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Preface

Methods for the analysis and design of nonlinear control systems are grow-
ing rapidly. These developments are motivated by extensive applications,
in particular, to such areas as mechatronic systems, robotics, and aircraft
flight control systems. A number of new ideas, results, and approaches has
appeared in this area during the past few decades.

This text was developed as a systematic explanation of one such new
approach to control system design, which can provide effective control of
nonlinear systems on the assumption of uncertainty. The approach is based
on an application of a dynamical control law with the highest derivative
of the output signal in the feedback loop. A distinctive feature of the
control systems thus designed is that two-time-scale motions are forced
in the closed-loop system. Stability conditions imposed on the fast and
slow modes, and a sufficiently large mode separation rate, can ensure that
the full-order closed-loop system achieves desired properties: the output
transient performances are as desired, and they are insensitive to parameter
variations and external disturbances.

A general design methodology for control systems with the highest
derivative in feedback for continuous-time single-input single-output (SISO)
or multi-input multi-output (MIMO) systems, as well as their discrete-time
counterparts, is presented in this book. The method of singular perturba-
tion is used to analyze the closed-loop system properties throughout.

The material is structured into thirteen chapters, the contents of which
could be outlined as follows.

Chapter 1: Regularly and singularly perturbed systems. The main pur-
pose of this chapter is a short explanation of some preliminary mathemat-
ical results concerning the properties and analysis of perturbed differential
equations. The results constitute a background for an approximate analysis

vii



viii Design of nonlinear control systems with the highest derivative in feedback

and design of nonlinear control systems under uncertainty.
Chapter 2: Design goal and reference model. The problem statement

of output regulation for nonlinear time-varying control systems and the
basic step response parameters are discussed. The model of the desired
output behavior in the form of a desired differential equation is introduced;
its parameters are selected based on the required output step response
parameters (overshoot, settling time). Particularities of the reference model
construction, in order to obtain the required system type, are also discussed.

Chapter 3: Methods of control system design under uncertainty. In this
chapter a short overview of robust control synthesis techniques on the as-
sumption of uncertainty is given. Main attention is devoted to discussion of
nonadaptive approaches, in particular, to control systems with the highest
derivative of the output signal and high gain in the feedback loop, control
systems with state vector and high gain in the feedback loop, and control
systems with sliding motions.

Chapter 4-' Design of SISO continuous-time control systems. The prob-
lem of output regulation of SISO nonlinear time-varying control systems is
discussed. The control system is designed to provide robust zero steady-
state error of the reference input realization. Moreover, the controlled out-
put transients should have some desired behavior. These transients should
not depend on the external disturbances and varying parameters of the
plant model. The insensitivity condition of the output transient behav-
ior with respect to external disturbances and varying parameters of the
system is introduced. The highest derivative in the feedback loop is used
in proposed control law structures. The limit behavior of control systems
with the highest derivative of the output signal in the feedback loop is dis-
cussed. Closed-loop system properties are investigated on the basis of the
two-time-scale technique and, as a result, slow and fast motion subsystems
are considered separately.

Chapter 5: Advanced design of SISO continuous-time control systems.
Problems related to implementation of continuous-time control systems
with the highest derivative in feedback are discussed. In particular, control
accuracy and robustness of the control system, various design techniques
for choosing controller parameters, the influence of high-frequency noisy
measurements, and noise attenuation are considered.

Chapter 6: Influence of unmodeled dynamics. The peculiarities of SISO
continuous-time control system design with the highest derivative in feed-
back are discussed on the assumption of uncertainty in the model descrip-
tion caused by unmodeled dynamics. These dynamics reflect errors on the
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system degree (or relative degree). Their influences, such as a pure time
delay in the feedback loop and the unstructured uncertainties, lead to a
plant model in the form of perturbed and/or singularly perturbed systems
of differential equations. Some particulars of control design in the presence
of a nonsmooth nonlinearity in the control loop are discussed as well.

Chapter 7: Realizability of desired output behavior. The conditions of
readability of the desired output behavior are discussed in this chapter.
These are connected with invertibility conditions, nonlinear inverse dynam-
ics solutions, and the problem of internal behavior analysis. Concepts such
as invertibility index (relative degree), normal form of a nonlinear system,
internal stability analysis, degenerated system on condition of output sta-
bilization, and zero-dynamics are discussed. The design methodology for
SISO control systems with the relative highest derivative in feedback is
considered in the presence of internal dynamics. Finally, the problem of
switching controller design is discussed.

Chapter 8: Design of MIMO continuous-time systems. The problem
of output regulation of MIMO nonlinear time-varying control systems is
discussed. Here the goals of control system design are to provide output
decoupling and disturbance rejection, i.e., each output should be indepen-
dently controlled by a single input, and to provide desired output transient
performance indices on the assumption of incomplete information about
varying parameters of the plant model and unknown external disturbances.
The design methodology for SISO control systems with the highest deriva-
tive in feedback are extended to cover MIMO nonlinear time-varying control
systems. The control law structure with the relative highest derivative in
feedback is used in order to provide desired dynamical properties and de-
coupling of the output transients in a specified region of the system state
space. The systematic design procedure for the control laws with the rela-
tive highest output derivatives is presented. The output regulation problem
is discussed on the assumption that the previously presented realizability
of the desired output behavior is satisfied.

Chapter 9: Stabilization of internal dynamics. This chapter is devoted
to consideration of control system design where the dimension of the control
vector is large, as the dimension of the output vector and redundant control
variables are used in order to obtain internal dynamics stabilization. By
this, the presented design methodology may be extended to more general
system types. The discussed problem of internal dynamics stabilization for
linear time-invariant systems corresponds to the displacement of zeroes of
the transfer function in the left half of the complex plane.
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Chapter 10: Digital controller design based on pseudo-continuous ap-
proach. The design of digital controllers for continuous nonlinear time-
varying systems is discussed. The control task is formulated as a track-
ing problem for the output variables, where the desired decoupled output
transients are attained on the assumption of incomplete information about
varying parameters of the system and external disturbances. A distinguish-
ing feature of the approach is that a pseudo-continuous-time model of the
control loop with a pure time delay is used, where the delay is the result of
a zero-order-hold transfer function approximation. The linear continuous-
time controller with the relative highest output derivatives in feedback is
designed, where the control law parameters are selected in accordance with
the requirements placed on output control accuracy and damping of fast-
motion transients. In particular, the selection of the sampling period is
provided based on the requirement placed on the phase margin of the fast-
motion subsystem. Then the Tustin transformation is applied to calculate
the parameters of a digital controller. In order to increase the sampling pe-
riod, a control law with compensation of the pure time delay is introduced.

Chapter 11: Design of discrete-time control systems. The method of
discrete-time control systems design to provide the desired output tran-
sients is introduced, and is related with the purely discrete-time systems.
In the case of continuous-time plants, the first step to be performed is dis-
cretization of the plant model. As a result, the discrete-time model of the
plant in the form of a difference equation is used. A procedure to analyze
the fast and slow motions in the discrete-time control system is given. It
has been shown that if a sufficient time-scale separation between the fast
and slow modes in the closed loop system and stability of the fast motions
are provided, then after damping of the fast motions the output behavior
in the closed loop system corresponds to the reference model and is insen-
sitive to parameter variations of the plant and external disturbances. The
design methodology is the discrete-time counterpart of the previously dis-
cussed approach to continuous-time control system design with the highest
derivative in feedback.

Chapter 12: Design of sampled-data control systems. In this chapter, a
design methodology for the discrete-time control system with two-time-scale
motions is extended for the purpose of sampled-data control system design,
by taking into account the particulars of the model of a series connection
between a zero-order hold and a continuous-time system with high sampling
rate. As a result, an approach to derive an approximate discrete-time model
for nonlinear time-varying systems preceded by zero-order hold (ZOH) in
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the form of a difference equation with a small parameter is represented,
where the small parameter depends on the sampling period. The design of
SISO as well as MIMO sampled-data control systems is discussed.

Chapter 13: Design of control systems with distributed parameters. The
main points of the extension of the previously presented methodology for
control system design with the highest derivative in feedback for distributed
parameter systems are highlighted, based on consideration of the parabolic-
type system.

The book aims to disseminate new results in the area of control system
design under uncertainty, and may be used as a course textbook. It con-
tains numerous examples with simulation results, as well as assignments
suitable for courses in nonlinear control system design. The core of the
book is based on a translation of an earlier book [Yurkevich (2000a)] and
lecture notes used by the author over the last ten years with students in the
Automation and Computer Engineering Department at Novosibirsk State
Technical University.

The design methodology may be useful for graduate and postgraduate
students in the field of nonlinear control systems design. It will also be of
interest to researchers, engineers, and university lecturers who are taking
aim at real-time control system design in order to solve practical problems in
the control of aircraft, robots, chemical reactors, and electrical and electro-
mechanical systems.

Any comments about the book (including any errors noticed) can be
sent to {yurkev@mail.ru) with the subject heading (book). They will be
sincerely appreciated.

It is with great pleasure that I express gratitude to many colleagues
who contributed to this book through useful discussions and helpful sug-
gestions. My students and colleagues from the Automation Department
of Novosibirsk State Technical University and, in particular, Professors
G.A. Frantsuzova, O.Ya. Shpilevaya, and A.S. Vostrikov, have provided
me with stimulating discussions of the subject. Professors A.L. Fradkov
(Institute for Problems of Mechanical Engineering, Academy of Sciences
of Russia), A.I. Rouban (Krasnoyarsk State Technical University), S.D.
Zemlyakov (Institute of Control Sciences, Academy of Sciences of Russia),
and N.D. Egupov (Kaluga Branch of Bauman Moscow State Technical Uni-
versity), offered many helpful suggestions and much moral support during
my work. I would like to thank Professors M.J. Blachuta and K.W. Wo-
jciechowski (Institute of Automatics, Silesian Technical University), with
whom I have had the pleasure of working. Reviews of the book, along with
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many useful comments and pieces of advice were kindly provided by Pro-
fessors J-P. Barbot (Equipe Commande des Systemes) and L.M. Fridman
(Universidad Nacional Avtonoma de Mexico) and were very much appreci-
ated. I am grateful to Professor A. Guran (series Editor-in-Chief, Institute
of Structronics of Canada) for the opportunity to publish this book, Pro-
fessor M. Cloud (Lawrence Technological University) for editing the entire
manuscript, and Mr. Yeow-Hwa Quek (World Scientific editorial staff) for
assistance in the production of this book. Finally, I am grateful to Profes-
sors N. Esmail and K. Khorasani for many-sided and considerate support,
and for accommodating me with the possibility of creative and fruitful work
on the Faculty of Engineering & Computer Science at Concordia University.

Most of all, I would like to thank my wife, Lyudmila, for her love and
moral support in my life and work.

Montreal, 2003 Valery D. Yurkevich
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Chapter 1

Regularly and singularly perturbed
systems

The main purpose of this chapter is to briefly explain some preliminary
mathematical results concerning the properties and analysis of perturbed
differential equations. These are used throughout the book as background
for a technique of approximate analysis and design of nonlinear control
systems. In particular, the main notions of two-time analysis, as well as the
conditions for the stability of regularly and singularly perturbed differential
equations, are introduced. Quantitative criteria for degree of time-scale
separation between fast and slow motions are considered.

1.1 Regularly perturbed systems

1.1.1 Nonlinear nominal system

Let us consider an autonomous (time-invariant) dynamical system given by

X = f(X) + ng(X), (1.1)

where
X is the state of the system (1.1), X £ Rn, X = {xi,x2,. • • ,xn}T;
f and g are continuous functions of X on Clx;
fix is an open bounded subset of Mn;
/i is a positive small parameter.

Taking \x = 0 in (1.1) we obtain the system

X = f(X), (1.2)

which is called the nominal system. The system (1.1) is called a perturba-
tion or perturbed system of the nominal system (1.2).

l



2 Design of nonlinear control systems with the highest derivative in feedback

First, let us make some assumptions regarding the properties of the
nominal system.

Let 0 G fix C R" and let X = 0 be an equilibrium point of (1.2), i.e.,
f(X)\x=0 = 0. Let us assume that a Lyapunov function V(X) exists such
that the inequalities

ci||^r||2 < V(JSf) <c2 | |^H2, (1.3)

V{X) = ^f(X) < -c3\\X\\2, (1.4)

H <C4\\X\\ (1.5)

are satisfied for all X s &x, where c» are some positive constants and

dV_ _ (dV_ dV_ dV\
dX \ dxi' dx2' ' dxn j

is a row vector.
From (1.3) the inequalities

%*1 < \\Xf < Y£l (1.6)

result. Then from (1.4) and (1.6) we have

V{X) < -C3||X||2 < -^V(X). (1.7)

Consequently

fdV lnV(X(t)) C3

and

V(X(t))<V(X(O))exp(-%y (1.8)

where t denotes the time variable.
In accordance with (1.3), (1.6), and (1.8), we have

[ 11/2 / \

1\ I*(O)|«P ( - £ . ) . C9)

(1.9)
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Prom (1.9) it follows that

lim X(t) = 0
t—>oo

and, moreover, that X = 0 is the exponentially stable equilibrium point of
(1.2). The result may be formulated as a theorem.

Theorem 1.1 Let X = 0 be an equilibrium point for system (1.2), and
suppose the Lyapunov function V(X) exists such that the conditions (1.3)
and (1-4) are satisfied. Then the origin of the system (1.2) is exponentially
stable.

1.1.2 Linear nominal system

Let us consider a linear time-invariant (LTI) dynamical system of the form

X = AX, (1.10)

where

(i) A is an n x n real matrix;
(ii) det(A) 7̂  0 and so X = 0 is the isolated equilibrium point of (1.10);

(iii) Re Aj(A) < 0, V i = 1,. . . , n and so A is a stability matrix1 (Hur-
witz matrix.)

Let us consider a quadratic Lyapunov function

V(X) = XTPX, (1.11)

where P is a real symmetric positive definite matrix and P is the unique
solution of the Lyapunov equation

PA + ATP=-Q (1.12)

for the given real symmetric positive definite matrix Q.

1Ke \i(A) is the real part of the eigenvalue Aj of A.
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Then the inequalities (1.3), (1.4), (1.5) appropriate to (1.10), (1.11) may
be rewritten in the following form:

Xmin(P)\\X\\22 < V(X) < \mm(P)\\X\\l (1.13)

-Amax(Q)||X||l < V(X) = ^AX

= -XTQX < -\min{Q)\\X\\l, (1.14)

H =||2XrP||2<2||P||2||X||2 = 2Amax(P)||X||2. (1.15)

Consequently, the inequality (1.7) may be rewritten as

V(X) < -Amin(Q)||X||| < - ^ | v m . (1.16)

Then from (1.16) an upper bound for the Lyapunov function V(X) follows:

V(X(t)) < V(X(0))exp (-^9±t) .

Therefore, instead of (1.9), from the above we have

as an upper bound for the norm of the function X(t).
Note that the ratio Am;n((3)/Amax(P) is maximized if Q = I (see in

[Patel and Toda (1980)], [Khalil (2002), p. 372]).
Similarly, from (1.13) and (1.14) it follows that

V(X) > -Amax(Q)||X||! > - ^ f v ( X )

is a lower bound for the derivative V(X) of the Lyapunov function V(X)
with respect to t, and hence

V(X(t)) > V(X(Q)) exp ( - Y ^ P T * ) (1-18)

is a lower bound for the Lyapunov function V(X). Finally, from (1.13) and
(1.18), we find that

^^AtM^^^A-k^)') (LI9)

(1.17)
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is a lower bound for the norm of the solution X(t) of the linear system
(1.10).

1.1.3 Vanishing perturbation

Let us consider the system (1.1), where it is assumed that the above as-
sumptions regarding the function / are satisfied and, moreover, that g is
an unknown continuous function of X on Vtx and C5 > 0 exists such that
the condition

||ff(X)||<C5||A-||, V l e f i x (1-20)

holds.
From (1.20) follows that g(X)\x=0 = 0, and so the perturbation van-

ishes completely at the equilibrium point.
Obviously, the time derivative of V(X) along trajectories of (1.1) is

given by

*(*) = § £ / W + M§£SW- (L21)

In accordance with the above assumption, (1.4)-(1.5), and (1.20), it is easy
to see that

V(X) < -c3\\X\\2 + /x H ||5(X)||<-(C3-MC4C5)||X||2. (1.22)

As a result, if the inequality

0 < /i < — (1.23)
C4C5

is satisfied, then

c3 - 11C4C5 > 0

and, accordingly, we have

V{X)<0, V X ^ O , V I e f l x . (1.24)

From (1.3), (1.22), and (1.24) it follows that the origin is an exponentially
stable equilibrium point of the perturbed system (1.1) if the parameter /J,
is small enough. So the result may be formulated as a theorem.

Theorem 1.2 Let the origin of the nominal system (1.2) be an exponen-
tially stable equilibrium point, and suppose the requirement (1.20) for the
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continuous function g holds. Then there exists fi* > 0 such that for all
/i G (0,/i*), the origin of perturbed system (1.1) is exponentially stable.

Instead of (1.1), let us consider the system given by

X = AX + lxg{X), (1.25)

which is the perturbation of the stable linear nominal system (1.10). Then
the inequality (1.22) appropriate to (1.25) may be rewritten as

V(X) < -Amin(Q)||X|| | + 2/xAmax(P)c5||A-||2

and, from (1.23), the inequality

A,™(Q)_
M 2Amax(P)C5

follows, where P is the solution of the Lyapunov equation (1.12).

1.1.4 Nonvanishing perturbation

Instead of (1.1), let us consider the perturbed system given by

X = f(X) + fig(X,w), (1.26)

where the above assumptions regarding the function / are satisfied and

(i) g is an unknown continuous function of X on fix and of w on Qw;
(ii) w serves to represent a vector of external disturbances and varying

parameters;
(iii) w e fiw, where Q,w is a bounded subset of M.1.

When we refer to a nonvanishing perturbation of the nominal system
(1.2), we have in mind that

3u)€f i« , \g(X = 0,w)j=0 (1.27)

and that a positive constant c$ exists such that

\\g(X,w)\\<c6, V X e f i x andVtuefi™.

Then, in accordance with (1.26), (1.4), and (1.5), the time derivative of
V(X) along trajectories of (1.26) can be found using the chain rule. It is
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given by

v(x) = | ^ / P 0 + ̂ g(x,w) < -C3\\x\\2 + nc4C6\\x\\

= - ( 1 - d)C3||X||2 + (/XC4C6 - dc3\\X\\)\\X\\.

Let 0 < d < 1. If the inequality

11*11 > 9 ^
dc3

is satisfied, then
V(X)<-(l-d)c3\\X\\2. (1.28)

Hence, some finite time t\ exists such that the condition (1.28) holds for all
t € [0,11). Therefore, similar to (1.9), we have an upper bound for ||X(£)||
on this finite time interval given by

||X(t)|| < [ | ] llXWIle"11^*, V 0 < t < h

and an upper bound for ||X(i)|| on infinity defined by the inequality

| | X W | | </f£4£a) V t > t i . (1.29)
dc3

So in the presence of the nonvanishing bounded perturbation discussed
above, the solutions of (1.26) are ultimately bounded with an ultimate
bound (1.29) that approaches zero as fi —> 0.

Let us reconsider the perturbed system of the form (1.25) with the linear
nominal model (1.10) and in the presence of the nonvanishing bounded per-
turbation (1.27). Then from (1.15) and (1.16) it follows that the inequality
(1.29) may be rewritten as

\\x(t)\\2<2^iP)ce, vt>ti.

1.2 Singularly perturbed systems

1.2.1 Singular perturbation

Let us consider the following set of differential equations:

X = f(X,Z), X(0)=X°, (1.30)

/iZ = g{X,Z), Z(0) = Z°, (1.31)
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where fi is a small positive parameter, X e Mn, Z e Rm, and / and g are
continuously differentiable functions of X and Z.

The system (1.30)-(1.31) is called the standard singular perturbation
model of a finite-dimensional dynamical system.

Let us release Z from the initial condition; then, with /j, = 0, the system
(1.30)-(1.31) of dimension n + m degenerates into

X = f{X,Z), X(0) = X°, (1.32)

0 = g(X,Z), (1.33)

where the system (1.32)-(1.33) has dimension n.

In accordance with the implicit function theorem, assume that

detjMM^O, VZeClz; (1.34)

then a function

Z = h{X) (1.35)

exists such that the function (1.35) is an unique solution of the equation
g(X, Z) = 0. Accordingly, the equality

g(X,h(X))=0, VXeflx

holds.
Then the set

M = {(X,Z) | g(X,Z) = 0} (1.36)

is an n dimensional manifold in the original n + m dimensional state space
and, in accordance with (1.32) and (1.33), the behavior of X(t) on this
manifold is described by the reduced system

X = f(X,h(X)), X(0) = X°. (1.37)

1.2.2 Two-time-scale motions

If a pair of functions X(t), Z(t) is such that

g(X(t),Z(t)) = 0, V i > 0

then the equality

dg(X(t),Z{t))/dt = O, V i > 0
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also holds. Accordingly, we have

H * + | §Z = 0 (L38)

and from (1.34) and (1.38) it follows that the behavior of Z(t) on the
manifold (1.36) is described by the equation

z-~\dzj dxx-

It follows that on the manifold M the ratio

p:|| - \dz] dx

is some regular numerical value that depends only on the functions /, g.
At the same time, in accordance with the system of equations (1.30)

and (1.31), we find that at an arbitrary point (X,Z) $ M of the n + m
dimensional state space this ratio is given by

||Z|| = l||g(X,Z)|l
||*|| n\\f(X,Z)\\

and depends on the small parameter /u. So if n —> 0, then beyond the
manifold M two-time-scale motions appear in the solutions of the equations
(1.30)-(1.31), where Z is a fast changing variable and X is a slow changing
variable as shown in Fig. 1.1.

Fig. 1.1 Typical phase portrait in the case of a singularly perturbed system.
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1.2.3 Boundary-layer system

Let us introduce a new variable Y = Z — h(X), where Y is a deviation of Z
from manifold (1.36). Then the equations (1.30)-(1.31) may be rewritten
in the form

~ = f(X,Y + h(X)), X(0) = X°, (1.39)

f^~ = g(X, Y + h(X)) - fi^f(X, Y + h(X)), Y(0) = Y°, (1.40)

where Y(0) = Z(0) - h(X(0)). After introducing a new time scale t0 = t/fi
into (1.39)-(1.40), we have

^-=Hf(X,Y + h(X)), X(0) = X°, (1.41)

^-=g(X,Y + h(X))-^f(X,Y + h(X)), Y(0) = Y°. (1.42)

Prom (1.41)-(1.42) it is easy to see that in the new time scale to we have
dX/dto —> 0; that is, the rate of transients of X(t) decreases as n —> 0.
As a result, if \x tends to zero then from (1.41)-(1.42) the equation of a
boundary-layer system

^-=g(X,Y + h(X)), Y(0) = Y° (1.43)

follows as an asymptotic limit, where X is the frozen variable, i.e., X w
const.

1.2.4 Stability analysis

The investigation of conditions under which the trajectories of the full
singularly perturbed system (1.30)-(1.31) approximate to the trajecto-
ries of the reduced model (1-37) is important both from a theoreti-
cal viewpoint and for practical applications in control system analy-
sis and design. These conditions were considered in [Tikhonov (1948);
Tikhonov (1952)] and [Vasileva (1963)] for a bounded time interval t G
[0, *i], and then in [Krasovskii (1963); Klimushchev and Krasovskii (1962)]
and [Hoppensteadt (1966)] for an infinite time interval t £ [0, oo).

The simplified version of stability analysis of the singularly perturbed
systems is provided below, while more detailed analysis may be found, for
instance, in [Khalil (2002)].
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Consider the singularly perturbed system (1.30)-(1.31)

X = f(X,Z), X(0) = X°,

fiZ = g(X,Z), Z(0) = Z°,

where the following assumptions are satisfied:

• /(0,0) = 0, g(0,0) = 0.
• The equation g(X, Z) = 0 has an unique isolated root Z = h(X)

such that /i(0) = 0 and

\\h{X)\\ < rruWXW, V X e BPx = {X e K" | ||X|| < px}, mx > 0.

• The functions / , g, and h, along with their partial derivatives up
to order 2, are bounded for all Y = Z - h(X) € BPy, where

BPy = {YeRm\\\Y\\<Py}.

In addition, we assume that a Lyapunov function V(X) of the reduced
system (1.37) exists such that

C l | |X | | 2 <F(X)<c 2 | |X | | 2 , (1.44)

jV{X) = | |/(X,h(X)) < -c3\\X\\2, (1.45)

H <C4l|A-||, (1.46)

for all X £ BPx, where Cj are some positive constants. Therefore, in accor-
dance with Theorem 1.1, the origin of the reduced system (1-37) is expo-
nentially stable.

By introducing the new variable Y = Z — h(X), let us rewrite equations
(1.30)-(1.31) in the form (1.39)-(1.40) and consider the boundary-layer
system (1.43). Assume that a Lyapunov function W(V) of (1.43) exists
such that

h\\Y\\*<W(Y)<b2\\Y\f, (1.47)

^W(Y) = ̂ r9(X, Y + h(X)) < -b3\\Yf, (1.48)

|f^|<&4p% (1-49)

for all Y € BPy, where the 6* are positive constants. Hence, by Theorem
1.1, the origin of the boundary-layer system (1.43) is exponentially stable.
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Let us consider the function

u{X, Y) = (1 - d)V{X) + dW{Y) (1.50)

as a Lyapunov function candidate for the singularly perturbed system
(1.39)-(1.40), where 0 < d < 1. Then the derivative of (1.50) along the
trajectories of (1.39)-(1.40) is given by

| = (l-d)^f{X,Y + h{X))

+jiw9{x'Y+h{x))-4lfl/(x'Y+h{x))- (L5i)
Because the function / and its partial derivatives up to order 2 are bounded
for all Y € BPy, and because /(0,0) = 0, the Taylor expansion of f(X, Y +
h(X)) yields

f(X, Y + h(X)) = f(X, h(X)) + ̂ Y + O(\\Yf),

where

\\f(x,Y + h(x))\\<io\\x\\, 2L <h> | | 0 ( | | y f ) | |< / 2 | | y | | 2 ,

and the Zj are some positive constants.
By taking into account the above assumptions, we obtain from (1.51)

the inequality

^ < - ( 1 - d)c3||X||2 + [(1 - d)c4i + d&4miZ0]||X||||y||

+ [(1 - d)c4l2\\X\\ + dbinnk + dbim1l2\\Y\\ - - 6 3 | ll^ll2- (1-52)

Then (1.52) can be represented as

dl/ ^ T-r
-77 < -V ̂ V,

at

where 77 ={ | |X | | , | |y | |} T and
r = l"7ii 7i2 j

[721 722 J
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in which

7n = (1 - d)c3,

7i2 = 72i = -0.5[(l - d)c4li + db^milo],

722 = -h - (1 - d)c4l2\\X\\ - db4mih - db4mii2||y||.

Since X £ BPx, Y e BPy, and 0 < d < 1, there exists some small p, — fi* > Q
such that the matrix F is positive definite:

r>o.

Then

K>n(r)\\v\\l<vTrv<KUT)\\v\\l

From (1.44) and (1.47) it follows that some constants d\,d2 exist such that

di\\v\\2<v(v)<d2\\v\\2-

As a result we have

*: < ^TTTI < _Amin(r)||77||| < - ^ | P ^

Hence

v(X(t),Y(t)) < V(X(0),Y(0))exp [~^~-tj

and, accordingly, we obtain

N*)ll<[^]1/a|W0)||exp(-^).

Note that ||/i(X)|| < mi||X|| and Y = Z - h{X); then there exists m > 0
such that

MM <m||77(O)||exp(-^p^,

where 7} = {||X||, | |Z||}T or, in other words, the origin of (1.30)-(1.31)
is exponentially stable. The result may be formulated as the following
theorem.



14 Design of nonlinear control systems with the highest derivative in feedback

Theorem 1.3 Consider the singularly perturbed system (1.30)-(1.31)

X = f(X,Z), X(0) = X°,

fiZ = g(X,Z), Z(0) = Z°,

under the following assumptions.

• /(0,0) = 0, g(0,0) = 0.
• The equation g(X, Z) = 0 has a unique isolated root Z = h(X)

such that h(0) = 0 and \\h(X)\\ < mi\\X\\, where

TO! > 0, X e BPx, BPx ={XeRn\ \\X\\ < Px}.

• The functions / , g, h and their partial derivatives up to order 2 are
bounded for allY = Z — h(X) G BPy, where

YeBPy, BPy = {Y e Rm I \\Y\\ < py}.

• The Lyapunov function V(X) of the reduced system (1.37) exists
such that (1.44)-(l-46) are satisfied for all X € BPx.

• The Lyapunov function W{Y) of the boundary-layer system (1-43)
exists such that (1.47)-(1.49) are satisfied for all Y e BPy.

Then there exists p,* > 0 such that for all fi £ (0,/i*), the origin of (1.30)-
(1.31) is exponentially stable.

1.2.5 Fast and slow-motion subsystems

The above procedure for obtaining the boundary-layer system may be di-
rectly applied to (1.30)-(1.31) in order to obtain equations of fast-motion
subsystem (FMS) and slow-motion subsystem (SMS). First, by introducing
the new time scale to = t/fi into (1.30)-(1.31) we have

^ = fif(X,Z), X(0) = X°,

~^g{X,Z), Z(0) = Z°,

where the FMS is given by

^- = g(X,Z), Z(0) = Z° (1.53)
ato

in the new time scale t0 and X(to) « const during the transients in the
subsystem (1.53).
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By returning to the primary time scale t, from (1.53) the FMS equation

^ = g(X,Z), Z(0) = Z° (1.54)

is obtained, where X(t) is the frozen variable, i.e., X(t) « const.
Second, let us assume that there is an unique equilibrium point (1.35) of

(1.54) (more precisely, quasi-equilibrium point) that satisfies g(X, Z) = 0.
Moreover, we assume that Z = Z is an exponentially stable equilibrium
point of (1.54).

Finally, on the above assumption of exponential stability of the equi-
librium point Z = Z, we have that Z(t) - Z -> 0, V t > 0 as fj, -> 0. So
if the parameter \i is small enough, then after rapid decay of transients in
the FMS (1-54) we find that the condition Z = Z is satisfied. Substitution
of Z = h{X) into (1.30) yields the SMS equation (1.37).

1.2.6 Degree of time-scale separation

Let us consider a linear standard singularly perturbed system

X = AnX + Al2Y, (1.55)

fit = A21 X + A22Y, (1.56)

where /x is a small positive parameter, X G M™, Y e Rm, and the A^ are
matrices with appropriate dimensions.

In accordance with the above formal algorithm of time-scale separation,
we have that

fjY = A21X + A22Y (1.57)

is the FMS equation, where X = const.
Assume that det A22 ^ 0 and, moreover, A2i is a Hurwitz matrix. Then

it is easy to find that

X = ASX (1.58)

is the SMS equation, where

As=An- A12A^A2i

and we assume that As is a Hurwitz matrix as well.
From a practical standpoint it is useful to have some quantitative criteria

for the degree of time-scale separation between stable fast and slow motions.
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The ratio

V = tstSMs/ts^MS (1.59)

serves as a direct estimation of such a degree, where tStSMS and tSiFMS are
the settling times of the SMS and the FMS, respectively. We may also
consider indirect estimates of the degree of time-scale separation between
stable fast and slow motions, where the first estimate is based on solution
of the Lyapunov equation and the second one is based on roots of the FMS
and SMS characteristic polynomials.

Estimate based on solution of Lyapunov equation

The lower and upper bounds (1.17) and (1.19) of the linear differential
equation solution may be used to introduce a quantitative criterion for
degree of time-scale separation between stable fast and slow motions.

First, because the FMS (1.57) is stable, the Lyapunov function VF(Y) =
YTPFY of the FMS (1.57) may be obtained by solving the Lyapunov equa-
tion

PFA22+A%2PF = -QF, (1.60)

where QF — Q^, QF > 0, PF = P j , and PF > 0. Then, in accordance with
(1.17), the upper bound of the fast variable Y follows:

||r(t)||a < [ ^ # T | 1 / 2 lir(o)||aexp (-^T^PA • t1-61)

Next, since the SMS (1.58) is stable, the Lyapunov function VS(X) =
XTPSX of the SMS (1.58) may be obtained by solving the Lyapunov equa-
tion

PSAS+ATSPS = -QS,

where Qs = QTS, Qs > 0, and Ps = Pj,Ps > 0. Then, in accordance with
(1.19), the lower bound of the slow variable X follows:

Il*(«)ll2 > [ ^ # T 1 1 / 2 ll*(0)l|aexp (-%r'{?At) • (1-62)

The ratio of the exponents in (1.61) and (1.62),

_ •^min(-Ps)^min(^;F)

M-̂ max (PF )^max (Qs )
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may be used as the degree of time-scale separation between fast and slow
motions. In particular, by choosing QF — Qs = I we obtain2

*-^&r <L63)

Estimate based on roots of FMS and SMS characteristic
polynomials

Let us consider stable fast and slow subsystems of the linear standard sin-
gularly perturbed system (1.55)-(1.56). Denote by

AFMS(s,n) = det \sl - -A22 \= sm + a^-s"1'1 + ... + ^ a o ™ S

L H1 J r1 H-

and

ASMS(s) = det[aJ - As] = sn + a^s"'1 + •••+ C '

the FMS and SMS characteristic polynomials, respectively. Assume that
FMS FMS SMS SMS , Tni 4"O J

s1 ,... ,sm and Si ,... ,sn are the roots ot the stable t M b and
SMS characteristic polynomials, respectively. Denote

<.= i = m i . n miR e^F M Si ' <z=i=^jRes"MSi-
The ratio

min
m = -£&£• (1.64)

SMS

may be used as a criterion for the degree of time-scale separation between
fast and slow motions.

We may also consider the ratio of FMS natural frequency to SMS natural
frequency

* = S - ^ <L65)
as a quantitative criterion for the degree of time-scale separation between
stable fast and slow motions instead of (1.63).

The estimate rji is more conservative than r}2 and 773. The direct estima-
tion (1.59) of the degree of time-scale separation between stable fast and

2 Here / is the identity matrix. A list of notation used throughout the book appears
in Appendix B starting on p. 335.
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slow motions can be based on the correlations (2.4) discussed in the next
chapter. From (2.4) we get

t ~ — t ^ 4
<-S,FMS ~ m i n ) LS,SMS ^ m a x •

FMS SMS

Therefore, by (1.59), we obtain

min
71 > -EMS..
I — w max

SMS

1.3 Discrete-time singularly perturbed systems

1.3.1 Fast and slow-motion subsystems

In this section the discrete-time counterpart of the singularly perturbed
system (1.31) is discussed. We will deal with the system of state space
difference equations given by

Xk+i = {In + Mi l}** + pAnYk, (1.66)

yfc+1 = A21Xk + A22Yk, (1.67)

where /J, is a small parameter, X G Rn, Y £ Rm, and the Aij are matrices
with appropriate dimensions.

When /j, = 0, the system (1.66)-(1.67) of dimension n + m degenerates
into the system of dimension m given by

*fc+i = *fe>

Yk+i = A2iXk + A22Yk.

So if /x —> 0, then the rate of transients of Xfc decreases and, accordingly,
the fast and slow modes are revealed in the system (1.66)-(1.67), where
a time-scale separation between those modes is represented by the small
parameter /x. If yb is sufficiently small, then from (1.66)-(1.67) the FMS
equation

Yk+1 = A21Xk + A22Yk (1.68)

results, where Xk ̂  const during the transients in the system (1.68).
The characteristic polynomial of the FMS (1.68) is

AFMS{z) = det(zlm - A22).
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Assume that all roots of AFMS (z) lie inside the unit circle so that the FMS
(1.68) is stable. Then the steady-state of the FMS is given by

Yk = {Im - A22}-1A2iXk. (1.69)

Substitution of (1.69) into (1.66) yields the SMS

Xk+i = {/„ + ii[An + A12{Im - A22)~1A2i]}Xk,

where the characteristic polynomial of the SMS is

ASMS(Z) = det(z/m - ASMS),

where

ASMS = Un + li[AU + A12(Im - ^22)"1^2l]}-

1.3.2 Degree of time-scale separation

Since the complex variables z and s are related by z = eTsS, the inverse
mapping of the unit circle into the primary strip in the s-plane is given by

s = ±Lnz, (1.70)

where Ts is the sampling period and Ln z is the principal value of In z. Here
z = 0 is omitted and there is a cut along the negative real axis.

Assume that the following conditions are satisfied:
FMS FMS SMS SMS . - , _

1. zx ,... ,zm and z-y , . . . ,z n are the roots of the FMS and
SMS characteristic polynomials, respectively.

2. All roots lie inside the unit circle as shown in Fig. 1.2(a).
3. There are no roots on the cut or at the origin.

Then, by the mapping (1.70), we can obtain the sets of roots s, .... .s^
SMS SMS

and Sj ,... ,sn as shown in Fig. 1.2(b), and construct two polynomials

m n
A I \ TTI FMS - | - | - SMS

i= l i= l

to which the previous criteria can be applied.
If we assume that the last mentioned condition is not satisfied, that is,

there is at least one root on the cut or at the origin, then the following
approach may be used.



20 Design of nonlinear control systems with the highest derivative in feedback

Fig. 1.2 Roots of the stable FMS and SMS characteristic polynomials in the discrete-
time system (1.66)-(1.67) and their images in the primary strip on the s-plane.

Denote

FMS SMS

r,Ms = i i f a x m l z i ' a n d rsMS = i = I f i n n l z i I'

where we assume that

0 < rFMS < rSMS < 1.

Prom (1.64) and (1.70) we obtain

772 = h T T ^ - (L71)
1 1 1 ' SMS

The particular feature of the discrete-time FMS (1.68) is that a lower
bound for the settling time exists, which is equal to the settling time of
the deadbeat response.3 If all roots of the FMS characteristic polynomial
AFMS (z) are located at the origin, then the settling time of the discrete-
time FMS (1.68) is equal to mTa (the settling time of the deadbeat response
for arbitrarily chosen initial conditions). However, from (2.4) and (1.70) we
get

t ~ - _ i ^ _ t > - - * * £ - (172)
111 ' FMS U1 ' SMS

where tStFMS -»0as rFMS —> 0. Therefore, from (1.72) the value fFMS can
be found such that the condition tStFMS(fFMS) = mTs is satisfied, where

rFMS = exp(-4/m).

3The notion of the deadbeat response can be found, for instance, in [Lindorff (1965);
Chen (1993); Ogata (1994)].
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So the expressions (1.71) and (1.72) can be used only if the inequality
rFMS > rFMS holds. If rFMS < fFMS then, by (1.59), we get

V> A • (1-73)
m lnrSMS

1.4 Notes

In this chapter we have discussed the basic principles for approximate anal-
ysis of the properties of the perturbed and singularly perturbed differential
equations. The properties of the regularly and singularly perturbed dif-
ferential equations that we have discussed are used throughout the book
as the basis for an approximate analysis and design of nonlinear control
systems.

Note that the numerical simulation of singularly perturbed differential
equations has some particulars concerning the choice of step size. Usually,
the higher order Runge-Kutta algorithms or Agams-Moulton methods allow
us to obtain numerically stable solutions without special contrivance if the
dimension of the equations is not too high.

There are many references devoted to consideration of particular details
concerned with the analysis of regularly and singularly perturbed systems
of differential equations. These may be found, for instance, in [Vasileva
(1963); Gerashchenko (1975); Kokotovic et al. (1986); Kokotovic and Khalil
(1986)] and [Sastry (1999); Khalil (2002)]. Various aspects of discrete-
time singularly perturbed systems were considered in [Litkouhi and Khalil
(1985); Naidu and Rao (1985); Naidu (1988)].

1.5 Exercises

1.1 The behavior of a dynamical system is described by the equation

x{2) + 3cc(1) + 2x = 0, x(0) = 1, x(1)(0) = l.

Determine the lower and upper bounds for ||X(£)||.
1.2 The behavior of a dynamical system is described by the equation

z(2) + 1.5^) + 0.5Z + /42z2 + [x^]2}1'2 = 0.

Determine the region of /J, such that X = 0 is an exponentially stable
equilibrium point of the given system.
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1.3 The behavior of a dynamical system is described by the equation

x{2) + 1.5z(1) + 0.5x + n\ sin(0.5f)| = 0.

Determine the parameter /J, such that lim^oo ||X(t)||2 < 0.4.

1.4 The behavior of a dynamical system is described by the equations

Xi = X\ — X2, (J.X2 = 2X\ + X2.

Obtain and analyze the stability of the SMS and FMS.
1.5 The behavior of a dynamical system is described by the equations

±i = xi - x2, \i-i-i — 2x\ - x2. (1-74)

Obtain and analyze the stability of the SMS and FMS. Plot the phase
portraits of the system by computer simulation for /j, = 0.1,0.5,1 and
compare the results.

1.6 Consider the system (1.74). Obtain and analyze the stability of the
SMS and FMS. Determine the parameter /i such that 772 = 10.

1.7 The behavior of a dynamical system is described by the equations

±1 = X2, X2 = X3 - 2X2, /J,X3 = X4, jLt±4 = -Xi - X3 - X4.

Obtain and analyze the stability of the SMS and FMS. Determine the
parameter /i, where: (a) 771 = 10, (b) 772 = 10, (c) 773 = 10.

1.8 Consider the difference equations given by

x\(k + 1) = [1 + n\xi(k) + nx2(k), x2(k + 1) = ax\(k) + bx2(k).

Obtain and analyze the conditions for the SMS and FMS stability.
Determine the parameter fi such that 772 = 10, where a = 0.35, b = 0.2.

1.9 Consider the difference equations given by

xi(k + 1) = [1 - n]x!(k) - n[x2(k) + x3(k)],

x2{k + 1) = xi(k) + 0.1z2(fc) + 0.2x3{k),

x2(k + 1) = 0.5xi (/t) + 0.2x2(k) + 0.1x3(/c).

Obtain and analyze the conditions for the SMS and FMS stability.
Determine the parameter \x such that 772 = 10.



Chapter 2

Design goal and reference model

Prior to the introduction of any specific design technique, it is appropri-
ate to discuss performance criteria for control systems. These are usually
imposed via the inclusion of some reference model in the controller, either
explicitly or implicitly. We therefore use this chapter to highlight some
basic correlations between the time-domain specifications of the control
system output response and the pole-zero locations of the transfer function
or, alternatively, the parameters of the linear differential equation.

In particular, we discuss basic step response parameters and the problem
of output regulation for nonlinear time-vary ing control systems. We present
a model of desired output behavior in the form of a differential equation,
the parameters of which are based on required step response parameters
(overshoot, settling time). Finally, we discuss the key role played by zeroes
in the transfer function of the reference model with regard to the attainment
of accuracy in the regulation problem.

2.1 Design goal

A block diagram of a general control system (GCS) appears in Fig. 2.1,
where

P is a plant,
C is a controller,
y is a measurable output (or controlled variable),
u is a control (manipulated variable) of the plant,
r is a reference input,
w incorporates external disturbances or variable parameters unavailable

for measurement.

23
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 Fig. 2.1 Block diagram of the general con-

Our goal is to design a control system subject to the condition that

tlim^e(i) = 0, (2.1)

where e(t) = r(t) - y(t) is the error of the reference input realization.
Moreover, the controlled transients y(t) should exhibit desired behaviors
and should not depend on the varying parameters or external disturbances
embodied in w(t).

2.2 Basic step response parameters

Usually the behavior of the output variable y(t) may be described by a small
number of basic step response parameters. These may be directly identified
by inspection of the response when a reference step input is applied to the
control system (Fig. 2.2).

When referring to the basic step response parameters, we have in mind
the following standard concepts:

• ys is the final value of y(t), where ys = limt_oo y(t).
• ts is the settling time, which is denned as the time required for y(t)

to reach and remain within some neighborhood (1 ± ey)ys of its final
value. We usually assume that sy = \£y/ys\ G [0.01,0.05].

• y(tp) is the peak value of y(t), and tp is the peak time.
• a is the maximum percent overshoot of the output variable, where

a = 100|G/(*p)-ys)/ys|[%].
• es is the steady-state error, where es — lim^oo e(t).

Fig. 2.2 Basic step response parameters of
output variable. y(t)

trol system
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We assume that the control systems discussed below will be designed to
meet the following specifications:

1. The steady-state error es must be less than e^ax, i.e., |es| < e^ax.
2. The settling time ts must be close to the desired value td, i.e., ts « td.
3. The overshoot a must be close to the desired value ad, i.e., a « ad.

2.3 Reference model

Reference model design

Throughout the book a methodology will be discussed where the controller
is designed in such a way that the closed-loop system is required to be close
to some given reference model, despite the effects of varying parameters
and unknown external disturbances w(t) in the plant model. So, the des-
tiny of the controller is to provide an appropriate reference input-controlled
output map of the closed-loop system as shown in Fig. 2.3, where the refer-
ence model is selected based on the required output transient performance
indices.

Usually, it is more convenient for practical applications to represent
the reference model by a desired transfer function or appropriate desired
differential equation, because the relationships between its parameters and
the basic step response parameters are well known. Toward this end, the
pole-zero patterns or Bode diagrams may be used to select the parameters
of the reference model.

Fig. 2.3 Reference model of the closed-loop control system.

Let us now consider the reference model in the form of the rational
continuous-time transfer function (desired transfer function) between the
reference input r and the output y:

Gtr(s) = JQ, (2.2)
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where

Ad{s) = Tnsn + o j . i r - 1 * " - 1 + • • • + afTs + 1. (2.3)

A method involving a desired pole region may be used to determine
the parameters T,ad,ad, • • • i an °f ^ e characteristic polynomial (2.3) in
accordance with the requirements imposed on the step response parameters
of the output transients y(t). For instance, if

y w ( t o ) = 0 for all i = l,...,n-l

then from the second-order prototype the relationships x

td>**^ gdwl00exp W i - C ( c d ) 2 ) [%1> cd = cos(0d) (2'4)

follow as a first approximation to find the desired pole region for the roots
of the characteristic polynomial (2.3). This region is denned by two param-
eters: the angle 8d, and the value wd (Fig. 2.4).

The value £d is called the desired damping ratio, and wd is called the
desired damped or actual frequency [Dorf and Bishop (2001); Kuo and
Golnaraghi (2003)].

\
 Fig. 2.4 Desired pole region of the transfer

 function (2.2).

So the following procedure may be applied to construct the reference
model.

Step 1. From (2.4) the parameters 9d and u)d of the desired pole region
can be found, that is

• '"•""(JETO)- "'"4 (2-5)
1There are various approximate relationships in [Chen (1993); Dorf and Bishop (2001);

Kuo and Golnaraghi (2003)].
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Step 2. By selecting the n roots s i , s 2 ) . . . ,sn inside the desired pole
region, the desired characteristic polynomial

( s - s i ) ( s - s 2 ) - - - ( s - s n )

is obtained. Two so-called dominant poles are selected in the corners of the
stated domain. This polynomial may be rewritten in the form of expression
(2.3), where T is a time constant of the desired characteristic polynomial
andT=( - l ) " ( s 1 s 2 - - - s n ) - 1 / n .

Step 3. From the given polynomial (2.3) and the transfer function (2.2),
the reference model in the form of the linear differential equation

r V n ) + a;|_1:rn-yn-1) + • • • + <ry ( 1 ) + y = r (2.6)

follows. This is called the desired differential equation.

Remark 2.1 In order to form the desired transfer function (2.2) the
well known normalized step responses with non-dimensional time for the
normalized transfer function

rd i \ _ \

vA ' s n + a*_1sn-1 + --- + afs + l

may be used, where the denominator polynomial has its roots distributed in
a Butterworth or binomial-type pattern. Such pole patterns are presented
in many references [Graham and Lathrop (1953); Bosgra and Kwakernaak
(2000)].

In any case, it is desirable to provide computer simulation to verify the
shape of the output response.

Reference model with arbitrary system type

Let the reference input r{t) be a polynomial time function of degree p.
If r(t) = (tp/p\)l(t) (where p is a so-called input signal type), then the
Laplace transform of the reference input is r(s) = l/sp+1.

Let us consider the desired transfer function G^r{s) between reference
input r and error variable e, where

Gder(s) = l-Gdyr(s).

The Laplace transform of the error variable for the input signal of the type
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p is given by

e(,) = [ l - G - . ( 5 ) ] - L >

and on the assumptions of the final value theorem (i.e., that Gdr(s) is
stable) the steady-state error is

es = lim se(s).

Accordingly, from (2.2) and (2.3) it follows that es is zero if the input signal
is of type 0 (unit step input).

Let r(t) be the input signal of type 1 (ramp reference input, or step
function of velocity):

r(t) = rvtl(t),

where rv = const and rv ^ 0.
The steady-state error es due to an input signal of type 1 is called a

velocity error, i.e., evr = es. Then the relative velocity error of (2.2) is given
by

e« _ r(t) - y(t) d
e,. = — = lim = Qi i .

r rv t->oo rv

The system (2.2) is called a type 1 system if the velocity error evr is a nonzero
constant (see, for example, in [Wolovich (1994); Bosgra and Kwakernaak
(2000)]).

In the next part of this section let Gyr(s) be a rational strictly proper
continuous-time transfer function between reference input r and output y
where

OtAs) = ^ g . (2.7)

Let us assume that

Bd(s) = bdpTpsp + ̂ _ 1 r p - V " 1 + • • • + bfrs + 1, p<n.

Here Ad(s) is the above described polynomial (2.3), whose roots lie in the
stable half-plane Re(s) < 0, and Bd(s),Ad(s) are coprime polynomials.

In accordance with the continuous-time transfer function (2.7), the ref-
erence model may be rewritten as the linear differential equation

TVn> + ot1TB"1!/(B"1) + • • • + 4Ty{1) + V
= b d T p r { p ) + b d , _ 1 T p - 1 r ( - p - 1 ) + ••• + b f r r ^ + r . ( 2 . 8 )
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In a fashion analogous to the above, we find that the relative velocity
error for the system (2.8) is given by

r t-»oo rv

It is easy to see that if the condition

bfr = afT (2.9)

is satisfied, then the velocity error e"r equals zero for a reference model of
the form (2.8).

As the next case, let us assume that (2.9) holds. Then we may consider
the response of (2.8) under a parabolic reference input.

The system (2.8) is said to be of type 2 if the steady-state error is a
nonzero constant due to an input signal of type 2 (parabolic reference input,
step function of acceleration). In this case the steady-state error is called
an acceleration error. Then the relative acceleration error is given by

' y.acc t—nx) -pace z A '

where r(£) = racc(£2/2!)l(t) and racc = const.
Finally, let us consider a stable linear system in the form

T V n ) + aJl-iT"-1^"-1) + • • • + afTyW + y
= bdpTpr{p) + b^T"-1^-^ + ••• + bfTr{1) + r, (2 .10)

where 1 < p < n. Then, as opposed to (2.6), it is easy to verify that the
steady-state error is zero for an input signal of type p if the conditions

6̂  = â  for all j = l,...,p

are satisfied.
So, it is important to note that the reference model in the form of the

linear differential equation (2.10) (that corresponds to the transfer function
(2.7) with zeroes) allows us to reach a higher tracking accuracy than (2.6).

For instance, the well known optimal coefficients of the transfer function

rd(a\- a i s + Qo / 9 1 1 x
WrW ~ sn + adn_iSn-l + . . . + afs + ad ^ll)

based on the integral of time multiplied by absolute error (ITAE) criterion

ITAE= / t\e(t)\dt
Jo
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for a ramp input may be used:

s2 + 3.2wns + w2,

s3 + 1.75wns
2 + 3.25w£s + w3,

s4 + 2Alu)ns
3 + 4.93w2s2 + 5.14w3s + <4,

s5 + 2.19wns
4 + 6.50w2s3 + 6.30w2s2 + 5.24w£s + w£,

where u>n is the natural frequency.
Note that the approach we have discussed, of reference model design in

accordance with the requirement of an appropriate system type, is widely
used in various design techniques [Bosgra and Kwakernaak (2000); Dorf
and Bishop (2001); Franklin et al. (2002); Kuo and Golnaraghi (2003)].

2.4 Notes

The main purpose of this chapter is to review some basic correlations be-
tween the time-domain specifications of the control system output response
and the pole-zero locations of the transfer function or, alternatively, the
parameters of the linear differential equation. The importance of such cor-
relations to control system design technique follows from the fact that it
is usually easier to formulate the requirements on control system perfor-
mance in terms of time-domain specifications from an engineering point of
view. But the totality of existing design procedures are based on various
specifications of some reference model, usually in the form of a transfer
function or differential equation. The correlations discussed above allow us
to choose the reference model in accordance with the requirements placed
on the desired time-domain behavior of the closed-loop system.

Note that in the problem of linear control system design, the use of a ref-
erence model in the form of desired pole and zero locations for the transfer
function is usually enough. In order to solve the problem of nonlinear con-
trol system design, it is more convenient to construct the reference model in
the form of a desired differential equation or desired manifold in the state
space of the plant model. The correlations discussed above may be used
for this purpose. This will be shown in detail in the coming chapters.

Some additional details concerned with the performance of feedback
control systems may be found in such references as, for instance, [Bosgra
and Kwakernaak (2000); Dorf and Bishop (2001); Franklin et al. (2002);
Kuo and Golnaraghi (2003); Wolovich (1994)].
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2.5 Exercises

2.1 Construct the reference model in the form of the 2nd order differential
equation (2.6) in such a way that the step response parameters of the
output meet the requirements td « 6 s, ad « 0%. Plot by computer
simulation the output response, and determine the steady-state error
from the plot for input signals of type 0 and 1.

2.2 Construct the reference model in the form of the 3rd order differential
equation (2.6) in such a way that the step response parameters of the
output meet the requirements td « 3 s, ad w 30 %. Plot by computer
simulation the output response, and determine the steady-state error
from the plot for input signals of type 0 and 1.

2.3 Construct the reference model in the form of the 2nd order differential
equation as the type 1 system with the following roots of the charac-
teristic polynomial:

si = -l+j, s2 = -l-j.

Plot by computer simulation the output response, and determine the
steady-state error from the plot for input signals of type 0,1, and 2.

2.4 Construct the reference model in the form of the 3rd order differential
equation as the type 1 system with the following roots of the charac-
teristic polynomial:

si = -2, s2 = -3 + i2, s3 = -3-j2.

Plot by computer simulation the output response, and determine the
steady-state error from the plot for input signals of type 0, 1, 2, and 3.

2.5 Construct the reference model in the form of the 3rd order differential
equation as the type 2 system with the following roots of the charac-
teristic polynomial:

ai = - 3 , s2 = -l+j2, s3 = -l-j2.

Plot by computer simulation the output response, and determine the
steady-state error from the plot for input signals of type 0, 1, 2, and 3.

2.6 Consider the reference model in the form of the 2nd, 3rd, 4th, and 5th
order transfer function (2.11) with the optimal coefficients based on the
ITAE criterion. Plot by computer simulation the output response for
the input signal of type 0, where: (a) u>n = 1, (b) wn = 2.
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2.7 Consider the reference model in the form of the 2nd, 3rd, 4th, and 5th
order transfer function (2.11) with the optimal coefficients based on the
ITAE criterion. Plot by computer simulation the output response for
the input signal of type 1, where: (a) u>n = 1, (b) u>n = 2.

2.8 Consider the reference model in the form of the 2nd, 3rd, 4th, and 5th
order transfer function (2.11) with the optimal coefficients based on the
ITAE criterion. Plot by computer simulation the output response and
determine the steady-state error from the plot for input signals of type
1 and 2, where: (a) ujn — 1, (b) wn = 2.



Chapter 3

Methods of control system design
under uncertainty

There is a broad class of methods for control system design in the presence
of varying plant parameters and unknown external disturbances. Only a
small subset of these is considered in this chapter. The reviewed methods
are directly related to the matter of the control system design methodology
in the book. In particular, a short overview of robust control synthesis
techniques under uncertainty is given, where our main attention is devoted
to the discussion of nonadaptive approaches such as control systems with
the highest derivative of the output signal and high gain in the feedback
loop, control systems with state vector and high gain in the feedback loop,
and control systems with sliding motions. The interdependencies between
these methods are discussed, and the main steps of the design procedures
are highlighted.

3.1 Desired vector field in the state space of plant model

This section is related to the essence of the preceding chapter, with special
emphasis placed on nonlinear control systems. With these systems we are
naturally motivated to impose the desired performance criteria in terms of
state space notions; after that, specific design techniques may be discussed.
For this reason, let us select two methods in modern nonlinear control
theory in order to specify the desired behavior as well as the requirement
of insensitivity of the closed-loop system transients with respect to the
external disturbances and varying parameters of the plant model.

The first method is based on the construction of the desired vector field
in the state space of the plant model, whereas the second method is based
on the construction of the desired manifold in the state space of the plant
model.

33
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Let us begin with the first method and its application to a plant model
given by

x^=f(X,w)+g(X,w)u, y = x, (3.1)

where y € R1 is the system output, X = {x, x^\..., a:("~1)}T is the state
vector of the system (3.1), u(t) is the control, « e (!„ c E1 where fiu is a
bounded set of allowable values of the control variable, and w(t) is a vector
of bounded external disturbances and/or varying parameters of the plant
model.

Assumption 3.1 The functions f(X,w), g(X,w) are smooth for all
(X,w) € Qx,w = ftx

 x &w.

Assumption 3.2 The conditions

\f(X,w)\ < / m a x < 0 O , 0 < 5 m i n < \g{X,U))\ <5max<0O (3.2)

are fulfilled for all (X, w) S flx,w, i-e., the functions f(X,w), g(X,w) are
bounded for all (X, w) in the specified bounded set flx,w

Since g(X,w) ^ 0, V (X, w) £ flx,w> from (3.1) it follows that the desirable
value of the nth derivative x^(t), which is the highest derivative of x(t)
in the system (3.1), can be obtained by a proper choice of control variable
u(t). The set of possible values of x^(t) depends on flu.

Let us assume that based on the correlations discussed in the previous
chapter and in accordance with the desired time-domain specifications of
the output behavior of x(t), the reference model in the form of the nth
order differential equation has been constructed, similar to (2.6), and is
represented in the following form:

x^ =F(x^n-1\...,x^,x,r), (3.3)

where x = r at the equilibrium of (3.3) for r = const.
We call (3.3) the desired differential equation and its right member F

the desired value of the highest derivative x^n\t) (desired dynamics).
Let us rewrite, for short, equation (3.3) in the form

x(n)=F(X,r). (3.4)

Denote

eF = F-x^n). (3.5)
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The value eF is called the error of the desired dynamics realization, where
the desired dynamics are assigned by (3.4).

Accordingly, if the condition

eF = 0 (3.6)

holds, then the desired behavior of x(t) with the prescribed dynamics of
(3.4) is fulfilled.

Expression (3.6) is the insensitivity condition of the step response pa-
rameters of output transients with respect to the external disturbances and
varying parameters of the system (3.1). We can see that (3.6) allows us
to simultaneously express two requirements. The first is that the output
behavior is described by the desired differential equation. The second is
that the output behavior exhibit insensitivity with respect to the external
disturbances and varying parameters of the plant model.

Let us show that the discussed insensitivity condition corresponds to
assignment of the desired vector field in the state space of the plant model.

The state space representation of the system (3.1) yields

—Xi = xi+i, i = l , . . . , n - l ,
at

jtxn = f(X,w)+g(X,w)u, (3.7)

where, by definition,

X = {x,xW,...,x^}T = {xuX2,...,xn}T.

For short, let us rewrite (3.7) in vector notation as

~X = f(X,w,u). (3.8)

The vector function f(X,w,u) defines a map

f(X,w,u): Rn->R"

called the vector field. By virtue of this map, each point of Rn is placed
into correspondence with a vector of Rn.

Similar to the above, from the desired differential equation (3.3) we have

d
— Xi = xi+i, i = l , . . . , n - l ,

ftxn = F(X,r). (3.9)
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Then from (3.9) we get

jtX = F(X,r), (3.10)

where the vector function F(X, r) defines a desired vector field

F(X,r): R n - ^ R n .

As a result, we have that the insensitivity condition (3.6) corresponds to

F(X,r) = f(X,w,u).

Therefore, (3.6) corresponds to assignment of the desired vector field in
the state space of the plant model given by (3.1), where the desired vector
field can be constructed by pattern in the form of the nth order desired
differential equation in such a way as to provide for the requirement (2.1)
and the desired performance indices.

3.2 Solution of nonlinear inverse dynamics

In accordance with (3.1), (3.4), and (3.5), expression (3.6) may be rewritten
in the form

F(X,r)-f(X,w)-g(X,w)u = 0. (3.11)

So the control problem (2.1) has been restated as the requirement to provide
for the condition (3.6), or in other words, to find a solution to (3.11). Such
an approach to control problem reformulation was discussed and used in
[Boychuk (1966); Vostrikov (1977a)].

If the condition

g(X, w)^0, V (X, w) € nXtW (3.12)

is satisfied, then the control function u(t) — uNID(t) exists such that
uNID(t) is the unique solution of (3.11):

uNW = fopr.n;)}-1^(X,r) - f(X,w)}. (3.13)

This is called the solution of nonlinear inverse dynamics.

Remark 3.1 There is a broad set of publications where the function
(3.13) of the nonlinear inverse dynamics solution is used as the control law
in order to obtain a desired reference input-controlled output map (see, for
instance, [Boychuk (1966); Popov and Krutko (1979); Petrov and Krutko
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(1980); Nijmeijer and Schaft (1990); Slotine and Li (1991); Isidori (1995);
Hirschorn and Aranda-Bricaire (1998)]). Such an approach can be applied
only in the presence of complete information about external disturbances
and parameters of the plant model.

It is worth noting that (3.13) allows us to estimate bounds for the set

such that

umin < uNID(t) < U m a x , V(X,w)eQx,w. (3.14)

Assume that the set Qu of allowable control values is assigned. Then
the desired output behavior of (3.1) corresponding to (3.4) can be realized
if and only if the inclusion uNID(t) G ftu occurs for all t.

In general, the problem of desired output transient realization depends
on such properties as the invertibility and internal stability of the plant
model. This problem will show up in detail below in the chapter on the
realizability of a desired output behavior.

3.3 The highest derivative and high gain in feedback loop

The main subject of our consideration is the problem of control system
design under the conditions when analytical expressions for the functions
f(X, w), g(X, w) are unknown and the vector w(t) of bounded external dis-
turbances or varying parameters is unavailable for measurement as shown
in Fig. 2.1.

In order to reach the discussed control goal and, as a result, to provide
desired dynamical properties of x(t) in the specified region of the state space
of the uncertain nonlinear system (3.1), the following control law with the
highest derivative of the output signal and high gain in the feedback loop

u = ko{F{X,r)-x{n)} (3.15)

was proposed in the pioneer work [Vostrikov (1977a)], where k0 is a high
gain, fcoGR1.

Let us consider the basic correlations of the control system with the
highest derivative and high gain in the feedback loop that were discussed
in [Vostrikov (1977a); Utkin and Vostrikov (1978); Vostrikov (1979)]. It is
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easy to see that from the closed-loop system equations

x^=f(X,w)+g(X,w)u, (3.16)

u = ko{F(X,r)-x{n)}, (3.17)

by substituting (3.17) into (3.16), we obtain

*<"> = F(X, r) + l {f(X, w) - F(X, r)}. (3.18)

—>0 as |fco|—»oo

From (3.18) it follows that the condition

lim x(n) = F(X,r) (3.19)
|fco|-»oo

holds. In other words, the solution to the control problem under consider-
ation is provided by the use of x^ in the control law and the use of a high
gain k0.

Let us consider the behavior of the control variable u(t) in the closed-
loop system. Substituting (3.16) into (3.17) we obtain

u= ix ry \h {nx,r)-nx,w)h (3-20)
l + g{X,w)k0^

->l/g{X,w) as |fc0|->oo

where it was assumed that the sign of the gain k0 is chosen in such a way
that the condition

kog{X, w) > 0, V(X,w)€Qx,w

is satisfied. From (3.20) the condition

lim u = uNID (3.21)
|fco|—>oo

results, where uNID(t) is the nonlinear inverse dynamics solution (3.13).
We can see that if g(X,w)ko > 0, V(X,w) € &x,w then conditions

(3.19) and (3.21) are simultaneously satisfied despite the fact that the func-
tions f(X,w), g(X,w) are unknown. So the control law (3.15) allows us
to solve the control problem of interest under the condition of unknown
external disturbances and varying parameters of the system (3.1).

Note that, throughout the book, the control systems discussed are as
shown in Fig. 2.1 and, accordingly, the block diagram representation of
the practical realization with the highest derivative and high gain in the



Methods of control system design under uncertainty 39

feedback loop is as shown in Fig. 3.1. Here, in order to implement the
control law, the estimations x^(t) are used; these are received by a spe-
cial dynamical system called a differentiating filter. However, the above

Fig. 3.1 Block diagram of the control system with the highest derivative and high gain
in the feedback loop, where a real differentiating filter is used.

