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Preface

Methods for the analysis and design of nonlinear control systems are grow-
ing rapidly. These developments are motivated by extensive applications,
in particular, to such areas as mechatronic systems, robotics, and aircraft
flight control systems. A number of new ideas, results, and approaches has
appeared in this area during the past few decades.

This text was developed as a systematic explanation of one such new
approach to control system design, which can provide effective control of
nonlinear systems on the assumption of uncertainty. The approach is based
on an application of a dynamical control law with the highest derivative
of the output signal in the feedback loop. A distinctive feature of the
control systems thus designed is that two-time-scale motions are forced
in the closed-loop system. Stability conditions imposed on the fast and
slow modes, and a sufficiently large mode separation rate, can ensure that
the full-order closed-loop system achieves desired properties: the output
transient performances are as desired, and they are insensitive to parameter
variations and external disturbances.

A general design methodology for control systems with the highest
derivative in feedback for continuous-time single-input single-output (SISO)
or multi-input multi-output (MIMO) systems, as well as their discrete-time
counterparts, is presented in this book. The method of singular perturba-
tion is used to analyze the closed-loop system properties throughout.

The material is structured into thirteen chapters, the contents of which
could be outlined as follows.

Chapter 1: Regularly and singularly perturbed systems. The main pur-
pose of this chapter is a short explanation of some preliminary mathemat-
ical results concerning the properties and analysis of perturbed differential
equations. The results constitute a background for an approximate analysis

vii
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and design of nonlinear control systems under uncertainty.

Chapter 2: Design goal and reference model. The problem statement
of output regulation for nonlinear time-varying control systems and the
basic step response parameters are discussed. The model of the desired
output behavior in the form of a desired differential equation is introduced;
its parameters are selected based on the required output step response
parameters (overshoot, settling time). Particularities of the reference model
construction, in order to obtain the required system type, are also discussed.

Chapter 8: Methods of control system design under uncertainty. In this
chapter a short overview of robust control synthesis techniques on the as-
sumption of uncertainty is given. Main attention is devoted to discussion of
nonadaptive approaches, in particular, to control systems with the highest
derivative of the output signal and high gain in the feedback loop, control
systems with state vector and high gain in the feedback loop, and control
systems with sliding motions.

Chapter 4: Design of SISO continuous-time control systems. The prob-
lem of output regulation of SISO nonlinear time-varying control systems is
discussed. The control system is designed to provide robust zero steady-
state error of the reference input realization. Moreover, the controlled out-
put transients should have some desired behavior. These transients should
not depend on the external disturbances and varying parameters of the
plant model. The insensitivity condition of the output transient behav-
ior with respect to external disturbances and varying parameters of the
system is introduced. The highest derivative in the feedback loop is used
in proposed control law structures. The limit behavior of control systems
with the highest derivative of the output signal in the feedback loop is dis-
cussed. Closed-loop system properties are investigated on the basis of the
two-time-scale technique and, as a result, slow and fast motion subsystems
are considered separately.

Chapter 5: Advanced design of SISO continuous-time control systems.
Problems related to implementation of continuous-time control systems
with the highest derivative in feedback are discussed. In particular, control
accuracy and robustness of the control system, various design techniques
for choosing controller parameters, the influence of high-frequency noisy
measurements, and noise attenuation are considered.

Chapter 6: Influence of unmodeled dynamics. The peculiarities of SISO
continuous-time control system design with the highest derivative in feed-
back are discussed on the assumption of uncertainty in the model descrip-
tion caused by unmodeled dynamics. These dynamics reflect errors on the
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system degree (or relative degree). Their influences, such as a pure time
delay in the feedback loop and the unstructured uncertainties, lead to a
plant model in the form of perturbed and/or singularly perturbed systems
of differential equations. Some particulars of control design in the presence
of a nonsmooth nonlinearity in the control loop are discussed as well.

Chapter 7: Realizability of desired output behavior. The conditions of
realizability of the desired output behavior are discussed in this chapter.
These are connected with invertibility conditions, nonlinear inverse dynam-
ics solutions, and the problem of internal behavior analysis. Concepts such
as invertibility index (relative degree), normal form of a nonlinear system,
internal stability analysis, degenerated system on condition of output sta-
bilization, and zero-dynamics are discussed. The design methodology for
SISO control systems with the relative highest derivative in feedback is
considered in the presence of internal dynamics. Finally, the problem of
switching controller design is discussed.

Chapter 8: Design of MIMO continuous-time systems. The problem
of output regulation of MIMO nonlinear time-varying control systems is
discussed. Here the goals of control system design are to provide output
decoupling and disturbance rejection, i.e., each output should be indepen-
dently controlled by a single input, and to provide desired output transient
performance indices on the assumption of incomplete information about
varying parameters of the plant model and unknown external disturbances.
The design methodology for SISO control systems with the highest deriva-
tive in feedback are extended to cover MIMO nonlinear time-varying control
systems. The control law structure with the relative highest derivative in
feedback is used in order to provide desired dynamical properties and de-
coupling of the output transients in a specified region of the system state
space. The systematic design procedure for the control laws with the rela-
tive highest output derivatives is presented. The output regulation problem
is discussed on the assumption that the previously presented realizability
of the desired output behavior is satisfied.

Chapter 9: Stabilization of internal dynamics. This chapter is devoted
to consideration of control system design where the dimension of the control
vector is large, as the dimension of the output vector and redundant comntrol
variables are used in order to obtain internal dynamics stabilization. By
this, the presented design methodology may be extended to more general
system types. The discussed problem of internal dynamics stabilization for
linear time-invariant systems corresponds to the displacement of zeroes of
the transfer function in the left half of the complex plane.
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Chapter 10: Digital controller design based on pseudo-continuous ap-
proach. The design of digital controllers for continuous nonlinear time-
varying systems is discussed. The control task is formulated as a track-
ing problem for the output variables, where the desired decoupled output
transients are attained on the assumption of incomplete information about
varying parameters of the system and external disturbances. A distinguish-
ing feature of the approach is that a pseudo-continuous-time model of the
control loop with a pure time delay is used, where the delay is the result of
a zero-order-hold transfer function approximation. The linear continuous-
time controller with the relative highest output derivatives in feedback is
designed, where the control law parameters are selected in accordance with
the requirements placed on output control accuracy and damping of fast-
motion transients. In particular, the selection of the sampling period is
provided based on the requirement placed on the phase margin of the fast-
motion subsystem. Then the Tustin transformation is applied to calculate
the parameters of a digital controller. In order to increase the sampling pe-
riod, a control law with compensation of the pure time delay is introduced.

Chapter 11: Design of discrete-time control systems. The method of
discrete-time control systems design to provide the desired output tran-
sients is introduced, and is related with the purely discrete-time systems.
In the case of continuous-time plants, the first step to be performed is dis-
cretization of the plant model. As a result, the discrete-time model of the
plant in the form of a difference equation is used. A procedure to analyze
the fast and slow motions in the discrete-time control system is given. It
has been shown that if a sufficient time-scale separation between the fast
and slow modes in the closed loop system and stability of the fast motions
are provided, then after damping of the fast motions the output behavior
in the closed loop system corresponds to the reference model and is insen-
sitive to parameter variations of the plant and external disturbances. The
design methodology is the discrete-time counterpart of the previously dis-
cussed approach to continuous-time control system design with the highest
derivative in feedback.

Chapter 12: Design of sampled-data control systems. In this chapter, a
design methodology for the discrete-time control system with two-time-scale
motions is extended for the purpose of sampled-data control system design,
by taking into account the particulars of the model of a series connection
between a zero-order hold and a continuous-time system with high sampling
rate. As a result, an approach to derive an approximate discrete-time model
for nonlinear time-varying systems preceded by zero-order hold (ZOH) in
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the form of a difference equation with a small parameter is represented,
where the small parameter depends on the sampling period. The design of
SISO as well as MIMO sampled-data control systems is discussed.

Chapter 13: Design of control systems with distributed parameters. The
main points of the extension of the previously presented methodology for
control system design with the highest derivative in feedback for distributed
parameter systems are highlighted, based on consideration of the parabolic-
type system.

The book aims to disseminate new results in the area of control system
design under uncertainty, and may be used as a course textbook. It con-
tains numerous examples with simulation results, as well as assignments
suitable for courses in nonlinear control system design. The core of the
book is based on a translation of an earlier book [Yurkevich (2000a)] and
lecture notes used by the author over the last ten years with students in the
Automation and Computer Engineering Department at Novosibirsk State
Technical University.

The design methodology may be useful for graduate and postgraduate
students in the field of nonlinear control systems design. It will also be of
interest to researchers, engineers, and university lecturers who are taking
aim at real-time control system design in order to solve practical problems in
the control of aircraft, robots, chemical reactors, and electrical and electro-
mechanical systems.

Any comments about the book (including any errors noticed) can be
sent to (yurkev@masl.ru) with the subject heading (book). They will be
sincerely appreciated.

It is with great pleasure that I express gratitude to many colleagues
who contributed to this book through useful discussions and helpful sug-
gestions. My students and colleagues from the Automation Department
of Novosibirsk State Technical University and, in particular, Professors
G.A. Frantsuzova, O.Ya. Shpilevaya, and A.S. Vostrikov, have provided
me with stimulating discussions of the subject. Professors A.L. Fradkov
(Institute for Problems of Mechanical Engineering, Academy of Sciences
of Russia), A.I. Rouban (Krasnoyarsk State Technical University), S.D.
Zemlyakov (Institute of Control Sciences, Academy of Sciences of Russia),
and N.D. Egupov (Kaluga Branch of Bauman Moscow State Technical Uni-
versity), offered many helpful suggestions and much moral support during
my work. I would like to thank Professors M.J. Blachuta and K.W. Wo-
jciechowski (Institute of Automatics, Silesian Technical University), with
whom I have had the pleasure of working. Reviews of the book, along with
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many useful comments and pieces of advice were kindly provided by Pro-
fessors J-P. Barbot (Equipe Commande des Systémes) and L.M. Fridman
(Universidad Nacional Avtonoma de Mexico) and were very much appreci-
ated. I am grateful to Professor A. Guran (series Editor-in-Chief, Institute
of Structronics of Canada) for the opportunity to publish this book, Pro-
fessor M. Cloud (Lawrence Technological University) for editing the entire
manuscript, and Mr. Yeow-Hwa Quek (World Scientific editorial staff) for
assistance in the production of this book. Finally, I am grateful to Profes-
sors N. Esmail and K. Khorasani for many-sided and considerate support,
and for accommodating me with the possibility of creative and fruitful work
on the Faculty of Engineering & Computer Science at Concordia University.

Most of all, I would like to thank my wife, Lyudmila, for her love and
moral support in my life and work.

Montreal, 2003 Valery D. Yurkevich
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Chapter 1

Regularly and singularly perturbed
systems

The main purpose of this chapter is to briefly explain some preliminary
mathematical results concerning the properties and analysis of perturbed
differential equations. These are used throughout the book as background
for a technique of approximate analysis and design of nonlinear control
systems. In particular, the main notions of two-time analysis, as well as the
conditions for the stability of regularly and singularly perturbed differential
equations, are introduced. Quantitative criteria for degree of time-scale
separation between fast and slow motions are considered.

1.1 Regularly perturbed systems

1.1.1 Nonlinear nominal system

Let us consider an autonomous (time-invariant) dynamical system given by
X = F(X) + ug(X), (L1)

where
X is the state of the system (1.1), X € R", X = {z1,22,...,2,}7;
f and g are continuous functions of X on Qx;
{1x is an open bounded subset of R";
U is a positive small parameter.
Taking ¢ = 0 in (1.1) we obtain the system

which is called the nominal system. The system (1.1) is called a perturba-
tion or perturbed system of the nominal system (1.2).
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First, let us make some assumptions regarding the properties of the
nominal system.

Let 0 € 1x C R™ and let X = 0 be an equilibrium point of (1.2), i.e.,
F(X)|x_o = 0. Let us assume that a Lyapunov function V(X)) exists such
that the inequalities

X1 < V0 < sl X, (13)
V(X) = T2 1K) < ~esll X, (1.9
|| < clxi (15)

are satisfied for all X € Qx, where ¢; are some positive constants and
v [V oV 8_V
80X |0z, Oxzy’ " Ozp

is a row vector.

From (1.3) the inequalities

VX) VX)

—= <|IX|* < (1.6)
[5)) C1
result. Then from (1.4) and (1.6) we have
V(X) < ~esll XI” < - 2V(X). (L.7)
2
Consequently
i
JIE N 1Y
o V V(X(0 ca
and
V(X(t)) < V(X(0)) exp <—§5t) , (1.8)
2

where t denotes the time variable.
In accordance with (1.3), (1.6), and (1.8), we have

VY2(X(t)) < V1/2(X(0)) exp <—c—3t>
2

12 = 1/2 c
¢y a 2

2] " ix@leo (-2). (19)

Ci

X @l

IA

IA
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From (1.9) it follows that

lim X(t) =0

t—o0

and, moreover, that X = 0 is the exponentially stable equilibrium point of
(1.2). The result may be formulated as a theorem.

Theorem 1.1 Let X = 0 be an equilibrium point for system (1.2), and
suppose the Lyapunov function V(X) exists such that the conditions (1.3)

and (1.4) are satisfied. Then the origin of the system (1.2) is exponentially
stable.

1.1.2 Linear nominal system

Let us consider a linear time-invariant (LTT) dynamical system of the form
X = AX, (1.10)

where
(i) A is an n X n real matrix;
(i) det(A) # 0 and so X = 0 is the isolated equilibrium point of (1.10);
(iii) ReA;(A) <0, Vi=1,...,n and so A is a stability matrix! (Hur-

witz matrix.)

Let us consider a quadratic Lyapunov function
V(X)=XTPX, (1.11)

where P is a real symmetric positive definite matrix and P is the unique
solution of the Lyapunov equation

PA+ATP=—Q (1.12)

for the given real symmetric positive definite matrix Q.

1Re A;(A) is the real part of the eigenvalue \; of A.
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Then the inequalities (1.3), (1.4), (1.5) appropriate to (1.10), (1.11) may
be rewritten in the following form:

Amin(PIXIE < V(X) < Amax(P)I X3 (1.13)
e @IXIE < V() = X ax
= —XTQX < “Amln(Q)HX“%: (114)

1%
Ha_X” = [2X7 P, < 2/P2]l X ]2 = 2Amax (P X]fo.  (1.15)
2
Consequently, the inequality (1.7) may be rewritten as

V(X) € —Amin(QIX2 < ——j{%vm (1.16)

Then from (1.16) an upper bound for the Lyapunov function V(X)) follows:

V(X(t) < V(X(0)) exp (— s t) .

Therefore, instead of (1.9), from the above we have

1/2 .
Il < (320 1x@lee (<522 @) @)

as an upper bound for the norm of the function X(t).

Note that the ratio Amin(Q)/Amax(P) is maximized if @ = I (see in
[Patel and Toda (1980)], [Khalil (2002), p. 372]).

Similarly, from (1.13) and (1.14) it follows that

Amax (@)
)‘min(P)

is a lower bound for the derivative V(X) of the Lyapunov function V(X)
with respect to t, and hence

V(X) > —dmax (@)X 3 = -

V(X)

V(X(8) > V(X(0)) exp (—A“‘“(Q)t)

)\min(P)

is a lower bound for the Lyapunov function V(X). Finally, from (1.13) and
(1.18), we find that

(1.18)

)‘min(P) )‘max(Q) t) (119)

1/2
IX®)ll2 > [Amax(P)] X (0[] exp (—m



Regularly and singularly perturbed systems 5

is a lower bound for the norm of the solution X(t) of the linear system
(1.10).

1.1.3 Vanishing perturbation

Let us consider the system (1.1), where it is assumed that the above as-
sumptions regarding the function f are satisfied and, moreover, that g is
an unknown continuous function of X on Qx and ¢5 > 0 exists such that
the condition

lg(XIl < esll XN, VX €Qx (1.20)

holds.

From (1.20) follows that g(X)|y_, = 0, and so the perturbation van-
ishes completely at the equilibrium point.

Obviously, the time derivative of V(X) along trajectories of (1.1) is
given by

V(X) = 5% F(X) + nosa(X). (1.21)

In accordance with the above assumption, (1.4)—(1.5), and (1.20), it is easy
to see that

: ov
V) < el XIP 4 | ] 1901 < (2 - peserlxIP. (122
As a result, if the inequality

C3
O<pu<— 1.23
B o (1.23)

is satisfied, then
c3 — peges >0
and, accordingly, we have
V(X)<0, YVX#0, VXeQy. (1.24)

From (1.3), (1.22), and (1.24) it follows that the origin is an exponentially
stable equilibrium point of the perturbed system (1.1) if the parameter u
is small enough. So the result may be formulated as a theorem.

Theorem 1.2  Let the origin of the nominal system (1.2) be an exponen-
tially stable equilibrium point, and suppose the requirement (1.20) for the
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continuous function g holds. Then there exists p* > 0 such that for all
u € (0, u*), the origin of perturbed system (1.1) is exponentially stable.

Instead of (1.1), let us consider the system given by
X = AX + pg(X), (1.25)

which is the perturbation of the stable linear nominal system (1.10). Then
the inequality (1.22) appropriate to (1.25) may be rewritten as

V(X) S —)\min (Q)“X”% + 2“)‘max(P)65“X”%
and, from (1.23), the inequality

Amin(Q)

0 <t < m(Pes

follows, where P is the solution of the Lyapunov equation (1.12).

1.1.4 Nonvanishing perturbation

Instead of (1.1), let us consider the perturbed system given by
where the above assumptions regarding the function f are satisfied and

(i) g is an unknown continuous function of X on Q2x and of w on Q,;
(ii) w serves to represent a vector of external disturbances and varying
parameters;
(iii) w € Ny, where O, is a bounded subset of R'.

When we refer to a nonvanishing perturbation of the nominal system
(1.2), we have in mind that

Jwe Q| g(X=0,w)#0 (1.27)
and that a positive constant cg exists such that
lg(X,w)|| <cg, VX EQx andVw € Qy,.

Then, in accordance with (1.26), (1.4), and (1.5), the time derivative of
V(X) along trajectories of (1.26) can be found using the chain rule. It is



Regularly and singularly perturbed systems 7

given by

oV ov
= ax f(X) + nos9(X,w) < —cs]| X2 + peacs || X |

= —(1 = d)es[| X2 + (neacs — des| X [DIX |-

V(X)

Let 0 < d < 1. If the inequality

HC4Cq
>
1) > 2
is satisfied, then
V(X) < (1 - d)esf| X[, (1.28)

Hence, some finite time ¢, exists such that the condition (1.28) holds for all
t € [0,%1). Therefore, similar to (1.9), we have an upper bound for || X (¢)}|
on this finite time interval given by

C2 1/2 _Q-deg,
IXOI< | 2| IX©le =™, vosi<y
1

and an upper bound for || X (¢)|| on infinity defined by the inequality
IX@I<E2, vezn. (1.29)
dC3

So in the presence of the nonvanishing bounded perturbation discussed
above, the solutions of (1.26) are ultimately bounded with an ultimate
bound (1.29) that approaches zero as p — 0.

Let us reconsider the perturbed system of the form (1.25) with the linear
nominal mode! (1.10) and in the presence of the nonvanishing bounded per-
turbation (1.27). Then from (1.15) and (1.16) it follows that the inequality
(1.29) may be rewritten as

2/.1,)\max(P)Cﬁ Vi> tl

X®2 < m, >

1.2 Singularly perturbed systems

1.2.1 Singular perturbation
Let us consider the following set of differential equations:

X = f(X,2), X(0)=X°, (1.30)
,uZ=g(X,Z), Z(O) =Zoa (131)
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where 1 is a small positive parameter, X € R®, Z € R™, and f and g are
continuously differentiable functions of X and Z.

The system (1.30)—(1.31) is called the standard singular perturbation
model of a finite-dimensional dynamical system.

Let us release Z from the initial condition; then, with 4 = 0, the system
(1.30)—(1.31) of dimension n + m degenerates into

X =f(X,2), X(0)=X°, (1.32)
0= g(X, Z)a (133)

where the system (1.32)—-(1.33) has dimension n.
In accordance with the implicit function theorem, assume that

det {W} #0, VZeQg; (1.34)

then a function
Z = h(X) (1.35)

exists such that the function (1.35) is an unique solution of the equation
g(X,Z) = 0. Accordingly, the equality

9(X,h(X)) =0, VX e€Qx

holds.
Then the set

M={X,2) | ¢(X,Z2) =0} (1.36)

is an n dimensional manifold in the original n +m dimensional state space
and, in accordance with (1.32) and (1.33), the behavior of X (t) on this
manifold is described by the reduced system

X = f(X, (X)), X(0)=X°. (1.37)

1.2.2 Two-time-scale motions
If a pair of functions X(t), Z(t) is such that
g(X®),Z(t)=0,¥vt=>0
then the equality
do(X(t),Z(t))/dt=0,Vt>0
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also holds. Accordingly, we have

g dg
5-)?X OZZ (1.38)

and from (1.34) and (1.38) it follows that the behavior of Z(t) on the
manifold (1.36) is described by the equation

-1
g _[091 99
az oX
It follows that on the manifold M the ratio

121 _ “ ag - ag
B

is some regular numerical value that depends only on the functions f,g.

At the same time, in accordance with the system of equations (1.30)
and (1.31), we find that at an arbitrary point (X,Z) ¢ M of the n + m
dimensional state space this ratio is given by

12l _ 1llg(X, 2)]
x| wlfX,2)|

and depends on the small parameter u. So if ¢ — 0, then beyond the
manifold M two-time-scale motions appear in the solutions of the equations
(1.30)—(1.31), where Z is a fast changing variable and X is a slow changing
variable as shown in Fig. 1.1.

W

Fig. 1.1 Typical phase portrait in the case of a singularly perturbed system.
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1.2.3 Boundary-layer system

Let us introduce a new variable Y = Z — h(X), where Y is a deviation of Z
from manifold (1.36). Then the equations (1.30)-(1.31) may be rewritten
in the form

d;t( = f(X,Y + h(X)), X(0)=X° (1.39)

where Y(0) = Z(0) — h(X(0)). After introducing a new time scale to = t/u
into (1.39)~(1.40), we have

to
Z—:: = 9(X,Y + h(X)) - uaXf(X Y + h(X)), Y(0) = Y°. (1.42)

From (1.41)-(1.42) it is easy to see that in the new time scale ¢y we have
dX/dty — 0; that is, the rate of transients of X (t) decreases as u — 0.
As a result, if u tends to zero then from (1.41)—(1.42) the equation of a
boundary-layer system

dy

o =g9(X,Y +h(X)), Y(©0)=Y" (1.43)

follows as an asymptotic limit, where X is the frozen variable, i.e., X =~
const.

1.2.4 Stability analysis

The investigation of conditions under which the trajectories of the full
singularly perturbed system (1.30)-(1.31) approximate to the trajecto-
ries of the reduced model (1.37) is important both from a theoreti-
cal viewpoint and for practical applications in control system analy-
sis and design. These conditions were considered in [Tikhonov (1948);
Tikhonov (1952)] and [Vasileva (1963)] for a bounded time interval t €
[0,¢;], and then in [Krasovskii (1963); Klimushchev and Krasovskii (1962)]
and [Hoppensteadt (1966)] for an infinite time interval ¢ € [0, 00).

The simplified version of stability analysis of the singularly perturbed
systems is provided below, while more detailed analysis may be found, for
instance, in [Khalil (2002)).



Regularly and singularly perturbed systems 11

Consider the singularly perturbed system (1.30)—(1.31)

X =f(X,2), X(0)=X",
pZ =g(X,2), 2(0)=2°

where the following assumptions are satisfied:

e f(0,0)=0, g¢(0,0)=0.
e The equation g(X,Z) = 0 has an unique isolated root Z = h(X)
such that ~(0) = 0 and

[A(X] < miliX|, V X € Bp, = {X €R™ | | X]| < ps}, 1 >0

e The functions f, g, and h, along with their partial derivatives up
to order 2, are bounded for all Y = Z — h(X) € B,,, where

By, ={Y e R™ | |Y|| < py}.

In addition, we assume that a Lyapunov function V(X) of the reduced
system (1.37) exists such that

allXI? < V(X) < el X2, (1.44)
Dv(x) = 22 x,h(5)) < —eslI X2 (1.45)
] %]] < el X, (1.46)

for all X € B,,, where c; are some positive constants. Therefore, in accor-
dance with Theorem 1.1, the origin of the reduced system (1.37) is expo-
nentially stable.

By introducing the new variable Y = Z — h(X), let us rewrite equations
(1.30)—(1.31) in the form (1.39)-(1.40) and consider the boundary-layer
system (1.43). Assume that a Lyapunov function W(Y) of (1.43) exists
such that

h|Y[? < W(Y) < bfY)?, (1.47)
W) = SLo(X,Y +h(X)) < ~llY I, (1.48)
H ” < b, (1.49)

for all Y € B, , where the b; are positive constants. Hence, by Theorem
1.1, the origin of the boundary-layer system (1.43) is exponentially stable.
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Let us consider the function
(X, Y)=(1-d)V(X)+dW(Y) (1.50)

as a Lyapunov function candidate for the singularly perturbed system
(1.39)—(1.40), where 0 < d < 1. Then the derivative of (1.50) along the
trajectories of (1.39)—(1.40) is given by

L = (- ) T2 F(X,Y + h(X))
+§(;V;//g(X,Y+h(X)) dZ—V;th— (XY +h(X).  (L51)

Because the function f and its partial derivatives up to order 2 are bounded
forall Y € B,,, and because f(0,0) = 0, the Taylor expansion of f(X,Y +
h{X)) yields

FOXY 4 h(X)) = FOGR()) + 95¥ +O(1¥ ),

where
LAY + B < BolIX] H ||<h, IOAY )] < LY,

and the [; are some positive constants.
By taking into account the above assumptions, we obtain from (1.51)
the inequality

dzx

7 S—0- d)es|| X |I? + [(1 — d)eals + dbarmlo] | X |||V

d
+ | (1 = d)esla | X || + dbamyly + dbgmyl||Y|| — ;bg IY]2. (1.52)
Then (1.52) can be represented as

dv T
—— < T
dt A

where 7 = {||X||, |Y}" and

T = [’Yn 712]
Y21 Y22
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in which

11 = (1 —d)cs,
712 = Y21 = —0.5[(1 — d)ealy + dbgmalo],

Yoz = %b3 — (1 = d)cala|| X || — dbgmyly — dbgmlolfY).

Since X € B,,,Y € By, and 0 < d < 1, there exists some small u = p* >0
such that the matrix I" is positive definite:

r'>0.
Then
Mmin(DH 13 < 7770 < Amax(DIll3-
From (1.44) and (1.47) it follows that some constants d;,ds exist such that
di|lnl]* < v(m) < dainll®.

As a result we have

dv T 2 )\min(r)
< < “Ami < fmind
TS 7 Tn < =Amin(D)lInllz < s v
Hence
VX(0,Y(0) < H(X(0), Y(O) exp (- 2220))
2
and, accordingly, we obtain
d2 12 )\min(r)
O < 1 == 0 ——1).
oo < [$2] o) esp (-2 )

Note that |[h(X)]] < mi||X|| and Y = Z — h(X); then there exists m > 0
such that
. , Amin (T
1901 < mi©)exp (- 2221}
2

where 7 = {||X||,||Z||}T or, in other words, the origin of (1.30)-(1.31)
is exponentially stable. The result may be formulated as the following
theorem.
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Theorem 1.3  Consider the singularly perturbed system (1.30)~(1.81)

X = f(X,2), X(0)=X°,
nZ = g(X,2), 2(0) = 2°,

under the following assumptions.

e f(0,00)=0, g¢(0,0)=0.
o The equation g(X,Z) = 0 has a unique isolated root Z = h(X)
such that h(0) = 0 and [[A(X)| € m1|| X, where

m >0, X € B,,, By, = {X €R*| |X]| < pu}.

o The functions f, g, h and their partial derivatives up to order 2 are
bounded for allY = Z — h(X) € B,,, where

Y e By, By, ={Y eR™ | Y] < py}.

e The Lyapunov function V(X) of the reduced system (1.37) exists
such that (1.44)-(1.46) are satisfied for all X € B,,_.

e The Lyapunov function W(Y) of the boundary-layer system (1.43)
ezists such that (1.47)-(1.49) are satisfied for all Y € B,,.

Then there exists u* > 0 such that for all p € (0, u*), the origin of (1.80)-
(1.81) is exponentially stable.

1.2.5 Fast and slow-motion subsystems

The above procedure for obtaining the boundary-layer system may be di-
rectly applied to (1.30)—(1.31) in order to obtain equations of fast-motion
subsystem (FMS) and slow-motion subsystem (SMS). First, by introducing
the new time scale tg = ¢/ into (1.30)—(1.31) we have

dXx

dty

4

dto

where the FMS is given by
dz

Go=ex.2), 20)=2° (1.53)

=uf(X,2), X(0)=X",

=9(X,2), 2(0)=2"

in the new time scale tp and X(¢y) = const during the transients in the
subsystem (1.53).
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By returning to the primary time scale ¢, from (1.53) the FMS equation

u% =9(X,2), 2(0)=2° (1.54)
is obtained, where X (¢) is the frozen variable, i.e., X (t) = const.

Second, let us assume that there is an unique equilibrium point (1.35) of
(1.54) (more precisely, quasi-equilibrium point) that satisfies g(X, Z) = 0.
Moreover, we assume that Z = Z is an exponentially stable equilibrium
point of (1.54).

Finally, on the above assumption of exponential stability of the equi-
librium point Z = Z, we have that Z(t) = Z — 0,V t > 0 as u — 0. So
if the parameter y is small enough, then after rapid decay of transients in
the FMS (1.54) we find that the condition Z = Z is satisfied. Substitution
of Z = h(X) into (1.30) yields the SMS equation (1.37).

1.2.6 Degree of time-scale separation
Let us consider a linear standard singularly perturbed system
X = A X + ApY, (1.55)
pY = A X + AgpY, (1.56)
where 4 is a small positive parameter, X € R", Y € R™, and the 4,; are
matrices with appropriate dimensions.

In accordance with the above formal algorithm of time-scale separation,
we have that

pY = An X + ApY (1.57)

is the FMS equation, where X = const.
Assume that det Ay # 0 and, moreover, Asz is a Hurwitz matrix. Then
it is easy to find that

X=AX (1.58)

s

is the SMS equation, where
A, = Ay — ApAz; An

and we assume that A, is a Hurwitz matrix as well.
From a practical standpoint it is useful to have some quantitative criteria
for the degree of time-scale separation between stable fast and slow motions.
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The ratio

n= ts,sMs/tS,FMs (1'59)

serves as a direct estimation of such a degree, where t; ¢ and ¢; ,,,. are
the settling times of the SMS and the FMS, respectively. We may also
consider indirect estimates of the degree of time-scale separation between
stable fast and slow motions, where the first estimate is based on solution
of the Lyapunov equation and the second one is based on roots of the FMS
and SMS characteristic polynomials.

Estimate based on solution of Lyapunov equation

The lower and upper bounds (1.17) and (1.19) of the linear differential
equation solution may be used to introduce a quantitative criterion for
degree of time-scale separation between stable fast and slow motions.

First, because the FMS (1.57) is stable, the Lyapunov function V,, (Y) =
YTP_Y of the FMS (1.57) may be obtained by solving the Lyapunov equa-
tion

P Ay + ALP, = -Q,, (1.60)

where Q. = 7;, Q.>0,P, = PZ, and P, > 0. Then, in accordance with
(1.17), the upper bound of the fast variable Y follows:

1/2 _
Yl < |32 e (-5 ey

P
Next, since the SMS (1.58) is stable, the Lyapunov function V (X) =
XTP_X of the SMS (1.58) may be obtained by solving the Lyapunov equa-
tion

P A, + ATP, = -Q,

where Q5 = Qz, Qs >0,and P, = Pg, P, > 0. Then, in accordance with
(1.19), the lower bound of the slow variable X follows:

‘ 1/2
x> |2 e (-gEE) . 0

The ratio of the exponents in (1.61) and (1.62),

/\min(Ps))\min(Qp)
/L/\max(Pp)Amax(Qs),

™=
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may be used as the degree of time-scale separation between fast and slow
motions. In particular, by choosing Q, = @, = I we obtain?

)‘min (Ps )

Do (P (1.63)

m=

Estimate based on roots of FMS and SMS characteristic
polynomials

Let us consider stable fast and slow subsystems of the linear standard sin-
gularly perturbed system (1.55)—(1.56). Denote by

Fms 1 1 Frums

1 m—1
AFMS(S’u)zdet [SI—;A22:| = s™ +a,,_ I,LLS ++En-a0

and
SMS

Agys(s) = det[s] — Ag] = s"+a, 15" 1 +... +aq

the FMS and SMS characteristic polynomials, respectively. Assume that
sst, .. .,sans and sfMS, . .,sz ® are the roots of the stable FMS and

SMS characteristic polynomials, respectively. Denote

i FMS3 sSMS

min __ : max __

Wiys = . min_ |Res; |, wigt = max [Res; |-
i=1,...,m i=1,.

The ratio

min
o = LEms (1.64)

max
SMS

may be used as a criterion for the degree of time-scale separation between
fast and slow motions.

We may also consider the ratio of FMS natural frequency to SMS natural
frequency

(ag )/

e 1.65
w(ad Ty (1:65)

=

as a quantitative criterion for the degree of time-scale separation between
stable fast and slow motions instead of (1.63).

The estimate 7, is more conservative than 72 and n3. The direct estima-

tion (1.59) of the degree of time-scale separation between stable fast and

2Here I is the identity matrix. A list of notation used throughout the book appears
in Appendix B starting on p. 335.
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slow motions can be based on the correlations (2.4) discussed in the next
chapter. From (2.4) we get

ts ~ — s .
VFMS min SMS = max
FMS SMs

Therefore, by (1.59), we obtain

min

n > FMS
= ,ymax °
SMS

1.3 Discrete-time singularly perturbed systems

1.3.1 Fast and slow-motion subsystems

In this section the discrete-time counterpart of the singularly perturbed
system (1.31) is discussed. We will deal with the system of state space
difference equations given by

Xit1 = {In + pAn } X + pA12Y%, (1.66)
Yiy1 = Aan Xi + A22Yy, (1.67)

where 4 is a small parameter, X € R", Y € R™, and the A4;; are matrices
with appropriate dimensions.

When u = 0, the system (1.66)—(1.67) of dimension n + m degenerates
into the system of dimension m given by

Xi+1 = Xk,

Y41 = A21 Xk + A22Y5.
So if g — 0, then the rate of transients of X decreases and, accordingly,
the fast and slow modes are revealed in the system (1.66)—(1.67), where
a time-scale separation between those modes is represented by the small

parameter u. If p is sufficiently small, then from (1.66)-(1.67) the FMS
equation

Yir1 = A X + AxYs (1.68)

results, where Xy & const during the transients in the system (1.68).
The characteristic polynomial of the FMS (1.68) is

A, s(2) = det(z],, — Aag).
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Assume that all roots of A,,,;(z) lie inside the unit circle so that the FMS
(1.68) is stable. Then the steady-state of the FMS is given by

Yi = {Im — A22} ™' An Xi.. (1.69)
Substitution of (1.69) into (1.66) yields the SMS
Xiyr = {In + plA11 + Aro(In — Azo) " A ]} X,
where the characteristic polynomial of the SMS is
Ags(2) =det(zlm — Agps)s
where

Agys = {In + plAy + Ara(Inm — A) " Anil}

1.3.2 Degree of time-scale separation

Since the complex variables z and s are related by z = e7¢*, the inverse
mapping of the unit circle into the primary strip in the s-plane is given by

1
s= Tsan, (1.70)
where T} is the sampling period and Ln z is the principal value of In z. Here
z = 0 is omitted and there is a cut along the negative real axis.

Assume that the following conditions are satisfied:

FMS FMS SMs SMS
1.2 ,...,2, andz ,...,2 are the roots of the FMS and

14
SMS characteristic polynomials, respectively.
2. All roots lie inside the unit circle as shown in Fig. 1.2(a).

3. There are no roots on the cut or at the origin.

FMS

Then, by the mappmg (1.70), we can obtain the sets of roots 51 S, vy S
and s1 e s as shown in Fig. 1.2(b), and construct two polynomials

Apns(s) = H(s - 3 S ), Agus(s) = H(s - 3 S )

to which the previous criteria can be applied.

If we assume that the last mentioned condition is not satisfied, that is,
there is at least one root on the cut or at the origin, then the following
approach may be used.
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z-plane A s-plane

(a) (b) 5

Fig. 1.2 Roots of the stable FMS and SMS characteristic polynomials in the discrete-
time system (1.66)—(1.67) and their images in the primary strip on the s-plane.

Denote

FMS . SMS
= max |z; |, and rg,s= min |z |,
i=1,....,m i=1,...,n

TFMS

where we assume that

0 <Toms <Tsms < L.
From (1.64) and (1.70) we obtain

_ Brews (1.71)

m = i .
NTsms

The particular feature of the discrete-time FMS (1.68) is that a lower
bound for the settling time exists, which is equal to the settling time of
the deadbeat response.? If all roots of the FMS characteristic polynomial
A (2) are located at the origin, then the settling time of the discrete-
time FMS (1.68) is equal to mT; (the settling time of the deadbeat response
for arbitrarily chosen initial conditions). However, from (2.4) and (1.70) we
get

4T, 4T,
v Losus 2 “Inr

, (1.72)

ts»FMS =

lnT‘I“MS SMS

where &5 ., — 088 7., — 0. Therefore, from (1.72) the value 7, can
be found such that the condition ¢s ., (Fp.s) = MTs is satisfied, where

Toms = exp(—4/m).

3The notion of the deadbeat response can be found, for instance, in [Lindorff (1965);
Chen (1993); Ogata (1994)].
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So the expressions (1.71) and (1.72) can be used only if the inequality
Toms > T holds. If r <7 then, by (1.59), we get

FMS FMS — "FMS

_— 1.73
m Inrg,, (173)

n=z=

1.4 Notes

In this chapter we have discussed the basic principles for approximate anal-
ysis of the properties of the perturbed and singularly perturbed differential
equations. The properties of the regularly and singularly perturbed dif-
ferential equations that we have discussed are used throughout the book
as the basis for an approximate analysis and design of nonlinear control
systems.

Note that the numerical simulation of singularly perturbed differential
equations has some particulars concerning the choice of step size. Usually,
the higher order Runge-Kutta algorithms or Agams-Moulton methods allow
us to obtain numerically stable solutions without special contrivance if the
dimension of the equations is not too high.

