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Preface 

In recent years there has been a growing interest in the need for sensor fusion to solve 
problems in control and planning for robotic systems. The application of such systems would 
range from assembly tasks in industrial automation to material handling in hazardous 
environments and servicing tasks in space. Within the framework of an event-driven 
approach, robotics has found new applications in automation, such as robot-assisted surgery 
and microfabrication, that pose new challenges to control, automation, and manufacturing 
communities. 

To meet such challenges, it is important to develop planning and control systems that can 
integrate various types of sensory information and human knowledge in order to carry out 
tasks efficiently with or without the need for human intervention. The structure of a sensing, 
planning, and control system and the computer architecture should be designed for a large 
class of tasks rather than for a specific task. User-friendliness of the interface is essential for 
human operators who pass their knowledge and expertise to the control system before and 
during task execution. Finally, robustness and adaptability of the system are essential. 

The system we propose should be able to perform in its environment on the basis of prior 
knowledge and real-time sensory information. We introduce a new task-oriented approach 
to sensing, planning, and control. As a specific example of this approach, we discuss an 
event-based method for system design. In order to introduce a specific control objective, we 
introduce the problem of combining task planning and three-dimensional modeling in the 
execution of remote operations. Typical remote systems are teleoperated and provide work 
efficiencies that are on the order of 10 times slower than what is directly achievable by 
humans. Consequently, the effective integration of automation into teleoperated remote 
systems offers the potential to improve their work efficiency. 

In the realm of autonomous control, we introduce visually guided control systems and 
study the role of computer vision in autonomously guiding a robot system. As a specific 
example, we study problems pertaining to a manufacturing work cell. We conclude with a 
discussion of the role of modularity and sensor integration in a number of problems involving 
robotic and telerobotic control systems. 

Portions of this book are an outgrowth of two workshops in two international conferences 
organized by the editors of this book. The first one, "Sensor-Referenced Control and 
Planning: Theory and Applications," was held at the IEEE International Conference on 
Decision and Control, New Orleans, 1995 and the second one, "Event-Driven Sensing, 
Planning and Control of a Robotic System: An Integrated Approach," was held at the 
IEEEIRSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996. 



x PREFACE 

In summary, we believe that the sensor-guided planning and control problems introduced 
in this book involve state-of-the-art knowledge in the field of sensor-guided automation and 
robotics. 
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CHAPTER 1 

Sensor-Based Planning and Control 
for Robotic Systems: An Event-Based 
Approach 

NING Xl 
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 

TZYH-JONG TARN 
Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 

1 INTRODUCTION 

1.1 Motivation 

There is growing interest in the development of intelligent robotic systems. The applications 
of such systems range from assembly tasks in industrial automation to material handling in 
hazardous environments and servicing tasks in space. 

The intelligence of a robotic systems can be characterized by three functional abilities. 
First, the robotic system should be controlled directly at the task level; that is, it should take 
task-level commands directly, without any planning type decomposition to joint-level 
commands. Second, the control systems of robots should be designed for a large class of tasks 
rather than for a specific task. In this respect, the design of the control system can be called 
task independent. Finally, the robotic system should be able to handle some unexpected or 
uncertain events. 

Traditionally, robots were designed in such a way that action planning and the controller 
were treated as separate issues. Robotic system designers concentrated on the controller 
design, and the robotic action planning was largely left as a task for the robot users. To some 
extent, this is understandable, because action planning is heavily dependent on the task and 
task environment. 

The split between robot controller design and robot action planning, however, becomes a 
real issue, because the action planner and a given control system usually have two different 
reference bases. Normally, the action planner, a human operator or an automatic planner, 
thinks and plans in terms of events. That is, the planner's normal reference base is a set of 
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events. On the other hand, when it comes to the execution of planned actions, the usual 
reference frame for existing robot control systems is a time-based or clocked trajectory, 
typically a polynomial representation or decomposition of joint space or task space motions 
with time as a driver or independent variable. Eventually, this clocked trajectory representa- 
tion can be combined with some expected or desired sensed events at the end of the 
trajectory. However, the main motion or action reference base of existing industrial robot 
control systems is time. 

The two different reference bases for robot action planning and robot action execution or 
control (events versus time) cause unwanted complications and represent a bottleneck for 
creating intelligent robot control and intelligent robotic workstations. Intelligent robot 
control depends to a large extent on the capability of the robotic system to acquire, process, 
and utilize sensory information in order to plan and execute actions in the presence of various 
changing or uncertain events in the robot's work environment. Note that sensed events in a 
robotic work environment do not appear on a precise time scale. Hence, in reality, motion 
trajectories from start to destination cannot be planned on the basis of time alone. Instead, 
the executable representation of robot motion or action plans should be referenced to other 
variables to which sensed events are normally related. This would make the plan represen- 
tation for control execution compatible with the normal reference base of the applied sensors. 

The main motivation of this thesis work is to take a step toward intelligent robotic systems 
through the combination of event-based motion planning and nonlinear feedback control. 

1.2 Review of Previous Work 

There exists voluminous literature on the subject of motion planning. Motion planning 
consists of two basic problems, path planning and trajectory planning. Latombe [1] and 
Hwang and Ahuja [2] give excellent surveys and pertinent references in this area. Basically, 
there are two major approaches. One is based on the configuration space ideas proposed by 
Lozano-Perez and Wesley [3]. In order to use the configuration space approach, complete 
knowledge of environment is required, so the most useful results with this approach are for 
off-line path planning. The other approach uses a potential field method pioneered by Khatib 
[4]. It can be applied to real-time motion planning. However, to get the potential field of an 
environment again requires complete knowledge of the robot work space. Therefore, it is very 
difficult to apply this approach to a changing environment. The issues of motion planning in 
a dynamic environment are discussed by Fujimura [5]. However, most of the results were 
obtained under very strict assumptions, such as "the robot velocity is greater than all obstacle 
velocities," and they are valid only for a two-dimensional work space. 

The common limitations of the existing motion planning schemes are twofold: 

1. The planned motions are described as a function of time. 
2. Complete knowledge of the work environment is assumed. 

These limitations make it impossible to modify or adjust a motion plan during execution on 
the basis of sensory or other on-line information. Therefore, these schemes cannot accommo- 
date a dynamic environment consisting of not sharply defined or unexpected events, such as 
the appearance of an obstacle. Of course, if some kind of logic function is incorporated in 
the time-based plan, it may be able to respond to some unexpected events. However, because 
of the very nature of time-based plans, complete replanning of the motion after a change in 
the environment or occurrence of an unexpected obstacle is needed in order to reach the final 
goal. 



2 EVENT-BASED PLANNING AND CONTROL 5 

Some effort has been made to develop a path planning scheme based on sensory 
information [6]. This method is, however, purely geometric and is not integrated with the 
control execution. 

The results of pioneering research on non-time-based robot motion analysis, planning, 
representation, and control execution have appeared in the robotic literature. In [7] and 
[66], the velocity-versus-position phase space technique is introduced, using harmonic 
functions to relate velocity to position along a given geometric path. Phase space concepts 
are applied in [8], [9], and [10] to find the optimal joint space trajectory of an arbitrary 
robot manipulator that has to follow a prescribed path. In [11], a phase space variable is 
used to obtain a dynamic model of a tricycle-type mobile robot, which can then easily be 
linearized by feedback. In [12], a phase space approach is applied to the path following 
control of a flexible joint robot. In these methods, the phase space technique is used as a 
analytical tool to find an optimal time-based trajectory. In fact, phase space (velocity versus 
position) has been widely used in physics and in early control theories to describe motion 
trajectories. 

The real challenge in motion planning is to develop a planning scheme integrated with a 
control system that is able to detect and recognize unexpected events on the basis of sensory 
information and adjust and modify the base plan at a high rate (same as the dynamic control 
loop) to cope with time and location variations in the occurrence of events without 
replanning. The first technical difficulty is the development of a mathematical model to 
describe the plan so that it is inherently flexible relative to the final task goal and can be 
easily adjusted in real time according to task measurements. The second difficulty is the 
development of an efficient representation of a sensory information updating scheme that can 
be used to transmit the task measurement to the planner at a high rate (same as the control 
feedback rate). The third difficulty is the integration of the planner and controller to achieve 
a coordinated action and avoid deadlocks or infinite loops. 

2 EVENT-BASED PLANNING AND CONTROL 

2.1 Introduction 

A traditional planning and control system can be described as in Figure 1.1. The core of the 
system is the feedback control loop, which ensures the system's stability, robustness, and 
performance. The feedback turns the controller into an investigation-decision component. 
The planning process, however, is done off line, which is understandable because the task is 
usually predefined. The plan is described as a function of time, and the planner gives the 
desired input to the system according to the original plan. Therefore it could be considered 
as a memory component for storing the predefined plan. All uncertainty and unexpected 
events that were not considered in planning are left to the feedback control loop to handle. 
If a system works in a complicated environment, the controller alone is not able to ensure 
that the system achieves satisfactory performance. 

In the past 5 years, considerable effort has been made to improve the planner and 
controller in order to handle unexpected or uncertain events, in other words, to achieve 
intelligent planning and control. The concept of intelligent control was introduced as an 
interdisciplinary name for artificial intelligence and automatic control systems [13]. Saridis 
[14] and Saridis and Valavanis [15] proposed a three-layer hierarchy for the controller and 
planner. Since then, based on a similar idea, various "intelligent" planning and control 
schemes have been developed [16-18]. The basic idea of existing schemes is to add to the 
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I Planner e ( t ) ~  

F I G U R E  1.1 
Traditional planning and control system. 

' ! y(t) Controller . . . .  Robot I -~ 

basic system in Figure 1.1 high-level monitoring layers that monitor the performance of the 
system. When some unexpected discrete event, such as a system component failure or outside 
disturbance, happens, the high-level layer either replans the desired input or switches it to 
some predefined contingency plan. 

However, for some high-speed systems, which may also work in very complicated 
environments, it is almost impossible to replan the motion in real time and it is extremely 
difficult to predefine the contingency plans without knowing the nature of unexpected events. 
Furthermore, besides discrete events, there are also continuous unexpected events. For 
example, the error of a system is a cumulation with respect to time. The high-level layer is 
not able to detect it and take any action until it exceeds a certain threshold. This significantly 
reduces the precision of the system. In addition, the high-level layers in existing schemes are 
implemented by different heuristic techniques. The computation is usually time consuming. 
As a result, the sampling rate of the high-level layer is much lower than that of a real-time 
control loop. Therefore, it is not able to deal efficiently with continuous unexpected events. 

The real challenge is to develop a planning and control scheme that is able to detect and 
recognize both discrete and continuous events and adjust and modify the original plan at a 
high rate (same as the feedback control loop) to recover from errors or unwanted situations 
and eventually to achieve superior performance. 

The first technical difficulty is the development of a mathematical model to describe the 
plan so that it can be easily adjusted and modified in real time according to system output 
measurements. The second is the development of an efficient representation for sensory 
information updating that can be used to transmit the system output measurements to the 
planner at the same high rate as the control feedback loop. The last is the integration of the 
planner and controller to achieve stable and robust system performance. 

2.2 New Motion Reference and Integration of Planning and Control 
The event-based planning and control scheme will be able to overcome the preceding 
difficulties and to meet the challenge. The basic idea of the theory is to introduce a new 
motion reference variable different from time and related directly to the measurement of 
system output. Instead of time, the plan-desired system input is parameterized by the new 
motion reference variable. The motion reference variable is designed to carry efficiently the 
sensory information needed for the planner to adjust or modify the original plan to form a 
desired input. As a result, for any given time instant, the desired input is a function of the 
system output. This creates a mechanism for adjusting and modifying the plan on the basis 
of the output measurement. More important, it makes the planning a closed-loop, real-time 
process. The event-based planning and control scheme can be shown as in Figure 1.2. 

In Figure 1.2, the function of Motion Reference is to compute the motion reference 
variable on the basis of the system output measurement. The planner then gives a desired 
input according to the motion reference. It can be seen that the planning becomes an 
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FIGURE 1.2 
Event-based planning and control scheme. 

e(s) -~~ Controller 

Motion  Reference I~ 

Robot r 

investigation-decision component in the sense of feedback. Therefore, the event-based 
planning and control scheme has an ability to deal with unexpected or uncertain events. 

In addition, the motion reference variable is calculated at the same rate as feedback 
control. In other words, the original plan is adjusted and modified at a very high rate. As a 
result, it is able to deal not only with discrete unexpected or uncertain events but also with 
continuous unexpected and uncertain events, such as cumulation of error and system 
parameter drifting. 

Furthermore, the high-level heuristic layer could still be added, which would be compat- 
ible with the event-based planning and control scheme. 

In considering Figure 1.2, some theoretical questions arise. First, after a motion reference 
loop is introduced, how does it affect the stability of the system? Second, how does it affect 
the dynamic performance of the system, and how can such a system be designed to achieve 
a desired performance? 

2.3 Stability in the Event-Based Reference Frame 

I f  a system is asymptotically stable with time t as its motion reference base, and if  the new 
motion reference s is a (monotone increasing) nondecreasingfunction of  time t, then the system 
is (asymptotically) stable with respect to the new motion reference base s. 

If the system is asymptotically stable with respect to t, by the converse theorem [19], we 
can find a Liapunov function L(X(t)) such that 

1. L(X(t)) is positive definite. 

dL(X(t)) . 
2. is negative definite. 

dt 

If the motion of the system, is referenced to s, then L(X(s)) is still positive definite. 
In addition, 

dL(X(t)) dL(X(s)) dL(X(s)) ds 

dt dt ds dt 

If s is a (monotone increasing) nondecreasing function of t, then 

ds ) ds z>o, z >o 
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Thus, 
dL(X(s)) 

ds 

is (negative definite) negative semidefinite. Therefore, the system is (asymptotically) stable 
with respect to s. 

2.4 Equivalence of Time-Based and Event-Based Controllers 

Two methods could be used for designing a controller. The first one is based on a time-based 
dynamic model 

f d--~t = f(x) + g(x)u x, u ~ R m 
y = h(x) y ~ R m 

Second, the event-based motion plan could be introduced into a dynamic model. A control 
system could then be designed on the basis of the event-based dynamic model 

f 
dx 1 1 R m 

y = h(x) y e R" 

The event-based dynamic model has the same motion reference as the planner. It can be 
linearized by introducing a proper trajectory plan [ 11]. Since the event-based dynamic model 
depends on the trajectory plan, the control law becomes trajectory dependent. For designing 
a task-independent controller, the time-based dynamic model is adequate because it is 
independent of the trajectory plan. The most important issue is to synchronize the two 
references for the planner and controller. 

I f  the nonlinear.feedback control algorithm is applied to both time-based and event-based 
dynamic models" and the linearized systems have same pole placements, then no matter what 
dynamics model is used, the system receives an identical control command. 

Time-based nonlinear feedback is given as 

u, = ~ , (x)  + fl ,(x)oo, 

The corresponding linear model is 

f 
d ~ l ,  

d ~ ; t  

i t '  ~2t ~ Rm 

60t ~ R m 

and 

L LIhl]--IVL hI 1 
~ , ( x )  = - " " , 

Loi fhmJ [L]hm~ 

/ 3 , ( x )  = 

-LgLI h - i 11 
LoLIh 
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Event-based nonlinear feedback can also be described as 

Us = ~s(X) + fls(X)CO= 

The corresponding linear model is 

fd~ls - ~ s = ~ e s  

d~2s 
~ - ~ s = ~  

~ls' ~2s @ Rm 

COs ~ R m 

and 

r e ] Lo/vLf/,;h 1 -1 Lf/~hl 

~=(x) = - L 2 " ' 
Lo/~ l/~hm [_Ll/~hmJ 

I -1 
Lo/vLf/vhl 

fl=(x) = 

LLg/vLf/vhl 

Therefore, 

~s(X) ~-- --V2Imxm I 1 V 1 [ IIV L hI] -1 L~hl LgL fhx  - L ~ L:r h l 1 

-~ Im• = -- = C~t(X) 

~LoLlhm j [_L~hm_] ~LoLlhm ~ ~L~hm~ 

and 

LgLfhl  1 
fls(X) = V2Imxm " ._ flt(X)V2Imxm 

Lg i lhm~  
Then 

u s = c~ t (x) + fit(x) v2I m• m COs 

= ~,(x) + fl,(x)(v~COs) 

So the corresponding linear model can be written as 

f d~lt ---~ = ~it ~lt, ~2t ERm 

d~2t R m 
~ - - E  V COs COs ~ 

If the poles of linear models are placed at the same locations, we have 

09 t ~ V2(_Ds 

Thus, 

Us--- ~t(X ) --~ fit(X)(Dt --- bit 



10 CHAPTER 1 / SENSOR-BASED PLANNING AND CONTROL FOR ROBOTIC SYSTEMS 

Therefore, no matter what motion reference is used for a dynamic model, the robot sees that 
u t and us are formally the same. 

The preceding results lay down a foundation for applying the event-based planning and 
control scheme to practical systems, especially robotic systems. Obviously, different motion 
reference variables could be chosen based on the nature of the systems and the control 
objectives. Designing the motion reference becomes the first and the most important task in 
developing an integrated event-based planning and control scheme. 

3 EVENT-BASED MOTION PLANNING AND CONTROL FOR A ROBOT ARM 

3.1 Event-Based Robot Motion Description 

In general, the motion reference should be closely related to the objective of the system, 
should properly reflect the performance, and should efficiently carry the sensory information. 
In robot planning and control, one of the most important problems is to control the robot 
to track a given path. In a robot tracking problem the major system event is the path 
tracking itself. Therefore, the most natural reference to this event is the distance traveled, s, 
along the given path, S. If s is chosen as the reference, then the motion along the given path 
can be written as 

ds 
~ = v  

dv 
-~ = a 

(1.1) 

where v and a are velocity and acceleration, respectively, along the given path S. 
Based on the results of kinematic and dynamic work space analysis [20,21,64], the 

trajectory constraints could be stated as 

Iv[ ~< vm velocity constraint 

lal ~ % 

Ida[ -ji <. k 

acceleration constraint 

constraint for jerk-free motion 

(1.2) 

Obviously, during a motion the arc length s is a function of t. Thus, v and a can also be 
described as a function of s, instead of t, that is, v = V(s), a = A(s). 

In order to get a event-based trajectory plan, we will convert (1.1) and (1.2) to the 
event-based dynamics model. 

da 
Let us define w = v 2, that is, w = W(s), and u = dss" From (1.1), we then have 

dw 
--~s = 2a 

da 

-~s = u 

(1.3) 
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The corresponding constraints are 

Iwl ~< w,. 

lal ~< am 

lul ~< Um 

velocity constraint 

acceleration constraint 

jerk-free constraint 

(1.4) 

It is seen in (1.3) that after s is introduced as the motion reference, the model becomes a 
second-order linear dynamic model with states and input constraints. 

Basically, the event-based trajectory planning is to find the velocity profile as a function 
of path or position, that is, v = V(s), subject to the kinematic and dynamic constraints. 

Obviously, for any given initial and terminal conditions So, sl,  Vo, and v I, the trajectory 
plan is not unique. Using various criteria, different event-based optimal plans could be 
obtained. 

3.2 Event-Based Time-Optimal Plan 

It is well known that the time, T, to complete a motion is 

T = dt = - d s  = ds 
o o V o 

Let us define X 1 - -  W ,  X 2 - -  a~ C 1 - -  X 1 m W m  ' C 2  - -  _ _ X 1  ~ W m  ~ C 3  - -  N 2  ~ a m  ' C 4  - -  _ X 2  ~ a m  ~ 

and 

Then 

X--IXllx2, F---[00 201 , B--I011 , dXas  = a t  

X ' =  F X  + Bu 

with constraints C ~< 0, where C = [c I c2 c3 c4] r. 

Now the preceding motion planning problem becomes an optimal control problem. It can 
be stated as follows: 

with X(0) = 0, X ( s , )  = O. 

f 

M i n  J, J = Xz-~ ds 
u o 

Subject to X '  = F X  + Bu  

C ~< O, lul ~< Um 

(1.5) 

The Pontryagin maximum principle [22] can be applied to solve this problem. The 
Hamil tonian of (1.5) is 

-- -~ t! t! ! ! 
H = Xx + 2 r (FX + Bu) + pxCl + ~2c2 + ~ 3 C 3  + ~4C4 (1.6) 

where 2 = [21 /~2] r satisfies 

8 H  
2' = (1.7) 

8H 
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In addition, 

d2Cl d2c2 fl ft 
C 1 = ds 2 = 2u, C 2 = ds 2 

, dc3 , dc4 
c 3 =  ds = u '  c 4 =  ds 

= - - 2 u  

- -  - - U  

and 

O i f  X l < W m  { O V 

~1- -~  > 0  V X I = W m '  ~ 2 - - -  > 0  V 

{Oi  2 am 
~ 3 - -  > 0  V x 2 = a m '  k t 4 =  > 0  i f  

From (1.6)-(1.9), the time-optimal solution is obtained as 

w = 

a = 

U m 

0 

- -  U m 

u =  0 

- -  U m 

0 

bl m 

S o U S e S  1 

S 1 < S ~ S 2 

S 2 < S ~ S 3 

S 3 < S ~ S 4 

s 4 < s <~ s 5 

S 5 < S ~ S 6 

S 6 < S ~ S f  

Urns - -  UmS 0 S O ~ S ~ S 1 

an, s 1 ( S ~ S 2 

--UrnS -Jr- l, lmS 3 S 2 ~ S ~ S 3 

0 S 3 < S ~ S 4 

- - U m S  ~ LiraS 4 S 4 < S ~ S 5 

- - a  m s 5 < s ~ s 6 

UmS - -  l,imS f S 6 < S ~ S f 

2 
him $2 - -  2UmSOS -k- blmS 0 

2 _ 2u.,SoS~ + UrnS2 __ 2a.,s~ 2ares 4- Um S 1 

2 
- -Um $2 ~ 2UmS3S -k- W m - -  UmS 3 

W m 

2 
--blm $2 ~ 2UmS4S -+- W m - -  Urns 4 

2 
- 2 a , . s  + 2a, .s5 - U m  s2 + 2U.,S4S 2 + W m -  W,.S4 

Um $2 - -  2 t l m S f S  n t- UmS ~ 

X 1 ~ - - W  m 

X 1 ~ - - a  m 

x 2 ~> - - a  m 

x 2  --- - - a m  

S o U S e S  1 

S 1 < S ~ S 2 

S 2 < S ~ S 3 

S 3 < S ~ S 4 

s 4 < s < ~ s  5 

S 5 < S ~ S 6 

S 6 < S ~ S f  

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 
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where 

a m w m 
S 1 --- SO - ~ - - - ,  S 2 - -  SO q- - -  

Um a m 

w m a m 
S 3 --- S O 'If ~ - J r - - - ,  $4. = S f  

am Um 

w m a m 

a m u m 

W m a m 
S 5 = S f  - - ~ ,  S 6 - -  S f  

am U m 

(1.13) 

Since we have w =/)2 and w m =/)2m, the time-optimal velocity profile is 

V = 

(Urn $2 -- 2UmSoS + UrnS2) ~ 

2 2 _ 2 a r e s 1 ) -  ~ (2a, , s  + UrnS 1 -- 2UmSoS 1 + UrnS o 

(--Urn S2 4- 2UmS3S -+- V2m- UmS2)~ 

/)m 

( - - H m  $2 Jr- 2UmS4S + / ) m -  

2 2 2 2 2,,�89 
( - -2ares  + 2ares 5 --UrnS 5 + 2UmS4S 5 + W m -  VmS4) 

(Urn s2 - 2UmS~.S + UmS~) -~ 

So <~ S <~ S ~ 

S 1 < S ~ S 2 

S 2 < S ~ S 3 

S 3 < S ~ S 4 

s 4 < s <~ s 5 

S 5 < S ~ S 6 

S 6 < S ~ S f  

(1.14) 

It can be seen that this time-optimal trajectory is a closed-form solution that is essential for 
real-time implementation. The velocity and acceleration profiles are shown in Figure 1.3. 

FIGURE 1.3 

I Sm I 

S: SJ S Ss S. S 

Ji 
So Sz S: I 

a 

So S~ 

V 

'V'm 

So St $2 S: S, Ss SI S~ S 

Velocity and acceleration profiles of the time-optimal motion plan. 
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3.3 Event-Based Minimum-Energy Plan 

In some trajectory planning problems, instead of giving the maximum velocity along the 
given path, 9,,, the total desired time to complete the path, t I,  is given. In this case, the 
minimum-energy plan can be found. Let 

~s sf 
J --  l u l d s  

0 

The minimum-energy problem can be stated as 

M i n  J 
u 

Subject to X ' =  F X  + B u  (1.15) 

lal ~ am, lul ~< u,, 

with X ( s o )  = 0, X ( s l )  = 0, and given t I. 
As with the time-optimal planning problem, the Pontryagin maximum principle could be 

applied to find a solution for (1.15). The solution has the same form as (1.10)-(1.14). The 
only thing left is to determine the vm, as it is not given here. 

As the final time t I is given, 

f l  I Is 'I 1 t I = d t  = - d s  (1.16) 
o • 

Based on (1.13) and (1.14), Eq. (1.16) can be solved and 

a , , u , , t  I a~  x//(a 2 a , , u , , t s )  2 2 
- - m - - 4umams:r  (1.17) 

t~,rn --- 2 U m 

Therefore, the minimum-energy trajectory is same as (1.14) and has velocity and acceleration 
profiles similar to those shown in Figure 1.3, except that v m is given by (1.17). 

Several Remarks 

�9 The initial and final conditions, X ( s o )  and X ( s f ) ,  are not necessarily to be zero. Since 
(1.5) and (1.15) are linear dynamic models, all the preceding results can easily be 
extended to nonzero cases. 

�9 The bounds w,,, % are not necessarily to be constant. If they are functions of s, the 
preceding methods could still be used to find the solutions. 2 �9 The solutions do not necessarily have profiles such as (1.14). If % >>. WmU m, then s 2 and 
s I will become a single point. There will not be a period with constant acceleration am. 

Using the same argument,  if 

W m a m S f  F- - -  >>. 

a m Um 

S O 

then S 3 and s# will become a single point. The period with the constant velocity in the 
velocity profile will vanish. 
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3.4 Cartesian Space Decomposition of Event-Based Plans 
In the preceding two parts, the event-based motion plan v = V(s) and a = A(s) have been 
obtained. In order to get the following task space plan: 

f 
:~ = Vx(s) 

= V, (s )  

= V~(s) 

(1.18) 

and 

I 
x = A x ( s )  

y = A y ( s )  

~ = A~(s) 
(1.19) 

the v = V(s) and a = A(s) will be decomposed in the Cartesian space according to the given 
path. 

Any geometric path given in the task space can be approximated by a combination of 
several straight lines and circular arcs. Hence, it is necessary only to find the decompositions 
for the straight line and the circular path segments. 

Straight Line Path 

Suppose that the straight line path in task space is given and has a direction cosine (m, n, p), 
with initial point (x o, Yo, Zo) and final point ( x : ,  y : ,  z:).  It is easy to find a decomposition of 
the event-based plan for the given straight line path, 

f ~ = my(s) = nV(s) 

= p V ( s )  

(1.20) 

and 

f 
2 =  mA(s) 

y = nA(s) 

~" = pA(s) 

(1.21) 

Circular Path 
First, it is assumed that the circle is in the xy  plane of the task space and the center of the 
circle is at the origin. The radius of the circle is r, and the equation of the circle in the task 
space is given by 

fi = r cos(s/r) 
= r sin(s/r) 

= 0  
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Therefore, the Cartesian space decomposition of the event-based plan is 

Y = V(s) 
r 

i x V(s) 
r 

= 0  

(1.22) 

and 

x - Y- A ( s )  
= r 5 ( v ( s ) ) 2  r 

y X 
f = - 75(V(s))2 + -r A(s) (1.23) 

~ ' = 0  

In a general situation, the circular path is centered at (x o, Yo, Zo) and tilted in the task space. 
It is, however, always possible to build a new coordinate (x,, y,, z,) such that the given circle 
is in the x ,y ,  plane and centered at x, = 0, y, = 0. It is very easy to find a constant 
transformation matrix T to satisfy 

X 

T 

X 0 X r 

- Y o  = Y .  

Z 0 Z r 

Then 

X X r 

~ = T _ 1  y. 

_ Z r  

X o 

+ Yo 

Z o 

Therefore, the Cartesian space decomposition for a general circular path in task space is 

~ = T - 1  );r , ~ = T - 1  j;'r (1.24) 

where [2, 3?, ~,]r and [2, y, ~.]r are given in (1.22) and (1.23). 

3.5 Event-Based Control 

The dynamic model of a robot arm with six degrees of freedom (DOF) is given by 

z = D(q)q '+ C(q, (t) + G(q) (1.25) 
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The position and orientation output is given by 

Y = h ( q ) = [ h l ( q )  h2(q )h3(q )  h4(q)hs(q)  h6(q)] r (1.26) 

where Y = [ x  y z 0 A T] r 

q = joint angle vector 

D(q) = inertia matrix 

C(q, 0) = centripetal and Coriolis terms 

G(q, 0) = gravity loading 

r = joint torque vector 

and q, r e R  6. 
Equations (1.25) and (1.26), the robot dynamic model, are nonlinear equations. It is very 

difficult to design a control law directly. Instead, the nonlinear feedback technique [32] will 
be used to linearize and decouple the dynamic model and convert the nonlinear control 
problem to a linear control problem. 

Let x 1 = q, x 2 = c), and E(xI, X2) = C ( x I ,  X2) n t- G(x1). Equations (1.25) and (1.26) can be 
rewritten in a standard nonlinear state space form 

x2 ] E 0 1 D- l(x 1)E(x) + D-  l(x 1) "c 

Therefore, the robot dynamics model could be stated as 

{~ = f(x) + g(x)'c (1.27) 
= h(xl) 

where x = Ix1, x2] r. 
Using results of differential geometric control theory [61], there exist a diffeomorphic state 

transformation T(x) and a nonlinear feedback law z = c~(x)+ fi(x)v that linearizes and 
decouples the robot dynamics. The diffeomorphic state transformation T(x) is given by 

z = T(x) = [hl(xl), Lfh l ( x l ) , . . . ,  h6(xl), Lfh6(xl)] r 

and the nonlinear feedback law is 

with 

I L2fhl(xl)) l[jhg 1 -- Jh D-  I ( x 1 ) E ( x ) ]  ~z(x) = - D ( x l ) J h  1 " = --D(xl)J h 

[_Lih6(x1 

fi(x) = D(x l)Jh 1 

(1.28) 

(1.29) 
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k where hi is the ith component of h(q), Lj- denotes the kth Lie derivative of h(x) along the 
vector field f (x) ,  and Jh is the output Jacobian matrix of h(x 1). 

In the transformed state z with the auxiliary input v, Eq. [1.27] appear in the Brunowsky 
canonical form as follows: 

= A z  + B y  (1.30) 

y = Cz (1.31) 

Here A, B, C are block diagonal matrices. To see the structure of these equations, we write 
them in a more detailed fashion. Equations (1.30) and (1.31) represent six linear and 
decoupled subsystems in the form 

,,: [~ 'o] z+ [o],, 
Yi = [1 O]z  i 

where zi = [hi LIh~] r. Each identical subsystem has double poles at the origin; therefore the 
system is not asymptotically stable. 

Introducing the feedback law 

I)* = V i - -  F i z i ,  i = 1 , . . . ,  6 

where F i = [f~, f~,], the final form of the closed loop is as follows: 

E ~ '1 : Z i + l)* 
< -fi, -L. 

Yi = [1 O]z  i 

Note that F i represents a linear Proportional-plus-Derivative (PD) controller. 
Therefore, the nonlinear feedback control law is given by 

- 1  = D(q)J h lYe(t) + K,,O(t) + Kpe(t) -- Jh[t] + C(q, O) + G(q) (1.32) 

where 

e( t )  = r ' ( t )  - Y( t )  

o(t) = W ( t ) -  ~r(t) 

From this, it can be seen that for a time-based plan, the reference base of input and 
measurement is time t. For any time instance t, a measurement Y(t), Y(t); a desired input 
Ya(t), Ye(t); and errors e(t), O(t) can be obtained. However, for an event-based plan, the time 
is no longer a reference base. The input of the system is parameterized by the event-based 
motion reference s. According to the new motion reference s, the error e and k must be 
redefined in order to get a event-based control law. 

In essence, for a digital sampled data control system we could determine the correspond- 
ing Ye(s), ~Ya(s) for each sampling time niAt by first computing the desired velocity and then 



3 EVENT-BASED MOTION PLANNING AND CONTROL FOR A ROBOT ARM 19 

S G i v e n  Path $ 

FIGURE 1.4 
The event-based error definition. 

$0 

Sf 

integrating the velocity to determine the corresponding desired position as done in [7] and 
[66]. Instead of this technique, we choose a new procedure illustrated in Figure 1.4. 

In this figure, I11 = [_x, y, z] r is a measurement, and the point s corresponds to a point in 
the given path that, in our technique, has the minimum distance from Y1 to the given path, 
that is, the orthogonal projection of Y~. The Cartesian space coordinate of point s is 
considered as a desired position Ya(s). 

Based on s, a desired velocity Ya(s) and desired acceleration Ye(s) can be obtained from 
the event-based plan. Therefore, the new error definitions are 

e(s) = y d ( S ) -  Y(s) 

O(s) = ~ ' ( s ) -  ~(s) 
(1.33) 

It can be seen that the new error definitions minimize the position error and make all errors 
independent of time. If a robot arm is stopped unexpectedly during a motion, since the 
motion reference base s depends only on the position of the robot instead of the time 
increment, it stops increasing as well. Therefore, the errors will remain unchanged, which 
makes it possible for the planner to modify the original plan to deal with the unexpected 
events. It should be noticed that in this situation, the error would keep increasing if the 
scheme as described in [7] and [66] was implemented. This is because, in spite of the fact 
that the robot arm has stopped, the desired inputs of the system are still updated along with 
the increase in the time. As a result, errors will keep increasing. Eventually, the system will 
become unstable. Therefore the time is still a "driving force" for the system. 

Finally, Eq. (1.33) and Yd(s) can be put into Eq. (1.32) to obtain an event-based control 
law. 

The event-based planning and control scheme is shown in Figure 1.5. The most important 
part of Figure 1.5 is the motion reference block. For every measurement point Y, the motion 
reference block calculates the orthogonal projection point on the given path in order to get 
the corresponding motion reference variable. 

3.6 Experimental Results 
Trajectory tracking of both minimum-time and minimum-energy motion plans have been 
tested on a PUMA 560 arm. The details of the experimental setup will be described in 
Section 5. 
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The sampling rate and feedback rate were 1000 hertz (1 millisecond) and the plots were 
made with sample points taken every 100 milliseconds. All plots correspond to the best 
possible gain values experimentally obtained for the task. 

In the following plots, the absolute position error is defined as 

epo s --  X / / ( x d ( s )  - -  X(S)) 2 + ( y d ( s )  - -  y(s)) 2 --]-- ( Z a ( S )  - -  Z(S)) 2 

and the absolute orientation error is defined as 

e o r i n  = a r c c o s ( � 8 9  - -  1)) 

where R is a rotation matrix between the actual orientation and the desired orientation. 
Figure 1.6 shows the performance plots for four-circle tracking using the time-optimal 

event-based plan. The radius of the circle is 0.1 m. It is tilted at 45 ~ In addition, Vm = 0.2 m/s, 
am = 0.3 m/s 2. It is seen from the performance plots that the peak absolute error is less than 
1 millimeter. In particular, the velocity error has been reduced comparing with a time-based 
planning and control scheme [35]. In addition, the steady-state error has been significantly 
reduced to less than 0.5 millimeter. The basic reason for obtaining a smaller steady-state 
error is that the time t is no longer a motion reference base, and the new reference base, arc 
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FIGURE 1.6 
Four-circle tracking based on the time-optimal plan. 
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length s, is directly related to the position. The event-based error definition ensures 
minimization of the position error. 

The arc length plots in the figure give the profiles of s versus time. It is seen that s is a 
monotone increasing function of t. 

In Figure 1.7, the trajectory constraints are increased to Vm = 0.4m/s, am = 0.4m/s 2. 
Because the errors have been reduced through the implementation of event-based planning 
and control, the robot arm was able to track the four circles within 10 seconds. This cannot 
be achieved by a time-based fifth-order polynomial motion plan [35]. 

Figure 1.8 is the result of using a time-optimal trajectory along a straight line path from 
(0.6 m, 0.0, - 0 . 4  m) to (0.0, 0.6 m, - 0 . 2  m) and Vm = 0.2 m/s and am = 0.3 m/s 2. 

The minimum-energy event-based plan for two-circle tracking was also tested. The circles 
are tilted at 45 ~ and A,, = 0.3 m/s 2. The results for different terminal times t I are given in 
Figures 1.9-1.11. Because the motion reference base is not time, the desired final times ty are 
not precisely achieved. 

Figure 1.12 presents the results of an interesting experiment. During a straight line motion, 
an unexpected obstacle stopped the robot motion. If the time-based plan were implemented, 
the errors would keep increasing and eventually result in instability. However, it is shown 
that the errors remained constant when the motion stopped, and once the obstacle was 
removed, the robot completed the rest of the planned motion without replanning. This 
demonstrates that the event-based planning and control scheme provides the robot with the 
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ability to handle an unexpected event. It significantly improves the safety and reliability of 
the robotic system. 

Figure 1.13 presents the results of a similar experiment for a circular path. 
The preceding experimental results indicate that the performance of the event-based 

planning and control scheme is comparable to that of the time-based motion planning and 
control scheme. I t  is even better.  The important point, however, is that it provides a natural 
reference base for sensor-based planning and control. 

4 EVENT-BASED PLANNING AND CONTROL FOR MULTIROBOT COORDINATION 

4.1 Introduction 

An important issue in multirobot systems is coordinated control. To achieve intelligence of 
multirobot systems, it is essential to develop a proper planning and control scheme for 
coordination. 

Multirobot coordinated control has been a research subject for several years. Various 
coordination schemes have been proposed. In [23] and [49], the master-slave coordination 
scheme was proposed. The hybrid position-force control theory was extended to multiarm 
coordinated control [36-38]. Control algorithms for multiarm object handling that take into 
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Two-circle tracking based on a minimum-energy plan, t r = 1 6 s .  

account the object dynamics and achieve simultaneous position and internal force control 
appear in [24], [33], [40], [41], and [42]. The coordination of a multifingered robot has also 
been widely discussed in [44], [-45], [-46], and [47]. In a multirobot system, redundancy 
becomes even more important.  The related results can be found in [53], [54], [55], [56], [57], 
and [58]. Dual-arm situations have been intensively investigated in 1-43], [48], [-50], [52], 
and [63]. An experimental evaluation of master-s lave and hybrid posit ion-force control 
schemes was presented in [51]. 

In this section, issues in mult irobot  rigid-object handling are discussed. First, a new 
event-based motion reference for a mult irobot system is introduced. Then time- and 
energy-optimal motion plans are obtained on the basis of this new motion reference. A 
general task space is defined. Based on the nonlinear feedback technique, the multirobot 
system including the robots '  joint motor  dynamics is linearized and decoupled with respect 
to the general output  defined in the general task space. Then a task projection operator is 
introduced. It projects the general output  to a controllable subspace, that is, to the actual 
task space for each individual robot. Finally, experimental results for a dual-arm coordina- 
tion task are presented. 

The ultimate goal is to develop an intelligent planning and control scheme for multiarm 
coordination that can be conveniently implemented in a distributed computing architecture. 
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FIGURE 1.10 
Two-circle tracking based on a minimum-energy plan, t I = 12 s. 

4.2 Event-Based Coordination 

An event-based mot ion  planning and control  scheme was successfully applied to a single 
robot  arm system in the preceding section. It is extended here for coordinat ion planning and 
control of mul t i robot  systems. The most  impor tan t  step is to introduce a proper  mot ion  
reference variable to carry the coordinat ion information efficiently to the planner  such that  
the best coordinat ion can be achieved. 

We consider a rigid object b handled by k robots  that  t ranspor t  it in free space along a 
given path S, which is the path of the center of gravity of the object. 

In Figure 1.14, 

K w = world reference frame 

K b = body-at tached frame at center of gravity of object 

K i - frame fixed at contact  point  of the ith robot  that  coincides with the hand  
coordinate frame of the ith robot  

r b E R 6 - -  generalized object coordinate  with respect to K w 

ri~ R 6 - generalized coordinate  for the ith robot  with respect to K w 

In addition, r i = h i ( r b )  is the coordinate  t ransformat ion from the body-at tached flame to the 
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FIGURE 1.11 
Two-circle tracking based on a minimum-energy plan, t f = 8 s. 

ith contact frame. We can assume that all robots can apply enough wrenches to control the 
object in R 6. 

The event-based motion reference s is defined as the distance that the center of gravity of 
the object travels along the given path S. The techniques used in the last section can be 
applied here to find a time- or energy-optimal motion plan for the object as a function of s. 
Therefore, the desired velocity and acceleration of the object are 

�9 d ~ . d  . d  . d  " r b [_Xb(S)y b(S)Z b(S)O d(s)A d(s)J-':(S)] T 

�9 - , ,  E~.~(~);~(~)~.~(~)5~ - - , ~  ~ (s)A ~ (s) ~[(~)] ~ Yb ~-- 
(1.34) 

Hence, based on the given coordinate transformations, the event-based motion plan for the 
ith robot  can be computed as 

= Jh,(rb)rb(S) 
�9 d �9 i,'d(s) = Jh,(r~)i"d(S) + Jh, (rb)r~(s)  

(1.35) 

(1.36) 

c~h i 
where Jh,(r~) = ~ r  b is the Jacobian matrix for the coordinate transformation. 
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FIGURE 1.1 2 
Straight line motion with an unexpected obstacle. 

In addi t ion,  the internal  force exerted on the object  mus t  be contro l led  in order  to keep 
the contac t  between the robots  and  the object  or to opt imize the load distr ibut ion.  

Let fi = [ f l i  fzi f3i f4i fsi f 6 J  r, i =  1, 2 , . . .  k, be the general  force with respect to K w 
exerted on the object by the ith robot ,  and  

Ij + = {ilfj~ ~ O} 

�9 + 

I E I  i 

I f  = { i l f j i < O } ,  j =  1 , 2 , . . . 6  

f J - =  E fj,, j = 1 , 2 , . . . 6  
ieli- 

where fj+ and  fj_ are the summat ions  of all posit ive and  negative forces a long the j t h  
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direction on the object. The internal force is then 

f/,t = [fl  i , t , /2 i,t, f3i,,,, L in t ,  fsi,,t,  f6im] T 

where 

.<0 
f j int  ~ f j _  f j + + f j _ > 0  j - 1 , 2 , . . . 6  

Based on the contact condition and the physical properties of the object, fj i,t can be planned 
as a function of event-based motion reference s, 

f~'~,,t = Fj i,,t(s), j = 1, 2 , . . .  6 (1.37) 

However, in most tasks, the fj i,t can simply be planned as a constant value in order to keep 
the contact between the robots and the object. 

The event-based description of task plans does not simply involve replacing the commonly 
used motion reference--time. Because the event-based motion reference is directly related to 
the states of the system, the planner is driven by the states of the system. As a result, planning 
becomes part of a real-time, closed-loop process. 

Equations (1.35), (1.36), and (1.37) give the task plans for each individual robot in the 
multiarm system. Instead of time, they are driven by the event-based motion reference s, 
which is directly related to the coordination of the system. The coordination requires that all 
the robots in the system follow the motion of the object in a planned manner. To achieve 
coordinated control, it is necessary to obtain information about the motions of the object 
and robots. This information can be passed to the planner of each robot through the motion 
reference. Based on the current state of the system, the motion reference s is designed to 
evolve in such a way that the system can achieve the best possible coordinated control. 

The coordinated control can be expressed by the requirement that for any point along the 
path of the object, the robots should be in the states determined by the task planner, which 
is driven by the event-based motion reference. For given measurements r i, f ,  i = 1, 2 , . . .  k, 
define a coordination criterion 

k 
J = ~ [ ( r f ( s ) - r i ) r W r , ( r f ( s ) - r i )  + (fie(s) - f i)rWy,(f id(s)  - f/)] 

i=1 
(1.38) 

where W~, and Wf,, i =  1, 2 , . . .  k, are weight matrices. They can weight the coordination 
errors in different directions to ensure efficient coordinated control in some specific directions 
determined by a given task. 

The optimal motion reference s*, which can achieve the best coordination, is the solution 
of 

min J (1.39) 
s~S 

The closed-form solution can be easily obtained for most paths, such as straight lines and 
circles, by solving 

0J 
= 0  

~s 
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Once the motion reference s is determined, the planner of each robot can calculate the desired 
inputs based on the given s. It can be seen that the planners driven by the event-based motion 
reference always give the optimal plan to minimize the coordination error. The event-based 
planning and control scheme for multiarm coordination is shown in Figure 1.15. 

Several Remarks 

1. The motion planner driven by the event-based motion reference is no longer a memory 
component driven by time. Based on the information about the current state of the 
system, the planner gives the best possible desired input for the system to achieve 
coordination. The planning becomes a closed-loop, real-time process, and the planner 
becomes an investigation-decision component. 

2. In Figure 1.15, similarly to the master-slave scheme in [-23], each robot has its own 
independent controller and planner. This gives flexibility to the structure of the 
multiarm system and makes it convenient to implement it in a distributed computing 
architecture. 

3. In addition, similarly to the hybrid position-force control scheme in [-24], each 
individual robot has information about the current states of the other robots. This 
makes it possible to achieve better coordination and internal force control [51]. 

4. Because the task planner is driven by s instead of time, if the motion is stopped by an 
unexpected event, such as an obstacle, the motion reference s stops increasing. 
Therefore, the errors remain constant and the coordination can still be maintained 
according to the original plan. Once the obstacle is removed, s starts to evolve again. 
The motion can be completed without replanning. Hence, this event-based coordina- 
tion scheme has the ability to handle some unexpected events. 

5. The criterion (1.37) can easily be extended to consider other factors, such as minimum 
internal force and optimal load distribution. 
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4.3 Effect of Motor Dynamics on Force Control 

It is essential to control the motion of a robot and the output force of the robot 
simultaneously in multirobot coordination. It was shown that motor  dynamics played a very 
important role in the motion control of a robot manipulator [25]. 

In order to achieve both a good transient response and a small steady-state tracking error, 
it is necessary to include the motor  dynamics in the hybrid position-force control model. 

Without considering the joint motor dynamics, the nonredundant  robot dynamics can be 
modeled as 

D(q)(l" + C(q, O) + G(q) + j r ( q ) f  = (1.40) 

where 

q# = joint angle vector 

D(q) = inertia matrix 

C(q, O) = centripetal and Coriolis terms 

G(q) = gravity loading 

z = joint torque vector 

J(q) -- Jacobian matrix, such that .9 = J(q)q 

y - position and orientation in task space 

f = force output in task space 

Applying the well-known nonlinear feedback control law, 

z = D(q)j-l(q)[V~ - )(q)4] + C(q, O) + G(q) + jr(q)V 2 (1.41) 

if y _L f, which implies that the force and position are not commanded in the same axis of 
task space, the linearized model is 

J)= Vx (1.42) 
f = V2 

where 

V 1 = position and orientation command 

V2 = force command 

It is evident that there are no dynamics between the input command and the output force in 
(1.42). The command affects the output instantaneously. 

The commonly used force control law [24, 34] is 

V2 = fd  + K y p ( f d _  f )  + KI  ~ f l  ( f d _  f ) d t  (1.43) 
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where fe  is the desired force. K f p  and K:~ are the proportional and integral feedback gains. 
It can easily be shown that based on the linearized model f = V2, the feedback law 

is equivalent to 

v~ = fd + K:p( fa  _ f )  + K:, f l  (fd _ f ) d t  

V2 = fe  + 1 + K:------~p ( f a _  f ) d t  (1.44) 

Therefore, the proportional control actually plays no role in the force feedback control law. 
As a result, it would be very difficult to achieve both a small steady-state tracking error and 
a quick transient response. Furthermore, if there is no integral feedback, that is, K:i = 0, the 
force control turns into an open-loop system. Because there are no dynamics between the 
input and output of the force control loop, the motor dynamics become the dominant part. 
Hence they must be included in the dynamic model in order to achieve stable and robust 
performance. 

4.4 Hybrid Position-Force Control for Coordinated Robots 
The controllers in Figure 1.15 perform hybrid position-force control or position control 
alone, depending on the nature of the tasks. However, it is desirable to have as small a change 
as possible in the controllers for different tasks. This is one of the important characteristics 
of an intelligent robotic system. 

It was shown in the last section that the dynamics of the joint motors play an important 
role in hybrid position-force control. It is important to include the dynamics in the system's 
dynamic model. 

Let the ith robot in the system have n~ joints. Its dynamic model, including the joint motor 
dynamics, can be written as 

f Di(qi)o'i + Ci(qi,  [ti) nt- Gi(qi) + rfi 
dzi _ - 1 
dt - - Ti Ti -'[- K eiqi -[- lgi 

i =  1,2, . . .  k 

T i 

(1.45) 

where 

r :  = joint torque that produces output force f/ 

T~ = n x n diagonal matrix whose entries are the time constant of the joint motors 

Kez = voltage constant of the motor (back electromotive force) 

u i = motor armature voltage 

and qi, ri ~ Rni" 
The general task space for the ith robot is defined as 
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where 

0ffi (~ ~ 6  is the general position space. 

c~/6 ~ 6  is the general force space. 

~z e IR "i is the general redundant  joint space. 

Yi 
~i = f/  ~ 1 2  +ni 

i 

and @ denotes the orthogonal direct sum. For any given task, it wil| be a subspace of the 
general task space. 

Because only ni joints are available, the robot can be controlled on|y in a subspace of ~ ,  
~ e Rat Hence, the actual output is in ~-~ic. 

3-~ c is defined as 

where 

&c = ~c @~c @4% 

@//c ~ ~l i l  

~iic ~ ~ li2 

~ic  ~ ~ni -- (lil + li2) 

The task projection operator Bic" ~ ~ ~ c  is the basis of ~ c  and is described as 

Bic= [gic Fic Zic] 

The joint space torque that produces the output  force f can be written as [39] 

f = (jr(q)) #'of 

where " # "  denotes a pseudoinverse. 
Because of redundancy, the joint torque is not unique for a given f~ and can be formulated 

as [39] 

"cf, = J~(qi)fi + [I,,~ - J f (qi ) ( jr (qi ) )#]r /~ 

= �9 " # "  denotes where I,, is an n~ x n i identity matrix; Ji(qi) is a Jacobian matrix, ?g Ji(qi)[li, 
a pseudoinverse; Fz, is any ni x 1 vector; and [I,, - J~(qi)(J ~(qi)) #]Ff~ is a vector in the null 
space of (J[(qi)) #, which describes the redundancy of the robot. 

By a similar argument,  

{l'i = Jff(qi)(f ' i-  Ji(q)Oi) + [ I , , -  Jff(qi)Ji(qi)]F,~ 

where F,, is any n i x 1 vector and [I,, - J[(qi)J~(q~)]F,, is a vector in the null space of Ji(q~), 
which also describes the redundancy of the robot. 
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By choosing Fr, = 0 and FI, =//'i, (1.45) can be written as 

I Di(q,)J?(qi) ( ( ' i -J i (q i )d l i )+ Ci(qi. (I,)+ Gi(q i )+ J f  (qi) f i  + [ l . i - - jT (q i ) (  J f (qi)) #]qi = zi 

d'ci _ - 1 
d t - - Ti z i -+- N e l l  -+- u i 

Let 

(1.46) 

gil  = D i ( q i ) J { # ( q i ) ( f " i -  J i ( q i ) q i )  -Jr- C i ( q i ,  q,) Jr- G i ( q i )  

Ti2 --  J f  (qi)  f i  

Ti3 : [ ini  __ j T ( q i ) ( j  T(qi))  # ] q i  

Then r i = ril + gi2 @ I7i3. 
In addition, let 

dzi 1 
+ T/- 1-Cil - Keiqi  U~ l = dt 

d'c i2 
+ T//- 1"ci2 ui2 = dt 

d~i3 -~- T/- 1Ti3 
ui3 =" dt 

Then u i = Uil _qt_ Ui 2 .71_ Ui3. As a result of these definitions, the dynamic model (1.46) has been 
separated in the general task space ~/.  

In the general position space ~i" 

f Di(qi)J?(i"i  J i (qi)qi)  + C,(q i ,  Oi) -Jr- Gi(qi) = zi, 

d'Ci l __ __ g i  - 1  d t - ~c i 1 _11_ K ei O i -Jr- bl i l 

In the general force space ~ "  

(1.47) 

f Jri (qi) f i = "ci2 

dgi2 - 1 

7 i  = - r ,  

In the general redundant joint space ~i" 

~i2 nt- Ui2 

(1.48) 

f [I , i  -- J~(qi ) (J  ~(qi)) #]qi = zi3 
dzi3 _ - (1.49) 

dt  - - Ti 1~i3 + ui3 

When the motor dynamics is considered, acceleration measurements are necessary for 
linearization and decoupling in the general position and redundant joint spaces [25]. In 
practice, it is very difficult to get accurate acceleration information. Therefore, the motor 
dynamics is considered only in the general force space and can be ignored in (1.47) and (1.49). 
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After ignoring the motor dynamics in the general position and redundant joint spaces, 
(1.47) and (1.49) can be rewritten as 

Di(qi)Jie(qi)(f"i-  Ji(qi)gli) + Ci(qi, Oi) -[- Gi(qi) = TiKei[ti + TiUil (1.50) 

and 

[in, __ jT(q , ) ( j  T(q,)) #]0", = riui3 (1.5~) 

Based on the well-known nonlinear feedback technique, the nonlinear controls 

Uil = T i -  l (D i (q i ) J i e (q i )V i l  - Di (q i )J f~(q i )J i (q i )Oi  + Ci (q i ,  dli) + Gi(qi)  - TiKeidli ) 

Ui2 ~- ( r i -  l j r ( q i )  n t- ~jr(qi)) f i n t- j r ( q i ) g i 2  

ug3 = T~- ~[In, -- j r (q  z)(j r(q ~)) #] V~ 3 

can linearize and decouple the systems (1.47), (1.48), and (1.49) in ~i, ~ ,  and ~i. The 
linearized models are 

/: = V/1 

f =  V/2 

q', = V,~ 

where Vzl, V/2 ~ R  6 and V~3 ~ R ni are auxiliary inputs. 
Since only ni controls are available, this linearization and decoupling are not actually 

feasible in ~ .  But if we consider only the controllable subspace ~c ,  the linearization and 
decoupling can be achieved. 

It can be proved that, if the position and force are not controlled in the same task space 
axis for a robot, then the nonlinear feedback control, 

u~ = T~- ~(D~(q~)J~(q~)~a - D~(q~)J~(q~)J~(q~)4~ + C~(q~, (1~) 

+ Gi(q i) - -  TiKeiOi ) "t'- T i- 1jT(qi) + j r (q i ) ) f i  

+ jT(qg)~2 + T - ~ [ I , , , _  dT(qg)(dr(q~))#]~3 

(1.52) 

linearizes and decouples the dynamic system (1.46) in Yc. The linearized and decoupled 
system is 

~i ~ V//1 

f~= v~2 
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where 

ri ri 

g/~ q 

and 

V//1 V/1 
Vi = B i  T ~i2 

Then the linear controllers 

~ = r'~(s) + ki~(r~(s) - r i )  + kip(rd(s) --l'i) 

~2 = ~d(s) + ki~(~d(s) -- ~) 

= + k , o ( 4  - + ki (Of( ) - O) 

(1.53) 

can be used to stabilize and control position, force, and redundant joints. All desired values 
in (1.53) are given by event-based task planners. 

Several Remarks 
1. Because the preceding control law can directly take task space commands, it is a 

task-level controller. 
2. For a different task or a different system configuration, the structure of controler (1.52) 

is same. Changes must be made only in the task projection operator Bic. In this respect, 
the controller structure is task independent and is suitable for multirobot systems 
working on complex tasks. 

3. The management of redundancy consists of designing Bic to achieve certain goals. In 
addition, once the redundant joints are determined, their motion can be planned and 
controlled based on some secondary optimization criteria, such as obstacle avoidance 
and load sharing [24, 59]. 

4.5 Experimental Results 
Hybrid Position-Force Control 
The preceding hybrid position-force control algorithm was implemented and tested on a 
6-DOF P U M A  560 robot arm equipped with a FSA-3254 six-axis force-torque sensor. The 
force-torque was measured at a rate of 1000 Hz, and the filtered force-torque was computed 
at a rate of 500 Hz. The sampling rate for control and joint position-velocity measurement 
was 1000 Hz. In the experiments the positions in the x and y directions and orientation 
(O,A, T) were commanded. In the z direction, only force was commanded. Two different 
controllers, one with consideration of the joint motor dynamics (third-order model) and the 
other without consideration of the joint motor dynamics (second-order model), were used to 
perform various tasks. 
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In  F i g u r e  1.16, the  c o n s t a n t  des i r ed  force  was  t r a c k e d .  I t  c an  be seen t h a t  the  t h i r d - o r d e r  

c o n t r o l l e r  gave  b e t t e r  force  t r ack ing .  I n  a d d i t i o n ,  b o t h  c o n t r o l l e r s  m a i n t a i n e d  g o o d  x a n d  y 

p o s i t i o n  t r ack ing .  Since the  z p o s i t i o n  w a s  n o t  c o m m a n d e d ,  the  e r r o r  in the  z d i r e c t i o n  w a s  

m u c h  b igge r  t h a n  t h a t  in x a n d  y. 