Fig. 3.2 Block diagram of the control system with the highest derivative and high gain
in the feedback loop, where an ideal differentiating filter is used.

consideration was done on the assumption that the output x(t) and all its
derivatives, up to the highest derivative x^n\ are measured by some ideal
differentiating filter and this case corresponds to the block diagram rep-
resentation of the closed-loop system equations (3.16), (3.17) as shown in
Fig. 3.2. Clearly, the control law (3.17) is unrealizable in practice. Never-
theless, the above consideration is significant because the limit properties
of the use of the highest derivative and high gain in the feedback loop are
shown explicitly. In particular, we may represent Fig. 3.2 as shown in Fig.
3.3, where the memoryless network for the highest derivative s^"' is high-
lighted by a circuit of dots. The rejection of the influence of the unknown
functions f(X,w), g(X,w) (and, accordingly, of the unknown bounded ex-
ternal disturbances and varying parameters) is provided in the memoryless
network as the high gain fc0 is sufficiently large. This network is shown
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Fig. 3.3 Block diagram of the control system with the highest derivative and high gain
in the feedback loop.

in Fig. 3.4 and was called a "localization circuit" in [Vostrikov (1988b);
Vostrikov (1990)].

Note that the above subject matter is related to the properties of the
input-output map for the memoryless system with high gain feedback as
discussed, for instance, in [Bosgra and Kwakernaak (2000)].

Fig. 3.4 Block diagram of the memoryless network for the highest derivative x^•

3.4 Differentiating filter and high-gain observer

Now the problem of practical realization of the control law (3.15) may be
discussed. In particular, in order to realize the control law in the form of
(3.15) in practice, instead of the ideal derivatives x^\t) some estimations
x^(t) of these derivatives should be used as shown in Fig. 3.1.

For instance, the linear dynamical system shown in Fig. 3.5 was used in
[Vostrikov (1977a)] as a real differentiating filter; its behavior is described
by the equation

fi"x^+dq^1^-1x^-^ + --- + d1^+x = x, X(0) = X°. (3.22)

Here q > n, X = {x,xw,... ,x(q~^}T is the state vector of the system
(3.22), and /i is a small positive parameter.

Note that the stability of (3.22) does not depend on /i and may be
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provided by selection of the parameters dj. If \i is sufficiently small, then
the variables of the state vector X may be used as the required estimations
x^\t) of the actual derivatives x^(t) since we have

lim {x(t) - x(t)} = 0, V t > 0. (3.23)
ju—>0

It is easy to see that if we denote fj, = 1/k, then k is a high-gain param-
eter where fx —» 0 as k —» oo. So the system (3.22) may be rewritten in the
form of a system with high-gain parameters. Such dynamical systems were
investigated in [Meerov (1965)].

Fig. 3.5 Block diagram of the differentiating filter (3.22).

Remark 3.2 Such dynamical systems are now usually called high-gain
observers, and the various associated structures are considered in [Gauthier
et al. (1991); Tornambe (1992); Bullinger and Allgower (1997); Levant
(1998); Hammouri and Marchand (2000)]. Observer design based on sliding
mode techniques is discussed, for example, in [Utkin (1977); Gauthier et al.
(1991); Canudas de Wit and Slotine (1991); Hernandez and Barbot (1996);
Hammouri and Marchand (2000); Perruquetti and Barbot (2002)].

As a result of applying the real differentiating filter (3.22) in order to
implement the control law (3.15) in practice, we get the singularly perturbed
closed-loop system equations

i<n> = f(X, w) + g(X, w)ko{F(X, r) - £(»>}, X(0) = X°, (3.24)

H*x^ + dq-in*-1^-1) + •••+ dinxW +x = x, X(0) = X°, (3.25)

where slow and fast motions take place.
In particular, if q = n = 1, then (3.24)-(3.25) assume the form

x^ = f{x,w) + g(x,w)ko{F{x,r) - ^~l{x - x)},x(0) = x°, (3.26)

/ix(1) + x = x, x{0) = x°. (3.27)
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A distinctive feature of (3.26)-(3.27) (as well as of (3.24)-(3.25)) is the
nonstandard singular perturbation form of the closed-loop system equa-
tions. Therefore, special validation of the stability of such a system is
required. For instance, it is possible to artificially transform the system
(3.24)-(3.25) to the standard singular perturbation form by introducing
the new variables

xx =x{1),x2 = x{2),...,xn = £ ( n ) ;

by differentiation of (3.25) the system (3.24)-(3.25) is transferred to the
extended form [Vostrikov (1977a); Vostrikov (1990)] given by

x(n) = j(Xf wj + g(Xj vj^FiXn-i,. ..,X!,X,r)- Xn},

Hqxiq) + dq^1n'>-1xiq-1) + ••• + d i / i i ( 1 ) + x = x,

Hqxf + dg-Hl"-1^-^ + ••• + d^xf + Xj = XU\ j = 1, . . . ,71 - 1,

Vqx^ + ••• + ditixW + {i + g(X, w)ko}xn = f(X, w) + g{X, w)k0F.

The behavior of x^ is described by the last differential equation of this
extended system. Denote

D{ns) = fiqsq + dg-^^s"-1 + ••• + difis + 1 (3.28)

as the characteristic polynomial of system (3.22). Then the block diagram
representation of the last equation may be depicted as Fig. 3.6, where the
fast motions for x^ take place (fast-motion subsystem). The stability of
these fast motions may be provided by choosing the controller parameters
ko, fi, di in accordance with the requirements placed on the admissible
transient performance indices of the fast process and the degree of time-
scale-separation between the fast and slow motions.

Fig. 3.6 Block diagram of the fast-motion subsystem.

If the fast motions are stable and n —> 0, then the extended system yields
the SMS, which is the same as (3.18). As a result, the desired dynamical
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properties of x(t) are provided in a specified region of the state space of the
uncertain nonlinear system (3.1) in the presence of incomplete information
about varying parameters of the system and external disturbances, as long
as the gain fco is large, i.e., |fco| —> oo.

At the same time, it is necessary to say that another problem was omit-
ted from the above consideration. Indeed, the initial conditions of the
additional differential equations in the extended system depend on a small
parameter /x and tend to infinity as /x —> 0. So special validation of the
technique for two-time-scale motion analysis is required to investigate in
depth whether this is the case [Vostrikov (1979)].

Remark 3.3 Note that this question is also related to the so-called peak-
ing phenomenon discussed in [Sussmann and Kokotovic (1991)] for systems
with high-gain feedback.

We should also note that the introduction of the differentiating filter
(3.22) leads to a high pulse in the control variable u(t) if a stepwise reference
input r(t) is applied. This results in distortion of the output from its
desired behavior, and such an undesirable effect can be partly diminished
by saturation in the control loop.

3.5 Influence of noise in control system with the highest
derivative

The investigation of a noise influence is important in control systems with
the highest derivative in feedback, since the output derivatives are used in
the control law. Suppose y(t) = x(t) + ns (t) is the sensor output corrupted
by a zero-mean, high-frequency noise waveform ns(t).

First let us consider the case of the ideal differentiating filter with noisy
output. Then x(t) should be replaced by y(t) in (3.15) and, as a result, in
the right member of (3.21) an additional term such as g~ln^ appeared.
This term may be so large that saturation of the control variable occurs in
real technical systems.

The block diagram representation of the practically realized control sys-
tem with the highest derivative and high gain in the feedback loop is shown
in Fig. 3.7, where the sensor output y(t) = x(t) is corrupted by noise ns(t).

The influence of the nth derivative n^ of the noise on the behavior of
the control variable in the discussed control system with the real differen-
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Fig. 3.7 Block diagram of the control system with the highest derivative and high
gain in the feedback loop, where the real differentiating filter is used and the output
y(t) = x(t) is corrupted by noise ns(t).

tiating filter (3.22) may be depicted based on the block diagram shown in
Fig. 3.8. It is possible to reduce the high-frequency interference by suitable
choice of the degree and parameters of the differentiating filter [Vostrikov
(1990)].

Fig. 3.8 Block diagram of the fast-motion subsystem with sensor noise.

Remark 3.4 To conclude this section we note that there is a broad
set of publications devoted to robot manipulator control by acceleration
feedback, for instance, [Lun et al. (1980); Luo and Saridis (1985);
Studenny and Belanger (1984); Studenny and Belanger (1986); Davis and
Hirschorn (1988); Krutko (1988); Studenny et al. (1991); Krutko (1991);
Krutko (1995)], where acceleration feedback control is a special case of con-
trol with the highest derivative in feedback (3.15). The problem of ac-
celeration feedback controller design for flexible joint robots was consid-
ered in [Kotnik et al. (1988); Readman and Belanger (1991)]. An appli-
cation of acceleration feedback control for flight control systems was dis-
cussed in [Batenko (1977)]. Applications of acceleration feedback control
for DC drives are discussed in [Hori (1988); Schmidt and Lorenz (1990);
Han et al. (2000)].
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3.6 Desired manifold in the state space of plant model

Let us consider the second method used to specify the desired behavior of
the closed-loop system as well as the requirement of insensitivity of the out-
put transients with respect to external disturbances and varying parameters
of the plant model. This method is based on the construction of the desired
manifold in the state space of the plant model, and is widely used in control
techniques related to control systems with sliding motions [Utkin (1977);
Utkin (1992)].

Let us consider, similar to the above, the plant model given by the
equation (3.1)

x™=f{X,w)+g{X,w)u,

where Assumptions 3.1, 3.2 hold.
First let us construct the desired transfer function of the (n - l)th order

in the form

G*r(S) = T n- l s n - l + ad_2Tn-2sn-2 + . . . + adTg + 1 ' (3"29)

From (3.29) the desired differential equation

xin~l) = ^ r r { - a n - 2 T " - V n - 2 > afTx^ - x + r} (3.30)

results, where (3.30) may be rewritten concisely as

x<n-»=F(x<n-2\...,xW,x,r), (3.31)

where r = const. Note that X = {x,x^\... ,x<>n~1')}T is the state vector
of the dynamical system (3.1), and denote

S(X,r) = F(x^-2\...,x^1\x,r)-x^-1\ (3.32)

where S(X,r) is the error between the actual and desired values of x1-71^.
Accordingly, if the condition

S(X,r) = 0 (3.33)

is satisfied then the desired behavior of (3.1) with prescribed dynamics of
(3.31) is fulfilled in the closed-loop system.

Expression (3.33) is the insensitivity condition for the output transients
with respect to the external disturbances and varying parameters of the sys-
tem (3.1). This condition corresponds to assignment of the desired manifold
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in the state space of the plant model. So, control problem (2.1) has been
reformulated as the requirement to provide the motions of the system (3.1)
along the manifold (3.33).

3.7 State vector and high gain in feedback loop

Let us consider the plant model given by the equation (3.1)

x^ = f(X,w)+g(X,w)u,

where Assumptions 3.1, 3.2 hold and the control law is

u = k0S(X,r), (3.34)

where fco is the high gain and r = const. Denote x\ = x, X2 = x^l\ ...,
xn = x(-n~1\ Then the closed-loop system equations (3.1) and (3.34) may
be rewritten as

d
—Xi — xi+i, i=l,...,n- 1,
at

jtxn = f(X,w) + g(X,w)u, X{0) = X°, (3.35)

u = k0S(X, r),

where there are two-time-scale motions due to the high gain /c0. There-
fore, the singular pertubation analysis can be applied [Vasileva (1963);
Gerashchenko (1975); Young et al. (1977); Kokotovic (1984); Saksena et al.
(1984); Marino (1985)].

The equation describing the behavior of u{t) in (3.35) can be obtained
by differentiating (3.34) along the trajectories of (3.1) as discussed, for
instance, in [Vostrikov (1988b); Vostrikov (1990)]. Then from (3.35) we
obtain the extended system

—Xi=xi+i, i=l,...,n-l, (3.36)
at

fLjtxn = pf(X,W)+g(X,w)sgn(k0)S(X,r), X(0) - X°, (3.37)

fljtu = sgn(fco) Y.—Xi+^—ifiXM+g^^u} ,(3.38)

u(0) = u°,
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which has the form of the standard singularly perturbed equations. Here
we use the notation

X = {xltx2,.. .,xn}T = { z , z ( 1 \ . . . , z ( " - 1 ) } T (3.39)

and p, = l/\ko\.
If the sign of the gain fco is chosen in such a way that the condition

sgn(fco) jr— g(X, w) < 0, V (X, w) £ SlXtW

is satisfied, then the FMS of the extended system is stable and described

by

Jx^-xn = fif{X,w) + g(X,w)sgn(ko)S(X,r), X(0) = X°,
at

£-£u = sgn(fco) £ f £ x i + i + | ^ { / ( A > ) + s ( A > ) u } >«(<>) = «°,at '-~l axi oxn

where the gain |fco| is chosen sufficiently large (i.e., \i, —> 0), and X, w are
the frozen variables during the transients in the FMS.

Consider the quasi-steady state of the differential equation (3.37); that
is, assume xn = 0. Then, by taking into account (3.32) and (3.39), we
obtain

fif(X,w) + g{X,w)sgn{ko)[F(xn-1,.. .,xur) - xn] = 0. (3.40)

Let us derive xn from (3.40) and substitute xn into (3.36). As a result, we
obtain the SMS given by

d
—Xi = xi+i, i = l,...,n-2,

—zn_i = F(xn-i,...,xi,r) + [&o5(A',tu)]-1/(^',«').

where the choice of the high gain ko depends on the requirements of control
accuracy and rejection of external disturbances.

Inasmuch as the control law (3.34) depends on the state vector X, equa-
tion (3.34) can be realized practically by introducing a real differentiating
filter such as (3.22) or some high-gain observer. The block diagram repre-
sentation of the realized control system with estimation of state vector and
a high gain in the feedback loop is shown in Fig. 3.9.
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Fig. 3.9 Block diagram of the control system with state vector and a high gain in the
feedback loop, where a real differentiating filter is used.

Note that the closed-loop system equations (3.35) represent the case,
where the state vector X(t) is measured, for instance, by some ideal dif-
ferentiating filter (or ideal observer). The block diagram representation of
the control system with state vector and high gain in the feedback loop
(3.35) is shown in Fig. 3.10, where the part that corresponds to the plant
model is encircled with dots and the remainder is the controller. Similar

Fig. 3.10 Block diagram of the control system with state vector and high gain in the
feedback loop, where state vector X is measured.

Fig. 3.11 Block diagram of the control system with state vector and high gain in the
feedback loop, where the FMS is highlighted by dots.
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to the above, let us represent the block diagram in Fig. 3.10 as shown in
Fig. 3.11, where the portion encircled by dots corresponds to the FMS of
(3.35). The inclusion of the real differentiating filter (3.22) in feedback, as
shown in Fig. 3.9, yields some additional fast dynamics. Special analysis of
the fast and slow motions in the closed-loop system should be performed in
depth, for instance, based on the construction of the extended system. In
particular, the behavior of a;'™"1) in the FMS can be easily analysed based
on the block diagram of Fig. 3.12, where X and w are the frozen variables.

It is clear to see, in contrast to the control system shown in Fig. 3.10,
an upper bound for the gain fco appears in a control system with the real
differentiating filter (3.22). This bound is determined by the requirement
for FMS stability, and depends on the parameters of the differentiating
filter. Hence the parameters of the differentiating filter should be chosen
so that the interval [gmim Pmax] belongs to the region of FMS stability and
the FMS transients maintain the allowable performance indices.

Fig. 3.12 Block diagram of the FMS in the control system with state vector and a high
gain in the feedback loop, where the real differentiating filter is used.

3.8 Control systems with sliding motions

Another type of control system, which is related to the one discussed in this
book and has analogous properties of high accuracy and robustness with
respect to varying parameters and external disturbances, is the variable
structure system and, in particular, the control system with sliding motions
[Emelyanov (1963); Filippov (1964); Itkis (1976); Utkin (1977); Filippov
(1988); Utkin (1992)]. The condition for disturbance rejection in variable
structure systems was discussed in [Drazenovic (1969)].x

Let us consider the main steps of the sliding motion control system
design procedure for the system given by (3.1), where Assumptions 3.1, 3.2

^ o t e that in [DeCarlo et al. (1988); Young et al. (1999)] the interested reader can
find the tutorial papers devoted to sliding mode control systems.
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are satisfied.
From (3.34) it follows that if S(X,r) ^ 0, then |u| -> oo as |Jbo| -> oo.

Accordingly, saturation of the control variable takes place in real technical
systems. It leads to consideration of the control law

u = Umax sgn S(X, r), (3.41)

where the switching surface S(X,r) is given by (3.32).
Convergence of the closed-loop system trajectories to the manifold

S(X, r) can be investigated through a Lyapunov function candidate, for
instance, in the form V(S) = \S(X,r)\. We can obtain the derivative of
V(S) along the trajectories of (3.1) with control law given by (3.41) where
r = const. This is

JtV = °&{S) [ g J|*,+1 + £/(*>-)] + umax^-9(X,W), (3.42)
where the sign and value of umax can be chosen in such a way that the
condition dV/dt < 0 is satisfied in the specified region of the state space of
the system (3.1). Since dS/dxn = —1, we have sgnwmax = sgng(X,w).

The control law (3.41) may be realized practically by introducing a real
differentiating filter such as (3.22), and the block diagram representation
of such a control system is shown in Fig. 3.13. The above choice of wmax
based on consideration of the system shown in Fig. 3.14. The part of the
block diagram in Fig. 3.14 that corresponds to the plant model is encircled
with dots, and the remainder is the controller.

Fig. 3.13 Block diagram of the control system with sliding motions, where a differenti-
ating filter is used.

In accordance with [Vostrikov (1977b)], the block diagram in Fig. 3.14
may be represented as in Fig. 3.15. The portion encircled by dots is where
fast transients occur. The inclusion of the real differentiating filter (3.22)
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Fig. 3.14 Block diagram of the control system with sliding motions, where the state
vector X is measured.

in feedback as shown in Fig. 3.13 yields some additional fast dynamics;
then the two-time-scale technique should be used to determine the closed-
loop properties. In particular, the behavior of a^71"1) in the FMS can be
analysed, using the block diagram shown in Fig. 3.16, via the describing
function method, where X is the frozen variable.

Fig. 3.15 Block diagram of the control system with ideal sliding motions in the circuit
highlighted by dots.

Fig. 3.16 Block diagram of the FMS in the system with sliding motions and real dif-
ferentiating filter.

Remark 3.5 Control systems with sliding motions have stimulated active
research in various directions. Systems with high-order sliding modes, in
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particular, currently receive a great deal of attention; see [Emelyanov et al.
(1993); Fridman and Levant (1996); Bartolini et al. (2000); Perruquetti
and Barbot (2002)]. Some recent results related to sliding mode control
systems are represented in [Young and Ozguner (1999)].

3.9 Example

Let us consider the SISO nonlinear continuous-time system given by

x{2) = -x+(l-x2)x{1)+gu + w, (3.43)

where g = 1 + 0.8 sin(i) and we assume that the inequalities

\x(t)\ < 1, \x(1){t)\ < 1, and \r(t)\ < 0.5 (3.44)

hold for all t £ [0, oo). Consider the control law (3.41) with the real differ-
entiating filter (see Fig. 3.13)

H2x{2) + dnj,x{1) +x = x. (3.45)

Let the reference model for x(t) be assigned by

xW = L[r-x].

Then we may employ the following control law:

u = umaxsgn5(r,a:,i (1 ))

= umaxsgn(T-1[r-x}-xW). (3.46)

From (3.42) and (3.44) we find that dV/dt < 0 for um a x > 22.25.
Consider the FMS represented by the block diagram in Fig. 3.16. Let

us assume that there is a limit cycle in the FMS. Determine the limit cycle
parameters via the describing function method and, for simplicity, under
the assumption that F — 0, / — 0. In accordance with the given parameters
we have

Gl{juj) = M-pW + j d ^ + i)

as the frequency-domain transfer function (frequency response) of the linear
part in Fig. 3.16. Let Gi(jto) reveals a low-pass filtering property and

Si(t) = Asw(ut)
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be the first harmonic of the Fourier series for the actual periodic signal S(t)
in the FMS.

The describing function of the ideal relay nonlinearity is

Gn(j,A) = ̂ . (3.47)

Hence, the solution of the first-order harmonic balance equation

l + Gn(j,A)Gi(jto) = 0 (3.48)

yields the frequency u> and amplitude A of the stationary oscillations in the
FMS:

ui — — and A = ; .
/ i TTCti

The oscillations in the FMS induce the oscillations in the output x(t) of
the system (3.43). Let eO3C be the amplitude of the stationary oscillations of
the output x(t). Consider the stationary oscillation signal x(t) represented
by its Fourier series

oo

x(t) = xo + J2ek sin{ku)t + 0fc). (3.49)
k=l

Then, the effect of chattering in the FMS on the output oscillations can
be estimated by the first harmonic in (3.49). Hence, eosc ~ ej, If w is
sufficiently large, it is readily found that

_ \Gn(j,A)g\
e i - — - ^ A

= W^A. (3.50)

From (3.45), (3.50) and taking n = 2, u> = l/jj., we get

eOsc » ei = difj,A.

Let fi = 0.02 s, wmax = 25, and di = 2. Since g G [0.2,1.8], we obtain
w w 50 rad/s, A € [0.06,0.6], and eosc £ [0.0024,0.024].

The simulation results of the system (3.43) controlled by the algorithm
(3.46) for a step reference input r(t) and a step disturbance w(t) are dis-
played in Figs. 3.17-3.18, where the initial conditions are :r(0) = 0.5,
zW(0) = 0.5, x(0) = 0, ^ ( O ) = 0, and T = 1 s. We see that the
simulation results confirm the analytical calculations.
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Fig. 3.17 Simulation results for r(t),x(t), and u(t) in the system (3.43) and (3.46).

Fig. 3.18 Simulation results for S(r(t), x(t), x^ (t)), and w(t) in the system (3.43) and
(3.46).

3.10 Notes

From the above considerations it is easy to see that the analysis of prac-
tically realizable control systems with the highest derivative of the output
signal in the feedback loop, control systems with state vector and high gain
in the feedback loop, and control systems with sliding motions, all lead to
the singularly perturbed equations of the closed-loop system, where slow
and fast motions occur.

Note that in [Vostrikov and Yurkevich (1993b)] the interested reader can
find a survey of the results pertaining to control systems with the highest
derivative of the output signal and high gain in the feedback loop, based on
an approach known as a "localization method". Design of control systems
with the highest derivative in feedback are discussed in such references
as [Vostrikov and Sarycheva (1982); Vostrikov et al. (1982); Vostrikov and
Yurkevich (1991); Vostrikov and Yurkevich (1993a); Yurkevich et al. (1991);
Blachuta et al. (1992)], which are also readily available.
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The main motivations of further development of control system theory
with the highest derivative in the feedback loop, are the following:

• Nonstandard singular perturbation form of the closed loop system equa-
tions (3.24)-(3.25).

• Nonzero steady-state error of the reference input realization if the gain
in the feedback loop has a finite value.

• If a stepwise reference input r(t) is applied, then a high pulse of the
control variable u(t) appears; this distorts the output away from its
desired behavior.

• Reference models in the form of the type 2, 3, and higher systems
cannot be formulated.

• It is not easy to see how such an approach might be extended to cover
digital control system design.

The above mentioned problems may be overcome through the construction
of slightly different control-law structures with the highest derivative in
the feedback loop. The most important purpose achieved in this way is the
development of the uniform approach to continuous as well as digital control
system design, and this will be demonstrated in subsequent chapters.

3.11 Exercises

3.1 The differential equation of a plant is given by

x(2) = x2 + |x(1)| + {1.2 - cos(t)}u. (3.51)

The reference model for x(t) is assigned by

x{2) = -1.2x<~1) -x + r. (3.52)

Consider the control law (3.15) with real differentiating filter (3.22)
where ko = 40, q = 2, /i = 0.1 s, d\ = 3 (see Fig. 3.1). Determine the
FMS and SMS equations. Perform a numerical simulation.

3.2 A system is given by (3.51). Consider the control law in the form of
(3.15) with the desired dynamics given by (3.52) and the real differen-
tiating filter (3.22) where k0 = 40 and q = 2 (see Fig. 3.1). Determine
the parameters fi and dj of (3.22) such that the damping ratio exceeds
0.5 in the FMS and the degree of time-scale separation between FMS
and SMS exceeds 10. Compare with simulation results.
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3.3 Consider the system (3.51). Design the control law (3.34) (see Fig.
3.10) such that the step response parameters of the output x(t) meet
the requirements td « 3 s, ad « 0 %. Determine the gain ko such that
the degree of time-scale separation between FMS and SMS the closed-
loop system (3.51) and (3.34) exceeds 10. Perform a simulation.

3.4 Consider the system (3.51). Design the control law (3.34) with real
differentiating filter (3.22) where q = 1 (see Fig. 3.9). Provide that
the step response parameters of the output x(t) meet the requirements
td « 10 s, ad « 0 %. Determine the gain k0 and /i of (3.22) such that
the degree of time-scale separation between FMS and SMS exceeds 10.
Determine the relationship between damping ratio in the FMS and ko.
Compare with simulation results.

3.5 Consider the system (3.51). Design the control law (3.41) (see Fig.
3.14) such that the step response parameters of the output x(t) meet
the requirements td « 6 s, <jd « 0 %. Determine the sign and magnitude
of Umax such that the condition dV/dt < 0 is satisfied within the region
specified by the inequalities \x(t)\ < 2, |x(1)(i)| < 2, and \r(t)\ < 1.

3.6 Consider the system (3.51). Design the control law (3.41) and real
differentiating filter (3.22) where q = 2 (see Fig. 3.13). Provide that
the step response parameters of the output x(t) meet the requirements
td ~ 3 s, ad « 0 %. Determine the sign and magnitude of umax such
that the condition dV/dt < 0 holds within the region specified by the
inequalities \x(t)\ < 2, |z(1)(*)| < 2, and \r(t)\ < 1. Determine the
relationship between frequency oscillations and parameters umax) Mi
and d\ based on the describing function method under the assumption
that F = 0, / = 0. Compare with simulation results.

3.7 Replace the sign function in the control law (3.41) by each of the fol-
lowing nonlinear functions, and determine the conditions for limit cycle
existence and the limit cycle parameters in the FMS based on the in-
put data of Exercise 3.6, under the assumption that F = 0, / = 0:
(a) saturation, (b) relay with dead zone, (c) hysteresis. Compare with
simulation results.



Chapter 4

Design of SISO continuous-time
control systems

The problem of output regulation of SISO nonlinear time-varying control
systems is discussed in this chapter. The control system is designed to
provide robust zero steady-state error of the reference input realization.
Moreover, the controlled output transients should have a desired behav-
ior. These transients should not depend on the external disturbances and
varying parameters of the plant model. The model of the desired output
behavior in the form of a desired differential equation is considered, with
parameter selection based on the required output step response parameters
(overshoot, settling time). Then an insensitivity condition of the output
transient behavior with respect to the external disturbances and varying
parameters of the system is introduced. The main particularity of the dis-
cussed control law lies in the use of the highest derivative in the feedback
loop. The closed-loop system properties are analyzed on basis of the two-
time-scale technique and, as a result, slow and fast motion subsystems are
analyzed separately.

4.1 Controller design for plant model of the 1st order

4.1.1 Control problem

In this section we consider a nonlinear system of the form

— = f(x,w) + g(x,w)u, x(0) = xo, (4.1)

where t denotes time, t G [0, oo), y = x is the measurable output of the
system (4.1), x G R1, u is the control, u G Q,u C M1, w is the vector of
unknown bounded external disturbances or varying parameters, w G Qw C
M1, and \\w(t)\\ < wmax < oo, wmax > 0.

57
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We assume that dw/dt is bounded for all its components,

\\dw/dt\\ < wmax < oo, (4.2)

and that the conditions

0 < ffmin < \g{x,w)\ < ffmax < OO, \f(x, U])\ < / m a x < 00 (4.3)

are satisfied for all (x,w) e £lx,w, where f(x,w), g{x,w) are unknown
continuous bounded functions of x(t), w(t) on the bounded set £lx,w and
Wmax > 0, gmin > 0, gmaK > 0, / m a x > 0.

A control system is being designed so that

lim e(t) = 0, (4.4)
t—>oo

where e(t) is an error of the reference input realization: e(t) = r(t) — x(t)
and r(t) is the reference input.

Moreover, the output transients should have the desired performance
indices. These transients should not depend on the external disturbances
and varying parameters w(t) of the system (4.1).

4.1.2 Insensitivity condition

The first point of the discussed approach is that the control problem is
restated as a problem of determining the root of an equation by introducing
a reference model equation whose structure is formed in accordance with the
structure of the plant model equations [Boychuk (1966); Vostrikov (1977a)].

From (4.1) it follows that the first derivative of x(t) depends on the
control variable u(t) explicitly, and so x^(t) is called the highest derivative
of the system (4.1).

As any desirable value of the first derivative x^(t) may be maintained
by a proper choice of the control u(t), let us construct the reference model
for (4.1) in the form of the 1st order desired stable differential equation

^ = F(x,r). (4.5)

For example, let us suppose that (4.5) is the linear differential equation

dx 1 . . . .
M=fir-X)> ( 4 6 )

where x — r at the equilibrium for r = const.
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We call (4.5) the desired differential equation, and its right member
F(x, r) a desired value of the highest derivative x^(t) (desired dynamics).
Let us denote

eF = F(x,r)-^, (4.7)

where eF is an error of the desired dynamics realization. Accordingly, if
the condition

eF = 0 (4.8)

holds, then the behavior of x(t) with prescribed dynamics of (4.5) is fulfilled.
The expression (4.8) is an insensitivity condition for the behavior of the

output x(t) with respect to the external disturbances and varying parame-
ters of the system (4.1).

4.1.3 Control law with the 1st derivative in feedback loop

Substitution of (4.1), (4.5), and (4.7) into (4.8) yields

F(x,r)- f(x,w)-g(x,w)u = 0. (4.9)

So, (4.4) has been reformulated as a problem of finding a solution of the
equation eF(u) = 0 when its varying parameters are unknown.

It is easy to see that the root of equation (4.9) is given by

uNID = {g(x, u ) } - 1 ^ , r) - f(x, w)}, (4.10)

where uNID(t) is the analytical solution of (4.9). The control function
u{t) = uNID(t) is called a solution of the nonlinear inverse dynamics (NID)
[Boychuk (1966); Porter (1970); Slotine and Li (1991)].

Remark 4.1 Obviously, the control law in the form of (4-10) may be
used only if complete information is available about the disturbances, model
parameters, and state of the system (4-1)-

In contrast with the approach based on the analytical solution of the
nonlinear inverse dynamics problem, let us consider a radically different
approach that allows us to satisfy the requirement (4.9) on the condition
of incomplete information about varying parameters of the system and ex-
ternal disturbances.

The first way is that, as discussed above, we may consider the system
(4.1) with control law (3.15) where n = 1. As a result, due to the use of a
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differentiating filter of the first order, we will have the closed-loop system
(3.26)-(3.27). But let us devote our attention here to implementation of the
control law with the highest derivative in the feedback loop, which allows
us to incorporate integral action in the control loop without increasing the
controller's order.

First, in order to obtain some justification for the control law structures
introduced below, we notice that the condition (4.8) corresponds to the
minimum value of the following unimodal function:

V(u)=0.5{eF(u)}2. (4.11)

Let us consider V(u) as a Lyapunov function candidate. Then the require-
ment

V{u) _ dV(u) du
dt du dt

can be satisfied for all dV{u)/du ^ 0 by the control law in the form

dii

-jt = -kQVuV(u). (4.12)

This corresponds to the gradient descent method and, by definition, we
have

Vu V{u) = dV{u)/du = -g(x, w)eF. (4.13)

In accordance with (4.3), the condition

sgn(g{x,w)) = const

is satisfied; then, instead of (4.12), we can use

~ = koeF, (4.14)
dt

where we assume that

kog(x,w)>0, V (x,w) e £lXtW.

It is easy to see that an equilibrium of (4.14) is the solution of equation
(4.9).

For the next step, as a generalization of (4.12), let us consider the control
law given by

du
(i— + dou = -fc0VuV(u).

dt
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In a fashion analogous to the above, the control law for the system (4.1)
can be introduced by the following differential equation:

li-r- + dou - koeF, (4.15)
at

where fi is a small positive parameter, fco is a high gain, and do = 1, or
do = 0.

According to (4.6) and (4.7), the control law (4.15) may be rewritten in
the following form:

Mf + d0u = k0{i(r - * ) - § } . (4.16)

This corresponds to a proper transfer function and, therefore, may be re-
alized without an ideal differentiation of x(t).

Remark 4.2 It is easy to see that the linear control law (4-16) may be ex-
pressed in terms of transfer functions. In particular, it may be rewritten in
the form of a so-called two degree-of-freedom feedback system configuration:

_ k0 _ ko(Ts + l)
U ~ T(/j,s + dof T(fis + do)X'

Remark 4.3 For purposes of numerical simulation or practical realiza-
tion, the control law (4-16) may be presented in a state-space form such
as

du\ d0 {do l \ fc0

1 k0
U = —U\ X.

4.1.4 Closed-loop system properties

In accordance with (4.1) and (4.15), the equations of the closed-loop system
are given by

dx
— = f(x,w)+g(x,w)u, x(0) = x°,
fin

H~ =-dou + koeF, u(0) = u°,
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or, from (4.7), its identical form

— = f{x, w) + g(x, w)u, x(0) = x°, (4.17)

dxL \ dx 1
H-jj; = -dou + kolF(x,r)- — \, «(0)=u°, (4.18)

where the highest output derivative x^^t) of the plant model (4.1) is used
in feedback.

Substitution of (4.17) into (4.18) yields the closed-loop system equations
in the form

dx
— = f(x,w) + g{x,w)u, x(0) = x°, (4.19)
(ill

M— = -{d0 + kog(x, w)}u + kQ{F(x, r) - f(x, w)},u(0) = u°, (4.20)

where // is a small positive parameter.
Since /i is small, the closed-loop system equations (4.19)-(4.20) are the

singularly perturbed equations and, accordingly, the singular perturbation
method [Tikhonov (1952); Vasileva (1963); Gerashchenko (1975); Saksena
et al. (1984); Kokotovic et al. (1986); Kokotovic and Khalil (1986); Sastry
(1999)] may be used to analyze the closed-loop system properties; here the
main point is that fast and slow transients have been analyzed separately.

First, let us obtain an equation of the FMS. After introducing a new
time scale t0 = t/fx into (4.19)-(4.20) we have

^- = fi{f(x, to) + g(x, w)u}, a;(0) = x°, (4.21)

^L = -{d0 + kog(x, w)}u + ko{F(x,r) - f(x, w)}, u(0) = u°. (4.22)
ato

By virtue of (4.21)-(4.22) we have dx/dto —> 0 as \x —> 0. Accordingly,
in the new time scale to from (4.21)-(4.22) we obtain the fast-motion sub-
system (FMS)

^- = -{do + kog(x,w)}u + ko{F(x,r)-f(x,w)}, u(0) = u°, (4.23)
ato

where we assume that x{to) « const during the transients in the subsystem
(4.23).
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By returning to the primary time scale t, from (4.23) the equation of
the FMS

/ i ^ + {d0 + kog(x, w)}u = ko{F(x,r) - f(x, w)} (4.24)
at

is obtained. Here we assume that the state x(t) of the plant model (4.1)
and, in accordance with (4.2), the vector w(t) of external disturbances and
varying parameters, are constants during the transients in the FMS (4.24),
i.e., w(t) = const and x(t) = const (frozen variables).

Note that the FMS (4.24) is described by a linear differential equation.
It is easy to see that the asymptotic stability1 and desired sufficiently small
settling time of the transients of u(t) can be achieved by a proper choice of
the parameters /i, fc0.

Second, let us obtain an equation of the slow-motion subsystem (SMS)
under the condition of FMS stability. After the rapid decay of transients
in (4.24), we have the steady state (more precisely, quasi-steady state) for
the FMS (4.24), where

u{t) = us{t)

and

u'= , *\ -AF(x,r)-f(x,w)}. (4.25)

From (4.10) and (4.25) it follows that

u* = uNID + .do ,{f(x, w) - F(x, r)}.
[do + kog{x,w)]g{x,w)

If the steady state of the FMS (4.24) takes place, then the closed-loop
system equations imply that

| - J P " - f » + A + M » . . ) ( / ( J - " - J P ( l - r > ) ( t 2 6 )

is the equation of the SMS, where (4.26) is an equation with nonvanishing
perturbation such as (1-26) and the desired equation (4.5) plays the role of
the nominal system (1.2).

As a result of (4.26), if do = 1 and \ko\ —» oo, then the transients of x(t)
in the SMS are close to the transients of the reference model (4.5).

1As the FMS (4.24) is linear, the asymptotic stability of its unique equilibrium point
is the same as exponential stability. In short, the FMS is stable.
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If do = 0, then the SMS (4.26) is the same as the reference model
(4.5) and the desired output behavior is fulfilled. Moreover, in this case
the integral action is incorporated into the control loop without increasing
the controller's order and, accordingly, the robust zero steady-state error is
maintained, i.e., es = 0.

Therefore, fast motions occur in the closed-loop system such that after
fast ending of the fast-motion transients, the behavior of the overall singu-
larly perturbed closed-loop system approaches that of the SMS, which is
the same as the reference model.

4.2 Controller design for an nth-order plant model

4.2.1 Control problem

Let us consider a SISO nonlinear time-varying continuous-time system in
the form

x^ = f(X,w) + g(X,W)u, y = x, X(Q) = X°, (4.27)

where the variables are defined as follows:
y is the output of system (4.27), available for measurement, i /eR1;
X = {:r,:r(1),... ,x^n-^}T is the state vector of the system (4.27);
X(0) = X° is the initial state, I ° e Q x ;
fix is a bounded set, S l x C l " ;
u is the control, u £ Q,u C M1;
fiu is a bounded set of allowable values of the control variable;
w is the vector of external disturbances or varying parameters, w € f2w;
Q,w is a bounded set, flw C K'.
Note that the components x^l\ ..., x^n~lS) of the state vector X(t) and

the vector w(t) are unavailable for measurement.

Assumption 4.1 The nonlinear functions f(X,w), g(X,w) are smooth
for all (X,w) € fix,w = &x x &w, and the analytic expressions for these
functions are unknown.

Assumption 4.2 The conditions

\f(X,W)\ </max<0O, 0 < 5 m i n < |fl(X, w) \ < 5 m a x < OO (4.28)

are satisfied for all {X,w) 6 Clx,w, i-e-> the functions f(X,w),g(X,w) are
bounded for all (X,w) on the specified bounded set Q,x,w



Design of SISO continuous-time control systems 65

Remark 4.4 The influence of the external disturbances and varying pa-
rameters of the system (4-27) is expressed by the dependence of the functions
f(X,w), g{X,w) onw.

A control system is being designed to satisfy the condition

lim e(t) = 0, (4.29)
t—»oo

where e(t) is the error of the reference input realization, e(t) — r(t) — y(t),
and r(t) is the reference input. Moreover, the controlled transients should
have the desired behavior. These transients should not depend on the
external disturbances and varying parameters of the system (4.27).

4.2.2 Insensitivity condition

From (4.27) it follows that any desired value of the nth derivative x^(t)
may be assigned by a proper choice of the control u(t). Therefore, let us
construct the reference model for (4.27) in the form of the nth-order desired
stable differential equation.

In the general case the reference model of the desired output transients
x(t) for the system (4.27) may be assigned by some stable differential equa-
tion

x(n) = iT(a;(n-l)j . . . ] I ( l ) i I i r (P ) ) . . . y V ) , (4.30)

where p < n and x = r at the equilibrium of (4.30) for r = const.
We call (4.30) the desired differential equation and its right member F

the desired value of the highest derivative x^n\t) (desired dynamics).
Let us rewrite (4.30) in the form

XW=F(X,R), (4.31)

where R — {r, r^\..., r^}T and x = r at the equilibrium for r = const.
Denote

eF = F-x{n\ (4.32)

where eF is the deviation of x^ from F.
The value eF is called the error of the desired dynamics realization which

is assigned by equation (4.31).
Accordingly, if the condition

eF = 0 (4.33)
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holds, then the desired behavior of x(t) with prescribed dynamics of (4.31)
is fulfilled.

Expression (4.33) is the insensitivity condition for the behavior of the
output x(t) with respect to the external disturbances and varying parame-
ters of the system (4.27).

In accordance with (4.27), (4.31), and (4.32), expression (4.33) may be
rewritten in the form

F(X,R)-f(X,w)-g{X,w)u = O. (4.34)

So, the control problem (4.29) has been reformulated as the requirement to
provide the condition (4.33) or, in other words, to find a solution to (4.34)
when its varying parameters are unknown.

If the condition

g(X, w)?0, V (X, w) G aXlV, (4.35)

is satisfied, then the control function

u{t) = uNlD(t)

exists such that uNID(t) is the unique solution of (4.34):

uNID = {g{X)W)}-l{F{X,R) - f(X,w)}. (4.36)

This is called the nonlinear inverse dynamics solution and, as noted before,
the function uNID(t) may be realized in practice as the control function if
and only if we have access to complete information about the disturbances,
model parameters, and state of the system (4.27).

4.2.3 Control law with the nth derivative in the feedback
loop

In order to keep hold of (4.33) under the assumption of unknown external
disturbances and varying parameters of the system (4.27), let us consider
the control law given by the following differential equation:

fiqu^ + dq-nj.q-1u^-1'> + •••+ dxim^ + dou

= -k0VuV{u), U{0) = U°, (4.37)

where /x is a small positive parameter and

q > n, d0 = 1 or d0 = 0, dj > 0, V j = 1,..., q - 1,
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C/ = {u,u(1>,...,u<«-1>}T, UenucR", C/(0) e fi£, c fy/.

From (4.28) we know that the condition

sga(g(X,w)) = const, V (X,w) e fix,w

holds; hence, instead of (4.37) and, in accordance with (4.13), from (4.37)
a control law of the form

Hquiq) + d , . ! ^ - 1 !^ - 1 * + • • • + di/xu(1) + dou = koeF, 1/(0) = U° (4.38)

can be constructed where it is assumed that the condition

kog{X, w)>0, V (X, w) G nx,w (4.39)

holds.

If the desired differential equation (4.31) is assigned by (2.6), then from
(4.38) the control law

Liqu{q) + dq-lfxq-1u(-q-1) + ••• + diM«(1) + dou

= ^ { - T n x ^ - adn_xTn-lx^-^ aiTx^ - x + r] (4.40)

follows, where the nth derivative of x[t) in the feedback signal is used.
Accordingly, in case of (2.8) the control law (4.38) may be presented in

the form

^ u ( 9 ) + d , . ! ^ " 1 ^ 9 " 1 ) + • • • + di/m(1) + dou

= ^{-Tnx^ - oj.jr-1^-1' afTx^ - x

+ bdpTPr^ + fcJ^T'-M'-1) + • • • + bfrrM + r}. (4.41)

It easy to see that the linear differential equation (4.41) may be ex-
pressed in terms of transfer functions, and (4.41) may be rewritten as the
two degree-of-freedom feedback system configuration

u = k^*Lr-k^\x, (4.42)
D(fj,s) D{yLs)

where

* = ^n (4.43)

and

D{ns) = nqsq + dq-in^s"-1 + ••• + dms + d0. (4.44)
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Below we will assume that do = 1 or do = 0.

Remark 4.5 Let us denote q = degD(/is), n — deg Ad(s), p = deg Bd{s).
If Q >n, Q > P then the control law (4-42) corresponds to a proper transfer
function and, therefore, may be realized without an ideal differentiation of
x(t) or r(t).

Remark 4.6 If the cost function is assigned by (4-11), then the control
law (4-37) is related to the continuous algorithm of the higher order opti-
mization introduced in [Tsypkin (1971)1. If q — 1 and d0 = 0, then (4.37)
reduces to the differential descent equation. The problem of output regula-
tion in the context of mechanical control systems was also discussed as the
optimization problem using the criterion of minimum acceleration energy
in [Krutko (1991); Krutko (1995); Krutko (1996)].

Remark 4.7 For numerical simulation or practical realization, the con-
trol law (4-41) can be presented in state-space form. Standard procedures
for obtaining state equations from transfer functions may be found in many
references, e.g., [Brogan (1991); Wolovich (1994)]-

4.2.4 Fast-motion subsystem

Standard singular perturbation form of closed-loop system

We now know that the behavior of the closed-loop system under consider-
ation is described by the following differential equations:

xM = f(X, w) + g(X, w)u, X(0) = X°, (4.45)

M 9 u ( 9 ) + dq-uiq-lu^-^ + ••• + d i / i u ^ + dou

= ko{F(X, R) - !<">}, 17(0) = U°. (4.46)

In order to analyze the closed-loop system properties, let us consider some
transformations. First, substituting (4.45) into the right member of (4.46),
we get

x(n) = f(Xt w) + g(Xj w}Uj X{0) = X°, (4.47)

//%(«> + dq-1iJL9~1u{q-1) + ••• + di/xu(1) + {d0 + kog(X, w)}u

= ko{F(X,R)-f(X,w)h U(0) = U°. (4.48)
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Next, the equations of the closed-loop system (4.47)-(4.48) may be rewrit-
ten in the following vector form:

d . .
—Xi = xi+i, i = l , . . . , n - l ,
at

^xn = f + guu X(0) = X°, (4.49)
at

lijtuj=uj+1, j = l,...,q-l, C/i(O) = f/1°I

fJ.-r:Uq = -{do + kog}ui dq-iuq + ko{F - / } , (4.50)
at

where

C/i = {ui,u2,...,uq}T

and

Uj = ^-'u^-V, Vj = l , . . . ,g . (4.51)

Note that /, g are functions of X(t) and w(i).
Since ji is a small parameter, the closed-loop system equations (4.49)-

(4.50) are the singularly perturbed differential equations. If fi —» 0, then
fast and slow modes are forced in the closed-loop system and the time-scale
separation between these modes depends on the controller parameter /x. The
closed-loop system properties can be analyzed on basis of the two-time-scale
technique [Tikhonov (1952); Vasileva (1963); Gerashchenko (1975); Saksena
et al. (1984)] and, as a result, slow and fast motion subsystems are analyzed
separately. This, along with Theorem 1.3 on hand, gives the justification,
it will be shown in later sections, that stability conditions imposed on the
fast and slow modes, and a sufficiently large mode separation rate, can
ensure that the full-order closed-loop system achieves desired properties:
the output transient performances are as desired, and they are insensitive
to parameter variations and external disturbances.
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Fast-motion subsystem equation

Let us introduce the new fast time scale to — t/fj, into the closed-loop
system equations (4.49)-(4.50). We obtain

d
—Xi=iixi+i, i = l , . . . , n - l ,
ato

—xn=fi{f + gUl}, (4.52)

d
-rruj=uj+i, j = l,...,q-l,
ato

—uq = -{d0 + fcosjui - diu2 dq-iuq + ko{F - / } , (4.53)

as the closed-loop system equations in the new time scale t0.
It is easy to see that as /x —* 0, we get the FMS equations in the new

time scale to, that is

d
j , <&i — U ) ^ — 1 , . . . , 7 1 ,

ato
—Uj=ui+1, J = l 9 - 1 ,

— u q = -{d0 + kog}ui - dxu2 dq-\uq + ko{F - / } .
ato

Then, returning to the primary time scale t = fito, we obtain the following
FMS:

Xi = const, i = 1 , . . . , n,

H—Uj=uj+i, j = l,...,q-l,

H-rtuq = -ido + hg}ui - dxu2 dq-iuq + ko{F - / } . (4.54)

These may be rewritten as

ixqu^ + dg-nj,"-1^-1) + ••• + di/xu(1) + {do + kog(X, w)}u

= ko{F(X,R)-f(X,w)}, U(0) = U°, (4.55)

where the vector X(t) and, in accordance with (4.2), the vector w(t) of ex-
ternal disturbances and varying parameters are constants during the tran-
sients in (4.55), i.e., X(t) = const and w(t) = const.
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Note that the FMS (4.55) is a linear differential equation with frozen
parameters; hence, linear control system methods can be applied for sta-
bility analysis of (4.55). We summarize the main results in the following
theorem.

Theorem 4.1 7//i —> 0, then in the closed-loop system (4-27) and (4-38)
the two-time-scale motions appear where the FMS is described by equation
(4-55).

Remark 4.8 If \x is sufficiently small, the condition d0 + kog{X,w) «
const holds during the transients of the FMS (4-55). Accordingly, the FMS
(4-55) may be examined as the linear differential equation, where F(X,R)
and f(X, w) play the role of disturbances.

Let us denote

j(X, w) = do + kog{X, w).

Remark 4.9 As the value of g(X,w) is unknown, then in accordance
with (4-^8) and (4-39) we know only that the inequalities

0 < 7mm < l(X, w) < -ymax (4.56)

are satisfied for all (X,w) G Qx,w> i-e-, i(X,w) is bounded and positive-
valued for all (X,w) in the specified set flx,w

Remark 4.10 The parameters fi, ko, do, • • •, dq-\ can be chosen so that
the asymptotic stability and sufficiently small settling time of the FMS
(4-55) are achieved for all possible values 7 from the given interval (4-56).

Steady state of the fast-motion subsystem

Suppose the FMS (4.55) is stable. Taking /1 —» 0 in (4.55) we get

u(t) = u"(t), (4.57)

where us(t) is a steady state (more precisely, quasi-steady state) of the FMS
(4.55) and

k
uS = d0 + k09{x,w)Wx>V-Kx>w»- <4-58)
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Note that by (4.36) the expression (4.58) may be rewritten in the following
form:

[do + kog(X,w)}g[X,w)

There are two special cases here.

(a) If do 7̂  0 (in particular, if d0 = 1), then from (4.58) it follows that

lim us(k0) = uNID.
|fco|—»oo

(b) If dQ = 0, then from the FMS (4.55) we obtain

lim u(/i) = us = uNID.

As a result of the above, we find that if kog/do —> oo, then the FMS
steady state us(t) tends to the nonlinear inverse dynamics solution uNID(t)
given by (4.36).

4.2.5 Slow-motion subsystem

Let us assume that the FMS (4.55) is asymptotically stable. By letting
fi -> 0 in (4.47)-(4.48), we find that

x(n) = F(X,R)

+ ̂  x A y M(X,W)-F(X,R)}, X(0) = X° (4.59)
do + kog{X,w)

describes the SMS.
We therefore have the following theorem.

Theorem 4.2 If the FMS (4-55) is asymptotically stable, then, after the
rapid decay of fast-motion transients, the behavior of the SMS is described
by (4-59).

Note that if d0 ^ 0 (e.g., d0 = 1) then from (4.59) we have

lim xW(ko) = F(X,R),
|fco|->oo

i.e., lim|fc()|_oo eF(k0) = 0. In other words, the equation of the SMS, (4.59),
tends to the desired differential equation (4.31) if the high gain fco is used
(more precisely, if the condition

kog(X,w)>do (4.60)
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holds). On the other hand, if do — 0 then from (4.47)-(4.48) the expression

lima;(n)(/x) = F(X,R)

follows, i.e., limM_,o ei?(/x) = 0. In contrast to the previous case, the SMS
equation is the same as the desired differential equation (4.31) even if

kog « 1.

In this case the integral action is incorporated in the control loop without
increasing the controller's order and, accordingly, the robust zero steady-
state error, es = 0, of the reference input realization is maintained in the
closed-loop system.

Theorem 4.3 / / kog/do —* oo, then the SMS equation (4-59) tends to
the desired differential equation (4-31), i.e., lim eF = 0.

hog/do—>oo

Remark 4.11 Note, that the SMS equation tends to (4-31) despite the
fact that there are varying parameters of the plant model (4-27) and un-
known external disturbances. Accordingly, the desired output transients are
guaranteed in the closed-loop system after fast damping of FMS transients.
So, if a sufficient time-scale separation between the fast and slow modes in
the closed-loop system and stability of the FMS are provided, then the out-
put transient performance indices are insensitive to parameter variations
and external disturbances in (4-27).

4.2.6 Influence of small parameter

Let us consider the subsystem (4.53) in the closed-loop system equations
(4.52)-(4.53) represented in the new time scale t0, i.e., the FMS given by

4-Ui = AFMSU, +BFMSk0{F(X,R) - f(X,w)}, (4.61)
UXQ

where

" 0 1 ••• 0 ] r 0 '
0 0 ••• 0 0

A = H _

0 0 • • • 1 0

. - 7 -di ••• - c ^ - i J L 1 .

7 = d0 + kog(X,w), and U\ is the state vector defined by (4.51).
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Assume that the FMS is stable. Then, from (4.61), we find that

Ui=-A-LsBFMSko{F-f}

is the unique equilibrium point; in particular, from (4.54) it is clear that
Uf - [u\ ,0, • • • ,0]T, where u{ is defined by (4.58). For the sake of sim-
plicity, put d0 = 0 so that u{{t) = uNID(t). By (4.36) we have uNID{t) =
<p(X, R, w). Assume that both R and w are smooth and bounded; then the
function duNID{t)/dt — d<p(X,R,w)/dt is bounded as well. Note that

df0Ul ~ ^JtUl

= Hjtv{X,R,w)

= /J.'fiiX, X(X, R, w), R, R, w, w). (4.62)

Denote

AU1 = U1-U^ID. (4.63)

By differentiating (4.63) with respect to to and using (4.61), we get

-£-&U! = AFM8&Ui + w(X,R,R,w,w), (4.64)

where AFMS is the matrix with the frozen parameter ^(X, w). The function
<p plays the role of perturbation in the FMS (4.64).

The stability of the system (4.64) and an error caused by finiteness of
the small parameter \x may be investigated by Lyapunov's method as was
done for the system (1.26). In addition, the criteria r\\, r/2, and % (see p.
15) can be used to estimate the degree of time-scale separation between
stable fast and slow motions in the closed-loop system.

4.2.7 Geometric interpretation of control problem solution

Let Xs be the state vector of the closed-loop system (4.49)-(4.50), where
Xs = {XT,U[}T, X = {xi,x2,.--,xn}T, a n d Ux = {ui,u2,..., uq}T.

So, the state space of the closed-loop system (4.49)-(4.50) is the Cartesian
product

fis = Q.x x Q,Ul.

The set of trajectories of the closed-loop system, considered as a flow, is
stratified into a fast flow in Q.u1 and a slow flow in Slx as /i —> 0, where we
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have contractile flow of the FMS into a neighborhood of the point Uf (t) and
contractile flow of the SMS into a neighborhood of the point {r, 0, . . . , 0}T

for r = const.
Let us define the manifold Mp as the set

MF = {(x<"U,«) I x(n) ~ F{X,R) = 0},

which corresponds to the desired differential equation (4.30). The manifold

Mp = { ( i ( n U , u ) I *(n) - f(X,w) - g(X,w)u = 0}

is the set of points (x^n\X, u) satisfying the plant model given by (4.27).
Then the control problem solution corresponds to the motion along the
intersection of Mp and Mp:

M2 = MF n Mp,

Fig. 4.1 Geometric interpretation of control problem solution in the system with the
highest derivative of the output signal in the feedback loop.

4.3 Example

Consider the control law given by (4.41). By taking q = n = 2, we obtain

^u^+dlixu^+dQu = kQ{-x^-^x^ + h^r^ + ~[r-x]}. (4.65)

as shown in Fig. 4.1
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Let us rewrite the control law (4.65) in state-space form, e.g.,

H \ n T J T2

dn , fdn 1 ] fa .
U2 = __ | W l + fco|_|___|x + _^ r ) (4.66)

Then, from (4.66), we get the block diagram as shown in Fig. 4.2.

Fig. 4.2 Block diagram of the control law (4.65) represented in the form (4.66).

4.4 Notes

It has been shown that the discussed dynamical control law with the highest
derivative of the output signal in the feedback loop allows us to represent
the closed-loop system in the form of the standard singular perturbation
system. In particular, the singularly perturbed part of this system consists
of the equations of the constructed controller, where the controller corre-
sponds to a proper transfer function and, therefore, may be realized without
an ideal differentiation of the output variable or the reference variable.

As a result, two-time-scale motions are induced in the closed-loop sys-
tem, where stability of the fast transients and the desired degree of time-
scale separation between the fast and slow motions can be provided by
choice of controller parameters. Then, after the fast motion transients have
ended, the behavior of the overall closed-loop system gets close to the be-
havior of the slow motion subsystem. Moreover, by choice of controller
parameters it is possible to ensure that the slow motion subsystem is the
same as the assigned reference model.
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We can now enumerate the main steps of the design procedure for non-
linear control systems with the highest derivative in the feedback loop and
plant model given by (4.27).

• The model of the desired output behavior in the form of the nth-order
desired differential equation (4.30) is introduced. Its parameters are
selected based on the required output step response parameters (over-
shoot, settling time). As a result, the output regulation problem (4.29)
is reformulated as the requirement to provide the insensitivity condition
(4.33).

• The control law structure is chosen in the form of the differential equa-
tion (4.38), where the highest-order derivative x^ is used in the feed-
back loop. If the desired differential equation (2.8) is used, then (4.38)
has the form (4.41) and, in accordance with Remark 4.5, the control
law (4.41) may be realized without an ideal differentiation of x(t) or
r{t).

• The closed-loop system properties are analyzed on the basis of the two-
time-scale technique and, as a result, the FMS equation (4.55) and the
SMS equation (4.59) are obtained.

• Finally, the parameters fx, ko, and dj of the control law (4.38) should
be selected based on the (1) required stability of the fast transients, (2)
desired degree of time-scale separation between the fast and slow modes,
(3) required control accuracy and rejection of external disturbances
in the closed-loop system, and (4) and required high-frequency sensor
noise attenuation.

Problems concerning the final step of this design procedure are discussed in
detail in the next chapter. There we clarify the implementation of the con-
trol systems we have discussed, while at the same time making allowances
for various practical restrictions.

4.5 Exercises

4.1 A behavior of a plant is described by the equation

z(2) = x + x\x(1)\ + {2 + sin(t)}u.

Assume that the inequalities

|a:(*)| < 2, |z(1)(i)| < 10, \r(t)\ < 1, |«(t)| < umax
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hold for all t £ [0,oo). The reference model is chosen in the form

xW = -2xw-x + r.

Determine the lower bound of umax for which the desired behavior of
the plant can be provided in the specified region.

4.2 The differential equation of a plant is

x{2) =x + x\x{1)\ + {2 + sin(i)}u,

while that of the reference model is

x{2) = -3.2z(1) - x + 3.2r(1) + r.

Construct the control law in the form of (4.41) where q = 3. Determine
the FMS and SMS equations from the closed-loop system equations.

4.3 The differential equation of a plant is

x{1) = x2 + {1.5 - sin(t)}u.

The step response parameters of the output x{t) should meet the re-
quirements td « 3 s, ad « 0 %. Construct the control law in the form of
(4.40) where q = 2. Determine the FMS and SMS equations from the
closed-loop system equations.

4.4 The differential equation of a plant is

z(2) = xx{l) + |x| + {1.2 - cos(t)}u.

The step response parameters of the output x(t) should meet the re-
quirements if « 1 s, ad « 10 %. Construct the control law in the form
of (4.40) where q = 2. Determine the FMS and SMS equations from
the closed-loop system equations.

4.5 The differential equation of a plant is

x(3) = x(2) + x(l) + IJ.J2 + { 1 1 + c o s ( a ; ) } u .

The step response parameters of the output x(t) should meet the re-
quirements td w 3 s, ad fa 0 %. Construct the control law in the form of
(4.40) where q = 3. Determine the FMS and SMS equations from the
closed-loop system equations. Obtain a state-space representation and
sketch the block diagram of the control law.

4.6 Obtain a state-space representation and sketch the block diagram of
the control law (4.41) where q = 3,n = 3,p = 1.



Chapter 5

Advanced design of SISO
continuous-time control systems

In Chapter 4 we presented a qualitative analysis of the properties of SISO
continuous-time systems with the highest derivative in feedback control.
This analysis was based on the singular perturbation method. In the present
chapter we obtain relationships helpful in choosing the control law parame-
ters of (4.38). We seek robustness of the closed-loop system properties in a
specified region of the state space of the system under the assumption that
we lack complete information about varying parameters of the system and
external disturbances.

We begin by discussing the problem of accuracy analysis and the choice
of the high gain in accordance with the requirements of control accuracy
and rejection of external disturbances. As the FMS equation (4.55) is a
linear differential equation, the results of linear control theory may be used
to analyze the FMS properties. Therefore, in the next part of the chap-
ter, the design of control law parameters based on desired root placement
of the FMS characteristic polynomial is presented. Finally, the influence
of high-frequency noisy measurements and varying parameters, as well as
the application of the frequency domain approach to make a choice of the
controller parameters, are considered.

5.1 Control accuracy

5.1.1 Steady state of fast-motion subsystem

Let us consider the closed-loop system equations (4.45)-(4.46). The rela-
tionships used to choose the high gain k0 in the control law (4.38) can be
based on the requirements placed on the error of the output behavior under
either of the conditions that the steady state of the FMS or that of the SMS

79
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occurs.
Let us assume that a steady state of the FMS (4.55) occurs, i.e., that the

condition (4.57) holds. Then, instead of the insensitivity condition (4.33),
we may consider the requirement

\eF(us)\ < eLx, (5.1)

which should be satisfied within the bounded domains Qx,R and Q,w. By
definition,

eF is the error of the desired dynamics realization and the desired
dynamics are assigned by (4.31),

emax = ^F-^maxi
EF is a relative error of desired dynamics realization, for example, e> 6
[0.01,0.1],
-Fmax is a constant defined by Fm a x = maxnx R \F(X, R)\,
Qx,R is a bounded set.

In accordance with Theorem 4.3, it is easy to see that the requirement (5.1)
can be provided by proper choice of the parameters ko, do. In particular,
from equation (4.59) for the SMS the expression

eF = L , / ! / y J iF(X,R) - f(X,w)} (5-2)

follows, where by direct calculation we can find that (5.2) is the same as

F do s
e = — u .

k0

Substitution of (5.2) into (5.1) gives

, [ max \F(X,R)-f(X,w)\ "

\ko\>^- ^ ^ F 1 , (5-3)
5min ''max

where ko corresponds to (5.1) and gmm is denned by (4.28).

5.1.2 Steady state of slow-motion subsystem

Let us consider a steady state of the SMS (4.59) by assuming that the

conditions

X = Xs = {xs, 0 , . . . , 0}T, x{t) = xs = const, and r(t) = rs = const
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are satisfied in (4.59). Then we have

e = es, es =rs - xs.

Let the allowable steady-state error of the reference input realization be
assigned by the requirement

\e'(X',w)\<e'max, (5.4)

where

emax ~ £rrmaxi

rmax = max \r(t)\,
te[o,oo)

er is a relative error of the reference input realization, e.g., er € [0,0.1].

From (4.59) and (2.8) it follows that

doT»f{X;w)
6 - ~ kog{X;w) • ( 5 ' 5 )

Then by (5.5) and (5.4) we see that (5.4) is satisfied in a specified region
assigned by the inequalities (4.28) if the condition

N -^ ("O-L /max / r ^ \

- e* 0 • ( 5 -6 )
emaxi<min

holds.
So if do ^ 0, then (5.3) and (5.6) may be used to choose the high gain

ko in accordance with the requirements on admissible error of the output
behavior.

If d0 = 0, then the integral action is incorporated in the control loop
without increasing the controller's order and, accordingly, the robust zero
steady-state error of the reference input realization is provided. In this
case we need not employ a large gain /c0. From a practical viewpoint the
advisable selection of fco corresponds to the condition hog « 10. Note that a
decrease in hog leads to an increase in the dynamical error of the reference
input realization under the condition of a ramp reference input or a ramp
disturbance. This effect can easily be shown based on the expression for
the velocity error discussed below.
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5.1.3 Velocity error due to external disturbance

Let us consider a SISO linear continuous-time system in the form

x(n) = aX + bu + bw, X{0) = X°, (5.7)

where X = {x,i;(1 ) , . . . , a ; ( n ~ 1 ) } T , a = {ao,ai,... ,an_i} is a row vector of
real constant coefficients, a S R l x n , b = const, b — const, and y = x.

Substituting do = 0 into (4.41), we obtain the control law

Hqu{q) + d ^ ^ - V ' " 1 * + • • • + duly,™

= ^{-Tnx^ - a ^ T " - V " - 1 ) afTx^ - x

+ bfrPrM + tf^TP-WP-V + ••• + bfrrW + r}. (5.8)

Let us also assume that r(i) — const and the external disturbance w(t) is
a signal of type 1 (ramp external disturbance):

w(t) = wvtl(t).

Then the steady state of the closed-loop system (5.7) and (5.8) gives

lim x(t) = xv,
t—too

where xv = const.
Let us introduce the following notation:

evw is a velocity error due to the external disturbance w(t), where evw =
r-xv,
~e"w is a relative velocity error due to the external disturbance w(t),
where e^ = e.^/wv.

It is easy to find that

&w~ kob • l & i 9 j

At the same time, in the closed-loop system (5.7) and (5.8) the following
limit exists:

lim {u(t) - u(t)} = 0,

where

u(t) = -j{r-el}-\Wvtl{t). (5.10)



Advanced design of SISO continuous-time control systems 83

5.1.4 Velocity error due to reference input

Assume w(t) = 0 and the reference input r(t) is a signal of type 1 (ramp
reference input):

r(t) = rvtl{t).

On one hand, we consider the reference model assigned by (2.6) and, ac-
cordingly, have the desired differential equation (4.31) in the form

XM = T - ^ - a ^ T " - 1 ^ " - 1 ) afTx^ -x + r}. (5.11)

Then the steady state of the closed-loop system (5.7) and (4.40) gives

Urn {r(t) - x(t)} = el

and

lim {u(t) - u(t)} = 0,
t—KDO

where

K = 4T-a-^, (5.12)

In the above expressions the following definitions are used:

evr is a velocity error due to the reference input r(t),
e% is a relative velocity error due to the reference input r(i), where
e»r = eJVr" .

