated activities and equipment $\ddagger$ scost analysin.

COST ESTIMAIING RELATXON (CER) : A numerical expression of the link betwocn a phymical charactartstic, remonrce or activity and a perticular cost aspoctated with $1 t ;$.g., cost nf aircruft maintenance per flying hour.

COST INPORMATION REPORTING (CIR): A uniform eyntem for collocting and processing cost and Inlated datn on mejor iteme of military oquipment. Its purpose is to masist both industry and governvient in planntng and managing weapwn ayetems development and production activities.

COST MOEEL: An ordered arrangament of data and aquationa that permits tranalation of physinal resourcae into comts.

COST SENSITIVITY: The äegree to which costs ie.g., totai systems costs) change in response to varyine assumptions regaraing future weapon aystcm characteristics, operationsl concepte, logistic concepts, and force mix.

CRITERION: Test of preferredness needed to tell how to choome ore alternative in preference to anothez. for each alter. native, it comparas the extent to which the objectives are attained with the costz or resou-ces used.

CYBERNE:YCS: The Fielo of technology involved in the comparetive study of the contro? and intracomunication of infurmation handiing machines and nervous symems of animals and man in order to urierstand and improve commanication.

DECn: A collection of funched cards, commonly a complete set of cards which have been punched fir a defnite service or curpose.

DEPKPCIATION: feclin) in the value of capital asseta over time as a resuit of business operation and/or technological innovition. The Internal taveaue Service defines depreciation as the graduai. exhsastion of proparty employed in the trade 0 business sf a caxpayer-much exhaustion comrising wear rad tear, derwy or ferdine from natural causes, and various forms of obsoleseence: Accelerated depreriation is any formula for derrecietion permitted by the IRS thet provides for a mose ranic write-off of reprodusible assets than would be possible by using ratea reflecting true economic deprectat $\ddagger$ on. Accelerated deprem ciation provides economic infentives for investmert in plant and equipment.

DESIGN ADEGUACY: Fxobrbility that the system will succeasfully accomplich its miseion, given that the system is operating within deaign apecifications.

DETERNINISTIC MODEL: A model that permits no uncertainty in the magnitudes of aither inputs or outputs. An example from gunnery is:

$$
w=\frac{R M}{1000} \text {, where }
$$

w is the lateral distence at range $R ; R$ is the ranga, and $M$ is the angular meassre in mils of the arc unbended by $W$ at range $R$. For any set of given values for $R$ and $M$ there is one and only one vaiue for W. Many determinisilc models use an average as a constant value input.

DIGITAL CDMPUKER: An electronic device that performs xathematical oparations on numhers which are expressed at digits in some sort of numerical system.

DIMINISHIMG RETURNS: An increase in some inputs relative to other fixed inputs will cause total outpit -0 increase; but after a point the extra onjput resulting from the same additions of extra inputs is likely to become less and less. This falling off of e:tra returns is a consequence of the fact that the new "doses" of the varying resourses have less and less of the fixed resources to work with.

DISEURSEMENTS: The amount of expenditure checks issued and cash payments made, net of refunds received.
documentailobs The group of techniques necessary for tine orderly procentation, organisation and comanication of recordec mpecialized knowledge, in order to maintain a complete record of reasone for changes in variables, cocumentation is necessary not so much to give maximum utility as to give an unquestionabie historical reference record.

COWN TIME: Total time auring which the system is not in acceptable operuting cordition. Down time can in turn be subdivided into a number of categories sach as active repain time, logistic time, and administrative time.

DYNAMIC PRCPRAMMING; In a multistage decision procesa, a systenatic method for searching out that sequence of decisions (policy) which maximizes or minimize some piedefined objective function. The method is based on Bellman's Principle of Cptimality which states that: "An oltimal poiicy has the prcperty that whatever the initial siate and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state sesulting from the fixst decision."

ECONOMETRICS: The branch of economics that-msen mathomatics and statistica to build and analyze conomic models, to explain economic phenomena, and to estimate valuen for economic variables. The statistical mothods used are especially casigned to deal wth timeseries data.

ECONOMIC GROWTH: The sustained increase in the total and per capita output of a country as maasured by tes grose natienal product (in sonstant prices) or"othnr outpat etatietics.

ECONOMIC LOT SIZE: The CObt-mintmizing-size of order to buy or batch to make.

ECONOMIES OF SCALE: Efficiencies, vaualiy expressed as raduction in cost per unit of output, that result from increaging the size of the productive unit.

ECONOMY: Jesng the least amont of resources to attain a given output or fixed objective.

EFFECTIVENESS: The dagree or amount of capability to accomplish some objecti:s(s). Various criteria (s.g., targets destroyed, tonnage moved, etc.) might be used to provide a measure of thia amounc of capability.

EFFICIENCY: Attaining the yreatest possible output from a given amount of resources.

EMPIRICAL PROBEBILITY: The observed relative frequency; e.g., if $d$ is a random sample of eise $n$ drawn from a stable universe possessing a siver trait, the empirical probability that an element drawn randomly from that universe is estimated to be $d / n$.

ESSENTIAL ELEMENT OF ANALYSIS: A quegtion specifieally demigned to obtain data that will provide an ancwer in a particular problem area, or information required to condect an evaluation in a particular functional azea.

EXPECTED VALUE: The probability of an event-occuring multiplisd by the payoff aysociated wich its occurrence.

EXTERNAL ECONOMIES: Those benefits accruing from a grouping of industrial activities or from public facilities. One textile plant benesits from the existence of sereral textile plants in a vicinity.

EXTRAPOLATE: Estimate by trend projection the unkno:n Values that lie beyond the range of known values in a series.

BAItuRE RATEs The number of items replaced per unit time due to failure of that item.

FRABIBILITY STUDY: (1) A Etudy of the applicability or deadrability of any panagement or procedural gystam from the standpoint of wivantages vinceus disadvantages in any given cases (2) aiso a ftudy to determine the time at which it would be practicable of denirable to install mach a ay tem when determined to be acpantagaous; (3) a tudy to determine whother a plan is capabic of being accomplishad auccensixuly.

FIEHD EXPERIMETI : A mode of research involving the responae of permonsel in field aftuation or environment to a test aitwation. A field sxperimpnt is conducted undur statiftically controlled condition to dincover the capabilities and limitacion of nome military plan, organization, or material.

FIXED coste: Thone lements of cont that do not vary with volume of production.

FIEEL POINT ARITHMETIC: (1) A mathod of calculation in which operations take place in an invartant mannes, and in wich the computer does not consider the location of the decimal point. (2) A type of arithmetic in which the operanis and results of all arithmati = operations mant be properiy ceslad so an to have a myitude between certain fixed velues.

FLOATIEG POINY ARITHEESIC: A reothod of calculation which autometonlIy accounts for the location of the decimal point. This is accomplished by hanciling the number as a signad mantisan times the radi" raised to an integral exponent; e.g., the decimal numbes +88.3 might be written an
$+0.88300000 \times 10^{2}$.
FLOW CBART A graphic representation of the major etwps of work in a process. The illustrative symbols may reprenent documante, machines, or actions taken during the prosese. The area of concentration is on where or who does whet rather than on how it in to be done.

FORCE STRUSTURE ANAIYEIS: The analyele of pxoponed forcen to obtain $k$ picture of resource lmpilcation for pianning,

FORCE SMRUCTURE COSTING: The detezmanation of the resource implications (manpowar, materiel, support, training, etc.) in dollar term of a given force etructury or change to $1: 4$

## FOBCAsTING: Attewpting to define possible eoursea ef future

 events. May include estimating probabilities aseociased with each course of events.FORTRAR: A programing language designed for probleme which can be expreseed in algebraic notation, allowing for exposientiation and up to thrse subecripts. The soxcranw complier ia a routine for a given machine which acoupte program writton in Forrman source language and produces a machine languaga routinc objoct progym. poxpran II added considerably to the pownr of the oriftnal language by giving it the ability to define and use almost unilmited hierarchies of subroutines, all sharing a common storage region if desired. Later improvements have added the ability to uee toolean expressions, and some capabilities for inserting symbolic machine language aequences within a nource pregram.

FRES TIME: Time during wich operational use of the aystem is not required. This may or may not be down time, depending on whether the syetem is in operable conditior.

FREQUENCY DISTRIBUTION: An arrangement of statistical data that divides a series of items into classes and indicates the number of items falling into each class. An example is the incom distribution in which the number of persorn falligg within cach income class is stated.

FULS, EMPLOYRENT: According to the President's Council of Economic Advisers, the full employment level is roached when no more than four percent of the civilian labor force is unemployed.

GAMING: $A$ mathod of uxamining poiscten and atrategies under the conditione of a partisuyar acanarto, allewing factoz: (human and chance) to vary in the ecomario.

GANTT Chart: a cnart of activity plotted againat tian usually used to schedule or reserve resources for apecific ectivities.

GROSS NATIONAL PRODUCT (GNP): Total value at market pricen ce $a l l$ goods and acxvices produced by the nation' a economy during a period of one calendar year. as celvulated quarterly by the Dopartmant of commeren, yioss national froduct is the b: oadest available measure of the rate of conomic activity.

GROSS PRIVATE DONESTIC INVESTMENT: One of the major componente of Gisp, groses private domestic investment includes annual outlaye for producers' durable gocds (machinery and equipmont), private now construction of both resijential and non-residential buildings (including those acquired by owner/occupants). and the net change of businesp investmoni in inventories.
gevirisic: pertaining to syatmiatic trial and error methods of obtaining folutions to prciolems.

HIsTOGRAM: A graphical representation of a frequency distribution by meane of rectangles whose widths represent the class intervaln and whore haights represent the corrasponding Erequencies.

BOLKARTM: A widely used syatom of encciling alphanumeric inrormation onto cards, honce "Eollerith" cards is synonymoue with punch cardm.

Homosyrisis: ane dynamic condition of a syetem wherein the input anc output are baianced precisely, thus presenting an appearance of no chanje, hence a steady state.
gUNAT FACTORS manysIS: Individual, behavicral, cultural, or social system and their relation to organizations, procedures, and material.

EUMAN FACTORS ENGIMEERING: The development and application of scientific methods and knowledge about himan capabilities and limitations te the selection, cesign, and control of operations, environment, and naterial, and to the sulection and training of pernonnul.

HYSTERESIS: The lagging in the reaponse of a un..t of a systen bahind an increase or a decrease in the strength of a signal. It is a phenomonon demonatrated by materials which maka their behavior a function of the history of the environment to which they have been subjected.

IMPEIED AND INDOCED OUFPCT: Implied output is that which can be estimated directly from the nature of the project including all activities without which the projoct couid not function. Induced output covers the interindustry, or intermediate, requirements of those activities that supply the project and those which purchase $5 r$ use its output; usually mesured by using an input-outpit table.

INCOMENSURABILITY: The inability of two qualities or values to be measured by a meningful relevant common incex.

INCREMENTAL COST: The added cost of change in the level or natura of activity. They can refer to any kind of change: adding a new product, changing distribation chameln, adding new machinery. Although they are sometimes interpreted to be the sume as marginal cost, the latter has a much more limited meaning, referring to cost of an added unit of output.

INDIVIDUAL SYCTEM CUSTING: The determination of the total resource implications of a systern (oxganization) without consideration of the interaction of the systur (orcandzation) as part of a force structure.

INDEX NUMBER: $A$ magnitude exprasecd as a percentage of the corresponding magnitude in some "base" period. The base is usually designated as equal to 100.

INDIFFERENCE MAP: A two-dimensional graph denoting an individual's preference system with respect to two economic quantities. The body of the graph consists of a fanily of ncnintersecting lises convex to the orjgin. Each line of che family representa an equally desirable mixture of the quancities in question.

INDUSTRIAL DYNAMICS: A philoophy relating to similation on a syetera sanceived as a network of flows and feedbock loops intarocmectirg a number of inventories or levels and remicrifing to changos in it envirarment.

INFLATION: A rise in the yeneral level of prices. (Pure inflation is derined as a rise in the general level of prices unaccompanied by a rise in output.)

INFORMATION SYSTEM: A combination of personne:, efforts, forms, formats, instructions, procedures, data, ccmmunication facslities and equipment that provides an organized and interconnected means--automated, manual, or a combination of these--for recording, collerting, processing, transmitting and displayinc information in support of specific functions.

INFRASTRUCTURE (SOCIAL OVERHEAD CAPITAL: The foundation underlying a nation's, region's, or community's economy (transportation and communications systems, power facilities, schools, hospitals, etc.).

INPUT-OUTPUT ANALYSIS: A quantitative study of the interdependence of a group of activitiesbased on the relationship between in. its and outputs of the activities. The basic tool of analysis is a square input-output table, interaction model, for a given period that shows simultaneously for each activity the value of inputs and outputs, bs well as the value of transactions withir each activity itself. It has been applied to the economy and the "industrios" into which the economy can be divided.

INSTRUCTION: A set of character; which defines an operation Logether with one or more addresses, or no address, and which, as a urit, causes the computer to perform the operaison on the indicated quantities.

INPERACPIOA: The diEference between a whole snc the suple gur of itt parte.

INrerporan: setimate the intermadate value in a sexies of $n$-hers by uring formala that relatea the unknown value to the pettern of known ralwo in the enries.

INTHMEIC PIOMEILITY: The probability that the gyetem ia opecating satisfactorily at any point in time when used under the teted condition, where the time roneidered if opernting tim and active zepair tize.

Inveruerri costi the cost beyond the Research and Developmat phace to introduce now capabtlity into opazational uec.

Isocompous: Graphical sepresentation thowing all combinations of lapute that priduce equal outputs.

ITERHIVE: Describlng a procedure or procese which repeatedly axecutea sexies of operations antil some condition is satistied. An iterative yrocedare can be inplefiented by a loop in a routine sach iteration or cycie used data from the preceding cycle and sopplies data to the following

180morpaic: similar in pattern.
JOMN COBT8: Costs that are shared by several departmante or activities, such as an airbase serving fiehter squadrons and transport plames; or a dam providing power, izriqiation, slood control, and recreation.

JOIMT PROAABILITY, The probability that both event $A$ and evert 8 will occur. If $A$ and $B$ are indemendent, it is the product of their eeparate probabilities.
proms univeras: An idealized abstraction from the real world, in which the probabilities of every element in the population are known.

LARGUARE: A ysten fox representing and comontcaining inforation which la intelligible to apectfic mechine. Such a lenguage may include inetructione which define and dizect machine operations, and information to be recorded by or acted upon by these mehine operatiuns.
marim squares: Experimantal designs to avoid compounitng the effects of inpuce while reductng the number of obstrvation (and the coct) requised to achieve a yatisfactory confidence level.

$$
A-15
$$

 costs of equipment. Generaliy uned to predict or describe the decreasn $t n$ the cost of antt an the nuber of :untm produced increaces.
 to streistical date, so called-becavo the sus of the equared dewlation of the caleniated from the obeerved variablew is minime. "pact aquares also refern to the critarion that, when lollomed, yielde thie realt.

LIANILITIEs; The amounte owed for goode and survitees revérve, other aseete coquired, and pertormanos aecopted. rula includes umounts odninistratively upproved-for paymentes of granta, ponsiong, evards, and other indobtednege net involving the furnishing of goods and servicus.
 the mont effective allocation of ilmited senourcee betwean competing demunds. Mathemetcal requiremente tex applicability of lisear pregramatng are: (1) both resources and activities that usa them are noa-negative quantities, and (2) both the objective (e.g." profit or cost) and the rextrictions on $j$ ts attatnment are expressible an a siten of linoar equalities or tnequalities ( $y=2+b x$ ). Linear programating has been employed in areas such as the determination of the best produc: mix and che selection of ieast-cost transportation routes.

LOCARITHM: The logarith of a number is the exponent or power to which the logarithaic base wost be ralued to equal that number.

LOGARTHMIC scats. When the vertical axis of a chart is laid off in terme of the logaxtthen of natural numbers the errangement is known as memilog chart and the vertical ecale is called a log eale. A curve plottod on such chart repxesents not the nombers in the series but the logailthms of these numbers. Changes in the slope of such a curve show changes in the percentage increses or decresse of the ortginal aertes. As long as there ta no change in direction, equal distance: on the vertical scale corrempond to the same percenteye change in the original serien.

LOGISTIC TIEE: That portion of down time during which repair is delayed solely secause of the necesetty of malling for replacement part or other aubdiviston of the fytem.

LOOP: A self-rontained sefief of thetructiona tn which the lant instruction can modify and repeat itemplentila terminal condition is reached.
macmine INNGUACE: $A$ system for expressing inforantion which is intelligible to apectftc machine. Such a language ay include instructions which define and direct nachine operalions, and information to be zecorded by or acted upon by these machine operations.

MinNTMAMBEIITY: Probability that, when maintenance actien is initiated under stated conditions, a falled systan will be restored to operable condition within a specified total down time.

Magrung Costi Revimos: Costa incuryid or expected to be incurred in the production of an addttional unit of output. Marginal reverice is revenue receival or experted to le received from the sale of an additional unit of output. Tc muxind te ite profits, a Inri has to extend production to the point where marginal revenue equels merginal cort.

MARGIMAL COIPUR OR PRODUCT: The output to be derived from the use of an additional untt of a productive resource (lan', labor, sapital, of meterials).

MARGINAL UYILITY: satsofaction derived from the last or additicnal exponditure. Additional incramente of expenditure for a given pruduct tend to result in declining additiors of atility. If neility is to be maxizized, the saisisfaction derived from the last dollax apent on each product or service should be the pane.

MSTER PLMMAIIVG BUDGET: The ottimated cath recespts and disbursements classffied as to causes (contra accounts) and spread over the future periods in which they are predicted to occur. For comparability with other plans, each estimated cash flow is converted into an expected value, adjusted for risk and diminishing utility, and diecounted to its present value.

MATHEHATICAL MODEL: The ganeral characterization of process, object, or concept, in terms of matheaatical mabols, wich onables the rilatively simple manipulation of variables $t u$ be accom, lisied in order to detertine how the process, object, or concept would behave in aifferent situationt.

Mrgix: A rectangular erray of terman catled elaments. It is used to facilitate the stody of problena in which the relation between these lements ia fundamantal. A merix i usually cadable of heing subject to a themitical operation by weans of ar operator or another matrix according to prescribed rules.

MEAN: The most common measire of cantral tanduncy equal to the sum 0 E the observed quantities dividad by the number of observed quantitise divided by the number of observations.

MEDIAN: Halfway point between the two and posnts of an array.
MISSION: The specific task or responadbility that person or a body of persons is assigned to do or fulfill.

MISSION RELIABILITY: Probability that under stated conditions, the system will operate in the mode for which :- vas d designed for the duration of a mision, given that it was operating in this at the beginning of the mision.

MODE: A somputer syatom of data representetion. The velue in a set of values that occurs with the greatert frequency.

MODEL: A simplified representation of an operation, containing only those aspects of prisary imortance to the problsm uncer study. The means of representation may vary from a set uf mathematical equations or a computer program to a purel/ verbal description of the situatio.s. In cost/effectiveness anilysis (ur any analysus of choice). the role of the modei is to predict the costs that each alteznative would incur and the extent wo which each wouid attain the objective.

MONTE CARLO METHOD: Any procedure that involvef statistical sampling techniques from distribution of possible outcomes for cbtaining a probabilistic approximation to the solution of a mathematical or physical problem. Monta Carlo Mrenods are often used when grat nufber of variables are present, with inter-relationships so extrersly complex as to forestall straightforward analytical handing. This method generaily involves the use of simulated data acquired by putting random numbers through transformations such that the data imitates significi.t aspects of a situation:

MONOTOMICITY:. .n the matnematical sense, monotonicity refers to the conitancy of a type of change. For example, if a curve is rising (falling) throughout the range of interest we say it is a monotonically increasing (decreasing) curve

MOVING AVERAGE: A series cf averages Ereqiently used to reduce ilregularities in time series by selecting a set number of successive iters in the series, computing the average. then dropping the first item and adding the next succeeding one, etc. The priseas is intented to average out random moviomitio and, thereoy, revas underlying trende.

Mrunily ExClusive: Describing any event the occursen: of which precludes the occurrence of all other events under consideration.
marional Incous: The money masure of the overall annual llow of goods and services in a commantty equal to the un of compenaation of cmployees, proifte of corporate and unincorporated enterprises, net intorest, and rectel income of persons. Is also equal eseentialiy to CUP minus (1) allowane for dopreciatlon and other cipital consumption, and (2) indirect bueimens tac and mon-tcx 11Ability to go rernment.
muerical aralysis: the muip of methoda of obtaining deaful quantltative solutions to matheratical problome, regardiese of whetber an analytic solation exists a: not, and the ctudi of the errore and bounds or. errors in obtainisg such solutions.

OBNETIVE: The purpose to be achieved or the pesition to be obtained. Objectives vary with the level of suboptimization of the study.

OnJECTIV Fuscrion: $A$ mathentical statesiont of goals, uevally proilt maxinazation.

OPERND: $A$ cuanity antering or arising in an inatruction. An operand my be en argumat, a ceant, a pxrameter, or an indicetion of the locition of the naxt inetruction, as opposed to the epuration code or symbol iterlf.

OpERATIHG Cost; The recuzring cost required tc operite and mantain an cperational capability.

OPRMTING TINE: Tine during which the system is operating in anner cceprable to the operator, although upatisfactory operation is scmetimes the result of jufigeert of che mintenance man.
operatiomal reanimess: The probability that, at any point in timas the sytea is either operacing satisfactorily or ready to be placed in operation on demand wien used under tented conditions, includins teted allowable warning time.

Operarions Restamen: The use of aralytic methods adoped from mathematice for solving operational problete. The object!ve is to provide menagement with a mure logical tenis for making sound predictions ard decisions. Among the coxan sciestific techniques used in operatiluns research are mathemtics? programang, stan!eticil thecisy, infor.stion theorv, geme theory, monte earlo methods, and queximg thecry.

A-19

OPERATOR: t mathematical symbol whtch repxesents a mathematical process tu be performed on an associated operand.

OPPORTUNITY COST: The cost of foregone opportunitien: the sacrificed amount of money, equipmant, or unite of production chat could have been realized by a faparate course of action (alternative) with the ame tine and effort expenced.

OPTTMIZATION: The attainment of the best possibie rassit, i.e., the maximization (minimization) of some desirabia (undesizablel criterion measure, subject to the constrainte imposed on the choice of sointions.

URDINATE: The vertical distance on a grapis: i.e.e the distance from the horizontal axis.

PARAMETER: A :onstari or a variable in mathematics which remains co-stant during some calculation. It ic generally a definable characteristic of an item, device, or system,

PARAMETRIC ANALYSIS: Parametric analysis assumes a range of values for each parameter which will bracket the oxpected values of that parameter, and a solution to the p:obblem is obtained for earh set of assumed parumeter values.

PAXOFF: The gain to be derived if a particular conrse of events deve?ops.

DERIPHERAL EQUTENAT: The auxiliary machines which may be placed inds, tor control of the central computer. Examples of this are car? readers, card punches, magnetic tape reeds, and high-speed grinters.

PEPMJTATIONS: The number of possible sequences of $n$ items taken $c$ at a time.
$P\binom{n}{n}=n!\quad P\binom{n}{c} \frac{n!}{(n-c!!}=C\binom{n}{n} c!$

PLANNING: The aclaction of joursen of action through a systematic conaderation of alrernatives $\pm n$ order to attain organizational objectives.

PLOTTER: A visual display or board controlled by a computer in which a dependent variable is graphed by an automatically controlled pen or pencil as a function of one or more variables.

PRESEAT VALUZ: The estimated present worth of a $s$ tream of future bencfice or costs arrived at by discounting the future vaiues, using an appropriate interest rate.

PROBABILISTIC MOEZLL A model that makea allowances for randosiness in one or more of the factors that determine the outputs of the model. For example, an inventory model that optimizes an inventory policy to avoid inventory shortages is probabilistic if it talses explicit account of uncertainty over time, in the distribution of demands on the inventory. On the other hard, the model would be deterministic if it assumed that the rate of demand against the inventory is always the same (usually the estimated average demand). In this example, a deterministic model would most probably give answers that would lead to bad inventory policies. However, there are times when the use of a deterministic model in a yrobabilisite gituation does no harm.

Probability: A number between 0 and 1 that, when assigned to an event or occurence, expresses the likelihood tha: the event will occur.

PROBABILITY DISTRIBUTION: Tables howing relative frequenciea of each subset into which the total population is divided; a table showing the probability ur occurrence of aach posaible value.

PRODUCER'S KISK: The projability of rejecting an item which is, in fact, satisfactory.

PROGRAM: (1) A plan or scheme of action deaigned for the acconplishment of a definite objective that is specific es to the time-phasing of the work te be done and the means proposed for its accomplishment, particularly in quantitative terms, with respect to manpower, material. and facilities requixements; thus a program provides a basis for budgecing; (2) a segment or element of a complete plan; (3) a buiget account classification.

PROGRAMMING: Tine process of translating pjanned-mititary force requiremenis into spectific tium-phasad, sheduled actions, and of identifying in relatively prexime rerme the resources recruixed. It is the bridge between planning and budgeting.

QUANTIFY: To qualify with respect to quantity. In amalyais, to translate observed physical relationships into analogoua mathematical relationships.

QUEUING THEORY: A theory that deals with the analysis of costs and effectiveness when items appear with some randosment for processing at a facility with a capacity for processing simultaneously fewer iteas that may be waiting at a given time. The costs are costa of waitirg and of providing the cafacity to reduce the amount of waiting. Examples of queuing problems are: (1) determination of a number of checkout couniers at a aupermarket that minimises the gum of dota of customer dissatisfaction if they must wait in line and costs of providing additional che-kers; 12) determination of the capazity of communications capacity and of delays in the processing of messages.

RANDOM ACCESS: Pertaining to the process of obtaining infnrmation from or piacing information into computer storage where the time required for such access is independent of the location of the information most recently obtained or placea in storage.

RANDOM NUMBERS: A sequerce of digits in which each digit has an equal probability of occurring in eaeh position, wholly independent of unich aigite appear sisewhere in the sequence.

RANDOM NUMBER GENERATOR: A special computer roatine designed to produce a random number or series of random numbers according to specified limitations.

RFNDOM SAMPLE: A sample selected, from a population to be tested, in suci a manner that every element in the population has an equal chance of being chosen for the saxple.

RANDOM VARIABLE: A function defined on a sample space. It is called aiscrete if it assumes only a finite or denumerable number of yatues and conimuous if it assumes a continuum of values.

R CHARTS: Charts of the range of small samples, useful. in moritoring change in dispersion in the product of a system.

REAL TIME ORERATION: The use of the computer as elemert of a processing system in which the times of occurrance of data transmission are controlled by other pertions of the system, or by physical events outside the system, and cannot be modified for convenience in computer programming.

REDUNDANCY: The exiscence of more than one means for accomplishing a given task, where all means must fail before there is an overall failure of the syetem.

RELATIVE FREQUENCY: The ratio of the number of observations (elements) in a class (subset) to the total number of observations constituting a population (universe of set!

RELIABIIITY: The probability that the system will perform satisfactozily for at least a given period of time when used under stated conditione.

REORDER LEVEL: The inventory balance at which a replacement ozder is placed.

REPAIRABILITY: The probability that a failed system will be restored to operable condition within a specified active repair time.

REPROGRAMMING: The reapplication of funds between budget activities or line items within a single appropriation account.

REQUIREMENT: The need or demand for personnel; equipment, facilities, other resources or services, expressed in specific quantities for specific time periods.

RESEARCH AND DEVELOPMFNT (R\&D): Basic and applied research in the scierces and engineering, and the desiry and development of prototypes and processes. Exciudes routine product testing, market cesearch, sales promotion, sales service, and other non-tecinological activites or technical services.

Basic research includes orginal investigations for the advancement of scientific knowledge that do not have specific practical objectives.

Applied research is the practical application of knowledge, material and/or teshniques toward a solution to an existent or anticipated military or technological requirement.

Development includes tecinical acttuities of a nonroutdne nature concerned with translating research findings or other scientific knowledge into prevuctg or processes. Development does not include routine technical services or other activities exciuded fron the above detinition of resaarch and development.

RESEAFCH AND DEVELOPMENS (K(AD) COSTS: The cost of developing a new capability to the point where it is ready for procurement lor operational units.

RESOURCE IMPACT: The cost of adopting a course of action stated in measurable terms. Rssource impacts cannot aiways be reduced to dollar terms.

REVOLVING FUND: A fund estaklished to finance a cycle of operations to which reimbursements and collections are returned for reuse in a manner guch as to maintain the principle of the fund; eg., working-capital fund, stock fund.

RISK: As used in cost-effectiveness axalysis and operations research, a situation is characterized as risk if it is possible to describe all possible outcomes and to assign meaningful objective numerical probability weights to each one. For example, an action might lead to this risky outcome: a reward of $\$ 10$ if a "fair" coin comes up heads, and a loss of $\$ 5$ if it comes up tails. Another example, $50 \%$ of all missilez fired can be expected to land within one CEP of the target.

ROUTINE: A set of coded instructions arranged in proper sequence to direct the computer to perform a desired operation or sequence of operations.

## SAMPLE SPACE: The range of reasible solutions.

SAMPLING: The process of determining characteristics of a population by collecting and analyzing data from a representative segment of the population.

SAMPLING ERROR: That part of the variation in the data resulting from an experiment that is not explained by the variation in the factors controlled during the experimentation.

SCENARIO: A word picture of fixed sequence of evencis in a defired environment.
sensitivity anaiysis: Repetition of an analyzis with different quantitative values for cost or operational assumptions or estimates such as hit-kill probabilities, activity rates, or RED costs, in order to determine their effects for the purs oses of comparison with the resulta of the basic analysis. If a suali change in an assumption results in proportionately or greater change in the the results, then the results are said to be sensitive to that assumption or parameter.
sETs: A collection of items (elements) chosen as pertinent.
SHADOW PRICE: The shadow price of a factor is a measure of its opportunity cost or its marginal product. For example, when unemployment is widespread, the opportunity cost of labor may be near zero, so that the shadow price of labor may be well below the prevailing wages of those workers who are actually employed.

SIMULATION: The representation of physical systems and phenomena by computers, models, or other equipment. The model or computer representation is manipulated to imitate significant aspects of a situntion.

SPURIOUS CORRELATION: Accidental correlation having no causative basis and withcut expectation of continuance.

STANDARD DEVIATION: A measure of the dispersion of observed data. Mathematically, it is the positive square root of the variance.

STANDARD ERROR: The gtandard deviation of a group of measures CI the same characteristics (often termed a "statistic" or a "parameter"), each obtained frou a distinct sample drawn from larger "universe" or "population".

STATISTICAL BIAS: If some samples or observation dat are more likely to be chcsen than others, or if subjective methods are used in selecting sample data, the results are sonaidered biased.

STATISTICAL DECISTON THEORY: Theory dealing with logical analysis of choice among courses of action when (1) the consequence of any course of action will depend upon tise "state of the world", $\{2$; the true state is as yet unknown, but (3) it is possible at a cost to obtain additional information about the etate.

STOCHASTIC PROCESS: The statistical concept underiying the prediction of the condition of an cloment of a larger group when the probable average condition of the larger group is known. For example, assume that an armored division, under certain circumetances, has on the average a certain number of tanke daadlined for unacheduled maintenance. The probability that any given tank undor the ame circumetances will be deadlined for unscheculed maintenance on apecific day fs described by a stochastic process.

STOCKOUT COST: The cost dua to disrupted schedules or to inability to satisfy customers because items ordinarily stocked are noi available.

STORAGE TIME: The time during which the system is presumed tu be inoperable condition, but is being held for emergency; e.g., as a apare.

SUBOPTIMIZATION: Optimization refers to a selection of a set of actions that maximize the achievement of some objective subject to all of the real constraints that exist. For exnuple, one may optimize a choice of weapons for achieving certain objectives of a decision but within the given constraint of a certain maximum cost of a division. But one siboptimizes on achievemant of the division objective if he is given discretion orly over the amourt and kind of armor and is given maximan amount of money to spend on arwor. The objective he maximizes directly may be only the mission of ancor in tie division's objective. Such a suboptimization will yield something inferior to an optimized oxpenditure on different kinde of armor if the total budget for armor given to the suboptimizer is really not optimal, or if there are interdependencies between decinions on armor and decisions on other things that are outside the diacretion of the percon suboptimizing on armor.

SUBROUTINE: The get of instructions necessary to direct the computer to carry out a well defined mathemstical or logical opexation.

SUBSET: A collection wholly contained within a larger collection; a gruup of elements constitutirg part of a universe.

SYMBOLIC LOGIC: The study of formal logic and mathematics by means of a special written language which sseks to avoid the amiguaity and inadequacy of ordinary language.

SYSTEM: Weapon syotam is composed of equipment, skills and techniques, the composite of which fozm an instrument of combat. The conplets weapon system includes a! related facilities, ancipment, materials, services, and personnel required sciely for its operation, sc that the instrument of combat becomes acif-suffictent unit A-26
of etriking powar in its intended operational environment. Suprori zrstem is a composite of equipment, skills, and techniques that, while not an instrument of combat, is cappble of performing a clearly defined function in support of a mission. A complete support system includes all related facilities, equipment, materials, services, and personnel required for operation of the system, so that it can be considered a melf-sufficient unit in its intended operational environment.

SYSTEMS ANALYSIS (SA): A formal inquiry incended to advise a decision maker on the policy cholces involved in major decisions. In DOD a systems analysis may be concerned with duch matters as weapon development, force posture design, or the determanarion of strategic objectives. To qualify as a system analysis a stucy must look at an. nntire problem as a whole. rinaractaristically, it will involve a systematic investigation of the decisionmaker's objectives ard of the relevant asiceria; a comparison--quantitative when possible--cif the costs, effectiveness, and risks associated with the alternative policies or strategies fir achieving each objective; and an attempt to formulatt add:tional alternatives if those examined are deficient.

SYSTEMS EFEECTIVENESS: The probability chat the system can surcessfully meet an operational demant within a qiven time when operated under specified conditions.

SYSIEws APPronch: The art of examining the entire cantexi within which the item oi intareft will function.
TCHEBYCHEFF'S THEOREM: The proportion of the observations falling between $-k 0$ and +ko is at least as large as $1-\left(1 / k^{2}\right)$ regardless of the distribution.

TYME-PHASED COSTS: A presentation of the cost results broken down by the time period in which the costs occur rather than a single tutal cost figure.
total
OBL:GATION AUTHORITY(TOA): The cost allocated to a given system or organization. Tric cost when related to a spacific time period, for example a year, represonts obligations that can be incurred during that year and not necessarily expenditures. The total obligation authority for a specific year to furnish a house is the cost of what can be ordered during that year even if deliveries and payments are made in later years.

TOTAL SYSTEM COST: The total R\&D, I: -otment, and Operating Cost- (for a specified number of years of operation) required to develop, procure, and cperate the narticular weapon system.

TRNBEORM: The derivation of a new body of data from a given one according to specific procedures, often leaving sone featuro invariant.

TROOP TEST: A troop test is a test conductad in the fiald, using TOE units or units orgenized inder proposed TOE. to evaluate current or proposed Joctrine and organizations. Material 18 considered in the conduct of troop tests only insofar as material affecta the doctrine or organization being evaluated.

TYPE 1 EREOR: The beilef that something true is ialse.
TYPE :I ERROR: The belief that something false is true.
LNCERTAINTY: A situation is uncertain if there 2 s no objective basis for assigning numerical probability welyhts to the different possible outcomes or thers is no way to describe the poseible outcomes. For example, the probability of a foreign nation continuing to furnish the U.S. with base rights is an uncertainty

UTILITY: A personal subjective value of a tangible $c:$ intancible comodity.

VALUE ADDED BY MANUFACTURE: That part of value given products shipped actuaily creaced within a given industry. The unadjusted series is calculated by subtracting the cost of materials, supplies, contaniners, fuei, purchased electric energy, and contraci work fiom the value of shipments. The adjusted series, which is more inclusive, is equal to the unadjusted series plus: (1) value added by merchandising operations, and (2) the net change in inventmr.og (both finished goods and work-in-procress) between the beginning and end of the year. ivalue added is almost free statiatically from the duplication of values existing in the value of shapments and approximates the net value of manufacturers).

VARIABLE CCSTS: Those costs that vary with the volume of output as contraxted with fixed costs, which do not vary with sutput.

VARIABLES: General numbers, auch as $x$ or $y$ which may take on many values or which may have conditional fixed values as in $x^{2}+2 x=19$.

VARIANCE: A thesure of dispession of a frequerc\% distritution computed by summing the squares of the difference between each observation and the arithmetic mean of the distribution and then dividing by the number of observations.

Whe GNis: A cimulation, by whatever means, of a alitary operation involving two or more oppoining forces, conducted using rulet, data, and procediares designated to depict an actual or asumed real $11 f$. ituation.

## APPEMAMI

## BIBLIOGRAPHY

I. Systias ant.aysis
II. SYSTROS EFPRETTVENASS
iII. cost ankiysis
iv. COST Effectiveness
v. RELiAbillity and mainta inabillity
Vi. smularion
vil. quevering
vili. sequencing
IX. ENVENTORY
x. LINEAR progranming
XI. DYNMMIC PROGRMOMIN
XII. ONGE THEORY
XIV. informaition theory
XIV. DELDiAON THE ORY
xv. officlal reguli.. auns

1. Enthover, A. Ce, "Systems Analysis and Decision Making"; Militery Review (January 1963)
2. Feeney, G. J. and Slerbrooke, C. U., 'Systems Analysis and Supply Management", The RAND Corporation, RM-4054-PR (Apri1 1964)
3. Haycs, James H., "Systems Analysis", Miiltary Review (Ap:11 1965)
4. Hitch, C., "Ais Appreciation of Systems Analysis", Joumal of the Operaitions Re: earch Sociecy of Americe (Noverier 1905)
$\therefore$ Hiuch, Cherieg J., "Decision Meking for Deiense", Unirersity 2f Caiffornia Press, Los Arageles (1965)
S. Hitro, C. J. and Kckean, R. N. : The Tconomics of Lefense In the Priclear Age", The RAND Corporation, Report R-34E (Narch 1960) Harvard University Press, Cambridge, Mass. (1~21 4\%0 Dp. (AD 243098)
5. Kahn, Herman and Mann, Irwin, "Te Fniques of Systens Analysis", The RAND COpporation, Research Memorandum RM-..829•1 (19j7)
6. Kaha, Herman anc Mann, Irwin, "Ten Conmon Pitfal, The RAND Corporetion, RM-1937 (AD 132035) (July 1557)
7. IInc e, H. A., "Tho Weapons Elenning Program for General Fur -n Forces: A Slizjested Apuroach', RM-3202-ISA (Ap-11 1902; The RAND $\because$ merietsor (AD 414817)
8. McKean, F. N., "Efficiency in Govarnmert Through Systems Analysis", Johr Waley \& Soris, Inc , New Yor'h (1958)
9. Morgenstein; O., The Question of National Lefense", New York Randiom House (1959)
10. Murrey, R., and, "Some Facets $0_{2}$ Systems Araiysis", Mancegement views ( $\because 963-1964$ ) Vol. IX, Part 2, Selectad Speoches, U. S. Armij Management School
11. Peck, M. I, and Enherer, F. M. "The Neapons Acquisition Process: An Economic Analysis", Division cf Research, Grouiate Schoo? of Eusiness Administration, Farvard Universitu, zoston (196\%)
12. Quade, E. S., Ed. "Analysia for Military Decisions", Rand-McNally
13. Quade, E. S., "Military Systems Analysis", The RafD Corporation, RM-3452-PR (January 1963)
14. Quade, E. S., "Systems Analysis Techniques for yanning Progremiling - Budgeting", The RAND Eorporation, $N D 629564$ (March 1965)
15. Senlesinger, J. R., "Quantitative Analysie and Rational Securitg ${ }^{\text {n }}$, World Politics, VoI. XV, No. 2, pp. 295-315 (January 1763)
16. Balaban, H. S. and Costello, D. L. "Study Mifectiveness Concepts and fnalytical Techniques, ARINC Research Publication No. 267-01-7-419, ASD/AFSC Contract No. AP (33-657)-10594, ARINC Research Corporation, Annapolis, Md. (January 1.964 )
17. Giordaio, P., Seltzer, S., and Sontz, C., "Gereral Effectlueliess Methodology", ORSA 30 Netional Meeting (October 1966)
18. U. S. Department of Defense, "Survey of Studies and Computer Programaing Efforts for Reliability, Maiutainability, and System Effectiveness" (Beptember 1965)
19. Welker, E. L., Ph.D., and Home, Riley C., Jr., "Concepts Asscolated with System Effectiveness", ApINC Research Corporation, Annapolis, Maryland, Monograph No. 9 (July 2960 )
20. AFSC-TR-65-1 "Requirements Nethodoiogy" Final Report of the WSEIAC Task Group I (January 1965)
б. AFSG-TR-65-2, Volume I, "Prediction - Measureaent (Sumary Conclusions, and Recommendations)", Final Repart of the WSEIAC Task Group IT (Janmary 1965)
21. APSC-IR-65-2, Volume Ir, "Prediction - Beasurement (Conceots, Task AnalyEis, Irinciples of wodel construction) Final Report of the WSEIAC Tasi Grou- II (Jenuary 1905)
22. AFSC-PR-6j-3, "Data Coliection and Management Reports", Final Report of the VSEIAC Task Group III (January 1965)
23. AFSH-TR-65-4, Vo"ume $x$, "Cost-Effectiveness Optimization (Surmary, Conclusions, and Recommendations)w, Final Report of the WSEIAC Task Group IV (January 1965)
24. AFCC-TR-65-4, VOLUm II, "Cost-Effectiveness Optimization aild Analysis Methodology", Final Report of the WSEIAC Task Group IV (January 1965)
25. AFSC-ir-65-4, Volume III, ;ost-Effectiveness optimization (Technic: Supplement)", Final Report of the WSEJAC Task Group IV (Jenuary 1965)
26. AFSC-TR-65-5, Volume I, "Minagement system (System Effectiveness Assurance - Sumary, Policy Issues, Recommendations ", Final Report of WSEIAC Task Group V (January 1965)
27. AFSC-TR ${ }^{2}$ 65-5, Volune II, "Management Systems (Elements of Effectiveness Assurance Management) , Finel Heport of the WSEIAC Task Group V (January 1965)
28. AFSC-TR-65-5, "Chairmans Final Report", WSEIAC Final summary Report
29. Bureau of Naval Weapons System Effectiveness Management Course", Pablication 357-01-1-579
30. Abert, J. G., "Some Problems in Cost Analysis", Institute for Defense Analyses (June 1965)
31. Baker, C. L., McCuilough, J. D., Meltsner, A. J., and Proschan, A., Army Cost Mndel Pieliminary Report, FUUO, RM-3250-ASDO, The RAfJ; Corporation
32. "Basic Techniques for the Development of I.Afe Cycle Equipment Costs", U. S. Army Electronics Command, Logistics Research Agency, Philatelphia, Annex to USAFCOM Logistics Research Agency, Study Nio. 64-201 (November 1966)
33. Dlenemann, Paul F., "Estimating Cost Uncertainty Using Monte Carlo Techaiques", Rand Report RM-4854-PR, The RAND Corporation (Jariuary 1966)
34. Dienemann, P., "Use of Cost Estimating Relatiorships in System and Force Plannirg", 'he RAND Corporation (October 1966)
35. Early, L. B., Barro, S. M., and Margolis, M. A. i "Prcsedures for Estimating Electronic Equipment Costs", RM-3C72-PR, The RAND Corporation (May 1963)
36. "Estimating Methods and rata Sources Used in Costing Military Systems", ESD-TR-65-396 (December 1965)
37. Farr, L., et.al., "Quantitative Anilysis of Computer Prcgramming Cost Factors: A Progress Reprort", System Development corporation. $A D-512723$, Santa Monica, Calif. (August 1965)
38. Fisher, G. H., "A Discussion of Uncertainty in Cost Analysis", RM-3071, The RAND Corporatjon (April J962)
39. Fisher, G. H., "Allocation of Indirect Ccsts", P-511, The RAND Corporation (September 1956)
40. Fisher, G. H., "Derivation of Estjmating Relationships An Iliustrative Example", $3 \mathrm{M}-3366$-PR, The RAND Corpcrat. Ion (November" 1962)