I n  F i g u r e  1.17 a n d  F i g u r e  1.18, resu l t s  for  t r a c k i n g  v a r i a n t  des i r ed  forces  a re  given.  T h e  

a d v a n t a g e  of  the  t h i r d - o r d e r  c o n t r o l l e r  was  m o r e  o b v i o u s l y  s h o w n  in these  cases.  T h e  c o n t r o l  

l aw (1.43) w a s  used  in the  s e c o n d - o r d e r  con t ro l l e r .  O b v i o u s l y ,  it t o o k  s o m e  t ime  to  e s t a b l i s h  

the  f e e d b a c k  f r o m  the  i n t e g r a t i o n  te rm.  As a resul t ,  it p e r f o r m e d  p o o r l y  w h e n  t r a c k i n g  a 

v a r i a n t  inpu t .  

T h e  t ime  c o n s t a n t  of  the  m o t o r s  for  the  first t h r ee  j o i n t s  of  the  P U M A  560 r o b o t  is 3 ms,  
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Constant desired force tracking. 
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FIGURE 1.17 
R a m p  d e s i r e d  f o r c e  t r a c k i n g .  

and that for the last three joints is 1 ms. Therefore, if the higher sampling rate were applied 
in force measurement,  better results would be expected. However, the most important  point 
is that the experimental results clearly demonstrate the significance of considering the joint 
motor  dynamics in hybrid posi t ion-force control. 

Dual-Robot Coordination 

The given task, as shown in Figure 1.19, was to transport  a carton, weighing 0.45 kg, by 
squeezing it. The sampling rate for position and velocity measurements was 1000 Hz and for 
force- torque was 1000 Hz. The feedback is computed at a rate of 1000 Hz. 
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Step desired force tracking. 

With the Consideration of Joint Motor Dynamics 

In the fol lowing figures, the coordinat ion error is defined as 

d 
ecoo,.,~, = ( ( x  ~(s) - x 2 ( s ) )  ~ + ( y  ~(s) - y 2 ( s ) )  ~ + ( z  ~(s) - z ~ ( s ) ) 2 )  ~ - ( ( x ~ ( s )  - x 2 ( s ) )  ~ 

+ (y~(~) - y~(~))2 + (z~{(~) - z~(~))~)~ - 

which is the difference between the actual and planned distances of the two contact  surfaces 
while squeezing the object. 

In Figure 1.20, the mot ion  is in the z direction and internal force is control led in the y 
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FIGURE 1.19 
Transporting a carton by dual arms. 

direction. The position and orientation of the left arm were controlled. For  the right arm, 
the position in the x and z directions, the force in the y direction, and the orientation were 
controlled. It can be seen that the internal force was well maintained, and good coordination 
was achieved. 

In Figure 1.21, both mot ion and internal force were in the y direction. Very good 
coordinat ion control and internal force control were achieved. 

Figure 1.22 compares the experimental results of using the event-based coordination 
scheme and using the undistinguished scheme with a time-based motion plan [24]. The motion 
direction is the same as the internal force direction. Therefore, the coordinat ion error and 
internal force error are strongly coupled. It can be seen that the time-based scheme is unable to 
complete the task because the coordinat ion and internal force errors increase without bounds. 
However,  in the event-based scheme, the coordinat ion and internal force are well maintained. 
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FIGURE 1.20 
The motion direction orthogonal to the internal force direction. 
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Compensation of unknown load by force-torque feedback. 

In Figure 1.23, two different boxes, weighing 0.45kg and 1.8 kg, were lifted by the 
dual-arm system without force feedback in their controllers. It is shown that an increase of 
the load significantly reduces the accuracy of the coordination. However, if force feedback is 
used, as shown in Figure 1.23, the effect of increased load on the coordination is very small. 
That is, without knowing the change of load, the use of the force feedback in the nonlinear 
feedback control law (1.52) can automatically compensate for the unknown load. Therefore, 
high-accuracy force measurement and feedback play important roles in a multirobot system 
coordinated control. 

These experimental results demonstrate the advantages of the event-based coordination 
scheme. The significance of the event-based coordination scheme is that it can handle some 
unexpected events, and the control is carried out on the task level. Furthermore, the structure 
of the control system is task independent. It makes it possible for the multirobot system to 
work on complex tasks. Therefore, the event-based coordination scheme can be an important 
step toward the development of intelligent multirobot systems. 

5 IMPLEMENTATION OF EVENT-BASED PLANNING AND CONTROL 

5.1 Introduction 

The practical implementation of the planning and control scheme is an important step in the 
development of robotic systems. It consists of two issues. First, one is developing a planning 
and control scheme that can be easily and efficiently implemented. The second issue is 
developing an efficient and user-friendly computing architecture for the implementation. 
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Recently, several distributed computing architectures have been proposed. A hierarchical 
multimicroprocessor system was designed to control the coordination of two PUMA robots 
in a master-slave mode [26]. The distributed operating system REKCOR (REal-time Kernel 
for COordinating Robots) was developed for a hierarchical computing structure [27]. The 
real-time communication issues in a computer-controlled robotic system are discussed in 
[-28] and [29]. The local area network (LAN) was applied to coordinated control of a 
multirobot system [30]. 

Basically, there exist two communication and synchronization schemes, tight and loose 
coupling for distributed computing systems [31]. A tightly coupled computing system is 
characterized by its reliance on shared memory as a communication scheme and a single 
common operating system coordinating and synchronizing the interactions between proces- 
sors. In contrast, the loosely coupled systems use message-based schemes in accordance with 
network communication protocols. These systems are often controlled by distributed 
operating environments. Of course, depending on the amount of coupling, these schemes 
could also be combined. 

In addition, based on the distributed computing architectures, various parallel algorithms 
have been proposed to compute the robot dynamics [71-75]. In [65], an efficient Jacobian 
inversion algorithm was proposed. It is an important step to implementing the task-level 
control in real time. The parallelization of the nonlinear feedback control method was 
presented in [69]. 

It can be seen that the event-based planning and control scheme is developed with 
consideration of its implementability. As a result, the scheme lends itself naturally to a 
distributed computing architecture. The practical implementation of the event-based plan- 
ning and control scheme will be discussed in the following sections. 

5.2 Description of Experimental System 
A dual-arm experimental system, Figure 1.24, is currently operational in the Center for 
Robotics and Automation at Washington University. 

Two 6-DOF PUMA 560 robot arms [77] are equipped with FSA3254 force-torque 
sensors [70]. Each sensor can measure force-torque in six directions at a 1000-Hz rate. 

Each robot arm is controlled by a universal motor controller (UMC) [76], which is 
capable of up to a 1000Hz servo rate (without interpolation) on every axis. The UMC 
controller consists of five parts. The first part is the power supply module, which provides 
both logic and servo power. The second part is the joint interface module. It contains the 
pulse width modulation amplifier, which converts the logic-level signals to pulse width-  
modulated signals at a level appropriate for the particular motor being driven. The third part 
is the joint processor, which consists of a 10-MHz 32-bit NS 32016 microprocessor and a 
floating-point coprocessor. It is used to perform the robot arm calibration and configuration 
setup. The fourth part is the user processor, which is also based on the NS 32016 processor. 
It has 128 K RAM memory, which is used as a shared memory for communication between 
the UMC and other high-level computing devices. The last part is the expansion module, 
which contains the interface board to connect the user processor multibus with the VME bus 
of high-level computers. 

The high-level computing device is a Silicon Graphics SGI 4D/340 VGX computer 
[78]. It has four symmetric R 3000/3010 RISC processors with a 33-MHz clock rate. It is 
capable of delivering up to 117 MIPS or 36 MFLOPS. An independent geometry engine 
provides a real-time graphics capability. The SGI computer is interfaced with both UMC 
controllers through a shared memory scheme. This allows extremely fast communication 
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Bus structure of the control architecture. 

between the SGI computer and the UMC controllers. The bus structure of the system is 
shown in Figure 1.25. 

Thus, existing computing and control systems can easily form the basis of development of 
a distributed computing and control architecture for a multiarm robotic system. 

5.3 Computation Load Analysis 
In order to implement efficiently the planning and control schemes for multiarm systems, it 
is important to study the real-time computation load of single-arm planning and control. The 
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SGI computer provides a profiling tool that can produce detailed information about program 
execution. Using profiling tools, the areas of code where most of the execution time is spent 
can be found. In a typical program, a large part of the execution time is spent in relatively 
few sections of code. It is most profitable to concentrate on improving the implementation 
in those sections. 

The nonlinear control with event-based planning for a single robot basically consists of 
four parts. First is the data acquisition. It includes getting the measurement data from the 
sensors and processing them, such as filtering and transforming joint space data to task space 
through forward kinematics. The second part is the event-based motion planning. It 
calculates the desired input for the robot based on the curent system outputs. The third part 
is the nonlinear feedback computation. The last part is for computing the control commands, 
sending them to the controller, and synchronizing the sampling and control according to the 
given sampling rate. 

The results of computing load analysis for 15 seconds of real-time execution of event-based 
motion planning and nonlinear control of a single arm are shown in Figure 1.26. The 
computation was performed by a single processor. The technique used for analysis is the 
basic lock counting. A basic block is a sequence of instructions that is entered only at the 
beginning and exits only at the end. Measuring the execution of basic blocks provides 
statistics on the load of computation. 

It can be seen in Figure 1.26 that 

�9 The total number of program cycles in 15 seconds is 225235635. 
�9 The subroutine for joint velocity filtering, vel filter, used 118095744 cycles, which is 

52.43% of the total number of program cycles. Total execution time for vel filter is 
7.8730 seconds. It is more than half of the total computing time. 

�9 The vel filter used an average of 656 cycles per call and consisted of 1073 bytes of 
generated code per line of source text. It is in the source file test_phase.c. 

�9 The cumulative total of all cycles used by vel filter and n/f (nonlinear feedback) is 
70.61%. They are the major part of the computation load. 

�9 The subroutine read_4bu is for reading the clock. The idle time of the CPU was spent 
in executing read_4bu. The total executing time reflects the idle time of the CPU. It can 
be seen that the idle time is less than 0.1644 second, which is less than 1.09% of the total 
computing time. Therefore, the CPU was almost saturated. 

5.5 Distributed Computing Architecture 

Based on the preceding analysis, a single processor will not be able to perform the real-time 
computation for a multiarm system, which requires additional computing resources to 
calculate the multiarm motion reference and event-based planning and nonlinear control for 
additional robots. The total computing time required will be more than the computing time 
for a single arm multiplied by the number of arms. Therefore, a distributed computing 
architecture is needed to implement the event-based planning and control for a multiarm 
system. 

The event-based coordination scheme can be conveniently implemented in a distributed 
computing arhitecture. As shown in Figure 1.15, all controllers and planners are independent 
entities. Only information exchanges are required for the "motion reference" block to receive 
the outputs of robots and to send out s. Therefore, it can easily be implemented in a memory 
sharing bus network, Figure 1.27. The planning and control algorithms for different robots 
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Profile listing generated Frt Jun 25 16:31:46 1993 with: 
prof -ptxle a.out a.out.Addls a.out.Counts 

* -p{rocedureeJ using basic-bLock counts 
* sorted in descending order by the number of cycles executed in each 
�9 p r o c e d u r e ;  u n e x e c u t e d  p r o c e d u r e s  a r e  e x c l u d e d  

225235635  c y c l e s  
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82,77 
85 88 
88 36 
90 23 
91 67 
92 92 
94 [4 
95 24 
96 12 
96 82 
97 41 
97 95 
98 47 
98 86 
99 11 
99 31 
99 50 
99.68 
99,83 
9 9 . 9 2  
99,95 
99.97 
99.98 
99.99 
99.99 
99.99 
9 9 . 9 9  
9 9 . 9 9  
9 9 . 9 9  
9 9 . 9 9  

lO0.O0 
I00,00 
i00.00 
I00.00 
100.00 
100.00 
I00.00 

I00.00 
I00.00 
100.00 
I00.00 
I00.00 
I00.00 
i00.00 
i00 O0 
100 O0 
I00 O0 
100 O0 
lO0 O0 
100 O0 
I00 O0 
I 0 0  O0 
I00 O0 
100 O0 
I00 O0 
100.00 
1 0 0 . 0 0  
1 0 0 . 0 0  
1 0 0 . 0 0  
1 0 0 , 0 0  
100.00 
1 0 0 . 0 0  
1 0 0 . 0 0  

cycles bytes p r o c e d u r e  ( f i l e )  
/ ca l l  / l l ne  

. . . . . . . . . . . . . . . . . .  
I1' 

# 

@ 

656 1072 velfilter (test_phase.c) 
2729 10924 nil (test_.ohaee.c) 
1268 4744 gotstate (teet_,Dhase.c) 

63 6 s in f  (fsincoe.s} 
467 1276 etictlon_comp (test_phase.c) 
373 2052 fforward (test_phase.c] 
II 22 labs (labs.c) 
18 72 read_4b (test_phase.c) 
21 5 coil (flinCOl.l) 

274 1572 goto_init (test_phase.c) 
16 64 read_4bu (test_phase.c] 
22 88 wrzte4b (test. phase.c) 
? 6 atanf (atanf.s) 

89 708 gravity_romp (test_phase.c) 
14 6 tint (rint.e) 
26 7 atan2f (atan[.s) 

180 1280 stline_jphase_jplanner (test, phase.c) 
545509 28 main (test_phase.c) 

91 364 save_record (test_phase.c) 
85 340 save_record6 (test_phase.c) 
83 1028 orin_phase_jplanner (test_phase.c) 

330573 1876 init_st [test_phase.c) 
42 6 e q r t f  ( s q r t f . e )  
48 31 f l e b u f  (flebuf.c) 

886 18 doprnt (doprnt.c) 
1061 19 _s (filbuf.c) 
229 34 number (doscan.c) 
191 31 _deccan (deccan.c) 
226 5 _dies (gen/dtoa.s) 
469 1876 umc_grav (test_phase.c) 

45 32 _xf lsbuf (flebuf.c) 
25 12 fclose ( f l s b u f . c )  
37 17 ungetc (ungetc.c) 
78 ii aCof (atof.c) 
30 20 printf (printf.c) 
69 23 cvt (doprnt.c) 

1215 19 cleanup ([Isbuf.c) 
551 2204 getlnit (teet__phase.c) 
39 26 fflush (flsbuf.c) 

108 5 _atod (sen/sled.s) 

31 5 _dwmultu (gen/dwmultu.s) 
18 36 scanf (scanf.c) 
30 6 _tenscale (genltenscale.s) 

104 416 umc_com (test_phase.c) 
20 6 _fp_clase_d (gon/_fp_class.s) 
6 7 _write (sys/_write.s} 
6 7 _read (syel_read.s) 

13 22 nvmatch (getenv.c) 
112 18 getenv (getenv.c) 
45 23 _ f i n d b u f  (flsbuf.c) 
5 20 write_2bu (test_phase.c) 

36 4 strcpy (gan/strcpy.e} 
18 16 _isatty (_ieatty.c) 
33 156 sis_open (test_phase.c) 
32 23 _wrtchk (flebuf.c) 
26 17 setchrclaee (ctype.c) 
26 5 start (crtltext.s) 
6 7 _close (sys/_ClOSe. S) 

13 28 call_exiCfna (atexit.c) 
6 7 _ioctl (Sys/_ioctl. S) 

i0 II exit (gen/cuexit.c) 
4 16 _oserror (_oserror.c) 
6 16 open (eye/open.s) 
6 16 mmap (eysl~ap.e) 
2 8 roadenveigfpe (gon/etubfpeetart.c) 
2 8 _exit (eye/exit.e) 

FIGURE 1.26 
Computing load analysis of event-based planning and control for a single arm. 
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FIGURE 1.27 
Memory-sharing bus network. 
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can be computed in separate processors in SGI, which run in parallel. The motion reference 
is computed in another processor. Based on the computation load profile in the last part, the 
bottleneck of the computation is the joint velocity filtering. Part of the velocity filtering will 
be passed to the user processor in the UMC controller. Because of the limitation of the 
computation speed of the UMC user processor, the SGI still has to perform part of the joint 
velocity filtering. Through the high-speed bus, all processors in UMC and SGI use 
write-read shared memory to exchange information, as shown in Figure 1.27. It combines 
the tightly and loosely coupled schemes. All processors communicate through a shared 
memory, but the UMC controller and SGI have their own operating systems and run in an 
asynchronous manner. This scheme ensures high communication speed and at the same time 
also simplifies the programming. 

It can be seen that changing the number of robots in the system does not affect the overall 
data processing and computation structure. This gives great flexibility to the multiarm 
system. The control and planning algorithms are executed in parallel. As a result, the overall 
computation time will not be significantly changed by increasing the number of robots in the 
system. Since the event-based coordination scheme naturally lends itself to a distributed 
computing architecture, it is very efficient for real-time computation. 

5.5 Several Issues in Practical Implementation 

Robot Dynamic Model 

In the dynamic model of the PUMA 560 robot (1.25), 

D(i, j) = D(j, i) 
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a n d  

C(i, j, k) = C(i, k,j) 

C(i, k, k) = - C(k, j, i), 

C(i , j , j)  = 0 ,  i >~j 

i , k>~j  

After neglec t ing  the less s ignif icant  t e rms  [67],  the n o n z e r o  t e rms  are g iven as follows. 
Iner t ia l  t e rms  (K9 - m 2 ) :  

D(1, 1) = 2.57 + 1 . 3 8 C 2 C  2 n t- 0 . 3 S 2 3 S 2 3  n t- 0 . 7 4 C 2 S 2 3  

D(1, 2) = S 2 - -  0 . 0 0 5 7 S 2 3  - 0.1367C23 

D(1, 3) = - 0 . 0 0 5 7 S 2 3  - 0.1367C23 

D(2, 2) = 6.79 + 0.74S 3 

D(2, 3) = 0.3679 + 0.3922S 3 - 0 .0134C 3 

D(3, 3) = 1.16 

D(4, 4) = 0.2 

D(5, 5) =0.18 

D(6, 6) = 0.19 

Cor io l i s  t e rms  (Kg - m 2 ) :  

C(1, 1, 2) = 0.0174 - 1.362C2S 2 -+- 0 .3562C3S 3 - 0.7124S2S3S23 -+- 0.0268C2S23 

n t- 0.3922C2C23 - 0.3922S2S23 - 0.046C22 - 0.0347C23C23 - 0.0112S 3 

C(1, 1, 3) = 0.0174 + 0.3562C2S e + 0 .3562C3S 3 - 0.7124SES3S23 

+0.0134C2S23 + 0.3922C2C23 - 0.0347C23C23 

C(1, 2,2)  = 1.8181C 2 + 0.1367S23 - -  0 . 0 0 5 7 C 2 3  

C(1, 2, 3) = 0.1367S23 - 0.0057C23 

C(2, 2, 3) = 0 .3922C 3 + 0.0134S 3 

G r a v i t y  t e rms  (N - m): 

G(1) - - 0  

G(2) = - 9 9 . 8 C  2 - 3 . 7 3 S  2 + 1 . 0 8 C 2 3 -  26.64S23 

G(3) = 1.08C23 - 26.64S23 

G(4) = 0.085S23S4S 5 

G(5) = - 0 . 0 8 5 ( C 2 3 8 5  -Jr- 8 2 3 C 4 C 5 )  

G(6) = 0 

M o s t  of the  expe r imen t s  were  ca r r ied  ou t  by us ing the  p r eced ing  d y n a m i c  mode l .  O u r  
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experimental results, however, suggest that when the velocity of the robot is confined within 
the limit set by the manufacturer, neglecting the Coriolis and centripetal forces does not cause 
performance to deteriorate [35]. 

Sticktion and Friction Compensation 
The joint sticktion and friction are not incorporated in the robot dynamic model. They are 
compensated by augmenting the voltage commands to the controllers. 

P U M A  560 is driven by brush-type joint motors. They typically have a breakaway friction 
that is about 4 to 6% of the full rated torque of the motor that sets a lower bound on the 
friction values. The sticktion and friction parameter values were experimentally determined 
[68]. 

The compensation of sticktion plays an especially important role in event-based planning 
and control. It can be seen in Figure 1.3 that the initial feedforward and feedback are zero, 
since the desired acceleration is zero with no position and velocity errors according to the 
event-based plan (Figure 1.3). Therefore, the sticktion must be well compensated, and some 
initial error has to be given in order to start a motion. The modified motion plan creates a 
velocity error about 10% of the maximum planned velocity at the beginning of the motion. 
Experimental results show that this scheme can start the motion smoothly and also can 
overcome the incomplete compensation of the sticktion. 

Joint Velocity Measurement Filtering 
The joint velocity measurements are derived from the joint angle measurements by differen- 
tiation. As a result, the joint velocity measurements are very noisy and cannot be directly 
used for feedback control. 

A multistep velocity filter is designed to estimate the joint velocity measurement. Each step 
calculates the estimate of joint velocity as 

i = k - n +  l 

b(i)+v(k)- max V k - min Vk)/(n -- 2) 

where 

y~ = {v (k ) ,  ~(k - 1) . . . .  ~ (k  - n + 1)} 

The estimate of the velocity is a running average of prior estimates and new measurements 
after removing the maximum and minimum values. The window of filtering is n. 

Each filter can run independently without synchronizing with the others. It is convenient 
to implement filters in the distributed computing architecture as shown in Figure 1.25. 

In the experiments presented in Sections 3 and 4, three filter units were used for each joint 
velocity. One unit was implemented in the UMC user processor. The other two units were 
implemented in SGI. 

The main focus of this section has been the implementation of an event-based planning 
and control scheme in a distributed computing architecture. The system that is described in 
this section has proved to be an extremely successful research tool for dual-arm coordinated 
control. 

Apart from being versatile, robust, and open ended in its architecture, it can provide 
sensory information at various levels, according to the requirements of the control strategy. 
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In particular, the experiments reported in previous sections conclusively demonstrate the 
effectiveness of the system. Another important feature of the system is that it can also 
accommodate a variety of control strategies besides the event-based scheme. All control 
strategies may be implemented easily by coding in high-level languages such as the C 
programming language. 

The computing and control architecture demonstrated here can clearly pave the way for 
a new generation of commercial robot controllers that are more responsive, more flexible, 
more efficient, and more robust. 

6 CONCLUSIONS 

In this research an integrated event-based planning and control method has been developed 
using a motion reference variable other than time. It has been successfully applied to 
single-robot arm motion planning and control, as well as multirobot coordination planning 
and control. The important contributions of this research are as follows: 

1. A new planning and control scheme--event-based planning and cont ro l - -has  been 
developed. Instead of time, the events of a system are used as a motion reference to 
describe the motion plan and to drive the system. The time is implicitly included inside 
the motion plan and control process. Therefore, the planning along with the feedback 
control becomes a real-time dynamic process. The planner becomes an investigation- 
decision component of the system. As a result, the system has the ability to deal with 
unexpected and uncertain events. The event-based planning and control method can 
be an important step toward the development of intelligent planning and control 
theory. 

2. The event-based planning and control theory has been applied to single-robot motion 
planning and control. An event-based representation of robot arm motion in the task 
space is proposed. The time and energy optimization techniques are used to determine 
event-based trajectories. A new event-based error definition and computation scheme 
has been introduced and combined with a nonlinear feedback control law, which 
linearizes and decouples the control in the task space. 

The significance of the event-based motion planning and control scheme is its 
compatibility with sensor-based planning and control, because sensed events in robotic 
manipulation rarely, if ever, occur on a precise time scale. Obstacle avoidance is an 
important example. Therefore, it can significantly improve the safety and reliability of 
robotic systems. 

The event-based planning and control schemes were experimentally implemented 
and tested on the 6-DOF position and orientation control of a PUMA 560 robot arm 
with very good results. 

3. Based on the event-based planning and control theory, a new coordination scheme for 
a multirobot system has been developed. The event-based motion reference for the 
planning and control of coordinated robots has been introduced. It drives the system 
to achieve optimal coordination. After introducing the general task space, the task- 
independent controllers for each robot have been designed. The significance of the 
event-based coordination scheme is that the controls of robots are carried out on the 
task level and the structure of the control system is task independent. This makes it 
possible for the multirobot system to work on complex tasks. In addition, the scheme 
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can be implemented in a distributed computing architecture, which increases the 
efficiency and flexibility of multirobot system operation. 

The event-based coordination scheme has been experimentally implemented and 
tested for the coordinated control of two 6-DOF PUMA 560 robots with very good 
results. 

4. A new hybrid position-force controller has been developed. It incorporates the robot 
dynamics as well as the dynamics of robot joint motors. A new stability conclusion has 
been obtained. It requires the consideration of joint motor dynamics for the design of 
a stable and improved hybrid position-force controller. The inclusion of the joint 
motor dynamics improves the force control performance, in particular in the case of 
tracking the desired variable force. 

5. The event-based multirobot coordination scheme is developed with consideration of the 
implementation. It naturally lends itself to a distributed computing architecture. Based 
on the existing computing facility at the Center for Robotics and Automation in 
Washington University, a distributed computing and control architecture has been 
developed to implement the event-based coordination scheme. It combines the tightly 
and loosely coupled schemes. High-speed information exchange (1000 Hz) has been 
achieved. In addition, all processors can be programmed separately. This provides a 
convenient user interfacing method. 
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CHAPTER 2 

Observer-Based Visual Servoing 

KOICHI HASHIMOTO 
Department of Systems Engineering, Okayama University, Okayama, Japan 

Visual feedback is a prevalent approach in autonomous manipulation. Conventional visual 
feedback schemes use the vision sensor to generate the hand trajectory at the stage of 
environment inspection. Whole manipulation is carried out on the basis of the planned 
trajectory without the help of the vision sensor. Although this off-line scheme may be useful 
for structured environments, it is not applicable for dynamic environments in which the 
objects are moving with time. 

In this chapter we deal with a closed-loop control scheme for visually guided robot 
manipulators. Feedback control systems that incorporate vision sensors in the feedback loop 
are called visual servo systems. Since the robot is guided by the vision system in on-line 
fashion, a visually servoed robot does not need to know a priori the position and orientation 
of the workpieces in the environment. In a manufacturing environment, for example, visual 
servoing can eliminate robot teaching and allow tasks that are not strictly repetitive. 

Visual servoing schemes are classified into two groups, namely, position based and feature 
based. Position-based approaches estimate the object position in real time and use the 
information to generate the trajectory. Thus approach is a natural extension of the 
conventional off-line scheme, but the estimation problem tends to be quite sensitive to the 
image distortion and noise. On the other hand, the feature-based approach uses the object 
features directly in the visual sensory output without computing the object position and 
orientation. This approach does not need to reconstruct the three-dimensional information 
of the object and so thus robust against noise and calibrate error. 

One of the biggest problems in feature-based visual servoing is the slow sampling rate of 
the camera. A typical off-the-shelf CCD camera has a sampling rate of 60 or 50 Hz. On the 
other hand, to ensure sufficient stability as well as moderate accuracy for the joint angle servo 
system it is necessary to keep the sampling rate no lower than 500 Hz. Moreover, the CCD 
camera has sampling delay in principle and a typical vision processing board takes several 
sampling periods for feature extraction. This delay and slow sampling make the closed-loop 
system oscillatory or even unstable. 

To compensate for the delay and to provide the intersample information to the joint servo, 
an observer is introduce. The observer estimates the object velocity and updates the visual 
information with the sampling rate of the joint servo. Also, two observer-based controllers 
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are presented. One is a nonlinear model-based controller and the other is a linearized version 
of the nonlinear controller. The nonlinear controller is applied to a direct drive robot for 
which nonlinear dynamics cannot be neglected. The linearized controller is used for a general 
six-degree-of-freedom geared robot. 

The stability of the observer-based control system is presented and the effectiveness of the 
observer is verified by experiments on a two-link direct drive robot and a PUMA 560. 

1 I N T R O D U C T I O N  

Visual information on tasks and environments is essential for robots to execute flexible and 
autonomous tasks. A typical task of autonomous manipulation is to track a moving object 
with a robot hand based on the information from a vision sensor. To carry out this task, the 
vision sensor must be incorporated in the feedback loop. Figure 2.1 shows an example of a 
visual feedback task. A camera is mounted on the robot hand and it captures images of the 
object. An image is considered as a two-dimensional array of gray-level signals whose size is 
typically 512 x 512 pixels. If the gray levels from all pixels are considered as the measurement 
signal, the system will not be manageable because the size of the measurement vector is larger 
than 200,000 and each element has a nonlinear correlation with its neighbors. Therefore, 
preprocessing of the raw image is necessary. Usually, image features of the object are 
extracted by preprocessing. A few examples of research based on the stochastic models of 
two-dimensional observations are found (e.g. [1]), but most visual servoing schemes use the 
features of the image as an observation. An image feature is any structural feature that can 
be extracted from an image (e.g., an edge or a corner). Typically, an image feature will 
correspond to the projection of a physical feature of the object [27]. The robot is controlled 
on the basis of the image features, and further image processing (e.g., image understanding 
or recognition) is omitted. 

There are two approaches in visual feedback control: position based and feature based 
[46]. With position-based schemes, the object position and orientation relative to the camera 
are computed by using photogrammetric [12,47,49], stereo [1, 38, 39], or "depth from 
motion" techniques [28, 35]. Because the position of the object is available as the output of 
the image processing part, a conventional position controller can be used to control the 
manipulator. However, geometric model of the object is required and the camera-robot  

FIGURE 2.1 
V i s u a l  t r a c k i n g .  
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system must be calibrated. Also, the precision of the model and calibration is critical to the 
system performance. On the other hand, feature-based schemes use the features directly for 
feedback control; that is, features are controlled in the image plane [10, 11, 18, 29, 36, 46]. 
Thus, the controller must be modified to close the feedback loop in the image plane or feature 
space. However, the computational burden is reduced. Also errors in the geometrical model 
and camera calibration may be eliminated. A comparative study may be found in [19]. There 
are some good tutorials for visual feedback control [4, 27]. In this chapter, the problems of 
feature-based visual feedback are treated; however the results can be applied to the 
position-based schemes with slight modifications. 

A vision sensor provides rich information about the object and the environment, but the 
sampling rate is usually very slow (e.g., 30 Hz) compared with that of mechanical systems 
(e.g., 1000 Hz). Note that according to Weiss's definition [-46], a visual servo system does not 
have a joint servo loop. Thus assuming the use of a normal CCD camera for a visual servo 
system as per Weiss, the sampling rate of the joint servo must be reduced to 30 Hz and the 
controlled accuracy will be degraded considerably. Therefore, it is natural to compose the 
control system with two feedback loops having different sampling rates. This structure is 
classified as "dynamic look and move" by Weiss, but in this chapter it is called "visual servo." 
A block diagram of a feature-based visual servo system is shown in Figure 2.2 

A visual sensor is incorporated in the feedback loop and a joint servo loop lies inside the 
vision loop. Since the inner loop is 30 times faster than the outer loop, the reference 
command or the joint servo system should be interpolated. A large step change of the 
reference will saturate the inner loop driver and will degrade the performance due to 
overshoot and oscillation. To generate the robot trajectory that connects the given set points 
with continuous velocity or acceleration, interpolation algorithms using polynomials are well 
known. Polynomial interpolation required boundary condition, such as velocities and 
accelerations at both edges. However, the boundary condition is not trivial in visual servoing 
because the target object may move during the sampling interval of vision (Feddema and 
Mitchell [11] and Koivo and Houshangi [30]). 

Dynamic effects in real-time visual feedback were studied by Corke and Good [3, 6-8].  In 
[5], the inner loop dynamics is modeled by a linear system with delay and a detailed analysis 
of the visual servo system as a multirate control system. Also it is concluded in [8], that "to 
achieve high performance visual servoing it is necessary to minimize the open loop latency, 
have an accurate dynamical model of the system and to employ a feedforward type control 
strategy." 

There are many publications that try to incorporate feedforward structure into the visual 
servo controller. If the object velocity is constant, a constant-gain velocity estimator is 
appropriate. For example, Allen et al. [1] use an ~ - / 3 - 7  filter. Another approach is a 
Kalman filter. For many applications, the target acceleration is assumed to be zero-mean 

_••.•oC..pO,,, 
~robo,' I__.. 

1- ~ V ' ' ~  , c ~ ,  ~~ . . . . . . . .  I 

FIGURE 2.2 
Feature-based visual tracking. 
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Gaussian. Then the Kalman filter estimates the target position and velocity with updating 
the filter gain [-2, 47-49]. Similarly, an AR model can be used [30]. Note that these estimates 
should be executed with the sampling rate of the joint servo, and the input to the filter must 
be generated appropriately during the vision sample interval. 

On the other hand, if a model for object motion is available, a Luenberger-type observer 
can be adopted. Ghosh et  al. [14-16] propose observers to estimate the target velocity. Rizzi 
and Koditchek [37, 40] study a window position predictor for object tracking. The authors 
use an observer for estimating the object velocity and propose a nonlinear and a linearized 
controller with an observer [17, 24, 25]. Observers can be used for a large class of motions, 
including constant-velocity, constant-acceleration, and cyclic motions. Based on the model of 
the object motion, unknown parameters such as position, direction, velocity, center of circle, 
and so on are estimated. Most of the observers are formulated as a nonlinear adaptive 
identification problem. 

This chapter discusses the compensation of the delay by estimating the target velocity. A 
model describing the object motion is introduced and a nonlinear observer is presented. The 
observer estimates the velocity parameters of the object motion model. The effectiveness of 
the proposed method is evaluated by simulations and experiments on a two-link planar direct 
drive robot. The results exhibit the fast convergence of the estimator and the accurate 
tracking performance of the controller. Since the nonlinear dynamics can be neglected for 
some manipulators (e.g., P U M A  560), a linearized version of the observer and controller is 
given. Experimental results with PUMA 560 are also provided. 

2 MATHEMATICAL FORMULATION 

The system model is considered as a map from the joint angle to the object image, which is 
composed of the kinematic model of the robot and the imaging model of the camera as 
shown in Figure 2.3. The camera is assumed to be mounted on the robot hand. Then the 
kinematic model becomes a map from the joint angle to the camera position and orientation. 
The camera model is a map from the position and orientation of the camera to the image of 
the object. The object motion is assumed to be an autonomous system that is independent 
of the robot motion. 

From now on, the position and orientation are called simply the position in this chapter 
unless otherwise specified. The representation of orientation is not significant, and one can 
use any representations by using three parameters. However, the rotational velocity must not 
be considered as their time derivative. It must be the rotational velocity around three axes 
of the coordinate system in which the position is represented. 

FIGURE 2.3 
System model. 
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2.1 Robot Model 

Assume that the robot has m (~< 6)joints and the camera is mounted on the robot hand. Let 
Scare be the (6 x 1) vector of camera position, then the kinematic model o f  the robot is given by 

Scam = ~)(q) (2.1) 

where q ~ R m is the joint angle. The dynamic model o f  the robot is 

dt - M - l h  x 

where r is the actuator torque vector, M is the inertia matrix, and h is the vector representing 
the Coriolis, centrifugal, and gravity forces [9, 41, 42]. 

2.2 Object Motion Model 

Assume that the object has mob j (<~6) degrees of freedom. Let Sob j be the (6 x 1) vector of 
object position and p be the (mobj X 1) vector of generalized coordinates representing the 
object position. Also assume that the object velocity is generated by an l (<~ m obj) dimensional 
parameter vector 0* such that 

D = W(p)O* (2.3) 

is satisfied, where W(p) is an mob j X 1 matrix function of p. The vector 0* and the equation 
(2.3) are called the velocity parameter and the object motion model. This motion model is 
simple, but it can model a fairly large class of autonomous motions including straight, 
circular, oval, and "figure 8" motions. A similar model was studied in [13] and extended to 
the two-stage estimator in [16]. 

2.3 Camera Model 

The object image is generated by the perspective projection of the relative position between 
the camera and the object. The perspective projection is a map between two different 
representations of the position of the object, that is, the representations in the camera 
coordinate system r = [X Y Z ~ fi 7] r and in the image plane [x y]r. Let CR w be the 
(6 x 6) coordinate transformation matrix from the world coordinates to the camera coordi- 
nates. Note that CR w includes the transformation of the orientation parameters. Then r is 
defined by 

F = CRw(Sob j - -  Scam) (2.4) 

The vector Ix y]r  consists of the coordinates of the feature point in the image plane 
expressed in pixels. Then the camera model is defined by 
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FIGURE 2.4 
Perspective imaging model. 

where f is the focal length of the lens (Figure 2.4) [26]. Note that f < 0 because the x and 
y coordinates of the image plane are aligned to the X and Y coordinates of the camera 
coordinate system. Thus Z < 0 for the object in the view area of the camera. 

This expression is extended to multiple feature points. Suppose that there are n feature 
points on an object. Let r i = [Xi  Yii Zi]  r (i = 1 , . . . ,  n) be the positions (orientations are not 
included in r~) of the feature points with respect to the camera coordinate system and the 
corresponding points mapped to the image plane have the coordinates ~ = Ix/ y~]r 
(i = 1 , . . . ,  n). Figure 2.5 illustrates an example of the perspective transformation with four 
features (n = 4). Then the object image can be represented by a 2n-dimensional feature vector 
clef= [~rl "" . ~r]r ,  which is a function of the relative position between the object and the camera 

r. This relation is called the camera model  and is expressed by the mapping /:R6--> R 2n 
defined by 

de_____f t(r), ~,t - t(r a) (2.6) 

where r a is the desired relative position between the camera and the object and ~d is the 
desired feature vector. 

2.4 Task Feasibility 

The robot configuration should avoid singular points while tracking. Thus we restrict the 
robot configuration in a region f =  R m that does not contain the singular points. Also, we 
assume that for all p e ~', where ~# is a subset of R "~ that contains all solutions of (2.3), the 

Object 
Image Plane P ~ ~  

f 4 , "  ,~ ....... ~.l...~.~';.,Ii~ " 
........ ) ot'~_ . ' *  

~  

C am era ~.i  

FIGURE 2.5 
Example of perspective transformation with four features. 
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solution q* of Scare(q* ) = Sobj(P) + r d is in ~//~. This is a feasibility condition for object tracking. 
To satisfy this condition m ~ mob j is necessary. Also, it is useful to introduce the feature 
manifold Jg, which is defined by 

~///= {~ = l(r) : q~ ~/F and p ~ # }  (2.7) 

The features on the feature manifold are called the admissible features. 

3 JACOBIANS 

The robot Jacobian that transforms the joint velocity to the hand velocity plays an impor- 
tant role in Cartesian space control. If one wants to control the robot in the tool frame, a 
Jacobian transforming the joint velocity to the tool velocity (expressed in the tool frame) will 
be needed. Similarly, we need a Jacobian that transforms the joint velocity to the feature 
velocity in the image coordinate system. Many important characteristics of the visual servo 
system are described by using the Jacobian. In this section, two Jacobians called the image 
Jacobian and the motion Jacobian are defined, and then degenerateness and redundancy are 
introduced. 

3.1 Definitions 

Differentiation of the camera model (2.6) yields 

where 

= J / / +  Lib (2.8) 

j def ~l Or def 0t Or (2.9) 
-0rc3q' L-0rc~p 

The matrices J(2n x m) and L(2n x mo) are called the image Jacobian and motion Jacobian, 
respectively. The image Jacobian transform the joint velocity to the feature velocity, and the 
motion Jacobian transforms the target velocity to the feature velocity. Since the vector r is 
expressed in the camera coordinate system, 

def (~/" __ OSca m (2.10) CJr~ -- c3q -- cRw c3q 

is the robot Jacobian expressed in the camera coordinate system. It is straightforward to see 
[19, 31] that 

I j(1) 
vim~ 

Jimo dee ~1 __-- . (2.11) 
~r /.l!,, ) | 

L v  tmO_l 

where 

!i) 
~mo 

Zi 

X i 

Zi 

f Yi 
Zi Zi 

x i Y i  

f 

y2 + f 2  

x 2 + f 2  
~ -  Yi 

xiYi 
- f  - x 

(2.12) 
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Note that the submatrix j(i) t(i) cr expresses the infinitesimal change of the ith feature -m- a img " r o b  

according to the infinitesimal change of the joint angles. 
Similarly, we have 

L = -J imoCRwJob j  (2.13) 

where 

Jobj deJ (~Sob j (2.14) 
0p 

3.2 Degenerated Features 

Consider a feature point that lies on the optical axis of the camera. When the point moves 
on the optical axis, the image does not change. Thus, this point is not useful for controlling 
the camera position in the Z axis. On the other hand, when the camera rotates in any 
direction around the object, the image does not change. Thus, a point feature is not useful 
for controlling the camera orientation. In this sense, a point feature is degenerated for 
six-degree-of-freedom control of the camera. 

In general, the features that do not change when the robot's joint or the object itself moves 
are called degenera ted  fea tures .  A simple test for degenerateness is to check the rank of the 
Jacobian. If there is a direction of motion in joint space 0 that does not change the features, 
then the following equation holds: 

JO = 0  (2.15) 

Thus the Jacobian J is not full rank. If the Jacobian is full rank, then 

J60  r 0 (2.16) 

for all 60 e R m. Thus the features change for all direction of motion in joint space. A similar 
discussion holds for object motion. Therefore, to avoid the degenerated features, we assume 
that for all q e ~ and p e ' r  Jacobians J and L have full column rank, that is, 

rank J = m and rank L = m o for Vq e ~/. and p ~'r (2.17) 

To satisfy this condition 2n ~> m is necessary, 1 but it is not sufficient. For a trivial example 
of a six-degree-of-freedom robot (m = 6), three points on a line are degenerated for a camera 
rotation around the line. A nontrivial example by Michel and Rives [33] is as follows: 
Suppose that there are three points on a plane that are not collinear. Then rank J < 6 if the 
camera lies on the cylinder that includes the three points and whose axis is perpendicular to 
the plane containing these points (see Figure 2.6). For any attitude of the camera, J is 
singular. 

3.3 Redundant Features 

The example of Michel and Rives suggests using at least four feature points to control the 
six-degree-of-freedom robot. The features are called redundant  if the number of features is 
larger than that of joints. For four feature points, the number of features is eight and they 
are redundant. A sufficient condition for the image Jacobian being full rank is given in the 
following lemma. 

lm >>. m o is necessary to track all object pose. 
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FIGURE 2.6 
Singular cylinder. 
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Lemma 1 Suppose that there are four points on a plane and the corresponding feature vector 
is admissible. Then the image Jacobian is full rank if any three of  the feature points are not 
collinear in the image plane. 

Proof Let the plane on which the four points exist be Z - p X  + q Y + r. Then Z i satisfies 
Zg = pX~ + qY~ + r for i = 1 , . . . ,  4. Substituting (2.5) into this yields 

f f -  p x i -  qYi 
= ( 2 . 1 8 )  

Z~ r 

and substituting this into (2.12) yields 

f -- PXi -- qYi 
r 

j!o = 
vzmg 

0 

X i f -- PXi -- qYi 

f r 

f - PXi - qYi Yi f - PXi - qYi 

r f r 

x iY i  

f 

+ 

x/2 + f 2  
--f- Yi 

xgyg 
y ~ x i 

(2.19) 

Define M i and N as follows: 

M i  -- [fo 

1 
N - - -  

r 

0 X i Yi 0 0 x 2 / f  

f 0 0 X i Yi  x i Y i / f  

- 1  0 0 0 - r  0 

0 - 1  0 r 0 0 

p 0 1 0 0 0 

q 0 0 0 0 r 

0 p 0 0 0 - r  

0 q 1 0 0 0 

0 0 - p  0 - r  0 

0 0 - q  r 0 0 

x i Y i / f  J 

/ f  

(2.20) 

Then we have Jl~0 = MiN.  Therefore, 

J -- MNCJ~ob (2.21) 
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is obtained, where M = [ M  r r r M r ] r  1 M2 M3 . Since M and Jrob are  square, J becomes full 
rank if both M and CJro b are invertible and N is full rank. To check the singularity of M, it 
is straightforward to see that 

det M = 

1 x I Yx 

1 x 2 Y2 

1 x a Y3 

1 

�9 1 

1 

X2 Y2 

x3 Y3 

x4 Y4 

1 

�9 1 

1 

x3 Y3 

x4 Y4 

Xl Yl 

1 

�9 1 

1 

x4 Y4 

Xl Yl 

X2 Y2 

(2.22) 

Thus M is invertible because any three feature points are not collinear. Since we are 
interested in the robot motion only in the nonsingular region, CJro b is invertible. On the other 
hand, if p2 + q2 4= 0, the first six rows of N are linearly independent. If p = q = 0, the first 
four and the last two rows are linearly independent. Thus N is full rank. Therefore, the image 
Jacobian J is proved to be full rank. 

Performance improvement by using redundant features is discussed in [17] and [25]. The 
smallest and the largest singular values of the image Jacobian play a central role for 
performance imprvement. 

4 NONLINEAR CONTROL LAW 

This section introduces a nonlinear controller and a nonlinear observer. An example of a 
two-link direct drive robot is also given. 

4.1 Controlled Variable 

Our goal is to track the object so as to keep the features of the object at the reference features. 
The models of robot, object motion, and camera are given by (2.2), (2.3), and (2.6), 
respectively. On the basis of these models, it is natural to adopt the features as the controlled 
variables, joint angles and joint velocities as the state, and the joint torque as the input. For 
a minimum set of features (n = m/2), this selection is appropriate. 2 However, for redundant 
features, the system becomes uncontrollable because the features cannot move in R 2n 

arbitrarily. To resolve this problem, one has to solve nonlinear geometric constraints on the 
features that represent the rigidness of the object. Since these constraints are difficult to solve, 
we linearize the constraints at the reference point and reduce the dimension of the feature 
vector to the dimension of the joint space. 

Let ~# be a manifold, that is, the set of all admissible features (2.7), and consider a nominal 
point r a that satisfies ~e = t(ra). Define a matrix B as follows: 

Bde=f~J(q*,p*) if n~> m, (2.23) 
if n = m 

Note that J is a function of q and p; in this equation, p* and q* are a typical position of the 
object and a typical configuration of the robot that satisfy Scorn(q*)-  Sobj(P*)= ra. The 
matrix B is the image Jacobian at the nominal point if the features are redundant. If the 
features are minimum, then B is the identity matrix. The controlled variable is defined by 

2There is no other choice. 
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using this B matrix in the following manner: 

def z = Br(~ - ~ a ) ,  ~a = t(ra) (2.24) 

For J of full rank, ~ ~ ~e is guaranteed when z ~ 0 [24, 25]. If the condition number (ratio 
of the largest and smallest singular values) of J(q*, p*) is big, the variable z becomes very 
sensitive to numerical roundoff and the stability of the closed-loop system becomes very bad. 
To avoid this numerical instability problem, it is usual to define B as follows: 

B -- US- 1 V T (2.25) 

where the matrices U, S, V are obtained by singular value decomposition of J(q*, p*), that 
is, J(q*, p*) = USV. However, we use (2.23) for notational simplicity. 

4.2 Controller 

Once the controlled variable is given, it is straightforward to compute a strictly linearizing 
controller. Taking the second derivative of z gives 

where 

~." = B T j M  - I('C - -  h) + 2 + NO* + dote(O*) (2.26) 

/~1 N1 (I)1 

2 =  jm , N =  ; , (I)= ; , ,  (2.27) 

and 

6~ 2 
/~i def oT ~2Zi def W = ~ el, Ni = 2il r @Oq 

(~ijkdef[~{wT(~Zi~T} l 

(~idef Ef~ill f~ill (I)i21 

, (o*)dee . . .  0 07 . . .  

(~ ill] 
0~23 r (2.28) 

Since B is full rank and J is a continuous function of p and q, B r J  is invertible if p and q are 
close to p* and q*. Therefore, the actuator torque with new input v 

= M(BTJ)  - x(v - 2 - NO* - q)tc(0*)) + h (2.29) 

yields a linear dynamics 2 = v. Thus we obtain the following theorem. 

Theorem 1 Define the new input v by 

v = - K lz - K2 ~ (2.30) 

where K 1 K 2 a r e  positive definite gain matrices. Then the equilibrium point (z, ~) = 0 becomes 
exponentially stable by using the nonlinear input transformation (2.29). 
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4.3 Observer 

The control law (2.29) and (2.30) requires ~ and 0", which are not usually known. Thus an 
estimator for these parameters is needed. Let the estimates of the parameter 0* and controlled 

A 

variable z be 0 and ~., respectively, and consider the following estimator [34, 43]" 

= B T j O + B T L W O + H ( ~ - - z ) ,  O= -- WTLTBp(~ -- z) (2.31) 

where H is any stable matrix and Q is any positive definite matrix. While P is selected to 
satisfy 

H T p + P H =  - Q ,  Q > 0  (2.32) 

Let the estimation error vectors be 

z = z - ~ ,  0, e =  (2.33) 

Then we obtain the following theorem. 

Theorem 2 For all p e~'~ and q e ~ '  the estimator (2.31) makes the equilibrium point e = 0 
asymptotically stable. 

It is easy to prove this theorem by taking the Lyapunov function candidate as follows: 

= er~pe, = (2.34) 

This observer runs with the sampling rate of the joint servo. Thus the estimate of z is 
updated with the joint servo rate. Since new data z are not available during the vision sample 
interval, it is updated by using only the robot motion, 

:~ = J// (2.35) 

4.4 Observer-Based Controller 

Consider the following controller based on the estimated velocity of the feature vector _~" 

r = M ( B T j )  - 1(l) -- ~ -- N O -  (~K(g)) -~- h 

v = - - K a z -  K2BT(J ( t  + L W ( p ) O )  (2.36) 

Defining ~ de__=f tO(0*) -- tO(0") and substituting (2.36) into (2.26) yields 

5 = - K l z  - K 2 ( 2 ~  - BrLW-O) + NO + ~fc (2.37) 

Thus we obtain the following closed-loop dynamics: 

2 = Ax  + NO + ~fc (2.38) 
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FIGURE 2.7 
Observer-based controller. 

where x, A, N, and �9 are defined by 

d f[0 I] 
' _K1 - K  2 

0 ]  d f[00] 
= N + K z B r L W  ' = 

(2.39) 

Finally, we have the main theorem. 

Theorem 3 For the system (2.2), (2.3), and (2.6), est imator (2.31) and controller (2.36) make 
the equilibrium point  (x, e) = 0 asymptot ical ly  stable. 

The proof is omitted. It is tedious but straightforward based on Lyapunov's method. A 
block diagram of the observer-based controller is shown in Figure 2.7. 

4.5 Example of Two-Link Robot 

To see the procedure for designing the observer-based controller introduced in this section, 
an example of a planar two-link robot is given. Let us consider the robot shown in Figures 
2.8 and 2.9. Figure 2.8 is the side view (from the + Yw direction). Figure 2.9 is the top view. 
The camera is mounted on the second link and looks upward. The object position is higher 
than the camera position. When the joint angle vector q equals zero, the robot is stretched 
out and the links are aligned with the X w axis. 

Robot Model 

The robot model is given by (2.2) with 

m 
I J1 -Jr- J2 -Jr- 2b cos q2 

J2 + b cos q2 
J2 -k- b cos q2-] 

] J2 

h =  [-b(20102 + ,~2)sin q2+  D10,] 
bO 2 sin q2 --k- D2q 2 (2.40) 
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Object 
9 P -  

C & m e r a  

Motor2 

Zc 

11 . J . 

i :l I!o,orl 
FIGURE 2.8 
Two-link direct drive robot (side view). 

where 

J1 = 11 + rnllql + 1172 + ll 

J2 = 12 + m21.2 

h = m2111:l 2 (2.41) 

In these equations,  I i and D1 i are the moment  of inertia and the mass of the ith link; loi is the 
length between the ith joint  and the mass center of the ith link" D i is the motor  friction 
coefficient of the ith joint. 

Camera Model  

Let l 1 be the length of link 1 and [/,,x 1,.:,] T be the camera  position with respect to link 2. 

Object 

Yobj - " "Q y Camera 

! . . . . . . . .  

Yc x-  c . ~  

FIGURE 2.9 
Two-link direct drive robot (overview). 
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Then we have the camera position and orientation 

Scare 

11C 1 Jr- lcxC12 -- lcyS12 

11Sl + lcxs12 n t- lcyc12 
a Gain 

0 

0 

01 + 0  2 

t position 

t orientation 

(2.42) 

where s 1 = sin ql, cl = cos ql, $12 = sin(q1 + q2), C12 = cos(q 1 + q2)" Let the object position 
be Sob j = [_Xob j Yoba Zobj 0 0 0] r (the orientation has no meaning because the object is a 
point). Assume that the depth Z = Zob a -- Zca m is known. Let the feature vector ~ = Ix y]r  
be the position of the object in the image plane, f be the focal length of the lens, and r i be 
the ith element of r. Then the object position with respect to the camera coordinate system 
is given by 

X - cos r 6 - -  sin r6 0 r 1 

zY = sin r6 - -  cos r6 0 r2 

0 0 - 1  r 3 

(2.43) 

Therefore we have the camera model 

(2.44) 

It is straightforward to compute (2.44), and we obtain 

I lcx -+- 12C2 -- X~ -- Y~ 1 
= F -lcy -+- 11S2 XobjS12 oF YobjC12 

(2.45) 

f 
m 

m where F = Z '  $2 sin q2, c2 " - -  COS q2" 

lacobians 
For this two-link robot example, the derivative of (2.6) is given by (2.8) with 

J =  F[ X~ Y~ --l lS2 -qt- X~ -- Y~ L - -  F 
- - X o b j C 1 2 -  YobjS12 11C2-  X o b j C 1 2 -  YobjS12 ' 

I c12 --$12] (2.46) 
--$12 C12 

It is easy to see that 

det J = F211(XobjS1 -- YobjCl), det L = - - f  2 (2.47) 

Thus, J becomes singular only if the object is on the line connecting the first and second 
joints (just above the first link and its extension), and L is always nonsingular. To avoid the 
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singular configuration, one may select more features than necessary. An example with 
redundant features may be found in [23]. 

Object Motion Model 
In the previous example, the object height is constant. Thus the object degree of freedom is 
2 and the object position is uniquely defined by p = [Xob j Yobj] r. 

Straight Motion As shown in Figure 2.10(a), if the object motion is straight and the object 
velocities in the X and Y directions are v x and Vy, respectively, then we have (2.3) with 

W(p) = I, O* = [v x Vy] r (2.48) 

Circular Motion If the object motion is circular with constant velocity e) as depicted in 
Figure 2.10(b), the object position and its time derivative are described by 

[ X ~  rc~ drX~162 (2.49) 
Y,,bj ] r sin cot ' ~ L Yobj _] r~o COS o)t 

where r is the radius of the circle. Thus the object velocity is given by (2.9) with 

- Yobj] 0* = co (2.50) 
W(p) = x,,~ J '  

For the case of an unknown center of the circle, let the center be (c:,, Cy). Then the object 
becomes 

Yohj L r sin r + c~, 
(2.51) 

Since the object velocity is the same as (2.49), we have the following parameterization: 

I (0 1 o lol 
W ( p )  = X obj - -  1 ' = 

L.X',,j 

Figure 8 Motion For "figure 8" motion as shown in Figure 2.10(c), the object position 

Y 
o~ 

obj" 

1 

FIGURE 2.10 
Object motions: (a) linear, (b) circular, (c) figure 8. 
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becomes 

Yobj _] sin 2cot d 
(2.53) 

Then the motion is modeled by (2.9) with 

0 X~ ] 0 " =  (2.54) w(p) = ~ Y L / '  

where R = -  
R~ 

2R 2 

Controller 

Suppose that ~e = [0 0] r. If the distance from the object to the origin of the work space is 
close to 11, the second joint angle is close to re/2 and the configuration is far from singular. 
For  simplicity, we consider such a task and assume that J is invertible. Since n = m = 2, 
B = I and z = ~. 

If the object motion is straight, the object motion model is (2.48) and we have 

NE x 
'~--- (01 -}- 02) 0 J + Fla01 

N =  2F(c)1 + 02)[--C12 $12 --C121_$12 

Thus we obtain the controller 

c2]]  
s 2 

(2.55) 

"r = M J - l (  - KlZ + h  (2.56) 

If the object motion is circular, the object motion model is (2.49) and we have 

~" = Jg/" + /~ + N o  + (1)602 

C12 $12 Xobj A 

N = 2(01 4- 02)(I ) (2.57) 

where 2 is given by (2.55). Thus the controller is 

"C -- M J - I ( - K 1  z - K 2 " 2 -  2 - No -(~co 2) + h (2.58) 
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5 LINEARIZED CONTROLLER 

The controller given in the previous section is rigorous and useful for theoretical analysis. 
However, the computational burden of the inverse dynamics becomes very large for robots 
that have many degrees of freedom, and real-time implementation of inverse dynamics is not 
easy [20, 21]. 

On the other hand, many general-purpose industrial robots are the velocity control type 
and the robot joint contains high-ratio gears. Thus the terms of acceleration, centrifugal 
force, and Colioris force can be neglected. For these robots the controller can be linearized. 
Since the computational burden is reduced considerably by linearization, a linearized 
controller is useful for implementation on industrial robots. 