On the other hand, let us consider a reference model assigned by (2.10).
Then we obtain

er-~^r~' (5-13)
where the first term in the right member of (5.12) caused by the properties
of (5.11) disappears completely. This highlights the importance of using a
reference model of the form (2.10) when seeking high accuracy in output
tracking control.

It is easy to see that the sufficiently small relative velocity error ~e"r

due to the reference input r(t) in (5.13) can be achieved by decreasing the
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parameter fj, for the given value kob. Note that increasing kob affects the
FMS stability.

5.1.5 Control law in the form of forward compensator

A block diagram of an SISO nonlinear time-varying continuous-time system
(4.27) with a control law in the form of a forward compensator is shown in
Fig. 5.1. Here the control law with the nth derivative of the error e(i) in
the feedback signal is given by the differential equation

Hqu^ + dg-i/x9-V9"1) + • • • + difiu^ + dou

= ^{-Tne^ - a ^ T " - V " - 1 ) afTe^ - e}, (5.14)

where e = r — x and q > n.

Fig. 5.1 Control law in the form of forward
compensator.

We may express (5.14) in terms of the transfer function

—*0e, (5.15)

where k and D(^s) are given by (4.43) and (4.44).
In particular, let us consider the SISO linear continuous-time system

(5.7). If do = 0, w{t) = 0, and the reference input r(t) is a signal of type 1,
then from (5.7) and (5.14) it follows that the relative velocity error evr due
to the reference input r(t) is equal to (5.13).

To conclude this section, we note that the system with control law in the
form of the forward compensator (5.14) is more sensitive to nonsmoothness
of the reference input r(t), and displays a peaking phenomenon. This will
be illustrated below in an example (see Fig. 5.18).

The expressions above can be used to calculate ko and /J, in accordance
with the requirements placed on control accuracy of the desired output
behavior realization for x(t) if the steady-state motion of either the FMS
or the SMS takes place. This does not suffice in practice, however, because
some additional requirements must be maintained. These are associated
with performance of the fast-motion transients. Therefore, the choice of
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control law parameters in accordance with requirements placed on damping
and settling time of transients of the FMS (4.55) is discussed below.

5.2 Root placement of FMS characteristic polynomial

5.2.1 Degree of time-scale separation

From Theorems 4.2 and 4.3 (see p. 72) it follows that the desired behavior
for x(t) and the insensitivity of the step response parameters of the output
transients with respect to the external disturbances and varying parameters
of the system (4.27) occur on the condition of the steady state of the FMS
(4.55). Accordingly, the stability of the FMS and a sufficient time-scale
separation between the fast and slow modes in the discussed closed-loop
system should be provided. Consequently, the control law parameters of
(4.38) should be designed to obtain a sufficiently small settling time of
FMS transients. Note that from a technical viewpoint, it is also desirable
to provide an acceptable level of oscillation excited in the FMS (4.55).

Let the FMS transients of (4.55) be required to satisfy the inequality

ts,FMS<tiFMS, (5.16)

where £S,FMS is the settling time of the FMS and td.pMs is a desired (per-
missible) settling time.

The desired time td,FMS depends on the requirement placed on time-
scale separation between the fast and slow modes in the closed-loop system.
For example, suppose that

j.d ^ ^3.SMS / r i 7 \

where

ts,sMs is *ne settling time of the SMS (we usually assume that ts SMS «
td)
tds is a desired settling time of the output transients of (4.27),
T\ is a degree of time-scale separation between the fast and slow modes
in the closed-loop system (we usually assume that r\ > 10).

Note that if the degree of time-scale separation is sufficiently large, then
the FMS equation (4.55) may be examined as a linear differential equation
and, accordingly, linear control theory may be used to analyze the FMS
properties.



86 Design of nonlinear control systems with the highest derivative in feedback

5.2.2 Selection of controller parameters

Let us consider the choice of control law parameters based on desired root
placement of the FMS characteristic polynomial. First, assume that the
degree 77 of time-scale separation between the fast and slow modes is suffi-
ciently large so that the condition

g(X, w) « const

holds during the transients of the FMS (4.55). Then we may examine
(4.55) as a linear differential equation. The resulting FMS characteristic
polynomial

DFMS(S) = ^s<1 + dq-.1nq-1 s"-1 +••• + dins + {d0 + kog} (5 .18)

can be rewrit ten as

FMS do + kog d0 + kog d0 + kog K '

Second, we see that the assignment of a desired root placement for the
FMS characteristic polynomial can provide the desired fast-motion tran-
sients. Just as the characteristic polynomial (2.3) of the reference model
was formed (see p. 26), let us find the allowable root region of the FMS
characteristic polynomial (5.18). This region is assigned by 0FMS and ^>dFMS

(see Fig. 5.2), where

£FMS = C O S ( C J i s a desired damping ratio of the FMS,
u>dMS is a desired damped or actual frequency of the FMS.

Fig. 5.2 Allowable root region of the FMS
characteristic polynomial (5.19).

In order to find wdFMS and 9fMS for given tdtFMS and ̂ fMS, the ex-
pressions (2.5) can be used. Then, by selection of the q roots s± , s2 ,
. . . , sq in the allowable complex domain, the desired FMS characteristic
polynomial

FMS FMS FMS

[ s - s 1 ) ( s - s 2 ) - - - ( s - s q )
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is assigned. Let us rewrite it in the form

D L S ( S ) = dts" + ^ - i 5 ' " 1 + --- + dfs + l. (5.20)

Third, the requirement

DFMS(s) = DdFMS(s) (5.21)

is satisfied if and only if

" - K ' 1 4 + M ) 1 " . * - ^ ^ . Vi = i «-i . (5.2»)

The relationships (5.22) allow us to choose the control law parameters in
accordance with the desired root placement of the FMS characteristic poly-
nomial.

Note that no strong restrictions exist for root placement of the FMS
characteristic polynomial in the allowable region. The freedom of choice of
the control law order q and the root placement of the FMS characteristic
polynomial (5.20) within the allowable complex domain will be used be-
low in order to provide the acceptable level of high-frequency sensor noise
attenuation.

5.2.3 Root placement based on normalized polynomials

The desired FMS characteristic polynomial (5.20) can be constructed from
the given normalized polynomial

D d F M S ( s ) = s« + d ^ a " - 1 + ••• + d d s + 1, (5.23)

where (5.23) has the desired root placement pattern.
To that end, let us rewrite (5.20) as

C M = /#* + #-i/#'1*'~1 + ' • • + *iW + 1. (5.24)

Here the time constant \iA is defined by

td

where id is a nondimensional settling time of the system with the normalized
characteristic, polynomial (5.23).

It is often convenient to use the normalized polynomials for Butterworth
root patterns, binomial root patterns, or ITAE standard error forms (where
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the integral of the time multiplied absolute error is minimal) [Graham and
Lathrop (1953)]. For instance, if D^MS(s) is the normalized polynomial for
binomial root patterns, then we have

If the normalized coefficients df are assigned for some root pattern, then
from (5.21) and (5.24) it follows that the control law parameters are given
by

H = fid[d0 + kog]1/q, dj = df[do + kogft-M*, (5.25)

where j = 1 , . . . ,q — 1.

5.3 Bode amplitude diagram assignment of closed-loop
FMS

5.3.1 Block diagram of closed-loop system

The discussed closed-loop system (4.45)-(4.46)

xW=f(X,w)+g{X,w)u, X{0) = X°,

Hqu^ + dq^1fiq-1u<-q-^ + ••• + diim{l) + dou

= ko{F(X, R) - i W } , (7(0) = U°

corresponds to the system shown in Fig. 2.1, while the block diagram of
(4.45)-(4.46) can be represented as in Fig. 5.3.

Fig. 5.3 Block diagram of the closed-loop system (4.45)-(4.46) with the highest deriva-
tive in the feedback loop.

Note that on the block diagram of Fig. 5.3 the initial conditions of the
controller are omitted, and the polynomial D(/j,s) has the form of (4.44).
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The dotted enclosure in this block diagram, shown separately in Fig.
5.4, corresponds to the FMS (4.55). This can be verified through the use
of block diagram transformations, under the assumption that w = const,
X = const, F = const, / = const.

Fig. 5.4 Block diagram of the closed-loop FMS (4.55), where w = const, X — const,
F = const, / = const.

5.3.2 Bode amplitude diagram of closed-loop FMS

Let us consider a procedure for choosing the control law parameters based
on a desired Bode amplitude diagram for the closed-loop FMS of Fig. 5.4.

Assuming the degree r\ of time-scale separation between the fast and
slow modes is sufficiently large, the FMS (4.55) will be examined as a
linear differential equation in which F and / can be regarded as the external
signals for the FMS (4.55).

Let us apply the Laplace transform to (4.55), given that the above
assumption is satisfied and the initial conditions for (4.55) are all zero. We
obtain

u(s) = Guf(s){F(s)-f(s)}, (5.26)

where Guf(s) is a rational continuous-time transfer function given by

Guf(s) = kuf l (5.27)

Here kuf is the gain of the transfer function Guf(s) and is given by

kuf = , **, - (5-28)
dQ + kQg

^FMS(S) i s t n e F M S characteristic polynomial (5.19). We assume through-
out the text that d0 + kog > 0.
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Let us consider the logarithmic gain of the frequency-domain transfer
function Guf(ju):

Lu/(w)=2Olg|Gu/(jw)|.

The plot of Luf(ui) is called the Bode amplitude diagram1 of the closed-loop
FMS (4.55), and its qualitative shape is shown in Fig. 5.5.

Fig. 5.5 Bode amplitude diagram Luf{ui) of closed-loop FMS (4.55).

It is easy to see that

O>-»*5TSi (529>
is a low-frequency asymptote of Luf(u>). This asymptote appears on the
plot as a horizontal (zero slope) line segment.

From (4.60) and (5.28) it follows that

L^V)«-20IgM.

In particular, if do = 0 then

where

Lo(u;) = -2Olg|0|.

1lg(i) denotes the logarithm of base ten, i.e., lg(x) = Iog10(s).
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Accordingly, we can obtain

L " ; V ) = 201g^-20<zlgu, (5.30)

as the high-frequency asymptote of Luf(w), where Luy (w) passes through

201g(|fco|//i9) dB at UJ = 1 and through 0 dB at u = |fco|1/9/M-

5.3.3 Desired Bode amplitude diagram of closed-loop FMS

Prom Fig. 5.5 it is clear that the condition

u{s) « kuf{F(s) - /(*)} (5.31)

holds for all u> € [0, u»i]. That is, the steady-state mode of the FMS appears
if the spectra of the signals F and / lie within the frequency bandwidth
[0,wi]. Therefore, by (4.57) and (4.59), the influences of unknown distur-
bances and inherent properties of the plant are rejected, and the output
behavior depends only on the properties of the reference model (4.31), if
the low-frequency asymptote of Luj(w) belongs to some small neighbor-
hood of Lo (w). Note that the effective disturbance attenuation and desired
output behavior are achieved only up to the frequency u>\.

So the control law parameters may be chosen such that the Bode am-
plitude diagram Luf(uj) of the closed-loop FMS has the desired form:

Luf(u>) = LduJ(u), (5.32)

where the permissible domain (see Fig. 5.5) of L^(CJ) at low-frequency
bandwidth is assigned in accordance with the requirements placed on con-
trol accuracy and degree of time-scale separation.

In the frequency domain u> > w\ the desired Bode amplitude diagram
L*J(LJ) should be constructed to obtain allowable FMS transients perfor-
mance indices. Note that, by Remark 4.5 on p. 68, we have q > n; hence
the high-frequency asymptote of L^JLJ) is a straight line with a negative
slope of — 20q dB/decade.

In accordance with the above requirements, the approximation of the
actual desired Bode amplitude diagram L^f(tj) may be organized as a set
of straight line segments (asymptotes). These asymptotes intersect at the
corner frequencies u> = Wj.

Let us assume that L*j(w) is expressed in the corner frequency factored
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form

Ltf{L0) = fcu/[T1V + 2 C l T l S + 1 ] [ T ^ + 1 ] . . . [ T j S + 1 ] . . . (5-33)

as a product of first-order and quadratic factors. Then, from inspection of
L*f(u) given by (5.33), the desired FMS characteristic polynomial (5.20)

DLAS) = P i ' s 2 + SCi^is + l][T2s + 1] • • • [Tj8 + 1] • • • (5.34)

follows.
Let us assume that wi < w,, V i where Wi = 1/7*. Then the roots of

quadratic factor

T12s2 + 2CiT1s + l

are the dominant poles of Guf(s), where 0 < Ci < L The parameter d
(damping ratio) may be calculated such that

C i = c o s ( ^ M S )

or may be chosen through the use of the well-known Bode amplitude dia-
grams for a quadratic factor [Dorf and Bishop (2001); Bosgra and Kwaker-
naak (2000)].

The following relationship between u>\ and tdStFMS may be used as a rule:

wi = k * c&— (5-35)
5.3.4 Selection of controller parameters

As a result, the following procedure for choosing the control law parameters
(i, dj of (4.38) in accordance with the desired Bode amplitude diagram of
the closed-loop FMS may be suggested.

Step 1. If do = 1, then the gain fco is calculated based on expressions
(5.3) and (5.6) in accordance with the requirement placed on control accu-
racy. If the robust zero steady-state error is needed, then take do = 0.

Step 2. The low-frequency bandwidth [0,u>i] of the Bode amplitude
diagram of the closed-loop FMS is assigned in accordance with the require-
ment placed on the degree of time-scale separation, where u>\ is defined, for
instance, by (5.35).
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Step 3. The desired Bode amplitude diagram L^JLJ) is assigned such

that its high-frequency asymptote Luf (LI) has slope — 20q dB/decade
where q >n.

Step 4- From inspection of L^Jw) the desired FMS characteristic poly-
nomial D^,Ms(s) follows, which has the form (5.20).

Step 5. li d0 = 1, then the parameters /x, d q _ i , . . . , d\ are calculated
based on (5.22) as far as the gain fco is known. If d0 = 0, then k0 may be
chosen arbitrarily — for instance, so that 1 < kog < 10. Then, by (5.21),
we have

M = { < f c o 5 } 1 ^ , dj= 3 i ° ^ , V j = l , . . . , g - 1 . (5.36)

5.4 Influence of high-frequency sensor noise

5.4.1 Closed-loop system in presence of sensor noise

By choice of the degree q and root placement of the FMS characteristic
polynomial (5.20) within the allowable complex domain, the solution to the
problem of high-frequency measurement noise attenuation may be provided.
Let us consider the solution to this problem based on the investigation of
the Bode amplitude plot for the closed-loop FMS.

The SISO nonlinear time-varying continuous-time system (4.27)

xM = f(X,w)+g{X,w)u, y = x + ns, X(0) = X° (5.37)

is considered in this section, where the sensor output is corrupted by a zero-
mean, high-frequency measurement noise ns(t) as shown in Fig. 5.6. Here
y(t) is a sensor output. Then, instead of y(t) = x(t), only y(t) is available
for control. If we change y(t) to y(t) in equation (4.38), then the control

Fig. 5.6 Block diagram of the general con- 
trol system with sensor noise ns{t).   

algorithm becomes

Hqulq) + d,.!^"1^'-1) + • • • + dmu{l) + dou = koe?, U(0) = U°, (5.38)
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where e? = F(Y, R) - y<n\ JJL > 0, q > n, d0 = 1 or d0 = 0, d{ > 0, V i =
l,...,q-l,andY = {y,iH1\...,yl"-1)}T.

Instead of equations (4.47) and (4.48), as a result of (5.37) and (5.38),
we find that the closed-loop system equations on the condition of sensor
noise are given by

x{n) = / ( X ] w ) + 5 ( X ) w)u> X ( o ) = xOj ( 5 39)

[iquM + d,_i/u9-V9"1) + • • • + dmuW + {d0 + kog{X, w)}u

= ko{F(Y, R) - f(X, w) - nin)}, U(0) = U°. (5.40)

5.4.2 Controller with infinite bandwidth

Since fj, is a small parameter, the closed-loop system equations (5.39)-(5.40)
are the singular perturbed equations. Accordingly, fast and slow modes
are induced in the closed-loop system as fi —» 0. Then, by the time-scale
separation procedure, from (5.39)-(5.40) the FMS equation

H<iu(q) + dq_1/u«-1u(9-1) + • • • + difiu^ + {d0 + kog(X, w)}u

= ko{F(Y,R)-f(X,w)-nin)}, U(0) = U° (5.41)

results. Here we assume that the state vector X(t) of the subsystem (5.39)
and, in accordance with (4.2), the vector w(t) of external disturbances and
varying parameters are constants during the transients in (5.41), i.e., that
X(i) = const and w(t) = const.

We then assume that the FMS is stable and, by finding the limit fi —» 0
in (5.40), obtain u(t) = u"(t), where

u* = fc0{do + kogj-^FiX,R) - f(X,w) + F(N3,0) - n<n>}. (5.42)

HereW. = {n,,n£1 ) , . . . ,n£n-1 )}r-
Substitution of (5.42) into (5.39) gives the equation of the SMS:

x(n) = F(Xj Rj + F(Ns> 0 ) _ „(")

+do{do + fcw}-1{/(*.«0 - F(X,R) - F(Ns,0) + n{^}. (5.43)

In accordance with (5.19) and (5.27), we have

LOI —+ co as fi —» 0

or, in other words, the bandwidth of the FMS increases as the parameter
(i decreases. Hence, for some value of n the frequency bandwidth [0,Wi]
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includes the main part of the spectral density Sns (w) of the high-frequency
noise ns(t) as shown in Fig. 5.7.

Fig. 5.7 Taking by bandwidth [0,u>i] the
main part of the noise spectral density

So, the expressions (5.42) and (5.43) correspond to the controller with
infinite bandwidth. We can find, by comparing (5.42) and (5.43) with (4.58)
and (4.59), that there are two additional terms

Au° = ko{do + kogy'iFiNsiO) - n<n>}, (5.44)

Az<"> = F(JVS,O) - n W + do{do + feoff}"1 {n<"> - F(N,,0)}, (5.45)

where (5.44) and (5.45) reflect the influence of the noise ns(t).
Note that the magnitudes of the terms Aus, Ax^ can be large and can

give rise to a noise chattering effect in the control variable. In particular,
if the control variable us(t) runs to the bounds of flu then saturation of
us(t) occurs. Consequently, we may have either decreasing accuracy of the
desired dynamics realization or loss of closed-loop system stability.

If the condition us(t) E fiu is satisfied, then there is small effect of the
high-frequency noise ns(t) on the behavior of the output variable y(t) since
the system (5.37) rejects high frequencies. Therefore, the main disadvan-
tage of the sensor noise ns(t) in the closed-loop system is that it leads to
high-frequency chatter in the control variable us(t). Accordingly, in order
to attenuate sensor noise, the bandwidth [0,u>\] of the closed-loop FMS
should be bounded. Fig. 5.8 shows a case in which this requirement is met.

So the control law parameters should be chosen, first, to provide for
control accuracy and, second, to attenuate the influence of high-frequency
sensor noise ns(t) on the behavior of the control variable u(t). In general,
these two requirements are contradictory. The problem of sensor noise
attenuation by assignment of the desired Bode amplitude diagram L^Ju)
of the closed-loop FMS will be considered later.
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Fig. 5.8 The bandwidth [0, u>i] is such that
that the influence of the high-frequency sen-
sor noise ns(t) is attenuated.

5.4.3 Controller with finite bandwidth

Selection of Guf(s)

Let us consider a method of designing the control law (4.38) such that
the influence of high-frequency sensor noise ns(t) on the behavior of the
control variable u(t) is attenuated. The method is based on the well-known
frequency-domain approach to linear control system design under sensor
noise (see, for instance, [Dorf and Bishop (2001); Bosgra and Kwakernaak
(2000)]), and was used for aircraft flight controller design with the highest
derivative in feedback in the presence of sensor noise in [Blachuta et al.
(1999)].

Assume that the desired dynamics equation (4.30) has the form of the
linear differential equation (2.8). Then, similar to (5,26), from (5.41) we
get

u = Guf(s){F - /} - Guns(s)ns, (5.46)

where

Guna{s)=kuns-B--^y kun3= [dQ + kog]Tn, (5-47)

and

GUns(s) is a rational continuous-time transfer function between ns(t)
and the control (manipulated variable) u(t) of the plant,
kunB is the dc gain of Gun,3(s), kUHs = Guris(0),
Ad(s) is the desired characteristic polynomial (2.3) of (2.8).

The transfer function Guria(s) in (5.46) determines the sensitivity of the
plant input u(t) to the sensor noise signal ns(t). In other words, Guna(s) is
an input sensitivity function with respect to noise in the closed-loop system.

Let the requirement on high-frequency sensor noise attenuation be ex-
pressed by the following inequality:

I C W J U , ) ! < £ „ „ » , V w > < l n ) (5.48)
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where sun,s (ui) is an upper bound on the amplitude of the input sensitivity
function with respect to noise for high frequencies.

From (5.48) it follows that an upper bound on the Bode amplitude
diagram Lu/(w) of the closed-loop FMS (4.55) appears for high frequencies
u > w™3in. This bound is represented by a straight line Lm a x (w) in Fig.
5.9.

Fig. 5.9 Upper bound on the Bode amplitude diagram Luf(u>) for high frequencies
w > ui^in in order to meet the requirement (5.48).

In order to find the expression for Lmax (w), let us note that from (2.3),
(5.19), and (5.47), the limit

j™o[^-iG-Hw'" f l = o
follows.

Let us assume that the condition

|GUB.(jW)| « |Gl7(^) l = J^~ (5-49)

holds for all high frequencies w > u^*n or, in other words, that Lur,s(oj) is
congruent with its high-frequency asymptote Luj (w).

From (5.49) it follows that if q = n, then high-frequency sensor noise
attenuation is not provided as the limit

lim \Guns(juj)\ = M
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is valid.
From (5.30) and (5.49), it follows that (5.48) holds if the inequality

L"fA (w) < 20 \g{euns (w)) - 20n lg w (5.50)

is satisfied for all high frequencies u > w"'in. For instance, let the function
£uns (<•<•>) be assigned by the expression

e«n» = ^ , (5.51)

where ens = const > 0 and -d = const. Then (5.50) may be rewritten in the
form

Kf M < Z w M , VW>o#ln, (5.52)

where

^max M - 20 lg £ns - 20[n + 1?] lg W.

The expression for Lmax (u>) is the straight line that assigns the upper bound
of Luf(u) for all u> > w^"in if the assumption (5.49) is satisfied.

From inspection of Fig. 5.9 it is easy to see that upper attenuation of
the high-frequency sensor noise is provided if u>i = CJ%, V i = 2 , . . . ,q. So,
the desired FMS characteristic polynomial (5.34) should be chosen such
that 74 = 71, Vi = 2 , . . . ,q .

Selection of Gung(s)

The high-frequency sensor noise attenuation can be investigated directly by
examination of the Bode amplitude diagram for Gun, (s). Toward this end,
let us rewrite (5.47) in the form

kp Ad{8)

GunAs)-7«~5—77y (5'53)

where, by (2.3) and (5.18), we have
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Denote by

£ « « » = 201g|Guns(jw)|

the Bode amplitude diagram of the input sensitivity function with respect
to noise in the closed-loop system. For simplicity, let us assume binomial
root patterns for the polynomials Ad(s) and DFMS(s) and consider the
qualitative shape of Lung(ui) as shown in Fig. 5.10. Here

d 1 FMS [do + /co5]i/9 „ \kQ\1^"~n^do + kpg)1^
W " ~ T ' w" = JL ' w = ^ 7 ^ '

{d0 + kog)Tn ^ pi

Recall that, by definition, do 4- kog > 0, and that w^ and u>n are called
the natural frequencies of Ad(ju) and DFMq{jui), respectively. Note that
by Step 2 (see p. 92) u>n should be chosen so that wn > u>i.

From inspection of Fig. 5.10 it is easy to see that the requirement on
high-frequency sensor noise attenuation given by (5.48) can be maintained
by a proper choice of u)n and q.

Fig. 5.10 Bode amplitude diagram Luna(w) of the input sensitivity function with re-
spect to noise in the ciosed-loop system.



100 Design of nonlinear control systems with the highest derivative in feedback

5.5 Influence of varying parameters

5.5.1 Influence of varying parameters on FMS and SMS

Let us consider the influence of varying parameters of the plant model (4.27)
on the properties of the closed-loop system (4.45)-(4.46). Then, taking into
account this influence, we shall investigate some of the particularities of
controller design with the highest derivative in feedback.

From (4.55) it follows that stability of the FMS depends on such plant
parameters as g(X, w). Regarding the SMS equation (4.59), it is easy to
see that vanishing influence of varying parameters of the plant model (4.27)
on the properties of (4.59) takes place if kog(X,w) S> CLQ. SO the main
factor in the closed-loop system (4.45)-(4.46) is the influence of the varying
parameter g(X,w) on the stability of the FMS (4.55).

Note that the above consideration of the controller design in the form
of (4.38) was conducted in the previous sections on the assumption that
g = const during the transients in the FMS (4.55). But the peculiarity of
(4.27) is that the current value of g{X, w) is unknown while, by Assumption
4.2 (see p. 64), it is known that

g(X, w) E [gm\n,ffmax], V X e fix, V w 6 nw. (5.54)

So the controller parameters of (4.38) should be chosen such that stability
and the requirement (5.16) are satisfied for any possible value of g from the
given interval.

Taking into account the effect of the varying parameter g(X, w) on the
stability of the FMS (4.55), let us consider below certain particulars of
controller design with the highest derivative in feedback.

5.5.2 Michailov hodograph for FMS

The influence of the parameter g on the stability of the FMS (4.55) may be
investigated via well-known stability criteria such as the Routh-Hurwitz
criterion, the Nyquist criterion, the root locus method, or the Michailov
stability criterion (see, e.g., [Kolmanovskii and Nosov (1986)]). Note that
Nyquist and Michailov criteria are based on the argument principle from
the complex analysis.

In particular, substitution of s = jw into (5.18) yields

D F M S ( J U ) = Liq{juj)q + dg-in"-1^)9'1 + ••• + dinjw + 7 , ( 5 . 5 5 )



Advanced design of SISO continuous-time control systems 101

where 7 = do + kog. The function (5.55) is called the Michailov frequency
function corresponding to the characteristic polynomial of the FMS (4.55).

Let us plot (5.55) in the complex s-plane for the frequency range 0 <
u) < 00. This plot is called the Michailov hodograph. Then, in accordance
with the Michailov stability criterion, the FMS (4.55) is stable if and only
if the following conditions are satisfied:

• DFMS{0) > 0.
• DFMs{ju)^0, V w £ [0,oo).
• The Michailov hodograph encircles the origin and the traversal is in the

counterclockwise direction through q quadrants in strict sequence.

In particular, the FMS (4.55) is marginally stable if some frequency CJ £
[0,oo) satisfies DFMS{J&) = 0.

For example, a qualitative view of the Michailov hodograph (5.55) for a
stable FMS (4.55) is shown in Fig. 5.11. Here the degree of the characteristic
polynomial (5.20) is given by q = 4, and

7min = d0 + /Co5min, 7max = <̂0 + Ôffmax-

Fig. 5.11 The Michailov hodograph (5.55)
of a stable FMS (4.55), where q = 4.

In accordance with the example shown in Fig. 5.11, we see that an
increase in g leads to an oscillating margin of FMS stability, whereas a
decrease in g leads to a neutral margin of FMS stability. The region of FMS
stability for g can be found by inspection of the Michailov hodograph, by
the Routh-Hurwitz criterion (see, for instance, [Dorf and Bishop (2001)]) or
by method of /^-subdivision (see, for instance, [Neimark (1947); El'sgol'ts
and Norkin (1973); Kolmanovskii and Nosov (1986)]).

Hence the parameters of the control law (4.38) should be chosen so
that the interval [gmm, <?max] belongs to the region of FMS stability. More-
over, the desired relative stability of the FMS should be provided for all
9 S [̂ miniffmax] such that the FMS transients maintain the allowable per-
formance indices.



102 Design of nonlinear control systems with the highest derivative in feedback

5.5.3 Variation of FMS bandwidth

Let us consider the influence of variations in the parameter g on the band-
width of the FMS (4.55) (see Fig. 5.5).

Assume that the gain k0 is chosen in accordance with the inequalities
(5.3) and (5.6). Then the control accuracy requirements (5.1) and (5.4) are
satisfied for all g e fomin.Smax]-

In addition to (5.1), (5.4), and in accordance with the 2nd step of the
design procedure discussed on p. 92, the bandwidth of the FMS (4.55)
should include the assigned frequency interval [0, u>i] for all g £ [<?min, 9 max]-
Note that the frequency ui depends on the requirement placed on the degree
of time-scale separation between the fast and slow modes, and that this
requirement is given by (5.16), (5.17), and (5.35).

In order to estimate the bandwidth of the FMS (4.55), let us introduce
u) as the frequency at which the low- and high-frequency asymptotes of
LUHs (w) intersect. In accordance with (5.29), (5.30), and from the condition

TLFA( \ THFAI \

Luf (w) = Luf (w)>

it follows that

fl=fo + * " ] l / ' . (5.56)

Then from (5.54) we find that the bounds for w are given by

w e [d>min,(jmax], v x e fix, Vwenw, (5.57)

where

Mo + fcoffmin]17" , - [dp + fcoflmax]1^ , .
wmin = and u>max = . (5.58)

So Q can vary over the interval

[wmin,Wmax]. (5.59)

Hence the controller parameters of (4.38) should be chosen so that the
requirement

Wmin > Wj (5.60)

holds, where ui\ is assigned by (5.35).
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The influence of variations in g on the bandwidth of the FMS (4.55)
is illustrated by Fig. 5.12. Here, as an example, we assume that the pa-
rameters of the control law (4.38) were chosen so that if g = gmm, then
the condition (5.32) (see p. 91) holds and the desired FMS characteristic
polynomial (5.34) is given by

£>Ls(s) = lTis + 1}q- (5-61)

Fig. 5.12 The influence of variations in the parameter g on the bandwidth of the FMS
(4.55).

5.5.4 Degree of control law differential equation

First, by inspection of Fig. 5.12 it is easy to see that the requirement (5.60)
may be provided by choice of location of the high-frequency asymptote
Luf (u), given by (5.30). At the same time, the parameter fco was assigned
beforehand such that the control accuracy requirements (5.1) and (5.4) are
satisfied for all g e [<?min><?max]- Then there is only one possible way to
assign the location of Luj (u>): by choice of the parameter /x and the order
q of the control law differential equation (4.38).

From (5.58) and (5.60) it follows that an upper bound on /j, is given by

,<^^l1/j (5.62)
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Second, from the requirement placed on high-frequency sensor noise atten-
uation (5.48) and, in accordance with (5.49), (5.51), and (5.52), it follows
that a lower bound on /J, is given by

LenslwminJ J

where q > n + $.
A simultaneous solution exists for both inequalities (5.62) and (5.63) if

the degree of the control law differential equation (4.38) is chosen such that
the condition

, > n + rf + [in Jkf\ 1 [In < 1 n ] - J (5.64)
L £ns [do + Koffminj J

holds.

5.5.5 Root placement of FMS characteristic polynomial

If q > 3, then from (5.18) we see that an increase in g leads first of all to
underdamping and a decrease in the relative stability of the FMS. Further
increase leads to marginal stability, and finally to instability, of the FMS
(4.55). The qualitative change of the Bode amplitude diagram caused by
increasing g from gm-m to gmax is shown in Fig. 5.12 as a broken curve.

Suppose root placement of the FMS characteristic polynomial is used
to obtain the control law parameters of (4.38) with a desired root pattern.
Then, in order to avoid underdamping of the FMS caused by variations of
g, we can use the following procedure instead of (5.25).

Step 1. The parameter fi is determined on the condition when g = gm[n

by the relationship

fj, = nd[do + kogmin}1/q- (5.65)

This choice allows us to provide the desired lower bound for relative stability
or, in other words, the damped frequency of the FMS for all g € [<7min,3max]-

Step 2. The parameters dj are determined on the condition g = #max

by the relationship

dj = df[do + fcoSmax] f — 1 ' , V j = 1 , . . . , q - 1. (5.66)

This choice allows us to provide the desired lower bound for the FMS
damping ratio (see Fig. 5.2, p. 86) or, in other words, the requirement

(5.63)
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CFMS > CtMs for a 1 1 9 G [flmin.Smax].

5.6 Bode amplitude diagram assignment of open-loop FMS

Let us consider a procedure for choosing the control law parameters of
(4.38), based on the formation of a desired Bode amplitude diagram for the
open-loop FMS. Therefore, in contrast to Fig. 5.4 (see p. 89), let us consider
a block diagram representation of the FMS in which the loop is broken as
in Fig. 5.13. It is easy to see that the Bode diagram of the open-loop FMS

Fig. 5.13 Block diagram of the open-loop
FMS (4.55), where w = const, X = const,
F = const, / = const.

is given by

L°zF (w) = 20 lg | G°F(jw) |, (5.67)

where z = x^ and

G>> - ^ - (S.68)

Then, in order to obtain allowable FMS transient performance in-
dices, the desired Bode diagram of the open-loop FMS can be de-
signed by choosing the control law parameters fco, /i, and dj in (4.38).
So the standard design procedure using Bode diagrams [Chen (1993);
Kuo and Golnaraghi (2003)] can be used. The main steps of the design
procedure using the Bode amplitude diagram of the open-loop FMS are
highlighted below.

Step 1. Determine the frequency interval [0,u>i] and the prohibited area
of the low-frequency part of LzF(u>) (crosshatched region at lower left in
Fig. 5.14) by taking into account the requirements (5.1) and (5.4). Take
do = 1 or, if robust zero steady-state error is required, do = 0.

Step 2. Determine the prohibited area of the high-frequency part of
LZF(UJ) (crosshatched region at upper right in Fig. 5.14) by taking into
account the requirement (5.48). To find this area, note first that from
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Fig. 5.14 Bode amplitude diagram LzF(ui) of the open-loop FMS.

(5.68) we have

JSS.[^-l*0-)l]--o.
Second, assume that

\GUlu)\ « ^ (5.69)

for all UJ > u)^"in. Then, from (5.67) and (5.69), it follows that the require-
ment (5.48) holds if

O w ) < 2 O l g | 0 e t t n > ) | - 2 O n l g w , V w > w^n. (5.70)

In particular, if euns(oj) is given by (5.51), then by (5.70) the prohibited
area of the high-frequency part of LzF(u>) is defined by the inequality

L°F{u)<2O]g\gen.\-2O{n + 0)]gu, Vw><]D. (5.71)

Step 3. The desired shape of the Bode amplitude diagram LzF(u) of
the open-loop FMS is constructed in the allowable domain in such a way
that it meets the desired gain (AL) and phase margins. The crossover
frequency u>c should be chosen to satisfy the requirement (5.16).

Step 4- From direct inspection of the desired shape of LZF(CJ), the gain
ko and parameters of the polynomial D{ns) result, where D(^ts) is given
by (4.44) (see p. 67).
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So, if the equation of the desired dynamics is assigned by (4.30), then
calculation of the remaining parameters of the control law (4.38) may be
examined as the design of a linear compensator of the form

in the unity-feedback system as shown in Fig. 5.13. Note that, in general,
the discussed procedure allows us to design the linear compensator given

by

where

K(fis) = kmlsl + h-i^i1"1 s1"1 H h hi us + 1.

Then, instead of (5.38), we have that the resulting general control law is
given by

Hqu^ + /V- id^uU- i ) + .. . + ndiuW + dou

= koihu'lefiW + Aj.i/i'-1^]('-« + • • • + fci^ef](1) + < } . (5.73)

We can realize (5.73) without an ideal differentiation of y(t) or r(t) if
q > I + n. Taking into account the additional requirements of the high-
frequency sensor noise attenuation given by (5.48) and (5.51), we see that
the degree of the control law differential equation (5.73) should be chosen
so that the condition q > I + n + $ is satisfied.

5.7 Relation with PD, PI, and PID controllers

Since the proportional-derivative (PD), proportional-integral (PI), and
proportional-integral-derivative (PID) controllers are widely used (see, for
instance, [Chen (1993); Kuo and Golnaraghi (2003)]), we now discuss the
relationship between these and the above controller with the highest deriva-
tive in the feedback loop. It will be shown that the latter leads to the former
types under certain conditions.

Let us consider the control law with the nth derivative of the error
e(i) in the feedback signal, given by (5.14). At noted above, (5.14) can be
represented in terms of the transfer function (5.15).

(5.72)
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From (5.15) the controller

u = -k{Tnsn + a ^ i T " " ^ " - 1 + • • • + a^Ts + l}e (5.74)

follows as fi = 0 and d0 = 1. In particular, if n = 1 then (5.74) reduces to
the structure of the PD controller

u = -k{Ts + l}e. (5.75)

Note that (5.74) is described by an improper transfer function. Hence the
control law (5.74) corresponds to the use of an ideal differentiating filter in
feedback (or, from a technical point of view, to the use of special sensors
capable of measuring all derivatives up to the nth order).

From (5.15) the controller with the proper transfer function of the form

.To _1_ 1

u = -k ?—e (5.76)

results as q = 1, n = 1, and d\ = do = 1. It is easy to see that (5.76)
reduces to the PD controller (5.75) as \x —» 0.

On the other hand, assume that q = l , n = l , /u = 1, d\ = 1, and
d0 = 0. Then from (5.15) the equation of the PI controller

u = -k \T + -1 e (5.77)

follows.
Let us consider the next case. By substitution of q = 1, n = 2, fj, = I,

dx = 1, and d0 = 0 into (5.15), the PID controller

u=-k\T2s + afT+-\e (5.78)

results. Since (5.78) is described by an improper transfer function, to realize
the PID controller in practice (i.e., without a sensor for the derivative of
e(t)) let us take q = 2, n = 2, cfo — d\ = 1> a n d do = 0 in (5.15). As a
result, the proper PID controller

u =J(TV±ofT£ ± I)e

fj, (ns+l)s

follows.
So, the above design methodology gives a clear procedure for calculation

of PD or PI controller parameters for a plant model of the first degree, and
the parameters of a PID controller for a plant model of the second degree.

(5.79)
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The advantage of this methodology is that the desired performance crite-
ria are guaranteed under conditions of incomplete information regarding
varying parameters of the plant model and unknown external disturbances.

5.8 Example

Let us consider a SISO nonlinear continuous-time system in the form

x{2) = [1 + sm(x{l))}x + [1 - 0.5 sin(a;)]u + w(t), (5.80)

where y(t) = x(t) and the desired dynamics of y(t) are assigned by

yW = -ai±yV - -Ly + -LtfrrW + ±r. (5.81)

Expression (5.81) corresponds to (4.31). We assume that T = 1 s. Let
q = 2; then, from (4.41), we obtain the control law structure given by

A ( 2 ) +dlfmW +dou = fco{-y(2) - ^2 / ( 1 ) + ^ > > + ± [ r - j,]}. (5.82)

Hence, the FMS characteristic polynomial is

DFMsis) = A^s2 + diMS 4-^0 + kog,

where g e [0.5,1.5].
By taking /x = 0.1 s, fc0 — 10, d0 = 0, and d\ = 2, we find that as the

parameter g is varied from 0.5 to 1.5, the degree of the time-scale separation
773 = [do+kog]°-5T/iJ, varies from 22 to 38 and the damping ratio (FMS varies
from 0.44 to 0.25.

Usually, in order to perform a computer simulation, we must represent
the control law (5.82) in state-space form, e.g.,

di , (di af] /co6fr

Ul = __Ul+U2 + fcoj__-LJy+JLi_r)

u = -2 {ui - koy} .

The simulation results for the output of the system (5.80) controlled by
the algorithm (5.83) in response to a step reference input r(t) and a step
disturbance iti(t) are displayed in Fig. 5.15, where the initial conditions are
zero and T = r = 1 s, of = 1.4, 6f = 0, and t 6 [0,8] s.

(5.83)



110 Design of nonlinear control systems with the highest derivative in feedback

Fig. 5.16 Output response in the system (5.80) and (5.83) for a ramp reference input
r(t) and a step disturbance w(t), where T = T = 1 s, af = 1.4, and bf = 0.

The output response in the system (5.80) and (5.83) for a ramp reference
input r(t) and a step disturbance w(t) is shown in Fig. 5.16, where r(t) =
rvtl{t), rv = 1, T = T = 1 s, af = 1.4, bf = 0, and t £ [0,6] s.

If, in accordance with (2.10) (see p. 29), we assume that af = bf — 1.4,
then the reference model is a type 2 system. The simulation results for the
output response in the system (5.80) controlled by the algorithm (5.83) to
a ramp reference input r(t) and a step disturbance w(t) are shown in Fig.
5.17, where t € [0,6] s.

The simulation results for the output response in the system (5.80)
controlled by the algorithm in the form of the forward compensator (5.14)
to a ramp reference input r(t) and a disturbance w(t) = 0 are shown in
Fig. 5.18, where e(t) = r{t)-y(t), r(t) = rvtl(t), rv = 1, T = 1 s, af = 1.4,
\x = 0.1 s, k0 = -10, d0 = 0, rfi = 2, and t G [0,6] s.

The sign of ko undergoes a change here in accordance with the require-
ment of FMS stability if the control law (5.14) is used. In comparison with

Fig. 5.15 Output response in the system (5.80) and (5.83) for a step reference input
r(t) and a step disturbance w(t), where T = T = 1 s, af = 1.4, 6̂  = 0.
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Fig. 5.17 Output response in the system (5.80) and (5.83) for a ramp reference input
r(t) and a step disturbance w(t), where T = T = 1 s and af = b^ = 1.4 (reference model
is a system of type 2).

Fig. 5.18 Output response in the system (5.80) and (5.14) for a ramp reference input
r(t) and disturbance w{t) = 0.

Fig. 5.17, we can see that the closed-loop system with control law (5.14)
is more sensitive with respect to nonsmoothness of the reference input r(t)
and reveals a peaking phenomenon. So the reference signal r(t) should be
a continuously differentiable function in order to avoid a high pulse in the
control variable u(t) in Fig. 5.18.

5.9 Notes

Our main purpose has been to explain the various design procedures for
choosing the parameters of the control law with the highest derivative in
the feedback loop for SISO systems, such that the robustness of the closed-
loop system properties is provided in a specified region of the state space of
the system — despite incomplete information regarding varying parameters
of the system and external disturbances.
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We have shown that for the given structure of the control law with the
highest derivative in the feedback loop, the design procedure for controller
parameters may lead to linear compensator design by linear control system
methods, given that the degree of time-scale separation between induced
fast and slow motions is sufficiently large in the closed-loop system. We
have also shown that the desired degree of time-scale separation can be
provided by proper choice of the controller parameters.

The relationships used to choose the control law parameters of (4.38)
in accordance with the requirements on control accuracy and disturbance
rejection, as well as high-frequency sensor noise attenuation, have been ob-
tained in this chapter. These make it possible to employ control systems
with highest derivative in feedback while making allowance for various prac-
tical restrictions.

Finally, the relationship between the controller with the highest deriva-
tive in the feedback loop and the PD, PI, and PID controller types has
been established. The resulting design methodology can be used in order
to obtain PD or PI controller parameters for a first-degree plant model, and
PID controller parameters for a second-degree plant model. The advantage
of this approach to PID controller design is the guaranteed performance
of the output response for nonlinear systems in the presence of unknown
external disturbances and varying parameters.

Note that there is a broad set of publications devoted to problem of
integral controller design for linear as well as nonlinear systems, where
various types of output feedback controllers with observers are discussed,
e.g., [Davison (1976); Francis (1977); Isidori and Byrnes (1990); Huang and
Rugh (1990); Mahmoud and Khalil (1996); Khalil (2000)].

5.10 Exercises

5.1 The differential equation of a plant model is given by

xi2) = x + x\x{1)\ + {1.5 + sin(t)}u. (5.84)

Assume that the specified region is given by the inequalities \x(t)\ < 2,
x^(t)\ < 10, and \r(t)\ < 1, where t £ [0, oo). The reference model for

x(t) is chosen as x^ — —2x^ -x + r. Determine the parameters of the
control law (4.40) to meet the requirements: SF = 0.05, er = 0.02, and
CFMS - 0-5; ??3 > 20. Compare simulation results with the assignment.
Note that 773 is the degree of time-scale separation between stable fast
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and slow motions denned by (1.65).
5.2 The behavior of a plant model is described by the equation

x(2) = 2x{1) + x + 2u. (5.85)

Assume that the inequalities \x(t)\ < 4, lo^1^)! < 20, and \r(t)\ < 2
hold for all t G [0, oo). The reference model for x(t) is assigned by

XW = -3x{1) - x + r. (5.86)

Determine the parameters of the control law (4.40), where do = 1, to
meet the following requirements: e> = 0.1, eT = 0.05, (FMS > 0.2;
rj3 > 20, q = 2. Determine the equation for the steady-state error due
to a ramp reference input r(t) if do = 0. Modify (5.86) in order to obtain
the reference model as the system of type 2. Compare simulation results
with the assignment.

5.3 The differential equation of a plant model is given by

I ( 2 ) = I ( 1 ) + I + SU. (5.87)

Assume that the inequalities \x(t)\ < 3, |z(1)(£)| < 20, \r(t)\ < 1 hold
for all t 6 [0,oo). The reference model for x(t) is assigned by

x{2) = -1.4z(1) -x + r. (5.88)

Determine the parameters of the control law (4.40), where do = 1, to
meet the following requirements: e> = 0.1, £r = 0.05, C,FMS > 0.3;
773 > 20, 9 = 2. Determine the equation for the steady-state error due
to a ramp disturbance w(t) if do = 0. Compare simulation results with
the assignment.

5.4 The plant model and reference models are given by (5.87)-(5.88), and
the control law has the form (4.40) where k0 = 8, q = 3, fi = 0.1 s, d2 =
5, di = 9, and do = 0. Determine the steady-state error due to a ramp
disturbance w(t). Compare simulation results with the assignment.

5.5 Determine the region of stability for g of the FMS (4.55), where k0 = 8,
q = 3, fi = 0.1 s, d<z = 5, d\ = 9, and do = 0.

5.6 The plant model and reference models are given by (5.87)-(5.88), and
the control law has the form (4.40) where ko = 10, q = 2, \i = 0.1 s,
d\ = 2, and do = 0. Determine the equation of the steady-state error
due to a ramp reference input r(t). Compare simulation results with
the assignment.
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5.7 Determine the region of variations (5.59) of the frequency <I> of intersec-
tion between the low- and high-frequency asymptotes of Luna(ui). Also
determine the region of variations of the damping ratio of the FMS,
where g G [0.5,10],q = 2, k0 = 10, /x = 0.1 s, di = 2, and d0 = 1. Find
the root loci of the FMS for g > 0.

5.8 Find the root loci of the FMS (4.55) for g > 0, where q = 2, k0 - 10,
H = 0.1 s, d\ = 3, and do = 0.

5.9 The differential equation of a plant model is given by (5.84). Determine
the parameters of the control law (4.40) such that e r = 0, tf w 2
s, crd « 5%, CFMS ^ 0-2) V3 ^ 20, and g = 2. Compare simulation

results of the step response in the closed-loop control system with the
assignment.

5.10 The differential equation of a plant model is given by (5.85). Determine
the parameters of the control law (4.40) such that er = 0, td « 1 s,
ad w 10%, CFMS > 0-3, and T?3 > 10. The additional requirement (5.48)
should be provided such that eUTls(u>) = 103 and w^ain = 103 rad/s.
Compare simulation results with the assignment.

5.11 The plant model is given by (5.85). Determine the parameters of the
control law (4.40) to meet the following requirements: e r = 0, td « 3
s, <rd w 5%, CFMS ^ °-5' % ^ 8- T n e requirement (5.48) should be
provided such that euns(w) = 360 and w^3in = 102 rad/s. Compare
simulation results with the assignment.

5.12 The plant model is given by (5.84). Determine the parameters of the
control law (4.40) to meet the requirements er = 0, td w 2 s, ad «
5%, CFMS ^ 0-5> ^3 > 8. The requirement (5.48) should be provided
such that euns(w) = 103/w and w^sin = 102 rad/s. Compare simulation
results with the assignment.



Chapter 6

Influence of unmodeled dynamics

We have considered problems of SISO continuous-time control system de-
sign with the highest derivative in feedback, in which uncertainties were
caused by variations in the parameters of the model or unknown exter-
nal disturbances and the degree of the plant model remained the same as
in the system without uncertainties. Such uncertainties are usually called
structured uncertainties [Slotine and Li (1991)]. The robustness of the
output performance of the control systems with the highest derivative in
feedback was discussed in the presence of bounded structured uncertainties.
In particular, the design procedures for a controller of the form (4.38) for
system (4.27) were given, where the bounded structured uncertainties were
assigned by the conditions (4.28).

Another type of uncertainty in the model description is the so-called
unstructured uncertainty. These reflect errors in the system degree (or
relative degree). Taking them into account usually leads to examination of
the plant model with an additional small pure time delay, as well as models
in the form of regularly and/or singularly perturbed systems of differential
equations.

From a practical viewpoint, it is more convenient to use some simpli-
fied (nominal) model of the system reflecting only the main qualitative and
quantitative features of the system. A more detailed description leads to a
change in the system order. For instance, accounting for actuator and/or
sensor dynamics can lead to an increase in the system order (so-called fast
unmodeled dynamics). So, the nominal model results from the premedi-
tated neglect of small parameters in order to get a simplified model and
hence a simplified controller. However, the neglected parameters affect the
performance of the physical closed-loop system.

In this chapter we first examine the robustness of performance of con-
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trol systems with the highest derivative in feedback in the presence of the
unstructured uncertainties. Second, we examine restrictions on controller
parameters caused by various types of unstructured uncertainties. Finally,
we discuss the influence of a nonsmooth nonlinearity in the control loop.

6.1 Pure time delay

6.1.1 Plant model with pure time delay in control

After a closer examination of the real system properties, it may happen that
some small pure time delay in the control loop exists and affects the stability
of the closed-loop system (Fig. 6.1). Such delays usually occur in models of
technical systems that involve the movement of some substance: examples
include hydraulic systems, heat exchangers, chemical reactors, long current
lines, and pipelines [Schneider (1988)]. Many works have dealt with systems
having pure time delays; for example, problems of sliding mode control
for systems with time delay are investigated in [Fridman et al. (1996);
Gouaisbaut et al. (1999)].

Fig. 6.1 Block diagram of the nonlinear
continuous system (NCS) with a pure time
delay in the control variable.

In this section we examine the peculiarities caused by a small pure time
delay in control for systems with the highest derivative in feedback.

Let us consider a nonlinear time-varying system described by an nth-
order differential equation with a pure time delay in the control variable:

x^(t)=f(X(t),w(t))+g{X(t),w(t))u(t-T), X(0) = X°. (6.1)

Here

x is the output variable, available for measurement;
t is the time variable, t > 0;
r is the pure time delay, r > 0;
X = {x,x{l\...,x{n~l)}T is the state vector;
X(0) = X° is the initial state;
u(t — r) is the control variable with pure time delay;
f(X,w),g(X,w) are functions satisfying (4.28).
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Let us assume that r is constant and belongs to a known interval:

r e [ 0 , r m a x ] . (6.2)

Note that the pure time delay model may be approximated by a finite
dimensional transfer function of arbitrary order. Since it alters the order
of the plant model, the delay block is discussed here as a particular case of
unstructured uncertainty.

If r = 0, then from (6.1) the simplified model of the form (4.27) follows.
Assume that the control law structure of the form (4.38) was constructed
for the simplified model (4.27) based on the above design procedure. The
main purpose of this section is to choose the parameters of the control law
(4.38) to reduce the effect of the pure time delay on performance of the
closed-loop system when the control (4.38) is applied to the true system
(6.1).

6.1.2 Closed-loop system with delay in feedback loop

The closed-loop system equations of the plant model (6.1) and controller
(4.38) are given by

xM(t) = f(X(t),w(t)) + g(X(t),w(t))u(t - T), X(0) = X°, (6.3)

/x«u<«>(*) + dq^1^-1u^-^(t)--- + dou(t) = koeF, U(0) = U°, (6.4)

where fi is a small positive parameter and q > n.
In accordance with (4.32) and (6.1), equations (6.3)-(6.4) of the closed-

loop system may be rewritten in the form

x^(t) = f(X(t),w(t)) + g(X(t),w(t))u(t - r), X{0) = X°, (6.5)

M9«(«)(t) + • •. + dou(t) + kog(X(t),w(t))u(t - T)

= ko{F(X(t), R(t)) - f(X(t),w(t))}, U(0) = U°, (6.6)

and then, by (4.51), in the form of the singular perturbed model

dxi .
— = xi+i, % = 1 , . . . , n - 1,

n 1*

~ = /(•)+&(>! (t-r), (6.7)
du-j

»-^- = Uj+i, i = i , . . . , g - i ,
(in

M -jjr = ~doui + kog(-)ui(t - r) - dm2 dq^uq + ko{F - / } .
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6.1.3 Fast motions in presence of delay

First, in order to enable usage of the above standard technique for two-

time-scale motions analysis, we must represent the time delay r in the

normalized form

r = Ton (6.8)

where To is the normalized time delay.

Second, let us introduce the differentiation operator

d

and rewrite (6.7) in the following operator form:

pxi = xi+i, i = l , . . . , n - l ,

pxn = /(•) + s(-)e-T0W«i,

fj,puj=uj+i, j = l,...,q-l,

npuq = -{d0 + kog{-)e~Tolip}ui - dxu2 dq-Xuq + ko{F - / } .

By introducing the new time scale to = t/y. and, accordingly, the new

differentiation operator p0 = d/dt0 where p = n~1po, we obtain

p0Xi = fixi+i, i = l , . . . , n - l ,

Poxn = /i{/(-) + 9(-)e-T0P0Ul},

Pouj = uj+i, j = l,...,q- 1,

Pouq - -{d0 + kog(-)e~ToPo}ui - d\u2 dq-\uq + ko{F - / } .

By setting y = 0, we find that the FMS equations in the time scale to are

described by

poxi = 0, i — l,...,n,

p0Uj = uj+i, j = l,...,q- 1,

pouq = -{d0 + k0ge~ToPo}ui - diu2 - • • • - dq-iuq + ko{F - / } .

From the above, we get the equations of the FMS

duj .

dto

— - = -doui + kogui{to - r0) - dxu2 dq_iuq (6.9)
"to

+ko{F~f},
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where X(t) = const. By (4.2), w(t) = const in the system (6.9). Note that
the stability of the FMS (6.9) is invariant with respect to fi by the condition
(6.8).

Returning to the primary time scale t = fit0, from (6.9) we obtain the
FMS equations

M - ^ - = u j + i - J = ! ,••• , 9 - 1 .

a —r- = -doui + kQgu\{t - r) - diu2 - dq-\uq (6.10)
at

+ko{F-f},

where X(t) and w(t) are the frozen variables.
It is easy to see that (6.10) can be rewritten in the form

^9u(9)(t) + • • • + difj.uW{i) + dou(t) + kog(X(t),w(t))u(t - r)

= ko{F(X(t),R(t))-f(X(t),w(t))}, U(0) = U°, (6.11)

where we assume that X(t) = const and g(X,w) = const during the tran-
sients in (6.11).

Remark 6.1 Inasmuch as the FMS (6.11) may be examined as a lin-
ear system with frozen parameter g(X,w), the use of the Nyquist stabil-
ity criterion [Nyquist (1932)] is a more natural and simple form of sta-
bility analysis from a practical point of view. The known method of D-
subdivision [Neimark (1947); El'sgol'ts and Norkin (1973); Kolmanovskii
and Nosov (1986)] may be used as well. In general, the stability anal-
ysis of FMS (6.11) based on Lyapunov functions [Krasovskii (1963);
Kolmanovskii and Nosov (1986)] — in particular, the Lyapunov-Krasovskii
functionals and Lyapunov-Razumikhin functions — may also be used.

6.1.4 Stability of FMS with delay

If we have the linear differential equations of the FMS (6.11) with frozen
parameter g(X,w), then the methods of linear control theory may be used
in order to analyze the FMS properties. In particular, the characteristic
equation of (6.11) has the following form:

D(/j.8) + koge-TS = 0.

The closed-loop system (6.3)-(6.4) corresponds to the system shown in Fig.
6.1, while the system (6.3)-(6.4) can be represented in block diagram form
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as in Fig. 6.2. Here the time delay T is given by a block having transfer
function e~rs. The highlighted portion corresponds to the FMS (6.11).

Fig. 6.2 Block diagram of the closed-loop system (6.3), (6.4).

The Nyquist criterion [Nyquist (1932)] is more convenient to use in
order to analyze the stability of the FMS (6.11) with a pure time delay.
From a practical viewpoint this allows us to obtain simple relationships
for choice of the controller parameters. Therefore, let us select from Fig.
6.2 the part corresponding to the FMS (6.11) and consider the sinusoidal
transfer function

where GFMS(s,fi) is the transfer function of the open-loop FMS with time
delay as shown in Fig. 6.3.

Fig. 6.3 Block diagram of the open-loop
FMS with delay (6.11), where w = const,
X = const, F = const, / = const.

From the expression (4.44) for the polynomial D(/J.S) it follows that the
Nyquist plot of (6.12) approaches the Nyquist plot of

G L , 0 ^ = 0) = ^e -<~

as /i —> 0, where the Nyquist plot of GFMS (ju, [i = 0) is a circle of radius

ro = kog/do.

(6.12)
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Let us assume that the characteristic polynomial D(fis) is stable and
kog > do as shown in Fig. 6.4. As fx is decreased it will eventually reach
some value such that the Nyquist plot of (6.12) encircles the point (—1, jO)
in the clockwise direction. Therefore, loss of stability of the FMS (6.11)
occurs when the parameter n is decreased.

So, in contrast to the control system (4.45)-(4.46), a lower bound for
the parameter \i appears in a control system with pure time delay. This
bound is determined by the requirement for FMS stability, and depends on
the value of the pure time delay r.

Fig. 6.4 Nyquist plot of the FMS (6.11)
with time delay.

In accordance with the Nyquist stability criterion, the FMS (6.11) is
marginally stable if the conditions

\D(Jvmcjm)\=kog, (6.13)

Arg£>(j \im um) + Tmujm = 7T (6.14)

hold1. From equations (6.13) and (6.14), the lower bound on fj, is given by

A«m = Tam{n - AvgDiJam)}-1, (6.15)

where am satisfies

\D(jam)\ = kog.

In accordance with (6.2), the FMS (6.11) is asymptotically stable if

M > rma.xam{ir - ArgD(jam)}~1.

6.1.5 Phase margin of FMS with delay

The main question regards conditions under which the influence of the pure
time delay is negligible.

It is obvious that a closed-loop system having a marginally stable FMS
will burn out, disintegrate, or saturate in practice. In practical control

1ArgD(j fim uim) denotes the principal value of argD(j nm ^m)-
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systems it is required that for all r € [0, rmax] the FMS (6.11) be asymp-
totically stable with the required settling time (5.16), that is,

t < td
LS,FMS — LS,FMS

where t^FMS is defined by the degree of time-scale separation between the
fast and slow modes in the closed-loop system. Usually, it is also desirable
to provide an acceptable level of oscillation excited in the FMS (6.11).

In accordance with the above procedure for designing the controller
(4.38), we assume that the polynomial D(fxs) + kog is stable and that the
condition kog > do holds. Therefore, we must verify (5.16) only in the case
when r = rmax. It is more convenient to evaluate the performance of the
FMS transients in the presence of a pure time delay based on the calculation
of phase margin and gain margin. The settling time can be estimated by
means of the crossover frequency u>c on the Nyquist plot of the FMS (6.11),
where from (6.12) we find that u>c is denned by the equation

KCS(M>M)I = I-

See Fig. 6.4. In particular, the phase margin f(r) of the FMS (6.11) is
given by

ip(T) = -n - ArgD(jiMjc) - TUC. (6.16)

Finally, the gain margin should also be taken into account in order to obtain
the allowable performance specifications of the FMS transients.

6.1.6 Control with compensation of delay

Let us consider the special case when r is a known constant. Then, in order
to reduce the influence of r on the stability of the FMS, let us modify (4.38)
and consider the control law given by

^u(i)(t) + dq-x^u^-^it) + ••• + dinuW(t) + dou(t)

+-y[u(t) - u(t - f)] = ko{F(X(t), R(t)) - *<">(*)}, U(0) = U°. (6.17)

The plant model (6.1) and the new control law (6.17) can be rewritten in
the operator form

pnx(t) = f(X(t),w(t)) +g(X(t),w(t))e-TPu(t), (6-18)

{D(w) + 7(1 - e~fP)}u(t) = ko{F(X(t),R(t)) - pnx(t)}. (6.19)
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Let us assume that the conditions

7 = kQg, T = T

hold. Next, we can use the above operator procedure to obtain the FMS
equation; substitution of (6.18) into the right member of (6.19) yields

pnx(t) = f(X(t),w(t)) + g(X(t), w(t))e-TPu(t), (6.20)

{D(w) + kog}u(t) = ko{F(X(t), R(t)) - f(X(t), w(t))}. (6.21)

In accordance with the above procedure for two-time-scale motion analysis
with the operator form of the differential equations, and on the assumption
(6.8), it is easy to see that in the closed-loop system equations (6.20)-(6.21)
the characteristic polynomial of the FMS is given by

D(i2s) + kog = 0. (6.22)

From (4.44) and (6.22) it follows that the stability of the FMS in this case
does not depend on \x. This is similar to the case of a system with no time
delay and, accordingly, the lower bound on /j, has disappeared completely.

It may be shown that as fi —> 0, equations (6.21)-(6.20) yield

lime
F(n) = \l--^—e-A{F{X,R)-f(X,w)}. (6.23)

M-*O L d0 + kog )

With do = 0, the time domain description of (6.23) yields

Jme'M = JT{-^^-[f(X,w) - F(X,R)}. (6.24)

So, on one hand, application of the control law (6.17) allows us to provide
compensation for the delay in the FMS; on the other hand, such a control
law structure leads to the additional error (6.24) of the desired dynamics
realization.

Remark 6.2 It is clear that the modification of the controller (4-38) to a
control law of the form (6.17) is related to the main idea of the time delay
compensation scheme now known as the Smith predictor [Smith (1957)].
This idea is widely used in controller design for processes with time delays
[Palmor (1996)].
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6.1.7 Velocity error with respect to external disturbance

Consider the LTI system (5.7), where the pure time delay r is introduced
into the control variable:

x^ =aX(t) + bu(t-T) + bw{t), X(0) = X°. (6.25)

Let us assume that the control law (6.17) with compensation of delay is
applied, where 7 = kob and f = r.

If d0 = 0, r(t) = const, and w(t) = wvtl(t), then from (6.25) and (6.17)
it follows that the relative velocity error due to a ramp external disturbance
w{t) is given by

^ = l i m ^ ^ = -6T"4±Il (6.26)
t^oo wv kob

and

u(t) = -b-wvT - ^-{r - evwwv} - ~wv t. (6.27)
0 0 0

By comparing expressions (5.9) and (5.10) with (6.26) and (6.27), respec-
tively, we can see that the additional terms caused by the pure time delay
r exist, and this fact corresponds to (6.24).

6.1.8 Example

Consider the second-order system

xM(t) = [1 + sin(x(1)(t))]x(t) + [1 - 0.5sin(i(t))]u(t - r) + w(t). (6.28)

The desired dynamics of y(t) = x(t) is assigned by the equation

TV 2 ) + afTyV +y = r (6.29)

and the control law is given by

MV2> + c W J ) + dou = fc0 {-y^ - aly^ + _L[r _ y] j , (6.30)

where \i — 0.1 s, ko — 10, do = 0, and d\ = 2.
The simulation results for the closed-loop system equations (6.28) and

(6.30) are displayed in Fig. 6.5, where r = 0.022 s, af = 1.4, T = 1
s, and t G [0,12] s. Note that the parameter g depends on x(t) where
g G [0.5,1.5]. Then, by (6.13)-(6.14), we can find that Tm{g = 0.5) w 0.045
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s and Tm(g = 1.5) ss 0.014 s. We can see the loss of FMS stability for
t € [10,12] s, caused by increasing the parameter g.

Fig. 6.5 Output response of the system (6.28), (6.30) for a step reference input r(t) and
a step disturbance w(t) without compensation of delay, where T = 0.022 s.

Fig. 6.6 Output response of the system (6.28), (6.31) with compensation of delay, where
T = 0.022 s.

In order to provide compensation for the time delay r , let us consider
the control law in the form (6.17). If q = n = 2, then from (6.17) and (6.29)
the control law

H2uV\t) + dinuW{t) + dou{t) + 7[u(t) - u(t - f)]

= ko |-y(2)(t) - £yW(t) + ±{r(t) - y(i)]} (6.31)

results, where fi = 0.1 s, k0 = 10, d0 - 0, di = 2, r = 0.022 s, T = 1 s,
af = 1.4, 7 = fco, and f = r.