1^. Fisher, G. H., "Military Systems Cost Analaiis", RM-2975-ER, The RAND Corporation
13. Fisher, G. H., "Wespon Systen Cost Analysis", F-8c3, The RiND Corporetion
34. Fisher, G. H., "What 1s Fesource Analysis?", P-2688, The RAND Corporation (January 2963)
15. Graziano, Eugene E., "Cost Estimating for Researih, Development, and Information Frocessing Programs: An Annotated Bibliography", Lockheed Missiles \& Spaz? Company, Sunnyvale, Call. (AD-422 39'7) (October 1963)
16. Grosse, R.N., "Army Cost ModeI", FOUO, RM-344-ASDS, 'ihe RAND Corporation
17. Grosse, R. N., and Procian, A., "Military Cost Analysis" RAC Paper, RAC-P-6, Research Anslysis Corp. (August 1965)
18. Grosse, F. N., and Proschan, A., "Uses of Automated Force Cost Models", RM-3608-ASDC, FOUO, The RAND Corporation
19. Hawkins, et.al., "DOD Programming System, An Explanation and Evaluation", AD 628-101, A1r Force Institute of Technology, Wright-Patterson AF'B, Ohio (August 1965)
20. Hoag, M. W., "The Relevence of Costs in Operations Fesearch", P-820, The RAND Corporation (April 1956)
21. Jones, $\quad$., "System Cost Analysis: A Management Tool Ior Decision Making", The Mitre Corporation, Bedford, Mass., AD-624-893 (November 1965)
22. Keeling, J. A., "An Jutline of a Mether for Weapon System Cost Analysis", Working Paper \#49, OR Dept., Martin-Marietta Corp., Aerospace Division, Denver (Juiy 1961)
23. Kriebel, Charles H., "On Statistical Cost Analysis and Operations Research", AD 623 394, Carnegie Institute of Technolozy, Pittsburge, Pa. (August 1965)
24. Large, J. P., "Concepts and Procedures of Cost Analysis", RM-3589-PF, The RAND Corporation (June 1963)
25. Margolis, M. A., "Cost Anslysis: Concepts and Methods Outline", Rand Report, The RAND Corporation (April 1966)
26. McCullough, I. D., "Cost Analysis for Plasiing " Prograri irg - Budgeting Cost - Benefit Studizs", Rand Repret, The RAND Corpoiation (November 1966)
27. McCullowh, J. D., "Cost Effectiveness: Fstimating Systems Costs". The RAN Corforation, AD 622023 (Septemer 1965)
28. Meltsner, A. J., Martyn, R. A., and Pringle, J. J., "Army Cost Model Datah, FUUO, RM-3639-ASDO, The RAND Corporation
29. Meltsner, A. J., and Swaine, H. R., "Navy Cust Model", RM-3660-ASDC, The RAND Corporation
30. Milton, H. S., "Cost of Research Index, 1920-1965", AD 629 700, The RAND Corporation (March 1966)
31. Noah, J. K., "Identifying and Estimating $R \& D$ Costs". RM-3067-PR, The FAND Corporation (May 1962)
32. Noah, J. W., and Smith, R. W., "Cost - Guantity Calculator, $\mathrm{RM}-2786-\mathrm{PR}$; The RAND Corporation (January 1962)
33. Novick, D., "Costing Tomorrow's Weapon Systems", RM-3170-FR, The KAND Corporation (tune 1962)
34. Novick, D., "Resource Analysis and Long-Range Plarning", RM-3658, "he RAND Corporation (Juile 1963)
35. Novick, D., "The Ucst of Advanced Weaponr", $A D 291$ 605, The RAND Corporation (February 1962)
36. Novick, D., "Use of the Learning Curve", P-267, The RAND Corporation (November 1951)
37. Novick, D., "Weapon Systems Cost Analys1s", P-794, The RAND Corporation (January 1956)
38. Novick; D., "System and Tota: Force Cost Analysis", RM-2695, AD 403 623, The RAND Corporsition
39. Petruschell, R. L., and Chester, J. M., "Total System Cost Analysis", RM-3059-PR, The RAND Corporation (January i.963)
40. Rattner, E., "Cost Variance: A Proposed New Cost Prediction Mathod", Working Paper \#67, OR Dept., Martin-Marietta Corp., Aerospace Division, Denver, (July 1961)
41. Rlch, Arthur, and Henry, R. T., "A Method of Cosi Analysis and Control Thrcugh Simulation", Linde co. (May 1960)
42. Springstaad, E. T., and Caulkins, D. R., "Determination of Obsclescence Costs", Vickers, Inc. (Hovember 196!)
43. Summers, Robert, "Cosi Estimates as Predictors of Actual Weapon Costs: A Study of Major Hardware Articles", AD 612 723, The RAND Corporation (Marct: 19(5)
44. Tenzer, A. J. = "Cost Stnsitivity Analysis", The RAND Corporation
45. "The Use of Classical Statistics in Deriving and Evoliatigg CER's", Office of Assistant Secretary of Defense - Systems Analysis (October 1966)
46. Westerman, Dean I., and Mathías, Ronald F., "A Cost Model for Use in Cost-Effectiveness of Dissimilar Weapon Systems", BRL \#1602, Ballisties Ressarch Laboratories

1. Albert, Bernard S., "Cost Effectiveness E'valuation for Mixes of Navai Air Weapon Systems", Journal of the uperations Research Society of America (MarchApril, 1963)
2. Bell, Chauncey F.; "Cort Effectiveness Ana:jsis as A Management Tool", The RAND Corporation
3. Blimstein, A., MThe Choice of Analytical Techniques in Cost-Effectiveness Analysis", $A D 625$ 947, Institute for Defense Analyses, Arlington, Virginia (October 1965)
4. Bryk, Oliver, "Mcdels in Cost-Effectiveness Analysis: An Example", Ai 622, Research Analysis Corporation, McLean, Virginia (June 1;65)
5. [tshong, W. K., Jr., et.al., "Cost Effectiveness Analysis f.pplied to AF Communications Link", U. S. Navy Elecironics Laboratory Report 144204 (January 1967)
S. Dishong, W. R., Jr., et.al., U. S. Navy Electronics Laboratory Report 1323 (October 1965)
6. Goldman, A. S., "Risk and Uncertainty in Cost Effectiveness Analysis and Budgeting", TEMPO, General Electric Co. (January 1964j
7. Grosse, R. N., "An Intrcduction to Cost-Effectiveness Analysis", AD 622 112, Research Analysis Corporation (November 1964)
8. Hadley, W. L., and Brili, M. A., "Roliabili:y -Vust Schedule Tradeoffs", NTN-58, RL 43,926, Martin Company (September 1963)
9. Knorr, Klaus, "On the Cost Effectiveness Approach to Military R \& D: A Critique", AD 635 117, P:Inceton diversity, Princeton, New Jersey (June 1906)

1?. Kornfeld, J. P., "Cost Effectiveness as a Method of Fvaluating Design Chanqee", Boeing Asplane Co. (October i960)
12. Maltese, Jasper G., "System Effectiveness: Basic Concepts and Framework for Analysis", Monograph 12, ARINC Research Corporation, Annapoi's, Md. (Januasy 1967)
13. Novick, D., "Cornepts of Costs for Use in Stuc es of Effectiveness", P-1182, The RAND Corporation (octover 1965)
14. O'Neill, D. et.al., "Cost-Effect+"Eness Analysis", BRL Report R 1315 (March 1950)
15. Quade, E. S., "Cost Effectiveress Analysis: An Appreciation", AD 623 105, The RAND Corporation (October 1965)
16. Quade, E. S., "Cost Erfectiveness: An Introductior and Overviewn, AD 616 339, The RAND Corpciation (May i965)
17. Quade, E. S., "Some Coments cn Cost-Effectiveness", AD 615394 The RAND Corporation (March 1965)
18. Quade, E. S., "The Limitations of a Cost-Effectiveness Approach to Military Decision-Making", p-2798, The RAND Corporation
19. Visco, Eugene P., "A Beginning to Cost-Effectiveness Analysis", AD-422 374, Research Aralysis Corp.
i. Advisory Group on Reliability of Electronic Equipment, office o: the Assistant Secretary of Defenje (Resesrch and Engineering). Reliabllity of Milltary Electronic Equipment (June 1957)
2. ARINC Research Corporation, AInapolis, id., Electronic Rellability in Militacy fuplicativas", General Report No. 2, Publication Ro. 102 (July 1957)
3. Bayovsky, Igor, "Reilejility Theory ariú Practice", Prentice-hall, Inc. (1961)
4. Blshop, Haiton B., Meliability and Malntainablilty Absurance*, Electronic Material Sciences Laboratory, Bedford, Mazs. APCRC-TN-58-569, AD 160882 , (November 1958)
5. Bosinorf, a. al., Trensfer Functions in Matheaatical Simulation for Rellability Prediction", Sycvania Documen: *c. F 491-2, Contract Nc. A $30(002)-2376$, Sylvania Electron:c Systems Div. (January 2963)
6. Carhart, R, R, "A Survey of the Current statue of the Electronic Re? iability Problam, Rand Research Memo. RU-1131, AD 80 637, The RAND Corporation (August 1953)
7. Drumer, G.W.A., and Griffin, N., "glect-cnic Equipment Reliability", John Wlley add Sons, Inc. (1900)
8. Friddell, H. G., and Jacks, K. G., "System operational gffectiveness", Proceedings of the Fifts Naisonal Sympcsium on Reilability and quality Control (January 104?)
9. Gaveretal, D, F., "Statistical Estimation ir a Probatm of System Reliability" (Fobrcary 1967)
in. Horie, Riley C., Ir., "Analysis of Operator Equ.pant Relstionships", ARINC Research Corporation, Annapo:ts, Md., Pubilcation No, 101-7-i3: (Decemter 1058)
12. Hosford, J. D., "Measure or Dependability", Journai of Cperstions Kegesich Soclety of Aataca. Voz. B, No. i (Jancary - Febrasy lioe)
12. Howard, W. J., "Some Fhysical Qualifications for Reliability Formulasn, Rand Research Memo. RM-1724, AD 109 936, The RAND Corporation (June 1956)
13. Kauraan, N., "Weapon System Availability Modela and the Retimation of $\mathrm{m}^{\prime \prime}$ ir Parameters", Long Islard Quallty Control aicu Reliat ilty Conference (fipril 1963)
14. Knight, C. Ro, ans Jervis, E. R., "Electyonic Reliability - A Diacussion of Some Basic Theoretical Concepts and A Review of Progress Since Korld War II", Monograph No. 1, AKINS Research Corporation, Annapolis, Md. (May 1955)
15. Leake, C. E., "Understanding Reilability", Pasadena Iithographer (1960)
16. Lloyd, D. K., and Lipow, M., "Reliability: Management, Methods and Mathematics", Prentice-Hall, Inc. (Lecember :1961)
:7. Maintainability Enyineerirf", Phase V, Vol. IX, RADC DOCument NO. RADC-PDR-63-85, DDC NO. AD 404898, RADC Contract NO. AF 30 (bu2)-2057 (Feoruary 1963)
18. "Maintainability Measurement and Prediction Methods for AF Ground Electronic Equipment", Field Data Collection, Phase II, DDC NO. AD 247155 , Contract No. AF 30(602)-2057 (September 1960)
19. "Maintainability Prediction Techniques"; RADC Document No. RADC-TDR-62-156 (Phase IV) RADC Ccintract No. AF 30(602)-2057, DDC NO. AD 27'(199 (March 1962)
20. "Maintainability Technique Study", "inal Tech. Report, Phase V., Vol. I., RADE Document No. KADC-TDR-63-85, DDC NO. AD 404899, Contract No. AF 30(002)-2057 (February 1963)
21. "Mathematical Models for System Rellability", Sylvania Eicctronic Defense Laboraioiles, SEDL Publication No, EDL-E35, DDC No. AD 228131 (August 1959)
22. Moskowitz, Fred, and McLean, John B. "Some
Reliability Aspects of System Design , Rome Air
Development Center, Grifilif Air Force Base, Rume,
New York, RADC TN-55-4, An 65 BC2, also, IRE
Transactions on Reliahility and Quality Controi,
PGRQC-8 (September 1955)
23. "Production and Field Peliability", Electronics Division, American Society for Quality control (February 1959)
24. RADC Reliability Notebook, RADC No. Tr-58-111, OTS NOs. PB-161894, Besic, October 1959; PB-161894-2, Rev. 2, December 1961; PB-561894-3, Rev. 3, January 1963
25. "Reliability Notebook," RADC TR-58-1l1, AD 148868 , (Jctoder 1959)
26. "Reliability of Radio-Electronic Equipment", Office of Technical Services, U. S. Department of Commerce, Washington, D. C. (1958)
27. "Reliability Stress and Failure Rate Data for Electronic Equipmert", M111tary Handbock No. 217A
28. "Reliabilitv Training Text", 2nd Edition, Institute of Radio Engineers (March 1960)
29. "Research and Development Reliability", American Society for Quality Control, Electronics Division (February 1951)
30. Reza, F. M., and Jutile, S., "System Reliability Stulies", Rome Air Development Center, Griffiss Air Force Brise, Rome, New York, RADC TR-59-24, AD 210 729 (December 1958)
31. Rosenblatt, J. R., "Confidence Limits for the Reliability of Complex Systems", Statistical Theory of Reliability, edited by M. Zelen, Univeraity of Wisconsin Press, Madison (1963)
32. Sandler, G. H., "System Reliability Engineering", Prentice-Hall, Inc. (1963)
33. Snellard, Gordon D., "Failure of Complex Equipment", Operations Research for Management, Vol. II, McCloskey and Coppinger, Johns Hopkins Press, 1956; Also, Journal operations Research Society of Amerjca, Vol. I, No. 3, May 1953
34. Shwap, J. E.. and Sullivan, H. J. (Editors), "Sem. conductor Reliability", Engineering Puilishers, Elizaioth, Now Jersey (1961)
35. "System Reliability Prediction by Function", RADC Document No. RADC TDR-63-146, DDC No. AD 405191, RADC Contract No. AF 30(6C2)-2687, Federal Electric Corp., May 1963
36. Tangerman, E. J. (Eritor), "A Manual of Reilability", Product Ens Ineering (May 1960)
37. Von Alven, W. H. (Editor), "Semiconductor Reilébility", Vol. II, Engineering Publishers, Ellzabeth, New Jersey, (1962)
38. Von Alven, W. H. (Editor), "Rcliability Engineering", ARINC Research Corporation, Prentice-Hali, Inc., Engiewood Cliffs, New Jersey (1964)

## SIMULATION

1. Adams, E. A. and Forrester, R. D., Carmonette: A Computer Combat Simulation, Operations Research Office, Johns hopkins University, Washingtion, D. C., 1959.
2. Bellman, R., et al. "On the Construction of Multi-Stage Multi-Person Business Game," Operations Research, Vol. 5, No. 4 (August, 1957).
3. Blel, W. C., Operations Research Based on Simulations for Training, SP-i6, System Development Corporation, National Conf. of Aeronautical Electronics (1958).
4. Blumstein, A., "A Monte Carlo Analysis of the Ground Controlled Approach System," Cpns. Res., 5, 397-409 (1957).
5. Bond, G. W., Gale, K. S., and Moore, C. J., Digital Simulation of Air Traffic Control Systems, presented at Nati. Conf. on Aeronautical Electronics, Dayton, Ohiso, 1958.
6. Bradford, J. C., and Fain, W. W., Operations Research for Weapon System Analysis. Chance Vought Aircraft, Inc., Dallas, Texas, 1959.
7. Brotman, L., and Seid, B., Ligital Simulation of a Massed Bomber-Manned Interceptor Encounter, Hughes Research and Gevelopment Labs. (no date).
8. Carlisle, R., Model Techniques for Comnunication Systems, Broadview Research Corp., Burlingame, Calif. (1957).
9. Clapham, J. C. R. "A Monte Carlo Problem in Undergound Communicaiions," Operations Research quarterly, Vol. 9, No. 1 (March, 1958).
10. Dresher, Meivin, "Theory and Applications of Games of Strategy," R-216, The RAND Corporation, December 1, 1951.
11. Driges, I., "A Monte Carlo Model of Lanchester's Square Law," Opns. Res., 4, 148-151 (1956).
12. Dunre, J. J., and Sebastian, R. A., Computer Played War Games, Offl.ce of Ordnance Research, Report No. 59-3, Ordnance Corps, Durnam, North Carolina (1959).
13. Enke, S., Use of a Simulation Laboratory to Study the Organ1zation and Effectiveness of A1r Force Logistics, P-1343, The RAND Corp., Santa Monica, Calif. (1558).
14. Flannagan, J. C., A Monte Carlu Computier Simulaticn for the Evaluation of Anti-Armor Weapons Systems, presented at 15 th Annual Meeting of ORSA, 1959.
15. Ford, L. $\overline{\text { I., Jr., Isaacson, H. S., and Petne. . r. C., "Com- }}$ puter Ter rain Simulation for Line-of-Sight Calculations," Opns. Res., 7, 478-482 (1359).
16. Forsythe, G. E., Germand, H. H., and Housenolder, A. S. (eds.). Monte Carlo Method. NBS Applied Mathematics Series. Wasinington, D. C.: U. S. Government Printing Office, 1951.
17. Fulkerson, D. R., and Johnaon, S. M., "A Tactical Air Game," Opns. Res., 5, 704-712 (1957).
18. Geisler, M. A., The Use of Man-Machine Simulation in the Design of Control Systeme, P-1780, The RAND Corp., Santa Monica, Calif. (1959).
19. Geisler, M. A., "The Use of Monte Carlo Models, Man-Machine Similation, and Analytical Merhods for Studying Large Human Organizations," P-1634, The RAND Corporation, March 11, 1059.
20. Goen, R. L., Monte Carlo Simulation of Missile Maintenance Cycling, Nc. Am. Aviation, Inc., Downey, Calif., 1959.
21. Goodo, H. H., and Machol, R. E. System Engineering. New York: McGraw-Hill, 1957.
22. Harling, J., "Simulation Techniques in Operations Research -A Review," Operations Research, Vol. 6, No. 3 (May-June, 1958).
23. Helmer, 0. , and Shapley, L. S., "Brief Description of the SWAP Game" (confideniial), RM-2058, The RAND Corpovation, December 1̂́, 1957.
24. Isaacs, Rufus, "Differential Games -- I. Introduction II. The Definition and Formulation, III. The Basic Principles of the Solution Process, IV. Ma1-"' Fxamrlea. " Rrizil, RM-1399, rM-1411, RM-148h, The RAlv, Corporation, March 25, 1955.
25. Kahn, Herman, arid Mann, Irwin, "War Gaming," P-1167, The RAND Corp., July 30, 1957.
26. Kahn, H., and Marshall, A. W.. "Methods of Reducing Sample Size in Monte Carlo romputations," Opns. Res., 1, 263-278 (1953).
27. King, G., "The Monte Carlo Method as a Natural Mode of Expression in Operations Research," Operations Research Society of America, Vol. 1, No. 2 (Fehruary, 1953).
28. Law, C. F., war Gaming in the Canadian Army, Department of National Defense, CAORF Memo No. 49/5, Ottawa, Canaća (1959).
29. Luce, R. Duncan, and Raiffa, Howard, Games axd Decisions, J̈onn Wiley and Sons, New York, 1957.
30. Marshall, A. K., Experimentation by Simulf,tion and Monte Carlo, P-1174, The RAND Corp., Santa Monica, Ja'if. (1958).
31. McCracken, D. D., "The Monte Carlo Metrod," Sci. Amer., 192, 90-96 (1955).
32. McKown, D. C., Survey of Methods for Finding Maximum Valuec Experlmentrliy, Chance Vought Aircrift. Ficc., Dallas, Texas, 1.358.
33. McKown, D. C., Reedy, D. il., and Poe, P. H., Alr Battle Simulation Frnamences with tha : BM TOL, Wiance Vought Alicraft, lnc., Dailas, Texas (no cate).
34. Meyer, H. A. (éu.). Symposium on Monte Carlo Methods. New York: John Wiley and Sons, 1956.
35. Mood, A. M., "War Gaming as a Technique of Analysis," P-899, The RAND Corporation, September 3, 1954.
36. Mood, A. M., and Sresht, R. D., "Gaming as a rechnique of Analysis," P-579, The RAND Corporation, Oc'cuber 19, 1954.
37. Mcrgentraler, G. W., and Hesse; H., A Conceptual Model for Studying Strategic Aeriai Penetration, Institute for Air Weapons Research, Report 5?-3, University of Chicago, Chicago, Ili. (1957).
38. Morgenthaler, G. W., Some Target Coverage Problems, The Martin Co., Denver, Colo., 1959.
39. OMEGA, "A Guide to tie Aisi Dattie Model" (Vol. I on Fion Charts, Vol. II on Nutations), SM58-5, Technical Operations: Inc., Washingten, D. C., April 10, 1958.
40. Orcutt, G. H., Greenberger, A., and Rivlin, A., Decision-Unit Models and Simulation nf the Ur:Ited Stetes Ecoriomy, preliminary draft, 1958.
41. Rich, R. P., "Simulation Ae an Aid in Model Building," Opns. Kes., 3, 15-19 (1955).
42. Robinson, P. J., Cases in Simulation -- A Research Ald as a Management "Demonstration Piese," Presentation at Seminar on Techniques of Industrial Operations Research, Ill. Inst. of Technology, Chicago, Ill., 1957.
43. Schiller, D. Y., and Lavin, M. M, "The Determination of Requirenents for Waretiouse Dock Facilities," Op:as. Res., 4, 231-242 (1956).
44. Smith, N. M., Jr., "A Rationale for Cperational Saming," paper presented to 8th Nationai Maeting of ORSA, Ottawa, Canada, January 10, 1956.
45. Spanier, J., Kuehn, H., and Guilinger, W., A Two-Dimensional Monte Carlo Calculation of Capture Fracilons on the IBM-704, WAPD. TM-125, Office of Tech. Services, Dept. of Commerce, Washington, D. C. (1959).
46. Spanier, J., Monte Carlo Methods and Their Application to Neutron Transport Problems, WAPD-195, Office of Technical Services, Dept, of Commerce, Washington, D. C. (1959).
47. Spanier, J., The Physics and Mathematical Anazysis for the Monte Carlo Code TUT-T5, WAPD-TM-I86, Office of Technical Services, Dept. of Conmerce, Washington, D. C. (1359).
48. Strauss, W., and Feurzeig, Ne, JAWR-SAC Penetration Campaign Model as Applied in March, 1957, Institute for Air Weapons Research, Report 57-4, University of Snicago, Chicago (1957).
49. Tay2or, J. L., "Develnpment and Application of a Terminal Air Bällic Model," Opns. kes., 7, 783-796 (1959).
50. Thomas, C. J., "The Genesis and Practice of Operational Gaming," Proc. of tine First Inter. Conf. on $R, 64-81$, ORSA, Baltimore, $1957^{\prime}$
51. Thomas, C. J., and Deemer, W. L., Jr., "The Role of operational Gaming in Operations Research," Uperations Research, Vol. 5, No. 1 (1957).
52. Thomas, L. H., "A Comporison of Stochast: $n$ and Direct Methods for the Solution of Some Special Problems, "Opns. Res., 1, 18i-186 (1953).
53. U. S. Dept of Commerce, National Bureau of Standards, Monte Carlo Method, Applied Math. Series 12, 1951.
54. Vazsony1, A., Electronic Simulation of Business operations (The Monte Carlo Method), presented to 2nd Annual West Coast Engineering Management Conf., 1957.
55. Webb, K. W., and Moshman, J., A Simulation for Optimal Scheduling of Maintenance of Aircraft, C.E.I.R., Inc., Arlington, Va., 1959.
56. Weiner, M. G., "An Introduction to Nar Gares," P-1773, The RAND Corporation, August 17, 1959.
57. Weiss, Herbert K., "Lanchester-Type Models of Warfare," Proc. of the First Inter. Conf on OR, Oxford, September 1957.

5E. Weiss, Herbert K., "Some Differential Games of Tactical Interest and the Value of s Supporting Weapon System," Opns. Res., 7, 180-196 (1959).
59. Woodall, H. McG., A Simulation Model for Determining Optimum Machine Assignment, M.S. Theais, North Carolina State College, Raleigh, N. C., 1959.
60. Zimmerman, Richard E. "A Monte Cerlo Model for Military Analysis," Operations Research for Management, Vol. II. Edited by Joseph F. McCloskey and Jonn F. Coppinger. Baltimore: The Johns Hopkins press, 1956.

## QUEUEING

1. Zarry, J. Y., "A Priority Queueing Problem," Opns. Res. 4, 385 (June 1956).
2. Srigham, G., "On a Congestion Probiem in an Aircraft Factory," Opns. Res., Vol 3, No. 4 (1955).
3. Churchman, C. W., Ackoff, R. G., and Arroff, E. L., Introduction to Operations Research. New York: John Wiley and Sons, 1957.
4. Clarke, A. B., "A Waiting Line Process of Markov Type," Ann. Math. Stat. 27, No. $\underset{\text { A (June 1956). }}{ }$
5. Clarke, A. B., "The Iime-Dependent Waiting Line Problem," University of Michigan Engineering Research Inst Report No. M720-1 R 39, 1953.
6. Edie, Lesile C., "Optimization of Traffic Delays at Toll Booths," Opns. Res., Vol. 2, No. ¿ (1954).
7. Goode, H. H., and Machol, R. E. System Engineering. New York: McGraw-H111, 1957.
B. Kendall, W. G., "Some Protlems in the Theory of Queues," Journal of the Royal Statistical Society, Series B, Voi. XIII, No. 2 .
8. Kendall, W. G., "Stochastic Frocesses Occurring in the Theory of Queues," J. Roy. Stat. Soc. B 13, No. 2 (1951).
9. Iuchak, $G$-ge, "The Solution of tre single-Channel queuping Equations Characterized by a Time. Dependent poiseon-Distributed Arrival hate and a General Cises of Holving This," Operations Research, Vol. 4, No. 6 (1356).
10. Morse, P M., "Stochastic Propertiea of Waiting Linea," J. Opns. Res. Sor. Aill 3. 255 (1955).
11. Morse, Philip M., Queuss. Inventories, and Maintenance, John Wlley Sons, New York, 1958.
12. Saty, Thomas L., "Resume of isefis Porsulas in queuedry Theory," onns. Res., Vo:. 5, No. 2 (April 195?).
13. Bellmar, R., "Some Mathematical Asfects of Scheduling Theory," J. Soc. Indust. and Appl. Math., 4, I68-205 (1956).
14. Blake, K. R., and Stopakis, W. S., Some Theoretical Reaults on the Jcb Jhop Scheduling Probleri, Report M-14j3-1, united Alrcraft Corp., Research Dept., East Hartford, Conn. (July 1, 1959).
15. Bowman, E. H., "The Scredule-Sequencing Problem," Opns. Res., 7, 621-624 (1959).
16. Conwiy, R. W., Johnson, B ., and Maxwell, k. L., "Some Froblems of Digital System. 3imulation," Mgmt. Sci., 6, 52-110 (1959).
17. Churchman, C. W., Ackoff, R. L., and Ammoff, E. L., Introduction to Operaticns Pesearch, Jchn Wiley and Sons, New York, 1957, Chapter 16.
18. Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M., "Solution of a Large-Scale Traveline Salssman Pioblem," Opns. Res., 2, 393-410 (1954); also see these authors' later paper on "Linear Programming, Uumbina orial Approach to the Traveling Salesmen Problem," Opns. Res., 7, 58-76 (1959).
19. Heiler, i., Combinatorial, Probabilistic an: Statistical Aspects of un $\mathrm{K} \times \mathrm{J}$ Scheduling Froblem, Report NYO-2540, AEC Computing and Applicd Mainematics Center, Institute of Mathematicai 3cience, New York University, New Yock (Feh. 1, 1G59).
20. Johnson, S. M., "Optimal Two and Three Stage Production Schedules with Setup Pimes Inciuded," Nav, Res. Lug. Quart., 1, 51-68 (1954).
21. Manne, flan S., On tha Job-Shop Scteduling froblem, cowles Fou lation Elscussion Paper No. 73 (May 5, 195?).
22. Mitien, L. G., "A Scheduli:g Problem," J. of Ind. Engr., 10, 131-134 (1959). This inciudes results oi Mitten's "Sequencing in Jots on Jwo Machines with Arbitrary Time Lags," Mgm + , Sci., 5, 293-298 (2955).
23. Howe, A. $\because$., Toward a Theory of sereduling, Refort SP-61, S;stem Development Corp., Santa Morica, Cilf. (April 1, 195y).
24. Sasteni, M. H., Yandar. A., and Friedman, L., Operstions Research: Methods and Proviems, John Wlley and Suns, Now York. 1949, Clayter y.
25. Sisson, R. L., "Sequercing in job Snopz -- A Review," Opns. Res., $7,10-29$ (1959).

1．Arrca，Kenneth J．．：̈rris，Theodore，ana Marschaik，Jsoob． ＂Optinid Tnvento：Policy，＂Econometrica，Vol．i？，No． 3 （July，25．31），2＇ノ0ーTに．

2．Arrow，Kenuern J．，Karlin，Samuel，and Scarp，licroert． Studies In the Metrematical Theory of Inventury ene Prociction． Etanford：Stanford University Presi， 1958.

3．Dyoretskf，A．，Kiefer，J．，and iolfulte，J．＂The Ir．rentcry Protlem，＂fconometrica，Vol．20，No．2（Apris，195？）．187．222．

4．Lacerman，J．，Jistauer，S．B．，and Weisa，Lioncl．＂ine Inventory Prouiem．＂Journal of the American St stical Aescciatior，Vol．48，No． 264 （Eesember，1959）（17－23．

5．Magee，J．P．，Production Planniņ ard Inventory Cort－ol， McGraw．Hill，New York， 1958.

6．Mugee，John P．＂Guides to Inventory Fclicy，＂Harvard Eusiness Review．Vol． 34 ，Nos．1，2，and 3 （Janiary，Msroh，and May， 2956，．

7．Naddor，B．，＂Some Models of Inveritory and an Application，＂ Mert．Sci．，2，299－j12（1956）．

8．Noddor，Eliezer．＂Elementary Inventory Modeis，＂Introduction to Operations Research．Edited by C．Wezt Church an，nusel I．Ackotp and E．Leonard Arrofe．liew York：John wiley ard Sons，15\％．

9．Simon，Herbert A．，and Hist，Gharles C．＂The contros of inventeriez and Production Rates－A Survey，opers ions Reearch，Vol．2，No． 3 （iuphat，1954）， 28930 ．



11．Weich，W，Evert．Scientitie Infontery Controz，Greenwich， Conn．Hanagement rubilising corp．， 1950.




 Ygt．Set．，2，61－65（1935：．

 Fes．tof．Guert．，2，157－174 11972．

1. Antosiewicz, H, A. (ed.), Second Symposium, Linear Programoing. Weshington, D. C.: National Bureau of Standards, 1955.
2. Arnoff, E. Leonard. "An Application of Linear Programaing," Proceedings of the Conference on Operations Research in Production and Invertory Control. Cleveland: Case Instituie of Technology, 1954.
3. Charnes, A. "Optimality and Degeneracy in in Linear Programing," Econometrica, Vol. 20 (IS52), 160-70.
4. Eharnes, A., Cooper, W. W. and A. Henderson, An Introduction to Linear Programing, John Wiley \& Sons, New York, 1953.
5. Churchman, C.W., R. L. Ackoff, and E. L. Amoff, Introduction to Operatiuns Research, John Wiley \& Sons, New Yorik, 1957.
6. Danczig, G. B., "Computational Algorithm of the Revised Simplex Method," RAND Memorandum RM-1266, 1953.
7. Dantzig, G. B., "Maximization of a Linear Function of Variables Subject to Linear Inequalities," Activity Analysis of Production and Allocation, Cowles Comission Monograph No. 13. Edited by T. C. Koopmans. New York: John Wiley and Sons, 2951.
8. Dantzig, G. B., and Urchard-Hays, W., "Alternate Algorithm for the Revised Simplex Method," RAND Memorandum RM-1268, 1953.
9. Lantzig, G. B., Orden, A., and Wolie, P., "The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints," RAND Memorandum RM-1264, 1954.
10. Dantzig, G. B., "The Simplex Method," RAND Report P-891, Jul: 9, 1956a.

1i. Dorimar, R., Samuelson, P. A., and Solow, R. M., Linear Programing and Economic Analysis, McGraw-Hill Book Co., New York, 1958.
12. Ferguson, A. R., and Dantzig, F. B., "The Problem of Routing Alrcraft -- A Mathematical Solution," Aero. Eng. Review, 14, 51-55 (1955).
13. Ferguson, A. R., and Dantzig, G. B.," Allocation of Aircraft to Routes -- An Example of Iinear Frograming under Uncertain Demand," Igmt. Sci., 3, 45-73 (1956). A1so published as RAND Memo RM-1833, Dec. 7, 1956.
14. Flood, M. M., "The Traveling-Salesman Problem," Operations Research for Management. Vol. II. Edited by Joseph F. McCloskey and John F. Copinger. Baltimore: The Johns Hopkins Press, 1956.
15. Goldman, A. J., and Tucker, A. W., "Thecry of Linear Programming" in Kuhn and Tucker (1956), pp. 53-98.
16. Harrison, Joseph O., Jr., "Linear Programming and Operations Research," Seminar Paper No. 2 in Informal Seminar in Operations Research. Baltimore: The Johns Hopkins Press, 1953.
17. Henderson, A., and Schliafer, R., "Mathematical Programing," Harvard Business Review, Msy-June, 1954.
18. Hitahcock, F. L., "The Distribution of a Product from Several Sources to Numercus Localities," J. Math. and Phys., 20, 224-230 (1941).
19. Hoffman, Alan J., "Fow to Soive a Linear Programming Problem," In Antosiewicz (1955), py. 397-424.
20. Lemke, $C$. E. "whe Dual kethoa of Sol.ring the Inear Programing Problem," Ne'v. Rt.. Log. Quart., 1, 36-47 (1954).
21. Orchard-hays, W., "A Compoeite Simplex Algoritrm -- II," Notes on innear Programming -- Part XII, RAND Mero RM-1275, May 7: 1954.
22. Orchara-Hays, W., "Background, Development and Extension of the Revised Simplex Method," RAND Memo RM-1433, April, 1954b.
23. Orcien, A., "Surrey of Research on Mathematical Solutions of Programing Froblems," Management Science, Vol. I (1955) 170-72,
24. Project SCOOP. Symposium of Linear Inequalities and Programing. Washington, D. C.: U. S. Air Force, 1952.
25. Riley, Vera, and Gass, S. I., Linear Programming and Associated Techniques: A Comprehensive Bibliogrephy on LInea, Nonlinear and Dynamic Programing, The Johne Hopinis Fress, Baltimore, 1958.
26. Rohde, F. Virginia, "Bibliograpuy on Iinear Programming," Operations Research, Vol. 5, No. 1 (Feb. 1957).
27. Sasieni, M. W., Yaspan, A., and Friedman, L., Operations Reserarch: Methods and Problems, Wiley, New York, 1959.
28. Satty, Thomas L., Mathematical Methods of Operations Research, McGraw-H111, New York, 1959a.

## AMCD 706-191

29. Vajda, S., The Theory of Games and Linear Programing, Wiley, New York, 1956.
30. Votaw, D. F., ard Oraen, A., "The Personnel Assignment Problem," Sympcium on Linear Inequalities and Progranming. Washington, D. G.: Project SCOOP; U. S. Air Force, 1952.
31. Wagner, Harvey M., "The Simplex Method for Beginners,: Journal of the Operations Research Society of America, March-April, 1958, pp. 190-99.
32. Zagner, Harvey M., "A Supplementary Bibliography on Iinear Programine," Opns. Res., 5, 555-562 (1957c).

## DYNAMIC PROGRAMMING

1. Bellman, R., "On the Theory of Dynamic Programming -- A Warehousing Problems" Mgmt. Sci., 2, $272-275$ (1956).
2. Beilman, F., "Dynamic Programming and the Smoothing Problem,: Mgmt. Sci., 3, 111-113 (1956).
3. Beliman, R., "On \& Dynamic Programming Approach to the Caterer Problem -- I, "Mgmt. Sci., 3, 270-278 (1957).
4. Bellman, R., Dynamic Programming, Princeton University Press, Princetor, N. J., 1557.
5. Cartaino, T., and Dreyfus, S., "Applicatior of Dynamic Programing to the Airplane Minimum Time-to-Climb Problem," Aero. Engr., Rev., 16, 74-77 (1957).
6. Dreyfus, S., "A Generalized Equipment Replacement Study," J. of SIAM, $8,425-435$ (1960).
7. Econometric Analysis of the United States Manganese Problem, Economtric Research Program, RM 3, Princeton Universiity, Princeton, N. J., Oct. 1958.
8. Howard, R., Dynamic Frogramming and Markov Processes, Technology Press and Wiley, 1960.
9. Schlager, K. J., Optimization of a Von Thuener Model of the Firm by Dynamic Programminc, Fifteenth National Meeting of the Operations Research Soniety, Nisy 1959.
10. Ten Dyke, R. P., "Computation of Rocket Step Weights to Minimize Inttiel Gross Weight," Jet Propulsion, 28, 338-340 (1958).
11. Vazsonyi, Andrew, Scientific Programing in Business and Industry, John Wiley and Sons, New York, 1958.
12. Blackwell, David, "Game Theory," Operations Research For Management. Vol. I. Edited by Joseph F. McCloskey and Florence N. mrefethen. Baltimore: The Johns Hopkina Press, 1954.
13. Blackwell, David, and Girshick, M. A., Theory of Games and Statistical Decisions. New York: John Wiley and Sons, 1954.
14. Brown, George W., "Iterative Solution of Games by Fictitious Play," Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13. Edited by T. C. Koopmans. New York: John Wiley and Sons, 1951.
15. Lice, R. Dumcan, and Raiffa, Howard, Games and Decisions. New York: John Wiley and Sons, 1957.
16. McKinsey, J. C. C., Introduction to the Theory of Games. New York: McGraw-Hill, 1952.
17. Naddor, Eliezer, "The Theory of Games," Introduction to Operations Research. Edited by C. W. Chur Chman, R. L. Ackoff, and E. L. Arnoff. New York: John Wiley and Sons, 1957.
18. Vajda, S., The Theory of Games and Iinear Programming. London: Metinuen, Ltd., and New York: John Wiley and Sors, 1956.
19. von Neumann, J., and Morgenstern, O., Thenry of Games and Economic Behavior. Princeton: Princeton University Press, 1947.
20. Williams, J. D., The Compleat Strategyst. New York: McGrawHill, 1954.

## INFORMATION THEORY

1. Abramson, W. Information Theory and Coding, McGraw-Hill, New York, 1963.
2. Bell, D.A. (1953): "Information Theory and Its Encinecring Applications," Sir Isaac Pitman \& Sons, Ltd., London.
3. Briilouin, L. (1956): "Science and Information Theory," Academic Press Inc., New York.
4. Cherry, ©. (1957): "On Himan Communication," John Wiley \& Sons, Inc., New York.
5. Fano, R. (19'9): The mransmission of Information, I, MIT Res. Lab. Electron. Tech. Rept. 65.
6. Fano, R. (1950): The Transmission of Information, II, MIT Res. Lab. Electron. Tech. Rept. 149.
7. Fano, R. (1961): "Transmission of Information," John Wiley \& Sons, Inc., New York.
8. Feinstein, A. (1958): "Foundations of Information Theory," McGraw-H:Il Euok Company, Inc., New York.
9. Harman, W. W. (1963): "Principles of the Statistical Theory of Communication, " NcGraw Hil? Book Company, Inc., New York.
10. Hartley, iR. V. L. (1928): Transuission of Information, Bell Sy3tem Tech. J.; vol. 7, pp. 535-563.
11. Khinchin, A. I. (1957): "Mathematical Foundations of Information Theory," Dovsr Pubiications, Inc., New York.
12. Kullbeck. S. (1959): "Information Theory and Statistics." John Wiley \& Sons, Inc., New York.
13. McMillan, B. (1953): The Basic Theorems of Information Theory, Ann. Math. Statist., vol. 24, pp. 196-219.
14. Powers, K. H. (1956): "A Unificd Theory of Informetion," MIT Res. Lab. Electron. Tech. Rept. 311, February.
15. Quastler, H. (1956): "Information Theory in Psychology," The Free Press of Glencoe, New York.
16. Reza, F. M. (1961): "An Introduction to Information Theory," McGraw-H1.1 Book Company, Inc., New York.
17. Shannon, ©. E. ( 1956 ): 'The Zero Error Capacity of a Noisy . Chanrel, IRE Trans.
18. Shannon, C. E. and W. Weaver (1949): "The Mathematical Theory of Commination," The University $\mathrm{O}_{\mathrm{A}}$ Illinois Press, Urbena, Ill.
19. Nckoff, R. L., "Ojerations Research and National Pianning," Gpns. Res., 5, 457-468 (1957).
20. Adams, E., and Fagot, R., "A Model of Riskless Choice," Behavioral Science, 4, 1-10 (1959).
21. Anderson, N. H., and Grant, D. A., "A Test of Statistical Learning Theory Model for Two-Choice Behavior with Double Stimulus Events," Journal of Experimental Psychology, 54, 305-317 (195\%).
22. Arrow, K. J., "Al'ernative Approaches to the Theory of Choice in the Risk-Taking Situations," Econometrica, 19, 404-437 (1951).
23. Arrow, K. J., "Rationai Choice Functions and Onderings," Econcmica, 24, 121-127 (1959).
24. Cherncff, H., and Moses, L. E., Elementary Decision Theory, John Wiley and Sons, New York, 1959.
25. Crurchman, C. W., "Problems of Value Measurement for a Theory of Induction and Decisions," Proceedings of the Third Berteley Synposium on Mathematical Statistics and Probability, University of California Press, berkeley, 1955.
26. Churchman, C. W., and Ackofe, R. L., "An Approximate Messure of Value, J . of Opns. Res., $2,172-187$ (1954).
27. Churchman, C. W., and Ackoff, R. L., and Arnoff, L. E., Introduction to Operations Research, John Wiley and Sons, New Yorik, 1947, Ch. 5, 105-135.
28. Churchman, - W, and Ratoosh, P. (eds.), Measurement: Definitions ani Theories, John ililey and Sons, New York, 1959.
29. Cyert, R. M., D1ll, W. R., and March, J. G., "The Rcle of Expectations in Business Decision Making," Auministrative Sci., Quart., 3, 307-340 (1958).
30. Livingeton, S. J., "Decision Making in Weapons Development," Harvard Business Review, 36, 127-136 (1958).

1\%. Luce, D. R., and Raiffa H., Games and Decisicns: Introduction and Critical Survey, John Wiley and Eons, New York, 1957.
14. Marschak, J., "Elenents for a Theory of Teams," Mgmt. Sci., 1, 127-137 (1955).
15. McGlothin, Willism H., "Stability of Cholees Anong Uncertain Alternatives," Amer. J. of Psychology, 69, 604-615 (1956).
16. Nelson, Arthur W., "Present Accomplisinments and Tuture Trends in Problem-Solving and Learning Theory," Amer. Psychology, 11, 278-281 (1950).
17. Pepper, C. S., The Sources of Value, University of California Press, Berkeley, 2950.
18. Siegel, S., and Goldstein, A. D., "Decision Making Behavior in a Free Cholca Uncertain Ciitcome Situation," J. of Experimental Psychoingy, 57, 37-42 (1959).
19. Simon, H. Au, liodels of Man, John•Wiley and Sons, New York, 1957.
20. Simon, H. A. "Theories of Decision Making in Economics and Behavioral science," American Economic Review, 49, 253-283 (1959).
21. Mirall, R. W., Coombs, C. H., end Davis, R, L. (eds.), Decision Processes, John Wiley and ' mns, New York, 1954.
22. Salvesor, M. E. "An Analysis of Decisions," Mgmt. Sci., 4. 203-2i7 (1958).