There are many references devoted to consideration of particular details
concerned with the analysis of regularly and singularly perturbed systems
of differential equations. These may be found, for instance, in [Vasileva
(1963); Gerashchenko (1975); Kokotovié et al. (1986); Kokotovié and Khalil
(1986)] and [Sastry (1999); Khalil (2002)]. Various aspects of discrete-
time singularly perturbed systems were considered in [Litkouhi and Khalil
(1985); Naidu and Rao (1985); Naidu (1988)].

1.5 Exercises

1.1 The behavior of a dynamical system is described by the equation
2@ 43200 p 2z =0, z(0)=1, =zM(0)=1.

Determine the lower and upper bounds for || X (¢)]|-
1.2 The behavior of a dynamical system is described by the equation

@ + 1520 4+ 05z + p{22? + [zV]2}/2 = 0.

Determine the region of 4 such that X = 0 is an exponentially stable
equilibrium point of the given system.
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1.3

1.4

1.5

1.6

1.7

1.8

1.9
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The behavior of a dynamical system is described by the equation
2@ + 1.521) + 0.5z + p|sin(0.5¢t)| = 0.

Determine the parameter p such that lim;_,o || X (¢)||2 < 0.4.
The behavior of a dynamical system is described by the equations

Ty =2y — T2, pI2 =2x1 + 9.

Obtain and analyze the stability of the SMS and FMS.
The behavior of a dynamical system is described by the equations

i?l =T — T9g, ,Ll.jlg = 2.’131 ~ Tag. (174)

Obtain and analyze the stability of the SMS and FMS. Plot the phase
portraits of the system by computer simulation for u = 0.1,0.5,1 and
compare the results.

Consider the system (1.74). Obtain and analyze the stability of the
SMS and FMS. Determine the parameter u such that 3 = 10.

The behavior of a dynamical system is described by the equations

&1 =129, Zo=1x3~—2r2, MI3=Tq4, WI4=—T1 — T3 T4

Obtain and analyze the stability of the SMS and FMS. Determine the
parameter u, where: (a) n; = 10, (b) n2 = 10, (c) 13 = 10.
Consider the difference equations given by

zi(k+1) = [+ plor (k) + paa(k), za(k + 1) = a1 (k) + bza(k).

Obtain and analyze the conditions for the SMS and FMS stability.
Determine the parameter p such that 1 = 10, where a = 0.35, b = 0.2.
Consider the difference equations given by

z1(k+ 1) = [1 = plz1(k) — plza(k) + z3(k)],
zo(k + 1) = z1(k) + 0.1z2(k) + 0.223(k),
CEQ(k) +1) = 05371(]{7) + 0.2z2(k) + 0.1z3(k).

Obtain and analyze the conditions for the SMS and FMS stability.
Determine the parameter u such that n; = 10.



Chapter 2

Design goal and reference model

Prior to the introduction of any specific design technique, it is appropri-
ate to discuss performance criteria for control systems. These are usually
imposed via the inclusion of some reference model in the controller, either
explicitly or implicitly. We therefore use this chapter to highlight some
basic correlations between the time-domain specifications of the control
system output response and the pole-zero locations of the transfer function
or, alternatively, the parameters of the linear differential equation.

In particular, we discuss basic step response parameters and the problem
of output regulation for nonlinear time-varying control systems. We present
a model of desired output behavior in the form of a differential equation,
the parameters of which are based on required step response parameters
(overshoot, settling time). Finally, we discuss the key role played by zeroes
in the transfer function of the reference model with regard to the attainment
of accuracy in the regulation problem.

2.1 Design goal

A block diagram of a general control system (GCS) appears in Fig. 2.1,
where

is a plant,

is a controller,

is a measurable output (or controlled variable),

is a control (manipulated variable) of the plant,

is a reference input,

incorporates external disturbances or variable parameters unavailable
for measurement.

E s ge QY
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e \w (t) Fig. 2.1 Block diagram of the general con-
: GCS y(t) trol system.

Our goal is to design a control system subject to the condition that

Jlim e(t) =0, (2.1)
where e(t) = r(t) — y(t) is the error of the reference input realization.
Moreover, the controlled transients y(t) should exhibit desired behaviors
and should not depend on the varying parameters or external disturbances
embodied in w(t).

2.2 Basic step response parameters

Usually the behavior of the output variable y(¢) may be described by a small
number of basic step response parameters. These may be directly identified
by inspection of the response when a reference step input is applied to the
control system (Fig. 2.2).

Yy (t) Fig. 2.2 Basic step response parameters of
(7171 I output variable y(t).
r(t) !
0 tp

When referring to the basic step response parameters, we have in mind
the following standard concepts:

e y° is the final value of y(t), where y* = lim;_, oo y(2).

e t, is the settling time, which is defined as the time required for y(t)
to reach and remain within some neighborhood (1 £ &,)y°® of its final
value. We usually assume that &, = |e,/y*| € [0.01,0.05].

e y(tp) is the peak value of y(t), and ¢, is the peak time.

e o is the maximum percent overshoot of the output variable, where
o =100{(y(tp) — v°)/v*| [%].

o ¢° is the steady-state error, where e® = lim;_, . e(t).
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We assume that the control systems discussed below will be designed to
meet the following specifications:

1. The steady-state error e® must be less than ej .., ie., |e’| < el . -
2. The settling time ¢; must be close to the desired value t¢, i.e., t5 = t2.

3. The overshoot o must be close to the desired value o¢, i.e., o = o¢.

2.3 Reference model

Reference model design

Throughout the book a methodology will be discussed where the controller
is designed in such a way that the closed-loop system is required to be close
to some given reference model, despite the effects of varying parameters
and unknown external disturbances w(t) in the plant model. So, the des-
tiny of the controller is to provide an appropriate reference input-controlled
output map of the closed-loop system as shown in Fig. 2.3, where the refer-
ence model is selected based on the required output transient performance
indices.

Usually, it is more convenient for practical applications to represent
the reference model by a desired transfer function or appropriate desired
differential equation, because the relationships between its parameters and
the basic step response parameters are well known. Toward this end, the
pole-zero patterns or Bode diagrams may be used to select the parameters
of the reference model.

Fig. 2.3 Reference model of the closed-loop control system.

Let us now consider the reference model in the form of the rational
continuous-time transfer function (desired transfer function) between the
reference input  and the output y:

1

Ggr(s) = AT(S.)_’

(2.2)
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where
A%s) =Tms" +al_, T 15" 1 4o 4 alTs + 1. (2.3)

A method involving a desired pole region may be used to determine
the parameters T, a‘f,ag, ..., ad of the characteristic polynomial (2.3) in
accordance with the requirements imposed on the step response parameters
of the output transients y(t). For instance, if

yD(to) =0 forall i=1,...,n—1
then from the second-order prototype the relationships !

(e
1—(¢4)?

follow as a first approximation to find the desired pole region for the roots
of the characteristic polynomial (2.3). This region is defined by two param-
eters: the angle ¢, and the value w? (Fig. 2.4).

The value ¢? is called the desired damping ratio, and w? is called the
desired damped or actual frequency [Dorf and Bishop (2001); Kuo and
Golnaraghi (2003)].

tcsi ~ %, o% ~ 100 exp (— ) (%], ¢4 = cos(ad) (2.4)

Fig. 2.4 Desired pole region of the transfer

Ims; function (2.2).

-~ Res;

So the following procedure may be applied to construct the reference
model.

Step 1. From (2.4) the parameters 8¢ and w? of the desired pole region
can be found, that is

4
6% ~ tan™* <_7r_) , wir. (2.5)
In(100/0¢) d

S

LThere are various approximate relationships in {Chen (1993); Dorf and Bishop (2001);
Kuo and Golnaraghi (2003)].
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Step 2. By selecting the n roots sy, sg,..., s, inside the desired pole
region, the desired characteristic polynomial

(s—s1)(s—s2) (5= 8u)

is obtained. Two so-called dominant poles are selected in the corners of the
stated domain. This polynomial may be rewritten in the form of expression
(2.3), where T is a time constant of the desired characteristic polynomial
and T = (—=1)"(s185 - 8,) " 1/™.

Step 3. From the given polynomial (2.3) and the transfer function (2.2},
the reference model in the form of the linear differential equation

Ty 4ol T 1y 4o Ty oy =1 (2.6)
follows. This is called the desired differential equation.

Remark 2.1 In order to form the desired transfer function (2.2) the
well known normalized step responses with non-dimensional time for the
normalized transfer function

1
st +ad_;svl 4. +ads+1

Ggr(s) =

may be used, where the denominator polynomial has its roots distributed in
a Butterworth or binomial-type pattern. Such pole patterns are presented
in many references [Graham and Lathrop (1958); Bosgra and Kwakernaak
(2000)].

In any case, it is desirable to provide computer simulation to verify the
shape of the output response.

Reference model with arbitrary system type

Let the reference input r(¢) be a polynomial time function of degree p.
If r(t) = (t#/p1)1(t) (where p is a so-called input signal type), then the
Laplace transform of the reference input is r(s) = 1/s*1.

Let us consider the desired transfer function G¢,(s) between reference
input 7 and error variable e, where

Gg‘r(s) =1- G‘ZT‘(S)

The Laplace transform of the error variable for the input signal of the type
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p is given by

e(s) = [1 = G4 () o

and on the assumptions of the final value theorem (i.e., that Ggr(s) is
stable) the steady-state error is

e’ = lim se(s).
s—0

Accordingly, from (2.2) and (2.3) it follows that e® is zero if the input signal
is of type 0 (unit step input).

Let r(t) be the input signal of type 1 (ramp reference input, or step
function of velocity):

r(t) = rUt 1(t),

where r¥ = const and r? 3 0.

The steady-state error e® due to an input signal of type 1 is called a
velocity error, i.e., e? = e°. Then the relative velocity error of (2.2) is given
by

e = e _ lim r{t) —y(t)
T'U t—o0o T'U

= afT.
The system (2.2) is called a type 1 system if the velocity error e? is a nonzero
constant (see, for example, in [Wolovich (1994); Bosgra and Kwakernaak
(2000))).

In the next part of this section let G’gr(s) be a rational strictly proper
continuous-time transfer function between reference input r and output y
where
B4(s)
Ad(s)’

Gl.(s) = (2.7)

Let us assume that
Bi(s) = bﬁT”s” + bﬁ_lT”-ls"_l o birs+1, p<n.

Here A%(s) is the above described polynomial (2.3), whose roots lie in the
stable half-plane Re(s) < 0, and B%(s), A%(s) are coprime polynomials.

In accordance with the continuous-time transfer function (2.7), the ref-
erence model may be rewritten as the linear differential equation

Ty 4 ad_ TPy D 4o 4 adTy® 4y
= sz”T(p) + bg_lT"’lr(p_l) +F b‘liTT(l) +7r.  (2.8)
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In a fashion analogous to the above, we find that the relative velocity
error for the system (2.8) is given by

e = lim rt) —y®) _ alT — bir.

t—00 rv

It is easy to see that if the condition

bir = adT (2.9)

is satisfied, then the velocity error €

the form (2.8).

As the next case, let us assume that (2.9) holds. Then we may consider
the response of (2.8) under a parabolic reference input.

The system (2.8) is said to be of type 2 if the steady-state error is a
nonzero constant due to an input signal of type 2 (parabolic reference input,
step function of acceleration). In this case the steady-state error is called
an acceleration error. Then the relative acceleration error is given by

equals zero for a reference model of

_ egee oot —y(t
egcc = _ — lim ( ) y( ) = agTZ _ bgTQ,
racc t—00 pacc

where 7(t) = r*°¢(¢t%/2!)1(t) and r*°° = const.
Finally, let us consider a stable linear system in the form

Tny(n) + a'fril—lT n—ly(n—l) 4+t a‘liTy(l) +y
=b2TPr® 4 pd_ TP lple=h) bW e (2.10)

where 1 < p < n. Then, as opposed to (2.6), it is easy to verify that the
steady-state error is zero for an input signal of type p if the conditions

b;-i:a? forall j=1,...,p

are satisfied.

So, it is important to note that the reference model in the form of the
linear differential equation (2.10) (that corresponds to the transfer function
(2.7) with zeroes) allows us to reach a higher tracking accuracy than (2.6).

For instance, the well known optimal coefficients of the transfer function

a‘fs + ag

Ge.(s) =
() st +al_jsn 4o +afs +ad

(2.11)

based on the integral of time multiplied by absolute error (ITAE) criterion

o0
ITAE:/ tle(t)| dt
0
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for a ramp input may be used:

§% + 32w, + w2,

$° + L.75wns? + 3.25w2s + w3,

st + 241w, 8% + 4.93w2s% 4 5.14w3 s + Wl

8% + 2.19w, 5% + 6.50w2 5% + 6.30w2 5% + 524w s + w5,

where w, is the natural frequency.

Note that the approach we have discussed, of reference model design in
accordance with the requirement of an appropriate system type, is widely
used in various design techniques [Bosgra and Kwakernaak (2000); Dorf
and Bishop (2001); Franklin et al. (2002); Kuo and Golnaraghi (2003)].

2.4 Notes

The main purpose of this chapter is to review some basic correlations be-
tween the time-domain specifications of the control system output response
and the pole-zero locations of the transfer function or, alternatively, the
parameters of the linear differential equation. The importance of such cor-
relations to control system design technique follows from the fact that it
is usually easier to formulate the requirements on control system perfor-
mance in terms of time-domain specifications from an engineering point of
view. But the totality of existing design procedures are based on various
specifications of some reference model, usually in the form of a transfer
function or differential equation. The correlations discussed above allow us
to choose the reference model in accordance with the requirements placed
on the desired time-domain behavior of the closed-loop system.

Note that in the problem of linear control system design, the use of a ref-
erence model in the form of desired pole and zero locations for the transfer
function is usually enough. In order to solve the problem of nonlinear con-
trol system design, it is more convenient to construct the reference model in
the form of a desired differential equation or desired manifold in the state
space of the plant model. The correlations discussed above may be used
for this purpose. This will be shown in detail in the coming chapters.

Some additional details concerned with the performance of feedback
control systems may be found in such references as, for instance, [Bosgra
and Kwakernaak (2000); Dorf and Bishop (2001); Franklin et al. (2002);
Kuo and Golnaraghi (2003); Wolovich (1994)].
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2.5 Exercises

2.1

2.2

2.3

2.4

2.5

2.6

Construct the reference model in the form of the 2nd order differential
equation (2.6) in such a way that the step response parameters of the
output meet the requirements t¢ ~ 6 s, 0% ~ 0%. Plot by computer
simulation the output response, and determine the steady-state error
from the plot for input signals of type 0 and 1.

Construct the reference model in the form of the 3rd order differential
equation (2.6) in such a way that the step response parameters of the
output meet the requirements t¢ ~ 3 s, 0¢ ~ 30 %. Plot by computer
simulation the output response, and determine the steady-state error
from the plot for input signals of type 0 and 1.

Construct the reference model in the form of the 2nd order differential
equation as the type 1 system with the following roots of the charac-
teristic polynomial:

s1 =—-1+417, Sg=—-1-—3j.

Plot by computer simulation the output response, and determine the
steady-state error from the plot for input signals of type 0, 1, and 2.
Construct the reference model in the form of the 3rd order differential
equation as the type 1 system with the following roots of the charac-
teristic polynomial:

8 = =2, 82 = —3+ 72, 83 = —3 —j2.

Plot by computer simulation the output response, and determine the
steady-state error from the plot for input signals of type 0, 1, 2, and 3.
Construct the reference model in the form of the 3rd order differential
equation as the type 2 system with the following roots of the charac-
teristic polynomial:

81 = -—3, 89 = -1 +]2, 83 = -1 —j2

Plot by computer simulation the output response, and determine the
steady-state error from the plot for input signals of type 0, 1, 2, and 3.
Consider the reference model in the form of the 2nd, 3rd, 4th, and 5th
order transfer function (2.11) with the optimal coefficients based on the
ITAE criterion. Plot by computer simulation the output response for
the input signal of type 0, where: (a) w, =1, (b) w,, = 2.
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2.7 Consider the reference model in the form of the 2nd, 3rd, 4th, and 5th

2.8

order transfer function (2.11) with the optimal coefficients based on the
ITAE criterion. Plot by computer simulation the output response for
the input signal of type 1, where: (a) w, =1, (b) w, = 2.

Consider the reference model in the form of the 2nd, 3rd, 4th, and 5th
order transfer function (2.11) with the optimal coefficients based on the
ITAE criterion. Plot by computer simulation the output response and
determine the steady-state error from the plot for input signals of type
1 and 2, where: (a) w, =1, (b) w, = 2.



Chapter 3

Methods of control system design
under uncertainty

There is a broad class of methods for control system design in the presence
of varying plant parameters and unknown external disturbances. Only a
small subset of these is considered in this chapter. The reviewed methods
are directly related to the matter of the control system design methodology
in the book. In particular, a short overview of robust control synthesis
techniques under uncertainty is given, where our main attention is devoted
to the discussion of nonadaptive approaches such as control systems with
the highest derivative of the output signal and high gain in the feedback
loop, control systems with state vector and high gain in the feedback loop,
and control systems with sliding motions. The interdependencies between
these methods are discussed, and the main steps of the design procedures
are highlighted.

3.1 Desired vector field in the state space of plant model

This section is related to the essence of the preceding chapter, with special
emphasis placed on nonlinear control systems. With these systems we are
naturally motivated to impose the desired performance criteria in terms of
state space notions; after that, specific design techniques may be discussed.
For this reason, let us select two methods in modern nonlinear control
theory in order to specify the desired behavior as well as the requirement
of insensitivity of the closed-loop system transients with respect to the
external disturbances and varying parameters of the plant model.

The first method is based on the construction of the desired vector field
in the state space of the plant model, whereas the second method is based
on the construction of the desired manifold in the state space of the plant
model.

33
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Let us begin with the first method and its application to a plant model
given by

z(™ = f(X,w) + g(X,wu, y=ug, (3.1)

where y € R! is the system output, X = {z,z(),..., 2 D}T is the state
vector of the system (3.1), u(t) is the control, u € Q, C R! where Q, is a
bounded set of allowable values of the control variable, and w(t) is a vector
of bounded external disturbances and/or varying parameters of the plant
model.

Assumption 3.1 The functions f(X,w), g(X,w) are smooth for all
(X,w) c QX,w = QX X Q.

Assumption 3.2 The conditions
If(X"w)| S fmax < 0, 0< Gmin S |g(X,’LU)] S Gmax <00 (32)

are fulfilled for all (X, w) € Qx 4, i.e., the functions f(X,w), ¢(X,w) are
bounded for all (X, w) in the specified bounded set Qx ;.

Since g(X,w) # 0, V (X, w) € Qx 4, from (3.1) it follows that the desirable
value of the nth derivative z(™(¢), which is the highest derivative of z(¢)
in the system (3.1), can be obtained by a proper choice of control variable
u(t). The set of possible values of (™ (t) depends on 1,,.

Let us assume that based on the correlations discussed in the previous
chapter and in accordance with the desired time-domain specifications of
the output behavior of z(t), the reference model in the form of the nth
order differential equation has been constructed, similar to (2.6), and is
represented in the following form:

x(‘n) = F(z(n_l), PN ,1:(1)7 .'L', T)v (33)

where z = r at the equilibrium of (3.3) for r = const.

We call (3.3) the desired differential equation and its right member F'
the desired value of the highest derivative z(™)(¢) (desired dynamics).

Let us rewrite, for short, equation (3.3) in the form

™ = F(X,r). (3.4)
Denote

ef = F -z, (3.5)
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The value e is called the error of the desired dynamics realization, where
the desired dynamics are assigned by (3.4).
Accordingly, if the condition

ef =0 (3.6)

holds, then the desired behavior of z(t) with the prescribed dynamics of
(3.4) is fulfilled.

Expression (3.6) is the insensitivity condition of the step response pa-
rameters of output transients with respect to the external disturbances and
varying parameters of the system (3.1). We can see that (3.6) allows us
to simultaneously express two requirements. The first is that the output
behavior is described by the desired differential equation. The second is
that the output behavior exhibit insensitivity with respect to the external
disturbances and varying parameters of the plant model.

Let us show that the discussed insensitivity condition corresponds to
assignment of the desired vector field in the state space of the plant model.

The state space representation of the system (3.1) yields

Emizxm, 1=1,...,n—1,
gza:n = f(X,w) + g(X, wyu, (3.7)
where, by definition,
X = {ac,x(l), .. ,m("—l)}T = {z1,%2,... ,xn}T.

For short, let us rewrite (3.7) in vector notation as
d
dt

The vector function f (X, w,u) defines a map

X = f(X,w,u). (3.8)

f(X,w,u): R" — R"
called the vector field. By virtue of this map, each point of R™ is placed
into correspondence with a vector of R™,
Similar to the above, from the desired differential equation (3.3) we have

i:v- = T =1 1

at T i+l t=1...,71 B

d

2L on = F(X, 7). (3.9)

dt
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Then from (3.9) we get
4
dt

where the vector function F'(X,r) defines a desired vector field

X =F(X,r), (3.10)

F(X,r): R* - R™

As a result, we have that the insensitivity condition (3.6) corresponds to

EFX,r) = f(X,w,u).
Therefore, (3.6) corresponds to assignment of the desired vector field in
the state space of the plant model given by (3.1), where the desired vector
field can be constructed by pattern in the form of the nth order desired
differential equation in such a way as to provide for the requirement (2.1)
and the desired performance indices.

3.2 Solution of nonlinear inverse dynamics

In accordance with (3.1), (3.4), and (3.5), expression (3.6) may be rewritten
in the form

F(X,r)— f(X,w) - g(X,w)u=0. (3.11)

So the control problem (2.1) has been restated as the requirement to provide
for the condition (3.6), or in other words, to find a solution to (3.11). Such
an approach to control problem reformulation was discussed and used in
[Boychuk (1966); Vostrikov (1977a)].

If the condition

g(X,w) #0, V{(X,w)e€ Qxw (3.12)
is satisfied, then the control function u(t) = u™P(t) exists such that
u™1P(t) is the unique solution of (3.11):

uNID - {g(Xv w)}—l{F(X7T) - f(X,UJ)} (313)

This is called the solution of nonlinear inverse dynamics.

Remark 3.1 There is a broad set of publications where the function
(3.13) of the nonlinear inverse dynamics solution is used as the control law
in order to obtain a desired reference input-controlled output map (see, for
instance, [Boychuk (1966); Popov and Krutko (1979); Petrov and Krutko
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(1980); Nigmeijer and Schaft (1990); Slotine and Li (1991); Isidori (1995);
Hirschorn and Aranda-Bricaire (1998)]). Such an approach can be applied
only in the presence of complete information about external disturbances
and parameters of the plant model.

It is worth noting that (3.13) allows us to estimate bounds for the set
Qu = [Umin, Umax),
such that
Umin < UYL (1) < Umax, ¥ (X, w) € Ox,w- (3.14)

Assume that the set Q, of allowable control values is assigned. Then
the desired output behavior of (3.1) corresponding to (3.4) can be realized
if and only if the inclusion u’V/P(t) € Q, occurs for all ¢.

In general, the problem of desired output transient realization depends
on such properties as the invertibility and internal stability of the plant
model. This problem will show up in detail below in the chapter on the
realizability of a desired output behavior.

3.3 The highest derivative and high gain in feedback loop

The main subject of our consideration is the problem of control system
design under the conditions when analytical expressions for the functions
f(X,w), g(X, w) are unknown and the vector w(t) of bounded external dis-
turbances or varying parameters is unavailable for measurement as shown
in Fig. 2.1.

In order to reach the discussed control goal and, as a result, to provide
desired dynamical properties of z(¢) in the specified region of the state space
of the uncertain nonlinear system (3.1), the following control law with the
highest derivative of the output signal and high gain in the feedback loop

u=ko{F(X,r) - 2™} (3.15)

was proposed in the pioneer work [Vostrikov (1977a)], where ko is a high
gain, ko € R!.

Let us consider the basic correlations of the control system with the
highest derivative and high gain in the feedback loop that were discussed
in [Vostrikov (1977a); Utkin and Vostrikov (1978); Vostrikov (1979)]. It is
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easy to see that from the closed-loop system equations

™ = f(X,w) + g(X, w)u, (3.16)
u = ko{F(X,7) — (™}, (3.17)
by substituting (3.17) into (3.16), we obtain
1

™ = F(X,r) + {f(X,w) — F(X,r)}. (3.18)

1+ g(X7 w)ko
[ ——
—0 as |kg|—o00

From (3.18) it follows that the condition

lim =™ = F(X,r) (3.19)
|kg|—00
holds. In other words, the solution to the control problem under consider-
ation is provided by the use of z(® in the control law and the use of a high
gain ko.
Let us consider the behavior of the control variable u(t) in the closed-
loop system. Substituting (3.16) into (3.17) we obtain

ke
1+ g(X, ’w)k:o
N, s’

—1/g(X,w) as |ko|—o0

{F(X,r) - f(X,w)}, (3.20)

where it was assumed that the sign of the gain kg is chosen in such a way
that the condition

k‘og(X,w) >0, V(X’w)EQX,w
is satisfied. From (3.20) the condition

lim u=uNP (3.21)
Ikol-aoo

results, where u/V/P(t) is the nonlinear inverse dynamics solution (3.13).

We can see that if g(X,w)ko > 0, V(X,w) € Qx, then conditions
(3.19) and (3.21) are simultaneously satisfied despite the fact that the func-
tions f(X,w), g(X,w) are unknown. So the control law (3.15) allows us
to solve the control problem of interest under the condition of unknown
external disturbances and varying parameters of the system (3.1).

Note that, throughout the book, the control systems discussed are as
shown in Fig. 2.1 and, accordingly, the block diagram representation of
the practical realization with the highest derivative and high gain in the
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feedback loop is as shown in Fig. 3.1. Here, in order to implement the
control law, the estimations £U )(t) are used; these are received by a spe-
cial dynamical system called a differentiating filter. However, the above

: i Plant |
Controller : ui 7 " v _])(0) - i 0) an |
. n—. H
r F, _ef u; + g + F + |z
+ : z i

AR A k] Differentiating filter Y=z

Fig. 3.1 Block diagram of the control system with the highest derivative and high gain
in the feedback loop, where a real differentiating filter is used.

Controller

- —@‘ _E ko

Fig. 3.2 Block diagram of the control system with the highest derivative and high gain
in the feedback loop, where an ideal differentiating filter is used.

consideration was done on the assumption that the output z(t) and all its
derivatives, up to the highest derivative z("), are measured by some ideal
differentiating filter and this case corresponds to the block diagram rep-
resentation of the closed-loop system equations (3.16), (3.17) as shown in
Fig. 3.2. Clearly, the control law (3.17) is unrealizable in practice. Never-
theless, the above consideration is significant because the limit properties
of the use of the highest derivative and high gain in the feedback loop are
shown explicitly. In particular, we may represent Fig. 3.2 as shown in Fig.
3.3, where the memoryless network for the highest derivative z(*) is high-
lighted by a circuit of dots. The rejection of the influence of the unknown
functions f(X,w), g(X,w) (and, accordingly, of the unknown bounded ex-
ternal disturbances and varying parameters) is provided in the memoryless
network as the high gain kg is sufficiently large. This network is shown
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Fig. 3.3 Block diagram of the control system with the highest derivative and high gain
in the feedback loop.

in Fig. 3.4 and was called a “localization circuit” in [Vostrikov (1988b);
Vostrikov (1990)].

Note that the above subject matter is related to the properties of the
input-output map for the memoryless system with high gain feedback as
discussed, for instance, in [Bosgra and Kwakernaak (2000)].

wX f(Xw)

L

F, e u G

ARyt

Fig. 3.4 Block diagram of the memoryless network for the highest derivative z(n),

3.4 Differentiating filter and high-gain observer

Now the problem of practical realization of the control law (3.15) may be
discussed. In particular, in order to realize the control law in the form of
(3.15) in practice, instead of the ideal derivatives 29 (t) some estimations
£ (t) of these derivatives should be used as shown in Fig. 3.1.

For instance, the linear dynamical system shown in Fig. 3.5 was used in
[Vostrikov (1977a)] as a real differentiating filter; its behavior is described
by the equation

P 4 dg_pa 120D 4 dpa® 2 =2, X(0) = X0 (3.22)

Here ¢ > n, X = {&,2M,..., #0117 is the state vector of the system
(3.22), and p is a small positive parameter.
Note that the stability of (3.22) does not depend on p and may be
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provided by selection of the parameters d;. If p is sufficiently small, then
the variables of the state vector X may be used as the required estimations
#0)(t) of the actual derivatives (/) (t) since we have
limo{:i:(t) -z(t)} =0, Yit>0. (3.23)
e
It is easy to see that if we denote u = 1/k, then k is a high-gain param-
eter where p — 0 as k — 00. So the system (3.22) may be rewritten in the
form of a system with high-gain parameters. Such dynamical systems were
investigated in [Meerov (1965)].

2@

Fig. 3.5 Block diagram of the differentiating filter (3.22).

Remark 3.2 Such dynamical systems are now usually called high-gain
observers, and the various associated structures are considered in [Gauthier
et al. (1991); Tornambé (1992); Bullinger and Allgéwer (1997); Levant
(1998); Hammouri and Marchand (2000)]. Observer design based on sliding
mode techniques is discussed, for example, in [Utkin (1977); Gauthier et al.
(1991); Canudas de Wit and Slotine (1991); Hernandez and Barbot (1996);
Hammouri and Marchand (2000); Perruquetti and Barbot (2002)].

As a result of applying the real differentiating filter (3.22) in order to
implement the control law (3.15) in practice, we get the singularly perturbed
closed-loop system equations

2™ = F(X,w) + g(X, w)ko{F(X,7) — 3}, X(0) = X°,  (3.24)

pIE@ + dg_1pa 150 4o dipg® + & =z, X(0) = X0, (3.25)

where slow and fast motions take place.
In particular, if ¢ = n = 1, then (3.24)—(3.25) assume the form

z® = f(z,w) + g(z, w)ko{ F(&,r) — u~ (z - £)},2(0) = 2°, (3.26)
pE® + &=z, 2(0)= a0 (3.27)
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A distinctive feature of (3.26)—(3.27) (as well as of (3.24)-(3.25)) is the
nonstandard singular perturbation form of the closed-loop system equa-
tions. Therefore, special validation of the stability of such a system is
required. For instance, it is possible to artificially transform the system
(3.24)-(3.25) to the standard singular perturbation form by introducing
the new variables

£1=3W 35 = 3@, 5, = 2,

by differentiation of (3.25) the system (3.24)—(3.25) is transferred to the
extended form [Vostrikov (1977a); Vostrikov (1990)] given by

™ = f(X,w) + g(X,wko{F(Zn-1,...,%1,%7) — &},

I D +dy_p? 120D 4 dypg + 1 = 1,

pi2l® 4 dg_pt 20 ot dpsl) + 2 =20)) j=1,.,n -1,
pa2 D o dypalS + {14 g(X, w)ko}in = F(X,w) + g(X,w)koF.

The behavior of £(®) is described by the last differential equation of this
extended system. Denote

D(us) = p9s? + dyyp?™ s+ djus + 1 (3.28)

as the characteristic polynomial of system (3.22). Then the block diagram
representation of the last equation may be depicted as Fig. 3.6, where the
fast motions for (™ take place (fast-motion subsystem). The stability of
these fast motions may be provided by choosing the controller parameters
ko, u, d; in accordance with the requirements placed on the admissible
transient performance indices of the fast process and the degree of time-
scale-separation between the fast and slow motions.

wX f(X,w)
ef U + (n)
F + ko g —+ L
& 1
D(us)

Fig. 3.6 Block diagram of the fast-motion subsystem.

If the fast motions are stable and u — 0, then the extended system yields
the SMS, which is the same as (3.18). As a result, the desired dynamical
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properties of 2(¢) are provided in a specified region of the state space of the
uncertain nonlinear system (3.1) in the presence of incomplete information
about varying parameters of the system and external disturbances, as long
as the gain ko is large, i.e., |ko| — oo.

At the same time, it is necessary to say that another problem was omit-
ted from the above consideration. Indeed, the initial conditions of the
additional differential equations in the extended system depend on a small
parameter p and tend to infinity as u — 0. So special validation of the
technique for two-time-scale motion analysis is required to investigate in
depth whether this is the case {Vostrikov (1979)].

Remark 3.3 Note that this question is also related to the so-called peak-
ing phenomenon discussed in [Sussmann and Kokotovié (1991)] for systems
with high-gain feedback.

We should also note that the introduction of the differentiating filter
(3.22) leads to a high pulse in the control variable u(t) if a stepwise reference
input r(t) is applied. This results in distortion of the output from its
desired behavior, and such an undesirable effect can be partly diminished
by saturation in the control loop.

3.5 Influence of noise in control system with the highest
derivative

The investigation of a noise influence is important in control systems with
the highest derivative in feedback, since the output derivatives are used in
the control law. Suppose §(t) = z(t) + n,(t) is the sensor output corrupted
by a zero-mean, high-frequency noise waveform n,(t).

First let us consider the case of the ideal differentiating filter with noisy
output. Then z(t) should be replaced by #(t) in (3.15) and, as a result, in
the right member of (3.21) an additional term such as g—lngn) appeared.
This term may be so large that saturation of the control variable occurs in
real technical systems.

The block diagram representation of the practically realized control sys-
tem with the highest derivative and high gain in the feedback loop is shown
in Fig. 3.7, where the sensor output y(t) = z(t) is corrupted by noise n(t).

The influence of the nth derivative ngn) of the noise on the behavior of
the control variable in the discussed control system with the real differen-
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Controller

r F+e

—@' _E ko

g ge-y .. gug Differentiating filter

Fig. 3.7 Block diagram of the control system with the highest derivative and high
gain in the feedback loop, where the real differentiating filter is used and the output
y(t) = z(t) is corrupted by noise n(t).

tiating filter (3.22) may be depicted based on the block diagram shown in
Fig. 3.8. It is possible to reduce the high-frequency interference by suitable
choice of the degree and parameters of the differentiating filter [Vostrikov
(1990)).

wX f(Xw)
F el u oz
= R
1 =
D(us)

Fig. 3.8 Block diagram of the fast-motion subsystem with sensor noise.

Remark 3.4 To conclude this section we note that there is a broad
set of publications devoted to robot manipulator control by acceleration
feedback, for instance, [Lun et al. (1980); Luo and Saridis (1985);
Studenny and Belanger (1984); Studenny and Belanger (1986); Davis and
Hirschorn (1988); Krutko (1988); Studenny et al. (1991); Krutko (1991);
Krutko (1995)], where acceleration feedback control is a special case of con-
trol with the highest derivative in feedback (3.15). The problem of ac-
celeration feedback controller design for flexible joint robots was consid-
ered in [Kotnik et al. (1988); Readman and Belanger (1991)]. An appli-
cation of acceleration feedback control for flight control systems was dis-
cussed in [Batenko (1977)]. Applications of acceleration feedback control
for DC drives are discussed in [Hori (1988); Schmidt and Lorenz (1990);
Han et al. (2000)].
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3.6 Desired manifold in the state space of plant model

Let us consider the second method used to specify the desired behavior of
the closed-loop system as well as the requirement of insensitivity of the out-
put transients with respect to external disturbances and varying parameters
of the plant model. This method is based on the construction of the desired
manifold in the state space of the plant model, and is widely used in control
techniques related to control systems with sliding motions [Utkin (1977);
Utkin (1992)].

Let us consider, similar to the above, the plant model given by the
equation (3.1)

2™ = f(X,w) + g(X, )y,

where Assumptions 3.1, 3.2 hold.
First let us construct the desired transfer function of the (n —1)th order
in the form

Gar(s) = Tn—tgn-1 4 ag_2T"—;s"—2 +oo 4 adTs+1° (3.29)
From (3.29) the desired differential equation
= = Tnl_l {—ad_,1" 2D ... —adT2® — g4} (3.30)
results, where (3.30) may be rewritten concisely as
(=1 = F—'(:v(”‘m, e ,m(l),m,r), (3.31)
where 7 = const. Note that X = {z,2(),... ,m("“l)}T is the state vector
of the dynamical system (3.1), and denote
S(X,r)=F™2 . 2O g r) - g*-D, (3.32)

where S(X,r) is the error between the actual and desired values of z(*~1).
Accordingly, if the condition

S(X, 1) =0 (3.33)

is satisfied then the desired behavior of (3.1) with prescribed dynamics of
(3.31) is fulfilled in the closed-loop system.

Expression (3.33) is the insensitivity condition for the output transients
with respect to the external disturbances and varying parameters of the sys-
tem (3.1). This condition corresponds to assignment of the desired manifold
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in the state space of the plant model. So, control problem (2.1) has been
reformulated as the requirement to provide the motions of the system (3.1)
along the manifold (3.33).

3.7 State vector and high gain in feedback loop
Let us consider the plant model given by the equation (3.1)
™ = f(X,w) + g(X, w)u,
where Assumptions 3.1, 3.2 hold and the control law is
u=koS(X,r), (3.34)
where ko is the high gain and r = const. Denote z; = z, o = (1), ...,

£, = z{» 1. Then the closed-loop system equations (3.1) and (3.34) may
be rewritten as

d .

E.’L'i-_—.fl}i_’_l, ’L=1,...,TL—1,

4 an = f(X,0) 4 g(X,w)u,  X(0) = X°, (3.35)
u = koS(X, 1),

where there are two-time-scale motions due to the high gain kg. There-
fore, the singular pertubation analysis can be applied [Vasileva (1963);
Gerashchenko (1975); Young et al. (1977); Kokotovié¢ (1984); Saksena et al.
(1984); Marino (1985)].

The equation describing the behavior of u(t) in (3.35) can be obtained
by differentiating (3.34) along the trajectories of (3.1) as discussed, for
instance, in [Vostrikov (1988b); Vostrikov (1990)]. Then from (3.35) we
obtain the extended system

d )
Ezi = Tit1, i=1,...,n-1, (3.36)
ﬁ%xn = pif(X,w)+ g(X,w)sgn(ko)S(X,r), X(0)= X° (3.37)
n—1
d as as
v = sgn(ko) 2 52,51 T B {F(X,w) + g(X,w)u}|, (3.38)

u(0) = u°,
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which has the form of the standard singularly perturbed equations. Here
we use the notation

X ={z1,72,...,2,}7 = {2, 2V, ..., c»")T (3.39)

and i = 1/|ko].
If the sign of the gain kg is chosen in such a way that the condition

sgnlho) g-g(X,w) <0, ¥ (X,u) € Do

is satisfied, then the FMS of the extended system is stable and described
by

d tn = pf(X,w) + g(X,w)sgn(ke)S(X,r), X(0)= X",

e
d =08 s _
pou= sgn(ko) ; 32, Tt + E{f(X,w) + g(X,w)u}|, u(0) =",

where the gain |ko| is chosen sufficiently large (i.e., i — 0), and X, w are
the frozen variables during the transients in the FMS.