The linearized dynamics of the visual servo system (2.24) at (q, p) = (q*, p*) is given by 

= BrJi l  + BTLWO * (2.59) 

where J = J(q*, p*) and L = L(q*, p*). Then the following control law: 

~/= (BTj) - 1(/.) _ _  B T L W O , )  (2.60) 

linearizes the dynamics from v to z as :~ = v. Thus, with a positive definite gain matrix K, the 
feedback law v = - K z  makes the equilibrium point z = 0 exponentially stable. 

For the linearized system (2.59), a linearized observer similar to (2.31) can be used: 

& 

) =  BTJiI + BTLWO + H(2 -- z), O= - - W T L T B p ( 2  -- z) (2.61) 

Then the observer-based controller becomes as follows: 

(I = ( B r j )  - 1(_ K 2  - BTLWO) (2.62) 

Note that B, J, and L are constant matrices but W may depend on the object position p. 
Thus the observer-based controller is not strictly linear but the nonlinear dynamics of the 
robot are not considered. Some examples of the linearized controller with the PUMA robot 
will be described in the following section. 

6 EXPERIMENTS 

6.1 Two-Link Direct Drive Robot 

To show the effectiveness of the nonlinear observer and controller, simulations and experi- 
ments are carried out. Figure 2.11 shows an experimental setup with a two-link direct drive 
robot. 

A two-link planar robot illustrated in Figures 2.8 and 2.9 was designed and manufactured 
in our laboratory. Two direct drive motors (NSK RS0810, NSK AS0408) are used. 
Maximum rotational velocities are 1/3 and 1.5 (rpm), and maximum torques are 9000 and 
1000 (kgf ram), respectively. The size and inertial parameters of this robot are 11 = 300, 
lcx = 177, lcy= 88, lol = 159, l o 2  - -  53.7 (mm), m I = 11.1, m 2 - -  4.05 (kg), 11 = 8.96 x 105, I 2 ---= 

5.20x 10 r (kg mm2), D 1 = 2050, D 2 - -  159 (kgf mms) .  
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FIGURE 2.11 
Visual feedback control system. 
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The host computer for the manipulator control is a personal computer (NEC PC9801). A 
transputer board TRPM-401, made by Concurrent Systems Inc., Japan, is added to the PC. 
The TRPM-401 board has 2 Mbytes of dynamic RAM and a transputer T800 [32], a 32-bit 
microprocessor with an on-chip floating-point processing unit. The vision processing board 
is Concurrent Systems TRP-IMG.  The main processing unit of T R P - I M G  is also a 
transputer. The T R P - I M G  board has three digital signal processors IMS A l l 0  connected in 
a pipeline. These DSPs do image convolution operation in real time. The board has 3 Mbytes 
of video RAM and 1 Mbyte of dynamic RAM. The video RAM is organized in 48 planes of 
256 x 256 pixels, one byte per pixel. A TS68483 graphic controller chip is used as a video 
timing generator. The video digitizer chip AD9502 is used to sample a CCIR standard video 
input signal at a rate of 12.5 MHz and provides digital video information with a resolution 
of 8 bits. The I/O boards consist of an interface board (Concurrent Systems TRP98-2) 
for communication with the transputer with DA and counter boards. The DA boards are 
used to output the command torque, and the counter boards are used to input the encoder 
reading values. A CCD video camera SONY XC77CE is mounted on the end effector of the 
robot. The internal calibration of the camera and the external calibration of the geometrical 
relationships between the camera and the end effector are carried out on the basis of the 
calibration algorithm proposed by Tsai and Lenz [44, 45]. 

The sampling period of the vision system is 33 ms. The sampling period of the manipulator 
control is fixed to 1 ms. The feature vector (image coordinates of the center of the object) is 
computed in the T R P - I M G  board and is passed to the TRPM-401 board every 33 ms, where 
the joint servo computations and observer update are carried out with the sampling period 
1 ms. 

Straight Motion 

Simulations and experiments for object motion in a straight line are described. The initial 
object position is Sobj = [282.5,--119, 1000] r (mm), initial joint angle is q = [--60, 80] r 
(deg), initial object image is ~ = [ 1 8 , - 2 0 ]  r (pixel), and reference image is ~a = [0, 0] r 
(pixel). The camera looks upward and the object moves above the robot. The task is to track 
the object so that the object image is kept at the reference point (origin of the image plane). 

The object starts to move in the Y direction at 40mm/sec at t = 6 sec and stops at 
t = 10.5; moves again in the X direction at 20mm/sec at t -  13.5 and stops at t = 17. A 
stroboscopic plot of the robot motion is shown in Figure 2.12. Each triplet of line segments 



78 CHAPTER 2 / OBSERVER-BASED VISUAL SERVOING 
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shows a configuration of the robot and the camera. The base of the robot is at (0, 0) and the 
line segments passing through the base denote the first link. The second link is connected to 
the first link. The third line segment denotes the offset I c y  in Figure 2.9. The positions of the 
camera center are marked by + s. 
Simulation The simulation results are shown in Figure 2.13. The horizontal axis is time; (a) 

l 0  
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FIGURE 2 . 1 3  

Simulation results (straight motion): (a) x error, (b) y error, (c) X estimated velocity, (d) Y estimated velocity; 
with o b s e r v e r ' - - ,  without observer. 
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and (b) are feature errors in x and y coordinates in the image plane; (c) and (d) are estimates 
of the object velocity in X and Y coordinates in the base frame. A white Gaussian noise with 
variance 0.1 (pixel 2) was added to the feature position ~. The solid lines in (a) and (b) are 
the results with the observer and the dotted lines are the results without the observer, that 

A 
is, the controller (2.36) but 0 - 0. This controller 

= M ( B r j )  - 1( /2  __  /~) .nL_ h 

v = - K l z  - K 2 B r J i l  (2.63) 

is referred to as t a s k - l e v e l  i n v e r s e  d y n a m i c s  in [22]. The same gains as with the observer-based 
control are used. Plots of the first 3 seconds in (a) and (b) show the response for a step change 
of the reference point. Since the robot moves to track the reference change, the observer is 
excited and generates some object velocity estimation. However, the object does not actually 
move. Thus the object velocity estimation has a bad effect on the tracking performance (i.e., 
overshoot). On the other hand, once the object is tracked at the reference position, the 
observer estimates the object velocity accurately. Note that the error in the image plane is 
reduced considerably while the object is moving with high velocity. Since the convergence 
time of the observer used in this simulation is almost 1 second, the overshoot at the moment 
of velocity change is inevitable. 

Experiment Experiments are carried out on a direct drive robot. The parameters are the 
same as in the simulation. Results are shown in Figure 2.14. The errors in the image plane 
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FIGURE 2 .14  

Experimental results (straight motion): (a) x error, (b) y error, (c) X estimated velocity, (d) Y estimated velocity;- , 
with observer;--, without observer. 
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are due to friction, but they are not larger than 10 pixels. There are couplings in the 
estimation of velocity. The estimates are oscillatory compared with the simulation, and the 
effect of oscillation is found in the controlled error. However, the controlled error is fairly 
reduced while the object is moving. 

C i r c u l a r  M o t i o n  

The second case is a circular motion with radius 20mm. The center of the circle is at 
( 2 6 5 , -  120) in the base coordinate system. The object starts to move with angular velocity 
2.8 rad/sec at t = 6.5, changes the speed to 1.4 rad/sec at t = 17.5, and stops at t = 23.5. The 
robot motion is shown in Figure 2.15. The line segments show the robot links and the + 
marks show the camera position. 

S i m u l a t i o n  The simulation results are shown in Figure 2.16. The horizontal axis is the time; 
(a) and (b) are the feature errors; (c) is the estimate of the angular velocity. The speed of 
convergence is slow, but the observer estimates the object velocity. When the observer is used, 
the error in the image plane decreases as the estimated value converges. On the other hand, 
there are steady-state errors for the controller without an observer. 

Experiment Experimental results are given in Figure 2.17. The estimated value is accurate 
and the controlled error is reduced, but it does not converge to zero because the information 
on the center of the circle used in the design of the observer includes measurement error. 

6.2 Six-Link PUMA Robot 

Robot Control System Configuration 
Real-time experiments are carried out on the visual feedback control system depicted in 
Figure 2.18. The host computer is an NEC PC9801 with TRPM-401 added in. A parallel 
computat ion scheme for joint level servo is implemented on a network of eight transputers 
(ADS TBE02). These transputers communicate with each other via a transputer link. The 
vision processing board is a TRP-IMG.  The sampling periods of the vision system and the 
joint servo are 33 and 1 ms, respectively. See Section 6.1 for a detailed description of this 
equipment. 

FIGURE 2.15 
C i r c u l a r  m o t i o n .  
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FIGURE 2.16 
Simulation results (circular motion): (a) x error, (b) y error, (c) estimated angular velocity;--, with observer; 
without observer. 

Linear Motion 

Feature P o i n t s  a n d  I m a g e  J a c o b i a n  We have tested the largest singular values of the image 
Jacobian for three objects shown in Figure 2.19. They are white boards with three, four, and 
five black marks. Three points are arranged to make a regular triangle with edge length 
100 ram. Four  points are on corners of a square with edge length 100 mm. For  five points, 
an extra point with height 30 mm is added at the center of the square. The marks  are on a 
plane except for the one at the center of the square. The features are the x and y coordinates 
of the image center of each mark. To avoid the singular cylinder mentioned in Section 3.2 
and Figure 2.6, the reference camera position is located outside the cylinder. Comput ing the 
minimum singular values (ami,) of the image Jacobians J3, J4, and J5 (i.e., the image 
Jacobians for three, four, and five feature points, respectively) yields 

~Tmin(J3) = 0.339, ami,,(J4) = 0 . 6 1 4 ,  ~Tmin(J5) = 3 . 5 5  (2.64) 

Thus five features are desirable to obtain accurate position control of the camera in the 3-D 
work space. Therefore we carry out the next experiment with five feature points. 

Experimental Setup The board with five features are attached to a P U M A  550. P U M A  550 
and P U M A  560 are the same size but the former has five degrees of freedom. It does not 
have wrist rotation, which corresponds to joint 4 of the P U M A  560. The world coordinate 
system is at the base of the P U M A  560, which holds the camera. A nominal  camera position 
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FIGURE 2.17 
Experimental results (circular motion): (a) x error, (b) y error, (c) estimated angular velocity;- 
without observer. 

, with observer;-- 

FIGURE 2.18 
Visual feedback control system. 
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is in front of the marks and the distance is about  1000 mm. The nominal  posit ions of the 
object and camera are shown in Figure 2.20. The X w-  Yw-Zw coordinate  system is the world 
coordinate  system. 

Object Motion In this experiment, the object moves  up and down; that is, the object mot ion  
* is the object * 0 0 0 ]  r, where v= is translational in the Z w direction. Thus, ~o = [0 0 v= 

velocity in the vertical direction Zw. Since the object mot ion  is one dimensional ,  we can 
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FIGURE 2.19 
Configuration of feature points. Features are selected as the x and y coordinates in the image plane of the center of 
each circle. The center mark of five marks has height 30 mm. 

choose the generalized coord ina te  as p = Zob j, where Zob j is the object height  in the wor ld  
* and the pa ramete r i za t ion  (2.3) is given by W = 1 coord ina te  system. Then  we have p = vz 

and 0 = v~. Since 8Sob~/Cp = [0 0 1 0 0 0] T, the matr ix  L for the observer  becomes  as 
follows" 

0 
I 

0 

1 
= (2.65) L Ji'~ 0 

0 

0 

* that  is, the object  velocity, in the vertical direction. At t - 10 sec The observer  est imates vz, 
the object  starts to move  with velocity - 2 0 m m / s e c ,  tha t  is, 20 mm/sec  in the d o w n w a r d  
( - Z  w direction), and  stops at t = 15. After 10 seconds of pause,  it moves  u p w a r d  with 
velocity 10 mm/sec  and stops at t - 35. 

Exper iment  The exper imenta l  results are shown in Figure  2.21(a) and (b). In Figure  2.21(a), 
the vertical axis shows the posi t ion of the camera  in the wor ld  coord ina te  system. The solid 
and b roken  lines are the results with and  wi thout  the observer,  respectively. The do t ted  line 
is the reference t ra jectory of the camera.  The control  law with the observer  is given by (2.62) 
and (2.61), and  the control  law wi thout  the observer  is 

il = - ( B T J )  - 1Kz (2.66) 
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FIGURE 2 . 2 0  
Robot configuration and object position. 
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FIGURE 2.21 
Step response. (a) Object position --, with observer; 
velocity --, estimation;--, true value. 

- - ,  without observer;.-, reference trajectory. (b) estimated 

The matrix K is the gain, which is the same as the observer-based controller. By using the 
observer the tracking speed is improved and the tracking error is reduced considerably. As 
shown in the nonlinear case, overshoot is a shortcoming of the observer-based scheme. 
Figure 2.21(b) shows the estimated velocity of the object. The broken line shows the true 
value and the solid line is the experimental result. The observer estimates the object velocity 
fairly accurately. 

Another objective of the observer is interpolation of the visual data obtained with a very 
slow sampling rate. The values of z and its estimate ~ are plotted in Figure 2.22. The time 
t = 0 in Figure 2.22 corresponds to the time t = 10 in Figures 2.21. Delay of one visual 
sample is found in the period 0.1-0.4 because the velocity estimation is not correct during 
this period. Once the velocity estimation converges to the true value, the delay is canceled. 

Tracking a Minirobot 

Khepera Robot This section gives experimental results of visual tracking of Khepera, a mini 
two-wheeled mobile robot. Khepera was developed at the Laboratory of Micro Information, 
EPFL,  Switzerland. Khepera has an MC68331 CPU and 256 Kbyte RAM and can be 
programmed in C. Figure 2.23 shows an overview of the Khepera robot. The wheel base is 
53 mm. 

Object Motion The camera tracks the Khepera robot as it moves on the floor. The motion 
is circular with radius 97 mm. We assume that the center of the circle is known. Two cases 
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FIGURE 2.22 
Estimated velocity (~_).- 
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with velocities 0.9 and 1.8 rad/sec are examined.  The exper imenta l  setup is depicted in Figure  
2.24. The feature is the center of K h e p e r a  in the image. The camera  t racks the object in a 
plane parallel  to the floor; that  is, the or ien ta t ion  and the height  of the camera  are kept  
constant .  

Let the object posi t ion be [Xob ~ Yobj 0] r. Or ien ta t ion  is not  considered in this case. Then  
the general ized coordina tes  of the object become p = [Xob ~ Yobj] r. Since the center posi t ion 
is assumed to be known,  we can use (2.50) for the object mo t ion  model .  Using C~Sobj/~ p = 

[1 1 0 0 0 0] r yields 

c L - J imo  Rw 

1 

1 

0 

0 

0 

0 

(2.67) 

The observer  est imates the ro ta t iona l  velocity of the object. 
The K h e p e r a  robo t  starts to move  counterc lockwise  at t = 5 sec with ro ta t iona l  velocity 

co = 0.9 rad/sec, changes its velocity to co = 1.8 at t = 20; and  stops at t = 35. After 5 seconds 
of rest, the Khepe ra  starts to move  again clockwise with co = - 0 . 9 ,  changes  the velocity to 
co = - 1 . 8  at t = 54, and  stops at t = 69. 

FIGURE 2.23 
Overview of Khepera robot. 
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FIGURE 2.24 
Experimental setup. 
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Control Law In this experiment, the controlled degree of freedom is two, that is, the X and 
Y coordinates of the camera position in the world coordinate system. Thus, to simplify the 
controller the controlled variable z is set to ~. In other words, we choose B = I. Also, since 
the optical axis of the camera is aligned with the Z w axis, which is orthogonal to the floor, 
the image Jacobian linearized at the reference position can be simplified to 

f 
J = - ~ CRwJro b (2.68) 

Z, 

where Z, is the camera height at the reference position. Then the control law is given by 

[C o, l - 0 (CRwJ,ob)- 1 m c 

= , Vc, , , , ,  = - K _ ( Z  - z , )  

= Jq + L W O  + H ( ~ -  ~), O =  - - w T L T p ( ~ - -  ~) (2.69) 
A 

where K and K_ are gain matrices and ~ is the observer estimation of the object features. 
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F I G U R E  2 . 2 6  
Controlled error. (a) x direction; (b) y direction.--, With observer"--, without observer. 

Experiment The initial joint angles are q = [10.9 -42 .1  -70 .9  2.01 23.0 0.01] T and the 
initial camera position is Sc,,m = [803.6 1.588 1103.0]. Figure 2.26 shows the estimated value 
of co. The solid line is the estimated value and the dashed line is the true value. The observer 
estimates the velocity fairly accurately, but oscillations are found. The oscillations are due to 
the calibration error of the rotation center. Also, the arm configuration becomes almost 
singular, that is, the arm is almost stretched out, when the object is at the farthest position. 
Thus the joint control accuracy is not very good around the farthest point. This singularity 
problem is another reason for oscillation. 

Figure 2.26(a) and (b) show the error in the image plane for the x and y directions, 
respectively. The solid line is the result with the observer whose control law is given by (2.69). 
The broken line is the result without the observer. The control law without the observer is 
similar to (2.69) but the estimated velocity and the estimated feature are replaced by zero 
and the measured features, that is, 

['o] 0 = (CRwJ, .ob)- i  m , 

- / r  - z ~ ) /  

Note that the error is reduced for both directions by using the observer. 

7 C O N C L U S I O N S  

The vision sensor includes delay in its structure. Also, the sampling rate of the vision sensor 
is usually very slow. Thus, increasing the feedback gain yields oscillations. For  these systems 
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FIGURE 2.27 
Control input. (a) Feedforward part - LWO~ (b) feedback part - K~. 

a feedforward control scheme is effective. The results given in this chapter emphasize the 
usefulness of object velocity feedforward in the application of vision-based control. 

We have introduced a visual feedback controller with a velocity observer. The observer 
compensates the delay by estimating the object velocity. Also, the observer provides 
intersample information to the joint servo by updating the visual information with the 
sampling rate of the joint servo. Thus the problems of slow sampling time and delay of the 
vision sensor are resolved. The tracking performance is improved by feedforwarding the 
object velocity. Stability of the observer-based control system is presented in a nonlinear 
form. Simulations and experiments with a two-link direct drive robot have exhibited the 
effectiveness of the observer-based control scheme. A linearized version suitable for industrial 
robot control is also presented. Experimental results with PUMP 560 have shown stable and 
accurate performance of the observer-based visual servo controller. 
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CHAPTER 3 
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Robotic Visual Servoing 
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The potential of visual servoing systems using eye-in-hand cameras has been demonstrated by 
many research efforts. However, previous efforts have generally used one of only two approaches 
to the extraction of an error signal from the visual input: blob analysis or pixel-level feature 
tracking. In this chapter, we describe a third approach that combines some of the advantages of 
both previous methods. We use deformable active models to track image contours related to the 
object of interest. These contour models provide global information about the position of the 
object. In addition, by combining such models with a priori knowledge of the object shape, this 
approach may be extended to provide the orientation of the object in three dimensions. 

We present a model-based approach for visual tracking and eye-in-hand robotic visual 
servoing. Our approach uses active deformable models to track a rigid or a semi-rigid object in 
the manipulator's work space. These deformable models (also known as "snakes") approximate 
the contour of the object boundary, defined by a set of control points. During tracking, the 
control points are updated at frame rates by minimizing an energy function involving the relative 
position of model points, image data, and the characteristics of figure pixels. When visual 
servoing is combined with the use of active deformable models, movement of the manipulator 
can compensate for translations and deformations of the object's image. To verify the potential 
of our approach, we run several experiments and present our findings. 

1 I N T R O D U C T I O N  

Robotic systems that operate in uncalibrated and/or  uncontrolled environments must be able 
to react flexibly to changes in their environment. In the simplest case, such changes may be 
the result of the movement  of a single object in the manipulator 's  work space. Previous work 
[1, 10, 13] has demonstrated that such changes can be handled effectively by incorporating 
information from eye-in-hand visual sensors into the manipulator 's  feedback loop. However, 
these systems sometimes have difficulty tracking targets that are semi-rigid or partially 
occluded. We propose to overcome these difficulties by incorporat ing active deformable 
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models (commonly referred to as "snakes") into the visual system. Active deformable models 
attempt to conform to contours in the image as defined by the intensity gradient that 
correspond to the boundaries of the object being tracked. As the object contours translate 
or deform, the parameters of the active deformable model are adjusted. Simultaneously, the 
parameters of the active deformable model can be used as inputs to the manipulator 
controller. 

The system presented in this chapter combines recent work from two different streams of 
research in the computer vision and robotics communities to improve the performance of 
eye-in-hand manipulators tracking moving objects. We have incorporated active deformable 
models into the established visual-servoing paradigm. By combining the two methods, we 
strengthen both. The use of visual servoing to produce compensating movements of the 
end-effector reduces the amount of deformation required from active deformable models to 
cope with object movements. At the same time, active deformable models allow manipulators 
controlled by visual servoing to deal with semi-rigid objects and motions (such as rotations) 
that challenge feature-based approaches to tracking. 

Recent work in visual servoing has demonstrated the benefit of "closing the control loop" 
of a robotic manipulator guided by an "eye-in-hand" visual sensor. Generally, systems 
designed using this technique seek to hold an aspect of the visual input invariant through 
appropriate movements of the manipulator on which the camera is mounted. For example, 
Papanikolopoulos et al. [20] identify one or more features in the image and seek to maintain 
the features' locations in the image plane by producing compensating translations and 
rotations of the "end-effector." Visual servoing obviates the need to maintain a detailed, 
metric work space model. Rather than constructing a model of effector and target positions 
and computing a trajectory which matches that of the target, the system reacts directly to 
information provided by the sensor during the last control iteration. 

In this chapter, we use active deformable models to provide the control signal to a visual 
servoing system. The organization of the chapter is as follows. First, Section 2 highlights the 
importance of the problem. Then Section 3 describes the issues and motivations for using 
this approach. Section 4 presents some previous work conducted in the area. Section 5 
discusses the approach we propose. In this section, we also present an algorithm for the 
automatic selection of control points. In Section 6, we describe the hardware used to 
implement our experimental system. In Section 7, we present experimental results, and in 
Section 8 these results are discussed. Finally, in Section 10, we conclude and highlight the 
contributions made by this work. 

2 IMPORTANCE OF THE VISUAL SERVOING PROBLEM 

Vision-based control and active vision can have a significant impact on space applications, 
intelligent highways, manufacturing, and nuclear waste cleanup efforts. Vision-based control 
can enhance the performance of industrial robots in assembly lines, aid in better alignment 
of an object with the camera in automatic inspection systems, improve the automatic 
assembly of electronic devices (surface mount technology), assist in the realization of vehicle 
following (platooning), make possible autonomous satellite docking and recovery, and 
improve the efficiency of outdoor navigation techniques. 

One area where robotic devices enhanced with sensing capabilities can have a significant 
impact is the area of nuclear waste cleanup. In particular, autonomous or semiautonomous 
robotic devices can participate in the inspection of waste storage tanks, detect and remove 
buried waste, automate the handling and analysis of contaminants, and help in decontami- 
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nation and decommissioning operations. Moreover, the manipulator is a useful tool because 
it intervenes between the hazardous environment and the human operator. Since the human 
operator does not have any direct view of the environment where the task takes place, sensing 
devices must be used in order to provide some information about the status of the robotic 
task and the environment. Thus, in order to improve the efficiency of robotic devices in 
hazardous sites, it is important to augment them with sensing devices. Among the sensing 
devices, visual sensors play a critical role. The primary advantage of vision sensors is their 
ability to provide information on relatively large regions of the work space. This same ability, 
however, presents problems that must be overcome. Noise, time-consuming image processing 
and large amounts of visual information make their use challenging. Therefore, the modeling 
and design of robotic devices that include visual sensing has become a difficult and 
challenging task. These difficulties increase if we include many different sensing modules in 
the same feedback loop. 

It is important to mention that currently no framework covers all the issues that are 
introduced by integrating the vision sensor or any sensor in the feedback loop of a robotic 
device. We think that there is a significant waste due to the fact that there is a trend to build 
systems that address only the use of specific sensing modules in the feedback loop. Small 
changes in the hardware or the software of a specific sensing module require significant 
redesign of the whole system, thereby increasing the cost and the development time. We 
firmly believe that the described system addresses some of these sensor-based control issues 
and provides a unified way of looking at problems of this type. 

3 ISSUES 

Many visual servoing systems use feature-based approaches or image attributes derived from 
image features such as optical flow. These systems typically find correspondences between 
features present in two images acquired at different instances in time from a camera mounted 
on the end-effector. Such systems may have difficulty handling cases in which object features 
become occluded or object motion or deformation alters the feature beyond recognition. For 
example, systems that define a feature as a template of pixels can fail when a feature rotates 
relative to the template used to match it. 

To overcome these difficulties, the system proposed in this chapter incorporates contour 
tracking techniques. When a contour corresponding to the object boundary can be extracted 
from the image, it provides information about the object location in the environment. If prior 
information about the set of objects that may appear in the environment is available to the 
system, the contour might be used to recognize the object or to determine its distance from 
the camera. In other words, if a contour can be extracted from the image and this contour 
corresponds to an object boundary, the contour provides information useful to a visual 
servoing system. If additional, prior information about object shape and size can be 
combined with the contour information, the system could be extended to respond to object 
rotations and changes in depth. 

For contour extraction, we have adopted the active deformable model methodology. 
Active deformable model techniques attempt to identify image contours by minimizing a 
contour energy function that includes terms representing regularization constraints such as 
contour smoothness and continuity as well as terms dependent on image attributes such as 
local contrast. A number of approaches have been proposed for formulating and finding a 
minimum for these functions, since the introduction of active deformable models to computer 
vision by Kass et  al. [16]. The algorithm presented by Williams and Shah [29] and 
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FIGURE 3.1 
An active deformable contour tracking a balloon. 

elaborated by Yoshimi and Allen [28] is particularly well suited for our application as it is 
both iterative and greedy. Because it is iterative, partial solutions are available during the 
minimization process; because it is greedy, the quality of these partial solutions tends to 
increase. We take advantage of these properties by running the control system and the 
contour extraction algorithm simultaneously. The controller issues commands to the arm 
based on the most recent partial solution. If the image were static, the system would tend to 
a steady state in which the object is centered in the image and the minimizing algorithm 
reaches a stable solution. However, since the object we are interested in is moving, the 
movements of the arm tend to change the image in ways that increase the energy of the 
current model configuration (because areas of high contrast in the image have moved), which 
forces the minimization algorithm to find a new configuration of minimum energy. 

On the other hand, as long as object translations and deformations between frames are 
reasonably small, a minimum configuration of the active deformable model in one frame 
will be close to a minimum configuration for the model in the subsequent frame. The 
algorithm may find the minimum in a few iterations. In the best case, the minimization 
algorithm will be fast enough and the interframe displacements small enough that a minimum 
configuration can be found for each frame. This theoretical ideal may be impossible to 
achieve in pract ice-- i t  would require a perfect model, signal processing system, and control 
law, but it illustrates the advantage of combining models and servoing. In short, tracking 
with active deformable models makes servoing possible and, in turn, the act of servoing 
simplifies the task of deforming the model to fit the contours of the image in the plane. 

The center of the model--defined as the average location of the control points or as the 
two-dimensional center of mass - - i s  used as the input to the manipulator's controller. 
Optimal estimation and control techniques (an LQG regulator) are used to deal with noise 
in this signal. We have conducted experiments that indicate the feasibility of this approach 
in dynamic but controlled environments, such as an automated factory floor. 

When the speed of the minimization algorithm relative to the speed of the contour 
displacements and deformations in the image plane is sufficient, the system presented in this 
chapter tracks reliably. We have begun experimental work (see Section 7) in an effort to 
define and quantify the relevant factors (e.g., image displacement, image deformation, speed 
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of the minimization algorithm, gains for energy function, number of control points). When 
the key factors have been identified, future work will focus on improving the critical elements 
of the system. 

4 PREVIOUS WORK 

This work draws on two streams of research in the computer vision and robotics communi- 
ties. We have combined techniques developed by the visual servoing community with contour 
extraction techniques developed in the graphics and computer vision communities. 

Several research efforts have focused on using vision information in the dynamic feedback 
loop [7, 10, 13, 14, 19, 24, 27]. Weiss et al. [24] have proposed a model reference adaptive 
control scheme for robotic visual servoing. In this work, servoing is performed with the goal 
of reducing the error between the desired image attributes (center of mass, first or second 
moment of the image) and the current image attributes. The verification of the proposed 
algorithms has been limited to simulation. Allen et al. [1] have proposed an approach that 
uses image-differencing techniques in order to track and grab a moving object. Dickmanns 
[11, 12] has presented methods (Kalman filters) for the integration of vision information in 
the feedback loop of various mechanical systems such as satellites and automobiles. Koivo 
and Houshangi [17] have proposed an adaptive scheme for visually servoing a manipulator 
based on the information obtained by a static sensor. Feddema and Lee [13] have proposed 
a MIMO adaptive controller for hand-eye visual tracking. Their work has been used as the 
basis for our approach. Several other researchers [3, 18] have proposed strategies for 
vision-based exploration. Finally, Ghosh [14] has addressed several vision-based robotic 
issues with the aid of new "Realization Theory" for perspective systems. 

The concept of active deformable models, also called "snakes," was first introduced to the 
field of computer vision by Kass et al. [16]. Snakes have been used in a number of 
applications including image-based tracking of rigid and nonrigid objects. Using snakes 
requires a minimization process of an energy function. Several techniques have been used to 
solve this problem, including variational calculus [16], dynamic programming [2], and 
greedy methods using heuristics [28, 29]. The latter method has the advantage of being fast 
as well as numerically stable. Our method uses a greedy method similar to that used by 
Williams and Shah [29] and Yoshimi and Allen [-28]. 

Other researchers have also combined elements of visual servoing and active deformable 
model techniques to approach different problems than the one presented in this chapter. 
Blake, Curwen, and Zisserman [4] have presented a different algorithm for contour 
estimation and used it in a system that tracks a contour in an image (it does not include a 
robotic component). Yoshimi and Allen [28] have used a greedy, iterative minimization 
algorithm to track a robotic finger with a static camera and detect contact between the finger 
and a stationary object. Finally, Colombo et al. [9] published a description of a system that 
uses a spline contour model to plan and execute a movement that positions an eye-in-hand 
robot so as to bring a known object into a canonical orientation relative to the camera. They 
report initial simulation results. 

5 PROPOSED APPROACH 

We describe a system that tracks a moving, deformable object in the work space of a robotic 
arm with an eye-in-hand camera. For these experiments, we have used a figure-ground 
approach to object detection and identification. The figure-ground methodology allows 
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pixels to be identified as object or background pixels, a distinction that is useful during the 
initial placement of the active deformable model. However, this limits the applicability of our 
system to environments in which the background is uniform. 

Once the active deformable model has been placed, two simultaneous processes com- 
mence. One process uses an iterative, greedy algorithm to find a minimum-energy configur- 
ation of the active deformable model. The second process issues control commands to the 
manipulator based on the current configuration of the active deformable model. Movements 
of the manipulator alter the position of the camera and, consequently, the image forces used 
by the minimization algorithm, closing the control loop. 

5.1 Placing the Model 

Movement in a scene can be detected by comparing two images acquired by a camera: a 
ground image taken before the movement occurred and the current image. This difference 
image is defined as (where x and y are image coordinates): 

Idijj'(X, Y) --[loro,,,,d(X, Y) -- Ic,~(X, Y)I (3.1) 

To enhance the boundary contours of the object's image in the difference image, we increase 
the contrast of the difference image with a simple thresholding operation, where: 

, {0 if I,;~.~.(x, y) < T (3.2) 
lei1j(x' Y) = 255 otherwise 

for a threshold T. In this work, when we use the term difference image to refer to a specific 
image, we mean the binary image I'~t: r that is obtained from these operations. 

When the system begins operation, a background image of the scene is captured to be 
used as the ground image, l:,ro,,,,,~, for the calculation of image differences. The object to be 
tracked is introduced to the scene and the tracking system is alerted by a signal from the 
operator. Either manually or automatically, a bounding box is placed around the region of 
differences created by the object. 

After a bounding box has been selected, an initial configuration for the active deformable 
model is chosen by one of several algorithms. In the course of this research effort, we 
experimented initially with three significantly different techniques. 

The initial placement algorithm simply placed control points along the bounding box by 
splitting each edge of the bounding box into a number of model edges. In other words, the 
four corners of the bounding box became control points in the initial configuration. If 
desired, one or more equidistant points were also chosen on each edge. When sufficiently 
large values were chosen for the ballon constraint (described in Section 5.3), this crude 
placement method was fairly successful. The model quickly collapsed upon the image 
contour. However, this method is ill suited for experiments using variations of active 
deformable models that incorporate task-specific constraints (as opposed to the generic 
"snake" constraints of equidistance and equal angles). It does not provide useful default 
values for the constraints. Indeed, the initial configuration of the active deformable model 
has little relation to the desired model configuration. 

Current work has focused on the use of a more specific, but still fairly generic, 
determination of initial model configuration. First, a blob is chosen as the primary object of 
interest. Then the boundary of the connected blob is extracted by an edge-following 
algorithm (similar to the Boundary-Following Algorithm described in [15]). Then a 
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predetermined number of control points is placed along the boundary. A configuration 
determined by this method is generally well suited for tracking using generic constraints and 
is a reasonable configuration for more specific const ra in ts - -a t  least for one orientation of 
the model. 

There are at least three serious disadvantages of this approach: 

�9 The connected blob chosen for boundary following may not correspond to the image 
contour that should be tracked. There may be blobs in the difference image that are 
unrelated to the object of interest. These blobs may be caused by noise or the presence 
of other objects. Alternatively, the object of interest may create more than one blob in 
the difference image because it does not create a uniform difference with the background. 
Both of these types of errors should be alleviated by the application of simple image 
processing techniques, such as blob size thresholding combined with morphological 
operators. 

�9 Points that are equally spaced on the perimeter are not necessarily equidistant. For 
example, points on a serrated boundary will be much closer in image coordinates 
than in perimeter coordinates. An optimization algorithm could overcome this limita- 
tion in the general case, but at high computational cost. There are probably heuristic 
approaches that would find good configurations in the majority of cases, but we have 
not identified any. 

�9 Points chosen by a perimeter walk may not be points of deformation on the object 
contour or points of high curvature on the contour. Ideally, the control points would 
be placed at points where deformation will occur, or at an object corner, where changing 
relative viewpoint changes the angle projected on the image plane. Since the perimeter 
walking scheme does not consider object characteristics or the curvature of the extracted 
boundary, it does not reflect these characteristics of the contour. 

In order to address the last two of these weaknesses, we have undertaken preliminary 
investigation of an automatic placement technique discussed in the next section. 

All three of the methods considered are suited for use only in conditions in which the 
contour model must be determined from a single example provided at run time. For 
situations in which the contour model is known a priori ,  it would be straightforward to apply 
a Generalized Hough Transform to the edge-detected image to determine the position, 
orientation, and any uncontrolled parameters of the model. 

Once the active deformable model has been placed by any of the methods described here, 
its movements are controlled by the minimization of an energy function as described in 
Section 5.3. 

5.2 Automatic Selection of Control Points Using the P & P Algorithm 

We have developed an algorithm (P & P algorithm in [22]) that locates points of high 
curvature (corners) using a method similar to that in E6]. It also locates key in-between low 
curvatures points (key flat points) by employing a procedure conjugate to that for locating 
corners. We have tried the particular algorithm for the selection of control points. 

Selection of Corner Points 

The determination of corners is done in a way very similar to the method followed in Brault's 
algorithm [6]. The notable difference is that there is no need for parameter tuning. The basic 
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mechanism is the same as that of Brault's algorithm [6]. Each point c of the curve is seen as 
a potential corner. The neighboring points from either side of point c contribute to the 
cornerness of c to a degree determined by certain conditions. 

In more detail, the angles ~o(c + i) and ~o(c - i) (see Figure 3.2) are computed for each 
pair of neighbors c + i (i = 1, 2 . . . ) .  For  a pair c _+ i to belong to the corner domain of point 
c, the following inequalities must  be satisfied: 

~o(c + i )  < ~  and o ( c - i )  < ~  (3.3) 

The contribution CF (cornerness factor) of each pair c • i to the making of the candidate 
corner c is computed by the formula 

CF(c, i) = cos(~o(c + i)) * cos(co(c - i)) (3.4) 

Using 2 as a fixed upper limit in the inequalities, formula (3.3) is a departure from the method 
followed in Brault and P lamondon I-6] and is what renders the corner determination 
parameterless. The first M(c) points that satisfy the inequalities (3.3) constitute the corner 
domain of point c and their total contribution to the cornerness of point c is computed by 

M(c) 

TCF(c) = ~ CF(c, i) (3.5) 
i = 1  

The corner segmentation points are identified by searching the values of the function 
TCF(c). The TCF values of the curve points present a very consistent pattern: strings of 
nonzero values spaced by strings of zero values. Each of the nonzero strings corresponds to 
a high-curvature segment, and the maximum value contained in each such string corresponds 
to a corner segmentation point. 

Selection of Key Low-Curvature Points 

While corners are the perceptually most important  parts in a curve, corners alone provide 
insufficient data for an accurate reconstruction of a curve. The situation improves substan- 
tially if we provide some key points with rather low-curvature surroundings that lie between 

c - i + 1  
c- ..~~ ...... c 

".. ......................... ./ 
~o ( c - i  

center of pair (c+_i) 

c + i - 1  

c+ i  

~ (c+i) 

FIGURE 3.2 
Geometric model for corner determination as proposed by Brault and Plamondon [6]. 



5 PROPOSED APPROACH 99 

corners, as extra segmentation points. The way we find these key low-curvature points is 
conjugate to the way we find the corner points. 

More precisely, a separate processing step is taking place for the location of the key 
low-curvature points. The geometric parameters shown in Figure 3.3 are the same as those in 
Figure 3.2 and are computed for each pair of neighbors f _+ i (i = 1, 2 . . . )  of every point f 
of the curve. This time, however, the larger the angles co(f + i), and co(f - i) are than 2, the 
more the corresponding pair of neighboring points contributes to the low curvatureness of 
point f. As a result, by a suitable analysis of the angles co(f + i) asnd c o ( f -  i), one can 
determine whether or not the pair of points f _+ i is a part of the low-curvature domain of 
f and, in addition, can estimate the importance of the contribution of these points to the low 
curvatureness of point f 

The angles co(f + i) and c o ( f -  i) must satisfy the following inequalities: 

7"C 7"C 
c o ( f + i )  > ~  or c o ( f - i )  > ~  (3.6) 

The contribution FF (low-curvatureness factor) of each pair f _+ i to the making of the 
candidate key low-curvature point i is computed by the formula 

FF(f, i) = Icos(co(f + i))l * Icos(co(f-  i)) (3.7) 

In contrast to Eq. (3.5), Eq. (3.7) uses the absolute value of the trigonometric function cos 
since the range of the angles co(f + i) and/or co(f - i) now features 2 as a lower and not as 
an upper limit. The total contribution of the first M ( f )  points belonging to the low-curvature 
domain of f (the ones that satisfy the inequalities (3.6)) is computed by 

M(f) 

TFF(f)  = ~ FF(f, i) (3.8) 
i = 1  

dpoo ~ 

f-~'-'------b- ca) of-Jr 

t'-.~ + 

e " ~  e-_+l 

FIGURE 3.3 
Geometric model for key low-curvature point determination. 
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FIGURE 3.4 
A square contour. 
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The identification of the key low-curvature segmentation points from the function TFF(f) 
is done in a way analogous to the determination of corner points from the function TCF(c). 

Evaluation of the Proposed Algorithm 

In order to get an indication of the goodness of the algorithmic selection of control points 
in terms of the accuracy of shape description, the following experiment was devised. Let a 
contour ~g of an arbitrary shape consist of N points (~ = (P1, P2 . . . . .  PN)). Let the P & P 
algorithm select for the contour cg a set 5 ~ of m control points (5 P = (Ps1, Ps2 . . . . .  Psm))' Also 
let a set Y ofm control points (.Y- = (Pt~, Pt2,..., Ptm)) be chosen in such a way that an error 
norm is driven to minimum (optimal polygonal fit). The norm chosen for the purposes of the 
particular experiment was the Euclidean distance error of the polygonal fit represented by 
the point set. The set ~-- was determined after an exhaustive search of all the (m u) combinations 
for the contour ~. It is interesting to compare the set of control points given by the P & P 
algorithm with the optimal polygonal fit point set for a variety of shapes (see Figures 3.4 
through 3.7). 

The small circles in these figures represent the points of the optimal polygonal fit set, while 
the points given by the P & P algorithm are represented by small squares. In all the shapes, 
the prominent corners are included in both the optimal polygonal fit set and the set of the 
P & P algorithm. Discrepancies arise only for the key flat points of the algorithm. The 
equivalent points of the optimal polygonal fit are mostly clustered in noisy areas of the shape. 

o ° ° l ° , °  ® 

FIGURE 3.5 
A parallelogram contour. 
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FIGURE 3.6 
A triangular contour. 
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In contrast, the key flat points of the algorithm are uniformly distributed between the 
prominent corner points. This behavior is highly desirable, because the algorithm has not 
been designed specifically for a polygonal fit but for a more generic fit that may be even a 
spline fit. In fact, some model-based techniques use the control points for polygonal fits [25, 
26, 28-] and some others for spline fits [4]. The algorithm loses very little in terms of 
polygonal fit accuracy by placing the key flat points in a distributed instead of a clustered 
manner. For example, in the irregular contour case of Figure 3.7, the error of the optimal fit 
is 0.8189 pixels while the error of the P & P fit is 2.1701 pixels. The error of an arbitrary 
polygonal fit for this shape could run as high as 42.8378 pixels. The small compromise the 
algorithm concedes in the polygonal fit case pays off in the splint fit case, where a clustered 
distribution like the one favored by the optimal polygonal fit would give very poor results. 

5.3 The Active Deformable Model 

The formulation of active deformable models used in this work to approximate the object 
boundary draws on the work done in recent years by the computer vision community on 
active deformable models of contours, often referred to as "snakes." Given a continuous 
contour, described as a vector: 

v(s) = (x(s), y(s)) (3.9) 

FIGURE 3.7 
An irregular contour. 
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where s is the arc length, Kass et al. 1-16] related the task of finding a contour in an image 
to the minimization of an energy function (adopting the notation used in [29]): 

Esnak e 7- Esnake(V(S)) Ms = EEint(u ) _ql_ Eimage(u ) _31_ Econ(u ] Ms (3.10) 

In this function, Esnak e is the total energy of the active deformable model, Ein t is a measure 
of internal energy, such as that caused by curvature, and Ei,,,oe is a function of image 
characteristics. The term E~o . is derived from external constraints. When this continuous 
model is approximated in a discrete domain (e.g., a digital image) the equation becomes: 

Es*ake = L [~Econt(Vj) + flEcurve(Vj) + 7Eimaoe(Vj)] 
j=l 

(3.11) 

in which Eco,, is derived from the distance between vj and its neighbors, l)(j_l)modn and 
v~j + 1)mo0," Ecur~e is a function of the angle at point vj. Again, Ei,,aoe represents the image forces 
acting on the active deformable model. The terms ~,/3, and 7 are weighting parameters that 
control the proportion of the active deformable model's energy derived from each of the three 
terms, which are assumed to be normalized. 

Kass et al. [16] proposed that a minimum be found for this energy function with a 
variational calculus approach. Amini et al. [2] have proposed a method based on dynamic 
programming. We have chosen to adopt the greedy method developed by Williams and Shah 
[29]. In the greedy method, each point on the contour is considered in turn. An energy score 
is calculated for locations near the current location of the control point and the control point 
is moved to the location that results in the lowest energy. 

The Ecur~e, Ei,,a~e, and E~o,, terms are usually sufficient to define an active deformable 
model approximation of an image contour when all terms vary significantly across the 
neighborhood of possible control point locations. However, using our current techniques, 
when the active deformable model is placed, it may have several control points that are far 
enough from the target's image that the image gradient is unvaryingly zero throughout the 
neighborhood of candidate locations. For these points, the term Ei,,~0e plays no role at all 

VJ+ 1 ~  ~ 

FIGURE 3.8 
A single snake point in its window. 
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and they respond only to the internal energy and external constraints, rather than to a 
combination of image energy and constraints. 

To facilitate the initial placement of the active deformable model, we have augmented the 
energy equation with an Emoael term inspired by the "balloon factor" used by Yoshimi and 
Allen [28] to overcome a tendency toward implosion in their active deformable models. 

The E,,,oeel term is calculated as follows. First, a neighborhood of the control point in the 
difference image is examined. If the percentage of difference pixels set within the neighbor- 
hood falls short of a predetermined level, the control point is defined as "outside" the object's 
image. To bias movement of the control point toward the object's image, the locations closest 
to the object's image are assigned the value - 1  for E,,oael. Other locations are assigned the 
value 0. The locations closest to the object's image can be determined because the active 
deformable model control points are numbered counterclockwise around the closed active 
deformable model. A similar energy assignment is performed for control points that are 
"inside" the object's image. Besides aiding initial placement of the contour, this model energy 
also occasionally comes into play during later tracking stages when an object moves very 
quickly or has been temporarily lost for some other reason (e.g., occlusion). 

5.4 The Control Signal Computation 

Concurrently with the energy minimization process already described, a control signal is 
generated from the current configuration of the active deformable model by a process 
running on a separate processor. The purpose of this process is to determine the necessary 
camera translation to recenter the contour extracted by the active deformable model in the 
image plane. 

It is necessary to choose a definition for the location of a contour. We have considered 
two options (1) the average location of the control points and (2) the centroid of the closed 
polygon defined by the contour. We have chosen to use the average location of the control 
points. This definition may be unsatisfying if the control points become bunched together on 
one side of the contour, but, in practice, this rarely occurs as the smoothness and continuity 
constraints penalize such configurations. Therefore, the slight improvement in these cases 
does not justify the additional processing time. 

There is much more information in the configuration of the active deformable model than 
location. Future systems should be able to take use this information for three-dimensional 
(3-D) tracking and to overcome partial occlusions. 

6 THE MINNESOTA ROBOTIC VISUAL TRACKER 

The Minnesota Robotic Visual Tracker (MRVT) [5] that was used for these experiments 
consists of the Robot/Control Subsystem (RCS) and the Visual Processing System (VPS). 

The RCS includes a PUMA 560 robotic arm, its Unimate computer-controller, and a 
VME-based Single Board Computer (SBC). The manipulator's trajectory is controlled by the 
Unimate controller as directed by path updates provided by an Ironics 68030 VME SBC 
running CHIMERA. A Sun Sparc-Station 330 hosts CHIMERA and shares its VME bus 
with the SBC via BIT-3 bus extenders. BIT-3 bus extenders also provide shared-memory 
communication between the RCS and VPS. 

The VPS receives input from a video source such as a camera mounted on the end-effector 
of a robot arm, a static camera, or stored imagery played back through a Silicon Graphics 
Indigo or a videotape recorder (see Figure 3.9). The output of the VPS may be displayed in 
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FIGURE 3.9 
M RVT system architecture. 
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a readable format or be transferred to another system component  and used as an input into 
a control subsystem. This flexibility offers a diversity of methods by which software can be 
developed and tested on our system. The main component  of the VPS is a Datacube 
MaxTower  system consisting of a Motorola  MVME-147 single board computer  running 
OS-9, a Datacube MaxVideo20 video processor, and a Datacube Max860 vector processor 
in a portable seven-slot VME chassis. The VPS performs the calculation of the difference 

FIGURE 3.10 
Experimental setup for balloon tracking. 
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image and the active deformable model energy minimization and calculates any desired 
control input. It can supply the data or the input via shared memory to an off-board 
processor via a Bit-3 bus extender for use as input to the RCS. The video processing and 
calculations required to produce the desired control input are performed under a pipeline 
programming model using Datacube's Imageflow libraries. 

7 EXPERIMENTS 

Initially, two types of experiments were run. In the first, a partially inflated balloon was 
moved by hand in the robot's work space. These runs were analyzed for timing information 
as well as qualitative information about system performance. Quantitative measures of 
tracking quality are not available from these runs, as the nature of the experiments denies 
access to "ground truth." To obtain quantitative data about system performance, a second 
set of experiments were conducted. In these trials, an SGI Indigo workstation was used to 
create a display of an object in motion along a circular path. While the MRVT tracked the 
object on the display, the control commands issued to the controller were collected. By 
comparing the control commands with the actual path of the object, tracking performance 
can be quantified. 

In the balloon-tracking experiments, a black balloon attached to a stick was maneuvered 
in the manipulator's work space by an operator. The work space background was gray and 
fairly uniform, creating few distracting difference pixels (i.e., nonobject pixels that appear in 
the difference image). Empirically discovering gains that overcame this noise and resulted in 
good tracking performance was not difficult. The minimization algorithm performed approxi- 
mately 2000 point updates per second (e.g., over eight trials, totaling 13 minutes and 9 
seconds, eight-point snakes performed 251 updates per second). This update rate was seemed 
adequate for snakes with as many as 16 control points. 

Informal testing did reveal one difficulty with the current implementation. The Emode I term, 
which aids initial placement, interferes with tracking when the active deformable model is not 
a simple polygon. Various techniques to guarantee simplicity have been implemented and 
tested, but none has been effective without unacceptable performance penalties. 

In the second set of experiments, a target was generated on an SGI Indigo and presented 
on a 27-inch monitor just outside the robot's workspace (see Figure 3.11). This target, a 
7.3-cm square, repeatedly traveled in a circular path with a diameter of 25.7 cm or along a 
square path with sides of 27 cm. While traveling at about 8 cm/sec, deformation was 
introduced by rotating the square 360 degrees on its z-axis during each circuit. The position 
commands sent to the Unimate controller were collected. The first 1200 points from two 
sample runs are plotted in Figures 3.12 and 3.13. These figures contain data from a four-point 
and an eight-point model, respectively. 

These plots demonstrate the trade-off between additional control points and system 
performance. In the four-point trials, the minimization algorithm performed 505 updates per 
second and the control loop sent 212 path instructions per second to the arm. In the 
eight-point trials, the minimization algorithm performed half as many updates per second 
(250) and only 146 control instructions were sent per second. Apparently, two iterations are 
not enough for the minimization algorithm to converge. Although the eight-point snake was 
able to track the target, the plots reveal many more oscillations in the path and a lack of 
consistency. One goal of future work should be to improve the performance of the 
minimization algorithm, so that better tracking can be obtained with more complex models. 
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FIGURE 3.11 
Experimental setup or quantitative trials. 

For comparison, Figure 3.14 plots the path of a manipulator following the same target 
along a square path at similar speed, demonstrating how the controller handles discontinu- 
ities in the target path and acceleration and deceleration of the manipulator. 

We also tried the P & P algorithm for the automatic selection of control points. 
Preliminary results of experiments incorporating the P & P algorithm for automatic control 
point selection in a model-based tracking scheme [26] suggest that this approach holds great 
promise. The P & P algorithm extends the previous version of our system in two important 
ways. It automates the selection of both the number and location of control points. 

Experiments were conducted in which a target was presented on a 27-inch monitor located 
1 meter from the end-effector mounted camera. The target, a 7.3-cm tall square or triangle, 
moved around a rectangular path of 100 cm at approximately 8 cm/sec. The position com- 
mands sent to the robotic arm were collected and are graphically illustrated in Figures 3 .15 -  

. 5 0  

FIGURE 3.12 
Tracking rotating square target with a four-point model (measurements in mm). 
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FIGURE 3.13 
Tracking a rotating square target with an eight-point model (measurements in mm). 

3.17. Previous results [26] (see Figure 3.16) were compared with results using the P & P 
Algorithm (see Figure 3.17). 

The previous system used a predetermined number of control points irrespective of the 
target's shape. These points were manually placed near the object contour in a highly regular 
configuration. The generic constraints used by the tracking algorithm created a bias toward 
equidistant points and equal angles between edges. The new system uses the P & P algorithm 
to select control points automatically. Because the P & P algorithm does not choose equally 
spaced points, the constraints used during tracking were modified to reward configurations 
with angles close to the initial angles and distances close to the initial distances. 

The model-based tracking scheme with the manual selection of control points worked well 
only when a small number of control points was selected and the points described the 
contour well. Because that system encouraged equidistance between control points and equal 
angles between edges, it performed best when the contour of the object being tracked could 
be approximated by an equilateral polygon (a highly regular shape) with as many vertices 
as the model had control points. For less regular shapes or control point configurations, 
performance degraded. For example, the system in [26] lost track of the square target after 

~'''"~~50 
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FIGURE 3.14 
Tracking a square target with a four-point model (measurements in mm). 
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F I G U R E  3.1 5 
Tracking of a triangular target with the P & P algorithm (measurements in mm). 

just one revolution when an eight-point model was used (see Figure 3.16). The old system was 
not tested with the (nonequilateral) triangular target, as this target is not a highly regular shape. 

The system using the P & P algorithm for automatic point selection performed substan- 
tially better. Ten trials were measured. In the first five, the arm tracked the moving square. 
In the second five, the triangular target was tracked. Results from the first trial with each 
target are presented in Figures 3.15 and 3.17, respectively. The control point selection 
algorithm invariable selected 10 points for the square and six points for the triangle that 
appropriately described the shapes. The tracker maintained tracking of the objects for several 
revolutions. In this experiment, the P & P tracker exhibited its ability to maintain tracking 
of different target shapes (square, triangle) at fairly high speeds. 

In order to show the generality of the approach, we used the method in another domain 
(pedestrian tracking). With exactly the same formulation as in the case of visual servoing, 
our system can successfully track motion of a walking pedestrian, even when the pedestrian's 
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-100 i 

.15o i 

-200 , , , i , 
-20( 

i | w , i w - 

8-point sna: ke tracking square 
/ 

I 

. . . . . . .  

I ! 

-150 -100 -50 0 50 100 150 200 

F I G U R E  3.1 6 
Tracking of a square target without the P & P algorithm. The target was lost after one revolution (measurements 
in mm). 
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F I G U R E  3 .1  7 
Tracking of a square target with the P & P algorithm (measurements in mm). 

image deforms in unexpected ways such as those .caused by thrusting out one's arms or 
kicking a leg forward in an exaggerated manner (Figures 3.18 and 3.19). It is also fairly 
robust with respect to occlusions, such as when two pedestrians pass in opposite directions 
or a single pedestrian passes behind a large tree. Potentially, more than one pedestrian 
could be tracked simultaneously. Although such a system should be equally robust with 
respect to occlusions caused by two tracked pedestrians passing one another, it would 
probably not be possible to tell whether the active deformable models had continued to track 
the same individual. Such a system might have difficulty distinguishing between two 
pedestrians approaching one another and then returning the way they came and two 
pedestrians walking past one another. 

F I G U R E  3 .1  8 
A six-point active deformable model tracking a pedestrian. 
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FIGURE 3.19 
The difference image that provides image forces for the active deformable model. 

Further development of the transportation-related system will require overcoming the 
inherent limitations of using a difference image to provide image forces for the active 
deformable model. These problems include short and long time-scale changes in the 
background caused by lighting changes or continuous regular movement of objects in the 
scene, for example, the rustling of leaves in the wind. The system is also vulnerable to the 
effects of camera self-motion. A slight jitter in the camera mount could cause many patches 
of noise in the difference image. Although these patches will generally be ignored once 
contour tracking has begun, they do disturb the initial placement of the snake. Richards et 

al. E23] describe two enhancements of the difference image framework to overcome these 
difficulties. First, by slowly modifying the ground image in a controlled way, changes in the 
background can be incorporated in the ground image. Second, to overcome the placement 
problem, additional processing of image regions can be done to identify portions of the image 
consistent with the appearance of a pedestrian. We plan to incorporate these improvements 
in our system. Consideration should also be given to methods that would make it possible 
to mount the camera in a moving vehicle. 

8 DISCUSSION 

Although the results of the experiments described in Section 7 demonstrate the promise of a 
system combining the active deformable models for visual tracking with a visual servoing 
system, they also illustrate drawbacks of the current implementation. 

Two factors affect the quality of tracking which must be discriminated. The initial set of 
experiments conflates changes produced by the sheer number of control points with effects 
caused by the match between the number of control points and with the points of high 
curvature on the object boundary. 

For example, performance degraded significantly when an eight-point model was used to 
track a four-sided figure. However, there are two reasonable explanations for this difference. 
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(1) The extra computation required to minimize an eight-point model reduced the total 
model update time by a factor large enough to create a qualitative drop-off in overall 
performance, or (2) the match between object shape and model was not good enough to 
achieve a stable minimum. 

It should be noted that an important strength of the minimization algorithm (its local 
character) is also a weakness in this case. In no sense does the algorithm trade off higher 
curvature in one region to achieve lower curvature in another. It relentlessly attempts to 
reduce curvature (or approach a default angle) at every control point. Further, because the 
minimization considers only a small number of alternative positions for the control point, it 
cannot make dramatic changes in configuration to arrive at a globally optimal configuration. 

The current system would also benefit from a theoretical basis for the selection of the gains 
applied to the different elements of the energy function. At present, these gains must be 
empirically determined for each application by observing the behavior of the active 
deformable model in action and adjusting parameters to overcome performance deficiencies. 