1. "Ariny Programs, Gusdz to Life Cycle of U, S. Army Material*, AMCP 11-2 (June 1965)
2. "Concept Formulation - Prerqquesites to Initiating Engineering or Operational Systens Devesopment Effort", AMC 70-30 (May 1966)
3. "Cost Analysis Handbook", Army Materiel Command (January 1968)
4. "Cost Analysis Prograf", AR 11-18 (March 1358)
5. DOD "Programming System", Department of Defense Directive. 7045.1
6. "Processing Qualitative Materiel Requirements, Small Development Requirements ani qualitative Materiel Develorment orfectives", AMC 70-14 (July 1966)
7. "Project Defirifion", Phase I, Department of Defense Directive 3200.9
8. "Research and Deveiopment of Kateriel, 2lanning, Volume I, Principles and Philosophy", iwfP 705-1, Yolvine I (January 196ú)
9. "Rescarch and Developnent of Materiel, Army Research and Devesopment", AR 705-5 (Octoder 1964)
10. "Research and Development, Materiei Systems Analysis", AMC 70-28 (January 1968)

1i. "y. S. Army Materiel Commard Mcteriel studies Review committee", AMC 15-8 (Angust 1966)
12. "Jeapor/support Systema Cost Categories and Elements", AR 37-18 (July 1968)

## APPELUMY 6 STATISTICAL TABLES

| Table | Titie |
| :---: | :---: |
| C-1 | Standerd Normal Table |
| C-2 | Table of t Statistic |
| C-3 | Chi Squired Table |
| C-4 | Table of P Values |
| C-5 | rable of critical I Values |
| C-6 | Exponential Table |
| $c-$ | Table of $2 \lambda^{2}(p, d)$ |
| c-8 | Table of Values of rt (reqlifed number of failures) |
| c-9 | Table of $n(x)$ |

Figura C-i


| begrean of Freedor | TABK C-2 <br> Taries of |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Probab1:1ty |  |  |  |  |
|  | 0.50 | 0.30 | 0.05 | 0.02 | $2 . .1$ |
| 1 | 1.000 | 6.34 | 12.71 | 31.82 | 63.66 |
| 2 | $0.81 E$ | 2.92 | 4.30 | 6.96 | 5.92 |
| 3 | 0.755 | 2.35 | 3.18 | 4.5 A | 5.84 |
| 4 | 0.742 | 2.23 | 2.78 | 3.75 | 4.60 |
| 5 | 0.727 | 2.02 | 2.57 | 3.36 | 4.03 |
| 6 | 0.718 | 1.94 | 2.45 | 3.14 | 3.71 |
| 7 | 0711 | 2.90 | 2.35 | 3.00 | 3.50 |
| 8 | 0.706 | 2.66 | 2.31 | 2.90 | 3.36 |
| 9 | 0.703 | 2.83 | 2.26 | 2.82 | 3.25 |
| 10 | 0.700 | 2.81 | 2.25 | 2.76 | 3.17 |
| $1:$ | 0.697 | 280 | 2.20 | 2.72 | 3.21 |
| 12 | 0.695 | 2.78 | 2.18 | 2.68 | 3.06 |
| 13 | 0.694 | $\therefore .77$ | 3.16 | 2.65 | 3.01 |
| 14 | 0.692 | 1.76 | 2.14 | 2.52 | 2. ${ }^{\text {ra }}$ |
| 15 | 0.691 | 1.75 | 2.23 | 2.00 | . . 95 |
| 16 | 0.690 | 2.75 | 2.12 | 2.53 | 2.92 |
| 17 | 0.689 | 1.74 | 2.11 | 2.57 | 2.90 |
| 18 | 0.688 | 1.73 | 2.20 | 2.55 | 2.88 |
| 19 | 0.688 | 1.73 | 2.09 | 2.54 | 2.86 |
| 20 | 0.607 | :.72 | 2.09 | 2.53 | 2.84 |
| 21 | 0.686 | 1.72 | 208 | 2.52 | 2.83 |
| 22 | 0.686 | 1.72 | 2.07 | 2.51 | 2.82 |
| 23 | 0.685 | 1.7 | 2.07 | 2.50 | 2.8: |
| 24 | 0.685 | 1.71 | 2.06 | 249 | 2.80 |
| 25 | 0.684 | 1.71 | 2.06 | 2.48 | 2.79 |
| 26 | 0.684 | 1.71 | 2.06 | ?.48 | 2.79 |
| 27 | 0.684 | 1.70 | 2.05 | 2.47 | 2 |
| 26 | 0.683 | 1.70 | 2.05 | 2.47 | 2.55 |
| 29 | 0.687 | 1.70 | 2.04 | 2.45 | 2.75 |
| 30 | 0.683 | 1.20 | 2.04 | 2.46 | 2.75 |
| 35 | 0.502 | 1.59 | 2.03 | 2.44 | 2.72 |
| 40 | 0.681 | 1.68 | 2.02 | $\bigcirc .42$ | 2.71 |
| 45 | 0.620 | 1.63 | 2.02 | 2.41 | 3.69 |
| 50 | 0.679 | 2.68 | 2.03 | 2.60 | 2.68 |
| 60 | 0.67 | 2.67 | 2.00 | 2.39 | 2.36 |
| 70 | 0.676 | : . 6 ? | 2.00 | 2.38 | 2.65 |
| 8 | 0.67 | 1.65 | 2.99 | 2.38 | 3.c5 |
| 90 | 0.977 | 1.60 | $\bigcirc 99$ | 2.37 | 2.03 |
| 170 | 0.677 | 1.66 | -.94 | [.3* | 2.63 |
| 125 | 0.675 | 1.66 | 1. ${ }^{\text {a }}$ | -. 36 | 2.82 |
| 154. | 0.676 | 1.06 | 1.98 | 2.35 | 2.61 |
| 200 | 0.675 | 1,6s | 1.97 | 2.35 | 2.50 |
| $3 \times 0$ | 0.675 | 1.65 | 1.97 | 2.34 | 2.49 |
|  | 2.575 | : E.Es | 1.97 | 2.72 | 2. $=9$ |
| 500 | 0.074 | 1.69 | 1.90 | 2.33 | 2.50 |
| 1000 | 2.67* | 1.05 | : 6 | 2.32 | 2.8. |
| - | 0.674 | 1.34 | 1.96 | + 5 | $\cdots 8$ |

AMCP 706-191


таBis C-4

| Degreas of Presdon in mumerator $v_{1}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 4052.8 | 4999.5 | 5403.3 | 5624.6 | 5763.7 | 5859.0 | 5928.3 | 5981.6 | 6022.5 |
|  | 2 | 99.503 | 99.000 | 99.166 | 99.249 | 99.299 | 99.332 | 99.356 | 99.374 | 99.388 |
|  | 3 | 34.116 | 30.817 | 29.457 | 28.710 | 28.237 | 27.911 | 27.672 | 27.489 | 27.345 |
|  | 4 | 21.198 | 18.000 | 16.094 | :5.977 | 15.522 | 15.207 | 14.976 | 14.799 | 14.659 |
|  | 5 | 16.258 | 13.274 | 12.050 | 11.392 | 10.967 | 10.672 | 10.456 | 10.289 | 10.158 |
|  | 6 | 13.745 | 10.925 | 9.7795 | 9.1483 | 8.7459 | 8.4661 | 8.2600 | 8.1016 | 7.9761 |
|  | 7 | 12.246 | 9.5466 | 8.4513 | 7.8467 | 7.4604 | 7.1914 | 6.9928 | 6.8401 | 6.7188 |
|  | 8 | 11.259 | 8.6491 | 7.5910 | 7.0060 | 6.6318 | $6.370 \%$ | 6.1776 | 6.0289 | 5.9106 |
|  | 9 | 10.56: | 8.0215 | 6.9919 | 6.4221 | 6.0569 | 5.3018 | 5.6129 | 5.4671 | 5.3511 |
|  | 10 | 10.044 | 7.5594 | 6.5523 | 5.9943 | 5.6363 | 5.3858 | 5.2001 | 5.0567 | 4.9424 |
| $2{ }^{\text {c }}$ | 11 | 9.6460 | 7.2057 | 6.2107 | 5.6683 | 5.3160 | 5.0692 | 4.886! | 4.7445 | 4.6315 |
| 。 | 12 | 9.3302 | 6.9266 | 5.9526 | 5.4119 | 5.0643 | 4.8206 | 4.6395 | 4.4594 | 4.3875 |
| ${ }^{\text {c }}$ | 13 | 9.0738 | 6.7010 | 5.7394 | 5.2053 | 4.8616 | 4.6204 | 4.4410 | 4.3021 | 4.2911 |
| \% | 14 | 8.8616 | 6.5149 | 5.5639 | 5.0354 | 4.6950 | 4.4558 | 4.2779 | 4.1399 | 4.0297 |
| ${ }^{\text {d }}$ | 15 | 8.6831 | 6.3589 | 5.4170 | 4.8932 | 4.5556 | 4.3183 | 4.2415 | 4.0045 | 3.8948 |
| 8 | 16 | 8.5310 | 6.2262 | 5.2922 | 4.7726 | 4.4374 | 4.2016 | 4.0259 | 3.8896 | 3.7804 |
| 5 | 17 | 8.3997 | 6.1121 | 5.1850 | 4.6690 | 4.3359 | 4.1015 | 3.9267 | 3.7910 | 3.6822 |
|  | 23 | 8.2854 | 6.0129 | 5.0919 | 4.5790 | 4.2479 | 4.0146 | 3.8406 | 3.7054 | $3.597 i$ |
| \% | 19 | 8.1850 | 5.9259 | 5.0103 | 4.5003 | 4.2703 | 3.9386 | 3.7653 | 3.6305 | 3.5225 |
| ${ }_{\sim}^{2}$ | 20 | 8.0960 | 5.8489 | 4.9382 | 4.4307 | 4.1027 | 3.8714 | 3.6987 | 3.5644 | 3.4567 |
| \% | 21 | 8.0166 | 5.7804 | $4.87 \% 0$ | 4.3688 | 4.0421 | 3.8117 | 3.6396 | 3.5056 | 3.3961 |
|  | 22 | 7.9454 | 5.7190 | 4.8166 | 4.3134 | 3.9880 | 3.7583 | 3.5867 | 3.4530 | 3.3458 |
| 8 | 23 | 7.8817 | 5.6637 | 4.7649 | 4.2635 | 3.9392 | 3.7102 | 3.5290 | 3.4057 | 3.2986 |
| \% | 24 | 7.8229 | 5.6136 | 4.7131 | 4. 2194 | 3.8951 | 3.6667 | 3.4959 | 3.3629 | 3.2560 |
|  | 25 | 7.7698 | 5.5680 | 4.6755 | 4.1774 | 3.8550 | 3.6272 | 3.4568 | 3.3239 | 3.2172 |
|  | 26 | 7.7213 | 5.5263 | 4.6366 | 4.1400 | 3.8183 | 3.5911 | 3.4210 | 3.2884 | 3.1818 |
|  | 27 | 7.6767 | 5.4881 | 4.0009 | 4.1056 | 3.7848 | 3.5580 | 3.3882 | 3.2558 | 3.1494 |
|  | 28 | 7.6356 | 5.4529 | 4.5681 | 4.0740 | 3.7539 | 3.5276 | 3.3581 | 3.2259 | 3.1195 |
|  | 29 | 7.5976 | 5.4205 | 4.5378 | 4.0449 | 3.7254 | 3.4995 | 3.3302 | 3.198 .2 | 3.0920 |
|  | 30 | 7.5625 | 5.3904 | 4.5097 | 4.0179 | 3.6990 | 3.4735 | 3.3045 | 3.1726 | 3.0665 |
|  | 40 | 7.3141 | 5.1785 | 4.3126 | 3.8283 | 3.5138 | 3.2910 | 3.1238 | 2.9936 | 2.8876 |
|  | 60 | 7.0773. | 4.9774 | 4.1259 | 3.6491 | 3.3389 | 3.1887 | 2.9530 | 2.8233 | 2.7185 |
|  | 120 | $6.85 \times 0$ | 4.7365 | 3.9493 | 3.4796 | 3.1735 | $2.9559$ | 2.7918 | 2.6629 | 2.5586 |
|  | $\cdots$ | 6.6349 | 4.6052 | 3.7816 | 3.3192 | 3.0173 | 2.8020 | 2.6393 | 2.5113 | 2.4073 |

TABLE C-4 (continued)

| F Distribution: Upper 1 Peroent Point |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Degrees of Proedom in Numerator $r_{1}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 20 | - |
|  | 1 | 6055.8 | 6206.3 | 6157.3 | 6208.7 | 6234.6 | 6260.7 | 6286.8 | 6313.0 | 6339.4 | 6366.0 |
|  | 2 | 99.399 | 99.416 | 99.432 | 99.449 | 99.458 | 99.406 | 99.474 | 95.483 | 99.491 | 99.501 |
|  | 3 | 27.229 | 27.052 | 26.872 | 26.690 | 26.598 | 26.505 | 26.412 | 26.316 | 25.221 | 26.125 |
|  | 4 | 24.546 | 14.374 | 14.198 | 14.020 | 13.929 | 13.838 | 13.745 | 13.652 | 13.558 | 13.463 |
|  | 5 | 20.051 | 9.8883 | 9.7222 | 9.552: | 9.4665 | 9.3793 | 9.2912 | 9.2020 | 9.1118 | 9.0204 |
|  | 6 | 7.8741 | 7.7183 | 7.5590 | 7.395: | 7.3127 | 7.2885 | 7.1432 | 7.0568 | 6.9690 | 6.8801 |
|  | 7 | 3.6201 | 6.4692 | 6.3143 | 6.1554 | 6.0743 | 5.9921 | 5.9084 | 5.8326 | 5.7572 | 5.6495 |
|  | 8 | 5.8143 | 5.6668 | 5.5151 | 5.3591 | 5.2'93 | 5.1981 | 5.1156 | 5.0316 | 4.9460 | 4.8588 |
|  | 9 | 5.2565 | 5.1114 | 4.9621 | 4.8080 | 4.7290 | 4.6486 | 4.5667 | 4.4833 | 4.3978 | 4.3105 |
|  | 10 | 4.8492 | 4.7059 | 4.5582 | 4.4054 | 4.3269 | 4.2469 | 4.1653 | 4.0819 | 3.9965 | 3.9050 |
|  | 11 | 4.5393 | 4.39-4 | 4.2509 | 4.0990 | 4.0209 | 3.9411 | 3.8596 | 3.7761 | 3.6904 | 3.6025 |
|  | 12 | 4.2961 | 4.1553 | 4.0096 | 3.8584 | 3.7805 | 3.7008 | 3.6192 | 3.5355 | 3.4494 | 3.3608 |
|  | 13 | 4.1003 | 3.9503 | 3.8154 | 3.6546 | 3.5868 | 3.5070 | 3.4253 | 3.3413 | 3.2548 | 3. 1654 |
|  | 12 | 3.9394 | 3.8001 | 3.6557 | 3.5052 | 3.4274 | 3.3476 | 3.2656 | 3.1313 | 3.0942 | 3.0040 |
|  | 15 | 3.8049 | 3.6662 | 3.5222 | 3.3719 | 3.2940 | 3.2141 | 3.1319 | 3.0471 | 2.9595 | 2.8684 |
|  | 16 | 3.6909 | 3.5527 | 3.4099 | 3.2588 | 3.1808 | 3.1007 | 3.0182 | 2.9330 | 2.8447 | 2.7528 |
|  | 17 | 3.5931 | 3.4552 | 3.3117 | 3.1615 | 3.0835 | 3.0032 | 2.9205 | 2.8348 | 2.7459 | 2.6530 |
|  | 18 | 3.5082 | 3.3706 | 3.2273 | 3.0771 | 2.9990 | 2.9185 | 2.8354 | 2.7493 | 2.6597 | 2.5660 |
|  | 19 | 3.4338 | 3.2565 | 3.1533 | 3.0031 | 2.9249 | 2.8442 | 2.7608 | 2.6742 | 2.5839 | 2.4893 |
|  | 20 | 3.3682 | 3.2311 | 3.0850 | 2.9377 | 2.8594 | 2.7785 | 2.6947 | 2.607? | 2.5168 | 2.4212 |
|  | 21 | 3.3098 | 3.1729 | 3.0299 | 2.9796 | 2.8011 | 2.7200 | 2.6359 | 2.5484 | 2.4568 | 2.3603 |
|  | 22 | 3.2576 | 3.1209 | 2.9780 | 2.8274 | 2.7488 | 2.6675 | 2.5831 | 2.491 | 2.4029 | 2.3055 |
|  | 23 | 3.2106 | 3.0740 | 2.9311 | 2.7805 | 2.7017 | 2.6202 | 2.5335 | 2.4471 | 2.3542 | 2.2559 |
|  | 24 | 3.1631 | 3.0316 | 2.8887 | 2.7380 | 2.6591 | 2.5773 | 2.4923 | 2.4035 | 2.3099 | 2.2107 |
|  | 25 | 3.1294 | 2.9931 | 2.8502 | 2.6993 | 2.6203 | 2.5383 | 2.4530 | 2.3637 | 2.2695 | 2.1694 |
|  | 26 | 3.0941 | 2.9579 | 2.8150 | 2.6640 | 2.5848 | 2.5026 | 2.4170 | 2.3273 | 2.2325 | 2.1315 |
|  | 27 | 3.0618 | 2.9256 | 2.7827 | 2.6316 | 2.5522 | 2.4699 | 2.3840 | 2.2938 | 2.1984 | 2.0965 |
|  | 28 | 3.0320 | 2.8959 | 2.7530 | 2.6017 | 2.5223 | 2.4397 | 2.3535 | 2.2629 | 2.1670 | 2.0642 |
|  | 29 | 3.0045 | 2.8685 | 2.7255 | 2.5742 | 2.4945 | c. 4118 | 2.3253 | 2.2344 | 2.1378 | 2.0342 |
|  | 30 | 2.5791 | 2.8431 | 2.7002 | 3.5487 | 2.4689 | 2.3860 | 2.2992 | 2.2079 | 2.1107 | 2.0062 |
|  | 0 | 2.8005 | 2.6648 | 2.5216 | 2.3689 | 2.2880 | 2.2034 | 2.1142 | 2.0194 | 1.9272 | 1.8047 |
|  | 5 | 2.6318 | 2.4961 | 2.3523 | 2.1978 | 2.1154 | 2.0285 | 1.9360 | 1.8363 | 1.7263 | 1.6006 |
|  | 120 | 2.4721 | 2.3363 | 2.1915 | 2.0346 | 1.9500 | 1.2600 | 1.7628 | 1.655 ? | 1.5330 | 1.3805 |
|  |  | 2.3209 | 2.1848 | 2.0385 | 1.8783 | 1.7908 | 1.6964 | 1.5923 | 1.4730 | 1.32 | 1.000 |

table C-4 (continued)

| F Distribution: Opper 2.j Peroent Points |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decrees of Freedom in Numerator $v_{1}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 4 | 5 | $\sigma$ | 7 | 8 | 9 |
|  | 1 | 647.79 | 799.50 | 804.36 | 899.58 | 921.85 | 937.11 | 948.22 | 956.66 | 963.28 |
|  | 2 | 36.500 | 39.000 | 39.165 | 39.248 | 39.298 | 39.331 | 39.355 | 39.373 | 39.387 |
|  | 3 | 17.443 | 16.044 | 15.439 | 15.101 | 14.885 | 14.735 | 14.624 | 14.540 | 14.473 |
|  | 4 | 12.218 | 10.649 | 9.9792 | 9.6045 | 9.3645 | 9.1973 | 9.0741 | 8.9796 | 8.9947 |
|  | 5 | 10.007 | 8.4336 | 7.7636 | 7.3879 | 7.1464 | 6.9777 | 6.8531 | 6.7572 | 6.6810 |
|  | 6 | 8.8131 | 7.2598 | 6.5988 | 6.2272 | 5.9876 | 5.8197 | 5.6955 | 5.5996 | 5.5234 |
|  | 7 | 8.0727 | 6.5415 | 5.8898 | 5.5226 | 5.2852 | 5.1186 | 4.9949 | 4.8994 | 4.8232 |
|  | 8 | 7.5709 | 6.0595 | 5.4160 | 5.0526 | 4.8173 | 4.6517 | 4.5286 | 4.4332 | 4.3572 |
|  | 9 | 7.2093 | 5.7147 | 5.0781 | 4.7181 | 4.4844 | 4.3197 | 4.1971 | 4.1020 | 4.0260 |
|  | 10 | 6.9367 | 5.4564 | 4.8256 | 4.4683 | 4.2361 | 4.0721 | 3.9498 | 3.8549 | 3.7790 |
|  | 11 | 6.7241 | 5.2559 | 4.6300 | 4.2751 | 4.0440 | 3.8807 | 3.7586 | 3.6638 | 3.5879 |
|  | 12 | 6.5538 | 5.0959 | 4.4742 | 4.1212 | 3.8911 | 3.7283 | 3.6065 | 3.5116 | 3.4358 |
|  | 13 | 6.4143 | 4.9653 | 4.3472 | 3.9959 | 3.7567 | 3.6043 | 3.4827 | 3.3880 | 3.3120 |
|  | 14 | 6.2979 | 4.8567 | 4.2417 | 3.8919 | 3.6634 | 3.5014 | 3.3799 | 3.2853 | 3.2093 |
|  | 15 | 6.1995 | 4.7650 | 4.1528 | 3.8043 | 3.5764 | 3.4147 | 3.2934 | 3.1987 | 3.1227 |
|  | 16 | 6.1151 | 4.6867 | 4.0768 | 3.7294 | 3.5021 | 3.3406 | 3.2194 | 3.1248 | 3.0488 |
|  | 17 | 6.0420 | 4.6189 | 4.0112 | 3.6648 | 3.4379 | 3.2767 | 3.1556 | 3.0610 | 2.9849 |
|  | 18 | 5.9781 | 4.5597 | 3.9539 | 3.6083 | 3.3820 | 3.8209 | 3.0999 | 3.0053 | 2.9291 |
|  | 19 | 5.9216 | 4.5075 | 3.9034 | 3.5587 | 3.3327 | 3.1718 | 3.0509 | 2.9563 | 2.8800 |
|  | 20 | 5.8715 | 4.4613 | 3.8587 | 3.5147 | 3.2891 | 3.1283 | 3.0074 | 2.9128 | 2.8365 |
|  | 21 | 5.8266 | 4.4199 | 3.8188 | 3.4754 | 3.2501 | 3.0895 | 2.9686 | 2.8740 | 2.7977 |
|  | 22 | 5.7863 | 4.3828 | 3.7829 | 3.4401 | 3.2151 | 3.0546 | 2.9338 | 2.8392 | 2.7628 |
|  | 23 | 5.7198 | 4.3492 | 3.7505 | 3.4083 | 3.1835 | 3.0232 | 2.9024 | 2.8077 | 2.7313 |
|  | 24 | 5.7167 | 4.3187 | 3.7211 | 3.3794 | 3.1548 | 2.9946 | 2.8738 | 2.7791 | 2.7027 |
|  | 25 | 5.6864 | 4.2909 | 3.6943 | 3.3530 | 3.1207 | 2.9685 | 2.8478 | 2.7531 | 2.6756 |
|  | 26 | 5.6586 | 4.2655 | 3.6697 | 3.3289 | 3.1048 | 2.9447 | 2.8240 | 2.7293 | 2.6528 |
|  | 27 | 5.6331 | 4.2421 | 3.6472 | 3.3067 | 3.0828 | 2.9228 | 2.8021 | 2.7074 | 2.6309 |
|  | 28 | 5.6096 | 4.2205 | 3.6264 | 3.2863 | 2.0625 | 2.9027 | 2.7820 | 2.6972 | 2.6106 |
|  | 29 | 5.5878 | 4.2006 | 3.6072 | 3.2674 | 3.0438 | 2.8840 | 2.7633 | 2.6686 | 2.5919 |
|  | 30 | 5.5675 | 4.1821 | 3.5894 | 3.2499 | 3.0265 | 2.8667 | 2.7460 | 2.6513 | 2.5746 |
|  | 40 | 5.4239 | 4.0510 | 3.4633 | 3.1261 | 2.9037 | 2.7444 | 2.6238 | 2.5289 | 2.4519 |
|  | 60 | 5.2857 | 3.9253 | 3.3425 | 3.0077 | 2. 7863 | 2.6274 | 2.5068 | 2.4117 | 2.3344 |
|  | 120 | 5.1524 | 3.8046 | 3.2270 | 2.8943 | 2.6740 | 2.5154 | 2.3948 | 2.2994 | 2.2217 |
|  | - | 5.0239 | 3.6889 | 3.1161 | 2.7858 | 2.5665 | 2.4082 | 2.2875 | 2.1918 | 2.1136 |

## AMCP 708-191

TABLE C-4 (continued)


TABLE C-4 (continued)

| F Diatrahuilon: Opper 5 Percers Points |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dogreen of Pruedom in fremeretor, $v_{1}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 261.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 |
|  | 2 | 28.513 | 19.000 | 19.164 | 19.247 | 19.296 | 19.330 | 19.353 | 19.372 | 19,385 |
|  | 3 | 10.128 | 5.5521 | 3.2766 | 9.1172 | 9.0135 | 8.9406 | 8.8868 | 8.9452 | 8.8123 |
|  | 4 | 7.7066 | 6.9443 | 6.5914 | 6.3883 | 6.2560 | 6.1631 | 6.0942 | 6.0410 | 5.0.888 |
|  | 5 | 6.6079 | 5.7861 | 5.4095 | 5.1922 | 5.0503 | 4.9503 | 4.8759 | 4.8183 | 4.7725 |
|  | 6 | 5.9874 | 5.1433 | 4,7571 | 4.5337 | 4.3874 | 4.2839 | 4.3066 | 4.1463 | 4.0990 |
|  | 7 | 5.5914 | 4.7374 | 4.3468 | 4.1203 | 3.5715 | 3.8060 | 3.7870 | $3.725 i$ | 3.6767 |
|  | 8 | 5.3177 | 4.4590 | 4.0662 | 3.8378 | 3.6875 | 3.5806 | 3.5005 | 3.4381 | 3.3881 |
|  | 5 | 5.1174 | 4.2565 | 3.8626 | 3.6331 | 3.4817 | $3.37 \times 8$ | 3.292? | 3.2296 | 3.1789 |
|  | 10 | 4.9646 | 4.1008 | 3.7083 | 3.4780 | 3.3258 | 3.2172 | 3.1355 | 3.0717 | 3.0004 |
| $2 \times$ | 11 | 4.8443 | 3.9823 | 3.5874 | 3.3507 | 3.2039 | 3.0946 | 3.0123 | 2.9480 | 2.8568 |
|  | 12 | 4.7472 | 3.8853 | 3.4903 | 3.2592 | 3.1059 | 2.9961 | 2.9134 | 2.8486 | 2.7964 |
| \% | 13 | 4.6672 | 3.8056 | 3.4105 | 3.1791 | 3.0254 | 2.9153 | 2.8321 | 2.7669 | 2.7144 |
| 5 | 14 | 4.6001 | 3.7389 | 3.3439 | 3.1122 | 2.9582 | 2.8477 | 2.7642 | 2.6987 | 2.6458 |
|  | 15 | 4.5431 | 3.6893 | 3.2874 | 3.0556 | 2.9013 | 2.7505 | 2.7066 | 2.6408 | 2.5876 |
| 8 | 16 | 4.4940 | 3.6337 | 3.2389 | 3.0069 | 2.8524 | 2.7413 | 2.6572 | 2.5911 | 2.5377 |
|  | 17 | 4.4515 | 3.5915 | 3.1968 | 2.9647 | 2.8100 | 2.6997 | 2.6143 | 2.548 BC | 2.4943 |
| $\stackrel{7}{7}$ | i8 | 4.4139 | 3.5546 | 3.1599. | 2.9677 | 2.7729 | 2.6613 | 2.5767 | 2.5102 | 2.4563 |
| 8 | 19 | 4.3803 | 3.5919 | 3.1274 | 2.8951 | 2.7401 | 2.6283 | 2.5435 | 2.4768 | 2.4227 |
| 8 | 20 | 4.3513 | 3.4928 | 3.0984 | 2.8661 | 2.7109 | 2.5990 | 2.5140 | 2.4471 | 2.3928 |
| m | 21 | 4.3948 | 3.4668 | 3.0125 | 2.0 20is | 2.6848 | 2.5727 | 2.4876 | 2.4205 | 2.3661 |
| ¢ | 22 | 4.3009 | 3,4434 | 3.0491 | 2.8187 | 2.6613 | 2.5491 | 2.4638 | 2.3965 | 2.3419 |
| 8 | 23 | 4.2793 | 3.4221 | 3.0280 | 2.7955 | 2.6400 | 2.5277 | 2.4422 | 2.3748 | 2.3201 |
| \% | 24 | 4.2597 | 3.4028 | 3.0088 | 2.7763 | 2.6207 | 2.5082 | 2.4226 | 2.3551 | 2.3002 |
| 8 | 25 | 4.2417 | 3.3858 | 2.9915 | 2.7587 | 2.6030 | 2.4904 | 2.4047 | 2.3371 | 2.2821 |
|  | 26 | 4.2252 | 3.3690 | 2.9751 | 2.7426 | 2.5868 | 2.4741 | 2.3883 | 2.3205 | 2.2555 |
|  | 27 | 4.2100 | 3.3,41 | 2.9604 | 2.7278 | 2.5719 | 2.4591 | 2.3732 | 2.3053 | 2.2501 |
|  | 28 | 4.1960 | 3.3404 | 2.9467 | 2.7141 | 2.5581 | 2.4453 | 2.3593 | 2.2913 | 2.2367 |
|  | 29 | 4.1830 | 3.3277 | 2.9340 | 2.7014 | 2.5454 | 2.4324 | 2.3463 | 2.2782 | 2.2229 |
|  | 30 | 4.1709 | 3.3358 | 2.9223 | 2.0896 | 2.5336 | 2.4205 | 2.3343 | 2.2662 | 2.2107 |
|  | 40 | 4.0848 | 3.2337 | 2.8387 | 2.6060 | 2.4495 | 2.3359 | 2.2490 | 2.1800 | 2.1240 |
|  | 60 | 4.0022 | 3.150\% | 2.7581 | 2.5252 | 2.3683 | 2.2540 | 2.1665 | 2.6770 | 2.0101 |
|  | 120 | 3.9001 | 3.0718 | 2.6808 | 2,4472 | 2.2900 | 2.1750 | 2.0867 | 2.0164 | 1.9588 |
|  | - | 3.8425 | 2.9937 | 2.6049 | 2.3719 | 2.2141 | 2.0986 | 2.0096 | 1.9384 | 1.2799 |

## AMC 706.191

TABLE C-4 (continued)

| Dogreas of Frwediom in mumeretor, $v$, |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | - |
|  | 1 | 241.88 | 243.91 | 245.93 | 248.01 | 249.05 | 250.05 | 251.14 | 25\%. 20 | 253.25 | 254.32 |
|  | 2 | 19.396 | 19.413 | 19.429 | 19.446 | 19.454 | 19.462 | 19.471 | 19.479 | 19.487 | 19.496 |
|  | 3 | 2. 7855 | 8.7446 | 8.7099 | 8.6600 | 8.6385 | 8.6166 | 8.5944 | 8.5720 | C.5494 | 8.5855 |
|  | 4 | 5.9644 | 5.9117 | 5.8578 | 5.80:5 | 5.7744 | 5.7459 | 5.7173 | 5.6879 | 5. 5581 | $5.62 E 2$ |
|  | 5 | 4.7351 | 4.6777 | 4.6188 | 4.5561 | 4.5872 | 4.4957 | 4.4638 | 4.4314 | 4.3984 | 4.3650 |
|  | 6 | 4.0600 | 3.9999 | 3.9381 | 3.8742 | 3.8415 | 3.8082 | 3.7743 | 3.7398 | 3.7047 | 3.6688 |
|  | 7 | 3.6365 | 3.5747 | 3.5108 | 3.4445 | 3.4105 | 3.3758 | 3.3404 | 3.3043 | 3.2674 | 3.2298 |
|  | 8 | 3.3472 | 3.2840 | 3.2184 | 3.1503 | 3.1152 | 3.0794 | 3.0428 | 3.0053 | 2.9669 | 2.9276 |
|  | 9 | 3.1373 | 3.0729 | 3.0061 | 2.9365 | 2.9005 | 2.8657 | 2.8259 | 2.7872 | 2.7473 | 2.7067 |
| $2^{N}$ | 10 | $2.97 \% 2$ | 2.9130 | 2.8450 | 2.7740 | 2.7372 | 2.6996 | 2.6609 | 2.6211 | 2.5601 | 2.5379 |
|  | 11 | 2.85.76 | 2.7876 | 2.7186 | 2.6464 | 2.6090 | 2.5705 | 2.5309 | 2.4901 | 2.4430 | 2.4045 |
| ¢ | 12 | 2.7534 | 2.6866 | 2.6169 | 2.5436 | 2.5055 | 2.4663 | 2.4259 | 2.3842 | 2.3410 | 2.2962 |
| 5 | 13 | 2.6710 | 2.6037 | 2.5331 | 2.4589 | 2.4202 | 2.3803 | 2.3392 | 2.2966 | 2.2524 | 2.2064 |
| 8 | 14 | 2.6021 | 2.5342 | 3.4630 | 2.3879 | 2.3487 | 2.3082 | 2.2664 | 2.2230 | 2.1778 | 2.1307 |
| 8 | 15 | 2.5437 | 2.4753 | 2.4035 | 2.3275 | 2.2878 | 2.2468 | 2.2043 | 2.1601 | 2.1141 | 2.0658 |
| 5 | 16 | ?. 4935 | 2.4247 | 2.3522 | 2.2756 | 2.2354 | 2.1938 | 2.1507 | 2.1058 | 2.0589 | 2.0096 |
|  | 17 | 2.4499 | 2.3807 | 2.3077 | 2.2304 | 2.1898 | 2.1477 | 2.1040 | 8.0584 | 2.0107 | 1.9604 |
| 8 | 18 | 2.4117 | 2.3421 | 2.2605 | 2.1906 | 2.1497 | $2.2 \mathrm{C7}$ | 2.0629 | 2.0166 | 1.9681 | 1.9168 |
| 2 | :9 | 2.3779 | 2.3080 | 2.2341 | 2.1555 | 2.1141 | 2.0712 | 2.0264 | 1.9796 | 1.9302 | 1.8780 |
|  | 20 | 2.3479 | 2.2776 | 2.2033 | 2.1242 | 2.0825 | 2.0391 | 1.9938 | 1.9464 | 1.8963 | 1.8432 |
| \% | 21 | 2.3910 | 2.2504 | 2.1757 | 2.0960 | 2.0540 | 2.0102 | 1.9645 | 1.9165 | 1.8657 | 1.8117 |
| 8 | 22 | 2.2967 | 2.2258 | 2.1508 | 2.0707 | 2.0083 | 1.9842 | 1.9380 | 1.8895 | 1.838 v | 1.7831 |
| - | 23 | 2.2747 | 2.2036 | 2.1282 | 2.0476 | 2.0050 | 1.9605 | 1.9190 | 1.8649 | 1.8128 | 1.7570 |
| 8 | 24 | 2.2547 | 2.1834 | 2.1077 | 2.0067 | 1.9838 | 1.9390 | 1.8920 | 1.8424 | 1.7897 | 1.7331 |
|  | 25 | 2.2365 | 2.1649 | 2.0889 | 2.0075 | 1.9543 | 1.9198 | 1.8718 | 1.8217 | 1.7684 | 1.7110 |
|  | 26 | 2.2197 | 2.1479 | 2.075 | 1.9896 | 1.9464 | 1.9010 | 2.8533 | 1.8027 | 1.7488 | 1.6906 |
|  | ${ }^{7}$ | 2.2043 | 2. 1323 | 2.0558 | 1.9736 | 1.9299 | 1.8849 | 1.8361 | 1.7351 | 3.7307 | 1.6727 |
|  | 28 | 2.1900 | 2.1179 | 2.0411 | 1.9586 | 1.9147 | 1.8687 | 1.8203 | 1.7689 | $\therefore 7138$ | 1.6541 |
|  | 29 | 2.1768 | 2.1045 | 2.0875 | $1.944{ }^{\circ}$ | 1.9005 | 1.8543 | 2.8055 | 1.7537 | 1.6988 | 1.6377 |
|  | 30 | 2.1646 | 2.0921 | 2.0148 | 1.9317 | 1.8874 | 1.8409 | 1.7918 | 1.7396 | 1.6335 | 1.6223 |
|  | 40 | 2.0772 | 2.0035 | 1.9245 | 1.8389 | 1.7969 | 1.7444 | 1.6928 | 1.5373 | 1.5766 | 1.5089 |
|  | 60 | 1.99e\% | 1.9274 | 1.6364 | 1.7480 | 1.7001 | 1.6491 | 1.5943 | 1.5343 | 1.4673 | 1.3893 |
|  | 120 | 1.9105 | 1.8337 | 1.7505 | 1.6587 | 1.6084 | 1.5843 | 1.4952 | 1.4290 | 1.3519 | 1.2539 |
|  |  | 1.8307 | 1.75:22 | 1.6664 | 1.5705 | 1.5173 | 1.4591 | 1.3940 | 1.3180 | 1.2214 | 1.0000 |

## AMCP 706-191

table c-4 (contiuued)

| P Distrebutions Opper 10 Porsent Points |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dearees of mreedon in mearator ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 39.864 | 49.500 | 53.593 | 55.833 | 57.241 | 38.204 | 58.906 | 59.439 | 858 |
|  | 2 | 8.5263 | 9.0000 | 9.1628 | 9.2434 | 9.2926 | 5.3255 | 9.3491 | 9.3668 | 9.3605 |
|  | 3 | 5.5383 | 5.4624 | 5.3968 | 5.3447 | 3.3092 | 5.26k? | 5.2662 | 5.2517 | 5.2400 |
|  | 4 | 4.5440 | 4.3246 | 4.2908 | 4.1073 | 4.0506 | 4.0098 | 3.9790 | 3.9549 | 3.9357 |
|  | 5 | 4.0604 | 3.7797 | 3.6195 | 3.5202 | 3.4530 | 3.4045 | 3.3679 | 3.3393 | 3.3163 |
|  | 6 | 3.776 | 3.4633 | 3.2888 | 3.2808 | 3.1075 | 3.0546 | 3.0145 | 2.9830 | 2.9577 |
|  | 7 | 3.589M | 3.2574 | 3.0741 | 2.9605 | 2.8833 | 2.8274 | 2.0049 | 2.7516 | 2.7247 |
|  | 8 | 3.4579 | 3.1132 | 2.9238 | 2.8064 | 2.7265 | 2.6683 | 2.6241 | 2.5893 | 2.5612 |
|  | 9 | 3.3603 | 3.0065 | 2.8129 | 2.6927 | 2.6106 | 2.5509 | 2.5053 | 2.4694 | 2.4503 |
|  | 10 | 3.2850 | 2.9845 | 2.727 | 2.6053 | 2.5816 | 2.4606 | 2.4540 | 2.3772 | 2.3473 |
| ${ }_{6}$ | 11 | 3.2952 | 2.8593 | 2.6602 | 2.5362 | 3.4512 | 2.3891 | 2.3416 | 2.3040 | 2.2735 |
| E | 12 | 3.1765 | 2.3068 | 2.6035 | 2.4801 | 2.3940 | 2.3310 | 2.2688 | 2.2446 | 2.2135 |
| \% | 13 | 3.1362 | 2.7632 | 2.5603 | 2.4337 | $2.340{ }^{7}$ | 2.2830 | 2.2341 | 2.1953 | 2.1638 |
| E | 14 | 3.1022 | 2.7265 | 2.5222 | 2.3947 | 2.3069 | 2.2426 | 2.1931 | 2.1539 | 2.1220 |
|  | 15 | 3.0732 | 2.6952 | 2.4898 | 2.3614 | $2.273{ }^{\text {c }}$ | 2.2081 | 2.1582 | 2.1885 | 2.0862 |
| 5 | 16 | 3.0481 | 2.6689 | 2.4C18 | 2.3327 | 2.2438 | 2.1783 | 2.1280 | 2.0830 | 2.0553 |
| \% | 17 | 3.0262 | 2.64i | 2.4374 | 2.3077 | 2.8183 | 2.1524 | 2.1017 | 2.0613 | 2.0284 |
| \% | 18 | 3.0070 | 2.6239 | 2.4160 | 2.2858 | 2.1958 | 2.1296 | 2.0785 | 2.0379 | 2.0047 |
| $\pm$ | 19 | 2.9699 | 2.6056 | 2.3970 | 2.2663 | 2.1760 | 2.1094 | 2.0580 | 2.3171 | 2.9836 |
| $\stackrel{4}{6}$ | 20 | 2.9747 | 2.5093 | 2.3801 | 2.2489 | 2.2582 | 2.0913 | 2.0397 | 2.9905 | 1.2649 |
| - | 21 | 2.9609 | 2.5746 | 2.3649 | 2.2333 | 2.14i3 | 2.0751 | 2.0432 | 1.9819 | 1.9487 |
| $5$ | ${ }_{2}$ | 2.9486 | 2.5613 | 2.3512 | 2.2193 | 2.1279 | 2.0605 | 2.0084 | 1.9668 | 1.9327 |
| 8 | ${ }^{3}$ | 2.987 | 2.5493 | 2.3387 | 2.2065 | 2.1149 | 2.0472 | 1.5849 | 1.9531 | 1.9189 |
|  | 24 | 2.977 | 2.5583 | 2.3274 | 2.1949 | 2.1030 | 2.0351 | 1.9826 | 1.9407 | 2.9063 |
|  | 25 | 2.9177 | 2.5883 | 2.3570 | 2.2843 | 2.292 | 2.044 | 1.3714 | 1.929 | 1.8947 |
|  | 26 | 2.9091 | 2.5191 | 2.3075 | 2.2745 | 2.082 a | 2.0139 | 1.9610 | 2.9188 | 1.8842 |
|  | 27 | 2.9012 | 2.5106 | 2.2967 | 2.1655 | 2.0730 | 2.0045 | 2.9515 | 2.9091 | 2.8743 |
|  | 88 | 2.8939 | 2.5088 | 2.2906 | 2.1571 | 2.0045 | 1.9859 | 1.9427 | 1.9001 | 1.8652 |
|  | 29 | 2.887 | 2.4935 | 2.2831 | 2.1494 | 2.0566 | 1.587 | 1.936 | 1.8928 | 1,8560 |
|  | 30 | 2.8807 | 2.4887 | 8.8761 | 2.1482 | 2.0492 | 1.9803 | 1.979 | 1.2841 | 1.8490 |
|  | 40 | 2.8354 | 2.4404 | 2.2861 | 2.0909 | 1.9968 | 1.9869 | 1.89 .5 | 1.8289 | 1.7925 |
|  | 60 | 2.7914 | 2.3932 | 2.1774 | 2.0410 | 2.9857 | 1.8147 | 1.8194 | 1.7745 | -.7380 |
|  | 120 | 2.7478 | 2.3473 | 2.1300 | 1.9923 | 1.8939 | 1.8236 | 1.7675 | 1.7220 | 1.6843 |
|  | - | 2.705: | 2.3036 | 2.0838 | 1.9449 | 1.8473 | 1.741 | 1.7167 | 1.6702 | 2.6315 |