The simulation results for the control system (6.28), (6.31) with com-
pensation of delay are shown in Fig. 6.6. Stability of the FMS is maintained
under variations of the parameter g.
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Note that the control law (6.31) can be rewritten in the form

ui(t) = -di/iu(t) +u2{t) - ^ y ( t ) ,

ii2(t) = ~dou(t) - 7[u(t) - u(t - r)] + | | [ r ( i ) - y(t)}, (6.32)

u(t) = ~^{Ul(t) - koy{t)}.
M

Then, from (6.32), we get the block diagram as shown in Fig. 6.7.

Fig. 6.7 Block diagram of the control law (6.31) represented in the form (6.32).

6.2 Regular perturbances

6.2.1 Regularly perturbed plant model

This section is devoted to the case when the unstructured uncertainty leads
to examination of the plant model in the form of regularly perturbed dif-
ferential equations and the relative degree of the system is modified. Such
a mathematical model occurs, for instance, in applications to the planar
vertical takeoff and landing (PVTOL) aircraft [Hauser et al. (1992)]. The
properties of regularly perturbed systems have been discussed in such ref-
erences as [Sastry et al. (1989); Isidori et al. (1992); Barbot et al. (1994);
Sastry (1999)] in the context of approximate linearization and the rela-
tionship between regularly perturbed nonlinear systems and singularly per-
turbed zero dynamics. Here we concern ourselves with the peculiarities
caused by regular perturbances in control systems with the highest deriva-
tive in feedback.
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Consider the plant model given by

x<n> = f(X, w) + emu^m) + ••• + e l U ( 1 ) + g(X, w ) u . (6.33)

We assume that the following conditions are satisfied,

(i) The inequalities

\tj\<egmin V j = l , . . . , m (6.34)

hold, where e is a small positive parameter.
(ii) f(X,w),g(X,w) are continuous bounded functions where the inequal-

ities (4.28) are satisfield for all (X, w) G ttx,w

The system given by (6.33) is called a regular perturbance of the nominal
plant model (4.27). It is easy to see that the relative degree of the system
(6.33) is n - m if em ^ 0.

From the plant model (6.33), the simplified model of the form (4.27)
follows as e —> 0. We assume that the control law (4.38) was constructed
based on the simplified model (4.27). The main purpose of this section
is to choose the parameters of the control law (4.38) to reduce the effect
of perturbances Ej on the performance of the closed-loop system when the
control (4.38) applied to the true system (6.33).

6.2.2 Fast motions in presence of regular perturbances

Note that in the general case, a decrease in ji in the closed-loop system
(6.33) and (4.38) may result in loss of FMS stability due to finiteness of the
parameters tj. Therefore, as with control systems having a pure time delay
and, to enable us to use the standard technique of two-time-scale motion
analysis [Tikhonov (1952)], we must normalize the ej to fi:

ej = e°jlij, Vj = l m. (6.35)

Then (6.33) can be rewritten in the form

i W = f(X, w) + e ° m i i m u { m ) + ••• + e j / i u* 1 ) + g(X, w ) u . (6.36)

If /x = 0, then from (6.36) the simplified model (4.27) follows. Assume that
the control law in the form (4.38) is constructed, and let us consider the
effect of regular perturbances on the performance of the closed-loop system

x(n) = f(X^ w ) + ^m^m) + ... + gO^ l ) + g ^ ^ ^ (6>37)

IJLqu^ + dg . i / i 9 " 1 ^ 9 "^ + • • • + dxnu^ + dou = koeF, (6.38)
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where X(0) = X° and 17(0) = U°.
From (4.32) and by substituting (6.37) in (6.38), we obtain

x{n) =f + eom/j.mu^ + ••• + e? / iw ( 1 ) + gu, X(0) = X°, ( 6 .39 )

/i«u(«> + • • • + d m + 1 / / " + V m + 1 ) + {dm + kO6°m}flmuW + ...

+{di + feoe?}Mu(1) + {d0 + kog}u = ko{F - / } , U(0) = U°. (6.40)

From (6.39)-(6.40) we get the FMS equations

M%(9) + . . . + dm +i / im + 1w(m + 1) + {dm + fcoe^}Mmu(m) + • • •

+{di + koe°}iM^ + {d0 + kog}u = ko{F - / } , U(0) = U°, (6.41)

where g(X,w) is the frozen parameter during the transients in (6.41).
Assume that the FMS (6.41) is stable. Then the SMS of the form (4.59)

results from (6.39)-(6.40) as /J, —» 0. Note that this occurs because of (6.35).
So the desired output transients are guaranteed fully in the closed-loop
system after damping of the FMS transients.

6.2.3 Selection of controller parameters

Let us assume that the parameters tj are unknown and belong to the known
intervals

e, G [Cj-.cj], V j = l , . . . , m , (6.42)

where e_j < Ij. Then, from (6.35) and (6.42) we can find intervals normalized

b y »••

e°€[e°,e°], V j = l , . . . , m . (6.43)

From (6.41) the FMS characteristic polynomial

(1*3* + dg-i/j."-^"-1 + ••• + dm+1nm+1sm+1

+{dm + koeom}iimsm + ... + {d1 + koeijfis + {d0 + kog} (6.44)

follows, where the polynomial coefficients belong to the known intervals
depending on the bounds of the intervals (6.43).

Note that the stability of the polynomial (6.44) does not depend on the
value of the parameter /i, and corresponds to the stability of the normalized
polynomial

sq+- • •+dTn+1sm+1 + {dm+koeom}sm+- • •+{dl+koeo1}s+{do+kog}. (6.45)
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So we have the following result.
Suppose:

(i) The plant model with regular perturbances has the form (6.33).
(ii) The conditions (6.35) and (6.43) hold.

(iii) The equation of the desired output dynamics is assigned by (4.30).
(iv) The parameters /i, do, fco of the control law (4.38) are assigned such that

the required control accuracy and time scale-separation are satisfied.

Then the calculation of the remaining parameters of the control law (4.38) is
reduced to a choice of d\,..., dq in such a way that the interval polynomial
(6.45) must be stable2 for all possible values of e°. Moreover, some nonzero
value of relative stability must be provided.

Remark 6.3 The next step of the design procedure deals with robust sta-
bility analysis of (6.45) via interval analysis tools [Piazzi and Marro (1996);
Kharitonov and Torres Munoz (2002)]. In particular, frequency-domain
criteria for robust stability may be used [Tsypkin and Polyak (1991)].

6.2.4 Control with compensation of regular perturbances

Consider the plant model (6.33), where we assume that the tj are known
and €j = const, Vj = 1 , . . . , m. Then let us modify (4.38) and consider the
control law given by

M " u ( 9 ) + . . . + d m + 1 n m + 1 u ^ m + ^ + { d m n m - ' y o e o m } u i m ) + •••

+ {difi - 7O£?}M(1) + dou = ko{F - xW}, (6.46)

where (6.46) may be rewritten in the operator form

{D(fip) - 7o[empm + em-ip"1"1 + • • • + elP]}u = koeF. (6.47)

Assume that 70 = fco- Then from the closed-loop system equations (6.33)
and (6.46), it follows that the corresponding FMS equation has characteris-
tic polynomial of the form (6.22). As a result, compensation for the regular
perturbances in the FMS occurs. At the same time, as /x —> 0 in (6.33) and
(6.46) we obtain the operator equation of the desired dynamics realization

2The polynomial is said to be stable if and only if the real part is strictly negative
for all roots of the polynomial.
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given by

+ j 1\ ^P"1 + ••• + W}{f(x'w) ~ F(X> R)h (6-48)

With do = 0, the time domain description of (6.48) yields

1 rn (ft
UmeF(/i) = -Y,*i%i[nX,i») -F(X,R)}. (6.49)

So the control law (6.46) with compensation of regular perturbances gives
the additional error of the desired dynamics realization. Note that (6.48)
is the full counterpart of (6.23) obtained above for control systems with
compensation of the pure time delay.

6.2.5 Example

Let us consider an SISO nonlinear continuous-time system in the form

±i = x2 + eiu,

±2 = [1 + sin(a;i)]a;i + [1 — 0.5sin(:ri)]u + w(t),

where e\ = —0.015. By differentiating y(t) we obtain

y(2) = [1 + sm(y)]y + eju(1) + [1 - 0.5sin(y)]w + w{t), (6.50)

where t\ = —0.015.
Equation (6.50) corresponds to equation (6.33), and the approximate

system (with t\ = 0) is given by (5.80) (see p. 109). Assume that the
desired behavior of y(t) is assigned by

ym = -!lyto-l-y+$LrV + ±r. (6.51)

Let q = 2; then for the approximate system (5.80) we may consider the
control law given by (5.82):

fu^ + dlimW + doU = ko |-2/(2) - ^ y W + ̂ ' ) + ̂ [ r - y]} ,

where we assume that n = 0.1 s, k0 = 10, do = 0, and di = 2.
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The control law (5.82) applied to the true system (6.50) gives the FMS
characteristic polynomial of the form

fi2s2 + {d\n + e\ko}s + {d0 + kog},

where for the given system parameters a decrease in /x leads to loss of FMS
stability (since ei < 0). An increase in /J, leads to loss of the degree of time-
scale separation between the FMS and SMS, and so to a loss in accuracy
of the desired dynamics realization. Note that the root-locus method may
be useful to find an appropriate value of the parameter /z.

Simulation results for the output response in the system (6.50) con-
trolled by the algorithm (5.82) to a step reference input r(t) and a step
disturbance w(t) are displayed in Fig. 6.8. Here the initial conditions are
zero and T = r = 1 s, af = 1.4, bf = 0, and t 6 [0,8] s. Results for the
same system where fi = 0.08 s and /i = 0.3 s are shown in Figs. 6.9 and
6.10, respectively.

Fig. 6.8 Output response of the system (6.50) and (5.82) for a step reference input r(t)
and a step disturbance w(t), where fi = 0.1 s.

Fig. 6.9 Output response of the system (6.50) and (5.82) for a step reference input r{t)
and a step disturbance w{t), where n = 0.08 s.
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Fig. 6.10 Output response for the system (6.50), (5.82) for a step reference input r{t)
and a step disturbance w(t), where fj, = 0.3 s.

6.3 Singular perturbances

6.3.1 Singularly perturbed plant model

Let us consider the other possible type of unstructured uncertainty that
leads to a plant model in the form of singularly perturbed differential equa-
tions. In particular, taking into account the actuator and/or sensor dy-
namics leads to an increase in the system order and the appearance of
additional fast dynamics. As a result, the plant model has the form of
singularly perturbed differential equations (singular perturbances). The
various classes of control systems with singularly perturbed models have
been widely investigated (see, for instance, [Kokotovic et al. (1976); Ioan-
nou and Kokotovic (1983); Riedle and Kokotovic (1985); Marino (1985);
Khalil (1987)]).

The main subject of this section is the performance and robustness of
a control system with the highest derivative in feedback in the presence of
singular perturbances. In particular, the nonlinear control system (NCS)
preceded by the fast actuator (A) will be discussed as shown in Fig. 6.11.

Assume that the nominal model of the plant is the NCS governed by
(4.27) (see p. 64). At the same time, taking into consideration the fast
dynamics of the actuator (A), we obtain the following singularly perturbed

Fig. 6.11 Block diagram of the nonlinear
control system (NCS) preceded by fast ac-
tuator (A).
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system:

z(n) - f(X,w) + g(X,w)z! ,y = x, X(0) = X°, (6.52)

uz^=zi+1, i = l,...,l-l, (6.53)

uzl1)=<p(t,z1,...,zhu), Z(O) = Z°, (6.54)

where Z = {z\, zi,..., zi}T is the state vector of the additional subsystem
(6.53)-(6.54) caused by the fast dynamics of the actuator, Z(Q) = Z° is
the initial state of subsystem (6.53)-(6.54), and v is the small positive
parameter.

If v = 0, then from (6.53)-(6.54) the equality z\ — u follows and from
(6.52)-(6.54) the simplified model (4.27) results, where the degree of (4.27)
is equal to n. From a practical viewpoint, we also assume that the additional
fast subsystem described by (6.53)-(6.54) is stable, as only on such an
assumption can the simplified model (4.27) reflect the main qualitative and
quantitative performance of the whole system (6.52)-(6.54) when v is small
enough.

The additional fast subsystem described by (6.53)-(6.54) is examined
here as a particular case of the unstructured uncertainty, where the degree
of the system (6.52)~(6.54) is equal to n + I. The system of equations
(6.52)-(6.54) is called the singular perturbance of the nominal plant model
(4.27).

Let the control law structure of the form (4.38) be constructed based on
the simplified model (4.27). The main purpose of this section is to choose
the parameters of the control law (4.38) to reduce the effect of singular
perturbance on performance of the closed-loop system when the control
(4.38) applied to the true system (6.52)-(6.54).

6.3.2 Fast motions in presence of singular perturbances

The closed-loop system equations of the plant model (6.52)-(6.54) and con-
troller (4.38) are given by

x^=f(X,w)+g(X,w)z1, X(0) = X°,

vz^ = zi+l, i = l,...,l-l,

vzf] =<p(t,zu...,zhu), Z(0) = Z°,

Hqu{q) + d , . !^- 1 ^"- 1 * + • • •

+ dlfiu{1) + dQu = ko{F(X, R) - i W } , 1/(0) = U°.
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Substituting the expression of x^ into the right member of the second
equation, we get

x^ = f(X,w) + g(X,w)zu X(0)=X°,

vz\1] = zi+u i = l,...,l-l,

vz\x) =<p(t,zi,...,Z[,u), Z(0) = Z°, (6.55)

HquM + dq-lnq-1u{q-l) + • • • + C(IMU(1) + dou

= ko{F(X, R) - f(X, w) - g(X, w)Zl}, U(0) = U°.

First, in order to enable use of the above standard technique for two-
time-scale motion analysis of (6.55), we must assume that v and fi are
interdependent. In particular, let v = VQLJL where VQ = const.

Second, let us rewrite (6.55) in the new fast time scale to = t/fi and, by
setting [i = 0, find the FMS equations in the to scale. Then, by returning
to the primary time scale t = /ito, we obtain the FMS equations

vz^ = zi+x, i = l , . . . , / - l ,

vzl1)=(P(t,zu...,zi,u), Z(0) = Z°,

Hqu{q) + dg-1nq-1u(-q-1) + ••• + di/iu(1) + dou (6.56)

= ko{F(X,R) - f(X,w)-g(X,w)Zl}, U(0) = U°,

where X(t) and w(t) are the frozen variables during the transients in (6.56).
The controller parameters should be selected such that to maintain al-

lowable performance of the fast-motion transients described by (6.56).

6.3.3 Selection of controller parameters

The main subject matter is an additional restriction on the controller pa-
rameters of (4.38) caused by singular perturbances in the form of the sub-
system (6.53)-(6.54).

Let us consider a particular case of the subsystem (6.53)-(6.54) de-
scribed by the transfer function

Gs(s) = ^ , (6.57)

where

S{vs) = vls\ + st-xv^s1-1 + ••• + sxvs + 1. (6.58)
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The block diagram representation of the closed-loop system equations (6.55)
is shown in Fig. 6.12. The additional fast dynamical system is represented
by the block with transfer function (6.57), and some portion of this block
diagram is highlighted by a circuit of dots. This part corresponds to the
FMS (6.56).

Fig. 6.12 Block diagram of the closed-loop system (6.55)-(6.57).

The FMS (6.56) is a linear system where g is the frozen parameter. Let
the equation of the desired dynamics (4.30) be constructed based on the
differential equation given by (2.8). Similar to (5.26) and (5.46), let us
apply the Laplace transform to (6.56), given that the initial conditions of
(6.56) are all zero. We get

. . koS(vs)

u{s) = D(»s)S(vs) + k09{Fis)-f{s)}

_ k0S(vs)Ad(s)
T ^ G H S M + fcos] n°[ $h (b '59 j

where

Ad(s) = Tnsn + adn_xTn-1 s""1 + • • • + adTs + 1.

Let v = const. Then from (6.59) it follows that

k0S(us)Ad(s)
~ Tn[doS(*s) + k09]n^ (6 '60)

as /J, —> 0.
In particular, if do = 0 then

Km «(«,/*) =g-1S(vs)[F(s) -f(s) -T-nAd(s)ns(s)}. (6.61)
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By comparing (6.59), (6.60), and (6.61) with (4.36), (5.42), and (5.46),
respectively, we can see that the influence of the high-frequency sensor
noise ns (t) on the control u(t) (manipulated variable) is increased as /i <C v
because of the factor S(ys). As a result, the requirements on the allowable
range of control variations are increased.

We can see that if fj, » v, then from (6.58) and (6.59) the expression
(5.46) follows. This is the case when the influence of singular perturbances
in the form of stable subsystem (6.53)-(6.54) can be neglected.

On the other hand, if /x RS V then from (6.59) we can see that the
parameters of the polynomial D{\±s) should be chosen in such a way that
the characteristic polynomial of the FMS

D{/j,s)S(i/s) + kog

is stable.
So, in the presence of singular perturbances of the form (6.53)-(6.54),

it is advisable to choose the small parameter /J, of the control law (4.38)
such that the additional restriction /it > v is satisfied. Note that if an
increase in \x conflicts with the requirement on time-scale separation degree
(5.16)-(5.17), then the control law structure should be chosen based on the
nonsimplified model (6.52)-(6.54).

6.4 Nonsmooth nonlinearity in control loop

6.4.1 System preceded by nonsmooth nonlinearity

Nonsmooth nonlinearities are inherent in a wide set of mechanical actu-
ators, electrical and electro-mechanical systems. This section deals with
nonlinear continuous systems preceded by a nonsmooth nonlinearity, and
the peculiarities caused by a nonsmooth nonlinearity in a control system
with the highest derivative in feedback.

Fig. 6.13 Block diagram of the nonlinear
continuous system (NCS) preceded by non-
smooth nonlinearity (NL).

A block diagram of the system under consideration, a nonlinear contin-
uous system (NCS) preceded by a nonsmooth nonlinearity (NL), is shown
in Fig. 6.13. The control system is being designed to provide the condition
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(2.1) with prescribed output response specifications. Moreover, the con-
trolled transients of y(t) should have the desired behavior in the presence
of varying parameters and external disturbances ui(t) in the plant model.

In particular, we discuss the problem of controller design for the non-
linear time-varying continuous systems governed by differential equation
(4.27), assuming that parameters of the system are unknown and may vary
in some bounded set, and that the conditions (4.28) are satisfied. Assume
that the system (4.27) is preceded by a nonsmooth nonlinearity. This may
be associated with saturation, relay with dead zone, hysteresis, or backlash
hysteresis as shown in Fig. 6.14.

Fig. 6.14 Nonsmooth nonlinearities.

Let us consider the following system:

XW=f{X,w)+g{X,w)v, X{Q) = X°, (6.62)

y = x, v = ip{u,u{1)), (6.63)

where the nonlinearity is represented by the function v = (p(u,u^);
X is the state vector which is unavailable for measurement, X —
{x, x^\ . . . , x("~1')}T; w is the vector of (unavailable for measurement) ex-
ternal disturbances or varying parameters, w e Rp; y is the measurable
output (controlled variable) of the system, y G R1; u is the control vari-
able, u e l 1 .

The purpose of this section is to discuss the peculiarities caused by the
nonsmooth nonlinearity in the system (6.62)-(6.63) with a controller of the
form (4.38):

Hqu{q) + d , . ! ^ - 1 ^ ' - 1 ) + • • • + diM«(1) + dou = koeF.
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In extended form this control law can be represented as (4.41):

Hqu^ + dg-ni"-1^"-^ + ••• + d i / m W + dou

= ^ { - r S W - ai_xTn-lx^-^ afTx^ - x

+tfT'rW + bf^r"-1^-1^ + ••• + bfrr^ + r}.

As a result, we have the closed-loop system given by

xW = f(X, w) + g(X, w)v, v = <p(u, uW), X(0) = X°,

HquW + dg-i/i9-1^9"1) + • • • + diiM^ + dou = koeF, U(0) = U°.

In accordance with (4.32), the above system can be rewritten as

i'"' = f{X,w)+g(X,w)<p(u,uW), (6.64)

Hqu^ + dq-\nq-lvSq-1) + ••• + dinuW + dou

= ko{F(X,R)-xW}. (6.65)

Substituting (6.64) into (6.65), we obtain the closed-loop system equations
in the form

i<n> = f{X, w) + g(X, w)<f{u, u^), (6.66)

Hqu^ + dq-ifj,q-1u(q-1) + h dxirnW + dou

+kog(X,w)<p(u,uW) = ko{F(X,R) - f(X,w)}. (6.67)

Since /x is the small positive parameter, (6.66)-(6.67) are the singularly
perturbed equations. A formal application of the above considered standard
procedure [Tikhonov (1952)] for the time-scale separation gives the FMS
equation of the following form:

Hqu^ + dq-iHq-1u(q-V + •••+ diMU(1) + dou

+kog(X, w)<p(u,««) = ko{F(X, R) - f(X, w)}, (6.68)

where X and w are the frozen variables.

6.4.2 Describing function analysis of limit cycle in FMS

Let us consider the block diagram representation of the closed-loop system
equations (6.66)-(6.67) as shown in Fig. 6.15, where the initial conditions
of the controller are omitted and the polynomial D(fis) has the form of
(4.44).
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Fig. 6.15 Block diagram of the closed-loop system (6.66)-(6.67).

The highlighted portion of the diagram, shown separately in Fig. 6.16,
corresponds to the FMS (6.68). From the block diagram representation it
is clear that the FMS (6.68) can be examined as a sequence of a linear
system and nonsmooth nonlinearity. It is well known that the describing
function method is a powerful tool for the analysis of periodic solutions in
such systems.

Fig. 6.16 Block diagram of the FMS (6.68) where w = const, X = const, F = const,
/ = const.

Remark 6.4 Some particulars related to the describing function method
can be found in a broad set of references, for instance, [Mees and Bergen
(1975); Atherton (1981); Mickens (1981); Slotine and Li (1991); Taylor
(2000); Khalil (2002); Vukic et al. (2003)].

Remark 6.5 Note that the application of the describing function method
to analyze closed-loop systems with nonsmooth nonlinearity and the highest
derivative in feedback of the form (3.15) was discussed in [Suvorov (1991)].
In contrast to (3.15), the discussed control law structure (4.41) allows us
to include the integral action in the control loop without increasing the con-
troller's order.

Denote

G^=wk ^
and assume that the sinusoidal transfer function Gi(jfj,uj) reveals a low-pass
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filtering property. Assume that a limit cycle in the FMS (6.68) exists, and
the stationary oscillation signal u(t) is

u{t) =uo + Asin(ujt). (6.70)

Then the output of the nonlinearity v = tp(u,u^) can be represented by
its Fourier series

oo

v(t) = vo + bi sin(wt) + ci cos(wt) + ]P{6fc sin(ku>t) + ck cos(fcwi)}. (6.71)
fc=2

By taking d0 = 0 in (4.44), we find that the polynomial D(fj,s) has the form

D(fis) = DQ(IJ,S)PLS (6.72)

where

D0(fis) = fiq-lsq-1 + dq-uiq-2sq-2 + ••• + d2fJ,s + d i ;

as a result, the integral action is incorporated in the system of Fig. 6.16.
Then we have

/

t+2ir/u)
eF(t)dt = O (6.73)

for the stationary oscillations in the FMS (6.68). So the average value of eF

corresponds to the insensitivity condition (4.33), and the desired behavior
of the output y{i) with assigned dynamics (4.30) is satisfied if sufficiently
fast oscillations take place.

The expression (6.73) represents the insensitivity condition for the out-
put behavior with respect to parameter variations and external disturbances
of the plant model in the average sense. Note that the existence of the fast
oscillations in the FMS (6.68) is the essential requirement that allows us to
reach the desired output behavior.

In accordance with the describing function method, let us replace the
nonlinear element in Fig. 6.16 by its quasi-linear approximation as shown
in Fig. 6.17. Here, for simplicity, the amplitude A and frequency u> of the
stationary oscillations will be estimated to a first approximation on the
condition that

F=f = 0 (6.74)

and the nonlinearity is odd. Hence, we have that UQ = VQ = 0 and the
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Fig. 6.17 Quasi-linear approximation of the FMS (6.68).

describing function representation of the nonlinear element is given by

Gn(j,u,A) = — - — + j — , (6.75)

which may be complex and dependent on both u> and A in general.
Then the solutions of the first-order harmonic balance equation

l + Gn(j,w,A)Gl(jfiu) = O (6.76)

represented in the form

Giijw) = - r ( l M (6-77)

correspond to the points of intersection of the Nyquist plot of Gi (jfiw) and
the G"1^', u>, A) locus. From this, the existence of the stable limit cycle in
the FMS (6.68) and its parameters can be determined.

For instance, a limit cycle in the FMS (6.68) does not exist if the Nyquist
plot of Gi(j/j,u>) and the G"1^',^,^!) locus are as shown in Fig. 6.18(a).
Accordingly, there are two limit cycles as shown in Fig. 6.18(b). Here
point 1 represents an unstable periodic solution and point 2 represents the
stable periodic solution. Note that the arrows on Gi(jfiu) and G~1(J,UJ, A)
indicate increases in w and A, respectively. This example corresponds to a
system preceded by a backlash hysteresis.

As another example, we have a system preceded by a relay with dead
zone or hysteresis where the corresponding describing functions do not de-
pend on the frequency u>. The qualitative Nyquist plots of GI(J/J,LO) and
G~l{j,A) loci for these two types of systems are shown in Fig. 6.19.

6.4.3 Effect of chattering on control accuracy

The oscillations in the FMS (6.68) induce the ripple in the output y(t) of
the system (6.62)-(6.63) and have an influence on the error of the output
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Fig. 6.18 (a) Limit cycle in the FMS (6.68) does not exist, (b) Two limit cycles in the
FMS (6.68).

Fig. 6.19 Qualitative Nyquist plot of G((j/m>) and Gn1(j,j4) for a system preceded by
a relay with dead zone (a), or hysteresis (b).

stabilization as shown in Fig. 6.20. Let eosc be the amplitude of the station-
ary oscillations with frequency w of the output y(t). In order to estimate
this when a stable limit cycle occurs in the FMS (6.68), let us assume that
r = const and denote

1 fT

y = iim 7?, / y{t)dt-

Then from d0 = 0, because of the integral action incorporated in the system
in Fig. 6.16, we have r = y in the stationary mode.

In accordance with the block diagram shown in Fig. 6.17, we have to a
first approximation

\Gn(j,to,A)g\ A

e°sc ^ A

= IS^JA (6.78)
koun
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Fig. 6.20 Influence of oscillations in the FMS (6.68) on output behavior.

given that w is sufficiently large. The effect of the fast oscillations in the
FMS on the accuracy of the output stabilization can be reduced by proper
choice of the controller parameters.

Note that the variations of the parameter g and nonzero values of F,
f have an influence on the limit cycle parameters. Robustness of the pre-
scribed output behavior is maintained within the region of limit cycle sta-
bility, given that the oscillation frequency u> is large enough.

6.4.4 Example

Let us consider the SISO nonlinear continuous-time system (5.80) (see p.
109)

x™ = [l+sin(x{1))}x+[l-0.5sm(x)]v + w, y = x, (6.79)

which is preceded by hysteresis v = ip(u, u^) with parameters A = 0.1 and
M = 5 as shown in Fig. 6.14.

Assume y(t) = x(t), and that the desired dynamics of y(t) are assigned
by the equation (5.81)

«(2) = _fL(D -—v+ *iIr(D + —r

Let q = 2. Then in accordance with (4.38) we have the control law structure
given by (5.82):

MV2> + dl M«( 1 ) + dou = k0 | -y< 2 ) - ^ ( D + *llr<i) + _ L [ r _ y] j ,

where we assume that /x = 0.3 s, An = 10, do = 0, and d\ = 2. The
state space representation (5.83) of (5.82) can be used as above in order to
perform computer simulation.
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In accordance with the given parameters we have

Gt(j^) = 2 2 f c ° g , . (6.80)

and

„ . .. 4M / [A] 2 AM A

GnO,A) = _ ^ l - [ - j - , - _ A . (6.81)

The harmonic balance equation (6.76) presented in the form

G/0/iw)

yields

«O^f_^A = £«_^ (M2)
?rA y [AJ TTA2 kog fog '

From (6.82) we get

^— w3 + Andmuj - AMfog = 0. (6.83)

The real positive solution of (6.83) is the frequency w of the stationary
oscillations, with amplitude A given by

A-J^^. (6.84)

From (6.78) and (6.80) it follows that

y irdifou3

In accordance with the above expressions and given values of the controller
parameters, we can obtain w « 2 8 rad/s, A w 0.43, and eosc « 0.004 for
g = 0.5, and u « 4 1 rad/s, A « 0.62, and eosc « 0.006 for 5 = 1.5.

The simulation results of the transients in the system (6.79) controlled
by the algorithm (5.82) for a step reference input r(t) and a step disturbance
w(t) are displayed in Figs. 6.21-6.22, where the initial conditions are zero
and T - r = 1 s, af - 1.4, bf = 0, t € [0,8] s. We see that the simulation
results confirm the analytical calculations.

(6.85)
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Fig. 6.21 Simulation results for the system (6.79) controlled by the algorithm (5.82).

Fig. 6.22 Simulation results for the system (6.79) controlled by the algorithm (5.82).

6.5 Notes

The limit properties of the control systems with the highest derivative of
the output signal in the feedback loop were discussed in Chapters 3 and 4 on
the assumptions that the high gain \ko\ —> oo and the small parameter /i —>
0. Obviously, such requirements are unrealized in practice. Therefore, in
Chapter 5, problems of implementation were considered, and relationships
were obtained from which we can choose finite values of the control law
parameters in accordance with requirements on time-scale separation degree
between the fast and slow modes, control accuracy, and the requirement
placed on high-frequency sensor noise attenuation. In particular, it has
been shown that the latter attenuation can be provided if and only if ko
and ,u are finite.

In this chapter, the restrictions caused by the unstructured uncertainties
of the plant model in the form of a pure time-delay in control, regularly
and singularly perturbed systems, and nonsmooth nonlinearities in control
were investigated. In particular, it is assumed that the controller has been
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designed based on a simplified (approximate) model and in accordance with
the methodology given in Chapter 5. Then the influence of unmodeled
dynamics is considered when this controller is applied to the true system.
As a result, the effect of the neglected parameters was investigated, and the
additional restrictions on the controller parameters were obtained, which
are caused by unmodeled dynamics.

6.6 Exercises

6.1 The plant model is given by

x{2\t) = 0.5x(t)x(1)(i) + 0.1i(1)(£)

+0.5x(t) + 0.5sin(0.5i) + gu(t - r ) , (6.86)

where 3 = 1 and the reference model x^ =F{x^\x,r) is assigned by

x{2) =T-2{-aiTx(-1) -x + r}. (6.87)

The control law has the form

H2u{2) + d ! / xu ( 1 ) + dou = ko{F{x{l),x,r)- x { 2 ) } , (6.88)

where T = 1 s, a\ = 2, k0 = 10, /i = 0.1 s, do = 0, di = 4. Determine the
region of stability for r of the FMS. Compare with simulation results
of the closed-loop system.

6.2 Consider the closed-loop system with the input data of Exercise 6.1,
where

g = l + 0.5sin(0.2t).

Determine the region of stability for T of the FMS. By computer simu-
lation, determine the region of stability for T of the closed-loop system
in presence of the delay compensation.

6.3 Consider the plant model

x{2\t) = \x{1)(t)\x{t) + x{t) + [1.5 + sin(i)]u(* - r) (6.89)

together with the reference model (6.87) and the control law

A ( 3 ) + d2fi2uW + dlMUW + dou = ko{F(x^,x,r) - x™}t (6.90)
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where T = 0.4 s, ax = 1.4, k0 = 5, fj, = 0.05 s, d0 = 0, di = 17, and
c/2 = 6. Determine the region of stability for r of the FMS. Compare
with simulation results of the closed-loop system.

6.4 Determine the phase margin and gain margin of the FMS based on the
input data of Exercise 6.1 for the time delay r = 0.3rm, where T = Tm

corresponds to the marginally stable FMS.
6.5 Determine the phase margin and gain margin of the FMS based on the

input data of Exercise 6.3 for the time delay r = 0.5rTO.
6.6 Let r = 0.05 s. Determine nm based on the input data of Exercise 6.1,

where n = / i m corresponds to the marginally stable FMS.
6.7 Consider the plant model

x = x{l + cos(x)} + 2u, (6.91)

y = x + eou,

where |eo| < 0.05, and determine the parameters of the control law

/ z V 2 ) + dxfiuW + dou = ko{[r - y}/T - y^} (6.92)

to meet the following specifications: e r = 0; T = 1 s; £FMS > 0.2;
773 > 10. Note that 773 is defined by (1.65).

6.8 Find the root loci of the FMS based on the input data of Exercise 6.7
for parameter the eo where fco = 5, /1 = 0.1 s, do = 0.

6.9 Consider the plant model

±1 = X2 + €xU,

x2 =x1(l + xi) + [1 + 0.5cos(0.5*)]u, (6.93)

V = xi,

where \xi(i)\ < 2, \x2(t)\ < 2, and \r(t)\ < 1. Take ei = 0 and de-
termine the parameters of the control law (6.30) to meet the following
specifications: eF = 0.1; er = 0.05; « f w 3 s; ad w 10%; (FMS > 0.8;
773 > 15. Determine the allowable region for e\, where the conditions
CFMS ^ 0-2 and 773 > 10 are satisfied. Run a computer simulation of
the closed-loop system for do = 1 and do = 0.

6.10 Determine the parameters of the control law

/iV3> + d 2 / i V 2 ) + d!/xu(1) + dou = ko{F(yW,y,r) - y(2)} (6.94)

based on the input data of Exercise 6.9.
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6.11 Consider the plant model

±\ — x2, ±2 = xf + x2 sm(t) + 2x3,

vx3 = -x3 + u, y = xi,

where \xi(t)\ < 1, |x2(i)| < 1, \x3(t)\ < 1, and \r(t)\ < 1. Take i/ = 0
and determine the parameters of the control law (6.30) to meet the
following specifications: eF = 0.1; er = 0.05; t* « 6 s; ad « 10%;
CFMS — 0.8; T73 > 15. Determine the allowable region for v, where the
conditions (FMS > 0.2 and 773 > 10 are satisfied. Run a computer
simulation of the closed-loop system for do = 1 and do = 0.

6.12 Solve Exercise 6.11 where the control law is given by (6.94).
6.13 Consider the plant model

±1 =z i | s in ( t ) |+x 2 , ^x2 = X3, (6.95)

vx3 = -x2 - 3x3 + u, y = xi,

where the control law is given by

/xu(1) + dQu = ko{[r-y]/T- y(1)} (6.96)

and T = 2 s, ko = 10, fi = 0.4 s, do = 0. Determine the region of
stability for u of the FMS and the phase margin and gain margin if
v = 0.5^m, where v = vm corresponds to marginally stable FMS.

6.14 Consider the system (6.89) preceded by relay with dead zone (see Fig.
6.14) together with the reference model (6.87) and the control law given
by (6.90) where r = 0, A = 0.4, M = 10, T = 1 s, ax = 1.4, fc0 = 10,
/U = 0.1 s, do = 0, d\ = 15, d-z = 5. Using the describing function
method, determine the frequency of the oscillations in the FMS and
estimate the amplitude of the oscillations in the output variable x(t).
Compare with simulation results.

6.15 Consider the system

x = x\ sm(t) I + [1 + 0.2 sin(t)}u(t - r)

preceded by relay with dead zone (see Fig. 6.14) together with the
control law given by (6.96) where r = 0.03 s, A = 0.5, M = 2, T = 1
s, k0 = 10, [i = 0.1 s, d0 = 0. Using the describing function method,
determine the frequency of the oscillations in the FMS and estimate
the amplitude of the oscillations in the output variable x(t). Compare
with simulation results.



Chapter 7

Realizability of desired output
behavior

Before carrying out a design, we must analyze the realizability of the de-
sired output behavior. In the preceding chapters attention was devoted
to the problem of control system design with the highest derivative in the
feedback loop for the SISO plant model given by (4.27), where output reg-
ulation with prescribed dynamics may be provided if the condition (4.35)
holds. This chapter is devoted to consideration of conditions that allow us
to provide desired output behavior for more general dynamic systems. It
will be shown that, in general, the analysis of the realizability of the desired
output behavior is a much more complicated problem, and involves such
concepts as invertibility of a dynamic system, nonlinear inverse dynamics,
and internal behavior analysis of the system. In this chapter, concepts
such as invertibility index (relative degree), normal form of nonlinear sys-
tems, internal stability analysis, degenerated system on the condition of
output stabilization, and zero-dynamics are discussed. Finally, the design
procedure for SISO nonlinear control systems is discussed in the presence
of internal dynamics.

7.1 Control problem statement for MIMO control system

7.1.1 MIMO plant model

Let us consider a nonlinear time-varying system in the following form:

X = f{t,X) + G(t,X)u, X(0) = X°, (7.1)

y = h(t,X), (7.2)

where
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t denotes time, t £ [0,oo);
X is the state vector, X = {xx, x2, • • •, xn}T;
X{0) = Xo is the initial state, Xo G Qx, ^ x is a bounded set of E";
y is the output of the system (7.1)-(7.2), available for measurement,
y = {yi,y2,---,yP}T;

u is the control signal, u = {ux,u2,. •., um}T, «6 (1«C Rm;
p < m <n.

It is assumed that the vector functions /(£, X), h(t, X) and the elements of
the matrix G(t,X) are smooth and bounded for all (t,X) G f2t,x-

The model extension is given by

X = f(t,w,X)+G(t,w,X)u, X(0) = X°, (7.3)

y = h(t,w,X), (7.4)

where w(t) is a vector of external disturbances and varying parameters (un-
available for measurement). We assume that w(t) is smooth and bounded
for all t 6 [0,oo). Then the system (7.3)-(7.4) can be represented in the
form (7.1)—(7.2) because w = w(t). As a result, the influence of all external
disturbances and varying parameters of the system (7.1)-(7.2) is repre-
sented implicitly by the dependence of f(t,X),h(t,X) and G(t,X) on the
time variable t.

In some references (e.g., [isidori and Byrnes (1990); Isidori (1995);
Marconi (1998)]) the external disturbance model w(t), called the exoge-
nous system, is included in the system description. For systems with sliding
mode or high gain in feedback, and for the discussed approach to control
system design, the varying parameters and external disturbances, and their
manner of entering into the system, need not be known. Then explicit
reference to w(t) may be omitted if certain additional conditions for distur-
bance rejection are satisfied. These conditions are the main subject matter
of this chapter and will be presented below.

7.1.2 Control problem

We seek a control system for which

lim e(t) = 0, (7.5)
t—»oo

where e(t) is the error of the reference input realization (tracking error),
e = {ei,e2,... ,ep}T, e(t) = r(t) — y(t); r(t) is the reference input, r =
{ri,r2,.-.,rp}T.
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Moreover, the controlled transients of the ith component j/$(£) of the
output vector y(t) should have desired performance indices that are sep-
arately assigned, such as overshoot af, settling time tf, and system type.
These transients should not depend on external disturbance or varying pa-
rameters of the system (7.1)-(7.2).

7.2 Invertibility of dynamical systems

7.2.1 Role of invertibility of dynamical systems

The invertibility of dynamical systems was first widely investigated in me-
chanics, in order to find the forces that cause the observable behavior of
mechanical systems [Santilli (1978)]. In the general case, this meaning of
the term leads to the concept of left invertibility. A system is said to be
left invertible if a unique control function exists and can be found for the
given system model, initial state, and output function.

So, on one hand, the left invertibility condition for a dynamical control
system is the condition for uniqueness of the control function that provides
the desired output behavior [Zadeh and Desoer (1963)]. On the other hand,
right invertibility is the necessary condition for the existence of a control
function such that the output behavior is an arbitrarily assigned smooth
function [Brockett and Mesarovic (1965); Porter (1970)].

From a theoretical viewpoint, the desired input-controlled output map
can be provided by a controller in the form of a serial system of the
reference model and the right inverse system. Control of nonlinear sys-
tems through the use of their inverse dynamics is a topic that has re-
ceived much attention [Boychuk (1966); Silverman (1969); Porter (1970);
Popov and Krutko (1979); Petrov and Krutko (1980); Singh (1980);
Slotine and Li (1991)]. The application of the inversion method in the
discrete-time nonlinear control system synthesis problem was discussed
in [Kotta (1995)]. Note that the well known input-output linearization
technique for nonlinear systems is based on the inclusion of the right in-
verse system into the control law structure [Isidori and Byrnes (1990);
Nijmeijer and Schaft (1990); Isidori (1995); Sastry (1999); Khalil (2002)].
Obviously, linearization may be used only if complete information is avail-
able about the disturbances, model parameters, and system state. That
technique is useless for nonlinear control system design on the condition
of incomplete information about varying system parameters and external
disturbances.
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Note that control laws based on nonlinear inversion theoretically allow
us to determine the potential for improving the system output behavior.
An examination of these laws is essential for analysis.

Control system design can efficiently be done under uncertainty via
the design methodologies for control systems with sliding motions [Utkin
(1977); Utkin (1992)], control systems with high gain in feedback [Meerov
(1965); Young et al. (1977)], and control systems with the highest-
order derivative and high gain in feedback [Vostrikov (1977a); Utkin and
Vostrikov (1978); Vostrikov and Sarycheva (1982); Vostrikov et al. (1982);
Vostrikov (1988b); Vostrikov (1990)]. Note that if output regulation is
based on the above design methodologies, then invertibility of the system
and stability of the inverse system (more precisely, uniform ultimate bound-
edness of that system) are the conditions under which the solution of the
output regulation problem exists.

So, invertibility is a fundamental characteristic of dynamical control
systems, along with controllability, observability, and stability.

7.2.2 Definition of invertibility of dynamic control system

Let us consider a LTI control system in the form

X = AX + Bu, X(Q) = X°, (7.6)

y = CX + Du, (7.7)

where J e R " ; t i e Rm; y G Ep; A, B, C, D are real constant matrices with
appropriate dimensions. We assume that u(t) e U C (C[0,T],Km).

The system (7.6)-(7.7) with a given initial state X(0) = X° may be
considered as a mapping (operator)

A(X°,u): U->Y,

where U is the set of all control functions u(t) and Y is the set of corre-
sponding output functions y(t).

Let us consider the definition of inverse operator given by [Zadeh and
Desoer (1963)], which may be clarified by the block diagram of Fig. 7.1.

Definition 7.1 An operator A~1(Af1) is said to be a right (left) inverse
of the operator A if

AA;1 = iy {A;1 A = iu) (7.8)

holds, where Iy: Y —> Y (7U: U —> U) is the identity operator.
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Fig. 7.1 Serial connection of inverse systems.

In particular, if p = m and both the right and left inverses of the system
(7.6)-(7.7) exist, then these inverses are identical and the system is said to
be invertible [Wang and Davison (1973)].

Note that in Definition 7.1, zero initial conditions are implicitly as-
sumed. In the general case, matching of the initial states of the inverse and
original systems should be provided [Zadeh and Desoer (1963)].

Let us consider a set of definitions for the concept of invertibility as
given by [Hirschorn (1979a); Hirschorn (1979b)] for a nonlinear system of
the form

X = f(X) + G{X)u, X(0) = X°, (7.9)

y = h(X). (7.io)

Here X eM. where M is an n-dimensional smooth manifold (e.g., a subset
of E"), y e W, and u € Rp. It is assumed that f(X) and h(X) are ana-
lytic vector functions and that G(X) is a matrix all of whose elements are
analytic functions. Moreover, u(t) € U where U is a set of analytic vector
functions of t. It is assumed that the solution of (7.9)-(7.10) exists and is
unique for any given X° £ M.

Definition 7.2 The system (7.9)-(7.10) is said to be invertible in X° £
M if for any u^, w2 G U where u\ ^ u2 it follows that

j / ( t ,X 0 , U l )^y( t ,X 0 , U 2 ) .

Definition 7.3 The system (7.9)-(7.10) is said to be strictly invertible
in X° £ M if there exists some open neighborhood O(X°) C M of X° such
that the system is invertible V X £ O(X°).

Definition 7.4 The system (7.9)-(7.10) is said to be strictly invertible
if there exists some open dense manifold M Q " such that V I ° e M the
system is strictly invertible in X°.

There is a broad set of invertibility conditions for LTI systems, expressed
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in terms of rank conditions on the matrix transfer function

H{s) = C(sIn-A)-lB + D

or the system matrix

The interested reader can also find various criteria for invertibility of the
system (7.6)-(7.7), expressed as rank conditions for real matrices con-
structed through the matrices A,B,C,D [Brockett and Mesarovic (1965);
Dorato (1969); Emre and Hiiseyin (1974); Sain and Massey (1969);
Wang and Davison (1973)].

Analysis of the invertibility of nonlinear control systems is often ap-
proached through sequential differentiation of the output variables of y(t)
in order to construct some special subsystem from which the vector of
control variables u(t) may be explicitly derived. This approach was de-
veloped and used by [Silverman (1969); Porter (1970); Hirschorn (1979a);
Hirschorn (1979b); Singh (1980)].

7.2.3 Invertibility condition for nonlinear systems

Let us consider the nonlinear time-varying control system given by (7.1),
(7.2):

X = f(t,X) + G(t,X)u, X(0) = X°,
y = h(t,X),

where X G Rn, u € Rm, y £ W, and p<m<n.
Assume that the invertibility condition [Porter (1970)] is satisfied: there

exists a system of equations for the output derivatives which makes it pos-
sible to derive the input u(t) of the system (7.1)-(7.2).

In accordance with [Porter (1970)], let the expression

y1(t)=h1(t,X) (7.11)

be the first component of the output vector function y(t), where h =
{hi, /12, • • •, hp}

T. For convenience, denote

hlo{t,X) = h1{t,X).
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Differentiating (7.11) along the solutions of the system (7.1), we obtain

y(i] = dhw/m + {dhlo/dx}{f + Gu},

where

dy[1)/du = {dhw/dX}G(t,X).

Assume that the condition

{dhw/dX}G(t, X) = 0, V (t, X) e fit,x

holds, where flt,x = [0, oo) x fix and Qx is a connected domain in R".
Denote

hn = dhlo/dt + {dhlo/dX}f

and then derive the expression for y[ . Repetition of this procedural cy-
cle will continue until the control variable u{t) appears explicitly. Let us
assume that the ai th step of this procedure yields the following expression:

y[ai) = hUai(t,X) + {dhhai_x/dX}G(t,X)u,

where

dy[ai)/du = {a/ii,Ql_i/aX}G(t,X).

Assume that the conditions

{dhhj/dX}G(t,X)=0, V(t,X)ent,x, Vj = l , . . . , a 1 - 2

and

{dhliai.1/dX}G{t,X) * 0, V (t,X) G iltiX

are satisfied.

As a result of providing the above procedure for each component of the
output vector y(t), the equations

ylat)=hiiat(t,X) + {dhitai_1/dX}G(t,X)u, t = l , . . . , p (7.12)

are obtained. Let us rewrite (7.12) as

y* = H*(t,X) + G*(t,X)u, (7.13)

where

v. = {viai),via'\...,yi?')}T, (7.14)
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'K(t,x)i lgl(t,xy
H*(t,X)= h ^ X ) , GT(t,X)= 9l{t]X) , (7.15)

.h;(t,X)\ lg;(t,X).

and h*(t,X) = hi,ai(t,X), g*(t,X) = {dhi,ai-1/dX}G{t,X). By defini-
tion, h*(t,X) is the ith element of the column vector H*(t,X) and g*(t,X)
is the ith row of the matrix G*(t,X), where H* e Mpxl, G* £ RPxm.

In accordance with the discussed algorithm scheme, the recurrence re-
lationship

hi,j(t,X) = dhij-i/dt + {dhij-i/dX}f(t,X), V i = l , . . . , p , V j = l , . . . , a i

holds, where hito(t,X) = hi(t,X) is the ith element of the column vector
h(t,X). Moreover, the conditions

{dhitj/dX}G(t, X) = 0, V (t, X) G Slt,x, V i = 1, . . . ,p, V j = 0 , . . . , at - 2

are satisfied in accordance with the algorithmic scheme. So we have

y\j) =hitj(t,X), V j = ( ) , . . . , < * < - 1 and V i = l , . . . , p . (7.16)

Remark 7.1 T/ie positive integer value a,- is a structural invariant of
the system (7.1)-(7.2) and is known as the invertibility index (or recently
more often as the relative degree) of the system with respect to the output
yi [Silverman (1969)]. Throughout the text below, we assume a uniform
relative degree of the system (7.1)-(7.2), i.e., that a.i — const for all (t, X) e

nt,x-

Assumption 7.1 The condition

rank G*(t,X)=p, V{t,X)efltiX (7.17)

is satisfied.

Theorem 7.1 From (7.17) it follows that the right inverse of the system
(7.1)-(7.2) for all (t, X) £ Q.t,x has the following form:

X(1) = /(t ,X) + G(i,X)[G*(t,X)]r{G*(i,X)[G*(i,X)]T}-1

x{y.-H*(t,X)}, X(0) = X°, (7.18)

u=[G*{t,X)]T{G*(t,X)[G*(t,X)]T}-1{y.-H*(t1X)}. (7.19)
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Proof. A proof may be based on Definition 7.1, by direct substitution of
(7.19) into (7.13), in view of the condition X(t) = X(t), V t which follows
from u(t) = u(t), V t and X(0) = X(0). •

Remark 7.2 From (7.17) it follows that m>p is a necessary condition
for right inversion of the system (7.1)-(7.2).

Remark 7.3 If p = m, then from (7.17) it follows that

detG*(t,X)^0, V{t,X)ent]X. (7.20)

As a result, from (7.18)-(7.19) we can obtain

X^ = f(t,X) + G(t,X){G*(t,X)}-1{y,-H*(t,X)}, (7.21)

u(i) = {G*(i,X)}-1{y*--ff*(i,^)}, X(0) = X°. (7.22)

This is the inverse system (both right and left) of the system (7.1)-(7.2).

7.3 Insensitivity condition for MIMO control system

7.3.1 Desired dynamics equations

From (7.13) and (7.17), it follows that for i = 1,... ,p the relative highest
derivative y\ depends explicitly on the control vector u(t). Therefore
an arbitrary behavior of the relative highest derivative vector y*(£) may
be provided by appropriate selection of the control function u(t). Let us
construct the reference model of the desired behavior of the relative highest
derivative of yi(t) for each i = 1,... ,p in the form of the stable differential
equation

y^^FiiYuRi). (7.23)

This is called the desired dynamics equation of yt{t), where

Equation (7.23) is the counterpart of (4.31), and can be selected in the form
of the linear differential equation (2.8). The parameters of (7.23) for each
zth output component are assigned in accordance with the time-domain
specifications on the desired output behavior of yi(t) and the requirement

lim ei(t) = 0, (7.24)
t—KX)
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where ê  = r, — yi and i = 1, . . . ,p. Hence we have j/j = r» at the equilibrium
of (7.23) for 7-j = const.

As a result, we have the system of stable differential equations

y. = F(Y,R) (7.25)

composed of the equations (7.23), where F = {F\,F2,..., FP}T.

7.3.2 Insensitivity condition

Let us denote

eF = F(Y,R)-y*, (7.26)

where eF is the realization error of the desired dynamics F(Y, R), assigned
by (7.25). Accordingly, if

eF = 0, (7.27)

then the desired behavior of y(t) with prescribed dynamics (7.25) is fulfilled.
Expression (7.27) is the insensitivity condition for the output transient per-
formance with respect to the external disturbances and varying parameters
of the plant model (7.1)-(7.2). In other words, the control design problem
(7.5) has been reformulated as the requirement (7.27).

So if (7.27) is satisfied, then the following hold simultaneously:

(i) The behavior of each ith output component is insensitive to parameter
variations and external disturbances,

(ii) The output behavior of each ith output component is assigned by the
parameters of the desired dynamics equation (7.23).

(iii) The output behavior of each ith output component does not depend
on the behavior of the other output components.

From (7.13) it follows that (7.27) can be rewritten as

F-H*(t,X)-G*(t,X)u = 0. (7.28)

So the control problem (7.5) for the MIMO system (7.1)-(7.2) has been
reformulated as a problem to provide the requirement (7.28), despite the
presence of unknown parameters in (7.28).
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7.4 Internal stability

7.4.1 Boundedness of NID-control function

Let us consider the behavior of the control function u(t) and the state
vector X(t) of the system (7.1)-(7.2), given that the desired reference input-
controlled output map assigned by (7.25) is satisfied.

Assume henceforth that equidimensional input and output vectors of
the system (7.1)-(7.2) are considered, i.e., that m = p.

From (7.28) it follows that the function

uNW(t)^{G*(t,X)}-1{F(y,R)-H*(t,X)} (7.29)

uniquely satisfies (7.27) and is the solution of the nonlinear inverse dynam-
ics. By substituting (7.29) into the state equation (7.1), we obtain

X = f(t,X) + G(t,X){G*(t,X)}-1{F-H*(t,X)}, X(0) = X°. (7.30)

The system (7.30) describes the behavior of the state vector X(t) of
the system (7.1)-(7.2), given that the desired output behavior assigned by
(7.25) is fulfilled.

Remark 7.4 It is easy to see that (7.29)^(7.30) and the inverse sys-
tem equations (7.21)~(7.22) are the same. So, the boundedness of the
NID-control function (7.29) corresponds to bounded-input-bounded-output
(BIBO) stability of the inverse system (7.21)-(7.22). Related remarks can
be found in [Silverman (1969); Porter (1970); Fomin et al. (1981)].

If the nonlinear inverse dynamics solution uNlD(t) of (7.29) is an un-
bounded function, i.e.,

limsup \\uNID(t)\\ = oo,
t-*oo t>0

then the desired output behavior assigned by the reference model (7.25)

y. = F{Y,R)

is unrealizable in the system (7.1)-(7.2) where t G [to,oo). This is because
the increase in the control function uNID(t) leads inevitably to saturation
of the control variables in practice.

So, the desired output behavior assigned by (7.25) is realizable for all
t € [0, oo), that is, some bounded set flu exists such that the inclusion
u(t) e Clu holds, if the following two requirements are satisfied:
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(i) The inverse system of (7.1)-(7.2) exists,
(ii) The NID-control function uNID(t) is bounded, i.e.,

limsup \\uNID{t)\\ <oo. (7.31)
t—»oo t>0

Definition 7.5 The property expressed by (7.31) is called the bounded-
ness of the AT.D-control function in the system (7.1)-(7.2), given that the
desired output behavior assigned by the stable system (7.25) is satisfied.

Note that (7.31) corresponds to (3.14) discussed above for the SISO control
systems given by (3.1).

7.4.2 Concept of internal stability

The boundedness (7.31) of the iV7.D-control function in the system (7.1)-
(7.2) does not exclude the existence of unstable motions in the state space of
(7.1)-(7.2), where the unstable motions have no effect on the behavior of the
output y(t) and the NID-control function uNID(t), given that the desired
output behavior assigned by the stable system (7.25) is satisfied. From a
theoretical viewpoint, we can obtain the solution of the output regulation
problem despite the fact that there are unobserved unstable motions in the
state space of (7.1)-(7.2). From a practical standpoint, the model of the
form (7.1)-(7.2) is usually valid for only some bounded subset Qx of the
state space Rn. The reason is that the range of permissible variations of any
technical plant variable is bounded in practice by a set of limitations on
thermal stability, electric strength, mechanical strength, and other physical
characteristics.

In accordance with these technical limitations, we must further restrict
the trajectories of (7.30) so that

limsup ||X(t)|| <oo. (7.32)
t->oo t>0

By this we mean that internal unbounded motions in (7.1)—(7.2) do not
exist when the desired reference input-controlled output map assigned by
(7.25) is satisfied.

Definition 7.6 Let us say that the internal stability of the system (7.1)-
(7.2) is satisfied if the inequality (7.32) holds for all trajectories of (7.30) in
the specified region of the state space (or, in other words, for all trajecto-
ries of (7.1)-(7.2) when the desired reference input-controlled output map
assigned by (7.25) is fulfilled).
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Remark 7.5 From the internal stability of (7.1)-(7.2) and the condition
(7.20), the boundedness of the NID-control function (7.31) results.

Remark 7.6 Let the allowable subset Q,u be specified, and suppose m = p
where £lu C Rm. Then the desired output behavior assigned by (7.25) is
realizable if the inclusion uNID(t) 6 Clu, V t £ [0,oo) holds.

Remark 7.7 By taking into account Remark 7.4 and Definition 7.6, we
find that the internal stability of (7.1)-(7.2) corresponds to bounded-input-
bounded-state (BIBS) stability of the inverse system (7.21)-(7.22).

7.4.3 Normal form of the plant model

The internal stability of the system (7.1)-(7.2) can be easily verified by
transformation to a special canonical form known as the normal form.
This form of state space representation for dynamical systems was dis-
cussed in a broad set of references, e.g., [Brunovsky (1970); Luenberger
(1967); O'Reilly (1983); Sira-Ramirez (1989); Byrnes and Isidori (1991);
Isidori (1995); Fradkov et al. (1999); Khalil (2002); Vostrikov and Yurke-
vich (1991)].

Remark 7.8 In the normal form, new state variables are introduced
which include each ith component yi of the output vector y and its first
cti — 1 derivatives.

Let us consider hereafter the system (7.1)-(7.2), where Assumption 7.1
is satisfied, i.e., the system (7.1)-(7.2) is right invertible, and n > m > p.

By taking into account (7.16), let us introduce the vector function

Y = Q1(t,X), (7.33)

where

^ = {2/10 ,2 /n , • • • ,2 /1 ,01-1,2/20) • • • ,yP,ap-i}T

— 1.4/11i/i , - - - , 2 / i , 2 / 2 , - - - , 2 / P j > V'-"J4J

Vio = yi, Vij = y\3\ V i = 1 , . . . ,p, V j = 0 , . . . , at - 1,

Qi(t,X) = {hlo(t,X),h11(t,X),...,h1,cn-1(t,X),h2O(t,X),...

• • • ,hPio(t,X),... , / i p > Q p_i( t ,X)}T.

Theorem 7.2 From the given system (7.1)-(7.2) where the conditions
(7.16)-(7.17) hold, we find that the vector function Y = Qi(t, X) is such
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that

rank dQl^X^ = ;, W(t,X)eOt,x where i = J > i .
t=i

Proof. First, let us construct a control function of the form

u = -[G'(t,X)]T{G*(t,X)[G*(t,X)]T}-1u, (7.35)

where

u= {uuu2,...,up}T

and

Q i - l

ui = h*(t,X)+ J2^ViJ\ i = l,..-,p.
3=0

By substituting (7.35) into (7.13), we find that for all (t,X) € Q.t,x the
behavior of the ith component j/j of the output vector y is described by the
differential equation

v J a i ) + E & i / P = 0, (7-36)
j=0

where the parameters ^ may be assigned arbitrarily.
Next, the proof proceeds by contradiction. Let us assume the existence

of a point (i, X) € £lt,x where

rank dQl^'X"> < i for (t,X) = (t,X). (7.37)

In accordance with (7.37), a column vector

e(i,X) = {6(t,X),6(i^),...,^(t,X)}T

exists such that the following conditions are satisfied:

||£(t,*)|| > 0 and e(t,X)dQf^X) = 0 for (t,X) = (t,X). (7.38)

Here 0 = {0,0, . . . , 0} is the null row vector, 0 £ K".
From (7.33) it follows that

Y{t)= dx x + dt •
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Then, in accordance with (7.38), we obtain

(r{t,X)Y{t) = dQl{t,X)/dt for {t,X) = {i,X). (7.39)

So, from Assumption (7.37) it follows that at the point (t, X) = (t, X)
the condition (7.39) is satisfied, where the vector £(i, X) depends on the
parameters of the system (7.1)-(7.2). This contradicts the condition (7.36),
which proves Theorem 7.2. •

In accordance with Theorem 7.2, the vector function (7.33) can be sup-
plemented by another vector function z = Qi{t, X) in such a way that the
transformation

is a one-one mapping (bijection) where z S M.n~l. Consequently, the choice
of the vector function Q2(t,X) should be provided in accordance with the
requirement

rank °Q^X} = n, V (t,X) £ fit,*- (7.41)

From the implicit function theorem it follows that an inverse transforma-
tion X = Q~1(t,Y,z) exists for all (t,X) € fit.x- Then, by the change of
variables (7.40), from the system (7.1)-(7.2) the normal form of the state
space representation follows, that is

d

d

"jT2/i,at-2 — yi,ai-li

^W,a,-i = /><(*, y, z) + 9*(t, Y, z)u, i = 1,.. . ,Pi (7.42)

jtz = f(t,Y,z) + G(t,Y,z)u. (7.43)

In accordance with (7.14), the system (7.42)-(7.43) may be rewritten con-
cisely as

y. = H* (t, Y, z) + G* (t, Y, z)u, (7.44)
z = f(t,Y,z) + G(t,Y,z)u, (7.45)

where the new state vector (Y,z) includes the ith component j/j of the
output vector y and its first on - 1 derivatives. Here we have Y e M.1,

(7.42)

(7.44)

(7.40)
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z&Rn-l,p< I <n, and

•hl(t,Y,z)l \9i{t,Y,zY

H*(t,Y,z) = h^;Y'z) , G*(t,Y,z) = M*™ . (7.46)

.h;(t,Y,z)\ [g;(t,Y,z)_

Note that the system (7.1)-(7.2) presented in the normal form (7.42)-
(7.43) consists of two subsystems. The first one, (7.42), is the subsystem for
the output variables y(t) and their derivatives; it is called an external sub-
system. The second one, (7.43), is the subsystem for the internal variables
z(t). Accordingly, it is known as an internal subsystem.

7.4.4 Internal stability of linear systems

First, let us clarify the core of the approach to internal stability analysis
by considering the linear system given by

X = AX + Bu, X{0) = X°, (7.47)

V = CX, (7.48)

where X G Rn, y £ Rp, u € W, and p < n. Also assume that

de tCB^O. (7.49)

So the system (7.47)-(7.48) is invertible and the vector of the relative degree
equals a = { 1 , . . . , 1}.

For internal stability analysis of the system (7.47)-(7.48), let us trans-
form it to the normal form (7.42)-(7.43). Note that if (7.49) is satisfied,
then the normal form corresponds to the one discussed in [O'Reilly (1983)].

In accordance with (7.49), the transformation (7.40) has the form

^ J = QX, (7.50)

where

Q= [J^l and Qi=C. (7.51)

The matrix Q2 is chosen so that detQ ^ 0. For example, Q\ may be
supplemented with appropriate identity matrix rows. Note that Q2 may be
assigned in the form Q2 = QJR, where Q\R is a right annihilating matrix
of the maximal rank for Qi. This follows from the next theorem.
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Theorem 7.3 Let Q\ 6 W*{n~p) where rankQi = p. Suppose QiR is a
right annihilating matrix of the maximal rank for Qj. Then

Proof. Since Qm is a right annihilating matrix, we have QIQIR = 0 where
0 is a null matrix. Furthermore, Q\R is the right annihilating matrix of
maximal rank for Q±. This and the fact that rankQj = p imply rankQi^ =
n — p.

As a result we have

[ Qi 1 \Qif_\QiQl 0 1
[QTR\ [QIR\ ~ I oT QTRQIRI '

where detQiQj ^ 0 and detQ^jQi^ ^ 0. The proof is complete. •

Remark 7.9 IfQiR is the right annihilating matrix of maximal rank for
Qi, then Q^R is the left annihilating matrix of maximal rank for Qf.

As a result of the transformation (7.50), we have the normal form of the
system (7.47)-(7.48):

y = Any + A12z + Biu, (7.52)

z = A2iy + A22z + B2u. (7.53)

Here (7.52) is the external subsystem and (7.53) is the internal subsystem.
Note that BX=CB.

Since the relative degree of each output component equals unity, the
reference model of the desired behavior of the output y(t) in the system
(7.47)-(7.48) can be constructed such that

y = F(y,r) (7.54)

is a system of stable differential equations, where y = r at the equilibrium
point for r = const. For instance, we may assume that (7.54) consists of p
separate differential equations of the form (4.6) (see p. 58).

As a result, the control problem (7.5) for the system (7.47)-(7.48) cor-
responds to the insensitivity condition given by

eF = 0, (7.55)

where

eF = F(y,r)-y. (7.56)
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Prom (7.52)-(7.54) it follows that the solution of (7.55) is given by

uLID{t) = B^{F(y, r) - Any - A12z}. (7.57)

This is called the solution of the linear inverse dynamics (or L/D-control
function by analogy with the NID-control function). Note that it corre-
sponds to the desired input-controlled output map assigned by (7.54).

Substitution of (7.57) into (7.52)-(7.53) yields

il = F(y,r), (7.58)

i = {A22 - B2Bi1A12}z

+{A21 - B2BilAn}y + B2B^F(y, r). (7.59)

These describe the behavior of the state variables y(t), z(t) on the condition
that the desired output behavior assigned by (7.54) occurs.

In the closed-loop system (7.58)-(7.59) the external subsystem equation
(7.58) equals the reference model equation (7.54), and the stability of the
internal subsystem equation (7.59) depends only on the inherent properties
of the system (7.47)-(7.48).

Since the reference model equation (7.54) is stable (meaning that (7.54)
has an unique asymptotically stable equilibrium at the point r = y for
r — const), the internal stability (7.32) of the system (7.47)-(7.48) occurs if
the trajectories of the internal subsystem equation (7.59) are asymptotically
stable. This is the case if all roots of the internal subsystem characteristic
polynomial

det{sln-p - A22 + B2B{1 A12} (7.60)

lie in the left half of the s-plane. Note that these roots correspond to zeros
of the transfer matrix of the system (7.47)-(7.48).