Empirically determined gains have given satisfactory results, but a theoretical framework 
for gain selection would allow the automatic determination of gains, which will be necessary 
for deployment if such systems are to be used successfully in commercial manufacturing 
settings. 

9 FUTURE WORK 

There are number of promising areas for the further development of this system. These 
include further exploration of the performance of the algorithm described here and enhance- 
ments of the system. These enhancements may either increase the robustness of the system 
or extend its capabilities. 

One issue that should be further explored is the necessity of using difference images as the 
input to the placement and energy minimization algorithms. If we can assume that more 
prior information is available about the shape, color, or texture of the object, then an 
alternative placement algorithm could be developed. If color or texture is known, then a 
different segmentation routine could be used. If shape is known, then a Generalized Hough 
Transform could be applied to an edge-detected image. The energy minimization algorithm 
relies on the difference image to provide image segmentation for the E,,ode~ term in Eq. (3.11). 
It is also used as an input to the edge detection process, but this design decision was made 
solely to increase ease of implementation. When new placement routines are available, the 
minimization algorithm should be tested with raw gray scale image data. 

More experiments should also be done to determine whether the mean of control points 
is the most useful definition of the center of the active deformable model. Although the mean 
is very simple to compute, it directly refects the location of the control po in t s - -no t  the 
location of the entire shape. Consider that there are many sets of control points that define 
the same boundary (when control points are allowed to be collinear, which they frequently 
are). These sets of control points do not, however, have the same mean. If the location of a 
model is defined as the center of mass of the shape defined by its boundary, then the location 
of the model is invariant across these different sets of control points. 

System robustness can be improved by arriving at a reliable measure for system failure. 
One such measure for the energy minimization technique described in this chapter is a 
"crossover" in the active deformable model. As mentioned previously, when the model is not 
a simple polygon, the Emode I term no longer works in concert with the other energy terms, 
which frequently leads to uncontrollable expansion of the model. If a computationally 
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inexpensive check could be devised for violation of this condition, the system could be 
stopped and new control points selected. 

Finally, the ability of the system to move relative to the target object can be enhanced by 
making better use of the information available in the momentary configuration of the active 
deformable model. Currently, only the location of the mean of the model control points is 
recovered. By using the relative positions and distributions of the control points, the control 
input can be extended to take into account apparent scaling or skewing of the model points. 
For example, increases in the model scale should correlate inversely with decreases in the 
distance from the object to the camera. Theoretical groundwork for this extension exists in 
the previous work of Colombo [9] and Andrew Blake's group [8]. 

10 CONCLUSIONS 

We have presented an approach to visual servoing using active deformable models to track 
image contours. We use these models to track the boundaries of the object's image in the 
difference image. By tracking the object's contour, we avoid some difficulties associated with 
visual servoing techniques that track features, such as the occlusion of features or changes in 
the features due to object deformations. Moreover, because we close the control loop by 
using partial solutions from an iterative technique, the movement of the manipulator actually 
simplifies the task of the process that tracks the object using active deformable models. To 
illustrate the potential of our algorithms, we implemented them on the MRVT system and 
presented a detailed description of their real-time performance. 
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CHAPTER 4 

Visually Guided Tracking and 
Manipulation 
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RVSI Acuity CiMatrix, Canton, Massachusetts 
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Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 

1 I N T R O D U C T I O N  

For a robot manipulator to operate properly in an unstructured environment, it is essential 
to employ a variety of sensors. A charge-coupled device (CCD) camera-based machine 
vision sensor is a typical noncontact sensor that provides feedback information to the 
manipulator controller. By including cameras inside the control servo loop of a manipulator, 
visual servoing can easily be achieved. There are three basic strategies of visual servoing. The 
first strategy uses a camera mounted on the end arm of a manipulator, which is commonly 
referred to as an eye-in-hand configuration. Because of the close proximity of the camera and 
the end effector to the workpiece, this technique is desirable for close inspection, gauging, and 
automated part recognition. The second strategy employs an overhead camera. This 
technique is usually implemented in a carefully designed and controlled environment in 
which the depth of a scene is known or fixed. For  example, it can be used for servo control 
of a manipulator used to grasp an unoriented workpiece on a workbench or a conveyor. The 
third strategy is a natural extension of the second strategy; it uses multiple cameras whose 
pose and zoom may be controlled to improve the viewing conditions. Because cameras are 
not mounted on the arms more manipulators can be added to the system when needed for 
multirobot tasks without altering the overall system configuration. Visual servo control may 
assume different forms. Depending on the choice of feedback representation, a position-based 
or image-based scheme can be proposed. In a position-based scheme, the three-dimensional 
(3-D) position and orientation information of the environment is first inferred from a set of 
derived image features and then used in the manipulator controller. On the other hand, 
image-based visual servo control defines task reference configurations directly in the image 
space by using image features that are uniquely related to spatial position and orientation 
information. 

115 
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Most of the research on using vision information in servoing robot, especially on visual 
tracking, has been conducted with the eye-in-hand configuraton [1-6].  Because of the 
inherent difficulty of recovering a 3-D scene from a single camera, it is natural to seek a task 
specification directly in the image space. In visual tracking, for example, such a task can be 
defined simply as "move the manipulator in such a way that the projection of a moving or 
static object is always at the desired location in the image" [4]. The "desired location" is 
usually described by some preselected feature points [4] or special marks [3] on the object 
or obtained through teach-by-showing techniques [2]. Starting from this point of view, the 
cited work discusses various aspects of the modeling methodology, feature estimation, and 
control law design. In the eye-in-hand configuration, visual tracking has been formulated as 
compensating for the instantaneous error of the desired location generated by the motion of 
the object. Typically, no attempt is made to model this motion, however. As a consequence, 
the tracking performs well only when the speed is low. Also, the rotational component of the 
object around an axis perpendicular to the optical axis of the camera must be kept minimal. 

With the third strategy, however, the fact that no camera moves with the manipulator 
admits the possibility of estimating trajectories of a moving object. In doing so, motion 
prediction becomes possible and tracking performance can be improved. The efficacy of the 
motion modeling is demonstrated in [6], where an autoregressive (AR) discrete-time model 
is used to predict the location of features of a moving object for grasping. In a trajectory 
filtering and prediction technique for a moving object introduced in [7], a manipulator is 
guided with two cameras to track and grasp an object. The feedback scheme is position 
based, because the tracking is designed with respect to the centroid of the object, which is 
obtained by triangulation of the centroids of the 2-D images. In order to obtain the 3-D 
centroid accurately, the two image centroids must be correctly isolated to correspond to the 
same 3-D physical point. This is a difficult task, because the perspective projection of a 3-D 
centroid of an object does not necessarily correspond to the centroid of the image of the 
object. 

Most approaches to motion analysis assume the camera-centered structure [8,9]. The 
motion is usually considered as a rotation around the origin of the camera coordinate frame, 
followed by a translation. As different values for the motion parameters may be obtained for 
each new frame, these parameters have to be combined in order to produce the actual 
(natural) motion of the scene. Object-centered models for estimating the natural values for 
translation and the center of rotation are proposed in [10, 11]. The center is not necessarily 
the geometric center; it may be a point that has only a purely translational motion. The 
equations are developed with respect to the unknown center using multiframe features. In 
order to do this, special assumptions are usually made. For example, the motion is 
formulated as a constant rotation around a center followed by a constant translation of the 
center. It is shown that the solution of the simultaneous equations so obtained is less sensitive 
to noise than in the two-view case. 

Motion parameters cannot be completely determined from a monocular sequence. The 
3-D structure interpretation as well as the translation can be specified only up to an arbitrary 
scale factor. However, the problem can be overcome with binocular images obtained by 
stereo vision approaches [12]. In stereo vision algorithms, however, it is usually required to 
establish some correspondence, or matching features, between the two images taken at the 
same time. Because the matching process can be time consuming, alternative methods have 
been suggested, such as the correspondenceless approaches [13]. 

In this chapter, we present a new approach to the problem of tracking and grasping a 
moving object by a manipulator with multiple cameras. We propose a new object-centered 
model for the motion of the object by defining a 3-D reference point in the object. As the 
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reference point is used to represent the translational motion of the object, the tracking can 
be designed with respect to the 3-D point. However, no attempt is made to recover 3-D 
feature points of the object on the basis of stereo matching. Instead, only the image of the 
reference point in each camera is needed, and it is determined from the 2-D features of the 
object within the same camera. By properly defining an error function between the image of 
the robot gripper and that of the reference point, the image-based tracking control law is 
obtained using the nonlinear regulator theory. 

The chapter is organized as follows. Section 2 presents a complete modeling study of the 
multicamera hand-eye system. Section 3 proposes a new approach to the estimation of 
motion of the object. The problem of determining the reference point in the image planes is 
completely studied. A general framework for image-based robot tracking and grasping of a 
moving object is presented in Section 4. In Section 5 we report simulation results. Section 6 
concludes the chapter. 

2 MODELING OF THE TRACKING AND GRASPING SYSTEM 

2.1 System Configuration 

Figure 4.1 illustrates the configuration of the tracking and grasping system, where J ( J  ~> 2) 
fixed cameras are directed toward the work space of a robot manipulator. The robot's base 
coordinate frame is chosen as the world coordinate frame (WCF) of the system, which is 
denoted by O w X w Y w Z w  . For i =  l , . . . ,  J ,  let OciXciYciZci denote the ith camera coordinate 
frame (CCFi), where Oci and oc~Zc~ are respectively the center of the lens and the optical axis 
of the ith camera. For any point p in the work space, its coordinates in the WCF and CCFi 
are denoted respectively by (x~, y~, z~) and (xc p, yc p, zc~) (i = 1 , . . . ,  J ) .  

The coordinates of point p in the WCF and the CCFi can be related by 

Zc d L 
(i = 1 , . . . ,  J )  (4.1) 

Ycl 

YcI 

�9 Yw 

FIGURE 4.1 
Configuration of the tracking and grasping system. 
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where 

r V] ?'il 1"i2 ?'i3 dil 

[_Ti7 ri8 ri9 di3 

are known 3 x 3 or thonormal  and 3 x 1 matrices, respectively. 

2.2 Model of the Robot Manipulator 

For the task of tracking and grasping a moving object, a six degree-of-freedom P U M A  560 
manipulator  is used with a parallel jaw gripper mounted on the end effector. The dynamics 
of the robot is described by 

D(q)q" + C(q, O) + G(q) = -c (4.2) 

where q = Eql q2 q3 q4 q5 q6]  T, 77 = E-c I "~2 T3 T4 T5 T6] T' qi, Oi, (1"i (i = 1, 2 . . . .  ,6) are the 
position, velocity, and acceleration of joint i, respectively; r~ is the torque acting at joint i; 
and D, C, and G are respectively the 6 x 6 inertia matrix, 6 x 1 vector of centripetal and 
Coriolis terms, and 6 x 1 vector of gravity terms. The position and orientation of the gripper, 
denoted by [x~ y~, z~] v and [n o s o a~ respectively, can be represented as trigonometric 
functions of q by the forward kinematic equations. Alternatively, using the OAT representa- 
tion [14], the orientation of the gripper can also be described by three independent Euler 
angles O ~ A y, and T ~ Clearly, O.0, A y, T 9 a r e  also functions of the joint displacement q. 

On introducing state variables X l q, x2 //, and x v [Xl v v = = = x2], (4.2) has the form 

I x2 ] E 0 ] 
2 2 D -  l(C(x) + G(xl))  + D -  I(X1) T 

(4.3) 

~- f ( x )  + g(x): (4.4) 

The pose (position and orientation) of the gripper can be described by 

g 
Xw 

g 

Zw 

0 o 

A o 

T o 
_ _ 

h4(x l ) I 

hs(x 1) I 

_h6(x 1)] 

(4.5) 

It is well known [15] that for system (4.4) with output  equation (4.5), a state feedback 

-c = c~(x) + fl(x)v (4.6) 

and change of coordinates 

[~1 ~2 "'" ~:2] m = ~(x) (4.7) 
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with c~(x), fl(x), and ~(x) appropriately computed from vector fields f 9, and h will render 
the system into two decoupled subsystems: 

Plant (I): 

Plant (II): 

~ ( 1 )  __  A~(I) + B/)(1) (4.8) 

[X~ y~ w Z~ (1) (4.9) 

~ ( 2 ) =  A~(2) nt - B/)(2) (4.10) 

[ 0  ~ A ~ T~ T = C~ (2) (4 .11 )  

where 

~ ( 1 ) = [ ~  4~ ... 

/)(1) = E/)I /)2 

1 A 0 3 x 3  0 3 x 3  

~6) T' ~(2) "-- E~7 ~8 "'" ~123 T 

/ )3IT /)(2) __ E/)4 /)5 /)6] T 

 03x j 
B = / 3 . _ . 1 1 3 x  ' 

The linearized and decoupled plants (4.8), (4.9), (4.10), and (4.11) will be used in the design 
of the tracking and grasping controllers. 

2.3 Modeling the System of Cameras 
Each camera is modeled by the perspective projection. For a point p in the robot work space 
with world coordinates (x p P w, Yw, ZPw) and camera coordinates (Xc p, Yci p, zc p) in the CCF i 
(i = 1 , . . . ,  J ) ,  its image in image plane OiXi  Yi can be given by 

p p 
X p Xci Yci = -2b- f~, Y~P = -2-Y f/ (i - 1 , . . . ,  J )  (4.12) 

Zci Zci 

where f / is  the focal length of the i th camera. 
For convenience, we denote 

x"=EX~w /w Z~w] ~ 

x . = E x f  gf  xg  g2 ~ ... x ~  ry]  �9 

Combining (4.1) and (4.12) yields 

p p p 
X~ = rilXw + ri2Yw + ri3Zw -1- dil 

p p p - L  
ri7x w q- r~sy w + ri9Zw n t- di3 

(4.13) 

p p p 
yi p = ri4x wp + ri5Y wp -Jr- ri6z wp -k- di2 f i  (4.14) 

riTXw + risYw + ri9Zw + di3 

Denote 

Qi! = Eqil qi2 qi3] 

Qie = Eqi4 qi5 qi6] 
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Qi3 = Eqi7 qi8 qi9] 

qih = rihf~/d~3 (i = 1 , . . . , J ; h  = 1 , 2 , . . . , 6 )  

qih = rih/di3 (i - 1 , . . . ,  or h - 7, 8, 9) 

Pij = d i j f~ /d i3  (i = 1 , . . . ,  J ; j  = 1, 2) 

Then (4.13) and (4.14) can be written as 

xf'= 

Y/P 

QilC~ (1) + Pil /x 
~ ~ - - ~ i )  + 1 = Pil(Xp) 

Qi2C~ (1) -Jr- Pi2 A_ pi2(xP ) 
-Q 3 ~--C~ i ) + 1 - 

(4.15) 

(4.16) 

Define a mapping P by 

X P =  P(x p) ~ Epl l(X p) p12(x p) ... p.r p) p.r T (4.17) 

F rom (4.17), we have 

M(XP)x p = N(X p) (4.18) 

where 

M ( X " )  = 

Qll 
Q12 

Q.~r 1 

Q.Y-2 

XVlQ13 

Y~Q13 

X~Q~3 
Y~Q~3 

_ 

N(X p) = 

X~ - P l l  

Y ~ -  P12 

X ~  - P~,l 

Y ~  - P~l 
_ 

Because the number  of equations in (4.18) is larger than the number  of unknowns, the least 
squares solution of x p can be used to define the inverse map of P" 

x p = p - l ( x p )  ____A ( M T M ) - ~ M T N  (4.19) 

Therefore, the position vector x p and the image vector X p of point p can be related by 
transformations (4.17) and (4.19). 

2.4 Modeling a Moving Rigid Object 
We have discussed the estimation of motion using a camera-centered or object-centered 
model. For  the task of motion tracking, where prediction of the position of the object is 
important ,  the object-centered model may be more suitable. In the following, we model the 
general mot ion of a rigid object by decomposing it into a translation of some point, which 
we shall call a reference point, and a rotation of the object around the point. For ease of 
conveying our idea of the tracking and grasping design, we assume that the moving object 
is a regular hexahedron. 



3 ESTIMATION OF THE MOTION FIELD OF THE REFERENCE POINT 121 

FIGURE 4.2 
Motion of a rigid object. 
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A reference point of a moving object is defined as a 3-D point such that 

1. Its position relative to the object does not change over time. 
2. The point has a purely translational motion and no rotation. 
3. With the constraint that the translational motion of the reference point is smooth, its 

distance from the centroid of the object is kept as small as possible. 

The definition of the reference point consists of two important aspects. First, the choice of 
the reference point should be such that its motion is smooth and therefore predictable. 
Second, because the tracking and grasping will be designed with respect to the reference point, 
the point should be kept close to the centroid of the object in order to achieve stable grasping. 

The rotational motion of the object can be described as follows. Let rffs rar be a coordinate 
frame attached to the object centered at the reference point with each axis being parallel to 
the corresponding sides of the hexahedral object (Figure 4.2). When the object moves, the 
orientation of the coordinate frame changes (with respect to the WCF) according to (see also 
[163) 

with 

[fir gr ar-] __f~[ff s r a r] (4.20) 

0 --(93 (92 

~'~ -- (93 0 --(91 (4.21) 

--092 (91 0 

where co = [(91 (92 0-)3] T is the angular velocity. 

3 ESTIMATION OF THE MOTION FIELD OF THE REFERENCE POINT 

3.1 Formulation of the 3-D Reference Point Problem 

The three assumptions that a reference point should satisfy can be described mathematically 
as follows. Let (x~, y~, z~) (j = 1, 2 , . . . ,  or be the coordinates of 3-D feature points in the 
objects in the WCF. We assume these points can be observed by each camera. Since rnrsra r 

r r r T is the coordinate frame whose origin is at the reference point x r =  [Xw Yw Zw], by 
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assumption (1), there exist k j l ,  kj2, k j 3 E R  1 such that 

Xw Xw k j l  

_ZUwJJ Z w kj3 

(4.22) 

holds for any time t. Differentiating (4.22) and using (4.20), the 3-D motion of the feature 
point is described by 

i u;] F ]  Xw Xw XUw j X w 
�9 

�9 uj LzwJ LzT] Zw 

(4.23) 

Using (4.1), Eq. (4.2) can be written in the CCFi as 

Xci 

where ~ = R i R  ~. Clearly, ~ is skew symmetric. Hence 

0 - - ( ~ ) 3  (~-)2 

~'~ - -  (-793 0 - - ( J ) l  

- -  (-~)2 (-~)1 0 

(4.25) 

In assumption (3), the smoothness of the motion is interpreted as the 3-D velocity of the 
reference point changing slowly over any two adjacent frames. Let any two adjacent frames 
be denoted by k = 1, 2. Then it is required that 

,~i(1) = ,~,(2) (4.26) 

and the objective function 

f/ 
2 

*~" *r . r  . r  
J2 -(zci(1))2 [(Xci(1) --  xc,(2)) z + (y~i(1) -- vc/(2)) 2] (4.27) 

is minimized. Furthermore, the requirement that the reference point be as close to the 
centroid as possible can be satisfied by minimizing 

L 2 = ~ ~ " Z c , ( k ) )  ] y ~ (k ) )  + (Zci(k) - (4.28) J1 k=x (z~/~)) 2 [(Xc~(k) - x~,(k)) 2 + (yci(k)  - ~ 2 ~ ~ 2 

where weighting factors z~i(1) and z~i(2) indicate that the object is paid greater attention 
when it moves closer to the i th camera. 
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Finally, by assumption (2), we have 

r 

/,:,(21 
L4,(2) 

where T~ is the vision sampling period. 
Let 

-or 

L,(1)] 
_~:,(1)J 

(4.29) 

J = Jx nt- eJ2 (4.30) 

where e ~> 0 is a weighting factor. We have 

Definition 1 The 3-D reference point problem is to find a 3-D point (x;i(k), y~i(k), z;i(k)) for  
k = 1, 2 that minimizes the objective function J in (4.30) subject to the constraint (4.29) and the 
constraints given by Eq. (4.24) for t = k T~, k = 1, 2 and j = 1, 2 . . . .  , J .  The point obtained is 
called the 3-D reference point. 

uj uj uj �9 uj �9 uj �9 uj 
(Xci(k), Yci(k), Zci(k)) are known for j = J ,  Suppose that (xci(k), yci(k), z~i(k)) and 1 ,2 , . . . ,  

m 

k = 1, 2. Assume further the ~ can be found from another source [17, 18]. Then the reference 
point (x~i(k), y~i(k), Zc~(k)) and its 3-D velocity field (2~ci(k), ]v;i(k), k~i(k)) can be determined 
by solving the 3-D reference problem. However, in order to find (x uJ "J uj c~(k), yc,(k), Zc~(k)) from 
images of (at least two) different cameras, the problem of matching feature points among the 
cameras has to be solved. This is a difficult task, especially when real-time implementation 
is required. To avoid the point-matching problem, it is essential that the image (X~(k), Y~r(k)) 
of the reference point and its optical flow (X~(k), ~(k)) in the ith camera be determined 
directly from the measurement (XUJ(k), yiuJ(k)) and (ffUJ(k), ~"J(k)) of feature points from the 
i th camera itself, where the related quantities are defined as 

r r 

X~ = X ci r Y i - r  f , ,  = f ,  ( 4 . 3 1 )  
Zci Zci 

XUJ = -2~ f~, YS = f~ (4.32) 
Zci 

3.2 Formulation of the 2-D Reference Point Problem 

We want to determine (X~, Y[) and (2~, ~r) from (X~ 'j, y uj) and ( 2"ji , ~"J), the measurement 
obtained purely from the i th camera. In this section, since all the derivations are with respect 
to the same camera, the subscripts "i" and "ci" can be dropped for notational brevity. We 
further simplify the notation for the reference point by using (X, Y) and (x, y, z) in place of 
(X ~, Y~) and (x ~, y~, zr), respectively. Moreover, we denote T v by T. 

To reformulate the reference point problem in the 2-D image space, we want to represent 
the equations involved in Definition 1 in the 2-D image coordinates. To this end, we can 
rewrite J2 in (4.27) as follows. By (4.31), 

x f  = Xz,  y f  = Yz (4.33) 
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Differentiating these equations yields 

2 f  = X z  + X ~  

:vf = i~z+ Y~ 

(4.34) 

(4.35) 

Noticing that 5(1) = 5(2) in (4.26), we have 

z(1)z(1) + Y(1)5(1) Iz(2)z(2) + Y(2)~(2)) 2 

+ " z(1) - 5(2) 

Denoting p = 5/z, J2 can be written as 

J2 = (X(1) - X(2) -~ X(1) X'(2)/2 ( Y(1) g(2) t2 (4.36) 
p(1) p(2) + Y(1) -- Y(2) -~ P(1) p(2) 

Here p(1) and p(2) are assumed to be nonzero. The treatment of the degenerate cases when 
p(1) = p (2 )=  0 can be found in [18]. 

Consider J1 in (4.28). The location of the centroid of an object is generally not known. 
The centroid can be approximated by 

1 -~ 1 ~ 1 
xC ._ ~ l  XuJ j= yC __ 7 j=~l yuj' zC --" J~j=I~Z"J (4.37) 

Denote d "j = z"J/z. By (4.31), 

= - -  . = X"Jd "j (4.38) 
Z ~ j = l  ZuJ Z j j= 

yCf__ 1 L yujf- z ' j  
Z 6 f~ j = 1 ZuJ Z 

1 J 
= ~' yuJduJ (4.39) 

J j="l 

z~ f_  1 ~ z"Jf 
/.., Z J j = l  Z 

- ~ d "j (4.40) - f J j = - 5  

Therefore, J1 can be rewritten as 

- xC(k) ~ (y(k) - / ( k )  ~ + )+ ) 
or, in the 2-D image coordinates, 

Jl=k=lL I(X(k) - - 1 ~1 X~J(k)dU~(k))2 + (Y(k)- ( )21 1 L YUJ(k)dUJ(k)) 2-+- f2 1-- 1 L duJ(k) 
Y 7 j=l j=l 

(4.42) 
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Equation (4.29) can be written in the 2-D image coordinates as follows. From Eq. (4.26), 
multiplying both sides of (4.29) by ffi:(2) and f/~(1), respectively, yields 

Ix(2) f/k(2) x(1) f/k( 1)- I2(1) f/,~( 1)1 

y(2) f /~(2) = y(1) f  /~(1) + TI).v(1)f /~(1)l 
z(Z) f /~.(2) z(1) f  /k(1) [_~(1)//~(1)_] 

(4.43) 

Using (4.31), (4.34), and (4.35), Eq. (4.43) becomes 

I 
X(2)/p(2) IX(1)/p(1) 

Y(Z)/p(2) = I Y(1)/p(1) 
f /p(2) ~ f /p(1) 

X(1)/p(1) + X(1)I 

}'( f 1 

+ T 1)/p(1) + Y(1) (4.44) 

Finally, we want to represent Eq. (4.24) in the 2-D image coordinates. To this end, 
multiplying both sides of (4.24) by f / z  uJ yields 

�9 o 

5c'qf. = X f /dUJ- 603(Y uj - Y/d 'q) + 602(1 - -  1/d'q)f (4.45) 
Z ul Z 

pu, f ~ f /duj 603( xuj X/duj) + 5)1(1 1/d'~ f 
Z ul Z 

(4.46) 

~:uj f = _?" f /duj _ (o2( Xuj _ X/duj) + 6)1( Yuj 
Z ud Z 

- y/duJ)f (4.47) 

Differentiating (4.32) and using (4.31), (4.45), (4.46), and 4.47), we have 

zuJ zuJ 

z - - f  x u J x  + xuJ + &~ r - &~f  d"~ 

(2)2 )2 
"71" T ( X u j - -  X u j 71- 603 y u j + 602f 

~u) = J2uJf yul ~uj 
zUJ Z u 

(4.48) 

= _ _+_ yuj y _ Y"J nt- (5) 3 X n t- 60 i f  duJ ~Y + ( Y -  Y"J) z --f- 

+ yuj + 603 xuJ----7(YuJ) 2 - - 6 0 1 f  (4.49) 

Rewriting (4.48) and (4.49) yields 

x + x - -  ( !  6~ 6 ~  eU~ d'q 602f X "j + X -  Y +60 Y+ = 
z T -7 

(4.50) 
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where 

~y + y z" y.S + X - Y - 
z - /  7 

&3 X + c} jduj= - - & i f  

,j A x , j  + (x,J)2 x"S + & 3 Y"j + (ozf  CX .-- m T 

uj A __ ~,ruj -71- y u j  _jr_ Co 3 x u J  ---7 ( Y"S _ Co I f Cy  - -  

(4.51) 

Note that Eqs. (4.50) and (4.51) hold for any time, particularly for k = 1,2. Because 
(X"S(k), YUS(k)) and (X"J(k), Y"J(k)) are quantities that can be measured, Eqs. (4.50) and (4.51) 
for j = 1, 2 , . . . ,  or are constraints on the image of the reference point. In the following, time 
k is added to the equations whenever it is needed to represent the two adjacent frames. We 
have 

Definition 2 Consider the minimization problem with the objective function (3.9) subject to the 
constraints 9iven by (4.44), (4.50), and (4.51), where J1 and J2 are 9iven by (3.21) and (3.15) 
respectively. The unknown variables are )((k), eY(k), X(k), Y(k), p(k), and d"J(k), for k = 1,2. 
The 2-D reference point problem is to find the 2-D images (X(k), Y(k)) and ()((k), ~Y(k)) for 
k = 1, 2 of a 3-D point such that the minimization problem is solved. (X(k), Y(k)) is called the 
2-D reference point. 

The following lemma is useful for solving the 2-D reference problem. 
pu 1 ,.,uj u 1 ~uj  

Lemma I Consider the feature points uj (j  = 1, 2 , . . . ,  J )  in the object. I f  ,~x ,~y - ,~y '~x ~ 0 
for j :t= 1, then 

d "j = aj p + --f- X - 7 -  Y (4.52) 

for j = 1, 2 , . . . ,  J ,  where as 4 = 0 can be computed from the image of feature uj. 

Proof Subtracting Eq. (4.50) with feature uj (j  4 = 1) from Eq. (4.50) with feature ul yields 

(_7) 2 (-73 1 ) 
" ldUl-c~j  d"j = ( X"I - x " J )  P + - 7 X  - 7  Y C X 

J J 
(4.53) 

Similarly, from (4.51), 

ua,ul c~Jd,J y , l  ( 6 9  2 dg~ ) 
. - =(  _ ru ) p + - f - x  - - f -  r (4.54) 

ul  uj __ p u l . , u j  If Cx cy ,~Y ,~x :/= O, then d "j (j = 1, 2 , . . . ,  J )  can be uniquely represented by (4.52), where 

a l  m 
c~J(x .1 _ x,J)  _ c~(y  ul - y,J) 

ul gul " ~ ( x  ~ - x " j )  - c ~  ( - g " s )  Cy 

aj = cxUlc~J -- Cy"l cx, J (j  4 = 1) 

d "j, by definition, is a positive quantity. Hence as 4 = 0. D 
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Remark A robust way to compute aj is to use the least squares solution of the following 
equations" 

- ul u2 
Cx - C x  0 ... 0 

ul u2 
cr - c r  0 ... 0 

ul u3 
Cx 0 - c  x ... 0 

u 3  . .  

c r  ~ 0 - c r  �9 0 

ul 
c x 0 0 . . . .  Cx j' 

ul cr 0 0 . . . .  c} t 

:al 1 
! a3  = 

a 4 

_ a c J  

X ul _ X u2 

y u l  y u 2  

XUl _ XU3 

yul yu3 

X ul _ X U J  

y u l _  y .~  
_ 

(4.55) 

Theorem 1 Assume that the angular velocity of  the moving object is known. Then the 2-D 
reference point (X(k), Y(k)) together with p(k) for (k = 1, 2) satisfies 

C~x~(1)X(1) + c~2(1)Y(1) + c~13(1)p(1) -c52fb~(1 ) 

( ]211 ]221 ) 2 (1 + Tfl 1(1)) /~2 T f l 2  (1) \p gl + - 1 1 - 1 0 

c~2(1)X(1 ) + c~22(1)Y(1 ) + c~23(1)p(1 ) + 6)~fbx(1) 

(712 722 ) /~ rf121(1 ) 22(1 + Tfi22(1)) = 0 + 8 \p ( l )  gl -[- p---~- g2_ -- 1 

cr + ~2a(1)Y(1) + 0~33(1)p(1) - f2b~(1) 

f?laX(1) + 712Y(1) + 713 721X(1) + 722Y(1) + 723 
L p-~ii g~ + p2(1) g2 ) 

+ 2~T(X(2) -fla3(1)) + 22T(Y(2) -/323(1)) + 23(Tp(2 ) - 1 ) =  0 

c~(2)X(2) + cr ) + cr ) -c52fb1(2)  + 21(1 + Tp(1)) = 0 

r ) + ~22(2)Y(2) + ~z23(2)p(2) + 6Jxfb~(2 ) + 22(1 + Tp(1)) = 0 

cr ) + cr ) + CCaa(2)p(2 ) - f 2 b ~ ( 2 )  + 23(1 + Tp(1)) = 0 

h~(X(1), Y(1), p(1), X(2)) = 0 

h2(X(1), Y(1), p(1), Y(2)) = 0 

h3(p(1), p(2)) - 0 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

where 

J 
1 ~ X,~(k)aj(k ) 

bx(k) = J j=x 

J 
1 ~ Y"J(k)aj(k) br(k) = J j=l 

J 
1 ~ aj(k) bl(k ) = -~ j= , 
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~ll(k) - -  (1 - (02/ fbx(k))  2 + ((02/fbr(k))  2 + ((02b~(k)) 2 

~2(k)  = (01/f(1 - (02/ fbx(k) )bx(k)  - (02/f(1 + (01/fbr(k))b r(k) - (0~(02b2(k) 

~13(k) = - ( 1  - (02/fbx(k))b x(k) + (02/fbZr(k) + f (02b2(k) 

a22(k) = ((01/ fbx(k))  2 + (1 + (0~/fbr(k))  2 + ((0ibx(k)) 2 

~23(k) = -(0~/fb~c(k)  - (1 + (0x/fbr(k))b r(k) - f(0xb~(k) 

~33(k) - b2(k) + b2(k) + f2bZ~(k) 

J 
1 ~ (XUJ(k) _ aj(k)c ~(k)) 

flax(k) = (02 / f  f113(k) 

fix 2(k) = - (0x I f  fix 3(k) - (03 

1 J 
f123(k)~ ~ (Y"J(k) - aj(k)c"~(k)) 

ar j=l 
f121(k) = (02 / f  f123(k) + (03 

fl22(k) = - (0x/ff123(k) 

7.1 = fl.x(1) - fl.x(2)(1 + rflxx(1)) - fl .2(2)rfl2x(1) 

7.2 = ft.2(1) - fl.x(2)Tflx2(1) - fl.2(2)(1 + Tf122(1)) 

7.3 = - f l . x ( 2 ) r ( 0 2 f  + f l .2 (2 ) r (0x f  

7.4 = - f l . x (2)r f l x3(1)  - fl.2(2)Tf123(1) + ft.3(1) - fl.3(2) 

where n = 1, 2, and the functions gl, g2, ha, h2, and h 3 are defined by 

gl  = (7i1X(1) -k- 712Y(1) + 7,3)/P(1) -k- ~ 1 4 -  T(02 f  

g 2  = (721X(1) -k- 722Y(1) + ~23)/P(1) + Y24 + Tco~f  

h,  = (1 + Tp(1))X(2) - ( 1  + rf111(1))X(1 ) - Tf112(1)Y(1 ) - Tfl~3(1)p(1 ) - T ( 0 2 f  

h 2 = (1 + T p ( 1 ) ) Y ( 2 ) -  Tfl2~(1)X(1 ) - ( 1  + Tf122(1)Y(1 ) - Tf123(1)p(1 ) + r ( 0 ~ f  

h 3 = (1 + Tp(1))p(2) - p(1) 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

P roof  The p roof  consists of three parts.  
(1) P icking independen t  equa t ions  from (4.44), (4.50), and (4.51). 
There  are 2 J  equa t ions  in (4.50) and (4.51) for j = 1, 2 , . . . ,  J .  However ,  these equat ions  

are not  independent .  F r o m  L e m m a  1, we have J independen t  equa t ions  given by (4.52) for 
j --- 1, 2 , . . . ,  J .  Subs t i tu t ion  of these equa t ions  into (4.50) and (4.51) yields 

(-~)2 (01 ) 
2 + X p  = (X  "i - ajc~) p + --f- X - --f-- Y - (03 Y + (02f 

~Y+ Yp = (Y"J - ajc~ j) p + - - f - X  - - - f -  Y +(03 X - (01f  

(4.70) 

(4.71) 
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Summing (4.70) for each j from 1 to J and then dividing the summation by or yields 

(~)2 6)1 r t  ~2 + X p  = p + - - f -X  - 7 -  fl13 --(b3Y nt- 6)2f  (4.72) 

Similarly by (4.71), 

c~ 6)1 ) 
} ' +  Yp = p + --f- X - --f- g ~23 + 6) 3 X - 6) l f (4.73) 

Since p is assumed nonzero, dividing (4.72) and (4.73), respectively, by p yields 

2 /~11X + /~12 Y "-[- 6)2f 
- -  n t- X -- +- fl13 (4.74) 
P P 

}r f121X -[- fl 2 2 Y - - 6 ) 1 f  
- - - { -  Y--  q- fl23 (4.75) 
P P 

So the equations in (4.50) and (4.51) are equivalent to those in (4.52), (4.74), and (4.75). 
Finally, using (4.74) and (4.75), the equations in (4.44) can be written as 

X(2) (1 + Tfi l l (1))X(1 ) + Tfi12(1)Y(1 ) + T6)2 f  
p(2) p(1) 

-+- Till3(1 ) (4.76) 

Y(2) Tf121(1)X(1 ) + (1 + Tf122(1))Y(1) - T 6 ) l f  
p(2) p(1) 

-+- Tf123(1 ) (4.77) 

1 1 
- ~  + T (4.78) 

p(2) p(1) 

Therefore, the constraints in the 2-D reference point problem can also be equivalently given 
by Eqs. (4.52), (4.74), (4.75), (4.76), (4.77), and (4.78). 

(2) Eliminating variables X, Y, d uj (j - 1, 2 , . . . ,  J )  from the 2-D reference point problem. 
Using (4.52), J1 in (4.42) can be written as 

k= x - --f- bx(k ) X(k)  + --f- bx(k) Y (k) - bx(klp(k ) 

+ - --f- br(k)X(k)  + 1 + --f- b r (k) Y(k) - br(k)p(k ) 

+ f 2  6)2 (k)X(k) + b l ( k )Y (k  ) - bl(k)p(k) + 1 
- - - f - b 1  - 7  (4.79) 

Substitution of (4.74) and (4.75) into J2 in (4.36) yields 

J2 = g2 + g22 (4.80) 
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where 

flll(1)X(1) -I- f112(1)Y(1) + 692f fill(2)X(2) + f112(2)Y(2) + 592f 
gl = p(1) p(2) 

~zl(1)X(1) + fl2z(1)Y(1) + Oalf fi21(2)X(2) + flzz(2)Y(2) - 69~f 
g2 = p(1) p(2) 

+ fi13(1) - fl13(2) 

(4.81) 

+ fl23(1) - fl23(2) 

(4.82) 

It is now clear that the 2-D reference point problem becomes the minimization problem with 
the objective function (4.30), with J1 and J2 being defined in (4.79) and (4.80), respectively, 
subject to the constraints given by Eqs. (4.76), (4.77), and (4.78). 

(3) Solving the constrained minimization problem. 
Functions gl and g2 in (4.81) and (4.82) can be simplified by substituting Eqs. (4.76), 

(4.77), and (4.78) into them. The results are given by Eqs. (3.65) and (3.66). Furthermore, 
from (4.78), we have 

1 _ 1 -4- Tp(1) (4.83) 
p(2) p(1) 

Substitution of (4.83) into (4.76) and (4.77) yields 

h 1 = 0 ( 4 . 8 4 )  

h 2 -- 0 (4.85) 

where h a and h 2 are defined by Eqs. (4.67) and (4.68), respectively. Equation (4.83) can also 
be written as 

h 3 = 0 (4.86) 

where h 3 is given by (4.69). 
Define Lagrangian 

L = J1 + 8J2 + 221hl + 222h2 + 223h3 (4.87) 

Then Eqs. (4.56), (4.57), (4.58), (4.59), (4.60), and (4.61) can be obtained by setting 

~L 
8(I-X(1) Y (1)p(1)X(2)Y (2)p(2)-]T) 

= 0 (4.88) 

4 THE C O N T R O L  DESIGN FOR TRACKING A N D  GRASPING 

We have modeled the motion of the object as the motion of the reference point coupled with 
the change in orientation of the object. Because of the decoupled nature of the robot 
dynamics, the control for tracking and grasping the object can be designed in two separate 
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steps. To grasp the moving object, the center of the robot gripper is commanded to track the 
motion of the reference point. In the meantime, aligning the orientation of the gripper with 
that of the object can also be posed as an orientation tracking problem. However, since a 
dynamic model for the motion of the reference point is required in the tracking control 
design, we will first discuss the problem of fitting the data of the reference point to a dynamic 
system. 

4.1 Model Fitting for the Reference Point 

For most real-time tracking applications, the motion of the object is generally not known. 
Therefore, the best one can hope for is to approximate the motion trajectory locally with 
simple models. In the following, 3-D circular paths with varying radii are used to approxi- 
mate the 3-D trajectory of the reference point. 

Let the reference point move along some arbitrary circle in 3-D space. Ordinary 
differential equations for the motion can be given by 

~  

X w  

Zw 

r 1 x;,  6x 

_z;] 
(4.89) 

t t ! where f~' still takes the form of (4.21) with its elements co~, 0)2, and 0)3 being some unknown 
parameters. Note that the f~' here describes the circular path the reference point follows and 
has nothing to do with the f~ in (4.21). Define 

I 

' J  f~' 
6y = - 6y 

Then (4.89) can be written as 

:V & = f~' y + 6y & ~b(xr;0p) (4.90) 

L"J Z w Zw 

where 

[ . . . . .  
O p - -  (_D 1 0 )  2 0 ) 3  (~ (~ T x y 

. . . .  6'y, ' We call co 1, (_02, 003, 6x, and 6z the 3-D motion parameters. 
The 3-D circular trajectory can be projected into 2-D image planes. To do this, first 

observe that the time trajectory of (4.89) starting from any fixed initial 3-D position stays in 
the plane 

t Y t t r 

CO l X w -k- CO z yrw -+- (D 3 Z w -~- S = 0 (4.91) 

where s is a scalar related to the initial position. Using (4.1), Eq. (4.91) can be written in the 
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coordinates of the CCFi as 

Epi qi ri-] 

r 1 X c i  

+ s i = 0 (4.92) 

where 

[Pi qi 
! 

ri]=Ecol 0)2 co;]R/-' 

, , - l d i  

Using (4.12) and (4.92) yields 

r r 

1 p,x;,-+- qiY;i + riz;i p i X i  + qi gi ~- rifi  
r r 

Zci SiZci f isi  
(4.93) 

Differentiating both sides of the equations in (4.12) and using (4.90) yields 

r r . r  r 

2~ : (Xcifi -- Xizci)/Zci 

, ~ , X ~  , 1 
= --093 Yi -t- c02f  / -- 7 / ( - - C o ' 2 X ~  -t- 09, Y~) + (6'j~ - Xi~tz) (4.94) 

Substituting (4.93) into (4.94), we have 

2~ : S i l (X~,  Y~) (4.95) 

where 

r r 

Sil -- ai, , + ai ,2X~ -Jr- a i , 3 Y  7 -~ X i ( a i l 4 X i  -J- ai15YT) 

and aij k c a n  be appropriately defined. Similarly, we have 

~Y~ = Si2(X~, Y~) (4.96) 

where 

r r r r 

Si 2 = ai2, _~_ ai22Xi _Jr ai23Yi q_ Y i ( a i l 4 X  i _Jr_ ai,sY~ ) 

We call aij k the 2-D motion parameters. They are to be estimated from the image of the 
reference point. For notational simplicity, we write 

S , I (X  ,, r[; 0i) 

S ,2(X ], Y;; 91) 

X~ = S(X~ ; OI) a_ ". (4.97) 

SjI(X~,  Y;; 01) 
Sj2(xr..r Y;; 0,) 

_ 

where 01 is the column vector consisting of the parameters aij k. 
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4.2 Parameter Estimation: Recursive Least Squares 

We first show how to estimate 2-D motion parameters. From (4.95), we have 

XT(k) = (I)(k) TOI,il (4.98) 

where (I)(k) and 0i,il a r e  defined, respectively, as 

(I)(k)=[1 X~(k) Y~(k) (X~(k)) 2 X~(k)YT(k)] T 

Oi,il = Eail I all2 ai l3  ai14 ai15] T 

Since Jf~(k) and (I)(k) can be obtained from the image of the reference point in the i th 
camera, the unknown parameters 01,~1 in (4.98) can be recursively estimated [19]. In the same 
way, motion parameters ai21, ai22, and ai23 can be estimated. One important observation is 
that the estimation of 2-D motion parameters of the ith camera requires only the knowledge 
of the image of the reference point in the same camera. Therefore, the estimation scheme can 
be implemented in parallel for multiple cameras. 

4.3 Image-Based Tracking of the Reference Point 

Let the 2-D motion dynamics (4.97) of the reference point be an exosystem that generates 
signals for the images of the gripper of the robot plant (4.8) to follow. The image vector of 
the center of the gripper is given by 

xo=/'(x9 =/'(c~ (~) (4.99) 

where P is defined in (4.17). Hence, the difference between the image of the reference point 
and the image of the gripper can be measured by an error output defined by 

e = X g -  X r (4.100) 

The motion tracking can be posed as a state feedback regulator problem (SFRP) [20] as 
follows. 

Definition 3 The image-based tracking problem is to solve the SFRP with plant (4.8), 
exosystem (4.97), and error output (4.100). I f  the problem is solvable, then the resulting state 
feedback is called the image-based controller. 

Note that the 3-D pose of the gripper can be obtained by measuring the robot joint 
displacement vector. Therefore, assuming matrices Ri and di in (4.1) are accurate, we can 
compute the image vector X ~ from (4.99). On the other hand, we can also measure the image 
vector X ~ as the center of the gripper from the image planes. Clearly, if there is error in 
measuring R/ or di, the computed image vector of the gripper will not coincide with the 
measured one. To obtain matrices R/and  d~ precisely, calibration is necessary. Traditionally, 
calibration is accomplished by observing with the cameras a number of known 3-D points 
in the work space of the robot. The calibration parameters so obtained give a good 
approximation for all the points within the work space. For the task of motion tracking, 
however, the calibration method is not efficient. In fact, a precise calibration in the 
neighborhood of the motion trajectory suffices. 
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Assume that the image vector of the gripper is also processed, in addition to that of the 
moving object. Then the local calibration can be achieved as follows. 

X o Let ( i, y o) be the measured image of the center of the gripper from camera i. 
O O O Furthermore, Xw, Yw, Zw can be computed from the forward kinematic equations. By (4.9), it 

can be seen that Eq. (4.15) can be written as 

X ~ ( k Y v )  = O(k)TO 

where 

F 7 
- XT(k L)x  g (k T,~) LOi3 J 

Therefore, when new images are taken at the next sampling time, the parameters in 0 can be 
updated on line from the recursive least squares method. Similarly, Eq. (4.16) can be used for 
parameter estimation. 

Using the newly estimated parameters Pil, Pi2, and qih in Eq (4.99), we can design the 
image-based controller according to the following theorem. 

T h e o r e m  2 The image-based controller is given by 

U (1) --- c (X r) --3 I- K ( r  (1) --  Tc(Xr)) (4.101) 

where K satisfies a(A + BK) c C - ,  and rt(X ~) = [re 1 rt 2 . - .  ~ 6 ]  T and c(X ~) = [c 1 c 2 C3] T a r e  

obtained, respectively, from 

7~ 2 7"g3] T --- p - l ( x r  ) 

IT (~7~ ET"g4- ~5 ~6 C1 C2 C3 "-" ~-~ S(X~; 0~) (4.103) 

[rt 1 (4.102) 

Proof Denote :V= [6 x 6y 6~] T. First we note that X,~= P(:~) is an equilibrium of the 
system (4.97). Using coordinate transformations, 

~(1) __ ~(1)__ E(]~r)T 0 0 0 ]  T 

X r =  X r _ X ~ 

plant (4.8) and exosystem (4.97) read, respectively, 

~(~)= A ~ ) +  Bv(~) 

:~= ~(g~; o,) ~- s ( s  ~ + Y~; o,) 

(4.104) 

(4.105) 

(4.106) 

(4.107) 

The error output (4.100) is 

e = P ( C ~  (~) + ~,~) - Y ~ ' -  Y~" ~- ~(~(~)) - Y~" (4.108) 
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Letting 

~i = Q i 3 ( C ~  (1)nt- :~r) -k- 1 (i = 1 , . . . , J )  

the first component o f  ~(~(1)) is given by 

Q l l ( C ~  (1) + x~) + Pll ~ r  

~ X l  ~ 
(Q 11 - X 1 Q 1 3 ) C ~  (1) -Jv (Q 11 - X ' ] Q 1 3 )  Rr - ( ) ( ]  - p11)  

(Q 1 1  - -  J{1Q13)C~ "(1) 

The last term is obtained using Eq. (4.18). The rest of components can be similarly computed. 
Hence, 

= 

- - ) c g  - 
r (1)/~ 

( Q 1 1 - X I Q 1 3  1 

(Q 12 - ~r;Q13)C~(1)/(X1 

--r ~(1 
(Q j , -  X yQj3)C ~ )/~.~ 

_ 

Clearly, the origin is an equilibrium of the system with plant (4.106), exosystem (4z107), 
and error output (4.108). Using the regulator theory, the analytical mappings ~(X ") = 
[~1 ~2 . . . .  ~6] T and ~0 ~ )  = [cl c2 c3] T should satisfy 

~ 

~ S(X~; 0,) = A~ + B? (4.109) 
o(x9 

h(ff(Xr)) - X r =  0 (4.110) 

The first component of (4.110) gives 

(Q 11 - X 1 Q 1 3 ) c r c  = X ] Q 1 3 ( c ~ c  -Jr- f~r) nt - X 1  

which is equivalent to 

(Qll - x ]  Q13) C~ = ( x ]  - x])(1 + Q I 3 ~:~) (4.111) 

From (4.18), 

(Q 11 - -  XIQla) s = X] - Pll (4.112) 

Substituting (4.112) in the right-hand side of (4.111) yields 

r le 

(Q al - X 1 Q 1 3 ) ( c f f  + y~r) = x l  _ pla  



136 CHAPTER 4 /VISUALLY GUIDED TRACKING AND MANIPULATION 

Therefore, Eq. (4.110) is equivalent  to 

M(Xr)(Cr~ + ~:r) = N(X ~) 

So 

~2 

~3 

m 

= P - l ( x r ) -  X r (4.113) 

Having  obta ined ~1, ~2, and ~3, we can solve (4.109) for ~4, ~5, ~6 and Cl, C2, C3 in a 
successive fashion. The image-based controller  is thus given by 

/)(1)_ ~?(~r) _+_ K ( ~ ' ( 1 )  ~:(~r)) (4.114) 

with a(A + BKI) c C - .  Now define 

7~(X r ) -- ~7(X r - R r) -4- ~-(1 ) 

c(X r) = ~ ( x  r - x") 

Then it is trivial to verify (4.102), (4.103), and (4.101) from (4.113), (4.109), and (4.114), 
respectively. V-] 

R e m a r k  For  real-t ime implementa t ion  of control  law (4.101), one needs to find the 
closed-form solutions for rc 4, ~z 5, rc 6 and c x, c 2, c 3 as functions of X ~. This can be achieved as 
follows. Denote  rr (x) = Ire 1 g2 g3] T' g(2) = [g4 7~5 g6] T' Using (4.18), (4.19) and (4.102) yields 
the identi ty 

M ( X  r)7~(1)(x r ) -- N(X ~) (4.115) 

Differentiating (4.115) with respect to X r yields 

(~7~ (1) 
M ( X  r) = L o + LlX 1 + L2x  I + L3g 3 ---& L (4.116) 

c~X ~ 

where L o and Lz are diagonal  matrices,  that  is, 

L o = diag(d 13, dl 3 '  " " " ' d~r  d J 3 )  

L i = diag(r 1i+6, r l i + 6 , . . . ,  rji+6, r~i+6), i =  1,2,3 

Pos tmul t ip ly ing  (4.116) by S(X~; 0i) yields 

M(X~)rc (2) = LS (4.117) 

So rc (2) c a n  be solved. Differentiating (4.117) and postmul t ip lying the resulting equat ion by 
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S(Xr; 0t) yields 

~7"C (2) ~S  
M(X r) ~ S = 2(Llrc 4 + Lzrc 5 + L3rc6)S + L ~ S (4.118) 

So 

M(Xr)c(X r) = 2(Llrc 4 + L2rc 5 + L37z6) -1- L ~-~ S (4.119) 

4.4 Tracking the Change in Orientation for Grasping 
The grasping design here is to find a feedback control law /)(2) SO that the closed-loop 
system of plant (4.10) is asymptotically stable and both plates of the gripper are properly 
aligned with the moving object so that grasping may occur at any point. Clearly, this can be 
formulated as a tracking problem. 

Consider Eq. (4.20), which describes the change in orientation of the object. Because the 
orientation of the gripper is described by OAT angles, we want to represent Eq. (4.20) in the 
OAT coordinates so that the two orientations can be easily compared with each other. 

Equation (4.20) can be locally described in OAT space using the following relationship 
(see [14]): 

n x s x  a x S O S A  C T  - C O S T  - S O S A S T  - C O C T  - S O C A  

n r sy a r = - C O S A C T - S O S T  C O S A S T - S O C T  C O C A  

n z  s~ a z - C A  C T  C A S T  - S A  

(4.120) 

where S & sin, C g cos, and the superscript r is temporarily dropped for brevity. Differenti- 
ating S A  = - a~ yields 

C A ~ t  = - / t  z = -09lay n t- c o 2 a  x 

Eliminating a x, a r by (4.120) yields 

A -~- --60 1 C O  --  (D2SO (4.121) 

Differentiating - S O C A  = - a x yields 

- - C O O C A  + S O S A f 4  = it~ = 092a z - 093a r 

By (4.120) and (4.121), we have 

d "-- ( - -09  1SO -Ji- ( D 2 C O )  tan A + 0,) 3 (4.122) 

Finally, differentiating C A S T  = sz  yields 

- S A ~ 4 S T  + C A C T ~ F  = ;s z = oOlSy - OOaS x 
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By (4.120) and (4.121), we have 

~t ~ --- ( - -  .((D 1 S 0  Jr- co 2 C O ) / C A (4.123) 

Therefore, if we denote 

O r 

r/r= A r 

T r 

Eq. (4.20) can be written as 

((D (('02 COS O r - -  o) 1 sin O')/cos A r 

2 COS O r - -  001 s i n  O') tan A '  + co s 

or  __ ~(qr) _AA - - c o 2  sin O' - col cos O' " (4.124) 

Assume that the angular velocity has been estimated. Using equation (4.124), the control 
law for tracking the change in orientation of the object can be given by 

~ + Ko,p(rl ~ - ) +  Ko.,,(O ~  ~) (4.125) 

where Ko, p and Ko,,, are 3 x 3 gain matrices satisfying 

13x3   
,~ Ko .pJ i #  

eC-  

4.5 Implementation Issues 

In the recursive estimation of the 2-D motion parameters from Eq. (4.97), we find that the 
estimation results are less sensitive to noise when the second-order terms are neglected. In 
other words, using affine equations yields robust estimation results. For example, with two 
cameras (e.g., d = 2), the projected motion (4.97) can be approximated by 

i a, 3 0 0 
f;] La22 o a~ LYZj 

(4.126) 

In general, due to the processing delay, the vision sampling rate 1/T~ can be achieved 
around 5 to 10 Hz. This is rather slow compared with the robot servoing rate. Therefore, 
important issues such as multirate sampling and significant time delay in computing the 
reference point and the orientation of the object have to be dealt with. 

Let the robot servo sampling periods be T~. For  convenience, we assume that T~/T~ = N, 
where N is an integer, and that the vision sampler and the servo sampler are synchronized. 
Figure 4.3 illustrates the relation between the two sampling periods on the time axis. Because 
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FIGURE 4.3 
Vision and robot servo sampling periods on the time axis. 

the information needed at sampling instant ( k -  1)T~ for the on-line controller will not 
become available until a later time k Tv, prediction is necessary. 

For example, consider 

F/)(1)(~) 1 

and v (~), /)(2) a r e  given by (4.101) and (4.125), respectively. At time instant 

I1 "-- k T  v -]-" m r s ,  me{0, 1 , . . . , N -  1} 

the following prediction scheme can be used in computing v(t ~). 

1. The image vector of the reference point X~(t 1) is predicted from 

A 
X~((N + m)Ts) 

where X~(t) is the solution of the differential equation (4.126) with initial condition 

A 
x ~ ( o )  = X~((k - ~)T~) 

and auk updated by the recursive estimation at time instant (k - 1)T~. 
2. The orientation ~/r(t l) is predicted in a similar way to Xr(tl). 

5 SIMULATION RESULTS A N D  DISCUSSION 

Simulation is done on the basis of the following system configuration. Two CCD cameras 
are separated by 1 m and are 2 m away from the origin of the robot's base frame with the 
orientation matrices and translation vectors in (4.1) chosen as follows: 

0 . 5 0 7 0 0 . 8 6 1 9  0 1 ~0.152141 
R 1 = -0.4480 0.2635 0.8543 , d 1 = 0.134 

0.7364 -0.4331 0.5198_] 2.5296 I 
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R2 

0 1.0000 0 0 

= -0 .5767 0 0.8170 , d 2 = 0.1730 

0.8170 0 0.5767 -2 .3260 

We assume that the focal length of each camera is 25 mm and the vision sampling rate is 
5 Hz. 

5.1 The 2-D Reference Point Problem 

In Figure 4.4, let uj (j = 1, 2, 3, 4) be the 3-D feature points of a moving object. Let C be the 
centroid of the four feature points; B of feature points u l, u2, and u3; and A of feature points 
u l and u2. The effectiveness of the method of determining the 2-D reference point from 
Theorem 1 can be demonstrated by the following simulations. 

1. Suppose the object moves in such a way that point C translates constantly in 3-D and 
the object rotates around point C. Then, from the observations of the 2-D images of 
points uj, the 2-D reference point can be solved that is exactly the image of point C no 
matter what e ~> 0 is. 

2. Suppose the object moves in such a way that point A translates in 3-D and the object 
rotates around point A. Let uj (j = 1, 2, 3, 4) be the observable features. For e = 10, the 
X coordinates of the images of points A, C and the reference point r versus time are 
plotted in Figure 4.5(a). Similarly, their Y-coordinates are plotted in Figure 4.5(b). The 
trajectories of these points in image plane X - Y  are plotted in Figure 4.5(c). It can be 
seen from Figure 4.5(c) that the 2-D reference point represents a balance between the 
smoothness of its trajectory (for prediction) and the nearness of the point to the 
centroid of the object (for stable grasping). 