TABLE C-4 (contimued)

| Degreen or Preediom in mumetor $\mathrm{r}_{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 180 | - |
|  | 1 | 60.195 | 60.705 | 61.200 | 61.740 | 62.009 | 62.265 | 68.59 | 62.794 | 63.061 | 63.386 |
|  | 2 | 9.3916 | 9.4081 | 9.4247 | 9.4413 | 9.4n96 | 9.4579 | 9.4663 | 9.476 | 9.4889 | 9.4923 |
|  | 3 | 5.2304 | 5.2156 | 5.2003 | 5.1845 | 5.1764 | 5.1481 | 5.1597 | 5.1538 | 5.1425 | 5.2187 |
|  | 4 | 3.9199 | 3.8955 | 3.8680 | 3.8413 | 3.8310 | 3.8174 | 3.0036 | 3.7896 | 3.7753 | 3.7607 |
|  | 5 | 3.2974 | 3.2682 | 3.2360 | 3.2067 | 3.2905 | 3.1741 | 3.1573 | 3.1400 | 3.1228 | 3.1050 |
|  | 6 | 2.9369 | 2.9047 | 2.8712 | 2.8363 | 2.8183 | 2.8000 | 2.7812 | 2.7680 | 2.7423 | 2.7222 |
|  | 7 | 2.7085 | 2.6681 | 2.6322 | 2.5947 | 2.5753 | 2.5555 | 2.5351 | 2.5142 | 2.4928 | 2.4708 |
|  | 8 | 2.e380 | 2.5020 | 2.4642 | 2.4246 | 2.4041 | 2.3830 | 2.3614 | 2.3392 | 2.3162 | 2.2966 |
|  | 9 | 2.4163 | 2.3769 | 2.3396 | 2.2903 | 2.2768 | 2.2547 | 2.2320 | 2.2008 | 2.1843 | 2.1599 |
|  | 10 | 2.3226 | 2.2841 | 2.2435 | 2.2007 | 2.1794 | 2.1554 | 2.1317 | 3.1072 | 2.0818 | 2.0554 |
|  | 11 | 2.2489 | 2.2087 | $2.267 ?$ | 2.1230 | 2.1000 | 2.0762 | 2.0516 | 2.0863 | 1.9997 | 1.9721 |
|  | 12 | 2,1878 | 2.1474 | 2.1049 | 2.0597 | 3.0360 | 2.0125 | 1.9861 | 1.9597 | 1.9323 | 1,9036 |
|  | 13 | 2.2376 | 2.0966 | 2.0532 | 2.0070 | 1.9897 | 1.9576 | 1.9315 | 1.9043 | 1.8759 | 1.8462 |
|  | 14 | 2.0954 | 2.0537 | 2.0095 | 1.9625 | 1.9377 | 1.9119 | 1.8052 | 1.8572 | 1.8280 | 2.7573 |
|  | 15 | 2.0593 | 2.0171 | 1.9722 | 1.9843 | 1.8590 | 1.8728 | 1.8454 | 1.8168 | 1.7867 | 1.7551 |
|  | 16 | 2.0081 | 1.9854 | 1.9399 | : 2.8913 | 1.8656 | 1.8388 | 1.8100 | 1.7816 | 1.7507 | $1.718{ }^{2}$ |
|  | 17 | 2.0009 | 1.9577 | 1.9127 | 1.8624 | 1.8362 | 1.8090 | 1.7805 | 1.7506 | 1.7291 | 1.68 |
|  | 18 | 1.9770 | 1.9323 | 1.8868 | 1.8368 | 1.8103 | 1.7827 | 1.7531 | 1.7832 | 1.6910 | 1.658 r |
|  | 19 | 1.9557 | 1.9117 | 1.8647 | 1.8142 | 2.7673 | 1.7592 | 1.7898 | 1.69808 | 1.6659 | 1.6308 |
|  | 20 | 1.9367 | 1.8984 | 1.944y | 1.7988 | 1.7607 | 1.7392 | 1.7003 | 1.6768 | 1.6433 | 1.6074 |
|  | 21 | 1.9197 | 1.8750 | 1.8772 | 1.7756 | $\therefore .7481$ | 1.7193 | 1.6890 | 1.6569 | 1.6228 | 1.5868 |
|  | 22 | : 1.9043 | 1.8593 | 1.6111 | 1.7590 | 1.7312 | 1.7081 | 1.6714 | 1.6399 | 1.6042 | 1.5668 |
|  | 23 | 1.9503 | 1.8450 | 1.790 | 1.7439 | 1.7159 | 1.6864 | 2.6554 | 1.6824 | 1.5871 | 1.5490 |
|  | 24 | 2.8775 | 1.8319 | 1.7834 | 1.7308 | 1.7019 | 1.6721 | 1.6407 | 1.6073 | 1.5715 | 1.5337 |
|  | 25 | 2.8658 | 1.8200 | 1.1700 | 1.7175 | 1.6890 | 1.6585 | 1.6272 | 1.5934 | 1.5570 | 1.5176 |
|  | 26 | 1.8550 | 1.8090 | 2.759 | 1.7059 | 1.6771 | 1.6468 | 2.6147 | 1.5805 | 1.5437 | 2.5056 |
|  | 27 | 1.8451 | 1.7909 | 1.7498 | 1.6951 | 1.6662 | 1.6356 | 2.6032 | 1.5666 | 1.5313 | 1.4906 |
|  | 28 | 2.8359 | 1.7895 | 1.7395 | 1.6852 | 1.6560 | 1.6852 | 1.5945 | 2.8575 | 1.5198 | 1.4704 |
|  | 29 | 1.8874 | 1.7808 | 2.7506 | 1.5759 | 1.6465 | 1.6155 | 1.5885 | 2.5472 | 1.5090 | 1.4570 |
|  | 30 | 1.8195 | 2.7727 | 1.7223 | $\therefore .6673$ | 2.6377 | 1.0065 | 1.5732 | 1.5376 | 1.4909 | 3.6564 |
|  | 40 | 2.7627 | 2.7146 | 1.6684 | 1.6038 | 1.5741 | 1.5nid | 1.5056 | 1.4672 | 1.4248 | 1.5769 |
|  | 60 | 1.7070 | $1.657^{4}$ | 1.6034 | 4.5435 | 1.5107 | 1.6755 | 1.4373 | 1. 3.982 | 2.3476 | 1.2513 |
|  | 120 | 1.6524 | 1.6012 | 1.5450 | 1. vee 1 | 1.4472 | 1.4094 | 1.3676 | 1.3803 | 1.2646 | 1.3906 |
|  |  | 1.5907 | 1.5498 | 1.471 | 1.4206 | 1.3032 | 1.3419 | 1.2961 | 1.2400 | 1.1686 | 1.0000 |


| TABLE C-5 <br> Chitical valoss da ( n ) of the maximun absoldite DIFFIRENCE BEIWEESN SAMPLES AND POPULATION RRLIABILITYY FUNCTIONS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sample Sise (N) | Level of significance (a) |  |  |  |  |
|  | 0.20 | 0.15 | 0.10 | 0.05 | 0.01 |
| 3 | 0.565 | 0.597 | 0.642 | 0.708 | 0.828 |
| 4 | 0.494 | 0.525 | 0.564 | 0.624 | 0.733 |
| 5 | 0.446 | 0.174 | 0.474 | 0.565 | 0.655 |
| 10 | 0.322 | 0.342 | 0.368 | 0.410 | 0.490 |
| 15 | 0.656 | 0.283 | 0.304 | 0.338 | 0.404 |
| 22 | 0.231 | 0.246 | 0.264 | 0.294 | 0.356 |
| 25 | 0.21 | 0.22 | 0.24 | 0.27 | 0.32 |
| 30 | 0.15 | 0.20 | 0.22 | 0.24 | 0.29 |
| 35 | 0.18 | 0.19 | 0.21 | 0.23 | 0.27 |
| 40 | C. 17 | 0.18 | 0.19 | 0.21 | 0.25 |
| 45 | 0.16 | 0.17 | 0.18 | 0.20 | 0.84 |
| 50 | 0.15 | 0.16 | 0.17 | 0.19 | 0.23 |
| ever $\}$ | 1.07 | 1.14 | 1.22 | 1.36 | 1.63 |
| 50 ) | $\sqrt{17}$ | $\sqrt{n}$ | $\sqrt{n}$ | $\sqrt{1}$ | $\sqrt{11}$ |

Kellability Exponential Function ( $A \cdot e^{-\lambda t}$ )

| 1t | R | $\lambda t$ | R |
| :---: | :---: | :---: | :---: |
| 0.001 | 0.999000 | 0.051 | 0.950779 |
| 0.008 | 0.999002 | 0.058 | 0.94989 |
| 0.003 | 0.997004 0.996008 | 0.053 | 0.94630 0.94732 |
| 0.005 | 0.995012 | 0.055 | 0.946485 |
| 0.006 | 0.991018 | 0.036 | 0.945339 |
| 0.007 | 0.993024 | 0.057 | 0.91424 |
| c.000 | 0.992032 | 0.058 | 0.948090 |
| 0.009 | 0.991040 | 0.059 | 0.97709 |
| 0.010 | 0.990050 | 0.200 | 0.942765 |
| 0.011 | 0.989060 | 0.061 | 0.940823 |
| 0.012 | 0.908072 | 0.062 | 0.93983 |
| 0.013 | 0.987084 | 0.063 | 0.939943 |
| 0.214 | 0.980098 | 0.084 | 0.938005 |
| 0.015 | 0.985112 | 0.065 | 0.937067 |
| 0.016 | 0.984127 | 0.066 | 0.936131 |
| 0.018 | 0.903144 | 0.667 | 0.935195 |
| 0.018 | 0.982161 | 0.068 | 0.934260 |
| 0.019 | 0.931179 | 0.069 | 0.933329 |
| 0.020 | 0.980199 | 0.070 | 0.932544 |
| 0.022 | 0.979219 | 0.071 | 0.931462 |
| c.022 | 0.978240 | 0.072 | 0.930531 |
| $0.02{ }^{2}$ | 0.977262 | 0.073 | 0.924601 |
| 0.024 | 0.976286 | 0.074 | 0.928677 |
| 0.085 | 0.97531 - | 0.075 | 0.927743 |
| 0.026 | 0.974335 | 0.076 | $0.92 \times 16$ |
| 9.027 | 0.97336 | 0.071 | 0.92590 |
| 0.028 | 0.972388 | 0.078 | 0.92494 |
| 0.083 | 0.97146 0.970446 | 0.09 0.060 | 0.9293116 |
|  | 0.960474 | 0.081 | 0.962194 |
| 7.032 | 0.986507 | 0.00 | 0.921272 |
| 0.533 | 0.967539 | 0.063 | 0.920351 |
| $0.03-$ | 0.966572 | 0.08 | 0.919431 |
| 0.035 | 0.753605 | 0.005 | 0.718512 |
| 0.036 | 0.964640 | 0.06 | 0.91 .394 |
| 0.037 | 0.963675 | 0.087 | 0.926677 |
| 0.038 | 0.963713 | 0.088 | 0.913761 |
| 0.039 0.040 | 0.961731 0.960789 | 0.069 0.690 | 3.914846 0.913931 |
|  |  |  | 0.913018 |
| 0.041 | 0.95989 | 0.091 | 0.912108 |
| 0.042 0.043 | 0.98670 | 0.092 | 0.911:94 |
| 0.044 | 0.950958 | 0.004 | 0.910263 |
| 3.04s | 0.955997 | 0.095 | 0.909373 |
| 0.046 | 0.955942 | 0.096 | $0 . \operatorname{cost} 64$ |
| 0.041 | $0.95<087$ | 0.097 | 0.907656 |
| 0.049 | 0.953134 | 0.094 | 0.906349 |
| 0.049 | 0.952181 | 0.899 | $0.905^{-13}$ |
| 0.050 | 0.951223 | 0.100 | $0.9 \times 4{ }^{\text {P }}$ |

TABLE C-6 (continued)
Neliability Exponential Funciion ( $\boldsymbol{\pi}=e^{-\lambda t}$ ) (Cont.)

| $\lambda t$ | H | 20 | n |
| :---: | :---: | :---: | :---: |
| 0.110 | 2.093834 | $n .65$ | 0.929346 |
| 0.120 | 0.86090 | 0.70 | 0.496585 |
| 0.130 | 0.578097 | 0.75 | 0.472357 |
| 0.240 | 0.86935 | c. 80 | 0.449329 |
| 0.150 | 0.860708 | 0.85 | 0.427415 |
| 0.160 | 0.852144 | 0.30 | 0.406570 |
| 0.170 | 0.843665 | 0.95 | 0.306741 |
| 0.180 | 0.83570 | 1.0 | 0.367879 |
| 0.190 | 0.886959 | $\therefore .05$ | 0.349938 |
| 0.200 | 0.818731 | 1.10 | 0.33287: |
| 0.210 | 0.8.0484 | 1.15 | 0.316637 |
| 0.220 | 0.802519 | 1.20 | 0.301194 |
| 0.236 | 0.79453 | 1.25 | a.286505 |
| 0.240 | 0.786628 | 1.30 | 0.272532 |
| 0.250 | 0.718801 | 1.35 | 0.259240 |
| 0.260 | 0.771052 | 3.40 | 0.246597 |
| 0.270 | 0.763379 | 1.45 | 0.234570 |
| 0.260 | 0.75789 | 1.50 | 0.223130 |
| 0.290 | $0.748 \times 64$ | 1.55 | 0.212248 |
| 0.300 | 0.740816 | 4.60 | c. 201897 |
| 0.310 | 0.733447 | 1.70 | 0.182684 |
| 0.320 | 0.726149 | 1.60 | 0.165299 |
| 0.330 | 0.71892 | 1.90 | 0.149969 |
| 0.340 | 0.71176 | 2.00 | 0.13535 |
| 0.350 | 0.704688 | 2.10 | $0.124{ }^{\text {c }}$ |
| 0.360 | c. 697676 | 2.25 | 0.110803 |
| $0.37{ }^{\circ}$ | 0.69074 | 2.30 | c. 100259 |
| 0.300 | 0.683861 | 2.40 | 0.09078 |
| 0.790 | 0.677057 | 2.50 | 0.020085 |
| 0.400 | 0.670320 | 2.60 | 0.074274 |
| 0.410 | 0.663650 | 2.70 | 0.062 .6 |
| c. 40 | 0.65704 ? | 2.80 | 0.060820 |
| 0.430 | 0.650509 | 2.90 | 0.059023 |
| 0.440 | 0.644036 | 3.00 | $0.0 i 46$ P |
| 0.490 | 0.63762 C | 3.25 | $0.03877^{4}$ |
| 0.463 | 0.631284 | 3.50 | 0.030197 |
| 0.40 | 0.655008 | 3.75 | $0.0 \times 3616$ |
| 0.480 | 0.61678 | +. 0 | 0.7523 |
| 0.490 | 0.61268 | 4.25 | 0.014264 |
| 0.500 | c. 606531 | 4. 50 | 0.011109 |
| 0.517 | 0.600496 | 4.75 | 0.00855 |
| 0.540 | a. 594591 | 5.00 | 0.006738 |
| 3. 320 | 0.548805 | 5.50 | a, 00402? |
| 9.36 | a. 583748 | 6.00 | 0.000479 |
| 0.980 | a. 576950 | 6.50 | 0.0011503 |
| 0.560 | 0.511200 | 7.00 | 0.000912 |
| 0.510 | 0.56585 | 7.50 | 0.000553 |
| 0.30 | C. 33909 | 8.00 | 0.000335 |
| 0.59 | a. 583 | 9.00 | a. 000123 |
| 6.600 | a. 518812 | 10.0 | A. 000045 |

SABLE $\because-7$
CONFIDENCE FACTORS FCI MALCULAGTON OF MEAK LIFR


C-16

| TABLE C-8 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| REQUIREL NUMBER OF FAILJRES FOR VARIOUS VALIFS OF CONFIDEETGE AND PRECISION (Exponentiel Distribution) |  |  |  |  |
| Precision- $\delta$ | Corsfidence |  |  |  |
|  | 85\% | 90, | 958 | 99\% |
| 5\% | 830 | 1082 | 1537 | 2655 |
| 10\% | 297 | $2 ? 2$ | 384 | 664 |
| 15\% | 92 | 120 | 171 | 295 |
| 20\% | 52 | 67 | 96 | 166 |
| 25\% | 33 | 43 | 61 | 106 |
| 30\% | 23 | 30 | 43 | 74 |
| 35\% | 17 | 22 | 31 | 54 |
| Example: 43 fatlures are required to be $90 \%$ conildent that the estimated MTBF is within $25 \%$ of the true value. |  |  |  |  |


| Vaiues of $\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x ; \Gamma(n+1)=r \Gamma(n)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $\Gamma(8)$ | n | $\Gamma(\mathrm{n})$ | n | $r(n)$ | $n$ | $\Gamma(\mathrm{n})$ |
| 1.00 | 1.00000 | 1.25 | 0.90040 | 1.50 | 0.88623 | 1.75 | 0.91906 |
| 1.01 | 0.99433 | 1.26 | 0.90440 | 1.51 | 0.88659 | 1.76 | 0.92137 |
| 1.02 | 0.98884 | 1.27 | 0.90250 | 1.52 | 0.88704 | 1.77 | 0.92376 |
| 1.03 | 0.98355 | 1.28 | 0.90072 | 1.53 | 0.88757 | 1.78 | 0.920023 |
| 1.04 | 0.97844 | 1.25 | 0.89904 | 1.54 | - 0.88818 | 1.19 | 0.92877 |
| 2.05 | 0.97350 | 1.36 | 0.89747 | 1.55 | 0.88887 | 1.80 | 0.93138 |
| 2.00 | 0.96874 | 1.31 | 0.80600 | 1.56 | 0.83964 | 1.81 | 0.93408 |
| 1.07 | 0.36516 | 1.32 | 0.89404 | 1.57 | 0.89049 | 1.82 | 0.93685 |
| 1.08 | 0.95973 | 1.33 | 0.89338 | 1.58 | 0.89142 | 1.83 | 0.93969 |
| 1.09 | 0.95546 | 1.34 | 0.89222 | 1.55 | 0.89243 | 1.84 | $0.942 \mathrm{h1}$ |
| 1.10 | 0.95135 | 1.35 | 0.89115 | 1.60 | 0.89352 | 1.65 | 0.94561 |
| 1.11 | 0.94739 | 1.36 | 0.89018 | 1.61 | 0.89468 | 1.86 | 0.94869 |
| 1.12 | 0.94359 | 1.37 | 0.88031 | 1.62 | 0.89592 | 1.87 | 0.95184 |
| 1.13 | 0.93993 | 1.38 | 0.88854 | 1.63 | c. 89724 | 1.88 | 0.95507 |
| 1.14 | 0.93642 | 1.39 | 0.88785 | 1.64 | 0.89864 | 1.89 | 0.95838 |
| 2.15 | 0.93304 | 1.40 | 0,88:26 | 1.65 | 0.90012 | 1.90 | 0.96177 |
| 2.26 | 0.92980 | 1.41 | 0.88676 | 1.66 | 0.90167 | 1.91 | 0.96523 |
| 1.17 | 0.92570 | 1.4. ${ }^{3}$ | 0.88636 | 1.67 | 0.90330 | 1.92 | 0.96878 |
| 1.18 | 0.92373 | 1.43 | 0.88604 | $\therefore .68$ | 0.90500 | 1.93 | 0.97240 |
| 1.10 | 0.32088 | 1.44 | 0.88580 | 1.69 | 0.90678 | 1.94 | 0.97610 |
| 1.20 | 0.91817 | 2.45 | 0.88565 | 1.70 | 0.90864 | 1.95 | 0.97938 |
| 1.21 | 0.91558 | 1.46 | 0.88560 | 1.71 | 0.91057 | 1.96 | 0.98374 |
| 1.22 | 0.91311 | 1.47 | 0.88563 | 1.76 | 0.91258 | 1.97 | 0.98768 |
| 1.23 | 0.91075 | 1.48 | 0.88575 | 1.73 | 0.91466 | 1.98 | 0.99171 |
| 1.24 | 0.9085 ? | 1.45 | 0.88595 | 1.74 | 0.91683 | 1.99 2.00 | $\begin{aligned} & 0.99581 \\ & 1.00000 \end{aligned}$ |

AMCP 708-191

finner 6-11

Confidence Coefficients: 0.80
for Tro-Sided Estimation, 0.90


Inme 6-10

Confidenge coefficients: 0.90
for Two-sided Estimstion, 0.95
for one-Sided Eotimation

frener t-ic

Conildence Coefilcients: 0.95
for Two-Sided Estimation, 0.97 b
for une-Sided Estimation


Prome 6-11
arne dis fin mountions
Conridence Cofificients: 0.99
or Two-Saded Estimation, 0.99
or One-Sided Estimation COST-EFFEGTNEMESS AMALYSES *

CHAPTER I<br>GEMERAL BACKGROUND

## hrroduction

To sesist in the ruview of atudies contatioing cont-efiectivenness analyese, a series of ley queations with axplanatory noted have been prepa-ed and are contained in the nexi chapter. These quastions, taken tigether, will nut nocosearily cover all aspects of all cont-effoctivenoss acalyses. No one genaral list of questims cun do that. Raiher, the questicns are designed to focus the attention of the reviewer on selected aspocts io assist him in evaluating the analywis. All the guestions are not applicable to all studies and they are not necessarily of equai importanco to those studies where they do apply. The reviewer must exercise his judgment on whether the questions are applicable and the cogree of applinability ti the study being reviewed. Those questions that are conaidered particilarly important and of widest application have been underlined, and are also listod separately for coaventance in the beck as "BELECTED QUEETIONB, "tw This document is intended only 28 a gutde and not as a full and compreteasive treatment of all aspects. of cost-effoctiveness analysis.

Questions that do not bear ou military cont-affectiveneso analyses are not trcluded in the next chapter. Furthermorn, no queations are addressed to the subject of the intuttive judgment and other factors used in maling decisions to which cost-effectiveness analyses contribute.

## Cost-Effectiveriess Analyais and the Estimate of the situation

Cset-effectiveness analysis is a method for studying how to make the best of several choices. By cost-effectivenoss is meant the re!-tion of the resources required (cost) to achieve a cortain abdity to accomplish an objective (effectiveness). The term cost-effectiveness is always used in relation to the eftectiveness of alternative syatems, organizations, or activities.

Cost-efiectiveness analysis is based on the economic concopt that all military decisions involve the allocation (best use) of limited resources among competing requirements. The allocation ta dotermined by atudying how to get the beat une of the avalable resourcea. This asme concopt is ombodied in Army deciaioa processes. It is ured by a combat commander when he determines (estimate of the situation) the allocation of his resources

[^29][^30](forces) amooy the miln and secondiury offorts and reaerves in the cismer or between the forward and recerve forces in the dofores. A CS mex the eame concept in proparing hie recommendatione for realloonder amcat the clements of the command the ammunttion avaliable expply rate arnoreond by the higher beadquarters. The company commander goed through the ans procest in deciding how to epend his company funde.

Although cost-offectivenege analyais and the eatimate of the olvation are similar in concejt, they diffor in several appeta. The perpoee of in setimate of the attration is to arrive at a reoomminind compeo of antinn. E is uavally a prooes to arrive at decivions to soive "tody's probiame ioday." I does not concent teolf, in a realictic somes, with peotlome, operations, or systams of the future, area though it in cometimes mot clear where the pr sblom of tciny ande and the problom of tomorrow siarta. Because it deals with ralatively immodinte proilome, the formelption of possible courses of action in an eatimate of the dination is ceveroly limitad. The resources forcet and wespons) avallable to the communder are fred by what has been made avellable and thare ts mo real floudblitty in ctengine their composition or baisc organiration. In pradioe, it is also umally difficult to chtesin additional resources from the noxd hidher commanier.

Another severe constratin on the extimate of the stination is the time factor. . Eformation is usually focomplete and the time avallable taiore a decision is required oftec does not permit filling in gepe-aven If it mare posatble. Oten there te only mufticiont time to analyet the misetom, grether staff estimates, formulate a fow poedble cowreas of action and quichly welgh theae coursee of action againgt the camy oapablime for ditioviuse to be overcome) and whth eech other, and salact a couree of sotion biead ca some critaria--often called the governing finctort. Time asully doee not permit testing the range of the dependence of the propoced course of action on the atafi estimates and plannine asoumptions.

Military cost-effectivepass analyais ic not in decision process but an aid in facllitating deciafoes that miest be mado aow to raprord to devaiopmeai, force compoatition, and logiatical and manpower policy problama to order to be prepared for wars in the future. The analytival tectaipses employed in cost-effectiveness analyais are required to mpplemeot thoee employed in the estimate of the siluation because, as we jooik into the fritures the number of uncertainties multiply. These necertaiuties include such thingt as planuing factors, the enemy and hif reactions, the atrating conoppt. technology, chasige, and even tho national objective whlch oan be oupectod to change in the future as alliances ahit and now forces in the world divelofs Advancea in techrotogy crease new opportuation that my regatre chargea to organizaticn and doctrire as well as hardware. Ait theep uncertaintion lead to a large oumber of variables that must be considered. some of these yartables are sumpect to our cookrol, some to the epemy's and obheri so nobody's control. But all are variables, and all are teferdepeadme.

The faruase in mombort and hinds of variahios asociated with problops of tiv hatre ons be flumated, on small scale, in a bypothotical ebidy of a there weapope aystem for an infantry platoon-agouming that the
 Variabion thet monid reguire andy mould faciude auch parameterc as alterzattw mappee syniops that on be avalinhe in the time trame under atudy, couppousion (inti) of lind of wapone withta the total system, the number of
 boelce of war, and etiocte of apporting moapoas of hicher ocholons. I
 levele of martive to be eonadered are ancloter wariare, couventional war, and one type of ctablimy of uperations, over 700 cames rewitt-and all ofpetionnt paremotere have not boun IInted. It the mumber of candidete
 to be ecmeldared.

If in this mpircamen of uncertaintian and floxiblity th uec and intercompabilty of reacuroes people, tollari, and hardware) that conteffective-
 the problem and as mosh relovapt faformation as poestole in order that the
 applied, partioniariy in conidoration of qualtative aspects and consistincy whin higher cotelom comaideratlose. For axamgle, in a hypothetical force ocmpoettion problom where fledblity in force compontion is poeptilo, th ha bua dotormfned that tive foroe mant heve a onpability to doutroy oertaln Inde of taryts at ocrinin appotod ranges. Two poesthio altorvativee are artiliary and tactionl air. The tire rapuired and the cost to deetroy thene trigete by uee of ench alternative sin be calculated Rowever, the importance of hatias a capabllty to athock thare sargeta at any time of the day or night, repurciees of weather conditione, is a matter of judrmenc. This judgment can be betwar made whea the cont-effectiveness of each alternauive is known, fa othar words, che price to be paid for en all-weather capability stated in onelletert detall and socuracy to be mefil for piaming.

The efiort to provide information so the commander can bettor exerciee hif jodiontet it aloo found the the edinate of the oftrition procees. For cumple, aombat commendec oan becter appiy bis judemont to miection
 coly rong-of the ammber of cemaltive be will suffor and the ime required to lecomplinh the mitulon for wed of the proponed cour mea of action. Fowover, the variaile that a stafi antimato must couenod with are relativaly Ifrelied The fricody orgenisation is fix-d, thare is only owe osemy in ouly cow area and the options apen to the mamy are relatively fow. For example,
 For practical purpoen. metitur the many aor the Irimedy force can introduce
 In the time pertod covered by the cutimite of the eitration

The basis of cost-effectivenoas snalyais is that thare are altornate ways of reuching an objective and each altermative requirs: cortatn resources and produces cortain results. This in the samo basia of the eatimate of the altuation which atudies proposed courses of actiona, wewh of witich requlrse certain resources (forces and supplios) and prodsome cortilin expected rsaulte (aime to take the objective, casualioen incurred). A cont-affectivene apelyate is deaigned to exercites ayitematically and relato ocsts, effeotivenese, and riske of alternative ways of accomplishing an obfective and deutaning addtitozal altsynatives (proposed courses of netion) if those exasobsed are sound wanting. It an analyais of the coot gad effontivemece of a nystom, such as a forward arem atr dofeace or ath atr mobile divisict, aad all of the syttem implications. E can be considered as a hind of rompumers Resentich to assist in getting the most for the resources to be axpended and sot as a sear ih for the cheapect regardiese of effeetivesess.

A major mothodological difference between cont-effectivenese analywes and other multenry atudtios is the mannor to which the results are preserted. A stafl study or a stafl eutimite, like a coct-aftectivemese analysia, consider: cources of action (elterantives). Howover, the statif eatimate and utafl atudy ueually embody a single recommeodation with the other alternatives ofthor rarily meationed or aok as fully discuseed as the recomumeaded course of cetion. The commander fleciaion maker) te given the full reasoning bahind the recemmended course c : action which is frequently presentel so that the oaly option opes is a "yes" or "po" deciston.

In a cout-affectiveness analyalc, the afgnificunt alternativea, the svathble fictu, the reasoning procese and the pertinent concideratione partaining to each alonificent alterpative are preseated. All identifisive assumptions and data are presented so that thotr validity can be questioped. maddition, zed thit is a major goal of a cont-affiectivereat analysitu, the deptendence of the results of the analyses on three assumptione and dhat are tested.

The ataff eatimate and etaff study do ideatify major asaumptions. However, an implied aspumption is often introcticed when several different cour ses of action are open and a docioton is made to procend in one direction. such a doristion is then aceoperd as a fonowa quarity when, in reaitity, it rosilly to an assumption. There are many reasoan for such sesumptions, but frequently the reault of the atudy or estimato is aot tected for sensitivity to such hidden sasumptions.

Cont- Toctrwasen smalyale pleces grest amphais oo une of numbers and calculations in any effort to determtne quantitative fectors where possible. Or courm, there gie many aspects on milltary activitien that cunnot bo reduced to a quanftat've betor. Tbere to now no rulid way of assigaing a number to mortie, the peyciological effecia of a cartain military oquarations, or a buyt of other inctors. However, it it domaible to calculate the number of tes-mis bowitier rounde and otal cont required to deatroy a certsin type of tarkes. The impact of factors such as morale, trainime. reiw lity of
allies cannot yet be calcuated and cre now matters of intultive judgment. A cost-effectiveness anaiysis sseks to quiántify what can be logically calculated so that the decision maker knows the extent to which intuitive judgment must bo used in making a decision.

## Esaential Elorrents

The esseutial elements of a cost-effectivenees anslysis are:

1. Objectize(s) functions to be accomplished).
2. Alternatives feasible ways of achieving the dostred milttary capability or socomplishing the function).
3. Coat of reacurces required by each alternative.
4. A set of mathematical or $\log i c a l$ relationsh:f among the objectives, alternatives, anvirorinent and resources (madels).
5. A critarion for choosing the preferras altornative.

## The Oblective

The determination of the objective is ofted complex, in ordar to destan alfernative properly, the problem must be analyzed to determine the real fnctional neal underlying the requirements for certain organinations and herdware syetems. Thorough examination of the functional neod usually bringe intight into the problem and loads to generating alternatives that miny accomplich the dasired geal. Clowe exarination of objectives stisted suly in terme of specific organizations or systems often discloses that the ant reault is not a significantly new or improved capmblity bet a relatively minor product improvernsin. This does not uaply that product improvements are not needed but ratbir that a full uiderstanding of the true aignificunce of what is being proposed for purchase is neceazify. For example, in stating a ruquirement for an artillery system with a specified minimum range capablity, tho real objective may be a capablity to destroy certain kinds of targets under certain conditions. By examining the problem from the fuctional besis, the planner is better able to understand the problem. This inalegt miny lead to other alternatives that ahould be stutied. The examina:Acn may show that the proposed new arillery system is only cone alternative io accomplighing the cbjective and that another altervative may be preferable.

There are practical limits on the delinition of the objective. Every military activit; is part of a iarger activity anc it is necessary to draw the ltas at some polst. However, the objective shuld not be unduly restricted by confurion with performance characteristics such as speeds, weights. mescie velocities, hit-k!ll probabil: ies, anu so forth.

## Aitermatives

In military planoing thare is rarely only oos excluatve way of achioving a given objective. Each way has its own price tag of itme, men, facitition, materiel, end money. Assume, for example, that the planning problem -admiticdly over-simplified--is to diesign a new type of division with certatn capabilities. In satisfying these capabilities, the TOE designer hate many alternatives. For the same capability, is it better to have more mobility (trucks, aircraft, and other vehicles) and leas manpower, or perhape more mortars and fewer riflemen? The alternativea are limited oaly by creative imagination and good milltary judgment. By exploring altermative ways of using resources it is oftia possible to discover ways of achieving an objective with fewar resources, or accomplisking more with the sams resources. All feasible and significant capabilities to accomplish the objective abouid be considered, including the capabilities of the Navy, Air Force, and Marines. Prejudices, "party-line" and other froms of preconceived notions should be avoided in the design of alternatives.

## Cost

Determering the cost of each alter native is besed on incremental costs. These are the net costs of adopting the alterrative. Such costs are determined after duc allowances for those rescurces already paid for regardlesa of whether the alternative is adopted, and would be avallable for use under the alternative if it were adopteri. In determining the cost of an alternative all the resource inylications are sonsiderer. The alternative is treated in a sy-tem context. For example, the cost, admittedly oversimplifiod, of adopting a new radio would include not only the cost of the radio and ifa develorment, but also the costs of traiuing people to operate it, the total cost of maintaining the radios, and the cost of the additional zauios required for maintenance float, renlacemert, combat consumption, and so forth.

Costs need not be atated in precise terms duwn to the last dollar or man. However, the costs must be accurate enough to permis evaluatiny ine military worth (effectiveness) togeiher with the costs. Like everyihing else, this rule must be applied with discretion. In dealing with systems way out in the future we accuracy of the cost ostimate, whether it is an absolute figure or a range, probatly is inverse to the distance out in the future. Usual!y cost estimates are teated by sensitivity analysis. These are repetitive analyses using different quantitative values to determine if the resulis are sensitive to the values assigned. Such analvees give the decision maker a better understanding of how much uncertainty is invoived if the e are significaint srors in the cogt estimates. He cun then better judqe if the investment is worth the payoff considering the uncertainties involved.

## Models

Models are used in cost-effectiveness analysis to cope with the host of
varinbies that are firhorent in problezze of the future. A model is simply certain relationships acpreased in mome way tes simulate real or expected conditions tr order to foremoe, over to in limited extant, the expected oitcome of a course of action. Modsle asatat in straplifying the problicm, in ideastifying the sifgniftcumt comproneds and interrelations, in detormining which variables ars sapecially important for twe decision at issue, and which
 more precisely focuased an those arent which raquire a judgment docision.

Modale raige from aimple graphe to complex equations and can also take the form of a wargame or field roanouver. The estimate of the sitiration and stafl estimates also use mociels. The comparisons of proposed courses of action efatnst exemy capabilitios or expected difficultios and the comparison azioas the proppecer coareses of action represerct uses of models to foresee the future outcome of an action.

Ail mociels, siraple or complex, ara abstractions of the real world and their validity depends on the proper selection of assumptions and the correctness of the relations portrayed, and the pertinence of the factors included in the model. Two aspects of model building are particularly trcublesome, quantification and the treatment of uncertainty. Some variables are ditficult to cuantify, such we the continued availability of centain support from an ally. This diffculty lesder either to the negisct of such variables by tgroring them or by a qualitative mocification of a solution derived from the treatneai of other ariables that have boen properly quantified. Such treatment oflem resuiks in the difficut-to-quentify variablas being lost within all the other qualitative constierations that must be weighed when the time comes to recommead action on the besis of the soluticn from the model.

The influence of the pariable that cannot be quantified and all uncertaizHes must be specifically addressed in the model unless it can be demonstrated by logic or analysis that they are trivial, affect all alternatives roughly the same, or the results are insensitive to them, Guessine may lead to disaster. For example, if there is uncertainty about 8 factors, a best guess might be made on each of them. If there is a $60 \%$ probability that each best guess is right, then the probability that all guesses are right is less than $2 \%$. Relyting on t ist guesses, in this cass, would be ignoring all the outcomes with more than $98 \%$ probabulity of occurriag. Uncertainties and the problem of the factors that cannot ine quantified can be handled through various techniques such as Monte Carlo sampling, contingency analysis, (see Glossary) and even wargaming for certain purposes.

Models that portray relations incorrectly also lead to false results. For example, some models are based on the persistence principle which states that what is happening or has happened will persist. This type of modeì ia dangerous except for very short-term uses. For example, it is wrong to assume that the enemy tactics used during the Kcrean war will continue to be used in the future against new types of equipment and tactics that may be introduced. Scme models depend on extrapolation which assumes
that treads will conitu we winterrupted. Euch models lend themselves readily to mathematicai treatment but ure often erroneons bacause of failure to connicier what is called the Law of Diminishing Returws. For example, a machine gum can fire at a certain high rato. However, this high rate cannot be maintained for vary loas (axtrapolation) because the barrel would soon be bursed out.

Models can be olassified into two genaral typua--exact (determinietic) or probabilistic. An exact modal of warfare, of course, is imposibie in peacetime. However, it is posaible to create an almont axact model of some specific piece of hardware or activity and subject it to test. The final product of the modal will then clasaiy approximute the results from the actual hardware or activity. March graphs used for planning administrative movements are examples of deterministic models. Most military problems are, by nature, made up of uncertainties. Consequently, they are considered as probabilistic when the uncertainty is identified by a probability factor. For example, a wargame using a cartain kill probability for an air defense system is a probabilistic model.

The construction of models to evaluate effectiveness is ofton difficult. The difficulties arise in selection of criterin of effectiveness. 표 is relatively easy to measure the comparative effectivenecs of two similar pieces of equipment designed to accomplish the same general objective as, for example, in comparison of a towed i05-mm and a self-propelled $105-\mathrm{mm}$ howitzer. However, it is more difficult to compare the effectiveness of general purpose force organizatione such as two different kinds of divisions o: even two equal-strength infantry battalions having the sazae general kinde of weapons but one having three rifle companies and the other having four. The impact on effectiveness of intangibles auch as morale and leadership can hardly be calculated and requirea the application of judgment. Dach study virtually requires a consideration of its own criteria of effectiveness.

Models used in cost-effectiveness analysis sometimes tend to become mathematical and abstract. Consequently, they may be difficult to understand. A good cost-effectiveness analysis strikes a balance in the use of models between simplicity and retention of enough detail to ensure that the expecied outcome of an expected action will be adequately portrayed. In any case all models have certain common elements. These are broadly stated as a definition of the problemp pincipal factors or constraints, yerification and the decision process--or application of criteria. The validity of conceptual or mathematical models cannot be verified in a costeffectiveness analysis by controlled experiments. At the best, they can be tested by their workability. Questions 37 to 44 in the next chapter are designed to assist a review to test the workabllity of models used in costeffectiveness analyses.

## Criteria

The most widely used criteria in Army studies for selecting the pre-
lerred alternative are usually baserl on either equal coat or equal effectivenews of the alternstives. Another method, known as incremental effectiveness at incremental cost, is used in special cases. In the c jual cost form it is assumed that there is an arbitrary fixed bucget or series of fixed budgets, and the aualysia determines whici siternative gives the greatest effectiveness for the same expenditures or resources. In the equal effectiveness form, a apecified and measurable milltary effectivaness (capabllity) is stated and the analysis is to determine which altarnative achieves this effectiveness at least cost. The incremental effectivenses at incremental cost method relates the increase in effectiveness achieved to the aasociated increase to resources involved. This method is normally uced only as in lsat resort when neither costs nor effectiveness of alternatives can be made equal, e. g., when a capability based on a new technology is to be added to the forcs and this new capability cannot be approxirnated by any practicable combination of existing materiel ard men.

## Role of Judgment

Judgment is used throughout a cost-effectiveness analyais in the same manner as in the making of an estimate of the attuation or a staff estimate. Judgment is used in analyzing the objective, deciding wisich alternatives (courses of action) to consider, which factors are relovant and the interrelations among these factors, which numerical values are to be used, and in analyzing and interpreting the results of the analyais. The goal of a cost-effectiveness analyats is to keep all judgments in plain view and vo make clear the logic used. It also showa the sensitivity of the results to the significant judgmenas made. The depth of a cont-effectiveness analyais is tempered by the time and manpowar available and the importance of the subject matter. A cost-effectiveness analyais requires resources and it must serve as an aid to the making of decisions and aot be a mere intellecival exercise.

## Review of Studies

There are probably almost $2 . s$ many different wa vs of reviewing a study containing cost-effectiveness analysis as there are reviewers. Furthermore, the time available for review is variable and studies lack a common format. It is suggested that the points iisted below be checked specifically in the early stages of a review.
a. Statement of criteria used to judge effectiveness.
b. Statement of criterion used tu select preferred alternative.
c. Use of incremental costs.
d. Explanation of logic of models.
e. Presence or lack of analyais of semut'ivity of the reaults to significant data and anaumptions.

Without these alements boing present, the atuidy vill probably be of poor quality.

Army--conducted studies containing coet-edfectivenees analyuis usually do not iavo a uniform organisational pattern but many geasally follow the staff study format. On that kasis, the key queation in the next chapter isive been grouped under these headings:

Statement of the Problem<br>Assumptions<br>Alternatives<br>Documentation<br>Cost<br>Relationships (Models)<br>Effectiveness<br>Griteria<br>Conclusions and Recommendations

The grouping unde- the above headings inevitably leads to some duplication of material, particularly on the use of analytical tools such as sensitivity and contingency analysis. This cuplication has been kept io a minimum but full coverage has been retained under asch heading as a convenience to the reviewer who wishes to refer to a apecific heading.

The Glossary is designed to give a non-technical definition of terms frequently used in cost-effectiveness analyses.

The annotated Bibliography has been designed for the reviewer who deaires to read further into the methodology of coat-effectiveness analysis.

## Chapte 7

## KEY QUESTIONB*

## STATEMENT OF THE PROBLEM

## 1. IS THE PROBLEM STATED THE REAL PROBLEM?

An improper atatament $x$ the problem often results in either studying the wrong problem or precluding conalderation of worthy alternatives. These defects are usually avoided by a statement oi the problem in terms of a functional need--the job( $f$ ) to be done--without implying how it is to be done. A statement of the problem in terms of requirements for kinds of forces, systems, or porformance characteristics, except if it is a follow on to a previously approved study of a functicnal need, should be critically examined to ensure that the wrong problem is not being studied and that worthy alternatives are not automatically excluded from conalderation. For example, although the stated problem (no previous study of functional need) may be to select a rifle to meet certain capabilitien (requirement statement), the real problem might be providing the rifle squad with adequate firepower to accomplish certain functions (functional need), In such a case, a rifle is only one possible alternative.

A word of caution is in order. There often is a practical limit on the depth of the statement of the functional need or the study may become unmanageable. For exar ple, in the case cited the functional need could be conceivably so stated hat the rifle squad itself becomes only one alternative to solving a larger problem. To avoid this difficulty, either certain broader decisions musi be considered as made, thereby narrowing the scope of the study, or the broader study undertaken. When the former approach is taken, the study is known za a suboptimization. The revfewer, based on his knowledge and judgment, must determine if the suboptimization has so narrowed the scope of the problem that the real problem has been missed or worthwhile alternatives excluded.

## 2. DOES THE STUDY IDENTIFY IMPLIED SLGNIFICANT COMPONENTS of the problem that must be fully treated in the STUDY?

Like the mission statement in an estimate of the situation, the problem to be treated in a cost-effectiveness analyais must be analyzed to identify all functions that must be performed Some of these implied functions are

[^31]
## AMCP 706-181

often not apparent at first. The reviewer should watch for implied signifivant component parts of the problem that are nelther identified nor treated fully in the study. The reviewer should also watch for other problems that ure opencd up or revealed by the atudy that should befurther investignted.

## ASSUMPTIONS

## 3. ARE ALL AsBUMPTIONS IDENTIFIED?

The reviowar should watch for assumptions that are not iderifited as much becauce ascumptions imply a limitation or a judgment. In order to evaluate the atudy properly, it is neceasary to assens the impact of the limitations and the valldity of the judgments cortained in all the assumptions. An oxample of a common ascumption that is often not identified is that a given unit operates by itself. As a remulh, in measurins the effectiveneme of a division, for example, inadequate coisiderition is somatimes given to the support the diviaion receives from nom-tiviaional units auch as corpe artulery or tacticil uir units. This failurs to sonaider non-divisional support may lead to erroneous concluaiona and recosumendetions. Another froquently hidden actumption is that the enemy' $y^{\text {a doctrine }}$ and tactics are rigid although ours are flexible.

## 4. ARE THE ASSUZAPATCNE UNDULY RESTRICTIVE:

Asoumptions are properly used to narrow the scope of the study to manageable proportions. However, the assumptions should be examined to determine whether they unduly restrict the atudy by eliminating possibie significant alternatives or by narrowing the scope of consideration to the point that the concluaions and recommendations may be in error. This cramination may be required throughout the zeview of the fundy and not only during the review of the stated assumptions.

Aasumptions covering the subjects listed below often unduly restrict the acope of the study and lead to questionable conclusions and recommen. dations.

> a. Nen-availability or limited avallability of support from otter gervices (e.g., tactical air support or MAT8 effort).
> b. Locale of operations.
> c. Duratica and intensity of operations.
> d. Enemy organization, operucions, and reactions to our decisions.
> e. Tisne period covered.

## 5. DO ANY OF THE MANOR ABSULPPTIOAS UNJUETITLABLY TREAT QUANTITATIVE UNCERTADNTLES AS EACT8?

An uncertainty can be defined tes the hack of defintitive knowledpo for usnigning values or probeblitites to thotors that infuence daciaiome. Uncertainties can be ofther quantitative (ricks) or qualtiative. (Boo UNCERTADITY and Busk in Clomeary.) Emamples of quantititive unoestainties arc hit-kill probabilltios, equipenemt availability ratas, ammuaticen expenditure rates, and rollaollity etatements. The aviliability of bace
 by the poteutial enemy in a civen year arc examplen of a qualitative uncertainty. (Soe neat queation.)

The reviewer should be alert for atated and implied major acsumptions that aselgn fixed values to quaritative uncertaindice and them treat these ectimates se facts. A common example is the atsumption that a proposed weapon cyatem will heve a certala hit-kell probability. It is oftem better to handle oiguificant uncertaintios by ocaettivity analysie. This is a repetitive analyois using diflorent quantitative values to determine if the requite are sensitive to the values asaignod. When afgifleant uncertainties are treated as facte by ascumption, the conclusions and recommondativas of the study may be po more valld than the assumption unleas it can be demonatrated that the concluelons asd recommenchitions are not senaitive to plauable errors in the "fecte."