Consider the quasi-steady state of the differential equation (3.37); that
is, assume &, = 0. Then, by taking into account (3.32) and (3.39), we
obtain

Af(X,w) + g{X,w)sgn(ko)[F(zn-1,.-.,21,7) —Zx} =0.  (3.40)

Let us derive z,, from (3.40) and substitute z, into (3.36). As a result, we
obtain the SMS given by

d .
Ex,-:xiﬂ, i=1,...,n—2,
d — -
T Tn-1 = F(xn—l,---axlar) + [kog(X’w)] lf(Xvw)’

dt

where the choice of the high gain ky depends on the requirements of control
accuracy and rejection of external disturbances.

Inasmuch as the control law (3.34) depends on the state vector X, equa-
tion (3.34) can be realized practically by introducing a real differentiating
filter such as (3.22) or some high-gain observer. The block diagram repre-
sentation of the realized control system with estimation of state vector and
a high gain in the feedback loop is shown in Fig. 3.9.
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R

FAR Differentiating filter

Fig. 3.9 Block diagram of the control system with state vector and a high gain in the
feedback loop, where a real differentiating filter is used.

Note that the closed-loop system equations (3.35) represent the case,
where the state vector X(t) is measured, for instance, by some ideal dif-
ferentiating filter (or ideal observer). The block diagram representation of
the control system with state vector and high gain in the feedback loop
(3.35) is shown in Fig. 3.10, where the part that corresponds to the plant
model is encircled with dots and the remainder is the controller. Similar

TR

Fig. 3.10 Block diagram of the control system with state vector and high gain in the
feedback loop, where state vector X is measured.

F S U ‘ 77777777777777777777777777777777 (n- (n-2) x
| Fa 5r ol + gt + |7 +
Hel-oful s P& ST 5T+

Fig. 3.11 Block diagram of the control system with state vector and high gain in the
feedback loop, where the FMS is highlighted by dots.
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to the above, let us represent the block diagram in Fig. 3.10 as shown in
Fig. 3.11, where the portion encircled by dots corresponds to the FMS of
(3.35). The inclusion of the real differentiating filter (3.22) in feedback, as
shown in Fig. 3.9, yields some additional fast dynamics. Special analysis of
the fast and slow motions in the closed-loop system should be performed in
depth, for instance, based on the construction of the extended system. In
particular, the behavior of z(»~1) in the FMS can be easily analysed based
on the block diagram of Fig. 3.12, where X and w are the frozen variables.

It is clear to see, in contrast to the control system shown in Fig. 3.10,
an upper bound for the gain ko appears in a control system with the real
differentiating filter (3.22). This bound is determined by the requirement
for FMS stability, and depends on the parameters of the differentiating
filter. Hence the parameters of the differentiating filter should be chosen
so that the interval [gmin, gmax] belongs to the region of FMS stability and
the FMS transients maintain the allowable performance indices.

Fig. 3.12 Block diagram of the FMS in the control system with state vector and a high
gain in the feedback loop, where the real differentiating filter is used.

3.8 Control systems with sliding motions

Another type of control system, which is related to the one discussed in this
book and has analogous properties of high accuracy and robustness with
respect to varying parameters and external disturbances, is the variable
structure system and, in particular, the control system with sliding motions
[Emelyanov (1963); Filippov (1964); Itkis (1976); Utkin (1977); Filippov
(1988); Utkin (1992)]. The condition for disturbance rejection in variable
structure systems was discussed in [Drazenovic (1969)].!

Let us consider the main steps of the sliding motion control system
design procedure for the system given by (3.1), where Assumptions 3.1, 3.2

!Note that in [DeCarlo et al. (1988); Young et al. (1999)] the interested reader can
find the tutorial papers devoted to sliding mode control systems.
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are satisfied.

From (3.34) it follows that if S(X,r) # 0, then |u| — oco as |ko| — co.
Accordingly, saturation of the control variable takes place in real technical
systems. It leads to consideration of the control law

U = Umax g0 S(X, 1), (3.41)

where the switching surface S(X,r) is given by (3.32).

Convergence of the closed-loop system trajectories to the manifold
S(X,r) can be investigated through a Lyapunov function candidate, for
instance, in the form V(S) = |S(X,r)|. We can obtain the derivative of
V(S) along the trajectories of (3.1) with control law given by (3.41) where
r = const. This is

n—1
Y = | g+ g 000 + e oK), (042
where the sign and value of uy,x can be chosen in such a way that the
condition dV/dt < 0 is satisfied in the specified region of the state space of
the system (3.1). Since 85/9z, = —1, we have sgn umayx = sgn g{(X, w).

The control law (3.41) may be realized practically by introducing a real
differentiating filter such as (3.22), and the block diagram representation
of such a control system is shown in Fig. 3.13. The above choice of umax
based on consideration of the system shown in Fig. 3.14. The part of the
block diagram in Fig. 3.14 that corresponds to the plant model is encircled
with dots, and the remainder is the controller.

R

Differentiating filter Y=o

Fig. 3.13 Block diagram of the control system with sliding motions, where a differenti-
ating filter is used.

In accordance with [Vostrikov (1977b)], the block diagram in Fig. 3.14
may be represented as in Fig. 3.15. The portion encircled by dots is where
fast transients occur. The inclusion of the real differentiating filter (3.22)
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B

Fig. 3.14 Block diagram of the control system with sliding motions, where the state
vector X is measured.

in feedback as shown in Fig. 3.13 yields some additional fast dynamics;
then the two-time-scale technique should be used to determine the closed-
loop properties. In particular, the behavior of ("1 in the FMS can be
analysed, using the block diagram shown in Fig. 3.16, via the describing
function method, where X is the frozen variable.

Fig. 3.15 Block diagram of the control system with ideal sliding motions in the circuit
highlighted by dots.

ux s £(0)

_ (n-1)
F S u +.’L'(") +.Z‘
20 9 Ho—io—
_1
D(ps)

Fig. 3.16 Block diagram of the FMS in the system with sliding motions and real dif-
ferentiating filter.

Remark 3.5 Control systems with sliding motions have stimulated active
research in various directions. Systems with high-order sliding modes, in
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particular, currently receive a great deal of attention; see [Emelyanov et al.
(1993); Fridman and Levant (1996); Bartolini et al. (2000); Perruquetti
and Barbot (2002)]. Some recent results related to sliding mode control
systems are represented in [Young and Ozgiiner (1999)].

3.9 Example

Let us consider the SISO nonlinear continuous-time system given by
t® = —z4+ (1 -2)2W + gu+w, (3.43)
where g = 1+ 0.8sin(t) and we assume that the inequalities
lz(t)] <1, |z ()] < 1, and |r(t)] < 0.5 (3.44)

hold for all ¢ € [0, 00). Consider the control law (3.41) with the real differ-
entiating filter (see Fig. 3.13)

2@+ dips® 4+ 2 =z (3.45)

Let the reference model for z(t) be assigned by
1
.’L'(l) = T[T — iL‘]
Then we may employ the following control law:

U = Umax sgn S(r, z, 1))
= Umax sg0(T 7 [r — z] — 2). (3.46)

From (3.42) and (3.44) we find that dV/dt < 0 for umax > 22.25.

Consider the FMS represented by the block diagram in Fig. 3.16. Let
us assume that there is a limit cycle in the FMS. Determine the limit cycle
parameters via the describing function method and, for simplicity, under
the assumption that F = 0, f = 0. In accordance with the given parameters
we have

g
jw(—p?w? + jdipw + 1)

Gi(jw) =

as the frequency-domain transfer function (frequency response) of the linear
part in Fig. 3.16. Let G;(jw) reveals a low-pass filtering property and

S1(t) = Asin(wt)
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be the first harmonic of the Fourier series for the actual periodic signal S(t)
in the FMS.
The describing function of the ideal relay nonlinearity is

. 4 max
Culf 4) = =52, (3.47)

Hence, the solution of the first-order harmonic balance equation

14 Gu(j, AGi(jw) = 0 (3.48)

yields the frequency w and amplitude A of the stationary oscillations in the
FMS:

1 4 y
W= — and A:Mni'
7 mdy

The oscillations in the FMS induce the oscillations in the output z(t) of
the system (3.43). Let e,q. be the amplitude of the stationary oscillations of
the output z(¢). Consider the stationary oscillation signal z(t) represented
by its Fourier series

o
z(t) = zg + Z e sin(kwt + o). (3.49)
k=1
Then, the effect of chattering in the FMS on the output oscillations can
be estimated by the first harmonic in (3.49). Hence, €55 = €1. If w is
sufficiently large, it is readily found that

_ 1Gn(5, Al

— wn
_ [bGpw)] ,

wn—l

A

€1

(3.50)
From (3.45), (3.50) and taking n = 2, w = 1/u, we get
€psc R ep = diuA.

Let u = 0.02 s, umax = 25, and d; = 2. Since g € [0.2,1.8], we obtain
w = 50 rad/s, A € [0.06,0.6], and e,sc € [0.0024,0.024].

The simulation results of the system (3.43) controlled by the algorithm
(3.46) for a step reference input r(t) and a step disturbance w(t) are dis-
played in Figs. 3.17-3.18, where the initial conditions are z(0) = 0.5,
z(0) = 0.5, £(00) = 0, 21(0) = 0, and T = 1 s. We see that the
simulation results confirm the analytical calculations.
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Fig. 3.17 Simulation results for r(t), z(t), and u(t) in the system (3.43) and (3.46).
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Fig. 3.18 Simulation results for S(r(t), z(t), 2V (¢)), and w(¢) in the system (3.43) and
(3.46).

3.10 Notes

From the above considerations it is easy to see that the analysis of prac-
tically realizable control systems with the highest derivative of the output
signal in the feedback loop, control systems with state vector and high gain
in the feedback loop, and control systems with sliding motions, all lead to
the singularly perturbed equations of the closed-loop system, where slow
and fast motions occur.

Note that in [Vostrikov and Yurkevich (1993b)] the interested reader can
find a survey of the results pertaining to control systems with the highest
derivative of the output signal and high gain in the feedback loop, based on
an approach known as a “localization method”. Design of control systems
with the highest derivative in feedback are discussed in such references
as [Vostrikov and Sarycheva (1982); Vostrikov et al. (1982); Vostrikov and
Yurkevich (1991); Vostrikov and Yurkevich (1993a); Yurkevich et al. (1991);
Blachuta et al. (1992)], which are also readily available.
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The main motivations of further development of control system theory

with the highest derivative in the feedback loop, are the following:

Nonstandard singular perturbation form of the closed loop system equa-
tions (3.24)—(3.25).

Nonzero steady-state error of the reference input realization if the gain
in the feedback loop has a finite value.

If a stepwise reference input r(t) is applied, then a high pulse of the
control variable u(t) appears; this distorts the output away from its
desired behavior.

Reference models in the form of the type 2, 3, and higher systems
cannot be formulated.

It is not easy to see how such an approach might be extended to cover
digital control system design.

The above mentioned problems may be overcome through the construction
of slightly different control-law structures with the highest derivative in
the feedback loop. The most important purpose achieved in this way is the
development of the uniform approach to continuous as well as digital control
system design, and this will be demonstrated in subsequent chapters.

3.11 Exercises

3.1

3.2

The differential equation of a plant is given by
2® =% 4+ 12V + {1.2 - cos(t) }u. (3.51)
The reference model for z(¢) is assigned by
@ =-1220 _z 47 (3.52)

Consider the control law (3.15) with real differentiating filter (3.22)
where ko = 40, ¢ = 2, £ = 0.1 5, d1 = 3 (see Fig. 3.1). Determine the
FMS and SMS equations. Perform a numerical simulation.

A system is given by (3.51). Consider the control law in the form of
(3.15) with the desired dynamics given by (3.52) and the real differen-
tiating filter (3.22) where ko = 40 and ¢ = 2 (see Fig. 3.1). Determine
the parameters p and d; of (3.22) such that the damping ratio exceeds
0.5 in the FMS and the degree of time-scale separation between FMS
and SMS exceeds 10. Compare with simulation results.
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3.3

3.4

3.5

3.6

3.7

Design of nonlinear control systems with the highest derivative in feedback

Consider the system (3.51). Design the control law (3.34) (see Fig.
3.10) such that the step response parameters of the output z(t) meet
the requirements tf ~ 3 s, 0 ~ 0%. Determine the gain ko such that
the degree of time-scale separation between FMS and SMS the closed-
loop system (3.51) and (3.34) exceeds 10. Perform a simulation.
Consider the system (3.51). Design the control law (3.34) with real
differentiating filter (3.22) where ¢ = 1 (see Fig. 3.9). Provide that
the step response parameters of the output z(t) meet the requirements
t? =~ 10 s, 0¢ = 0%. Determine the gain ko and u of (3.22) such that
the degree of time-scale separation between FMS and SMS exceeds 10.
Determine the relationship between damping ratio in the FMS and kg.
Compare with simulation results.

Consider the system (3.51). Design the control law (3.41) (see Fig.
3.14) such that the step response parameters of the output z(t) meet
the requirements t¢ ~ 6 s, 0 ~ 0 %. Determine the sign and magnitude
of Umax such that the condition dV' /dt < 0 is satisfied within the region
specified by the inequalities |z(t)| < 2, |z (t)] € 2, and |r(t)| < 1.
Consider the system (3.51). Design the control law (3.41) and real
differentiating filter (3.22) where ¢ = 2 (see Fig. 3.13). Provide that
the step response parameters of the output z(t) meet the requirements
t‘si ~ 3 s, 0% ~ 0%. Determine the sign and magnitude of umax such
that the condition dV /dt < 0 holds within the region specified by the
inequalities |z(t)] < 2, |z (#)| < 2, and |r(t)| < 1. Determine the
relationship between frequency oscillations and parameters umax, {,
and d; based on the describing function method under the assumption
that F = 0, f = 0. Compare with simulation results.

Replace the sign function in the control law (3.41) by each of the fol-
lowing nonlinear functions, and determine the conditions for limit cycle
existence and the limit cycle parameters in the FMS based on the in-
put data of Exercise 3.6, under the assumption that F = 0, f = 0:
(a) saturation, (b) relay with dead zone, (c) hysteresis. Compare with
simulation results.



Chapter 4

Design of SISO continuous-time
control systems

The problem of output regulation of SISO nonlinear time-varying control
systems is discussed in this chapter. The control system is designed to
provide robust zero steady-state error of the reference input realization.
Moreover, the controlled output transients should have a desired behav-
ior. These transients should not depend on the external disturbances and
varying parameters of the plant model. The model of the desired output
behavior in the form of a desired differential equation is considered, with
parameter selection based on the required output step response parameters
(overshoot, settling time). Then an insensitivity condition of the output
transient behavior with respect to the external disturbances and varying
parameters of the system is introduced. The main particularity of the dis-
cussed control law lies in the use of the highest derivative in the feedback
loop. The closed-loop system properties are analyzed on basis of the two-
time-scale technique and, as a result, slow and fast motion subsystems are
analyzed separately.

4.1 Controller design for plant model of the 1st order

4.1.1 Control problem

In this section we consider a nonlinear system of the form

% = f(z,w) + g(z,w)u, z(0) = zo, (4.1)

where t denotes time, ¢t € [0,00), y = z is the measurable output of the
system (4.1), z € R!, u is the control, u € Q, C R!, w is the vector of
unknown bounded external disturbances or varying parameters, w € Q,, C
R!, and ||w(t)|| € Wmax < 00, Wmax > 0.

57
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We assume that dw/dt is bounded for all its components,
“dw/dt“ < Wpax < 00, (4-2)

and that the conditions

0 < gmin <19(x, W)| < gmax < 00, |f(Z,W)| < fmax < 00 (4.3)

are satisfied for all (z,w) € Qg ., where f(z,w), g(z,w) are unknown
continuous bounded functions of z(t), w(t) on the bounded set 2, ,, and
Wrax > 0, Gmin > 0’ Gmax > 0, fmax > 0.

A control system is being designed so that

tliglo e(t) =0, (4.4)

where e(t) is an error of the reference input realization: e(t) = r(t) — z(t)
and r(t) is the reference input.

Moreover, the output transients should have the desired performance
indices. These transients should not depend on the external disturbances
and varying parameters w(t) of the system (4.1).

4.1.2 Insensitivity condition

The first point of the discussed approach is that the control problem is
restated as a problem of determining the root of an equation by introducing
a reference model equation whose structure is formed in accordance with the
structure of the plant model equations [Boychuk (1966); Vostrikov (1977a)).

From (4.1) it follows that the first derivative of z(¢) depends on the
control variable u(t) explicitly, and so z(1)(¢) is called the highest derivative
of the system (4.1).

As any desirable value of the first derivative z(*)(t) may be maintained
by a proper choice of the control u(t), let us construct the reference model
for (4.1) in the form of the 1st order desired stable differential equation

dz

i F(z,r). (4.5)

For example, let us suppose that (4.5) is the linear differential equation
d_1
d T

where = r at the equilibrium for r = const.

(r —z), (4.6)
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We call (4.5) the desired differential equation, and its right member
F(z,r) a desired value of the highest derivative () (t) (desired dynamics).
Let us denote

dz

F
=F - =
€ (ZL‘,T) dta

(4.7
where ef is an error of the desired dynamics realization. Accordingly, if
the condition

ef'=0 (4.8)

holds, then the behavior of z(t) with prescribed dynamics of (4.5) is fulfilled.

The expression (4.8) is an insensitivity condition for the behavior of the
output x(t) with respect to the external disturbances and varying parame-
ters of the system (4.1).

4.1.3 Conirol law with the 1st derivative in feedback loop
Substitution of (4.1), (4.5), and (4.7) into (4.8) yields
F(z,r) - f(z,w) — g(z,w)u =0. (4.9)

So, (4.4) has been reformulated as a problem of finding a solution of the
equation e’ (u) = 0 when its varying parameters are unknown.
It is easy to see that the root of equation (4.9) is given by

uNID = {g(w,w)}—l{F((E,’l‘) —f(CL‘,’U))}, (410)

where u is the analytical solution of (4.9). The control function
u(t) = uNTP(¢) is called a solution of the nonlinear inverse dynamics (NID)
[Boychuk (1966); Porter (1970); Slotine and Li (1991)].

NID(t)

Remark 4.1 Obviously, the control law in the form of (4.10) may be
used only if complete information is available about the disturbances, model
parameters, and state of the system (4.1).

In contrast with the approach based on the analytical solution of the
nonlinear inverse dynamics problem, let us consider a radically different
approach that allows us to satisfy the requirement (4.9) on the condition
of incomplete information about varying parameters of the system and ex-
ternal disturbances.

The first way is that, as discussed above, we may consider the system
{(4.1) with control law (3.15) where n = 1. As a result, due to the use of a
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differentiating filter of the first order, we will have the closed-loop system
(3.26)—(3.27). But let us devote our attention here to implementation of the
control law with the highest derivative in the feedback loop, which allows
us to incorporate integral action in the control loop without increasing the
controller’s order.

First, in order to obtain some justification for the control law structures
introduced below, we notice that the condition (4.8) corresponds to the
minimum value of the following unimodal function:

V(u) = 0.5{eF (u)}%. (4.11)

Let us consider V(u) as a Lyapunov function candidate. Then the require-
ment

V{u) _ 0V(u) du

d  ou dt P
can be satisfied for all 0V (u)/du # 0 by the control law in the form
% = —koV,V(u). (4.12)

This corresponds to the gradient descent method and, by definition, we
have

V.V (u) = 0V (u)/0u = —g(z,w)e”. (4.13)
In accordance with (4.3), the condition
sgn(g{z,w)) = const

is satisfied; then, instead of (4.12), we can use

du F
—_ = 4.14
dt koe ) ( )

where we assume that
kog(z,w) >0, V (z,w) € Qg -

It is easy to see that an equilibrium of (4.14) is the solution of equation
(4.9).

For the next step, as a generalization of (4.12), let us consider the control
law given by

du

S + dou = —koV, V (u).
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In a fashion analogous to the above, the control law for the system (4.1)
can be introduced by the following differential equation:

d
ud—? + dou = koe”, (4.15)

where p is a small positive parameter, kg is a high gain, and dy = 1, or
dy = 0.

According to (4.6) and (4.7), the control law (4.15) may be rewritten in
the following form:

du 1 dr

This corresponds to a proper transfer function and, therefore, may be re-
alized without an ideal differentiation of x(¢).

Remark 4.2 It is easy to see that the linear control law (4.16) may be ez-
pressed in terms of transfer functions. In particular, it may be rewritten in
the form of a so-called two degree-of-freedom feedback system configuration:

u = ko . kQ(T8+1)$
T T(us+do) T(us+do)”

Remark 4.3 For purposes of numerical simulation or practical realiza-
tion, the control law (4.16) may be presented in a state-space form such
as

4.1.4 Closed-loop system properties

In accordance with (4.1) and (4.15), the equations of the closed-loop system
are given by

dx

dt

du

Wit

= f(z,w) + g(z,w)u, z(0)=z",

= —dou + koef', u(0) =°

3
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or, from (4.7), its identical form

dz

i flz,w) + g(z,w)u, z(0) = z°, (4.17)
,udgqi— = —dou+ ko {F(:c,r) - c(ii_:tn} , u(0) = u?, (4.18)

where the highest output derivative z(!)(t) of the plant model (4.1) is used
in feedback.

Substitution of (4.17) into (4.18) yields the closed-loop system equations
in the form

dx

E = f(a:,w) + g(a:,w)u, -’E(O) = .’130, (419)
M% = —{do + kog(z,w)}u + ko{F(z,7) — f(z,w)},u(0) = u®, (4.20)

where 4 is a small positive parameter.

Since u is small, the closed-loop system equations (4.19)—(4.20) are the
singularly perturbed equations and, accordingly, the singular perturbation
method [Tikhonov (1952); Vasileva (1963); Gerashchenko (1975); Saksena.
et al. (1984); Kokotovié et al. (1986); Kokotovi¢ and Khalil (1986); Sastry
(1999)] may be used to analyze the closed-loop system properties; here the
main point is that fast and slow transients have been analyzed separately.

First, let us obtain an equation of the FMS. After introducing a new
time scale tg = t/p into (4.19)—(4.20) we have

;?5 = p{f(z,w) + g(z, w)u}, 2(0) = z°, (4.21)
to
5712 = —{do + kog(z,w)}u + ko{F(z,7) — f(z,w)}, u(0) = u®. (4.22)

By virtue of (4.21)—(4.22) we have dz/dty — 0 as p — 0. Accordingly,
in the new time scale ty from (4.21)—(4.22) we obtain the fast-motion sub-
system (FMS)

5_;: = —{do + kog{z,w)}u + ko{F(z,7) — f(z,w)}, uw(0) =u°, (4.23)

where we assume that z(ty) ~ const during the transients in the subsystem
(4.23).
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By returning to the primary time scale ¢, from (4.23) the equation of
the FMS

du
s

is obtained. Here we assume that the state z(t) of the plant model (4.1)
and, in accordance with (4.2), the vector w(t) of external disturbances and
varying parameters, are constants during the transients in the FMS (4.24),
i.e., w(t) = const and z(¢) = const (frozen variables).

Note that the FMS (4.24) is described by a linear differential equation.
It is easy to see that the asymptotic stability! and desired sufficiently small
settling time of the transients of u(t) can be achieved by a proper choice of
the parameters p, Ko.

Second, let us obtain an equation of the slow-motion subsystem (SMS)
under the condition of FMS stability. After the rapid decay of transients
n (4.24), we have the steady state (more precisely, quasi-steady state) for
the FMS (4.24), where

+ {do + kog(z,w)}u = ko{F(z,7) — f(z,w)} (4.24)

u(t) = v’(t)
and

ko

W{ (z,r) = f(z,w)}. (4.25)

From (4.10) and (4.25) it follows that

d
v =uVP 4 0 z,w)— F(z,r)}.
o+ Rogla, wlgaw) )~ @)
If the steady state of the FMS (4.24) takes place, then the closed-loop
system equations imply that

dzx do

G = FEn s (fm ) - P} (426)

is the equation of the SMS, where (4.26) is an equation with nonvanishing
perturbation such as (1.26) and the desired equation (4.5) plays the role of
the nominal system (1.2).

As a result of (4.26), if dg = 1 and |kg| — o0, then the transients of z(¢)
in the SMS are close to the transients of the reference model (4.5).

1As the FMS (4.24) is linear, the asymptotic stability of its unique equilibrium point
is the same as exponential stability. In short, the FMS is stable.
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If dy = 0, then the SMS (4.26) is the same as the reference model
(4.5) and the desired output behavior is fulfilled. Moreover, in this case
the integral action is incorporated into the control loop without increasing
the controller’s order and, accordingly, the robust zero steady-state error is
maintained, i.e., e® = 0.

Therefore, fast motions occur in the closed-loop system such that after
fast ending of the fast-motion transients, the behavior of the overall singu-

larly perturbed closed-loop system approaches that of the SMS, which is
the same as the reference model.

4.2 Controller design for an nth-order plant model

4.2.1 Control problem

Let us consider a SISO nonlinear time-varying continuous-time system in
the form

2 = f(Xw) + g(Xwhu, y=2, X(0)=X°,  (427)

where the variables are defined as follows:

y is the output of system (4.27), available for measurement, y € R?;

X = {z,2M, ..., z(®=D}T is the state vector of the system (4.27);

X (0) = X© is the initial state, X° € Qx;

Qx is a bounded set, 0x C R™;

u is the control, v € 2, C RY;

Q, is a bounded set of allowable values of the control variable;

w is the vector of external disturbances or varying parameters, w € §,,;

Q. is a bounded set, 2, C R

Note that the components (), ..., z("~1) of the state vector X (t) and
the vector w(t) are unavailable for measurement.

Assumption 4.1 The nonlinear functions f(X,w), g(X,w) are smooth
for all (X,w) € Qx.w = Qx X, and the analytic expressions for these
functions are unknown.

Assumption 4.2 The conditions

If(X,w)I < fmax <00, 0 < gmin < IQ(X’w)| < gmax < 0 (4.28)

are satisfied for all (X,w) € Qx 4, i-e., the functions f(X,w),g(X,w) are
bounded for all (X, w) on the specified bounded set Qx,y,.
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Remark 4.4 The influence of the external disturbances and varying po-
rameters of the system (4.27) is expressed by the dependence of the functions
f(X,w), g(X,w) onw.

A control system is being designed to satisfy the condition

lim e{t) = 0, (4.29)
t—oo
where e(t) is the error of the reference input realization, e(t) = r(t) — y(t),
and r(t) is the reference input. Moreover, the controlled transients should
have the desired behavior. These transients should not depend on the
external disturbances and varying parameters of the system (4.27).

4.2.2 Insensitivity condition

From (4.27) it follows that any desired value of the nth derivative z(™(¢)
may be assigned by a proper choice of the control u(t). Therefore, let us
construct the reference model for (4.27) in the form of the nth-order desired
stable differential equation.

In the general case the reference model of the desired output transients
z(t) for the system (4.27) may be assigned by some stable differential equa-
tion

o™ = F™D, M g0 NARNON (4.30)

where p < n and x = r at the equilibrium of (4.30) for r = const.

We call (4.30) the desired differential equation and its right member F
the desired value of the highest derivative z(")(t) (desired dynamics).

Let us rewrite (4.30) in the form

(™ = F(X,R), (4.31)
where R = {r,r(}),... , 7317 and z = 7 at the equilibrium for r = const.
Denote

ef = F — g, (4.32)

where e’ is the deviation of (™ from F.

The value ef” is called the error of the desired dynamics realization which
is assigned by equation (4.31).

Accordingly, if the condition

e =0 (4.33)
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holds, then the desired behavior of z(t) with prescribed dynamics of (4.31)
is fulfilled.

Expression (4.33) is the insensitivity condition for the behavior of the

output x(t) with respect to the external disturbances and varying parame-
ters of the system (4.27).

In accordance with (4.27), (4.31), and (4.32), expression (4.33) may be
rewritten in the form

F(X,R) - f(X,w) — g(X,w)u = 0. (4.34)

So, the control problem (4.29) has been reformulated as the requirement to
provide the condition (4.33) or, in other words, to find a solution to (4.34)
when its varying parameters are unknown.

If the condition

9(X,w) #0, V(X,w)€Qxny (4.35)
is satisfied, then the control function
u(t) = uNTP (1)

exists such that u™1P(

t) is the unique solution of (4.34):
uNP = {g(X,w)} H{F(X, R) - f(X,w)}. (4.36)

This is called the nonlinear inverse dynamics solution and, as noted before,
the function u™V/P (t) may be realized in practice as the control function if
and only if we have access to complete information about the disturbances,
model parameters, and state of the system (4.27).

4.2.3 Control law with the nth derivative in the feedback
loop

In order to keep hold of (4.33) under the assumption of unknown external
disturbances and varying parameters of the system (4.27), let us consider
the control law given by the following differential equation:

pIu(® + dq_l,uq_lu(q‘l) + oo+ dipu®) + dyu
= —koV,V(u), U0)=U°, (4.37)

where 4 is a small positive parameter and

g=2n,d=1lordg=0,d; >0, Vj=1,...,¢-1,
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U={u,uM,... w7, UeQycR? U(0) €N CQy.
From (4.28) we know that the condition
sgn(g(X,w)) = const, V (X,w) € Qx4

holds; hence, instead of (4.37) and, in accordance with (4.13), from (4.37)
a control law of the form

pu@ +dg 1 p Y o dypu® 4 dou = koeF, U(0) = U® (4.38)
can be constructed where it is assumed that the condition
kog(X,w) >0, V(X,w)€Qxy (4.39)

holds.
If the desired differential equation (4.31) is assigned by (2.6), then from
(4.38) the control law

pIu@ 4 dy pt Y o dy ) 4 dou
k
= T—i{—T"w(") —ad_ T D L adTe W gy} (4.40)
follows, where the nth derivative of z(¢) in the feedback signal is used.

Accordingly, in case of (2.8) the control law (4.38) may be presented in
the form

piu'? + dq_luq—lu(q—l) + o+ dypu + dou
=~ {-T"z(™ — ai_lT"_lx("_l) - —adTz® — g
+ bdrPr(®) 4 pd pelple=l) 4o g prr() 4, (4.41)

It easy to see that the linear differential equation (4.41) may be ex-
pressed in terms of transfer functions, and (4.41) may be rewritten as the
two degree-of-freedom feedback system configuration

_ = Bis) - Ads)
4=k sy F Dls) ™

(4.42)
where

k= — (4.43)
and

D(us) = p¥s? + dgey1p?™ st + -+ dypus + do. (4.44)
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Below we will assume that dg = 1 or dg = 0.

Remark 4.5  Let us denote ¢ = deg D(us), n = deg A%(s), p = deg B4(s).
If g > n, q > p then the control law (4.42) corresponds to o proper transfer
function and, therefore, may be realized without an ideal differentiation of
z(t) orr(t).

Remark 4.6 If the cost function is assigned by (4.11), then the control
law (4.87) is related to the continuous algorithm of the higher order opti-
mization introduced in [Tsypkin (1971)]. If g=1 and dy = 0, then (4.87)
reduces to the differential descent equation. The problem of output regula-
tion in the context of mechanical control systems was also discussed as the

optimization problem using the criterion of minimum acceleration energy
in [Krutko (1991); Krutko (1995); Krutko (1996)].

Remark 4.7 For numerical simulation or practical realization, the con-
trol law (4.41) can be presented in state-space form. Standard procedures
for obtaining state equations from transfer functions may be found in many
references, e.g., [Brogan (1991); Wolovich (1994)].

4.2.4 Fast-motion subsystem
Standard singular perturbation form of closed-loop system

We now know that the behavior of the closed-loop system under consider-
ation is described by the following differential equations:

zm = f(Xa ’U)) + g(Xv ’LU)U, X(O) = XO) (445)
pIul®) dq_l;ﬂ_lu(q_l) + o+ dypu® + dou
= ko{F(X,R) — =™}, U(0) = U°. (4.46)

In order to analyze the closed-loop system properties, let us consider some
transformations. First, substituting (4.45) into the right member of (4.46),
we get

™ = f(X,w) + g(X,wu, X(0)= X0 (4.47)

p9uD 4 dg_pI™ 1 4o dypu® + {do + kog(X, w) bu
= ko{F(X,R) — f(X,w)}, U(0)=U". (4.48)
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Next, the equations of the closed-loop system (4.47)—(4.48) may be rewrit-
ten in the following vector form:

Eaji:xi+1a i=1,...,n-1,
d
Exn = f + gu, X(O) = XO’ (449)
d , 0
H'(Euj:uj-l—la .7:1,---7(1—17 UI(O):U11
d
ppte = —{do+koghur -+ ~ dg—1uq + ko{F - f}, (4.50)
where
U1 = {ul,uz, e ,uq}T
and
uj =l V=14 (4.51)

Note that f, g are functions of X (¢) and w(t).

Since p is a small parameter, the closed-loop system equations (4.49)-
(4.50) are the singularly perturbed differential equations. If 4 — 0, then
fast and slow modes are forced in the closed-loop system and the time-scale
separation between these modes depends on the controller parameter 1. The
closed-loop system properties can be analyzed on basis of the two-time-scale
technique [Tikhonov (1952); Vasileva (1963); Gerashchenko (1975); Saksena
et al. (1984)] and, as a result, slow and fast motion subsystems are analyzed
separately. This, along with Theorem 1.3 on hand, gives the justification,
it will be shown in later sections, that stability conditions imposed on the
fast and slow modes, and a sufficiently large mode separation rate, can
ensure that the full-order closed-loop system achieves desired properties:
the output transient performances are as desired, and they are insensitive
to parameter variations and external disturbances.
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Fast-motion subsystem equation

Let us introduce the new fast time scale tg = t/u into the closed-loop
system equations (4.49)—(4.50). We obtain

d

a?a.’li=,ul'i+1, i:l,...,n—l,

d

T In = p{f +gu}, (4.52)
0

d—tOUj=uj+1, J=1,...,9-1,

d

gicta = ~{do+ koghur = diua -+ — dy-rug +ko{F — /},  (453)

as the closed-loop system equations in the new time scale tq.
It is easy to see that as 1 — 0, we get the FMS equations in the new
time scale tg, that is

d
Et—.’Di:O, i:l,...,n,
0
d )
qto W = Uity =1,...,9-1,
d
E%Uq = —{do +kog}u1 —dyjug -+ —~dq_1uq +k0{F— f}

Then, returning to the primary time scale ¢ = uto, we obtain the following
FMS:

T; =const, t=1,...,n,
d .
/,L‘d-i’u,j=u]'+1, j‘—‘l,...,q-—l,
d
Hoglg = —{do + kog}u1r — diug - - — dg—1uq + ko{F — f}. (4.54)
These may be rewritten as

M‘lu(‘]) + dq—l/lq_lu(q—l) + -+ dluu(l) + {dO + kog(X’ w)}u
= ko{F(X,R) - f(X,w)}, U(0)=U" (4.55)

where the vector X (¢) and, in accordance with (4.2), the vector w(t) of ex-
ternal disturbances and varying parameters are constants during the tran-
sients in (4.55), i.e., X (t) = const and w(t) = const.
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Note that the FMS (4.55) is a linear differential equation with frozen
parameters; hence, linear control system methods can be applied for sta-
bility analysis of (4.55). We summarize the main results in the following
theorem.

Theorem 4.1 If u— 0, then in the closed-loop system (4.27) and (4.38)
the two-time-scale motions appear where the FMS is described by equation

(4.55).

Remark 4.8 If u is sufficiently small, the condition do + kog(X,w) ~
const holds during the transients of the FMS (4.55). Accordingly, the FMS
(4.55) may be examined as the linear differential equation, where F(X, R)
and f(X,w) play the role of disturbances.

Let us denote
¥(X,w) = do + kog(X, w).

Remark 4.9 As the value of g(X,w) is unknown, then in accordance
with (4.28) and (4.39) we know only that the inequalities

0 < Ymin £ ’)’(X, w) < Ymaz (456)

are satisfied for all (X, w) € Qx 4, t.e., (X, w) is bounded and positive-
valued for all (X, w) in the specified set Qx .-

Remark 4.10  The parameters u, ko, do,...,dq—1 can be chosen so that
the asymptotic stability and sufficiently small settling time of the FMS
(4.55) are achieved for all possible values y from the given interval (4.56).

Steady state of the fast-motion subsystem
Suppose the FMS (4.55) is stable. Taking u — 0 in (4.55) we get

u(t) = u®(t), (4.57)

where u®(t) is a steady state (more precisely, quasi-steady state) of the FMS
(4.55) and

s ko

m*g"(‘X—){F(X yR) = f(X,w)}. (4.58)
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Note that by (4.36) the expression (4.58) may be rewritten in the following

form:
u = NP do w) —
o T Fog (X, g (Kyw) o w) — PO R))

There are two special cases here.

(a) If do # 0O (in particular, if dg = 1), then from (4.58) it follows that

lim w®(ko) = uV1P.
Jko|—o0
(b) If do = 0, then from the FMS (4.55) we obtain
lim u(p) = u® = V1P,
u—0
As a result of the above, we find that if kog/dq — o0, then the FMS

steady state u®(t) tends to the nonlinear inverse dynamics solution u¥ P (t)

given by (4.36).

4.2.5 Slow-motion subsystem

Let us assume that the FMS (4.55) is asymptotically stable. By letting
p— 0in (4.47)—(4.48), we find that

(™ = F(X,R)

dy 0

— (X, w) - F(X,R)}, X0)=X 4.59

VTRt 0w = FOG R, X () (459)
describes the SMS.

We therefore have the following theorem.

Theorem 4.2  If the FMS ({.55) is asymptotically stable, then, after the
rapid decay of fast-motion transients, the behavior of the SMS is described

by (4.59).
Note that if dg # 0 (e.g., dg = 1) then from (4.59) we have

lim ™ (ko) = F(X,R),

lko|—o00

i.e., limyky|—c0 €7 (ko) = 0. In other words, the equation of the SMS, (4.59),
tends to the desired differential equation (4.31) if the high gain k¢ is used
(more precisely, if the condition

kog(X,w) > do (4.60)
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holds). On the other hand, if dy = 0 then from (4.47)-(4.48) the expression

lim " (u) = F(X,R)

u—0
follows, i.e., lim, .o e () = 0. In contrast to the previous case, the SMS
equation is the same as the desired differential equation (4.31) even if

kog =~ 1.

In this case the integral action is incorporated in the control loop without
increasing the controller’s order and, accordingly, the robust zero steady-
state error, e® = 0, of the reference input realization is maintained in the
closed-loop system.

Theorem 4.3 If kog/dy — o0, then the SMS equation ({.59) tends to
the desired differential equation (4.81), i.e., lim e =0.
kog/do— o0

Remark 4.11  Note, that the SMS equation tends to (4.31) despite the
fact that there are varying parameters of the plant model (4.27) and un-
known external disturbances. Accordingly, the desired output transients are
guaranteed in the closed-loop system after fast damping of FMS transients.
So, if a sufficient time-scale separation between the fast and slow modes in
the closed-loop system and stability of the FMS are provided, then the out-
put transient performance indices are insensitive to parameter variations
and external disturbances in (4.27).