3. Suppose the object undergoes the same motion as in (1). However, we assume only that 
3-D feature points u l, u2, and u3 are observable. The centroid of the object is thus 
represented by point B. For e. = 5, the trajectories of the 2-D reference point and the 
images of point B and C are plotted in the X - Y  plane in Figure 4.5(d). 

5.2 Image-Based Tracking 

Assume that the robot sampling rate is 100 Hz. The maximum velocity of the gripper is 
0.25m/sec. A moving cube with average speed 0.1 m/sec is required to be tracked and 
grasped. We use the sinusoidal curve (which was proposed in [6]) to demonstrate the 
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FIGURE 4.4 
Illustration of the points used in the simulation. 
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tracking performance of the proposed schemes. The trajectory is given by 

Curve: x~(t) = 0.4572 + 0.508 sin(0.08~zt) (m) 

y~(t) = -0.0508 + -0 .0508 sin(0.16Tct) 

z~(t) = 0.05 (m) 

O(t) = 1.7708 - 7c sin(0.08rct)/3 (rad) 

A(t) = 0  (rad) 

T(t) - 0 (rad) 

(m) 

To simulate calibration errors, two new matrices are generated by multiplying R x and R 2 

by some rotation matrix that represents a small rotation of angle/3 around a certain axis. 
Using projection (4.15), (4.16), the image location and velocity are generated. Uniformly 
distributed random variables with mean zero and different variances (noise level) are then 
added to them to simulate the quantization error effect and measurement noise. The resulting 

r ~ . X g  quantities are used as (Xi, Y() and (2~, ~r) (i 1, 2) The image location ( i, Yi ~ of the 
gripper is similarly generated. Each image plane is digitized into 512 x 512 in pixel size. 

Figure 4.6 shows the tracking performance of the image-based scheme for the sinusoidal 
trajectory with a noise level of 1 pixel and no calibration error. The initial pose of the gripper 
is [0.508 0.0762 0.058]Tm and [re/2 0 0] T radian. Since the initial position error is large, 
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FIGURE 4.6 
Tracking of the sinusoidal trajectory (noise level 1 pixel). (a) Gripper position versus cube position on xy plane. (b) 
Corresponding position in z direction. (c) Absolute position error between gripper and cube. (d) OAT angle tracking 
error versus time. (e) Part of estimated 3-D motion parameters. (f) Estimated angular velocity. 

on-line polynomial trajectory planning is used to drive the robot into the vicinity (0.05 m) of 
the moving cube. The image-based controller is then switched on for fast and stable tracking. 
It can be seen that the trajectory of the gripper is quite smooth. The grasping occurs when 
the distance (tolerance) between the gripper and the cube is stable for three vision samples 
(here tolerance = 0.005 m is used). 

The effect of calibration errors is simulated with /3 = 0.02 radian. The image-based 
tracking results with noise level 2 pixels are plotted in Figure 4.7. The estimated calibration 
parameters in (4.15) and (4.16) are plotted in Figure 4.7(g). 

6 CONCLUSIONS 

A complete modeling study for the multicamera robot hand-eye system has been presented. 
Assuming a rigid manipulator whose dynamic model is exactly known, the feedback 
linearized and decoupled model is used. The rigid motion of the object is modeled as a 
translation of the reference point and a rotation of the object around the point. For each 
camera, a complete solution is obtained to compute the motion of the reference point in the 
image plane, utilizing 2-D image features of the object only from the same image plane. In 
so doing, the traditional stereo vision approach is avoided. 

Nonlinear regulator theory is applied to the control law design. Based on the estimated 
2-D image reference point of the object, dynamic models in 2-D are obtained and used as 
the exosystem in the regulator design. The image-based tracking scheme is proposed. On the 
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other hand, using the OAT orientation representation of the object, the control design for 
grasping is solved as an orientation tracking problem. 

In our analysis of tracking and grasping, regular polyhedral objects are assumed. The 
approach needs to be extended to deal with objects of arbitrary shape in order to improve 
its applicability. Furthermore, although it has been demonstrated by simulations that the 
tracking and grasping algorithms have good performance in terms of speed and tracking 
accuracy, we believe that further effort should be made to utilize video-rate pipelined 
hardware or parallel processor arrays if we are ever to achieve real-time capabilities. 
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CHAPTER 5 

Complementary Sensor Fusion in 
Robotic Manipulation 

BIJOY K. GHOSH, ZHENYU YU, DI XlAO, NING Xl and TZYH-JONG TARN 
Washington University, St. Louis, Missouri 

ABSTRACT 

In this chapter we analyze problems in robotic manipulation in an uncalibrated environment. 
The environment consists of a P U M A  560 robotic manipulator,  a turntable rotating around a 
vertical axis equipped with an encoder that records the instantaneous angular displacement with 
respect to an axis chosen a priori, and a CCD camera-based  vision sensor that is fixed 
permanently on the ceiling. It is assumed that a part with a known shape but unknown 
orientation is placed on the turntable, which is rotating with unknown motion dynamics. 
Furthermore,  the relative positions of the manipulator,  turntable, and camera (the calibration 
parameters) are assumed to be unknown. In spite of our lack of knowledge of the orientation of 
the part and the calibration parameters, the objective is to track the rotating part (with an a 
priori specified relative orientation) and grasp the part with the end effector of the manipulator. 

In addition, we consider planning and control of a robot manipulator  for a class of constrained 
motions. Here the task under consideration is to control a robot so that a tool grasped by its 
end effector follows a path on an unknown surface with the aid of a single-camera vision system. 
To accomplish the task, we propose a new planning and control strategy based on multisensor 
fusion. Three different sensors - - jo in t  encoders, a wrist force- torque sensor, and a vision system 
with a single camera fixed above a work s p a c e - - a r e  employed. First, based on sensory 
information, we decouple control variables into two subspaces: one for force control and the 
other for control of constrained motion. This decoupling allows one to design control schemes 
for regulation of force and for constrained motion separately. Second, we develop a new scheme 
by means of sensor fusion to handle the uncertainties in an uncalibrated work space. The contact 
surface is assumed to be unknown but the trajectory to be followed is visible to the vision system, 
and the precise position and orientation of the camera with respect to the robot are also assumed 
to be unknown. Overall, the contributions described in this chapter are the following: (1) 
multisensor fusion used for both force- torque and visual sensors with complementary observed 
data, as opposed to many sensor fusion schemes in the literature with redundant  data; (2) 
intelligent manipulation of a robot that can work in an uncalibrated work space with a camera 
that is not calibrated with respect to the robot. 

147 
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1 I N T R O D U C T I O N  

In this chapter we discuss two important problems in robotic manipulation. The first 
problem deals with manipulation in an uncalibrated environment. The second problem deals 
with motion planning with multisensor fusion. A third related problem that is not the main 
emphasis of this chapter is servoing. Of course, in each of these problems, "vision" plays an 
important role. This chapter emphasizes that in many instances, vision alone is not sufficient, 
and one has to combine visual information with one or more additional sensory inputs. This 
leads to many multisensor fusion-based algorithms, which are discussed in this chapter. 
Before we elaborate on these algorithms, we make a few background and somewhat historical 
remarks. 

Control of robot manipulators with vision in the feedback loop has an exciting history 
starting with the pioneering work of Hill and Park [1] and Weiss, Sanderson, and Neuman 
[2]. Subsequent work in this area has focused on visual servoing, wherein the emphasis is on 
visually locating the position and orientation of a part and controlling a robot manipulator 
to grasp and manipulate the part. If the part is not stationary, then the process of locating 
the part and repositioning the robot must be performed by utilizing feedback control, which 
has been studied in [3-7].  Using vision in the feedback loop has many advantages over the 
more direct "look and go" approach. Some of the advantages are that a visually guided robot 
is more flexible and robust and has the potential to perform satisfactorily even under 
structural uncertainty. This is evidenced by the "controlled active vision" scheme introduced 
by Papanikolopoulos et al. [8], where the goal is to accomplish a task in spite of 
environmental and target-related unknown and possibly changing factors. Other instances of 
visual guidance have been evidenced by the work of Allen et al. [3], when the objective is to 
grasp a toy train undergoing a planar circular motion. The position of the train is observed 
visually and the orientation is automatically specified by the position. 

The concept of multisensor fusion is to combine data from multiple sensors to obtain 
inferences that may not be possible from a single sensor alone [9]. Without going into the 
details of the specific reason why a single sensor, for example, the visual sensor, cannot be 
used reliably for all the different tasks that we propose to perform, we note that the main 
purpose of using multisensor fusion is to compensate for the speed of computation. The 
vision system we use is neither fast nor accurate--hence the need for "sensor fusion." 

There are many other multisensor fusion schemes in the literature [10-21]. For example, 
Allen and Bajcsy [17] used stereo edges to match objects to a fixed world model and then 
adopted a tactile sensor to investigate the occluded parts. Flynn [18] has combined a sonar 
and an infrared proximity sensor in order to reduce errors inherent in both sensor domains. 
Magee et al. [19] presented a new method for combining data from intensity and range 
sensors. Algorithms based on fusing static thermal and visual images obtained from outdoor 
scenes have been reported by Nandhakumar and Aggarwal [20] and Mitiche and Aggarwal 
[21]. 

As opposed to multisensor fusion-based servoing, where the sensory information auto- 
matically generates the feedback control, in this chapter we propose multisensor fusion- 
based planning, where the sensory information automatically feeds the planner. The motion 
planning schedule is generated autonomously as a result, and the robot controller simply 
follows the motion plan. This simplifies the problem of controller synthesis while relieving 
the computational burden of the controller. On the other hand, the planner has an additional 
structure, since it now receives (multi) sensory input. Because "planning" is not performed in 
real time, it suffices to use a planner with a somewhat slower computational capability. 

It has long been recognized that sensor-based control is an important issue in robotics. 
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As a robot is expected to accompish more complex tasks, the need to take advantage of 
multiple sensors in a system becomes stronger. The growing use of multiple sensors in 
robotics greatly extends the application domain of robots. In practice, the environment in 
which robots are employed is often poorly structured, especially in flexible manuacturing 
systems, where manufacturing lines are not well prepared due to limited time and expense. 
To compensate for the uncertainties in the environment, robots need rich and reliable 
information from the sensors. 

In this chapter, we also propose a new sensor-based control strategy for a class of 
constrained motion of a robot in an uncalibrated work space. Our attempt it to provide a 
robot with certain intelligence in the sense that it can handle uncertainties in the environment 
without explicit intervention of reprogramming. Concretely, the task under our consideration 
is to control a robot such that the tip of a tool grasped by the end effector of the robot follows 
a curve on an unknown surface (both the shape and the exact location of the surface are 
unknown), as shown in Figure 5.1. Many tasks in manufacturing engineering, such as 
welding, cutting materials along a curve, and scribing parts, are in this category. To 
accomplish a task of this kind, it is natural to locate the precise position of the curve. In 
practice, however, it may be very hard to describe the curve exactly, especially in the case 
that the contact surface is unknown. At first glance, the task we consider looks relatively 
simple, because guided by their vision system, humans can easily accomplish it without any 
apparent difficulty. As a matter of fact, as is also the case with perception, the elementary 
operative intelligence that people use unconsciously to interact with their environment (e.g., 
assembling a device) turns out to be extremely difficult to duplicate using a computer- 
controlled robot. To deal with uncertainties in the work space, in our research three different 
sensors have been used. They are encoders mounted at each joint of a robot with six degrees 
of freedom, a force-torque sensor mounted at the wrist of the robot, and a vision system 
with a single camera fixed above an uncalibrated work space, respectively. 

How to integrate information from different sensors is a topic in the field of multisensor 
fusion. A number of results have been obtained in the area [22-26]. However, to our best 
knowledge of the literature in the field, most researchers focus on fusion in order to sense 
data by means of redundancy of information obtained from the sensors. As is well known, a 

FIGURE 5.1 
A typical trajectory-following task with vision and force-torque sensor. 
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force-torque sensor and a vision system are disparate sensors. Nelson and Khosla [23] 
proposed a resolvability concept for assimilating these two sensors and utilized them in 
different stages separately during contact transitions based on their resolvabilities. In this 
chapter, we integrate information from the force-torque sensor and the vision system 
simultaneously to ensure the completion of the task. Actually, we employ the force-torque 
sensor not only for maintaining contact between the tool and the surface but also for 
determining the normal vector of the tangent plane of the surface at the contact point. The 
vision system is used to monitor the difference between the tool and the path. A control signal 
is created by projecting the error in the image plane onto the tangent plane. In this way, the 
vision system is implemented in the closed loop. The proposed control has a hierarchical 
structure. The lower level is a hybrid position-force control with nonlinear feedback. The 
upper level is a planner that generates a desired motion based on the information from 
multiple sensors. The relation between the motion of the robot on the tangent plane and its 
projection on the image plane is continuously updated in time. 

The study of control of a robot manipulator with visual information in a feedback loop 
is often referred to as visual servoing. Roughly speaking, the approaches used in visual 
servoing can be classified into two categories: position-based and image-based methods [27]. 
The majority of research work on visual servoing has emphasized dynamic visual tracking 
with an eye-in-hand configuration. The reason is partially that with the camera rigidly 
mounted on the robot arm, positioning against a static scene and tracking a moving object 
can be easily posed as a feature-tracking problem. However, the eye-in-hand configuration 
limits the work space of the robot arm and therefore is not suitable for some cases. In our 
work we choose an alternative configuration--one camera fixed above the uncalibrated 
work space. Our method can easily be extended to a multicamera system with a potential for 
better results. To complete our task, we need to control the contact force and the motion 
constrained on the unknown surface simultaneously without the possibility of a conflict. 
Here, servoing either on the image plane or in the task space is not suitable, if not impossible. 
It is evident that motion servoing on the tangent plane of the surface gives us a better way 
to design control. In order to utilize visual information, most of the previous work on visual 
servoing needed precise calibration of the camera with respect to the robot. Calibration is a 
time-consuming procedure and makes the implementation expensive or even impossible in 
some cases. In this chapter, we introduce a new image-based motion-planning approach for 
the constrained motion of the robot that is robust against uncertainties in the pose of the 
camera. 

The study of the control problem for constrained motion of a robot can be dated back to 
the 1950s. The past few decades have witnessed much progress in this field (see [28] for a 
summary of the control strategies). Among them two approaches, hybrid position-force 
control [29-34] and impedance control [28,35-39], have attracted much attention from 
researchers. The hybrid position-force control approach has a clear physical meaning, and 
impedance control unifies the planning and control as a whole procedure. However, in order 
to use impedance control, one has to translate a task into a desired impedance, a relation 
between motion and force. In some cases, this is very difficult. In this chapter, we adopt a 
hybrid position-force control approach by decoupling control variables in two perpendicular 
subspaces: tangent space and the normal direction. We conclude that with this decoupling, 
one can design control laws for constrained motion and force regulation separately. Our 
method proposed in this chapter differs from previous work in the force control community. 
In our case, the contact surface is assumed to be unknown. Therefore, the desired trajectory 
for constrained motion in the hybrid position-force control scheme is unknown a priori and 
has to be planned in real time. 
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FIGURE 5.2 
A block diagram showing the planning and control structure. 

The planning and control structure employed in this chapter is shown in Figure 5.2. The 
sensory data are fed back to a planner that can generate a desired trajectory in real time for 
the robot, instead of being fed directly back to the controller as in most previous work in 
robotics. We also show in Figure 5.3 how control is implemented by using information from 
the vision and force-torque sensor. 

2 GRASPING 

2.1 Experimental Setup 

We consider a manufacturing work cell as shown in Figure 5.4. The work cell is equipped 
with a rotating conveyor (equipped with encoders that measure the rotation angle), a robotic 
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FIGURE 5.3 
Block diagram of the control system with vision and force-torque sensor. 
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FIGURE 5.4 
A typical manufacturing work cell. 

manipulator, and a computer vision system with a single charge-coupled device (CCD) 
camera. The precise relative positions of the camera, robot, and conveyor are assumed to be 
unknown. In spite of the lack of calibration data, the objective is to compute the 
instantaneous position and orientation of a part placed on the turntable with respect to the 
coordinate system attached to the base frame of the robot. A second objective is to feed this 
information to a motion planner, which operates in either a time base or an event base. The 
planner computes the relevant position, velocity, and acceleration profile that the end effector 
needs to follow in order to achieve the desired task, which in our experiment is to pick up a 
part from the rotating conveyor. The following assumptions are made about or work cell. 

A1. The precise position and orientation of the camera with respect to the robot 
coordinate frame are unknown. In addition, the precise position and orientation of the 
conveyor with respect to the robot coordinate frame are unknown. 

A2. The plane of the conveyor and the X Y  plane of the base frame of the robot are 
assumed to be parallel. 

A3. The part has a known simple shape. In particular, we assume that observing feature 
points placed on the top surface of the part enables one to determine the orientation of the 
part. 

A4. The entire work cell is in the view field of the camera. The center of the conveyor and 
a reference point on the conveyor are also assumed to be observed by the camera. 

A5. The intrinsic parameters (the focal length etc.) of the camera are known. 

The technical contents of this section are now summarized. Because the camera has not 
been selectively placed at any specific known position in the work cell, we propose a virtual 
rotation algorithm that would virtually rotate the camera in a vertical position with respect 
to the disc conveyor. This is summarized in Section 2.2. In Section 2.2 we also describe how 
the position and orientation of the part are computed. This is first done assuming that the 
height of the part is negligible compared with its dimension. Subsequently, we consider parts 
with feature points that are a certain distance above the disc conveyor. 
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In the next phase of this chapter, described in Section 2.3, we consider the problem of 
robot calibration. A priori, we do not assume that the position of the robot is known with 
respect to the coordinate frame attached to the disc conveyor. We propose to compute the 
associated parameters by observing feature points on the end effector. The underlying 
problem that we outline in Section 2.3 is that of computing the coordinates of the feature 
points with respect to the frame attached to the conveyor. 

Our final problem, described in Section 2.4, is to derive a control law for tracking and 
grasping. The problem we consider is to make a plane for a robot to track a target whose 
position, orientation, and velocity are estimated continuously. In doing so, we implement a 
"parallel guidance" controller. We propose that an error reduction term be added to the 
position and velocity of the target to form a desired position, velocity, and acceleration 
profile for the robot. The error reduction term can be carefully planned using both 
time-based and event-based approaches. In Section 2.5, a description of various experimental 
implementations have been provided. 

2.2 Estimation and Calibration 

Camera Self-Calibration 

As described before, we assume that the camera has been placed at an unknown position in 
the work cell. In this section we describe a virtual rotation algorithm to ascertain the relative 
position of the camera with respect to the coordinate frame of the conveyor. Note that any 
point on the conveyor undergoes a circular trajectory as the conveyor rotates. The image of 
such a circular trajectory is an ellipse on the image plane of the camera. The shape of the 
ellipse depends on the relative orientation of the camera with respect to the normal vector 
of the plane of the conveyor. In order to rotate virtually and obtain the corresponding image 
from the top view of the camera, we transform the observed image in such a way that the 
projected ellipse is transformed to a circle. The details of the steps are described as follows. 

Let (xr, Yr)i be the coordinates of the ith reference point on the image plane. Let (x c, Yc) be 
the coordinates of the image of the center of the turntable. 

1. A rotation R k of the camera around its optical center is applied to transform the image of 
the center of the turntable to the center of the image plane. Kanatani's standard rotation 
[40] can be used in this step. 

2. Obtain parameters that describe the ellipse traced out by the ith reference point on the 
image plane. A recursive least squares fittin9 algorithm is used for this purpose. 

3. A rotation R z around the z axis of the camera is applied to transform the major axis of 
the elipse on the image plane into a position parallel to the y axis of the image plane. Note 
that this would automatically place the minor axis alon9 the x axis. 

4. A rotation Ry of the camera around the y axis of the image plane is applied to transform 
the ellipse to a circle. Note that this circle would automatically have its center on the x 
axis of the image plane. 

The entire process of the camera rotations is illustrated in Figure 5.5. Note that the 
rotation R k is necessary to align the center of the conveyor with the center of the image plane. 
It is explained in Appendix 1 that this step is necessary in order to choose the correct sign 
of tan c~ in (5.54). In general, the camera sees the original circular trajectory of the reference 
point up to an elliptic cone. The angle of rotation in step 4 is determined by the plane that 
intersects the elliptic cone on a circle. The details are described in Appendix 1. 
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FIGURE 5.5 
The virtual rotation scheme. 
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Estimating Points on the Part in Three Dimensions 

In this subsection we assume that a part of nonnegligible height has been placed on the 
conveyor. As shown in Figure 5.6, a feature point on the part is at a height h from the surface 
of the conveyor. Let o x y z  be any Cartesian coordinate frame with its origin o at the center 
of the conveyor and its z axis perpendicular to the conveyor. After virtual rotation of the 
camera, the position of a point p in three-dimensional space can be represented by 

axle I - byte I (~ - a ) x ~  I - (b - b ) y ~  I h (5.1) 
Xp = 12 -k- I L f  

bxre ~ + aY~e I (b - b)x~e ~ + ({t - a)Y~el h (5.2) 
YP = I 2 -+- I L f  

where 

a = CoPo "CoRo ; h = C o P  o x CoR  o (5.3) 

= C o 0  o . C o R  o; b = C o 0  o x C o R  o (5.4) 

where AB' denotes the vector from A to B and �9 and x are operations of dot product and 
cross product, respectively. The points C o, R o, and Po are the transformed images (after 
virtual rotation) of the disc center, the reference point, and the point p via perspective 
projection, respectively. The point Oo is the intersection of the optical axis and the 
transformed image plane and h stands for the distance between the point p and the plane of 
the disc conveyor. The coordinates (XreS, YreI'  0) are the coordinates of the reference point R 
in the frame o x y z  and (xp, yp, h) the coordinates of the point p in the same frame. The scalar 
L denotes the length of the reference line segment C R ,  1 is the length of the transformed 
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FIGURE 5.6 
Determining the position of a point from its image using virtual rotation. 

image CoRo of the reference line segment, and f is the focal length of the camera. Note that 
a, b, 2, b, and 1 can easily be computed in terms of the image coordinates of C o, R o, and Po 
and the parameters L and f are known constants. For  a given camera, f is also a constant. 
Hence, if the cordinates (Xrel, Yref) of the reference point are given in the frame oxyz, the 
position of the point p in the same frame is an affine function of h, the height of the point 
from the conveyor. 

Equations (5.1) and (5.2) describe an affine line in the coordinate frame oxyz. The affine 
line passes through the optical center of the camera and the feature point (xp, yp, h). Consider 
a feature point on the part with coordinates (Xp, yp, h) and suppose that two different images 
are taken at two different times t I and t 2. Applying the virtual rotation algorithm to each of 
the two images, it follows that we can write 

X p  - -  01(ti)  -+- 02(tg)h 

yp---- 03([g ) -~- 04(tg)h 

for i -  1, 2. Note that these equations describe two different affine lines described by the 
feature point p at two different instants of time tl and t2. The parameters 01, 02, 03, 04 can 
be correspondingly determined (5.1) and (5.2) and can take different values for different 
instants of time. However, because the part does not move in the rotating coordinate frame, 
it follows that (Xp, yp, h) remain invariant at t~ and t 2 and we have 

01(tl) Jr- 02(tl)h -- 01(t2) + 02(t2)h 

03([1) + 04(tl)h = 03(t2) -+- 04(t2)h 

which can be solved for h using any standard least squares method. 
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Sensor Integration for Estimation in Real Time 

In Figure 5.4, a part placed on the disc conveyor is shown schematically. In order to describe 
the process of sensor integration, the following three coordinate frames have been defined. 
These are the fixed disc frame xDyDzDoD, which is assumed not to rotate with the conveyor; 
the attached disc frame XAYAZAOA, which is attached to the conveyor and rotates with it; and 
the part coordinate frame XpypZpOp, which is attached to the centroid of the part to represent 
its position and orientation. 

The z axes of both fixed and attached disc frames have been assumed to coincide with the 
axis of rotation of the conveyor. The position of the turntable can be described by O(t), which 
is the angle between the x axes of the two coordinate frames. The angle O(t) can be measured 
by an encoder sensor. The origin of the part coordinate frame is attached to the centroid of 
the part to represent the position of the part. The orientation of the part coordinate 
represents the orientation of the part. Let the position of the centroid of a part with respect 
to the attached disc frame (i.e., the relative position of the part) be represented by xa, which 
is assumed to be obtainable from the vision system. The position xd(t) of the part with respect 
to the fixed coordinate frame (i.e., the absolute position of the part) is given by 

x.( t)  = R~(o(t))xo (5.5) 

where 

cos0(t) -s inO(t)  0 

Rz(O(t))=lsinO(t) cos 0(t) 0 01 (5.6) 

represents a rotational transformation around the z axis. 
Let n,, s,, and G be the unit vectors of a coordinate frame of a part expressed in the 

attached disc frame. The matrix Ra = [n, s, G] representing the orientation of the part in 
the attached disc coordinate frame (i.e., the relative orientation of the part) can likewise be 
obtained from the vision system. Let Re(t ) = [ne(t ) Sd(t ) re(t)] be the orientation of the part 
expressed in the fixed disc frame (i.e., the absolute orientation of the part), where ne(t ), Se(t), 
and re(t ) are the unit vectors of the part coordinate frame expressed in the fixed disc frame. 
The matrices Re(t ) and R~ are related as follows: 

Re(t ) = R~(O(t))R. (5.7) 

Equations (5.5) and (5.7) reflect how absolute information Xd(t) and Re(t ) is obtained through 
fusing the relative information x a and Ra with the encoder measurement O(t). Differentiating 
both sides of (5.5) yields 

~ ( t )  = n(O)IL(O)x .  (5.8) 

where f~(t)) is given by 

0 -0 0 
f~(0)= ~ 0000 (5.9) 
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Equation (5.8) shows that the velocity of a part on the conveyor can be obtained by fusing 
relative information x a with encoder measurement O(t) and O(t), the speed of rotation of the 
conveyor. In fact, O(t) can also be measured by the encoder. 

Because the relative position of a part with respect to the conveyor has been assumed not 
to change with time, the absolute position, orientation, and velocity of the part are updated 
at the rate at which the encoder measurements are taken. Since the encoder measurements 
are updated at a very high frequency, absolute information is assumed to be obtained in real 
time, without requiring that the relative information be updated with high frequency by the 
vision system. The computational burden on the vision system is therefore greatly reduced. 

2.3 Robot Calibration 

In order to determine the relation between the fixed disc frame and the base frame of the 
robot, we need to describe a set of points in both frames, as the two frames are related by 

bp = bRdd P jr_ bra 

where bp and ap are the coordinates of a point in the base frame and the fixed disc frame, 
respectively. From assumption A2 in Section 2.1, it is seen that there is one unknown in the 
rotation matrix bR d. bT a has three unknown elements. For  a point q, if we know its 
coordinates in both frames (i.e., bpq and apq), then from the last equality we have three 
equations for the four unknown variables. Obviously, in order to get a unique solution to 
the relation, we need to know at least two points in both frames. Fortunately, from reading 
encoders of the robot, the coordinates of points on the end effector with respect to the base 
frame of the robot can be readily obtained. In what follows, we describe the points on the 
end effector in the fixed disc frame with the aid of the single camera. 

Suppose that an image was taken at time t. At the very moment the coordinates of the 
reference point in the fixed disc frame are 

(dXref  , dgref , dZref ) -- (g  COS(O(t)), L sin(O(t)), O) 
w 

After computing the corresponding a, b, fi, and b via the image data, the coordinates of a 
point on the end effector in the fixed disc frame can be easily obtained by substituting the 
results into (5.1) and (5.2), as long as the distance of the point from the turntable is known. 

Case 1" The Plane of the Turntable Is Known 

Assume that the plane of the turntable in the base frame of the robot is known; that is, the 
distance between the plane of the turntable and the X Y plane of the base frame is known. It 
follows that we can compute the z coordinate of a point on the end effector in the base frame 
of the robot from reading the encoders on the robot. Therefore the height of the point on 
the end effector from the turntable can be computed. Consequently, the coordinates of the 
point in th fixed disc frame are obtained. 

Case 2" The Plane of the Turntable Is Unknown 

Suppose that the distance between the plane of the turntable and the X Y plane of the base 
frame is unknown a priori, although we continue to assume that they are parallel. We now 
describe how to determine the height of the point from the turntable in order to obtain 
coordinates of the point in the fixed disc frame. We consider the following two subcases: 
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Two Points on the End Effector Let (xi, yi, z~) (i = 1,2) be coordinates of the ith point on 
the end effector with the associated coordinates on the image plane being given by (X i, Y/). 
The coordinates of the i th point on the end effector with respect to the camera frame can be 
represented by 

(x~, y,, z~) = z~, --/zg, zi (5.10) 

Note that the z coordinates of the two points in the base frame of the robot are known and 
so is their difference, say d. After virtually rotating the camera, the difference of the z 
coordinates of the two points in the camera frame has the same value with opposite sign, 
since z axes of the base frame and the camera frame are parallel but point in opposite 
directions. Without  loss of generality, we assume z I - z 2 = d, which implies, if d > 0, that 
the second point on the end effector is farther away from the turntable. Also, in the base 
frame of the robot, the distance between the two points on the end effector is known, say s, 
via encoders of the robot. Of course, s is still preserved in the camera frame. Hence, we have 

(X1 - -  X2) 2 + (Yl  - -  Y2) 2 -+- (Z1 - -  Z2) 2 ~--- $2 

that is, 

( X  aZl - X z z 2 )  2 + ( Y l z l  - Yzz2) 2 + fZ(z 1 - z2) 2 = f Z s 2  (5.11) 

Solving these equations for z2, we have 

Z 2 - -  

- F  • v/F z -  EG 

In practice, the problem itself guarantees that one real solution exists. Hence, the quadratic 
equation z 2 must have two real solutions (i.e., F 2 -  E G / >  0). In other words, we can 
determine z 2 up to two solutions if F < 0 and G > 0. However, in many cases we can recover 
z 2 uniquely, since the point should be in front of the camera (i.e., z 2 > 0). For  instance, if 
d = 0 (i.e., the line segment joining the two points is parallel to the turntable) then G < 0. 
As a result, 

Z 2 ~ -  

- F  + N//F 2 -  E G  

E 

is the unique solution. By continuity, for small enough d, the solution for z 2 is unique. 
Generally speaking, if G < 0 then the unique solution exists. In such cases, we can determine 
the distances of the two points on the end effector from the turntable, respectively, 

h 1 = H -  z 1 = H -  - F  + . /vF 2 - -  E G  _ d 
E 

h 2 = H - z z = H -  
- F  + x/ /F e -  E G  

E 
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Three Points on the End Effector 
that 

Similarly to case A, without loss of generality, we assume 

Z1 - -  Z2 - -  dl, Z 2 - -  Z 3 --" d 2 (5.12) 

and that 

(x~ - x~) ~ + (y~ - y 9  2 + (z ,  - z2) ~ = s~ 

(X2 - -  X3) 2 nt- (Y2 - -  Y3) 2 + (Z2 __ Z3)2 __ $22 

)~ - z ~ )  ~ (X 3 - -  X 1 --b (Y3 - -  Y l )  2 q- (z3  = $3 

where the d i and sj (i = 1, 2, j = 1, 2, 3) can be obtained by reading the encoders on the robot. 
Eliminating z 1 and z 2 by employing Eq. (5.12), it turns out that 

2 d 2 + F 2 d l ) z  _+. Ea2d2 _+_ 2 F l z d l d 2  + G a d  2 2 2 - f  $1=0  E I 2 Z 3  + 2(E a2 1 3 

2 G~z3 + 2F~d~z~ + G~d~ - f ~  = 0 

2 
E 1 3 z  3 -[- 2 F 1 3 ( d  1 + d 2 ) z  3 -t- G 3 ( d  I -n t- d2)  2 2 2 - f  s3 = 0  

where 

E,j = ( X , -  X j )  ~ + ( ~  - ~)~ 

Fij = X i ( X  i - X j )  -+- Y i ( Y i -  Yj) 

Gi=(X2+  y 2 + f 2 )  

i =  1,2,3, j = 1,2,3 

Therefore, z 3 satisfies three quadratic equations. In fact, there is a real common solution to 
the equations in practice. Generically, the equations have only one common solution and 
hence give rise to a unique solution for z i (i = 1, 2, 3). As a result, the distance of the ith point 
from the turntable is h i = H -  z i (i = 1, 2, 3). 

Computation of the Relation between the Frames 

Having described at least two points in both the fixed disc frame and the base frame of the 
robot, we obtain 

i bx, i x,1 
by, / = brainy, / +bTd, i - -  1 ,2 , . . .  

where (bxi,byi, bzi) and (dxi, dyi, dzi) are the coordinates of the ith point with respect to the 
base frame and the fixed disc frame, respectively. Recalling assumption A2, we know that bR d 
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has the following structure: 

rl l  r12 0 
bR a = --r12 rll  0 (5.13) 

0 0 1 

In this case, we can determine bR a and bT a with knowing two points in the two flames. As a 
matter of fact, it is seen that 

bx2 -- bx1] Idx2 -- dXl- 

by2 byl I = bedldY 2 ely 1 
L,z  ,z. 

or 

%, rae,] be, rbX2- bX,] [%,] laX2- ax, 
be P d ,  be =/by2 "'' 
be: :bRe[  ee3] be: L %  bziJ [ee3J hdz2 ezl 

which are linear equations in r ll and r12. As long as the line joining the two points is not 
parallel to the z axis of the base frame, the equations always have a unique solution. 
However, such a solution may not satisfy the constraint r2~1 + r122 = 1 due to the possible 
noise in the observed data and computation errors. In other words, bR d obtained in this way 
may not be orthogonal and may therefore be meaningless. 

Actually, the problem of determining bR d can be viewed as the optimization problem of 
determining bR a with the structure in (5.13) such that 

%| - 

is minimized. Solving this optimization problem yields 

I r l l  I = 
r12 

1 [be be2ae2] 1 de 1 _qL 
d 2 be. be2del ] , / ' b  + e2 

Knowing bRd, we have 

k 
Now we can determine any observed point on the part with respect to the base frame of 

the robot. Based on the recovered coordinates of the points on the part, we can easily know 
the position of the centroid of the part and the orientation of the part. 
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2.4 Robot Planning and Control 
In this section we discuss the problem of multiple sensor-based robot motion planning and 
control involved in performing tasks such as tracking and grasping a moving part. The 
problem we consider is to make a plan for a robot to track a target whose position, 
orientation, and velocity are measured by the estimation and calibration schemes discussed 
in Section 3. In doing so, we use the concept of parallel 9uidance. We propose that an error 
reduction term be added to the position and velocity of the target to form a desired position, 
velocity, and acceleration pofile for the robot. When the error reduction term is carefully 
planned, it guarantees a time optimal and robust robot motion with given bounded control. 
The planner, we show, can be implemented as both time based and event based. This leads 
to a new event-based tracking scheme for a robot. 

Robot Control 

The dynamic model of a robot arm is given by 

D(q)o" + C(q, O) + G(q) = z (5.14) 

where q, D(q), C(q, 0), G(q) and z are respectively the joint angle vector, inertia matrix, load 
related to centripetal and Coriolis forces, load related to gravity, and joint torque vector. The 
joint torque has to satisfy the following constraints: 

"Ci,min(q, q) ~ "Ci ~ "el,max(q, q) i = 1, 2 , . . .  m (5.15) 

where m is the number ofjoints. The output is given by Y = H(q) = (X,  O) t where X E ] ~  3 and 
0~R 3 represent the position and orientation of robot end effector. Let us consider the 
nonlinear feedback control law [41] given by 

z = D ( q ) J - l ( q ) ( A  d + K~(Va -- ~Y) + Kp(Yd - Y) - )(q)O) + C(q, il) + G(q) (5.16) 

where J(q) is the Jacobian of H(q) with respect to q; K v and Kp are the velocity and position 
feedback gains; A d, Vd, and Yd are the desired acceleration, velocity, and position vectors 
respectively. It is assumed that the robot has six joints, for otherwise a pseudoinverse is to 
be used in (5.16). It can be shown that if A a, V d, and Yd satisfy the constraints Yd = V~ and 

= A d, then with proper choice of Kv and Kp, the closed-loop system is stable and the 
tracking error will vanish asymptotically provided the induced joint torque is within the limit 
specified by (5.15). The problem of robot motion planning considered here is to design A d, 
Vd, and Yd SO that the robot end effector will track the motion of a part. 

Robot Tracking with Planned Error Reduction: Parallel Tracking 
The main problem in robot tracking is to eliminate the position and velocity error between 
the robot end effector and the part by controlling the robot. An obvious tracking plan would 
be to choose 

v~ = v . ( t )  

Aa= V~ 
(5.17) 
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which is to let the desired motion to be the motion of the part. However, if such a plan is 
used to control the motion of a robot, the required control will be large when the initial error 
between Ye, the position of the part, and Y, the actual position of the robot, is large. 

A large value of the position error can easily cause the command torque to exceed the 
limit and the lower level controller to shut down. Usually, in a global tracking problem the 
initial value of the position error is very large. The tracking problem [42-44] studied in the 
literature has always been a local tracking problem, wherein it is assumed that the initial 
error is either zero or remains very small. 

In order to circumvent the problem of dealing with a large value of the initial error, a new 
tracking plan is proposed in the form of 

f Y. = Y.(t)+ Ye(t) 
V. = = V.(t) + ?e(t) 
Aa = ~ = Ap(t)  + Ye(t) 

(5.18) 

where Ye is an error reduction term that is set to Y(0) - Yp(0) at the time tracking starts and 
is gradually reduced to zero according to a plan. The proposed plan is based on using 
optimal control where the bounds on the control have also been taken into consideration. 
The proposed plan controls the robot to move at the same speed as the part, while the 
position error is gradually reduced to zero according to an error reduction plan. This scheme 
is motivated by the parallel guidance in missile pursuit, hence the name parallel tracking. The 
difference, however, is that the velocity of the part also needs to be tracked for stable 
grasping. 

After the error reduction term is added to the target position, the initial positional error 
is set to be zero to guarantee that the control will not be out of range when tracking starts. 
The error reduction term will be planned so that the initial positional error will be reduced 
with a feasible control command. 

The torque demand of a planned motion depends on the planned path, speed, and 
acceleration. It is usually difficult to obtain. Another method of motion planning often 
adopted is to specify a conservative constant speed and acceleration limit based on the 
off-line kinematic and dynamic work space analysis. In this way the motion planning 
problem is greatly simplified, making such planning schemes as time-optimal and minimum- 
energy planning possible [45, 46]. 

Assume the constraints on the desired motion are given by ][ Vail ~< Vm and IIA,~II ~< am. We 
also assume that by prior knowledge, the motion of the target satisfies the constraints 
[[ Vv[ [ ~ Vmp and lIAr[ [ ~ amp. It follows from (5.18) that a conservative constraint on the error 
reduction term planned error would be ~F e ~ v= - v,,,p and Ye [ ~ a,,, -- amp. It is reason- 
able to assume Vmv ~ v m and amp ~ v= for the robot to be able to keep track of the target. 

Another side effect of adding the error reduction term is that the resultant small tracking 
control error makes it possible for us to ignore the fact that the space of orientation angles 
is not Euclidean and to treat the orientation tracking in the same way as position tracking 
is treated. 

Time-Based Optimal Parallel Tracking 
When the error reduction term is planned to reduce the initial error in a time-optimal way, 
the robot tracking plan in (5.18) is considered time optimal. The time-optimal planning 
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problem is stated as follows. 

u 
min T = t ~  dt 

= A  

[[V][ ~< Vmye, [IA I ~ amye, g(o) = g ( r ) =  O, ge(O)= Y ( O ) -  gp(o), Y e ( r ) =  0 

(5.19) 

Let us define s = I[ Ye(t)[[ �9 The preceding time optimal problem can be stated as follows: 

min T = dt 

{~b = v  - - a  

[V[ ~-~ Umye, [a[ ~ a m y e ,  v (O)  = v ( r )  = O, s(O) = Y(O) - -  Y p ( O )  , s ( r )  = 0 

(5.20) 

This is a classical bang-bang  time optimal control problem [47] and the solution is given by 

a -- 

Umye > t >~ 0 
amy e 

amye 

O, s(O) > t ~ Umye 
Umye amye 

s(O) 
amye, t >/ 

Umye 

(5.21) 

Let (m, n, p)r be a unit vector along the direction of the vector Y - Ye" The error reduction 
, o  

term Ye and its two derivatives Ye and Y~ are given by 

Ye = (m, n, p)ra(t) 

~e = (m, ~, p)~( t )  

Ye = (m, n, p)rs(t) 

(5.22) 

where v(t) and s(t) are solution of (5.20) with a(t) as input. Note in particular that the vector 
(m, n, p)r is independent of t. 

The initial velocity error between the robot and the target can sometimes cause the control 
to be out of range too. A similar technique can be used to overcome this problem by adding 
an error reduction term V~ in the velocity. The robot tracking plan in (5.18) can be rewritten 
as 

L = Y.( t )+ Ye(O + Vedt 

v~ = ~ = v~(t)+ Ye(t)+ Ve 

Ad = (/d = Ap(t) + Ye(t) n t- (Z e 

(5.23) 

where V e is an added term to cancel the initial velocity error between the robot and the target. 
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Ve is set to V(0) - Vp(0) at the time tracking starts and will be gradually reduced to zero 
based on a plan. The plan of Ve can be designed in the same way as the plan of Ye" 

Event-Based Optimal Parallel Tracking 
Event-Based Planning Traditionally, a motion plan for a robot is expressed in terms of time 
and is driven by time during on-line execution. That is, the control command is stored as a 
function of time and is indexed on the basis of the time passed during on-line execution. The 
problem with this kind of planning and control is that the progress of planned motion is not 
affected even when the robot fails to follow the planned motion for unexpected reasons such 
as the existence of an obstacle or malfunction of a device. Therefore the control error will 
become very big and cause the control to be out of range and the controller to shut down. 

In order to overcome this problem, the concept of event-based planning and control for 
a robot following a given path has been introduced by Tarn, Bejczy, and Xi [46]. The 
problem they tried to solve was to design a motion plan for a robot following a given path 
which constant constraints assigned on the velocity and acceleration of the robot. Such a 
motion plan can be time optimal or of minimum energy [45]. 

The event-based planning and control scheme tries to parameterize the motion plan in 
terms of curve length s traveled along the prespecified path. Let v = ~, a = b, and w = v 2 and 

da 
define u = dss" The motion-planning problem is now stated as follows. 

min T = dt = - ds 
U 

Id-~s2a= 

l' -u 
Iwl ~< Win, lal ~< am, lu[ ~< U m, w ( O )  -'- w ( S )  = a (O)  = a(S) = 0 

(5.24) 

where wm and u m are, respectively, an equivalent speed limit and the jerk constraint to 
guarantee smoother robot motion. This is again a classical time-optimal bang-bang control 
problem. The solution of this problem is given in the form of u(s), a(s), and w(s) or 
v(s) = x ~ ( s )  [46]. 

For a straight-line path the vector motion plan is given by 

= (m, n, p)Ta(s) 

= (m, n, p)rv(s) 

Ya = (m, n, P) Ts + Yo 

(5.25) 

where Yo is the beginning point of the path and (m, n, p)r a unit vector along the path. 
The motion reference s and desired position Y~ can be determined during actual execution 

by projecting the actual position of the robot onto the given path and then choosing the 
projection as Yd. The minimum positional control error is generated when Ya is chosen in this 
way. The parameter s is thus the curve length between this Ye and the beginning point I1o. It 
is easy to observe that the motion reference s reflects the actual execution of a planned 
motion. The basic concept of this entire approach is actually the well-established feedback 
control principle. 
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The main advantage of using event-based robot motion planning and control is that the 
motion planning becomes a closed-loop process. The plan is realized during execution based 
on sensory measurements. It provides an efficient closed-loop algorithm for implementing the 
tracking control in real time, since the location and motion of the part as a function of time 
are unknown prior to execution. An important contribution of this chapter is to develop such 
an event-based tracking scheme based on the multiple sensory integration to achieve (1) 
stable global tracking and (2) robust grasping control of a part with unknown orientation. 

Event-Based Tracking The concept of event-based planning and control can be employed 
to plan the error correction Ye in (5.18). A straight line is chosen as the path for Ye, which 
is the same as in Section 3.3. 

The robot tracking plan in Section 3.3 can be reparameterized in terms of s, which is the 
distance between the part and the robot. This new choice of the event-based motion reference 
reflects the special characteristic of the tracking problem; that is, the target path is unknown 
prior to the execution. 

Using the new motion reference, the event-based error correction term Ye can be obtained 
as 

amy e , 

a - -  O, 

amye, 

Vmye < S ~ S(0) s(0) 1 2 
2 amy e 

1 2 Umye 
< s ~ s(O) 

2 amy e 

1 2 1.)my e 

S ~ 2 amy e 

1 2 IOmye 

2 amy e 
(5.26) 

and 

V 

1 
- -X/Samye(S(O)  --  S), s(O) --  2 

Vmy e < S ~-~ s(O) 

1 2 1 2 
Vmye < S ~ S(0) Vmye 

l')mye' 2 amy e 2 amy e 

2 
1 Umy e 

--N/SamyeS, S ~ ~ amye 

(5.27) 

The vector motion plan is obtained as in (5.22) except that a and v are now functions of s. 
The motion reference s is generated by calculating the magnitude of Y -  Yp. 

Since the motion plan is now driven by an event-related or state of execution-related 
motion reference rather than time, this robot tracking scheme has all the advantages of 
original event-based motion planning and control. This new scheme is called event-based 
robot tracking. It is a new extension of the event-based robot motion planning and control 
strategy. 

2.5 Experimental Results 
Our experimental setup consists of three components that constitute the components of a 
work cell. They are the disc conveyor, the camera system, and the robotic manipulator. The 
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manipulator is one of two PUMA 560 robotic manipulators separately controlled by two 
UMC controllers from Motion Tek. The two controllers interface with the main computer, 
a four-processor SGI IRIS 4D/VGX workstation, through shared memory. High-level 
planning and control algorithms such as the multiple sensor integration algorithm, the vision 
algorithm with an implicit calibration, and the parallel tracking algorithm discussed in this 
chapter are all implemented on an SGI workstation, making full utilization of its computing 
power. Schunk grippers are mounted on the manipulators to grasp parts to be manipulated. 
The disc conveyor rotates around a fixed axis. There is an encoder attached to the motor to 
generate measurement of the angle and speed of rotation of the conveyor. The resolution of 
the encoder is (576 x 103)/2~z lines per radian. The rotation of the disc conveyor is 
independently controlled by a spare channel on one of the Motion Tek controllers. Two 
markers are placed on the disc conveyor, with one of them at the center of rotation. These 
two markers represent the x axis of the attached disc coordinate frame. They are identified 
as reference points by the vision algorithm in determining the relative position and 
orientation of a part placed on the conveyor. The vision system consists of two cameras in 
a stereo setup, an Intelledex IntelleVue vision processor, a black-and-white monitor, and a 
development system on a PC. Only one camera is used in this experiment. In order to allow 
communication between the Intelledex vision processor and the SGI IRIS 4D/VGX work- 
station, a parallel interface between them was developed. The task of the vision system is to 
identify the image coordinates of the markers representing the reference points and the 
outline of a part. Note that the outline of the part is not marked with markers. The results 
are then transferred to the SGI workstation to be further processed or directly used in the 
guidance of robot motion. The Intelldex vision processor is based on a 16-MHz Intel 80386 
CPU with an Intel 80287 coprocessor. There are six 256 x 256 x 8 bit image buffers, two of 
which can be used as image grabbers for direct image acquisition. Image resolution is 
256 x 240 (although the cameras have a pixel array of 422 x 490). The display has 256 gray 
levels, while the digitizer can distingush only 64 gray levels. 

In Figures 5.7-5.12, results of our experiments are shown. These experiments were carried 
out under the assumption that the part on the conveyor is of nonnegligible height and the 
robot position is not calibrated. The set of experiments has been further subdivided into two 
possible subcases. In subcase 1, we assume that the base frame of the robot is parallel to the 
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Errors in pose estimation for the case in which the distance of the end-effector from the disc conveyor is unknown.  

plane of the conveyor and that the separation between the two planes is unknown. The height 
of the part is assumed to be unknown. In Figure 5.7, we show the estimated and the actual 
pose of the part. Figure 5.7(a)-(c) indicate the estimated and actual trajectory of the part in 
the X direction, Y direction, and Z direction of the base frame of the robot, respectively. In 
Figure 5.7(d), the estimated and actual orientations of the part in the base frame of the robot 
are shown. The dotted lines denote the actual values and the solid lines the estimated ones. 
In Figure 5.8, we show the estimation errors of the pose of the part. Figure 5.8(a)-(c) show 
the position errors in the X direction, Y direction, and Z direction, respectively. The error in 
orientation is provided in Figure 5.8(d). The position errors in the X direction and Y 
direction are around 1 cm and the orientation error is less than 5 degrees. 

In subcase 2, we assume that the base frame of the robot is parallel to the plane of the 
conveyor and that the separation between the two planes is known. As in subcase 1, we 
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FIGURE 5.10 
Errors in pose estimation for the case in which the distance of the end effector from the disc conveyor is known and 
the height of the part is 4 cm. 

continue to assume that the height of the part is unknown. In Figures 5.9 and 5.10, we show 
our results when the true height of the part is 4 cm. The estimated and actual poses of the 
part are presented in Figure 5.9, where (a), (b), and (c) depict the estimated and actual 
trajectories of the part in the X direction, Y direction, and Z direction of the base frame of 
the robot. In Figure 5.9, the estimated trajectory of the part is denoted by solid lines and the 
actual trajectory of the part by dotted lines. In Figure 5.10, we show the estimation error of 
the pose of the part, where (a), (b), and (c) present the error in the X direction, Y direction, 
and Z direction, respectively. Estimated and actual orientations are given in Figure 5.9(d), 
whereas the error in orientation is given in Figure 5.10(d). The experiment was repeated 
assuming the unknown height of the part to be 7 cm, and the results are shown in Figures 
5.11 and 5.12. As is evident from the figures, the position errors are within 1 cm and the 
orientation errors are less than 5 degrees. 
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Errors in pose estimation for the case in which the distance of the end effector from the disc conveyor is known and 
the height of the part is 7 cm. 

In comparing the results for subcases 1 and 2, the errors in position and orientation are 
somewhat comparable. In repeated trials, it is observed that the success rate (in terms of 
successfully grasping the part) in subcase 1 is lower than that in subcase 2. A quantitative 
comparison has not been made. 

3 TRACKING AN U N K N O W N  TRAJECTORY ON A SURFACE 

3.1 Hybrid Control Design 

Let us consider a nonredundant rigid robot with six degrees of freedom. As is well known, 
the dynamics of the robot in joint space can be written as 

D(q)q + c(q,/1) + P(q) = z 

where q,/1, and i] e I~ 6 are the joint angle vector, joint velocity vector, and joint acceleration 
vector, respectively. D(q)E~  6x 6 is the inertia matrix of the robot, and c(q, ~1) stands for 
Coriolis and Centrifugal terms, p(q) is the term caused by gravity, r ~ ~ 6  represents the joint 
torque vector. 

When the end effector of the robot makes contact with an environment, the dynamics of 
the robot becomes 

D(q)/j + c(q,/1) + P(q) = �9 + F (5.28) 

where F is the constraint force-torque vector in the joint space. 
The pose of the end effector of the robot in the task space and the joint vector of the robot 

are related by 

(x, y, z, O, A, T)r = h(q) 

from which we derive 

i,,e, 6, i, = J q  
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where J 6 R 6 x 6 is the Jacobian of the robot. Let x = (x, y, z, O, A, T) r. Thus, 

1~ = J/l (5.29) 

:~ = Ji~ + J/1 (5.30) 

Throughout this section, we assume that the dynamics and kinematics of the robot are 
known. 

Constrained Motion 

Herein, we consider the constrained motion of the robot on a rigid surface. Also, the contact 
between the robot and the surface is assumed to be frictionless and a point contact. Suppose 
that the surface in the task space can be written as 

z = z ( x ,  y) 

where (x, y, z) are coordinates in the task space and z(., .) is assumed to be smooth enough. 
If the end effector of the robot is kept in touch with the surface, the contrained motion of 
the robot is given by 

0z c~z 

that is, 

( ~TZxZ ~z 
' 0 y '  - 1  

5c 

= 0  

Let 

, @ ,  1,0,0,0 

Then we have 

G:~ = 0  (5.31) 

Furthermore, we obtain 

( ~  + G:~ = 0 (5.32) 

On the other hand, under the assumption that the contact is frictionless, it turns out that 

fr6x = Fr6q = 0 

where 6x and 6q represent the virtual displacements of the robot in the task space and the 
joint space, respectively, and f is the constraint force exerted on the end effector in the task 
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space. Combinat ion of the last equations and Eq. (5.29) gives rise to 

F = j r f  

We assume that the contact occurs at a point of the end effector. It is easily seen that 

f = ( L ,  fr, L ,o ,o ,o)  r 

Furthermore,  it is true that 

f = 2G r (5.33) 

for some scalar 2 e R. 

Decoupling of Control Variables 

Let us utilize a nonlinear feedback control law, namely 

z = c(q,/l) + P(q) + D J - l u  - D J -1 ) i [  l (5.34) 

where u is a new control vector to be determined. Substituting the preceding control torque 
into the dynamics (5.28) of the robot yields 

D(q)J-  1:~ = D J -  lu  + F 

Recall that from (5.30) and (5.33), we have 

f~ = u + J D - 1 j T G T 2  = U -+- M T 2  (5.35) 

where M -  G J D - 1 j r .  Let us denote �9 = G M  r. Clearly, @ is a nonzero scalar during the 
constrained motion since D is nonsingular. Define two subspaces as follows: 

$1 = {yl(I - Mr(I)-  1G)y = 0, y ~ R  6} (5.36) 

$2 = { y [ M r ~  -1Gy = 0, y e R  6} (5.37) 

It is seen that S 1 and S 2 are  subspaces of ~6  at the contact  point during the constrained 
motion and that 

]~.6 ___ $1 @ 82 

where �9 stands for the direct sum. Moreover,  dim(S1) = 1 and dim(S2) = 5. 
Premultiplying both sides of Eq. (5.35) by G, from constraint  condition (5.32), it is seen 

that 

(5.38) 

Now, we represent the control vector u as u = u l  + u 2, Hi@ S i, (i = 1, 2). Note that  M T is 
of full column rank. Then (5.38) immediately reduces to 

2 = - ~ - ~ ( G u ~  + d;/0, u~ eS~ (5.39) 
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which implies that the constraint force is controlled only by Ul(~ $1). The force control law 
Ul e $1 is designed from (5.39). Premultiplying both sides of (5.35) by (I  - M T ~  - 1G) leads to 

(I - -  M T r  - 1G):~ = 112, ILl 2 E $2}  
G : ~ = 0  (5.40) 

which implies that, when constrained, the motion of the robot manipulator  is restricted and 
its degrees of freedom are reduced from six to five and that the motion is controlled only by 
I12 E S 2. In conclusion, as a hybrid control strategy, one may design the motion control law 
based on (5.40) and the force control law from (5.39), respectively. 

Hybrid Control Scheme 
In this section, we choose the force control law in the form 

i 
t 

I 1 1  - - -  - - M T ( 2  d + K I (2 d -- s  - M T @ - I C J ~  
0 

(5.4) 

where, clearly, u 1 e $1. Applying the control law to Eq. (5.39) gives at once 

It t (2 - 2 a) + KI  (2 - 2 a) dt = 0 
o 

which will result in 2 ~ 2 ~ as t ---, oo with a proper choice of K I. 
During the constrained motion, (5.31) and (5.32) hold. Note that z(x,  y) is unknown in 

our case and so is G. However, f can be measured and from (5.33) we have 

f~ fY - 1  0, 0, 0) -- (0~, fl, -1 ,  0, 0, 0) 
~ =  L '  L '  ' 

where 

ix f, 
C~--  f l - -  

L' L 

It should be pointed out that ~ and fl depend only on the direction of f, instead of its 
magnitude. From (5.31) and the last equation, during the constrained motion we have 

-1 0 0 0 0- 

0 1 0 0 0 

~ fl 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

T 

o 

$ 
~k c 

(5.42) 
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Furthermore,  it is true that 

= Tic + T~c (5.43) 

Since GT = 0, (5.40) becomes 

Tf~ c + (I - M T ~  - 1 G ) T R  c - -  !!2, !12 ~ S 2 (5.44) 

from which we can design the motion control law as 

u 2 = T[f~dc + Kv(~ ~ -- :kc) + Kp(xac - Xc) ] + (I - MT@-IG)7-'~c (5.45) 

Clearly, u 2 e S 2. Note that T is a matrix of full column rank, and substitution of (5.45) in 
(5.44) gives rise to 

ec + Kv6c + Kpec = 0 

d where e c - Xc - Xc. With proper choices of K v 
Thus, the hybrid control scheme is given by 

and Kp, ec ~ 0 exponentially as t ---, ~ .  

u = u~ + u2 = T [ ~  + K~6~ + Kpec] + ~F~c- ( j' ) M T ,~d + Ky e f d t  
to 

where ey - 2 e - 2. The matrix T depends only on the orientation of the tangent plane of the 
contact surface at the contact point, which can be measured via the force- torque  sensor. 
reflects the change of the orientation. The matrix M can also be known from the measure- 
ments of the force- torque sensor and the encoders of the robot. The proposed control 
scheme is simple and consists of three parts: one is for constrained motion, one is used to 
compensate the change of the orientation, and one is for force regulation. Although it is easy 
to design u 1 and u 2 separately, we do not have to compute them separately. Instead, the last 
equation can be directly used to compute the control law. The corresponding joint control 
torque can be obtained by substituting the last equation into (5.34). 