Consequently, the analysis of the internal stability (7.32) of the system
(7.47)-(7.48) reduces to the stability analysis of the internal subsystem of
the form (7.59).

In compliance with the characteristic polynomial (7.60), it is easy to
see that internal stability of (7.47)-(7.48) depends only on the inherent
properties of the system (7.47)-(7.48). Such an inference corresponds to
the invariance of the transfer matrix zeros with respect to feedback in the
system with equidimensional input and output vectors [Rosenbrock (1970);
Rosenbrock (1973)].
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7.4.5 Internal stability of nonlinear systems

Returning to the nonlinear control system given by (7.44)-(7.45), we see
that the desired output behavior assigned by (7.25) is reproduced with the
JV7.D-control function (7.29), which may be presented in the form

uNID(t) = {G'(t,Y,z)}-1{F(Y,R)-H''(t,Y,z)}. (7.61)

By substituting (7.61) into (7.44)-(7.45), we get

y, = F{Y,R), (7.62)

z = f(t,Y,z) + G(t,Y,z){G*(t,Y,z)}-1

x{F(Y,R)-H*(t,Y,z)}. (7.63)

So, in the closed-loop system equations (7.62)-(7.63) the external sub-
system equation (7.62) equals the stable reference model equation (7.25).
Hence

limsup \\Y(t)\\ <oo. (7.64)
t-»oo t>0

Assume that for all trajectories of the internal subsystem (7.63), the con-
dition

limsup ||z(f)|| < oo (7.65)
t-»oo t>0

is satisfied. Then, by (7.40) and (7.41), we can conclude that the internal
stability property (7.32) holds in the specified region Clx of the state space.
The result can be formulated as the following theorem.

Theorem 7.4 / / the property (7.65) of the internal subsystem (7.63) tra-
jectories holds in the specified region Clx of the state space, then a bounded
set ilu exists such that the desired output behavior assigned by the refer-
ence model of the form (7.25) is realizable in the system (7.1)-(7.2) for all
X e fix and t e [0,oo).

Remark 7.10 / / I = n then the closed-loop system equations (7.62)-
(7.63) reduce to the external subsystem equation (7.62) without the internal
subsystem (7.63). In this case, from the invertibility condition (7.20) it
follows that the internal stability (7.32) and the boundedness of the NID-
control function (7.31) in the system (7.1)-(7.2) with the desired stable
output dynamics assigned by (7.25) are maintained.
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Remark 7.11 In the context of the discussed output regulation problem,
the effect of the internal subsystem (7.63) on the output behavior can be
rejected if the solutions of (7.63) are smooth and bounded. The existence
of the equilibrium point of (7.63) and its stability in some sense are not
required. For instance, the solutions of (7.63) may have a stable cycle or
reveal chaotic behavior as shown in the concluding example of this chapter.

So we may conclude that internal stability of the system (7.1)-(7.2) cor-
responds to the uniform ultimate boundedness of the internal subsystem
(7.63).

7.4.6 Degenerated motions and zero-dynamics

Let us consider the case when a controller keeps the output y(t) the same
as a constant reference input r = const, i.e.,

y(t) = r = const, V t G [0, oo). (7.66)

Then from (7.33), (7.34), and (7.66) it follows that the state vector X(t) of
(7.62)-(7.63) belongs to the manifold given by

yi{t) = n, J 4 J ) = 0 , i = l,...,p, j = l , . . . , a i - l , t € [ 0 , o o ) . ( 7 . 6 7 )

In accordance with (7.16), this manifold can be represented as the system
of I algebraic equations

hitO(t,X)ln, hij(t,X)lo, j = l a < - l , i = l p. (7.68)

Motions along this manifold are called degenerated motions. Then the sys-
tem (7.62)-(7.63) of dimension n degenerates into a system of dimension
n — l. So, the internal stability analysis of the system (7.1)-(7.2) on the ad-
ditional condition (7.66) leads to analysis of the stability of the trajectories
on the n — I dimensional manifold (7.68). Here we recall that I is the sum
of the relative degrees oti where i = 1,... ,p.

From (7.67) it follows that the iV/D-control function (7.61) is given by

uNW(t) = -.{G*(t,Yr,z)}-lH*{t,Yr,z), (7.69)

where r = const and

Yr = {ru 0 , . . . ,0 , r 2 , . . . , 0, r p , . . . , 0 } T . (7.70)

The vector Yr follows from the vector Y (7.34) by taking into account the
additional restrictions given by (7.67).
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From (7.67) and the closed-loop system equations (7.62)-(7.63), it fol-
lows also that the behavior of the internal variables z(t) on the manifold
(7.67) in the state space (Y, z) is described by the system of n — I differential
equations

z = f(t,Yr,z)-G(t,Yr,z){Cr(t,Yr,z)}-1H*{t,Yr,z). (7.71)

System (7.71) is called the degenerated system [Vostrikov and Yurkevich
(1991)].

In a particular case, let us assume that r = 0 and, accordingly, obtain
Yr = Yr=o = 0, V t £ [0, oo). Then from the degenerated system (7.71) the
equation of zero-dynamics

z = fit, y r = 0 ) z) - G(t, Yr=0, z){G*(t,yr=0, z ) } - 1 ^ , Yr=0, z) (7.72)

follows, where the stability of transients in (7.72) corresponds to the concept
of the minimum phase of nonlinear system discussed in [Byrnes and Isidori
(1991)].

The main result of this section is given in the following theorem.

Theorem 7.5 If in the system (7.1)-(7.2) the conditions (7.67) hold,
then in the normal form representation (7.44)-(7.^5) the external subsys-
tem (7.62) reduces to the system of I algebraic equations (7.67), and the
transient process of the internal variables z(t) occurs along the manifold
(7.67), where the transients of z(t) are described by the degenerated system
(7.71) of the (n - l)th order.

It is clear that verification of the uniform ultimate boundedness of the
degenerated system (7.71) trajectories on the manifold (7.66) is often much
simpler than the analysis of the internal subsystem (7.63).

Remark 7.12 Note that the relations between zeros of the transfer func-
tion and the zero-dynamics system were discussed in [Levy and Sivan
(1966)]. Canonical representation of nonlinear systems where the inter-
nal subsystem gets rid of the control variable u(t) is discussed in [Byrnes
and Isidori (1991); Isidori (1995)].
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7.4.7 Example

Let us consider the nonlinear time-varying system

±i = x? + x3(xi — x3)(x3 + X4 — xi) + [2 + sin(:r4)]«i + u2,

x2 = -(xi - x3)(x3 + x4- xi) + w2(t) - ui + [1 + 0.5sin(x3)]u2,

*3 = ^3(^1 - x3)(x3 + x4 - xi) + [2 + sin(x4)]ui + u2, (7.73)

±4 = x2 - 12(aj3 + X4 - x\) + Wi(t) + ui + u2,

1/1 = xx -x3,

2/2 = 1 3 ,

where

x\(t),..., Xi(t) are the state variables;
Vi(t),y2(t) are the output variables;
u\(t),U2(t) are the input variables;
w2(t), Wi{t) are the external disturbances;
\w2{t)\ < Wmax and \w4{t)\ < Wmax-

Prom (7.73) we can find the relative degrees given by ai = 2, a2 = 1. The
matrix G* has the form

G . F - 1 l + 0.5sin(a;5)j
L2 + sin(a;4) 1 J ^ ;

Prom this it is easy to verify that detG* ^ 0, i.e., (7.73) is an invertible
system since (7.20) holds. Denote

Y = {2/10,2/11, y2o}T = {yi,y[1),y2}T. (7.75)

From (7.73) we find that

2/10 = xi - x3, yn = x2, y2o = x3. (7.76)

Let us introduce the internal variable

z = x3 + Xi — x\. (7.77)

Expressions (7.76) and (7.77) give the desired transformation (7.40) of the
form

'j/iol [ 1 0 - 1 01 p i "
2/ii = 0 1 0 0 x2 (77S)
2/20 ~ 0 0 1 0 x3

. Z J L - l 0 1 l j lX4_



Realizability of desired output behavior 171

By the change of variables (7.78) we find that the normal form of (7.73) is
given by

2/10 = 2/11,

Vu = -Vioz + w2(t) - ui + [1 + 0.5sin(2/2o)]u2,

2/20 = 2/102/202 + [2 + sin(z + 2/io)Wi + u2, (7.79)

i = —I2z + u)i(t) + u\ + u2.

Next, the degenerated system (7.71) can be obtained by assuming that
for all t £ [0,00) the conditions

y io=r i = l, y[$=0, l / i?=0, y2o = r-2 = l, ^ o ) = 0 (7.80)

hold. On these conditions the system (7.79) reduces to the system

0 = 2/u,

0 = -2/102 + w2{t) - ui + [1 + 0.5 sin(y2o)]«2,

0 = 2/102/20-z + [2 + sin(.z + 2/io)]«i + u2,

Z = —Viz + Wi(t) + Ui + W2.

Accordingly, the degenerated system is given by

i = az + 4>(u>2,W4,ri,r2), (7.81)

where

a = -12 + ri[3 + sin(r2) +sin(z + n)

+0.5 sin(r2) sin(z + n)]'1^ + sin(z + n) + 0.5r2 sin(r2)]. (7.82)

For instance, let us assume that |ri(i)| < 1 and |r2(i)| < 1. Then a < 0.
Hence, the boundedness of the trajectories of the degenerated system (7.81)
follows on the given bounded sets of ri(t),r2(t), and w2(t), Wi{t). Therefore,
the bounded subset Clu exists such that the inclusion uNID(t) 6f!u, V t €
[0,oo) holds on the condition (7.66).

7.5 Output regulation of SISO systems

7.5.1 Realizability of desired output behavior

Before addressing MIMO control system design, let us consider the problem
of nonlinear time-varying SISO control system design in the presence of the
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internal subsystem. We will deal with the system given by

X = f(t,X) + G(t,X)u, X(O) = X°, (7.83)

y = h{t,X), (7.84)

where l e r . u G l 1 , and i / e l 1 .
Denote ho{t,X) = h(t,X). Differentiation of the output equation y —

ho(t,X) yields

y{1)-d-^ + d^{f(t,x) + G(t,x)u}.

Assume that

^ | * > G ( t , X ) = o, V( t ,X)ea ,* ,

where £ltiX = [0,oo) x QX- Then, by denoting

h (t X) dho(t,X) dho(t,X)
hl{t>x) = dt + dx f{t'x)>

we can find the expression for y^-
Let us assume that there exists an a < n such that

yW=hj{t,X), Vj = 0 , . . . , a - l (7.85)

and

yM = ha(t,X) + dha-^X)G(t,X)u, (7.86)

where the conditions

dhj^X)G(t,X) = 0, Vj = 0 , . . . , a -2 , V(t,X)eQt,x,

dha-^'x)G(t,x)^o, v(t,x)ent,x

are satisfied. That is, the system (7.83)-(7.84) satisfies the well known
sufficient condition for invertibility [Porter (1970)].

The value a is the relative degree (or invertibility index) of the system
(7.83)-(7.84). Then y^ is the relative highest output derivative of that
system.

For convenience, let us denote

h*(t,X) = ha(t,X), g*{t,X) = dha-^'X)G(t,X),
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and rewrite (7.86) as

y^ = h*(t,X) + g*(t,X)u. (7.87)

We wish to design a control system to provide the condition

lim e(t) = 0, (7.88)
t—>oo

where e(t) is the error of the reference input realization (tracking error);
e(t) = r(t) — y{t); r(t) being the reference input.

Assume that, in accordance with the time-domain specifications of the
desired output behavior, the reference model of the form

yl°) = Fiy^-V,... ,yw,y,rM,.. • ,r<V) (7.89)

has been constructed as a stable differential equation where p < a and
y = r at the equilibrium point for r = const. Let us rewrite (7.89) in the
concise form

y^=F(Y,R), (7.90)

where Y = {y,y{1\ • •. ,y{a-1)}T and R = {r,r{1\... ,rip')}T.
The deviation between the desired dynamics F(Y, R) assigned by (7.90)

and the actual value of the relative highest output derivative y^ is denoted
by

eF = F(Y,R)-y(a\

where eF is the error of the desired dynamics realization. Then the dis-
cussed control problem for the SISO system (7.83)-(7.84) corresponds to
the insensitivity condition given by

eF = 0.

Assume that the internal stability of the system (7.83)-(7.84) holds,
that is, condition (7.32) is satisfied in a specified region of the state space
of (7.83)-(7.84) given that eF = 0.
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7.5.2 Closed-loop system analysis

In accordance with (4.38), let us consider the control law with the relative
highest output derivative y^ in feedback:

yfluM + dg-i/x'-M?-1) + • • • + dmu^ + dou

= ko{F{Y, R) - y^}, £/(0) = U°, (7.91)

where /j, > 0, U = {UyU^,... ,u<-q~l^}T, and q > a. Assume that
g*(t,X)k0 > 0 for all (t,X) & £ltiX-

The closed-loop system equations become

X = f{t, X) + G(t, X)u, y = h(t, X), X(0) = X°, (7.92)

= ko{F(Y,R)-y^}, [7(0) = U°. (7.93)

where the two-time-scale motions are induced as /x —> 0.
From (7.92)-(7.93) and (7.87), by the above procedure for two-time-

scale motion separation, the FMS

/*««<«> + d , - ^ * - 1 ^ ' - 1 ) + • • • + di^w(1) + {d0 + kog*(t, X)}u

= ko{F(Y,R) - h*(t,X)}, f/(0) = U° (7.94)

results, where g*(t,X) is the frozen parameter during the transients in
(7.94).

Assume that the FMS (7.94) is stable. Then, letting /x -> 0 in (7.94),
we obtain the steady state (more precisely, quasi-steady state) of the FMS
(7.94), where u(t) = us(t) and

us(t) = [do + kQg*(t,X)]-1ko{F(Y,R)-h*(t,X)}. (7.95)

Substitution of (7.95) into (7.86) yields

y^=F(Y,R)

+do{d0 + kog*(t, X)}-1 {h*(t, X) - F(Y, R)}, (7.96)

where (7.96) is the SMS of the output behavior. So, the desired dynamical
properties of y(t) are provided in a specified region of the state space of the
system (7.83)-(7.84) if d0 = 0 or for d0 = 1 as g*(t,X)k0 —> oo, despite the
existence of unknown varying system parameters and external disturbances.
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7.5.3 Example

Let us consider a nonlinear system

y = y2 + ziz2 + u,

i i = y2 + zi z2 + z2 +u, (7.97)

z2 = V2 - z\ + zxz2 + (1 - z\)z2 + u,

which is represented in the normal form. From (7.97) it follows that the
relative degree a = 1.

Let the desired output behavior be assigned by

l/(1) = F(j/,r),

where

yW = ±[r-y] (7.98)

and T = 1 s.
The counterpart of the system (7.62)-(7.63) has the following form:

y= -[r-y],

zi = z2 +-[r - y}t (7.99)

•Z2 = -zi + {l-zl)z2 + -[r-y}.

Similar to (7.66), assume that

y(t) = r = const, V i e [0,00).

Then the system (7.99), having dimension 3, degenerates into the system

y = r = const,

i i = 22, (7.100)

Z2 = ~Zl + (1 - z\)z2,

having dimension 2. This Van der Pol oscillator equation possesses a stable
limit cycle [Khalil (2002)].

Since the solutions are bounded, by Theorem 7.4 and Remark 7.11 we
know that the desired output behavior assigned by the reference model of
the form (7.98) is realizable in the system (7.97).
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Therefore, consider the control law given by

M«(1) + dou = koiT-^r - y] - y(l)}, (7.101)

which is the counterpart of the control law (4.16). In order to perform
numerical simulation, let us rewrite (7.101) in the state-space form

^ = -^{«i-*Oy}+^[r-»], (7.102)

u=-[ui-koy}. (7.103)

Simulation results for the system (7.97) controlled by the algorithm
(7.102)-(7.103) are displayed in Fig. 7.2. Here the initial conditions are
zero, and k0 = 10, d0 = 0, \i — 0.1 s, t £ [0,10] s.

Fig. 7.2 Simulation results for the system (7.97) and (7.102)-(7.103).

7.6 Switching regulator for boost DC-to-DC converter

7.6.1 Boost DC-to-DC converter circuit model

Let us consider the application of the above design methodology to the
problem of switching controller design for a boost DC-to-DC converter cir-
cuit as shown in Fig. 7.3.

Fig. 7.3 Boost DC-to-DC converter circuit.
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By Kirchhoff's voltage law we have E = VL when the transistor is ON
and E = VL + Vout when the transistor is OFF; hence, we get

E = VL + uVout,

where the state of the ideal switches (transistor and diode) is represented
by the control variable u and u G {0,1}.

The voltage drop VL across an inductor is given by VL = LIL, where II
is the current through the inductor with inductance L. We have CVc = Ic
for the voltage drop Vc across a capacitor, where Ic is the current through
the capacitor with capacitance C. By Ohm's law, the voltage drop VR
across a resistor is given by VR = RIR, where IR is the current through the
resistor with resistance R. By Kirchhoff's current law we get Ij_,u = IC + IR-
Denote x\ = II, X% = Vc- By taking into account that VR = VC = Vout, we
obtain the bilinear switched model given by (see, e.g., [Escobar et al. (1999);
Sira-Ramirez (2002)])

±i = | - YU> (7-104)

±2 = ~R^CX2+°^U' (7-105)

where E is the value of the DC voltage source, E > 0.

7.6.2 Model with continuous control variable

Assume that y = x-y is the measurable output of the system (7.104)-(7.105)
and consider the model with continuous control variable given by

±l = I~ Tu' (7'106)

±2 = ~WX2 + %U' (7'107)
V = xlt (7.108)

where u is the continuous control variable and u G [0,1).
Similar to (7.66), assume that

y(t) = xi(t)=r = const, V t G [0,oo). (7.109)

Then from (7.106) and (7.109), we get

UNID = E/x2> ( 7 > n o )
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where (7.110) is the counterpart of (7.69). Since u £ [0,1), we obtain x2 €
[E,oo). Then the system (7.106)-(7.108), having dimension 2, degenerates
into the system

xi = r = const,

i2 = -ifc*2 + i ? (7-m)
having dimension 1. The degenerated system (7.111) has the unique asymp-
totically stable equilibrium point x% given by

xs2 = y/ERr. (7.112)

Therefore, the internal stability of the system (7.106)-(7.108) is satisfied in
the neighborhood of the point {x\, x2} = {r, x2} (or, by [Byrnes and Isidori
(1991)], the system (7.106)-(7.108) is the minimum phase system).

Since u G [0,1) and x2 G [E, oo), we obtain from (7.112) the allowable
interval for r, which is r G [E/R, oo).

Assume that [Sira-Ramirez (2002)]

£ = 1 5 V , L = 0.02H, C = 0.001 F, i ?= 200ft.

Let r G [1,4]. By (7.112), we get x2 G [54,110]. Then, by linearization of
(7.111) at the equilibrium point x2 we obtain

aint~ dx2 [Cxi RC\\X2=vmrr- RC

where Tint = — 1/amt is the time constant of the linearized internal subsys-
tem and for the above parameters we obtain Tint = 0.1 s.

The relative degree of the discussed system equals 1 and the internal
stability is satisfied. Therefore, the control law

^ u ^ + dl0u = k!{Til[r - y } - y ( 1 ) } (7.113)

can be applied in order to obtain the desired output behavior of the system
(7.106)-(7.108). Hence, in the closed-loop system given by (7.106)-(7.108)
and (7.113), we have that the two-time-scale motions are induced as pb\ —* 0.
Hence, we obtain the FMS given by

Mlfi(D + [dl0 _ * £ ! ] u = h | l [ r - y] - | } , (7.114)
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and the SMS given by

V = - r [ r - y] + rfiofcr1 [diok^1 - ^ ] ~ * [ | - ^-[r - 2/]] , (7.115)

* - - ^ + 5K'-?r[^»l-f] (T.U6)
where x\ is replaced by y.

Take Tx = 0.02 s, Hi = 0.002 s, h = -0.001, d10 = 0 (as a result, we
obtain that 7min = d\o—kix^L"1 — 2.7). Simulation results for the model
(7.106)-(7.108) controlled by the algorithm (7.113) are displayed in Figs.
7.4-7.5, where the initial conditions are a:i(0) = 0, 2:2(0) = 15, u(0) = 0,
and t € [0,0.4] s. The external disturbance is represented by the varying
resistance R = R(t).

Fig. 7.4 Simulation results for the model (7.106)-(7.108) controlled by the algorithm
(7.113).

Fig. 7.5 Simulation results for the model (7.106)-(7.108) controlled by the algorithm
(7.113).
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7.6.3 Switching regulator

As the next step, let us consider the switching regulator given by

HiuP+dwm =k1{T1-1{r-y]-yW}, (7.117)

u2(t)=ui(t-T), (7.118)

1 + sgn(«2)
W = Wraax f " ^ . (7-119)

where wmax = 1 and the time delay r is included in order to satisfy the
conditions for limit cycle existence in the FMS of the closed-loop system
(7.104)-(7.105) controlled by the algorithm (7.117)-(7.119).

Fig. 7.6 Block diagram of the FMS in the closed-loop system (7.104)-(7.105) controlled
by the algorithm (7.117)-(7.119).

Let us consider the block diagram of the FMS shown in Fig. 7.6, where

g=-T and / = - .

Assume that there are fast oscillations in this FMS. Then, in accordance
with the describing function method, let us replace the relay switch by its
quasi-linear approximation. Let the transfer function ki/D(nis) display a
low-pass filtering property and assume that the nonlinearity input is U2(t),
where

U2(t) — u® + Asm(ut)

with «2 the constant bias signal. Consider the output u(t) of the nonlin-
earity represented by its Fourier series

oo

u(t) = uo + bism(uit) + cicos(ojt) + 'S^{bksin(kLot) + CkCos(ku)t)}. (7.120)
k = 2

Note that the particular feature of the discussed system is the nonsymmet-
rical limits of the nonlinearity. Hence, u^ ^ 0, UQ ^ 0, and it is known that
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for the given nonlinearity we have1 (see, e.g., [Paltov (1975)])

u max "max . - 1 / U2 \ /•'7 1 1 1 \
Uo = ~ + ^ T s m {-!)' (7121)

h = 2 ^ ^ . [ l ] 2 , (7.122)
ci = 0, (7.123)

where yl > |u°|. Therefore, the sinusoidal plus bias describing function2 of
the discussed nonlinear element has the gain for the bias

UQ/UI

and the gain for the sinusoid

G»M = 2jZrf-W- (7124)

By the block diagram of the FMS shown in Fig. 7.6, we have

and assume that

F = 0.

Then, by taking into account that dio = 0, we get the balance equation for
the constant bias signal u\ of the discussed FMS:

f-fpT^--'^)]-11 <"25>
The 1st order harmonic balance equation (6.76) yields

J U I L O T T A L \l [A]

From (7.126) we obtain

m?AA -A2 + (u°2)
2 = 0, (7.127)

<" = £ , (7-128)
1y = sin-1(a;) denotes the inverse sine of x, i.e., sin(y) = x.
2The notion of the sinusoidal plus bias describing function can be found, for instance,

in [Atherton (1981)].

(7.126)
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where

m=—Z . 7.129
4\ki\x2Tum&x

Take Tx = 0.02 s, ^ = 0.002 s, h = -0.001, and r = 0.001 s. From
(7.128) we get w « 1570.8 rad/s. The joint numerical resolution3 of (7.125)
and (7.127) yields v% « -0.362, A « 0.556 when x2 = 54.7, and u% «
-0.977, A w 1.074 when x2 = 110.

Simulation results for the bilinear switched model (7.104)-(7.105) con-
trolled by the algorithm (7.117)-(7.119) are displayed in Figs. 7.7-7.8,
where the initial conditions are xx(0) = 0, £2(0) = 15, ui(0) = 0 and
R = 200 $7 for all t S [0,0.4] s. We see that the simulation results confirm
the analytical calculations.

Fig. 7.7 Simulation results for the bilinear switched model (7.104)-(7.105) controlled
by the algorithm (7.117)-(7.119).

Fig. 7.8 Simulation results for the bilinear switched model (7.104)-(7.105) controlled
by the algorithm (7.117)-(7.119).

3Such software as, for instance, "Mathcad" can be easily used for the joint numerical
resolution of (7.125) and (7.127).
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Let us, for simplicity, omit from our consideration the nonsymmetrical
property of the discussed limit oscillations and determine the limit cycle
parameters under the assumption that F = 0, / = 0.

Denote by u2{t) = Asa\(wt) the first harmonic of the Fourier series for
the actual periodic signal u2(t) in the FMS. Consider the harmonic balance
equation (6.76) where

GiUw) = -rTkie']\' G»u>A) = ^T>andUm- = \- (7-13°)
L(/zis + dio) irA I

Let &i < 0 and d\§ = 0. Hence, the solution of (6.76) yields the frequency
u) and amplitude A of the stationary oscillations in the FMS shown in Fig.
7.6:

7T 8kiTUm^X2u = — and A= =—-—.
2r n2fj.iL

Let e03C be the amplitude of the stationary oscillations with frequency
w of the output y(t). In accordance with the block diagram shown above
in Fig. 7.6, we have to a first approximation

6osc ~ ^L

given that u> is sufficiently large. The effect of the fast oscillations in the
FMS on the accuracy of the output stabilization can be reduced by selection
of r. By taking into account (7.112), we obtain

A _ AS 8kiTumaxVERr _ s 8ruma.WERr /7 1 Q 1s

when the steady state xs
2 of the internal subsystem (7.111) holds.

Take

7\ = 0.02 s, m = 0.002 s, fci = -0.001, r = 0.001 s. (7.132)

From (7.131) we get w w 1570.8 rad/s, As w 0.55, es
osc « 1.11 when r = 1,

and As w 1.11, es
osc « 2.22 when r = 4. There is perfect coincidence

between the analytical calculations and the simulation results again.

7.6.4 External disturbance attenuation

Let us introduce the external disturbance w(t) represented by the varying
resistance R = R(t) and consider the block diagram of the control system
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shown in Fig. 7.9 where there is an inner switching controller C\ and an
outer continuous controller C2. Here, we denote r2 = V^ut, x2 = Vout.

Fig. 7.9 Block diagram of the closed-loop system with an inner switching controller C\
and an outer continuous controller Ci.

Since T\ has been chosen so that the inequality T\ -C Tint holds, we may
assume that y = r in the average sense for the stationary oscillations in the
FMS. Then, in accordance with our usual two-time-scale design methodol-
ogy, we have that the behavior of x2(t) can be approximately described by
the degenerated system (7.111) of the 1st order, where r is the new control
variable, X2{t) is the new output variable, and the relative degree equals 1.
Therefore, the structure of C2 can be selected in the form

WW + d20r = fe2{T2-1[r2 - r] - r ^ } (7.133)

and designed similar to the control law (7.113). For instance, we can take

T2 = 0.1 s, fi2 = 0.01 s, k2 = 0.002, d20 = 0. (7.134)

Finally, in order to perform numerical simulation, let us rewrite the
switching regulator (7.117)—(7.119) and the outer continuous controller
(7.133) in the form

dun dio ki, ,
-TT = {"11 - hy) + 7fr\r- VU

ut fj,i ±i
ui = —["ii - hy],

Mi
U2{t) =Ui{t-T),

1 + sgn(it2) C7IQK\
" = "max r ' (7.135)

du2i d20 , , k2

—7- = {"21 - k2x2] + — [r2 - x2],
at [i2 12

r = —[u2X -k2x2\.

Simulation results for the bilinear switched model (7.104)-(7.105) controlled
by the algorithm (7.135) with parameters given by (7.132) and (7.134) are
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displayed in Figs. 7.10-7.11, where r2 = 54 and the initial conditions are
the following:

zi(0) = 1, x2(0) = 15, un(0) = -0.001, it2i(0) = 0.116.

Note that we need to match the initial conditions here in order to avoid
undesirable transients in the closed-loop system.

Fig. 7.10 Simulation results for the bilinear switched model (7.104)-(7.105) controlled
by the algorithm (7.135).

Fig. 7.11 Simulation results for the bilinear switched model (7.104)-(7.105) controlled
by the algorithm (7.135).

Remark 7.13 Note that various applications of the describing function
method in periodically switched circuits can be found in a broad set of ref-
erences, for instance, [Sanders (1993)].

7.7 Notes

As shown above, the analysis of the realizability of the desired output be-
havior for the dynamic system given by (7.1)-(7.2) requires a more careful
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investigation of the intrinsic properties of the plant model. In particular,
the invertibility of a dynamic system and the internal behavior of its state
variables on the condition of the assigned output behavior should be exam-
ined. Such investigation leads to consideration of the invertibility indices
(relative degrees), normal form of a nonlinear system, internal behavior
analysis of the state variables, degenerated system, and zero-dynamics.

Finally, in this chapter the design procedure for SISO nonlinear con-
trol systems has been discussed in the presence of internal dynamics. In
the next chapter, this procedure will be extended to MIMO nonlinear con-
trol systems, provided that the realizability of the desired output behavior
presented in this chapter holds.

The concluding example of the boost DC-to-DC converter paves the way
for extension of the book's design methodology to the problem of switching
controller design.

7.8 Exercises

7.1 The differential equations of a plant model are given by

X\ = Xi + X2, &2 = X\ + X2 + Xz + U,

x3 = 2x\ - x2 + 2x3 + an, y = x\. (7.136)

Verify the invertibility and internal stability of the given system (7.136),
where (a) a = 1, and (b) a = 3. Find the degenerated system.

7.2 The plant model is given by

±i=x2, x2 = x\ + x2 + x\ + u,

x3 = xj +x2 + x3 + au, y = xi. (7.137)

Verify the invertibility and internal stability of the given system (7.137),
where (a) a = 1, and (b) a = — 1. Find the degenerated system.

7.3 The differential equations of a plant model are given by

±i = X2, ±2 = |xi| + xl + U,

x3 = xix\ - x3 + u, y = xi. (7.138)

Verify the invertibility and internal stability of the given system (7.138).
Find the degenerated system.
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7.4 Verify the invertibility and internal stability of the system

±1 = 0.5(xx - x2) - 0.5(a;i - x2)3 + 0.5u + 2wi,

x2 = 0.5(:ri - x2) - 0.5(a;i - x2)3 + 1.5u - Q.5w2, (7.139)

y-x\ + x2.

7.5 Verify the invertibility and internal stability of the system

±1 = 0.5xi - 0.5x2 - 0.5a:3 - 0.5(a;i - x2 - X3)3 + 0.5u,

x2 = 0.5xi + 1.5x2 + 1-5x3 + 0.5(xi - x2 - x 3 ) 3 - 0.5u, (7.140)

x3 = -2^2 - 2x3 + 2u + w, y = xi + x2-

7.6 Verify the invertibility and internal stability of the system

xi = Xi + x2 + t*i +u2,

x2 = 2XJ+X2 + 2W! +u2, (7.141)

j/i = xi -x2, 2/2 = xj +x 2 .

7.7 Verify the invertibility and internal stability of the system

±1 = xi + x2 + ui + 2u2,

X2 = -Xi + x2 - x3 + 2u! + u2, (7.142)

X3 = xi + x2 + x3 + u\ + 6u2,

2/i = xi - x 2 , y2 = xi +x 2 .

7.8 Verify the invertibility and internal stability of the system

xi = x\ + \x2\ + ui +u2,

±2 = x1x2 + X3 + 2u 1 +u 2 , (7.143)

x3 = x3 - u2,

2/i = %u V2 = x2.

7.9 Verify the invertibility and internal stability of the system

±i = x2 + x 3 + u,

x2 = x\ — x2 — x3 - u, (7.144)

£3 = x3 + 2u + w,

y = xi +x 2 .

Assume that the inequalities |xj(i)| < 1 V i, \r(t)\ < 0.5 hold for all
t G [0,oo). Find the control law of the form (7.91) such that er = 0,
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if « 2 s, ad « 10%. Run a computer simulation of the closed-loop
system with zero initial conditions. Compare simulation results of the
output response with the assignment for r(t) = 0.5, V t > 0.

7.10 Verify the invertibility and internal stability of the system

±i=x\ — x\ + u, X2 = \x2\ — u, y = x\ (7.145)

Assume that the inequalities |zi(t)| < 1.5, \x2{t)\ < 1.5, \r{t)\ < 1 hold
for all t G [0, oo). Find the control law of the form (7.91) such that
er = 0, td « 3 s, ad « 0%. Run a computer simulation of the closed-
loop system with zero initial conditions. Compare simulation results of
the output response with the assignment for r(t) = 1, V t > 0.

7.11 Verify the invertibility and internal stability of the system

xi =x3-xl(xi +2x23-l),

x2 = x\ + x\ - (x\ + x\ + 0.2)u, (7.146)

±3 = -x\ - 3xl(xj + 2x\ - 1) + x2,

X4 = X2, V = Xi.

Assume that the inequalities |xj(t)| < 1 V i, \r(t)\ < 0.5 hold for all
t G [0,oo). Find the control law of the form (7.91) such that er = 0,
if s=s 3 s, ad fa 10%. Run a computer simulation of the closed-loop
system with zero initial conditions. Compare simulation results of the
output response with the assignment for r(t) = 0.5, V t > 0.

7.12 Solve Exercise 7.10 such that eosc < 0.1, where the switching controller
is given by

^)+dlou=ko{T-1[r-y}-yW},

u2{t) = wi(i-r),

U = •"maxSgn(u2).

7.13 Solve Exercise 7.11 such that eosc < 0.01, where the switching controller
is given by

^2u(!2) + diim^] + dQui

- kn i -i/(2) - ^-i/1) 4- ̂ -r^ A- —\r - v\ \
— Ko s y rp y + j , 2 ' + j . 2 1 ' y\ t'

U2(t) = u i ( i - r ) ,

U = WmaxSgn(u2).



Chapter 8

Design of MIMO continuous-time
control systems

This chapter is devoted to extending the design methodology for SISO
control systems with the highest derivative in feedback to the multi-input
multi-output (MIMO) nonlinear time-varying case. In particular, the prob-
lem of output regulation is discussed, where the goals of MIMO control sys-
tem design are to provide (1) output decoupling and disturbance rejection,
i.e., each output should be independently controlled by a single input, and
(2) the desired output transient performance indices on the condition of
incomplete information about varying parameters of the plant model and
unknown external disturbances. The control law structure with the rela-
tive highest derivatives in feedback is used in order to provide the desired
dynamical properties globally in a specified region of the state space. A
systematic design procedure for the control laws with the relative highest
output derivatives in feedback is presented.

Note that throughout this chapter the problem of output regulation is
discussed on the assumption that the previously presented realizability of
the desired output behavior is maintained.

8.1 MIMO system without internal dynamics

8.1.1 MIMO system with identical relative degrees

The final purpose of this chapter is a controller design methodology for
MIMO nonlinear time-varying systems given by

X = f(t,X) + G(t,X)u, X(0) = X°, (8.1)

y = h{t,X), (8.2)

189
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where t is time, t G [0, oo); X is the state vector, X = {xi,x2,. •., xn}T; y
is the output, y = {2/1,2/21 • • • ,yP}T; u is the input, u = {ui,u2, •.. ,up}T;
u C (]„ c P , fi« is an allowable bounded set for the control variable u;
and p < n.

Assume the vector functions f(t,X),h(t,X) and the matrix G(t, X) are
smooth with respect to t and X (or are at least n-times differentiate) in
a specified bounded region of the state space fix- The initial state X° of
the system (8.1) is within the specified bounded region flx, where flx C
fix c Mn.

The influences of all external disturbances and varying parameters of
the system (8.1)-(8.2) are represented implicitly by the time dependences
of f(t,X),h{t,X),a,ndG(t,X).

Note that throughout this chapter we assume identical dimensions for
the vectors u and y, while the other case will be discussed in the next
chapter.

First, for the sake of simplicity, let us consider the nonlinear time-
varying system given by

y™=f(t,Y0) + G(t,Y0)u, Yo(0) = Yo°, (8.3)

where y is the measurable output of the system, y G M.p\ Yo is the state
vector, Fo - {yT, [yT}{1), [yT}{2), • • •, [yT](n°-1)}T; u is the control, u e Kp;
yo° is the initial state, yo° G r2yo; fiyo is the specified bounded region,
fiy0 C nYo C RnoP ; and nop = n.

The system (8.3) has the following special features:

(i) It has identical relative degrees for each output component yi(t) of the
vector y(t), i.e., on = n0, V i = 1,... ,p.

(ii) There is no internal subsystem (7.43) in the normal form representation,
since

p

]P at = nop = n.
t=i

Assumption 8.1 The functions f(t, Yo) and G(t, Yo) are bounded in Qy0 >
and

det G(t, Yo) ^ 0, V (*, Yo) £ ttt,Y0, (8.4)

where Qt,y0 = [0,00) x D.Yo. That is, the condition (7.20) (see p. 157) is
satisfied and the system (8.3) is invertible.
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Remark 8.1 Let us consider, for instance, a Lagrangian system given by

M{q)qM+C{q,q{l)) = u.

This is the typical model for a rigid link manipulator, where q is the vector
of joint variables; M(q) is the nonsingular inertia matrix; C(q,q^) ac-
counts for centripetal, Coriolis, and gravitational torques; u is the vector of
input torques [Spong and Vidyasagar (1989); Slotine and Li (1991)]. The
model presented is the counterpart of (8.3) for UQ = 2.

8.1.2 MIMO system with different relative degrees

Let us consider the next particular case of the nonlinear time-varying con-
trol systems (8.1) ,(8.2) given by

d
JtVi°~yn'

JtVn = Vi2'
(8-5)

d
JtVi,at-2 = yi,at-i,

jtVi,ai-i =K(t, Y) + g* (t,Y)u,

where
v

Y^ai=n (8.6)
i=l

and

y = {2/10 ,2 /n , • • • , y i , Q 1 - i , 2/20,2/21, • • • , 2 / 2 , a 2 - i ' ' - - . 2 / p , a P - i } T » ( 8 - 7 )

yi = Vio, V ! = i , . . . , p .

The system (8.5) has the following special features:

(i) It may have different relative degrees.
(ii) There is no internal subsystem (7.43) in the normal form representation.

This follows from (8.6).

Let us rewrite (8.5), for convenience, as

2/4(Ql >= ft? (t, 3 0 + f l ? ( t , > > , » = l , . . . , p . (8.8)
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The representation

y* = H*(t,Y) + G*(t,Y)u (8.9)

of (8.8) will be used hereafter, where y* is the vector (7.14),

and

ff*(t,y)= / l 55* ' y ) , G*(t,y)= 5 5 5* ' y ) • (8.io)

h;(t,Y)\ [g;(t,Y)_

Assumption 8.2 We have

detG*(t,Y)^0, V( t ,y )e f l ( , y , (8.11)

i.e., the system (8.9) is invertible [Porter (1970)].

8.2 MIMO control system design (identical relative
degrees)

8.2.1 Insensitivity condition

We wish to design a control system for which

lim e(t) = 0, (8.12)
t—>oo

where e(t) is the tracking error, e(t) = r(t)—y(t), r(t) is the reference input,
r = {ri, r 2 , . . . , rp}T. Moreover, the controlled transients of all components
of the output vector y(t) should have desired performance indices. These
transients should not depend on the external disturbances and varying pa-
rameters of the system (8.9).

First, let us consider the system given by (8.3) where the vector y(n°)
depends explicitly on the control u(t). From (8.4) it follows that the desired
behavior of the highest derivative vector 3/™°) can be provided by the con-
trol u{t). Assume that the reference model of the desired output behavior
is given by

y(no)=F(Y0,R), (8.13)
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where R = {rT, [ r ( 1 ) ] T , . . . , [r{p)]T}T, p < n0, and the parameters of (8.13)
are chosen in accordance with the requirement (8.12) and the desired time-
domain specifications of the stable output behavior of y(t).

In order to ensure decoupling of the controlled transients of y* for all
components of the output vector y(t), the reference model (8.13) of the
desired output behavior is constructed in the form

y(no) = F.(Yi0)Ri)) i=l,...,p, (8.14)

where

Y-n - fit- 1/(1) v{2) Jn°-lhT. u. - ir. rW r(Pi)\T. < T7n

It is more convenient to construct (8.14) in the form of (5.11) or (2.8).
Denote by

e£ = F(Y0,R) - y™ (8.15)

the realization error of the desired dynamics, where e^ € Mp.
By introducing the reference model (8.13), the control problem (8.12)

is reformulated as the requirement

el = 0. (8.16)

This is the insensitivity condition for the behavior of the output y(t) with
respect to parameter variations and external disturbances in (8.3). It is also
the condition for decoupling of the output transients if (8.14) is satisfied.

In accordance with (8.3), (8.13), and (8.15), the expression (8.16) can
be considered as the equation

F(YOl R) - f(t, Yo) - G{t, Y0)u = 0. (8.17)

From (8.17) it follows that the function

uNID = {Gftyo)}"1 Wo.J*) -f(t,YQ)} (8.18)

is the nonlinear inverse dynamics solution.

Remark 8.2 Condition (8,4) is necessary and sufficient for existence of a
solution of (8.16), without taking the boundedness ofQ,u into consideration,
that is fiu = Rp.
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Remark 8.3 Expression (8.18) cannot be used as the control law function
in practice, because G(t,Y0) and f(t,Y0) are unknown. But from a theoret-
ical viewpoint this type of control function is widely discussed [Silverman
(1969); Slotine and Li (1991)].

8.2.2 Control system with the relative highest derivatives
in feedback

Just as for the SISO case (4.38), in order to fulfill the requirement of (8.16)
let us consider the control law in the form of the following system of differ-
ential equations:

Z?,/*«u<«> + Z>,_lM«-iu(«-i) + • • • + Dltiu^

+Dou = Ke£, E/(0) = U°. (8.19)

Here q > nQ and U° = {uT(0), [ur](1)(0),..., [ur](«-1>(0)}r is the initial
condition.

Assume, for simplicity, that fi and Dj are diagonal matrices:

fj, = d i a g { / i i , . , . , / j . p } , Dj = d i a g { d y , . . . , d p j } , j = 0 , . . . , q. ( 8 . 2 0 )

Note that the degrees of the control law differential equations may differ
between control channels, for instance, diq £ {0,1}, V i = 1,... ,p in the
diagonal matrix Dq.

Assume that the reference model (8.13) is given by a system of linear
differential equations. Then (8.19) has the form

DgHiuW + Dg-i/x'-1^9"1) + • • • + Dxnu^ + Dou
= K{-yM - Adno_iy^-V Ady(i) _ Ady

+B*rW + Bf^rb-V + ••• + Bfr^ + B$r), (8.21)

where AQ = B$ and q > no > p. The expression (8.21) reduces to (4.41)
(see p. 67) for p = 1.

Remark 8.4 Note that the particular feature of the control law (8.21) is
that the vector of the highest derivative y(n°') is used in feedback.

Remark 8.5 Ifq>riQ and q > p, then the control law (8.21) corresponds
to a proper matrix transfer function and, therefore, may be realized without
an ideal differentiation of y(t) orr(t).
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8.2.3 Fast-motion subsystem

From (8.3), (8.13), and (8.19), we obtain the closed-loop system equations

y{no) = /(*, Yo) + G(t, Y0)u, yo(0) = Yo°, (8.22)

DqnquM + Dq-inq-lu{q-l) + ••• + Dxnu{l)

+Dou = Keg, U{0) = U°. (8.23)

In accordance with (8.3), (8.13), and (8.15), (8.22)-(8.23) can be rewritten
in the form

y(nB) = f{t)Yo) + G(t,Y0)u, yo(0) = Yo°, (8.24)

Dqnqu^ + Dg-i^-1^-^ + •••+ DifiuW

+{Do + KG(t,Yo)}u = K{F(Y0,R)-f(t,Y0)}, U(0) = U°. (8.25)

Let all elements of the diagonal matrix n = diag{/ii,/i2, • • • ,Mp} be
small positive parameters. Then (8.24)-(8.25) is the system of singularly
perturbed differential equations where fast and slow modes are induced as
/Lt-> 0.

Remark 8.6 Note that the particular feature of the system (8.24)^(8.25)
is that instead of a single small parameter, there are p distinct small param-
eters fii in the general case. Therefore, in order to implement the standard
procedure [Tikhonov (1952)] of two-time-scale separation, let us provide the
normalization n = /i diag{p,i,... ,fip} by introducing the single small pa-
rameter ii where

H= max {fii,...,fip}. (8.26)
t= i , . . . , p

Further, let us introduce the new fast time scale to = £//i into the closed-
loop system (8.24)-(8.25) and find the limit as \i —> 0. Then, by returning
to the primary time scale t = nt0, we obtain the following FMS:

Dgnqu^ + Dq-Inq~1u(q-1'> + ••• + DitivP*

+{Do + KG(t,Yo)}u = K{F(Yo,R)-f(t,Yo)}, U(0) = U°, (8.27)

where Yo is the vector of the frozen variables during the transients in (8.27),
i.e., Yo(t) = const.

Remark 8.7 Note that if \i —» 0, then during the fast transients in (8.27)
the condition {Do+KG(t, Yo)} « const holds. This occurs since the rate of
external disturbance and parameter variations in the plant model is bounded
due to the smoothness assumption on G(t,Yo), and fj, can be selected as an
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arbitrary small value. Hence, the FMS (8.27) may be examined as the linear
system with the frozen parameters of the matrix {Do + KG(t, Yo)}, where
the vectors F(Y0,R) and f(t,Y0) play the role of external disturbances.

Assumption 8.3 The stability and sufficiently rapid decay of the FMS
transients in (8.27) are provided for all (t,Y0) G $\y0 by selection of the
control law parameters Dj, K, /j,.

In accordance with Assumption 8.3, let us consider the steady state
(more precisely, quasi-steady state) of the FMS (8.27). As n —> 0 in (8.27)
we obtain

u(t) = us(t),

where

us = {Do + KG{t, YQ)}-lK{F{Y0, R) - /(*, Yo)}. (8.28)

From (8.18) and (8.28) it follows that

us = uNID + {Do+KG(t,Yo)}-1DoG-\t,Yo){f(t,Yo)-F(Yo,R)}, (8.29)

where us(t) is the value of the control in the closed-loop system which
corresponds to the quasi-steady state of the FMS (8.27). Proof of (8.29)
see in Appendix A.I.

For simplicity, let us assume that the matrix K has the form

K = k0K0, (8.30)

where fco is the gain, fco > 0. Note that the matching matrix KQ is defined
in accordance with the requirement of FMS stability; for instance, let KQ ~
G"1. Then, by taking into account (8.30), let us rewrite (8.29) in the form

us = uNID

+k0-\ko1Do+K0G(t,Y0)}-lD0{G(t,Y0)}-1{f(t,Y0)-F(Y0,R)}AZM)

where we have us(t) — uNID(t) —> 0 as fc0 —> oo.
In particular, from (8.29) the equality us(t) - uNID(t) = 0 follows if

Do=O.

(8.31)
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8.2.4 Slow-motion subsystem

In order to obtain the SMS, assume that the FMS (8.27) is stable and let
H -> 0 in (8.24)-(8.25). As a result, from (8.24) and (8.25) we find that

y(no) = F ( y O j R) + G ( t ( YO){DO + KG{t, YQ)}-1

xD0{G(t,Y0)}-l{f(t,YQ) - F(Y0,R)} (8.32)

is the SMS, where YQ(0) = YQ and (8.32) corresponds to the steady state
of the FMS (8.27).

Remark 8.8 Note that the SMS (8.32) can also be obtained by direct
substitution of (8.31) into (8.3).

Assume that the condition (8.30) for the matrix K holds. Then the
SMS (8.32) can be rewritten in the form

yino) = F(Y0,R) + k^G{t,Y0){k^D0 + KoGfaYo)}-1

xDoiGiUYo^V^Yo) ~ F(Y0,R)}, (8.33)

where Yo{0) = Yo°. From (8.33) it follows that the error of the desired
dynamics realization is given by

e£ = k^Gik^Do + KoG^DoG-^F - /}

if the steady state of the FMS (8.27) takes place.
The main results of this examination can be expressed by the following

theorems.

Theorem 8.1 The fast and slow motions are induced in the system (8.3)
with control law (8.19) as \i —> 0, where the equation of the FMS subsystem
is given by (8.27).

Theorem 8.2 / / the FMS (8.27) is stable and fi -> 0, then the SMS is
given by (8.32).

Theorem 8.3 J /de tD 0 ^ 0> then the SMS equation (8.32) tends to the
reference equation (8.13) as k0 —> oo. If Do = 0, then (8.32) is identical
to (8.13) and, accordingly, the integral action is incorporated in the con-
trol loop; that is, robust zero steady-state error of the output regulation is
provided.

So, the discussed dynamical controller with the relative highest deriva-
tives in feedback induces the two-time-scale separation of the fast and slow
modes in the closed-loop system, where after damping of the stabilized fast
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transients for u(t), the behavior of the output y(t) corresponds to the refer-
ence model (8.14) and is insensitive to external disturbances and variations
in the parameters of the system (8.3).

8.2.5 Control system design with zero steady-state error

From (8.32) it follows that e£ = 0 if Do = 0; that is, the SMS has the form

y{no) = F{YQ,R)

for any fc0 > 0. So, the integral action is incorporated in the control loop
for all components of the output vector y(t) simultaneously.

Let us consider a slight modification of the above control law structure,
which allows us to include the integral action in the control loop of an
arbitrarily chosen subset of the output variables yi (t), where

i = ii,i2,- • • ,i(

and £ < p.
Let us introduce an auxiliary control vector u(t) and a control law struc-

ture of the form

Dqnqu{q) + Dq-1nq-1vl"-1'> + ••• + Dxiiu{1) + Dou = Kie£, ( 8 .34 )

where

X1=diag{fc1,fc2,...,fcP} (8.35)

and the actual control vector u(t) depends on u{t) through

u = KQu. (8.36)

The closed-loop system equations become

y(^=f(t,Y0) + G(t,Yo)Kou, Y0(0) = Y0°, (8.37)

Dqn«v,W + Z V i ^ - 1 ^ " - 1 ) + • • • + £>iAm(1)

+Dou = K^, U{0) = U°. (8.38)

In accordance with (8.3), (8.13), and (8.15), the closed-loop system equa-
tions (8.37), (8.38) can be rewritten as

y(no) = f{tjYo) + G(t,Yo)Kou, Y0(0) = ^0°, (8.39)

Dqn"u^ + Dq^^-1^"-^ + ••• + DipuM

+{D0 + K1G(t,Y0)K0}u = K1{F(YQ,R)-f(t}Y0)}, 0(0) = 0°. (8.40)
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Prom (8.39), (8.40) the FMS

Dg/i«u(9) + Dq-1nq-1u^-^ + ••• + Dinu{1)

+ {Do + K1G{t,Yo)KQ}u = Kl{F{Yo,R)-f(t,Yo)}, U(0) = U° (8.41)

follows, where it is assumed that G(t, YQ) = const during the transients in
the FMS (8.41).

Remark 8.9 The matching matrix KQ is selected in accordance with the
requirement for stability of the FMS (8.41)- For instance, Ko fa {G(t, Y0)}T

or, preferably, Ko ss {G{t,Y0)}~1.

Remark 8.10 / / KQ = {G(t, l o ) } " 1 and a^ matrices /x, Do, ...,Dq are
diagonal in form, then the decoupling of the FMS (8.41) intop mutually in-
dependent fast-motion subsystems for the control variables Uj(i) is provided.
As a result, the design of controller parameters for each control loop can be
done in succession using the above design procedures for SISO systems.

Assumption 8.4 The stability and sufficiently rapid decay of the FMS
transients in (8.41) are provided for all (t,Y) € £lt,Y0 by selection of the
parameters Dj, Kx, Ko, and n in the control law (8.41).

In accordance with Assumption 8.4, let us consider the steady state
(more precisely, quasi-steady state) of the FMS (8.41). To that end, by
taking fj, —» 0 in (8.41), we obtain

u(t)=us(t),

where

us = uNID

+{GK0}-1Kr1D0{K{1D0 + GK0}-l{f(t,Y0) - F(Y0,R)} (8.42)

and

uNID = {G(t,Yo(t))Ko}-l{F(Yo,R) - f(t,Y0)}. (8.43)

Proof of (8.42) see in Appendix A.2.
Assume that the steady state of the FMS (8.41) takes place. Substitu-

tion of (8.42) into (8.39) yields the SMS of the form

y(no) = F{Y0,R)

+Ki1D0{Ki1D0 + Git^Ko^if^Yo) - F(Y0,R)}, (8.44)
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where YQ(0) = Y0°. Finally, from (8.44) it follows that the error of the
desired dynamic realization e§ is given by

e£ = K^DoiK^Do + G foyoW 1 Wo,.R) - f(t,Y0)}. (8.45)

In accordance with (8.20) and (8.35), the matrices K\ and Do are di-

agonal. By (8.45) we have e[0 = 0 for a l H = ii,i2, • • • ,i( if di0 = 0 where

e0 = le10ie20> • • • ' ep0i •
It follows that the modified control law (8.34) and (8.36) allows us to

incorporate the integral action into the control loop for any arbitrarily
chosen output variable yi(t) without increasing the controller's order, so
that the robust zero steady-state error of the reference input realization is
provided in the closed-loop system.

8.2.6 Example

Let us consider a 3-dimensional, articulated manipulator with the kinematic
scheme shown in Fig. 8.1.

Fig. 8.1 Kinematic scheme of the robot
manipulator.

m 3 ^ ( 2 ) —jpn^g sin(#) = Iti,

# ( 2 ' + 0 . 5 m 3 L ( 1 ' ^ 1 ) = U 2 , (8.46)

q2 cos2(6) 0(2) -q2 sm(9)0-2

+qm3 cos(0) 0 ^ L(1) -gqcos(6) = u3,

where {2/1,2/2,2/3} = {L,(p,6} is the output vector, {ui, 1x2,̂ 3} is the control
vector (torques), and q = lym-i + {h + L + 3̂)7713.

Assume that the parameters of (8.46) are as follows: l\ = 0.25 m;
h = h = 0-5 m; m2 = m3 = 5 kg; g = 9.8 m/s2.

In accordance with (8.34) and (8.36), let us consider the control law
given by

H2uf] + dnHiU^ + di0Ui

= h {-y?] - ^ + f rt(1) + ±[n - yi}) , (8.47)
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where i = 1, 2,3 and Ko = diag{m3, q, q2 cos2(6)}. Assume the parameters
of (8.47) are as follows:

T( = 1 s, 4 = bdiX = 2, diQ = 0, V i = 1,2,3,

Mi = M2 = 0.5 s, /x3 = 0.4 s, dn = 7, d2i = 8, cfoi = 16,

k1=k2 = 20, fc3 = 40.

Simulation results for the system (8.46) controlled by the algorithm
(8.47) for a ramp reference input r(t) are displayed in Figs. 8.2-8.4, where
the initial conditions are all zero and dri/dt = dr2/dt = dr3/dt = 0.02,
t £ [0,8] s.

Note that the allowable error of the reference input realization can be
provided by decreasing the parameters /xi,/Z2,jU3-

Fig. 8.2 Simulation results for n ( t ) , yi(t), m(t) in the system (8.46)-(8.47).

Fig. 8.3 Simulation results for r2(t),3/2(1), u2(i) in the system (8.46)-(8.47).
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Fig. 8.4 Simulation results for r3(t),j/3(t), 113(4) in the system (8.46)-(8.47).

8.3 MIMO control system design (different relative
degrees)

8.3.1 Insensitivity condition and control law structure

Next, let us consider controller design with the relative highest output
derivatives in feedback for nonlinear time-varying systems given by (8.5),
where there is no internal subsystem in the normal form of the state space
representation since (8.6) is satisfied.

From (8.9) and (8.11) we know that the vector y* is given by (7.13),
and that it depends explicitly on the control u(t). Consequently, the desired
behavior of the relative highest derivative vector y* can be provided by
selection of the control u(t). Let us construct the reference model for this
desired behavior in the form (7.25):

y.=F(Y,R),

where the reference model for each variable yi(t) has the form (7.23).
In accordance with (7.26) we know that

eF = F(Y,R)-y,

measures the output behavior deviation of (8.5) from the desired behavior
assigned by (7.25). Hence the solution of the output regulation problem
corresponds to the condition (7.27),

which is the insensitivity condition for the behavior of the output y(t) with
respect to parameter variations and external disturbances in (8.5).
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In order to fulfill the requirement of (7.27), let us consider a control law
in the form of the system of differential equations

Dqfj,"u^ + Dq-Xvq-lu(q-l) + ••• + Dlfj,u
{1} + Dou = Kxe

F, (8 .48)

where

u = KQu, Kx =diag{/ci,fc2l...,A:p}. (8-49)

8.3.2 Closed-loop system analysis

From (8.9) and (8.48), we get the closed-loop system equations

y* = H*(t,Y) + G*(t,Y)Kou, Y(0) = Y°, (8.50)

Dqn
qu{q) + Dq-in

q~lu(q-l'> + ••• + DifiuW

+Dou = K1e
F, 0(0) = 0°. (8.51)

In accordance with (7.25), (7.26), and (8.9), the system (8.50)-(8.51) can
be rewritten in the form

y. = H*(t, Y) + G*(t, Y)Kou, Y(0) = Y°, (8.52)

Dqn
qu^ + Dg-i/i '-1^'-1) + • • • + Dinu{1)

+{Do + K1G*(t,Y)K0}u = K!{F{Y,R)-H*{t,Y)}, 0(0) = 0°. (8.53)

By (8.52)-(8.53) and Remark 8.6, the FMS is given by

Dqn
qu{q) + Dq-iti

q-1vSq-v> + ••• + DinuW

+{D0 + KiG'[t,Y)K0)u = K1{F(Y,R) - H*(t,Y)}, 0(0) = 0°. (8.54)

Here, by Remark 8.7, we have G*(t, Y) = const during the transients in the
FMS (8.54).

Similar to what was done above, assume that the stability and suffi-
ciently rapid decay of the FMS transients in (8.54) are provided for all
(t, Y) € Qt,Y by selection of the control law parameters Di, Ki, KQ, H-
Then consider the quasi-steady state of the FMS (8.54). To that end, by
taking /it —* 0 in (8.54), we obtain

u(t) = us(t),

where

us = uNID

+{G*K0}-1Ki1D0{Ki1D0 + G*K0}-l{H*(t,Y) - F(Y,R)} (8.55)
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and

uNID = {G'ftyjtforMW*) - H*(t,Y)}.

From (8.55) it follows that us(t) - uNID(t) -> 0 as kt -> oo, V i =
I,..., p. Moreover us(t) - uNID(t) = 0 if Do = 0.

Let the quasi-steady state of the FMS (8.54) occur. Then substitution
of (8.55) into (8.52) yields the SMS of the form

y, = F(Y, R) + K^DoiK^Do + G*(t, Y)KQ}-1

x{H*(t,Y)-F(Y,R)}, Y(0)=Y°. (8.56)

From (8.56) we have

eF = K^D0{K;lDQ + G*{t,Y)KQ}-l{F{Y,R) - H*(t,Y)}, (8.57)

where

Ki =diag{fci,/c2,...,A;p}, Do = dia,g{dw,d20,... ,dp0}. (8.58)

In accordance with (8.57) and (8.58), the condition ef — 0 holds for
all i = ii, 12,. • •, i<; if dio = 0, where eF = {ef, ef , . . . , e ^ } T . Since the
property (7.24) of the reference model equation (7.23) is maintained, the
discussed control law allows us to incorporate the integral action into the
control loop without increasing the controller's order, that is, the robust
zero steady-state error of the reference input realization is fulfilled.

So, the dynamical controller (8.48) with the relative highest output
derivatives in feedback induces the two-time-scale separation of the fast
and slow modes in the closed-loop system (8.52)-(8.53) as fx —> 0 and,
after damping of the stabilized fast transients in (8.54), the behavior of the
output y(t) in the SMS (8.56) corresponds to that of the reference model
(7.25) and is insensitive to external disturbances and parameter variations
in the system (8.5).

The main results of the above consideration may be expressed by the
following theorems.

Theorem 8.4 The fast and slow motions are induced in the system (8.5)
with control law (8.48) as fi -» 0, where the FMS equation is given by
(8.54).

Theorem 8.5 / / the FMS (8.54) is stable and fj, -> 0, then the SMS is
given by (8.56).
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Theorem 8.6 Let (8-58) hold and dio ^ 0. Then the equation for yi(t)
in (8.56) tends to the reference equation (7.23) as ki —> oo. If dto = 0, then
the equation for y^t) in (8.56) is the same as the reference equation (7.23)
and, accordingly, the integral action is incorporated in the control loop; that
is, robust zero steady-state error is provided.

8.3.3 Control accuracy

First, let us consider the realization error of the desired dynamics assigned
by (7.25) in the closed-loop system (8.50), (8.51) given that the steady state
of the FMS (8.54) is reached. Then from the expression for the SMS (8.56),
in particular, by (8.57), we can select matrices K\ and DQ for which

HeFll<eLx. v(t,y)efi(,y,

where e£ax > 0. In particular, for the sake of simplicity, let us assume that

K0 = {G*Yl. (8.59)

By this, the decomposition of (8.57) to the expressions

is provided, where (8.60) is the counterpart of (5.2).
Second, let us consider the steady-state error in the closed-loop system

(8.50)-(8.51), that is, on the assumption of steady state of the SMS (8.56).
Let

r = const and y(t) = y",

where ys is the steady state of the output y(t), i.e.,

ys = lim y(t).
t—>oo

Denote

es =r-ys,

where es is the steady-state error under the condition that the steady state
of the SMS (8.56) takes place. Let the reference model of the desired output
behavior of y, (t) be given by a linear differential equation of the form

Tt'vt^ + aU-iiT'-'y^ + ••• + at&y™ + Vl

= Kpjtr^ + <Pi_i7f-M"-x) + • • • + btnrP + n, (8.61)

(8.60)
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where i = I,...,p. Then the steady state of (8.61) for all i = l,...,p

corresponds to the following relationships:

y\j) =* 0, V j = 1 , . . . ,au V i = 1 , . . . ,p (8.62)

and

rlx) =* 0, V X = 1, • • • ,Pi, V i = 1 , . . . ,p. (8.63)

From (8.61), (8.62), and (8.63), we obtain

F = T~1e', (8.64)

where

T = ti*g{T?\T?\...,T?>}.

Prom (8.57), (8.62), (8.63), and (8.64), we can obtain

es = -T{K^D0 + G*KQ}{G*KQ}-lK^lD0

x{K^lD0 + G*K0}-lH*s. (8.65)

Proof of (8.65) see in Appendix A.3.
Expression (8.65) allows us to evaluate the error e3 of the reference

input realization for the steady state of the SMS (8.56), and to select K\
such that the assigned restriction

l!es|i <e^ax, V(t,Y)ent,Y

is fulfilled where e^ax > 0.
For instance, from (8.59) and (8.65) we obtain

e,' = - ^ , V j = l , . . . , p , (8.66)

where (8.66) is the counterpart of (5.5).

Remark 8.11 From (8.57) and (8.65) it follows that under the condition
(8.59) each gain ki can be evaluated independently for alii = l,...,p in
order to reach the desired control accuracy.

Note that the expressions (8.60) and (8.66) can be easily used for selection
of K\ given that the domain fi^y is assigned.
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8.4 MIMO control system in presence of internal dynamics

In the previous sections the design methodology for MIMO control systems
was discussed for nonlinear time-varying systems given by (8.3) or (8.5),
where there is no internal subsystem (7.43) in the normal form representa-
tion. This section is devoted to design of MIMO control systems with the
relative highest output derivatives in feedback for generalized systems of
the form (8.1)-(8.2):

X = f(t,X) + G{t,X)u, X{0) = X°,

y = h(t,X),

where X G W1, u £ Km, y e W, p = m < n. The problem of output
regulation for y(t) with prescribed performance indices (such as overshoot
af, settling time tf, and system type) is the subject of this section.

It is assumed that p = m; the effects of having p <m will be discussed
in the next chapter.

Let us assume that by procedure [Porter (1970)], the expression (7.13)

y* = H*(t,X) + G*(t,X)u

is derived, where ?/* is the vector of the form (7.14).

Assumption 8.5 The sufficient invertibility condition (7.20),

detG*{t,X)^0, V(t,X)Gfitlx

is fulfilled for the given system (8.1)-(8.2).

Let the reference model of the form (7.25) be constructed in accordance
with the time-domain specifications on the desired output behavior. As
a result, the problem of output regulation has been reformulated as the
insensitivity condition (7.27):

eF = 0.

Assumption 8.6 The internal stability of the system (8.1)-(8.2) is main-
tained; that is, condition (7.32) is satisfied in a specified region of the state
space of the system (8.1)-(8.2), given that the condition eF = 0 is fulfilled.