The number of senaltivity analyser required, and foastble, is a matter of judgment. There are limits to the time and manpower avaliable for a given atuty. Sometimes an educated guest, conaldering all the circumatances, will suffice. In effect, tine reviowar muat judge whether: the study agency has performed adoquate eanuitivity anolyces considering all the circumatances, the Importance of the aubject, and whether further sensitivity analyals may aignificantly affect the conciusions and recommendations.

## 6. DO ANY OF THE MAJOR ASSUMPTIONS TREIT QUALITATIVE UNCERTAINTIES AS FACTS?

Major qualitative uncertainties treated as ateumption also tend to dictate conclusions. A common qualitalive uncervinty that may dictate the conciusion coacerns the astimate of the anemy. Many otudies are besed on intelligence entimatee, or targat arraye preparad or approved by the Defent Intelligence Agency. Howover, themeatimaten are somefime assumed to be ficte. In auch cases, thit ofton resulte to the smemy being conaidered to be inflexible and no allowacces are made for him to react in different ways to our operstions or to wr introduction of aew capabilities. Whary it in nat definisely known how we will oper ate or be equlpped 10 yeare hance. It is quentionable to anmume that the ever.y operations and equipmen in the future can be paedicted with certalaty,

$$
2-14
$$

Ohber cmalitetive mocertaintios, mated or impled, that should be truated whin oexticn are thone ancocinsed with poltional cooalderations. Examples sre avaliabllity of base rifite, wesursace of overlicht pen mienton, and equpoettico of poltical and military alliances on ofther alde.

Treatmont of the binde of uscertaintiey diecuesed above in an amalyoie is mot aduple, bit ithe cleote of mach uncertaintion on the coucluatose sbould
 the of this kind is to uge contingmoy amalysis. This involves repetidive asalyole with difier cmat quiltative acsumptioses, exch as lype of comalict or omeryy capibilitice, to delcrmine their effecte for corepartion with the recolte of the intital minlyals. The amount of ocetinpercy amalysie regaired has to be a matior of judement, as discuesed in the provious quetion.

## 7. ARE THE MAJOR ASBUMPTIOTS REASCNABLE?

Major assumptions should also be teated to determise if they are remacouble. This tout can be friciltitated if the ntudy documente or providea some suplamation of why ceoh asmungtion was made to that the ressoas can be evaluated by the roviower. A uachul teohatque for reviewers in to try to then of other nafor nasumptions that are plansible. If these invilidate the conolusions and recommeadations, thea the atudy is questiomble.

## ALTERNATIYE:

## 8. ARE CURRENT CAPARTMYIES ADEQUATHLY COMUDERED AMONO THE ALTERMATIVE:?




 to that of the potemital roemy. Comeldacation of ourremt oupabilitics to an improvainete that is worth the copenditure of sow reecurees. Dy conaldering current capablitios, moch of whoee coate arv alreedy pald for, wa th altersetive, the cundy cen abow the difforsece in afleotivmeen and ocots that result from the ideppice of the proposed eow cyatem or orgaokation. (8ee quection 23.) Currom capabiustioe should aleo be cocabliered, where appropriate, $\rightarrow$ a compomeat of an altermativ.

## 9. ARE "TRADE-OFIB" WITH EXISTLNG SYETRAMS CR CRCANURATIONE ADEQUATELY CONFDERED DTTIN THE ALTERNTYER?

Where appropritate, the design of altersativee ahould conetder

 altermitive might include redretion in otber meane of tranmport; ( $\overline{2}$; in a utudy on an Improved tire coutrol byetem en altormitive might include a reduction in ammuntion stoclate.
10. ARE THE APPROPRLATE CAPAELLTTLS OF TBE AR FORCE, NAVY, OR MARINE CORPS CONBIDERED AMONG THE ALTERNATIVES?

The alternatives abould conoider the empablitites of Air Force, Navy. or Maribe Corpa as approprite. The Army unvilt conducts combet operations with the aupport of ope or more of the other 8errices and the other Services are charged by law with furninhtes oertinis eupport to the Army. These types of supporte are Insted in iCO Publication 2 (UNNAF). For exemple, CONUS air sefonce is aot the aceluatve remponelbility of elther the Air Force or the Army. A CONUS alr defente problem must consider Army aurface-to-ir mieniles, AIr Forme maned ioderceptors, and Air Force surfince-to-air misellez.

Current and profected capablities of the other Servicee can be obtalsed from a muber of differeat sourcee including the Five-Yuar Force Structura and Fibancial ?lan matnalind by moh sarvice. The roview er should bect in mind that function such ses sir defene, the attack of nurface turgets, recomalanne in the vicinity $\mathbb{C}$ the FEBA, and tramportation within a theacer are aot the exclusive reaponabilttios of the Army.

$$
5-16
$$

## 11. ARE MIXTיRES OF SYSTEMS (ORGAN'ZATIONS) CONSIDERED AMONG THE ALTERNATIVES?

The reviewer should watch for failure to consider appropriste alteinato"es thint are baced on mixtures of two or more vatems (organizations) to comblie the beat features of mech. For exampln. in compuring certain trenoportation syitems ove alternative for so :face transportation mighit be a combination of truck, rall und wuter ay uteme rather than only a truck aydem. In the same mansor, the study of a proposed now missile aystem migh consider as an alterrative a sultable comilination of existing missile and gun ayatems and serial fire support ruther than only an existing missilie syatem.

## 12. ARE ANY FEASIBLE AND SIGMFICAN: ALTERNATIVES OMITTED?

h major contribution that a reviewer can make is to poltai sut tignif:cart, and feasible alternatives that the atudy may bave falled to consider. If any of the anders to the previous quentions on "Alternatives" are in the negative then it is possible that some feasible and siguificant alternatives were not considered. However, the reviewer muat exercise judgment before sriticizing a study for failure to consider all possible alternatives. There are practical limits on the time and manpower ave lable for a given atudy. The relative importance of the decision on the subjeci under siudy will also influence the number of alternatives examined. The reviewer should conalder these sapects in determining whether feasible and sipnificalit alternatives have beth omitted to the detriment of arriving it sound recommendations.

On the nther hand, a large number of alternadves may only indicate that minor variations have been considered as new alternatives. Excesaive use of such minor variations as aliernatives often beciouds significant choicer.

DOCUMENTATION AND DATA

## 13. K THE STUDY ADEQUATELY DUCI ENTED?

A key element of systematic analysio is sufficient documentation of methods and sources so that with the same material, other study groups can arrive at substantially the same resulis. Without such documentation, a study appeals for acceptance snleiy on faith in the authority and expertise of the study group and without critical examination of the sources and methods used to arrive at the recommendetions.

The test of adequacy can be applied by examiniar the nodels, data, assumptions, etc., to determine if they are stated in such a way that another study agency could trece through the steps of the study and arrive at substantially the same resuits and conclusions. A study that is not. adequately documented wiil usually fare poorly when reviewed by agencies lacking the decailed knowledge of the problen that can sometimes compersate fir ncor docיrmentation. Inadequately acrumented studies may require only slight additions to be properly dncumented.

## 14. ARE THE FACTS STAT O CORRECT?

It is usually neicher possible nor nocessary for a reviewer to verify all the factual material precented in a study, but it is advisable to spot chrck. Particular attention should be paid, where possible, to the factual material or. which conclusions and recommendations depend. If many errors are involved then a therough verification of the facts presented may be in order.

In reviewing factual material, its source shouid be examined critically. For example, frequent use is rozde of data contaned in FM 101-10, "Organizấion, Technical, and Logistical Dati" and similar pubiications. The data contained in ihese manuals are usually averages of historical data obtained from certain kinds of cperations in specific theaters. The unquestioning use of these everage figures nay lead to erroneous conclusions berause the usp of an average hioes significant variacions that exist in the real worid. A tank battalion does not aiways cover the same number of mules each day even over the same terrain. Further, the data contained in the referince manudis may not have been computed for the purpose required in the study ind considerations important to the study mav not be included in the calculations. For ex:mple, armmunition expenditure rates contained in FM 101-10 are based on World War II and Korean experience and orgimzations. The use of these rates for projected operations in the 1965-76 time frame would be questionabie.

Frojection of current operational experiances into future tine fames should alco be examined critically. For example, a study usea as data

$$
0-18
$$

that an armsd heiicopter' \& missions are A\% escort, B\% casualiy production, and the remaiding missions for suppressive fire. These data were cobtained from experience in Viet Nam operations. This uequeationing projection of such data into futurs operations in other sreas fails to allow for possible introduction of significantly now US and enemy tactics and may result in corclusions and recommendations on how better to cope with the last war.

## 15. ARE THE FACTS STATED WTIK PROPER QUALIFICATION?

In addition to checking the validity of the factual material, it is good practice to check the factual material for completeness. Some material may be factually correct in isoiation jut may take on a different sigaificance when other facts are added. For example, it is true that infantry units can march at an average rate of 2.5 miles per hour. However, this rate is valid only on relatively level roads.

## 16. ARE FINDINGS AND DATA FROM FIELD EXERCISES AND FIELD TESTS USED?

Field exprcises and field tests can be excellent sources for effectivenesi data. When used in a study, such data shoult be carefully examined. The reviawer should determine whether the data were obtained by measurements or by judgment of individuals asd if similar data would likely be obtained if the field test or fieid exercise were conducted again by another agency or unit. The circumstances surrounding the field exercise or field test should be reviewed, where possible, to determine if any artificialities (there are always some in any peacetime operation) were of sufficient influence to affect the results of the study based on field data. Field exercises usually have manv parameters and very few runs, therefore making it very difficult to single out cause and effect.

Common artificialities that may significantly affect data from field exercises and field teste include:
a. Irability to assess effectiveness of air defense fires ai:-to-surface fires, and ground-to-ground fires.
b. Lack of realistic levels of support from the other Services or other supporting units. Often this support is efther not available or available in abnormally large amounts.
c. Use of administrative breaks for rests, intensive resuluply, and mainienance operations.
d. Unrealistic maneuver and deploymsnt because of restricted maneuver areas.
e. The units or quantities of materiel tested are not a velid sample elther because of ingdequate size or of biss in composition.
f. Poor or inadequate reporting of events of the exercise.
g. Effect on actions of participants caused by use of only blank ammunition.

## 17. ARE THE DATA FROM SUPPORTING WARGAMES VALID?

Studies sometimes use the findings oi wargames as facts. in evaluating such facu, the reviewer should bear in mind the nature of wargames. Basically, a wargame involves a hypothetical situation in which two opposing sides interact in accordance with a set of more or less deilinite rules. In all forms of wargames, the play ie determined either by mechanistic raies or judgments made by individuals or both. These ruies and judgments are based on assumed situations and known or assumed facts and system characteristics. Well planned and executed cargames are excellent teaching devices and provide the participants with good insights into the prublem gamed. Such games, if well documented, usually provide a body of synthetic cita which, when analyzed, provides clues to problem areas that need further investigation.

In determining tie validity of the findings of warganes, the revewer snould judge how well the game portriyed reality and should eatisfy himself on the validity of the judgments and assumptions used in the conduct oi the game. The study should lay out for scrutiny the major judgments and assumptions used in the wargame. It is recognized that it is usually not possible to lay out all judgments and assumptions used in the wargame. In any case, the reviewer should weigh the dependence of the conclusions and recommendations on the findings of the wargame and consider whether other competent players playing the same game wond have arrived at similar results.

## 18. ARE THE PERFORMANCE CHARACTERISTICS VALD?

Performance characteristics data are often the key elements in the determination of the effectiveness of a system. In evaluating the validity of performance characieristics, the source of the data should be examined. When the claimed perfo-mance characteristice are essential to the conclusions and recommendations and the source of the data is not clearly
atated, additional information may be required from the agency that prepared the study. This may not be necessary if the study contains a seanitivity analysis of a reasonable range of valies for the performance characteristics.

Performance characteristics based on a manufacturer' 2 claims are often too optimistic. Performance sharacteristics derived from tests at research installationc also require examination. Sometimes, such performance characteristics are derived under controlled conditions that neglect the man-machine relation that exists under field condition. Evon performance characteristics derived from field tests should be examined. Such tests can, at times, produce misleading results due to artificialities caused by various peacetime restrictions such as safety regulations and choice of test areas.

If feced with questionable performance characteristics that are key to the conclusions, the reviewer should consider: (1) performing a sensitivity analysis himself if his time and the data in the study permit; (2) requesting validation of the performance characteristics and sensitivity analysis.

## 19. ARE ANY OF THE DATA DERIVED FROM QUESTIONNAIRES?

The data sbtained from questionnaires should be examined to determine the validity of the questions, the adequacy of the sample and statistical procedures, and the expertness of the personnel questioned. For example, one study cited dała on the frequency of kinds of missions expected to be Hown by Army aircraft in a conventional war. The data were based on a questionnaire completed by Army aviators at one Army post. There was no operational experience applicable to the study and an educated guess o. subjective judgment was in order. However, in this case, the judgment of those who order Army aviation n issions fiowr (commanders, operations and intelligence officers) should cave been elicited rather than the fudgment only of those who execute the missions.

## 20. ARE GIJESSES AND INTUITIVE JUDGMENTS DENTIFIED?

At times it is recessary to fill in data gaps with educated gucsses and intuitive judgment. These educated guesses and judgments should be identified in the study and not "swept under the rug." The reviewer should evaluate these judgments and weigh their impact on the conclusions and recommendations.

## COST

## 21. IS THE COST MODEL IDENTIFIED?

Every cost-effeciliveness amalyais contains a cost modei. A cost model generates cost estimates by application of cost estimating relations and cost factors to apecified physical resources. (For a further discussion on models in general see question 37.) This model can be very complex and computer assiated or it may consist of a few relatively simple equations readily computed by hand. The study should sufficiently identify the cost mode! so that the reviewer can determine how the tocal system cost estimates were derived from the material in the study. If the material in the study does not permitt the reviewer to do this, then additionai information is requin ed fron, the agency that prepared the study.

The cost models are utilized to estimate the probable economic impact on the Service (or Nation) of introducing a new cepability, For planning, these costs are normaily stated in terms of research and develcpment costs, investment costs, and operating costs. Resuarch and development costs include chose costs primarily associated with the development of a new capability to the point where it is ready for operationsl use. Investment costs are those costs beyond the development phase to introduce a new capability into operational use. Operating costs are recurring costs requirud to operate and maintain the capability.

## 22. ARE THE COST ESTIMATES FELEVANT?

Cost estimates depend on the problem uider studv and can rarely be obtained from oooks containing cost data although cost factora and cost estumating relations (CERs) can sometimes be found in such booke. For exaraple, a hypothetical study constuers as an alternative a new kind of light infintry division which ims been designed to the extent of an outline TOE. The enswer to the seemingly simple question, "What is the cost of this new division?" depends on many factors inciuding:

Will is be an additional division to those already in the force sincture?

Will it repiace an exasting division? if so, what kind?

Where wili it be atationedi e.g., in the conus, Pacian, Eưope, etc.

Will it have new Standard A equipment, or will existing essets of Standard B type equipinen' be used?

Are there axy existing Army unite whowe personnel, equipment, and fal lities can be usod by the new division?

The determination of which costs are relevant requires considerable analysis and judgment. It is not possible to prepare a universal list of costs that are always relevant. Idcally, a study should indicate why certain costs were considered relevant and cthers not. The questions that follow are designed to help the reviewer determine whether the cost eatimates used in a study are relevant.

## 23. ARE INCREMENTAL COSTS CUNSIDERED?

Inherited assets are those resources such as installations, equipment, and trained personnel faherited from earlicr systems which are phasing out of the force structure and are usable in one or more of the alternatives under study. The costs which are usually pert'nent for planning purposes are those costs yet to be incurred. For example, a sfudy considevs as an alternative the conversion of certain artillery units from tube to missile weapons. In determiriag the incremental costs consideration should be given to the inherited aesets of trained personnel, equipment, and facilides that are or can readily be made common to both units.

Sunk costs art those costs already expended. These previously incurred costs are normally excluded from costs presented in cost-effectiveness analysis. For example, a stidy considers as possible alternatives weapons systems A, B, and C, each with an associated research and development cosi. Only aliernative $A$ is already under devolopment. The cost already expended on Alternative $A$ is a sunk ccat and the research and development cost of Alternative A in the study should be only what must yet be spent (to complete the research and developmeni of Alternative A).

An occasional erior is the fallure to consider the research, development and investment costs of existing systems as sunk costs. For example, In a hypotheticel study of the conversion of certain artillery units from tube to missile weapons, one of the siternatives is retention of all of the tube weapuns units. The cost of that alternative would not include the sunk costs represented by the research and de elopment and investment costs already expemied in bringing those units into the force structure.

Including the ccats of inherited assets and cther sunk costs leads to distorted cost estimates with consequent effect ca the conclusious and recommendstions.

## 24. ARE DIRECTLY RELATED SUPPORT COSTS INCLUDED?

Cost estimates of systems or organizations should include the proportionate cost of those other units or elements required in direct support. For example, the cost estimate of HAWK battalions should include thi costs of the associated HAWK direct and general gupport detachments. In the same manner, the cost of aviation unite should anclude a direct share of the cost of aviation maintenance units. Fallure to include directly related support costs may result in mislcading cost estimates of alternativer.

## 25. ARE COMBAT CONSUMPTION, REPLACEMENT/ CONSUMFTION, AND MAINTENANCE FLOAT COSTS INC.IDED?

Cost estimates ior the major earipment items should include not on the operational equipment assigned to organazations, but also the costs
 ment items over the period in which the system is to be in use. (See question 32.) If the resource implications for procuring and maintaining authorized maintenance float, replacement/ consumption, and combat consumption stockage are excluded, the total costs of the system alternatives may be significantly misleading. (These levels of stockage are, of course, subject to logistics guidance.) For example, a common error is to i..clude only the cost of the basic load of ammunition and to neglect the cos: of the additional ammunition requirements for support of the weapon system or organization. The total ammunition required, to include peacetime training requirements and expenditures in the first part of a war until wartime production becomes available, must be parchased and stocked in peacetime.

## 26. ARE ALL TRAINING COSTS INCLUDED?

The resource implications (f training military personnel can be significant. Initial training costs represent the resources required fur the training of personnel necessary for introduction of the alternative into the force structure. The availability of fully-trained personnel, as vell as the number of personnel requiring complete or transtions! training, are taken into consideration in determining the resources required. Ainual training costs represent the resource implicattons for training replacements. These replacements are required because of normal attrition.

Training costs usually include such items as: (1) procurement of equipment utilized for training purposes; (2) construction of any necessary additiona! facilities; (3) ofaration and maintenance costa of the fachues; (4) the pay and allowances of the trainees. For example, the cost implications of communications-electronic equipment utilized for training ; urooses could be highly significant.

## 27. ARE CONSTRUCTION COSTS INCLUDED?

The coste for adcitional inatallations or facilities are often overlooked yet these costs can be importunt. If the study does not include any construction conts and does not state how the facilities were obtained, then the reviow or must either satiofy himself that no construction is required or take necosmary ateps to have the study corrected.

## 28. ARF THE COBT DATA REASONABLY ACCURATE?

Although it is not unvally possible for a reviewer to check all cost data for accuracy, le should spot-check and examine the scurces of the data.

Cost data furnished by manufacturers should be viewed critically. Experience has shown that such data are usually understated, naiticularly for adranced systems. Advanced system costs stated as an expet figure rather than as eatimated lower and upper values are particularly suepect.

The basis of the cost data for advanced systems should be Included in the study. There are a number of ways for arriving at such estimates. One commonly accepted method relates the cost data for the components of existing analogous aystems to the cost of the advanced system. Unsupported cost data are suspect.

Great accuracy in cost estimates is not req:ired and often is not feasible. In fact, in dealing with costs of advanced systems it is usually more realistic to have a range of possible costs (upper and lower values) rather thar the pseudo-accuracy of one cost figure which assumes no uncertainties in arriving at that figure.

## 29. ARE COST ASFECTS OF ALL ALTERNATIVES TREATED IN A COMPARAELE MANNER?

Inconsistency in handiag the cost aspects of competing alternatives preventis an objective evaluation of their comparative or relstive costs and usually leads to erconeots conciusions. It is not always possible to use the same cost estimating technique for caiculating a cost element such as attrition replacements. This is often the case in studies involving alternative sydtems of other military services. For example, ons service may calculate aircraft aitrition replacemeni as a function of an activity rate (e.g., per 100,000 flying hours) while ansther service may calculate it as a function of the activity inventory ( 3 percent of the active inventory per jear). The review er should dete mine that the final doilar estimate is related to the artual resource requirements for the alternative and that computational peculionities do not distory the cost resulte.

Treating alternatives in a comparable manner must not be carried to the point that costs which may be ineignificant in one alternative are therefore not considered at all in other alternatives. For example, civilian personnel might not be used in one alternative but tiay be required by another alternative in significant numbers. To exclude this cost could distort the results.

## 30. ARE THE COST ESTIMATING RETATIONS VALID?

Cost estimating relations may be crude factors, simple ex.iapolation of recent experience, or complex equaitions with many variables. In all cases, the purpose of a cost estimating relation is to translate a specifjcation of a physinal resource into a cost. The design of valid enst estimating reiatiors is a complex subject beyond the scope of this publication. However, several cummon errors made in establicning cost relations are discussed below.

Cc3t estimating relations should be based on current data or distorted estimates may result. For example, the maintenarce cost per flying hour for an Arriy helicopter has decreased signilicantly over the nast several years as new helicopters have been introdaced into the force structure. If the cost estimating relatiuns ased in a study were based on information for early Army helicopters (e.g., 1948 tinrough 1954 data) the maintenance cost per flying hour for a preseni system as well as for future systems alternatives could be distorted.

At times a properly construnted cost estimating relation may be inapplicable. If the syaters alternatives are very advanced developments, the cost estimating relations based or the current technology may lead to false results. For example, the V/STOL aircraft concept represents a departure from aircraft currently in production. While many design characteristics may be similar to present aircraft, there may be a number of factors which could increase the complexity and herce, the cost of the aircrait a cost estimating reiution baced on ti e present state-of-the-art may not be appropriate.

## 31. S AS AMCHTIZED COST USED?

Amortized costs reduce the total program cost of the system to an annual cosr by taking the total operating cost of the program, adding to it the research and development and investment costs, and reducing the total to an annua: basis by dividing by the number of years of expected service life of the system. The same general procecure may be utilized to amortize the costs per month, per day, per sortie, etc. This approsch disguises the differances between annukl operathg costs resuiting from shitting deployment patterrs ouer the lifg of the system shd from a varying set of inherited assets over time. Thin approach makes an arbitrary
aillocation of 'e fixed coste of a ayntein over time. There is no basis for the asoumption that the last year of system life must be charged with the came amount of R\&D cuat as the first year. The first year gets the newest technclogy; the last year, obsolete technology. Further, an amortized cost does not present a trie picture of the total resource implications. If the ayntem is to be in the forct structure for gay 10 years, the amortized annual conts may look relatively small, yet in reality there may be relatively large dollar costs. It is the total cost of the alternatives which is of primary concern.

The reviewer should attempt to convert amortized costs into cotal program costs and use such zosts for comparative purposes. If this cannot be done readily from the material contained in the study, then additional information is required from the study agency.

## 32. WERE PEACETTME OR WARTIME COSTS INCLUDED:

The results of a cost-effectiveness strdy may be very sensitive to the use made of peacetime and wartime costs. The use of peacetime costs only may indicate that system $A$ is preferred while the same study, if wartime conts were used, may have concluded that System B is preferable.

Pcacetime costs may be defined as the costs associated with deve!opIng, buying, and maintaining a cepability for potential war during paacetime. Such costs also loclude conbat consumption stocks (war reserves) to cover the period from the beginnirg of a war until wartime production is able to replace battle losscs. Wartime costs are the costs of procurement after the war has begun, as is the cost of replacing the combat consumption stocks if the war terminated during the useful life of the system.

In the case of gextral purpose forces there may be significant production of weapons and expenditure of resources after a limited conflict begins (ar in the Korean Conflict an' the military assistance rendered to South Vietnam). In this case, wartime costs could be significant. However, wartir e costs are difficult to determine because of uncerti inty regarding the duration of the war, loss rates, and nissions undertaken.

The reviewer ahould be guided in considering the proper cost approach (peacetime or wartime) by existing policy or directive from the agency directing that the study be made.

## 33. WAS A wartime ordnance cost fer mision lsed?

The use of a wartime ordnance cost per mission should be reviewed carefuly. Variations on this approach include ordnane cost per target killed, per casualty and per sortie. This apprcach is usually deficient bechuse of failure to consider all the costs of putting into place and

$$
\mathrm{v}-27
$$

maintaining a capability for potential war throughout the projected life of the system in the active force atructure. Often, this approach !ecludes only the ammunition costs expended during a trief battle, and ieglects the bulk of the significant costs associated with developing: buying and operating the system in peacetime.

## 34. WAS AN AMORTIZED WARTIME-PEACETLME COST USED?

In this approach the total peacetime cost of the system is reduced to an annual basis as explained in question 31 . To this amortized peacetime cost is added the estimated annual wartime replacement/consumption costs. No distinction is made between urartime and pearetimer sts. Ting appruach is deficient because: (1) in assumes the war will continue over the entire projected service iffe of the system; (2) the cost results use weighted wartime cusis; (ij) malinic and peacetine costs may not he cominensurabie; and (4) it does not present a true picture of the total resource implications as discussed in question 31.

Adding amortized costs in one stieam to a notner annial cost atream infers that both cost streams represent the same total time durstion. If this is not the case, then the two cost streams should not be added together because they are incommensurables. Adding the amoztized peacetime costs to the annual wartime cost implicitly assumes that the war will continue over the entire "service life" of the system. If the peacetime costs hant heen amortized to a per day or per mission cort instead of a per year basis, the same result would hold, the inference being that the war would conitnue over the entire " service life" of the system. The implied assumption that the war would 'ast for the " service life" of the weapon system is questionable.
C. sts computed by this methori are weighted because wartine costs do no vover the same length of time as peacetime costs. Such weighted results favor the shorter time period-the wartime casts. It is mily when the two cest streams are of equal leneth that the costs results are not distoresd.

To assime tiat wartame and peaccime costs are commensur ble may be erroneous. This assumes a common measure between the values of tesostres preured in wartime and those procured in peacetime. During attme the :onst of a resurce may be quace different from thet in peacetime. Shinary b, lite constrants durins peacetime and physta, resource constants dirine wartume may probece entirety diferent sets of coets for the same mibiary resources. As a greater proportion of the rational bud-

 pacotme. Commensurathly y hetweer wartate and peacelme costs whit
 - war ablambaty mer.

## 35. Was a dollar cost assigned to the loss of human life?

Frequently, a study will assign a dollar cost to a human casualty. The loss of hunan life is certainly important in selection among alterimatives. However, the value of a cumanalife is incommensurade with the dollar costs associated with .n alternative. It is better to treat human losses as a separate measure without af.igning collar values. Manpower availability In both peace and war is very important but this problem cannot be properly treated only in terms of dollar costs. Men and dollars may not ie interchanged.

## 36. IS THE SENSITIVITY OF COST ASSUMYTIONS EXAMINFD?

In comparing costs of alternative systemi, it is inporiant to determine whether the zesutis arc independent of the cost assumptions. For example, wudd ter yea - of peacetime operations as opposed to iive mase a significant diference in the relative costs of the alternatives? Would it mike any difierance if the procurement ievels or number of units to be anamized changed? The study should make slear the sensitivity of the cost estimates to the major cost assumptions. If tha study falls to do this, the reviewer should attempt to determine if there. any sucn significant sensitivity by rough calculation.

## 37. ARI: THE MODELS ADEQUATELY IDENTIFIED AND EXI LAINFD?

The conclusions and recommendations oi a cost-effectiveness analysis cann-t be evaluated properly unless the models are adequately identified and explained, Every model portrays the real or expected world by abstraction and simplification in order to predict the outcom? of a possible action (see Glossary). Therefore, the explanation of the model should be sufficient to provide ready understanding of which aspects of the real world are included in the model, which aspects have been omitted, and the underlying assumptions for the abstraction. Basicxally, a good mordel emphasizes the specific areas in which decisions se to be made by removing those relativeiy constant elements of the real or expected world that can be described with a great dearee of certainty.

The study should contain suff, cient explanation to permit tracing the operation of the model from input to outpit. The detail should be sufficient to permit valculaticr of new results from ditferent input values (sensıcivity analysis). In cases winite a mindel is machine-programmed, sufficient explanation should be provided for following the general logic of the program.

## 38. ARE COST AND EFFECTIVENESS LINKED LOGICALLY?

A properly structured cost.-effectiveness analysis contains a number of models that link effectiveness and cost thrcugh logical interrelations. Usually there are some kinds of an effeciiveness modei, a system and organization model, a cost model, and a cost-effectiveness model. The exact nature and number of these models will vary with the problem. The study should provide sufficient information and explanation for the reviewer to follow the logic by which the models relate cost and effectiveness.

An effectiveness model relates measures of effectiveness to measures ot performance in an operationa context. For example, ? atudy on combat rehicle weanons systems used $a=$ a measure of effectiveness the prolubility of $1,2,3, \ldots$ friendly tanks winning an er.gagement with $1,2,3, \ldots$ enemy tank $z$ under different tactical situations. This was related to performance measures such as muzzle velocity, warhead specifics, turret slevrates, turret stability, hull characteristics, rate of fire, target acquisition accuracy, and others, under various tactical situations and rules for conduct of fire.

A system ard organzation model describes the physical resources required $w$ pro"de the perfor mance used in the effectiveness model. For example, in the combat vehicle weapons system study referred to,
this included th. physical aescription of each alternative, the complete vehicle, ammunition, armament fire control, communications, TOE unit description, the support and maintenance cequirements, and so forth, consistent with the planned operaticnal concept.

A cost mociel relater dollar costs to the physical resources (and their peacetime activity rates) described in the system/organization sadel. The cost model appl'es cost $\epsilon$ estimating relations and factors. For example, the same study used the total future cost of aquisition and ownership (R\&D, initial investment, annual operating) for various quantities of systems. Included in these total costs were not only the devel ppment and procurement of the preferred item but also such additional costs caused by training of personnel, veacetime ammunizion ise, squipment maintenance, etc. (\$ee question 22).

The cost-effectiveness model finally relates the ccsts of each alternative to its effectiveness under varying assumptions. Depending on the criterion, the model ma:- compare effectiveness and costs of alternatives at equal cost, at equal effectizeness, or at different cost and different effectiveness (see page 9). The method and the techniques used to achieve this cost and effectivenese relation should be logical and expleined. For example, in one anti-tank weapons study the equal efiectiveness method (wiuning the duel - all pertinent factors considered) was employed. Effectiveness was related to cost by a numerical formula for calculaidion of cost of achieving duel success at a given range under specified conditions. This permitted plotting the following graph:


Figure 1. Equai Effectiveness Method

The graph din,wz the cost of winning a "duel", i. e. , killing the target at various ranges. (The graph portrayed alove is highly simplified. In the actual study rather than a simple linct, a band was used to portray the variance in costs for winning a duel at a given range. See B1bliography ltem No. 1, pages 13-17 for more complete descriptina).

## 39. DOES THE MODEL TREAT THE PROBLEM IN A EYSTEM CONTEXT ?

Most military systi ms have many subsystems, sub-subsystems and so forth. Podels should provide for the proper relations among subsystems so that the full implications of a change in one part of the system will be reflected in the rest of the system. For example, a nodel in a study of an airborne surveillance system must not only show the interrelations among the aircraft (or drones), the sensore and their maintenance, but also the interrelations with the information processing functions to be performed on the ground.

## 40. DOES THE MODEL ALLOW FOR ENEMY REACTION?

It normally takes several years to implement fully a decision to deploy a new system. Therefore, the enemy should be considered to have time to adjust to our system decisions. A major aspect of the effectivencss of our system is the degree to which it makes such adaptation ior the enemy either technologically difficult or economically unattractive.

For example, a study of a proposed system was based on its incorporation into tie current force structure. The model for judgins the effectiveness of the proposed system was dominated by current or recent conflict situations (e.g. , Vietnam, Korea, Europe). In using the model to evaluaie the effectiveness of the future system only in the light of these current or recent conflict scenarios, the study failed to consider the steps that the enemy coald take to rounter the proposed system. (See question 6).

## 41. ARE STRAIGHT EXTRAPOLATIONS USED WITHOUT PROOF?

While straight extrapolations (linear relation) often do apply over limited ranges of performance, consumptio:, or similar planning figures based on averages of large numbers, they rarely apply to effectiveness or cost data.

For example, the relation between the total weight of rations for one infantry division-month and the weight for 10 divirion-months is a straight extrapolation. The relation between the total cost of the first 100 and that of the first 1,000 units of a new main battle tank is not linear or a straight extrapolation. If a missile system has 10 missiles, costs $\$ 1,000,000$, and is $50 \%$ effective (on some valid measure), then
a missile system with 20 missiles, costing $\$ 2,000.000$, will not be $100 \%$ effective but (at best) 75 万.

## 42. ARE LETERMINISTIC AND IROLABILISTIC MODELS USED PROPERLY?

A deterministic model (see Glossa:y) uses relations cf the type, "If $A$ is 5, then $B$ is always 8 ". A probabilistic model (see Glossary) uses relations of the type, "If $A$ is 5 , then $B$ will be $6-10$ in $50 \%$ of th? cases, 4 or 5 in $25 \%$ of the cases, and 11 or 12 in $25 \%$ of the cases".

Cost-effectiveness analyses frequently require many intermediate calcuiations involving data. The indiscriminate use of specific values oiten creates what is in effect a cieterministic model. In reality, the majority of the coefficients and planning factors used in modcls are only averages with variances aimi uifícent degrees of confiderce. The reviewer should try to identify the probable range of variance about the averages that are used $a s$ inputs and have at least an intuitive feeling about the confidence of the numerical results.

Additionally, the reviewer should distinguish those cases in which a probabilistic model is reeded to reflect the real world situation. Deterministic models are usually appropriate (1) when the planing factor has an insignificant variance, such as weight of rations per day per man for large forces, (2) if the uncertain factor is multiplied by a point value, such as cost of $\$ 8,000$ to $\$ 12,000$ per man for a force of 20,000 men, (3) a varying factor is multiplied by a linear function, such as an uncertain flying hour rote ( $\rho \mathrm{g} ., 2$ to 6 hours rer flay) multiplied by a flying hour cost function of $\$ 20$ a day plus $\$ 4 C$ per flying herre. The deterministic technique is correct in these three cases because it will give the same most probable result as if probabilicic techniques had been applied. Of course, there may still be a problem if the most probable result is not the only one of interest.

Probabilistic models are used where the variables in the problen: may assume, at any given time, any one value of a known range and frequency of values, as opposed to deterministic models which use fixed or average values all the time. There are two principal types of probabilistic models: static models using probability statements instead of other values, and dynamic (stochastic) models involving change.

Some stochastic models use random numbers, representing change, to select values from frequency distributions for a given problem. For example, an analysis of a maintenance support organization may include a model which represents the demands for mainienance effort placed on the support organization. Of ary 100 jobs (demands), 20 will require 1 man-hour, 30 will require 2 manhours, 10 will require 3 manhours, 15 will require 4 manhours, 5 will require 5 manhours, 10 will require 10 manhours, 5 will require 20 manhours, 2 will require 30 manhours,

AMCP 706.19*
2 will require 40 nianhours, and 1 will reqiire 80 manhours. This infocmation is a ranged into a cumulative distribution as shoun below:

| $0-19$ | $:$ | 1 manhours | $80-89$ | $:$ | 10 |  | manhours |
| ---: | :--- | :--- | :--- | ---: | :--- | :--- | :--- |
| $20-49$ | $:$ | 2 | $"$ | $90-94$ | $:$ | 20 | $"$ |
| $50-59$ | $:$ | 3 | $"$ | $95-96$ | $:$ | 30 | $"$ |
| $60-74$ | $:$ | 4 | $"$ | $57-98$ | $:$ | 40 | $"$ |
| $75-79$ | $:$ | 5 | $"$ | 99 | $:$ | 80 | $"$ |

Io represent requests for work, a two-ligit random number, say, 37, is drawn (irom a table of random numbers or a random number generator); the corresponding value is 2 manhours. The reyt random number is, $\varepsilon$ ay 84 , and the value is 10 manhours. This process continues at some rate (which is probabilistic) and the requests for maintenance are arranged !queued) in the order of simulated requests: 2 manhours, 10 manhours, 4 manhours, and so forth. Available maintenance men would be assigned to requests under various rules, e.g., 1 man to jobs less than 4 hours, 2 men to jobs of 4 to 8 hours, etc. The model would keep track of the lime elafsed between generating and completing a request for maintenance. In this manner, the relation of number of maintenance personnel and delay can be determined for various assunptions about demand for maintienance effurt.

The so-called Monte-Carlo model described aiove requires, however, a sufficient number of repetitions to obtain adequate information about the range of values of the solution.

A static model using probability statements may, for example, apply in a study on aircraft vulnerability. The probability of survival for a specified time is given by the product resulting from the multiplication of the following probabilities:

Probability of aircraft being detected
Probability of aircraft being acquired by a weapon, If detected
Probability of being hit, if acquired by a weapon Probability of kill, if hit.

Probability data for each of the probabilities listed above are derived from tests and experimerts.
43. IS A ZERO-SUM GAME MODEL USED VHERE IT IS NOT APrLICABLE?

A zero-sum two-person game is a conflict in which there are two sites and the gains of one side equal the losses of the other. Most conflimi situations do avt justify the use of this type of model. For example, i.. a hypothetical study, the effectiveness of alternative US tank systems was based on a study of duels between US tanks and enemy tanks. Duel
results were bared on the losses incurred by each side. An enemy loss of one tank was equated to a US gain of one tank. The net US gain was uned to determine tha efforturness for each alternative.

Cur gain is not the onemy' B loss. The situation is not always aymmetrical. The attacker mist move, the defender must inhibit movement. Hence, the objective of a US tank may differ from the objective of the enemy tink. In fact, other alternative concepts might inhibit enemy tank coovement more effectively than would a US tank similar to an enemy tonk.

## 44. ARE THE MODELS INTUITIVELY ACCEP'CASLE?

Models tend to become mathematical and many are disficult to understand even in their broad aspects. Yet, overly-simplified models tend to become superficial by limitation in choice of detail and omission of important variables. The objective of a rood mociel is to be near enough to reslity so that the model outputs can be used to predict some portions of the future with an acceptable degrec of confidence.

Models can be tested by determining if they represent correctly known facts and situations not considered in the study. Converseiy, if absurd facts and situations are introduced into the model, comparable absurd answers should be produced by the model. If the reviewer is aware of special cases in which there is some indication of the oulcome, the model can be tested to determine if the results axe in general agreement with the indicated outcome. Another test that can be applied, at times, is to vary some of the principal parameters and determine if the model produces results that are consistent and plausible.

## EFFECTIVENESS

## 45. ARE TYE MEASUYES OF EFFECTIVENESS IDENTIFIED?

The study should cl zarly identify the standards or measures usec for evaluating the effectiveness of the gystem or organizatios under siudy. If not explicitly statea, the revie., er should atternpt to identify these measures from the material conta!ned in the study. The conclusions and recommendations cannot be properly evaluated, particularly when the study is based on enual cost alternatives, without prior evaluation of the measures of effectiveness.

## 46. IS THE EFFECTIVFNESS MEASURE APPROPRIATE TO THE FUNCTIOR OR MISSION?

The reviewer should satisfy himself that the measures used to evaluate effectiveness are appropriate to the function or mission of the system or organizailon under study. Failure to use meaningful measures of effectiveness is a major contributing factor to unacceptable studies. Examixation of the effectiveness measures requires analysis and sound military judgment. The example below illustrates one use of an effectiveness measure that was not appropidate.

In a study of selected infantry and arillery weapons systems, the measure of effectiveness was a division firepower score. This score
 firepower score of a unit was based on sustained rates of fire, effective width of burst, and the fragmentation area of the weapon in comparison with other weapons. Specifically, direct-fire weaprns such as rifles were assessed in terms of probable hits per minute against personnel in the open. Mortars and artillery were assessed in terms of maximum effective range and lethal area coverage per minute.

This usp of a firepower score was wrong for a number of reasons. Primarily, it failed to differentiate between the effectiveness of weapons when used for neuiralization and when used to produce casualties. For neutralization. the effectiveness is sti ingly dependent on burst rate of fire, incipient damage area preduced by the burst, and ability to maintain fire over the required time ithe latter a furction of weapen characteristics and ammunisicn requirements'. O the other t ind, casualty prodiction depends strongly on the probailiity of hit, which in turn depends on target acquisition and weapon guidance or accuracy. Thus, in this case, several measures must be used to hav a valid analyois.

The total di: ision firepower score usevi in the study also assumed an inexhaustible and uniform supply of ammunition regardless of whether the weapon was a rifle company machine gun or a division general support artillery cannon.

## 47. DO THE EFFECTIVENESS MEASURES IGNORE SOME OBIECTIVES AND CONCENTRATE ATTENTION ON A SINGLE ONE?

In the measurerient of effectiveness, the re'iewer should watch for any tendencies to concentrate on only one or two objectives. Such a situation indicates an unstated assumption that other cbjcetives are unimportant. The resuiting conclusions and recomniendations, if irapiemented, may cause an imbalance and reduce the capability to achieve other objectives.

For example, a study indicates that the moct vulnerable element in a line of communications system are the bridges in a rail network and measures effectiveness of deployment of given air defense units by degree of protection afforded raliway bridges. In evaluating the overall effectueness of the air defense deployment, the suady failes to corisider: that the vulnerability of other elements in the 1 in : of communications system may be greatly increased by the redeployment of the air defense.

A possible test for effectiveness measures suspected of concentrating on a single objective is to evaluate them agains! a hypothetical obviously absurd weapon or device that does only one jok. Valid measures of effectiveness should show an absurd hypothetical weapes or device in its true light.

## 48. ARE PERFORMANCE MEASURES MISTAKEN FOR EFFECTIVENESS MEASURES?

Measures of performance characteristics are sometimes misconstrued as measures of the ability of the system or organization to accomplish its functinn. Performance claracteristics may contribute one of the many inputs required to achieve the effectivenesis of the system or organization as a whole. For exampie, d? speed of movement ci mobility of a unit is only one aspect of the unit' s capadility to accomplish its function. The speed at which a unit can attack the enemy is not it itself a measure of the ability of the unir to defeat the enemy. The weapon with the smaller CEP is not necessarily the more effective weapon; the relation of lethal radius to CEP may be more signiticart. Other factors that must be also considered in weapon effectiveness include target acquisition, weapon guidance, and target size.
49. IS THE EFFECTIVE.iESS CALCULATED ON THE BASIS OF EITHER A CCOPERATIVE ENEMY OR AN OMNIPOTENT ENEMY?

Neither basis is valid. The enemy should br expected to adjust his decisions to our own planning as much as his resources permit. An unstated assumption that the enemy is inflexible in the face of our changes is a common error in cost-effectiveness studies.

For example, a counter-guerrilla study used a acenario in which the hostile guerrilla forces retreat to a mountain redoub to be surfounded
by US troops air-lanoed ty helic spters. This scenario makes corventioral ta iics palatable in counter-guerrilla warfare, but is hardly realistic. A capabie guerrilld leader snoald rut be expected to use such disartrous tartics. Adaptaion of enemy tacticy !e.g., rapid disporsal) in face of the new i:s capability for air landing is er ainly feasible. A comparable adaptation to the enemy capabilities was illustraied during Worir War II. German alr def inde analyses prior $n$ that war were based on the attackIng aircraft using rertain alttudes that were optimum for the air defense batteries. Alliec bomber aircralt did not oblige and avoiced the "optimum" altitude raige.

Sume studies assume maximum future enemy capability in all weapon areas. The enemy rannot slmultaneously max nize all of this capabilities if constraints hysical resources and budgets are present, particularly in the case peacetime budgete. If he maximizes his strategic force, , he will rave to limit hie tactical capabilities, and vice versa. Alternatives, where appropriate, should be pitted against a variety of enemy postures and the choice should make none of these postures particularly attractive to the enemy.

In theory, the enemy can sounter every system we design and our effectiveness will not be sufficiently high to warrant a positive decision. The real question is: how much does it cost the enemy in time and resources to eifect a direct counter? Ii the price is very high he will probably seek other lesser alternatives. (See question 6).