3.2 Image-Based Motion Planning 
In the previous section, it was shown that if the robot  is given the desired trajectory, hybrid 
control can be used to complete the constrained motion. Since we assume that the 
constrained surface is unknown, it is reasonable to assume that the trajectory to be followed 
is also unknown. In this section, we shall propose a planning scheme for the constrained 
motion of the robot  based on fusion of the visual data from an uncalibrated camera and 
additional information from encoders and force- torque sensor. 

Relation between the Constrained Motion and Its Image 
Suppose that OcXc Y~Zc is the camera frame with the origin being at the optical center of the 
camera and the Z axis perpendicular to the image plane. Let O X Y Z  be the base frame of the 
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robot. Then we have 

txc/ tit yC = R 
Z c 

+ T (5.46) 

where (x ~, yC, z ~) and (x, y, z) are the coordinates of a point p in the camera frame and the 
base frame of the robot, respectively. The parameter  R is the rotation matix and T e R 3 is a 
translation vector. 

F rom a pinhole model of the camera with focal length f, the coordinates of the image of 
the point p are given by 

X c 

X = f ~ (5.47) 
zCc 

y C 

Y = f z-- / (5.48) 

Suppose that we observe a moving point. Differentiating both sides of (5.48) with respect to 
time t and using (5.46) give rise to the following: 

l[ 0 0 - X ] R  (5.49) 
f - Y  

When the motion of the end effector of the robot is constrained on a surface z = z(x, y), (5.31) 
holds. We assume that the surface is unknown, that is, z(x, y) is unknown. However, from 
the force- torque  sensor mounted on the end effector, the robot can locally estimate the 
surface. More precisely, the tangent plane to the unknown surface at the contact point is 
computed by using the force- torque sensor. It is easily seen that 

and 

fT~ = 0  

f, 

Therefore, the relation between the motion of the end effector on the constrained surface and 
its perspective projection on the image plane of camera is given by 

0 - x  
zc 

1 0 

= z- / Q (5.50) 

In (5.50), we do not know z c and R exactly, while we know cr and fl via measurement of the 
force- torque  sensor. However, it is easy to know the range of z c (in our experimental setup, 
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1 < z c < 1.5 m). Since both the camera and the base of the robot are fixed, R is constant. 
Once R is recovered, Q can be known via sensory information from the vision system and 
the force-torque sensor. It is easy to develop a recursive least squares algorithm based on 
Eq. (5.50) to recover R up to a scalar multiple. This procedure provides an adaptation 
scheme, wherein we do not have to determine the rotation matrix R exactly. 

Motion Planning 
After recovering R, as described in Section 3.1 and utilizing the force-torque sensor together 
with the vision system, we compute Q as defined in (5.50). With an uncalibrated camera, it 
is hard to recover exactly the trajectory on the unknown surface. We assume that the 
trajectory and the end effector of the robot are both visible. Hence it is easy to know the 
difference between the end effector and the trajectory on the image plane. We denote the 
difference on the image plane by e. The desired motion of the robot can be written as 

V a = - k Q -  ae (5.51) 

where k is a positive scalar. It may be noticed that the direction of the desired velocity is 
crucial for the completion of the task. The magnitude of the velocity affects only the time 
period during which the task is completed, and different k values could be designed by using 
different approaches. For example, k could be determined by considering the limitation of 
control torque of the robot. 

We can adopt the control strategy proposed in the previous sections to control the robot 
such that 5c tends to 5d and p tends to pd, exponentially in t. From the relation (5.50), it turns 
out that 

that is, 

- ~ -  Q k Q - l e  = z c ~ e 

k 
~-~ Ce 

k 
exponentially. It can be proved that the system + = - -  e is globally asymptotically stable. 

Z c 

Furthermore, by using the proposed hybrid control scheme and motion planning, e ~ 0 as 
t ~ oo. Because force control will maintain the contact between the end effector and the 
surface, the task can be accomplished under the proposed control law. 

It should be pointed out that the control is robust against perturbations in Q. Suppose 
that (~ is an estimate of Q. Let (~-1 = Q-1 + A. As long as the system ~ = - ( I  + QA)e is 
asymptotically stable, the proposed planning and control scheme guarantees that e ~ 0 as 
t ---~ oO. 

3.3 Experimental Results 
An experimental system has been set up in the Center for Robotics and Automation at 
Washington University, as shown in Figure 5.13. It consists of one PUMA 560 manipulator, 
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FIGURE 5.13 
Experimental setup for trajectory following on an unknown surface. 

a vision system, and a table on which there is a curved unknown surface. The computer vision 
system consists of a CCD camera (fixed above the work space) with digital image resolution 
of 256 x 256 and the Intelledex Vision processor based on a 16-MHz Intel 80386 CPU. The 
focal length of the camera is 0.0125 m. The vision system interfaces to the host computer, an 
SGI 4D/340 VGX. Visual measurements are sent to the SGI by a parallel interface. The robot 
is controlled by a U M C  controller, which also interfaces with the SGI via memory mapping. 

In the experiments, we assume that the relative poses between the camera, table, and robot 
are unknown and an unknown surface is a curved surface that is randomly placed on the 
robot work space. The trajectory to be followed by the end effector of the robot is 
characterized by five markers. We adopt our proposed control strategy and control the robot 
successfully so that the trajectory-following task is completed in a robust manner. In the 
experiments, we choose k = 0.5. We assume that the end effector initially makes contact with 
the unknown curved surface (manually move the end effector of the robot to touch the 
surface). Force control is used to maintain the contact. First of all, the robot automatically 
moves in a predesigned pattern (i.e., straight line motion along the x direction and y 
direction, respectively) with the force control loop, while a recursive least squares algorithm 
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FIGURE 5.14 
Projections of the desired and actual trajectories of the end effector on the image plane for slope plane. 

is employed to recover the motion relation between the tangent plane and the image plane 
(in our experiments, during this procedure about 60 images are taken in 6 seconds). Then 
the proposed planning scheme is used to generate desired motion for the robot in real time 
and the robot is automatically controlled to follow the trajectory on the unknown surface 
without knowing the trajectory in the base frame of the robot. 

The experimental results are illustrated in Figure 5.14-5.16. In Figure 5.14 the dotted and 
solid lines denote the projections of the trajectory to be followed on an unknown surface and 
the trajectory of the end effector of the robot on the image plane, respectively. Figure 5.15 
shows the actual contact force with the desired force being - 0 . 5 k g ,  while the actual 
trajectory of the end effector of the robot in the task space is given in Figure 5.16. In Figures 
5.14 and 5.16, the points labeled by uppercase and lowercase letters are the markers on the 
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FIGURE 5.16 
Actual trajectory of the end effector of the robot in the task space for the slope plane. 

surface and their corresponding images on the image plane, respectively. Although the curved 
surface is deformable (see Figures 5.15 and 5.16), the task is still accomplished well. 

4 CONCLUSION 

In this chapter we demonstrate the advantage of using visual sensing in a multiple sensor 
integration mode in order to manipulate parts in a typical manufacturing work cell that is 
composed of a robot manipulator, a disc conveyor, and a camera system. Even though the 
visual computations are performed at a low rate, part position and orientation information 
can still be updated at the same rate as the feedback loop using an additional encoder sensor. 
We also demonstrate a practical tracking algorithm that pays attention to the fact that the 
torque that the robot control system can supply is bounded. The proposed algorithm is 
primarily based on error feedback, with an extra error reduction term added to force the 
torque requirement to remain within acceptable bounds. The proposed scheme is implemen- 
ted on both time and event bases. The experimental results clearly demonstrate the 
advantages of the proposed scheme. 

We have also developed a sensor fusion scheme for the control problem of constrained 
motions of a manipulator. At the contact point, the force torque sensor mounted on the 
wrist of the robot provides local information about an unknown surface. The vision system 
with only one camera is used to reveal global information about the deviation of the end 
effector of the robot from the trajectory to be followed. In order to take advantage of 
multisensor fusion, we have designed a new planning and control scheme. The measurements 
of the sensors have been fed back to a planner, which generates a desired motion on the 
tangent plane to the unknown surface at the contact point for the robot with a force control 
loop, using a hierarchical structure. The force control ensures contact between the tool 
grasped by the end effector and the unknown surface, while the visual servoing guarantees 
that the difference between the images of the end effector and the trajectory vanishes. 
Therefore, the trajectory-following task is guaranteed to be accomplished. 
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T h e  p r o p o s e d  m e t h o d  is s imple  to i m p l e m e n t  a n d  r o b u s t  aga ins t  u n c e r t a i n t y  in the  

c o n f i g u r a t i o n  of the  camera ,  the  r o b o t  a n d  the  surface a n d  uti l izes an  a d a p t i v e  scheme.  T h e  

e x p e r i m e n t s  have  successful ly d e m o n s t r a t e d  the  feasibi l i ty of the  m e t h o d .  Because  the  

p r o p o s e d  i m a g e - b a s e d  m o t i o n  p l a n n i n g  s cheme  is i m p l e m e n t e d  on  the t a n g e n t  p l ane  of  the  

c o n t a c t  surface, we can  easi ly deve lop  a fus ion a l g o r i t h m  to ut i l ize the  s cheme  for the  case 

where  mu l t i p l e  u n c a l i b r a t e d  c a m e r a s  are  avai lable .  
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5 APPENDIX 

Consider an ellipse in the image plane whose major  axis is parallel to the y axis of the image 
plane. Let (Xe=, 0) be its center and let a and b be the half-lengths of its minor  and major  
axes, respectively. 

Assume that the image plane is located at z = f, the camera is a pinhole camera, and the 
projection center is at the origin. Then the elliptic cone formed by the projection lines 
emitting from the projection center and passing through the ellipse can be described by 

( X ~ Xez u2 Z 2 Y 
t = a 2 b 2 f 2  (5.52) 

where a 2 ~< b 2 as a result of step 3 of the "Virtual rotat ion" algorithm in Section 2.1. We now 
describe the following theorem. 

Theorem The planes that intersect the elliptic cone (5.52) on a circle are parallel to 

z = - x t a n  c~ (5.53) 

where c~ is determined by 

f ( x e z b  2 -+- aw/b 4 + b 2 f  2 -+- b2xe  2 _ a2b  2 _ a2f  2) 
t a n e  = e 2 2 a2f2 (5.54) b x e z -  a2b - 

Proof It is well known [55] that planes that intersect an elliptic cone on a circle have at 
most two solutions that are different in orientation. In fact, it can be shown that up to parallel 
translations, the two planes can be made to pass through the minor axis of the elliptic cross 
section. In particular, for the elliptic cone (5.52), since the minor  axis passes through the y 
axis, the two planes are of the form (5.53) for a suitable parameter  c~. We now proceed to 
show that indeed (5.54) is satisfied. 

Assume that the plane (5.53) intersects the elliptic cone (5.52) in a circle. It follows that if 
the coordinate flame is rotated by an angle of 0~ about  the y axis and shifted to the 
intersection between the plane containing the circle and the z axis, the circle of intersection 
would be of the form 

(X - -  XO) 2 -Jr-(y - -  y o )  2 = r 2, 5 = o (5.55) 
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in the new coordinate frame (2 .~, z). The required transformation is given by 

til t c~ o ~ sin )!  tm o +t~ 
- s i n ~  0 cos~/ ~o 

(5.56) 

where ~:o is the required shift in the z coordinate. 
Describing the elliptic cone (5.52) in terms of the new coordinates (2, ~, ~) given by (5.56) 

and setting ?. = 0, we obtain the intersection between the elliptic cone and the plane given by 

E2 cos ~ -  X ~ x ( - ?  sin ~ + Zo)/ f]2/a  2 -t-- y2/b2 = ( - 2  sin ~ + Z o ) 2 / f  2 (5.57) 

Since (5.57) is an equation of a circle, the following condition must be satisfied. 

(cos ~ + x~= sin ~ / f ) 2 / a 2  - sin2~/.f 2 = l i b  2 (5.8) 

Solving (5.58) for c~, one obtains (5.54). D 

In order to discriminate between the two values of c~ given by (5.54), we proceed as follows. 
Assume that z axis (i.e., the optical axis of the camera) passes through the center of the circle. 
The correct solution of c~ can be determined by considering a circle centered at (0, 0, z0) 
contained in the plane parallel to the image plane rotated by an angle of c~. The circle is 
projected as an ellipse on the image plane with the major axis along the x axis. It follows 
that one can compute 

r COS 
l~ = f (5.59) 

z o - r s i n  

and 

r cos  
12 = .f (5.60) 

Zo + r sin c~ 

It is easy to see that 11 is greater than 12 and the sign of the x coordinate of the center of the 
elliptic image is positive. On the other hand, the sign of - t a n  c~ is also positive. It follows 
that c~ can be determined by noting the sign of the center of the elliptic image. 
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ABSTRACT 

Within the domain of robotic manipulation, roboticists have traditionally considered force 
feedback to be the most relevant sensing modality. This is because of the need for highly accurate 
information on the relative positions of objects and on the nature of contact forces between 
objects being manipulated. More recently, many researchers have realized the benefits of using 
visual servoing techniques to reduce alignment uncertainties between objects using imprecisely 
calibrated camera-lens-manipulator systems. These two sensing modalities, force and vision, are 
complementary in the sense that they are useful during different stages of task execution: vision 
brings parts into alignment; force ensures that reasonable contact forces are maintained as parts 
mating occurs. However, when one considers the integration of force and vision feedback from 
the traditional sensor integration viewpoint, the deficiencies in conventional approaches become 
apparent. In this chapter, we describe the concept of vision and force sensor resolvability as a 
means of comparing the ability of the two sensing modes to provide useful information during 
robotic manipulation tasks. By monitoring the resolvability of the two sensing modes with 
respect to the task, the information provided by the disparate sensors can be seamlessly 
assimilated during task execution. A nonlinear force-vision servoing algorithm that uses force 
and vision resolvability to switch manipulator control between sensors is experimentally 
analyzed. The advantages of the assimilation technique are demonstrated during contact 
transitions between a stiff manipulator and a rigid environment, a system configuration that 
easily becomes unstable when force control alone is used. Experimental results demonstrate 
robust contact transitions by the proposed nonlinear controller while the conflicting task 
requirements of fast approach velocities, maintaining stability, minimizing impact forces, and 
suppressing bounce between contact surfaces are simultaneously satisfied. 
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1 INTRODUCTION 

Sensor integration has long been considered a key research topic in robotics research. When 
one considers the integration of force and vision feedback from the traditional sensor 
integration viewpoint, however, the deficiencies in conventional approaches become appar- 
ent. Force and vision sensors are disparate sensing modalities by nature and typically 
produce fundamentally different measurements, force and position. The output of a manipu- 
lator wrist force sensor yields measurements of force and torque along and about the three 
Cartesian axes. Properly tracked features in a visual sensor's sensing space yield measure- 
ments of the relative positions and orientations of objects in the world. This presents an 
inherent problem when attempting to integrate information from these two sensors. Conven- 
tional techniques for sensor integration operate in, some common space closely related to the 
particular sensors used in the system, often using a probabilistic weighting method for 
combining information from different sensors [1-4].  Figure 6.1 illustrates the conventional 
technique schematically. Force and vision sensors do not share a common data representa- 
tion. Conventional sensor integration also assumes that a temporally accurate cross-coupling 
between sensors can be modeled in sensor space. Vision and force sensing modes are 
appropriate during different stages of the task, making a temporal comparison of the two 
data sets meaningless during most of the task. These two facts indicate that traditional 
sensory integration techniques are not appropriate for the integration of force and vision 
feedback. 

Instead, we advocate a task-oriented approach for assimilating information from force and 
vision sensors. We believe in the importance of the task model for combining information 
from disparate sensors, much as Jain [-5] argues for the importance of environment models 
for the assimilation of information from disparate sensors in a mobile robot domain. It makes 
little sense to combine the measurements of force and position using, for example, a Kalman 
filter, because of the disparate nature of the feedback. A model of the task is required that 
has the capability of dynamically assimilating information from the two disparate sensing 
modes. As the task occurs, the task model determines when vision is appropriate and when 
force is appropriate by considering the nearness of contact surfaces and the resolution with 
which each sensor can sense object locations. In Figure 6.2 this is illustrated by the close 
relationship between the sensor feedback assimilation module and the environment model 
that describes the task. 

Throughout a manipulation task, the data from both sensors must be compared in order 
to ascertain which sensing mode is more relevant to the task at the given time instant. Our 

FIGURE 6.1 
Conventional sensor integration. 
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FIGURE 6.2 
Task-oriented assimilation of disparate sensory feedback. 
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previous work in resolvability [6, 7] showed how various visual sensing configurations can 
be compared in terms of the resolution with which they can visually servo an object held by 
a manipulator. The resolvability measure has been used to guide active camera-lens systems 
throughout a manipulation task [8]. The concept of resolvability can be extended to force 
sensors in order to determine the resolution with which a force sensor can detect infinitesimal 
task displacements in the environment. Force resolvability is dependent not only on the force 
sensor but also on the stiffness of the entire system with respect to task displacements. This 
extension of resolvability provides a common measure for both sensors for evaluating when 
visual servoing or force servoing strategies are appropriate. 

During transitions between force and vision sensing, a nonlinear force-vision control law 
compensates for the uncertain world until it becomes clear when a new sensing mode has 
been achieved or whether the system should return to the prior sensing mode. Both force and 
vision sensory data are considered simultaneously; however, control of the manipulator is 
achieved using only one of these modalities at any instant in time. In order to illustrate the 
advantages of assimilating disparate sensor feedback using our proposed method, we 
experimentally demonstrate the performance of the technique during contact transitions. 
Many researchers have studied the impact problem, and various impact strategies have been 
proposed. However, the fundamental problem of using force feedback alone to minimize 
impact forces while quickly achieving contact stably within imprecisely calibrated environ- 
ments still exists. By combining vision feedback with force feedback using the concept of 
resolvability and our proposed nonlinear control strategy, we demonstrate how fast stable 
contact transitions with a stiff manipulator in a rigid environment can be achieved. 

In this chapter, we demonstrate the use of force and vision resolvability for assimilating 
high-bandwidth visual feedback (30 Hz) and high-bandwidth force feedback (100 Hz) within 
the same manipulator feedback loop. After reviewing related work, we discuss the concept of 
vision and force resolvability and how they can be used in the sensor assimilation process. 
Next, a visual servoing control law is derived, followed by a description of the vision-force 
servoing control strategy. An important contribution of this work is that we show how vision 
can be used to simplify the stability problem greatly by allowing the effective use of low-gain 
force control with stiff manipulators (a Puma 560). As the stability of low-gain force control 
is much easier to maintain, the use of force feedback during manipulator fine motion is more 
easily realized because simple force control strategies can be used without the need for 
high-order models of the arm, sensor, and environment for choosing stable controller gains. 
The proper combination of force and vision feedback is the key to the success of this strategy. 
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2 PREVIOUS WORK 

2.1 Force Control 

Robotic force control has been studied since the 1950s. A survey of the history of force con- 
trol can be found in Whitney [9]. Active impedance control has been suggested as the most 
general form of force control [10], but difficulties in programming impedance-controlled 
manipulators have resulted in very limited use of this strategy. Hybrid control [11] separates 
position control and force control into two separate control loops that operate in orthogonal 
directions, as shown in Figure 6.3, and has been extended to include manipulator dynamics 
[12]. 

One of the most important issues in force control is maintaining manipulator stability [9]. 
Force controllers must be properly formulated and tuned in order to maintain stability, and 
this can be difficult, particularly during initial contact between stiff surfaces. During impact, 
another important issue is the generation of large impact forces. An effective impact strategy 
based on a proportional gain explicit force controller with a feedforward signal and negative 
gains has been demonstrated experimentally in Volpe and Khosla [13]. The gains for the 
controller were chosen using a fourth-order model of the arm, sensor, and environment in 
which a frictionless arm was assumed (experiments were conducted with the CMU Direct- 
Drive Arm II). Although extremely high impact velocities were achieved (75 cm/s), large 
impact forces were also generated (90 N). This illustrates a typical problem exhibited by all 
force control strategies during impact with rigid objects; for example [14-21], high impact 
velocities, manipulator stability, low impact forces, and quickly achieving the desired force 
are all contradictory system requirements. 

2.2 Visual Servoing 

Visual servoing has a less extensive history than force control, mainly because of the lack of 
computational resources available for processing the large amounts of data contained in an 
image. Although previous researchers had considered fast visual feedback for guiding 
manipulator motion, for example [22], the visual servoing field was first well defined in Weiss 
[23]. Since this work, two types of visual servoing configurations have emerged, eye-in-hand 
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FIGURE 6.3 
Hybrid force-position control loop, wher F r is the reference force vector, F m is the measured force vector, Xr is the 
reference position, X,, is the measured position, S and S' are the orthogonal selection matrices, F is the appied force, 
and q,, is a vector of measured joint positions. 
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configurations and static camera configurations. Eye-in-hand visual servoing tracks objects 
of interest with a camera mounted on a manipulator's end effector [24-32]. Static camera 
visual servoing guides manipulator motion based on feedback from a camera observing the 
end effector [33-36]. Most of this past work has been with monocular systems, although 
stereo systems have been used for visual servoing [36-38]. 

2.3 Sensor Resolution 

The concept of sensor resolution plays an important role in the assimilation of force and 
vision feedback. In order to use visual feedback effectively to perform robotic tasks, many 
researchers have recognized that the placement of the sensor relative to the task is an 
important consideration, and sensor resolution has been considered in the past as a criterion 
for sensor planning [39-41]. These efforts concern static camera systems in which a required 
spatial resolution is known and a single camera placement is desired. In Das and Ahuja [42], 
a study of stereo, vergence, and focus cues for determining range is described in which the 
performance of each cue for determining range accuracy is characterized. This characteriz- 
ation can be used to control camera parameters in order to improve the accuracy of range 
estimates. Our resolvability approach can be used for determining the ability of a visually 
servoed manipulator to resolve positions and orientations of objects accurately along all six 
degrees of freedom. Resolvability provides a technique for estimating the relative ability of 
various visual sensor systems, including single camera systems, stereo pairs, multibaseline 
stereo systems, and three-dimensional (3-D) rangefinders, to control visually manipulated 
objects accurately and to provide spatially accurate data on objects of interest. Camera-lens 
intrinsic and extrinsic parameters can be actively controlled using a resolvability measure in 
conjunction with other sensor placement criteria so that the accuracy of visual control can 
be improved [6]. The concept can also be used for static sensor placement for either object 
recognition or visual servoing. 

A measure similar to resolvability called observability (unrelated to observability in the 
controls sense) has been introduced [43a] and was extended to include manipulator 
configuration in [43b]. The concepts of resolvability and observability are both inspired by 
the concept of manipulability [44]. The proposed algorithm based on observability attempts 
to maximize x//det(JJr) throughout a camera trajectory, where J is the image Jacobian. The 
extension of observability to motion perceptibility includes the manipulator Jacobian as a 
component of the latter measure. Our emphasis on resolvability has been on its directional 
nature, as determined from the singular values of J and the eigenvectors of j r j ,  and on using 
this decomposition to guide camera-lens motion actively during task execution [6]. In this 
chapter, we extend resolvability to include force sensors. This measure is then used to 
assimilate force and vision information within high-bandwidth manipulator feedback loops. 

For force sensor design, strain gauge sensitivity, force sensitivity, and minimum sensor 
stiffness are three critical design parameters. In Nakamura et al. [45] and Uchiyama et al. 
[46], force sensor design techniques are based on measures derived in part from a singular 
value decomposition of the force sensor calibration matrix. A measure of force sensor 
resolution to be presented in Section 3.2 uses this past work as a foundation and extends the 
analysis to include system stiffness as well. 

2.4 Fusing Force and Vision Feedback 

Many researchers have considered the fusion of force and vision feedback, although very few 
have done this within high-bandwidth feedback control loops. One of the first papers to 
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mention the benefits of integrating high-bandwidth visual and force feedback is that of Shirai 
and Inoue [22]. A 0.1-Hz visual servoing scheme was implemented and the use of force 
servoing was referred to, but a lack of computational resources hampered their effort, and 
many of the issues of combining the two sensing modalities went unnoticed. In Ishikawa et 
al. [47], visual servoing of 2 Hz was used to align a wrench with a bolt before a compliant 
wrenching operation is performed. Again, vision and force were not explicitly combined, and 
the issues concerning their integration remained unaddressed. 

A Bayesian framework for combining visual observations and tactile data for grasping is 
described in Durrant-Whyte [48]. The nondynamic nature of the task made the use of the 
tactile feedback of questionable value for the experiments described. Rule-based approaches 
for combining vision and touch feedback for object recognition are described in Allen [49] 
and Stansfield [50]. An important observation made in Allen [49] is that touch feedback is 
successful for object recognition because vision provides cues to the tactile sensor. This is 
also important for object manipulation and is a primary reason why fast, stable contact 
transitions can be more easily realized with manipulators servoed under both vision and force 
control, rather than force control alone. The assimilation technique proposed in this chapter 
employs a nonlinear control strategy that is a combination of quantitative and rule-based 
approaches of combining force and vision sensing. The general idea behind a quantitative 
multisensor integration framework [2] is used to determine the appropriate sensor at any 
given instant. Rule-based methods are used to perform mode switching and to eliminate false 
force sensor readings. 

3 SENSOR RESOLVABILITY 

Sensor fusion techniques that use multiple sensors along the same task dimensions require 
that the system compare the characteristics of the feedback from each individual sensor at 
some point during the task. For sensors that have similar data representations, for example, 
multiple cameras that provide positional information, this is straightforward. For sensors 
that provide fundamentally different measurements, for example, force and vision sensors, this 
presents a problem. Vision resolvability compares the effects of camera- lens- task  configur- 
ations on the ability to resolve accurately, and therefore visually servo, object positions and 
orientations [6, 7]. The more general concept of sensor resolvability described in this chapter 
provides a measure of the ability of both force and vision sensors to resolve positions and 
orientations in task space, thus providing a method for assimilating the data from the two 
sensors. 

Resolvability is a function of the Jacobian of the mapping from task space to sensor space. 
A matrix form of the Jacobian is desired that contains both intrinsic and extrinsic sensor 
parameters in order to analyze the effects of these parameters on the structure of the 
Jacobian. For  any sensor system, an equation of the form 

6x s = J(~b)6X r (6.1) 

where 6x s is an infinitesimal displacement vector in sensor space; J(~b) is the Jacobian matrix 
and is a function of the extrinsic and intrinsic parameters of the visual sensor as well as the 
number of features tracked and their locations on the image plane; and 6X r is an infinitesimal 
displacement vector in task space. 
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The ability of a vision or force sensor to resolve task positions and forces is directionally 
dependent. By performing a singular value decomposition on the task space to sensor space 
Jacobian and analyzing the singular values and the eigenvectors of j r j  that result from the 
decomposition, the directional properties of the ability of the sensor to resolve positions and 
orientations become apparent. 

Singular value decomposition is a common technique used for analyzing the range and 
null space of a matrix transformation. Details concerning the SVD can be found in Klema 
and Laub [51]. The SVD of a matrix A is given by 

A = U Z V  r (6.2) 

where Z is a diagonal matrix containing the square roots of the eigenvalues of ArA and AA r. 
These eigenvalues are also the singular values of A; U contains the eigenvectors of AAr; and 
V contains the eigenvectors of ArA. For  resolvability, the eigenvectors of j r j  are those in 
which we are interested, because these eigenvectors give us a set of basis vectors for the row 
space of J, which is also the vector space described by 9t(jr) ,  the range of j r .  Therefore, 
singular values of J and the corresponding eigenvectors of j r j  indicate, in task space, how 
sensor space displacements will be affected by task displacements. Conversely, the eigenvec- 
tors of j j r  tell us the affect of task space displacements in sensor space. For  example, large 
singular values along a particular eigenvector of j r j  tell us that small task displacements in 
the direction of the particular eigenvector will result in relatively large sensor space 
displacements. Thus, the task can be accurately observed and controlled along these 
directions. Small singular values indicate that task displacements in those directions are 
difficult to observe, and therefore difficult to control, because large task displacements cause 
small displacements in sensor space. 

All of the eigenvectors of j r j  combined with the corresponding singular values of J 
indicate the directional ability of the sensor system to resolve displacements in task space. It 
is this combination of singular values and eigenvectors that defines resolvability and is used 
in plotting the resolvability ellipsoid in the section on vision resolvability ellipsoids. In order 
to use an ellipsoidal representation of resolvability, we assume that the object of interest has 
an equal ability to translate and rotate about all of its Cartesian axes. Furthermore,  we 
assume that the velocity of the object is constrained to fall within some six-dimensional 
spheroid, such that 

2 2 .2 ~1/2 (6.3) 

and Xr < 1. Under these assumptions, the principal axes of the ellipsoid representing the 
ability of J to resolve positions and orientations in task space are given by axV x, a2v 2, a3v3, 
a4v 4, asv 5, and a6v 6, where ai is the ith singular value of J and vi is the ith eigenvector of 
j r j .  The following sections derive Jacobians for force and vision sensors, present ellipsoids 
for various camera- lens-object  configurations, and analyze the Jacobian for various force 
sensor configurations. 

3.1 Vision Resolvability 
Monocular Systems 
Camera Model The mapping from task space to sensor space for any system using a camera 
as the visual sensor requires a camera-lens model in order to represent the projection of task 
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objects onto the CCD image plane. For visual servoing, a simple pinhole camera model has 
proved adequate for visual tracking using our experimental setup. If we place the camera 
coordinate frame {C} at the focal point of the lens as shown in Figure 6.4, a feature on an 
object at cp with coordinates (X c, Yc, Zc) in the camera frame projects onto the camera's 
image plane at 

f X c  + xp (6.4) 
Xi SxZc 

frc 
Yi  = n t- y p  (6.5) 

srZc 

where (x i, Yi) are the image coordinates of the feature, f is the focal length of the lens, sx and 
sy are the horizontal and vertical dimensions of the pixels on the CCD array, and (Xp, yp) is 
the piercing point of the optical axis on the CCD. This model assumes that IZcl >> If[, thus 
simplifying the terms in the denominator of (6.4) and (6.5). 

The mapping from camera frame feature velocity to image plane optical flow, or sensor 
space velocity, can be obtained by differentiating (6.4) and (6.5). This yields the following 
equations: 

f Sic f X c Z c  f J(c Zc (6.6) 
~s = s , , Z c  s , ,Z  2 = s,, Z----Tc - Xs Z c  

f ~Yc f Yc Z c f ~Yc Z c (6.7) 
)S = syZc s,,Z 2 = sy Zc YS Zc 

where x s = x i - Xp and Ys = Yi - -  Yp"  This defines the mapping of object velocity with respect 
to the camera frame onto the image plane. The next step is to transform task space velocities 
into the camera frame and then project these camera frame velocities onto the sensor space 
to obtain the mapping from task space velocity to sensor space velocity. 
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FIGURE 6.4 
Task frame-camera frame definitions. 
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Objects Defined in a Task Frame For visually servoing a manipulator holding an object, 
the objective is to move the image coordinates of cp to some location on the image plane by 
controlling the motion of cp. Typically, cp is some feature on an object being held by a 
manipulator. Thus, the motion of cp is induced relative to the tool flame of the manipulator 
being observed. Figure 6.4 shows the coordinate systems used to define the mapping from 
task space to sensor space, where cp is defined with respect to the task flame as Tp with 
coordinates (X T, YT, ZT)" For now, we assume that the rotation of the task flame {T} with 
respect to {C} is known. The velocity of Tp can be written as 

cp =C R(rV + rp rf~ T -~- x rp)  (6.8) 

where rV = IX r }~r Zr] r and r ~  = [COx ~ cor~ OOze] r are the translational and rotational 
velocities of the task frame with respect to itself. These are manipulator end-effector velocities 
that can be commanded. Since we assume that the object being servoed or observed is rigidly 
attached to the task frame, rp  = 0, and (6.6) becomes 

Cp c R(rV rf~ --- T -Jr- • T p )  (6.9) 

Furthermore, if we assume that {C} and {T} are aligned, as shown in Figure 6.4, then CrR = I 
and the elements of cp can be written as 

dXc 
dt -- X T  + ZT(DYT YT O.) Z T 

drc 
dt = : Y T -  ZT(-OXT + XT(DZT (6.10) 

dZc 
dt = Zr + Yro~x~ -- XTO)YT 

The assumption that {C} and {T} are aligned is used only in formulating the Jacobian from 
task space to sensor space. If the transformation from task space to sensor space is initially 
known and the commanded task frame velocity is known, then the coordinates (X T, Yr, Zr) 
can be appropriately updated while visual servoing. It will also be necessary to account for 
task frame rotations when determining the velocity to command the task frame based on 
r v  = [Xr  7Yr Zr] r and T~"~ ___ E(_OXT O.)y r O,)zT]T. It would have been possible to include the 
terms of CR in (6.10); however, the assumption made simplifies the derivation and does not 
affect the end result. 

By combining (6.10) with (6.6) and (6.7), the entire Jacobian transformation for a single 
feature from task space to sensor space can now be written in the form 

2~ 

0 - Xs - YT XS f Z  T X T XS YT 

[ks] Zc Zc sxZc ' Z c ZT (6.11) 

Ys f -- Ys -- f Z r  YTYs X T Y s  gOXT 

syZc Zc syZc Zc Z c cor~] 
I 

~ZT[ 

f~ Sx Zc 
. _  -- f YT 1 

_. Sx C 

f X r  [ 
sy Zc _J 
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For this form of the Jacobian, the parameters of the Jacobian are given by 

4 = Ef, s~, s,, x~, y~, Zc, x ~ ,  v~, z~] ~ 

Alternatively, the sensor coordinates may be omitted and replaced with camera frame 
coordinates to arrive at a Jacobian of the form 

- ~ - 

Xr  

- f X c  -- f X c Y T  f Z T  . f X c X r  - fY r ]  gr 
f 0 sxZc 

]V s f - f Yc - f Z r f Yc YT f Yc X r f X r I CO X r 
- - -  

syZc syZc syZc syZc syZc ] oar r 

gO z r_ 

where the parameters are 4) = If,  Sx, sy, X c, Yc, Zc,  X r ,  Yr, Zr]  r. Either form may be desir- 
able, depending on the design parameters desired for determining sensor placement. 

Generally, several features on an object are tracked. For n feature points, the Jacobian is 
of the form 

J,(k) 

J~(k) = " (6.13) 

J.ik) 

where Ji(k) is the Jacobian matrix for each feature given by the 2 x 6 matrix in (6.11) or 
(6.12). Jv(4~) has been rewritten as Jr(k) in order to emphasize its time-varying nature due to 
the variance of x s, Ys, and Z c with time. 

Binocular Systems with Parallel Optical Axes 
In this section, the Jacobian for a stereo pair with parallel optical axes observing an object 
described relative to a task frame is derived. The derivation is based on equations for a stereo 
eye-in-hand system given in [37]. The term b represents the length of the baseline of the 
cameras, which is the line segment between camera focal points. The origin of the camera 
frame lies on the baseline midway between focal points, with the - Z  axis pointing toward 
the object task frame, as shown in Figure 6.5. The camera model is represented by 

f X  c + b/2 f Y c  
Ysl = (6.14) 

X, SI = S x Z c  s y Z  c 

f X c - b/2 f Yc 
Ys~ - (6.15) 

Xsr = sxZc syZc 

where it is assumed that f, sx, and sy are the same for both cameras. Through a derivation 
similar to that in Section 3.1.1, the mapping from task space velocity to sensor space velocity 
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FIGURE 6.5 
Task frame-camera frame definitions. 
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gOx r 

gOy r 

_gO Z T_ 

where  d - Xs~- Xsr is the d ispar i ty  of each c o r r e s p o n d i n g  feature point .  The  sensor  space 
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vector contains four terms representing the optical flow of the feature in both the left and 
right images. 

Binocular Systems with Perpendicular Optical Axes 
An orthogonal stereo pair is shown in Figure 6.6. If the axes are aligned as shown in the 
figure, the Jacobian mapping from task space to sensor space can be written as 

L2s,j 

f - fXc l  - fXctYr fZr  fXctXr - f Y r  
0 2 2 ~ - ~  2 

SxZCl SxZcI SxZCl sxZcl sxZcl sxZcl 

f --fYcl -- fZr fYct Yr fYclXr fXr  0 
SyZcl s y Z 2 1  syZcl syZ21 syZ~l syZcl 

f Xcr 0 f f i r  f Xc~Zr f Xr f Xc~Yr 
SxZ 2r SxZ cr sxZ cr SxZ 2r SxZ cr SxZ 2r 

f Yc~ f 0 - f Zr f YcrZr f Yc~Yr 
2 2 2 _syZc~ syZcr syZc~ syZc~ syZc~ 

fXr  
syZcr_ 

X T 

t 
2T 

O9 X 

L ~ /  

(6.17) 

Vision Resolvability Ellipsoids 
Vision resolvability measures the ability of a visual sensor to resolve object positions and 
orientations. For example, a typical single camera system has the ability to resolve accurately 
object locations that lie in a plane parallel to the image plane, but can resolve less accurately 
object depth based on the projection of object features on the image plane. Similarly, 
rotations within planes parallel to the image plane can be more accurately resolved than 

tCrl 

-Zr rp:(xr, rvZr) 

xt 

-Yr 

"Yl 

FIGURE 6.6 
Task frame-camera frame definitions. 
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FIGURE 6.7 
Resolvability ellipsoids: monocular system, f = 24 mm, depth = 1.0m, two features located in the task frame at 
(0.1 m, 0.1 m, 0) and (-0.1 m, 0.1 m, 0). 

rotations in planes perpendicular to the image plane. The degree of vision resolvability is 
dependent on many factors. For  example, depth, focal length, number of features tracked and 
their image plane coordinates, position and orientation of the camera, and relative positions 
and orientations of multiple cameras all affect the magnitudes and directions of resolvability. 
Because of the difficulty in understanding the multidimensional nature of resolvability, we 
propose the vision resolvability ellipsoid as a geometrical representation of the ability of 
different visual sensor configurations to resolve object positions and orientations. To show 
the ellipsoidal representation, the Jacobian mapping is decomposed into two mappings, one 
representing translational components and one representing rotational components. In all 
ellipsoid plots, the singular values of ,I and eigenvectors of J ~ J  are given, where ~i is the ith 
singular value and vi is the ith eigenvector. The units of ai are pixel/meter for the 
translational case and are unitless for the rotational case. 

In Figures 6.7 and 6.8, ellipsoids for a monocular  system are shown in which the two 
examples have the same magnification (f/Zc), but the object is located at different depths. 

FIGURE 6.8 
Resolvability ellipsoids: monocular system, f = 12 mm, depth = 0.5 m, two features located in the task frame at 
(0.1 m, 0.1 m, 0) and (-0.1 m, 0.1 m, 0). 
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FIGURE 6.9 
Resolvability of depth versus depth of object and focal length for two features located in the task frame at 
(0.05 m, 0, 0) and (-0.05 m, 0, 0). 

Figure 6.9 is a plot of resolvability in depth versus depth and focal length. From the plot one 
can observe that it is preferable to reduce the depth of an object rather than to increase focal 
length for a given magnification when attempting to maximize depth resolvability. In 
practice, depth becomes limited by the depth of field of the lens, and a trade-off must be made 
between focal length, depth, depth of field, and field of view [34]. Figure 6.10 shows the 
resolvability about the optical axes versus the position at which an object is observed on the 
image plane. The closer the object's projection to the boundary of the image plane, the 
greater the resolvability about the optical axis. 

Figure 6.11 shows resolvability ellipsoids for a binocular system tracking a single feature. 
Depth can be resolved using a single feature, but not accurately relative to directions parallel 
to the image plane. Figure 6.12 shows a plot of resolvability in depth versus baseline and 
depth. This plot demonstrates that reducing depth is preferable to extending the baseline to 
improve resolvability in depth. 

FIGURE 6.10 
Resolvability in orientation about Z versus center of object projection onto the image plane. 
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FIGURE 6.11 
Resolvability ellipsoids: stereo pair--parallel optical axes, f = 12 mm, b = 20 cm, depth = 1.0 m, one feature located 
in the task frame at (0, 0.2 m, 0). 

The resolvability ellipsoids for a binocular  system with o r thogona l  optical axes are shown 
in Figure 6.13. The configurat ion provides a very well-condit ioned Jacobian  mapp ing  from 
task space to sensor space, a l though resolvability about  Yr is still relatively low. 

3.2 Force Resolvability 

In order  to assimilate the informat ion provided by the disparate  force and vision sensors, it 
is necessary to develop a model  of the force sensor that  allows a compar i son  of force and 
vision information.  The concept  of sensor resolvability is used for this compar ison,  in which 
the effect of infinitesimal task space displacements  is viewed in sensor space. We desire an 
equat ion of the form 

5Xs = Ji(~b)6X r (6.18) 

FIGURE 6.12 
Resolvability in depth versus baseline length and depth of object for a stereo pair, parallel optical axes, f = 12 mm, 
and a single feature located at the origin of the task frame. 
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FIGURE 6.13 
Resolvability ellipsoids: stereo pair--perpendicular optical axes, f =  12 mm, depth - 1.0m, two features located in 
the task frame at (-0.1 m, 0.1 m, 0), and (0.1 m,-0.1 m, -0.1 m). 

where 6x s is an infinitesimal d i sp lacement  vector  in force sensor  space; Jy(4~) is the Jacob ian  
m a p p i n g  and  may  be t ime variable; and  ,6X~, is an infinitesimal d i sp lacement  vector  in task 

space. 
F igure  6.14 shows a typical wrist force sensor  m o u n t e d  at a m a n i p u l a t o r  end effector and  

the associated coo rd ina t e  frame definitions. Force  sensing is based on Hooke ' s  law and  is a 

FIGURE 6.14 
Coordinate frame definitions for a manipulation task that employs force sensing. 
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highly linear process, assuming induced strains remain within the elastic range of the material 
of the force sensor body. A measurement  of strain 6 x  s taken from strain gauges mounted on 
the force sensor body is converted to a measurement  of force F s in the force sensor 
coordinate frame S through a force calibration matrix Cs. 

6 x  s = C s F s  (6.19) 

C s is a constant matrix that depends on the physical structure of the sensor body and the 
location of the strain gauges on the body. The number  of strain gauges n is assumed to be 
greater than the number  of desired force measurements  m; therefore C s l  does not exist. 
Instead, the pseudoinverse of Cs, Cs ,  is used to obtain measured forces from measured 
strains. The solution to (6.19) is then 

Fs = Cs  6Xs + (I - CsCs)z  (6.20) 

where z is an arbitrary m x 1 vector. Equat ion (6.20) minimizes the L 2 n o r m  [[6x s - CsFs[[; 
however, the equation does not necessarily have a physical interpretation. By setting z = 0, 
one can guarantee that F s has a min imum magnitude. The result is a physically accurate 
solution for obtaining measured forces from measured strain gauge readings and is given by 
[46] 

F s = C s fix s (6.21) 

The pseudoinverse of Cs, Cs ,  is 

Cs  = (Cs rCs ) -ac [  (6.22) 

F s is converted to a force F r in task space T by the Jacobian mapping of the task frame 
with respect to the sensor frame 

F r = J r s F  s (6.23) 

Strain gauge measurements are then converted to forces in the task space via the equation 

+ 
F r = J r s C  s 6 x  s (6.24) 

During contact stages of manipulation,  particular components  of F r are the quantities to be 
controlled. However, when using force and vision feedback together, force measurements  are 
meaningless in terms of visual feedback. Therefore, a system stiffness K is defined in order to 
arrive at a relationship between task displacement 6X r and task force F t .  

F r = K6X r (6.25) 

This formula applies to quasi-static cases only; therefore inertial and damping terms are 
ignored. This assumption is valid because we are concerned with the resolution of the sensor 
rather than its bandwidth properties. 

In order to model the stiffness of the system K, we must consider sources of compliance. 
We assume rigid objects are being manipulated,  so no compliance exists in the objects. The 
sensor itself is obviously compliant, since it measures strain. Another impor tant  source of 
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compliance is the manipulator itself. A rough stiffness analysis shows that the manipulator 
introduces the vast majority of task compliance; therefore we ignore sensor stiffness and 
concentrate on the compliance in the manipulator for the system stiffness model. 

To analyze the relationship between end-effector stiffness and end-effector displacements, 
we use an augmented form of Kim's premultiplier diagram [52], shown in Figure 6.15. The 
premultiplier diagram describes the static relationships between manipulator forces and 
positions in both joint and end-effector coordinates for redundant and nonredundant 
manipulators. In addition to 6.25, the diagram also illustrates the following relationships 

3X r = Jm(O)60 (6.26) 

t = J r ( 0 ) F r  (6.27) 

t = K030 (6.28) 

where Jm(0) is the manipulator Jacobian matrix and varies with 0, the vector of joint 
positions; 60 is the infinitesimal displacement vector in joint space; t is the vector of joint 
torques; and K 0 is the joint stiffness matrix. Various vectors can be derived in terms of one 
another by traversing a path through the diagram and combining the proper mappings. As 
previously mentioned, we desire an expression for the system stiffness K in terms of known 
quantities for modeling purposes. By traversing the premultiplier diagram from F r to 6X r 
via the joint variables t and 60, we derive the expression 

F r = J~4r(O)KoJMl(O)3Xr (6.29) 

Jm(0) is known because the kinematic structure of the manipulator is known. From the 
control law used to command joint torques, the joint stiffness K 0 can be derived. For example, 
the most common strategy for controlling a manipulator is with inner loop PD (proportional 
derivative) position controllers at each joint. For a joint PD control scheme operating under 
quasi-static assumptions, the joint stiffness is simply the value of the proportional gain 
(neglecting joint friction). Therefore, the system stiffness can be expressed as 

K = J~tr(0)KoJ~tl(0) (6.30) 
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Jff(O) 
F T ~ z 

K Ko o 
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6X T " ~ 80 
-l jm(0)" 

FIGURE 6.15 
An augmented form of Kim's premultiplier diagram (Kim et al. 1992). 
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and depends on the configuration of the manipulator as well as the stiffness of the joint 
controllers. 

From the augmented premultiplier diagram, the Jacobian mapping from task space to 
force sensor space is written as 

6x s r - (6.31) = C s J s T . J M ~ ( O ) K o J M ~ ( O ) 6 X T .  

where 

= C s J s v J M V ( O ) K o J M ~ ( O )  Jr(k) T - (6.32) 

The principal components of this mapping can be used to determine the force resolvability 
of various sensor-manipulator-task configurations. These components are then compared 
with vision resolvability for assimilating information from the two disparate sensing modal- 
ities during task execution. 

3.3 Fusing Vision and Force Feedback through Resolvability 
In order to perform a comparison of the resolvability of force and vision feedback, the 
variance of sensor noise must be considered in terms of the resolvability of the sensor. For 
vision feedback, this variance is dependent on the tracking algorithm used, the size of the 
feature template, and the quality of the feature being tracked. For the experimental results 
to be presented in Section 6, the value is typically around 1.0 pixel. This variance is translated 
into the task space domain through the pseudoinverse of the image Jacobian used for vision 
resolvability 

rr~ = J+ (k)a s (6.33) 

where a r  is the vector of positional variance in task space, J+(k) is the pseudoinverse of the 
image Jacobian, and a s is the vector representing feature variance in sensor space. For the 
camera-lens configuration given in Figure 6.7, the task positional variance is on the order 
of 0.0003 m in a plane parallel to the image plane and 0.003 m along the optical axis. 

To determine force sensitivity to task space displacements, we must invert the force 
resolvability matrix. This is written as 

av jM(0)K ~ 1 T T = JMJT.s(O)cr s (6.34) 

The force sensing system used to collect experimental results produces 12-bit strain gauge 
readings, which typically have a measured steady-state variance of 2.0 units. The stiffness of 
the manipulator is derived from the proportional gains on the joints of the manipulator used. 
These values are on the order of 1000-10000Nm/rad for the first three Puma joints and 
300-500 Nm/rad for the three wrist joints. For a typical configuration far from manipulator 
singularities, task space positional variances on the order of 10 - 6  m are calculated. Although 
the sensor is sensitive to displacements in the micron range, the noise introduced by inertial 
effects during manipulator motion on the strain gauge readings is significantly higher. This 
is discussed in more detail in Section 5. 

As a task proceeds, the resolvability of the two sensors, force and vision, is continuously 
monitored. As a surface is approached, vision resolvability eventually becomes insufficient to 
provide meaningful control inputs to the manipulator Cartesian controller. This indicates 
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that the force sensor can now provide valid feedback on the task even though contact has 
not actually occurred, and force sensor information should be considered as the primary 
sensing modality. This means that the task model must be capable of representing geometri- 
cal relationships among objects to be mated. This model could exist in 2-D image coordinates 
or in a 3-D world coordinate frame projected through the camera model, for example, Eqs. 
(6.4) and (6.5) for a monocular system. 

It is important to note that at no time is the estimate of task displacement resolution used 
to control the task itself. The estimate is used only to compare the capabilities of each sensor. 
For vision resolvability, the variance of sensor noise is used as a threshold to determine when 
visual servoing is no longer relevant to the task. For force resolvability, the measure is used 
to determine the relative stiffness and force resolution of different manipulator- task configur- 
ations. The measure is also used to ensure that the resolution of the force sensor configur- 
ation provides more accurate positional feedback than the vision sensor, which is almost 
always the case. 

From an analysis of force resolvability, it becomes evident that for a stiff manipulator very 
small displacements in the task frame result in relatively large measured strains in the force 
sensor space. If more compliant manipulator joint controllers are implemented, larger 
displacements in the task frame are needed in order to induce similar strains. In terms of 
resolvability, this means that stiff manipulators can more easily resolve task space displace- 
ments. Therefore, stiff manipulators can more accurately position objects based on force 
sensor readings. Of course, this is not the complete story, because stiff controllers are also 
much less stable in the face of modeling errors. As is the case with any control system, a 
trade-off must be made between performance, evaluated in this case with respect to 
positioning accuracy, and stability. 

One should realize that the force control algorithm employed will, of course, have an effect 
on system stiffness. However, when evaluating force resolvability, the force control algorithm 
is not considered. This is because we determine when to switch to and from pure force control 
based on vision resolvability. Force resolvability is used only to ensure that the force sensor 
will provide more resolvable positional feedback than vision feedback will provide. Under 
visual servoing control a Cartesian velocity controller is used to drive the manipulator in 
Cartesian space; therefore, the system stiffness is a result of joint PD controllers driven by 
end-effector velocity commands. The quasi-static assumption used for the force resolvability 
derivation is valid, because as contact becomes imminent, the visual servoing controller 
reduces commanded velocities. 

4 VISUAL SERVOING FORMULATION 

4.1 Controller 

The state equation for the visual servoing system is created by discretizing (6.13) and 
rewriting the discretized equation as 

x(k + 1 ) =  x(k) 4- TJ~(k)u(k) (6.35) 

where x(k) e ,_~2M and represents the vector of feature states (i.e., feature coordinates in sensor 
space (M is the number of features being tracked)); T is the sampling period of the vision 
system; and u(k) = [Jfr  Yr Z r  C~ coy~ COzy] r, the manipulator end-effector velocity. For 
the remainder of this chapter, TJ~(k) will be written as ,Iv(k ) in order to simplify the formulas 
without loss of generality. 
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A control strategy can be derived using the controlled active vision paradigm [28]. The 
control objective of the visual tracking system is to control end-effector motion in order to 
place the image plane coordinates of features on the target at some desired position. The 
desired image plane coordinates could be constant or changing with time. The control 
strategy used to achieve the control objective is based on the minimization of an objective 
function at each time instant. The objective function places a cost on differences in feature 
positions from desired positions, as well as a cost on providing control input, and is of the 
form 

F(k + 1 ) =  [-x(k + 1 ) -  XD(k -4- 1)] T Q[x(k + 1 ) -  XD(k + 1)] + uT(k)Lu(k) (6.36) 

where xo(k + 1) represents the desired feature state vector. This expression is minimized with 
respect to the current control input u(k). The end result yields the following expression for 
the control input: 

u(k) = -(J~r(k)QJ~(k) + L)-l jT(k)Q[x(k)  --XD(k + 1)-I (6.37) 

The weighting matrices Q and L allow the user to place more or less emphasis on the feature 
error and the control input. Their selection effects the stability and response of the tracking 
system. The Q matrix must be positive semidefinite, and L must be positive definite for a 
bounded response. Although no standard procedure exists for choosing the elements of Q 
and L, general guidelines can be found in Papanikolopoulos et al. [53]. 

The system model and control derivation can be extended to account for system delays, 
modeling and control inaccuracies, and measurement noise. See Papanikolopoulos et al. [53] 
for a detailed explanation of how this can be accomplished. 

4.2 Feature Tracking 

The measurement of the motion of the feature on the image plane must be done continuously 
and quickly. The method used to measure this motion is based on optical flow techniques 
and is a modification of the method proposed in Anandan [54]. This technique is known as 
a sum-of-squares-differences (SSD) optical flow and is based on the assumption that the 
intensities around a feature point remain constant as that point moves across the image 
plane. The displacement of a point p~ = (Xs, Ys) at the next time increment to pa, = 
(Xs + 6Xs, Ys + 6Ys), is determined by finding the displacement 6x s = (6Xs, 6ys) that mini- 
mizes the SSD measure 

e(p~, 8Xs) = ~ [I~(x s + i, Ys + J) - Ia,(Xs + i + (~x s, Ys + J + @s)] 2 
w 

(6.38) 

where I a and Ia, are the intensity functions from two successive images and W is the window 
centered about the feature point that makes up the feature template. For  the algorithm 
implemented, W is 16 x 16 pixels, and possible displacements of up to Xs = Ys = 32 pixels 
are considered. Features on the object that are to be tracked can be selected by the user, or 
a feature-selecting algorithm can be invoked. Features with strong intensity gradients in 
perpendicular directions, such as corners, are typically the best features to select. 

In order to decrease the search space, a pyramidal search scheme, shown in Figure 6.16, 
has been implemented. The scheme first searches a coarse resolution of the image that has 
1/16 the area of the original image, using a feature template in which a W that is originally 
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FIGURE 6.16 
A pyramidal search scheme is used in the SSD optical flow algorithm in order to increase the overall sampling rate 
of the system. 

32 x 32 is averaged to 8 x 8. After determining where the feature is in the coarse image, a 
finer resolution image that is 1/4 the original spatial resolution is searched with an original 
W of 16 x 16 that is averaged to 8 x 8 in an area centered about the location of the 
minimum SSD measure found in the coarse image. Finally, the full resolution image and the 
16 x 16 feature template are used to pinpoint the location of the displaced feature. 

The pyramidal scheme reduces the time required for the computation of the SSD 
algorithm by a factor of 5 for a single feature over the method of computing the feature 
locations at the full resolution alone. However, reliability can be sacrificed when the selected 
feature loses its tracking properties (strong perpendicular intensity gradients) at the coarser 
image resolutions. Since the search scheme first estimates where the feature is located based 
on the coarse image, it is critical that good features at coarse resolutions are tracked. When 
a user selects features, it is often not obvious that a particular feature may lose its tracking 
characteristics at coarse resolutions. Because of this, an automatic feature selector has been 
implemented based on Tomasi and Kanade [55] that accounts for the different levels of 
resolution in the pyramidal search scheme. 

Depending on the tracking strategy chosen, the depth of the object from the camera may 
change in order to maximize the distance of the manipulator from singularities and joint 
limits. This slowly changes the size of the feature template based on the projection equations. 
In order to account for this change, the feature template can be periodically updated by using 
the matched feature window from a recent image as the new feature template. 

5 V I S I O N - F O R C E  SERVOING 

In order to illustrate the advantages of assimilating disparate sensor feedback using our 
proposed method, we experimentally demonstrate the performance of the technique during 
contact transitions. To perform robotic manipulation tasks in uncertain environments 
quickly and efficiently, a robotic end effector must be able to approach successfully and 
contact objects rapidly using sensor feedback. In a rigid environment, this is difficult. With 
a stiff manipulator this becomes even more difficult because neither the surface nor the 
manipulator is able to dissipate excess energy easily upon contact. However, the most 
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common form of force control uses a proportional derivative strategy with high proportional 
gains and low damping, which is an inherently stiff system. This type of force control is 
popular because it is simple to implement, choosing gains is easy, and it achieves a relatively 
high bandwidth once contact is successfully made. The problem with this strategy, however, 
is in achieving initial contact quickly and stably while maintaining low impact forces. Many 
researchers have studied this problem, and various impact strategies have been proposed, as 
discussed in Section 2.1. However, the fundamental problem of using force feedback alone to 
minimize impact forces while quickly achieving contact stably within imprecisely calibrated 
environments still exists. By combining vision feedback with force feedback using the concept 
of resolvability in a nonlinear control strategy, we demonstrate that fast stable contact 
transitions with a stiff manipulator in a rigid environment can be achieved. 