4.2.6 Influence of small parameter

Let us consider the subsystem (4.53) in the closed-loop system equations
(4.52)~(4.53) represented in the new time scale to, i.e., the FMS given by

d
d_tOUl =-ApMsU1 +BpMsk0{F(X?R) —f(X,’lU)}, (461)
where

0 1 0 0
0 0 0

Apps = |oe oo oo , By ,
0 O 1 0
—y —dy - —dgy 1

v = do + kog(X,w), and U, is the state vector defined by (4.51).
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Assume that the FMS is stable. Then, from (4.61), we find that
Uy = AL, Beysko{F ~ f}

FMS

is the unique equilibrium point; in particular, from (4.54) it is clear that
U = [u},0, -+ ,0]T, where u is defined by (4.58). For the sake of sim-
plicity, put do = 0 so that u{(t) = vV'P(t). By (4.36) we have uV!P(t) =
¢(X, R,w). Assume that both R and w are smooth and bounded; then the
function du™¥1P(t)/dt = dp(X, R, w)/dt is bounded as well. Note that

d NID d NID
aglt T REgY
S (X,R,w)
Bl TA0 N
= up(X, X (X, R,w), R, R, w,w). (4.62)
Denote
AU, = U, — UMD, (4.63)

By differentiating (4.63) with respect to t; and using (4.61), we get

d R
AU = A, AU, + (X, R, Ryw, ), (4.64)
0

where A, s is the matrix with the frozen parameter v(X, w). The function
¢ plays the role of perturbation in the FMS (4.64).

The stability of the system (4.64) and an error caused by finiteness of
the small parameter y may be investigated by Lyapunov’s method as was
done for the system (1.26). In addition, the criteria 7, 72, and 753 (see p.
15) can be used to estimate the degree of time-scale separation between
stable fast and slow motions in the closed-loop system.

4.2.7 Geometric interpretation of control problem solution

Let X5 be the state vector of the closed-loop system (4.49)-(4.50), where
Xy = {XT,UT}?, X = {z1,%32,...,2a}7, and Uy = {u1,uz,..., uq}t.
So, the state space of the closed-loop system (4.49)-(4.50) is the Cartesian
product

Qg = QX X QUl-

The set of trajectories of the closed-loop system, considered as a flow, is
stratified into a fast flow in Qy, and a slow flow in Qx as 4 — 0, where we
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have contractile flow of the FMS into a neighborhood of the point U; (¢t} and
contractile flow of the SMS into a neighborhood of the point {r,0,...,0}T
for r = const.

Let us define the manifold Mr as the set

F={(z™, X,u) | ™ - F(X,R) = 0},
which corresponds to the desired differential equation (4.30). The manifold
MP = {(m(n))X’u) ] Z(n) - f(X,’LU) - g(X,w)u = 0}

is the set of points (z(™, X,u) satisfying the plant model given by (4.27).
Then the control problem solution corresponds to the motion along the
intersection of Mp and M,

M}:;:MFﬂMp,

as shown in Fig. 4.1.

Fig. 4.1 Geometric interpretation of control problem solution in the system with the
highest derivative of the output signal in the feedback loop.

4.3 Example

Consider the control law given by (4.41). By taking ¢ = n = 2, we obtain

bé
pPu® + dypu® + dou = ko{—z® — T (1)+ II‘T (1)+—[r z]}. (4.65)
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Let us rewrite the control law (4.65) in state-space form, e.g.,

. dl dl ad k‘ode
Uy = ——uy + ko — — == :
1 Mul ug + 0{“ T}IIJ+ T2 T,

. do do 1 ko
U2—-L—2—U1+ko{'ﬁ—ﬁ}$+ﬁr, (4.66)

1
UI—IIE{ul-—kox}.

Then, from (4.66), we get the block diagram as shown in Fig. 4.2.

C"{E" Controller
1 bir

:; T2 T2 |
i R R 1w o 10
+ |_s_ T+ s ] + %

| do 1| dy d_dafl [do

: }/"2 T2 }:2 M ‘T }:

Fig. 4.2 Block diagram of the control law (4.65) represented in the form (4.66).

4.4 Notes

It has been shown that the discussed dynamical control law with the highest
derivative of the output signal in the feedback loop allows us to represent
the closed-loop system in the form of the standard singular perturbation
system. In particular, the singularly perturbed part of this system consists
of the equations of the constructed controller, where the controller corre-
sponds to a proper transfer function and, therefore, may be realized without
an ideal differentiation of the output variable or the reference variable.

As a result, two-time-scale motions are induced in the closed-loop sys-
tem, where stability of the fast transients and the desired degree of time-
scale separation between the fast and slow motions can be provided by
choice of controller parameters. Then, after the fast motion transients have
ended, the behavior of the overall closed-loop system gets close to the be-
havior of the slow motion subsystem. Moreover, by choice of controller
parameters it is possible to ensure that the slow motion subsystem is the
same as the assigned reference model.
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We can now enumerate the main steps of the design procedure for non-
linear control systems with the highest derivative in the feedback loop and
plant model given by (4.27).

¢ The model of the desired output behavior in the form of the nth-order
desired differential equation (4.30) is introduced. Its parameters are
selected based on the required output step response parameters (over-
shoot, settling time). As a result, the output regulation problem (4.29)
is reformulated as the requirement to provide the insensitivity condition
(4.33).

e The control law structure is chosen in the form of the differential equa-
tion (4.38), where the highest-order derivative (™ is used in the feed-
back loop. If the desired differential equation (2.8) is used, then (4.38)
has the form (4.41) and, in accordance with Remark 4.5, the control
law (4.41) may be realized without an ideal differentiation of z(¢) or
r(t).

¢ The closed-loop system properties are analyzed on the basis of the two-
time-scale technique and, as a result, the FMS equation (4.55) and the
SMS equation (4.59) are obtained.

¢ Finally, the parameters u, ko, and d; of the control law (4.38) should
be selected based on the (1) required stability of the fast transients, (2)
desired degree of time-scale separation between the fast and slow modes,
(3) required control accuracy and rejection of external disturbances
in the closed-loop system, and (4) and required high-frequency sensor
noise attenuation.

Problems concerning the final step of this design procedure are discussed in
detail in the next chapter. There we clarify the implementation of the con-
trol systems we have discussed, while at the same time making allowances
for various practical restrictions.

4.5 Exercises

4.1 A behavior of a plant is described by the equation
2@ =z + 2jz2®] + {2 + sin(t) }u.
Assume that the inequalities

lz@l <2, UOI<10, [r@] <1, [ud)] < umax
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4.2

4.3

4.4

4.5

4.6
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hold for all ¢ € [0,00). The reference model is chosen in the form
z® =22 _ g4,

Determine the lower bound of uy.x for which the desired behavior of
the plant can be provided in the specified region.
The differential equation of a plant is

z® = z 4 zj2V] + {2 + sin(t) }u,
while that of the reference model is
£® = 3.2z — g 4+ 3.2¢D 4 o

Construct the control law in the form of (4.41) where g = 3. Determine
the FMS and SMS equations from the closed-loop system equations.
The differential equation of a plant is

M = 22 + {1.5 — sin(t) }u.

The step response parameters of the output z(t) should meet the re-
quirements t¢ ~ 3 s, o =~ 0%. Construct the control law in the form of
(4.40) where g = 2. Determine the FMS and SMS equations from the
closed-loop system equations.

The differential equation of a plant is

@ = zzM 4 |z| + {1.2 - cos(t) }u.

The step response parameters of the output z(t) should meet the re-
quirements t¢ & 1 s, 0% & 10%. Construct the control law in the form
of (4.40) where ¢ = 2. Determine the FMS and SMS equations from
the closed-loop system equations.

The differential equation of a plant is

® = 2@ 4+ 2O 472 + {1.1 + cos(z) }u.

The step response parameters of the output z(t) should meet the re-
quirements t¢ & 3 s, 0% & 0%. Construct the control law in the form of
(4.40) where ¢ = 3. Determine the FMS and SMS equations from the
closed-loop system equations. Obtain a state-space representation and
sketch the block diagram of the control law.

Obtain a state-space representation and sketch the block diagram of
the control law (4.41) where ¢ =3,n=3,p= 1.



Chapter 5

Advanced design of SISO
continuous-time control systems

In Chapter 4 we presented a qualitative analysis of the properties of SISO
continuous-time systems with the highest derivative in feedback control.
This analysis was based on the singular perturbation method. In the present
chapter we obtain relationships helpful in choosing the control law parame-
ters of (4.38). We seek robustness of the closed-loop system properties in a
specified region of the state space of the system under the assumption that
we lack complete information about varying parameters of the system and
external disturbances.

We begin by discussing the problem of accuracy analysis and the choice
of the high gain in accordance with the requirements of control accuracy
and rejection of external disturbances. As the FMS equation (4.55) is a
linear differential equation, the results of linear control theory may be used
to analyze the FMS properties. Therefore, in the next part of the chap-
ter, the design of control law parameters based on desired root placement
of the FMS characteristic polynomial is presented. Finally, the influence
of high-frequency noisy measurements and varying parameters, as well as
the application of the frequency domain approach to make a choice of the
controller parameters, are considered.

5.1 Control accuracy

5.1.1 Steady state of fast-motion subsystem

Let us consider the closed-loop system equations (4.45)-(4.46). The rela-
tionships used to choose the high gain ko in the control law (4.38) can be
based on the requirements placed on the error of the output behavior under
either of the conditions that the steady state of the FMS or that of the SMS

79
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occurs.

Let us assume that a steady state of the FMS (4.55) occurs, i.e., that the
condition (4.57) holds. Then, instead of the insensitivity condition (4.33),
we may consider the requirement

e (w*)] < epaxs (5.1)

which should be satisfied within the bounded domains Qx g and Q.. By
definition,

ef’ is the error of the desired dynamics realization and the desired
dynamics are assigned by (4.31),

erI:xax = EpFmax,

EF is a relative error of desired dynamics realization, for example, £7 €
[0.01,0.1],

Finax is a constant defined by Fiax = maxa, » |F(X, R)|,

Qx g is a bounded set.

In accordance with Theorem 4.3, it is easy to see that the requirement (5.1)
can be provided by proper choice of the parameters kg, do. In particular,
from equation (4.59) for the SMS the expression

d

F 0

={—— 1 {F(X,R) - f(X 5.2
€ [do-l—klog(X,’lU):\{ ( ? ) f( )w)} ( )
follows, where by direct calculation we can find that (5.2) is the same as

d
F _ 4
e’ = o

Substitution of (5.2) into (5.1) gives

dO QT?.}X }F(X’R)_f(Xvw)l

|ko| = —-11, (5.3)

eFf

min max

where kg corresponds to (5.1) and gmin is defined by (4.28).

5.1.2 Steady state of slow-motion subsystem

Let us consider a steady state of the SMS (4.59) by assuming that the
conditions

X =X°={2°0,...,0}T, z(t) = ° = const, and r(t) = r® = const
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are satisfied in (4.59). Then we have
e=¢€®, e =r°-1°

Let the allowable steady-state error of the reference input realization be
assigned by the requirement

lef(X®,w)| < e (5.4)

max’
where

8 =
€max = €rTmax;

r = max |r(t
max = 10X |r(t)],
£, is a relative error of the reference input realization, e.g., & € [0,0.1].

From (4.59) and (2.8) it follows that

8

doT" f( X5, w)
- 5.5
Fog (X7, w) 55
Then by (5.5) and (5.4) we see that (5.4) is satisfied in a specified region
assigned by the inequalities (4.28) if the condition

dOTn fmax

8 .
emaxgmm

|ko| > (5.6)

holds.

So if dg # 0, then (5.3) and (5.6) may be used to choose the high gain
ko in accordance with the requirements on admissible error of the output
behavior.

If do = 0, then the integral action is incorporated in the control loop
without increasing the controller’s order and, accordingly, the robust zero
steady-state error of the reference input realization is provided. In this
case we need not employ a large gain kg. From a practical viewpoint the
advisable selection of kg corresponds to the condition kgg =~ 10. Note that a
decrease in kog leads to an increase in the dynamical error of the reference
input realization under the condition of a ramp reference input or a ramp
disturbance. This effect can easily be shown based on the expression for
the velocity error discussed below.
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5.1.3 Velocity error due to external disturbance

Let us consider a SISO linear continuous-time system in the form
2™ =aX +bu+bw, X(0)=XO, (5.7)

where X = {z,z(, ..., 2T G = {ay, as, -++,8n_1} is & row vector of
real constant coefficients, @ € R'*™, b = const, b = const, and y = z.
Substituting do = 0 into (4.41), we obtain the control law

pul® 4 dg gt 0D o dy
_ _{_Tnz(n) _ ag_lTn-lx(n—n e a‘sz(l) —x
+ bg'rp'r(") + bﬁ—ﬂ"‘lr(‘"l) + -+ b 4y (5.8)

Let us also assume that r(t) = const and the external disturbance w(t) is
a signal of type 1 (ramp external disturbance}):

w(t) = w't1(t).
Then the steady state of the closed-loop system (5.7) and (5.8) gives

lim z(¢t) = z,
t—00

where ¥ = const.
Let us introduce the following notation:

e?, is a velocity error due to the external disturbance w(t), where e?, =
r—zv,
ey is a relative velocity error due to the external disturbance w(t),

sV LU v
where €, = e}, /w®.

It is easy to find that

o bT™ ud,

w kob -
At the same time, in the closed-loop system (5.7) and (5.8) the following
limit exists:

(5.9)

lim {u(t) — 4(t)} =0,

t—oo

where

~

i) =~ 2fr - et} - %w” £1(6). (5.10)
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5.1.4 Velocity error due to reference input

Assume w(t) = 0 and the reference input r(t) is a signal of type 1 (ramp
reference input):

r(t) = rUt 1(t).

On one hand, we consider the reference model assigned by (2.6) and, ac-
cordingly, have the desired differential equation (4.31) in the form

2™ =T {—ad_ T z-D _ . odTe™ —z 4 7). (5.11)
Then the steady state of the closed-loop system (5.7) and (4.40) gives

Jim {r(1) — a(t)} = €

and
Jim {u(t) - ©(0)} =0,
where
e =afT - ——a":’];zl‘)‘dl , (5.12)

apey — a1’ agr®

at) = - -t 1(2).

In the above expressions the following definitions are used:

is a velocity error due to the reference input r(t),
is a relative velocity error due to the reference input r(¢), where
= el/rv.

RLNL N

On the other hand, let us consider a reference model assigned by (2.10).

Then we obtain
_ aoT" ud;

g = 2o- M 5.13

r Tob (5.13)

where the first term in the right member of (5.12) caused by the properties

of (5.11) disappears completely. This highlights the importance of using a

reference model of the form (2.10) when seeking high accuracy in output
tracking control.

It is easy to see that the sufficiently small relative velocity error ¥

T
due to the reference input r(¢) in (5.13) can be achieved by decreasing the
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parameter p for the given value kob. Note that increasing kob affects the
FMS stability.

5.1.5 Control law in the form of forward compensator

A block diagram of an SISO nonlinear time-varying continuous-time system
(4.27) with a control law in the form of a forward compensator is shown in
Fig. 5.1. Here the control law with the nth derivative of the error e(t) in
the feedback signal is given by the differential equation

,U,qu(Q) + dq—lﬂq_lu(q_l) 4 + dluu(l) + dou
= 2 {—Tme™ —ad_ T lem=D ... _gdTeD — ¢}, (5.14)
where e = r — z and ¢ > n.

lw Fig. 5.1 Control law in the form of forward
compensator.

Ty Forward || plant E25F

_i compensator ‘

We may express (5.14) in terms of the transfer function
Ad(s)
D(us)

where k and D(us) are given by (4.43) and (4.44).
In particular, let us consider the SISO linear continuous-time system

=~k

e, (5.15)

(5.7). If dg = 0, w(¥) L 0, and the reference input r(#) is a signal of type 1,
then from (5.7) and (5.14) it follows that the relative velocity error €7 due
to the reference input r(¢) is equal to (5.13).

To conclude this section, we note that the system with control law in the
form of the forward compensator (5.14) is more sensitive to nonsmoothness
of the reference input r(¢), and displays a peaking phenomenon. This will
be illustrated below in an example (see Fig. 5.18).

The expressions above can be used to calculate kg and p in accordance
with the requirements placed on control accuracy of the desired output
behavior realization for z(t) if the steady-state motion of either the FMS
or the SMS takes place. This does not suffice in practice, however, because
some additional requirements must be maintained. These are associated
with performance of the fast-motion transients. Therefore, the choice of
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control law parameters in accordance with requirements placed on damping
and settling time of transients of the FMS (4.55) is discussed below.

5.2 Root placement of FMS characteristic polynomial

5.2.1 Degree of time-scale separation

From Theorems 4.2 and 4.3 (see p. 72) it follows that the desired behavior
for z(¢t) and the insensitivity of the step response parameters of the output
transients with respect to the external disturbances and varying parameters
of the system (4.27) occur on the condition of the steady state of the FMS
(4.55). Accordingly, the stability of the FMS and a suflicient time-scale
separation between the fast and slow modes in the discussed closed-loop
system should be provided. Consequently, the control law parameters of
(4.38) should be designed to obtain a sufficiently small settling time of
FMS transients. Note that from a technical viewpoint, it is also desirable
to provide an acceptable level of oscillation excited in the FMS (4.55).
Let the FMS transients of (4.55) be required to satisfy the inequality

ts,rms < tg,FMSa (5.16)

where ¢, .,,5 is the settling time of the FMS and tg,FMS is a desired (per-
missible) settling time.

The desired time t‘s{ rms depends on the requirement placed on time-
scale separation between the fast and slow modes in the closed-loop system.
For example, suppose that

¢~ tS—MS (5.17)

S FMS

where

~
~

ts,sms 18 the settling time of the SMS (we usually assume that ¢
t3),

t¢ is a desired settling time of the output transients of (4.27),
7 is a degree of time-scale separation between the fast and slow modes
in the closed-loop system (we usually assume that n > 10).

5;,SMS

Note that if the degree of time-scale separation is sufficiently large, then
the FMS equation (4.55) may be examined as a linear differential equation
and, accordingly, linear control theory may be used to analyze the FMS
properties.
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5.2.2 Selection of controller parameters

Let us consider the choice of control law parameters based on desired root
placement of the FMS characteristic polynomial. First, assume that the
degree 7 of time-scale separation between the fast and slow modes is suffi-
ciently large so that the condition

g{X,w) = const

holds during the transients of the FMS (4.55). Then we may examine
(4.55) as a linear differential equation. The resulting FMS characteristic
polynomial

Dyys(8) = pis? +dgo1p?™'s97 4o+ dips + {do + kog}  (5.18)
can be rewritten as

:u’q q dq—luq—l q—1 dl”
s s s ————5+ 1. 5.19
do + kog do + kog + do + kog * (5.19)

Dins (3) =

Second, we see that the assignment of a desired root placement for the
FMS characteristic polynomial can provide the desired fast-motion tran-
sients. Just as the characteristic polynomial (2.3) of the reference model
was formed (see p. 26), let us find the allowable root region of the FMS
characteristic polynomial (5.18). This region is assigned by 8¢
(see Fig. 5.2), where

FMS and wFMS

¢¢ . =cos(f? ) is a desired damping ratio of the FMS,
w?  is a desired damped or actual frequency of the FMS.

FMS

Fig. 5.2 Allowable root region of the FMS

s-plane characteristic polynomial (5.19).

oots of FMS Roots
Q' / of SMS

L5 0

the ex-
pressmns (2.5) can be used Then, by selection of the g roots 31 S, s; Ms,
sq in the allowable complex domain, the desired FMS characteristic

polynomial

In order to find w s and 9d us for given ¢ and o¢

8, FMS FMS’

FMS FMS FMS
(s—=s1 Ns—sy )ooo(s—5;, )
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is assigned. Let us rewrite it in the form

D2, o (s)=ddsT+dd ;s + - +dis+ 1. (5.20)

FMS -

Third, the requirement

DFMS(S) = DiMS(S) (5-21)
is satisfied if and only if
dgd[do + ko!ﬂ

= {d&do+kog)}'?, dj = Vi=1,...,g—1 (5.22)

{dgldo + kog]}i/9’
The relationships (5.22) allow us to choose the control law parameters in
accordance with the desired root placement of the FMS characteristic poly-
nomial.

Note that no strong restrictions exist for root placement of the FMS
characteristic polynomial in the allowable region. The freedom of choice of
the control law order g and the root placement of the FMS characteristic
polynomial (5.20) within the allowable complex domain will be used be-
low in order to provide the acceptable level of high-frequency sensor noise
attenuation.

5.2.3 Root placement based on normalized polynomials

The desired FMS characteristic polynomial (5.20) can be constructed from
the given normalized polynomial

De (s) :sq-i—ci;l_lsq—l 4 dis+ 1, (5.23)
where (5.23) has the desired root placement pattern.
To that end, let us rewrite (5.20) as
De  (s) = pds? + cif_l,ug"lsq'l 4+ diugs + 1. (5.24)

FMS

Here the time constant p4 is defined by
d

5, FMS

d<
H tg

where ¢ is a nondimensional settling time of the system with the normalized
characteristic polynomial (5.23).

It is often convenient to use the normalized polynomials for Butterworth
root patterns, binomial root patterns, or ITAE standard error forms (where
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the integral of the time multiplied absolute error is minimal) [Graham and
Lathrop (1953))]. For instance, if D¢

FMS
binomial root patterns, then we have

(s) is the normalized polynomial for

= n!
df=— 2 j=1,...,¢-1.
7o (=gt

If the normalized coefficients d}i are assigned for some root pattern, then
from (5.21) and (5.24) it follows that the control law parameters are given
by

1= pgldo + kogl*’?,  d; = df{do + kog) 94, (5.25)
where j=1,...,4— 1.

5.3 Bode amplitude diagram assignment of closed-loop
FMS

5.3.1 Block diagram of closed-loop system
The discussed closed-loop system (4.45)—(4.46)
2™ = f(X,w) + g(X,w)u, X(0) = X°,
Nqu(Q) + dq_luq_lu(q"l) + “ e + dluu(l) _|_ dou
= kO{F(Xv R) - x(n)}, U(O) = UO

corresponds to the system shown in Fig. 2.1, while the block diagram of
(4.45)-(4.46) can be represented as in Fig. 5.3.

Fig. 5.3 Block diagram of the closed-loop system (4.45)—(4.46) with the highest deriva-
tive in the feedback loop.

Note that on the block diagram of Fig. 5.3 the initial conditions of the
controller are omitted, and the polynomial D{us) has the form of (4.44).
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The dotted enclosure in this block diagram, shown separately in Fig.
5.4, corresponds to the FMS (4.55). This can be verified through the use
of block diagram transformations, under the assumption that w = const,
X = const, F = const, f = const.

’w}f f(X,w) F

+o 0
F, e /¥ g ;éf 2 — F—=¢ D{ps)
_i Dips) f + g
+

Fig. 5.4 Block diagram of the closed-loop FMS (4.55), where w = const, X = const,
F = const, f = const.

5.3.2 Bode amplitude diagram of closed-loop FMS

Let us consider a procedure for choosing the control law parameters based
on a desired Bode amplitude diagram for the closed-loop FMS of Fig. 5.4.

Assuming the degree n of time-scale separation between the fast and
slow modes is sufficiently large, the FMS (4.55) will be examined as a
linear differential equation in which F' and f can be regarded as the external
signals for the FMS (4.55).

Let us apply the Laplace transform to (4.55), given that the above
assumption is satisfled and the initial conditions for (4.55) are all zero. We
obtain

u(s) = Gus(s){F(s) — £(s)}, (5.26)
where G, (s) is a rational continuous-time transfer function given by

1

Gug(s) = kuy Do)
FMS

(5.27)

Here kyy is the gain of the transfer function Gy (s) and is given by

kg

= — 5.28
do + kog ( )

Kuy

D5 (8) is the FMS characteristic polynomial (5.19). We assume through-
out the text that dp + kog > 0.
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Let us consider the logarithmic gain of the frequency-domain transfer
function Gz (jw):

Lyj(w) = 201g|Guy(jw)|.

The plot of L, ¢(w) is called the Bode amplitude diagram® of the closed-loop
FMS (4.55), and its qualitative shape is shown in Fig. 5.5.

201g LEo 1]
I HFA

\\\Luf (w)

N

vra, Lo(w)=~201g|g] “
Luj W) Lys(w)-.

Fig. 5.5 Bode amplitude diagram L, ¢(w) of closed-loop FMS (4.55).

It is easy to see that

LFA |ko]

=20lg ——21 5.29
Ly (w)=20 8 3ot kg (5.29)

is a low-frequency asymptote of L,f(w). This asymptote appears on the
plot as a horizontal (zero slope) line segment.
From (4.60) and (5.28) it follows that

LFA

L, (w)~-20lglg[.
In particular, if dg = 0 then
Ly; (W) = Lo(w),

where

Lo(w) = —201g|g|.

llg(z) denotes the logarithm of base ten, i.e., Ig(x) = log,o(z).
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Accordingly, we can obtain

Ly (w)=20lg ol _ 20g1gu (5.30)
uq

as the high-frequency asymptote of L, f(w), where L: ; 3 (w) passes through
201g(|kol/19) dB at w = 1 and through 0 dB at w = |ko|'/9/p.

5.3.3 Desired Bode amplitude diagram of closed-loop FMS
From Fig. 5.5 it is clear that the condition

u(s) = kus{F(s) = f(s)} (5.31)

holds for all w € [0,w;]. That is, the steady-state mode of the FMS appears
if the spectra of the signals F' and f lie within the frequency bandwidth
[0,w1]. Therefore, by (4.57) and (4.59), the influences of unknown distur-
bances and inherent properties of the plant are rejected, and the output
behavior depends only on the properties of the reference model (4.31), if
the low-frequency asymptote of L,f(w) belongs to some small neighbor-
hood of Lo(w). Note that the effective disturbance attenuation and desired
output behavior are achieved only up to the frequency w;.

So the control law parameters may be chosen such that the Bode am-
plitude diagram L, s(w) of the closed-loop FMS has the desired form:

Lus(w) = L (), (5.32)

where the permissible domain (see Fig. 5.5) of L¢ s(w) at low-frequency
bandwidth is assigned in accordance with the requirements placed on con-
trol accuracy and degree of time-scale separation.

In the frequency domain w > w; the desired Bode amplitude diagram
L (w) should be constructed to obtain allowable FMS transients perfor-
mance indices. Note that, by Remark 4.5 on p. 68, we have ¢ > n; hence
the high-frequency asymptote of Lﬁ f (w) is a straight line with a negative
slope of —20¢ dB/decade.

In accordance with the above requirements, the approximation of the
actual desired Bode amplitude diagram L2 f(w) may be organized as a set
of straight line segments (asymptotes). These asymptotes intersect at the
corner frequencies w = w;.

Let us assume that L2 7(w) is expressed in the corner frequency factored
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form

1
TPs? + 20 Ths + U [Tos + 1) [Tys + 1] -

Ly s (w) = kuy i (5.33)

as a product of first-order and quadratic factors. Then, from inspection of

Ld (W) given by (5.33), the desired FMS characteristic polynomial (5.20)
D¢ (s)=[TEs® +2GTis + 1[Tes+ 1] [Tys +1]- - (5.34)

FMS

follows.
Let us assume that w; < w;, V ¢ where w; = 1/T;. Then the roots of
quadratic factor

T2s2 4+ 90\ Tys+1

are the dominant poles of Gys(s), where 0 < {1 < 1. The parameter (;
(damping ratio) may be calculated such that

G = cos(@f,MS)
or may be chosen through the use of the well-known Bode amplitude dia-
grams for a quadratic factor [Dorf and Bishop (2001); Bosgra and Kwaker-

naak (2000)].

The following relationship between w; and t%

5 s M2y be used as a rule:

1 4
W)= — & ——. 5.35
! T CltguFMS ( )

5.3.4 Selection of controller parameters

As a result, the following procedure for choosing the control law parameters
i, d; of (4.38) in accordance with the desired Bode amplitude diagram of
the closed-loop FMS may be suggested.

Step 1. If dg = 1, then the gain k¢ is calculated based on expressions
(5.3) and (5.6) in accordance with the requirement placed on control accu-
racy. If the robust zero steady-state error is needed, then take do = 0.

Step 2. The low-frequency bandwidth [0,w1] of the Bode amplitude
diagram of the closed-loop FMS is assigned in accordance with the require-
ment placed on the degree of time-scale separation, where w; is defined, for
instance, by (5.35).
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Step 3. The desired Bode amplitude diagram Lﬁf (w) is assigned such
that its high-frequency asymptote L:; ? (w) has slope —20q dB/decade
where ¢ > n.

Step 4. From inspection of Lﬁ f {w) the desired FMS characteristic poly-
nomial D¢ (s) follows, which has the form (5.20).

Step 5. If dy = 1, then the parameters y, dq_1,..., di are calculated
based on (5.22) as far as the gain kg is known. If dy = 0, then ky may be
chosen arbitrarily — for instance, so that 1 < kog < 10. Then, by (5.21),
we have

djd[kog](q—j)/q

[dqd]J/Q ’ V]:]-’aq_l (536)

p={dlkog}"/?, d; =

5.4 Influence of high-frequency sensor noise

5.4.1 Closed-loop system in presence of sensor noise

By choice of the degree ¢ and root placement of the FMS characteristic
polynomial (5.20) within the allowable complex domain, the solution to the
problem of high-frequency measurement noise attenuation may be provided.
Let us consider the solution to this problem based on the investigation of
the Bode amplitude plot for the closed-loop FMS.

The SISO nonlinear time-varying continuous-time system (4.27)

m("):f(X,w)+g(X,w)u, J=z+n,, X(0)=X° (5.37)

is considered in this section, where the sensor output is corrupted by a zero-
mean, high-frequency measurement noise n,(t) as shown in Fig. 5.6. Here
§(t) is a sensor output. Then, instead of y(¢) = z(t}, only §(t) is available
for control. If we change y(t) to §(t) in equation (4.38), then the control

Fig. 5.6 Block diagram of the general con-
trol system with sensor noise ns(t).

algorithm becomes

ol dy 0D g dy i - dou = kel U(0) = UP, (5.38)
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wheree F(Y,R)— 9™, >0, g2n,dy=1lordy=0,d; >0, Vi=
1,...,q—— 1, and ¥ = {g,9W,...,g»~ D)7
Instead of equations (4.47) and (4.48), as a result of (5.37) and (5.38),

we find that the closed-loop system equations on the condition of sensor
noise are given by

2™ = f(X,w) + g(X,w)u, X(0) = X, (5.39)
'qu((I) + dq_luq_lu(q_l) _|._ .. + dluu(l) + {do + kog(X, w)}u
= ko{F(Y,R) — f(X,w) —n{™}, U(0) = (5.40)

5.4.2 Controller with infinite bandwidth

Since p is a small parameter, the closed-loop system equations (5.39)—(5.40)
are the singular perturbed equations. Accordingly, fast and slow modes
are induced in the closed-loop system as p — 0. Then, by the time-scale
separation procedure, from (5.39)-(5.40) the FMS equation

paul® 4 dq—lllq_lu(q_l) + o+ dipu® + {do + kog(X,w)}u
= ko{F(¥,R) — f(X,w) —n{™}, U(@©)=U° (5.41)
results. Here we assume that the state vector X (t) of the subsystem (5.39)
and, in accordance with (4.2), the vector w(t) of external disturbances and
varying parameters are constants during the transients in (5.41), i.e., that
X (t) = const and w(t) = const.
We then assume that the FMS is stable and, by finding the limit x — 0
n (5.40), obtain u(t) = u®(t), where
u® = ko{do + kog} " {F(X, R) ~ f(X,w) + F(N;,0) =n{"}.  (5.42)
Here N, = {ng,ngl), ..,ngn_l)}T.
Substitution of (5.42) into (5.39) gives the equation of the SMS:
=™ = F(X, R) + F(N,,0) — n{™
+do{do + kog} T {f(X,w) = F(X, R) ~ F(N,,0) + iV}, (5.43)
In accordance with (5.19) and (5.27), we have

wi —oo as pu—0

or, in other words, the bandwidth of the FMS increases as the parameter
v decreases. Hence, for some value of p the frequency bandwidth [0, w]
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includes the main part of the spectral density Sy, (w) of the high-frequency
noise n,(t) as shown in Fig. 5.7.

Fig. 5.7 Taking by bandwidth [0,w;] the Si(w)
main part of the noise spectral density Sr(w) S
Snae) /(“’\)
0 UJI w

So, the expressions (5.42) and (5.43) correspond to the controller with
infinite bandwidth. We can find, by comparing (5.42) and (5.43) with (4.58)
and (4.59), that there are two additional terms

Av® = ko{do + kog} " {F(N,,0) — n{}, (5.44)

Az™ = F(Ny,0) —n{™ + do{do + kog} ~*{n{™ — F(N,,0)},  (5.45)

where (5.44) and (5.45) reflect the influence of the noise n4(t).

Note that the magnitudes of the terms Au®, Az(™ can be large and can
give rise to a noise chattering effect in the control variable. In particular,
if the control variable u*(t) runs to the bounds of 2, then saturation of
u®(t) occurs. Consequently, we may have either decreasing accuracy of the
desired dynamics realization or loss of closed-loop system stability.

If the condition u®(¢) € 2, is satisfied, then there is small effect of the
high-frequency noise n4(t) on the behavior of the output variable y(t) since
the system (5.37) rejects high frequencies. Therefore, the main disadvan-
tage of the sensor noise n4(t) in the closed-loop system is that it leads to
high-frequency chatter in the control variable u®(t). Accordingly, in order
to attenuate sensor noise, the bandwidth [0,w;] of the closed-loop FMS
should be bounded. Fig. 5.8 shows a case in which this requirement is met.

So the control law parameters should be chosen, first, to provide for
control accuracy and, second, to attenuate the influence of high-frequency
sensor noise n4(t) on the behavior of the control variable u(t). In general,
these two requirements are contradictory. The problem of sensor noise
attenuation by assignment of the desired Bode amplitude diagram L% f (w)
of the closed-loop FMS will be considered later.
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S; (w) Fig. 5.8 The bandwidth [0, w;] is such that
Sp(w) that the influence of the high-frequency sen-
S, (w) sor noise ng(t) is attenuated.
0 Wy w:‘nsin uJrTrllsax

5.4.3 Controller with finite bandwidth
Selection of G,¢(s)

Let us consider a method of designing the control law (4.38) such that
the influence of high-frequency sensor noise ns(t) on the behavior of the
control variable u(#) is attenuated. The method is based on the well-known
frequency-domain approach to linear control system design under sensor
noise (see, for instance, [Dorf and Bishop (2001); Bosgra and Kwakernaak
(2000)]), and was used for aircraft flight controller design with the highest
derivative in feedback in the presence of sensor noise in [Blachuta et al.
(1999)].

Assume that the desired dynamics equation (4.30) has the form of the
linear differential equation (2.8). Then, similar to (5.26), from (5.41) we
get

u=Gur(s){F — f} = Gun,(s)ns, (5.46)
where
Ad(s) ko
Gun = kun, ==, kuns = TTTTTTTTTTIEAT 5.47
) = 5 ) G v kg 04D
and

Glun,(s) is a rational continuous-time transfer function between n(t)
and the control (manipulated variable} u(t) of the plant,

kun, is the dc gain of Gyp,(8), kun, = Gun,(0),

Ad(s) is the desired characteristic polynomial (2.3) of (2.8).

The transfer function Gy, (s) in (5.46) determines the sensitivity of the
plant input u(t) to the sensor noise signal ny(t). In other words, Gyn,(s) is
an input sensitivity function with respect to noise in the closed-loop system.

Let the requirement on high-frequency sensor noise attenuation be ex-
pressed by the following inequality:

IGuns (Jw)| < Eun, (w)y V w2 w:lsinv (548)
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where €5, (w) is an upper bound on the amplitude of the input sensitivity
function with respect to noise for high frequencies.

From (5.48) it follows that an upper bound on the Bode amplitude
dlagram Ly s(w) of the closed-loop FMS (4.55) appears for hlgh frequencies
w > wyi,. This bound is represented by a straight line L ( ) in Fig.
5.9.

max

k
LIS
ul ‘\Luf(w)
LF4 —201g|g}

Luf (UJ)

Fig. 5.9 Upper bound on the Bode amplitude diagram L,¢(w) for high frequencies
w > wl? in order to meet the requirement (5.48).

In order to find the expression for Lmax (w), let us note that from (2.3),
(5.19), and (5.47), the limit

. lkOI : qg—n __
wl-l—vr%o [W — [Gum, G} w?™™ =0

follows.
Let us assume that the condition

. HFA | k
G, ()| = 1G5 ()| =

HQUJQ‘“

(5.49)

holds for all high frequencies w > wy3, or, in other words, that Ly, (w) is
congruent with its high-frequency asymptote Lu f (w)
From (5.49) it follows that if ¢ = n, then high-frequency sensor noise
attenuation is not provided as the limit
Kol

Jim | Gun, (jw)] = a
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is valid.
From (5.30) and (5.49), it follows that (5.48) holds if the inequality

Luf " (@) < 201g(eun, (@) — 20nlgw (5.50)

is satisfied for all high frequencies w > w3 . For instance, let the function
€un, (w) be assigned by the expression

£
Eun, () = 5, (5.51)

where €,, = const > 0 and ¥ = const. Then (5.50) may be rewritten in the
form

Ly (W) € Ly (W), Yw2>wpg, (5.52)
where
Lo (w) = 201ge,, — 20[n + 9] g w.
HFA

The expression for L, (w) is the straight line that assigns the upper bound
of Lys(w) for all w > wp4  if the assumption (5.49) is satisfied.

From inspection of Fig. 5.9 it is easy to see that upper attenuation of
the high-frequency sensor noise is provided if w; = wy, Vi =2,...,q. So,
the desired FMS characteristic polynomial (5.34) should be chosen such
that T; =T, Vi=2,...,q.

Selection of Gyn,(s)

The high-frequency sensor noise attenuation can be investigated directly by
examination of the Bode amplitude diagram for G, (). Toward this end,
let us rewrite (5.47) in the form

_ ko fid(s)

Gun, () = WD (5) (5.53)

where, by (2.3) and (5.18), we have

id ap_1 af 1
A(s):s”+Ts" ++Tm8+ﬁ,
DFM’S(s)zsq_‘_quq 1+,..+Nq_15+ o
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Denote by
Lyn, (w) =20lg |Guns (Jw)|

the Bode amplitude diagram of the input sensitivity function with respect
to noise in the closed-loop system. For simplicity, let us assume binomial
root patterns for the polynomials A%(s) and D,y s(s) and consider the
qualitative shape of L,,, (w) as shown in Fig. 5.10. Here

wFMS [do + k’ogll/q |koll/(fI—~n)(d0 + kog)l/q

1
4= T = ——— Y
T M T 0T ) /
e Mool kel TKol(do & Kog) 4T/
(do + kog)T™’ pa’ 19 .