Similar to (8.48) and (8.49), let us introduce an auxiliary vector u(t)
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and consider the control law given by

Mf U^ + d i ^ - l / X ? 1 - ^ " - 1 ' + • • • + du/ifij1* + diflUi

= kief, Ui(0) = U?, i = l,...,P, (8.67)

where

We can see that the control law (8.67) is the perfect counterpart of (4.38).
Let us rewrite (8.67) in the vector form

Dqn*uM + D ^ i j i ' - 1 ^ ' - 1 ) + • • • + DuiiiM + Dou = Kie
F, (8.68)

17(0) = U°,

where /z, K\, and Dj are the diagonal matrices given by (8.20)-(8.35).
As a result, the closed-loop system equations become

X = f{t,X) + G{t,X)Kou, X(0) = X°, (8.69)

D,ju9u(9) + JDj-iM*"1^*"15 + • • • + I3iMw(1) + Dou

= Kie
F, U{0) = U°. (8.70)

The general block diagram representation of the closed-loop MIMO con-
trol system, described by (8.69)-(8.70), is shown in Fig. 8.5. We can see
that the controller of the MIMO system consists of p linear controllers
C i , . . . ,C p generating the auxiliary control vector u(t) and accompanied
by the matching matrix KQ. The linear controllers are described by (8.67).

Note that information exchange between the outputs of the MIMO sys-
tem is used in order to generate the actual control vector u(t) due to the
presence of the matching matrix Ko. Therefore, this controller is called the
centralized output feedback controller with the relative highest derivatives
in feedback.
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Fig. 8.5 General block diagram representation of the closed-loop MIMO control system
(8.69)-(8.70).

8.4.1 Fast-motion subsystem

By taking into account the expressions (7.13), (7.25), and (7.26), we can
rewrite the closed-loop system equations (8.69)-(8.70) in the form

X = f{t,X) + G(t,X)Kou, X{0) = X°, (8.71)

Dqfx"u^ + Dq-HAi-1^-1) + ••• + Dlti,uW + T(i, X)u

= Kx{F-H*{t,X)}, U(0) = U°, (8.72)

where

T(t,X) = D0 + K1G*{t,X)K0.

We already know that, by Remark 8.6 (see p. 195), the standard proce-
dure can be applied to derive the FMS from the closed-loop system (8.71)-
(8.72). That is, the new fast time scale to = t//j, is introduced into (8.71)-
(8.72) and the limit /j, —> 0 is taken. Then, by returning to the primary
time scale t — fit0, we obtain the FMS

Dqfiiu^ + i V i / x ? - 1 ^ - 1 ) + • • • + Di/W1) + T(i, X)u

= K1{F-H*{t,X)}, 0(0) = 0°. (8.73)

Here, by Remark 8.7, we have T(t, X) = const during the transients in
(8.73). So the FMS (8.73) may be considered as the linear system with the
frozen elements of the matrix T(t,X), where the vectors F and H*(t,X)
play the role of external disturbances.

Assumption 8.7 Stability and sufficiently rapid decay of the FMS tran-
sients in (8.73) are provided for all (t,X) e fit,x by selection of the control
law parameters Dj, K, and JU.
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Under the condition of Assumption 8.7, let us consider the steady state
(more precisely, quasi-steady state) of the FMS (8.73). By taking fj, —> 0
in (8.73), we obtain the control function

u(t) = us{t)

in the closed-loop system for the quasi-steady state of the FMS (8.27),
where

us = r-1K1{F-H*}. (8.74)

From (7.29), (8.36), and (8.74), it follows that

u° = uNID + {G*K0}-1K{1D0{Ki1D0+G*K0}-1{H*(t,X)-F}, (8.75)

where uNID{t) = KQluNID(t) and uNID{t) is given by (7.29) (see p. 159).
If (8.59) holds, then

u?ID = Fi-h*, Vi = l , . . . , p (8.76)

follows from (7.29).
The result can be expressed by the following theorem.

Theorem 8.7 If Assumptions 8.5 and 8.6 are satisfied, and the closed-
loop system is given by (8.71)~(8.72), then two-time-scale motions are in-
duced in the closed-loop system as fi —> 0 and the behavior of the FMS is
described by (8.73).

8.4.2 Slow-motion subsystem

Let Assumption 8.7 holds and consider the steady state of the FMS (8.73).
Passing to the limit \i —> 0 in (8.71)-(8.72), we obtain the SMS given by

X = f + G{G*}-X{F-H'}
+G{G*}-XKI1DQ{K^DQ+G*KQ}-1{H*-F}, X{0) = X°. (8.77)

From (7.13), (8.36), and (8.75), the SMS of the output behavior

y. = F{Y,R)
+K{1D0{K{1D0 + G*(t,X)Ko}-1{H*{t,X)-F} (8.78)

results. Note that, on one hand, by (8.20), (8.35), and (8.78), the equation
for j/j(t) tends to the reference equation (7.23) as fcj —> oo if dit0 = 1- On
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the other hand, the equation for ?/,(£) is the same as the reference equation
(7.23) if difi = 0.

The main results of the above can be expressed by the following theo-
rems.

Theorem 8.8 If in the closed-loop system (8.71)-(8.72) the FMS (8.73)
is stable and /x —> 0, then the SMS is given by (8.77j and the output behavior
is described by (8.78).

Theorem 8.9 Let (8.20) and (8.35) hold anddi0 ^ 0. Then the equation
for yi{t) in (8.78) tends to the reference equation (7.23) as hi —> oo. / /
did = 0, then the equation for Vi{t) in (8.78) is identical to the reference
equation (7.23) and, accordingly, the integral action is incorporated in the
control loop by virtue of (7.24)- That is, robust zero steady-state error is
provided.

Remark 8.12 Note that the SMS (8.77) tends to, or is the same as,
the system (7.30). Therefore, Assumption 8.6 regarding internal stability
is the essential point to obtain the desired input-output mapping, since the
observable effect of the internal dynamics can be canceled in (8.78) only if
those dynamics are smooth and bounded in a specified region of the state
space.

8.4.3 Example

Let us consider the system (7.73), where the realizability of the desired
output behavior is satisfied in a specified region of the state space as shown
above (see p. 170).

In accordance with the discussed design methodology, let us find the
relative degrees of (7.73). We obtain ct\ = 2 and a2 = 1. Let q\ = q2 = 2.
Then a control law structure can be chosen such as

n\uf] + du/XiU^1' + d10ui

= *i {-*?> - ^ + | r « + ̂ h -yi]}, (8.79)

l4.u{22) + d2nj,2u(2) + d20u2 = k2l -y2l) + ^ r f o - 2/2] \ • (8.80)

In accordance with (7.74), (8.36), and Remark 8.9, let us assume that

_ r-1/31/3]
* ° - [ 2/3 1/3 J (8'81)
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and consider the following values of the controller parameters:

7i = T2 = 1 s, /xi = ii2 — 0.3 s, dio = d2o = 0,

a\i = 2- &n = 0, dn = 6, d21 = 8 , fci = 30, k2 = 50.

Simulation results for the system (7.73) and (8.79)-(8.81) appear in
Figs. 8.6-8.8, where t € [0,15] s.

Fig. 8.6 Simulation results for n(t),yi(t),ui(t) in the system (7.73) and (8.79)-(8.81).

Fig. 8.7 Simulation results for r2(t), V2(t), u2{t) in the system (7.73) and (8.79)-(8.81).

8.5 Decentralized output feedback controller

The problem of decentralized controller design for large-scale interconnected
linear and nonlinear systems is considered in a broad set of references, e.g.,
[Davison (1976); Siljak (1991); Tang et al. (2000); Zhong-Ping Jiang et al.
(2001); Narendra and Oleng (2002)]. The decentralized output feedback
control scheme corresponds to the system shown in Fig. 8.9. The particular
feature of this scheme is that information exchange between the outputs of
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Fig. 8.8 Simulation results for xi(t), x2(t), x3(t),x4(4), ™2(t),Wi{t) in the system (7.73)
and (8.79)-(8.81).

the MIMO system is not used. Hence, the controller of the MIMO system
is decomposed into a set of p independent controllers.

From the above consideration we can see that the centralized output
feedback controller with the relative highest derivatives in feedback for an
MIMO system is given by the system of equations (8.67) generating the
auxiliary control vector u and accompanied by the matching matrix KQ as
shown in Fig. 8.5. It is clear that with KQ = Ip this scheme yields that
of the decentralized output feedback controller in Fig. 8.9. So, in order to
enable use of the decentralized output feedback controller with the relative
highest derivatives in feedback for the MIMO system given by (8.1)-(8.2),
we must be able to provide the stability of the FMS (8.73) given that the
condition KQ = Ip holds.

Note that any permutation of the rows or columns of the identity matrix
KQ = Ip maintains the decentralized scheme of the controller; at the same
time, permutations have an influence on the stability of the FMS.

Fig. 8.9 Block diagram of the system with decentralized output feedback controller.
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8.6 Notes

In order to design a feedback controller to stabilize a nonlinear system, a
two-step approach is widely used: a state feedback controller is designed,
and then a high-gain observer is constructed to estimate the state of the
nonlinear system [Esfandiary and Khalil (1992); Khalil (1994); Teel and
Praly (1995); Isidori (1995); Atassi and Khalil (1999)].

In contrast to the systems with state feedback controller [isidori and
Byrnes (1990); Nijmeijer and Schaft (1990); Esfandiary and Khalil (1992)],
the discussed approach to control system design is based on the use of the
relative highest output derivative (or derivative of the state of a nonlinear
system) in the feedback loop [Vostrikov and Sarycheva (1982); Vostrikov
et al. (1982); Vostrikov and Yurkevich (1991); Vostrikov and Yurkevich
(1993a)].

The presented design procedure represents the development of results
published in [Yurkevich (1994); Yurkevich (1995b)], and allows us to provide
a desired output behavior for an MIMO control system despite the presence
of unknown external disturbances and varying system parameters. The
resulting dynamical output feedback controller with the relative highest
derivatives of the output signal in feedback has a simple form consisting of
p separate low-order linear dynamical filters accompanied by a matrix KQ.
The proposed dynamical controller with the sufficiently small parameters
fii induces the two-time-scale separation of the fast and slow modes in the
closed-loop system, where, after damping of the stabilized fast transients,
the behavior of the output vector y(t) is desired and insensitive to variation
of parameters of the plant model and external disturbances.

The main advantage of this method is that knowledge of the relative
degrees and the matrix G* suffice for controller design given that the previ-
ously presented realizability of the desired output behavior is satisfied. We
need not know how the system parameters and external disturbances vary,
or how they enter into the system dynamics.

The problem of flight controller design for an aircraft based on the pre-
sented approach was discussed in [Blachuta et al. (1995); Blachuta et al.
(1999)], while the design of two-input two-output control system for a re-
active ion etching (RIE) system was discussed in [Tudoroiu et al. (2003b)].
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8.7 Exercises

8.1 Verify the invertibility and internal stability of the system given by

%1 = X\ + 3X2 + U\ + U2, ±2 = X\ + X2 + Ui - 2U2,

yi=xi+x2, y2 - -xi + 2x2.

Assume that the inequalities \xj(t)\ < 2 V j and \r(t)\ < 1 hold for all
t £ [0, oo). Find the control law of the form (8.67) such that er\ = 0,
eT2 — 0, tdx ss 1 s, <rf ss 0%, td2 « 3 s, cr| ~ 0%. Compare simulation
results for the step response of the closed-loop control system with the
assignment.

8.2 Verify the invertibility and internal stability of the system given by

xx=x\ + xxx2 + 0.5ui - {1 + 0.2sin(t)}u2,

X2 = x\ + sin(a;2) — «i — 2{1 + 0.5sin(2£)}it2,

yi=xi-x2, V2=x1+x2-

Assume that the inequalities \xj(t)\ < 2 V j and \r(t)\ < 1 hold for all
t G [0, oo). Find the control law of the form (8.67) such that er\ = 0,
£r2 = 0, £gi W 3 s, erf w 0%, t^2 w 3 s, a^ « 0%. Compare simulation
results for the step response of the closed-loop control system with the
assignment.

8.3 The system is given by (7.141). Verify invertibility and internal stabil-
ity. Assume that the inequalities \x^{t)\ <2Vj and [r(t)\ < 1 hold for
all t £ [0, oo). Find the control law of the form (8.67) such that eri = 0,
er2 = 0, t^i ~ 3 s, af ~ 0%, if2 ~ 3 s, (72 ~ 0%. Compare simulation
results for the step response of the closed-loop control system with the
assignment.

8.4 The system is given by (7.142). Verify invertibility and internal stabil-
ity. Find the control law of the form (8.67) such that e r l = 0, er2 = 0,
t^ « 2 s, af RS 0%, t^2 « 1 s, cr̂  « 0%. Compare simulation results for
the step response of the closed-loop control system with the assignment.

8.5 The system is given by (7.143). Verify invertibility and internal stabil-
ity. Assume that the inequalities \xj(t)\ < 2 V j and \r(t)\ < 1 hold for
all t G [0, oo). Find the control law of the form (8.67) such that er\ = 0,
er2 = 0, tdsl ss 3 s, af w 0%, tds2 « 3 s, CT2 « 0%. Compare simulation
results for the step response of the closed-loop control system with the
assignment.
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8.6 Verify the invertibility and internal stability of the system given by

±i = x\ + xxx2 + {1 4- 0.5sin(i)}«i + 0.2u2,

±2 = x\ + sin(a;2) - 0.3sin(2£)ui — 2u2,

yi=xi + x2, 2/2 = xi + 2x2.

Assume that the inequalities \xj(t)\ < 2 V j and \r(t)\ < 1 hold for all
t G [0, oo). Find the control law of the form (8.67) such that er l = 0,
£r2 = 0, tfx ss 3 s, af w 0%, tds2 w 3 s, ITJ « 0%. Compare simulation
results for the step response of the closed-loop control system with the
assignment.

8.7 Consider the system given by

xi = zi(l - x\) + gniii + gi2u2,

X2 = X2(l - x\) + 021U1 + 922U2,

yi=xi, y2 =x2-

Express by a formula the existence conditions for a decentralized output
feedback controller of the form (8.67), where q\ = q2 = 1.



Chapter 9

Stabilization of internal dynamics

In the preceding chapter, the problem of output regulation was discussed
for nonlinear time-varying systems with identical dimensions of the input
and output vectors u, y. It was also assumed that the realizability of the
desired behavior takes place, in particular, that the system is invertible
and internal stability is fulfilled. This assumption is the essential point for
controller design, and provides the range of applicability of the method.

This chapter is devoted to consideration of control system design where
the dimension of the control vector u is as large as that of the output vec-
tor y. Redundant control variables enable internal dynamics stabilization,
and this is the main subject matter. Note that the problem of internal
dynamics stabilization for linear time-invariant (LTI) systems corresponds
to the displacement of all zeroes of the transfer function in the left half of
the complex plane.

9.1 Zero placement by redundant control

First, let us consider an LTI system given by

X = AX + Bu, X(0) = X°, (9.1)

y = CX, (9.2)

where yGM.p,u& E m , m > p, and

rank OB = p. (9.3)

That is, the right inverse of the system (9.1)-(9.2) exists.
The transformation (7.50) of the system (9.1)-(9.2) yields the normal

217
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form (7.52)-(7.53):

y = Any + Auz + BlU, (9.4)

z = A21y + A22z + B2u. (9.5)

Let us introduce a new control vector consisting of two parts, ui 6 W
and u2 S M.m'p, such that

• = [«*][*]• («)
Denote

Then (9.4), (9.5), and (9.6) can be rewritten in the form

y = Any + A12z + Buii! + B12u2, (9.8)

z = A2iy + A22z + B2iu\ + B22u2. (9.9)

Prom (9.3) it follows that the matrix

P=[PiP2] (9.10)

exists such that the conditions

ui GRP and detBn ^ 0 (9.11)

are satisfied.
The block diagram representation of the discussed control system is

shown in Fig. 9.1 (a), where the control vector u\{t) is used to provide the
desired output behavior of (9.1)-(9.2) and the redundant control u2{t) can
be used to stabilize the behavior of the internal variables z(t).

Fig. 9.1 Block diagram of the control system with the redundant control U2{t).

(9.7)
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Let us consider the output regulation by the control vector u\(t) with
the control law in the form (8.19):

Dqfj,"u[q) + XViM*"1"!*-1 ' + • • • + DipuP

+Dou1 = KeF, Ui{0) = U?, (9.12)

where q>\,Ul = {uj, [ u ^ ] 7 " , . . . , [u?-1)]T}T, and eF is denned by (7.56).
Then the closed-loop system is given by

y = Any + A12z + BUU! + B12u2, y(0) = y°, (9.13)

z = A2iy + A22z + B21ui + B22U2, z(Q) = z°, (9.14)

+ DmuP + DoUl = KeF, Ui(0) = £/?, (9.15)

where /x is the diagonal matrix of small parameters.
Further, let us introduce the new fast time scale to = t/(i into the closed-

loop system (9.13), (9.14), and (9.15) (see Remark 8.6 on p. 195), and find
the limit as /i —» 0. Then, by returning to the primary time scale t = fito,
we obtain the FMS equation

= K{F(y,r)-Aliy-A12z-B12u2}, Ui(0) = U? (9.16)

as fx —+ 0, where y and z are the frozen variables.
For simplicity, assume the matrix K is given by K — koKo, where fco >

0. Assume also that the stability and sufficiently rapid decay of the FMS
transients in (9.16) are provided by selection of the control law parameters
Dj,K,fi. Let us consider the steady state (more precisely, quasi-steady
state) of the FMS (9.16). In the limit as fj, -> 0 in (9.16), we obtain
ui(t) = u\(t) where

u[ = u\ID + k^ik^Do + KoBu}-1

xDoiBuj-^Any + A12z + Bl2u2 - F(y, r)} (9.17)

and

u[ID = B^{F(y, r) - Any - Al2z - Bl2u2). (9.18)

From (9.17) we have

ul(t)-ufID(t) ->0 as /c0-*oo

or u\ = u\1D if the condition Do = 0 is satisfied.
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In particular, let DQ = 0. Then from the closed-loop system (9.13),
(9.14), and (9.15), we get the SMS equations

y = F(y,r), (9.19)

z = Az + Bu2 + f1{y,r), (9.20)

n{ID = Cz + Du2 + f2(y,r), (9.21)

where

A = A22 — B21-B11 J4I2I B = B22 — -E^i-Bfj -^12)

A = {A21 - B21B^An}y + B21B^lF(y,r),

C = -BrfAn, D = -B^lB12, ]2 = B^{F(y,r) - Any).

We see that the desired stable output behavior assigned by (7.54) is main-
tained in the SMS system (9.19)-(9.21).

Let us consider (9.19)-(9.21) as the system where U2(t) is the control,
y — ufID is the output, and the vectors fi{y,r) and /2(y,r) play the
role of external disturbances. Assume that the vector z(i) is available for
measurement and that u2 = u2(z). Then from linear control system theory
(see, e.g., [Brogan (1991)]) the following results are available.

Theorem 9.1 Assume that the following conditions hold:

(i) z(t) is the vector available for measurement from the system described
by (9.19), (9.20), and (9.21).

(ii) The pair {A,B} is completely controllable.

Then there exists a matrix K such that the feedback control u2 = Kz allows
the eigenvalues of {A + BK] to be arbitrarily assigned (or, in other words,
allows the zeroes of Gyui (5) = y{s)/u\ (s) to be arbitrarily assigned in the
system (9.8)-(9.9)).

Theorem 9.2 Assume that the following conditions hold:

(i) The system is described by (9.19), (9.20), and (9.21), where ufID(t) is
regarded as the output vector that is available for measurement,

(ii) The pair {C,A} is completely observable.

Then an observer can be designed that will estimate the vector z(t).

Theorem 9.3 Suppose, for the system described by (9.19)-(9.21), the
following conditions hold:
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(i) The pair {A,B} is completely controllable,
(ii) The pair {C,A} is completely observable.

Then the stability of the internal dynamics described by (9.20) can be pro-
vided.

Remark 9.1 It is clear that the above approach for zero placement by
redundant control variables can be extended to LTI systems (7.6)-(7.7),
where right invertibility holds.

Note that the above approach to internal dynamics stabilization via
redundant control was considered for LTI systems for the sake of simplicity.
It will be extended for nonlinear systems below.

9.2 Internal dynamics stabilization (particular case)

Consider the nonlinear time-varying system given by

X = /(*, X) + G{t, X)u, X(0) = X°, (9.22)

y = h(t,X), (9.23)

where X e R™, y € W, u G Km, and n > m > p. First suppose the
condition

v&nk{dh{t, X)/dX}G{t, X) = p, V (t, X) e Qt,x (9-24)

is maintained, where ilt,x = [0,oo) x 0.x and 0.x C W1.
It is clear that (9.24) is a particular case of the right invertibility con-

dition given by (7.17), and corresponds to one in which the vector of the
relative degree equals a = { l , . . . , l } .

Let us consider the state space transformation (7.40) (see p. 163) where,
in accordance with (9.24), we have

|^]=Q(t,X) (9.25)

and

Q( t . ^ )=f? ! J 'y ! l . Qi(t,X)=h(t,X). (9.26)

The vector function Q2(t, X) is chosen so that

det{dQ/dX} / 0, V(t,X) e nttX-
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The transformation (9.26) with (9.6) of the system (9.22)-(9.23) gives the
normal form representation

y = fi (t, y, z) + Gn (t, y, z)«i + Gi2(i, y, z)u2, (9.27)

i = f2(t, y, z) + G2i (t, y, z)ux + G22(t, y, z)u2, (9.28)

where the new control variable consists of two parts: ui S Kp and u2 €
Rm~p. The transformation (9.6) is chosen so that

det Gn (t, y, z)^0, V (t, y, z) € Slt,v,z.

The control vector u\ (t) will be used later to provide the desired output
behavior of the system (9.22)-(9.23). In addition, the redundant control
variables u2 (t) can be used to stabilize the behavior of the internal variables
z(t).

From (7.54) and (9.27) it follows that the solution of (7.55) is the NID
control function given by

UiID(t) = {Gnit^zft-iiFfar) - h(t,y,z) - G12(t,y,z)u2}. (9.29)

Substituting (9.29) into (9.27)-(9.28), we get

y = F(y,r), (9.30)

z = f2 + G21G^{F(y,r) - A} + {G22 - G2lG^}u2. (9.31)

Here the desired stable output behavior assigned by (7.54) is satisfied. We
see that the internal dynamics are represented by (9.31), where the redun-
dant control variables U2(t) can be used for internal dynamics stabilization.

9.3 Internal dynamics stabilization (generalized case)

The above approach to internal dynamics stabilization by the redundant
control variables can be extended for the nonlinear time-varying systems
where the right invertibility condition is satisfied.

Consider the nonlinear time-varying system given by (9.22)-(9.23):

X = f(t,X) + G(t,X)u, X(0)=X°,

y = h(t,X),

where X G Mn, y 6 W, u G Rm, and n > m > p. Assume that the right
invertibility condition (7.17) holds.
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The transformation (7.40) with (9.6) of the system (9.22)-(9.23) gives
the following normal form representation:

y. = H*(t, Y, z) + G*1(t,Y,z)u1 + G*2(t,Y,z)u2, (9.32)

i = f{t,Y,z) + Gi{t,Y,z)u! + G2(t,Y,z)u2. (9.33)

The system (9.32)-(9.33) is the counterpart of (7.44)-(7.45), where the
control vector is divided into u\(t) and u2(t) such that u\ 6 W and

detGl(t,Y,z)^0, V{t,Y,z)ent,Y,z. (9-34)

In order to provide the desired output behavior of (9.22)-(9.23), let us
construct the control law of uj(t) in the form (8.68):

Dqnqu[q) + iViM 9 " 1 " ! 9 " 1 ' + • • • + Dxfiu^ + Doui

= KieF, Ui(0) = Uf, (9.35)

where

Ui-Koui, Ki=dia.g{ki,k2,...,kp}.

Assume also that the vector z(t) is available for measurement and u2 =
u2(z). Then the closed-loop system is given by

y.=H*(t,Y,z) + GUt,Y,z)Koui+Gi(t,Y,z)u2{z), (9.36)

z = f{t,Y,z) + G1{t,Y,z)Koul + G2{t,Y,z)u2{z), (9-37)

Dqfj,qu[9) + Dq-X»q-lu[q-l) + •••+ Dlfxu{^ + A , t h = KxeF. (9 .38)

The system (9.36)-(9.38) can be rewritten in the form

y, = H*(t,Y,z) + G*1(t,Y,z)Kou1+G*2(t,Y,z)u2(z), (9.39)

z = f(t,Y,z) + G1(t,Y,z)Kou1+G2(t,Y,z)u2(z), (9.40)

Dqiu,"u[q) + Dq-lnq-lu{rl) + ••• + Dlfxu[1} + r i ( t , Y, z)ux

= ^ { F - H*( t , y , z ) - G*2(t,Y,z)u2(z)}, (9.41)

where

rx (t, Y, z) = {Do + KXG\ (t, Y, z)K0}.

Prom (9.39)-(9.41), we obtain the FMS equation

Dqtiqu[q) + Dq-ltiq-lu(q-l) + ••• + DinuP + r i ( t ,y , z)u!

= K1{F-H*(t,Y,z)-G*2(t,Y,z)u2(z)}, V^O) = 0°, (9.42)
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where all elements of the matrix T(t,Y,z) are frozen during the transients
in the FMS (9.42).

Assumption 9.1 Stability and sufficiently rapid decay of the FMS tran-
sients in (9.42) are provided for all (t, Y, z) 6 £lt,Y,z by selection of the
control law parameters Dj, K\, K$, fi.

In accordance with Assumption 9.1, let us consider the steady state
(more precisely, quasi-steady state) of the FMS (9.42). Letting n —> 0 in
(9.42) we obtain

«i( t)=«f(t) ,

where

uf = T^KiiF - H*(t,Y,z) - G*2(t,Y,z)u2{z)} (9.43)

and uf (£) is the control function of u\ (t) in the closed-loop system which
corresponds to the quasi-steady state of the FMS (9.42). Let us rewrite
(9.43) in the form

u{ = fifID + {G\K0}-lK^D0{K;lD0 + GIKo}-1

x{H*(t,Y,z) + G*2(t,Y,z)u2(z)-F}. (9.44)

From (7.25), (7.26), and (9.39) it follows that the solution of (7.27) is given

by

Zi ID = {G*x(t, Y,z)Korx{F - H*(t, Y,z) - G*2(t, Y,z)u2(z)}. (9.45)

Remark 9.2 From (9.44) it follows that u\(t)-u^ID{t) -> 0 as Kx -> oo
and u{{t) = u?ID(t) if Do = 0.

Let Do = 0. Then from (9.39)-(9.41) we get the SMS equations

y* = F(Y,R), (9.46)

i = f(t,Y,z) + G1(t,Y,z){Gl(t,Y,z)}-1

x{F-H*(t,Y,z)-G*2(t,Y,z)u2(z)} + G2(t,Y,z)u2(z) (9.47)

as (j, -> 0. Note that in the system (9.46)-(9.47), the condition (7.27) holds;
that is, the desired output behavior is provided.

It is easy to see that the redundant control variables u2 can be used in
order to reach the boundedness (stability) of the transients in the internal
subsystem (9.47), and hence the boundedness of the control function u\{t)
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is obtained. Note that there are no special requirements for time-domain
specifications of the transients in the internal subsystem (9.47).

Remark 9.3 // the vector z(t) is available for measurement, then any
known technique can be used in order to design a static or dynamic con-
trol law for the control u2 = U2(z). Otherwise, the control system with an
observer (0) can be applied as shown in Fig. 9.1(b).

9.4 Stabilization of degenerated mode and zero dynamics

Let us assume that the steady state of the output variable y(t) is reached
in the system (9.46)-(9.47), that is,

y(t) = r = const V t G [0, oo).

Then the state vector belongs to the manifold (7.67) in the state space Y, z
(or to the manifold (7.68) in the state space X).

From (9.46)-(9.47) and (7.70), the behavior on the manifold (7.67) (de-
generated mode) is described by the following equation of the (n — Z)th
order:

z = f(t,Yr,z)-G1(t,Yr,z){G*1(t,Yr,z)}-1

x{H*(t,Yr,z) + G*2(t,Yr,z)u2(z)} + G2(t,Yr,z)u2(z). (9.48)

The expression (9.45) yields

uNiD = -{Gl{t,Yr,z)K0}-l{H*(t,Yr,z) + G*2{t,Yr,z)u2{Z)}. (9.49)

In particular, if y(t) = 0 = const, V t € [0,oo), then (9.48) yields the
zero dynamics equation. The stabilizing control law u2 can be constructed
by taking into account Remark 9.3.

9.5 Methods of internal dynamics stabilization

Internal dynamics stabilization by redundant control

Our procedure, developed above for internal dynamics stabilization by re-
dundant control, can be stated as the following sequence of steps:

Step 1. The system given by (9.22)-(9.23) is transformed to the normal
form (9.32)-(9.33).
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Step 2. The transformation (9.6) is constructed such that the require-
ment (9.34) is met.

Step 3. The SMS equations (9.46)-(9.47) are derived, and then the
stabilizing control law v,2(z) is constructed for the internal subsystem (9.47).

Step 4. In accordance with (7.40), the control law in the form
u-2(Q2(t,X)) is executed in order to obtain the stability of the internal
dynamics in the system (9.22)-(9.23) (in view of Remark 9.3).

Selective exclusion of redundant control variables

There is non-uniqueness of the 2nd step of the above procedure, where the
transformation (9.6) is constructed such that (9.34) holds. Moreover, the
internal subsystem (9.47) depends on the matrix P. Therefore, P can be
selected so that the corresponding internal subsystem is stable. Such an
approach provides the method of selective exclusion of redundant control
variables.

Step 1. Select a subset of £ components of the vector u, where £ = m-p.
Then suppose that Uj = 0 for all j = ji,J2, • • • ,j(-

Step 2. Check the invertibility and internal stability of the system with
the remaining control variables.

The enumeration of C™~~p possibilities is provided, where C™~p is the
number of combinations of m different components of u(t), taken m — p at
a time, without repetition.

Insertion of supplementary conditions

Let us consider the insertion of supplementary conditions for an LTI system
given by

X = AX + Bu, X(Q) = X°,

y = CX,

where X G Rn, u G R"\ y G W, and m > p.
Differentiation of j/i gives

y[1] = CiAX + CiBu,

where CjiE? G Rm. If CiB ^ 0 (i.e., Qj = 1), then let us insert the supple-
mentary condition for control variables u(t) such that

dBu = 0.
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This insertion increases the relative degree Q.{. Then we can obtain

yf] = CiA
2X + CiABu.

If C{AB ^ 0, then a second supplementary condition of the form ^ABu = 0
can be inserted. Each new supplementary condition increases the relative
degree on.

Let us assume that a set of supplementary conditions may be inserted
such that n = a.\ + a-i + • • • + ap. Then the internal subsystem (9.47)
disappears, and right invertibility of the system is sufficient for readability
of the desired output behavior.

Insertion of redundant control variables

Let us consider an LTI system (7.47)-(7.48):

X = AX + Bu, X(0) = X°,

y = CX,

where X £ E", u £ W, y G W. We assume that the condition (7.49) is
satisfied, that is, the system (7.47)-(7.48) is invertible and the vector of the
relative degree equals a = { 1 , . . . , 1}.

Let the characteristic polynomial (7.60) of the internal subsystem (7.59)
have at least one root with nonnegative real part. So the condition of
internal stability of the system (7.47)-(7.48) is not satisfied.

Let us insert redundant control variables u and consider the system
given by

X = AX + Bu + Bu, X(0) = X°, (9.50)

V = CX, (9.51)

where

u = KX. (9.52)

We consider the procedure for selecting the matrices B and K in order to
obtain an allowable root placement for the internal subsystem of the system
given by

X = [A + BK)X + Bu, X(0) = X°, (9.53)

y = CX. (9.54)

This procedure can be stated as the following sequence of steps:
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Step 1. The system given by (7.47)-(7.48) is transformed by matrix Q
defined by (7.50) to the normal form (7.52)-(7.53).

Step 2. Prom (7.52)-(7.53) the system (7.58)-(7.59) can be found.
Step 3. Insert redundant control variables u in the system (7.58)-(7.59).

As a result we get

V = F(y,r),

z = {A22 - B2B{1A12}z + {A2i - B2B^All}y

+B2BilF(y,r) + Bu. (9.55)

Step 4- The matrices B and K are selected such that the characteristic
polynomial

det{s/n_p - A - BK)

has an allowable root placement, where A = A22 - B2B^lA\2. As a result
we get

9.6 Example

Let us consider an LTI system given by

±1 = x\ + x2 + ui,

x2 = xi+0.5x2+ 2x3 + ui+u2, (9.56)

±3 = xi + x2 + x3 + ui + u2,

y = xx.

Selective exclusion of redundant control variables, (i) The control vari-
able u\ can be excluded by taking ui = 0. Let us consider the possibility of
using the control variable u2 to provide the desired behavior of the output
y = x\. It is easy to see that the relative degree of y(t) with respect to the
control variable u2 is a = 2. Then let us introduce the new state variables
2/0; 2/112 m the following way:

yo = y = xi, yi = y(01], z = x 3 . (9.57)
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By transformation (9.57), from (9.56) the system

Vo = 2/1,
2/1 = F(yuy0,R),
z = - z + -F(yi,2/o.fl) -0.5yo-0.5yx,

follows, which is the counterpart of (7.62)-(7.63), where R = {r,r(-1'>}T.
It is easy to see that if the transients of z(t) are stable, then the control

law structure of the form

M242) +<*IM41) +dou2 = W y ' " ^ . ^ . ^ - ^ }
can be used in order to provide the desired behavior of the output variable
y(t) given that ui = 0.

(ii) Exclude the control variable u2 by taking u2 = 0 and consider the
possibility of using the control variable ui in order to provide the desired
behavior of y(t), where the relative degree of y(t) with respect to the control
variable u± is a = 1.

By the transformation

y = xu zi=x2, z2 = x3,

from (9.56) the counterpart of (7.62)-(7.63) can be derived. It is

ir = F(y,r),

zx = -0.5Zl+2z2 + F{y,r),

z2 = z2 + F(y,r).

Here (s + 0.5)(s - 1) is the characteristic polynomial of the internal sub-
system. The desired behavior of y(t) cannot be provided by the control
variable ui, since the internal subsystem is unstable given that u2 = 0.

Internal dynamics stabilization by redundant control. By the transfor-
mation

y = xi, zt = x2, z2 = x3,

from (9.56) the system

y = y + zi+ui,

zi = y + 0.5z! + 2z2 + ui + u2, (9.58)

z2 = y + zi + z2 + ui + u2,
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results. This is the counterpart of (9.8)-(9.9).
From (9.58), we can find that the relative degree of y(t) with respect

to the control variable u\ is a = 1, and that the condition (9.34) holds.
Assume that u\ is used to provide the desired behavior of y(t) and that the
control law is given by

liv.^ + doui = ko{F(y, r) - y{1)}. (9.59)

Then u2 is considered as the redundant control variable and will be used
for internal dynamics stabilization.

The counterpart of the system (9.19)-(9.21) for the discussed example
has the following form:

V = F{y,r),

ii = -0.5^! +222 + F(y,r) + u2, (9.60)

z2 = z2+F(y,r)+u2, (9.61)

u"D = -zi+F(y,r)-y, (9.62)

where

We can check that the internal subsystem described by (9.60)-(9.61) is
fully controllable by u2, and fully observable if y = u\ID is regarded as the
measured output.

First, assume that the vector z(t) is available for measurement. Then
the control law

u2 = k\zi + kiz2 (9.64)

gives the stable internal subsystem (9.60)-(9.61) iik\,k2 are defined by the
condition

det{sI-A-BK} = Ad!nt{s)

where AdInt (s) is the desired stable characteristic polynomial of the internal
subsystem. If, for instance, we have

Adlnt{s) = s2 + 2s + 2, (9.65)

then fci = -2.5 and k2 = 0.

(9.63)
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Second, since fc2 = 0; hence, from (9.62) we obtain that the control law

u2 = -klU^ID (9.66)

gives the same characteristic polynomial (9.65) of the internal subsystem.
Finally, replace u[ID by u\ in (9.66), and from (9.59), as a result, we

get the control law given by

fiu{1} + doux = ko{F(y, r) - y ( 1 ) } , (9.67)

u2 = -kiui, (9.68)

which executes the desired output behavior and stabilizes the internal dy-
namics.

Simulation results for the system (9.56) controlled by the algorithm
(9.67)-(9.68) are displayed in Fig. 9.2, where the initial conditions are zero
and fc0 = 10, ki = -2.5, fc2 = 0, d0 = 0, \x = 0.1 s, and t e [0,6] s.
The desired output dynamics F(y, r) are given by (4.6) with the parameter
T= 1 s.

Fig. 9.2 Simulation results for the system (9.56), (9.67), and (9.68).

9.7 Notes

Our main purpose above was to explain the various procedures for internal
dynamics stabilization that apply if the dimension of the control vector u
is as large as that of the output vector y. It was shown that redundant con-
trol variables can provide for such stabilization and, consequently, that the
range of application of the discussed design methodology can be extended.



232 Design of nonlinear control systems with the highest derivative in feedback

9.8 Exercises

9.1 Stabilize the internal subsystem by selective exclusion of redundant
control variables in the system given by

±1 = X\ +X2 + U\ + U2,

x2 = a;i + 3a:2-2ui, (9.69)

y = xi-

9.2 Consider the system given by (9.69). Stabilize the internal subsystem
by insertion of supplementary conditions.

9.3 Stabilize the internal subsystem by selective exclusion of redundant
control variables in the system given by

±1=2:1+ 2x2 + u\ + 2u2,

±2 = 2:1+ 1.5x2+u1+u2 , (9.70)

V = xi.

9.4 Consider the system given by (9.70). Stabilize the internal subsystem
by insertion of supplementary conditions.

9.5 Stabilize the internal subsystem by selective exclusion of redundant
control variables in the system given by

±1 — x\ + X2 + x3 + u\ + i*2,

x2 = x3, (9.71)

±3 = Xi + X2 + 2X3 + Ul,

y = x1 +x2.

9.6 Consider the system given by (9.71). Stabilize the internal subsystem
by insertion of supplementary conditions.

9.7 Stabilize the internal subsystem in the system given by

±1 = x\ - x\ + ui +u2, ±2 = |x i |+ i*i+2u2, y = Xi.

9.8 Stabilize the internal subsystem in the system given by

±1 = x\ - \x2\ + iti +1*2, ±2 = |2;i|+ 1*1 - tt2, y = x\.



Chapter 10

Digital controller design based on
pseudo-continuous approach

Because the implementation of modern controllers is usually based on the
use of a computer or digital signal processor, the next few chapters are
devoted to the problem of digital controller design for continuous nonlinear
time-varying systems. In particular, in this chapter, the design of digital
controllers based on the so-called pseudo-continuous approach is presented,
where the digital controller is the result of continuous-time controller dis-
cretization. The continuous-time controller with the relative highest output
derivatives in feedback is used, and the effect of discretization at discrete
time instants has been taken into account by inclusion of a zero-order hold
(ZOH) transfer function. A distinguishing feature of the approach is that
a pseudo-continuous-time model of the control loop with a pure time de-
lay is used, where the pure delay is a result of the ZOH transfer function
approximation. Finally, a control law with compensation of the pure time
delay is presented, which allows us to increase the sampling period.

10.1 Continuous system preceded by zero-order hold

10.1.1 Control problem

This chapter is concerned with the control system shown in Fig. 10.1. Here
the continuous system is preceded by a digital-analog converter (DAC),
and the output is sampled by an analog-digital converter (ADC). Note that
the output signals of the DAC and ADC are to be taken as sampled-data
signals; that is, the effect of the sampling process at discrete time instants
is taken into account, while the quantization of signals in amplitude is not
discussed. Assume that the continuous-time system is the nonlinear time-

233
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varying system given by (8.1)-(8.2):

X = f(t,X) + G(t,X)u, X(O) = X°,

V = h(t,X),

where X C Rn, u C Mp, y C R", and p < n.
We seek a control system for which

lim e(t) = 0,
t—>oo

where e(t) is the error of the reference input realization; e(t) = r(t) — y(t);
r(t) is the reference input; r = {r\, r^., • • •, rp}T•

Moreover, the controlled transients ei(t) —> 0 should have a desired
behavior, where i — 1,. . . ,p. These transients should not depend on the
external disturbances and varying parameters of the system (8.1)-(8.2).

Assumption 10.1 The invertibility condition (7.20) [Porter (1970)] is
satisfied for the system (8.1)-(8.2).

Assumption 10.2 The internal stability of the system (8.1)-(8.2) is
maintained; that is, the condition (7.32) is satisfied in a specified region
of the state space. In particular, if y(t) = r(t) = 0 for all t € [0, oo), then
the zero-dynamics in (8.1)-(8.2) are stable.

Assumption 10.3 Consider the DAC as a ZOH. Let a series connection
of a ZOH and the continuous-time system (8.1)~(8.2) take place, where for
a discrete input sequence {uk}'kLo w e have

u(t) = uk, Vi£[fcTs,(fc + l)Ts).

10.1.2 Pseudo-continuous-time model with pure delay

The transfer function of the ZOH device has the form

GzoH(Ts,s) = kZOH1''e 3S, kZoH = ^ , (10.1)
S l s

where Ts is the sampling period.

Fig. 10.1 Block diagram of digital control
system.
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Based on the representation of the transfer function GZOH (T3, s) in
terms of its Maclaurin series, it follows that

lim {GZOH(T3, S) - e-T°s'2} = 0. (10.2)
Tas—>0

In accordance with (10.2), a pure time delay may be used as a result of
the ZOH transfer function approximation. The delay time depends on the
sampling period. This approximation is widely used in various design tech-
niques for linear control systems, e.g., [Astrom and Wittenmark (1997)],
and was applied to nonlinear digital control system design in [Blachuta
et al. (1997); Yurkevich et al. (1997)].

Provided that a digital controller fitted with a ZOH device is used,
we can assume, instead of (8.1)-(8.2), a nonlinear pseudo-continuous-time
model

X(t) = f(t,X(t)) + G(t,X(t))u(t-T), X(0) = X°, (10.3)

y(t) = h(t,X(t)), (10.4)

with a delay r = Ts/2 taken into account.

10.2 Digital controller design

10.2.1 Insensitivity condition

From (10.3)-(10.4) it follows that the expression (7.13) turns into

y,(t) = H*(t, X(t)) + G*(t, X(t))u(t - r), (10.5)

where

detG*(t ,X(i))^0, V(t,X) G fit,x-

By (10.5) we see that y\ depends explicitly on the input u ( t - r ) . The
control problem can be solved if y\ fulfills the reference model defined
by the stable differential equation (7.23):

„(<*•) _ p.(V- PA

where Fi represents the desired dynamics of y%{t). Here Yt =
\v- 7J(1) 7,(Q'-1)lT D. _ r_ „(!) (Pi-l)iT < J _
[ilii !Ji i • • • i Ui \ ) •»«* — [• xi ' i i • • • i ' i J i P% <• " i i aXiO. Ti — y%

at equilibrium for r* = const.
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As a result, the reference model for the transients of y(t) is given in the
form of the vector differential equation (7.25):

y. = F(Y,R),

where

Y eRl-,i = E?=i"t; i < n; Y = [yi,yj1\...,y{ai-1),!/2)...,y£Q'>-1)f;

R=[r1,r[1\...yr-I\r2,...,r^-1Y-
Let us consider the error of the desired dynamics realization given by

(7.26):

eF = F{Y,R)-y,.

Then (7.25), defining the desired behaviour of y(t), is fulfilled if and only if

eF(t,u(t-r)) =0. (10.6)

So the control problem has been reformulated as the insensitivity condition
(10.6), which should be maintained in the closed-loop system given that
the external disturbances and varying parameters of the system (8.1)-(8.2)
are unknown.

10.2.2 Pseudo-continuous closed-loop system

In order to satisfy (10.6), let us consider the control law in the form of the
following system of differential equations (8.68) (see p. 208):

23,M'«(9) + D g - i / i ' " 1 ^ ' " 1 ' + ' ' ' + £>iM«(1) + Dou = KxeF,

where

u = KQu,

H = di&g{fj.i,...,fj,p}, Ki =dia,g{ki,...,kp},

Dj =dia,g{dij,...,dpd}, V j = 0 ,1 , . . . ,q.

Prom (10.5) and (8.68) it follows that the closed-loop input-output equa-
tions are given by

y,(t) = H*{t,X(t)) + G*{t,X(t))KQu{t - r), (10.7)

Dqnqu(i\t) + Dq-iiii-Wi-Vit) + •••+ Dnj.uW(t)

+Dou{t) = K1{F{Y{t),R{t))-y*{t)}. (10.8)
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Similar to the expression (6.8) (see p. 118), in order to enable usage of
the above technique for two-time-scale motion analysis, let us represent the
time delay r in the form

where To is the normalized delay and fi is defined by (8.26). As a result,
from (10.7)-(10.8) we obtain the FMS

Dqnqu{q){t) + i V i M * " 1 ^ * " 1 ^ ) + ••• + DiAm(1)(t) + Dou{t)

+KiG*(t,X{t))Kou(t-T) = Ki{F(Y(t),R(t))-H'(t,X{t))} (10.9)

as /x —> 0, where X(t) is the frozen variable during the transients in the
FMS (10.9).

Assumption 10.4 The stability and sufficiently rapid decay of the FMS
transients in (10.9) are provided for all (t,X) £ Q.t,x by selection of the
control law parameters Dj,Ki,/jt.

In accordance with Assumption 10.4, let us consider the steady state (quasi-
steady state) of the FMS (10.9). Letting n -> 0 in (10.9) with (6.8) (i.e.,
Ts —» 0), we obtain u(t) = ua(t) where us{t) is given by (8.75) and the
corresponding SMS is given by (8.77).

So, after damping of the stabilized fast transients in the closed-loop
system (10.7)-(10.8), the behavior of the output y(t) corresponds to the
reference model (7.25) and is insensitive to external disturbances and pa-
rameter variations in the system (10.3)-(10.4). The influence of the time
delay or, in other words, the effect of discretization, can be neglected in the
SMS. At the same time, the influence of the time delay should be taken
into consideration in FMS stability.

10.2.3 Influence of sampling period

The delay r caused by discretization alters the stability of the FMS (10.9),
and degrades the transient performance indices of the control variable u(t)
in the closed-loop system. Hence, the control law parameters should be
selected to maintain quality of the control transients u(t) in the FMS (10.9)
in the presence of quantized feedback. In particular, the requirements of
Assumption 10.4 should be met.

In order to simplify the analysis of the FMS (10.9), let us make the
following assumption.
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Assumption 10.5 We have

K0^{G*}-\ (10.10)

Due to Assumption 10.5 and conditions (8.20), (8.35), and (10.10), the
FMS (10.9) decouples into the p equations

tful9i\t)+tf-1di,qi-1v!?t-1\t) + ••• + Wdi l i f i i { 1 ) ( t) + di l0Ui(t)

+kiui(t-T) = ki{Fi(yi{t),Ri(t))-h*i(t,X(t))}, t = l , . . . , p . (10.11)

Here the FMS equation of the ith control variable is the direct counterpart
of (6.11) (see p. 119). Therefore, the above technique for controller design
in the presence of a pure time delay in control may be used in order to
select the controller parameters.

By comparing (6.11) with (10.11), and similar to (6.12), we see that the
corresponding transfer function of the ith open-loop FMS with time delay
is given by

o hexpj-Ts)
^I /MS^J - —frrx—> (w.12)

i- /Hi;

where

Di{s) = n « V + / i ? ' - 1 ^ , , , - !**- 1 + . . . + mdi,is + difi.

Denote by u>i)C the crossover frequency on the Nyquist plot of the ith.
FMS (10.11). In equation form we have

\Gi,FMsU<«i.c,l*i)\ = l- (10.13)

From (10.12) and (10.13) the relationship

|A(j /W,e) | = h (10.14)

follows, which may be used to obtain the value of u>j|C.
Denote by </>; the value of the phase margin of the ith FMS (10.11). Then

the following can be formulated based on the Nyquist stability criterion and
(6.16).

Theorem 10.1 The requirement

fi>ff>0 (10.15)
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holds if the condition (10.10) and the inequality Ts < TitS are satisfied,
where

TitS = 2{TT - <pf - ArgDi(JniwiiC)}/wilC. (10.16)

Remark 10.1 The requirement ipt > tpf > 0, V i = 1,. . . ,p holds if the
condition

Ts < min Ti^f) (10.17)
i=l P

is satisfied.

In this way, the discussed approach allows us to find an upper bound for
the sampling period Ts in accordance with the desired value of the phase
margin of the FMS (10.11), and to analyze the deterioration of the quality
of the control transients in the FMS due to sampling.

10.2.4 Digital realization of continuous controller

If (8.20) and (8.35) are satisfied, that is, n,Dj are diagonal matrices, then
the continuous control law (8.68) can be represented as the system of the
decomposed linear differential equations (8.67):

MN 9 i ) + d i ^ - i M r 1 ^ " " 1 * + • • • + di^u^ + difiui

= h{-y\at) - ai:a,-iyiai~1] at.iJ/i^ - aifiV%

+bitPirlri + feiiPi_1ri('"-1) + • • • + bi^rV + b^n}, (10.18)

where

Hi > 0, hi > 0, qi>ai>Pi, i = l,...,p.

From (10.18) the continuous-time controller of the ith channel in the
form

Di(s)ui(s) = -ki[Ai(3)yi(s) - Bi(a)n(3)] (10.19)

results, where

Dt(s) = Hfsqi + ̂ ,,,-iMf ~1s9 i~1 + • • • + di,inis + difi, (10.20)

Ai(p) = s a ' + aUai_lSai-1 + ••• + aiAs + aifi, (10.21)

Bi(s) = bitP.sPi + 6i,Pj_is«-1 + • • • + biAs + bifi. (10.22)
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The digital realization of the continuous-time controller (10.19) can be
found via the .^-transform. Alternatively, for simplicity, various approxi-
mations of the function z = exp(Tss) can be used. In particular, the Tustin
transformation [Tustin (1947)], which maintains the stability conditions of
the continuous-time system, can be applied to (10.19) to obtain its digital
approximation by a substitution

-¥. ITT' <m23)

As a result of (10.23), from (10.19) we obtain a digital controller

Di{z)ui(z) = -ki[Ai(z)yi(z) - Bi(z)n(z)]. (10.24)

This can also be presented as the difference equation

Qi 1i Qi

«i,fc = ^2dijUitk-j + '^2/O,ijVi,k-3 + "^bijU^-j, (10.25)
3 = 1 3=0 j=0

where Ui{t) = uitk for kTs < t < {k + 1)TS.
The digital approximation of (10.18) by (10.25) based on the Tustin

transformation (10.23) allows us to obtain analytical expressions for the
digital control law parameters. For instance, let us consider the particular
case of (10.18) given by

HJuf) + diimuV + difiu%

= M-Oi.2i42) - a-i,iyi1] - aifiyi + h ^ + bifiri}, (10.26)

where a,^ = 1.
From the requirement (8.12) (see p. 150) it follows that 6j,o = a%,o- If

the reference model of the desired output behavior is given by (2.10), then

6i.i = ^ , 0M = ^ r . hi,o = ai,o = i . (10.27)
•Li -M - ' t

Let ai,2 = 0, biti = 0, and aiti = 1. Then from (10.26) the control law

tfu^ + di^muV + difiui = ki{-yl1] - aifiVi + b^n} (10.28)

results. This corresponds to the first-order reference model given by (4.6)

where 6^0 = ai,o = l/T^.
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By the transformation (10.23), from (10.26) the control law in the form
of the difference equation

Ui,k = diiUi,k-i + di2Ui,k-2 + aiOyitk + aa2/i,fc-i + a^y^k-i

+biori,k + biiT-i.fc-i + bi2n,k-2 (10.29)

results, where

di0 = 4/u? + 2nidi,iT3 + difiTs,

da = {8tf - 2diflT^}/di0,

di2 = - {4/u? - 2/iidi.iT, + difiT*}/dio,

5io = - h {Aaiy2 + 2aitiTs + aiflTf}/dio,

an = 2ki {4ai)2 - aifiT^}/diQ, (10.30)

ai2 = -ki {4aij2 - 2aiATs + aifiTf}/di0,

bi0 = fci {26i.iT, + 6i,0Ts2}/4),

5ti = 2kibifiT^/di0,

bi2 = -ki {2biATs - 6i,oTs2}Mo.

Then, from (10.29), the block diagram can be obtained as shown in Fig.
10.2.

Fig. 10.2 Block diagram of the control law (10.29).

Note that the present approach can be easily used for other assigned
degrees of the polynomials Dt(s), Ai(s), Bi(s) in (10.19). The advantage of
the method is that we have the analytical expressions for the digital control
law parameters, which depend explicitly on the desired specifications of the
output behavior through the parameters of (10.19).
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10.2.5 Example

We consider the nonlinear system given by (5.80) (see p. 109):

a;(2) = [1 + sin(a;(1))]a; + [1 - 0.5sin(x)]u + Q.5w{t)

with continuous-time controller in the form

^ V 2 ) +d1fj.u{1) +d0u = k0{~a2y{2) -a,iy{1) -aO2/+6ir( 1 ) +bor}, (10.31)

where fi = 0.2 s, d\ = 4, do — 0, fco = 10, a^ = 1, a\ = 1.4, a0 = b0 = 1,
6i = 0 .

For the given parameters, the appropriate FMS (10.11) has phase mar-
gin ip > <pd = 0.175 rad if the sampling period is Ts = 0 . 1 s. By transform-
ing (10.23) of (10.31) the digital controller (10.29) was obtained, where its
parameters are given by (10.30).

Simulation results for the system (5.80) controlled by the algorithm
(10.29) to a step reference input r(i) are displayed in Fig. 10.3, where the
initial conditions are zero and b\ = 0. Results for a ramp reference input r(t)
are displayed in Fig. 10.4, where a\ = b\ = 1.4 and the initial conditions
are zero.

Fig. 10.3 Simulation results for the system (5.80) and (10.31), where n = 0.2 s, di = 4,
do = 0, fco = 10, a2 = 1, oi = 1.4, a0 = b0 = 1, h = 0, Ts = 0.1 s, t € [0, 8] s.

10.3 Digital controller design with compensation of delay

10.3.1 Control law structure

There is a broad set of references where the idea of the time delay
compensation scheme of the Smith predictor [Smith (1957)] is used for
continuous-time as well as discrete-time systems, e.g., [Landau (1994);
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Fig. 10.4 Simulation results for the system (5.80) and (10.31), where fi = 0.2 s, d\ = 4,
d0 = 0, fc0 = 10, 02 = 1, ai = 6i = 1.4, a0 = b0 = 1, Ts = 0.1 s, t e [0, 6] s.

Palmor (1996)]. In context of control system design with the highest deriva-
tive in feedback, it was shown above that the modified control law in the
form (6.19) allows us to reduce the effect that a pure time delay in the con-
trol loop has on FMS stability. The nature of the discussed below modifica-
tion of the control law structure is related to the time delay compensation
scheme of the Smith predictor.

Since the time delay in the pseudo-continuous-time model (10.3)-(10.4)
is caused by sampling, and the sampling period is known, the modified
control law (6.19) can easily be applied for the purpose of digital controller
design [Yurkevich et al. (1998)]. Thus, instead of (8.68) as was discussed
before, let us consider a modified control law of the form

Dqnqu^{t) + n^Dg-iu^-^it) + ••• + fiDiuM(t)

+Dou(t) + -yu{t) - -yu(t - f) = KxeF', U{0) = U°, (10.32)

where the auxiliary control vector u{t) and actual control vector u(t) are
related by

u(t) = Kou(t)

and U = {uTMl) T, • • • M"-" T}T, f = Ts/2, 7 = Kv

Since K\, Dj are diagonal matrices, the control law (10.32) can be
represented as a decomposed system of linear differential equations:

^u<*>(t) + MrXtt - i f i i*" 1 ^*) + • • • + ^ . l i f ^ f )
+di,0Ui(t) + 7i«i(*) - 7<«i(t - T) = kef, ^(0) = (7°, (10.33)

where

i = l,...,p; m>0; ki > 0; Ui = {uu uf\ ... ,u\Qi~1)}T; qt > at.
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10.3.2 Closed-loop system analysis

Assume that /i. -+ 0 and r -» 0, f -> 0; then from (10.3)-(10.5) and (10.32),
the FMS in the form

D , / i « u < « > ( i ) + Dq-1fi*-1uto-1'>(t) + ••• + DinuW

+Dou{t) + ~fu(t) - ju(t - f) + KiG*(t, X)Kou{t - T)

= K1{F-H*{t,X)}, U(0) = 0° (10.34)

results. By Remark 8.7, all elements of the matrix G(t,X) are frozen
variables during the transients in the FMS (10.34), i.e., G(t,X) = const.

Let f = r, 7 = Ku and Ko = {G*}"1. Then, from (10.34), the FMS
equation

Dqtj,iu^(t) + Dq_xiJLq~lu^-l\t) + • • • + Dltiu^

+{D0 + K1}u(t) = K1{F-H*{t,X)}, U{0) = 0° (10.35)

results. This does not depend on the delay r.
Assume that the stability of the FMS (10.35) is provided by selection

of the control law parameters, similar to what was discussed above, and let
/x —> 0. After damping of the stabilized fast transients in (10.35), we have
the steady state (more precisely, quasi-steady state) of the FMS (10.35):

u(t)=us(t),

where

us(t) = {Do + Ki^IdiF - H*{t,X)}. (10.36)

Substitution of (10.36) into (10.3), (10.4), and (10.5) yields the SMS equa-
tion

X = f{-) + G{G*}-1u'(t-T), X(0) = X°. (10.37)

In particular, if Do = 0 then from (10.5) and (10.37) the expression

lim eF(/x) = F(Y(t),R(t)) - H*(t, X(t))

-{F(Y(t - r), R(t - T)) -H*(t- r, X(t - r))} (10.38)

follows.
This is the direct counterpart of (6.23) (see p. 123). So, the advantage

of the modified control law (10.32) is that the value of the phase margin
in the FMS (and, accordingly, the sampling period Ta) can be increased
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due to compensation of the delay. The disadvantage is the additional error
(10.38) of the desired dynamics realization.

10.3.3 Digital realization of continuous controller

Similar to (10.19), from (10.33) the continuous-time controller of the ith
channel in the form

Di{s)v,i(s) + jiUi(s) - 7iexp(-Tss/2){ii(s)

= -kilAiisM*) ~ Bl(s)ri(s)} (10.39)

results. Various kinds of digital approximation of (10.39) can be obtained
given that

7i = hi. (10.40)

For instance, based on the approximation

1 - p-T"s 1 1 - i 7 4-1
e x n ( - T s/21 =»> s _ 2_ - Z +

along with the Tustin transformation (10.23), from (10.39) and (10.40) the
digital controller

Di(z)ui(z) + ki^-^Ui{z) = -hilAiWviiz) - Bi(z)ri{z)} (10.41)

results. This yields a control law in the form of the difference equation

Ui,k = ^2 dijUi,k-j + ̂ 2 cujy^k-j + ̂ 2 Kn,k-j, (10.42)
j = l j=0 j=0

where

Ui(t)=Ui,k, kTs<t<{k + l)Ts.

For instance, let us consider the particular case of (10.33) given by

/i?u|2)(t) + di^iu^it) + dlfiui{t) + iiUi{t) - 7iUi(t - f)

= h{-ai,2y<i2)(t)-ai,1y(l1\t)-aiioyi(t) + biAr(1)(t) + bifiri(t)}, (10.43)
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where f = Ts/2. Then the above digital approximation of (10.43) in the
form (10.42) is given by

Ui,k = diiUi,k-i + di2Uilk-2 + di3Ui,k-3 + a,ioyiik + anyitk-i

+ai2Vi,k-2 + hor^k + bnri,k-i + bi2ritk-2, (10.44)

where

di0 = fyt? + 4/iiC(uTs + {2difi + ji)T?,

da = {16/x? - (4dil0 + li)T^}/diQ,

di2 = - {8/x? - 4/iidi.xT, + (2^,0 - li)T?}/di0,

dx=7iT2JdiQ,

ai0 = ~ 2ki {Aai<2 + 2aiATs + aifiT?}/di0, (10.45)

fiii - 4fei {4ai,2 - aifiTs}/di0,

ai2 = ~ 2ki {4aii2 - 2aitlTs + aifiT*}/di0,

bi0 = 2ki {26i.iT, + 6i,oT?}/dio,

foil = 4kt bifiT*/di0,

ba = ~ 2kt {2biATs - bii0T*}/diQ.

10.3.4 Example

Let us apply these results to digital controller design for the manipulator
model given by (8.46) (see p. 200). By analogy with (10.3), we consider the
following pseudo-continuous-time model:

m3L( 2 ) - m3 g sin(6>) = Mi (t - r ) ,

q<p{2) + 0.5m3 L(1) <f{1) = M2(t - r ) , (10.46)

q2cos\9)6(2)-q2sm(6)9-2 +

+ qm3 cos(0) (9(1) i ( 1 ) -gq cos(6) = M3(t - r),

where {2/1,2/2)2/3} = {L,f,0} is the output vector, {^1,^21^3} =
{Mi,M2,M3} is the control vector (torques), g = l\m2 + (12 + L + 13)1713,
and T = Tj/2. The values of the manipulator parameters are represented
on p. 200.

Assume that the reference model of the desired dynamics of y(t) is
assigned by

y{2) = -a^y^ - aifiVi + bitlr?> + bifin, (10.47)
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where the parameters of (10.47) are given by (10.27).
Consider the control law with compensation of delay given by (10.44)

and (10.45), where

Ko = diag{m3, q, q2 cos2(6)}, h = 27, k2 = 40, k3 = 45,

Mi = M2 = 0.5 s, fj,3 = 0.4 s, dn = 8, d,2\ = 10, d3i = 15,

di0 = 0,Ti = l s,ai2 = 1, 4 = 2, bfx = 0, V i = 1,2,3.

Simulation results for the system (8.46) controlled by the algorithm
(10.44) with a step reference input r(t) are displayed in Figs. 10.5-10.7,
where t 6 [0,15] s. Here the initial conditions are zero, and the control law
parameters are defined by (10.45) given that Ts = 0.27 s and 7» = 0, V i =
1,2,3 (without compensation of the delay).

Fig. 10.5 Simulation results for ri(t), j/i(t),ui(t) in the system (8.46) and (10.44) given
that 7i = 0, V i = 1, 2,3 (without delay compensation).

Fig. 10.6 Simulation results for r-2(t), 2/2(t),U2(t) in the system (8.46) and (10.44) given
that 7i = 0, V i — 1, 2, 3 (without delay compensation).
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Fig. 10.7 Simulation results for r3(t), j/3(t), U3(t) in the system (8.46) and (10.44) given
that 7i = 0, V i = 1, 2, 3 (without delay compensation).

Simulation results for the system (8.46) controlled by the algorithm
(10.44) with a step reference input r(t) are displayed in Figs. 10.8-10.10.
Here the initial conditions are zero, and the control law parameters are
denned by (10.45) given that Ts = 0.27 s and n = kit V i = 1, 2,3 (in the
presence of delay compensation).

From these it is clear that the reduction in swings of the control vari-
ables reflects an increase in phase margin in the FMS due to time delay
compensation effects.

Fig. 10.8 Simulation results for ri(t), j/i(i),ui(t) in the system (8.46) and (10.44) given
that fi = A;,, V i = 1, 2, 3 (with delay compensation).

10.4 Notes

In this chapter the previous design methodology for a continuous-time con-
troller with the highest output derivative in feedback was modified so that
the effect of discretizing the control signal has been taken into consideration
by inclusion of a ZOH transfer function. This, in turn, was approximated
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Fig. 10.9 Simulation results for ri{t), j/2(t)> U2(t) in the system (8.46) and (10.44) given
that 7, = ki, V i = 1, 2,3 (with delay compensation).

Fig. 10.10 Simulation results for rs(t),j/3(t),U3(t) in the system (8.46) and (10.44)
given that 7J = ki, V i = 1,2, 3 (with delay compensation).

by a pure time delay. The procedure for digital controller design based on
the pseudo-continuous approach consists of the following steps.

• Instead of the system (8.1)-(8.2), the nonlinear pseudo-continuous-time
model (10.3)-(10.4) is considered.

• The continuous-time controller (8.68) with the highest derivative of the
output signal in the feedback loop is designed in order to attain desired
specifications on the output behavior for the system with delay (spec-
ifications such as accuracy, overshoot and settling time of the output
response, stability of the fast transients, degree of time-scale separation
between the fast and slow modes, and the phase margin of the FMS
(10.12)).

• The sampling period Ts is determined in accordance with the required
phase margin of the FMS (10.12)).

• The digital realization of the continuous-time controller (10.19) is found
via the Z-transform or, for instance, the Tustin transformation.
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This design methodology may be used for a broad class of continuous non-
linear time-varying systems on the assumption of incomplete information
about varying parameters of the plant model and unknown external dis-
turbances. The advantage of the method is that analytical expressions for
the digital control law parameters can be found, and depend explicitly on
the specifications of the desired output behavior. The pseudo-continuous
approach and its applications to the problem of aircraft flight controller
design were discussed in [Yurkevich et al. (1997); Blachuta et al. (1997);
Yurkevich et al. (1998)].

10.5 Exercises

10.1 The system is given by

x = x2 + 4u.

Find the parameters of the control law (10.25) to meet the following
specifications: er = 0, td « 3 s, ad « 0%, q = 1. Determine the
sampling period Ts such that the phase margin of the FMS (10.12) will
meet the requirement y(r) > 0.35 rad. Compare simulation results
of the step output response of the closed-loop control system with the
assignment.

10.2 The system is given by

x = x2 + {3 + sin(£)}u.