The force control portion of our proposed visual-force servoing strategies is based on past 
work on hybrid force control. The implemented force control scheme is a combination of 
hybrid force-position control [11] and damping force control [56], resulting in a hybrid 
force-velocity control scheme. Because the dynamics, particularly friction, of the laboratory 
robot (a Puma 560) are difficult to accurately model, a simple Cartesian control scheme is 
used in which a manipulator Jacobian inverse converts Cartesian velocities to joint velocities, 
which are then integrated to joint reference positions. High servo rate (500Hz) PD 
controllers are implemented for each joint in order to follow joint trajectories that achieve 
the desired Cartesian motion. 

If simple force damping control is used to strike surfaces, a manipulator can easily become 
unstable unless force gains are tuned to extremely low values, resulting in unacceptably slow 
motion during the approach phase of the task. Because of this, most manipulation strategies 
use a guarded move to initiate contact with a surface. During a guarded move, surfaces are 
approached under position control while the force sensor is monitored. If the sensed force 
exceeds a threshold, motion is immediately stopped and a force control strategy can then be 
invoked. The main limitation of this strategy is that high contact forces can result unless the 
effective mass of the manipulator is low so that the end effector can be quickly stopped before 
contact forces increase significantly. 

The proper use of visual feedback can overcome the problems exhibited by guarded move 
and pure force control strategies upon impact. Visual servoing improves manipulator 
performance during contact transitions by incorporating information regarding the proxim- 
ity of the surface with which contact is to be made in the manipulator feedback loop. When 
the end effector is far from a surface, visual servoing commands fast end-effector motion. The 
speed of the approach decreases as the end effector comes closer to the surface. Contact can 
then be initiated stably through the use of low-gain force contollers. A generic control 
framework for visual-force servoing is shown in Figure 6.17. 

A fundamental problem when sharing control between force and vision sensors is due to 
end-effector inertial effects. Because force sensors measure all forces (inertial, gravitational, 
and tactile), the inertial coupling of the end-effector mass beyond the sensor introduces 
inertial forces into force sensor readings. When the vision system commands motions, the 
resulting accelerations cause unstable excitations of the force control system. In order to 
compensate for the unstable excitations, it is necessary to develop robust strategies for 
avoiding the excitations. Thresholding of force readings is not feasible, because inertial effects 
can often be as large as desired contact forces. Figure 6.18 shows the magnitude of 
experimentally determined inertial forces and the associated measured Cartesian acceler- 
ations that cause these forces. 

We have developed a robust vision-force control strategy based on the fact that large 
accelerations induce inertial forces. If visual servoing results in measurable end-effector accel- 
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FIGURE 6.17 
Force and vision in the feedback loop. 

erations of sufficient magnitude, then force readings in directions opposite to these acceler- 
ations are induced. Because measured Cartesian accelerations are derived from joint encoder 
readings, thus requiring two differentiations of measured joint values and a transformation 
from joint space to Cartesian space, measured Cartesian accelerations are noisy. Therefore, 
we also consider the measured direction of end-effector motion. If measured Cartesian 
accelerations have been induced by visual servoing and if a measurable Cartesian velocity 
exists, then sensed forces must be due to inertial coupling, and force control commands 
should be ignored. This strategy can be written as 

~r~f~ = -(J,,r(k)QJ,,(k) + L)-~J~(k)Q[x(k) -XD(k + 1)3 

x,.efs = S F G p ( F r -  Fro(k)) 

for each axis, i { 
if(((I-~,,,,I > e,,) and (Sr < e.~)) 

o r  (Xref,,,Fm, > 0.0) or (IFm, I < FT) ) 
S,,Ei, i-I = 1.0 SvEi, i] = 0.0 

else 
S~,[i, i] - 0.0 Sv[-i, i] = 1.0 

u(k) -- Svxre f v  q t- S r x  r -~- SFJ~reff (6.39) 

where x is the feature vector representing the object being servoed; x D represents a state in 
feature space that will bring the object being servoed into contact with some surface; Sv is 
the matrix that selects axes along which force control will be applied; Gv is the matrix of 
force control gains; F r and F m represent reference and measured forces with respect to the 
task coordinate frame T; k,,, and 2m, represent measured Cartesian velocities and acceler- 
ations of the end effector in task space; :~r is some desired reference end-effector velocity due, 
for example, to trackball input from a teleoperator; Sr is the matrix that selects axes along 
which this input will be applied; and ea, ev, and F r threshold sensor noise. 

For teleoperation tasks guided by visual servoing, compliant contact with the environment 
will occur if (6.39) is used alone, assuming the teleoperator adjusts the desired visual feature 
state to be at or below the surface to be touched. For autonomous manipulation, however, 
this strategy does not ensure that contact will occur if the actual location of the surface is 
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FIGURE 6.18 
Inertial forces measured by the force sensor and the corresponding measured Cartesian accelerations that induced 
these forces. 

beyond the visual estimate of the surface. During autonomous  manipulation, the strategy 
given by (6.39) must be rewritten as 

(6.39), xD(k ) -- x(k) > e (6.40) 
u(k) = SvGv(F r _ F,,(k)), xD(k) -- x(k)ll ~< e 

in order to ensure that contact will occur. Manipulator  motion is first controlled by the 
strategy given in (6.39). The controller then switches to pure force control if the error between 
desired and measured visual feature states converges to within a threshold. This threshold is 
derived from the variance of the noise in the vision sensor, 

e = 2.0llas[I (6.41) 

where as is the feature variance vector on the image plane and is determined experimentally. 
Stable impact with a surface can then be achieved, large contact forces can be minimized, 
and bounce can be avoided. 

6 E X P E R I M E N T A L  RESULTS 

6.1 H a r d w a r e  Setup 

The vision-force servoing algorithms previously described have been implemented on a 
robotic assembly system consisting of three Puma 560s called the Troikabot.  The Pumas are 
controlled from a VME bus with two Ironics IV-3230 (68030 CPU) processors, an IV-3220 
(68020 CPU) processor that also communicates with a trackball, a Mercury floating point 
processor, and a Xycom parallel I /O board communicating with three Lord force sensors 
mounted on the Pumas'  wrists. All processors on the controller VME run the Chimera 3.0 
reconfigurable real-time operating system [57]. An adept robot  is also used for providing 
accurate target motion. The entire system is shown in Figure 6.19. 

A diagram of the hardware setup is shown in Figure 6.20. The vision system VME 
communicates with the controller VME using BIT3 VME-to-VME adapters. The Datacube 
Maxtower Vision System calculates the optical flow of the features using the SSD algorithm 
discussed in Section 4.2. A special high-performance floating-point processor on the 
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FIGURE 6.19 
Laboratory setup used for performing vision-force servoing experiments. 
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FIGURE 6.20 
The Troikabot system architecture. 
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Datacube is used to calculate the optical flow of features, and a 68030 board, also on the 
vision system, computes the control input. An image can be grabbed and displacements for 
up to five 16 x 16 features in the scene can be determined at 30 Hz. A Lord model 15/50 
force sensor provides force and torque values for each Cartesian axis at 100 Hz. 

6.2 Results 

Throughout this section, experimental results given will be referenced to the coordinate 
frames shown in Figure 6.21. For the initial set of experiments, the results of three trials are 
shown in which the desired goal position for the visual servoing strategy is purposely chosen 
to have differing magnitudes of error with respect to the true location of the surface. A final 
contact force of - 2  N is desired. This allows us to evaluate the ability of our force-vision 
control strategy (6.40) to operate under conditions in which force information and vision 
information significantly disagree. Figure 6.22 shows the motion of the end effector on the 
image plane for the three trials. For trials 2 and 3 the desired image plane position of the 
end effector actually falls beneath the true surface. In trial 2 the error in surface position is 
15 pixels, and in trial 3 the error is 45 pixels. For trial 1 the estimate of the surface and the 
true location are in close agreement, as would normally be the case. 

In trials 2 and 3, the end effector strikes the surface after approximately 0.3 s, when motion 
of the end effector on the image plane abruptly stops. For trial 1, the surface is not touched 
until after approximately 0.5 s, because the manipulator purposely slows down before impact. 
The force plot in Figure 6.23 shows that this results in significantly reduced impact forces 
and a much quicker transition to the desired contact force of - 2  N. When visual feedback 
incorrectly estimates the location of the surface, as in the case of the second and third trials, 
high contact forces occur. If the error in the estimate falls within the surface, as in trials 2 
and 3, then the poorer the estimate of the surface, the higher the contact force because the 

FIGURE 6.21 
The camera view for visual servoing and coordinate axes on the image plane and in the task frame. 
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Vertical error between desired and measured end-effector position on the image plane for three different trials, each 
with a different error in the estimated location of the surface. 

higher the commanded visual servoing velocity at impact. If the error in the surface location 
estimate is in the other direction, then the time it takes to initiate contact would increase 
directly with the magnitude of the error. The impact force, however, would be on the order 
of trial l's impact force. 

The commanded end-effector velocity for all three trials is shown in Figure 6.24. The solid 
lines correspond to (6.40), the dashed lines to the visual servoing velocity k,eCv, and the 
do t ted-dashed  lines to the force servoing velocity krer Visual servoing brings the end 
effector quickly toward the surface, and upon contact force servoing takes over. From the 
force plot in Figure 6.23, one can observe measurable inertial forces before contact actually 
occurs. These forces are of a magnitude greater than 1.5 N; however, our proposed control 
strategy (6.40) successfully rejects these observed forces because they are not the result of 
contact. From Figure 6.24, one can see that end-effector velocities have been clipped at 
0.10 m/s. This is because the feature tracker can track only objects with a limited optical flow. 
Thus, the trial in which the surface location is in error of 45 pixels represents the worst-case 
impact force, because the manipulator  is traveling at approximately 0.10m/s at the time of 
impact. For  these experimental results, force gains of 0.001 (m/s)/N were used, the diagonal 
elements of Q were chosen to be 2.0 • 10 -6, and the diagonal elements of L were chosen to 
be 10.0. Thresholds were experimentally chosen to be e, = 0.01 m/s 2, 8 v = 0.001 m/s, and 
F T = 1.5 N. 
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FIGURE 6.24 
Commanded end-effector Cartesian velocity along -Y  for the three trials with varying error magnitudes in the 
estimated surface location. "Vision" corresponds to ~kreSv, "Force" corresponds to :~reSs' and "Overall" corresponds 
to uy(t), in (6.39). 

A second set of experimental results was collected in order to illustrate the advantages of 
our proposed force-vision strategy over two other common impact strategies, the guarded 
move and pure force control. Figure 6.25 shows results in which our proposed force-vision 
servoing algorithm (6.40) is used to servo the end effector to a surface 5.9 cm from the initial 
end-effector position. A force of - 2  N between the end effector and the surface is maintained 
after contact. This strategy achieves contact after 1.43 s and achieves a stable - 2  N contact 
force after approximately 4.5 s. With simple damping force control alone, the manipulator 
travels 5.9 cm in 3.1 s before reaching the surface. As soon as contact is made with the surface, 
the manipulator becomes unstable, as Figure 6.26 shows. The only way to achieve stable 
contact using damping control alone, given the force control implementation used, is to 
reduce the force gains to extremely low values, resulting in unacceptably slow motion. Figure 
6.27 shows a force plot of a guarded move in which the force sensor is monitored at 100 Hz. 
High contact forces are created because of the finite amount of time required to stop the end 
effector after contact is sensed, illustrating the main limitation of a guarded move strategy. 

Figure 6.28 shows a comparison of the motion and force time histories for the three impact 
strategies. The gains used in the force-vision control strategy are the same as the gains used 
in the previous set of experiments, including the force gain of 0.001 (m/s)/N. For force control 



212 CHAPTER 6 / FEEDBACK CONTROL WITH FORCE AND VISUAL SENSOR FUSION 

0.06- 

_y (m) T M  

0.02 

0 

3 

-Fy(N) 1 

-1 

200 

150 

y(k)-y o 
(pixeis) 100 

50 

0 
o 1 

( s e c )  

(sec) 

(sec) 

FIGURE 6.25 
Vertical position of end effector in Cartesian space, force measured along the vertical direction, and pixel error versus 
time for force-vision control. 
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simple damping force control upon impact with a surface. 
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a guarded move impact strategy that switches to position control. 

alone, higher force gains (0.005 (m/s)/N had to be chosen in order to induce end-effector 
motion of a reasonable speed in free space, but this gain, while resulting in less than half the 
speed of visual servoing, still proved to be highly unstable. The guarded move strategy also 
allowed only moderate speeds (0.02 m/s) and still resulted in high impact forces. At higher 
speeds, extremely high impact forces would result, which could easily have damaged the 
manipulator. Using visual servoing to bring the manipulator near the surface provides a 
simple technique for slowing the end effector before contact is imminent. These results clearly 
show that visual servoing greatly simplifies the impact problem by providing low-level 
feedback on the proximity of the surface to the end effector. The result is a high approach 
velocity that generates low impact forces with no bounce. 

7 CONCLUSION 

Force and vision sensors provide complementary information, yet they are fundamentally 
different sensing modalities. This implies that traditional sensor integration techniques that 
require common data representations are not appropriate for combining the feedback from 
these two disparate sensors. In this chapter, vision and force sensor resolvabilities have been 
used to compare the ability of the two sensing modes to provide useful information during 
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Combined plots of vertical position and measured force during impact for force-vision control, damping force 
control, and a guarded move. 
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robotic manipulation tasks. By monitoring the resolvability of the two sensing modes with 
respect to the task, the information provided by the disparate sensors can be seamlessly 
assimilated during task execution. A nonlinear force-vision servoing algorithm that uses 
force and vision resolvability to switch between sensing modes demonstrates the advantages 
of the assimilation technique. Contact transitions between a stiff manipulator and rigid 
environment, a system configuration that easily becomes unstable when force control alone 
is used, are robustly achieved. Experimental results show that the nonlinear controller is able 
to satisfy simultaneously the conflicting task requirements of fast approach velocities, 
maintaining stability, minimizing impact forces, and suppressing bounce between contact 
surfaces. The proper assimilation of force and vision feedback is the key to the success of this 
strategy. 
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1 I N T R O D U C T I O N  

This chapter addresses the issues of force regulating and contact transition stabilizing control 
or so-called impact control. Impact control is required in most assembly tasks involving the 
interaction of the manipulator and the workpiece. For workpieces with low tolerance, force 
feedback is necessary to reduce the effect of the uncertain location and unknown stiffness of 
the environment. 

In a general contact operation, a certain approach velocity is needed for high productivity, 
resulting in a collision with the contact surface. Collision is considered as a dangerous 
phenomenon compromising the safety of the equipment. 

In this chapter, we study a robust force control design via positive acceleration feedback 
combined with a switching control strategy for the impact control and force regulation. The 
transient force response during impact is controlled to limit the peak impact force. The 
system can be stabilized after a finite number of switches. The output forces in the contact 
directions and output positions in the moving directions can be regulated simultaneously 
after contact is established. Accidental loss of contact can be corrected automatically. A great 
amount of effort will be spent on the stability analysis, leading to a theoretical foundation in 
the impact control area. 
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2 HISTORY AND BACKGROUND 

The evolution of robotics is closely tied to the development of the technology of controls, 
sensors, and computers. The industrial robots of the early 1980s were mostly used in 
relatively simple operations such as machine tending, material transfer, painting, and welding. 
Since the late 1980s, other applications have also become important, especially in assembly, 
which is now dominating robot applications. Most assembly tasks in industry require the 
manipulator end effector to come into contact with the workpiece. Force sensing and 
feedback can be used to guarantee positive contact between two mating parts and can be 
used to monitor the forces of interaction to ensure that they do not exceed a safe limit. The 
increasing demand for advanced contact control has resulted in a growth of interest in force 
regulation and impact control. 

Historically, the representative categories of robot control have been independent joint 
control, computed torque control, resolved motion control, nonlinear feedback control, force 
control, hybrid force-position control, and impact control. These evolved from joint-level 
control to task-level control and from non-model-based control to model-based control. The 
advantage of model-based task-level control is that dynamic control can be realized. Most 
industrial robots still use independent joint control, driven only by servo error. Given the 
improvements in computation and sensing technology, task-level dynamic control and force 
control will eventually replace classical joint-level kinematic control in order to increase 
productivity by increasing operational speed and system flexibility. 

The manipulator and the environment are two separate systems before contact. Reaction 
forces are created afer the end effector and the environment are pushed together. The two 
systems are then coupled by the reaction forces, introducing an uncertain nonlinearity in the 
dynamics of the coupled system. The coupled systems can become separated again if the 
contact between the two systems is broken. 

The contact tasks can be divided into free motion mode, impact mode, and contact motion 
mode. In the free motion mode, the manipulator will move from free space to the contact 
surface. Impact mode will be triggered by initial contact between the manipulator and the 
surface. The system switches to the contact motion mode after the contact is established and 
the manipulator can move along a specified trajectory on the surface while maintaining a 
desired contact force. 

Previous research studies dealt mostly with the force control in contact motion mode 
without considering that the manipulator may lose contact with the environment during 
operation. Assuming that the manipulator maintains contact during operation is equivalent 
to assuming stability without proof. Another difficulty encountered here is the unknown and 
nonlinear relationship between reaction force and deformation (position). The force re- 
sponses and position responses are coupled and the transient responses cannot be accurately 
controlled. 

Because most assembly tasks require the end effector of the manipulator to come into 
contact with a workpiece at a certain speed, an impact is inevitable. Transition control from 
free motion to constrained motion or from constrained motion to free motion takes on the 
same importance as classical force control. In addition to all the difficulties of force control, 
impact control introduces its own challenges. Impact phenomena exist during transitions, 
resulting in dangerous collisions. The manipulator may bounce back and forth on the contact 
surface after the transition, and there is no clear distinction between the impact mode and 
contact motion mode. Thus, the ideal controller should be able to control the transient force 
response during impact, keep the same control structure from impact mode to contact 
motion mode, and remain robust in an uncertain environment. 
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The area of robot force control actually evolved from remote manipulator and artificial 
arm control in the 1950s and 1960s. These allowed users to have control by utilizing hands or 
muscles in a natural way. In the late 1960s and in the 1970s, the first computer controls using 
force feedback were proposed to replace the human operators. It was then that the stability 
problem was encountered. The main approaches to force control have been the following [1]: 

Logic branching feedback method (Ernst 1961): The essence of this method is a set of 
discrete moves terminated by a discrete event such as contact. IF-THEN logic is used 
in the control strategy. 

Continuous feedback method (Groome 1972): This was applied to assembly and edge- 
following tasks to maintain continuous contact. It was an early effort in continuous 
force feedback control. 

Damping method (Whitney 1977; Paul and Shimano 1976): An integrating controller is 
used in which sensed forces give rise to velocity modification. 

Active compliance (Salisbury 1980) [2]: A desired force is calculated based on the difference 
between the desired and actual hand position. 

Passive compliance (Watson 1976): The end effector is equipped with a passive mechanical 
device composed of springs and dampers. It is capable of quick responses and is 
relatively inexpensive. The application of such devices is limited to very specific tasks. 

Impedance control (Hogan 1980) [3]: An attempt is made to control the dynamic 
interaction between the manipulator and the environment. The dynamic relationship 
between force and position is controlled instead of pure force or position. The control 
structure is simple and the performance is robust. The drawback is the limitation of the 
dynamic performance. The output force cannot be regulated unless an accurate 
environmental model can be obtained. 

Explicit forces control (Nevins and Whitney 1973) This employs a desired force input 
rather than a position or velocity input. 

Implicit force control (Borrel 1979): No sensor is used. A particular stiffness matrix can be 
obtained by adjusting the joint servo gains. 

Hybrid force-position control (Raibert and Craig 1981; Mason 1981) [4, 5]: This is one of 
the most popular force control schemes today. A selection matrix is used to determine 
the force-controlled direction and position-controlled position. In the force-controlled 
direction, various force control methods can be utilized. The one most frequently used 
is explicit force control [6-8]. 

In recent years, force control has been intensively studied. Various control methods have 
been proposed including the operational space approach [6], dynamic hybrid position-force 
control [9], compliant motion control [10,11], object impedance control [12], hybrid 
control considering motor dynamics [13], and adaptive force control [14-16]. The inherent 
stability and other problems involved in force control were also discussed by many 
researchers. Problems addressed included kinematic and dynamic stability issues [17, 18], 
friction and stiction in force control [2], asymptotic stability of hybrid position-force control 
[19,20], stability of impedance control [21], the stability problem in Cartesian compliance 
[22], dynamic problems [23], important considerations in implementation [24], and the 
bandwidth limitation [25]. Research work and investigations based on the aforementioned 
formulations have been presented [26-30]. 

Control of the phase transition has also been studied by many researchers and various 
schemes have been proposed. The initial work was mainly focused on the modeling of a robot 
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in collision with its environment [31-33]. Models of the quantitative relation between the 
impulsive forces and torques of the constraint and the collision were derived. In [6], impact 
control was briefly discussed and treated as a transient with the same force controller 
structure. Maximal damping was employed during the impact phase. Impedance control was 
considered as an effective impact control strategy because of its unified and stable control 
structure. 

Other approaches to impact control include generalized dynamical systems [34,35], 
discontinuous control [-7, 8, 36, 37], adaptive force control [35], jump impact control E38], 
and event-based impact control [39]. 

Basically, the existing schemes can be divided into two categories. The first category is 
impedance control. It provides a stable and unified control structure for the three operation 
modes. The output force cannot be regulated after contact has been established unless the 
exact environmental model is known and integrated into the motion plan. The second 
category includes hybrid control schemes. The output force can be regulated with the 
assumption that contact is maintained after impact. Stability cannot be guaranteed and peak 
impact force cannot be limited. 

Hybrid control and impedance control are well known for their simple and unified control 
structures. However, they show good performance only under some restrictive conditions or 
assumptions. The assumption most frequently made is that the environmental model is a 
linear spring. The problem of lack of a rigorous stability analysis exists in all the previous 
results on impact control. Local linearization is a common technique in the stability analysis. 

3 IMPACT DYNAMICS 

In general manipulator operations, high productivity can be achieved only by minimizing the 
operation time. This implies that the speed of operation has to be increased. Because in an 
assembly operation, a certain percentage of time will be spent on the contact transition, 
increasing the speed of transition becomes a priority task in order to satisfy the requirement 
of the overall performance of the system. Hence, the contact velocity has to be larger than a 
minimum acceptable velocity. However, for relatively high impact velocities, large impact 
forces can be generated, exceeding the tolerance of the equipment. The end effector may 
rebound from the contact surface and cause instability. Therefore there is a trade-off between 
productivity and safety. It should be noted that impact velocity may also be caused by 
inaccurate planning due to environmental uncertainties. 

As we know from classical physics, the dynamics of impact are very different from the 
dynamics of a rigid body. Impact dynamics are quite complicated. The behavior that occurs 
at the interface is highly dependent on material properties such as the coefficients of 
restitution and the mass of the end effector. There are two ways to describe impact. One way 
is to calculate the velocity change after impact and neglect the behavior during the collision. 
Another way is to model the local dynamics of the object or the relation between the 
deformation and the impact force. 

In the literature there are many different deformation models, such as the linear elastic 
model, linear plastic model, Hertz model, and nonlinear oscillator model. In order to avoid 
damaging the workpieces or the robot, we have to ensure that no permanent deformation 
occurs after impact. This implies that only elastic collisions are allowed. Compared with 
other existing impact models, the Hertz impact theorem [40] provides a good elastic model 
of the collision of two spheres or the impact of a sphere against a thick plate, provided the 
materials are relatively hard and the initial velocity is relatively low. 
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3.1 Hertz Impact Model 

Consider the nature of the collision between the manipulator and the contact surface. It is 
reasonable to assume that the deformation is elastic, the contact force is monotone increasing 
with the deformation, and the contact surface is static. 

In the Hertz model, the normal force, F, is related to the relative displacement, c~, by 

F = k ~  3/2 

where 

k = (4v/r/3rt)(k I + k2) 

k , = { ( 1 - v Z ) / r t } E , ,  i =  1,2 

v i and E i a r e  Poisson's ratio and Young's modulus for the end effector and the environment, 

rlr2 
and ? = ~ ,  where r 1, r 2 are the radii of the contact masses. Since for a thick plate, r 2 

r I -+ - r  2 

goes to infinity, ? = r I is the contact radius of the end effector. The relative velocity at any 
time during contact is 

- -  (X1 m 
-2 k~3/2d~ = ~1 

4k~5/2 

5m 

The maximum displacement, ~max, can be obtained by setting & to zero: 

CZma x = (5mv2/4k)2/s 

where v o = &l is the impact velocity and m is the mass of the end effector. Hence, the 
maximum impact force is 

.3/2 
f m a x  : k ~ m a  x ( 7 . 1 )  

The duration of impact, Tc, is 

T~ = 3.214(m/k)Z/5v o 1/5 (7.2) 

In this way, the relationship between the impact velocity and the maximum impact force 
is obtained. For  a free mass collision, the peak impact force is proportional to the impact 
velocity and the mass of the end effector. For  a controlled collision such as the contact 
transition of a manipulator, the peak impact force should be made as small as possible. Thus, 
it must be smaller than the peak impact force for a free mass collision with the same impact 
velocity. Therefore, if we require that the peak impact force in Eq. (7.1) be less than the 
maximum allowable impact force, the resulting impact velocity derived from (7.1) will be safe. 
From Eq. (7.1), we have 

v o < 0.89m- 1/2k- 1/3175/6 
--safe 
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For digital implementation, the sampling rate needs to be taken into consideration. The 
force controller will be activated on the detection of the impact forces. If the sampling rate 
of the force measurement is too slow, the impact force may exceed the limit before the control 
can switch over to force control and the end effector may rebound from the contact surface. 
If the sampling time can be reduced to less than one half of the impact duration (i.e., 
2T~ < T~), the chances of rebound will drop to zero. From Eq. (7.2), the upper bound of 
impact velocity is 

I; 0 < lO.72m2/k2Ts 5 

The limitation of the magnitude of the control inputs is another factor that needs to be 
taken into consideration. From Eq. (7.1), we have 

v 0 < 0.89p- Xm- a/2k- 1/3175/6 a c o n t r o l  

where p is a weighting factor less than 1 and depends on the sampling rate. 
To meet the preceding two constraints, the upper bound of the impact velocity that can 

be applied should be 

Uma x - -  min{ lO.7m2/(k2T~5), 0.9m-a/2k- 1/3175/6__limitj '( 

where Flimi t = max{Fsafe, Fcontrol }" The theoretical analysis provides us with a basic idea of 
the limitations of the impact velocity. It is consistent with our intuition that the higher the 
sampling rate or the control limit, the higher the impact velocity safety bound. Of course, 
the real world is more complicated. Even though it is hard to get an accurate safety range 
of the impact velocity, at least we can make the velocity far below the calculated upper bound 
to protect the manipulator and the equipment. 

4 ROBUST IMPACT CONTROL 

The dynamic equation for a manipulator with n degrees of freedom is given by 

{ D(q)c[ + C(q, il) + G(q) + d(q)Tf = 

y = h(q) 

where D(q), C(q, 0), G(q) are inertia, centripetal and Coriolis forces, and gravities; q ~ R" is 
the vector of joint angles; O, c)" are the joint space velcity and acceleration, respectively; h(q) 
is the forward kinematics; J(q) is the n x n Jacobian matrix relating joint space velocity to 
task space velocity (i.e., jp = J(q)O); r is the n x 1 vector of joint driving torques; y is the 
output position and orientation in task space; and f is the output force in task space. 

4.1 Feedback Linearization and Decoupling 

Introducing the well-known nonlinear feedback linearization control law 

"c = D(q)J(q)-x(v - )(q)O) + C(q, ~) + G(q) + j ( q ) r f  
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the dynamics of the robot system can be linearized and decoupled as 

j) = v (7.3) 

where v is the vector of auxiliary inputs (commanded acceleration). 
Letting subscript u denote a quantity in the unconstrained directions and subscript c 

denote a quantity in the constrained directions, Eq. (7.3) can be written as Yu = Vu, Yc = vc. 

The controllers are decoupled. Using the traditional proportional derivative (PD) position 
control before impact, we have 

v = r  + k ~ ( p ' -  ~v) + k . ( y '  - y). t >1 0 

After impact, we keep using PD position control in the motion directions, 

�9 .d d d 
v.  = y .  + k~u(~u - L )  + k . . ( y u  - Yu), t >1 t~w 

where tsw is the time instant of the detected impact. The preceding closed-loop systems are 
asymptotically stable. 

4.2 Positive Acceleration Feedback 

To establish safe and smooth contact with the environment, the transient force response 
during impact should be controlled with minimum overshoot and oscillation. The contact 
force introduces a complicated nonlinearity in the closed-loop force feedback system. 

The closed-loop force dynamics in the contact directions after impact are 

; ,  + k , L  - k z ( f f  - L )  = O. t >I tsw 

where fc is the reaction force. In state space, we have 

f~ l --- X 2  

2 = - k a x 2  + k I ( f ?  - -  f~) 

where Xl = Yc, x2 - J:c. Force control is equivalent to high-gain position feedback control, 
and the transient response could be very oscillatory. Consider a linear environmental model 
fc  = k e x ~ ,  where k e is the stiffness, 

I X 1  ~--- X 2  

eSc z = - k l k e X  ~ - -  k 2 x  2 

where e is a positive value close to zero. It is clear that this singular perturbed linear system 
is asymptotically stable. The approximate dynamics of x 1 are reduced to a first-order system, 

5C 1 = - k l k e X 1 / k  2 + O(e) 

which is more robust in an uncertain environment. 



224 CHAPTER 7 / SENSOR REFERENCED IMPACT CONTROL IN ROBOTICS 

For  an unknown nonlinear environment, consider force feedback control with positive 
acceleration for t ~> tsw. Let 

v~ = ayr - kdp ~ + k f e  f + k,  f e f dt 

where ~ is close to but less than 1, ef- fcd --ft. Assume the reaction force, f~, is a non- 
linear monotone increasing function of the deformation, that is, f~ = g(Yc). Let y~ denote the 
corresponding position to the desired force f~. Thus f~ = g(Y~). The closed-loop dynamics 
in the constrained direction, after the control is switched, become 

ey~ + kdi9 ~ + kf(g(y~) - f d) + kifl (g(y~) - f~)  dt = 0 (7.4) 

Here e = 1 - c~ > 0. Equation (7.4) is a singularly perturbed nonlinear system. Denote 

w = -kd j~  ~ + k i ( f~  d - g(y~)) + k,  f (ffl - g(Yc))dt 

In state space, we have 

{ X1 = X 2  

~;X2 - -  W 

where x I - - -  Yc, ")('2 = J2c" The approximate dynamics of x 1 are 

kf k~ f X1 --- "-~d( fcd -- g(Y~)) + ~ ( f d  _ g(Yc)) dt + O(e) 

The closed-loop dynamics are reduced to w = 0 if e = 0. The dominant  dynamics of f~ 
become w = 0, for small integral gain, and the transient response of f~ is close to the response 
of a first-order system and will be robust for uncertain environments. 

Current technology does not allow us to get an accurate measurement of the acceleration. 
Instead, we choose to use the previous commanded acceleration as the feedback. Together 
with the robot model, we have 

A 

z = D(q)Y(q ) - l ( v  - )(q)4) + C(q,//) + (~(q) + ~ ( q ) r f  

where/ ) ,  J, (~, (~ are the estimates of the parameters of the robot model. The closed-loop 
system actually includes a modeling error term y~ = v + r/, where q is the modeling error 
and 

= JD-1((/~,~- 1 _ D J-1)u + D J - 1 ) ~ _  b J -1)~  + ~ _  C -.J7 G -  G "Jr j T f _  jTf)  

Let v = (XUprevious -Jr- W, where/)previous is the commanded acceleration to the previous sampling 
time instant. Because v ~ Vprevio,s, r/ m / / / p r e v i o u s ,  and J)c ~ YCprovious for a high sampling rate, we 
have 

e y ~ -  w + er /= 0 
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The dominant dynamics of x I are reduced to w - 0, which is close to a first-order system. In 
addition, the modeling error term in the closed-loop system is reduced to er/. It turns out that 
the control design is robust to bounded modeling uncertainties and environmental uncertain- 
ties. 

4.3 Stability 
From the error dynamics in the constrained directions after impact, together with Liapunov's 
direct method, it can be shown that the equilibrium point is asymptotically stable for the 
closed-loop system if the trajectory remains in the constrained space. 

Let fc = g(Yc) and y~ denote the corresponding position to the desired force fd. Hence 
f f  = g(Y~). Due to the fact that the bigger the deformation, the larger the reaction force, we 
can assume g(Yc) is a monotone increasing function of the deformation. This leads to 

(g(Yc) -- g(Y~))(Yc -- Y~) > 0 

(g(Yc) -- g(Y~))(Yc -- Y~) - 0 

i f  Yc - Yc a 0 

Y c  - 

Theorem 1 Consider the closed-loop system (7.4), and define 

Z 

d 
z l = Yc - Yc 

Z2 --  J]c 

Z3 = f l  (fc -- f f )  dt 

as the state o f  the system. Assume that (1) the trajectory remains in the constrained space, (2) 
all the gains are positive, and (3) the actual force  f is an unknown monotone increasing funct ion 
o f  the deformation. Then a sufficient condition for  the system to be asymptot ical ly  stable is 

k, dk, f - k I 8  > 0 (7.5) 

In the new coordinate system, the closed-loop system (7.4) becomes 

8"2 2 n t- kdz 2 + k fZ  3 n t- k i z  3 = 0 (7.6) 

Introducing the state space representation: 

f 
Z1 ~ Z2 

Z2 -" { - - k d Z 2  - -  k f { g ( Z 1  At- yd) __ f f }  _ k ,  z 3 } / ~  

~z 3 ---- g(z I -J- yac) -- f /  

recall that z 1 + yca = Yc. Then, Z = (z 1, Z2, Z3)  T - "  0 is the equilibrium point. Now, take 

V = b (g({ + ya) _ f a ) d {  + z2/2 + cz2z 3 + az2/2 

= b h(~) d~ + z2/2 + CZzZ 3 + az2/2 

(7.7) 
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as the Liapunov function candidate, where 

a = k i k s / k a e  

b = (kr  - k , /ka)  

c = k I / k  a 

h(~) = g(~ + y~) - f a  = g(~ + y~) _ g(y~) 

If the sufficient condition (7.5) is satisfied, then a -  C 2 > 0,  which implies z2/2 + r 3 + az2/2  
is a positive definite function. Since b ~o' h(~) d~ is positive if z 1 4= 0, V is a positive definite 
function. Now consider 

( / - -  - ( k a z  2 -~ k lz3)2/ka8 

Therefore, V ~< 0. If l)" = 0, then kdZ 2 + klZ 3 = 0. Take the derivative to obtain k a z  2 n t- 

kt'2 3 = 0. According to Eq. (7.6), we have e:~ 2 + ki~ 3 = 0. Since kak ~ - k~e > 0, this implies 
Z'3 = 0,  Z2 = 0. By the definition of z 3, we have :~3 = f~ - re, and :~3 = 0 means f. = ffl, which 
is equivalent to y~ = y~. Consequently, j~c = j~ = 0, which implies z 2 = 0, and this leads to 
z 3 = 0. Therefore l / =  0 contains only the trivial trajectory. According to LaSalle's theorem, 
the system is asymptotically stable. 

5 SWITCHING CONTROL 

A controller with one time switch cannot guarantee that the manipulator  will never lose 
contact. Using force control only after impact may be dangerous if the manipulator leaves 
the surface; the manipulator  will be dragged back to the surface with very high speed by the 
force controller and instability may be excited. Instead, position control should be used to 
drag the manipulator  back to the surface when necessary. To make sure that the manipulator  
maintains contact with the surface, a switching control law is designed to eliminate 
unexpected rebounds and reestablish contact. 

5.1 Control Design 

The minimum detectable force fsw, dependent on the sensitivity of the force- torque sensor 
and sampling rate, is used as the switching condition. The controller is designed to switch 
between a position controller for the free motion and a force controller for the constrained 
motion. The position Yc,sw corresponding to fsw is unknown but can be recorded on line to 
serve as the desired position for position control. When the measured force is greater than 
or equal to f~w, the controller is switched to force control; otherwise the controller will be 
switched to position control to reestablish contact. 

The sampling rate of the measurement  should be considerably higher than the bouncing 
frequency for the implementation. It is reasonable to assume that impact occurs in a very 
short period, which implies that Yc,sw can be considered as a constant. Thus, the desired 
velocity and desired acceleration corresponding to Y~,sw are zero for a soft landing. According 
to the preceding analyis, in the constrained directions, we design the rigorous switching logic 
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FIGURE 7.1 
Phase portrait of the switching system. 

as (see Figure 7.1) 

ABI (i) fc < fsw or (ii) f c =  fsw & j~c(t) > 0  (7.8) 
(i) f ~ >  fsw or (ii) f c =  f~w & j~c(t) <<.0 

Clearly, at any moment in time either A holds or B holds. It is also apparent by inspection 
that A and B are disjoint. Apparently, the control will switch to the force controller if the 
state of the system is in region B and to the position controller if the state of the system is 
in region A, that is, 

If A is true, then position control 
If B is true, then force control 

The controller is designed as 

~C ~ -  

The closed-loop system is 

(A) 

e f d t  (B) 

(eri c + ke 9 c - k f e  f - k I e f dt = 0 (B) 
s w  

(7.9) 

It can be shown that if bouncing occurs after impact, the manipulator will establish 
contact with the environment after a finite number of switches and the desired force can be 
achieved simultaneously. 
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We prove that if the parameters k~ 
motion, 

and kp of the closed-loop system for the unconstrained 

L + k~c + k , ( y c -  Yc,~w) = 0 

are appropriately chosen, then the switching system (7.7) with the proposed switching logic 
(7.6) will asymptotically converge to the equilibrium. To this purpose, set k~ = 2~'co,, kp = co 2, 
and ~ < 1, and we have: 

Theorem 2 I f  condition 

kdkf(1 - e-2~,~/~) _ k,e > 0 (7.10) 

is satisfied, where /3 = w/1 -~2, then the switchin9 system (7.9) with the proposed switchin9 
logic (7.8) will asymptotically converge to the equilibrium Z = 0 after finite switches. 

The complete proof can be found in the next section. The outline of the proof is as follows: 
It is seen that condition (7.10) implies (7.5). To prove the theorem, it can be shown that if 
the number of switchings in a trajectory is not finite, then the trajectory itself will 
asymptotically approach a set that is entirely contained in the set B of Eq. (7.8). On the 
contrary, Theorem 1 shows that every trajectory that remains entirely in B converges to the 
equilibrium of (7.4) as t ~ oo. Thus, in B there is no other invariant set but the equilibrium 
of (7.4), and this contradicts the existence of an infinite number of switchings. Thus, the 
number of switchings is finite and the last switching always corresponds to the transition 
from free space to constrained space after which the system converges to Z = 0 as t ~ oo 
by Theorem 1. 

5.2 Stability Proof 

Lemma 1 Consider the closed-loop system in the unconstrained direction, 

y~ + k,,L + k,(yc - y~,~)  = 0 

which is an asymptotically stable system. Define 

l 

X = ~ X1 = Y c -  Yc,sw 
X 2 f2c 

as the state of  the system. Let k~ = 2~co,, kp = co 2, and ~ < 1. Suppose at time t = 0 there is 
a transition from constrained space to free space (bouncin9 off). Let xl(O ) = 0  and 
x2(0 ) = v o > 0. Then there is a time T > 0 at which a transition from free space to constrained 
space occurs (bouncin9 back) and x l ( T  ) = O, x2(T ) = - V o  e-~/~ (where fl = w / 1 -  ~2 and 
e -~'~/~ < 1). 

Proof 

Yc,sw) /2 + ]y2/2 = kpx2/2 + x2/2 1/1 = kp(yc - 2 

is the Liapunov function of the system. Let 3; = xl  = Y c -  Yc,sw. Since Yc,sw is a constant 
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= P~, ~ = Yc- The  sys t em will b e c o m e  

~" + kv~ + kpy = 0 

T a k i n g  the L a p l a c e  t r an s fo rm ,  we have  

(s 2 + 2(co, s + o)2)Y(s) = @(0) + )(0) + 2(co,~(0) 

Since the  ini t ial  c o n d i t i o n s  are  ~(0) = xl(0)  = 0, )(0) = x2(0) = v o, 

(S  2 -Jr- 2~co, s + co 2) Y(s) = )(0) = v 0 

The  c o r r e s p o n d i n g  t ime d o m a i n  r e s p o n s e  is 

y(t) ( v~,~) -~~ ~t = e sin on 

Since fl = x//1 - ~-2, we can  define sin 4~ = fl, cos ~b = (. T h e n  

. , - -  e -~~ sin(flco, t - ~b) 

At the t ime  w h e n  ~(T) = x l ( T  ) = 0, sin co, f iT  = 0. C h o o s e  co, f iT  = re; then ,  

) ( T )  = x 2 ( T  ) = -Vo  e-r176 sin(re - ~b)/fl = - V o  e-; '~nr  = - e  - ; ' / a  (7.11) 

L e m m a  2 Let 

{ a T + a p  a } 
/~ -- m a x  - c 2 '  a - c 2 (7.12) 

where 7 = 1 -  e -2r p is an arbitrary positive number. I f  condition (7.10) is satisfied and 
> lu, then we have o~ > l and a - c 2 > 0 .  

P r o o f  Since 7 < 1 a n d  

- = - k,/ka = ~ (kak:7 - k,e) > 0 a7 C 2 (kxkf/kae)7 2 2 kI 

we have  a - c 2 > a7 - C 2 > 0. Also,  it is easy  to verify t h a t / ~  > 1, wh ich  impl ies  cr > 1. 
Let  the  swi tch ing  t ime s equence  d e n o t e d  by  

to, t l ,  t2, " � 9  t2 i ,  t2i+ 1, t 2 i + 2 , ' ' '  

where  t o is the  t ime  w h e n  the  m a n i p u l a t o r  s ta r t s  to  b o u n c e  off f r om  the  c o n s t r a i n e d  space  

(F igu re  7.2). There fore ,  Z o = (zl(to), z2(to), z3(to) ) is the  last  s ta te  of the  t r a j e c t o r y  in the  
c o n s t r a i n e d  space.  It  c o r r e s p o n d s  to the  ini t ia l  s ta te  X o = (0, z2(to)) in the  free space  at  t ime  
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I m p a c t  c o n t r o l  o n  a r i g id  f ia t  t a b l e  m a d e  o f  c o m p o u n d  m a t e r i a l .  

t o. Note also that Zl( to)= 21 = Yc.sw- 
(~'~, Zz(t2~), z3(t2;)) and Xzi = (0, z2(t2~)). 

y~. Similarly, at switching time t2i, w e  have Z2i-- 

Lemma 3 I f  condition (7.10) is satisfied, then there exist a Liapunov function V 2 for the 
closed-loop system in the constrained space (B in (7.9)) and a positive number p such that at 
even switchiny indices V 2 is strictly decreasin9 and 

V2(Z 2 i )  - V2(Z 2i + 2)  > pz22(  t 2 i ) / 2  (7.13) 

Proof Choose p as an arbitrary positive number and 7 =/~ + 1, where/z is defined in Eq. 
(7.12). Let 

Yc,sw) /2 + ~2/2 V I ( X  ) __ k p ( y  c _ 2 

V2(Z ) = eb h(~) d~ + c~az~/2 + c~z~/2 + ~cz2z 3 

be the Liapunov functions for the closed-loop system (7.9) in free space (A) and constrained 
space (B), respectively. 
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By L e m m a  1, 

v,(x~,) > v,(x~,+,) (7.14) 

and by Theorem 1, 

V2(Z 2i + 1) > V2(Z 2i + 2 )  (7.15) 

where 2i indicates the 2ith switching instant. At the 2ith switching instant,  

;; } V2(Z2i ) -- VI(X2i ) -- {o~b l h(~) d~ + o~az]/2 + (~ - 1)z22/2 + O~CZ2Z 3 2i 

By L e m m a  2, c~ > 1 and a - c 2 > 0 ,  together  with (7.12), we have: 

c~c ~ -  1 
= ~ [ ( a - c Z ) ~ - a ]  > 0  

This implies that  V2(Z2i ) -- VI (X2i  ) is positive. 
Also, at the (2i + 1)th switching instant,  

{ L  1 
V2(Z2, +,) - V~(X2z + ,) = ~b h(~) d~ + (~ - 1)z] /2 

i + l  

Therefore: 

EV2(Z2 i ) -  VI(X2i)]  -EV2(Z2 i+  1 ) -  V l ( X 2 i + l ) ]  -- {o~az]/2 + (o~-  1)z]/2 + ~6z2z3}2i 
- {(c~ - -  1 ) z 2 / 2 } 2 , + ,  = I 

Claim 

I > pzZ(t2i)/2 (7.16) 

By L e m m a  1, 

~ ( t ~ ,  + 1) _- z = ( t ~ ,  + 1 _ _ _ _ _ 2 )  _- _ ~-~/~ 
j~c(t2i) z2(t2i) 

which implies 

I - pz2(tzi)/2 = {~az2/2 + ((e - 1)7 - p)z~/2 + c~CZzZ3}2i 

where 7 - 1 - e-2~r~//3 as in L e m m a  2. 

By L e m m a  2, together  with (7.12), we have ft > ~7 + ap 
2, c~ > ft. Thus, ~ > 

~7 - c 

a? + ap 
a7 - c 2 ' which 



232 CHAPTER 7 / SENSOR REFERENCED IMPACT CONTROL IN  ROBOTICS 

implies a ( w  - c2) > (u;) + up). Therefore, 

Hence I - pz;(t2,)/2 is positive. Therefore, 

Based on Theorem 1, Lemma I ,  and Eqs. (7.14) and (7.1 5) ,  we have 

Proof of Theorem 2 Suppose the system has infinite switchings. Since V2(Z2,) is strictly 
decreasing and bounded below by zero, lim,,,, V2(Z2,) exists. Let lirn,,, 1/,(Z,,) = L. By 
Lemma 3, 

Taking the limits on both sides, 

lirn V,(Z,,) - lirn V2(Z2, + ,) 3 lim pz:(t2,)/2 2 0 
,-7 2 - K  I-+ r 

Hence, we have 0 = L - L  3 limi-+ ,, pzi(t2i)/2 2 0, which implies lim,,,, pz:(t2,)/2 = 0, which 
implies lirn,, ,~, z,(t ,,) =O. By Lemma 1,  Iz,(t,,, ,)I < Iz,(t ,i)l. which implies lim ,,,, z,(t,,+ ,) = 

0, which implies limi+ ,, z2(ti) = j:,.(ti) = 0. 
It can also be shown that lim,, ,, z,(t,,+,) = 0. I n  fact, (7.15) implies 

from which, since lim,,., z,(ti) = 0, the result follows. 
Recall that 
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(z~(t~,+~)) ~ 
V2(Z 2i + 2) = D + c~ 

2 
I z3(t2i+2 ) 

+ z3(t2i+ 2) a a  2 

where D = V2(~ 1, 0, 0) and 7"1 = Yc,sw- Yd" Since 

-Jr- O~CZ2(t 2i + 2) 1 

l i m  z2(t 2i+ 1) = 0 
i--~ oo 

l i m  z2(t 2i + 2) = 0 
i---~ oo 

l i m  z3(t 2i + 2) --  0 
i--* oo 

we obtain that, for any e > O, there is i* such that for i > i*, 

I V2(Z  2i + ,)  - DI  < e 

I V2(Z 2, + 2) - DI  < 

Therefore, since Vz(Z(t)) is decreasing for t2i  + 1 < t < t2i+2 , we have proved that for any 
e > 0, there exists i* such that, for all i > i* and all t e [t2i + 1, tzi+ 2], 

D + e > V2(Z(t)) > D - -  e, 

In other words, for all i >  i* and all t6[t2i+a, t2i+2], the trajectory Z(t) is in an e- 
neighborhood of the level set 

d = { Z  ~ R": V2(Z ) = V2(51, 0, 0)} 

This, together with the observation that the trajectory in the free space is itself in an 
e-neighborhood of the point {z 1 = 21, z 2 = 0}, completes the proof that  for any e > 0, there 
is T such that for all t > T the trajectory is contained in an e-neighborhood of a~/. 

Since d is entirely contained in the set B, by Theorem 1, d cannot contain any nontrivial 
invariant set. This proves that there cannot be infinitely many switchings. In view of Lemma 
1, the last switching is from the free space to the constrained space. 

6 EXPERIMENTS 

The intensive simulation and experimental studies were conducted at the Center for Robotics 
and Automat ion in order to verify the theoretical results. Experimental  comparisons with 
other typical contact control schemes were also studied. The trajectory tracked consists of a 
straight line in free space and a straight line on the constrained surface. 

A 6 -DOF dual-arm P U M A  560 manipula tor  [41] manufactured by Unimat ion  Inc. was 
used for the experiments. The manipula tor  is hardware interfaced to a Mot ion  Tek universal 
mot ion controller [42], which is an electronic system used to control a number  of motors  for 
the robot system. It is highly modular  in configuration and is capable of up to 1000 Hz servo 
rate on every axis. Each controller stack consists of five modules. The power supply module 
provides the logic and servo power for the entire control stack. The joint  processor module 
contains a 10-MHz, 32-bit NS 32016 microprocessor that runs both the configuration set up 
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and the servo code generator; up to 16 axes can be controlled. Two joint interface modules 
contain the hardware to drive the motors and provide raw feedback from each joint; each 
one can drive four motors. All position and velocity information is obtained from a single 
incremental encoder on the motor. The user processor module provides the capability to run 
user-developed software; its 128 K RAM memory can be used as shared memory or 
communication between the U M C  and other high-level computing devices. The expansion 
module contains the interface board to connect the user process multibus with the VME bus 
of high-level computers. The motors are driven by a 30-V power tap from the power supply 
module. 

The high-level computing device is an SGI 4D/340 VGX graphics workstation [43]. It has 
four symmetric R 3000/3010 RISC processors with a 33-MHz rate and can deliver up to 
117 MIPS or 36 MFLOPS.  The SGI workstation is interfaced with the U M C  controller via 
shared memory mapping and provides sufficiently fast communication. 

The robot arms were equipped with California Cybernetics FSA-3254 six-axis wrist- 
mounted force-torque sensors [44]. The sensors are interfaced with the controller. 

Our control algorithm was implemented on one of the robot arms equipped with the 
force-torque sensor. The force-torque was measured at a rate of 1000 Hz, and the filtered 
force-torque was computed at a rate of 500 Hz. The sampling rate for joint position-velocity 
measurement was 1000 Hz. The feedback was also computed at a rate of 1000 Hz. Since the 
time constant of the joint motor of the PUMA 560 is 3 ms, the sampling and feedback rates 
are high. A high sampling rate will increase the control accuracy and reduce the effect of 
uncertainties [45], especially for force control [46]. In the experiments, the positions in the 
x, y, and z directions and orientation were commanded for free motion. After the detection 
of contact, only force was commanded in the z direction. The positions in the x and y 
directions together with orientation were commanded for constrained motion. Three kinds 
of surface material were tested: a rigid flat table made of a compound material, a flat plastic 
foam, and a steel surface with a "camel-back" shape. The location, shape, and stiffness of the 
contact surface are uncertain. 

The secondary input is 

l )  - -  O~/)previous kdjv ~ + hs(f. ~ -  .f~) + k, f ( f .~-  .fc) dt 

where c~, k s, k I, and k d were chosen to be 0.85, 0.06, 0.8, and 15.0 for every test case. The 
output y was calculated from measured joint angles. Since the kinematic modeling error can 
be reduced by calibration and the PUMA 560 arm is rigid, the performance will not be 
significantly affected by the kinematic modeling error and the joint flexibility. The path 
considered consists of two segments, one a straight line from free space to the constrained 
surface, the other a straight line from the contact point to a final point on the constrained 
surface. The impact velocity is chosen to be 0.1 m/s. The first experiment, shown in Figure 
7.2, tested the impact control scheme on a flat rigid table made of a compound material. It 
showed the force response for a desired force value of - 1 . 0  kg. The force error goes to zero 
smoothly and quickly. The second experiment, shown in Figure 7.3, tested the switching 
control scheme on the same table; the system is stabilized after a few switches. The third 
experiment, shown in Figure 7.4, tested the impact control scheme on a flat plastic foam; a 
similar stable transition response can be observed. The fourth experiment, shown in Figure 
7.5, tested the switching control scheme on the same plastic foam, resulting in a robust and 
stable contact transition. The fifth experiment, shown in Figure 7.6, tested the impact control 
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F I G U R E  7 .3  
Impact  control with switching on a rigid flat table made of compound  material. 

on a camel back-shaped steel surface of 0.1 inch thickness. A smooth and stable transition 
without loss of contact can be observed. The sixth experiment, shown in Figure 7.7, tested 
the switching control scheme on the camel back-shaped surface. Again, a robust and stable 
response is observed. 

7 S U M M A R Y  

This chapter discussed the remaining problems in the area of impact control and force 
regulation. The unknown and nonlinear relation between force and position is no longer a 
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F IGURE 7.4 
Impact  control  on a flat plastic foam. 

difficulty in control design and stability proof. A robust and stable impact control strategy 
was found. The controller can regulate both position and force simultaneously. The transient 
force response during impact can be successfully controlled. The controller switches between 
position control and force control on a detectable force threshold to eliminate accidental loss 
of contact and reestablish contact softly. 
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CHAPTER 8 

A Modular Approach to Sensor 
Integration 

R. J. ANDERSON 
Intelligent Systems and Robotics Center, Sandia National Laboratories, Albuquerque, New Mexico 

1 I N T R O D U C T I O N  

In this chapter we will demonstrate a method whereby sensor information can be integrated 
into a robot-telerobot system in a modular fashion. The focus will be on constraint 
information imposed by proximity sensors such as capacitive and ultrasonic sensors, but the 
method can be extended to vision or force sensor feedback. 

The framework is a nonlinear control system called SMART (Sandia's Modular Architec- 
ture for Robotics and Teleoperation) that utilizes passivity and network concepts [1-3]. 
Each module in the SMART system represents an input device, a robot, a constraint, a 
kinematic mapping, or a sensor input and can be represented by a network equivalent. 
Systems are derived by combining modules in different telerobotic behavioral modes. 
SMART has been described in various other publications [4-7], and has been applied to 
problems as diverse as multirobot control, redundant robot control, and waste storage tank 
operations. In this chapter, however, we will focus on sensor integration issues. In so doing 
we will delve into the theoretical specifics of SMART, demonstrating how modularity is 
achieved in a discrete domain and how nonlinear mappings can be integrated with sensor 
data to enforce constraints. The system we will develop will be modular, both theoretically 
and in actual implementations. Any module in a SMART system can be run on any 
processing unit in a multiprocessor environment. 

Modularity is especially important when integrating multiple proximity sensors in 
telerobotic systems, because there are various potential sensors with complementary capabil- 
ities, which can be configured in numerous different ways. For instance, capacitive sensors 
such as the Sandia WHAP (Whole Arm Proximity) sensor are good for short-range (4 to 12 
inches) detection of metals and other materials with a distinct dielectric constant. They can 
see these objects instantaneously without reflections and independently of surface properties. 
Ultrasonic sensors, on the other hand, operate independently of object materials but are 
sensitive to surface textures and have an inherent lag in reading distances. Infrared sensors 
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are instantaneous and are independent of surface materials, but suffer problems in dusty, hazy 
conditions. 

A robot working in a hazardous environment may include a complement of sensors whose 
primary aim is to prevent the robot from running into unmapped obstacles. In this case the 
sensors must fulfill a number of requirements. First, they must not interfere with the normal 
operation of the arm. Second, they should never cause the arm to become unstable, even 
when multiple sensors from different sources are providing conflicting information. Third, 
when an object is detected, the sensor must provide information to guide the manipulator 
away from the object. Finally, the system must be flexible enough to allow the addition or 
deletion of sensors. 

Combining feedback from multiple sensors in a modular environment is problematic. In 
order to accommodate sensor feedback in a modular fashion, we must first overcome the 
problem of algebraic instability. This problem is first described and then overcome by the 
use of scattering theory. A simple example will be used to describe the problem and then 
motivate the solution. 

Next, constraints are fundamentally nonlinear and thus have the potential for all kinds of 
unpredictable behavior if imposed carelessly. We must introduce constraint behavior in a 
fashion that will guarantee the existence, uniqueness, and stability of smooth trajectories. 
This will be addressed in the subsequent sections. 

Finally, a number of examples using the SMART architecture are given showing how 
sensors, telerobotic input devices, and robots can be coordinated in a modular fashion. We 
then demonstrate how nonlinear boundary function behavior can be implemented in a stable 
fashion consistent with this architecture, utilizing various proximity sensors in various 
different modes of operation. 

2 TERMINOLOGY 

In this chapter networks will follow the effort flow analogy [8], which relates force (effort) 
to voltage and velocity (flow) to current. We will use lowercase letters to represent signals in 
the system and uppercase letters to represent operators. Subscripts will denote the space in 
which these signals are based, which for robot systems is typically ~". 