## 50. IS THE 2FFECTIVENESS MEASURED BY ANALYSIS OF WARGAMES?

When effectiveness is meacured by analysis of wargames the reviewer should look to sensitivity analysis of the resulta. As a rule, wargames are a questionable means for measuring effectiveness because of the difficulty of testing the senstivity of the results. To do so means challenging the effect of changes in players, referees, ermmunications,


## 51. IS TI:E EVALUATION OF EFFECTIVENESS BAEED ON STRAIGHT EXTRAPOLATION?

Occasionally a study may evaluate effectiveness by atraight (linear) extrapolation from the measurement of effectiveness of small unit. For example, a hypothetical study nas show that 6 riflemen can destroy 10 targets. An extrapolation that states 100 targets can be destroyed by 60 riflemen is mot justified without supporting evidencs. ine varizbles in target and ilre distribution are noinecessarily the same in both cases. Further, in a force of 60 riflemen the percentage who will actually ti. . at targeis may not be the same as for a force of of riflemen.

Another error in atraght o- innear extrapoldion is disregard of the element of diminshing returns or marginal utility. For example, 200
[0-38
missi es to not ignify twice as mun fiectivere a as formanies if there are only $3 n$ targets. rurjirmore, all targets ase not of equal value or Importance.

## 52. ARE THE CPERATIONS OF CTHE: SEK VICES IGNORED:

In measuring the elfectiveness of a system or crganization, consideration must be fiven to the opearicis of otre. Services, where appropriate. Failure to do so ie the equivalent of making the erroneous unstated absumption inat ons the Army will partucipate in the opertion. Fur eximple, tre measurenent oi effectivenese of Army air acfense operations mui: consider the corinnunications, command and control. and IFF aspects of operations w the the U.S. Air F ree and : lifed air forces. Further, the effectiveness of certain Army operat ons is aeptadent upon the aggree of air saperiority ac. ieved by the fir Force. The abllity to anchicve this air superiority and the degree of dependence upon it should be exaninted. (See question 10.)

## 53. IS THE IMPACT ON OTHER ARM' OPERATIONS :GNOREE?

in measuring the effectiveness of a system or organizatioh, the fect; on other Army uperations should be consideced. ror exmple, the use of :actical nuclear weapons 1 : a ceriain manner may ac complish its function by stopping enemy ground movemi-nt. Howeves, the judement of the effectiveness of the aystem should also examine the effect on we grouid movement of U. S. units. In the same manner certain protective clothing may be affective against themy chemical agente However, the clothing may cause such body heating that it can oniy bo worn for very short periods.

## 54. ARE SCME ASFECTS OF EFFECTI:ENESS INCOMMENSURABI,E OR UNMEASUKABLE?

The reviewer should examine carefully the treatment of incommennurables and unmeasurcile aspects of performance in the total measureineat ui effectiveniss. Mis!eading neasures of effectiveness are now often obiained by quantifys.eq such aspecis as morsle, or leadership. At times, cte ondy practicable solution may be a qualiative formsion of these facturs.

##  ACCOUNT THE TIME DIMENSION?

The effectiven bs of proposte fucure systems is often deocorent upon when they caa be availabie for operational use and the total operational life span of the systems In eximining the effect of the inme dimension upon ef ectivecess, particuiar attention shoute in given to (1) the time betwit: the present and tae hathai operationai suainetility
 life span.

For example, the effectiveness of Weapor $\mathbf{Y}$, deployable in 1972, is compared with that of the surrent Weapon $X$. Weapon $Y$ is judged to be more effective and requires entirely new support equipment not compatible with that of Weapon X. This equipment cannot be operationally available until 1974. it is very possible that the changeover from $X$ to $Y$ inplies a dip in effectiveness during the 1970-74 interval. The old weapon is becoming obsolcte ard the new one is not fully effective. A quick fix means may be needed to bridge this gap and must be charged to the cost of $X$ and $Y$.

In another sase involving the time dimension, Weapon $B$, deployable in 1972, replaces Weapon A and is designed to perform the same mission more effectively. It is stated to have an operational life of 15 years. Effectiveness is cal-ulated on the basis of the 1972 eavironment. In the 1972 to 1987 perird (the operational life of B) the international ervironment, end hence the missions may undergo major changes. In fact, the mission for which $A$ is designed may already be on the decline. Effectiveness is not always constant but often must be related to time.

It is necessary to recognize that missions do not remain fixed. Effectiveness should not be evaluated on the basis of either a specific probability of the continuity of the mission or of a specified new mission. Rather, the system should he judged on its ability to adjust to such changes.

Similar comments apply with respect to changes in technology. Breakthroughs cannot be predicter very successfully. Nevertheless, ceriain trends are noticeable. For example, anti-tank weapons have improved more rapidly than tanks since World War II. The sensitivity of the system to jumps in technology is a vital input to effectiveness evaluation of massive long lifetime systems.

## 56. ARE EXPECTED AND AVERAGE YALUFS USED INCORRECTLY TO MEASURE EFFECTIVENESS?

It is an error to employ an expected alue or average as part of a measure of effectiveness if the obiective really requires a specified minimum. In such a case, the nosrible variances, or dispersions about the average, consitute an unaceeptable risk for any single event. This risk is unacceptable even though over many events the results will average out to the expected value.

For example, assume that at the same cost, air defense System A destroys trom 0 io 99 of 100 approaching enemy aircraft but on the average des roys 50 . System $B$, on the other hand, destroys from 25 to 35 of 100 approaching aircraft with an average destruction of 30 . The risk associated with the possibility that, in any given individual attack by 100 aircraft, System A may not destroy any aircraft at all, whereas System B can be counted on tic destroy at least 25 aircraft, makes A an unacceptable system, it the objective is air defense. If the objective
were destruction of as many ensmy aircrafi as possible over some period of time but without regarid to their danage to us，（an unlikely objective）System A would be preferred．

## 57．IF QUANTITATIVE MEASURES OI FFFECTIVENESS ARE UN－ ATTAINABLE，IS A YUALITATIVE COMPARISON FEASIBLE？

There are times wen the effocidveness of a system or organization cannot be presented acequately in quantitative terms．This situation is common in comparison of general purpose forces such as in studies of alternative divisiong，A study that assigns uumerical values to effec－ tiveness of general purpose forces should be examined carefully．

Oce study comes alteruative divisinas in terms of numerical scores．Euch 0 ：the is tasic faciors（firepower，intelligence，mobility， commerd／cuicrol／comm：mications，logistics，survivability）was given a numericul value and thesia values were summed for each siternative． The resultang sums were compared as effectiveness measures．These numericas values are litely to be meaningless because the six basic factors are inputs and not objectives．They combine in undetermined ways to make up the effectiveness of tactics．The tactics：in turn，com－ bine to evolve strategies．For example，deception tactics strongly in－ vive the basic building blocks of intelligence，command／control／commu－ nications，and mobility．Howerer，this does not mean that we can biraply add up so－called scores of these three basic factors and thereupon com－ pare the deception capability of varicus alternatives．

A qualitative comparison is possible，however．Various pertinant aspects can be descriped and characterized by＂yes－no＂or＂good－fair－ poor．＂A tabular comparison can be useful in weeding out some alter－ natives．It may be justifiable to say that Alicrnative A is more effective than $B$（deaoted $\frac{⿳ 厶 大 彡}{B}$ ）in a certain characteristic，even if it is not known whether $A$ is $1 \frac{1}{2}$ times or twice as effective ar：$B$ ．If it can be determined that $\frac{A}{B}$ and $\frac{A}{C}$ we have a partial ordering $A, C$ ，i．e．，we cannot distin－ guish between $B$ and $C$ but either is inferior to＇ 6 ，we may obtain a grouping as follows：


Let us reconsider the example of the deception tactic．Its key in－ gredients are mobility，command／control／communications，and intelit－ gence．Suppose we know that Division A is nore mobile than B，there－ fore，$\frac{A}{B}$ ．If we shous arrive at the same ranking for the other two basic facters，then we conclude thgi $A$ is also true for the deception tactic． On the other hand，it may be that $\frac{A}{B}$ for mobility and $\frac{B}{A}$ for intelligence． Then no statement can be made for the rolative ranking of $A$ and $B$ for the deception tactic．

$$
D-4 i
$$

In this manner, tsctics of interost onn be investigated and valid fartial orderings of alternatives obtained. We may find dominant alternatives. Sippose we obtain:

| Mobility | Intelligence |
| :--- | :--- |
| $\frac{A, R}{\frac{C}{D, E}}$ | $\bar{B} \cdot \mathbf{C}, \mathbf{D}$ |

Command, Control, Communications
$\frac{\frac{E}{A, B, C}}{D}$

We have now learned that $D$ is dominated by $A$ for all three basic factors: and herice for the deception function. So D can be eliminated if all alternatives have equal cost. It should not be assumed that rankings of alternatives with respect to the tactical level can only be derived by buildup and integration from the sasic level. There may be direct qualitative comparisons with respect to, say, decepion effectiveness as a result of wargames or field exercises. A combination of both buildup and direct approaches would prebably pqove most fruitiul.

The reviewer should recogrize that wile cust-effectiveness analysis is performed preferably by quantitative analysis, there are limits to suboptimizing or idealizing the problem to make it ansenable to quantitative analysis. When carried too far, the qusultitative results are often only of academic interest and offer little or an keip to the decision maker.
58. IS THE EFFECIVENESS SENSITIVE TO CHANGES IN ASSUMPTIONS?

The effectiveness derived in most studies is usually dependent to a degree on the assumptions. The reviewer should isolate the degree of dependence and ceter mine if it is auceptable. Generally, a good stady will isolate this dependerice, where it exists, and lay out tive degree of dependence by various kinds of sensitivity or contingency analysie. The ass:mptions hat snost conmonly influence effectiveness and are often not subjected to contingency analyais concern the locale, the time and level of warfare, and enemy forces and tactics.

A slight change in any of these assumptions may produce significant changes in the effectiveness measured. For example, additions of a new ECM band width to the enemy's capobility may drastically degrade an otherwise cutstanuling U.i. system. (See questions 5 and 6.)

## CRITERIA

## 59. ARE THE CRITERIA IDENTIFIED?

The criteria, or tests of preferredness, aro the basis for the conclusions and recommendations. The criteria should be stated specifically and clearly. If this is not the case, the reviewer should attempt to identify the criteria from the material contained in the study. When this does not prove possible, consideration should be given to having the study returned for futher clarification. This is particularly important if the study is also to be reviewed by agencies outside the Army.

## 60. ARE THE CRITERIA CONSISTENT WITH HIGHER ECHELON OBJECTIVES?

No matter what tie concern of a study, the subject falls into a larger framework. For example, problems of air defense of the CONUS are aspects of the larger problem of restricting possibie damage to the CONUS to certain levels. The design of artillery systems is part of the larger problem of design of land battle forces. Therefore, the reviewer must determine if the criteria used in a study are consistent with higher level objectives. This requires good military judgment and the necessity tc examine the larger context of the problem. If the study criteria are not consistent with the objectives at the higher level then the wrong problem may be solved. Overall Army objectives are contained in documents such as the Basic Army Strategic Estimate (BASE), Army Force Development Plan (AFDP), Army Strategic Plan (ASP), and the Combat Developments Objective Guide (CDOG).

An example of incorrectly chosen criteria is illustrated in the use of mobllity as the sole criterion in the selection among different organizations. A study could conceivably demonstrate that organization A can be made more mobile than organizations $B$ and $C$ with a lesser exvenditure of resources. Yet A may not be the preferred organization because the mobility was achieved by degrading other factors that contribute to the higher objective of efficient control of conflict situations (e.g. , firepower, sustainability, etc.).

## 61. ARE THE CRITERIA TOO GENERAL?

Generalized criteria are suspect. For example, a study may state that the criterion is "the system with maximum military worth" or the "best system". Such generalizations are meaningless and cannot be relsted to the analysis as can a good criterion such as "the minimum cost of maintaining a [ specified] level of transport capability over a [ specified] time span."

## 62. ARE THE CRITERIA OVERDETERMINED?

Overdetermined criteria lead to erroneous conclusions. A criterion that states "to maximize the damage to the enemy winle at the same time minimizing the cost to the U.S." or "causing the maximum amount of casualties with the least expenditure of ammuniticn" suggests that something can be obtained for nothing. It is imposeible to maximize gain and simultaneously minimize cost. It is not poseible to increase effectiveness without some increase in resources (cost). The minimum cost is to do nothing--and achieve no effectiveness. Occasionally it may turn out that system $A$ is both more effective than system $B$ and costs less. However, system A will not be both more effective and cost less when compared with additional alternatives. The da ger of using an overdetermined criterion, such as the one described, is that it leads to invalid compromise criteria by using some erroneous condtraint on effectiveness or cost in an effort to make an impossible rest seem feasible.

## 63. ARE GOOD CRITERIA APPLIED TO THE WRONG PROELEMS?

At times a valid criterion for cne element of the problem is incorrectly epplied to the totai problem. For example, a hypothetisal study tnvolving proposed surveillance aircrait shows that aircraft A offers greater mission flexibility than aircraft B at the same cost and is therefore preferred. In this case, the choice of aircraft is not the real problem. The subsystems carried by the aircraft are really more crucial. The all-weather sensor effectiveness and avio.jics cost may even determine whether there should even be an aircrift $A$ or $B$.

## 64. IS THE ABSOLUTE SIZE OF GAIN OR CCST INGNORED?

If the absolute size of the cost of a system alternative, or the effectiveness to be achieved by it, is not given or is incorrect, the anelysis often leads to wrong conclusions and recommendations. For example, cost-effectiveness curves for two hypothetical system alternatives are given below:


ENEMY TARGETS DESTROYED
(EFFECTIVENESS)

Figure 2. Cost-Effectiveness Curves

In this situation, at low levels of effectiveness, alternative $A$ is preferred (up to about 70 enemy targets destroyed); at larger levels of affectiveness altornative $B$ is preferred (from about 70 to 110). If the capability to destory more than 110 enemy targets is to be achieved, then neither alternatives A or B is preferred or even acceptable. The crucial question is how many enemy targets are required to be deatroyed. If the number of enemy targets to be destroyed or cost limits are not indicated, there is no real basis to recommend either citernative A or $B$, or some other alternative.

Either the study should be based on an absolute size of gain or cost required or the study should present a cost-effsctiveness curve (or points) from which decisions can be made. If the study presents a cort-effectiveness curve as shown above, the envelope (indicated by line of $\mathrm{X}^{1}$ is the grapis) along the bottom says, "This is a curve which gives the most for the resources expended, and other things have to be taken into consideration at higher levels to determine what the absolute gain (number of targets destroyed) should be or the maximum resources (cost) that can be made available."

At times, sudies ignore absolute size of gain or cost and use effec-tiveness-to-cost ratios. The flaw in the use of such ratios is the absence ci any specified level of effectiveness required or resources available as ciscussed above. If the level of activity is fixed, a ratio may be useful in ranking among alternative systems. However, the effectiveness-to-cost ratio criterion is often applied when the level of activity is not fixed. For expmple, in the graph above alternative A destroys in enemy targets for $\$ 1$ million, end alternative $B$ destroys 100 enemy targeta for $\$ 25$ million. If only this informatior were converted to effectiveness-tocost ratios, alternative A would have a ratio of $10: 1$ and alterantive B, 4:1. Which as the preferred? If one did not look at the absolute level of effectiveness required to achieve the military task but only at the effectiveness-to-cost ratio, then alternative $A$ would be preferred. The selection of alternative A on this basis may be correct, but only by coincidence and is obviously wrong when the zystem must be capeble of destroying more than 70 targets.

Untll the absolute level (magnitude) of effectiveness or the absolute level (magnitude) of the cost is specified the preferred alcernative cannot be determined. The effectiveness-to-cost ratio can be misleading and, at times, a dangerous criterion.

## CONCLUSIONS AND RECOMMENDATIONS

## 65. ARE THE CONCLUSIOIS AND RECOMMENDATIONS LOGICALLY DERIVED FROM THE MATERIAL CONTAINED IN THE STUDY?

The cenclusions and recommendetions should be derived logically from the material contained in the study. Some studies, unfortunately, draw conclusions based on previons studies and materials that are not tully documonted within the study (mention in a bibliography is hardly gup fictent). If input from another stuciy is essentiel, it should be documented and explained in detail. This requires, at least, a statement as to validity, scope of application and uncertainty which is associated with the particular input.

The determination of whether the conclusions and recommendations follow logically from the material in the study is a matier of judgment by the reviewer. In making this judgment, the reviewer should consider whother other prudant itudy agencies would probably arrive at aubstantially the same conclusions and recommendations given only the material contained in the study.

## 66. HAVE ALL THE SIGNFICANT RAMTFICATEONS BEEN CONSIDERED IN ARRXVING AT THE CONCLUSIONS AND RECOMMENDATIONS CCNSIDERED?

Sometimes a study fails in cousider all the pertinent ramifications in arrivitif at the conclusions and recommendations. These unconsidered ramifications may either influence the validity of the conclusions and recommendations of the study or tic decisions to be made as a result of the study. Trese ramifications are often referred to as "spillovers." For example, $i^{*}$ = hypothetical study recommended acioption of an engire requiring a new type oi fuel, the Army supply system to include supply, storage and transportation operations would be affected. Spillover effects are not always negative. For example, the adoptior of dehydrated rations to achieve greater shelf-life may also reduce construction and transportation conts becsise of the amallor unit volume of dehydrated food.

Other ramifications that are sometimes neglected are factors that should be considered jointly with the problem under study. At timer, consideration of such foint decishons could affeci the conslusions and recommeniations of the study. For example, a study may recommend adcotion of a new weapon system to fulfili a ceriain funstion. Huwever, the study may negisct to examine the maintenance support and the maintenance unita that would have to be in existence concurrently with the proposeri weapon aystem. The rescurces required to organize and maintain the mainenarce system will influence decisions on the' proprsed weapon syatem.

If aignifioant remifications are uncovered that are not adequateiy considered, the reviewer should, if possible, determine this effects of these ranifications on the conclusions and recommendations. (See question 2.)

## 67. ARE THE CONCLUBIONS AND RECNMRENDATIONS REALLY FEASIDLE IN THE LIGHT OF FJLITICAL, CULTURAL, POLNCY OR OTHER CONSIDERATIONB?

In reviewlug the conclusions and recommendations of a study, it is neceasary to be cognizant of the real world in which the Army muat operate. Ait times some recommendations of a strody nay apocar to be eminently feasible from a strictly economic or milltary view, but really are not so in the light of other considerations that influence military operations. For example, a particular toxic chomical munitions system may be demonstrated to be superior, considering cost and effectiveness, to a high explosive munitions system for accomplishing a certain function. However, because of national policies on employrnent of toxdc chemicals, the adopiton of the high explosive munitions system may be the only feasible solution.

The reviewer should also consider the impact of policies that may not have been known to the agency that prepared the study or were promulgated too late to influemie the atudy.

## 68. ARE THE CONCLUBIONS AND RECOMMENDATIONS RELATED TO THE LIMITATIONS OF THE STUDY?

In evaluating conclusions and recommendations, the reviewer should bear in mind the limitations of the study. Studie- is a rule, have verying dagrees of limitations. The more cor 10 . . pes of limitatioces laclude inadequate data base, criticality of assumptions, criticality of uncertainties and validity of cost and efioniveness models. While the limitations may be treated within the etudy, the dependence of the concluaions and recommendations on the limitations is sometimes neglecind. For example, the atudy conclusions and recommendations may depend upon the validity of particular assumptions but this relation may pot be pointed out.

It may be advisable for the reviewer to refresh his memory oc the studv limitations, parifcularly when the etudy is voluminous, before ovaluating the conclualone and recommendatione.

## 69. DO THE CONCLUSIONS AND RECOMMENLATIONS INDICATE DAST

Studiee sordetimes unwittingly reflect blas because of perocl nr inatitutional litereats. To assiot in detecting bias, the reviower . nuld consider the relation of the agency thet prepared the etudy and tae $e \quad i$ :it of the Inpiementation of the atudy recommendations. If auch traplec..., thoa does not appear to further whet are cenerally conaidered to be the
particular intereste of the preparing agency, then one occesional form of bius is probably not present. Another teat for bias is to judge whether substantially the same conclusions and secommendations would be reached, based on the material in the study, by another study agency. Bias is often displayed by arbitrarily excluding certain reasomble alternatives, maximizing selected enemy capabilities, treating significat uncertainties as assumptions, and in selection of effectiveness criteria.

A reintively minor form of blas is sometimes found in the uat of prejudicial cdjectives. Umecescarily referring to all Air Force fixad wing aircraft as "long take off and landing" airoraft it an example. This type of bias may be projudioial to the intereste of the Army when the study is reviewed by non-Army agencies.

## 70. ARE THF CONCLUBIONS AMD RECOMMENDiTIUNS BABED ON EXTERHIL CONSIDERATION8?

At times, recommended colections among alternativee must be made in the face of great uncertainty. A study may find that aeveral alternatives exhibit similar cost-affectivaness, but the results are very sensitive to the values asaigned to the inputs. In this attuation some studies arrive at conclusions and recommendations based on considerations other than those studies. In other words, the study agency is stating that after having made the analysis, the application of the criteria does not lead to preference, but indifference, among the alternatives and therefore the issue was decided on the bapie of okser unetudied criteria. La aituations of this kind, when recommendiation of an aiternative is necessary, sensitivity io new criteria must be fully studied.

## 71. ARE THE CONCLUSIONS AND RECOMMENDATIONS BASED ON INSIGNFICANT DIFFERENCES?

At : imes a study will presert one alternative an heviny the highest value of effectiveness of the measures applied to all alternatives. The difference in effectivenesn among the "optimum" alternative and the ather alternatives should be ammined. If the differences are relatively slight and probabiy no greater than the uncertaintiea in the dala, tien other grounds should also be demonstrated for selecting among the alternatives that are close in effectivepess.

## 12. If PRIORITIES ARE LISIED. ARE THEY STATED MEANINGFULLY?

Conciusions and recommendations ofen list ltems of equipment in order of priority of recommended prosurement or adoptlon. The use of this technique without explanatien, paricularly for mate: ic!. is often poor because it provides no basis for a decision. For example, a stuty

$$
0-48
$$

may uonolude that in order to accompliah certain functions, infantry units chould be equipped with epecified iteme of equipment that are listed in order of priority. Ascume that the items found neceseary by the aturiy for infectry unite in socompiich the required functions are, in order of priority:
(1) Soven Lengue Boot:
(2) Disintegrator Ray Pietol
(3) Univerkal Viewing Device
(4) Camouflage Sult (maices the wearex inviatble)

Although the etudy concluced that all of these items are required, the Liting of pi rittien without any quartitative conalderatione coull have any of theos menninge:
2. Hey ill of the Boven League Boote required. Thea, an recources are avallable, buy all of the Disintegrator Ray Fistole recudred. Coatime down the list of priorities in this manoer until the avalleble resources are exhmuted. This meaning aleo infers that even thouch all - ttemes are required, the Army can do without the lower priority iteme if eataicient reasurces are not avalable to procure them all. For essmple, with limited resocrces it in better to have all Seven League Bocte and noee of the otber itema rather than monse of each itern.
b. Buy all 4 items at once but apend mure moony on Seven Lagase Boots than on Disintegrator Ray Pistole and even less amourte on Univermal Viewing Devices and Camourlage Suits.

When faced with this kind of situation, corsoideration abould be divea to returning the atudy to the preparing agency for further recommondationa on how much ahuld bu allocated to cech item for various budget levele, efther given or asoumed.

## 73. ARE TEE CONCLUBIONSAND RECOMMENDATIONS DTTUIIVELY 8ATISFYING?

When the conclualona and reconmenchatione of the standy are sot intuitively satisfying, the reviewer ahould attempt to leolate the cause. I the atudy fills to de inonetrate by dain, modela and other mease that the reviewer's intultion was wroag, then further examinetica is required to determine if some aubtle conolderation tive not been conaldertd because of over implification or other reasoas which the roviewer istettively haowe are pertinent.

## tranay

##  <br> CESTEFFETWEIESS MALUYSS.

## TME PROBLEM

Demacstrme the feasibility of the commaicuicesystem cosi-effeciurness method developed and reported previonsly is NEL. report $1323 .{ }^{1}$

## result

1. The comatrication-zy siem cose-zflectivemess method thas bect conpaterized and applied to the analysis of a soorevorstip by link.
a. Semativity analysis carves ant develuped for the tainble patacters uned in the malysis.
b. Cost estumatiag equations have been developed for the hasic equipmeats comprisiog an if comavoicatioo link.
c. Tradeoff cirves iliustratiog 8 stem cost versens system parameters. guch as propagation lous, effective mateman noise figne, and ent rates, are puodet.

## hecommendations

1. Establis申 a ceatral Navy wrde dala storage and retricval systen to stand andize and manain tiseorical and curreat data to support witure resos:ce-fiectiveness malysis.
2. Extead the ecthod to incude the ommencation system is the iperational onviroment.
3. Devetop a hal data storage and retieval prow to to support firtior resomereffectivencss malysis.

## ABMIMISTRATIVE IMFORMATIOR

 menbers of ble Comanication Techatapes Divisim The report covers wouk


[^32]
## COHTENTS

NTRCOUCTION

$\qquad$
pagce E-4Histurical background . . . E-4Statement of prodiem . . . E-4
ME THODS .....  . E-5
Proble:ns in cose-effectiveness analysis ..... $E-5$
System effectiveness model ..... E-7
Performance ..... F-9
Data base ..... E-13
Cost analysis ..... E-14
Optimization technique ..... E-15
Confidence level of predicted performance . . . E-? 6
RFSILTS . . . E-17Submodel cost prediction . . . E-20
The effect of primary-power requirements upon system design ..... E-22E-20
Systen cost versus range for various vaiues of $\mathrm{F}_{\mathrm{a}} \ldots \mathrm{E}-\mathrm{c}_{\mathrm{c}}^{4}$
System cost versus BER as a function of $F_{a} \ldots E-25$
Sensitivity analysis. ..... E-30
System comparison ..... E-35
CUNCLLSIONS ..... E 36
RECOMMENDATIONS ..... E-37
APPENDIX Á: A SINGLE MEASURE OF EFFECTIVENESS ..... E-38
apPENdIX B: SURVEY OF PROPAGATION-PREDICTION PROGKAMS - - E-43
APPENDIX C: DATA TYPE AND SOURCE ..... E-51
APPENDIX Ú: MELTIPLE-REGPESSION ANALYSIS ..... E-53
APPENDIX E: METHOO OF STEEPEST DESCENT . ..... E-56
aPPENDIX F: LIST OF SYMBOLS ..... E-58
APPENLIX G: REFERENCES ..... E-59

## HLLUSTRATIONS

1. Procedure used in eesource-effectiveness analysis . . . page E-8

2 Typical printout for optimization program . . . E-18
3 System cost versus range for various values of $F_{c} \ldots$. . E-24
4 System cost versus $B E R$ as a function of $F_{a} \ldots E-26$
5 System cost versus $P_{e}$ for various path losses . . E-27
6 Receiver cost versus center frequency for various values of receiver sensitivity . . E-28
7 Hf shore transmitter cost versus power for various values of transmitter syability . . E-29
8 System cost versus transmitter antenna coupler VSWR . . E-30
9 Systen cost versus tansmitter stability . . E E-31
10 Syster cost versus receiver stability . . . E-32
11 System cost versus receiver sensitivity . . E-33
12 System cost versus transmitter power... E-34
13 Systen cos! versus receiver antenna coupler noise figure . . E-55
Al Cumulative density of products (single measure of effectiveness). . .E-39

## TABLES

1 Submodel cost and performance factors . . . page $E-10$
2 System cost and power requirements . . . E-23
3 System corsparison . . . E-36
Al Four-number ordered combinations and their products isingle measure of úfeciiveness) . . E-40

## Introduction

## Histerical Background

This report summarizes the continuation of the work in analysis of com-munication-system effectiveness reported in NEI. report $1323^{1}$

Many reports such as the forcgoing are available to guide analysts in cvaluating and analyzing various system conigurations. Some of the reported methods call for many judgment decisions on the part of the analyst, and in some cases require cost data that are impossible to obtain. Also, some methods permit grouping all the system characteristics into a single "figure of merit," m measure of effectiveness. The latter method is often misleading and meaning less to the systam analyst and decision maker. Other methods allow system effectiveness io be specified in terms of miltiple measures of effectiveness. Several reasons for using multiple measures of effectiveness are contained in reference 1 , as well as in appendix $A^{\prime}$.

Single methods are not used in this report, as they are considered unrealistic in the evaluation of complex systems that have multiple objectives.

Another method for analysis of cost effectiviness is one that realistically represents the pertinent system characteristics and costs, is capable of being implemented, and can be used in a meaning $\cdot \mathrm{il}$ manner by the system analyst and decision maker. (Unfortunately, the more realistic and representative a model is, the more difficult it is to implement, and often compromises have to be made because of the time required for analysis.) It is this method that is being developed.

## Statement of Problem

The ultimate objective of the work in communication eifectiveness is twofold - - to develop a communication-system resource-effectiveness method, and to perforin resource-effectiveness analysis of communication systems.

The method is intended for use as a management tool and as a design tool. As a management tool, the method can be used in the preparation of Proposed Technica! Approaches (PTA), Technical Development Fians (TDP), and Detailed Action Plans (DAP) to:

1. Determine resource effectiveness of a set of technical approaches,
2. Establish performance estimates, and
3. Conduct resource-effectivéness trade-off sludies.

As a liesign tool, the method can be used to:

1. Specify system characteristics,
2. Specify system effectiveness, and
3. Specify system resource requirements.

This report summarizes the work accomplished to date in implementing the cost-effectiveness method developed and dacumenteri in NEL report ! 323. The method as develuped to date was applied to a real communicaticn situation to
determine its validity. An hf Fleet broadcast link was selected because of the availability of data pertaining so hf equipments and other studies concerning this type of link. The performance model was used to evaluate and analyze an hf Fleet broadcast liek with respect to performance and cost. The analysis illustrates the contribution of various system parameters to overall system performance. A particular geographical hf link was selected for the analysis to provide. propagation losses, noise levels, operating frequency, and antenna gain as functions of radiation path.

Primary effort to date has been di.ected to the system performance model and its cost analysis. During the course of this work, it became obvious that the parameter "cost" as used in cost effectiveness should be more general and should include, in addition to dollar cost, such items as material, time, and perscanel. The more general descriptor "resource" will be used in place of "cost" in order to consider these items in proper perspertive. In most cases, Joilars will still be involved in the analysis. However, the limitation of associating everything with dollars is removed.

METHODS

## Probloms in Cost-Effectiveness Analysis

The following comments on techniques for the analysis of cost effectiveness draw from the content of related references 2 through 5 as well as from experience gained during the course of this investigation. The uninitiated are likely to think of cost effectiveness as a method that maximizes effectiveness whife minimizing cost. This conception is overly optimistic. What costeffectiveness methods can do is to minimize cost of a system while holding effectiveness to some minimum acceptable level or to maximize effectiveness while holding cost to some maximum acceptable level. The possibility arises that the analysis will be misleading if the wrong fixed levels are chosen ior cost or effectiveness. A way around this difficulty is to compare the results of analvsis at severpl levels of cost and/or eftectiveness.

The coptimization should de execatesi ior the system as a whole. If the subsystems are optimized individually ("s:boptimization"), the result will most likely not be true optimization. For instance, the best receiver for some given cost might have high sensitivity and low stabilit; , but the best system might call for a receiver with moderately good values of each.

## PROBABILITY LIMITATIONS

The single-link problem can be expressed in terms of physical parameters rather than probabilistic terms. This method avoids the problems associated

## AMCP 706-181

with the use of unverified probabilities. Solutions to the problems associated with unverified probabilities will be sought daring subsequent invessigations. An example of an unverified probability is in the answer to unis question: What is the probability that two ships will be transinitting on the same frequency simultancously? Sometimes questions like this one camot be avoided. If they cannot, the sensitivity of the analysis to the assumed probability should be tested by analyzing the system for various values of the probability under consideration. If the analysis turns out to be sensitive to the prethability. the results should be considered skeptically. One tempting way nut oi the unverified-probability impasse is to accept the word of some outside authority on the matter; but this is merely a way of avoiding the chore of reconciling tie analysis to this problem, since it is obvious that if the probability is unverifiable, the expett has no more assurance of its correctness than the analyst does.

Agan, in treating matters of probability, the analyst must realize that the most likely event Jces not always happen. Low-probability cventualities shoreld be inspected, too, for disastrous outcomes. When the real situation becumes so complex that it cannot be analyzed directly, a simplitied model is used, with the danger that the analyst will become more interested in the model than in the real situation. Game theory is deplored ty many because it is so often invoked for simple models, but is so difficult to apply to complex real-life situations.

## DATA LIMITATIONS

A problem which this surdy encountered was the limited cost data available. This is a warning that the cost equations obtained by the regression analysis will not be as accurate as desirable. Under these circumstances it is especially dangerous to extrapolate the results to ranges of the variables for which there ane no data.

In the same vein, it is a mistake to ignore a variable which cannut be quantized; for example, ease of operation of equipnient. It is always easier for the analyst to inseit the effect of a quantifiable variable into a performance equation than to philosophize upon the effert of an unquantiliable one, but the tendency to ignore unquantifiable factors should be controlled.

When the present study is expanded to include mure complex prob'ems of evaluating large comr.unication systems to be built in the future, the costing methods will hav to be modified and extended. Some of the considerations which will become important are the period over which the cost of new equipment is amortized, the difference beiween sunk costs (muney already spent) and future cos:s, the significance of cost differences, and ways to attach dollar costs to tra'ning of persmnel and other expenses not direatly for equipment.

## LIMITATIONS OF SINGLE.PARAMETER AHALYSIS

[^33]more straightorward than they are. For example, if the effectiveness of a communication system were squated with information rate, all considerations of reliability and maintannability would be sacrificed.

Combining the effectiveness measures of a system into a single "quality !actor" is also specious. For a time, this wis a popular practice, but now it is discouraged by many practiced analyats. Aypendix A'illustrates one problem associated with defining effectiveness as $t$ single measurs. A particularly strong statement on the mbject was made by E.S. Quade:" "One thing we camot do is construct from all the indi-idual ni,jectives some group objective by appropriately weighing a! separate ones; this is a practica! absurdity and it has been theoretically denonstrated mat there is no unique aid aatisiying way to do it." For example, consider two systems with perionmance factors, A, B, and $C$ of equal importance (weight) evaluated on a scale from ! is 5 :

| Factor | A | B | C | Sum | Produc: |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Systen I | 4 | 1 | 5 | 10 | 20 | $Q_{1}$ |
| Systen II | 3 | 4 | 2 | 0 | 24 | $Q_{11}$ |

If the ality factor $Q=A+B+C$, systen 1 has the higher $Q$ if $O=A \times B \times C$, system II does. And there is no way of deciding which formila for $\mathbf{Q}$ (if eitner) is legitimate. Furthermure, deciding upon the relative imponiance of the performance factors is $m$ arbitrary process widh serious consequences. If the pro duct form of Q is used, weightiag does not affect the ratio $\mathrm{Q}_{1} / \mathrm{Q}_{\mathrm{II}}$. However, when the sum form of $Q$ is used, giving factor $B$ a relative weight of 2 gives sysuem II the advantage of 13 to 11 . Likewise, system I has a 15 to 11 advantage if facior C is given a relative weight of 2 . Finally, the evaluations are sensitive to small changes in the values of the performance faciors. If these are not specifically quantifiable, the danger of upsetting the resilts is great; for example, if lacior $B$ of system I is changed from 1 to 2 , the prociuct $Q$ is doabled and far outstrips the comparable $Q$ of system II.

After all the arbitrary manipalations are made, the probability is surprisingly high that the (product) $Q$ factors of the t:vo systens will he equal. as shown in Appendix $\mathbf{A}$.

## Systom Effectivenass Model

If the description of a by pothetica: rommunication sh:untion is given. system requirements an be specified. The requirements determine the objectives of the syste. Comennication system objectives ray be many and variet. Some typical commanication-systen objectives are:

1. Information reliablity
2. befurmatica rate
3. Sysuem reliability
4. System availability
5. Aliti-DF
6. Anti-jan

This report considers only the first two objectives. Subwequent work will integrate other objectives into the overall model. System objectives may in many cases be considered as measures of syatem effectiveneas. Coss as a reaource element is not considered a measure of effectiveness. Cost is a criterion for choosing between alkernative systems at some apecified effectiveness level. The RESULTS section illustrates how cost can also be used to select between alternative systems tinat exceed the minimum requirements to differeat degrees.

Figure 1 illustrates the procedure followed in evamatiag systen resource requirements and effectiveners.

The resource-effectiveness asalysis begins with a given set of system requirements as shown in figure 1. From the requirenems, miraion objectives are apecified. The mission objectives modicate the tyte of optimization to be sought; that is, the mast effective system for a given level of funding or the least expensive system for a specified level of effectiveness. The type of objective is also reflectod in the constatiats impoed on the optimization procedure. The system model is an analytical medel of the system intended to futfill the stated objectives. The system model interrelates system characteristice


mod mission objectives. In some instances the system model may be modified to evahate an altemative solution to the missina objectiven. This altemative could require an entirely mew syatem model. System characteristics are categorized by mbmodels; cach mbmodel symbolizes a particalar type of comanaication equipment. The resource interface model (cost malysis) assiges coat factore to systen characteriatics within each embmolel. The submodel coat expressions ane then used in the optimization progran as either critaion or conatraint eqreasions, the use depending upon the type of opsimization being petformed.

The optinization procedure provides the amalysis outpots, 3 a ampasis of arndivity of som er ellecaivenes to chages in systen characteristics is addition to the optimized system cost or eficc:ivenese coafiguation.

In RESULTS syatem charactertatics are shoma aquias com to indicate the sype of trade-off malysis posisible from the method.

In the previously developed method, 1 the cast (resomer) effectivesess of a commanication sjowe included myten avaibability mod system reliability in addition to system performace as geasures of system effectiveness. Available time bas precluded the inclusion of syten availability and aystem reliahility in this report. Refer to appendix fifor explamations of the syabol3 used throughont the report.

## Porfgrmance

The effectivesess model which evaluates ine performance of an hif shuretorthip commarication linat consiats of several sebr odels. Each subuodel serves as minterface betwees subsyofem charnctaistics and subsystem cost. The submodels are:

1. Trameituiat termizal
2. Trasmittint
3. Tranmixing wrenee coupler
4. Tramsuitiong antemaa
5. Receivias maceam
6. Receiviag satena couple!
7. Receiver
8. Recieiviag vanimal

Execution of be method depeads upon the ability to asoxiate a coss focker with a fystem paformance factor. The procedurt for der mining cost fackers is described Com An fysia. The procedere mas used to determine the coul factors listed io tuble 1. These iteris were thowa to be critical in te eatublisheat of coen and performance fictors.

Subayten pefformance thitors are thove mojor sohaystem charscieristics

 matication theory to yifis the acasices of system performace. Me performance




## AMCF 706-191

TABLE 1. SUBMODEL COST AND PERFORMANCE FACTORS.

| Performance Factor | Submodel | $\begin{aligned} & \text { Cont } \\ & \text { Factor } \end{aligned}$ |
| :---: | :---: | :---: |
| Number of chamacls Bit deration Type mudelution | Tremsmittiag terminal | Number of chamels Queatity of mints |
| Average power Stability | Transmitter | Average powes Frequency Seat lity |
| VWWR | Tramsitting anteran couplet | VSWR <br> Pirgueacy <br> Number of iapmete |
| Gain <br> Anterna pattern Antenna orientation | Trumbittiat * texna | Coot per menam |
| Gain <br> Antenna pattern Anteana orientation | Receiving anterna | Cost per amtenna |
| Noise ligure | Receiviag satenna coupla | Noise figre |
| Sensitivity Subility | Receiver | Seabitivity Stability Frequeacy Quantity of mits |
| Number of chamels Bit deration Tifermodulation | Rece ving terminal | Number of ctranels Quancity of anits |

The fintmen-cost sistem say be defined for a spentic ievrl of performance by vilizing opinivalion procedues. Also, the matimemperformance whirn may be dincd for a fixed larisiment.

## PROPACATION MEDIUA

Propagalion-picitiction proptens protide a method of manleting malytr

effectiveness. There are erertal computerized papagation-prediction prograns available to the amolys. The capabilities and limitations of the prograns vary. A murey of propagation-prediction prograns known and avilable at NEL is conantsed in appendix B. it is this type of compnter proysm that will be used in propagatios sodeling.

For his malyais, the NEL Hist-Frequency Redio Propegntion Compmer Progran' was exed for eodeling the propagition medimo. The progean calcwthes the following cheracteristics of the propagation pativ(s) as a fanction of the time of day, month, moipor mober, mamanituer bocation, and receiver lecation.

1. Noise volage (receives)
2. Propagation lowet
3. Stywave mode (member of mpas, reflectiag hyer)
4. Amemat gin an detersined by takeoff sagle and angle of arival The program abo perrits varions sateman types and pertern to be considered in the calculations.

All calculations is this repon were based on a share mapaitter loculed is Howoluly, mid a tippond receiver located at various distances aloag a 0 drimen from hooolula

The other charactaristice of the commaications link are:

| Smapos amber | 20 |
| :--- | :--- |
| Houth | Decenber |
| How | 0000 |

## INFORMATION RELIASHLITY

A major objeciive in any commaications systen is the reliable tranfet of information. laformation relisbility may be messared is sereral ways; bow erer, each method is deperdent upon the received enery per bit and the poise powef density at he receiva. The more common mersmes of informana reliability me bit error rate (EER), character rroer rute, mid wod errar rate. Each meastre of information relitition is a in tiot of the BER, which is depenciest epon the poncalized S/V mion (R).

The conion cumputerised midel sor information reliability does mox convert
 This conversion is mede oncsude we proyem and is aclected froa the apper

 (RPRE) to the posectection $5 / \mathrm{N}$ ratic $\mathrm{fo}_{\mathrm{o}} / \mathrm{N}_{\mathbf{3}}$. The matysus of FSK detection
 anor.

$$
\text { RPRE }=1.3 \times \frac{f_{0}}{0.848_{4}!} \times \frac{5}{N_{0}}
$$

Ance 703-191
thers:

$$
\begin{aligned}
S_{0} / N_{0} & =R T_{0} B_{1} \\
f_{m} & =B_{1} / 2=3 /\left(4 T_{0}\right) \\
B_{1} & =3 /\left(2 T_{0}\right) \\
\left(B_{i f} I_{L}\right. & =B_{i f}=2 D+B_{1}
\end{aligned}
$$

theo

$$
\begin{equation*}
\text { RPRE }=c^{1.8} \times \frac{3 /\left(4 T_{0}\right)}{0.84\left(2 D+3 /\left(2 T_{0}\right)\right)} \times \frac{3 R T_{0}}{2\left(T_{0}-3\right)} \tag{1}
\end{equation*}
$$

RPRE is a function of modelation type, receiver finering, prisc iencth, gand time, ad mabler of chmmeis.
 perfortice paraseters of the syatem aubnoiels.

$$
\begin{aligned}
10 \log _{10}(R P R E)= & 10 \log _{10} P_{t}+30+G_{i}+G_{r}+10 \log _{10}\left[\frac{r}{\left(1+r_{e t}\right)}{ }^{2}\right] \\
& -L_{p}-F-C_{f}-10 \log _{10}\left|1+\left.\right|_{\text {we/a }}\left(S_{r}+S_{t}\right)\right|+K T B
\end{aligned}
$$

were

$$
\begin{aligned}
F_{a} & =E_{1}-20 \log _{10} f_{\text {me/0 }}+65.5+10 \log _{10} \\
F & =10 \log _{10}\left|f_{a}-1+f_{c} f_{t} f_{r}\right| \\
F_{i \Delta} & =134-10 \log _{10}
\end{aligned}
$$

The lollowing propngation bactors we obtained as unipor eata from the NEL propagation-pediction program 6

| Fropegation lona | ( $L_{\text {p }}$ ) |
| :---: | :---: |
| Tramet muenea mim | $\left(G_{8}\right)$ |
| Rective dotemas gaim | $(G$, |
| Eflective mienat moise | $\left(E_{\text {A }}\right)$ |
| Frequeacy of opernaica | (fisc/s) |

The frepoine propapetion factors permit isystem's performenct to be malyed for a specific groportical locaion. time, and ragy.

## MPORMATGN RATE



abromine las been witucm that canbles these trade-offs to be taken ura accomm. Examples of de trade offs poasibie are as followa:

The greater the dramion (alow rite) of the pulse element, the grezter the Fobatility (hich relimbility) of receivigg the elcmeat correctly. The converse if also tum. Abo, the more emors there are in a message, the less information can be tramifired fran sonce to maer.