Recall that, by definition, dy + kog > 0, and that w? and w:Ms are called
the natural frequencies of A4(jw) and D,.,,,(jw), respectively. Note that
by Step 2 (see p. 92) w:Ms should be chosen so that w:MS > wy.

From inspection of Fig. 5.10 it is easy to see that the requirement on
high-frequency sensor noise attenuation given by (5.48) can be maintained
by a proper choice of w:;MS and gq.

20n dB/dec

201gms.

Fig. 5.10 Bode amplitude diagram Ly, (w) of the input sensitivity function with re-
spect to noise in the closed-loop system.
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5.5 Influence of varying parameters

5.5.1 Influence of varying parameters on FMS and SMS

Let us consider the influence of varying parameters of the plant model (4.27)
on the properties of the closed-loop system (4.45)—(4.46). Then, taking into
account this influence, we shall investigate some of the particularities of
controller design with the highest derivative in feedback.

From (4.55) it follows that stability of the FMS depends on such plant
parameters as g(X,w). Regarding the SMS equation (4.59), it is easy to
see that vanishing influence of varying parameters of the plant model (4.27)
on the properties of (4.59) takes place if kog(X,w) > dg. So the main
factor in the closed-loop system (4.45)—(4.46) is the influence of the varying
parameter g(X,w) on the stability of the FMS (4.55).

Note that the above consideration of the controller design in the form
of (4.38) was conducted in the previous sections on the assumption that
g = const during the transients in the FMS (4.55). But the peculiarity of
(4.27) is that the current value of (X, w) is unknown while, by Assumption
4.2 (see p. 64), it is known that

(X, W) € [gmin; Imax), VX € Qx, YV w € Q. (5.54)

So the controller parameters of (4.38) should be chosen such that stability
and the requirement (5.16) are satisfied for any possible value of g from the
given interval.

Taking into account the effect of the varying parameter g(X,w) on the
stability of the FMS (4.55), let us consider below certain particulars of
controller design with the highest derivative in feedback.

5.5.2 Michailov hodograph for FMS

The influence of the parameter g on the stability of the FMS (4.55) may be
investigated via well-known stability criteria such as the Routh-Hurwitz
criterion, the Nyquist criterion, the root locus method, or the Michailov
stability criterion (see, e.g., [Kolmanovskii and Nosov (1986)]). Note that
Nyquist and Michailov criteria are based on the argument principle from
the complex analysis.

In particular, substitution of s = jw into (5.18) yields

Dpms(jw) = pi(jw)? + dg_1p® ' (Gw)™t + ...+ dipgjw +y,  (5.55)
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where v = dg + kog. The function (5.55) is called the Michailov frequency
function corresponding to the characteristic polynomial of the FMS (4.55).

Let us plot (5.55) in the complex s-plane for the frequency range 0 <
w < o0. This plot is called the Michailov hodograph. Then, in accordance
with the Michailov stability criterion, the FMS (4.55) is stable if and only
if the following conditions are satisfied:

L] D F MS(O) > 0.

e Dpps(jw) #0, ¥V w € [0,00).

e The Michailov hodograph encircles the origin and the traversal is in the
counterclockwise direction through ¢ quadrants in strict sequence.

In particular, the FMS (4.55) is marginally stable if some frequency & €
[0, 00) satisfies DpMs(ju"J) =0.

For example, a qualitative view of the Michailov hodograph (5.55) for a
stable FMS (4.55) is shown in Fig. 5.11. Here the degree of the characteristic
polynomial (5.20) is given by ¢ = 4, and

Ymin = do + ko Gmin, Ymax = do + kOgmax~

Fig. 511 The Michailov hodograph (5.55) Im D,y o(jw)
of a stable FMS (4.55), where ¢ = 4. //7’\ .
\‘ 'ReL}Ms( Jw)
\ “Ymin Ymax
.

In accordance with the example shown in Fig. 5.11, we see that an
increase in ¢ leads to an oscillating margin of FMS stability, whereas a
decrease in g leads to a neutral margin of FMS stability. The region of FMS
stability for g can be found by inspection of the Michailov hodograph, by
the Routh-Hurwitz criterion (see, for instance, [Dorf and Bishop (2001)]) or
by method of D-subdivision (see, for instance, [Neimark (1947); El’sgol’ts
and Norkin (1973); Kolmanovskii and Nosov (1986)]).

Hence the parameters of the control law (4.38) should be chosen so
that the interval [gmin, gmax] belongs to the region of FMS stability. More-
over, the desired relative stability of the FMS should be provided for all
9 € [gmins gmax) such that the FMS transients maintain the allowable per-
formance indices.
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5.5.3 Variation of FMS bandwidth

Let us consider the influence of variations in the parameter g on the band-
width of the FMS (4.55) (see Fig. 5.5).

Assume that the gain ko is chosen in accordance with the inequalities
(5.3) and (5.6). Then the control accuracy requirements (5.1) and (5.4) are
satisfied for all ¢ € [gmin, Ymax]-

In addition to (5.1), (5.4), and in accordance with the 2nd step of the
design procedure discussed on p. 92, the bandwidth of the FMS (4.55)
should include the assigned frequency interval [0,w1] for all g € [gmin, Imax)-
Note that the frequency w; depends on the requirement placed on the degree
of time-scale separation between the fast and slow modes, and that this
requirement is given by (5.16), (5.17), and (5.35).

In order to estimate the bandwidth of the FMS (4.55), let us introduce
@ as the frequency at which the low- and high-frequency asymptotes of
Ly, (w) intersect. In accordance with (5.29), (5.30), and from the condition

LFA HFA

Luf (LU) =Luf (w)a

it follows that

1/q
W= M_ (5.56)
U
Then from (5.54) we find that the bounds for @ are given by
we [‘rjmina‘bmax]a VXeQx, VweQy,, (5.57)
where
. 11/q d 1/q
i = [dO + kogmm] and  Gpay = [ o + kogmax] ) (558)
7 p
So @ can vary over the interval
[‘Dmim a)max] . (559)

Hence the controller parameters of (4.38) should be chosen so that the
requirement

Wmin = W1 (5.60)

holds, where w; is assigned by (5.35).
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The influence of variations in g on the bandwidth of the FMS (4.55)
is illustrated by Fig. 5.12. Here, as an example, we assume that the pa-
rameters of the control law (4.38) were chosen so that if g = gmin, then
the condition (5.32) (see p. 91) holds and the desired FMS characteristic
polynomial (5.34) is given by

D¢ (s)=[Tis+1)% (5.61)
201g lft—gl N
20 1g —I%—llr—]
wiglitl

0 lg";)min lg":jma.x lgw;;in

Ly w)
L )

Fig. 5.12 The influence of variations in the parameter g on the bandwidth of the FMS
(4.55).

5.5.4 Degree of control law differential equation

First, by inspection of Fig. 5.12 it is easy to see that the requirement (5.60)
may be provided by choice of location of the high-frequency asymptote
LZ ; A {w), given by (5.30). At the same time, the parameter ko was assigned
beforehand such that the control accuracy requirements (5.1) and (5.4) are
satisfied for all ¢ € [gmin,gmax]- Then there is only one possible way to
assign the location of L:fF B (w): by choice of the parameter x and the order
g of the control law differential equation (4.38).

From (5.58) and (5.60) it follows that an upper bound on u is given by

1< [do + kogmin]Y?

o (5.62)
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Second, from the requirement placed on high-frequency sensor noise atten-
uation (5.48) and, in accordance with (5.49), (5.51), and (5.52), it follows
that a lower bound on u is given by

p> |kl e (5.63)
~ |€n, [w;sin]q—n_ﬂ ’ '
where ¢ > n+ 9.

A simultaneous solution exists for both inequalities (5.62) and (5.63) if
the degree of the control law differential equation (4.38) is chosen such that
the condition
In wrz, ]! (5.64)

q2n+ﬂ+[m L h

€n,ldo + Kogmin)
holds.

5.5.5 Root placement of FMS characteristic polynomial

If ¢ > 3, then from (5.18) we see that an increase in g leads first of all to
underdamping and a decrease in the relative stability of the FMS. Further
increase leads to marginal stability, and finally to instability, of the FMS
(4.55). The qualitative change of the Bode amplitude diagram caused by
increasing g from gmin t0 gmax 18 shown in Fig. 5.12 as a broken curve.

Suppose root placement of the FMS characteristic polynomial is used
to obtain the control law parameters of (4.38) with a desired root pattern.
Then, in order to avoid underdamping of the FMS caused by variations of
g, we can use the following procedure instead of (5.25).

Step 1. The parameter p is determined on the condition when g = gmin
by the relationship

u= /J,d[do + kogm,'n]l/q. (5.65)

This choice allows us to provide the desired lower bound for relative stability
or, in other words, the damped frequency of the FMS for all g € [gmin, Gmax]-

Step 2. The parameters d; are determined on the condition g = gmax
by the relationship

~ J
d; = dldo + Kogimas) [ﬁ‘;] CVi=looq-1  (566)

This choice allows us to provide the desired lower bound for the FMS
damping ratio (see Fig. 5.2, p. 86) or, in other words, the requirement
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Coms = €2, for all g € [gmin, Imax)-

5.6 Bode amplitude diagram assignment of open-loop FMS

Let us consider a procedure for choosing the control law parameters of
(4.38), based on the formation of a desired Bode amplitude diagram for the
open-loop FMS. Therefore, in contrast to Fig. 5.4 (see p. 89), let us consider
a block diagram representation of the FMS in which the loop is broken as
in Fig. 5.13. It is easy to see that the Bode diagram of the open-loop FMS

Fig. 5.13 Block diagram of the open-loop wX f(X w)
FMS (4.55), where w = const, X = const, !
F = const, f = const. e P ++
Fiy el ko Ju it 2=z
5 —;r b’ ’
éa-inb
is given by
o o ,.
L, r(w) =201g|G,p(jw)l, (5.67)

where z = z(™ and

G:F(S) = Dké(;j]S) .

Then, in order to obtain allowable FMS transient performance in-
dices, the desired Bode diagram of the open-loop FMS can be de-
signed by choosing the control law parameters ko, p, and d; in (4.38).
So the standard design procedure using Bode diagrams [Chen (1993);
Kuo and Golnaraghi (2003)] can be used. The main steps of the design
procedure using the Bode amplitude diagram of the open-loop FMS are
highlighted below.

Step 1. Determine the frequency interval [0,@1] and the prohibited area
of the low-frequency part of Ljp(w) (crosshatched region at lower left in
Fig. 5.14) by taking into account the requirements (5.1) and (5.4). Take
do = 1 or, if robust zero steady-state error is required, dg = 0.

Step 2. Determine the prohibited area of the high-frequency part of
LjF(w) (crosshatched region at upper right in Fig. 5.14) by taking into
account the requirement (5.48). To find this area, note first that from

(5.68)
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—20dB/dec
d0=\0\‘\~\

dy=1

+AL- - -

—AL- - -

Fig. 5.14 Bode amplitude diagram L_j(w) of the open-loop FMS.

(5.68) we have

Second, assume that

o . kog
|G r(jw)| = T (5.69)
for all w > w4, . Then, from (5.67) and (5.69), it follows that the require-
ment (5.48) holds if
Lop(w) < 201g|geun, (W) — 20nlgw, ¥ w > Wi, (5.70)

In particular, if £,y,(w) is given byo(5.51), then by (5.70) the prohibited
area of the high-frequency part of L, p(w) is defined by the inequality
Lop(w) < 00glgen,| - 00+ 9lgw, Yw>wlh. — (5.71)

Step 8. The desired shape of the Bode amplitude diagram LEF(w) of
the open-loop FMS is constructed in the allowable domain in such a way
that it meets the desired gain (AL) and phase margins. The crossover
frequency w. should be chosen to satisfy the requirement (5.16).

Step 4. From direct inspection of the desired shape of L?F(w), the gain
ko and parameters of the polynomial D{us) result, where D(us) is given
by (4.44) (see p. 67).
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So, if the equation of the desired dynamics is assigned by (4.30), then
calculation of the remaining parameters of the control law (4.38) may be
examined as the design of a linear compensator of the form

ko
D(us)
in the unity-feedback system as shown in Fig. 5.13. Note that, in general,

the discussed procedure allows us to design the linear compensator given

by

Ce(s) =

K(us)

Cc(s) - kO D(,U,S) y

(5.72)

where
K(us) = kypbst + k=1 o ks + 1.

Then, instead of (5.38), we have that the resulting general control law is
given by

NQU(Q) + uq_ldq_lu(‘I"l) + e 4 udlu(l) + dou
= ko{kipt[ef 1V + ki pt=1eF 1D - - kiulef 1) +ef}. (5.73)

We can realize (5.73) without an ideal differentiation of §(¢t) or r(t) if
g > | + n. Taking into account the additional requirements of the high-
frequency sensor noise attenuation given by (5.48) and (5.51), we see that
the degree of the control law differential equation (5.73) should be chosen
so that the condition ¢ > [ 4 n + 9 is satisfied.

5.7 Relation with PD, PI, and PID controllers

Since the proportional-derivative (PD), proportional-integral (PI), and
proportional-integral-derivative (PID) controllers are widely used (see, for
instance, [Chen (1993); Kuo and Golnaraghi (2003)]), we now discuss the
relationship between these and the above controller with the highest deriva-
tive in the feedback loop. It will be shown that the latter leads to the former
types under certain conditions.

Let us consider the control law with the nth derivative of the error
e(t) in the feedback signal, given by (5.14). At noted above, (5.14) can be
represented in terms of the transfer function (5.15).
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From (5.15) the controller
u=—k{T"s" +al_T" 1" 1 4 +alTs+1}e (5.74)

follows as u = 0 and dg = 1. In particular, if n = 1 then (5.74) reduces to
the structure of the PD controller

u=—k{Ts+1}e. (5.75)

Note that (5.74) is described by an improper transfer function. Hence the
control law (5.74) corresponds to the use of an ideal differentiating filter in
feedback (or, from a technical point of view, to the use of special sensors
capable of measuring all derivatives up to the nth order).

From (5.15) the controller with the proper transfer function of the form

~Ts+1
u= -k
us+1

e (5.76)

results as ¢ = 1, » = 1, and d; = dp = 1. It is easy to see that (5.76)
reduces to the PD controller (5.75) as u — 0.

On the other hand, assume that ¢ = 1, n = 1, u = 1, d; = 1, and
dp = 0. Then from (5.15) the equation of the PI controller

u=—k [T + ﬂ e (5.77)

follows.
Let us consider the next case. By substitutionof ¢ =1, n=2, u=1,
dy = 1, and do = 0 into (5.15), the PID controller

u=—k [Tgs + alT + %] e (5.78)

results. Since (5.78) is described by an improper transfer function, to realize
the PID controller in practice (i.e., without a sensor for the derivative of
e(t)) let us take ¢ = 2, n = 2, dg = d; = 1, and dy = 0 in (5.15). As a
result, the proper PID controller
" _k (T?%s% + adTs + 1) . (5.79)
7 (us+1)s

follows.

So, the above design methodology gives a clear procedure for calculation
of PD or PI controller parameters for a plant model of the first degree, and
the parameters of a PID controller for a plant model of the second degree.
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The advantage of this methodology is that the desired performance crite-
ria are guaranteed under conditions of incomplete information regarding
varying parameters of the plant model and unknown external disturbances.

5.8 Example

Let us consider a SISO nonlinear continuous-time system in the form

2 =1 4 sin(zM)]z + [1 — 0.5sin(2)]u + w(t), (5.80)
where y(t) = z(t) and the desired dynamics of y(t) are assigned by
1 1 1 1
2 d 1 d 1
y@ = _qa? Ty( ) — T2V + ﬁbﬂr( )+ T2’ (5.81)

Expression (5.81) corresponds to (4.31). We assume that 7" = 1 s. Let
g = 2; then, from (4.41), we obtain the control law structure given by

e
ATy iz[r —1y]}. (5.82)

d
2. (2 1 _ 2) 21, (1
7 u()+d1pu()+dou—ko{—y()—Ty()+T2 T

Hence, the FMS characteristic polynomial is
D,pis(8) = p?s® + dips + do + kog,

where g € [0.5, 1.5].

By taking 4 = 0.1 s, kg = 10, dg = 0, and dy = 2, we find that as the
parameter g is varied from 0.5 to 1.5, the degree of the time-scale separation
n3 = [do+kog]®®T/u varies from 22 to 38 and the damping ratio ¢,.,,, varies
from 0.44 to 0.25.

Usually, in order to perform a computer simulation, we must represent
the control law (5.82) in state-space form, e.g.,

_ dl d1 a‘{l kob‘liT
U1——;u1+u2+ko{;——f yt+ =

. d d 1 k
UQ=—~/T(;—U1+k0{u—2~T§}y+ T—gT, (583)

1
u-—-m{ul—koy}.

The simulation results for the output of the system (5.80) controlled by
the algorithm (5.83) in response to a step reference input r(t) and a step
disturbance w(t) are displayed in Fig. 5.15, where the initial conditions are
zeroand T =7=1s,af =1.4,b¢ =0, and t € [0, 8] s.



110 Design of nonlinear control systems with the highest derivative in feedback
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Fig. 5.15 Output response in the system (5.80) and (5.83) for a step reference input
7(t) and a step disturbance w(t), where T =7 =15, af =14, b¢ = 0.
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Fig. 5.16 Output response in the system (5.80) and (5.83) for a ramp reference input
7(t) and a step disturbance w(t), where T =7 =15, a¢ = 1.4, and b¢ = 0.

The output response in the system (5.80) and (5.83) for a ramp reference
input 7(¢) and a step disturbance w(t) is shown in Fig. 5.16, where r(t) =
rtl(t), " =1, T=1=1s5, ad=14,b¢=0,and t € [0,6] s.

If, in accordance with (2.10) (see p. 29), we assume that a¢ = b¢ = 1.4,
then the reference model is a type 2 system. The simulation results for the
output response in the system (5.80) controlled by the algorithm (5.83) to
a ramp reference input r(t) and a step disturbance w(t) are shown in Fig.
5.17, where t € [0,6] s.

The simulation results for the output response in the system (5.80)
controlled by the algorithm in the form of the forward compensator (5.14)
to a ramp reference input r(t) and a disturbance w(t) = 0 are shown in
Fig. 5.18, where e(t) = r(t) —y(t), r(t) = r’t1(t), v’ =1, T =15, af = 1.4,
pw=0.1s, kg=-10,dp =0, di=2and t € [0,6} S.

The sign of kg undergoes a change here in accordance with the require-
ment of FMS stability if the control law (5.14) is used. In comparison with
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(o=l o S R A N =]
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Fig. 5.17 Output response in the system (5.80) and (5.83) for a ramp reference input

r(t) and a step disturbance w(t), where T =7 = 1 s and a¢ = b‘li = 1.4 (reference model
is a system of type 2).
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Fig. 5.18 Output response in the system (5.80) and (5.14) for a ramp reference input
7(t) and disturbance w(t) = 0.

Fig. 5.17, we can see that the closed-loop system with control law (5.14)
is more sensitive with respect to nonsmoothness of the reference input ()
and reveals a peaking phenomenon. So the reference signal (¢) should be
a continuously differentiable function in order to avoid a high pulse in the
control variable u(t) in Fig. 5.18.

5.9 Notes

Our main purpose has been to explain the various design procedures for
choosing the parameters of the control law with the highest derivative in
the feedback loop for SISO systems, such that the robustness of the closed-
loop system properties is provided in a specified region of the state space of
the system — despite incomplete information regarding varying parameters
of the system and external disturbances.
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We have shown that for the given structure of the control law with the
highest derivative in the feedback loop, the design procedure for controller
parameters may lead to linear compensator design by linear control system
methods, given that the degree of time-scale separation between induced
fast and slow motions is sufficiently large in the closed-loop system. We
have also shown that the desired degree of time-scale separation can be
provided by proper choice of the controller parameters.

The relationships used to choose the control law parameters of (4.38)
in accordance with the requirements on control accuracy and disturbance
rejection, as well as high-frequency sensor noise attenuation, have been ob-
tained in this chapter. These make it possible to employ control systems
with highest derivative in feedback while making allowance for various prac-
tical restrictions.

Finally, the relationship between the controller with the highest deriva-
tive in the feedback loop and the PD, PI, and PID controller types has
been established. The resulting design methodology can be used in order
to obtain PD or PI controller parameters for a first-degree plant model, and
PID controller parameters for a second-degree plant model. The advantage
of this approach to PID controller design is the guaranteed performance
of the output response for nonlinear systems in the presence of unknown
external disturbances and varying parameters.

Note that there is a broad set of publications devoted to problem of
integral controller design for linear as well as nonlinear systems, where
various types of output feedback controllers with observers are discussed,
e.g., [Davison (1976); Francis (1977); Isidori and Byrnes (1990); Huang and
Rugh (1990); Mahmoud and Khalil (1996); Khalil (2000)].

5.10 Exercises

5.1 The differential equation of a plant model is given by
2@ =z + z)zW| 4 {1.5 + sin(t) }u. (5.84)

Assume that the specified region is given by the inequalities |z(¢)| < 2,
|z ()| < 10, and |r(t)| < 1, where t € [0, 00). The reference model for
#(t) is chosen as 2(® = —221) — g+ r. Determine the parameters of the
control law (4.40) to meet the requirements: €7 = 0.05, &, = 0.02, and
Cpms = 0.5; M3 = 20. Compare simulation results with the assignment.
Note that 73 is the degree of time-scale separation between stable fast
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and slow motions defined by (1.65).
The behavior of a plant model is described by the equation

® = 2:W 4z + 2. (5.85)

Assume that the inequalities |z(t)] < 4, |z ()] < 20, and |r(t)] < 2
hold for all t € [0, 00). The reference model for z(t) is assigned by

z® = 320 g 41 (5.86)

Determine the parameters of the control law (4.40), where dy = 1, to
meet the following requirements: Zp = 0.1, & = 0.05, (pps = 0.2;
13 > 20, ¢ = 2. Determine the equation for the steady-state error due
to a ramp reference input r(t) if dg = 0. Modify (5.86) in order to obtain
the reference model as the system of type 2. Compare simulation results
with the assignment.

The differential equation of a plant model is given by

@ =W 4 ¢ 4 5u. (5.87)

Assume that the inequalities |z(t)] < 3, |[zV(¢)] < 20, |r(t)] < 1 hold
for all ¢ € [0, 00). The reference model for z(t) is assigned by

z® = 142D —z 47, (5.88)

Determine the parameters of the control law (4.40), where dy = 1, to
meet the following requirements: Zp = 0.1, & = 0.05, {.,,s > 0.3;
13 > 20, ¢ = 2. Determine the equation for the steady-state error due
to a ramp disturbance w(t) if dy = 0. Compare simulation results with
the assignment.

The plant model and reference models are given by (5.87)-(5.88), and
the control law has the form (4.40) where ko =8, ¢ =3, u=0.1s,ds =
5,d; =9, and dy = 0. Determine the steady-state error due to a ramp
disturbance w(t). Compare simulation results with the assignment.
Determine the region of stability for g of the FMS (4.55), where kg = 8,
q:3,,u=0.1 S, d2=5, d1:9, anddoso.

The plant model and reference models are given by (5.87)-(5.88), and
the control law has the form (4.40) where ky = 10, ¢ = 2, u = 0.1 s,
d1 = 2, and dg = 0. Determine the equation of the steady-state error
due to a ramp reference input r(t). Compare simulation results with
the assignment.
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5.7

5.8

5.9

5.10

5.11

5.12
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Determine the region of variations (5.59) of the frequency & of intersec-
tion between the low- and high-frequency asymptotes of L,,, (w). Also
determine the region of variations of the damping ratio of the FMS,
where g € [0.5,10],q =2, kg = 10, 4 = 0.1 5, d; = 2, and dy = 1. Find
the root loci of the FMS for g > 0.

Find the root loci of the FMS (4.55) for g > 0, where ¢ = 2, ko = 10,
uw=0.18,d; =3,and dy =0.

The differential equation of a plant model is given by {5.84). Determine
the parameters of the control law (4.40) such that &, = 0, t¢ ~ 2
s, 0% = 5%, Cops > 0.2, 73 > 20, and ¢ = 2. Compare simulation
results of the step response in the closed-loop control system with the
assignment.

The differential equation of a plant model is given by (5.85). Determine
the parameters of the control law (4.40) such that &, = 0, t¢ = 1 s,
04~ 10%, Cpprs > 0.3, and 13 > 10. The additional requirement (5.48)
should be provided such that €,y,(w) = 10° and w73 = 10° rad/s.
Compare simulation results with the assignment.

The plant model is given by (5.85). Determine the parameters of the
control law (4.40) to meet the following requirements: £, = 0, t¢ ~ 3
s, 0% =~ 5%, Cpps = 0.5, n3 > 8. The requirement (5.48) should be
provided such that eyn,(w) = 360 and wps, = 10% rad/s. Compare
simulation results with the assignment.

The plant model is given by (5.84). Determine the parameters of the
control law (4.40) to meet the requirements &, = 0, t? ~ 25, 0%~
5%, Coms = 0.5, n3 > 8. The requirement (5.48) should be provided
such that £y, (W) = 10%/w and w3, = 10 rad/s. Compare simulation
results with the assignment.



Chapter 6

Influence of unmodeled dynamics

We have considered problems of SISO continuous-time control system de-
sign with the highest derivative in feedback, in which uncertainties were
caused by variations in the parameters of the model or unknown exter-
nal disturbances and the degree of the plant model remained the same as
in the system without uncertainties. Such uncertainties are usually called
structured uncertainties [Slotine and Li (1991)]. The robustness of the
output performance of the control systems with the highest derivative in
feedback was discussed in the presence of bounded structured uncertainties.
In particular, the design procedures for a controller of the form (4.38) for
system (4.27) were given, where the bounded structured uncertainties were
assigned by the conditions (4.28).

Another type of uncertainty in the model description is the so-called
unstructured uncertainty. These reflect errors in the system degree {or
relative degree). Taking them into account usually leads to examination of
the plant model with an additional small pure time delay, as well as models
in the form of regularly and/or singularly perturbed systems of differential
equations.

From a practical viewpoint, it is more convenient to use some simpli-
fied (nominal) model of the system reflecting only the main qualitative and
quantitative features of the system. A more detailed description leads to a
change in the system order. For instance, accounting for actuator and/or
sensor dynamics can lead to an increase in the system order (so-called fast
unmodeled dynamics). So, the nominal model results from the premedi-
tated neglect of small parameters in order to get a simplified model and
hence a simplified controller. However, the neglected parameters affect the
performance of the physical closed-loop system.

In this chapter we first examine the robustness of performance of con-
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trol systems with the highest derivative in feedback in the presence of the
unstructured uncertainties. Second, we examine restrictions on controller
parameters caused by various types of unstructured uncertainties. Finally,
we discuss the influence of a nonsmooth nonlinearity in the control loop.

6.1 Pure time delay

6.1.1 Plant model with pure time delay in control

After a closer examination of the real system properties, it may happen that
some small pure time delay in the control loop exists and affects the stability
of the closed-loop system (Fig. 6.1). Such delays usually occur in models of
technical systems that involve the movement of some substance: examples
include hydraulic systems, heat exchangers, chemical reactors, long current
lines, and pipelines [Schneider (1988)]. Many works have dealt with systems
having pure time delays; for example, problems of sliding mode control
for systems with time delay are investigated in [Fridman et al. (1996);
Gouaisbaut et al. (1999)).

Fig. 6.1 Block diagram of the nonlinear
St continuous system (NCS) with a pure time
i —x  delay in the control variable.

In this section we examine the peculiarities caused by a small pure time
delay in control for systems with the highest derivative in feedback.

Let us consider a nonlinear time-varying system described by an nth-
order differential equation with a pure time delay in the control variable:

2™ (t) = F(X (), w(t) + g(X(B), w(t))ult —7), X(0)=X°  (6.1)
Here

z is the output variable, available for measurement;
t is the time variable, t > 0;
T is the pure time delay, 7 > 0;

= {z,zM,...,z(»~U}7T is the state vector;
X(O) X0 is the initial state;
u(t — 7) is the control variable with pure time delay;
f(X,w), g(X,w) are functions satisfying (4.28).
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Let us assume that 7 is constant and belongs to a known interval:
7 € [0, Tmax]- (6.2)

Note that the pure time delay model may be approximated by a finite
dimensional transfer function of arbitrary order. Since it alters the order
of the plant model, the delay block is discussed here as a particular case of
unstructured uncertainty.

If 7 = 0, then from (6.1) the simplified model of the form (4.27) follows.
Assume that the control law structure of the form (4.38) was constructed
for the simplified model (4.27) based on the above design procedure. The
main purpose of this section is to choose the parameters of the control law
(4.38) to reduce the effect of the pure time delay on performance of the
closed-loop system when the control (4.38) is applied to the true system
(6.1).

6.1.2 Closed-loop system with delay in feedback loop

The closed-loop system equations of the plant model (6.1} and controller
(4.38) are given by

2 (t) = FX (1), w(t) + g(X (8), w(®))ult - 7), X(0) = X°, (6.3)

pIulD (t) + dg_1p @D () - + dou(t) = keeF', U(0) = U°, (6.4)

where 4 is a small positive parameter and g > n.
In accordance with (4.32) and (6.1), equations (6.3)-(6.4) of the closed-

loop system may be rewritten in the form
2™ (t) = f(X (1), w(t) + (X (1), w®))u(t — 7), X(0) = X°, (6.5)
pIu D (8) + - + dou(t) + kog(X (t), w(t))u(t — 7)

= ko{F(X(t), R()) — f(X(8),w(t))}, U(0) = U°, (6.6)
and then, by (4.51), in the form of the singular perturbed model
d.’L‘i .
dt=$i+1, z:l,...,n—l,
dz,
el ) +0()ur(t - 7), (6.7)
d’U,j .
Mﬁzuj-{—l’ .7:1’"'7(1_1’
du
M d_tq = —dou1 + kog(-)ul(t — 7') - d1u2 — s — dq_luq + ko{F - f}
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6.1.3 Fast motions in presence of delay

First, in order to enable usage of the above standard technique for two-
time-scale motions analysis, we must represent the time delay 7 in the
normalized form

T = Tol (6.8)
where T is the normalized time delay.

Second, let us introduce the differentiation operator

_ 4
Tt

and rewrite (6.7) in the following operator form:

p

PZTi = Tiy1, i=17"'an_1)
pzn = f() +g()e" ™" Puy,

Hpu; = Uiy, jzla"'aq_la

ppug = —{do + kog(-)e” ™ }uy — dyjug — -+ — dg_1uq + ko{F — f}.
By introducing the new time scale to = t/p and, accordingly, the new
differentiation operator pg = d/dt, where p = = 1pg, we obtain

Po%i = UTiyr, t=1,...,m~1,

pozn = p{f(-) +9(-)e” ™ u1 },

PoUj = Uj41, j‘:l,...,q—l,

Pollg = —{do + kog(-)e""”"}ul —diug — - — dq_luq + k)o{F — f}
By setting u = 0, we find that the FMS equations in the time scale ¢ are
described by

pOxizoa i=1...,n,
PoUj = Uj+i, j_——la-"aq—]-)

Polq = -—{do + koge—""’p"}ul ~diug — - — dq_luq + ko{F — f}

From the above, we get the equations of the FMS

de .

“=wuy, j=1,...,9-1,

dto Ujtp1, ] q

d

_J’l:_q = —d0u1 + kogul(to - To) — d1u2 — e e dq_luq (69)
0

+ko{F ~ f},
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where X (t) = const. By (4.2), w(t) = const in the system (6.9). Note that
the stability of the FMS (6.9) is invariant with respect to p by the condition
(6.8).

Returning to the primary time scale t = utg, from (6.9) we obtain the
FMS equations

du;

Md—tj =ujt1, J=1,...,4—1,
dug
p—gt = —dous + kogui(t - 7) —diug — -+ —dg1ug  (6.10)
+kO{F - f}7

where X (t) and w(t) are the frozen variables.
It is easy to see that (6.10) can be rewritten in the form

puD (8) + -+ dapu® (£) + dou(t) + kog(X (£), w(t)u(t - 7)
= kol F(X (), R(t) — (X (e, w(®))}, U©=U  (6.11)

where we assume that X (t) = const and g(X,w) = const during the tran-
sients in (6.11).

Remark 6.1 Inasmuch as the FMS (6.11) may be ezamined as a lin-
ear system with frozen parameter g(X,w), the use of the Nyquist stabil-
ity criterion [Nyquist (1932)] is a more natural and simple form of sta-
bility analysis from a practical point of view. The known method of D-
subdivision [Neimark (1947); El’sgol’ts and Norkin (1973); Kolmanovskii
and Nosov (1986)] may be used as well. In general, the stability anal-
ysis of FMS (6.11) based on Lyapunov functions [Krasovskii (1963);
Kolmanouvskii and Nosov (1986)] — in particular, the Lyapunov-Krasouskii
functionals and Lyapunov-Razumikhin functions — may also be used.

6.1.4 Stability of FMS with delay

If we have the linear differential equations of the FMS (6.11) with frozen
parameter g(X,w), then the methods of linear control theory may be used
in order to analyze the FMS properties. In particular, the characteristic
equation of (6.11) has the following form:

D(us) + koge™ ™ = 0.

The closed-loop system (6.3)—(6.4) corresponds to the system shown in Fig.
6.1, while the system (6.3)-(6.4) can be represented in block diagram form
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as in Fig. 6.2. Here the time delay 7 is given by a block having transfer
function e~"%. The highlighted portion corresponds to the FMS (6.11).

x
)1;("_]) 1 +
T

Fig. 6.2 Block diagram of the closed-loop system (6.3), (6.4).

s

V2]

The Nyquist criterion [Nyquist (1932)] is more convenient to use in
order to analyze the stability of the FMS (6.11) with a pure time delay.
From a practical viewpoint this allows us to obtain simple relationships
for choice of the controller parameters. Therefore, let us select from Fig.
6.2 the part corresponding to the FMS (6.11) and consider the sinusoidal
transfer function

koge—j-rw

W, (6.12)

G?.  (w, ) =

where GZM < (8, 1) is the transfer function of the open-loop FMS with time
delay as shown in Fig. 6.3.

w X f(X,w) Fig. 6.3. Block diagram of the open-loop
FMS with delay (6.11), where w = const,

F+ ef) ko 1Y s L)+ p{n) X = const, F' = const, f = const.
—>—(_:‘ > D([J,S) =1 e g =
a-iub

From the expression (4.44) for the polynomial D(us) it follows that the
Nyquist plot of (6.12) approaches the Nyquist plot of

o . kog —jTw
GFMS (thu' = O) = d_e J
as p — 0, where the Nyquist plot of GiMS (jw, u = 0) is a circle of radius

To = kog/do
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Let us assume that the characteristic polynomial D(us) is stable and
kog > do as shown in Fig. 6.4. As u is decreased it will eventually reach
some value such that the Nyquist plot of (6.12) encircles the point (-1, j0)
in the clockwise direction. Therefore, loss of stability of the FMS (6.11)
occurs when the parameter i is decreased.

So, in contrast to the control system (4.45)-(4.46), a lower bound for
the parameter p appears in a control system with pure time delay. This
bound is determined by the requirement for FMS stability, and depends on
the value of the pure time delay 7.

Fig. 6.4 Nyquist plot of the FMS (6.11) s-plane

with time delay.
f )\1 L
o]

Gy ()

FMS

In accordance with the Nyquist stability criterion, the FMS (6.11) is
marginally stable if the conditions

|D(jpmwm)| = kog, (6.13)
ArgD(j pim wim) + TmWm = 7 (6.14)
hold!. From equations (6.13) and (6.14), the lower bound on y is given by
o = Tam{m — ArgD(jam)} L, (6.15)
where a,, satisfles
|D(jam)| = kog.
In accordance with (6.2), the FMS (6.11) is asymptotically stable if

B> Tmax@m {m™ — ArgD(jam)} .

6.1.5 Phase margin of FMS with delay

The main question regards conditions under which the influence of the pure
time delay is negligible.

It is obvious that a closed-loop system having a marginally stable FMS
will burn out, disintegrate, or saturate in practice. In practical control

YArgD(j ptm wm) denotes the principal value of argD(j pm Wm)-
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systems it is required that for all 7 € [0, Tmax] the FMS (6.11) be asymp-
totically stable with the required settling time (5.16), that is,

d
t-%FMS S ts yFMS
where t‘si rus 18 defined by the degree of time-scale separation between the

fast and slow modes in the closed-loop system. Usually, it is also desirable
to provide an acceptable level of oscillation excited in the FMS (6.11).

In accordance with the above procedure for designing the controller
(4.38), we assume that the polynomial D(us) + kog is stable and that the
condition kgg > dg holds. Therefore, we must verify (5.16) only in the case
when T = Tmax. It is more convenient to evaluate the performance of the
FMS transients in the presence of a pure time delay based on the calculation
of phase margin and gain margin. The settling time can be estimated by
means of the crossover frequency w. on the Nyquist plot of the FMS (6.11),
where from (6.12) we find that w, is defined by the equation

G (Gwe, )] = L.

See Fig. 6.4. In particular, the phase margin ¢(7) of the FMS (6.11) is
given by
p(1) = 7 — ArgD(juwe) = Twe. (6.16)

Finally, the gain margin should also be taken into account in order to obtain
the allowable performance specifications of the FMS transients.

6.1.6 Control with compensation of delay

Let us consider the special case when 7 is a known constant. Then, in order
to reduce the influence of 7 on the stability of the FMS, let us modify (4.38)
and consider the control law given by

pIu(D (t) + dg_ p97 D (@) + -+ dypuD () + doult)
+y[u(t) = u(t — 7)] = ko {F(X(t), R(t)) — z™ (1)}, U(0) = U°. (6.17)

The plant model (6.1) and the new control law (6.17) can be rewritten in
the operator form

pha(t) = fX (), w(t)) + g(X (1), w(t))e™Pu(t), (6.18)
{D(up) + (1 — e"™)}u(t) = ko{F(X(t), R(t)) — p"z(t)}. (6.19)
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Let us assume that the conditions

’Y:koga T=

hold. Next, we can use the above operator procedure to obtain the FMS
equation; substitution of (6.18) into the right member of (6.19) yields

p"x(t) = f(X(8),w(t)) + g(X(8), w(t))e™Pu(t), (6.20)
{D(up) + koghu(t) = ko{F(X(t), R(2)) - f(X (), w(®))}.  (6.21)

In accordance with the above procedure for two-time-scale motion analysis
with the operator form of the differential equations, and on the assumption
(6.8), it is easy to see that in the closed-loop system equations (6.20)—(6.21)
the characteristic polynomial of the FMS is given by

D(us) + kog = 0. (6.22)

From (4.44) and (6.22) it follows that the stability of the FMS in this case

does not depend on p. This is similar to the case of a system with no time

delay and, accordingly, the lower bound on u has disappeared completely.
It may be shown that as ¢ — 0, equations (6.21)—(6.20) yield

i e ) = {1- 229l - fX W) (629)

With dg = 0, the time domain description of (6.23) yields

lim ¢ (1) = Z J)l ;; [f(X,w) — F(X, R)]. (6.24)

So, on one hand, application of the control law (6.17) allows us to provide
compensation for the delay in the FMS; on the other hand, such a control
law structure leads to the additional error (6.24) of the desired dynamics
realization.