Find the parameters of the control law (10.25) to meet the following
specifications: eT = 0, td « 3 s, ad « 0%, q = 1. Determine the
sampling period Ts such that the phase margin of the FMS (10.12)
will meet the requirement <p(r) > 0.2 rad. Compare simulation results
of the step output response of the closed-loop control system with the
assignment.

10.3 The system is given by (5.84). Find the parameters of the control law
(10.25) to meet the following specifications: er = 0, td w 1 s, ad ss 20%,
q = 2. Determine the sampling period Ts such that the phase margin of
the FMS (10.12) will meet the requirement < (̂r) > 0.25 rad. Compare
simulation results of the step output response of the closed-loop control
system with the assignment.
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10.4 Consider the system given by

X\ = x2 + u + w,

£2 = Xi + X2 4- 1u + w,

y = xx.

Find the parameters of the control law (10.25) to meet the following
specifications: er = 0, td « 3 s, ad « 0%, q = 1. Determine the
sampling period Ts such that the phase margin of the FMS (10.12)
will meet the requirement <P(T) > 0.3 rad. Compare simulation results
of the step output response of the closed-loop control system with the
assignment.

10.5 Consider the system given by

±1 = X2 + X3 + U,

X2 = Xi — X2 — X3 — U,

£3 = x3 + 2u + w,

y = xx +x2.

Find the parameters of the control law (10.25) to meet the following
specifications: eT = 0, tda w 6 s, ad ss 10%. Determine the sampling
period Ts such that the phase margin of the FMS (10.12) will meet the
requirement <P(T) > 0.25 rad. Compare simulation results of the step
output response of the closed-loop control system with the assignment.

10.6 Design the controller (10.25) for the system given by (7.139) that will
give the following specifications: er = 0, td w 3 s, ad w 0%. Determine
the sampling period Ts such that the phase margin of the FMS (10.12)
will meet the requirement tp(r) > 0.25 rad. Compare simulation results
of the step output response of the closed-loop control system with the
assignment.

10.7 Design the controller (10.25) for the system given by (7.140) that will
give the following specifications: er = 0, td w 5 s, ad w 0%. Determine
the sampling period T3 such that the phase margin of the FMS (10.12)
will meet the requirement </>(r) > 0.2 rad. Compare simulation results
of the step output response of the closed-loop control system with the
assignment.

10.8 Design the controller (10.25) for the system given by (7.141) that will
give the following specifications: e r l = 0, £r2 = 0, tdx w 1 s, af ss 0%,
td2 ~ 3 s, CT2 ~ 0%. Determine the sampling period Ts such that the
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phase margin <£J(T) of the ith FMS (10.12) will meet the requirement
(p(r) > 0.3 rad for i = 1,2. Compare simulation results of the step
output response of the closed-loop control system with the assignment.

10.9 Design the controller (10.25) for the system given by (7.142) that will
give the following specifications: e r l = 0, er2 = 0, tdsl « 3 s, of w 0%,
td2 ~ 3 S, ITJ RJ 0%. Determine the sampling period Ts such that the
phase margin </J$(T) of the ith FMS (10.12) will meet the requirement
<p(r) > 0.2 rad for i = 1,2. Compare simulation results of the step
output response of the closed-loop control system with the assignment.

10.10 Design the controller (10.25) for the system given by (7.143) that will
give the following specifications: er\ — 0, er2 = 0, tdsl « 3 s, of « 0%,
td2 ~ 2 s, o2 ~ 0%. Determine the sampling period Ts such that the
phase margin ipi(r) of the ith FMS (10.12) will meet the requirement
v ( r ) ^ 0-2 rad for i = 1,2. Compare simulation results of the step
output response of the closed-loop control system with the assignment.

10.11 Design the controller (10.25) for the system given by (7.73) that will
give the following specifications: erj = 0, er2 = 0, tdx « 3 s, of « 10%,
tds2 w 6 s, <T2 ~ 0%. Determine the sampling period Ts such that the
phase margin <Pi(r) of the ith FMS (10.12) will meet the requirement
y>(r) > 0.2 rad for i — 1,2. Compare simulation results of the step
output response of the closed-loop control system with the assignment.

10.12 Consider the system given by

±i = sin(xi) + x\ + x\Xi + u\ + u2,

±2 = X! + sin(X2) - 111 + It2,

2/1 = 2xi +x2,

2/2 = -xi +0.5x2.

Design the controller (10.25) that will give the following specifications:
erl = 0, er2 = 0, tdsl « 6 s, of w 0%, td2 « 3 s, od w 0%. Determine the
sampling period Ts such that the phase margin <Pi(r) of the ith FMS
(10.12) will meet the requirement <P(T) > 0.25 rad for i = 1,2. Compare
simulation results of the step output response of the closed-loop control
system with the assignment.



Chapter 11

Design of discrete-time control
systems

This chapter is devoted to discrete-time control system design. The problem
of forming desired output transients for a discrete-time system described by
a difference equation is discussed. The insensitivity condition for the output
transients with respect to varying parameters of the system and external
disturbances is introduced, and a discrete-time control law is constructed.
Desired output behavior with prescribed dynamics is achieved by inducing
two-time-scale motions in the closed loop system, despite uncertainty in the
system description. The singular perturbation method is used to analyze
fast and slow motions in the discrete-time closed-loop control system. The
approach may be considered as the discrete-time counterpart of the above
design methodology for continuous-time control systems with the highest
derivative in feedback. The chapter opens with explanations in simplified
form, while various peculiarities associated with the sampling process will
be discussed in later sections.

11.1 SISO two-time-scale discrete-time control systems

11.1.1 Discrete-time systems

Let us consider a discrete-time control system given by a difference equation
of the form

n n n

Vk = Yl aJyk-J + Yl hiUk~3 + ]C hwk-j, (11-1)
j = l j = l j = l

where
k is the discrete time variable, k = 0 ,1 , . . . ;
yi- is the output, available for measurement;

253
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Uk is the control;
Wk is the external disturbance, unavailable for measurement.

Assumption 11.1 For the unforced system (11.1) we have

Vk-yk-j~0, V j = l,--- ,n. (11.2)

In other words, only small variations of yk occur during the settling time
of the nth-order discrete-time system with deadbeat response.

Note that the requirement (11.2) can be easily provided for a sampled-
data system preceded by a ZOH by decreasing the sampling period Ts. The
condition (11.2) reflects the main qualitative performance of a sampled-data
system preceded by a ZOH. Prom (11.2), the possibility of discrete-time
control system design with two-time-scale motions arises as shown later.

Assumption 11.2 The roots of the polynomial

hzn~l + b2z
n-2 + ••• + 6 n _ i z + 6 n

lie outside some neighborhood of 1, i.e.,

X>^°- (n-3)
j=l

11.1.2 Control problem and insensitivity condition

Our objective is to design a control system having

lim ek = 0. (11.4)
fc—too

Here tk = rk~ Vk is the error of the reference input realization, rk being
the reference input. Moreover, the control transients e^ —> 0 should have
desired performance indices such as overshoot, settling time, and system
type. These transients of yk should not depend on the external disturbances
and varying parameters of the system (11.1).

Let us construct the continuous-time reference model (2.7) for the de-
sired behavior of the output y(t):

y = Gd
yr{s)r,

where the parameters of the nth-order stable continuous-time transfer func-
tion Gyr(s) are selected based on the required output transient performance
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indices and such that

G ^ ) | s = 0 = l-

By a Z-transform of Gyr(s) preceded by a ZOH, the desired pulse transfer
function1

I L J t=kTs)
 K '

can be found, where

^ r ( * ) L = 1 = l- (11-6)

Hence, from (11.5), the desired stable difference equation

n n

yk = J2 rfyx-i + E bdirk-i (1L?)
j = l 3 = 1

results, where

i-Es-E^ E6^o, (n.8)
3 = 1 j = l 3 = 1

and the parameters of (11.7) correspond to the assigned output transient
performance indices.

Let us rewrite, for short, the desired difference equation (11.7) as

yk=F{Yk,Rk), (11.9)

where

Yk = {Vh-n, Vk-n+i, • • • ,yn-i}
T', Rk = {rk-n,rk-n+x, • • • ,rn-i}

T•

We have rk — yk at the equilibrium of (11.9) for rk — const, V k.
By definition, put Fk = F(Yk,Rk) and denote

el = Fk-yk, (11.10)

where ef is the realization error of the desired dynamics assigned by (11.9).
Accordingly, if for all fc = 0 ,1 , . . . the condition

e £ = 0 (11.11)
1Some additional details concerning the 2-transform and calculation of pulse transfer

functions can be found in [Jury (1958); Lindorff (1965); Chen (1993); Ogata (1994)].

(11.5)
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holds, then the desired behavior of yk with the prescribed dynamics of
(11.9) is fulfilled. The expression (11.11) is the insensitivity condition for
the output transient performance with respect to the external disturbances
and varying parameters of the plant model (11.1). In other words, the
control design problem (11.4) has been reformulated as the requirement
(11.11).

Remark 11.1 The insensitivity condition (11.11) is the discrete-time
counterpart of (4-33) for the continuous-time system (4.27).

11.1.3 Discrete-time control law

In order to fulfill (11.11), let us construct the control law as the difference
equation

n
uk = ^djUk^j + Aoe£, (11.12)

where
n

Y^dj = 1 and Ao ̂  0. (11.13)

From (11.13) it follows that the equilibrium of (11.12) corresponds to the
insensitivity condition (11.11).

In accordance with (11.7) and (11.10), the control law (11.12) can be
rewritten as the difference equation

n ( n n |

uk = J2 djUk-j + Ao < -j/fc + ] T afyk-j + ] T bfrk-j > . (11-14)
j=i [ j=i J=I J

Remark 11.2 The control law (11.12) (as well as (11.14)) is the discrete-
time counterpart of the continuous-time control law (4-38) (or (4-41))-

Remark 11.3 For a cost function V(u) = {ef (u)}2, equation (11.12)
is related to the multistage optimization algorithm introduced in [Tsypkin
(1971)].

In particular, if n = 2, then (11.14) assume the form

uk = diUfc_i +d2Uk-2

+A0 {-yk + afyk-i + 4yk-2 + bfrk-i + &SJrfc_2} • (11.15)
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Let us rewrite the control law (11.15) in state-space form, e.g.,

«i,fc = W2,fc-i + diuitk-i + Ao[af - di]yk-i + \obfrk-i,

U2,k = d2uitk-i + \0[a% - d2]yk-i + Ao&2rfc-i) (11.16)

Wfe = Ui,k — Aoj/fc.

Then, from (11.16), we get the block diagram as shown in Fig. 11.1.

Fig. 11.1 Block diagram of the control law (11.15) represented in the form (11.16).

11.1.4 Two-time-scale motion analysis

The closed-loop system equations have the following form:

n n n

j = l J=l J=l

n I n n ]

uk = Y2dJuk-j + Ao < -Vk + YlaW~i + ̂ 2b<jrk-i \ (1L18)
3=1 { 3=1 3=1 )

Substitution of (11.17) into (11.18) yields

n n n

Vk = Y2 a3Vk-3 + ^ Z h3uk-i + X ] hwk-j> (11.19)
3 = 1 3 = 1 3 = 1

n n

uk = ^2[dj-Xobj}uk-j+Xo'^2{{a^-aj}yk-j+b^rk_j-bjwk-j}. (11.20)
3=1 3=1

First, note that the rate of the transients of uk in (11.19)-(11.20) depends on
the controller parameters Ao,di,. • • ,dn. At the same time, in accordance
with (11.2), we have a slow rate of the transients of yk. Therefore, by

(11.17)
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choosing the controller parameters it is possible to induce two-time scale
transients in the closed-loop system (11.19)-(11.20), where the rate of the
transients of yk is much smaller than that of Uk- Then, as an asymptotic
limit, from the closed-loop system equations (11.19)-(11.20) it follows that
the FMS is governed by

n n

Uk = Y^[dJ-XObjW-j + Xo'Y^{la'j-aj}yk-j + b'jrk-j-bjWk-j}> (n-2 1)
j=l 3=1

where yk — yk-j ~ 0, V j = 1,2,..., n, i.e., yk = const during the transients
in the system (11.21).

Second, assume that the FMS (11.21) is stable2 and consider its steady
state (or more exactly quasi-steady state), i.e.,

Uk-uk-j=0, Vj = l , . . . ,n . (11.22)

Then, from (11.13), (11.21), and (11.22) we get

uk = uLkID,

where

r -i-i

n n
U"D= £ > j ^2{{a1-aj}yk-j+b'*rk-j-bjWk-j}. (11.23)

j=\ J j=i

Here, by analogy with the solution of the nonlinear inverse dynamics given
by (3.13), the discrete-time function ukID is called the solution of the linear
inverse dynamics since the system at hand is linear.

Remark 11.4 Note that the discrete-time control function u^ID given
by (11.23) corresponds to the insensitivity condition (11.11), that is, u%ID

is the discrete-time counterpart of the nonlinear inverse dynamics solution
(3.13).

Remark 11.5 From (11.23) we know that if (11.3) holds, then u%ID

exists. So (11.3) is the discrete-time counterpart of (3.12).

Substitution of (11.22) into (11.19)-(11.20) yields the SMS of (11.19)-
(11.20), which is the same as the desired difference equation (11.7).

2This means that the unique equilibrium point of (11.21) is asymptotically stable.
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To ensure stability and fastest transient processes of Uk, let us choose
the controller parameters Ao and dj such that

r i - 1

n
Ao = ^2 bi a n d di ~ ^ ° ^ ' V j = 1, . . . , n. (11.24)

That is, all roots of the characteristic polynomial of the FMS (11.21) are
placed at the origin. Hence, the deadbeat response of the FMS (11.21)
is provided. This, along with Assumption 11.1, justifies two-time-scale
separation between the fast and slow motions.

The qualitative root distribution of the characteristic polynomial in the
discrete-time closed-loop system with two-time-scale motions is shown in
Fig. 11.2.

Fig. 11.2 Roots of the characteristic poly-
nomial in the discrete-time closed-loop sys-
tem with two-time-scale motions.

If the degree of time-scale separation between fast and slow motions
in the closed-loop system (11.19)-(11.20) is sufficiently large and the FMS
transients are stable, then after the fast transients have vanished the behav-
ior of yk tends to the solution of the reference model (11.9). Accordingly,
the controlled output transient process meets the desired performance spec-
ifications.

The advantage of the method is that knowledge of the parameters
bi,..., bn suffices for controller design; knowledge of external disturbances
and other parameters of the system is not needed. In particular, the term
due to yfc-i, - - •, yk-n in the right member of (11.1) may be entered as some
nonlinear function given that (11.2) is satisfied, and just such a numerical
example will be presented later in this chapter.

Note that variations of the parameters b\,..., bn are possible within the
domain where the FMS (11.21) is stable and the fast and slow motion sep-
aration is maintained. Some features related to this question are discussed
in the next section.
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11.1.5 Robustness of closed-loop system properties

In section we consider the influence of parameter variations of a discrete-
time system and controller parameters on the properties of the closed-loop
system; in other words, we consider the robustness of the closed-loop system
properties against parameter variations.

Let us consider a discrete-time system given by (11.1):

n n n

3=1 3=1 3=1

Assume that the parameters a.j, bj, bj depend on the operating point and
may vary in some bounded domain.

Denote by W the known nominal value of the parameter bj, and let

bj=b° + Abj, (11.25)

where Abj is the difference between 6° and the unknown actual value of bj.
Let

AA 0 ,Adi , . . . ,Ad n (11.26)

denote the errors of the implementation of the calculated controller param-
eters in practice. Then assume that, instead of (11.24), the parameters of
the controller (11.12) are chosen based on the known nominal values 6° and
used in practice with errors (11.26) such that

Ao = X°o + AA0, (11.27)

dj=d° + Adj, V j = l , . . . , n , (11.28)

where

A°= f^tf and dj=X°ob°- ( 1 L 2 9)
_j=i J

Note that if bj = #•, V j = 1 , . . . ,n, then the parameters Ao = A°, d\ —
d°,... ,dn = d® correspond to the deadbeat response of the FMS.

Let us consider the effect of AA0, Adi, • • •, Adn and A 6 i , . . . , Abn on
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the behavior of the closed-loop system given by

n n n

Vk = Yl ai^-i + Yl biuk-J + X] hwk-j> (11.30)
3=1 3=1 3 = 1

n n n

«fc = ElKO + A^>f c^ + [Ao+AAo] -J/fc + S ^ - i + D ^ - J -(1L31)
3 = 1 \_ 3 = 1 3 = 1

Substitution of (11.30) into (11.31) gives

n n n

Vk = Yl aJyk-3 + Yl b3Uk-J + Y, hwk-h (11.32)
3=1 3=1 3=1

n n

uk = ^0juk-3 + {>% + ̂ o}'52{[a'j-aj]vk-j+b'}rk-j-bjwk-j}, (11.33)
3=1 3=1

where

Pi = Adj - AA0{6° + Abj} - Abj A§. (11.34)

Similar to (11.21), from (11.32)-(11.33) we get the FMS

n n

«fc = 5Z4-«fc-i+{Ao+A^o}X]nOi-Oi]yfc-j+^T-fc_i-6iu;fc_i}) (11.35)
J = l 3=1

where yu — yk-j ~ 0, V j = 1 , . . . , n , i.e., j/fc = const during the transients
in the system (11.35) because of the property (11.2).

In accordance with (11.35), the characteristic polynomial of the FMS
(11.35) is

AFMS{z) = zn- ftz""1 pn^z - pn

with its parameters given by (11.34). Then the root-locus method (see, for
instance, [Chen (1993); Ogata (1994)]) can be applied to investigate the
effect of varying parameters on FMS stability.

R e m a r k 11.6 The range of allowable variations of AX0, Ad\,..., Adn

and Ab\,..., Abn is restricted by the requirement of FMS stability and the
required degree of fast and slow motion rate separation in the closed-loop
system.

In order to find the SMS of the closed-loop system (11.32)-(11.33), let us
consider the steady state of the FMS (11.35); that is, (11.22) is satisfied.
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Then, from (11.35) and (11.27)-(11.28), we get the discrete-time control
function usk given by

1 - l

u%= l-f^Pj {A° + AA0}

n

x Yjila* - aj]Vk-j + bjrk-i - 6>fc^}. (11.36)

By substituting (11.22) into (11.32)-(11.33) (or (11.22) and (11.36) into
(11.32)), we obtain the SMS

n n

r „ n y1
+Ads I 1 - Ads + AA0 J](6° + A6j) + Ag ^ A6,- S (11.37)

n

3=1

where

n
Ads = ^ A d j - . (11.38)

Proof of (11.37) see in Appendix A.4.

Remark 11.7 This is the same as the desired difference equation (11.7)
if Ada = 0; that is, the robust zero steady-state error of the reference in-
put realization is maintained and the deviations Abj do not alter the SMS
(11.37).

11.1.6 Control accuracy

Steady-state error

In this section the steady-state error and velocity error are considered for
the discrete-time closed-loop system given by (11.32)-(11.33).
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Assume that the conditions

ffc = r — const, yk = ys = const, Wk = wa = const, V k = 0 , 1 , . . .
(11.39)

are satisfied. Denote by

es = r -ys

the steady-state error (or static position error) in the closed-loop system.
Since the system at hand is linear, es can be divided into two parts:

es - es + es

where esr and esw are the steady-state errors due to the reference input r
and the disturbance signal Wk = ws, respectively.

From (11.37) we can obtain

n

esr = -Ads l - ^ a J ^ V (11.40)

L j=1 J
n

esw = Ads Y,h ^ r 1 ^ - (11-41)

where

n n n

&= 1~12ai ! ~ E ^ - A 4 E K d - % ] - (H-42)

Proof of (11.40)-(11.41) see in Appendix A.5. From (11.40)-(11.41) it
follows that if Ads = 0 and the conditions (11.39) are satisfied, then
e* = esw = 0. Therefore, the robust zero steady-state error is maintained in
the closed-loop system.

Velocity error

Assume that

Ads = 0 (11.43)

and consider the ramp disturbance

wk=wvT3k, A; = 0 , 1 , . . . (11.44)
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given that

rk = r = const, yk=yv = const, k = 0 , 1 , . . . . (11.45)

Let

evw=r-yv, (11.46)

where evw i s t n e velocity error due to the ramp disturbance signal (11.44).
Then from (11.32)-(11.33), by taking into account (11.44)-(11.45), we ob-
tain

r i r i -1

n n

evw = -Ts J2h l - ^ a | <h*>v, (11.47)
.J=I J L j=i

where
-ir -i-l r -ir -i-l

02= ;£>•& l-^ft- + £ > f > .
j=i J=I i=i J=I

Proof of (11.47) see in Appendix A.6.
Similar to the above, assume that Ads = 0 and consider the ramp

reference input

rk = rvTsk, k = 0 , 1 , . . . (11.48)

given that

wk = ws = const, & = 0,1, (11.49)

Denote by e" the velocity error associated with (11.48):

evr = lim {rfe - yfc}, (11.50)
k—>oo

where evT — const. From the linear discrete-time control system (11.1) and
(11.12), by taking into account (11.48)—(11.49), we obtain

e»=Ts l-J2a1 I D l a i + ^ 1 + ^ E ^ ^ | r " . (11.51)
j=i J (LJ'=1 J L i=1 J J

Proof of (11.51) see in Appendix A.7. Note that relationships (11.47)-
(11.51) may be used to find the sampling period Ts in accordance with the
required velocity error.
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11.1.7 Example

Let us consider an unstable nonlinear discrete-time system given by

yk = Q.03yk-iyk-2 + 1.95j/fc-i - 0.951yfc_2 + 0.2ufc_! + 0.3ufc_2 (11.52)

with the reference model (11.7) for n = 2 in the form

Vk = aft/fc_i + a ĵ/fc-2 + bfrk-i + &grfc_2) (11.53)

where a\ = 1.7, a\ = -0.72, bf = 0, b\ = 0.02. Then the pulse transfer
function

Hd(z\ = °-02 = 0-02
{> z2-l.7z + 0.72 ( z -0 .8 ) (z -0 .9 )

corresponds to (11.53), where (11.6) is satisfied and the system (11.53) is
of type 1.

The control law (11.14) with (11.24) gives

Uk = 0.4ufe_i + 0.6ufc_2

+2{-yk + afyk-! + ad2yk-2 + b\rk-X + 6^rfc_2}, (11.54)

where d\ = 0.4, d2 = 0.6, Ao = 2, which correspond to the deadbeat
response of the FMS.

Simulation results for the output response of the system (11.52) con-
trolled by the algorithm (11.54) for a step reference input rk are displayed
in Fig. 11.3 for the time interval t £ [0, 6] s and with the sampling period
Ts = 0.1 s. Results for the output response of (11.52) controlled by the
algorithm (11.54) for a ramp reference input rk are displayed in Fig. 11.4,
where rk = 0.1Tsk.

By substituting of = 1.7, 0,$ = -0.72, bf = 0.3, and b^ = -0.28 into
(11.53), we obtain the reference model, a system of type 2. Simulation
results for the output response of the system (11.52) controlled by the
algorithm (11.54) with the new parameters of (11.53) for a ramp reference
input rk are displayed in Fig. 11.5 where rk = 0.1Tsk.
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Fig. 11.3 Output response of the system (11.52) and (11.54) for a step reference input
r(t), where a? = 1.7, a\ - -0.72, bf = 0, b\ = 0.02.

Fig. 11.4 Output response of the system (11.52) and (11.54) for a ramp reference input
r(t), where af = 1.7, a% = -0.72, bf = 0, b\ = 0.02.

11.2 SISO discrete-time control systems with small
parameter

11.2.1 System with small parameter

Reasonableness of the two-time-scale motion separation is the weak point
of the above design methodology, since the procedure for fast and slow
motion separation in the closed-loop system is provided without the pres-
ence of some parameter that can play a role similar to that played by /x in
the continuous-time case. We now introduce such a parameter artificially
[Yurkevich (1997)]. Justification will be provided later, in the next chapter,
for sampled-data control systems.

Let us consider a nonlinear time-varying discrete-time system

n

yk = f(k,Yk,Wk) + ^2bjuk.j, YQ = Y°, (11.55)
i=i
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Fig. 11.5 Output response of the system (11.52) and (11.54) for a ramp reference input
r(t), where af = 1.7, a\ = -0.72, bf = 0.3, b% = -0.28.

where k — 0 ,1 , . . . is discrete time, yk is the output (available for measure-
ment), Uk is the control, and Wk is the external disturbance (unavailable
for measurement). Here /(•) is a function continuous in yk-j,Wk-j for all
j = l ,2 , . . . ,n , and

Yk = {yk-n,yk-n+l, • • • ,Vk-l}T', Wk = {Wk-n,Wk-n+l, • • • ,Wk-l}T•

Assumption 11.3 The system (11.55) may be rewritten in the form of
the following difference equation:

Vk = f>n,,-V*-i +/* | f(k,Yk,Wk) + J2~b^k-j > , Yo = y°(/x), (11.56)
3 = 1 { 3 = 1 J

where fi is a small parameter, Y® = y°(/i) is the initial state, and

"nj = (-1)3 '+ 1
( n_n

f) l -,. H a«J = 1. ^ = ^J -

limM_0 y°(/i) = Y§, Y§ = {yl y°0,..., y°0}
T. (11.57)

Note that the parameters an, i , . . . , aMin are the coefficients of the polyno-
mial

zn - anAzn-x an,n_iz - an,n = {z - 1)". (11.58)

The difference equation (11.56) can be rewritten in the form of the discrete-
time state equation

Yk+1 = AnYk + uBn{f(k, Yk, Wk) + bT Uk}, Yo = Y°(n), (11.59)
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where An € Rnxn, Bn e M n x l , and

" 0 1 0 • • • 0 1 TO] \K '

0 0 1 ••• 0 0 b n _ !

A n = | : : : , B n = \ , b = : , (11.60)

0 0 0 ••• 1 0 62

- a n , n an,n-l an,n-2 '"• fln.l J L 1 J b\

Uk = {uk-n,Uk-n+i,---,uk-i}T, b= {bn,bn-i,...,bi}T, b = yJb.

Assumption 11.4 The roots of the polynomial

h zn-1 + b2zn-2 + ••• + bn-iz + bn

lie outside some neighborhood of 1; that is,

n

J2h^o- (n.61)

Remark 11.8 If fi = 0, then from (11.56) and (11.57) it follows that we
have the system

Yk+i = AnYk, Yo = Yo ,

whose characteristic polynomial takes the form (z — l ) n and y^ = y° V k =
0 , 1 , . . . .

Remark 11.9 If uk and Wk are bounded in (11.56), then, from Remark
11.8 and (11.57), we have

lim{yk(/i)-yk.j(/j,)} = 0, V j = l , . . . , n (11.62)

for the solutions of (11.56).

11.2.2 Two-time-scale motion analysis

Let us consider the output regulation problem (11.4) where, as above, the
reference model in the form of the desired difference equation (11.9) is
introduced; hence, the control problem (11.4) has been reformulated as the
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insensitivity condition (11.11). Then the control law is constructed as the
difference equation

q>n

uk = Y, diuk-j + Mv)4. (11-63)
3 = 1

where

AoM-M^Ao, Ao^O, (11.64)

d1+d2 + ---+dq = l, q>n. (11.65)

Prom (11.65) it follows that an equilibrium of (11.63) corresponds to the
insensitivity condition (11.11).

Just as we represented (11.55) in the form (11.56), let us rewrite the
desired difference equation (11.9) as the difference equation with small pa-
rameter

n

Vk = Y^an,jVk-j + ̂ F(Yk,Rk) (11.66)
3 = 1

and consider the closed-loop system equations

f n )
Vk = ^anjyk-j+li < Kk,Yk)Wk) + Y,~biuk-3 \ » Yo = Y°{V), (11-67)

3=1 { 3=1 J
<7>n

uk = ^djUk^ + \0(fi){F(Yk,Rk) - j/fc}, Uo = U°. (11.68)
j = l

By (11.66) we have that the substitution of (11.67) into (11.68) yields

Vk = X>rMyfc_,+/j | f(k,Yk,Wk) + f2huk-3 \ ,Y0 = y°(/i), (11-69)
3=1 { j= l J

n q>n
uk = ^2[dj - fj,X0(fi)bj]uk-j + ^2 djUk-j

3=1 J=n+1
+ v\0(fx){F(Yk,Rk) - f(k,Yk,Wk)}, U0 = U°. (11.70)

Denote

Uk = {Mfe_g,U/c_9+1,...,Ufc_1}T,
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where the relationship between Uk and Uk in (11.55) is explained by the
following layout:

{ TXfc-g, • • . , U f c - n - 1 , Ufc-n , • • • , ~»fc-2, Mfc-1 }.

Hence Uk = P£4, where

P = diag{p1,...,p,})

Pj = 0 , j =l,...,q-n,

Pj = l, J = q-n + l,...,q,

for q > n, and P = I for q = n.
In accordance with (11.59)-(11.60), the difference equations (11.69)-

(11.70) can be rewritten in the form of the discrete-time state equations

Yk+l = AnYk + fiBn{f(k, Yk, Wk) + bTPUk}, Yo = Y°{fj), (11.71)

Uk+i = AvUk + Bv {F(Yk, Rk) - f(k, Yk, Wk)}, Uo = U°, (11.72)

where

" 0 1 0 ••• 0 ] f" 0 "
0 0 1 ••• 0 0

A v = , B v = ••• .

0 0 0 ••• 1 0

.Pg /3,-i 0,-2 • " Pi J LAo.

By taking into account (11.64), we have

Pj=dj-\obj, j = l,...,n, (11.73)

Pj=dj, j = n + l,...,q. (11.74)

Note that the matrices Ay, By do not depend on y,, while /J, affects the rate
of the transients of yk- Property (11.62) implies that by decreasing \x we can
induce two-time-scale transients in the closed-loop system (11.71)—(11.72),
where the rate of the transients of yk is much smaller than that of uk. The
desired degree of time-scale separation is provided as /x —» 0. Then, as an
asymptotic limit, from the closed-loop system equations (11.71)—(11.72) it
follows that the FMS is governed by

Uk+1=AuUk + Bu{F(Yk,Rk)-f(k,Yk,Wk)}, U0 = U°. (11.75)
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This is an LTI system where Yk is the frozen vector during the transients

in (11.75), i . e . , y f c -y f c _ i«0 .
Let us assume that the stability of the FMS subsystem (11.75) holds,

and consider its steady state (or, more exactly, quasi-steady state). Then

f/fc+i - C/fc = 0

and, accordingly,

ufc_g = • • • = ufc_i = uk = u%ID, (11.76)

where

r i - 1

n

ui?ID= J2~b> {F(Yk,Rk)-f(k,Yk,Wk)}. (11.77)

By taking into account (11.76) and, from (11.71)-(11.72) (or by substituting
(11.76)-(11.77) into (11.71)), we obtain the SMS

Yk+1 = AnYk + »BnF(Yk, Rk), Yo = Y0^), (11.78)

which is the same as (11.66).
So, if a sufficient time-scale separation between the fast and slow modes

in the closed-loop system and stability of the FMS are provided, then after
rapid decay of FMS transients we have in the closed-loop system the slow
motions described by (11.66); hence, the output transient performance in-
dices are as desired and are insensitive to parameter variations and external
disturbances in (11.56).

The main result may be formulated as the following theorem.

Theorem 11.1 If /j, is sufficiently small, the two-time-scale transients
are induced in the closed-loop system (11.71)-(11.72), where the FMS is
governed by (11.75). The SMS is governed by (11.78) given that the FMS
is stable.

11.2.3 Interrelationship with fixed point theorem

The FMS (11.75) can be considered as a map

$£/:£/-»£/, (11.79)

where

uk+1 = *u(uk,rk) (n.80)
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and

Tfc = Bv {F(Yk, Rk) - f(k, Yk, Wk)}.

Here Tfc is considered as the vector of parameters and it has been assumed
that Tfc = Tk-j, V j = 1 , . . . , q and Tfc = T.

Using the recursion (11.80) we can get the sequence {Uk}. If the differ-
ence equation (11.75) of the FMS is stable, then {Uk} is convergent. This
means that U* — {u*,u*,... ,u*}T exists such that

lim {Uk ~ U*} = 0, (11.81)
fc—>oo

where U* is the limit of {Uk}- Accordingly it is the fixed point of the map
$u, i-e.,

U* = $u(U*,T). (11.82)

By (11.65) we have U* = UNID where UNID = {uNlD,.. .,uNID}T. Then

lim eF{Uk) = 0. (11.83)
k—>cx)

Therefore if $ y is the contraction map and (11.65) holds, then the fixed
point U* of $[/ corresponds to the control action that provides the control
problem solution, i.e., eF(U*) = 0.

Note that <&JJ is a contraction if all roots of the characteristic polynomial
of the FMS (11.75) lie inside the unit disk.

Since there are time-varying parameters in (11.11), we have a time-
varying quasi-fixed point U*(k) of (11.82). Then, the condition

l im{t/ f c -£/*(/c)}-*0 (11.84)
k—too

and, accordingly, the requirement

lim eF{Uk) -+ 0 (11.85)
k—KX>

are satisfied as fi —* 0.

Similar to the above, we may consider the SMS (11.78) as a map

$ Y :Y -+ y, (11.86)

where

Yk+1 = $Y(Yk,Rk)- (11-87)
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Let us assume that

rk = rk-j, V j = 1,...,n and rk = r.

Accordingly, we have

Rk = Rk^, Vj = l , . . . ,n , and Rk = R,

where, by definition, we put R = {r, r,..., r}T.
Using the recursion (11.87) we can obtain the sequence {Yk}. Since the

desired difference equation is stable, {Yk} converges to a limit Y*:

lim {Yk - Y*} = 0. (11.88)
k—>oo

Accordingly, Y* is the fixed point of $y:

Y* =<$>Y{Y*,R). (11.89)

Prom (11.6) it follows that Y* = R.
So, from the stability of the desired difference equation (11-9) it follows

that $y is a contraction map. If the condition (11.6) holds, then the fixed
point Y* of $y corresponds to the condition r = y for r = const.

11.2.4 Root placement of FMS characteristic polynomial

Since the FMS (11.75) is an LTI system, similar to the continuous-time
control systems with the highest derivative in feedback, we know that all
conventional methods for linear discrete-time control systems (see, for in-
stance, [Lindorff (1965); Chen (1993); Ogata (1994)]) can be applied in
order to ensure stability and the allowable FMS transient performance in-
dices for the discrete-time FMS (11.75).

In particular, in this section the design of controller parameters by root
placement of the FMS characteristic polynomial is discussed.

The characteristic polynomial AFMS(z) of the FMS (11.75) has the fol-
lowing form:

AFMS(z) =zq~ Viz9'1 0q-iz - /3q. (11.90)

Let us construct the desired characteristic polynomial AdFMs (z) in the form

C W = *' - Pl^1 #-i* - #. (11-91)
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where the roots of (11.91) are selected in some small neighborhood of the
origin in accordance with the requirements placed on the admissible tran-
sients in the FMS (11.75).

Theorem 11.2 The condition

AFMS(z) = AdFMS(z) (11.92)

holds if

\0 = {l-(5ds}{bs}-\ (11.93)

dj = pd + bf\0, j = 1,..., n, (11.94)

dj=Pf, j=n + l,...,q, (11.95)

where bs = bi + b2 + • • • + K and (3d = (3( + (3d + • • • + &dq.

Proof. By substituting (11.93)-(11.95) into (11.73),(H.74), and (11.90),
we get (11.91) as desired. •

The deadbeat response of the FMS (11.75) can be obtained by choosing
AdFMS{z) = zq. Then from (11.93)-(11.95) we have

Ao = 1/6., (11.96)

dj=bjhi, j = l,...,n, (11.97)

dj=0, j = n + l,...,q. (11.98)

The deadbeat response of the FMS (11.75) has a finite settling time
given by tStFMs = qTs. Then the relationship

T < hbEMl (11.99)
QV

may be used to estimate the sampling period in accordance with the re-
quired degree of time-scale separation between the fast and slow modes in
the closed-loop system. Here t3tsMS is the settling time of the SMS and rj
is the degree of time-scale separation (typically 77 > 10).

11.2.5 FMS design based on frequency-domain methods

Let us consider a nonlinear time-varying discrete-time system

n

yk = f(k,Yk,Wk) + ^ibjuk-j
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with control law given by

q>n

Uk = J%2 djiik-j + \0{F{Yk>Rk) - 2/fc}.
3=1

Let us represent this closed-loop system in the operator form

1/fe = fk(z-\yk,wk) + B{z-l)uk, (11.100)

D{z~l)uk = \o{Fk(z-\yk,wk) - yk}, (11.101)

where z~x is considered as the backward shift operator and

Biz'1) = M " 1 + b2z-2 + ••• + bnz~n,

D{z~x) = 1 - d iz" 1 - rf2^"2 dqZ-q.

Accordingly, the desired difference equation (11.7) may be rewritten in
the operator form

yk=Ad{z-1)yk + Bd{z-1)rk, (11.102)

where

Ad(z~1) = afz'1 + 4z-2 + ••• + adnz~n,

Bd(z~l) = biz~l + biz'2 + ••• + bdnz-n.

Substitution of (11.100) into (11.101) yields

Vk = fa + Biz'1)^,

{D(z~l) + X0B(z-l)}uk = \0{Fk - fk}.

As a result, the FMS equation in operator form is

uk = Huf{z-l){Fk-fk), (11.103)

where

H^z~l) = DWXBW (11-104)
and Fk,fk are considered as the frozen variables during the transients in
the FMS, i.e., Fk ss const, fk « const.

The block diagram representation of the discrete-time closed-loop sys-
tem (H.lOO)-(ll.lOl) is shown in Fig. 11.6. This may be regarded as the
discrete-time counterpart of the continuous system (4.45)-(4.46) with the
highest derivative in feedback loop shown in Fig. 5.3. Similar to Fig. 5.3, a
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portion of this diagram is highlighted by a circuit of dots, and this portion
corresponds to the FMS (11.103).

Fig. 11.6 Block diagram of the closed-loop system (H.lOO)-(ll.lOl).

In order to avail ourselves of frequency-domain methods, let us trans-
form the pulse transfer function Huf(z~1) in the z-plane over to the w-plane
via the bilinear transformation

z = i±#. (11.105)
1 - w-^

The transfer function

Guf{vf) = - ^ / ( z^ l^ i+wT^x i -wTva)

results. Here Gu/(w) depends on the controller parameters, i.e., Gu/(w) —
Guf(w,\o,di,. • . ,dn).

The rational transfer function Gu/(w) may be treated as Gu/(s) in
(5.26), with the same design procedure, to find the controller parameters.
Note that by taking into account z = eju>Ts and w = jv we know that the
relationship between u> and the fictitious frequency v is defined by (see,
e.g., [Chen (1993); Ogata (1994)])

v = _tan ( ^ _ j
and by this the interval to 6 [0, -n/Ts) is mapped into the interval v € [0, oo).

The controller parameters Ao, d\,..., dn can be found from the equation

Guf{jv,\0,di,...,dn) = Gduf(jv),

where the desired sinusoidal transfer function G^(jf) is constructed in
accordance with the allowable transient performance indices for the FMS.

Alternatively, let us consider the block diagram of the open-loop
discrete-time FMS shown in Fig. 11.7, where the feedback loop is broken.
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Fig. 11.7 Block diagram of the open-loop discrete-time FMS.

The pulse transfer function of the open-loop discrete-time FMS is

H°F(z-1) = ^r)B(z-1),

where Hc{z~l) = Xo/D(z~1) plays the role of a compensator in the FMS.
Generalizing by analogy, we may design the compensator in the form

Hdz-1) = ̂ ± , (11.106)

where

A ( ^ - 1 ) = A0 + A 1 ^ - 1 + --- + A / 2 - ; .

The expression

D{z-l)uk = k(z-l)e? (11.107)

is the operator form of the control law corresponding to (11.106). From
(11.107) the difference equation of the control law

9 >n I

uk = J2 dju^ + £ ^j4-i (11.108)
j=l j=0

results. Note that (11.108) is the discrete counterpart of the continuous
controller (5.73).

Using the bilinear transformation (11.105), the generalized compensator
(11.106) can be designed via Bode plot methods [Lindorff (1965); Ogata
(1994)] similar to the continuous-time linear compensator (5.72).
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11.3 MIMO two-time-scale discrete-time control systems

11.3.1 MIMO discrete-time systems

The above design methodology for SISO discrete-time control systems by
inducing two-time-scale motions in the closed-loop system can be easily
extended for MIMO discrete-time systems. The needed relationships will
be provided in this section in a simplified form, with the distinctive features
caused by the sampling process relegated to the next chapter.

Let us consider a discrete-time MIMO system described by the following
difference equation:

n n n

yk = Y^Ajyk-j + Y,Bjuk-j + ̂ 2BjWk_j, (11.109)
3 = 1 3 = 1 3 = 1

where k = 0 ,1 , . . . is discrete time; yk G W is the output, available for
measurement; uk S Rp is the control; Wk € W is the external disturbance,
unavailable for measurement.

Assumption 11.5 The roots of the characteristic polynomial of (11.109)
lie in some small neighborhood of 1; in other words, the unforced system
(11.109) has a sufficiently small rate of transients in comparison with the
deadbeat response of the discrete-time system having the same order.

Assumption 11.6 The condition

n

det J2BJ ^ ° (11.110)
3 = 1

holds.

Assumptions 11.5 and 11.6 correspond to Assumptions 11.1 and 11.2 for
SISO discrete-time systems, respectively.

11.3.2 Control law

Control problem

We wish to design a control system for which

lim efc = 0, (11.111)
k—too
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where ek = rk - yk is the error of the reference input realization, rk G Kp

being the reference input.
Moreover, the controlled transients of the output vector yk should have

desired performance indices such as overshoot, settling time, and system
type assigned independently for each of its components. So, the design
goal for MIMO control systems is to provide decoupling of output tran-
sients and, at the same time, independence of these transients from external
disturbances and varying parameters of the system (11.109).

Desired difference equation and insensitivity condition

The control problem (11.111) can be solved if the behavior of the output
transients of yk fulfills a desired stable difference equation

Vk = F(yk-u • •. ,yk-n,rk~i, • • • ,rk-n)- (11.112)

For instance, the reference model (11.112) may be denned by the stable
linear difference equation

n n

V* = J2A1vk-J + ^2Bfrk-j, (11.113)
. 7 = 1 . 7 = 1

where

n n n
iP~YlA1 = Y,Bfand det Y^B1 ^°- (ii.ii4)

J=I J=I [j=i

Parameters of (11.113) are selected based on the required output transient
performance indices. In order to provide decoupling of the control channels,
let us assume that Aj and Bj are diagonal matrices for all j = 1,... ,n.

Assumption 11.7 The roots of the characteristic polynomial of (11.113)
reside in the unit disk in some small neighborhood of 1.

Let

ek=Fk-yk (11.115)

be the error of the desired dynamics realization, where Fk is the desired
dynamics vector assigned by Fk = F(yk-i,..., yk-n, rk-i,. • • ,rk~n)- Then
equation (11.112), denning the desired behavior of yk, is fulfilled if and only
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if

ef = 0 (11.116)

for all k = 0 , 1 , . . . .
If (11.116) holds, then the output behavior is insensitive to parameter

variations and external disturbances in the system (11.109); i.e., (11.116)
is the insensitivity condition.

Prom (11.109), (11.112), and (11.113), it follows that (11.116) can also
be viewed as the difference equation

eF(ufe_n,...,ufe_2,wfc_i) = 0 (11.117)

with varying parameters, where (11.117) has the form

n
^{[Aj - AAvk-j + B«rk-j - BjUk-i - Bjw^} = 0. (11.118)
3 = 1

So the control problem (11.111) has been reformulated as a problem of
finding the solution to (11.117) when its varying parameters are unknown.

Discrete-time control law

To fulfill the requirement of equation (11.117), let us construct the control
law in the form

n
uk = J2Diuk-j+Ae%, (11.119)

where

n

J2DJ=IP a n d d e t A ^ 0 ' (11.120)

From (11.120) it follows that an equilibrium of (11.119) is the solution of

(11.117).
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11.3.3 Two-time-scale motion analysis

Fast motion subsystem

The equations of the discussed closed-loop system have the following form:

n n n

Vk = Y, AoVk-o + Yl BiUk~i + £ Bjw*-i> (11-121)
3 = 1 3 = 1 3 = 1

n

uk = J2Djuk-j + A{Fk-yk}. (11.122)
3 = 1

From (11.112)—(11.113) it follows that the closed-loop system equations
(11.121)-(11.122) can be rewritten as

n n n

yk = ̂ Ajyk-j + J2BJuk-i + E V H > (11.123)
3 = 1 3 = 1 j=l

n n

Uk^BiUk-j+^iiAt-AAyk-j + Bfa-j-BjWk-j}, (11.124)
3 = 1 3 = 1

where Bj = Dj — ABj for all j — 1, . . . , n.
Let us consider how the anticipated multi-time-scale process formation

is used to provide the desired output transients of yk under uncertainty.
First, we assume that the rate of the transients of yk in (11.123)—(11.124)
is much smaller than that of the transients of uk.

Then, as an asymptotic limit, from the closed-loop system (11.123)-
(11.124) the FMS

n n

uk = Y. Biu*~i + AY/^AJ ~ Aj]Vk-3 + Bjrk-j - BjWk-j} (11.125)
3=1 3=1

results, where yk - yk_j = 0 , V j = 1, . . . , n, i.e., during the transients in
the system (11.125).

The above root placement approach can be used to ensure stability and
desired performance indices of the dynamical behavior of uk by selection of
the matrices A and D\,..., Dn. For instance, all roots of the characteristic
polynomial of the FMS (11.125) are placed at the origin, hence the deadbeat
response of the FMS (11.125) is provided if the control law parameters A, Dj
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are selected as follows:

r 1 - 1

n
A = YlBi a n d DJ = KBi ' V j = l , . . . , n . (11.126)

J = l \

Slow motion subsystem

Second, we assume that the FMS subsystem (11.125) is stable and consider
its (quasi-) steady state, i.e.,

uk-uk-j=Q, V j = l , . . . , n . (11.127)

Then, from (11.123)-(11.124) and (11.127) we get

where

r i - 1

n n

u^ID= Y;Bi Y,{\Adi-Ai\vx-i+Blr*-i-Biw*-i}- (n-128)
j = l J j = l

Remark 11.10 Note that the discrete-time control function u^ID given
by (11.128) corresponds to the insensitivity condition (11.116), that is,
u\}D is the discrete-time counterpart of the nonlinear inverse dynamics
solution (8.18).

Remark 11.11 From (11.128), we see that u%ID exists if (11.110) is
satisfied. So (11.110) is the discrete-time counterpart of (8.4).

By substituting (11.127) into (11.123)-(11.124) (or (11.127)-(11.128) into
(11.123)), we obtain the SMS of (11.123)-(11.124), which is the same as
the desired difference equation (11.113). By this, the solution of the above-
stated control problem (11.111) is provided.

Note that if the fast and slow motions are sufficiently separated, then the
required accuracy of realization for the desired dynamics given by (11.112) is
provided; hence, we get the solution of the control problem (11.111) despite
the existence of unknown external disturbances and varying parameters of
the system (11.109).

The variations of the matrices B3 in the closed-loop system (11.123),
(11.124) are possible within the domain where the FMS (11.125) is stable
and fast and slow motion separation is maintained.
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11.3.4 Example

Let us consider the discrete-time 2-input 2-output system given by

2 [2 2 2

yk = ̂ 2Ajyk-j+fi ^Ajyk-j+J^BjUk-j+J^Bj™1'-! > (n-129)

where j/fc = {j/i,fc,j/2,fc}T, "fc = {yi,k,U2,k}T, ™fc = {wi,fc,w2,fc}T, M = 0.1,

and

, flOl , [0 01 .- [-0.2 0.ll r [ 0.1 0.2]
A l = [ o 2 J ' A 2 = [ o - l j ' A l = [ 0.2 0 . 2 J ' A 2 = [ - 0 . 3 0 . l J '

M I T ] . *-[""]• A-[S!]- *-°-
All roots of the characteristic polynomial of (11.129) are 1 if fj, = 0.

Require that the controlled outputs 2/1 (t), J/2W behave as step responses
of the transfer functions

Cd^ = ^hrv * = ( ^ W - (1L130)
Then the pulse transfer functions Hf(z), 11$ (z) of series connections of a
ZOH and the continuous-time systems (11.130) are the functions

Hf(z) = ^—£, (11.131)
z — ai

„,,, , _ (1 - <fa - T2-1T.d2)g + da (da - 1 + T^TS)
H2{Z}~ z*-2d2Z + <% ' ( 3 )

where d\ = exp(—TS/TI), di = exp(—TS/T2)- AS a result, from (11.131)-
(11.132) the reference model of the form (11.112) results:

J/i,fc = dil/i,fc-i + (1 - d\)r\tk-\,

V2,k = 2d22/2,fc-i - dly2,k-2 + (1 - d2 - T21Tsd2)r2,k-i (11.133)

+d2(d2 - 1 + T^lTs)r2,k-2-

In accordance with (11.64) and (11.119), by taking into account (11.133)
calculated for Ts = 1 s, T\ = 10 s, and r2 = 4 s, we obtain the control law

2

uk = ̂ DjUk^j +/u~1A{F(2/fc_i,yfe_2,rfc_i,rfc_2) - yk}, (11.134)
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where from (11.126) we have

Simulation results for the system (11.129) and (11.134) are displayed in
Figs. 11.8-11.10, where t e [0,100] s.

Fig. 11.8 Simulation results for r\{t),T2{t), j/i(4), V2(t) in the system (11.129) and
(11.134).

Fig. 11.9 Simulation results for Ui(t),u2(i) in the system (11.129) and (11.134).

11.4 Notes

In this chapter, the procedure for control law design and analysis of fast
and slow motions in the discussed discrete-time control system have been
given. This has been based on results published in [Yurkevich (1993a);
Yurkevich (1996)]. It has been shown that under some additional con-
ditions, the SMS is the same as the constructed desired stable difference
equation and, accordingly, the desired output transients are guaranteed

(11.135)
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Fig. 11.10 Simulation results for w\(t),W2(i) in the system (11.129) and (11.134).

fully in the discrete-time closed-loop system after damping of the discrete-
time FMS transients. So, if a sufficient time-scale separation between the
fast and slow modes in the discrete-time closed-loop system and stability of
the FMS are provided, then the output transient performance indices are
insensitive to parameter variations and external disturbances of the system.

Design of discrete-time control system for a reactive ion etching (RIE)
system based on the presented above approach was discussed in [Tudoroiu
et al. (2003a)].

The presented design methodology is the discrete-time counterpart of
the above approach to the continuous-time control system design with the
highest derivative in feedback. The results of this chapter can be extended
for sampled-data control system design by taking into consideration the par-
ticularities of the model of a series connection of a ZOH and a continuous-
time system with high sampling rate. This will be shown in the next chap-
ter.

11.5 Exercises

11.1 Construct the reference model in the form of the 2nd-order difference
equation (11.7) based on the ^-transform in such a way that the step
output response with zero initial conditions meets the requirements
t* w 1 s, ad « 0% given that the sampling period is Ts = 0.05 s.
Compare simulation results with the assignment.

11.2 Construct the reference model (11.7) in the form of a type-1 system
given that the characteristic polynomial of the system has the follow-
ing roots: Z! = 0.9; z2 = 0.8 + jO.l; z3 = 0.8 - jO.l. Simulate the
output response of the reference model with zero initial conditions for
the reference input signals (a) rk = l(k); (b) rk = k; (c) rk = k2, where
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As = 0 , 1 , • • •-

11.3 Construct the reference model (11.7) in the form of a type-2 system
given that the characteristic polynomial of the system has the follow-
ing roots: zx = 0.8; z2 = 0.7 + jO.l; z3 = 0.7 - jO.l. Simulate the
output response of the reference model with zero initial conditions for
the reference input signals (a) rk = 1(&); (b) rk = k; (c) r^ = k2; (d)
Tk — k3, where k = 0 ,1 , . . . .

11.4 Determine by the i?-transform the discrete-time model of the system

y{2) -y = 2u (11.136)

preceded by ZOH. Design the control law (11.14) to meet the following
specifications: td « 2 s; ad « 0%; r] > 10. Compare simulation results
of the step output response of the closed-loop control system with the
assignment. Note that rj is the degree of time-scale separation between
stable fast and slow motions defined by (1.73).

11.5 Determine by the Z-transform the discrete-time model of the system

y(2) _ y(i) = 2u (11.137)

preceded by ZOH. Design the control law (11.14) to meet the following
specifications: tf* w 4 s; ad « 0%; r\ > 10. Compare simulation results
of the step output response of the closed-loop control system with the
assignment.

11.6 Determine by the Z-transform the discrete-time model of the system

2,(2) _ 2J/W + 2y = u (11.138)

preceded by ZOH. Design the control law (11.14) to meet the following
specifications: td ~ 3 s; ad « 0%; 77 > 10. Compare simulation results
of the step output response of the closed-loop control system with the
assignment.

11.7 Determine the discrete-time model of the system

j/2) _ 2y(1') -3y = 4u (11.139)

preceded by ZOH. Design the discrete-time control law (11.14) to meet
the following specifications: td w 1 s; ud w 0%; 77 > 10. Compare
simulation results of the step output response of the closed-loop control
system with the assignment.



Chapter 12

Design of sampled-data control
systems

In this chapter the design methodology for a discrete-time control system
with two-time-scale motions is extended for the purpose of sampled-data
control system design. This is done by taking into account the particular-
ities of the model of a series connection of a ZOH and a continuous-time
system on the condition of high sampling rate. We derive an approxi-
mate discrete-time model for a nonlinear time-varying system preceded by
a ZOH. The model takes the form of a difference equation having a small
parameter, where the parameter depends on the sampling period. Both
SISO and MIMO sampled-data control systems are treated.

12.1 SISO sampled-data control systems

12.1.1 Reduced order pulse transfer function

As a preliminary, let us consider the asymptotic properties of a pulse trans-
fer function for a series connection of a ZOH and a continuous-time linear
system with high sampling rate. We will show that the approximate model
of the sampled-data system is a difference equation with a small parameter
that depends on the sampling period. Hence, the previous discrete-time
control system design methodology can be extended to sampled-data con-
trol systems.

Let G(s) be a rational, strictly proper, continuous-time transfer function

ansn + --- + a1s + a0 v ;

with relative degree a = n — m > 0, where an ^ 0 and bm / 0.

287
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Assumption 12.1 The roots of the polynomial

bmsm + bm-xs™-1 + --- + bxs + b0

lie in the stable half-plane Re s < 0 or, in other words, the internal stability
requirement is satisfied for the system given by (12.1).

Consider the Laurent series expansion of G(s) about s = 0:

where rrij is the j th Markov parameter of (12.1).
Then, based on the Z-transform, it is easy to find the pulse transfer

function H(z) of a series connection of a ZOH and a continuous-time system
with the transfer function G(s):

Here Ts is the sampling period and the £j(z) are known polynomials re-
cently termed the Euler polynomials [Sobolev (1977); Astrom et al. (1984);
Weller et al. (1997); Blachuta (1999a)]. They are calculated via the recur-
sion

£l+1(z) = (1 + lz)Si(z) + *(1 - z)^±

with £\{z) = 1, and 1 = 1,2,..., where

S i ( z ) = e u ^ " 1 + ei,2Zl~2 + • • • + e u , (12.3)

^ D - i r v f ^ 1 ) , * = !,...,*, (12.4)

£i(l) = I !, (12-5)

^M = iltll. (12.6)
dz z=1 2

Alternatively, they can be obtained from the following expression [Tsypkin

(12.2)
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(1964)]:

" 1 1 - 2 0 ••• 0 "
^ t 1 l - z ••• 0

£ i { z ) = l\ d e t ^ £ 1 ••• 0 .

I i i . . . i
v. {i-iy. {i-2y. x

In particular, we have

£i(z) = l,

82(z) = z + l,

£3{z) = z2+4z + l,

Si{z) = z3 + llz2 + llz + l,

£b{z) = z4 + 26z3 + 66z2 + 26z + 1.

The properties of the roots of the Euler polynomials £[{z) are as follows
[Sobolev (1977); Blachuta (1999b)]:

(i) All roots of £i{z) are coprime and real negative numbers,
(ii) If z = z is the root of £i(z) so that £i{z) = 0, then £i(l/z) — 0.

(iii) £i{-l) — 0 if I is even number, I > 0.

Note that the pulse transfer function H(z) has the following property
[Astrom et al. (1984)]:

lim Tsm~nH(z) = / " " g ° ( z ) ( z - 1 ) T O , (i2.7)

So, if m > 0, then from (12.7) it follows that there exists some small
sampling period T3 such tha tm zeros of H(z) fall in any small neighborhood
of 1. As a result of (12.7), Assumption 11.2 is not satisfied for the difference
equation (11.1), which corresponds to the pulse transfer function H{z) given
by (12.2).

In accordance with (12.2) and by following through [Blachuta (1997)],
we can see that if Ts —> 0, then for any finite z € C , z / l the pulse transfer
function H(z) admits the following approximation:

H(z) w Ha(z), (12.8)
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where

^ a W ~ i s a ! ( z - l ) « ' Q ~ a n - ( 1 2 ' 9 )

Then, in order to base controller design on the above method, the reduced-
order pulse transfer function Ha(z) may be used as the approximate model
of the continuous-time linear system (12.1) preceded by a ZOH with high
sampling rate. From (12.9) the difference equation

a a

Vk = ̂ 2aajyk-j + H^ma-^fuk-j (12.10)

follows, where /J is the small parameter and

M = Tf, Vk= y(t)\t=kTa , uk = u{t)\t=kTa ,

{z - 1)Q = za - aQ,izQ-1 - aaaza~2 aQ,Q, (12.11)

^ = ( - 1 ) J + 1 ( a - ° ) » j l ' ( 1 2 - 1 2 )

Note that (12.10) has the same properties as (11.56), which were dis-
cussed above. Hence, the two-time scale technique for controller design
can be applied. The approach involving approximate model construction
can be extended to nonlinear control systems as will be shown later in this
chapter.

12.1.2 Input-output approximate model of linear system

Let us consider the state-space model of (12.1) preceded by ZOH:

AX I it = AX + Bu, y = CX, (12.13)

where X G E", y £ R \ u € K1. From (12.13) it follows that

Aay/dta = CAaX + CAa-lBu, (12.14)

where

CAa-1B = ma.

Let us introduce a new time scale to = t/Ts in (12.13). Then

dX/dto = Ts{AX + Bu), y = CX. (12.15)
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Accordingly, from (12.14) it follows that

day/dtS = T?{CAaX + mau}. (12.16)

It is easy to see that if Ts —> 0, then dX/dto —> 0 and, accordingly,
X(t) —> const in the new time scale. So, if the sampling period Ts is
sufficiently small, then it may be assumed that, at least during the sampling
period T3, the condition X(t) — const is satisfied for kTs <t<(k + 1)T3.
Then, as a result of the Z-transform of (12.16), it follows that

y& = nU»{-UaT'a iCAaX(z) + ™Mz)} • (12.17)
a. (z i.)

From (12.17) the difference equation

a a

Vk = Y, a°,JVk-J + Tsa E €-^f{CAaXk_j + m.m. j ] (12.18)
3=1 i= i

results given that the high sampling rate takes place, where

Xk = X(t)\t=kTs , gk = g(t,X(t))\t=kTa .

Difference equation (12.18) will be used below in order to approximately
describe the behavior of a discrete output sequence {ykj'kLo m a n e w ^rae

scale to or, in other words, in the discrete time scale k = 0 ,1 ,2 , . . . .

12.1.3 Control law

Desired difference equation

Let us construct a stable differential equation

y(a) = F ( y (a -1 ) ( _ ( y(l)> y j r(P) ( _ _ ; r ) ) ( 1 2 1 9 )

which follows from the transfer function

d by+bi_lS^ + ..-+bis+bi
yr{> s ° + ada_1s<*-i + --. + a i s + a « '

where ajj = 6Q, p < a, and the parameters of Gyr(s) are selected based on
the required output transient performance indices.

Similar to (11.5), by the Z-transform of a series connection of ZOH and
a continuous-time system with the transfer function Gyr(s), we can obtain
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the desired stable difference equation

yk = F(Yk,Rk), (12.20)

where Yk = {yk-a, • • • ,Vk-i}T and Rk = {rk-a,.. .,rk-i}
T- In particular,

(12.20) has the following form:

a a

Vk = X>*i/fe-i + J2bJr*-i- (12-21)
3 = 1 3=1

By property (12.7), let us assume that (12.21) may be rewritten in the form

a

Vk = Y,a<>,jyk-j + Ts
aF(Yk,Rk,Ts). (12.22)

3 = 1

Theorem 12.1 From (12.19), (12.22) it follows that

KmF(Yk,Rk,Ta)=F(yla-1\...,yW,y,rW,...,rW,r) _ . (12.23)

Proof. We have

Similarly, from (12.11) and (12.12), the equation

.. Vk - l^ij = \ O-ajVk-j (a)/.\
hm -= = y^ >(t)

Ta^0 T? y K ' t=kTa

follows. Hence the proof is complete. •

Insensitivity condition

Denote

eZ = Fk-yk, (12.24)

where ef is the error of the desired dynamics realization and Fk =
F(Yk,Rk) is defined by (12.20). As a result, the discussed output regu-
lation problem has been reformulated as the requirement

e £ = 0, Vfc = 0 , l , . . . .
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This is the insensitivity condition for the output transient performance
indices with respect to inherent dynamical properties and parameter vari-
ations in the system (12.13).

Control law structure

To fulfill the requirement ejT = 0 let us consider the control law

q>a

uk = Y, djUk-j + \(T.) ef, (12.25)

where

\(T.) = T~a\, A + 0, (12.26)

di + d2 + • • • + da = 1. (12.27)

Prom (12.27) it follows that an equilibrium of (12.25) corresponds to the
insensitivity condition.

The next sections are devoted to the problem of closed-loop system
analysis and selection of controller parameters.

12.1.4 Closed-loop system analysis

Fast motions

Let us consider the difference equation (12.18) under control in the form of
(12.25)-(12.27), that is

Q a

Vk = Yi a^iVk^ + Tsa Y, 6-^f{CAaXk-i + m^k-j), (12.28)

q>oc

uk = J2 dJuk-j + T~aX{F(Yk, Rk) - yk}. (12.29)
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From (12.18), (12.22), and (12.24), and by substituting (12.28) into (12.29),
we find that (12.28) and (12.29) may be rewritten in the form

a a

Vk = Y,a«jyk-j + If £ ) ^iiCAaxk-i + rnauk^}, (12.30)
j=i j=i

a q>oc

j=l " j=a+l

+A | F(Yk,Rk,Ta) - £ ^•CAaXk-j 1. (12.31)

In accordance with (12.15), it is easy to see that in a new time scale to
we have the following fact. If Ts —> 0, then the rate of output transients
of (12.30) is decreased. Accordingly, the fast and slow modes are induced
in the closed-loop input-output system (12.30)-(12.31) as Ts —> 0, where a
time-scale separation between these modes is represented explicitly by the
small parameter Ts.

Theorem 12.2 IfTs -> 0, then from (12.30)-(12.31) it follows that

uk = f^ Piuk-i + A I F(Yk,Rk,Ts) - £ ^fCAaXk^ \ (12.32)
i=i { i=i " " J

is the FMS equation, where

0j = dj-Xmaea,j{a\}-1, V j = l , . . . , a , (12.33)

h=di, V j = a + l , . . . , g , (12.34)

and the state vector X(t) and the output y(t) of the system of (12.15) are
constants during the transients in the FMS (12.32), i.e., Xk — Xk-j « 0
and j/fc - yk-j « 0 , V j = 1,..., q.

Proof. By taking into account (12.15) and (12.16), we have that from
(12.30)-(12.31) the FMS equation (12.32) follows as Ts -» 0. •

Slow motions of output response

Theorem 12.3 / / the FMS (12.32) is asymptotically stable and its
(quasi-) steady state takes place, i.e.,

U f c - U f c - ^ 0 , V j = l , . . . , g , (12.35)
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then uk = u^ID, where

4'D = m'1 I F(Yk,Rk,Ts) - J2 ^CAaxk-j > • (12.36)

Proof. Let the FMS (12.32) be asymptotically stable. Hence, by taking
into account (12.5), (12.27), and (12.35), we find that from the FMS (12.32)
the expression (12.36) results. •

Theorem 12.4 If Ts —» 0, then the SMS equation, which describes the
behaviour of yk in the closed-loop input-output system (12.30)-(12.31), is
the same as (12.22).

Proof. Let the FMS (12.32) be asymptotically stable and Ts -> 0. Then
after damping of FMS transients in (12.30)-(12.31) we find that (12.35)
and (12.36) are fulfilled. Substitution of (12.35) and (12.36) into (12.30)
with due regard for (12.5) yields the SMS equation, which is the same as
(12.22). •

Theorem 12.5 Let the FMS (12.32) be asymptotically stable. In the
closed-loop system (12.30)-(12.31) we have

{uLkID-uLID(t)\^kTs}^0 (12.37)

as Ts —> 0, where

uLiD{t) = J-{F(yta-»(t),..., y(t),r^(t),..., r(t))-CAaX(t)} (12.38)
ma

is the linear inverse dynamics solution.