When two systene that use different coding tectniques are compared, a detalled malysis is recured to deternine the mite at which information is trmefersed. I teletype aystens, the atart and stop tits, as well as error dettction and conection bits, mast the considered in the determiation of information rue. Nace two systems that mes the same coding technique me compared, it is mon difficalt to detemise their rehative information rates. However, coding techiques and informion rute mest be related to some comenon factor for incompration withia the method. This conmon factor is given by equation (3) Equation (3) statea that the chancl inforantion ratce is cqua! to the source ratc refoced by the chamel equivocation.

$$
\begin{equation*}
I_{R C}=H(x)-H_{g}(x) \tag{3}
\end{equation*}
$$

$I_{R C}=$ Rate at wh onformation is otrasferred

$$
H(x)=\text { Source tra: mission rate }
$$

$$
H_{y}(x)=\text { Equivocruion }
$$

The source information rate $; \mathrm{H}_{\mathrm{z}}$ ) is modified to conside: both stict and tupp bitas an well as error-detection bits $o f$ facilitate calculations. That is, the somece data rate is refaced by the eflect of statt and srop bits and aror detection biss. th the Easi measare of inforazion transfened ty the source, information tate is furtier rediced by the chamel equivocation. For the benar: system the chansel information rate in

$$
\begin{equation*}
I_{R C} \frac{1}{T_{0}}+\frac{1}{T_{0}} Y_{i} 1-P_{\cdot} \cdot \log _{2}\left(1-P_{e}+P_{0} \log _{2} P{ }_{F} \mid\right. \tag{4}
\end{equation*}
$$

The overall system infomation rate is diectly proportional to the number of chamels c ad inversel, proporticeal to the erder of di versity in given in equatior (5)

$$
i_{R T}=4 \times I_{R C}
$$

## Bata Base

 collection of reliable dita. Stmadardized soures of systim charaterristics and
 Th retrieval system it NEL to sapport resomice effecivencts proger. That
data basc will te continually undated to providz a sliding historical datia base. The storage and retricval program will provide data from which cost factor: can be determined, in order for cost effectiveneas to becobie a continaing part of the Navy procurement process, a complete data base of Navy equipacol is required. The bent time to acquire equipated data is in the initial stages oi a system's dife cycle. The tepes of data that are aquired to support resource-effectiveuess analysis are as follows:
i. Standardized listing of equipmeni characteristics by type ol equipment
2. MTEF
a. Spertfication value
b. Predicted value
c. Actual value
3. MTTR
a. Specification value
b. Predicted vaiue
c. Actual value
4. Unit cost
a. Quantity procured
b. Date procured
c. Spares
5. Traming cost
6. Installation cost
7. Personnel requirement:
8. Development cests

The data sources used to support me resource-effectiveness araiysis of the if link contained in this epost are listed in appentix. Cwith typ of da:d.

## Cost Analysis

The cost analysis applied here assims a cost factor to exch specific equipment characteristic so that cquipment coms an be predicted as a furction of equipment characteristics. A coharderized statistical mulliple-rigression program is used in determine each cost function fron histoncal cest data and equipmon characteristics. A brief zxplanation of the theory and analytical process involved in surve fitting via multiple regression is contained in appendix $D^{\prime}$.

Total equipment cosis can be considered to consist of fixed costs and variaule costs Fixed costs arn independent of the performance expressions (.METHODS. equatıois 2 and 5). Variable costs vary with level of performance. Fixed costs here also includ* performance factors that fai! to corelate with cosi.

Total cost = fixed cost + variable cost.
On the first try at determinting a cost expression for a particulay type of equipment - for example, a receiver - all equipment sharacteristics fall on which there are sufficient data) are submitted to the :egression program at sace. If the equipnent cost fails iv correlate with the permment equipment characteristics, the equipments are further categorized by frequelicy range, type installation. or other differences. Graph plotiong of equipment characteristics vresus cost nay be employed to heip determine the sinalytical form of the cost expression.

In sorae instances the equipment characteristics required to evahate a symten.'s effectiveness may not conelate with equipment cosh. Such pertinent equipment characteristics as modelation ty pes, number of rypes of modulation, tranaistorized equipnent, number of chansels and isolation did not cortelate at a significant level with equiparent cost. It is not implied that they will not correlate, but only mat isfomation in extreme depth was not availahle. Also, equipnent characteristics may correlate negatively with cost (thut is, receiver cont decreases with a decrease in sensitivity). In lower-cost equipments ( $\$ 3000$ ar less; the quantity of units procured affects the unit cost significantly. ha this price area, as well as with the more expensive equipments, the quantity of unity procured is considered when this type of information is available.

If the dats on a particular type of equipment are insufficient to permit curve fitting, the equipnent should be treated as a discrete entry in the performance and cosi eguations. This approach was taken in the following analysis with respect to shipboand and shere antennas.

The computer program used in the surye-fitting process provides several satistical tests to evaluate the "goodness" of the hited curve. These tests are the $t$ lest and F ratio test that are described in appendix $\mathrm{D}^{\circ}$. The muitipleconclation coefficient and standard erro of estimate are also calculated.

## Bptimization Technique

One of the main tools of the resource-effectiveness method is the Systems Optimization Program (SOP). 7 Several minor modifications have been made to the SOP, some as adaptations to the current problem. and some for compatibility wisin NEL computing equipaent. The SOP minimises a given function, called the criterion, while satisfying two types of conetraints. The constraints can tre in the iorm oi equations or bounds on the individual variables. These constraints are always satisfied during the optimization procedure.

In connection with the present evaluations of communication systems, the cost is written as a function of system parameters, and this expression becomes the criterion equation in the SOP. Only one constraint equation is used; in it the gairs (power, antenna gain) are balanced against the losses (path loss, noiso, $S_{i} / N$ ratio). Some of the rariables are also constrained within preset limits.

The roles of the cost and gain-loss equations can be interchanged: that is, the cost can be held less than or equal to a certain amount. The gain-loss equation can be used as the rriterion by writing $S / N$ ratio in terms of the gains and losses. Then the SOP will maximize $S / \mathrm{N}$ ratio by minimizing its negative.

The SOP has four najor subroutines, called Mode 1. Mode 2, Mode 3, and Mode 5. Made $I$ is the most important, as it executes the optimization. The technigue used is the method of steepest descent, modified to work with constraints (see appendix $E$ ). The cost and criterion equations are written as functions of tine sysiem parameters. Some of the parameters are variables and may be periurbed in the proccse of minimizing the criterion. These parameters currently arc transmitter coupler VSWR, transmitter and receiver stability, receiver sensitivity, transmitter power, and receiver coupler VSWR. A greater number of the system parameters are held fixed, but may be changed for each
nu of the program. They include transmituer operation time, number of trantmitters purchased, path loss, and environmental mise.

Mode 2 evaluates chosen functions and their derivatives while varying one parameter. It can also plot these results, a capability which allows the analyst a convenient way to judge the effects of individual parameters upon the complete system.

Mcde 3 evaluates chosen functions while varying se:"eral parameters simultaneously.

Mode 5 is a sophisticated output soutine that lints the results of Mode 1 in a complete and readable form. lt can olso convert units from those convenient for calculation in Mode 1 to those appealing to persons using the results.

## Confidence Level of Predicted Performance

The performance equation contains, or is dependent upon, several parameters fc: which one cannot specify a "true" value but only the most likely value. Hence, these parameters are represented in the performance equations by their most !ikely, or mean, values. A statistical confidence factor is used $t 0$ compensate for the effect of parameter u.certainty upon system performatrce, thereby assuring a specified lcvel of performance with a given degree of confidence. The confidence factor is included in the performance expression (METHODS, equation 2 ) as additional system loss. The confidence factor is determined from system pasameter uncertainties ${ }^{8}$ and the desired level of confidence.

The uncertainties are:
$\sigma_{\text {SIG }}=$ uncertainty in predicting signal strength over ionospheric path.
${ }^{\sigma_{T A}}=$ noise variation about the mean.
$\sigma_{\text {ANT }}=$ uncertainty in receiver antenna gain duc to receiver antenna characteristics.
$\sigma_{F a}=$ uncertainty in mean value of noisc.
${ }^{o_{N F}}=$ uncertainty in receiver noise figure value.
The total uncertainty $\sigma_{T}$ is
$\sigma_{T}=\left\{\sigma_{A N T}{ }^{2}+\sigma_{S I G}{ }^{2}+\sigma_{T A}{ }^{2}+\sigma_{F a}{ }^{2}+\sigma_{N F}{ }^{2}\right]^{1 / 2}$
Confidence factor $\left(\mathrm{C}_{f}\right)=\mathrm{K}_{\mathrm{o}_{T}}$

| Confidence Interval, Percent |  | K |
| :---: | :---: | :---: |
|  |  |  |
| 90 |  | 0. |
| 90 |  | 1.282 |
| 95 |  | 1.645 |
| 99.9 |  |  |

The confidence factor usid in these calculations were obtained from the following system uncertainties.

$$
\begin{aligned}
\sigma_{S I G} & =8 \mathrm{~dB} \\
\sigma_{A} \cdot T & =8 \mathrm{~dB}
\end{aligned}
$$

${ }^{-1} \sigma_{\mathrm{TA}}=5 \mathrm{~dB}$
$o^{\circ}{ }^{a}=5 \mathrm{~dB}$
$a_{N F}=3 \mathrm{~dB}$
The total system uncertainty ( $\sigma_{T}$ ) is found to be 13.675 dB . The confidence factor for a 93 percent confidence is then:

$$
C_{f}=K_{\sigma_{T}}=1.643 \times 13.675 \mathrm{~dB}=22.495 \mathrm{~dB}
$$

## RESULTS

The results of malysis of hf-link effectiveness are presented in various forms to illustrate the capability and versatility of the method su far developed under this program. Peformance and cost equations utilized in the optimization program are discussed with respect to contributing factors and their interrelationships. Depending upon the form of the optimization process, the performance equation may be either the criterion or the corstraint equation. Correspondingly, the cost equation will then be the constraint of the criterion equation.

In the optimization program a local minimum is sometimes found rather than the global mininoum. In this case the starting values for the variable parameters are changed to determine if the optimization process can locate a new minimum for the criterion expression.

The optimization program uses 26 parameters (fig. 2), of which only six are allowed to vary (variable parameters). Other parameters could be selected as variabie parameters; however the six selected (fig. 2B) are believed to be the most significant with respect in system cost-derformance trade-offs. Figure 2 is a typical SOP cutput page. It was caken from a computer run in which system cost; prameter 12, was used as a constraint on system effectivencss.



$$
<
$$


vanialle pafancyens




## $\propto$

Fique 2. Conisinued.


空:


## Suhmodel Cost Prediction

The method of analysis required that cost expressions be generated for each subwodel of the commanications syatem. The expressions were developed for all but the two antenaa syatems. shipboard receiviag and shore bamomistiage. The data available on these types of antenams were insofficient to permit coet expressions to be deveioped by regression malysis. The coats ad chmecteristics used for the anteanas were aken from vendor literature.

The cost expression for cach subnodel along with the maltiple-correlation coefficient and standard error of cost estinate (o) are included in the sumany that follows. The mage for eact farmetet used in the fegression emplysis is also indicated.

The synbol $Q$ is used to denote where applicable the quentity of mits to be considered in predictiag the cust of a subwodel. Each of the smbaodel coatprediction expressiuas was generated by means of the terhaiques described in the Cost Analysis section of METRODS. For an explanation of the symiols used in the cost expressic., see appeadix $\bar{F}$.

Consider a tppical example of mit-cost prediction usiag the followipg receiver characteristics and the receiver cost-prediction expression (ME THODS, equation 3).

Receiver Characteristics

$$
\begin{aligned}
Q & =30=\text { Quantity of units to be procured } \\
\mathrm{F}_{0} & =16.250 \mathrm{M} / \mathrm{s}=\text { Receiver center Gequeacy } \\
\mathrm{S}_{\mathrm{n}} & =1 . S_{\mu} \mathrm{l}=\text { Receiver senstivity } \\
S_{\mathrm{r}} & =1 \mathrm{PPM}=\text { Receiver stability }
\end{aligned}
$$




Receiver Cost $(\$) \mathbf{\$} \mathbf{\$ . 4 8 1}$ when bought in quathics of $\mathbf{3 0}$.
The range for erch variable used th the receiver cost malysis is as follows:

| 34- Q -2.217 | Quantity |
| :---: | :---: |
| 22- fos $323.375 \mathrm{kc} / \mathrm{s}$ | Frequency |
| $1 \leq 8 \leq 10_{4}$ | Sensitir |
| Oi 25 , 1 IPPY | Stambit |

Predicied costs can be oblatiod for the other equipments comprisiag the s) stem from the appropitate submodel equation in the sumany mich follows The cocfliciens sasmped each cost factor are the performance factery and are
 of the individual subaridel coss

Sennery of suladel com prediction equations.

1. Teminal Equipment
a. Receive or Trumait Terminal Coas (\$)
$=-43.239355+1091.553361(c)$
-69.069276 (Q)
1 SQs 25
$1 \leq \operatorname{c} \leq 16$
Maiteple Correlation 0.9939

b. Receive and Trmund Teusal Cous ( $\$$ )
$=-043.23935+2183.070722$ (c)
$-138.17592(\mathrm{Q})$
$1 \leq 0 \leq 5$
$1 \leq 6 \leq 16$
maldiple Correlation 0.99909 $\sigma=\$ 35.46589$
2 Receiver Coupler Coes 15$)=$
3014.239577 - 746 a68745 $\left(F_{e}\right)+85.11956\left(F_{e}\right)^{2}-3.181740\left(F_{f}\right)^{3}$
$6 \leq \mathrm{F}_{\mathrm{c}} \leq 15$
Multiple Correlation 0.9900s
$\sigma=\$ 40.793290$
2. Receivet $\operatorname{Cost}(\$)=5,382.916$
-2.406269 (Q)
$-659.2069 \mathrm{l}_{10} 10 \%$
$-1766.0931\left|\log _{10}\left(105_{n}\right)\right|$

+ $2016.81387 \mathrm{log}_{10}\left(100 / \mathrm{S}_{\mathrm{N}}\right.$
$34 ; \mathrm{Q} \leq 2.217$
$22 \leq$ fos 323.375 tic
$155_{n} \leq 10$
$0.015 S_{r} 51$ PPM
Mulipipte Correlation 0.900429
$\theta=\$ 568.48309$ !

4. Trasmitter Cost $(\$)=-154,94.190818$
$+216.010 \log _{10} \mathrm{P}_{1}$
$+1.7039107{ }_{p}$ i
$+71683.2036\left(S_{8 w} / f_{0}\right)$
$+9205.5072 \log _{10}(100 / 5)$
$0.01 \mathrm{~S} \mathrm{~S}_{\mathrm{s}} \leq 1.0 \mathrm{PPM}$
$22 \leq$ focs $28 \mathrm{Mc} / \mathrm{s}$
$15 \leq 50 \leq 16 \mathrm{mc} / \mathrm{s}$
500 s its 20.030 watts
Maltiple Contation 0.997445
$0=\$ 1052.20976$
5. Trmanit Complez Coss $5=$
14.957.591461
-2057.431 log $_{10}$ fo-109.1214 $\mathrm{f}_{\mathrm{rt}}$
$+1188.842182 c_{1}$
$1.15 \mathrm{I}_{\mathrm{c}} \mathrm{s}$ 2.0.1
10.15 $56512.5 \mathrm{~m} / \mathrm{s}$
$1 \leq c_{t} \leq 4$
Maltiple Correlation 0.913099
$\sigma=\$ 249.653032$
6. Antemas
a. Transmit Anterm - Conical Manopoic Cost $(\$)=\$ 0,275$
b. Receive Antenate Vertical mip Cost $(\$)=\$ 200$

## The Effect of Primary-Power Requiroments Upon Systam Design

Table 2 illustrates be cose of tan commurication link as a fancrion of a receiver removed from the transmituer in a fixed direction with rage as a variable parameter. The variables that affect the sysiem cost ae froquency of operation fawio. external noise power $\left(E_{n}\right)$ available at the antenm, and propagation loss (L.,). The vabes for these variables ase detemined by the pro-pagation-prediction program for each specificiciage. Also, the tequescy of operation sele:ted is the optimum fequency for that rage and receivar lo:atium. The $S / N$ ratio ai a specific recei inag location is a fuaction of the effective matenia notse figure and transmision pata loss. The received soise field strength and operating frequency cause the effective anteana aoise figure to yary infegularly with mage. The variation causes syster price to tuctuate abog the selected path nather than being mocotonic with distance. The first tree lise entries in uble 2 illestrate this situation. The path kess ( $L_{p}$ ) is monotoaic vith rage, increasing trom 64.7 dB at $\mathbf{2 0 0}$ a.n. to 74.7 dB at 900 n.m. However, the ellective noise at the receiver ar'ona $\left(E_{n}\right)$ decreasea from $14.3 \mu \nu$ at $260 \mathrm{a} . \mathrm{m} .103 .4 \mu \nu$ at 90 a.m. This decrease in $E_{n}$ combleted with on increase in operatiag frequeacy more then compensete for the $10-\mathrm{dB}$ ir crease in path boss, resaltiag in a less expensive system for 960 n.m. then fer $200 \mathrm{n} . \mathrm{m}$.

In the last two columas the effect of primary powes (or comancial power) is shown. The primary power cosi fer a gyear period was included in the cost (criterion) equation. The equipmeas was considered to be in operation 720 houis fat minth. in most cases, the eifect of considering primary power and its associated cost was to reduce the monat of the transaituer puwer output required, cansing the system to scix additioal gain from other system purameters at less cesit to the system.

The expression for primary-power cost ases the rate stuxcture of the San Dicge Gast Electric Co., as this unformation was reachly available. The smount of promaty powet iequired is dependeat upon the efficiency of the transmater. pies other ilens. The eficiency of thore tramantiers was fund io decirease as transy ittci power is ancreased, and this relaroastip wis included in the caperssion for pumary-power cost. The effect of tanantict efficiency wa sister cost trcours suppifican as the commancation lint ranger is ucreased




TABLE 2. 5YSTEM COST AND POWER REQUIREMENTS.

| $\begin{aligned} & \text { Range, } \\ & \text { a.m. } \end{aligned}$ | $L_{\mathrm{dB}}$ | $\begin{aligned} & E_{n} \\ & \mu \nu \end{aligned}$ | f $\mathrm{Ne} / \mathrm{s}$ | Withour 「1inary Power Costs |  | With PrinaryPower Costs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Cost, Dollars | Power, Whates | Cost. <br> Dollars | Power. Wats |
| 240 | 64.7 | 14.3 | 4 | 4,338 | 2.283 | 56,870 | 1,193 |
| 400 | 68.6 | 14.8 | 4 | 49,298 | 2.767 | 63.599 | 1,589 |
| 900 | 74.7 | 3.4 | 20 | 35,7\% | 1,000 | 37,663 | 250 |
| 1,900 | 80.2 | -5.5 | 24 | 33.321 | 500 | 36.081 | 500 |
| 3,000 | 84.1 | -3.4 | 20 | 37.117 | 1,000 | 42.114 | 500 |
| 4,900 | 90.8 | -1.0 | 16 | 47.29\% | 1.952 | 56,605 | 3.134 |
| 3,000 | 9.0 | 8.2 | 8 | 166,088 | 6.515 | 1,400.775 | 3¢,293 |

level msociated with the aror rate is 95 percent. The BER mas detemined Lor noncolvereat FSK modulation smbjected to Rayleigh teding and Gaussim aoise. In addition to tramander power, the optaization prograt raried other syztex characteristics. The other syztem variabtes that were pemitted to very "re:

1 Trasazitler stabelity
2 Receiver stability
3 Receiver seositnity
4 àcseiver compla moisc figure
5 Trassatter couple VSHR
 case conligmation maty mot ocien the maximur rape over which commanicationt are deaired. Latermediate sages, grographical tocations. ad tume hould all be considered in deterninist ite desige requirements or the adequacy of a commaications sytion. Also of inportanct in ble desp of a syste is te tramitter efficieary with its associated primery-power cost.

$$
E-23
$$

## Systom Cost Versus Range for Various Values of $F_{.}$

Figure 3 illustrates the effect of conmurication-link range ga system cost The curves are for effective anteaman noise ligures ( $F_{\mathrm{g}}$ ) of 40,50 , and 60 dB. The link pefformance for these calculations is constained to an eightchannel system operatiag with a BER of $10^{-3}$ errors per bit with a 95 -percent confidence factor. Each point plotied in figme 3 represeats an oprimized (minimus cost) system.



Specific commmaication-liak characteristics are:

| Link location | $0^{\circ}$ azimuth fron Hosolutu. Hawaii |
| :---: | :---: |
| Modulavion | Nowcohereat FSK |
| Smanpot mamber | 20 |
| Meath | December |
| How | 0600 |
| Trunsmit Attenat | Comical Monopole |
| Receive Antema | Vertical milp |

The curves illostrate the sons increase associated with a 10 dB incrase in the effective mema noime figme. For a $\mathbf{2 , 0 0 0}$ - . m. link, im increaze th the effective micma noise figme free 50 dB to 60 dB would require an additiona! $\$ 21,000$ investineat ( 39 percent incrase) is the system.

## System Cost Voisus BER as a Functien of $\boldsymbol{F}_{\boldsymbol{n}}$

Figme 4 is a grapt of Syston Cost versus $D E R$ as a fuction of $F_{a}$ (ef'rctive antenna noise figure) for values of 40,50, and 60 dB . Each putat photial represents ar oprimized system (chat is, mainum cost) evaluated to provide a specified level of fciformace. Il calcutaticos are for a fired rage to dimisar: variations in S/N atio dee to pabth loss and receiver foration.

The characteristics of the link are as follows:

| Rage | $3.000 \mathrm{~m} . \mathrm{m}$. |
| :---: | :---: |
| Confidence | 95 percent |
| Chamels | 8 |
| Modulation | Nomeotererit FSK |
| Location | $0^{\circ}$ aximath (Hawii) |
| Sinsipot murimba | 20 |
| Monich | Deceubes |
| Hent | Tom |

The graph illustrates the ceok axsociated with designing a system for different effective matenam coise figares. The curves indicate that for a very slightiacrease in system cons be BER can be improved trom $8 \times 10^{-4} 05 \times 10^{\circ}$ smote por hit.

Tis type ci curve can be saed to compere the BFR imprwonent wh catiag wild that obstimed from a differeat systew desis.
 with an incrise in system cona. The calcylarions bave bern made for path

 operaion mat determeed by he piopegatoos-prediction profytion, and was
 con is a conaturimat and tormation reliability is the criterion


Figure 4. Sysiem cost versus $B E R$ as a function of $F_{0}$.


Figure 5. System cost v risus $P_{\text {e }}$ for varinus path losses.

Figure 6 shows receiver cost versus recsiver center frequency for three values of sensitivisy. The average ratio of receiver range to center frequency was 1.58 . The ratin seems to hold in most cases regardless ef receiver ceuter frequency.

Figure 7 illustrates the relaticnship of hf transtitter cost and average transmitter power output. The curves have been plotted for trree levels of transmitter stability.


Figurs 6. Receivip cost versus center frequency for various values of receivel sensifivity.


Figure 7. Hf shore transmifter cost versus power for various values of transmitior anobility.

## Sensitivity Analysis

The hf link configuzation was evalusted to deternine the sensitivity of system cost to each of the six variable parameters. The aystem was first optimized in terms of cost (minimum cost) to provive an eight-chanrel link with each channcl operating at a bit error rate of $10^{-3}$ errors per bit. The confidence level over the $\mathbf{3 , 0 0 0}$-n.m. link is 95 percent. Figures 8 through 13 illustrate whe effecte of the variable parameters on system cost.

The optimum system cost was determined to te 55,539 and is indicated on each parameter curve. Figure 9 and 12 indicate that system cost is most sensitive to the characteristics of the transmittar, specifically, transmitter stability and power. The transmitter cost analysis should be reviewed to verify the costprediction expressions before fiasalizing the analysis.


Figure e. System cost versus ronsmithe ortitema capler VSWR.


Figure 9. Systom cost versus tranmitter stobility.


Figure 10. Sysrem cost ersus neceiver stobility.


Figure 11. Systam cos' versus receiver sensitivity.


Figury 12. System sezt versuz pronsmiter power.



## Systom Comparison

The following techaque provides one method of comparing iwo ar more sysicms with multine measures of eflectiveness. The effectiveness of each system is determined for a specific compuaications hak. The particulat eavirom. t.anta! conditions used ior the comparison are a $3,000 \mathrm{n}$. . . link with an effective antena noise figure of 50 dB . Th the example sciected cach measuse of effective ness exceeds the system requiremerts. The technique is to cust cot the incicand eflectiveness of ewh measure and subtract he increased effectiveness cost firm the potal sustem cost. The lowest measure of efketivencss in each area is uscd at the basis for the coct comparison.
th this exaople, the cost of system 1 with in orasiton reliabolity of $2 \times 10^{-4}$ was reduce : o the coat of sysicm 2 with information relianlity of $8310^{4}$. The
 10ver sysuem 2 is 515.891.
 delermang the excess effertivencss cost is wo nomalise the performace al each sysitem fir comperisce. The chat w iabic 3 badirater thal systim 2 is the better buy or tar two sy steman.
table 3. system comparison.

|  | Systew I | $\begin{gathered} \text { System } \\ 2 \end{gathered}$ | System Requirements |
| :---: | :---: | :---: | :---: |
| Performace mío Reliability | $2 \times 10^{-4}$ | R $\times 10^{-4}$ | i $\times 10^{-3}$ |
| SHo Rate Required Actual | $\begin{aligned} & 75 \mathrm{haod} \\ & 76.71 / \end{aligned}$ | $\begin{aligned} & 75 \text { band } \\ & 76.701 \end{aligned}$ | $\begin{aligned} & 75 \text { bend } \\ & 76.05 \end{aligned}$ |
| System Reliability (MTBF) | 1900 hrs | $2300 \mathrm{mrs}$ | 1700 ms |
| System Availability | 00.997378 | 0.9978 | 0.99 |
| System cosi | 90.42: | 665,000 | - |
| Excess Puformance Cost | \$15.891** | - | - |


| Excess <br> noliaditity Cuni | $=$ | 54,000 |
| :--- | :--- | :--- |


| Cost of <br> Normalized System | 564.536 | $\$ 61.000$ |
| :---: | :---: | :---: |

- $\quad$ UTTR = 1 hour
- Results from 576.427-560,536. See ligure 4
-0* Normalized to the same level of effectiveness.


## COMCLUSIONS

 has tren denbunsirated.
2. There is a trfanite nied for a staciandized Vivi-mick data band if coszeffectiveness analvis is to conture as a hav desime und management col.
 inpe of modulation, and ase d transistive by teitistical malupte sepession may

 the acquisition of mere detailed com data or the deveiopmeat of new cost-prediction techinges.
4. The mutels teveloped provide a hase for more detailed mad comprebeasive lind maiveis.
5. The method and tec'riques developed can be used in the amlysis and evilution of M equipmer's mad syatems. They can also be useful is the preparatica or PTA, TDP, ad DAP.

## RECOMMEMAATHOMS

1. megrave equipmeat reliabiliry and mainumability mas the existing metion.
 of resomereffectivemess malysis.
2. Exatend the meatod to inctude de commaicrions system in the operational caviompiate.
3. Establish a cenaralized collection and distribation service cracerning data oa Navy equipments.
4. Extend resource-effectivencas models to cinumpss other frequency mangs.

## appendix á: a single measuir of effectiveness

Severai recent publications have recommentec a siigic measure of effectiveness, of figue of nerit, as $\boldsymbol{a}$ means of rating and comparing systens. The single measule of effectiventss is generally the product of several probabilities or rank designators that represent some of the characteristics of the systems Leing evaluateo. The probatilities can represent system factors, such es reliability, system availability, or probability of mission success. The ranking scheme isvoives rating these 3ystem characterisucs on a scale of $a$ to $b(b>a)$. The purpose of tins appendix is io demonslizic some of the more basic limitations asseciaito wilt single reasures of effecitiveness.

To determine whether a single measure of :ffectiveness is apprupriate, u: must firsi kok to the puppose of a resource-effectiveness analysis. An analysis of system effectiveness is designed to present all significant aiternatives in system configuration with theip inherent ramifications of resource requirements ard mission fulfillment in perspecive. Where a single measure of systicm effectiv reess is used, it is difficult, if not impossible, to relate trade-offs to the overall sysiem objective(s), particulariy in these cases in which the system faciors are weighted on some aithitrary basis. Large systems with multiple otjectives are definitely rere suited to tre use of multiple measures of effectieness than to the use of a single mea, ure. Decision makers quite fequently requesi 3 single measure of effectiveness, as it racilitates decision naking and skeceases the adninstrative problems associated with it. A resource-effectiveness zualysis should present an unbiased anay of possible trade-offs. It should not fore a specific decision through previous decisions in the ceure of analysis. as a single measure of effectiveness would.

The case in which a sysien's naior characterisics are ranked from 1 to $y$ and then conibined as a product inte a single measure of effertiveness is examined in dec.it in the following paragraphs.

Assume the situation in wheh ss stem effectiveness is the preduc of four system characteristics $\boldsymbol{\alpha}, \beta, y$, and $\boldsymbol{\delta}$

where
i $<\alpha \leq 4$
$1 \leq \beta \leq 9$
$1 \leq \gamma \leq \varphi \quad$ ia. $\beta, \gamma, \delta$ are integers.
$1 \leq \delta \leq 9$

Figle A. graphically illustrates the cumblative de:nsity of available p:o dicts. Therc are 6.361 possible different ordered enmbinations of $z, \beta, \gamma$, and $\delta$ yieldias 2.5 diffeem products. Consider the simation in which a spaten rating is 3024 . There are 24 different system =infigurations defined by the rating system that will provide the prodact of 3024 . A system with efictiveness parametc. 3 $9.8 .6 \cdot 7$ is different from a system with parmeters $6.7 \cdot 9 \cdot 8$. Howerer, whatever difference the systems bave is masked by the single measure of effeciveness. If ine effectiveness rating is 144 , there are 132 possible dieferent system configuratoms.

AMCP 706-191


Table Ai indicates the number of ordered combinations that give a particular product. An ordered combination would consider the permutations possible with a specific combination of numbers.

TABLE Ai. 4-NUMBER ORDERED COMBINATIONS AND THEIR PRODUCTS
( $1 \leq$ each number $\leq 9$ ! (Continued through page E-42)

| Product | Number Oriered Combinations Giving Product | Product | Number Ordered Combinations Giving Product | Product | Number Grdered Combinations Giving Product |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 50 | 12 | 168 | 84 |
| 2 | 4 | 54 | 52 | 175 | 12 |
| 3 | 4 | 55 | 46 | 180 | $8 \%$ |
| 4 | 10 | 60 | 60 | 189 | 28 |
| 5 | 4 | 63 | 24 | 192 | 88 |
| 6 | 16 | 64 | 44 | 1\% | 18 |
| 7 | 7 | 70 | 24 | 200 | 24 |
| 8 | 20 | 72 | 112 | 210 | 48 |
| 9 | 10 | 75 | 12 | 216 | 116 |
| 10 | 12 | 80 | 48 | 224 | 48 |
| 12 | 36 | 81 | 19 | 225 | 18 |
| 14 | 12 | 84 | 60 | 240 | 84 |
| 15 | 12 | 90 | 60 | 243 | 16 |
| 16 | 31 | 9 | 9 | 245 | 12 |
| 18 | 35 | 98 | 12 | 250 | 4 |
| 20 | 24 | 100 | 18 | 252 | 84 |
| 21 | 12 | !05 | 24 | 256 | 31 |
| 24 | 64 | 108 | 88 | 270 | 60 |
| 25 | 6 | 112 | 48 | 280 | 48 |
| 21 | 16 | 120 | 84 | 288 | 120 |
| 28 | 24 | 125 | 4 | 294 | 24 |
| 30 | 36 | 126 | 60 | 300 | 24 |
| 32 | 40 | 128 | 40 | 315 | 36 |
| 35 | 12 | 135 | 28 | 320 | 40 |
| 36 | 72 | 140 | 36 | 324 | 3 |
| 40 | 40 | $\cdots$ | 132 | 336 | 34 |
| 42 | 36 | 147 | 12 | 343 | 4 |
| 45 | 24 | 150 | 24 | 350 | 12 |
| 48 | 84 | 160 | 48 | 360 | 9 |
| 45 | 6 | 162 | 52 | 375 | 4 |

TABLE Al. (Continued).

| Product | Number Ordered Combinations Civise Product | Product | Number Ordered Combinations Giving Product | Product | Number Ordered Combinations Giving Froduct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 378 | 60 | 756 | 60 | 1372 | 4 |
| 38.4 | 64 | 768 | 36 | 1400 | 12 |
| 392 | 24 | 784 | 18 | 1440 | 36 |
| 400 | 18 | 800 | 12 | 1456 | 16 |
| 405 | 24 | 810 | 36 | 1470 | 12 |
| 42 V | 48 | 840 | 48 | 1512 | 52 |
| 432 | 112 | 864 | 76 | 1536 | 16 |
| 441 | 18 | 875 | 4 | 1568 | 12 |
| 448 | 40 | 882 | 24 | 1575 | 12 |
| 450 | 24 | 896 | 24 | 1600 | 6 |
| 480 | 50 | 900 | 18 | 1620 | 24 |
| 486 | 36 | 945 | 24 | 1680 | 24 |
| 490 | 12 | 90 | 36 | 170 i | 12 |
| 500 | 4 | 972 | 36 | 1715 | 4 |
| 504 | 9 | 980 | 12 | 1728 | 40 |
| 512 | 20 | 1000 | 4 | 1764 | 19 |
| 525 | 12 | 1008 | 72 | 1792 | 12 |
| 540 | 60 | 102.4 | 10 | 1800 | 12 |
| 560 | 36 | 1029 | 4 | 1890 | 24 |
| 567 | 24 | 1050 | 12 | 1920 | 12 |
| 576 | 88 | 1080 | 52 | 194 | 2 m |
| 588 | 24 | 1020 | 24 | 1950 | 12 |
| 600 | 24 | 1025 | 4 | 2016 | 36 |
| 625 | 1 | 1134 | 36 | 2025 | 6 |
| 630 | 48 | 1152 | 48 | 2046 | 4 |
| 040 | 24 | 1176 | 24 | 2058 | 4 |
| 648 | 76 | 1200 | 12 | 2106 | 24 |
| 672 | 60 | 1215 | 12 | 2187 | 4 |
| 675 | 12 | 1225 | 6 | 2205 | 12 |
| 686 | 4 | 1260 | 36 | 2240 | 12 |
| 700 | 12 | 1280 | 12 | 2268 | 24 |
| 720 | 72 | 1296 | 55 | 2304 | 18 |
| 729 | 10 | 1323 | 12 | 2352 | 12 |
| 335 | 12 | 1344 | 36 | 2401 | 1 |
| 750 | 4 | 1350 | 12 | 2430 | $!2$ |

TABLE Ál. (Continued).

|  | Number Ordered <br> Combinations <br> Product <br> Giving Product | Product | Number Ordered <br> Combinations <br> Giving Product | Number Ordered <br> Comanations <br> Giving Product |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2520 | 24 | 3072 | 4 | 3969 | 6 |
| 2560 | 4 | 308, | 4 | 4032 | 12 |
| 2592 | 24 | 3136 | 6 | 4095 | 1 |
| 2646 | 12 | 3240 | 12 | 4374 | 4 |
| 2688 | 12 | 3402 | 12 | 3536 | 12 |
| 2744 | 4 | 3456 | 12 | 4608 | 4 |
| 2835 | 12 | 3528 | 12 | 5103 | 4 |
| 2880 | 12 | 3584 | 4 | 5184 | 6 |
| 2916 | 10 | 3645 | 4 | 5832 | 4 |
| 3024 | 24 | 3888 | 12 | 6561 | 1 |

## appempix é: suavey of propagation. Prenction programs*

## Intraduction

Use of digital computers for propagation calculations has grown with the computer developnant. Thur a step-al-a-time adyance in this use has occurred with initial applications in the hf spectral region. No comprehensive programs adapred to the entire spritrum exist. Various groups have produced programs restrictel to use in appropriate spectral regions.

In bie spectral range from vlf to microwaves the most intense effort coward computer solutions has been made in the hi and vif regions. Nearly every hf solution in existence can trace its origin to the procedures developed at Central Radio Propagation Laboratory 'CRPL). The progrars provide estimates of maximum uaable frequencies (MUF), field strength, signal-to-neise ratio, and hop structure. The vif programs depend generally upon solutions of the inodal equartions for the earurtioposphere wave guide.

Less effort has been devoted to generating pregrams for frequencies above hf, mostly beceuse adequate solutions for system design are available rather directiy by non-machine prosedures. A general exception to this statement are the ray-trace programs, which have been adapted to machine programs extensively. These prograns provide a picture of the energy distribution on the space illuminated by the zatenna. Programs of this kind exist for hf iorospheric scatter from 30 to 100 megacycles, and for tropospheric ducting in the microwave region. Most provide some kind of estimate of signal loss as well as the primary rayrajectory output.

Propagation-predicticr programs have been generated at the following iacilities:

1. ITSA, ESSA, U.S. D.O.C. (CRPL)
2. NRL
3. Stanford University
4. Stanford Resear:h Institute
5. DECO Electronics, Inc.
6. Collins Radio Corporation
7. Raytheon Corporation
8. NEL
9. AVCO Corporation
10. RCA
11. USRPA, Ft. Monmouth
12. DRTE. Canada
i3. Radio Research Laboratories, Tokyo, Japai:

[^34]14. Radio Research Station, Slough, England
15. Ion Prediction Service, Sydney, Australia

In addition both DCA and NAVCOSSACT empioy a wide range of computer prediction programs.

Brief summaites of programs about which NEL's Radio Physics Division has more than superficial knowledge follow. They are intended to do no more than indicate the scope and intended use of the prograns. A program characteristic matrix that provides some comparison det at is appended.

## HEL High-Frequancy Propagation-Prediction Computer Program

Redio system parameters are combined with geophysical and ionospheric characteristics to predict the performarice of high-frequency sky-wave communication circuits. The program computes Maximum Usable Frequencies (MUF), probable modes of propagation, E layer MUF and cutoff frequencies, angles of anival, ground losses, total losses, field strength, antenna gains, absorption losses, signal strength, noise strength, and signai-to-noise ratios. In contrast to the CRPL program, the program utilizes hf characteristic charts for critical frequencies and a mospheric noise (CCIR report 65). The solution is divided into two parts - an estimation of the field strength independent of equipment parameters, and an estimation of signal-tonoise ratio using antenna gains. The program was written for the CDC 1604 computer and is in NELIAC 5 m . The:e is an output for every operational mode, whereas the CRPL outputs only for the optimum node. Computer time is less than for the CRPL program.

## AVCO Polar HF Prediction Program

This program determines the higlest and lowest fiequencies available between two particelar stations as a functin of time, and the geophysical and innospheric parameters. Propagation losses aie determined for specific frequencies within this catcuiated range. The calculation is eviended to tonosphericail, disturbed conditions, but all calculations are valid only for high sunspot nuntert The compule: program is writen in standard Fottian and :nciudes 19 modec of propagation. Frequencies frem 3 io $30 \mathrm{Mc} / \mathrm{s}$ in intervals of 3 de sare imisidered. The progam prinis mode. tansmission angle, and available flequency range. Io addition, it porits space, absormion, sporadic $E$, and total lowses for each test frequency within the available frequency range.

## CRPL Propagation - Prediction Program

Radio system parameters are combined with geophysical and ionospheric characteristics to pred;ct the performance of high-frequency sky-wave communication circuits. The program computes maximam usable frequencies, optimum traffic frequencies, lowesi usef $1 /$ trequencies, probable modes of propagation, angles of arrival, circuit reliability, system loss, available signal-tonoise ratios, and field strength. Numerical representation is used for all parameters not expressed in closed mathematical form, such as world maps of critica! frequency and atmospheric noise. The solution of the problem is divided into two parts - an estimation of the available signal, and an estimation of the required signal. The program was initially written for IBM 7090 -class computers and was transiated at NEL to Fortran 63 for the CDC 1604. At a later date, NEL added CCIR report ${ }^{2} 22$ noise ciata to the program. In the 322 version the calculations of circuit reliability cannot be made.

## Collins Radio HF Program

The program is similar to that used by NBS and yields comparable data. The differences are in the calculation of Lowest Usable Frequency (LUF) and auroral absorption. At present, the median rioise levels are used to calculate the frequency that satisfies the loss equation; this frequency is called the LUF. In the NBS program for LUF, the loss equation is solved by trial and ersor for a reliability of 00 percent, taking into account changer of mode with a two-dimensional antenna gain function. In the NBS program, the additional loss is deiermined by the F -layer control point location. In the Cullins method, the average of two absorption indices is calculated from geomagnetic coordinates of the rays.

Input insertion of links is inique. As many as 150 staicos are permitted with as inany as 200 combinations or stations as links.

## Canada DRTE HF Program

This progiam computes the maximum usable frequency (MUF) and lowest usable frequenc; due to E laver cul off of the $F$ layer for a given mode or modes. The basic icnospheric data used ior the prediction of the F2 and E layer MLF are obvained tron DRTE's maneal prediction system.

## VLF Program (Papperi)• NELIAC MOD 7 (1604)

The propram solves the earth-ionuspher wave-geide mode equation In kencial. Butuden's formaliser is employed. Solutions io Stohes' equation in
termas of thind-order modified Hankel functions are employed to detcraise the reflection matrix solution to the problem of the three-layer boundary value. Cossard's solution for the upgoing wave is incorporated in the Pappers soiution.

Required program inputs we the initial admittence matrix (Goseard-Smith program), profile increment, integration limits, poth data, geophysical dasa, and control pe ametera.

The progran output lists the characteristic mode angles, phase velocity, autenuation. excitation factor, and modulus of the polarization vecior.

## VLF Program (Smith/Gossard)

A full-wave solution is made for electromagnetic propagation in a continuous ionosphere with arbitrary parameters (electron density and collisinn frequency). Budden's solution is the basis.

Inpuis are initial conditions at high altitude, heigh i. complex angle of incidence, propagation angle, dif angle and magretic field strength, frequency, collision frequency, and vertical profile of electron density.

The basic program output is the reflection coefficient matrix expsessed in polar coordinates as a function of height.

The program employs a procedare for !inding an apprcpriate initial valce for the reflection coefficient prior to performing the real ionosphert integration.

## DECO Program

This program predicts the mean intensity of atmospheric noise for any frequency for which a wave-guide model of earth-ionosphere is acceptable. The wave-guide mede equation is used. The program assumes that the mean noise intensity at a receiver may be simulated by properly combining fields produced by a number of transmitters that replace the actual thunderstorm sources

The program output is the summed fietd intensities for given locaions and limes. With an appropriate piotter worldwide contour maps of noise in'ensities can be produced.

## DECO Piogram (NEL Variation)

The tesic DECO progam will be modilicd so provide predictions for the phase and amplitude of given transmitters ba any location on the earth

$$
\varepsilon-46
$$

## Kift-Fooks Ray Trace (Stafford/MEL Versien)

This progan employs a simplified approximate procedure for tracing rays between a terminal pain. It provides an assessment of possible hop structures, using a zeroiag in procedre io reject all rays not within $\pm 100 \mathrm{~km}$ of the receiving point. The icnospheric model is keyed to the CRPL predictions, twi represents the layers as parabolic and concentric. The magnetic field effects are not included.

The output includes the path modes, frequency, take-off angles, grazcircle path length, travel time aloug tre ray path, ionosprietic abeorpion ioss (only) along route, and the maximum usable frequency.

The inputs required are the terminal coordinates, the appropriate CRPL predicted ionosphere or a measured set of verical soundings, declination of sun, frequencies, range ake-off arigle aperture, and time. E, layers may be included "after the fact."

Separate auxiliary programs provide for tape-loading the CRPL ionosphere, and for ploting the rutputs on the 160 A printer.

## Ray Trace Pregram 'Sheddy)

The Haselgrove equations are used to trace ray paths in three dimensions in a model ionosphere. The ionospheric model is a three dimensional combination of parabolic layers and CRFL (Callet-Jones) world maps. It traces both ordinary and extraordinary rays. Ne special provision has been made to use values of frequency below the gro frequency.
input parameters are ictminal rcordinates or azimuth and maximur distance, elevation angle, frequency, ycar, month, and hour.