Remark 6.2 It is clear that the modification of the controller (4.38) to a
control law of the form (6.17) is related to the main idea of the time delay
compensation scheme now known as the Smith predictor [Smith (1957)].
This idea is widely used in controller design for processes with time delays

[Palmor (1996)].
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6.1.7 Velocity error with respect to external disturbance

Consider the LTI system (5.7), where the pure time delay 7 is introduced
into the control variable:

2™ =X () + bu(t — 7) + bw(t), X(0) = X°. (6.25)

Let us assume that the control law (6.17) with compensation of delay is
applied, where v = kgb and 7 = 7.

If do = 0, r(t) = const, and w(t) = w?t1(¢), then from (6.25) and (6.17)
it follows that the relative velocity error due to a ramp external disturbance
w(t) is given by

P = 2(t) __poapdit Ty

ey = tli»IEo = rob (6.26)
and
a(z‘,)——é v —g—q{r—é"w”}—:w“t (6.27)
= bw T 3 o 5 . .

By comparing expressions (5.9) and (5.10) with (6.26) and (6.27), respec-
tively, we can see that the additional terms caused by the pure time delay
T exist, and this fact corresponds to (6.24).

6.1.8 FExzample

Consider the second-order system
@ (t) = [1 +sin(z® (#))]z () + [1 — 0.5sin(z(t))|u(t — 1) + w(t). (6.28)
The desired dynamics of y(t) = x(t) is assigned by the equation
T2y 4 odTyD 4y =1 (6.29)

and the control law is given by

d

p2u® 4 dypu® + dou = ko {—ym - %y(l) + 7%[r - y]} . (6.30)
where p = 0.1s, kg = 10, dy = 0, and d; = 2.

The simulation results for the closed-loop system equations (6.28) and
(6.30) are displayed in Fig. 6.5, where 7 = 0.022 s, af = 14, T = 1
s, and t € [0,12] s. Note that the parameter g depends on z(t) where
g € [0.5,1.5]. Then, by (6.13)—(6.14), we can find that 7,,(g = 0.5) ~ 0.045
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s and T.n(g = 1.5) =~ 0.014 s. We can see the loss of FMS stability for
t € [10,12] s, caused by increasing the parameter g.

1.2
0.8
04

T 17T

|
=
N

S T

2 4 6 8 10 12 0 2 4 6 8 10 12

Fig. 6.5 Output response of the system (6.28), (6.30) for a step reference input r(¢) and
a step disturbance w(t) without compensation of delay, where 7 = 0.022 s.

1.2 5 F | | A—— T T -
0.8 B 0 A ey,
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Fig. 6.6 Output response of the system (6.28), (6.31) with compensation of delay, where
7 =10.022 s.

In order to provide compensation for the time delay 7, let us consider
the control law in the form (6.17). If ¢ = n = 2, then from (6.17) and (6.29)
the control law

p2u@ () + dypu () + dou(t) + Y[ut) — u(t — 7))
ad
=t { v - T+ O -v0l] 63

results, where 1 = 0.1s, kg = 10,dg =0,d;1 =2, 7 =0.0225s, T = 15,
a{ =14,y =ko,and 7 = 7.

The simulation results for the control system (6.28), (6.31) with com-
pensation of delay are shown in Fig. 6.6. Stability of the FMS is maintained
under variations of the parameter g.
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Note that the control law (6.31) can be rewritten in the form

w1 (t) = —dipu(t) +ua(t) - kOTa?y(t),

da(t) = —dou(t) — y[ut) — u(t — 7)) + 2 r(t) —y(®),  (6.32)

7
mw=§mwwwwmy

Then, from (6.32), we get the block diagram as shown in Fig. 6.7.

¥
a 1
i 77
+ 1 l Uy + l U 5 __1_
T i+ s TI+ i I il
,5 1 -7 af
-gz | (Y| [Fdo-Y - | |-
y T 1 ] % [)

Fig. 6.7 Block diagram of the control law (6.31) represented in the form (6.32).

6.2 Regular perturbances

6.2.1 Regularly perturbed plant model

This section is devoted to the case when the unstructured uncertainty leads
to examination of the plant model in the form of regularly perturbed dif-
ferential equations and the relative degree of the system is modified. Such
a mathematical model occurs, for instance, in applications to the planar
vertical takeoff and landing (PVTOL) aircraft [Hauser et al. (1992)]. The
properties of regularly perturbed systems have been discussed in such ref-
erences as [Sastry et al. (1989); Isidori et al. (1992); Barbot et al. (1994);
Sastry (1999)] in the context of approximate linearization and the rela-
tionship between regularly perturbed nonlinear systems and singularly per-
turbed zero dynamics. Here we concern ourselves with the peculiarities
caused by regular perturbances in control systems with the highest deriva-
tive in feedback.
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Consider the plant model given by
o™ = f(X,w) + emul™ + -+ + qu® + g(X, w)u. (6.33)
We assume that the following conditions are satisfied.
(i) The inequalities
lej| < €Gmin YVi=1,...,m (6.34)

hold, where € is a small positive parameter.
(ii) f(X,w),g(X,w) are continuous bounded functions where the inequal-
ities (4.28) are satisfield for all (X, w) € Qx 4.

The system given by (6.33) is called a regular perturbance of the nominal
plant model (4.27). It is easy to see that the relative degree of the system
(6.33) isn—m if €, # 0.

From the plant model (6.33), the simplified model of the form (4.27)
follows as € — 0. We assume that the control law (4.38) was constructed
based on the simplified model (4.27). The main purpose of this section
is to choose the parameters of the control law (4.38) to reduce the effect
of perturbances €; on the performance of the closed-loop system when the
control (4.38) applied to the true system (6.33).

6.2.2 Fast motions in presence of regular perturbances

Note that in the general case, a decrease in p in the closed-loop system
(6.33) and (4.38) may result in loss of FMS stability due to finiteness of the
parameters €;. Therefore, as with control systems having a pure time delay
and, to enable us to use the standard technique of two-time-scale motion
analysis [Tikhonov (1952)], we must normalize the €; to u:

=€, Vi=1,...,m. (6.35)
Then (6.33) can be rewritten in the form
™ = f(X,w) + S umul™ 4. 4 S uu + g(X, w)u. (6.36)

If 4 = 0, then from (6.36) the simplified model (4.27) follows. Assume that
the control law in the form (4.38) is constructed, and let us consider the
effect of regular perturbances on the performance of the closed-loop system

™ = f(X,w) + & umut™ + -+ Qpu® + g(X, wyu,  (6.37)
pru? +dy_pt7 @D b dypu® 4 dou = kgeF, (6.38)
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where X (0) = X° and U(0) = U°.
From (4.32) and by substituting (6.37) in (6.38), we obtain
2™ = f+ e umul™ + - Quu® + gu, X(0) =X,  (6.39)
“qu(Q) + -+ dm+1um+1u(m+1) + {dm + koegn}umu(m) + ...
+Hdi + koePuu® + {do + kog}u = ko{F — f}, U(0) = U°. (6.40)

From (6.39)-(6.40) we get the FMS equations
BIUD b gy D S {dy o+ ol bl
+{d1 + koe?}uu(l) + {do + kog}u = ko{F — f}, U(0) = U9, (6.41)

where g(X,w) is the frozen parameter during the transients in (6.41).

Assume that the FMS (6.41) is stable. Then the SMS of the form (4.59)
results from (6.39)—(6.40) as p — 0. Note that this occurs because of (6.35).
So the desired output transients are guaranteed fully in the closed-loop
system after damping of the FMS transients.

6.2.3 Selection of controller parameters

Let us assume that the parameters ¢; are unknown and belong to the known
intervals

€ € [gj,Ej], Vi=1,...,m, (6.42)

where ¢; < €;. Then, from (6.35) and (6.42) we can find intervals normalized
by w:

0
€

From (6.41) the FMS characteristic polynomial

€le,@], vi=1,...,m (6.43)

pIs? + dq_l;ﬂ_lsq_l 4ot dpppmtlsmtl
H{dpm + koS Ju™s™ + -+ + {d1 + koed}us + {do + kog}  (6.44)

follows, where the polynomial coefficients belong to the known intervals
depending on the bounds of the intervals (6.43).

Note that the stability of the polynomial (6.44) does not depend on the
value of the parameter u, and corresponds to the stability of the normalized
polynomial

s9+-- -+dm+18m+l+{dm+k}069n}8m+~ . ~+{d1+k06?}s+{do+kog}. (6.45)
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So we have the following result.
Suppose:

(i) The plant model with regular perturbances has the form (6.33).

(i1} The conditions {6.35) and (6.43) hold.

(iii) The equation of the desired output dynamics is assigned by (4.30).

(iv) The parameters p, dg, ko of the control law (4.38) are assigned such that
the required control accuracy and time scale-separation are satisfied.

Then the calculation of the remaining parameters of the control law (4.38) is
reduced to a choice of dy, ... ,d, in such a way that the interval polynomial
(6.45) must be stable? for all possible values of e?. Moreover, some nonzero
value of relative stability must be provided.

Remark 6.3 The next step of the design procedure deals with robust sta-
bility analysis of (6.45) via interval analysis tools [Piazzi and Marro (1996);
Kharitonov and Torres Munoz (2002)]. In particular, frequency-domain
criteria for robust stability may be used [Tsypkin and Polyak (1991)].

6.2.4 Control with compensation of regular perturbances

Consider the plant model (6.33), where we assume that the €; are known
and €; = const, Vj =1,...,m. Then let us modify (4.38) and consider the
control law given by

MQu(Q) + . _|_ dm+1’um+1u(m+l) + {dmum — '7059,1}“(7”) + e
+{d1u - ’706(1)}u(1) + dou = ko{F — :E(")}, (6.46)

where (6.46) may be rewritten in the operator form

Vi dap)lu = kol (6.47)

{D(kp) — volemp™ + em1p™"
Assume that 9 = ko. Then from the closed-loop system equations {6.33)
and (6.46), it follows that the corresponding FMS equation has characteris-
tic polynomial of the form (6.22). As a result, compensation for the regular
perturbances in the FMS occurs. At the same time, as y — 0 in (6.33) and
(6.46) we obtain the operator equation of the desired dynamics realization

2The polynomial is said to be stable if and only if the real part is strictly negative
for all roots of the polynomial.
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given by
do
Jim e () = AP (X B) = £(X,w)}
ko .
T g " T tapllf(Xw) - F(X,R)}. (648)

With dg = 0, the time domain description of (6.48) yields

fme ()= S agliCon - FOGRL (649)

So the control law (6.46) with compensation of regular perturbances gives
the additional error of the desired dynamics realization. Note that (6.48)
is the full counterpart of (6.23) obtained above for control systems with
compensation of the pure time delay.

6.2.5 FEzample
Let us consider an SISO nonlinear continuous-time system in the form
I = Tg + €1U,
&g = [1 + sin(z1)]x1 + [1 — 0.5sin(z1)]u + w(t),
Y=,
where €; = —0.015. By differentiating y(¢) we obtain
y@ =1 + sin(y)]y + exu® + [1 — 0.5 sin(y)]u + w(t), (6.50)

where ¢; = —0.015.

Equation (6.50) corresponds to equation (6.33), and the approximate
system (with €; = 0) is given by {5.80) (see p. 109). Assume that the
desired behavior of y(t) is assigned by

d
@_ %o 1 bW 1 6.51

Let ¢ = 2; then for the approximate system (5.80) we may consider the
control law given by (5.82):

2 1 _ 2 a‘l 1y, 97T 4
u2u()+dluu()+dou—ko{—y() 4y ()+T2T()+Ti[r—y]}

where we assume that p = 0.1s, kg =10, dp =0, and d; = 2.
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The control law (5.82) applied to the true system (6.50) gives the FMS
characteristic polynomial of the form

,u232 +{dip +e€1ko}s + {do + kog},

where for the given system parameters a decrease in p leads to loss of FMS
stability (since €; < 0). An increase in 4 leads to loss of the degree of time-
scale separation between the FMS and SMS, and so to a loss in accuracy
of the desired dynamics realization. Note that the root-locus method may
be useful to find an appropriate value of the parameter p.

Simulation results for the output response in the system (6.50) con-
trolled by the algorithm (5.82) to a step reference input r(t) and a step
disturbance w(t) are displayed in Fig. 6.8. Here the initial conditions are
zeroand T =7 =15, af = 1.4, b¢ =0, and t € [0,8] s. Results for the
same system where y = 0.08 s and g = 0.3 s are shown in Figs. 6.9 and
6.10, respectively.

1.2

2 o
1 -
0.8 or
0.6 —92
0.4 ol
0.2 |-: L
0 i | | { 1 Il l _6
0 1 2 3 4 5 6 7 8 0

Fig. 6.8 Output response of the system (6.50) and (5.82) for a step reference input r(t)
and a step disturbance w(t), where p = 0.1 s.
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Fig. 6.9 Output response of the system (6.50) and (5.82) for a step reference input r(t)
and a step disturbance w(t), where p = 0.08 s.



132 Design of nonlinear control systems with the highest derivative in feedback
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Fig. 6.10 Output response for the system (6.50), (5.82) for a step reference input r(t)
and a step disturbance w(t), where y = 0.3 s.

6.3 Singular perturbances

6.3.1 Singularly perturbed plant model

Let us consider the other possible type of unstructured uncertainty that
leads to a plant model in the form of singularly perturbed differential equa-
tions. In particular, taking into account the actuator and/or sensor dy-
namics leads to an increase in the system order and the appearance of
additional fast dynamics. As a result, the plant model has the form of
singularly perturbed differential equations (singular perturbances). The
various classes of control systems with singularly perturbed models have
been widely investigated (see, for instance, [Kokotovi¢ et al. (1976); Ioan-
nou and Kokotovié¢ (1983); Riedle and Kokotovié¢ (1985); Marino (1985);
Khalil (1987))).

The main subject of this section is the performance and robustness of
a control system with the highest derivative in feedback in the presence of
singular perturbances. In particular, the nonlinear control system (NCS)
preceded by the fast actuator (A) will be discussed as shown in Fig. 6.11.

Assume that the nominal model of the plant is the NCS governed by
(4.27) (see p. 64). At the same time, taking into consideration the fast
dynamics of the actuator (A), we obtain the following singularly perturbed

agepoonne e f ; Fig. 6.11 Block diagram of the nonlinear
: control system (NCS) preceded by fast ac-
¥(t) tuator (A).
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system:
z™ = f(X,w) + g(X,w)z1 ,y ==z, X(O):XO’ (6.52)
1/21(1) =Zzi41, t=1,...,1-1, (653)
vel) = ot 21, ), Z(0) = 2°, (6.54)
where Z = {21,22,...,2}" is the state vector of the additional subsystem

(6.53)—(6.54) caused by the fast dynamics of the actuator, Z(0) = Z° is
the initial state of subsystem (6.53)—(6.54), and v is the small positive
parameter.

If v = 0, then from (6.53)-(6.54) the equality z; = u follows and from
(6.52)—(6.54) the simplified model (4.27) results, where the degree of (4.27)
is equal to n. From a practical viewpoint, we also assume that the additional
fast subsystem described by (6.53)—(6.54) is stable, as only on such an
assumption can the simplified model (4.27) reflect the main qualitative and
quantitative performance of the whole system (6.52)—(6.54) when v is small
enough.

The additional fast subsystem described by (6.53)-(6.54) is examined
here as a particular case of the unstructured uncertainty, where the degree
of the system (6.52)—(6.54) is equal to n + . The system of equations
(6.52)—(6.54) is called the singular perturbance of the nominal plant model
(4.27).

Let the control law structure of the form (4.38) be constructed based on
the simplified model (4.27). The main purpose of this section is to choose
the parameters of the control law (4.38) to reduce the effect of singular
perturbance on performance of the closed-loop system when the control
(4.38) applied to the true system (6.52)—(6.54).

6.3.2 Fast motions in presence of singular perturbances

The closed-loop system equations of the plant model (6.52)—(6.54) and con-
troller (4.38) are given by

2™ = f(X,0) + (X, w)z1, X(0) = X",
uz,(l) =zip1, t=1,...,01-1,
I/Zl(l) . (,D(t, Zlyees >zl7u)7 Z(O) = ZO’
pﬂu(‘Y) + dq_lll‘q—lu(q_l) _I_ F-

+ dypu™ + dou = ko{F(X, R) ~ 2™}, U(0) = U°.
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Substituting the expression of z(™ into the right member of the second
equation, we get

2™ = f(X,w) + g(X,w)z;, X(0)=X°,
uzlm =241, t=1,...,1-1,

vV = ot 21, 2u),  Z(0) = Z°, (6.55)
piu@ 4 dq_l,uq_lu(q_l) + o+ dypu? + dou

= ko{F(X,R) - f(X,w) - g(X,w)z1}, U(0) = U°.

First, in order to enable use of the above standard technique for two-
time-scale motion analysis of (6.55), we must assume that v and p are
interdependent. In particular, let v = vou where vg = const.

Second, let us rewrite (6.55) in the new fast time scale ¢y = t/u and, by
setting 1 = 0, find the FMS equations in the tg scale. Then, by returning
to the primary time scale t = utg, we obtain the FMS equations

O]

vz, =zi41, 1=1,...,0-1,
I/Zl(l) =gt z1,. .., 2nu), Z(0)=2°
p0u@ 4 dyopt Y 4 dpu® 4 dpu (6.56)

= kO{F(X’R) - f(X,’LU) - g(X,w)zl}, U(O) = UO’

where X (¢t) and w(t) are the frozen variables during the transients in (6.56).
The controller parameters should be selected such that to maintain al-
lowable performance of the fast-motion transients described by (6.56).

6.3.3 Selection of controller parameters

The main subject matter is an additional restriction on the controller pa-
rameters of (4.38) caused by singular perturbances in the form of the sub-
system (6.53)~(6.54).

Let us consider a particular case of the subsystem (6.53)-(6.54) de-
scribed by the transfer function

1

Guls) = 55y

(6.57)

where

S(vs) =vls' + 5 1/ s 4 F Frs o+ L. (6.58)
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The block diagram representation of the closed-loop system equations (6.55)
is shown in Fig. 6.12. The additional fast dynamical system is represented
by the block with transfer function (6.57), and some portion of this block
diagram is highlighted by a circuit of dots. This part corresponds to the
FMS (6.56).

R F:

Fig. 6.12 Block diagram of the closed-loop system (6.55)-(6.57).

The FMS (6.56) is a linear system where g is the frozen parameter. Let
the equation of the desired dynamics (4.30) be constructed based on the
differential equation given by (2.8). Similar to (5.26) and (5.46), let us
apply the Laplace transform to (6.56), given that the initial conditions of
(6.56) are all zero. We get

koS(vs)
(,LLS)S(VS) + kOg{F(S) - f(S)}
B koS(vs)A%(s)

T{D(us)S(vs) + kog

u(s) = D

]ns(s), (6.59)
where
AYs) =T"s" +ad_ T 16" 1 o+ alTs+ 1.

Let v = const. Then from (6.59) it follows that

. _ koS(vs) §) — (s
}}E})u(s’“) = %S(vs) + kog +kog{F( ) — f(s)}
koS(vs)Ad(s)
" Tr[deS(vs) + kog] 7 (s) (660

as u — 0.
In particular, if dgp = 0 then

lim u(s, 1) = g7 S(ws)[F(s) = f() - T "AX(s)ny(s)).  (6:61)
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By comparing (6.59), (6.60), and (6.61) with (4.36), (5.42), and (5.46),
respectively, we can see that the influence of the high-frequency sensor
noise n,(t) on the control u(t) (manipulated variable) is increased as u < v
because of the factor S(vs). As a result, the requirements on the allowable
range of control variations are increased.

We can see that if 4 > v, then from (6.58) and (6.59) the expression
(5.46) follows. This is the case when the influence of singular perturbances
in the form of stable subsystem (6.53)-(6.54) can be neglected.

On the other hand, if 4 ~ v then from (6.59) we can see that the
parameters of the polynomial D{(us) should be chosen in such a way that
the characteristic polynomial of the FMS

D(us)S(vs) + kog

is stable.

So, in the presence of singular perturbances of the form (6.53)-(6.54),
it is advisable to choose the small parameter p of the control law (4.38)
such that the additional restriction p > v is satisfied. Note that if an
increase in u conflicts with the requirement on time-scale separation degree
(5.16)—(5.17), then the control law structure should be chosen based on the
nonsimplified model (6.52)-(6.54).

6.4 Nonsmooth nonlinearity in control loop

6.4.1 System preceded by nonsmooth nonlinearity

Nonsmooth nonlinearities are inherent in a wide set of mechanical actu-
ators, electrical and electro-mechanical systems. This section deals with
nonlinear continuous systems preceded by a nonsmooth nonlinearity, and
the peculiarities caused by a nonsmooth nonlinearity in a control system
with the highest derivative in feedback.

Fig. 6.13 Block diagram of the nonlinear
continuous system (NCS) preceded by non-
smooth nonlinearity (NL).

A block diagram of the system under consideration, a nonlinear contin-
uous system (NCS) preceded by a nonsmooth nonlinearity (NL), is shown
in Fig. 6.13. The control system is being designed to provide the condition
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(2.1) with prescribed output response specifications. Moreover, the con-
trolled transients of y(¢) should have the desired behavior in the presence
of varying parameters and external disturbances w(t) in the plant model.

In particular, we discuss the problem of controller design for the non-
linear time-varying continuous systems governed by differential equation
(4.27), assuming that parameters of the system are unknown and may vary
in some bounded set, and that the conditions (4.28) are satisfied. Assume
that the system (4.27) is preceded by a nonsmooth nonlinearity. This may
be associated with saturation, relay with dead zone, hysteresis, or backlash
hysteresis as shown in Fig. 6.14.

Saturation Relay with dead zone Hysteresis Backlash Hysteresis
v v v v
M M + i
—A u_ =A u Al u ~AA A
A A A N
-M — M 7 L

Fig. 6.14 Nonsmooth nonlinearities.

Let us consider the following system:

2™ = f(X,w) + g(X,wv, X(0)=XO, (6.62)
y=z, V= cp(u,u(l)), (6.63)

where the nonlinearity is represented by the function v = o(u,u®);
X is the state vector which is unavailable for measurement, X =
{z,z®,...,z(®"V}T; w is the vector of (unavailable for measurement) ex-
ternal disturbances or varying parameters, w € R?; y is the measurable
output (controlled variable) of the system, y € R!; u is the control vari-
able, u € RI.

The purpose of this section is to discuss the peculiarities caused by the
nonsmooth nonlinearity in the system (6.62)—(6.63) with a controller of the
form (4.38):

“qu(Q) + dq—-luq_lu(q—l) 44 dluu(l) + dou = k)oeF,
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In extended form this control law can be represented as (4.41):
plul® 4 dg-117 19D o4 dy ™ + dou
- %{_T%w) ol T L gl g
+bg'r"r(p) + bg_l‘r”_lr(”_l) 4+ b
As a result, we have the closed-loop system given by

2 = f(X,w) + g(X, wv, v = p(u,uD), X(0) = X°,
uqu(Q) + dq_lﬂq_lu(q—l) + 0+ dluu(l) + dou = kJOCF, U(O) = U0,

In accordance with (4.32), the above system can be rewritten as

z™ = (X, w) + g(X, w)p(y,u), (6.64)
piu(® 4+ dq_llﬂ-lu(q—l) + o+ dipu® + dou
= ko{F(X,R) — 2(™}. (6.65)

Substituting (6.64) into (6.65), we obtain the closed-loop system equations
in the form

2™ = f(X,w) + g(X, wp(u,uM), (6.66)
u‘lu(q) + dq_lNQ‘lu(q_l) + e + dl‘uu(l) + dou
+kog(X, w)p(u,uV) = ko{F(X, R) - f(X,w)}. (6.67)

Since p is the small positive parameter, (6.66)—(6.67) are the singularly
perturbed equations. A formal application of the above considered standard
procedure [Tikhonov (1952)] for the time-scale separation gives the FMS
equation of the following form:

piu(® dq_wq—lu(q—l) + oo+ dipu® + dou
+hog(X, w)p(u, u®) = ko{F(X, R) - f(X,w)}, (6.68)

where X and w are the frozen variables.

6.4.2 Describing function analysis of limit cycle in FMS

Let us consider the block diagram representation of the closed-loop system
equations (6.66)—(6.67) as shown in Fig. 6.15, where the initial conditions
of the controller are omitted and the polynomial D(us) has the form of
(4.44).
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Fig. 6.15 Block diagram of the closed-loop system (6.66)—(6.67).

The highlighted portion of the diagram, shown separately in Fig. 6.16,
corresponds to the FMS (6.68). From the block diagram representation it
is clear that the FMS (6.68) can be examined as a sequence of a linear
system and nonsmooth nonlinearity. It is well known that the describing
function method is a powerful tool for the analysis of periodic solutions in
such systems.

w, X =const f(X w)=const

F=const ¢F u v + z(n)
—i—(z?‘ D(I;:S) " NL g +E

Fig. 6.16 Block diagram of the FMS (6.68) where w = const, X = const, F' = const,
f = const.

Remark 6.4  Some particulars related to the describing function method
can be found in a broad set of references, for instance, [Mees and Bergen
(1975); Atherton (1981); Mickens (1981); Slotine and Li (1991); Taylor
(2000); Khalil (2002); Vukié et al. (2003)].

Remark 6.5 Note that the application of the describing function method
to analyze closed-loop systems with nonsmooth nonlinearity and the highest
derivative in feedback of the form (8.15) was discussed in [Suvorov (1991)].
In contrast to (3.15), the discussed control law structure (4.41) allows us

to include the integral action in the control loop without increasing the con-
troller’s order.

Denote

Gi(juw) = Tkjﬁj) (6.69)

and assume that the sinusoidal transfer function G;(juw) reveals a low-pass
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filtering property. Assume that a limit cycle in the FMS (6.68) exists, and
the stationary oscillation signal u(t) is

u(t) = up + Asin(wt). (6.70)

Then the output of the nonlinearity v = @(u,u!?) can be represented by
its Fourier series

v(t) = vg + by sin(wt) + ¢ cos(wt) + i{bk sin(kwt) + ¢ cos(kwt)}. (6.71)
k=2

By taking dy = 0 in (4.44), we find that the polynomial D(us) has the form
D(us) = Do(us)us (6.72)

where
Do(us) = /,Lq_lsq_l + dq_l'uq—2sq—2 + o+ dops +dy;

as a result, the integral action is incorporated in the system of Fig. 6.16.
Then we have

t+27 fw
/ eF(H)dt =0 (6.73)
i

for the stationary oscillations in the FMS (6.68). So the average value of ¥
corresponds to the insensitivity condition (4.33), and the desired behavior
of the output y(t) with assigned dynamics (4.30) is satisfied if sufficiently
fast oscillations take place.

The expression (6.73) represents the insensitivity condition for the out-
put behavior with respect to parameter variations and external disturbances
of the plant model in the average sense. Note that the existence of the fast
oscillations in the FMS (6.68) is the essential requirement that allows us to
reach the desired output behavior.

In accordance with the describing function method, let us replace the
nonlinear element in Fig. 6.16 by its quasi-linear approximation as shown
in Fig. 6.17. Here, for simplicity, the amplitude A and frequency w of the
stationary oscillations will be estimated to a first approximation on the
condition that

F=f=0 (6.74)

and the nonlinearity is odd. Hence, we have that ug = vp = 0 and the
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% (n)
F=0+ ko u ' v S
S?* Dljpw) | A= 9

Fig. 6.17 Quasi-linear approximation of the FMS (6.68).

describing function representation of the nonlinear element is given by

bl(w)A) -Cl(w)A)
) +7 a1

Gn(j,w,A) = (6.75)
which may be complex and dependent on both w and A in general.
Then the solutions of the first-order harmonic balance equation

represented in the form

1

Gi(jpw) = GG ) (6.77)

correspond to the points of intersection of the Nyquist plot of G;(juw) and
the G;1(j,w, A) locus. From this, the existence of the stable limit cycle in
the FMS (6.68) and its parameters can be determined.

For instance, a limit cycle in the FMS (6.68) does not exist if the Nyquist
plot of G;(juw) and the G, '(j,w, A) locus are as shown in Fig. 6.18(a).
Accordingly, there are two limit cycles as shown in Fig. 6.18(b). Here
point 1 represents an unstable periodic solution and point 2 represents the
stable periodic solution. Note that the arrows on G;(juw) and G, (j,w, A)
indicate increases in w and A, respectively. This example corresponds to a
system preceded by a backlash hysteresis.

As another example, we have a system preceded by a relay with dead
zone or hysteresis where the corresponding describing functions do not de-
pend on the frequency w. The qualitative Nyquist plots of G;(juw) and
G;71(j,A) loci for these two types of systems are shown in Fig. 6.19.

6.4.3 Effect of chattering on control accuracy

The oscillations in the FMS (6.68) induce the ripple in the output y(t) of
the system (6.62)—(6.63) and have an influence on the error of the output
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GG pw) G(Fpw)

~GwA)

w1l

(b)

w1 A1

Fig. 6.18 (a) Limit cycle in the FMS (6.68) does not exist. (b) Two limit cycles in the
FMS (6.68).

Gi(jpw) G{jpw)
A=00 2/\(1.}:00 Ww=00
A<I GIGA 1 oo A
-G1(G,4) A1
wkl \w<<1
(a) (b)

Fig. 6.19 Qualitative Nyquist plot of G;(juw) and Gy !(j, A) for a system preceded by
a relay with dead zone (a), or hysteresis (b).

stabilization as shown in Fig. 6.20. Let ey, be the amplitude of the station-
ary oscillations with frequency w of the output y(t). In order to estimate
this when a stable limit cycle occurs in the FMS (6.68), let us assume that
r = const and denote

T—00

1 T
g = lim T/o y(t) dt.

Then from dg = 0, because of the integral action incorporated in the system
in Fig. 6.16, we have r = § in the stationary mode.

In accordance with the block diagram shown in Fig. 6.17, we have to a
first approximation

IGH(J?w)A)glA
wn
_ [1DGm)]|
= A (6.78)

€osc ~
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y(t)

Fig. 6.20 Influence of oscillations in the FMS (6.68) on output behavior.

given that w is sufficiently large. The effect of the fast oscillations in the
FMS on the accuracy of the output stabilization can be reduced by proper
choice of the controller parameters.

Note that the variations of the parameter g and nonzero values of F,
f have an influence on the limit cycle parameters. Robustness of the pre-
scribed output behavior is maintained within the region of limit cycle sta-
bility, given that the oscillation frequency w is large enough.

6.4.4 Example

Let us consider the SISO nonlinear continuous-time system (5.80) (see p.
109)

@ =1 +sin(zM))z +[1 - 0.5sin(z)jv +w, y=z, (6.79)

which is preceded by hysteresis v = ¢(u, u{1) with parameters A = 0.1 and
M =5 as shown in Fig. 6.14.

Assume y(t) = z(t), and that the desired dynamics of y(t) are assigned
by the equation (5.81)

ad 1 bir
~—1y(1) bt S €

@ _
y T i T

Let ¢ = 2. Then in accordance with (4.38) we have the control law structure
given by (5.82):

d
2, (2) 1) _ @ _ %, bir (1
prut + dypu +dou—k0{—y)——?y +T2r)+T[ y]},

where we assume that 4 = 0.3 s, kg = 10, dp = 0, and di = 2. The
state space representation (5.83) of (5.82) can be used as above in order to
perform computer simulation.
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In accordance with the given parameters we have

. kog
G 1 — .
1{juw) T+ i (6.80)
and
AM Al? aM
WAy =2 e .
6.4 = 1= 15| - it (6.81)
The harmonic balance equation (6.76) presented in the form
GGy A) = ~—1—
i Gi(jpw)
yields
aM AV aM plo?  dipw
— /1= — A= — 7 . .
A {A} I8 = Tog 7 Thg (6.:82)
From (6.82) we get
St
%ws + Andy pw — AMkpg = 0. (6.83)
1

The real positive solution of (6.83) is the frequency w of the stationary
oscillations, with amplitude A given by

A= ’/W' (6.84)

From (6.78) and (6.80) it follows that

AMguA(p2w? + d?
€osc ~ \/ guA ) . (6.85)

7Td1k‘ow3

In accordance with the above expressions and given values of the controller
parameters, we can obtain w =~ 28 rad/s, A = 0.43, and eys. =~ 0.004 for
g =0.5, and w = 41 rad/s, 4 =~ 0.62, and e, = 0.006 for g = 1.5.

The simulation results of the transients in the system (6.79) controlled
by the algorithm (5.82) for a step reference input 7(¢) and a step disturbance
w(t) are displayed in Figs. 6.21-6.22, where the initial conditions are zero
andT=71=1s,af{=14,0¢=0,t¢[0,8]s. Wesee that the simulation
results confirm the analytical calculations.
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cooo
N S~ O 0o
T 1 T 1

0 1

Fig. 6.21 Simulation results for the system (6.79) controlled by the algorithm (5.82).
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Fig. 6.22 Simulation results for the system (6.79) controlled by the algorithm (5.82).

6.5 Notes

The limit properties of the control systems with the highest derivative of
the output signal in the feedback loop were discussed in Chapters 3 and 4 on
the assumptions that the high gain |kg| — oo and the small parameter p —
0. Obviously, such requirements are unrealized in practice. Therefore, in
Chapter 5, problems of implementation were considered, and relationships
were obtained from which we can choose finite values of the control law
parameters in accordance with requirements on time-scale separation degree
between the fast and slow modes, control accuracy, and the requirement
placed on high-frequency sensor noise attenuation. In particular, it has
been shown that the latter attenuation can be provided if and only if kg
and y are finite.

In this chapter, the restrictions caused by the unstructured uncertainties
of the plant model in the form of a pure time-delay in control, regularly
and singularly perturbed systems, and nonsmooth nonlinearities in control
were investigated. In particular, it is assumed that the controller has been
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designed based on a simplified (approximate) model and in accordance with
the methodology given in Chapter 5. Then the influence of unmodeled
dynamics is considered when this controller is applied to the true system.
As a result, the effect of the neglected parameters was investigated, and the
additional restrictions on the controller parameters were obtained, which
are caused by unmodeled dynamics.

6.6 Exercises

6.1

6.2

6.3

The plant model is given by

@ (t) = 0.52(t)z D (t) + 0.12M (¢)
+0.5z(t) + 0.5sin(0.5t) + gu(t — 7), (6.86)

where g = 1 and the reference model (3 = F(z(), z,r) is assigned by
2@ =70, T2V —z+r). (6.87)

The control law has the form
12u® + dypu + dou = ko{F (™, z,7) — 2@}, (6.88)

whereT = 1s,a1 =2, ko = 10, 4 =0.1s,dg = 0, d; = 4. Determine the
region of stability for T of the FMS. Compare with simulation results
of the closed-loop system.

Consider the closed-loop system with the input data of Exercise 6.1,
where

g =1+ 0.5sin(0.2t).

Determine the region of stability for 7 of the FMS. By computer simu-
lation, determine the region of stability for 7 of the closed-loop system
in presence of the delay compensation.

Consider the plant model

() = |z (t)|z(t) + z(t) + [1.5 + sin(®)]u(t — T) (6.89)
together with the reference model (6.87) and the control law

12u® + dopu® + dyipuV + dou = ko{F(zW,z,7) — 2@}, (6.90)



6.4

6.5

6.6

6.7

6.8

6.9

6.10
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where T =04s,a) =14, kg =5, u=0.05s,dp =0, d =17, and
dy = 6. Determine the region of stability for 7 of the FMS. Compare
with simulation results of the closed-loop system.

Determine the phase margin and gain margin of the FMS based on the
input data of Exercise 6.1 for the time delay 7 = 0.37,,, where 7 = 7,
corresponds to the marginally stable FMS.

Determine the phase margin and gain margin of the FMS based on the
input data of Exercise 6.3 for the time delay 7 = 0.57,.

Let 7 = 0.05 s. Determine p,, based on the input data of Exercise 6.1,
where p = p,, corresponds to the marginally stable FMS.

Consider the plant model

= z{1l + cos(z)} + 2u, (6.91)

Yy =T+ €U,
where |eg| < 0.05, and determine the parameters of the control law
p2u® + dypu® + dou = ko{[r — yl/T — y™} (6.92)

to meet the following specifications: €. = 0; T = 1 8; (pprs = 0.2;
713 > 10. Note that 73 is defined by (1.65).

Find the root loci of the FMS based on the input data of Exercise 6.7
for parameter the ¢y where kg =5, u = 0.1 s, dy = 0.

Consider the plant model

T1 = x9 + €U,
&g = z1(1 + z1) + [1 + 0.5 cos(0.5¢t)]u, (6.93)

Yy =1,

where |z1(t)] < 2, |x2(t)] € 2, and [r(t)] < 1. Take ¢; = 0 and de-
termine the parameters of the control law (6.30) to meet the following
specifications: £z = 0.1; & = 0.05; t ~ 3 s; 0 = 10%; Cpopys > 0.8;
73 2> 15. Determine the allowable region for €;, where the conditions
Cems = 0.2 and 73 > 10 are satisfied. Run a computer simulation of
the closed-loop system for dgp = 1 and dg = 0.

Determine the parameters of the control law

23u® + dop?u® + dipu® + dou = ko{F(y™,y,7) — P}  (6.94)

based on the input data of Exercise 6.9.
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Consider the plant model

i1 =Ty, 2=} 4 Tosin(t) + 2x3,

viz = —x3+u, Y=,

where [z1(t)] < 1, |z2(t)] < 1, |z3(¢)] < 1, and |r(t)] < 1. Take v = 0
and determine the parameters of the control law (6.30) to meet the
following specifications: €r = 0.1; & = 0.05; t¢ =~ 6 s5; 0¢ ~ 10%;
Crms = 0.8; m3 > 15. Determine the allowable region for v, where the
conditions (., s > 0.2 and 13 > 10 are satisfied. Run a computer
simulation of the closed-loop system for dg = 1 and dg = 0.