Proof. If Ts -» 0, then from (12.15) it follows that Xk - Xk^j -> 0, V j =
l,...,q. From (12.5), (12.23), and (12.36), we obtain (12.38). •

Corollary 12.1 // Ts -> 0, then from (12.37) and (12.38) it follows
that the behavior of y(t) tends to the solution of (12.19); hence, there are
no hidden output dynamics (oscillations) between sampling instants in the
discussed discrete-time control system.

Note that the system of equations (12.28)-(12.29) is not exactly a closed-
loop system, since the state space equation for Xk is not taken into ac-
count. The system (12.28)-(12.29) reflects only input-output behavior in
the closed-loop system. Hence, the above expressions are valid given that
Assumption 12.1 is satisfied. We must emphasize that internal stability
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of the system (12.13) is the essential point in obtaining the desired input-
output mapping, because the effect of the observable internal dynamics
can be canceled only if the internal dynamics are smooth and bounded in
a specified region of state space. This inference corresponds fully to Re-
marks 7.11 and 8.12, concerned with the problem of continuous-time control
system design.

12.1.5 Selection of controller parameters

The above root placement approach or frequency-domain methods can be
used to provide the stability and allowable FMS transient performance in-
dices for the FMS (12.32). For instance, the root placement approach can
be easily applied to obtain the controller parameters X,d\,... ,dq.

Consider the characteristic polynomial of the FMS (12.32)

AFMS(z) = z9 - Piz"-1 Pg-iz-Pq (12.39)

and its desired characteristic polynomial

ALs(z) = z"~ P^9'1 $-i* - #> (12-4°)
where the roots of (12.40) are selected in some small neighborhood of zero
in accordance with the requirements placed on the admissible transients in
the FMS.

Theorem 12.6 The condition

AFMS(z) = AdFMS(z) (12.41)

is fulfilled if and only if the following holds:

\ = {l-fl}m~\ (12.42)

dj =f3f + \maeaJ{al}-\ Vj = l , . . . , a , (12.43)

dj=$, \fj = a+l,...,q, (12.44)

where Pd = Pd + Pd + • • • + P*.

Proof. Substitution of (12.42), (12.43), and (12.44) into (12.33), (12.34),
and (12.39) yields (12.40). •

Corollary 12.2 Let AdFUS{z) = zq. Then from (12.42), (1243), and
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(12.44) H follows that the parameters

\ = m-\ (12.45)

dj=ead{a\}-\ Vj = l , . . . , a , (12.46)

dj=O, Vj = a + l,...,q, (12.47)

provide the deadbeat response of the FMS (12.32).

Corollary 12.3 Let q = a. Then from (12.25), (12.26), (12.45), and
(12.46), we obtain the following universal digital control law:

u* = E ^ f "*-:> + {Tsama}-leFk, (12.48)

where its parameters depend on the relative degree a of the continuous-time
system (12.13), the ath Markov parameter, the coefficients of the Euler
polynomial £a{z), and the sampling period Ts.

Remark 12.1 If q = a and AFMS{z) = za, then, similar to (11.99), the
inequality Ts < ts^Msi&v}*1 can t>e used to estimate the sampling period
in accordance with the required degree rj of time-scale separation between the
fast and slow modes in the closed-loop system, where tStsMS *s the settling
time in the SMS.

Remark 12.2 Note that the internal dynamics are included in the SMS
of the closed-loop system given that the desired reference input-controlled
output map is satisfied. Therefore, the rate of transients in the internal
subsystem should be taken into account in order to make a proper selection
of the required sampling rate.

12.1.6 Nonlinear sampled-data systems

Approximate model

The above approach to approximate model derivation can also be used for
nonlinear systems preceded by ZOH with high sampling rate. For instance,
let us consider the nonlinear system (4.27)

x^ = f(t,X)+g(t,X)u + w, y = x, X{0) = X°,

preceded by ZOH, where y £ R1 is the output, available for measurement;
u € M1 is the control; w is the external disturbance, unavailable for mea-
surement; X = {x,x(1\ .. .,x{n~1S)}T; X(0) is the initial state at t = 0.
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We can obtain the state-space equations of (4.27) given by

Xi — Xj_|_i, % = 1, . . . , 71 1 ,

in = f(-) + 9{-)u + W,

y = xi.

Let us introduce the new time scale to = t/Ts. We obtain

d
—Xi=Taxi+i, i ~ l , . . . , n - l ,
dto

-£-Xn=Ts{f(-)+g(.)u + u,}, (12.49)

y = xi,

where dX/dt0 -> 0 as Ta -> 0. Prom (12.49) it follows that

^=Tsn{f(-)+g(-)u + w}. (12.50)

Assume that the sampling period Ts is sufficiently small such that the
conditions X(t) = const, g(t,X) = const hold for kTs < t < (k + l)Ts.
Then, by taking the Z-transform of (12.50), we get

y(z) = nl£{nz{l\)nTsn {/W + {s«}(^) + *>(*)) • (12-5i)

From (12.51) we get the difference equation

J/fc = Ylanjyk-j
3 = 1

+TsH E ^ f ^fe-^ + 9k-jUk-j + Wk-j} , Yo = Y°(T.), (12.52)

given that the high sampling rate takes place, where Yo = Y°(TS) is the

vector of the initial conditions, Wk = w(t)\t=kTa , fk = f{t)\t=kT3 •

Control law

Similar to (12.25) and in accordance with (12.52), we get the following
control law:

q>n I n n |

uk = Y, diu*-i + KTS) { -VH + J2 a1y*-i + E bfa-j \' (12-53)
3=1 { J = l J = l J
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where

A(TS) = T~n~X, A jt 0,

di+d2 + --- + d n - l ,

and the reference model of the desired output behavior is given by (11.7).
The analysis of the closed-loop system (12.52)-(12.53) properties is the

same as was represented above.

Limitations of control accuracy

Limitations of the control accuracy due to external disturbance signal Wk
for the discussed control system can be found based on (11.41) and (11.47).

Let g = const, q = n, and the control law parameters of (12.53) be
chosen in accordance with the requirement of the deadbeat response of
FMS. Then, by taking into account the errors of the implementation of the
calculated controller parameters represented by Adi, • • •, Adn, we get

X(TS) = {Tsng}-\ (12.54)

dj = ^f + Adj, Vi = l , . . . , n , (12.55)

where g plays the role of the nth Markov parameter and is assumed known.
Then, from (11.41) and (12.52)-(12.53), we obtain the limit property of

the steady-state error esw due to the constant disturbance signal w^ = ws:

^ o ^ = Ads\ l~T<adi [ l - A d s ] - A d s ^ K - a ^ ) | «>•• (12.56)

Proof of (12.56) see in Appendix A.8.
By definition, Ads is given by (11.38). Assume that

Ads = 0.

Consider the ramp disturbance signal given by (11.44)

wk = wvTsk, fc = 0 , l , . . . .

Then, from (11.47), we get

1 - l r -i

(12.57)
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Proof of (12.57) see in Appendix A.9.
The sampling period T3 can be found based on the relationships (12.56)—

(12.57) in addition to (11.99).

12.1.7 Example

Let us consider a control problem for the system

preceded by ZOH, where ma = 2.2 and a = 2. In accordance with (12.3)
we have £-i{z) — z + 1. Require that the controlled output y(t) behave as a
solution to the desired stable difference equation

G d ( s ) = ( ^ W - (i2-59)
Then the pulse transfer function Hd(z) of a series connection of ZOH and
the continuous-time system of (12.59) is the function

d _ (l-d-T^Tsd)Z + d(d-l + T^Ts)

H {Z} z*-2dz + d? '

where d = exp(-Ts/rd). As a result, the discrete-time controller (12.48)
becomes

Uk = 0.5uk-i + 0.5uk-2 + {T*m2}-1{-yk + 2dyk_1-d2yk-2 (12.60)

+(1 - d - T2lTsd)rk-X +d(d-l + T^Ts)rk-2}.

Simulation results for (12.58) controlled by the algorithm (12.60) are dis-
played in Fig. 12.1 for the time interval t G [0,4] s, where u(t) = uk, V kTs <
t<{k + l)Ts, Ts = 0.05 s, and rd = 0.6 s.

12.2 MIMO sampled-data control systems

12.2.1 Control problem

This section deals with the control system shown in Fig. 10.1 (see p. 234),
where the output signals of the DAC and ADC are assumed to be sampled-
data signals and amplitude quantization of signals is not taken into account.

(12.58)
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Fig. 12.1 Output response of the system (12.58) and (12.60) for a step reference input
r(t).

Assume that the continuous-time system is the nonlinear time-varying
system given by

X = f(t, X) + G(t, X)u, X(0) = X°, (12.61)

y = h(t,X). (12.62)

Here t denotes time, t > 0; y(t) is the output, y G Rp; X(t) is the state,
X G Rn; X{0) - X° is the initial state, X° e fix; &x is a bounded set,
Q,x C Rn; u(t) is the control, u e fiu C Mp; p < n; /(t, X), G(i, X), h(t, X)
are smooth V (t,X) 6 fit]x = fix x [t, CXD).

We wish to design a control system for which

lim ek = 0, (12.63)
fc—>oo

where e^ = e(i)|t=fcT is the error of the reference input realization, e/. =
rk — Vk\ Vk = y(t)\t=kTB ls t n e s a mple point of the output y{t); r^ =
r(t)\t=kT is the sample point of the reference input.

Moreover, the controlled transients e& —> 0 should have desired perfor-
mance indices. These transients should not depend on external disturbances
and varying parameters of the system (12.61)-(12.62), where the influence
of all external disturbances w{t) and varying parameters is represented by
the dependence of f(t,X), G(t,X), and h(t,X) on t.

Note that throughout this section the problem of output regulation
is discussed on the assumption that the above realizability of the desired
output behavior is satisfied, that is, the invertibility (Assumption 10.1) and
the internal stability of the continuous-time system (Assumption 10.2) both
hold. It is also assumed that the DAC acts as a ZOH (Assumption 10.3).
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12.2.2 MIMO continuous-time system preceded by ZOH

Following [Porter (1970)], by differentiating each component of the output
vector in (12.62) along the trajectories of (12.61), we obtain

y* = H*{t,X) + G*(t,X)u, (12.64)

where

(<P>yi d°>y2 d<*»yp\T „ . _ , , . . , , n T

and on is the relative degree of the system (12.61)-(12.62) with respect to
the output yi(t), where i = 1,. . . ,p. By Assumption 10.1, the condition

detG*{t,X)^0, V(a)Gfia

is satisfied.
Let us introduce a new time scale to = t/Ts in (12.61). Then we get

dX/dto = T.{f{-) + G{-)u}, X(0)=X°, (12.65)

where dX/dt0 -> 0 as Ts -> 0.
Similar to (8.36), let us introduce the auxiliary control vector u(t), where

the actual control vector u(t) depends on u(t) through the matching matrix
Ko, that is

u = Kou. (12.66)

Moreover, let us assume that

KO = {G*}-1.

As a result, the mapping of u to y(t) in the new time scale to is given by

{9^9? ^Y-rm^}. a-)
where T = diag {T^,T?\...,TsQp}.

Assume that the sampling period T3 is sufficiently small that we can take
H*(t,X) = const. Then, similar to (12.17), by taking the Z-transform of
(12.67) we obtain

Vi{z)= [£(ai{Z\,aTsa'{hUz) + ul(z)}, * = 1 , . . . ,P , (12.68)
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where yiM = y%{t)\t=kTa, ui}k = Ui{t)\t=kTa, h*k = h*{ttX{t))\t=kTa, and
Si{z) are the Euler polynomials (12.3).

From (12.68) we obtain the difference equations

Vi,k = /,aai,jVi,k-j

J = l

+ T " i E ^ i f {Kk-i+^k-j}, i = l,...,P, (12-69)

as an approximate model of the mapping of u to y in the discrete time given
that the high sampling rate takes place.

Remark 12.3 By taking Ts — 0, from (12.69) we get the difference equa-
tions

Cti

Vi,k = '*}2iaaujyi,k-j, i = l,...,p, (12.70)

having characteristic polynomials (z — 1)Q", V i — 1 , . . . ,p.

12.2.3 Control law

Desired difference equations

Consider the stable continuous-time transfer function

Gf(s) = ^ + . i 'p'-1 , + + 7 - ° , (12.71)

where bf0 = af0 and the parameters of Gf(s) are selected based on the
required output transient performance indices of yi(t). From (12.71) the
differential equation

y^^FiiYuRi) (12.72)

can be obtained, where Y{ = [yu ... , j / | ° " - 1 ) ] r , Rt = [r i ( . . . ,r{
i
pi)}T, Pi <

Qj, and T-J = j/i at the equilibrium of (12.72) for r* = const. As a result, the
set of p equations (12.71) gives the reference model for the desired behavior
of the output vector y(t) in the form

y,=F{Y,R), (12.73)
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where

Y = {yu...,y[a^1),y2,...,y^)}T: R= {rlt... ,r[Pl\r2,... ,r^}T-

Similar to (11.5), by the Z-transform from (12.71), the pulse transfer
function Hf{z) of a series connection of ZOH and a continuous-time system
with the transfer function Gf(s) can be obtained, where

Hf{z)\z=l = 1. (12.74)

From H?(z) the desired stable difference equation (reference model)

yi,k = Fi(Yiik,Riik)

follows, which, similar to (12.22), can be represented in the form

Vi,k = Y^aat,Jyl,k-j+T?iFi(Yitk,Ritk,Ts), (12.75)

where ri:k = y%,k at the equilibrium for alii = 1,. . . ,p.
Note that, in accordance with (12.23), the asymptotic limit

KmFi(Yi,k,Ri,k,Ta)=Fi(ylai-1\.. .,yi,r\Pi\... . r j V O (12.76)
is—»0 t—kTs

holds.

Insensitivity condition

Let us denote eF = F(Y, R) — y* . Accordingly, if

e F = 0 , (12.77)

then the desired behavior of y(t) with prescribed dynamics of (12.73) is
fulfilled, where (12.77) is the insensitivity condition for the output transient
performance indices with respect to the external disturbances and varying
parameters of the system (12.61)-(12.62). At the same time, since all p
transfer functions (12.71) are mutually independent, channel decoupling is
provided if (12.77) holds.

Note, in accordance with Assumption 10.2, that the stability or at least
boundedness of the internal behavior of (12.61)-(12.62) occurs if (12.77) is
satisfied.

Define Fitk = Fi(Yitk, Ri,k) and denote

e[,k = Fiik - yiik. (12.78)
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Then the desired behavior of yi^ is fulfilled if and only if

4,k = 0 (12.79)

for all k = 0,1, If (12.79) holds, then the output transient performance
indices of ŷ fc are insensitive to external disturbances and parameter vari-
ations in the system (12.61)-(12.62).

Control law structure

In order to fulfill the requirement of (12.79), let us construct the control
law in the form of the difference equation

uiik = Y dijUi,k-} + >>i{Ts) e£fc) (12.80)

where i = 1,... ,p and

MT,) = T-°*Ai, A ^ O , (12.81)

d i , i + dia + ••• + di:Qi = 1 . (12.82)

Prom (12.82) it follows that an equilibrium of (12.80) is the solution of
equation (12.79).

12.2.4 Fast-motion subsystem

Consider the system of the difference equations (12.69) with the discussed
control law (12.80), that is, the closed-loop input-output system equations

yt,k = Y^aaM-j+T^ J^ ^jiKk-j+^k-ih (12.83)
j = l j = l l '

"i.fc = Yl di^i,k-j + T-aiXi elk, i = I,... ,p. (12.84)

Theorem 12.7 IfTs —> 0, then fast and slow modes are induced in the
closed-loop system (12.83)-(12.84). Here

Ui,k = Y, hj^k-j + Atl Fi - Y e-^iKk-j \ (12-85)
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is the FMS equation of the ith channel, where h*k — h*. • ss 0, yitk -
Vi,k-j ~ 0 , V j = 1 , . . . , ^ and

Pi,j = di,j->*tc*t,j{ai\}~1, V j = l , . . . , a * , (12.86)

Pij = dij, V j = a< + 1, . . . , g,-. (12.87)

Proof. By taking into account (12.78) and by substituting (12.83) into
(12.84), we find that the closed-loop system equations (12.83)-(12.84) may
be rewritten in the form

Vi,k = £ > Q 4 jy^j + Ts°< g ^ f {^.fc-j + Si,*-,-}, (12.88)

+A"< J ^(yi.k.iii.fc.T,) - £ ^ f W:> I • (12'89)

From (12.65) and (12.67) we see that the rate of output transients of (12.88)
is decreased in a discrete-time scale k as Ts —> 0. Accordingly, fast and slow
modes are induced in the closed-loop system (12.88)-(12.89) as Ts —• 0,
where a time-scale separation between these modes is represented by the
parameter Ts. HTS is sufficiently small, then

Kk - Kk-j ~ 0, yiik - y^j w 0, V j = 1,..., qi. (12.90)

Thus, as an asymptotic limit, from (12.88)-(12.89) and (12.90) the equation
(12.85) of the FMS follows. •

12.2.5 Selection of controller parameters

Asymptotic stability of the FMS for the ith channel, desired transient per-
formance indices of u^k, and the desired settling time of the FMS can
be achieved by selection of the control law parameters. For instance, the
above root placement approach or frequency-domain methods may be used
to choose the control law parameters in accordance with the requirements
placed on the admissible transients in FMS (12.85).
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Let qi = on. Then from (12.85) we obtain the characteristic polynomial
AfMS (z) of the FMS equation of the ith channel in the form

A[MS(z) = zai - A . i ^ ' " 1 /W (12.91)

The deadbeat response of the FMS (12.85) is provided and, accordingly,
the settling time ts of the FMS of the ith channel is equal to ajTs if the
requirement

A[MS(z) = zai (12.92)

is satisfied. Similar to (12.45), (12.46), and (12.47), from (12.92) and ex-
pressions (12.82) and (12.86) we obtain the controller parameters

* , j =*<«„,•{<*< I}" 1 , Vj = l,...,cn, (12.93)

A< = 1 , i = l , . . . , p . (12.94)

We can see that the parameters dit j of the controller with deadbeat response
of the FMS depend on the relative degrees {ai}f=1 of continuous-time sys-
tem (12.61)-(12.62) and the coefficients of the Euler polynomials.

12.2.6 Slow-motion subsystem

Theorem 12.8 If a (quasi-) steady state for the FMS (12.85) takes place,

fii,fe - « i , fc - j = 0 , V j = l , . . . , g i ) ( 1 2 . 9 5 )

then Uitk = u^D, where

u»'D = UYiM,RiM,Ts) - £ 'ffh*^ . (12.96)

Proof. From (12.82), (12.85), (12.86), (12.87), and (12.95), the expression
(12.96) results. •

Theorem 12.9 If Ts -> 0 and the FMS of (12.85) is asymptotically
stable, then the SMS equation of yi^k in the closed-loop system (12.88)-
(12.89) is the same as (12.75).

Proof. Let the FMS be asymptotically stable. If Ts -> 0, then after the
FMS transients in (12.88)-(12.89), we find that (12.95) and (12.96) are
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fulfilled. By substituting (12.95) and (12.96) into (12.88), we obtain the
SMS equation, which is the same as (12.75). •

Theorem 12.10 IfTs -» 0, then u?kID - u?ID(t)\t=kTa -» 0, where

u?ID{t) = Fi(Yi{t),Ri(t)) - h*(t,X(t)) (12.97)

is the nonlinear inverse dynamics solution.

Proof. If Ts -> 0, then from (12.65) it follows that Xk-Xk-j -* 0, V j =
1,... ,qi. In accordance with (12.5) and (12.76) we find that from (12.96),
the expression (12.97) follows. •

Corollary 12.4 IfTs -> 0, then from (12.97) it follows that the behavior
of yi(t) tends to the solution of (12.72). Accordingly, the controlled out-
put transients in the closed-loop system have desired performance indices
after fast ending of FMS transients. Therefore, no hidden oscillations exist
between sampling instants in the discussed sampled-data control system.

Note that the system of equations (12.88)-(12.89) is not exactly a closed-
loop system, since the state space equation for X is not taken into ac-
count. The system (12.88)-(12.89) reflects only input-output behavior in
the closed-loop system and the above expressions are valid given that As-
sumption 10.2 is satisfied. We emphasize that the internal stability of the
system (12.61)-(12.62) is the essential point in obtaining the desired input-
output mapping, since the effect of the observable internal dynamics can
be canceled only if the internal dynamics are stable or at least bounded in
a specified region of the system state space.

12.2.7 Example

Consider the following nonlinear time-varying system given by (7.73) (see
p. 170):

±i - x2+ x3(xi - x3)(x3 + X4- xi) + [2 + sin(x4)]ui + u2,

±i = ~(xi - x3){x3 + xA - x\) + io2(t) - ui + [1 + 0.5 sin(:r3)]u2,

x3 = x3(xi - x3)(x3 + X4 - xi) + [2 + sin(a;4)]ui + u2,

£4 = £2 - 12(:E3 + Xi — X\) + W4(t) + U\ + U2,

yi = xi -x3, y2 = 3:3.
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From (7.73) it follows that a\ = 2 ,Q 2 = 1 and

T - 1 l + 0.5sin(^)l
|_2 + sin(x4) 1 J

where Assumptions 10.1, 10.2 are satisfied (see p. 170). Assume that Ko =
{kij} » G*, where

K - h 1 / 3 1 / 3 l
Ko~ [ 2/3 1/3J-

Require that the controlled outputs y\ (t), yi (t) behave as step responses of
the transfer functions

^ S ) = ( ^ W ' (̂8) = ^ M - (12'99)
Then pulse transfer functions Hf(z), H^z) of series connections of ZOH
and continuous-time systems of (12.99) are the functions

where tii = exp(— TS/T\), &I — exp(—TS/T2). AS a result, the discrete-time
controller has the form

iii.fc = 0.5ui,/b-i + 0.5ui,fc-2

+Ts-2{-ylifc + 2dij/i,fc_i - d?i/i,fc_2

+ ( l -d i -Tf 1 r ,d i ) r 1 , f c _ 1

+di(di - 1 + r f ^ r i . f c . a } , (12.100)

"2,fc = W2,fc-i + Ts~1{-7/2,fc + d2y2,k-i + (1 - d2)r2,fc-i},

where {ui,fc,u2,fc}T = -̂ o{Mi,fc,'«2,fc}T.
Simulation results for (7.73) controlled by the algorithm (12.100) are

displayed in Fig. 12.2 for the time interval t G [0,3] s, where u(t) =
uk, V kTs < t < {k + 1)TS, Ts = 0.05 s, n = 0.5 s, r2 = 0.4 s, and
m(t) = 0, Vt.

12.3 Notes

Methods for digital nonlinear control system design have proliferated in
recent times, with attention given to such problems as digital implemen-
tation of nonlinear systems with input-to-state stabilizing controller [Teel

(12.98)
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Fig. 12.2 Output step responses in the closed-loop system (7.73) and (12.100).

Fig. 12.3 Output step responses in the closed-loop system (7.73) and (12.100).

et al. (1998)], multirate composite control strategies [Djemai et al. (1999)],
discrete-time approximated linearization [Barbot et al. (1999)], perfor-
mance of systems with state feedback controller and high-gain observer
under sampled data [Dabroom and Khalil (2001)]. A digital implemen-
tation of the acceleration feedback control law for robot manipulator was
discussed in [Studenny et al. (1991)].

The approach of this chapter is related to control systems with the
highest output derivative in feedback [Vostrikov (1977a)] and its digi-
tal implementation is discussed in [Mutschkin (1988); Fehrmann et al.
(1989)]. In this chapter, the results published in [Yurkevich (1993a);
Yurkevich (1999a); Yurkevich (2000b); Yurkevich (2002)] were extended
and a systematic design procedure for sampled-data control systems with
high sampling rate has been represented. The distinctive feature of the
discussed control systems is that two-time scale motions are induced in
the closed-loop system with increased sampling period. The stability of
the fast transients and a sufficient degree of time-scale separation be-
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tween the fast and slow modes in the closed-loop system are provided
by selection of the controller parameters and sampling rate. As a re-
sult, the slow modes have the desired output transient performance in-
dices and are insensitive to external disturbances and parameter vari-
ations of the system. The design methodology allows us to find sim-
ple analytical expressions for digital controller parameters for nonlinear
time-varying systems. Design of a digital flight controller for an aircraft
based on the presented approach was discussed in [Blachuta et al. (2000);
Yurkevich et al. (2000)], while a digital controller for robot manipulator
was discussed in [Yurkevich and Shatalov (2000)].

12.4 Exercises

12.1 Consider the system (7.136) preceded by ZOH where a — 3. Design the
discrete-time control law (12.25) to meet the following specifications:
er — 0, td fa 2 s, ad « 5%. Run a computer simulation of the closed-
loop system with zero initial conditions. Compare simulation results of
the output response with the assignment for r(t) = 1, V t > 0.

12.2 Consider the system (7.137) preceded by ZOH where a — 1. Design the
discrete-time control law (12.25) to meet the following specifications:
er = 0, td « 3 s, ad fa 10%. Run a computer simulation of the closed-
loop system.

12.3 Consider the system (7.138) preceded by ZOH. Design the discrete-time
control law (12.25) to meet the following specifications: er = 0, td fa 2
s, ad fa 0%. Run a computer simulation of the closed-loop system.

12.4 Consider the system (7.139) preceded by ZOH. Design the discrete-time
control law (12.25) to meet the following specifications: £r = 0, td fa 4
s, ad w 20%. Run a computer simulation of the closed-loop system.

12.5 Consider the system (7.140) preceded by ZOH. Design the discrete-time
control law (12.25) to meet the following specifications: er = 0, td fa 3
s, ad fa 10%. Run a computer simulation of the closed-loop system.

12.6 Consider the system (7.97) preceded by ZOH. Design the discrete-time
control law (12.25) to meet the following specifications: er = 0, t% fa 2
s, ad K. 0%. Run a computer simulation of the closed-loop system.

12.7 Consider the system (7.144) preceded by ZOH. Design the discrete-time
control law (12.25) to meet the following specifications: er = 0, td « 6
s, ad w 0%. Run a computer simulation of the closed-loop system.

12.8 Consider the system (7.145) preceded by ZOH. Design the discrete-time



312 Design of nonlinear control systems with the highest derivative in feedback

control law (12.25) to meet the following specifications: er = 0, td « 2
s, ad ss 0%. Run a computer simulation of the closed-loop system.

12.9 Consider the system (7.146) preceded by ZOH. Design the discrete-time
control law (12.25) to meet the following specifications: er = 0, td « 3
s, ad « 10%. Run a computer simulation of the closed-loop system.

12.10 Consider the system (7.141) preceded by ZOH. Design the discrete-
time control law (12.25) to meet the following specifications: er\ = 0,
er2 = 0, tdsl « 2 s, of « 0%, tds2 « 3 s, ad « 0%. Run a computer
simulation of the closed-loop system.

12.11 Consider the system (7.142) preceded by ZOH. Design the discrete-
time control law (12.25) to meet the following specifications: e r l = 0,
er2 = 0, tdx RS 3 s, of w 0%, td2 w 1 s, CT| W 0%. Run a computer
simulation of the closed-loop system.

12.12 Consider the system (7.143) preceded by ZOH. Design the discrete-
time control law (12.25) to meet the following specifications: eri = 0,
er2 = 0, tdsl « 2 s, of w 0%, if2 « 4 s, ^ w 0%. Run a computer
simulation of the closed-loop system.

12.13 Consider the system

±i = xz, ±3 — x\ + xxx2 +ui- u2,

x2 = X4, ±4 = x\ + sin(x2) - " i - 2u2,

2/1 = a?i, 2/2 = Z 2 .

which is preceded by ZOH. Check the invertibility and internal stability
of this system and design the discrete-time control law (12.25) to meet
the following specifications: £ri = 0, £r2 = 0, i ^ w 2 s, af s=s 0%,
tj2 w 4 s, (72 « 10%. Run a computer simulation of the closed-loop
system.



Chapter 13

Control of distributed parameter
systems

In this chapter the above design methodology is applied to systems gov-
erned by partial differential equations. The representation of the solution
for initial and boundary value problems by Fourier series is the essential
point, and leads to analysis of infinite-dimensional systems of differential
equations. The chapter is concerned with the control problem for systems
governed by parabolic equations, while the results can be extended for
other types of partial differential equations. At the beginning, the system
with infinite-dimensional control is considered; then the particularities of
finite-dimensional control for distributed parameter systems are discussed.

13.1 One-dimensional heat system with distributed control

One-dimensional heat equation

Let us consider a heating process described by a one-dimensional parabolic
equation given by

dx d2x
-gj(z, t) = <*2-Q^{Z, t) + c(t)x(z, t) + w(z, t) + u(z, t), (13.1)

where t is time, t > 0, z is the spatial variable, 0 < z < 1, x(z,0) = x°(z)
is the initial condition, [dx(z,t)/dz]\z=0 = 0 and [dx(z,t)/dz]\z=i = 0 are
the boundary conditions, cit) is an unknown varying parameter, \c(t)\ <
Co < oo, w(z,t) is a distributed external disturbance unavailable for mea-
surement, u(z,t) is the distributed control, a2 is a constant (we shall take
a2 — 1). We assume also that for all functions x(z,t), x°(z), w(z,t), and

313
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u(z,t) the eigenfunction expansions

oo oo

x{z, t) = ̂ 2 xn(t)<pn(z), x°(z) = ̂ 2 3%<pn(z),
n=0 n=0

oo oo

U(z,t) = ^2un(t)(fn(z), w{z,t) = ^Wn(t)ipn(z),
n=0 n=0

hold where <pn{z) = y>° cos(v%^z) are eigenfunctions (also known as
spatial modes or normal modes), An = n27r2 are eigenvalues, </3g = 1,
<p° =V2 V n = l , 2 , . . . .

In this case, the time functions xn(t) for x(z,t) satisfy the equations
[Wang (1972); Ray (1981)]

xn(t) = {c(t) - Xn}xn(t) + wn(t) + un(t), (13.2)

xn(0)=x°n, n = 0 , l , . . . .

Note that xn(t) is the weighting coefficient for the nth eigenfunction (mode)
in the eigenfunction expansion of x(z, t).

It is possible that some or all of the first no equations are unstable due
to variations of the parameter c(i), where no = int(^/co/n). Here int(y) is
the integer part of y.

Control problem statement

The control problem is to provide a desired spatial temperature distribution
assigned by a function xd(z,t):

lim sup {xd(z,t) -x(z,t)} = 0, (13.3)
t->ooo<0<l

where xd(z,t) is defined by the eigenfunction expansion

xd{z,t) = f2xn{t)ipn(z). (13.4)
n=0

Moreover, the control transients x(z,t) —> xd(z,t) should have a desired
behavior. These transients should not depend on the external disturbances
w(z, t) and varying parameter c(t) of the system (13.1).
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Insensitivity condition

Denote by en(t) = x^(t) - xn(t) a realization error of the desired time
function x%(t). Then the requirement (13.3) corresponds to

l ime n ( t )=0 , n = O,l, . . . . (13.5)
t—>oo

So, the desired behavior of the transients x(z,t) —» xd(z,t) can be provided
if the process xn(t) —> x^(t) satisfies the desired differential equation

±n(t) = Fn(xn(t),xdn(t)) (13.6)

for each time function xn(t). The parameters of (13.6) are selected in
accordance with assigned transient performance indices. For instance, the
linear differential equation in the form

xn(t)=T-1[xt{t)-xn(t)} (13.7)

is the most convenient in this case.
Denote e£ = Fn —xn(t), where e£ is the realization error of the desired

dynamics assigned by (13.6). As a result, the control problem (13.3) can
be solved if

e£ = 0, Vn = 0,l (13.8)

This is the insensitivity condition of the transients in the system (13.1) with
respect to the external disturbances w(z,t) and varying parameter c(t).

By (13.2) and (13.6) the expression (13.8) can be rewritten in the form

Fn(xn(t),x*(t)) + {An - c(t)}xn(t) - wn(t) - un{t) = 0, (13.9)

Vn = 0 ,1 , . . .

So, the discussed control problem has been reformulated as the requirement
to provide the condition (13.9) or, in other words, to find a solution to (13.9)
when its varying parameters are unknown.

The solution of (13.9) consists of the functions un(t) = u^ID(t) denned
by

u^ID(t) = Fn{xn{t),xdn{t)) + {Xn - c{t)}xn{t) - wn(t), (13.10)

Vn = 0 , l , . . ,

where u%ID(t) is called the linear inverse dynamics solution since the dis-
cussed control system (13.1) is linear. The control functions u^ID(t) corre-
spond to the above nonlinear inverse dynamics solution uNID (see p. 193).
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As a result, we see that the distributed control function

oo

u"D{z,t) = Y.UnD{t)Vn{z)
n=0

oo
- Y, [Fn(Xn(t),xt(t)) + {An - C(t)}xn(t) - Wn(t)} <pn(z) (13.11)

71 = 0

gives the desired behavior of transients x(z,t) —> xd(z,t).
Note that uLID(z,t) cannot be used in practice; otherwise, all param-

eters and external disturbances must be known and available for measure-
ment in the system (13.1).

Realizability of desired behavior

Assume that the region of allowable values of the control function u(z, t) is
assigned by

\u(z,t)\ < Mu <oo, V t > 0 and 0 < z < 1 (13.12)

since in a real plant the control resource is always bounded. Here Mu =
const is such a bound.

Then, in accordance with (13.10), the solution of the discussed control
problem exists and the desired behavior of transients x(z,t) —> xd(z,t) is
realizable if

uLID(z,t)\ < Mu < o o , Vt>0 a n d 0 < 2 < 1. (13.13)

From (13.7) and (13.13) we find that if the conditions

s u p K ( t ) | < ^ , Vn = fl,l (13.14)
t>o n

are fulfilled, then the series (13.11) is absolutely convergent and a certain
value Mu exists such that the requirement (13.13) is satisfied where

M° — const, M% = const, Mw — const.
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Control law

In order to ensure that e£ = 0 when the parameter c(t) is varying and
unknown and the distributed external disturbance w(z, t) is unavailable for
measurement, let us consider the control law for the equation of the time
function xn{t) given by

^U{nqn) + dn,qn-UJ.*>-1ui?n-1) + ••• + dn^nU(n]

+dnfiun = kn{Fn(xn, xdn) - x^}, Un{0) = Ul (13.15)

where

Mn > 0, qn> 1, dnij > 0, V j - 1, . . . , qn - 1, dnfi = 1 or dnfi = 0

un = {un,uin1\...,u{nQn-1)}T, y n e ( ] , n c R ' » , un(o) e n°Un c nUn.

The closed-loop system equations for the nth mode are

Xn\t) = Ht) - \n}Xn{t) + Wn(t) + Un{t), Xn(0) = X°n, (13.16)
/i«"i4?n)(*) + dni,B_1/i«"-1i4?n"1)(t) + • • • + dniUinu£\t)

+dn,oun(t) = kn{Fn{xn,xdn) - x^}, Un(0) = U°, (13.17)

where n = 0,1, . . . .
Equations (13.16)-(13.17) are the singularly perturbed equations with

small parameter /i. These are the same as (4.45)-(4.46), and the analysis
is similar.

So, distributed controller design is reduced to controller design for each
separate mode.

13.2 Heat system with finite-dimensional control

Modal form of heat system

Consider the distributed parameter system given by (13.1) with the dis-
tributed control u(t, z) induced by the finite-dimensional control vector

u(t) = {Ul(t),u2(t),... ,up(t)}T,

where

p

u(t,z) — y^^Sj(z)uj(t).
i=l
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The behaviors of the time functions xn(t) for x(t,z) are governed by the
infinite-dimensional system of differential equations (the so-called modal
form of the linear distributed system [Wang (1972); Ray (1981)]) given by

ii(t) = {c{t)Ip - Ai}x!(t) + Biu(t) + tui(t), xi(0) = x?, (13.18)

x2(t) = {c(0/oc - A2}as2(i) + B2u{t) + w2{t), x2(0) = x°2, (13.19)

where

X\ = {xO,Xi,.. . ,Xp-i}
T, X2 = {Xp,Xp+1,Xp+2,--.}T,

Wi = {wO,W1,...,Wp-1}
T, W2 = {Wp,Wp+i,Wp+2,...}

T,

Ai = diag{A0,. . . ,Ap_1}, A2 = diag{Ap, Ap+1, A p + 2 ) . . . } , (13.20)

" ( s i . V o ) - - - { s P , < P o ) 1 [" ( s i .Vp ) - - - ( s p , v ? p ) "
( s i . V i ) - - - ( s P , V > i ) ( s i . ^ p + i ) • • • ( s p , ( p p + i )

B l = : : : >B>= ( s i , ^ ) ••• (sP,<fiP+2) •

. ( S I . V P - I ) ••• (sp,¥>p-i)J L : : : .

Here (si,<pj) is defined as

(Si,fj) = / Si(x)^(0)d2;.

Assumption 13.1 The spatial distributions of the controls Ui{t) defined
by the functions Si(x) are chosen so that B\ is invertible, i.e., det-Bi ^ 0.

Control problem

Assume y(t) = X\(t) is the output vector, available for measurement. Then
the relative degree of the system (13.18)-(13.19) for each component of y(t)
is equal to 1.

The system (13.18)-(13.19) corresponds to the normal form of the state
space representation given by (7.42)-(7.43) where, in contrast to (7.43), the
internal subsystem (13.19) is the infinite-dimensional system of differential
equations and the external subsystem (13.18) describes the behavior of the
measurable output vector y(t) = x\(t).

Consider the output regulation problem

lim e(t) = 0, (13.21)
t—>oo
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where e(t) = xf(t) — X\(t) and the reference model of the desired behavior
of x\{t) is assigned by the stable differential equation

x1(t) = F(x1(t),xf(t)) (13.22)

and xf = xi at the equilibrium of (13.22) for x\ = const.
Denote by

eF = F(x1(t),xd1(t))-x1(t) (13.23)

the realization error of the desired dynamics (13.22).
As a result, the solution of the output regulation problem corresponds

to the requirement

eF = 0, (13.24)

where (13.24) is the insensitivity condition of the output transients in the
system (13.18)-(13.19) with respect to the external disturbances w(z, t) and
varying parameter c{t).

From (13.18),(13.22), (13.23), and (13.24) we can obtain the linear in-
verse dynamics solution given by

uLID(t) = {Bj-M^iW.a'iW) - {c(t)Ip-A1}x1(t)-w1(t)}. (13.25)

Closed-loop system

In order to fulfill the requirement (13.24) let us consider the control law for
the equation of the first p time functions X\{t) given by

Dq^u{q) + Dq-ni9-1ui"-1) + ••• + £ > i / x u ( 1 ) + Dou

= K1{F(x1,xf)-x[1)}, (13.26)

where

u = KQu. (13.27)

The closed-loop system is

±i = {c(t)Ip - Ai}a;i + BiKou + wu xx(0) = x°lt (13.28)

x2 = {ciVjIoo - A2}x2 + B2Kou + w2, x2(0) = x%, (13.29)

D Q n q u i q ) + D q - n j , " - 1 u ^ - 1 ) + •••

+ Dxnu(1) + Dou = KxeF, 0(0) = 0°. (13.30)
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By (13.22) and (13.23), and by substituting (13.28) into (13.30), we
obtain

±i = {c(t)Ip - Ai}a:i + BxKou + wi, xi(0) = x?, (13.31)

x2 = {c(t)/oo - A2}x2 + B2Kou + w2, x2{Q) =• x\, (13.32)

Dq^qu{q) + Dg.in''-1u^-1) + ••• + D I M « ( 1 ) + Tu

= K^Fixuxf) - {c(t)Ip - Ax}Xl - Wl], 0(0) = 0°, (13.33)

where

T = D0 + K1B1K0.

Note that the internal subsystem (13.32) of the discussed system does
not affect the behavior of the external subsystem (13.31); that is, (13.32)
is an unobservable subsystem if y(t) = X\(t) is the output variable. There-
fore, instead of (13.31), (13.32), and (13.33), let us consider the closed-loop
input-output system equations

±i = {c{t)Ip - Ai}a3i + B^oii + wu xi(0) = x°u (13.34)

£>,/i««(9) + Dq-1iiq-lu(q-l) + ••• + Dxliu{l) + Yu

- K^Fixuxf) - {c(t)Ip - Ax}x! - IOI], 0(0) = U°, (13.35)

given that the asymptotic stability of the subsystem (13.32) is satisfied by
reason of which subsystem (13.32) can be omitted.

The system (13.34), (13.35) are the singularly perturbed equations
where fast and slow modes are induced as /i —> 0 and the fast-motion
subsystem is given by

Dqnqu{q) + Dq_lnq~1uiq-1) +••• + Dntuw + Tu

= K1[F(x1,xd1) - {c(t)Ip - A J x i - Wl], 0(0) = 0°, (13.36)

where x% is the frozen variable during the transients in (13.36).
Assume that the stability and sufficiently fast damping of the FMS

transients in (13.36) are provided by selection of the control law parameters
Di,Ki,K0,fx and consider the (quasi-) steady state of the FMS (13.36).
Then, by finding the limit fj, —> 0 in (13.36), we obtain

u(t)=us(t),

where

us = r-^itFCxi.aj?) - {c(t)Ip - Ai}xi - Wl). (13.37)
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Here us(t) is the control function in the closed-loop system which corre-
sponds to the quasi-steady state of the FMS (13.36). From (13.25), (13.27),
and (13.37) the expression

u* = uUD + {B.Koj^K^DoiK^Do + ^i^o}"1

x[{c(t)Ip - Ai}xi +wx - F{xx,xi)} (13.38)

results, where uLID(t) = KQluLID{t) and uUD(t) is given by (13.25).
Substitution of (13.37) into (13.34) yields the slow-motion subsystem of

the first p time functions xn(t):

xx = F{xux$ + K{lDo{K^Do + BXKQ}-1

x[{c(t)Ip - Ai}xi + toi - F(xi,xf)]. (13.39)

This is similar to (8.44).

13.3 Degenerated motions

Consider the closed-loop system (13.31)-(13.32) on the condition that the
steady state of the FMS (13.36) is maintained, that is

±i =F{xuxdl) + Kl~lDQ{Kl-xD0 + B1K0}-1

x[{c(t)Jp-Ai}aji+ti>i-F(xi,a:?)], aJi(O)=aj?, (13.40)

±2 = {c{t)I00-K2}x2 + <t>{xi,xf,wi,w2), cc2(0) = a;2. (13.41)

Let xf(t) = const, V t > 0 and Do = 0- Assuming in the closed-
loop system (13.40)-(13.41) that transient processes of x\{t) have been
finished, then from the subsystem (13.40) we obtain the algebraic equations
x\{t) = xf(t) = const and in this case dynamical processes take place for
the internal variables x2 only. This system of the algebraic and differential
equations

xi{t) = xf(t) = const, V t >0, (13.42)

X2={c{t)Ioo-A2}x2 + ̂ {xtwi,w2), x2{0) = x°2 (13.43)

is called the degenerated system.
Denote by x2eg a solution of (13.43). Then we have spatially distributed
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degenerated motions of the form

x{z,t) = xd*\z,t)

= ^ xdn<pn(z) + 5 3 z ^ (%„(*). (13.44)
n=0 n=p

These determine an asymptotic accuracy of realization of the desired dis-
tribution (13.4). The second item in (13.44) gives a bounded contribution
to the sum if the transients of X2{t) are stable. Therefore, the dimension of
the control vector u{t) should be chosen in accordance with the condition

p > mt{y/c^/ir),

which guarantees degenerated system stability.

13.4 Estimation of modes

We have assumed that the vector y(t) = Xi(t) is measurable. In practice,
the vector x\{t) is usually estimated indirectly by means of a measurable
finite-dimensional vector

y = {yi,y2,---,ym}T, m>p,

where yj(t) = x(zj,t). Then, in accordance with [Wang (1972)], instead of
Xi(t) the estimate of X\(t) given by

xj(t) = [$T$]-1$Ty(t) (13.45)

can be used to implement the control law (13.26) where

' <fio{zi) <Pi{zi) ••• <fip-i{zi)'

<Po(z2) fi(z2) ••• ¥ V - i ( z 2 )
$ =

.<fi(){Zm) < P l { Z m ) ••• < p p - l { z m ) _

The relationship between X\{t) and X\{t) is given by

xi(t) = xi(t) + Axi(t),

where Acci (t) is the estimation error denned by

Axi(t) = [$T$]-1$TAy(t)
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and
oo

Ay = {AyuAy2,..., Aym}T, Ay ft) = ^ xk{t)<pk{zj)-
k=P

Note that in the closed-loop system the influence of Ax\{t) is similar to
that of sensor noise. In accordance with (13.45), we should choose Zj so
that

rank $ = p.

13.5 Notes

Fourier analysis is widely used for analysis and design of control systems
with distributed parameters based on the conventional methods of control
system theory [Wang (1972); Ray (1981); Smagina et at (2002)]. In this
chapter the results presented in [Yurkevich (1992a); Yurkevich (1992a)] are
extended in the context of control system design with the highest derivative
in feedback for systems governed by partial differential equations based on
the design procedures developed in the preceding chapters.

The main advantage of the approach is that the desired transients and
control accuracy for the first p controlled modes are guaranteed despite
unknown external disturbances and varying parameters of the system.

Finally, we should note that the approach may be used for nonlinear
time-varying distributed parameter systems. In this case it is necessary to
use Ritz-Galerkin type ideas.

13.6 Exercises

13.1 Prove that <pn(z) are the eigenfunctions of the system (13.1), where

[dx(z,t)/dz}\z=0 = 0, [dx(z,t)/dz]\z=1 = 0

are the boundary conditions.
13.2 Determine the eigenfunctions <pn(z) of the system (13.1) where

x{z,t)\z=0 = 0, x(z,t)\z==1=0

are the boundary conditions.
13.3 Consider a heating process described by the one-dimensional parabolic

equation (13.1) with |c(t)| < 25. Determine the minimum number of
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modes to be controlled in order to guarantee closed-loop system stabil-
ity.

13.4 Design the discrete-time controller for the nth mode of the system
given by (13.1) based on the pseudo-continuous approach. Derive the
relationship between sampling period Ts, phase margin of the FMS,
and other controller parameters where: (a) qn = 1; (b) qn = 2.

13.5 Design the discrete-time controller for the time function xo(t) of the
system given by (13.1) based on the pseudo-continuous approach to
meet the following specifications: er0 = 0; t% « 3 s; CTQ « 0%; q0 = 1.
Determine the sampling period Ts such that the phase margin of the
FMS will meet the requirement <p(T) ^ 0-2 rad. Compare simulation
results of the step output response of the closed-loop control system for
the Oth mode with the assignment.

13.6 Design the discrete-time controller for the time function xi(t) of the
system given by (13.1) based on the pseudo-continuous approach to
meet the following specifications: £r\ = 0; t^ « 1 s; af « 0%; <ji = 1.
Determine the sampling period Ts such that the phase margin of the
FMS will meet the requirement </?(r) > 0.3 rad. Compare simulation
results of the step output response of the closed-loop control system for
the 1st mode with the assignment.

13.7 Design the discrete-time controller (12.48) for the time function xn(t)
of the system given by (13.1). Derive the expression of the velocity
error due to disturbance wn(t) where: (a) qn — 1; (b) qn = 2. Check
the result by computer simulation of the closed-loop system.



Appendix A

Proofs

A.I Proof of expression (8.29)

Prom (8.28) we get

ua = [D0 + KG\-1K{F-f}

= uNID - uNW + [Do + KGj-'KiF - / } .

By taking into account (8.18), we obtain

us = uNID + {G~l - [Do + KG]~lK}{f - F}

= uNID + {[Do + KG]-l[D0 + KG}G~l - [Do + KG}~lK}{f - F}

= uNID + [Do + KG}-1 {[Do + KG)G~l - K}{f - F}

= uNID + [Do + KG]-lD0G~l{f - F}.

A.2 Proof of expression (8.42)

By taking /i, —> 0 in (8.41), we obtain

us = [Do + KiGKol^K^F - /}

= uNID - uNID + [Do + K1GKo}~1Kl{F - / } .

325
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In accordance with (8.43), we get

V = uNID + {[GKo]-1 - [Do + K1GK0]-1K1}{f - F}

= uNID + {[GKo}-1 - [KiK^Do + K1GK0}-1K1}{f - F}

= uNID + {[GKQ\-X - [K^D0 + GK0]-1}{f - F}

- uNID + {[GKoj-^K^Do + GK0}[K-lD0 + GK0}-1

-[K^D0 + GK0}-1}{f-F}

= uNID + [GK0)-lK^D0[K^D0 + GK0]~x{f - F).

A.3 Proof of expression (8.65)

By taking into account (8.62), (8.63), and (8.64), we obtain

eF = F<y,R)-y.

= T~1es - 0 .

From (8.57) we get

T - V = K^lDQ[K^D0 + G*K0]-l{T-le° - H*}.

The above expression may be rewritten in the following form:

{/ - K^DolK^Do + G ' t fol-^T-V

= -K^DQ[K^DQ + G*KQ]-lH*s.

Hence,

{[K^D0 + G*KQ)\K^DQ + G'Ko}-1

= -K^DoiK^Do + G*K0\-lH*s.

Consequently,

G*KQ[KilDQ + G ^ o l ^ T - V = -K^DolK^Do + G*KQ]-lH;.

Therefore,

es = ~T[K^D0 + G*K0}[G*K0}-lK^Do[K^Do + G*K0]-lH;.
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A.4 Proof of expression (11.37)

(i) From (11.34) and (11.38), we get

- Ads - AA0 f > ° + Abj) - A° £ A&i • (A-1)

(ii) Denote

r i ~x

n
X = Ad3 1 - ^ 4 - - (A.2)

From (11.27), (11.28) and (11.29), we get

r -i r i - 1

n n

Ao J2bi X - E ^ = 1 + X- (A.3)

(iii) By substituting (11.22) and (11.36) into (11.32), we obtain

n

Vk = "Yy^iVk-j + bjWk-j]

p -i r - i - l

n n n

+A0 53 6j 1 - 53 fa 11}^ ~ ai)yk-i + b1r^-j - bjWk-j\.
J=i J |_ J=1 J J=1

The above expression can be rewritten in the form:

n n

Vk = 53[aj2/fc-j + hiwk-j] +{^ + x)^\{.a.di-a:j)yk-j+bdjrk-j-bjWk-.j\
j=l j=l

n n n

= 53 fliW-j + 1 3 6 i r * - j + x 53^Kd ~ aj]yfc-j + 6jrfc-j - fri^fc-j}-
3 = 1 j = l 3 = 1

By (A.I) and (A.2) we have that the above expression is identical to (11.37).
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A.5 Proof of expressions (11.40)—(11.41)

From (11.37) and (11.39), we obtain

i - E < ys=t^r + xt(Kd~aAys + b*r~h™3}-

By taking into account (11.42) and (A.2), the above expression can be
rewritten in the form:

4>iys = 1 + Ads-JTPj £>? r-Ads E'bj w°.
j=i J l_j=i J [j=i

Hence,

es = r - ys

1 + Ads - £ Pj £ bf Ads £ bj
= < 1 - > r w .

9i 4>i

By taking into account (11.8) and (11.42), we get

1 - t a, t h
es = -Ads J-^—r - Ads3-^—ws.

01 01

A.6 Proof of expression (11.47)

(i) From (11.43) we obtain

n n

l - £ & = Ao$>- (A.4)
3=1 3=1

(ii) Let us consider a stationary behavior of control variable

uk = u0 + uvTsk, fc = 0 , l , . . . (A.5)
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given that the conditions (11.43), (11.44), and (11.45) are satisfied. Hence,
we have

£ fru^ =uof: ^ + uvTsk £ Pi ~ uvTs £ jfa, (A.6)
j=i j=i j=i j=i

£ ft^jt-j = ^Tsfc £ 5,- - tuT, £ JSJ . (A.7)
j = l 3 = 1 3 = 1

From closed-loop system equations (11.32)—(11.33), by taking into account
(ll.48Hll.49) and (A.6)-(A.7), we obtain

1 - E a, yv = uof:bj+ uvTsk £ b3 - uvTs f) fa
[ j=i J j=i j=i j=i

+»Tst £ ty - wvTs £ fa, (A.8)

«o + uT,*: = uo £ Pi + uvTsk £ ^ - uvTs £ j ^ -
J = l 3 = 1 3 = 1

+Ao Iz/" E Kd - «;]+r E ^ - ^ ^ A E 6j+t«1'T8 E A - l (A.9)
{ 3=1 j=i j=i i=i J

Since (A.8) and (A.9) are satisfied for all k, the equations (A.8) and (A.9)
can be decomposed into

n n
0 = uvTsk ] T bj + wvTsk ] T bj, (A.10)

j=l j=l

n n

uvTsk = uvTsk Y^Pi - XowvTsk^bj, (A. 11)
3=1 3=1

and

1 " E a, / = « o E 6j - uvTs £ fa - wvTs £ fa, (A.12)
j=i J j=i j=i j=i

wo = «o E Pj - uvTs E JPj
3 = 1 3 = 1

+Ao I yv E Kd - aj] +rZb*j + w^Ts £ fa 1 . (A.13)
[ j=i j=i j=i J
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From (A. 10) we get

-ii- -] -l

uV = - X > X > wV- (A-14)

From (11.43) and (A.14) it follows that (A.ll) holds for all k.
(iii) Let us derive u0 from (A.13) and substitute u0 into (A.12). As a
result, by taking into account (11.8) and (A.4), we obtain

r » i « r» i ( £ & £** I
L J=1 J =̂1 L^1 J i - E h i - E &J

Finally, by (11.8) and (11.46), we get

[n If . f f £ ^ !>* )
LJ-=1 J I- =̂1 J i - E k i - E *i

A.7 Proof of expression (11.51)

(i) Let us consider a stationary behavior of output and control variables

yk=yo + yvTak, fc = o , i , . . . , (A.15)

uk = u0 + uvTsk, k = 0,l,..., (A.16)

given that the conditions (11.43), (11.48), and (11.49) are satisfied.
From (11.50), (A.15)-(A.16), and due to assumption that evT = const,

we obtain

y v = rv and evr = -y0. (A.17)

(ii) From closed-loop system equations (11.32)-(11.33), by taking into ac-
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count (A.15)-(A.16), (A.17), and (11.39), we obtain

[yQ + rvTsk) 1 - E oj- = -rvTs E j a j + [u0 + uvTsk] E bd

3 = 1 J 0 = 1 j = l

-u"T, Ej fc j+«; ' ! : 6j, (A.18)

[«o + uT,*] 1 - E & = -uvTs E j / %

+A0 I [2/o + r̂ Tsfc] E [«" - Oj] - r T , E j[Sd - a,-]

+r^Tsfc E 6,d - rvTs E j6.d - Ws E k 1 . (A.19)
i=i j=i j=i )

Since (A.18) and (A.19) are satisfied for all k, the equations (A.18) and
(A.19) can be decomposed into

n n

rvTsk l~Ylao =uvTsk^2bj, (A.20)
o=i J o=i

n I n n j

uvTsk l-Y,fa =>*\TvTtkYyj-a3:\ + r''TakY,Vj\> (A-21)
o=i J [ o=i o=i )

and

n n n n n

y0 l-J2^o =-rvTs^jaj+uoJ2bj-uvTsJ2jbj+wsJ2hJ> (A-22)
0 = 1 J j = l 0 = 1 0 = 1 3 = 1

0 = 1 J 3 = 1 { 3 = 1

^TsJ2j[^-^}-rvT3J2jbJ-^f2bi [• (A'23)
0 = 1 3 = 1 0 = 1 )

From (A.20) we get

r i r n - 1

n n
u"= 1 - X ) ° i HbJ rV- (A-24)
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From (11.43) and (A.24) it follows that (A.21) holds for all k.
(iii) Let us derive uQ from (A.23). By substituting u0 into (A.22) and by
taking into account (11.8) and (A.4), we obtain

r ~i ( r r n . « ]\

n n n E JPi E Jbi
W l - E ^ = - ^ . E *?+-»?!+ ! - £ « , ^ ^ •

L J V. L J L J = I J=I J )

Finally, since ya — —evr, we have

n Yl { n [ n 1 [ E ift E Ĵ  1 ]
e? = Ts 1-E.J { E J K + ^ + i-Eai f^T + f F 7 r"

J = l J = l J = l l -E/3; ! - L b j
L J ^ L J L J = l 3 = 1 J ^

A.8 Proof of expression (12.56)

From (11.38), (12.52), (12.5), (12.54)-(12.55), and by taking into account
that g = const, we obtain

E^=^"E^f = Ts", (A.25)
j=i j=i

itbJ=Tsn9ite-%T=Tsn9, (A.26)
3 = 1 J = l

^ j 9 i = 5^AdJ- = Ad.. (A.27)

By substituting (A.25)-(A.27) into (11.41), we obtain

esw=TsnAds\ l~J2a1 [ l - A d ^ - A d ^ ^ - O n j ) ! ^ - (A.28)

Relation (12.52) is valid given that Ts —> 0; hence, from (A.28) we obtain

limj| = AdJ 1-f̂ â  [l-Ad,]-Ad.^-anii)l ^s-
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A.9 Proof of expression (12.57)

(i) Assume that

Ads = 0.

From (A.26) and (A.27), we get

fc = X>di + £j^f (A.29)
3 = 1 3=1 U-

From (A.25), (A.29), and (11.47), we obtain

-i - 1 r

el = -Tsn+1 l - f > ? E^+X^^f w\ (A.30)
3 = 1 J LJ' = 1 j = 1

Relation (12.52) is valid given that Ts —> 0; hence, from (A.30) we obtain

-i - 1 r

T I S O T ^ - ^ S 0 ' E ^ d i + E ^ wV- (A-31)
5 L J=1 J L J = 1 J = 1

(ii) From (12.6), we get

£ L„ _ £n(£l] = r n - l _ 1 <*£>(*) 1

- ^ - (A.32)
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(iii)

Tz V " ^ ] | x = {nz""1" [n!rl [£-l(n ~1)z"~1

+ e n , 2 ( n - 2)zn~2 + ••• + entn^(n - (n - l))zn~n]}|z=1

= n [en i i(n - 1) + enfl{n - 2) H (- £„,„_!(« - (n - 1))]

n—1 -. n —1

L J = I J L j=1

1 n

(iv) Finally, from (A.31), (A.32) and (A.33), we get (12.57).

(A.33)



Appendix B

Notation system

AFMS (z) characteristic polynomial of discrete-time FMS
DFMS(s) characteristic polynomial of continuous-time FMS
deg A(s) degree of polynomial A(s)

det B determinant of matrix B
dim M dimension of manifold M

e error of the reference input realization where e = r — y
eF error of the desired dynamics realization
es steady-state error of the reference input realization
el, velocity error due to ramp disturbance w(t)
~e"w relative velocity error due to ramp disturbance w(t)
evr velocity error in the presence of ramp input r(t)
ej! relative velocity error due to ramp reference input r(t)

Im identity matrix, where Im € K m x m

Im Si imaginary part of Si
k0 high gain

lg(w) base 10 logarithm of the elements of u, i.e., lg(w) = Iog10(u;)
L(u>) Bode amplitude diagram

n degree of differential equation of plant model
ns high-frequency sensor noise

q degree of differential or difference equation of controller
p operator of differentiation, p = d(-)/dt
r reference input

Rm vector space of the mth dimension
Re Si real part of Si

Re Xi(A) real part of eigenvalue Aj of A
t time

tp peak time of the output variable y(t)
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ts settling time of the output variable y(t)
T time constant

Ts sampling period
u input (control variable)

u> external disturbance or varying parameter
Gyr(s) transfer function, Gyr(s) = y(s)/r(s)

X state vector of the plant model
XT transposition of the vector X

xs steady state of x(t)
y output variable of the system

ys final value of the output variable y(t), i.e., ys = limt_>oo y(t)
y(tp) peak value of the output variable y(t)

yh output of discrete-time system where y^ = y(t)\t=kTo

a relative degree (invertibility index)
Up relative error of desired dynamics realization
er relative error of reference input realization

VUV partial derivative of V with respect to u, i.e., VUV = dV/du
rj degree of time-scale separation between fast and slow modes
jj, small parameter

CFMS damping ratio of FMS
a percentage maximum overshoot of step response
r time delay or time constant

tpi phase margin of ith FMS on Nyquist diagram
us angular frequency

u>c crossover frequency
u>d damped frequency
£lu bounded set of allowable values of control variable
0.x bounded subset of vector space of Rn

l(t) unit step function
||x||2 Euclidean norm of an element x = {x\,X2, • • •, xn, } T

r(t) = 0 r(t) identically equals zero for all t £ [0,oo)
FMS fast-motion subsystem
LTI linear time-invariant system

SMS slow-motion subsystem
ZOH zero-order hold

• end of the proof
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desired frequency response, 52

differential equation, 25, 59 frozen variable, 10
dynamics, 34, 59, 65, 157
dynamics realization, 35 gradient descent method, 60
manifold, 45
pole region, 26 high-frequency asymptote, 91
transfer function, 25 high-gain observer, 41
vector field, 36 higher order optimization algorithm,

differentiating filter, 39 68
disturbance, 6, 23, 183 highest derivative, 58
dominant poles, 27 hysteresis, 141

eigenfunction, 314 implicit function theorem, 8, 163
eigenvalue, 314 influence
equation of varying parameters, 100

desired, 58 input sensitivity function with
harmonic balance, 141, 183 respect to noise, 96
of desired dynamics, 157 input signal type, 27
parabolic, 313 insensitivity condition, 35, 45, 59, 66,

equilibrium point, 2, 3 140, 158, 193, 236, 256, 280, 293,
error 304, 315, 319

of acceleration, 29 insertion of redundant control, 227
of desired dynamics realization, 65, insertion of supplementary

80, 315 conditions, 226
of static position, 263 internal stability, 160, 288, 296, 308
of steady state, 24, 73, 262 interval polynomial, 129
of velocity, 28, 263 inverse system, 156

errors of the implementation, 260, 299 invertibility
estimation of modes, 322 condition, 154
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of dynamical system, 151
fast motions ITAE criterion, 29

in presence of singular
perturbances, 133 Laplace transform, 89, 135

fictitious frequency, 276 limit cycle, 52, 140, 180
final value, 24 limitations of control accuracy, 299
final value theorem, 28 linear inverse dynamics solution, 295,
fixed point theorem, 271 315, 319
forward compensator, 84 low-frequency asymptote, 90
frequency lower bound for Lyapunov function, 4

actual, 26, 86 Lyapunov
corner, 91 equation, 3
crossover, 106, 122, 238 function, 2
damped, 26, 86
natural, 30 main steps of design procedure, 77
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margin ramp external disturbance, 82
gain, 106, 122 ramp reference input, 28, 83
neutral, 101 realization error of desired dynamics,
oscillating, 101 193, 205
phase, 106, 122, 239, 244, 248 reference

marginally stable FMS, 101, 121 input, 23, 29
Markov parameter, 288, 297, 299 model, 25
matching matrix, 196, 302 region of FMS stability, 101
matrix regular perturbance, 127

annihilating, 164 regularly perturbed plant model, 126
Hurwitz 3 relative degree, 127, 156, 172

Michailov ' relative error
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nonlinear inverse dynamics solution, ,
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. .,„„ robustness, 260

nonsmooth, 136 , „_, ' root placement, 85smooth, 64 f , , _. ' ,„ , root-locus method, 261normal form, 161
normal modes 314 sampled-data control system, 287
normalized polynomial, 87 sampling period, 234, 254, 288, 300
N y q u l s t selective exclusion of control, 226

plot, 120, 141 sensor noise attenuation, 96
stability criterion, 120, 238 s e r i e s

Fourier, 53, 140, 180
° P e r a t o r Laurent, 288

identity, 152 Maclaurin, 235
inverse, 152 settling time, 24

output, 23 settling time of FMS, 85
overshoot, 24 singularly perturbed plant model, 132

singularly perturbed system
Peak continuous-time, 7

time- 24 discrete-time, 18
value, 24 sinusoidal plus bias describing

perturbation, 1 function, 181
perturbation sinusoidal transfer function, 139

nonvanishing, 6 sliding motions, 49
vanishing, 5 small parameter, 1

plant, 23 Smith predictor, 123, 242
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dynamics, 36, 38, 59, 159, 258, 282 unit step input, 28

spectral density, 95 unity-feedback system, 107
stabilization upper attenuation of the

of degenerated mode, 225 high-frequency sensor noise, 98
of internal dynamics, 221, 225 upper bound for Lyapunov function, 4
of zero dynamics, 225

standard singular perturbation Van der Pol oscillator, 175
model, 8 vector field, 35

steady state velocity error
of FMS, 71, 79, 196, 210, 219, 237, due to external disturbance, 82,

244, 320 124
of SMS, 80, 205 due to reference input, 83

step function
of acceleration, 29 zero placement by redundant control,
of velocity, 28 217

step response parameters, 24 zero-dynamics, 169
subsystem

external, 164
internal, 164
of fast motions, 15, 62, 70, 195,

294, 320
of slow motions, 63, 72, 197, 295,

321
switching regulator, 180
switching surface, 50
system

boundary-layer, 10
closed-loop, 68, 195
closed-loop

discrete-time, 269
closed-loop

continuous, 198
degenerated, 169
exogenous, 150
nominal, 1
perturbed, 1
reduced, 8
type, 29, 265

time delay in control, 116, 180
time scale, 118
Tustin transformation, 240
two degree-of-freedom feedback

system configuration, 61, 67
two-time-scale motions, 8