Outputs inctude geat-circle path length, ray angle, ray ilight, and geographic coordinates at each computed uoint.

The program permits teady substitution of alteinate ionospheric models.

| Clarcuentica/Somice | NEL.M | AVCOMm | CRPLAt | Colluman | Canach DRTEMI | $\begin{aligned} & \text { romosen er } \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { NEL/VII } \\ & \text { (Pappert) } \end{aligned}$ | $\begin{aligned} & \text { NEL/vif } \\ & \text { (Seiter } \\ & \text { Cosemd) } \end{aligned}$ | DECO/NI | NEL/Senchat KinfFoche Baymace | NEL <br> Shedry <br> Rayerace |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { Cerral }}{\text { Lomputer }}$ | COC I6N | IRM 7094 | $\begin{aligned} & 18 \mathrm{xan} \\ & \mathrm{CDC} \\ & 1604 \\ & \hline \end{aligned}$ | Unhoow | ILM 630 | 18518090 |  | CDC 1604 | CDC 1004 | CDC 360 | cor 1604 | $\operatorname{CDC} 1608$ |
| Lamanay | $\begin{aligned} & \text { NELIAC } \\ & \text { Sin } \end{aligned}$ | FCRTRAN | PCRTRAN | 3mbrowe | 1mbacma | FORTRAN | PORTRAN | $\underset{7}{\text { NELIAC }}$ | NELUC | PORTRAN | FORTRAN | PORTRAN |
| Geograplit: Limatacios | Nose | Naxe | Nome | Nase | Nonhera Latitude: | Nace |  | Nune | None | Nome | Nan: | Prowe |
| $\begin{aligned} & \text { lovompheric } \\ & \text { Wadel } \end{aligned}$ | Cramitical Remesenusion of unospheric dale | Nemeric - ${ }^{\boldsymbol{P}}$ | Nomeaic - ${ }^{*}$ | Smec as CRPL. | DRTE/RT4 mon pra. and mooo- <br>  | Same as NEL/Mf |  |  |  |  | Nmeric $0$ | Nomesic map |
| Aramistalisy | batherse | Unicoma - | y-house | Unicama | Unkown |  |  | b-heose | Intuase | m-thonse | matronse | intruec |
| Speed | $\begin{aligned} & 480 \text { modes } \\ & \text { miantc } \end{aligned}$ | 400 mades mante |  | Lunlowem | $\begin{aligned} & 3 \text { min/ao. } \\ & \text { \& MUF: } \\ & \text { LUF data } \end{aligned}$ |  |  |  |  |  |  |  |
| Sperial leatures | Detailed ousput and 14 tric.s of microas | Considet dis worter? romosphtrie | 3 satconal tyens | Anmoral roac abeorpion and 6 manem types | machade If laya | Includes jaming | Comsiders inaining |  |  |  |  |  |
| Frequencies | r30 M/s | 7-30 m/s | 3-30 m6/s | 75) 4 c/s | 7-30 m</4 |  |  | $10-30 \mathrm{kc} / \mathrm{s}$ | 10-304cis | 10-30 kc/s | 3-30 mc/s | 730 me/s |
| $\frac{\text { Enets }}{\text { Yean }}$ | No | Yes | No | No |  | No |  |  |  |  | Yes |  |
| Mrath | Tes | Yes | Yis | Yes | Yes | Yes |  |  |  |  | Yes |  |
| 5 -minor mumber | Ycs | Yes | Yrs | Yes | Yes | Yes |  |  |  |  | Yes |  |
| jamer coond mites |  |  |  |  |  |  | Yes |  |  |  |  |  |
| Trusmitur coontiantes | Yes | Yes | Yes | Y-s | Yes | Yes | Yes |  |  |  | Yes | Yes |
| Tamamicar ildorate |  |  |  |  |  |  | Yes |  |  |  |  |  |
| Rexerve coodimites | Yes | Yes | Yes | Yes | Yca | Yes | Yes |  |  |  | Yes | Ye* |
| Efertive ferciver temperabre |  |  |  |  |  |  | Yes |  | - |  |  |  |
| Past icngen | No | No | No | No |  |  |  |  |  |  |  | $0 \times$ |
| Receiver a/mustr |  |  |  |  |  |  | Yes |  |  |  |  | an |
| Asmud | Nio | No | No | No |  |  |  |  |  |  |  |  |
| Saniace cefractuvity 2) RKL |  |  |  |  |  |  | Yes |  |  |  |  |  |
| Preet | res | \%o | Yes | Yes |  | İs | Yes |  |  |  |  |  |
| Srosemies | res | No | Yes | N |  | Yes |  |  |  |  | Yes |  |
| Nitioar restem | No | No | Ox. | Yes |  | tres | IVes |  |  |  | Nu. |  |


| Cursateristica/sence | N-2Af | AYCOM | Caplax | Collimen | Condend | $\left\lvert\, \begin{aligned} & \text { macecsinat } \\ & \text { sal } \end{aligned}\right.$ | $\begin{gathered} \operatorname{set} \\ \text { Tap } \\ \operatorname{scnenta} \end{gathered}$ | $\begin{aligned} & \text { REL/NI } \\ & \text { (Pmenem) } \end{aligned}$ |  | decontr |  | MEL <br> Bothy <br> Reytuct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | He | On. | N |  | Yea |  |  |  |  | No |  |
| Lume theveine ande |  |  |  |  |  |  |  |  |  |  |  | Yes |
| man mim | Ope | No | Ona. | 80 |  |  |  |  |  |  |  |  |
| Univeral ime | Yee | Yes | No | Yos |  | Yes | Yes |  |  |  | Yes |  |
| Dey Mrem | Ne | $Y$ Yes | No | No |  |  |  |  |  |  |  |  |
| Liay of yeer | ${ }_{\sim}^{*}$ | Yes | No | No |  |  |  |  |  |  |  |  |
|  | No | Ye: | N | No |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { lepeperic min } \\ & \text { puaters } \end{aligned}$ | No | Yes | No | N0 |  |  |  |  |  |  |  |  |
| mexined S/N | No | No | Yes | Yes |  |  |  |  |  |  |  |  |
| now | Yes | No | H0 | Yes |  | Yes | Yes |  |  |  |  |  |
| Oppes | Yes | Yes | No |  |  |  |  |  |  |  | Ye |  |
| Suace 'manes | Yea | Yes | No |  |  |  |  |  |  |  |  |  |
| Spursti. Elmasen | No | Ya | 15 |  |  |  |  |  |  |  |  |  |
| Coumblecs | ${ }^{3}$ | No | No |  |  |  |  |  |  |  |  |  |
| Fichd mexerat | $=$ | ${ }^{\text {H }}$ | Ye |  |  |  |  |  |  |  |  |  |
| Reflection cueffic. vats |  |  |  |  |  |  |  |  | Yes |  |  |  |
| Sippoi strengit | Yes | No | No |  |  |  | 1 cs |  |  | Yes |  |  |
| novema gams | Yes | Ro | \%es | Yes |  |  |  |  |  |  |  |  |
| Noix | Yer | No | \% |  |  |  | Yea |  |  |  |  |  |
| Detary aise | No | No | 40 |  |  |  |  |  |  |  | Yea | Yes |
| Effersive heiph | Yes | No | no |  |  |  |  |  |  |  |  |  |
| Treprassion matie | Yes | Yes | Y:3 |  |  |  |  |  |  |  | Yes |  |
|  | Yes | No | Wo |  |  |  |  |  |  |  |  |  |
| Huskes | Yes | iso | Yes |  |  |  |  |  |  |  | Yes |  |
| MUFtas | Yes | Yes | Yes | Yes |  |  |  |  |  |  | Yes |  |
| Sarvice Probato $\boldsymbol{y}$, reisulity | No | No | Ox |  |  |  |  |  |  |  |  |  |
| U5 | No | Yes | $\mathrm{OPF}_{1}$ | Y> | Yes |  |  |  |  |  |  |  |
| FOT | No | No | Opr | Yes |  |  |  |  |  |  |  |  |
| Sygretrongorx atc | Yes | No | Yes |  |  |  | Yes |  |  |  |  |  |
| Axcora: Zane 4bstrma | * | Ye= | No |  |  |  |  |  |  |  |  |  |

AMCP : 06.191


## APPENDIX C': DATA TYPE AHD SOURCE

Data Type

## Average Prices

of Navy Electronic Equipment

General Characteristics of AN type Electronic Equipment by AN designation

Equipment Characteristics and some price information

Daía Source

Bureau of Ships Nㅜㄹ:Ships $92,563(B)$,
Index to Burezu of Shijs Controlled Electronics Equifment (F Cognizance) 15 March 1963

Bureau of Shifs NavShips 900,123(D),
Nomenclature Assigned :o Naval Electronic Equipment. CONFIDENXIAL, August 1463

Bureau of Ships NavShips $94,200.01$, Directory of Communication Equipment, SECRET, April 1964

Bureau of Ships NavShips 94,200.0100, Directory of Classified Electronics Major Units, CONFIDENTIAL, January 1964

Bureau of Ships NavShips 94,200.1, Section 1, Directory of Communication Equipment, n.d.

Burea: of Ships NavShips 94,200.1, Section 2. Directory of Communication Equipment, n.d.

Bureau of Ships NavShips 94,2001 , Seetion 3, Directory of Communication Equipment, in.d.

Bureau of Ships NavShips 94.20c.1. Section 4. Directorv of Comimunication Eguipment, n.d.

Bureau of Ships NavShips 94,200.1, Sec tion 5, Directory oi Commmication Equipment, n.d.

Bureau of Ships NavShips 94,200.1, Section 6. Directory of Communication Equipment, n.d.

Bureal ol Ships NavShips 94,200.1,
Section 7. Directory of Communication
Exuif, $+1=\mathrm{C}$.

## AMCP 708-191

|  | kurcau of Shifs NavShips 94,200 . 1 <br> Section 8, Directory of Communication Equipment, n.d. <br> Bureau of Ships NavShips 94, 200.1, <br> Section 9, Directory of Communication Equipment, n. d . |
| :---: | :---: |
| Equipment Characteristics and specification MIES value | Ships Specifications |
| Equipment Cost, <br> Quantity and Date of procurement | F Cognizance Material Control Branch (Code 6627) |
| Electronc Equipment MTBF and MTTR values | Fleet Elecironic Effectiveness Branch (Code 6678) |

## APPEWUIX D': MULTIPLE-MEGRESSION AMALYSIS:

Regression analysis presupposes that some relationship exists 'setween a dependent variable $Y$ and one or more independent variables $X_{1}, X_{i}, Y_{\tilde{j}}, \cdots X_{n}$. The simplest case is approximated by the linear equation of the iorm

$$
Y=\beta_{0}+\sum_{i=1}^{n} \beta_{i} X_{i}+e^{\prime}
$$

$\beta_{i}$ are the parameters $i$ a one-dimensional space generated by the regression plane. The quantity $e^{\prime}$ represents the random or simple error in the variation of Y not accounted for in the regression plane. General transformations such as $X_{1}{ }^{\prime}=1 / X_{i}$ or $X_{2}{ }^{\prime}=X_{2}{ }^{2}$ will yield an equivalent form of the foregoing equation.

The true values of constants $\beta_{0}, \beta_{1}, \beta_{2}, \cdots \beta_{n}$ can never be determined. However, estimates of these constants can be obtained from $m$ observations of $Y$ and corresponding $X_{i}$ values. A simple way of writing the $m$ observations is in the form of a table as shown below:

|  | $X_{1}$ | $\mathrm{X}_{2} \cdots \cdots \cdots{ }_{n}$ |
| :---: | :---: | :---: |
| $Y_{1}$ | $\mathbf{a}_{11}$ | $\mathrm{a}_{12} \ldots \ldots \ldots \mathrm{a}_{1 n}$ |
| $Y_{2}$ | $\mathrm{a}_{21}$ | $3_{22} \ldots \ldots . .{ }^{2}{ }_{2 n}$ |
| - | . | - - |
| - | - | -• |
| $\dot{Y}_{m}$ | $\mathrm{a}_{m 1}$ | $\mathrm{a}_{\mathrm{m} 2} \cdots \cdots \cdots \mathbf{a}_{m n}$ |

The linear estimating equation then has the form

$$
Y=a_{0}+\sum_{i=1}^{n} a_{i} x_{i}+e
$$

where
$a_{i}$ is ihe regression coefficient and is an estimate of the true but unknown coefficient $\boldsymbol{\beta}_{i}$
$C$ is the tesidual of the true $Y$ about the regression plane
$X_{i}$ is the independent variable
Several assumptions are made about the independent and dependent variables that permit significance tesis and confidence interval estimates to be made.
These assumptions also lend themselves to the least-squares method of estimating the value of $a_{i}$.
These assumptions are

1. All $X_{i}$ 's are fixed variables (that is, there are no probability distributions).
2. Th- Y 's are all normally and ind pendently distribeted about the mean $\left(a_{0}+\sum_{i=1}^{n} a_{i} x_{i}\right)$ with variance $d^{2}$,
The least-squares method minimizes the sum of squares of deviation (G) from the estimated regression plane.

$$
\begin{align*}
& \mathrm{G}=\sum_{i=1}^{m} e_{j}^{2} \\
& \mathrm{G}=\sum_{j=1}^{m}\left[Y_{j}-\left(\mathrm{a}_{0}+\sum_{i=1}^{n} \mathrm{a}_{i} X_{i j}\right)\right]^{2} \tag{Di}
\end{align*}
$$

Graphical procedures are used to determine the form and :-ansformations required in the linear regression equation.

Multipletegression analysis makes use of several statistical tests to determine the siguificance of cuefficients and equations. The F-test determines whetner the futim vi tire cyuation is statisticall; signaifisüat. The $t$-test checke the significance of the partial-regression coefficients. The multiple-correlation coefficient $R$ gives the degree of corrctation between the dependent variable $Y$ and the independenc variables $X_{1}, X_{2}, X_{3} \cdots X_{n}$. A more detailed discussion of these tests follows.

## Waltiple-Correiation Coefficient $\boldsymbol{R}$

The square of the multiple-corelation coefficient is defined as the fraction of the totai variance of $Y$ which is ronttibuted by its regression upon the variables $X_{1}, X_{2}, \cdots X_{n}$.

$$
R^{2}=\frac{\sum_{i=1}^{n} a_{i} \sum_{j=1}^{m} X_{i j} Y_{j}}{\sum_{j=1}^{m} v_{j}^{2}}
$$

The foreguing is obtained by expenjing equation DI and grouring inte total sum


I value uf zero gives no conelation between $Y$ and $X_{1}, X_{2}, \cdots X_{n}$, whereas a value of 1 means all sample points lie on the regression olane.

## F Ratio Tes:

The F-test determines whether the form of the regression equation is statis ually significant by comparing a calculated $F$ value with a cat:ica! r for
(n) nd ( $m$ - $n-1$ ! degites of treedom at a preselected significance tevel of sipsta

$$
F=\frac{g^{2}(m-u-1)}{\left(i-R^{2}\right)(n)}
$$

If the calculated value of $F$ is greater than the critical value of $F$, then the null hypothesis that all $a_{i}=0$ is rejected and the overall regression is judged to be significant for the alpha significance lryel.

The F-test compares the sum of the squares due to regression with the sum of squares due to error.

## Student $\dagger$ Distribution

The variable $t$ has the Student $t$ distribution.

$$
t=\frac{\bar{x}-\mu}{s} \sqrt{n} \quad \text { or } \quad t=\frac{\bar{x}-\mu}{s / \sqrt{n}}=\frac{\bar{x}-\mu}{s^{\prime}}
$$

where
$\bar{X}=$ is the arithmetic mean of the data selecied for a random sample
of size $n$
$s=$ is the standard deviation of this random sample, and $s / \sqrt{n}$ is the standard emror, $s^{\prime}$ of $\bar{X}$
$\mu=$ is the arithmetic mean of all the values composing a normal population that has a stendard deviatiun $J$.

If the calculated value of $t$ exceeds the critical value of $t_{\alpha}$ for the significance level selected and $m-n^{-1}$ tegrees of freedom, it can be said there is probability $\alpha$ that the actual divergence of the sample mean occiuned simply by chance.

For $n$ greater than 30 , the normal distribution gives a sufficiently precise approximation; for $n \leq 30$ the $t$ distritution slould be used.

The level of significance indicates the probability of obtaining a value of $t$ outside the range of $\pm$ (critical), for the degrees of freedom from 1 to 30 , purely as a result of random sampling variation.

## APPENDIX E!: METHOD OF STEEPEST DESCENT

The muthoul of steepest descer: is an optimization pmisdure that will lecate an extreme value (in this case a minimum) of a criterion function. The mathod can be extenced to functions with constraints. Changing the sign of the criterion fuiction interchanges the roles of the extrer ? values. For exanple, the minimum of $F(x, y, z)$ is the niaximum of $F(x, y, z)$.

The method of steepest descent uses successive approximations to find an extreme value of the criterion function. Each new point $P_{i+}$, is detemined f. . the expression

$$
\left.P_{i+1}=\left(x_{i+1}, y_{i+1}, z_{i+1}\right)=\left(x_{i}, y_{i}, z_{i}\right)-\lambda\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) \right\rvert\,\left(x_{i}, y_{i}, z_{i}\right)
$$

In this expression $\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)$ is the gradient of $F(\dot{d} e n o t e d ~ \nabla F)$ and is a vector in the direction of greatest increase of $F$.

That the gradient is in the direstion of greatesi increase can be seen from the fullowing argurient:

$$
\begin{aligned}
u F & =\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial z} d z \\
& =\nabla F \cdot d \overrightarrow{\mathrm{P}} \\
& =|\nabla F \| d \overrightarrow{\mathrm{P}}| \cos \theta
\end{aligned}
$$

This expression for the differential or increment in $F$ is greatest when $\theta$ is 0 ; that is. when the gradient and the increment in the parameter vector are codirectional.

The constant $\lambda(\lambda>0)$ is a scalar indicating the step size for the next set of coordinales in the direcion of the gradient. The use of $-\lambda \nabla F$ indicates that the path $\rho_{1} P_{2}, \ldots, P_{n}$ leado in the stecpest direction to a maximum of $-F$.


Following the selection of a new point, the criterion function is evaluated.
If $F\left(x_{i+1}, y_{i+1}, z_{i+1}\right)<F\left(x_{1}, y_{i}, ;_{i}\right)$ and the variables remain within present bounds. the point $\vec{P}_{i+1}$ becomes the new paint oi departure for finding $\vec{P}_{i+2}$. If not, a new $\lambda$ is chosen. There are several ways of choosing $\lambda$, giving rise to variations of the method

When the magnitude of the gradient becomes zero, it is conclude t that $F$ has reached a minimum. However, threr things can happ; to contravere a valid solution:

1. the minimum may be a local minimum,
2. the point may be or a ledge, or
3. the point may be a saddle point.

In enther af cases 2 or 3 , lurther variation of the variables would produce a further dectease in $F$.

The method of steepest descent is adaptane to problems witt constraints of two tupes:

$$
\begin{aligned}
& f(x, y, z)=a \\
& g(x, y, z) \leq b
\end{aligned}
$$

A constraint of type (i) can be witten $f(x, y, z)-c=0$ so that $z$ is defined as an implicit function of $x$ and $y$,

$$
z=\phi(x, y) .
$$

Then $F(x, y, \phi(x, y))=G(x, y)$, and

$$
\nabla F=\left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}\right)
$$

where

$$
\frac{\partial G}{\partial x}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} \text { and } \frac{2 G}{\partial y}=\frac{\partial F}{\partial ;}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}
$$

The partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\bar{c} z}{\partial y}$ are cvaluated with the aid of a theorem on: the differentiation of y implicit function that states that

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} \quad \text { if } \quad \frac{\partial f}{\partial z} \neq 0, \text { and similazly for } \frac{\partial z}{\partial y}
$$

Each constraint equation has the eifect of eliminating one variable from the problem. In the casc discussed, the variable eliminated is $z$, since the function $f$ specifics it as dependent upon $x$ and $y$. This is the key to the problem with constraints of type (ii). As long as the constraint is satisfied. the proble a is
 ofint $\left(x_{i}, y_{i}, z_{i}\right)$, the equality sign $i ;$ assumed to bold, and the problem is :reated as une with a type (i) constraint.

The meurod of steepest descent has one major liability; namely, the Ixai minimum nearest the initial point $\left(x_{1} y_{1}, z_{1}\right)$ will be found. If the functiori nas more than one local minimum, the true (globel) minimum mav be missed. The prograniner should bave some idea of whal answer to expect in order to clianinate pessible sparious answers by a wise choice of the initial value: of $1, y$, and $z$.

## APPENDIX F: LIST OF SYMBOLS

In most cases in this report the relationship between capital and lowercane symbols is: $F=10^{1} \mathrm{og}_{10} f$

B $=$ Bar.iwidth relative to $1 \mathrm{kc} / \mathrm{s}$
c - Namber of channels
$C_{f} \quad . \quad$ : Jonfidence factor
D = Frequency sinift $=\ldots .5 \mathrm{c} / \mathrm{s}$
$E_{n} \quad$ Equivalent vertical'y polarized ground wave rool-meansquare noise ficid atrength in dB abore $\mathrm{l} \mu \mathrm{V} / \mathrm{m}$ for $\mathrm{l}-\mathrm{kc} / \mathrm{s}$ bandwidth
F = Effective recciver noise figure
$F_{a}=$ Effective antenna noise figure
$F_{c}=$ Effective teceiver antenna coupler noise figure
$f_{0}-$ Center frequency of frequency range $f_{b, y}$
$f_{m}=$ Band width of low-pass filter
$f_{r}=$ Receiver noise figure
$f_{1}=$ Transmission line nolse figure
$f_{x}=$ Operating frequency in $x$ units of $\mathrm{c} / \mathrm{s}$
$f_{b w}=$ Frequency range
$G_{r} \quad=$ Receive antenna gain
$G_{f}=$ Transmit antenna gain
hf = High frequency
$K=$ Boltzmann constant 1.38 $\times 10^{-23} \mathrm{w} / \mathrm{K} \mathrm{c} / \mathrm{s}$
$L_{\text {p }}=$ Propagation path loss
$m$ = Order of frequency diversity
$N_{n}=$ Noise power per' 1-c/s bandwidth
$\mathrm{P}_{\mathrm{e}}=$ Bit error rate
$P_{\ell}=$ Average transmitter power
$Q=$ Quantity of units
$R \quad=S T_{0} / N_{0}=$ normalized postdetection $S / N$ ratio
$r_{\text {et }}=$ Transmit ani=nna coupler I'SW'R
PPRE $=$ Practectioni $S / N$ ratio
$\therefore \quad=$ Receiver stalijit; P PM
$\mathcal{E}_{t} \quad=$ Transmitter stability, PPM
$T=$ Temperature ( $K$ )
$T_{0} .=$ Baud length (pulse length)
vil = Very bw frequency
o : Standard error

## Agaracix g: references

'. davy Electranics Latratory Poport 1'i3, Cont Efficiveuess in Comanarcation Syxiems, by H. R. Diniong and R. U. Fastran. I Octobre '955
2. Quadk, E.S., Analvs for wiliusy verisiras, P. 160, Rand McNally, 1964

3A. Koopmin, 9.O., "Fallacies to upationo $\overline{\text { äsearch." Geratings Reseatch. }}$ , 4, p.425-426, Axpest 1956
iB. Hinh. C., "Connents on "rallaciea in Orerationt Research." Opedionss E search, v.4. p.426-430. Aurast 1956
4. K.-muwsh A.D., "Cost Eficitiveness fallaciea sud Ali wonceptions Revisit=d(Absuract)" Operatinas Ketrarch, M14. Suppl. 1, p.B-80, Spring 1\% Rand Corporation Menorzin ain pri937. Ten Comeon Pillalls, by H. Sahr and I. Marr., : 7 July 1957
6. Navy Elctroaics Laboratory Repri' '358. High-Fitiuency Propaptiax diction Progat For u. CDX 1604 is. Jer, tri D.B. Satirs, 28 iet. ary 130
7. Radio Cicporation of America inbrratories Techaical Redo. 1 " it. SOP, A Competer Program ;o Optimize System [esitn, by J. A. uodran, 9 Augus: 1962
8. Savth Research sociates SRA-452, Desige Siddy of a Fleet Broadcast Sustea Coveruif HF Bunds, Final Repurt. Iwy 1065
9. Neville, A.M. and Kemedy, 1.B, Acsic Statintical Methods For Enguacers and S ienusts, Internitional Textbook Company, 1964

## moex

## Alternstive Systems

Identify Basic Alternatives, 2-12 to 2-15
synthesize Alternative Systems, 2-10 to 2-17
Alternatives, 1-5
Application of SA/CE, 1-12 to $1-16$
Analytic Modele, 3-2, 3-28 to 3-3n
Army Force Development Flan (AFDP), 2-1
Ascumptions, 2-6, 2-26, 2-69
Avallability, 2-21
Calculation of, 2-33, <-40, $2-41$
Calculus of Variations, 3-30
Capability, z-23
Caiculat 10 n or, $2-34,2-39$
Charactertatics
Deveiop Hardware Charecteristics, 2-17 to 2-18
Combat Deve:ovment Objoctive Guide (CDOG), 2-3
Concept Formulation
Apglication or SA/EE during, 1-14 to 1-16
Contrart Definition
Applicstion of id/CE during, 1-14 to 1-16
Prerequisises $0,1-14$ to $1-15$
Requirements for, 1-15
Cost Analydis, 1-9, 2-43 to 2-54
Cost Anaiysis Problem, 2-51 to 2-54
Cost Categorization, 2-44
Cosi Comensurability, 2-49
Cost Estimating Reiaticnship, $2-48,3.31$ to $3-3$,
Cost of Maintenance Manpower, 2-53
Cost of Supply Manpower: 2-54
Cost Model, 2-25
Cost Incertainty, 2-49
Experience Curves, 3-39
Incremental Cocting, 2-43, 2-47
Investment Costs,
Materisl Costs at Supply, 2-53
Operating Costs, 2-44, 2-46
R\&D Coste, $2-14,2-45$
Sensitivity Aralysis, $2-44,3-41$ to $3-45$
The RAND Method, 2-43

```
Cost-Efiectivenegs
 ArPay of CE Characteristice 2-71
 Appiicetion of, 1-12 to 1-16
 Apflication of,' to concept Formulation and contrace
 Definition, 1-14 to i-16
 Brokground and Eistory of, 1-5 to 1-7
 Cc,mbination with Syotams Analyads, 1-7
 Esfinition of, 1-2
 marmples of C& Cumes, 2-72
 Lsmitations of, 1-17 to 1-19
 Hethodoloty of (Dotalied), Chaptoir 2
 Methodology of (Gercaral): 1-7 to 1-12
 Requirmmant for During Lire cycle, 2-12 tc 2-13
 zee alvo, cose
 See almo, Rffectivenass
Cost Sensitivity Aralysie; 3-41 to 3-45
Criteria, 1-9
Data
 ?ollection of, 2-50
 Statietical Amajy*is or rest Data, 4-28 to 4-7%
Dacision Theory, 3-2, 3-30, 3-3:
Dafinitione of Cost-mfiectiveneas, 1-2
Defin!tions of Systemes nely31., 2-1, 1-%
Depandability, 2-22
 Salculation of, 2-33, 2-40
Dynam1: PxcgrarnIrg; 3 2, 2-16 to 2-17
Economic Welfare Theory
 is it folaten to cont-mpfoctivenas!, 1-6
Erfectiymnoss
 Availability, 2-21
 Bas!e for Bvaiuating, 2-18 to 2-24
 Capabsli+y, 2-23
 pofine Memeuror of, 2-2;
 Dopine nemeurou or,
 Effectlvenese Equations, 2-29 to 2-30
 #ryeci&vanems Model, 2-25
 Ememcit; of Ef:ertiv ang, 2-a0
 Syatem iffectiveness, 2-20
 Systam frectivanase Problem, 2-31 to 2.42
Experience Cu'ves, 3-39 to 3-4,
Oawe Theory, 3-2, 3-17 to 3-22
```


## Inix (continued)

```
 H2story of Cost-Effectivenes, 1-5 to 1-7
 History of Bysteme Analyede, 1-2 to 1-5.
 Incremental Costing, 2-43, 2-47
 Information Theory, 3-2, 3-22 to 3-28
 Inventory and Replecement, 3-2, 3-9 to 3-21
 Inveatwent Cost, 2-44
 Kolmogorov-8imimov Tast, 4-40
 Lenchester'E Equations, 3-28 to 3-30
 Leverage Erfects, 2-66 to 2-6?
 Lumitation# of 8N/CE, 1-17 to 1-19
 Linear Frogramming, 3-2, 3-12 to 3-16
 Maintainability
 Confidsnce Limita for Mainteinability Functione; 4-36
 Mainteinability Functions, 4-35
 Point and Internal Emilmaten of, 4-30
Methodology of SA/CE
 General, 1-7 to 1-12
 Detailed, Chapter 2
Mission Propiles, 2-7 to 2-5
Modelf, 1-9
 Analytic Models, 3-2, 3-28 to 3-30
 Cost Model, 2-25
 Decision Model, 2-62 to 2-69
 effectivenass Model, 2-25
 Exercise of, 2-55 te 2-62
 Formulate, 2-25 to 2-28
 Gaming Models, 2-28
 Mathematicel, 2-27
 Operational Exarcise, 2-28
 S1mu;ation Models, 2-28
 Types of, 2-27
Objectives, 1-8
Operating Costs, 2-44
```


## INDEX (continued)

```
Optimization
 Criterion, 2-62
 Ilst of Techniques, 2-66
Output Results, 2-70 to 2-73
Performance Paramiters, 2-9 to 2-10
Prerequisites to Contract Definition, 1-14 to 1-15
Probability
 Basie Laws, 4-4 to 4-9
 Dafinition, 4-2
 Distributions, 4-9 to 4-27
Qualitative Material Development Ob,fective (Q⿴囗NO), 1-12, 2-3
Qualitative Materiai Requirements (QWR), 1-12, 2-3, 2-5
Queueing Theory, 3-2, 3-3 to 3-7
Reliability
 Applications of, 4-25 to 4-28
 Confidence Iimits for Rellability Functions, 4-36
 Foint and Internal Estimates of, 4-30
Requirements
 Defining, 2.5 to 2-7
Research and Deve lopment Costs, 2-44, 2-45
Sensitivity Analysis, 2-43, 2-62, 3-41 to 3-45
Sequencing and Markov Processes, 3-2, 3-7 to 3-9
Simulation, 3-2, 3-3
 Models, 2-28
Smalll Development Requirements (SDR), 2-3
State-of-the-Art Analysis, 2-16
System
 Total System, 2-10 to 2-11
 See also, Alternative Syatems
Syatems Analys1s
 Application of, 1-12 to 1-10
 Application of, to Concept Formulation and Contract Derinition,
 1-14 to 1-16
 Background and History or, 1-2 to 1-5
 Combination with Cost gifectiveness, 1-7
 Definition or, 1-1, 1-4
 Limitations of l-17 to 1-19
```

INDEX (continued)

## Systems Analyais (continued)

Mothodology of (Detailed), Chapter 2
Methodology of (General), 1-7 $\pm 0$ 1-12
Nonmilitary use of, 1-5
Requirement for during Lite Cyele, 1-12 to 1-13
Trade-off Analyses, 2-57 to 2-62
Interdapendence Between Trade-OIf Studies and Project Objectives, 2-61
Parformance Parameter 'rade-Offs, $2-59$
Performance vs. Cost Trade-offs, $2-59$

## Uncertainty, 2-20́, 2-69

Contidence Intervala, 3-32 to 3-35
Cost Uncertainty, $2-49$ to $2-50$
Expressions of, 2-57
Risk and Uncertainty, 2-64, 2-65
Weibull Distribution, 4-C0
WSEIAC, 2-19
Availability, 2-21
Capabillty, 2-23
Dependability, 2-22
Effectiveness Equations, 2-29 to 2-30

## ENGINEERING DESIGN HANDBOOKS

| $\text { 筑ip } 705 \text {. }$ | Title | Mo. 706- | 11:10 |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 100 \\ & 104 \end{aligned}$ | Desig Guidanca for Producibtlity Gyalue Enginearing | 201 | *Rotoreraft Enginearing, Part One, Trelimimary Dasion |
| 106 | Elements of Armiment Engineering, Part One, Sources of Energy | 202 | *Rotoreraft Engincering, Part Two, Detall Design |
| 107 | Elements of Armament Engineering, Part two, pallistics | 203 | *hotorcraft Engineering, Part Three, qualifica. tion Assurance |
| 103 | slements of Armament Engingering, Part Three. Weapon Systums and Components | $\begin{aligned} & 205 \\ & 210 \end{aligned}$ | -Tining Systems and Componants fuzes |
| 109 | Tables of the Cumilative Sinomial Probetalities | 211 (c) | Fuzes, Proximity, Electrical, Part one (t) |
| 110 | Expertmental Statisitcs. Section 1, Besic Concepts and Anglysis of Measurement Data | $212(5)$ 213 | Fuzes, Proxinity, Eiectrical. Part lwo (U) Fuzes, Proxiaity, Electrical, Part Three (U) |
| 111 | Expormment Stutistics, Section 2, Analys is of Lumerative and Classificatory Date | $\begin{aligned} & 214 \\ & 215(c) \end{aligned}$ | fuzes, Proximity, Electricals Part four (U) Fuzes, Proximity. Electrical, Part five (v) |
| 112 | Exper imental Statistics, Section 3, planning and Analysis of Comparative Experiments | $\begin{aligned} & 235 \\ & 239(\$) \end{aligned}$ | Hardening Heapon Systems Against RF Energy <br> *Small Arma ammition (U) |
| 113 | Experimantal Stetistics, Section 4, Special Topics | $\begin{aligned} & 24015 \\ & 241(\$) \end{aligned}$ | $\begin{aligned} & \text { Gironades }(U) \\ & \text { Gand Mines }(U) \end{aligned}$ |
| $\begin{aligned} & 114 \\ & 115 \end{aligned}$ | Experimental Statistics. Suction 5, fables <br> Environmental Series, Part One, Besic Environ- | 242 | Design for Control of Projectile Flight Charleteristics (REPLACES -246) |
| 115 | mental Concepts <br> *Environmantal Series. Part Imo, Basic Eavironmental Factors | 244 | Mmunition, Saction 1, Artillesy Amunition-. General, with Tabli $a^{*}$ Contents, Glossary, and Index for series |
| 120 | -Criteria for Environmental Control of Mobile Systems | 245(C) | Amentition, Section 2, uasign for Terminai Effects (U) |
| '21 | **Packaging and Pack Engineering | 246 | - ${ }^{\text {manition, Section 3, Desion for Control of }}$ |
| 123 | Hydraulic fluids |  |  |
| 125 | Electrical Wire and Cable | 247 | munition, Section 4, Dasign for Projection |
| 121 | Infrared Military Systams, Part One | 248 | thannition. Sectic, 5, Inspection Aspects of |
| 128(\$) | - Infrared Military Systems, Part Two (U) |  | Artillary mamiotion Design |
| 126 | Design for Air Transport and Airdrop of Materiel | 249 | Ammition. Section 6, Manufacture of 能iallic Components of Artiliery Ammition |
| 133 | Mmeintainability Engineering Iheory and Practice | 250 | Gum--Camel |
| i3 | Maintainability Guide for oesign | 251 | Muzile Devices |
| 135 | Inver:ions, Patents, and Related Matters | 252 | Gun Tubes |
| 136 | Servenechantsme, Section 1. Theory | 255 | Spectral Charscteristics of Muzzle Flash |
| 137 | Servomechanisms, Section 2, Masurgment and Sigral Converters | $\begin{aligned} & 20 \\ & 270 \end{aligned}$ | Autoentic Wespons Prapellant Actuated Devices |
| $\begin{aligned} & 138 \\ & 139 \end{aligned}$ | Servanechantsmy, Section 3. Amplification <br> Servomechanisms, Saction 4, Power Elaments and | 280 | Design of herodynamically Stablli-ed Fret 2ockets |
|  | System Desion, Saction (f) | $281(500)$ | Weapon System Effectiveness (i) |
| 140 | Irajactories, Oifferential Effects, and Data for Projectlies | $\begin{aligned} & 282 \\ & 283 \end{aligned}$ | -Propulsion and Propellanti (REPLACED BY -z85) Aerodynamics |
| 145 | - Oynamics of = Tracking Gizbel System | 240 (c) | Trajectories (1) |
|  | Interior agh. ics of Guns <br> t'ments of fers: $a^{\prime}$, Allistics, Part One. K1ll | 285 | Elements of Aircraft and Missile Propa'iton (beplaces -282) |
|  | Mermanisms and Vulnerability (U) | 208 | Structures |
| 161(5) | Elements of Terminal bailistics, Part fwo. Collection and Anslysis of outa Concerning Targets (iu) | $\begin{aligned} & 290(C) \\ & 291 \end{aligned}$ | Werheeds-- General (U) <br> Surface-to-Air Missiles, Part One, System Integration |
| 162(SRO) | Clements of Perminal gallistics, Part thete, soplication to misslit and soece forgets (U) | 292 | Surface-te-Air Misstles. Dart Two. Weapon Control |
| $\begin{aligned} & 165 \\ & 170(0) \end{aligned}$ | Liguld-filled Fmotectile Deston - Armar and its Apolication (v) | $\begin{aligned} & 293 \\ & 29(\$) \end{aligned}$ | Surfact-to-Alr missilies, Part Tiree. Computers surfece to-Air Wissiles. Part four, Wissthe |
| 175 | Solid Propaliancs. Part one |  | Armament (U) |
| $118(6)$ | Solta Propellants, part rou) | 295:5) | Surince-to-Atr Misitiss, Mart Five. Counter- |
| 111 | Properties of Esolosives of Whlitary interest |  |  |
| 178(c) | Properties of Enplosives of mlitery interest. secsion ? (u) (REMACtO © - 177 ) | $2 \%$ | Surfact-to-Air misailes, Dert Sis. Seruciures and Power Seurces |
| 119 | Eqpiosive irolns <br> - Principlos of Caplosive eenovior | 297(5) | Surfactrle-Alr misitids, Part seren. Semp? Problan (2) |
| 185 | mlitar Protechics, pert ome, Theory and Applicttion | $\begin{aligned} & 12 ? \\ & 3 i s \end{aligned}$ | If Control f - : ims--Gemert Fies Control compution Sysime |
| 106 | military Pirotecmics, pirt ime, safety, Procedurts and Glosiapy | $\begin{aligned} & 331 \\ & 335(390) \end{aligned}$ | Cempmanifop (lapents <br> conton Intimerri' muclear tifects monsil. |
| 137 | Wlitary pyotecmic., Port inrtw. Propertits of cuterisis vise in byretecmic comestilens | 3satsus) |  egosion tnginoters mucleer tifects manal. |
| 128 | -wilitary Pyrotecmetct. Vart lour. Dusito of Amenticion for pyretachate tflects |  | wolumill. tieceronic syltem ieqlitical Svitum (i) |
| 109 | military Pyrotechnics, reft itwe. Wbllegragy | 217(40) | Getion taqianon anelear Effects manul. |
| 190 | - intry weax a syitee Malyis |  |  <br>  |
| $\begin{aligned} & 191 \\ & 195 \end{aligned}$ | "Syitom andysts and Cost-I recotivatisi <br> Developent culap fer helleblltiy. Pare one. intronction. acterowns. ont timantag for | Juesse) 340 | refingituertione iffecs: iv <br>  |
|  | incey neteriei mopirmati | 311 | (rat)as |
| 19 |  Berlon for mitiobllity | $\begin{aligned} & \mathbf{M 1} \\ & 145 \end{aligned}$ | 3acull Syiteme <br> tim carriaters |
| 197 |  mallability Presictiom | 34 34 | 2nt ceal Cortepn <br> itullitretars |
| 108 |  mellatility mestruent | $31$ | [1evetion merentsman Proversid mation |
| 190 |  contrectis for milcollity | $\begin{aligned} & 80 \\ & 88 \end{aligned}$ |  |
| 100 |  <br> Henmillcil Anende and itetiory | $\begin{aligned} & 14 \\ & x ; \end{aligned}$ | Arnotive sesprsies |


[^0]:    ${ }^{2}$ Ib1d
    ${ }^{3}$ Maitese, Jasper; ARIMC Resea;ch Monograph No. 12., System Cost-Effectiveness; Basic Concepts and Framewnok for Analysi: - ARIIC Refearch Corp., Annpolis, Md., January 1967; p.9.

[^1]:    TQuade, E. S., Analyels for Milltary Decisions; Defense Documentation Center, Alexandria, Va., AD 453887, November 1964, p.7.
     tions in Defence, Edited by E. S. Quade and W. I. Boucher; Published in 1068 by American Elsevier Publishling Company, Tic.

[^2]:    Trejnes, r. M.; Gencral Theory of Employment, Interert and Money; Harcourt, Eraco; Hew York, 1936, p.ex7.

[^3]:    

[^4]:    *.MCR 11-1. 21 Apri1 1970.

[^5]:    DOU DIrextive 32\%ర.9, AR 705-5.

[^6]:    * From MIL-R-7268

[^7]:    - In the operations sltugtion aciritu*id urishtisfactory performance to n
     of unsatisfaciory performance. Freguent fat wry in norme freratimemakes
    
    * Also chilet aritaria for oftectuenets
     tivenesg.

[^8]:    - inf In one arae in mich eopt-affectivenase study could be uned to duteraine thether a compiter ahouid be employed.

[^9]:    - Comperativ Analyses
    - Oencral Tride-off studies

[^10]:    Wreproduced by perinisoion from Raval Optraitote azarvsis; Copyright 1968 by the U. 8. Naval Institute, Annapolie, Md., D 238.

[^11]:    - Iosa, y. 250
    -rosd, p. 264.

[^12]:    -3atent, ce. 4t., D. 71.

[^13]:    "Belivan, R., Dynamic Pmgraming, Princeton University Preds, Prinacton, N.J., 1557.

[^14]:    Wheproduce by permisaion from Naval OFgrations analysis; copyright 1963 by the U. S. Navel Institute, Annapolis, Md., p.30. **Sasieni, op.cit., p. 156.

[^15]:    shatert, g2. git., p 170.

[^16]:    TC.D. PIagTE et. al." Operati ns Heseapch and Systems Engineering, Johns Nopinins Presf. 1960. ز. 59n.
    **Intd., p. $597^{\circ}$.
    *** Ib 1.1. . ...606.

[^17]:    *T, Merrill, et, al., "Operasion Fesaroh, Amament, Lancing", Principler or Guided Missile Design, D. Van Wostrend Compary, Hic.. D lt.
    **Ib1d. p. 114.

[^18]:    *Note - This is another form of the equation developed previously and is al:o applicable for simple regression.

[^19]:    - The value or b will awsys be negative unlese the unit cost for acoeeding equipments increasen.

[^20]:    $*$
    $L_{z}$ ropreatate the sum over sis posalbly diacrete values of x .
    
    Lapoentio raiust of $\pi$.

[^21]:    The letter rill be generally used to denote the randon variara, which is consistent with the use of this letter for failure time.

[^22]:    - In this appondix, (1-a) \& is to be interpreted as the (1-a) fractile or, equivalentiy, as $100(1-a) \mathrm{s}$, where $a$ ie a decinal.

[^23]:    - See following discussion for the case in which parameters are estimated frot cine dita.

[^24]:    Mean fallure time, $\theta$, 1s estimated by Procedure I or Procedure II.

[^25]:    For exasple; D. Lloyd ani M. Lipow, Re? 1ebility: Mencement Methaid and Mathemetios, Prentice Hall, 1962, pp. If7-181.

[^26]:    FIEURE 4-6
    weinull prosablity papen

[^27]:    
     Volum 8 , Mumber 1 . Fatriary $1 c^{\prime 6}$.

[^28]:    heormuced ny peraission of tre U. s. Army managespr: senc:

[^29]:    arumestions 1, 4, 12, 13, 74, 22, 23, 31, 37, 44, 46, 57, 60, 66, and 73.

[^30]:    -Reproducea by permisesion of the Research Analysis Corporation, Mclean, Ve., Authpred by Y. Heymont, O. Bryk, H. Instone, and J. Surmeler.

[^31]:    *Those questione that are considered peritivularly imporiant and of widest application have been underlined.

[^32]:    
    
    
    

[^33]:    Vost sustems afe aot wimple that their cifectivenese can be expressec
    as a single parametcr. If itey wetc, rost-effectiveness malyses would be much

[^34]:    
    