Solve Exercise 6.11 where the control law is given by (6.94).
Consider the plant model
1 = z1|sin(t)| + z2, viEo = 3, (6.95)
viz = —x2 —3z3t+u, y=2z1,

where the control law is given by
pul + dou = ko{[r - y)/T -y} (6.96)

and T'= 2s, kg = 10, p = 04 s, dp = 0. Determine the region of
stability for v of the FMS and the phase margin and gain margin if
v = 0.5v,,,, where v = v,,, corresponds to marginally stable FMS.
Consider the system (6.89) preceded by relay with dead zone (see Fig.
6.14) together with the reference model (6.87) and the control law given
by (6.90) where 7 =0, A =04, M =10, T =15, a1 = 1.4, kg = 10,
w=201s dyg =0,d = 15 d; = 5. Using the describing function
method, determine the frequency of the oscillations in the FMS and
estimate the amplitude of the oscillations in the output variable z(t).
Compare with simulation results.

Consider the system

& = z|sin(t)| + [1 + 0.2sin(t)]u(t — 7)

preceded by relay with dead zone (see Fig. 6.14) together with the
control law given by (6.96) where 1 =0.035, A=05 M =2, T =1
s, kg = 10, p = 0.1 s, dg = 0. Using the describing function method,
determine the frequency of the oscillations in the FMS and estimate
the amplitude of the oscillations in the output variable z(t). Compare
with simulation results.



Chapter 7

Realizability of desired output
behavior

Before carrying out a design, we must analyze the realizability of the de-
sired output behavior. In the preceding chapters attention was devoted
to the problem of control system design with the highest derivative in the
feedback loop for the SISO plant model given by (4.27), where output reg-
ulation with prescribed dynamics may be provided if the condition (4.35)
holds. This chapter is devoted to consideration of conditions that allow us
to provide desired output behavior for more general dynamic systems. It
will be shown that, in general, the analysis of the realizability of the desired
output behavior is a much more complicated problem, and involves such
concepts as invertibility of a dynamic system, nonlinear inverse dynamics,
and internal behavior analysis of the system. In this chapter, concepts
such as invertibility index (relative degree), normal form of nonlinear sys-
tems, internal stability analysis, degenerated system on the condition of
output stabilization, and zero-dynamics are discussed. Finally, the design
procedure for SISO nonlinear control systems is discussed in the presence
of internal dynamics.

7.1 Control problem statement for MIMO control system

7.1.1 MIMO plant model

Let us consider a nonlinear time-varying system in the following form:

X =f(t,X)+Gt, X)u, X(0)=X°, (7.1)
y = h(t, X), (7.2)

where

149
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t denotes time, t € [0, 00);

X is the state vector, X = {z),1s,..., 2,}7;

X(0) = X is the initial state, Xo € Qx, Qx is a bounded set of R™;
y is the output of the system (7.1)—(7.2), available for measurement,
y= {ylay27---ayp}T;

u is the control signal, u = {u1, uz,...,un}?, u € Q, C R™;
p<m<n.

It is assumed that the vector functions f(¢, X), h(¢, X) and the elements of
the matrix G(¢, X) are smooth and bounded for all (¢, X) € Q; x.
The model extension is given by

X = ft,w, X) + G(t,w, X)u, X(0) = X°, (7.3)
y = h(t,w, X), (7.4)

where w(?) is a vector of external disturbances and varying parameters (un-
available for measurement). We assume that w(t) is smooth and bounded
for all t € [0,00). Then the system (7.3)-(7.4) can be represented in the
form (7.1)—(7.2) because w = w(t). As a result, the influence of all external
disturbances and varying parameters of the system (7.1)—(7.2) is repre-
sented implicitly by the dependence of f(¢, X), (¢, X) and G(¢, X) on the
time variable ¢.

In some references (e.g., [Isidori and Byrnes (1990); Isidori (1995);
Marconi (1998)]) the external disturbance model w(t), called the exoge-
nous system, is included in the system description. For systems with sliding
mode or high gain in feedback, and for the discussed approach to control
system design, the varying parameters and external disturbances, and their
manner of entering into the system, need not be known. Then explicit
reference to w(t) may be omitted if certain additional conditions for distur-
bance rejection are satisfied. These conditions are the main subject matter
of this chapter and will be presented below.

7.1.2 Control problem
We seek a control system for which

lim e(t) =0, (7.5)

t—00
where e(t) is the error of the reference input realization (tracking error),
e = {e1,ea,...,ep}7, e(t) = r(t) — y(t); r(t) is the reference input, r =
{rl,rg,...,rp}T.
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Moreover, the controlled transients of the ith component y;(t) of the
output vector y(t) should have desired performance indices that are sep-
arately assigned, such as overshoot o¢, settling time t¢, and system type.
These transients should not depend on external disturbance or varying pa-
rameters of the system (7.1)-(7.2).

7.2 Invertibility of dynamical systems

7.2.1 Role of invertibility of dynamical systems

The invertibility of dynamical systems was first widely investigated in me-
chanics, in order to find the forces that cause the observable behavior of
mechanical systems [Santilli (1978)]. In the general case, this meaning of
the term leads to the concept of left invertibility. A system is said to be
left invertible if a unique control function exists and can be found for the
given system model, initial state, and output function.

So, on one hand, the left invertibility condition for a dynamical control
system is the condition for uniqueness of the control function that provides
the desired output behavior [Zadeh and Desoer (1963)]. On the other hand,
right invertibility is the necessary condition for the existence of a control
function such that the output behavior is an arbitrarily assigned smooth
function [Brockett and Mesarovic (1965); Porter (1970)).

From a theoretical viewpoint, the desired input-controlled output map
can be provided by a controller in the form of a serial system of the
reference model and the right inverse system. Control of nonlinear sys-
tems through the use of their inverse dynamics is a topic that has re-
ceived much attention [Boychuk (1966); Silverman (1969); Porter (1970);
Popov and Krutko (1979); Petrov and Krutko (1980); Singh (1980);
Slotine and Li (1991)]. The application of the inversion method in the
discrete-time nonlinear control system synthesis problem was discussed
in [Kotta (1995)]. Note that the well known input-output linearization
technique for nonlinear systems is based on the inclusion of the right in-
verse system into the control law structure [Isidori and Byrnes (1990);
Nijmeijer and Schaft (1990); Isidori (1995); Sastry (1999); Khalil (2002)].
Obviously, linearization may be used only if complete information is avail-
able about the disturbances, model parameters, and system state. That
technique is useless for nonlinear control system design on the condition
of incomplete information about varying system parameters and external
disturbances.
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Note that control laws based on nonlinear inversion theoretically allow
us to determine the potential for improving the system output behavior.
An examination of these laws is essential for analysis.

Control system design can efficiently be done under uncertainty via
the design methodologies for control systems with sliding motions [Utkin
(1977); Utkin (1992)], control systems with high gain in feedback [Meerov
(1965); Young et al. (1977)], and control systems with the highest-
order derivative and high gain in feedback [Vostrikov (1977a); Utkin and
Vostrikov (1978); Vostrikov and Sarycheva (1982); Vostrikov et al. (1982);
Vostrikov (1988b); Vostrikov (1990)]. Note that if output regulation is
based on the above design methodologies, then invertibility of the system
and stability of the inverse system (more precisely, uniform ultimate bound-
edness of that system) are the conditions under which the solution of the
output regulation problem exists.

So, invertibility is a fundamental characteristic of dynamical control
systems, along with controllability, observability, and stability.

7.2.2 Definition of invertibility of dynamic control system
Let us consider a LTI control system in the form
X = AX + Bu, X(0)=X°, (7.6)
y = CX + Du, (7.7)
where X ¢ R"; u € R™; y € RP; A, B,C, D are real constant matrices with
appropriate dimensions. We assume that u(t) € U C (C[0,T],R™).
The system (7.6)—(7.7) with a given initial state X(0) = X° may be
considered as a mapping (operator)

AX%u): U=Y,

where U is the set of all control functions u(t) and Y is the set of corre-
sponding output functions y(t).

Let us consider the definition of inverse operator given by [Zadeh and
Desoer (1963)], which may be clarified by the block diagram of Fig. 7.1.

Definition 7.1  An operator A7 (A; ") is said to be a right (left) inverse
of the operator A if

AATY =1, (AT'A=1,) (7.8)
holds, where I,: Y — Y (I,: U — U) is the identity operator.
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ATt q{ A —] A
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Y

AAT =1, AlA=1,

Fig. 7.1 Serial connection of inverse systems.

In particular, if p = m and both the right and left inverses of the system
(7.6)-(7.7) exist, then these inverses are identical and the system is said to
be invertible [Wang and Davison (1973)].

Note that in Definition 7.1, zero initial conditions are implicitly as-
sumed. In the general case, matching of the initial states of the inverse and
original systems should be provided [Zadeh and Desoer (1963)].

Let us consider a set of definitions for the concept of invertibility as
given by [Hirschorn (1979a); Hirschorn (1979b)] for a nonlinear system of
the form

X = f(X)+GX)u, X(0)=X", (7.9)
y = h(X). (7.10)

Here X € M where M is an n-dimensional smooth manifold (e.g., a subset
of R"), y € R?, and v € R?. It is assumed that f(X) and h(X) are ana-
lytic vector functions and that G(X) is a matrix all of whose elements are
analytic functions. Moreover, u(t) € U where U is a set of analytic vector
functions of . It is assumed that the solution of (7.9)-(7.10) exists and is
unique for any given X% € M.

Definition 7.2 The system (7.9)-(7.10) is said to be invertible in X° €
M if for any u;,us € U where uy # uy it follows that

y(t) Xoaul) 7é y(ta XO,U2)-

Definition 7.3 The system (7.9)-(7.10) is said to be strictly invertible
in X% € M if there exists some open neighborhood O(X?) C M of X° such
that the system is invertible V X € O(X?).

Definition 7.4 The system (7.9)-(7.10) is said to be strictly invertible
if there exists some open dense manifold M C R” such that V X® € M the
system is strictly invertible in X0°.

There is a broad set of invertibility conditions for LTI systems, expressed
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in terms of rank conditions on the matrix transfer function
H(s)=C(sl, - A)~'B+D
or the system matrix

P(s) = [SIZEA g] .

The interested reader can also find various criteria for invertibility of the
system (7.6)-(7.7), expressed as rank conditions for real matrices con-
structed through the matrices A, B, C, D [Brockett and Mesarovic (1965);
Dorato (1969); Emre and Hiiseyin (1974); Sain and Massey (1969);
Wang and Davison (1973)].

Analysis of the invertibility of nonlinear control systems is often ap-
proached through sequential differentiation of the output variables of y(¢)
in order to construct some special subsystem from which the vector of
control variables u(t) may be explicitly derived. This approach was de-
veloped and used by [Silverman (1969); Porter (1970); Hirschorn (1979a);
Hirschorn (1979b); Singh (1980)].

7.2.3 Invertibility condition for nonlinear systems

Let us consider the nonlinear time-varying control system given by (7.1),

(7.2):

X = f(t, X)+ G(t, X)u, X(0)=X°,
y = h(t, X},
where X e R", u € R™, y e RP,and p<m < n.
Assume that the invertibility condition {Porter (1970)] is satisfied: there
exists a system of equations for the output derivatives which makes it pos-

sible to derive the input u(t) of the system (7.1)—(7.2).
In accordance with [Porter (1970)], let the expression

yi(t) = ha(t, X) (7.11)

be the first component of the output vector function y(t), where h =
{h1,ha,... ,hp}T. For convenience, denote

hio(t, X) = hi(t, X).
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Differentiating (7.11) along the solutions of the system (7.1), we obtain
D = Bh1o/0t + {Bhao/OX H f + Gu},
where
Ay /oy = {Bh10/0X }C(t, X).
Assume that the condition
{O0h10/0X}G(t, X) =0, VY (t,X)€ QY x

holds, where Q; x = [0,00) x Qx and Qx is a connected domain in R”.
Denote

h11 = 8h10/6t + {8h10/8X}f

and then derive the expression for ygz). Repetition of this procedural cy-
cle will continue until the control variable u(t) appears explicitly. Let us
assume that the ayth step of this procedure yields the following expression:

U™ = hiay (6 X) + (01,0, -1/0X}G(t, Xu,
where
0™ /ou = {Ohy a,-1/0X}G(t, X).
Assume that the conditions
{0h1,;/0X}G(t,X) =0, V(X)€Y Vi=1...,01—-2
and
{O0h1,0,-1/0X}G(t, X)#£0, V{,X)€ Qx

are satisfied.
As a result of providing the above procedure for each component of the
output vector y(t), the equations

U = hya,(t, X) + {Ohi o1 /0X}G(t, X)u, i=1,....p  (7.12)
are obtained. Let us rewrite (7.12) as
ye = H*(t, X) + G*(t, X)u, (7.13)
where

g = {31,459, gl T, (7.14)
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hi(t, X) 91 (t, X)
w (e, x) = | X g xy - | EBXO ] (7.15)
B (¢, X) a3t X)

and A7 (t, X) = hiq;(t, X), 9X(t, X) = {Ohi,a,—1/0X}G(t, X). By defini-
tion, h; (t, X) is the ith element of the column vector H*(t, X) and g}(t, X)
is the ith row of the matrix G*(¢, X), where H* € RP*1 G* ¢ RP*™,

In accordance with the discussed algorithm scheme, the recurrence re-
lationship

hi,j(t,X):8h¢,j_1/8t+{8h1-,j_1/8X}f(t,X), V'i=1,...,p, Vj=1,...,a

holds, where h;o(t, X) = h;(t, X) is the ith element of the column vector
h{t, X). Moreover, the conditions

{ah,,]/aX}G(t,X) =0, V(t,X) € Qt,Xa Vi= 1,...,p,Vji=0,...,04 -2
are satisfied in accordance with the algorithmic scheme. So we have
ygj) =h;;(t,X), Vj=0,...,0;,~1 and Vi=1,...,p. (7.16)

Remark 7.1  The positive integer value oy is a structural invariant of
the system (7.1)-(7.2) and is known as the invertibility indez (or recently
more often as the relative degree) of the system with respect to the output
y; [Silverman (1969)]. Throughout the text below, we assume a uniform
relative degree of the system (7.1)-(7.2), i.e., that o, = const for all (t, X) €
Q x-

Assumption 7.1 The condition
rank G*(t,X)=p, V(i X)EQ x (7.17)
is satisfied.

Theorem 7.1 From (7.17) it follows that the right inverse of the system
(7.1)-(7.2) for all (t, X) € Q¢ x has the following form:
X0 =, X))+ G, X)G

X{y*_ (7
= [G*(t, X)]T{G"(t, X)

(¢, XNT{G*(t, X)[G*(t, X))}
X)), X(©0)=Xx°, (7.18)
[G*(t, XY Ya. — H*(t, X)}.  (7.19)
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Proof. A proof may be based on Definition 7.1, by direct substitution of

(7.19) into (7.13), in view of the condition X (¢) = X(¢), V t which follows
from w(t) = @(t), ¥V t and X(0) = X(0). |

Remark 7.2  From (7.17) it follows that m > p is a necessary condition
for right inversion of the system (7.1)-(7.2).

Remark 7.3 Ifp = m, then from (7.17) it follows that
detG*(t, X) #0, V (¢, X) € Qx. (7.20)
As a result, from (7.18)-(7.19) we can obtain

XM = f(t, X)+ G, X){G*(t, X\)} Mg - H*(t, X)},  (7.21)
a(t) = {G*(t, X))} Mg - H*t, X)), X0)=X°.  (7.22)

This is the inverse system (both right and left) of the system (7.1)-(7.2).

7.3 Insensitivity condition for MIMO control system

7.3.1 Desired dynamics equations

From (7.13) and (7.17), it follows that for i = 1,...,p the relative highest
derivative y;*’ depends explicitly on the control vector u(t). Therefore
an arbitrary behavior of the relative highest derivative vector y,(t) may
be provided by appropriate selection of the control function u(t). Let us
construct the reference model of the desired behavior of the relative highest
derivative of y;(t) for each i = 1,...,p in the form of the stable differential
equation

y{*) = F(Y;, Ry). (7.23)
This is called the desired dynamics equation of y;(t), where

2 4 1
K:{ylay—fl))yz( ),-~-,y§a 1)}T7 Ri:{rivro),---;ﬁ(p )}T, Pi < o

1

Equation (7.23) is the counterpart of (4.31), and can be selected in the form
of the linear differential equation (2.8). The parameters of (7.23) for each
ith output component are assigned in accordance with the time-domain
specifications on the desired output behavior of y;(¢) and the requirement

t—o0
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wheree; = r;—y; and i = 1,...,p. Hence we have y; = r; at the equilibrium
of (7.23) for r; = const.
As a result, we have the system of stable differential equations

y. = F(Y,R) (7.25)

composed of the equations (7.23), where F = {Fy, F3,..., F,}7T.

7.3.2 Insensilivity condition

Let us denote
ef = F(Y,R) — y., (7.26)

where e’ is the realization error of the desired dynamics F(Y, R), assigned
by (7.25). Accordingly, if

ef =0, (7.27)

then the desired behavior of y(t) with prescribed dynamics (7.25) is fulfilled.
Expression (7.27) is the insensitivity condition for the output transient per-
formance with respect to the external disturbances and varying parameters
of the plant model (7.1)-(7.2). In other words, the control design problem
(7.5) has been reformulated as the requirement (7.27).

So if (7.27) is satisfied, then the following hold simultaneously:

(i) The behavior of each ith output component is insensitive to parameter
variations and external disturbances.
(ii) The output behavior of each ith output component is assigned by the
parameters of the desired dynamics equation (7.23).
(iif) The output behavior of each ith output component does not depend
on the behavior of the other output components.

From (7.13) it follows that (7.27) can be rewritten as
F— H*(t,X) — G*(t, X)u = 0. (7.28)

So the control problem (7.5) for the MIMO system (7.1)—(7.2) has been
reformulated as a problem to provide the requirement (7.28), despite the
presence of unknown parameters in (7.28).
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7.4 Internal stability

7.4.1 Boundedness of NID-control function

Let us consider the behavior of the control function u(¢) and the state
vector X (t) of the system (7.1)-(7.2), given that the desired reference input-
controlled output map assigned by (7.25) is satisfied.

Assume henceforth that equidimensional input and output vectors of
the system (7.1)-(7.2) are considered, i.e., that m = p.

From (7.28) it follows that the function

uNIP(t) = {G*(t, X)} H{F(Y,R) — H*(t,X)} (7.29)

uniquely satisfies (7.27) and is the solution of the nonlinear inverse dynam-
ics. By substituting (7.29) into the state equation (7.1), we obtain

X = f(t, X) + G, X){G*(t, X)} "YF - H*(t,X)}, X(0) = X°. (7.30)

The system (7.30) describes the behavior of the state vector X(t) of
the system (7.1)—(7.2), given that the desired output behavior assigned by
(7.25) is fulfilled.

Remark 7.4 Ii is easy to see that (7.29)—(7.30) and the inverse sys-
tem equations (7.21)-(7.22) are the same. So, the boundedness of the
NI1D-control function (7.29) corresponds to bounded-input-bounded-output
(BIBO) stability of the inverse system (7.21)-(7.22). Related remarks can
be found in [Silverman (1969); Porter (1970); Fomin et al. (1981)].

If the nonlinear inverse dynamics solution u™’P(t) of (7.29) is an un-
bounded function, i.e.,

limsup [Jul¥TP (t)]| = oo,
t—oo t>0

then the desired output behavior assigned by the reference model (7.25)
y. = F(Y,R)

is unrealizable in the system (7.1)-(7.2) where t € [tg, 00). This is because
the increase in the control function 4N (t) leads inevitably to saturation
of the control variables in practice.

So, the desired output behavior assigned by (7.25) is realizable for all
t € [0,00), that is, some bounded set €, exists such that the inclusion
u(t) € §2, holds, if the following two requirements are satisfied:
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(i) The inverse system of (7.1)—(7.2) exists.
(ii) The NID-control function uN!P(t) is bounded, i.e.,

limsup |Ju¥TP ()| < co. (7.31)
t—oo t>0

Definition 7.5 The property expressed by (7.31) is called the bounded-
ness of the NID-control function in the system (7.1)—(7.2), given that the
desired output behavior assigned by the stable system (7.25) is satisfied.

Note that (7.31) corresponds to {3.14) discussed above for the SISO control
systems given by (3.1).

7.4.2 Concept of internal stability

The boundedness (7.31) of the NID-control function in the system (7.1)-
(7.2) does not exclude the existence of unstable motions in the state space of
(7.1)=(7.2), where the unstable motions have no effect on the behavior of the
output y(t) and the NID-control function uV/P(#), given that the desired
output behavior assigned by the stable system (7.25) is satisfied. From a
theoretical viewpoint, we can obtain the solution of the output regulation
problem despite the fact that there are unobserved unstable motions in the
state space of (7.1)-(7.2). From a practical standpoint, the model of the
form (7.1)—(7.2) is usually valid for only some bounded subset Qx of the
state space R™. The reason is that the range of permissible variations of any
technical plant variable is bounded in practice by a set of limitations on
thermal stability, electric strength, mechanical strength, and other physical
characteristics.

In accordance with these technical limitations, we must further restrict
the trajectories of (7.30) so that

limsup || X(t)]] < oo. (7.32)
t—oo t>0
By this we mean that internal unbounded motions in (7.1)-(7.2) do not
exist when the desired reference input-controlled output map assigned by
(7.25) is satisfied.

Definition 7.6 Let us say that the internal stability of the system (7.1)-
(7.2) is satisfied if the inequality (7.32) holds for all trajectories of (7.30) in
the specified region of the state space (or, in other words, for all trajecto-
ries of (7.1)—(7.2) when the desired reference input-controlled output map
assigned by (7.25) is fulfilled).
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Remark 7.5 From the internal stability of (7.1)-(7.2) and the condition
(7.20), the boundedness of the NID-control function (7.81) results.

Remark 7.6  Let the allowable subset ,, be specified, and suppose m = p
where Q,, C R™. Then the desired output behavior assigned by (7.25) is
realizable if the inclusion uNTP(t) € Qy, V t € [0,00) holds.

Remark 7.7 By taking into account Remark 7.4 and Definition 7.6, we
find that the internal stability of (7.1)—(7.2) corresponds to bounded-input-
bounded-state (BIBS) stability of the tnverse system (7.21)-(7.22).

7.4.3 Normal form of the plant model

The internal stability of the system (7.1)—(7.2) can be easily verified by
transformation to a special canonical form known as the normal form.
This form of state space representation for dynamical systems was dis-
cussed in a broad set of references, e.g., [Brunovsky (1970); Luenberger
(1967); O'Reilly (1983); Sira-Ramirez (1989); Byrnes and Isidori (1991);
Isidori (1995); Fradkov et al. (1999); Khalil (2002); Vostrikov and Yurke-
vich (1991)].

Remark 7.8 In the normal form, new state variables are introduced
which include each ith component y; of the output vector y and its first
a; — 1 derivatives.

Let us consider hereafter the system (7.1)~(7.2), where Assumption 7.1
is satisfied, i.e., the system (7.1)-(7.2) is right invertible, and n > m > p.
By taking into account (7.16), let us introduce the vector function

Y = Ql(taX)x (733)

where

Y = {410, Y115 s YLan =1, Y205+ - > Yprap—13

= {y17y£1)7 e 7y§a1—1)ay2a e 1y1(7ap—1)}T’ (734)
Yio = Yi, le:ny)7 Vi:l)"wp’ Vj:O,...,ai—l,
Ql(t,X) = {h10(t,X),h11(t, X), .. .,hllal_l(t,X),hQ()(t,X), R

s hp ot XDy B 1 (8, X))

Theorem 7.2  From the given system (7.1)-(7.2) where the conditions
(7.16)~(7.17) hold, we find that the vector function Y = Q1(t,X) is such
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that

0Q1(t, X ?
ankila(T—)—:l, VY (t,X) € Q x where l:Zai.

i=1

Proof. First, let us construct a control function of the form

u = —[G*(t, X)|T{G" (¢, X)[G* (¢, X)|"} 4, (7.35)
where
@ = {fy, g, ..., 0,7
and
ai—1 )
i =hi(t,X)+ Y v, i=1,...,p.
j=0

By substituting (7.35) into (7.13), we find that for all (¢, X) € Q; x the
behavior of the ith component ¥, of the output vector ¥ is described by the
differential equation

a;—1

y )+ Y e =0, (7.36)
=0

where the parameters £;; may be assigned arbitrarily.
Next, the proof proceeds by contradiction. Let us assume the existence
of a point (£, X) € Q¢ x where
0Q1(t, X)

ank =S5 222 < for (4, X) = (£, X). (7.37)

In accordance with (7.37), a column vector

. s o . s Y &
66 %) = {0l X6 X),... a6}
exists such that the following conditions are satisfied:

1€, X)) > 0 and fT(t,X)%)Q ~Ofor (X)=(@EX).  (7.38)

Here 0 = {0,0,...,0} is the null row vector, 0 € R™.
From (7.33) it follows that
an(t’X) O + an(t)X)

X

Yt =—%x ot
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Then, in accordance with (7.38), we obtain
eT(t, X)V(t) = 0Q1(t, X) /8t for (t,X) = (£, X). (7.39)

So, from Assumption (7.37) it follows that at the point (¢, X) = (£, X)
the condition (7.39) is satisfied, where the vector € (f,f( ) depends on the
parameters of the system (7.1)—(7.2). This contradicts the condition (7.36),
which proves Theorem 7.2. [ ]

In accordance with Theorem 7.2, the vector function (7.33) can be sup-
plemented by another vector function z = @Q2(¢, X) in such a way that the

transformation
[};] B [g:g ;)3] =Q(t X) (7.40)

is a one-one mapping (bijection) where z € R*~. Consequently, the choice
of the vector function Q2(t, X'} should be provided in accordance with the
requirement

9Q(t, X) _

ax ™
From the implicit function theorem it follows that an inverse transforma-
tion X = Q71(t,Y, z) exists for all (¢, X) € € x. Then, by the change of
variables (7.40), from the system (7.1)—(7.2) the normal form of the state
space representation follows, that is

d
Ezyio = Yil,

rank V(t,X)€Qx. (7.41)

Ezyi,ai—Q = Yi,a;—1»

d

Y1 = hI(6,Y,2z) + 97 (t,Y,2)u, i=1,...,p, (7.42)
d _ .
7E = ft,Y,2) + G(t,Y, 2)u. (7.43)

In accordance with (7.14), the system (7.42)—(7.43) may be rewritten con-
cisely as

v« = H*(1,Y, 2) + G*(, Y, 2)u, (7.44)

i=f(t,Y,2) + G(t, Y, 2)u, (7.45)

where the new state vector (Y,z) includes the ith component y; of the
output vector y and its first @; — 1 derivatives. Here we have Y € R¢,
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zGR"‘l,pSZSn,and

hi(t,Y,2) g1(t,Y, 2)
H*(t, Y, Z) — h2(t:a‘)./) Z) , G*(t, Y, Z) — 92 (tay'v Z) . (746)
hy(t,Y, 2) g5(t,Y, 2)

Note that the system (7.1)—(7.2) presented in the normal form (7.42)-
(7.43) consists of two subsystems. The first one, (7.42), is the subsystem for
the output variables y(t) and their derivatives; it is called an external sub-
system. The second one, (7.43), is the subsystem for the internal variables
z(t). Accordingly, it is known as an internal subsystem.

7.4.4 Internal stability of linear systems

First, let us clarify the core of the approach to internal stability analysis
by considering the linear system given by

X = AX 4+ Bu, X(0)= X", (7.47)
y = CX, (7.48)

where X € R", y € RP, u € RP, and p < n. Also assume that
det CB # 0. (7.49)

So the system (7.47)—(7.48) is invertible and the vector of the relative degree
equals o = {1,...,1}.

For internal stability analysis of the system (7.47)-(7.48), let us trans-
form it to the normal form (7.42)-(7.43). Note that if (7.49) is satisfied,
then the normal form corresponds to the one discussed in [O'Reilly (1983)].

In accordance with (7.49), the transformation (7.40) has the form

M = QX, (7.50)
z
where
Q= [Ql} and Q= C. (7.51)
Q2

The matrix Q2 is chosen so that det @@ # 0. For example, ()1 may be
supplemented with appropriate identity matrix rows. Note that Q2 may be
assigned in the form Q2 = QTR, where Q1 g is a right annihilating matrix
of the maximal rank for Q1. This follows from the next theorem.
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Theorem 7.3 Let Q; € RP*("=P) yhere rank Q; = p. Suppose Q1 is a
right annihilating matriz of the mazimal rank for Q1. Then

det[Ql];éO.

T
iR
Proof. Since ;g is a right annihilating matrix, we have @, @1z = 0 where
0 is a null matrix. Furthermore, Q1r is the right annihilating matrix of
maximal rank for Q;. This and the fact that rank Q; = p imply rank Q5 =
n—p.
As a result we have

[QlHQl]T:[Q@f 0 ]
Qirl L QTx 07 QTrQir)’

where det Q1Q7 # 0 and det QTzQ1r # 0. The proof is complete. ]

Remark 7.9 If Qip is the right annihilating matriz of mazimal rank for
Q1, then QT is the left annihilating matriz of mazimal rank for QT .

As a result of the transformation (7.50), we have the normal form of the
system (7.47)—(7.48):

Y = Any+ Az + By, (7.52)

2= Any + Assz + Bau. (7.53)

Here (7.52) is the external subsystem and (7.53) is the internal subsystem.
Note that B, = CB.
Since the relative degree of each output component equals unity, the

reference model of the desired behavior of the output y(t) in the system
(7.47)—(7.48) can be constructed such that

y=F(yr) (7.54)

is a system of stable differential equations, where ¥ = r at the equilibrium
point for r = const. For instance, we may assume that (7.54) consists of p
separate differential equations of the form (4.6) (see p. 58).
As a result, the control problem (7.5) for the system (7.47)—(7.48) cor-
responds to the insensitivity condition given by
e =0, (7.55)

where

e’ = F(y,r) — 9. (7.56)
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From (7.52)—(7.54) it follows that the solution of (7.55) is given by
uHP(t) = ByY{F(y,7) — Ay — A1z}, (7.57)

This is called the solution of the linear inverse dynamics (or LID-control

function by analogy with the NID-control function). Note that it corre-

sponds to the desired input-controlled output map assigned by (7.54).
Substitution of (7.57) into (7.52)—(7.53) yields

y - F(y’T)v (758)
zZ= {Azz - BQB;IAH}Z
+{Aa;1 — BaBy'An Yy + Be B P F(y, 7). (7.59)

These describe the behavior of the state variables y(t), z(t) on the condition
that the desired output behavior assigned by (7.54) occurs.

In the closed-loop system (7.58)~(7.59) the external subsystem equation
(7.58) equals the reference model equation (7.54), and the stability of the
internal subsystem equation (7.59) depends only on the inherent properties
of the system (7.47)—(7.48).

Since the reference model equation (7.54) is stable (meaning that (7.54)
has an unique asymptotically stable equilibrium at the point r = y for
T = const), the internal stability (7.32) of the system (7.47)—(7.48) occurs if
the trajectories of the internal subsystem equation (7.59) are asymptotically
stable. This is the case if all roots of the internal subsystem characteristic
polynomial

det{sl,—p — A2g + B2BT ' A1s} (7.60)

lie in the left half of the s-plane. Note that these roots correspond to zeros
of the transfer matrix of the system (7.47)-(7.48).

Consequently, the analysis of the internal stability (7.32) of the system
(7.47)—(7.48) reduces to the stability analysis of the internal subsystem of
the form (7.59).

In compliance with the characteristic polynomial (7.60), it is easy to
see that internal stability of (7.47)-(7.48) depends only on the inherent
properties of the system (7.47)-(7.48). Such an inference corresponds to
the invariance of the transfer matrix zeros with respect to feedback in the
system with equidimensional input and output vectors (Rosenbrock (1970);
Rosenbrock (1973)].
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7.4.5 Internal stability of nonlinear systems

Returning to the nonlinear control system given by (7.44)-(7.45), we see
that the desired output behavior assigned by (7.25) is reproduced with the
NID-control function (7.29), which may be presented in the form

uMP(t) = (G (.Y, 2)} H{F(Y,R) - H'(,Y,2)}. (7.61)

By substituting (7.61) into (7.44)—(7.45), we get

Yr = F(Y) R)7 (762)
2= ft,Y,2) + G, Y, 2){G*(t,Y,2)} !
x{F(Y,R) — H*(t,Y,2)}. (7.63)

So, in the closed-loop system equations (7.62)—(7.63) the external sub-
system equation (7.62) equals the stable reference model equation (7.25).
Hence

limsup ||Y ()] < 0. (7.64)
t—oo t>0
Assume that for all trajectories of the internal subsystem (7.63), the con-
dition
limsup ||2(t)] < o0 (7.65)
t—oo t>0
is satisfied. Then, by (7.40) and (7.41), we can conclude that the internal

stability property (7.32) holds in the specified region Qx of the state space.
The result can be formulated as the following theorem.

Theorem 7.4  If the property (7.65) of the internal subsystem (7.63) tra-
Jjectories holds in the specified region Qx of the state space, then a bounded
set 1, exists such that the desired output behavior assigned by the refer-
ence model of the form (7.25) is realizable in the system (7.1)-(7.2) for all
X € Qx and t € [0,00).

Remark 7.10 Ifl = n then the closed-loop system equations (7.62)-
(7.63) reduce to the external subsystem equation (7.62) without the internal
subsystem (7.68). In this case, from the invertibility condition (7.20) it
follows that the internal stability (7.82) and the boundedness of the NID-
control function (7.31) in the system (7.1)-(7.2) with the desired stable
output dynamics assigned by (7.25) are maintained.



168 Design of nonlinear control systems with the highest derivative in feedback

Remark 7.11 In the context of the discussed output regulation problem,
the effect of the internal subsystem (7.63) on the output behavior can be
rejected if the solutions of (7.63) are smooth and bounded. The existence
of the egquilibrium point of (7.68) and its stability in some sense are not
required. For instance, the solutions of (7.68) may have a stable cycle or
reveal chaotic behavior as shown in the concluding example of this chapter.

So we may conclude that internal stability of the system (7.1)-(7.2) cor-
responds to the uniform ultimate boundedness of the internal subsystem
(7.63).

7.4.6 Degenerated motions and zero-dynamics

Let us consider the case when a controller keeps the output y(t) the same
as a constant reference input r = const, i.e.,

y(ty =7 =const, Vtel0,o0). (7.66)

Then from (7.33), (7.34), and (7.66) it follows that the state vector X () of
(7.62)—(7.63) belongs to the manifold given by

) =r, v E0,i=1,...,p,j=1,...,ai—1, t€[0,00). (7.67)

In accordance with (7.16), this manifold can be represented as the system
of [ algebraic equations

hiolt, X)Eri, hij(6X) 20, 5=1,...,0i—1,i=1,...,p. (7.68)

Motions along this manifold are called degenerated motions. Then the sys-
tem (7.62)—(7.63) of dimension n degenerates into a system of dimension
n —1. So, the internal stability analysis of the system (7.1)-(7.2) on the ad-
ditional condition (7.66) leads to analysis of the stability of the trajectories
on the n - | dimensional manifold (7.68). Here we recall that [ is the sum
of the relative degrees a; where i =1,...,p.

From (7.67) it follows that the NID-control function (7.61) is given by

uNIP () = —{G*(t, Ve, 2)} TLH* (, Y5, 2), (7.69)
where r = const and
Y, = {r,0,...,0,72,...,0,7p,...,0}7. (7.70)

The vector Y, follows from the vector Y (7.34) by taking into account the
additional restrictions given by (7.67).
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From (7.67) and the closed-loop system equations (7.62)-(7.63), it fol-
lows also that the behavior of the internal variables z(t) on the manifold
(7.67) in the state space (Y, z) is described by the system of n—{ differential
equations

2= f(t,Y;,2) = G(t,Yr, 2){G"(t, Yy, 2)} " H* (8, Yz, 2). (7.71)

System (7.71) is called the degenerated system [Vostrikov and Yurkevich
(1991)].

t . .
In a particular case, let us assume that » = 0 and, accordingly, obtain

Y, =Y,—o < 0,V t € [0,00). Then from the degenerated system (7.71) the
equation of zero-dynamics

2 = f(t,Yyz0,2) — G(t, Yoo, 2){G*(t, Yrm0,2)} ' H*(t, Yoo, 2)  (7.72)

follows, where the stability of transients in (7.72) corresponds to the concept
of the minimum phase of nonlinear system discussed in [Byrnes and Isidori
(1991)].

The main result of this section is given in the following theorem.

Theorem 7.5 If in the system (7.1)—(7.2) the conditions (7.67) hold,
then in the normal form representation (7.44)—(7.45) the external subsys-
tem (7.62) reduces to the system of | algebraic equations (7.67), and the
transient process of the internal variables z(t) occurs along the manifold
(7.67), where the transients of z(t) are described by the degenerated system
(7.71) of the (n — I)th order.

It is clear that verification of the uniform ultimate boundedness of the
degenerated system (7.71) trajectories on the manifold (7.66) is often much
simpler than the analysis of the internal subsystem (7.63).

Remark 7.12 Note that the relations between zeros of the transfer func-
tion and the zero-dynamics system were discussed in [Levy and Sivan
(1966)]. Canonical representation of nonlinear systems where the inter-
nal subsystem gets rid of the control variable u(t) is discussed in [Byrnes
and Isidori (1991); Isidori (1995)].
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7.4.7 FEzxample

Let us consider the nonlinear time-varying system

1 = z2 + z3(z1 — 23) (23 + T4 — 1) + [2 + sin(z4)]us + us,
2 = —(z; — z3)(T3 + T4 — 1) + wa(t) — us + [1 + 0.5sin(z3)]uo,
&3 = x3(x1 — x3)(3 + x4 — 1) + [2 + sin(za)]us + ug, (7.73)
Ty =22 — 12(z3 + 24 — 21) + walt) + uy + ug,
Y1 = T1 — T3,
Y2 = T3,
where
z1(t),...,z4(t) are the state variables;
y1(t),y2(t) are the output variables;
u1(t), ua(t) are the input variables;

wa(t), wa(t) are the external disturbances;
‘w2(t)| < Wiax and |w4(t)' < Wmax-

From (7.73) we can find the relative degrees given by oy = 2, ag = 1. The
matrix G* has the form

o ~1 1405 sin(fES)] ‘ (7.74)

"~ |2 +sin(za) 1

From this it is easy to verify that det G* # 0, i.e., (7.73) is an invertible
system since (7.20) holds. Denote

Y = {y10, 111,920} = {1, 98, 92} T (7.75)
From (7.73) we find that
Yi0 =21 — T3, Yu =2, Y20 = T3 (7.76)
Let us introduce the internal variable
z=1z3+ 24— 21. (7.77)

Expressions (7.76) and (7.77) give the desired transformation (7.40) of the
form

Y10 1 0-1 0 Ty
Y11 0 1 0 O o
_ 7.78
Y20 0 0 1 0 T3 ( )
z -1 01 1 T4
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By the change of variables (7.78) we find that the normal form of (7.73) is
given by

Y10 = Y11,

11 = —Y10% + wa(t) — uy + [1 + 0.5sin(yz0)]uz,

Y20 = Y10Y202 + (2 + sin(z + y10)|u1 + ug, (7.79)
2 = =12z + wa(t) + uy + ua.

Next, the degenerated system (7.71) can be obtained by assuming that
for all t € [0, 00) the conditions

vo=r1=1 v =0 4@ =0, yo=ro=1 ¥l =0 (7.80)
hold. On these conditions the system (7.79) reduces to the system

0= Y11,
0 = —y102z + wa(t) — u1 + [1 + 0.5sin(yqo)]ua,
0 = y1oy202 + (2 + sin(z + yio)|ur + ua,
z = —12z + wa(t) + vy + ua.
Accordingly, the degenerated system is given by
2= az + ¢(wa, wq,71,72), (7.81)
where
= —12 4+ r1[3 + sin{ry) + sin{z + r;)
+0.5sin(r2) sin(z + r1)] 713 + sin(z + 1) + 0.5r sin(rz)].  (7.82)
For instance, let us assume that |r1(t)] <1 and |ra(t)] < 1. Then a < 0.
Hence, the boundedness of the trajectories of the degenerated system (7.81)
follows on the given bounded sets of 1 (t), r2(t), and wa(t), wa(t). Therefore,

the bounded subset ), exists such that the inclusion u¥P(t) € Q,, Vt €
[0, 00) holds on the condition (7.66).

7.5 Output regulation of SISO systems

7.5.1 Realizability of desired output behavior

Before addressing MIMO control system design, let us consider the problem
of nonlinear time-varying SISO control system design in the presence of the
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internal subsystem. We will deal with the system given by

X = f(t,X) + G(t, X)u, X(0)=X°, (7.83)
y = h(t, X), (7.84)
where X € R", u ¢ R!, and y € R
Denote ho(t, X) = h(t, X). Differentiation of the output equation y =
ho(t, X) yields

oho  Oh
(v Y Yo
y 5t ¥ ox

{f(t, X) + G(¢t, X)u}.
Assume that
Oho(t, X)
50,4
where 4 x = [0,00) X Qx. Then, by denoting
8h0(t’X) 6h0(tyX)
ot oX

we can find the expression for y(®.
Let us assume that there exists an o < n such that

Gt X)=0, V(t,X)€x,

hl(tax) =

[, X),

y) = h;(t, X), Vji=0,...,a-1 (7.85)
and
Y@ = h (¢, X) + %%’)((m—x)G(t, X)u, (7.86)

where the conditions

Ohs( X) it XY =0, Vi=0,....a—2 V(tX)€Qx,
8X
Q@:{%{ﬂlg(t,x)#o, V (8, X) € Qux

are satisfied. That is, the system (7.83)—(7.84) satisfies the well known
sufficient condition for invertibility [Porter (1970)].

The value a is the relative degree (or invertibility index) of the system
(7.83)~(7.84). Then y(® is the relative highest output derivative of that
system.

For convenience, let us denote

Ohg—1(t, X)

B X) = halt, X),  67(6X) = 20

G(t, X),
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and rewrite (7.86) as
Y@ = p*(t, X) + 9* (t, X)u. (7.87)
We wish to design a control system to provide the condition

lim e(t) =0, (7.88)

t—o0

where e(t) is the error of the reference input realization (tracking error);
e(t) = r{t) — y(t); v(t) being the reference input.

Assume that, in accordance with the time-domain specifications of the
desired output behavior, the reference model of the form

Y@ = Pyl gD gy 0 D)y (7.89)

has been constructed as a stable differential equation where p < a and
y = r at the equilibrium point for r = const. Let us rewrite (7.89) in the
concise form

y®) = F(Y,R), (7.90)

where Y = {y,yM,... 4>V} and R = {r,rM),... 71T,

The deviation between the desired dynamics F(Y, R) assigned by (7.90)
and the actual value of the relative highest output derivative y(® is denoted
by

e = F(Y,R) — 4™,

where ef is the error of the desired dynamics realization. Then the dis-
cussed control problem for the SISO system (7.83)-(7.84) corresponds to
the insensitivity condition given by

ef = 0.

Assume that the internal stability of the system (7.83)-(7.84) holds,
that is, condition (7.32) is satisfied in a specified region of the state space
of (7.83)—(7.84) given that ef = 0.



174 Design of nonlinear control systems with the highest derivative in feedback

7.5.2 Closed-loop system analysis

In accordance with (4.38), let us consider the control law with the relative
highest output derivative y(® in feedback:

luqu(Q) + dq_luq_lu(q_l) + -+ dluu(l) + dou
= ko{F(Y,R) — y¥}, U(0) =U°, (7.91)

where 4 > 0, U = {u,u®,...,u9D}T and ¢ > a. Assume that
9*(t, X)ko > 0 for all (t,X) € O x.
The closed-loop system equations become

X =ft,X)+ G, X)u, y = h(t,X), X(0) = X°, (7.92)
'uqu(Q) + dq_luq_lu(q_l) + .4 dlﬂu(l) + dou
= ko{F(Y,R) —y®}, U(0) = U°. (7.93)

where the two-time-scale motions are induced as ¢ — 0.
From (7.92)—(7.93) and (7.87), by the above procedure for two-time-
scale motion separation, the FMS

M’lu(‘]) + dq_luq_lu(q_l) + ..+ dluu(l) + {do + kog*(t, X)}u
— ko{F (Y, R) — h*(t, X)}, U(0) = U° (7.94)

results, where ¢g*(t, X) is the frozen parameter during the transients in
(7.94).

Assume that the FMS (7.94) is stable. Then, letting 4 — 0 in (7.94),
we obtain the steady state (more precisely, quasi-steady state)} of the FMS
(7.94), where u(t) = u®(t) and

u®(t) = [do + kog™ (t, X)) ko{F(Y, R) — h*(t, X)}. (7.95)
Substitution of (7.95) into (7.86) yields

Y@ = F(Y,R)
+d0[d0 -I-k:og*(t,X)]—l{h*(t,X) - F(Y) R)}v (7'96)

where (7.96) is the SMS of the output behavior. So, the desired dynamical
properties of y(¢) are provided in a specified region of the state space of the
system (7.83)—(7.84) if dp = 0 or for dp = 1 as g*(t, X)kg — 00, despite the
existence of unknown varying system parameters and external disturbances.



Realizability of desired output behavior 175

7.5.3 Exzample

Let us consider a nonlinear system

y=y +untu
H=y+ant+atu (7.97)
=y -z +uz+ 1 -2)2%+u,

which is represented in the normal form. From (7.97) it follows that the

relative degree o = 1.
Let the desired output behavior be assigned by

yM = F(y,7),
where
1
yt =l -] (7.98)
and T =1s.
The counterpart of the system (7.62)—(7.63) has the following form:
y = %[T - y]v
. 1
zy =29+ T[T -, (7.99)

p=—z+ 1 -2z + -;,—[r -yl
Similar to (7.66), assume that
y(t) =r =const, Vte&|0,00).
Then the system (7.99), having dimension 3, degenerates into the system
Yy = r = const,

zZ] = 23, (7.100)

2'2 = —z1 + (1 — Z%)ZQ,

having dimension 2. This Van der Pol oscillator equation possesses a stable
limit cycle [Khalil (2002)].

Since the solutions are bounded, by Theorem 7.4 and Remark 7.11 we
know that the desired output behavior assigned by the reference model of
the form (7.98) is realizable in the system (7.97).
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Therefore, consider the control law given by
put + dou = ko{T " ![r — y) — yD}, (7.101)

which is the counterpart of the control law (4.16). In order to perform
numerical simulation, let us rewrite (7.101) in the state-space form

du1 _ do k)o
e -E{M — koy} + [ —yl, (7.102)
1
U= ;[UI - koy]. (7.103)

Simulation results for the system (7.97) controlled by the algorithm
(7.102)—(7.103) are displayed in Fig. 7.2. Here the initial conditions are
zero, and ko = 10,dp =0, p=0.1s, t € [0,10] s.

Fig. 7.2 Simulation results for the system (7.97) and (7.102)—(7.103).

7.6 Switching regulator for boost DC-to-DC converter

7.6.1 Boost DC-to-DC converter circuit model

Let us consider the application of the above design methodology to the
problem of switching controller design for a boost DC-to-DC converter cir-
cuit as shown in Fig. 7.3.

) _ °
L= I A T
B — - Vout
_'l" C R
O

Fig. 7.3 Boost DC-to-DC converter circuit.
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By Kirchhoff’s voltage law we have E = V, when the transistor is ON
and F = V[ + V,,;: when the transistor is OFF; hence, we get

E= VL + uvout,

where the state of the ideal switches (transistor and diode) is represented
by the control variable u and u € {0,1}.

The voltage drop V}, across an inductor is given by V;, = LI, where I},
is the current through the inductor with inductance L. We have CV¢ = I¢
for the voltage drop V¢ across a capacitor, where I is the current through
the capacitor with capacitance C. By Ohm’s law, the voltage drop Vg
across a resistor is given by Vg = RIg, where Ip is the current through the
resistor with resistance R. By Kirchhoff’s current law we get Iyu = Io+Ig.
Denote x; = I, x93 = V. By taking into account that Vg = Vo = Vi, we
obtain the bilinear switched model given by (see, e.g., [Escobar et al. (1999);
Sira-Ramirez (2002)])

. E 2z

T = f — fu, (7104)
. 1 T

TI9 = ——R'EQIQ + 'é‘u, (7105)

where E is the value of the DC voltage source, E > 0.

7.6.2 Model with continuous control variable

Assume that y = x is the measurable output of the system (7.104)—(7.105)
and consider the model with continuous control variable given by

R
I = L — —L—u, (7106)
by = ———ap+ U (7.107)
2= RC 2 C ) .
y = a1, (7.108)

where # is the continuous control variable and @ € [0, 1).
Similar to (7.66), assume that

y(t) = z1(t) = r = const, V¢ € [0,00). (7.109)
Then from (7.106) and (7.109), we get

aV1P = E/x,, (7.110)
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where (7.110) is the counterpart of (7.69). Since @ € [0, 1), we obtain z, €
[E,00). Then the system (7.106)—(7.108), having dimension 2, degenerates
into the system

T3 = T = const,

Ty = ——=To + —, (7.111)

having dimension 1. The degenerated system (7.111) has the unique asymp-
totically stable equilibrium point z§ given by

z5 = VERr. (7.112)

Therefore, the internal stability of the system (7.106)—(7.108) is satisfied in
the neighborhood of the point {z1,z2} = {r,z3} (or, by [Byrnes and Isidori
(1991)], the system (7.106)—(7.108) is the minimum phase system).

Since @ € [0,1) and 3 € [E,00), we obtain from (7.112) the allowable
interval for r, which is r € [E/R, 00).

Assume that [Sira-Ramirez (2002)]

E=15V, L=0.02H, C=0.001F, R =2004.

Let r € [1,4]. By (7.112), we get 9 € [54,110]. Then, by linearization of
(7.111) at the equilibrium point z§ we obtain

S [_E_L _ _fvz] __2
™" Omy |Cz2 RC||,,_ygm  RC’
where Tjn: = —1/a;n: is the time constant of the linearized internal subsys-

tem and for the above parameters we obtain T;,; = 0.1 s.
The relative degree of the discussed system equals 1 and the internal
stability is satisfied. Therefore, the control law

@ + diot = ky (T Hr — y] — y ™} (7.113)

can be applied in order to obtain the desired output behavior of the system
(7.106)—(7.108). Hence, in the closed-loop system given by (7.106)—(7.108)
and (7.113), we have that the two-time-scale motions are induced as u; — 0.
Hence, we obtain the FMS given by

klxz]ﬂzkl{%[r_y]_%}, (7.114)

pa® + [dlo -
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and the SMS given by

1= Lo gt BT E_ L

y—jﬁr y] + diok] th L] [L Tﬂr ]|, (7.115)
ity = -y + L [diok = 2] (L —y = E

b2 = ~gpTat G ok L][ﬂ“ 2 L] (7116)

where z; is replaced by y.

Take Ty = 0.02 s, py = 0.002 8, k; = —0.001, d1p = 0 (as a result, we
obtain that Ymin = dyp—k; x5 L~! = 2.7). Simulation results for the model
(7.106)—(7.108) controlled by the algorithm (7.113) are displayed in Figs.
7.4~7.5, where the initial conditions are x;(0) = 0, z2(0) = 15, 4(0) = 0,
and ¢t € [0,0.4] s. The external disturbance is represented by the varying
resistance R = R(t).

1 T T T T T 1
0.8
0.6
0.4
0.2

0
0 0.1 0.2 0.3 0.4

Fig. 7.4 Simulation results for the model (7.106)-(7.108) controlled by the algorithm
(7.113).

100 T T T T T T ] 200 T T T T T ]
% 160 Ry — ]
60 120 |- i
40 - .
20 80T ]

0 ] ] 1 1 I 1 40 =1 t ] ] t 1 (=
0 0.1 0.2 0.3 04 0 0.1 0.2 0.3 0.4

Fig. 7.5 Simulation results for the model (7.106)-(7.108) controlled by the algorithm
(7.113).
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7.6.3 Switching regulator

As the next step, let us consider the switching regulator given by

uluﬁl) +dious = ki {T7 Y r — 9] — y®}, (7.117)
us(t) = us(t — 7), (7.118)

1
w= umaxifg;&z_), (7.119)

where umax = 1 and the time delay 7 is included in order to satisfy the
conditions for limit cycle existence in the FMS of the closed-loop system
(7.104)-(7.105) controlled by the algorithm (7.117)—(7.119).

f

F+ eF kl 1 -Ts "2 1 “ -+ + y(l)
‘@f‘_ D 1 Y ‘%)'*

Fig. 7.6 Block diagram of the FMS in the closed-loop system (7.104)—(7.105) controlled
by the algorithm (7.117)—(7.119).

Let us consider the block diagram of the FMS shown in Fig. 7.6, where

o E
Assume that there are fast oscillations in this FMS. Then, in accordance
with the describing function method, let us replace the relay switch by its
quasi-linear approximation. Let the transfer function k;/D(us) display a
low-pass filtering property and assume that the nonlinearity input is us(t),
where

uz(t) = ud + Asin(wt)
with uJ the constant bias signal. Consider the output u(t) of the nonlin-
earity represented by its Fourier series
(e o)
u(t) = ug+ by sin{wt) + ¢y cos(wt)+ Z{bk sin(kwt) + ¢, cos(kwt)}. (7.120)
k=2

Note that the particular feature of the discussed system is the nonsymmet-
rical limits of the nonlinearity. Hence, u # 0, uo # 0, and it is known that
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for the given nonlinearity we have! (see, e.g., [Paltov (1975)))

0
_ Umax Umax . —1 112
U = —5— + —— sin <A> , (7.121)
012
by = 2Umax 1— [%] , (7.122)
i
c =0, (7.123)

where A > |u3]. Therefore, the sinusoidal plus bias describing function? of
the discussed nonlinear element has the gain for the bias

uo/ug
and the gain for the sinusoid
2
, 2Umax Ug
= - =1 . 124
Gl 4) = 2z 1 [ (7124
By the block diagram of the FMS shown in Fig. 7.6, we have
E
f= I #0
and assume that
F=0.

Then, by taking into account that dig = 0, we get the balance equation for
the constant bias signal u§ of the discussed FMS:

E x5 [umax Umax . —1 ug o
T~ [ 5 + - sin 2= 0. (7.125)
The 1st order harmonic balance equation (6.76) yields
2ToUmaxkie I ™V ud 2
1l-— —|—=1 =0. 12
jumwrmAL [ A 0 (7.126)
From (7.126) we obtain
m2A* — A% + (u3)? =0, (7.127)
=X (7.128)
T2’ '

ly = sin~!(z) denotes the inverse sine of x, i.e., sin(y) = z.
2The notion of the sinusoidal plus bias describing function can be found, for instance,
in [Atherton (1981)].
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where

1 Lx?
m= I E— (7.129)

Take T7 = 0.02 s, uy = 0.002 s, k3 = —0.001, and 7 = 0.001 s. From
(7.128) we get w ~ 1570.8 rad/s. The joint numerical resolution® of (7.125)
and (7.127) yields u ~ —0.362, A ~ 0.556 when 2z, = 54.7, and ud ~
—0.977, A = 1.074 when z5 = 110.

Simulation results for the bilinear switched model (7.104)—(7.105) con-
trolled by the algorithm (7.117)-(7.119) are displayed in Figs. 7.7-7.8,
where the initial conditions are z;(0) = 0, z2(0) = 15, u;1(0) = 0 and
R =200 Q for all t € [0,0.4] s. We see that the simulation results confirm
the analytical calculations.

I T T T T T T | T T T T T T
u 1.2 - =
T u) —
0.8
0.6
04

il 1 02

O =N Wk OO
T 1 1
S
TN
GG
N’
—_——

0 |11 il
1 1 { 1 1 1 I 1 1 1 § | 1 !

0 0.1 0.2 0.3 04 0 0.1 0.2 0.3 0.4

Fig. 7.7 Simulation results for the bilinear switched model (7.104)—(7.105) controlled
by the algorithm (7.117)—(7.119).

100

i

il .”uww""'l”””UHH

0 0.1 0.2 0.3 04 0 0.1 0.2 0.3 0.4

Fig. 7.8 Simulation results for the bilinear switched model (7.104)—(7.105) controlled
by the algorithm (7.117)—(7.119).

3Such software as, for instance, “Mathcad” can be easily used for the joint numerical
resolution of (7.125) and (7.127).
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Let us, for simplicity, omit from our consideration the nonsymmetrical
property of the discussed limit oscillations and determine the limit cycle
parameters under the assumption that £ =0, f = 0.

Denote by uy(t) = Asin(wt) the first harmonic of the Fourier series for
the actual periodic signal u,(t) in the FMS. Consider the harmonic balance
equation (6.76) where
, ZTok1e”"® . 4Umax
Gi(jmw) = —————, Gn(j,A) =

1) = = Llrs 4 dgy’ OO
Let k1 < 0 and dyp = 0. Hence, the solution of (6.76) yields the frequency

w and amplitude A of the stationary oscillations in the FMS shown in Fig.
7.6:

ﬁ_, and Umax = % (7130)

m 8k1TUmax.’L‘2
=2 and A=A UmaxZ2
W= w2y L

Let e,4. be the amplitude of the stationary oscillations with frequency

w of the output y(t). In accordance with the block diagram shown above
in Fig. 7.6, we have to a first approximation

8T UmaxT2
m2L
given that w is sufficiently large. The effect of the fast oscillations in the

FMS on the accuracy of the output stabilization can be reduced by selection
of 7. By taking into account (7.112), we obtain

€osc N

A As ~ 8k17'umavaR'r‘ s — STUmax ERr
S AN L Cee = e g (T13D)

when the steady state 3 of the internal subsystem (7.111) holds.
Take

Ty =0.02 s, u1 =0.002s, ki =—0.001, 7=0.001s. (7.132)

From (7.131) we get w ~ 1570.8 rad/s, A° ~ 0.55, e5,, ~ 1.11 when r = 1,
and A° =~ 1.11, e3,. =~ 2.22 when r = 4. There is perfect coincidence

between the analytical calculations and the simulation results again.

7.6.4 External disturbance attenuation

Let us introduce the external disturbance w(t) represented by the varying
resistance R = R(t) and consider the block diagram of the control system
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shown in Fig. 7.9 where there is an inner switching controller C; and an
outer continuous controller Cy. Here, we denote 79 = Vo‘it, z9 = Vous-

(¥)
iw zy(t)

7y(t) Cglr(t)| o u(t) P .
T I iy(t)

Fig. 7.9 Block diagram of the closed-loop system with an inner switching controller C;
and an outer continuous controller Cs.

Since T; has been chosen so that the inequality T < Tp; holds, we may
assume that y = 7 in the average sense for the stationary oscillations in the
FMS. Then, in accordance with our usual two-time-scale design methodol-
ogy, we have that the behavior of z2(t) can be approximately described by
the degenerated system (7.111) of the 1st order, where r is the new control
variable, z2(t) is the new output variable, and the relative degree equals 1.
Therefore, the structure of Cy can be selected in the form

par® + daor = ky{Ty s — ) — V) (7.133)
and designed similar to the control law (7.113). For instance, we can take
T2 =0.1 S, M2 = 0.01 S, k;g = 0.002, d20 = 0. (7.134)

Finally, in order to perform numerical simulation, let us rewrite the
switching regulator (7.117)—(7.119) and the outer continuous controller
(7.133) in the form

duu
dt

le kl
—— —_ k + —|r — ,
) {un 1y} T1[ Yl

1
u = —[u11 — k1yl,
K1

ug(t) = uy(t —7),

R o C)) ngn(m), (7.135)

d'UQ] - _@

k
& - {ua1 — kaza} + E,%[Tz — Tg),

1
r = —[U,gl - kg():z].
K2

Simulation results for the bilinear switched model (7.104)—(7.105) controlled
by the algorithm (7.135) with parameters given by (7.132) and (7.134) are
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displayed in Figs. 7.10-7.11, where ro = 54 and the initial conditions are
the following:

:131(0) = 1, .’EQ(O) = 15, u11(0) = -—0.001, U21(0) =0.116.

Note that we need to match the initial conditions here in order to avoid
undesirable transients in the closed-loop system.

1 T 1 ! T I T

S tl——l [ L2F oy
TR ll
2 | 1 06 “ H
1 i 12 ||
o [t 02 f |
0 | OH_ | 05 | 05 | 0.4 0 | OH. | 03 | 03 | 0.4

Fig. 7.10 Simulation results for the bilinear switched model (7.104)—(7.105) controlled
by the algorithm (7.135).

60 900 LI S S B R
” 160 | sy — .
50 120 + -
45 80 - i
40 40 : ] 1 1 ] 1 ] ] :
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 04

Fig. 7.11 Simulation results for the bilinear switched model (7.104)—(7.105) controlled
by the algorithm (7.135).

Remark 7.13 Note that various applications of the describing function
method in periodically switched circuits can be found in a broad set of ref-
erences, for instance, [Sanders (1993)].

7.7 Notes

As shown above, the analysis of the realizability of the desired output be-
havior for the dynamic system given by (7.1)—(7.2) requires a more careful
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investigation of the intrinsic properties of the plant model. In particular,
the invertibility of a dynamic system and the internal behavior of its state
variables on the condition of the assigned output behavior should be exam-
ined. Such investigation leads to consideration of the invertibility indices
(relative degrees), normal form of a nonlinear system, internal behavior
analysis of the state variables, degenerated system, and zero-dynamics.

Finally, in this chapter the design procedure for SISO nonlinear con-
trol systems has been discussed in the presence of internal dynamics. In
the next chapter, this procedure will be extended to MIMO nonlinear con-
trol systems, provided that the realizability of the desired output behavior
presented in this chapter holds.

The concluding example of the boost DC-to-DC converter paves the way
for extension of the book’s design methodology to the problem of switching
controller design.

7.8 Exercises

7.1 The differential equations of a plant model are given by

Ty =1x1+22, ZLo=7T1+T2+z3+uU,
I3 =211 — 22+ 223+ au, Y=z (7.136)

Verify the invertibility and internal stability of the given system (7.136),
where (a) a =1, and (b) a = 3. Find the degenerated system.
7.2 The plant model is given by

Ty = X9, i‘z=$%+fl}2+$g+u,
i+ zo+z3+au, y=a. (7.137)

Z3

Verify the invertibility and internal stability of the given system (7.137),
where (a) @ =1, and (b) a = —1. Find the degenerated system.
7.3 The differential equations of a plant model are given by

iy =9, o= |T1]+ 23+,

B3 =225 — T3+ U, Y= (7.138)

Verify the invertibility and internal stability of the given system (7.138).
Find the degenerated system.
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7.4 Verify the invertibility and internal stability of the system

&) = 0.5(z; — z2) — 0.5(z1 — z2)° + 0.5u + 2w,
£y = 0.5(z1 — x2) — 0.5(z1 — z2)% + 1.5u — 0.5ws,
Yy = T1+ T2

7.5 Verify the invertibility and internal stability of the system

&) = 0.571 — 0.5z — 0.5z3 — 0.5(z1 — 22 — 3)% + 0.5u,
9 = 0.5z1 + 1.5z2 + 1.523 + 0.5(x1 — 73 — 3)® — 0.54,

Ty = —2%9 — 223+ 2u+w, y=u1x+ 9.
7.6 Verify the invertibility and internal stability of the system

1 = x1 + T2 + Uy + ug,
Tg = 22y + 2 + 2uy + ug,

Y1 =11 — T2, Y2=72T1+ T2,
7.7 Verify the invertibility and internal stability of the system

1 = z1 + x2 + U1 + 2ug,

To = —T1 + T3 — 23 + 2u; + uo,
T3 = 21 + T2 + T3 + u1 + Sug,
Y1 = T1 — T2, Y2 = T1 + 2.

7.8 Verify the invertibility and internal stability of the system

&1 = 23 + |@2| + uy + ug,
Ig =.’L‘1$2+$§+2U1+U2,
I3 = T3 — ug,

Y1 =21, Y2 =Tz

7.9 Verify the invertibility and internal stability of the system

Iy =29+ T3+ u,
;t2=x1—x2—x3—u,
T3 =23+ 2u+ w,

Yy =z + 29

187

(7.139)

(7.140)

(7.141)

(7.142)

(7.143)

(7.144)

Assume that the inequalities [z;(t)( < 1 V 4, [r(t)] < 0.5 hold for all
t € [0,00). Find the control law of the form (7.91) such that &, = 0,
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7.10

7.11

7.12

7.13
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tf ~ 2s, 09 ~ 10%. Run a computer simulation of the closed-loop
system with zero initial conditions. Compare simulation results of the
output response with the assignment for r(t) = 0.5, V ¢t > 0.

Verify the invertibility and internal stability of the system

&=z -2 tu, do=|re]—u, y=umz (7.145)
Assume that the inequalities |z1(¢)] < 1.5, |z2(t)| < 1.5, |r(¢)| < 1 hold
for all t € [0,00). Find the control law of the form (7.91) such that
g =0, t‘si ~ 3 s, 0% ~ 0%. Run a computer simulation of the closed-
loop system with zero initial conditions. Compare simulation results of
the output response with the assignment for r(t) =1, V¢t > 0.
Verify the invertibility and internal stability of the system

T1 = T3 — x{(z‘f + 2$§ — 1),

Ty = 22+ 23 — (22 + 2% 4+ 0.2)u, (7.146)
i3 = —x3 — 3z} (] + 225 — 1) + za,
T4 = I, Y= 4.

Assume that the inequalities |z;(t)] < 1V 4, |r(#)] £ 0.5 hold for all
€ [0,00). Find the control law of the form (7.91) such that &. = 0,

tg ~ 3 s, 0% ~ 10%. Run a computer simulation of the closed-loop

system with zero initial conditions. Compare simulation results of the

output response with the assignment for r(t) = 0.5, V ¢ > 0.

Solve Exercise 7.10 such that ey < 0.1, where the switching controller

is given by

pus? + drou = ko{T7'[r - y] - y™M},
ug(t) = ur(t — 7Y,
U = Umax SgN(U2).
Solve Exercise 7.11 such that eyse < 0.01, where the switching controller
is given by

p2ul? + dypud? + dowy

d bd 1
2) 4 iT ()
ko{—y()——y()+—7r( + —Ir y]},
u?(t) = ul(t T)v

U = Uppax 5g0(U2).



Chapter 8

Design of MIMO continuous-time
control systems

This chapter is devoted to extending the design methodology for SISO
control systems with the highest derivative in feedback to the multi-input
multi-output (MIMO) nonlinear time-varying case. In particular, the prob-
lem of output regulation is discussed, where the goals of MIMO control sys-
tem design are to provide (1) output decoupling and disturbance rejection,
i.e., each output should be independently controlled by a single input, and
(2) the desired output transient performance indices on the condition of
incomplete information about varying parameters of the plant model and
unknown external disturbances. The control law structure with the rela-
tive highest derivatives in feedback is used in order to provide the desired
dynamical properties globally in a specified region of the state space. A
systematic design procedure for the control laws with the relative highest
output derivatives in feedback is presented.

Note that throughout this chapter the problem of output regulation is
discussed on the assumption that the previously presented realizability of
the desired output behavior is maintained.

8.1 MIMO system without internal dynamics

8.1.1 MIMO system with identical relative degrees

The final purpose of this chapter is a controller design methodology for
MIMO nonlinear time-varying systems given by

X = f(t, X) + G(t, X)u, X(0)=X°, (8.1)
y = h(t, X), (8.2)

189
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where t is time, ¢ € [0, 00); X is the state vector, X = {z1,22,..., z,}T; ¥
is the output, y = {y1,¥2,...,¥p}7; u is the input, v = {uz,uy,... yupt?;
u C Q, C RP, Q, is an allowable bounded set for the control variable u;
and p < n.

Assume the vector functions f(t, X), (¢, X) and the matrix G(¢, X) are
smooth with respect to t and X (or are at least n-times differentiable) in
a specified bounded region of the state space Qx. The initial state X of
the system (8.1) is within the specified bounded region 0%, where Q% C
Qx C R™.

The influences of all external disturbances and varying parameters of
the system (8.1)-(8.2) are represented implicitly by the time dependences
of f(t, X),h{t,X), and G(t, X).

Note that throughout this chapter we assume identical dimensions for
the vectors u and y, while the other case will be discussed in the next
chapter.

First, for the sake of simplicity, let us consider the nonlinear time-
varying system given by

y" = f(t,Yo) + G(t, Yo)u, Yo(0) =Yy, (8.3)

where y is the measurable output of the system, y € RP; Y} is the state
vector, Yy = {yT, [¥T)P, pT]@,..., [yT])0~V}T; 4 is the control, u € RP;
YY is the initial state, Y7 € Q9 ; Q. is the specified bounded region,
0y, € Qy, CR™? ; and nep = n.

The system (8.3) has the following special features:

(i) It has identical relative degrees for each output component y;(t) of the
vector y(t), i.e, oy =mng, Vi=1,...,p.

(ii) There is no internal subsystem (7.43) in the normal form representation,
since

p
E Q; = Nop = N.
i=1

Assumption 8.1 The functions f(¢,Yy) and G(¢, Yy) are bounded in 2y,
and

det Gt Yo) £0, ¥ (t,Yo) € Qtver (8.4)

where v, = [0,00) X Qy,. That is, the condition (7.20) (see p. 157) is
satisfied and the system (8.3) is invertible.
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Remark 8.1 Let us consider, for instance, a Lagrangian system given by
M(q)g? +C(g,qW) = u.

This is the typical model for a rigid link manipulator, where q is the vector
of joint variables; M(q) is the nonsingular inertia matriz; C(q,qV) ac-
counts for centripetal, Coriolis, and gravitational torques; u is the vector of
input torques [Spong and Vidyasagar (1989); Slotine and Li (1991)]. The
model presented is the counterpart of (8.3) for ng = 2.

8.1.2 MIMO system with different relative degrees

Let us consider the next particular case of the nonlinear time-varying con-
trol systems (8.1),(8.2) given by

d .
dtyw Yit,
a4
di Yix = Yi2,
(8.5)
S
dtyl,ai—-2 - y’L,Dti—17
d
Eyi»m—l = h: (t7 Y) + g;'k (t7 Y)ua
where
p
Z o =n (8.6)
i=1
and

Y= {ylo,yllv s Ylar-15Y20, Y215 - - - Y2001 0 - - )yp,ap—l}Ta (87)

Yi = Yios VZ-——l,,p
The system (8.5) has the following special features:

(i) It may have different relative degrees.
(i) There is no internal subsystem (7.43) in the normal form representation.
This follows from (8.6).

Let us rewrite (8.5), for convenience, as

Y — R Y) + gl (6 YV)u, i=1,...,p. (8.8)
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The representation
=H'"(t,Y)+G*(t,Y)u (8.9)
of (8.8) will be used hereafter, where y, is the vector (7.14),

- {y(a’), (az) y(a,,)}T

and
hi(t,Y) 91t Y)
Yy = | MO ey = 26V g
hy(t,Y) gp(t Y)

Assumption 8.2 We have
det G*(t,Y) #0, V (t,Y)€ Qy, (8.11)

i.e., the system (8.9) is invertible [Porter (1970)].

8.2 MIMO control system design (identical relative
degrees)

8.2.1 Insensitivity condition

We wish to design a control system for which

lim e(t) = 0, (8.12)
t—o00
where e(?) is the tracking error, e(t) = r(t) —y(t), r(t) is the reference input,
r={ry,ry,... ,rp}T. Moreover, the controlled transients of all components
of the output vector y(t) should have desired performance indices. These
transients should not depend on the external disturbances and varying pa-
rameters of the system (8.9).

First, let us consider the system given by (8.3) where the vector y("0)
depends explicitly on the control u(t). From (8.4) it follows that the desired
behavior of the highest derivative vector (™) can be provided by the con-
trol u(t). Assume that the reference model of the desired output behavior
is given by

y(™) = F(Yy, R), (8.13)
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where R = {rT,[rM]T,...,[r®])T}7, p < ng, and the parameters of (8.13)
are chosen in accordance with the requirement (8.12) and the desired time-
domain specifications of the stable output behavior of y(t).

In order to ensure decoupling of the controlled transients of y; for all
components of the output vector y(t), the reference model (8.13) of the
desired output behavior is constructed in the form

y" = Fi(Yio,Ry), i=1,...,p, (8.14)
where
YL'O = {yiay§1)1y52)v L ,y‘E"O“l)}T; R’i = {T’“T‘El)’ e ’T’Epi)}T; ,01 < No.

It is more convenient to construct (8.14) in the form of (5.11) or (2.8).
Denote by

e¢ = F(Yo,R) —y™ (8.15)

the realization error of the desired dynamics, where ef € RP.
By introducing the reference model (8.13), the control problem (8.12)
is reformulated as the requirement

ef =0. (8.16)

This is the insensitivity condition for the behavior of the output y(t) with
respect to parameter variations and external disturbances in (8.3). It is also
the condition for decoupling of the output transients if (8.14) is satisfied.

In accordance with (8.3), (8.13), and (8.15), the expression (8.16) can
be considered as the equation

F(Yy,R) — f(t,Yo) — G(t,Yo)u = 0. (8.17)
From (8.17) it follows that the function
NP = (G(t,Yo)} H{F (Yo, R) — f(t,Yo)} (8.18)
is the nonlinear inverse dynamics solution.

Remark 8.2  Condition (8.4) is necessary and sufficient for existence of a
solution of (8.16), without taking the boundedness of Q) into consideration,
that is Q,, = RP,
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Remark 8.3  Ezxpression (8.18) cannot be used as the control law function
in practice, because G(t,Yy) and f(t,Yy) are unknown. But from a theoret-
ical viewpoint this type of control function is widely discussed [Silverman
(1969); Slotine and Li (1991)].

8.2.2 Control system with the relative highest derivatives
in feedback

Just as for the SISO case (4.38), in order to fulfill the requirement of (8.16)
let us consider the control law in the form of the following system of differ-
ential equations:

unqu(q) + Dq_luq_lu(q“l) + o4+ Dypuu®
+Dou = Kef, U(0) = U°. (8.19)

Here ¢ > ng and U° = {uT(0), [uT]™(0),..., [uT]9"V(0)}7 is the initial
condition.
Assume, for simplicity, that p and D; are diagonal matrices:

p =diag{ui, ..., up}, D; =diag{dyj,...,dp;}, 7=0,...,q. (8.20)

Note that the degrees of the control law differential equations may differ
between control channels, for instance, d;; € {0,1}, Vi =1,...,p in the
diagonal matrix D,.

Assume that the reference model (8.13) is given by a system of linear
differential equations. Then (8.19) has the form

unqu(‘” + Dq_lu““lu(q‘l) 4+ DypuuV) 4+ Dou
= K{_y(no) _ Ago_ly(no—l) — A‘fy(” — Ady
+Bcpi,~(p) + Bg_lr("‘l) + -+ + Bgr() 4 Bér}, (8.21)

where A% = B¢ and g > ng > p. The expression (8.21) reduces to (4.41)
(see p. 67) for p = 1.

Remark 8.4 Note that the particular feature of the control law (8.21) is
that the vector of the highest derivative y(™) is used in feedback.

Remark 8.5 Ifq > ng and q > p, then the control law (8.21) corresponds
to a proper matriz transfer function and, therefore, may be realized without
an ideal differentiation of y(t) or r(t).



Design of MIMO continuous-time control systems 195

8.2.3 Fast-motion subsystem

From (8.3), (8.13), and (8.19), we obtain the closed-loop system equations

y(m0) = f(t,Yy) + G(t, Yo)u, Yo(0) =Y?, (8.22)
unqu(q) _|.. Dq_lNQ“lu(q_l) + . + Dluu(l)
+Dou = Kef, U(0) =U°. (8.23)

In accordance with (8.3), (8.13), and (8.15), (8.22)—(8.23) can be rewritten
in the form

y(no) = f(ta YO) + G(ta YO)ua YE)(O) = YOO’ (824)
unqu(Q) + Dq-l/»l'q—.lu(q_l) + cen + Dluu(l)
+{Do + KG(t,Yo)}u = K{F(Yo,R) — f(t,Y0)}, U(0) =U°. (8.25)

Let all elements of the diagonal matrix p = diag{ui, p2,...,up} be
small positive parameters. Then (8.24)—(8.25) is the system of singularly
perturbed differential equations where fast and slow modes are induced as
pn— 0.

Remark 8.6 Note that the particular feature of the system (8.24)-(8.25)
is that instead of a single small parameter, there are p distinct small param-
eters p; in the general case. Therefore, in order to implement the standard
procedure [Tikhonov (1952)] of two-time-scale separation, let us provide the
normalization p = pdiag{fi,...,fp} by introducing the single small pa-
rameter u where

p= max {p1,..., [hp} (8.26)
i=1,...,p

Further, let us introduce the new fast time scale to = t/u into the closed-
loop system (8.24)—(8.25) and find the limit as p — 0. Then, by returning
to the primary time scale t = pty, we obtain the following FMS:

Dq“qu(Q) + Dq_luq_lu(q"l) 4 e + D]ll/u(l)
+{Do + KG(t,Yo)}u = K{F (Yo, R) - f(t,Y0)}, U(0) = U°, (8.27)

where Yj is the vector of the frozen variables during the transients in (8.27),
i.e., Y5(t) = const.

Remark 8.7 Note that if u — 0, then during the fast transients in (8.27)
the condition { Do+ KG(t,Y0)} = const holds. This occurs since the rate of
external disturbance and parameter variations in the plant model is bounded
due to the smoothness assumption on G(t,Yp), an