Operators that map signals from a space into itself will have a single subscript denoting 
the space. Thus, if input and output signals are both in 9t", the operator is an n x n square 
matrix with a single subscript. If the operator maps from one space to a different space, such 
as the Jacobian operator, then two subscripts separated by a backslash will be used denoting 
the two spaces. If the operator maps the Cartesian product of two spaces, an i x j subscript 
is used. The operators derived from this analogy are summarized in Tables 8.1 and 8.2. 

Also, a number of unfamiliar terms (at least to a robotics audience) will be introduced 
here [9]. These are summarized in Table 8.3 for completeness. 

3 THE PROBLEM OF ALGEBRAIC LOOPS 

In a network representation of a system we are accustomed to thinking in terms of standard 
state variables, such as effort, flow, force, velocity, voltage, and current. Unfortunately, when 
the system is discretized, either for simulation or for control, these variables are generally the 
wrong variables, as their usage can introduce nonpassivity and instability into a system 
whose ideal continuous representation would be passive and robustly stable. Overcoming 
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Table 8.1 Network Variables 

Symbol 

s 

d 
u i 
f,, fdi 
Xi , xdi 
qi, Ri 

Description 

Laplace frequency 
Unit delay (d = z-1) 
Velocity, angular velocity 
Force or torque, desired force or torque 
Position, desired position 
Orientation (quaternion, rotation matrix) 

Table 8.2 Network Operators 

Symbol Name/analogy Equation Symbol 

M z Inertial/inductance 

B i Damping/resistance 

K i Stiffness/capacitance 

J j/i Jacobian/transformer 

Z(s) Impedance 

d v i  
fi = --dtt (Mivi)  

+f i  - 

f i - -  Bivi 

+ f i -  

r u i - - . .  

+ f i -  
Vi Vj 

l)j = Jj/ivi ~ 

fi---jjT/ifj  + L J J / 9  4" 

vi  

f, = Z,(s>,  +..,AA~. ~ f / _  - 

Table 8.3 

Symbol 

Zo, ZOp 

a i 

bi 
Si, S ix j  

Scattering Operator Terminology 

Name Equation 

Characteristic impedance 

Input wave 
Output wave 
Scattering operator 

ZOp = Z o I  p 
(scaled identity) 

a i =  fi + Zovi 
bi = f i -  Zovi 
b i = Siai I] Eail bi __ Si • j 

bj aj 
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this problem is the key to designing SMART modules. Before developing these techniques 
for our prototype telerobot system, we shall start with a much simpler example. 

3.1 Modularizing a Velocity Divider Network 

Consider Figure 8.1. 
It consists of an ideal velocity source, va(t), and two damping terms, B x and B 2. The 

constituent equations for the network elements are 

f l  = - B l v l  (8.1) 

f2 = B2v2 (8.2) 

and the connection equations are given by 

13 2 --~ V 1 -~- V d 

fl = L  

(8.3) 

(8.4) 

which, when combined, result in the current (velocity) divider equations: 

V 1 = - ( B  1 + B2)-XB2vd 1) 2 " - -  (B 1 + B2)- 1B 1 ve (8.5) 

Suppose, however, that these equations are to be implemented in a modular fashion, and the 
constituent equations and the connection equations for the network are computed separately. 

In this case a sample delay is incurred, because some computations depend on results of 
other computations. If the connection equations can be computed without sample delay, that 
is, for each time instant k, 

v2(k) = v,(k) + v~(k) (8 .6 )  

f~(k) = f2(k) (8.7) 

then the constituent equations must contain some sampling delay, as shown below: 

vl(k ) = - B l l  f~(k) (8.8) 

f2(k) = B2v2(k 1) (8.9) 

FIGURE 8.1 
Velocity divider network. 
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Combining these equations yields 

v2(k ) = Vl(k ) + va(k ) = - B 1 1 f ~ ( k )  + va(k ) = - B - ~ l B 2 v l ( k -  1) + va(k ) (8.~0) 

Letting d = z -1 represent a unit sample delay, Eq. (8.10) can be solved to get the 
characteristic equation 

0 = z + B11B2 (8.11) 

For a scalar system this will be stable if and only if ]B2] < ]B 1]. For a matrix-valued system 
with diagonal damping operators B 1 and B2, each element of B 2 must be less than the 
corresponding diagonal element of B1, and for matrix-valued damping the induced two-norm 1 
condition 

liB1-1B2112 < 1 (8.12) 

must be satisfied. 
Sampling in a different order may reverse the stability requirements, requiring that B a be 

less than B2, but it will not eliminate the problem. As long as effort and flow variables are 
sampled, instability may arise due to sampling. This problem is called algebraic instability, 
where the ideal continuous system contains elements of the same order, which, when 
separated into modular components, result in additional discrete-time states. Thus, in our 
example, a zero-order damping system becomes a first-order system in the discrete domain. 
Likewise, two first-order coupled systems might result in a third-order discretized system. It 
is important to note that this problem is independent o f  the sampling rate. Thus the common 
belief that "sampling fast enough" will cause our discrete system to exhibit the behavior of 
the ideal continuous system is in general invalid for modular systems. 

Now if the only goal was to design linear, time-invariant robotic control systems for single, 
rigid-body robots with known a priori interactions, then present methods would be adequate. 
The entire system could be combined into one large equation before sampling (as in Eq. (8.5)) 
or the stringent coupled stability requirements of Eq. (8.12) could be met. However, if the 
goal is to build flexible, expandable, control systems such as SMART, then discretization is 
mandatory and modularity is required, not because it is conceptually and computationally 
pleasing but because it is the only way to handle complex systems. 

Luckily, there is a body of theory that can be applied, where stability is always maintained 
after discretization, where components can be designed in a completely modular fashion, and 
where the "sampling fast enough" adage will be true, even in the presence of additional 
discrete time states. The theory is called scattering theory. 

4 SCATTERING THEORY 

Scattering theory was developed to handle problems in transmission line analysis. Ideal 
lossless transmission lines transmit effort and flow (voltage and current in this case) across 
distances without losing energy and without changing the steady-state behavior of the signal. 
However, depending on the line impedance, Z o, and the impedances terminating either end 
of the line, the transient behavior of the signal will be affected. 

1The two-norm for a matrix, A is equal to the maximum singular values, that is, the maximum eigenvalue of the 
matrix A r A. 
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4.1 Wave Variables 

Scattering theory involves a change of basis. Instead of using effort-flow variables to describe 
dynamic time-delay phenomena at port connections, wave variables are used. Wave variables 
represent a bilinear map of the standard effort-flow variables. The input wave, a, is defined 
as the effort plus the scaled flow entering the port, 

a = f + Zov  (8.13) 

where f is the effort (force) at the port terminals, v is the flow (velocity) entering the port at 
its terminals, and Z o is a constant representing the characteristic impedance. The output 
wave, b, is defined as the effort minus the scaled flow, 

b = f -  Zov  (8.14) 

For a two-port (Figure 8.2) with flow Vp entering the port from the previous port, with flow 
v, exiting the port to enter the next port, and with efforts fp,  and f, at the port terminals, 
the corresponding wave variables are defined as 

a v = fp + Zov  p (8.15) 

a, = f ,  - Zov  . (8.16) 

bp = f v -  Zovp (8.17) 

b , -  f, + Zov . (8.18) 

If the underlying reference frame is matrix valued, then the same equations still apply, except 
that in this case Zo represents the scaled identity matrix. 

4.2 Scattering Operators 

Using this mapping of effort and flow variables into wave variables, we can determine how 
impedance, admittance, and hybrid operators can be mapped into scat ter ing operators.  A 

scattering operator, S, is the mapping between input waves variables, a, and output wave 
variables, b. 

b = Sa (8.19) 

and can be readily derived from the constituent equations for an element. 

FIGURE 8.2 
Two-port network. 
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Suppose a one-port is represented by its equivalent impedance, Z(s), 

f (s) = Z(s)v(s) (8.20) 

Then its input wave is defined by 

a(s) = f ( s )  + Zov(S ) = (Z(s) + Zo)v(s  ) (8.21) 

and its output wave is defined by 

b(s) = f (s) - Zov(S) = (Z(s) - Zo)v(s  ) = (Z(s) - Zo) (Z(s  ) + Z o ) - l a ( s )  (8.22) 

and thus the scattering operator is defined by 

S(s) = ( Z ( s )  - Z o ) ( Z ( s )  + Z o )  - ~  (8.23) 

The inverse, (Z(s)  + Zo)-2, whether scalar or matrix valued, is always well defined, since Z(s)  
is positive real and Z o is strictly positive. 

The beauty of the scattering approach is that it transforms passive impedances, which have 
Nyquist frequency plots in the right half-plane, to passive scattering operators, which have 
Nyquist frequency plots in the unit circle. 

Suppose we have a linear time-invariant (LTI) one-port consisting solely of passive 
elements (e.g., masses, springs, dampers, and Jacobians) with driving point impedance Z(s). 
It is a well-known result of network theory [1] that the Nyquist plot of the impedance will 
lie entirely in the right half-plane. Likewise, the singular values for a passive two-port 
impedance operator or admittance operator will also lie entirely in the closed right half-plane. 

Thus, for an LTI system all of the following are equivalent: 

�9 An n-port is passive. 
�9 An n-port can be represented by a network of passive elements. 
�9 An n-port has an impedance operator with a Nyquist plot contained entirely in the 

right half-plane. 
�9 An n-port has a scattering operator with frequency response in the unit circle. 
�9 An n-port has a scattering operator with norm less than or equal to one. 

The real beauty of the scattering operator approach for robotic systems is that the 
scattering operator representation is as valid for nonlinear systems as it is for linear systems. 
Thus, although we cannot talk about Nyquist plots for nonlinear systems, we can still 
maintain the following equivalence: 

�9 An n-port is passive. 
�9 An n-port can be represented by a network of passive elements. 
�9 An n-port has a scattering operator with norm less than or equal to one. 

4.3 Revisit ing the Ve loc i ty  Div ider  Prob lem 

Let us now apply the scattering approach to the velocity divider problem. In terms of wave 
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variables, the connection equations are given by 

a l (k)  = fx(k) - ZoVl(k) = f2(k) - Zov2(k) + ZoVd(k) = b2(k) + ZoVd(k) 

a2(k ) = f2(k) + Zov2(k  ) = f l (k )  + Zovx(k ) + ZoVd(k ) -- b~(k) + ZoVd(k ) 

(8.24) 

(8.25) 

and the constituent equations are given by 

bx(k ) = S~al(k ) 

b2(k ) = S2a2(k -- 1) 

(8.26) 

(8.27) 

where $1 = (B~ - Zo)(B1 + Zo)-~ and 8 2 = (B 2 

Combining these equations then yields 
- Zo)(B 2 -[- Z o ) -  1 

a2(k ) = b,(k) + Zovn(k ) = S l a l ( k  ) + Zovn(k ) = S,(b2(k ) + Zova(k)) + Zov~(k ) 

= SlS2a2(k - l) + ( S l Z  0 + Zo)vd(k ) (8.28) 

which has the characteristic equation 

0 = Z -  S 1 S  2 (8.29) 

Equation (8.29) has all of its poles in the unit circle, since IlS 1 ][ < 1 and IlS2[I < 1 for any 
positive damping B1 and B 2. Furthermore, this will be true no matter what sampling strategy 
is chosen. This will also be true even if B is a nonlinear function of position and/or velocity, 
as long as it remains positive definite at all times. 

Thus, when a system represented by effort-flow variables is modularized and sampled 
directly (as in Section 3.1), it is likely to become unstable. If, on the other hand, its impedance 
is represented in terms of scattering operators, wave variables rather than effort-flow 
variables are sampled. Thus, when the system is then modularized into individual ports, a 
discrete time modular system is derived that is as stable and robust as the original compound 
continuous system. The reason for this is summarized by the following theorem. 

Theorem 1 

Proof 

Any delayed passive scattering operator, e-sTS(s), remains passive. 

e-sTS(s) <<. [ e-sT]] S(s)II ~ S(s) ~ 1 D (8.30) 

Thus, because a pure phase shift cannot take the frequency response of the scattering 
operator outside the unit circle, it cannot affect the passivity of the scattering operator. 
Because all elements in the system remain passive, even after sampling, the stability properties 
are unchanged. As long as we can represent modules in the system in terms of scattering 
operators, it is possible to convert between discrete domain and continuous domains without 
introducing instability mechanisms. 

5 APPLYING SCATTERING THEORY TO ROBOT MODULES 

To illustrate how scattering operator techniques can be applied to robot control modules, 
we will develop scattering operator maps for a number of simple ports. We will first derive 
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FIGURE 8.3 
One-port network with driving force av. 
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the scattering operator equations for two linear time-invariant ports and then tackle operator 
inputs and kinematic mappings. 

5.1 One-Port Scattering Operators 
The simplest way to compute the scattering operator for a network is to apply a wave effort 
source in series with the characteristic impedance at each port and then apply superposition 
of the inputs. For example, for a one-port, as shown in Figure 8.3, we can apply a driving 
signal, ap, and a series impedance, Zo, which results in the standard wave equation, 

av = fv + Zovv (8.31) 

Then, using standard network analysis techniques we can derive 

bp = f v -  Zovv (8.32) 

as a function of the input wave, ap. 

Example 1 KB1 Port Scattering Operator. Consider the stiffness-damping one-port (KB1 
port) shown in Figure 8.4 with driving wave attached. 

Applying Kirchhoff's laws, we get 

a. = - ( K / s  + B + Zo)v . (8.33) 

Therefore we get for the wave equation 

b , , = a , , + 2 Z o v , , =  I - 2 Z  o K + B + Z  o a, 

= (K + B s -  Zos)(K + Bs + Zos ) -  l a,, = S,,a,, (8.34) 

FIGURE 8.4 
KB1 port with driving wave. 
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FIGURE 8.5 
MBI port with driving force ap. 
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B1 

where the scattering operator, S,, is given by 

S,  = (K + B s -  Zos) (K + Bs + Zos  ) -  1 (8.35) 

Example 2 MB1 Port Scattering Operator. Using the same technique for the MB1 port 
(Figure 8.5), we get 

ap = (M~s + B 1 n t- Z o ) t )  p (8.36) 

Therefore we can compute the wave equation 

bp = ap - 2 Z o v  p = (I - 2 Z o ( M x s  + B x + Z o ) - 1 ) a p  

= (M~s + B 1 - Zo)(M~s  + B~ + Z o ) - I  ap = Sap (8.37) 

where the scattering operator for the MB1 port is given by 

S = ( M l s  + B 1 - Z o ) ( M l s  + B 1 n t- Z o ) - 1  (8.38) 

5.2 Two-Port Scattering Operators 

We can apply the same technique to two-ports, by connecting a input driving wave at both 
port connections, as shown in Figure 8.6. 

Example 3 Spaceball Port. Consider the spaceball two-port in Figure 8.7 with both driving 
waves attached. The spaceball adds a desired velocity command signal, va, to the input from 
the previous port to get the velocity input for the next port. It also adds a small amount of 
symmetrically placed damping, B, to help reduce wave reflections in the module. 

Z o v p 

tWO- 

f n port 

Vn Z o 

T 
a 

FIGURE 8.6 
Generic two-port with driving waves. 
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FIGURE 8.7 
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Spaceball port with driving waves. 

an 

Applying Kirchhoff's laws and utilizing symmetry, 

vp= - v , = � 8 9  o + B )  l(ap a,) +yv  d 

and thus for the wave equations2: 

I ,  -I -;] 

' [ _-, labia. - Zo 

[vd] 
Z ~  vd 

(8.39) 

(8.40) 

6 COMPUTING THE JACOBIAN SCATTERING OPERATOR 

A Jacobian operator, J, can be used to define any mapping between reference frames that 
satisfies the principle of virtual work. In robotics it typically refers to the velocity mapping 
between a robot's joint space and its world space motions. In SMART the Jacobian is used 
for a wide variety of variable mappings. It is used to map between different frames on a 
manipulator, it is used to implement nonlinear boundary functions, and it is used to map 
between spaces with different degrees of freedom. More than any other element, it enables 
the versatility and generality of the vector network approach. 

Unlike the dynamic elements in the previous section, the Jacobian is memoryless; that is, 
no energy is stored in the element and no states are needed to describe its behavior. Thus 
the discrete-time implementation should be identical to the continuous-time implementation. 
For this reason it is a good location for representing any nonlinear behavior in the system. 
Nevertheless, when a system is implemented in a modular form, the use of Jacobian mappings 
can lead to algebraic loops and discrete instability. Furthermore, because the Jacobian can 
be highly nonlinear, proving stability for the sampled system may be difficult using standard 
discretization techniques. For this reason, Jacobian mappings will always be implemented in 
a scattering operator form. In this section the scattering operator representation for the 
Jacobian element will be derived. 

Consider the Jacobian element shown in Figure 8.8. 
The Jacobian, J,,/p, maps the velocities from space p to space n, according to the equation 

V n Jn/pVp, and thus has the force mapping, fp r - -  = J n / p f n .  The goal is to determine the 

2This scattering operator will work directly only for the three linear degrees of freedom (DOFs). The angular 
velocity DOFs can be computed in a similar fashion only by premultiplying and postmultiplying the wave variables 
by the appropriate rotation matrix. This technique is beyond the scope of this chapter. 
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ZOp Vp V n Z ~  

a p ? f p ~ [ l ~  fn = ? a n  

v v 

FIGURE 8.8 
Jacobian element driven by wave inputs. 

mapping between the input waves, 

a. = f . -  ZO.v.J (8.41) 

and the output waves, 

b. = f. + Z0.v._] (8.42) 

Applying the loop equation to Figure 8.8 gives 

T T a p -  ZOpup = Jn/pan n t- Jn/pZOnv n (8.43) 

since the impedance operators are just scaled identity operators, ZOp = ZoI p and Z0. = ZoI ., 
it follows that 

r (i v _+. jn/p ap - J./pa. = r Jn/p)ZOpvp (8.44) 

By defining the matrix 

T - 1  D p = 2(Ip + J./pJ./p) (8.45) 

the scaled output velocity is given by 

r a,) 2ZOpvp = Dp(a v - Jn/v (8.46) 

and thus the output waves can be written as 

[bp] [ fp -ZOpvp-]=  [ ap-2ZOpvv -]= [ I p - D p  DpJ,,r/p -][ap] (8.47) 
b. = f. + ZO.v.J a. -k- 2ZOnJn/pVpJ Jn/pDp I . -  Jn/pOpJnT/pJ a, 

which implies that the scattering operator for the two-port Jacobian, J,,/p, is given by 

i T Sp• I v -  Dp DpJ./p r -] (8.48) 
L J./vDp I . -  J./vDpJ./v_] 
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It can also be shown that an equivalent representation for the scattering operator for the 
Jacobian two-port is 

where 

r T T 
Sp• = J . /pD.J . /p  -- Ip Jn/pDn 1 (8.49) 

L D.J . /p  D . -  I._] 

T -1 D. = 2(I. + J./pJ./p) (8.50) 

Clearly, the choice of implementation for Sp • depends on which space is of lower rank, 
n or p, since the time to compute the matrix inversion (Eq. 8.45 or 8.50) is highly dependent 
on the rank of the matrix and is the dominant computation factor in computing the 
scattering operator. 

In any case, the matrix inversion is always easily computable because the desired inverses 
are always positive definite symmetric. This is an important  point; even if the Jacobian is 
singular or nonsquare, the scattering operator derived from the Jacobian is always well 
defined. 

6.1 Computing the Norm of the Jacobian Scattering Operator 
The imposed two-norm on a matrix-valued system is defined as the maximum singular value 
of the matrix. To compute the singular values for Sv • we need to compute the eigenvalues of 

T 
S p x n S p x n  

= [ I ,  - D , D ,  J L ] [ , ,  - 

LJ . /pDpD.  - 1 .1  LJ . / vDpD.  - I . J  

_ I -- 2D v + D v + DpJTJDp D v J r D .  -- D2pj r 

- D . J D p -  JD 2 JDZJ  r + D 2 -- 2D.  + I 
(8.51) 

T T 2 but DpJn/p -- Jn/pDn, and D v J r j D p  + D v = 2Dp, and D . j j r D .  + D 2 = 2D.. Therefore, 

r [ I p 0p/.1 
Sv•215 = O./p I .  J (8.52) 

and consequently all of the eigenvalues are identity, and thus 

IIS~• = 1 (8.53) 

for any choice of J./p. 
So, despite the fact that the Jacobian can vary widely as a function of position, the 

resulting scattering operator is always orthonormal with a norm of one. This somewhat 
surprising mathematical result is not surprising at all when the physics of the system are 
analyzed. Because the Jacobian represents a lossless transformation and the norm of the 
scattering operator represents the power gain for the element, it follows that the norm should 
always be unity, as no power is ever gained or dissipated in a lossless element. 

By using wave variables rather than effort-flow variables for the Jacobian element, all of 
the problems associated with reduced rank Jacobians is kinematics computations are 
eliminated, since J - 1  and J - r  are never directly computed. 
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7 DISCRETIZING DYNAMIC NETWORKS 

Once the continuous scattering operator for a subnetwork has been determined, a method 
for discretizing the scattering operator while maintaining passivity must be found. In this 
section a method for discretizing linear time-invariant ports is presented which ensures that 
the resulting discrete scattering operator satisfies the same norm conditions as the original 
continuous-time system. Assuming that any nonlinearities of the system have been segmented 
out of the circuit into separate memoryless one-ports, we then have a comprehensive method 
for developing coupled nonlinear control laws for nonlinear systems. 

Let Sc(s ) represent the continuous scattering operator for a linear time-invariant passive 
network port, where the argument, s, represents the Laplace frequency, s = a + jc0. Because 
the network is passive, it follows that the 2-norm of So(s) is less than or equal to one. We 
need to find a discretization map, T; Sc(s) ~ Sa(s), that maintains passivity, namely 

IISc(j~o)ll ~ 1wool-O, o o ) ~  IIS~(d)ll = IIS~(eJ~ ~ 1VOs[O, 2rc] (8.54) 

where d = e - s t  is the delay operator and Se is the discrete-time version of the continuous 
scattering operator. 

7.1 Tustin's Method: A Passivity Preserving Discretization Technique 

Now let us consider Tustin's method. Tustin's method (also called the bilinear approxi- 
mation) is one of the simplest discretization methods, requiring only a straight substitution. 
We simply replace every occurrence of the Laplace variable, s, with the function 

,(1,) 
s - - - ~  -Jr- 

where d = e - s t  is the delay operator for fixed sampling period T. 

T h e o r e m  2 (Tustin's Passivity Preservation). I f  Tustin's method is applied to a passive 
scatterin9 operator, Sc(s ), then the resulting discrete scattering operator, Sa(s ) is also passive. 

P r o o f  A scattering operator is passive if and only if its norm is less than or equal to one. 
Computing the norm for the discretized scattering operator, 

IlSa(d)ll = m a x  IIS,~(eJ~ 0 ~ E - ~ , ~ ]  = max 
0 0 

_ I II,c (, +,,0,, 0 ~ [-~z, re] (8.56) 

but 
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1 - -  eJ~ 
1 + eJ~ = j tan(0) (8.57) 

Making the variable substitution ~b = tan(0), we get 

Sd(d ) = max Sc(jd?)l d? ~ [ -  oo, Go] = Sc(s) 
4) 

(8.58) 

Thus, if [Sc(s) ~< 1 it follows that Sd(S) ~< 1 and passivity is preserved. 

Example 4 Discretizing the KB1 Port. For example, we can take the continuous time 
equation for the KB1 port (Eq. (8.34)) 

Sc(s) = (K + B s -  Zos)(K + Bs + Zos )- 1 (8.59) 

If each of the matrices is diagonal, then all of the degrees of freedom are uncoupled, and we 
compute the scattering operator for each degree of freedom. Plugging in for s, we have 

S(d) = 
K + (B - Zo)-  ~ 1 + 

I~ + (S + Zo)-~ 1 + 

K(1 + d ) T - ( B - Z o ) 2  (1 - d )  
K(1 + d) T + (B + Zo)2(1 - d) 

( K T  - 2B + 2Zo' ~ 
T +  2 B +  2-~o] 

+ d ( K T +  2 B - 2 Z o '  ] 
T + 2B + 2~o/I 

. 
T + 2B + 2Zo]  

(8.60) 

This filter would then be implemented in a run-time system by first precomputing the filter 
constants 

2,+2 o) 
c~~ K - T + Z B + Z Z  o c~= ~ - ~ + 2 B + Z Z o ]  rio= ~ - ~ + 2 B + Z Z o /  (8.61) 

and then computing the wave equation 

b.(k) = fiob.(k - 1) + ~oa.(k) + ~ a . ( k  - 1) (8.62) 

in real time in the feedback loop. If the system is n-dimensional, then this would be applied 
using precomputed filter constants for each DOF. 

Example 5 Discretizing the MB1 Port. The MB1 port is almost identical to the KB1 port. 
Suppose we take the MB1 port of Example 2 in Section 5.1. Here the scattering operator is 
given by 

Ms + B -  Z o 
Sr = (8.63) 

Ms + B + Z o 
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Applying Tustin's method, 

2 ( 1 - d d )  ( 2 M + B T - Z ~  ( 2 M - B T + Z o T )  
M - -  + B - Z  o - d  

S(d) = T 1 + = 2-M + B T  + Z o - ~  + B T  + Z o (8.64) 

M T-- 1 +  + B + Z o 1 -  d ~-~  + B T  + Z o 

As with the KB1 module, this filter would then be implemented in a run-time system by first 
precomputing the filter constants 

2 M  + B T -  Z o T  2 M -  B T  + Z o T  2 M -  B T -  Z o T  (8.65) 
~162176 = 2 M  + B T  + Z o T  C~l = 2 M  + B T  + Z o T  flO = 2 M  + B T  + Z o T  

and then computing the wave equation 

b(k) = flob(k - 1) + C~oa(k) + c~a(k - 1) (8.66) 

in real time in the feedback loop. 

8 IMPOSING NONLINEAR CONSTRAINTS USING SENSOR FEEDBACK 

Standard robot control approaches tend to consider the manipulator only in linear regimes 
and thus tend to apply linear control laws. Joint motion is conducted between joint travel 
limits and at speeds below the joint velocity limits. Obstacles are avoided via path planning. 
But how do we design a system to respond to constraint information derived from sensors? 
How can we avoid obstacles and prevent collisions even during teleoperation? How can we 
utilize multiple sensors without inducing instability? To solve these problems we need to 
introduce nonlinear constraint functions into our modular control architecture. 

By using the network approach presented in this chapter, we can implement nonlinear 
boundary functions in a bilateral environment and prevent the robot from entering 
undesirable regimes when either teleoperated or controlled remotely. The key to the 
approach is to extend the concept of a Jacobian. Rather than mapping sensor data directly 
into the system and possible introducing instabilities, we will introduce sensor data indirectly, 
by changing the functional mapping of a Jacobian. 

Consider the simple massless lever system shown in Figure 8.9. 
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X0----- 

FIGURE 8.9 
Simple lever system. 

x I 

11 ~ ~ 12 

The lever is driven at one end of the fulcrum with input velocity v~ and contacts a 
linear-spring damper system at the other end of the fulcrum. The force at the spring-damper 
interface, f2, is then related to the spring-damper velocity, v 2, by the linear equation 

f2  = Bu2 nt- K x 2  = (B "-~- K) u2(s ) (8.67) 

Although the force mapping is linear, the mapping between the input lever velocity and the 
velocity of the spring-damper surface is nonlinear, because the surface will not move until 
the lever makes contact with it. This type of nonlinearity is called a switching nonlinearity. 
It is encountered whenever a manipulator moves through different regimes, such as from a 
noncontact state to a contact state. It may also occur when a proximity sensor determines 
that contact is imminent. 

The velocity relationship for the lever's switching function is defined as 

l~ v1 x 1 > x o 

v 2 = (8.68) 
otherwise 

Likewise, the force is also a nonlinear relationship defined by 

f 
l2 > 

L = ~ (8.69) 
0 otherwise 

Equations (8.68) and (8.69) represent the force-velocity map between two different velocity 
frames and thus define a Jacobian mapping. In particular, the switching Jacobian for the two 
frames is defined by 

l~ xl > Xo 

Jz/~(x ~) = (8.70) 
otherwise 

By using this Jacobian, the linear dynamic portion of the system (the spring-damper system) 
has been separated from the nonlinear memoryless portion of the system (the switching 
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condition). Both elements of the system can then be individually computed and discretized 
using the wave variable techniques presented so far. This is done in the following. 

The wave equation for the spring-damper system is given by 

K K T  
B + Z o (B - Zo)(1 - d) + - ~ ( 1  + d) 

S 
b 2 - a 2 -- a 2 "~" -~'(15./1) 

K K T  
B + + Z o (B + Zo)(1 - d )  +---~-- (1 + d 

S 

and the wave equation describing the Jacobian two-port is 

E ll [i o lE: l 
a 2 DjT/1  I -  J z / 1 D J  r 2/1 

where 

D = 2(1 + JT/1J2/1)-1 f 2 
)2 X 1 ~ XO 

= 1 + (12/11 

2 otherwise 
(8.73) 

which leads to the scattering operator for the constraint two-port, 

82/1 

(12/1,) 2 -  1 12/l 1 

- i + 

12/l , 1 - ( I 2 / l l )  2 

1 + (12/l~) 2 1 + (12/l~) 2 

E-; ~ 

X 1 > X  o 

otherwise 

(8.74) 

Thus we have a stable Jacobian-based method to compute the switching nonlinearity for 
the simple lever system. A network representation of this system is shown in Figure 8.10. 

So far, the fulcrum position has been held constant, and the ratio 12/I 1 is therefore fixed. 
What would happen, however, if the fulcrum position were slid back and forth as a function 
of the tip position, constantly changing the ratio of 12 to I1.9 Surprisingly, the equations 
describing the system (Eqs. (8.71) and (8.72)) would remain the same. The linear spring 
damper would remain a spring damper and the scattering operator derived from the Jacobian 

fs B2 II 

FIGURE 8.10 
Network representation of simple lever. 
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relationship (Eq. (8.70)) would still be valid, except that now the ratio 12/11 would have to be 
recomputed for every position. The equivalent stiffness as seen from the inputs, how- 
ever, would now vary continuously, rather than just switching from zero to a positive 
constant. 

As an example, suppose the fulcrum was adjusted according to the following function: 

12 

11 

0 

x1 

x 1 < x  o 

AX 1 Xo < X1 < Xo -[- Ax1 (8.75) 

1 x o + A x  1 < x x 

This would result in the equivalent stiffness varying smoothly as a function of position, until 
a maximum effective value of K was achieved, as shown in Figure 8.11. 

The contact force can be computed directly from the constituent equations as shown here: 

f l  = J~/1 f K z J z / l V l  dt = 

0 x 1 < x  o 

K2 
2Ax21 (xl - Xo) 3 Xo < x1 < Xo _qt_ a x  1 

K e A x I ( x  -- x 0 -- Ax1)  x 0 -Jr- AX 1 "< x 1 
2 1 

(8.76) 

By using a large stiffness, K, and damper, B, and a small threshold region, Ax, a large 
penalty force can be exerted in a very small region. Unlike the pure switching nonlinearity, 
however this force will be applied smoothly to the manipulator. If, on the other hand, the 
stiffness and damping are not ramped up from zero, then as soon as the surface was first 
contacted a force of)~ = B(12/l l )  2/-) 1 would be reflected to the system, jolting the manipulator. 

It is important to note that the fulcrum could have been moved to the point 12/11 -- o9, 
which would have resulted in an infinite stiffness and an impenetrable barrier function. 

I SprinR Constant 

I 

FIGURE 8.11 
Equivalent lever stiffness and stiffness force at contact for moving fulcrum. 

I 

I 
Xo.,~x 
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Plugging this into the scattering operator gives the simple-to-implement equation 

o o 2 - 1  oo 

~ ~176 (8.77) 
S - -  - -  

oo 1 - o o  - 

+ o o  5 1 + o o  

The problem with this is that an infinite stiffness, although theoretically appealing, is 
impossible to achieve in a sampled data system. When this equation is implemented the 
system suffers from large wave reflections due to the infinite termination impedance and still 
has an effective compliance of T / Z  o, where T is the sample delay and Z o is the line 
impedance. Thus, even though the continuous spring could be sent to infinity, the effective 
discrete spring constant would still be finite. 

By mapping proximity sensor data into the fulcrum position, we can indirectly impose 
constraints on any motion of the manipulator. Furthermore, we an superimpose the effects 
of multiple sensors without affecting the stability of the resulting system. 

9 IMPLEMENTATION 

Our approach to building a modular telerobot control system consists of the following steps. 
First represent the robot, any input devices, any sensors, and the controller as n-ports in a 
robot control system. Second, for each n-port module, break the system into linear 
time-invariant sections and nonlinear Jacobian sections. Third, apply Tustin's passivity- 
preserving discretization method to all linear time-invariant components of the system. 
Fourth, apply scattering theory to all network components to get input-output  mappings 
between wave variables for every module, and precompute all filter constants. Fifth, 
distribute the modules across the processors in the system and connect the output waves of 
each module to the input waves of the next module using pointers in dual-ported memory. 
This approach is the basis for the SMART (Sandia's Modular Architecture for Robotics and 
Teleoperation) architecture. 

If all of the modules in the system are designed using the techniques described here, they 
will have the same stability and performance independent of the order that they are sampled. 
If sampling is increased, the performance will more closely approximate the continuous 
system upon which they are based. The system will remain stable even if modules are sampled 
at different rates, miss sample updates, or stop updating all together. 

10 EXAMPLES 

In this section we give numerous examples of how sensors, robots, and input devices can be 
integrated in a consistent fashion using the SMART architecture. 

The first example (Figure 8.12) shows an autonomous controller for a PUMA 760 
manipulator that has been outfitted with a WHAP sensor and is driven by an autonomous 
trajectory generator in joint space. The TRAJECTORY module generates trajectories that 
flow to the PUMA_JOINTS module, which drives the robot. Constraints are implemented 
in identical fashion for the LIMITS module and the sensor module. The LIMITS module 
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FIGURE 8.12 
PUMA manipulator with WHAP sensor. 

shunts the flow generated from the trajectory module into a spring damper as described in 
Section 8, whenever the manipulator approaches a joint limit. The spring damper generates 
forces that are detected across the ports of the TRAJECTORY module. This will halt the 
motion generation once a predetermined force threshold is reached. Furthermore, because of 
the bilateral nature of the SMART architecture, the system can recover from the limit 
constraint by subsequently moving in any direction that reduces the stored energy in the 
system, that is, such that 

fry,, < 0 (8.78) 

at the ports of the TRAJECTORY module. 
The WHAP sensor module behaves in the same way as the LIMITS module. No force 

occurs across the port unless the sensors detect proximity to an object. When proximity is 
detected, the manipulator's flow is shunted into a spring damper, generating enough force to 
turn off the flow source. 

The second example uses a teleoperator input device (the CIS Dimension 6 force-torque 
ball) to command motion, and rather than using a capacitive proximity sensor, it utilizes an 
ultrasonic sensor head attached to the gripper. Because the sensors are attached to the tip of 
the robot, rather than being distributed along the arm, the sensor forces are mapped into 
tool space. Thus the system also includes a P U M A _ K I N  module, which takes the force and 

FIGURE 8.13 
PUMA manipultor with ultrasonic sensor. 
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FIGURE 8.14 
Titan manipulator with WHAP and ultrasonic sensor. 

velocities in world space and maps them into joint space. In joint space the LIMITS module 
and P U M A _ J O I N T S  module act as before. 

The third example combines both the ultrasonic sensor operating in world space and the 
capacitive WHAP sensor operating in joint space. Instead of being attached to a PUMA robot, 
however, these are used to provide motion constraints for a Schilling Titan2 manipulator. Any 
force generated in joint space due to the WHAP sensor is mapped into world space by the 
T I T A N _ K I N  module and then summed with the forces generated from the SONIC module. 
The resulting force is then seen across the ports of the TRAJECTORY module consistent with 
Kirchhoff's laws. Because neither sensor module generates any energy, they cannot destabilize 
the robot. If the sensors are wired incorrectly or suffer a failure, the worst that can happen is 
that the arm halts at inappropriate times or fails to halt when an object is detected. It cannot 
become unstable, however, for any sensor reading under any condition. 

The final example shows a bilateral teleoperation system operating in joint space. The 
system utilizes both a WHAP proximity sensor and a JR3 force-torque senor. The inclusion 
of the force sensor allows the operator to feel contact forces directly while driving the 
manipulator. The forces from the force sensor are then superimposed on forces from the 
WHAP module and fed back to the teleoperation. Notice, however, that the module utilizes 
an effort source to insert the force sensor measurements directly. Because the forces measured 
across the force sensor are dependent on the position of the sensor, the effort source is 
actually a dependent source and instability can arise in the system. 

FIGURE 8.15 
Titan manipulator with WHAP sensor and JR3 force-torque sensor. 
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In an ideal system with a perfect rigid robot response and unfiltered continuous force 
sensor readings, the forces measured across the force sensor would always be within 90 
degrees of phase of the velocity and the module would always be passive. Because of any 
number of potential problems (robot latency, sensor filter, noncollocation), this will not be 
true at high frequencies, and the system may become unstable unless proper filtering and gain 
reduction are applied to the force sensor feedback. 

11 CONCLUSIONS 

We have described techniques for incorporating sensor data in a modular fashion without 
affecting the stability of the telerobot control system. The sensor integration approach is 
compatible with various teleoperator and control modalities and is robust to delays in 
receiving sensor data. By using the inherent stability of passive systems, a plug-and-play 
control architecture whereby individual modules can be placed arbitrarily in the system 
without affecting the overall system stability has been developed. 

Because the constraint modules implement boundary functions via scattering operators, 
the system is very robust. Additional sensor modules can be added without adversely 
affecting the system. As long as no objects are detected, each module lies dormant and does 
not affect the behavior of the system. The first module to detect an object will typically 
provide the overriding signal that determines the behavior of the system. If multiple sensors 
are active at once, the system may respond a bit faster but will not be destabilized. 
Furthermore, the chattering phenomena that can occur when two different sensors with 
opposing values are applied sequentially cannot occur with the scattering implementation 
shown here. 

The network-based, scattering operator approach described here has been and continues 
to be the basis for the SMART modular telerobotic control system [10]. To date, sensor 
modules for Sandia's and ORNL's capacitive sensor system and for a Sandia-developed 
ultrasonic system have been developed. In addition, modules for both JR3 and ATI force 
sensors have been developed and have been integrated into the SMART architecture as force 
sources .  

These sensor modules complement a number of modules that have been written incorpor- 
ating world model information (such as the LIMITS module) both in Cartesian space [5] 
and in configuration space and modules that implement different behaviors when forces are 
felt along different vectors. 
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CHAPTER 9 

A Circuit-Theoretic Analysis of Robot 
Dynamics and Control 

SUGURU ARIMOTO 
Department of Robotics, Ritsumeikan University, Kusatsu, Shiga, Japan 

ABSTRACT 

This chapter is aimed at solving the problem of making robot arms and mechanical hands 
acquire the ability to manipulate things smoothly and dexterously without using a complicated 
mathematical model of nonlinear dynamics pertaining to robot tasks. Such abilities as inves- 
tigated in this chapter are related to adaptive control, iterative learning, and impedance matching 
when robots manipulate soft and deformable objects or touch a rigid object with their soft fingers. 
It is shown that these abilities can be realized in robots by devising corresponding control 
schemes on the basis of physical properties such as passivity and dissipativity inherent in the 
dynamics of robot tasks. The essential idea is to observe that a large class of robot dynamics can 
be expressed by a nonlinear position-dependent circuit and the impedance concept inherent in 
linear electric circuits can be extended to cope with such a nonlinear circuit via the passivity and 
dissipativity. As a by-product of this analysis, it is shown that iterative learning based on such 
physical properties can be interpreted as steady progress of impedance matching. In the process 
of this interpretation, the concept of impedance matching is generalized by means of passivity to 
cope with nonlinear dynamics in the case in which a mechanical hand whose finger ends are 
covered by soft material grasps rigid objects. It is finally claimed that robot control must be 
advanced in a direction from using full-model-based control (e.g., the computed torque method) 
to simple control schemes without using models of dynamics or using at most approximate 
models, as seen in human motion when tasks are executed dexterously. 

1 I N T R O D U C T I O N  

In the early stage of robot ics  research before 1980, it was t hough t  that  the design of robo t  
control lers  is a difficult p rob lem because Lagrange ' s  equa t ion  of mo t ion  of a robo t  with 
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rotational joints (anthropoid robots) is nonlinear and has strong couplings between joints. 
In fact, its dynamics become more complicated when it comes in contact with an object in 
an environment, and, furthermore, the dynamics of a setup of multiple fingers with multiple 
joints grasping an object are much more complicated. To cope with the difficulty caused by 
this complexity of robot dynamics, the so-called computed torque method, which is based 
on real-time computation of the left-hand side of Lagrange's equation of motion, was 
proposed independently by Vukobratovich [1], Bejczy [2], and Takase [3], who predicted 
the rapid development of microprocessor technology from 1970 to 1980. 

In 1980 two rapid methods for computing torque were found independently by Hollerbach 
[4-] and Luh et al. [5]. Their findings drew much attention from research workers in robotics, 
and subsequently various methods for implementation of the algorithms in very large scale 
integration (VLSI) chips were proposed in the literature. However, these VLSI chips are not 
used in present industrial robots. The most essential reason is that physical parameters such 
as inertia moments of links, link masses, and friction coefficients cannot be evaluated with 
sufficient precision, and hence calculating the control input by using these parameters results 
in a discrepancy between the actual robot's motion and the desired motion large as time 
elapses. Then in 1987, a novel idea was proposed by Slotine and Li [6], who, by using 
regressors and estimators for uncertain dynamic parameters appearing linearly in Lagrange's 
equation of motion, showed that the discrepancy between the robot's motion and the desired 
one approaches zero with increasing time. Subsequently, Sadegh and Horowitz [7] showed 
that there is no need to compute regressors in real time. This finding is quite important, 
because the complexity of the computation is almost the same as that of fast computed 
torque methods. 

A fairly simple control scheme for set point position control of robot manipulators of 
anthropoid type was first proposed by Takegaki and Arimoto [8], which is now called 
proportional derivative (PD) control with gravity compensation. This scheme requires only 
knowledge of the gravity term in Lagrange's equation of motion at the desired position. The 
PD feedback at each joint can be determined locally and independently without referring to 
that at other joints. Subsequently, in 1983, a linear proportional integral and derivative (PID) 
feedback scheme of distributed type (independent at each joint) was proposed by Arimoto 
and Miyazaki [9] that establishes asymptotic stability of set-point position control without 
compensating for the gravity term. However, this asymptotic stability cannot be established 
in a global sense. 

Since then, the problem of finding the simplest feedback scheme that attains global 
asymptotic stability without using any knowledge of robot dynamics remained unsolved until 
1994. Then the global asymptotic stability of set point position control was established by 
one of the authors [10, 11] by using a distributed saturated proportional (position), integral 
and derivative) (SP-ID) feedback scheme. The essence was to find that if a positive linear 
combination of the angular velocity vector and a saturated position angle error vector is 
taken as an output, then the pair of this output and the torque input satisfies dissipativity 
concerning the robot dynamics with PD feedback. Thus, a negative feedback connection of 
the robot dynamics with an appropriate feedback of the SP and D output and a linear 
feedback through integration (its transfer function matrix is C1/s, where C1 is an appropriate 
positive diagonal matrix and s is a complex variable) establishes global asymptotic stability 
by virtue of Popov's hyperstability theorem. Once the global asymptotic stability of such an 
SP-ID feedback scheme is established, it is possible to show that the structure of robot 
dynamics with SP-ID feedback plays an essential role in iterative learning, model-based 
adaptive control, and H-infinity control in the sense of disturbance attenuation [12-]. At the 
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same time, the discovery that such a physical structure with SP-ID feedback satisfies passivity 
or dissipativity suggested the idea of describing the structure similarly to electric circuits 
[12,13]. 

In Section 5 the idea of making robots free from friction or gravity forces is presented on 
the basis of compensating the terms of friction and gravity forces by constructing a circuit of 
control blocks to be connected with the original circuit of robot dynamics. In Section 6 the 
problem of impedance control is treated from the circuit-theoretic viewpoint and the concept 
of impedance matching is generalized via passivity and dissipativity. As a by-product of this 
generalization, the structure of iterative learning is reinterpreted as a monotone increase of 
the grade of matching between the internal dynamics consisting of a learning update law and 
the external (load) dynamics. The concluding section summarizes the advance of robot 
control from model-based control methods to control schemes without referring to a robot 
model or with use of only an approximate model. At the same time, answers to the question 
of why simple control schemes for robot tasks work well regardless of complexity of their 
dynamics are discussed. 

PASSIVITY OF ROBOT DYNAMICS AND NONLINEAR 
POSITION-DEPENDENT CIRCUITS 

Dynamics of a robotic arm with all rotational joints are expressed in the following form: 

{ d 1 } 
H(q) ~ + -~ I2I(q) 0 + S(q, O)gl + r(O) + g(q) = u (9.1) 

where q = (ql . . . .  , q,)r denotes the joint angle vector, H(q) the inertia matrix, S(q, q) a 
skew-symmetric matrix, r(0) the damping term including frictional forces, g(q) the gravity 
term, and u the control input vector whose components are torques generated by joint 
actuators. It should be noted that H(q) is symmetric and positive definite. Moreover, because 
each entry of H(q) is constant or a sinusoidal or cosine function of components of q, S(q, il) 
is linear and homogeneous in 0 with property S(q, 0 ) =  0 and each nondiagonal entry of 
S(q, il) is a sinusoidal or cosine function. Further, it is natural to assume that Orr(O)>~0 and 
there exists a potential function U(q) such that c~U/c~q = 9(q)r. As U(q) is a linear 
combination of sinusoidal and cosine functions of q, it is possible to take the constant term 
of U(q) so that minq U(q) = O. 

As to the robot dynamics of Eq. (9.1), the pair of input u and output//satisfies passivity, 
that is, 

;o 0r(z)u(~) d~ >> E(t) - E(O) + Or(z)r(4 (z)) d~ ~> -E(0)  = -702 (9.2) 

where E denotes the total energy expressed as E 1. = ~qrI-I(q)O + U(q). This passivity relation 
plays a crucial role in building a bridge between the energy conservation law in physics and 
the operational input-output  characterization in system theory. In light of the passivity of 
robot dynamics, the following two types of servo controller for set point position control 
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were introduced by Takegaki and Arimoto [8] and Arimoto and Miyazaki [9], respectively: 

u(t) = --  B l~( t )  --  A 1Aq(t)  + g(qd) 

- - B x ~ ( t  ) --  A i A q ( t  ) - C 1 I t Aq(z) u(t) dz 
3o 

(9.3) 

(9.4) 

where q~ denotes a given desired position, Aq = q -  q~, and A 1, B1, and C 1 are constant 
diagonal matrices with positive diagonal elements. When the damping term r(0) does not 
include static and Coulomb frictions (this case will be treated in Section 4), it is possible to 
show that substituting Eq. (9.3) into Eq. (9.2) and differentiating the resultant equation in 
time t yield 

d 
dt  V(q ,  Cl) = - - O T B I O  --  itTr(O) (9.5) 

where 

V(q, il) = 1. ~qTH(q)O + {U(q) - U(qe) - AqTg(qe) + 2AqTA1Aq} (9.6) 

Because U(q) is a combination of sinusoidal and cosine functions of components of q, it is 
possible to choose A 1 > 0 so that the content of brackets { } on the right-hand side of Eq. 
(9.6) is positive definite in Aq because the maximum of the maximum eigenvalue of the 
Hessian matrix of U(q) for all q is bounded. This means that the linear feedback -A1Aq with 
gravity compensation g(q,~) makes the shape of the resultant potential positive definite in Aq. 
Therefore, the feedback scheme of Eq. (9.3) is now called the "energy shaping with damping 
injection" method. 

The robot dynamics of Eq. (9.1) can be expressed by a nonlinear position-dependent 
circuit depicted in Figure 9.1. This circuit expresses the energy storage and flow. In fact, the 
block indicated by an inductor-like symbol expresses a function of storage of the kinetic 

H(q) { H(q) d +~- 

r(~l ) 
\ 

U 

S(q, ct )~i 

N 

g(q 

FIGURE 9.1 
A nonlinear position-dependent circuit expresses dynamics of Eq. (9.1). 
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energy, since the inner product between the torque (corresponding to voltage drop) across 
the block and the angular velocity (current) reproduces the time rate of the kinetic energy, 
that is, ~T{H(q)d/dt + �89 = d{�89 In the circuit, the resistance block with 
torque (voltage drop) r(c~) means a nonlinear resistance, because ~7"k(c)) ~> 0 means the time 
rate of energy consumption. Another block of torque S(q, q)(1 neither stores nor dissipates 
energy, because the inner product between ~ and S(q, il)(1 vanishes due to the skew symmetry 
of S(q, il). Hence this block can be called a nonlinear "gyrator." Finally, the block depicted 
by a capacitor-like symbol stocks the potential energy U(q) because the inner product 
between ~ and 9(q) leads to the time rate of the potential, that is, q~9(q) = dU(q)/dt. Note 
that, in contrast to conventional electric circuits, whether linear or nonlinear, nonlinear 
circuits expressing nonlinear dynamics of mechanical systems must be position dependent. 
For example, nonlinearity of an inductor-like block must be dependent on position q (which 
corresponds to electric charge since ~ corresponds to current). In electric circuits, there do 
not exist any charge-dependent inductors. 

It is now quite easy to see that the closed-loop system when u of Eq. (9.3) is substituted 
into Eq. (9.1) can be expressed by the circuit in Figure 9.2. Then it is intuitively possible to 
understand that the overall block of capacitor-like elements in Figure 9.2 satisfies the fol- 
lowing: (l) the solution to AAq + g(q~ + Aq) - g(q~) = 0 is unique, that is, q = q~ is only one 
solution to the preceding equation, and (2) the inner product O~{AAq + g(qa + Aq)--g(qd)} = 
d{�89 + U ( q ) -  U(qa)-  Aq~g(qa)}/dt induces the time rate of the positive definite 
potential. If these two conditions are satisfied, then the global asymptotic stability of position 
control is established. 

Robot dynamics when the tool endpoint is holonomically constrained on an environment- 
al surface can also be expressed by a nonlinear position-dependent circuit. Further, dynamics 
of robots with joint flexibility and/or with coupling with internal dynamics of actuators 
together with electric circuits of armatures in motors can be analyzed by their expressions in 
terms of nonlinear position-dependent circuits. More detailed discussions can be found in the 
literature (see [12, 13]). 

located 
at c 

located 

i-I(q) gl S(q, dl )~1 { H(q) d +~- 

g ( q ) -  

�9 ) u = O  - [  AAq 

FIGURE 9.2 

at qd 

i 
_ 

-g( qd ) 

A circuit expresses dynamics of the closed-loop system of Eq. (9.1) when a PD control defined by 
Eq. (9.3) is employed. 
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3 SP-ID CONTROL 

The PD feedback with gravity compensation defined by Eq. (9.3) assumes knowledge of the 
gravity term g(q). However, pure PD feedback without compensating for the gravity term 
gives rise to a steady-state position error called "offset." To avoid incurring such an offset in 
positioning, a distributed PID feedback scheme defined by Eq. (9.4) was introduced. 
However, this PID control scheme ensures asymptotic stability in positioning only in a local 
sense. 

The global asymptotic stability of set point position control was first established by one 
of the authors [10, 11-I for a kind of PID control of the form 

or 

where 

u(t) = - B o O  - CIA  q - c~Cos(Aq) - o ~ C  1 f l  s(Aq) dr 

u(t) = - B,it  - AAq  - ( 

(9.7) 

C o + C ~ f l d z ) y  (9.8) 

Y = 0 + ~s(Aq) (9.9) 

and c~ > O, s = (s 1 , . . . ,  Sn) T, and each si(Aqi ) is a saturated function with the profile exhibited 
in Figure 9.3. The key to this result is the fact that the pair of output y and input v for the 
closed-loop system 

{ d 1 } 
H(q) ~ + -~ [-I(q) it + S(q, 0)(t + r(gl) + BIO + AAq  + g(q) - g(qa) = v (9.10) 

satisfies both passivity and dissipativity by selecting diagonal matrices A and B 1 and a 
constant ~ appropriately (the details may be found in Arimoto [13]). Then, according to 
Popov's theorem concerning negative feedback connection of one passive block with another 
dissipative block, the closed-loop system with the structure depicted in Figure 9.4 becomes 
globally asymptotically stable. Note that both feedback schemes (9.7) and (9.8) are distrib- 
uted and independent at each joint in the sense that each joint servo loop does not need to 

FIGURE 9.3 
si(Aqi ) is a saturated nonlinear function. 
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v=O~ 
~k  v o.,, 

,c,h_ [C0+ r 
FIGURE 9.4 
Negative feedback connection of two passive systems. 

u__,. 

know the measurement data for position and velocity at other joints, since all gain matrices 
in Eqs. (9.7) and (9.8) can be selected as positive diagonal matrices. Further note that Eq. 
(9.7) can be reduced to the form of Eq. (9.8) except for the constant term if Bo = B t + Co 
and A - 0. Both schemes of Eqs. (9.7) and (9.8) are therefore termed SP-ID feedback control. 
It should be further noted that a type of sliding mode control can be obtained by letting the 
shape of the nonlinear function si(Aqi) tend to the signature function sgn(Aqi). In that case, 
C O in Eqs. (9.7) and (9.8) should be set to zero to avoid the occurrence of chattering [14]. 

4 ADAPTABILITY A N D  LEARNABILITY 

Next consider the problem of trajectory tracking control for a given joint trajectory qa(t) 
defined for some finite interval [0, T]. It is reasonable to assume the existence of a desired 
control input u~(t) realizing the joint trajectory qa(t), which can be written in the form: 

{ d , } 
ua = H(qa) ~ + -~ [-I(qa) i1~ + S(qa, Oa)gle + BOa + g(qa) (9.11) 

where we assume r (0 )=  B0 in Eq. (9.1), that is, the damping term contains only viscous 
frictions (after compensating static and Coulomb's frictions as discussed in the next section). 
Then it is possible to write down the equation of Aq by subtracting Eq. (9.11) from Eq. (9.1) 
with an additional position feedback - A A q  - DAy in the following way: 

{ d 1 } 
H(q) ~ + -~ [-I(q) AO + S(q, 0)At) + BA0 + AAq + DAy + h(Aq, A0) = Au (9.12) 

where 

Ay = A0 + ~s(Aq) (9.13) 

and 

h(Aq, A~) = {H(qd + Aq) - H(qa)}0"d 

+ {�89 + Aq)+ S(qa+ Aq,0a + AfT)-2H(qa)-S(qa,qa)}(ta+g(qa+ Aq)-g(qa) (9.14) 
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Note that the nonlinear term h(Aq, A//) is linear in A0 and small, of the order of Aq. By virtue 
of this property, it is possible to show that the pair of the input Au and the output Ay 
concerning Eq. (9.12) satisfies dissipativity; that is, there exist a storage function V(Aq, AO) 
positive definite in Aq and A0 and a scalar-valued dissipation function {(y)> 0 with 
~(0) = 0 such that 

fl AyTAud~ ~ V(Aq(t), A0(t)) - V(Aq(0), A//(0)) + f l  ~(Y(~:)) dz (9.15) 

Further, it is possible to adjust the velocity gain B and the feedback gain D by damping 
injection so that ~(Ay) is of the order of a quadratic function of Ay, 

~(Ay) ~ ~llAyll 2 (9.16) 

with some/~ > 0. The most important result concerning the robot's learnability is that robots 
can acquire the desired motion through repeating practice when the control input is updated 
iteratively by the law (see Figure 9.5) 

Uk + 1(t) = Uk( t  ) - -  ~Ayk(t ) (9.17) 

where �9 is an appropriate control gain matrix. It has been shown (see Arimoto [5]) that if 
(I) < 2/31 then Ay k ~ 0 as k ~ oo in the sense of L2(0, T). Since A//k + c~s(Aq) ~ 0 as k ~ oo, 
Aqk(t ) --, 0 as k ~ o0. 

The most noteworthy merit of using the output Ay in the learning update law instead of 
A//is that the initial setting at the beginning of every trial is unnecessary if the desired output 
qe satisfies qa(0)= qa(T) and //e(0)= Oe(T). Figure 9.6 shows the experimental data for 
comparison of the use of A 0 in Figure 9.6(a) with the use of Ay in Figure 9.6(b), where a DD 
arm with three degrees of freedom was used. The details of the experiment were reported in 
a dissertation at Yamaguchi University (see Naniwa [153). Another noteworthy advantage 
of using an SP-D output Ay as defined in Eq. (9.14) is that a model-based adaptive controller 
can be designed in such a manner as 

u(t) = - B I A / / -  AAq - DAy + fte (9.18) 

where ha is an estimate of the desired input u a for a desired joint trajectory q~ as defined by 
Eq. (9.11). Referring to the well-known fact that the left-hand side of Eq. (9.1) can be 
characterized by a set of dynamic parameters | = (01, . . . ,  Ore) r appearing linearly and a 

i 

" !.s qk M.mo ,  lM-oipul.tor 

Uk+l ~ ~qk1~[  qd 

FIGURE 9.5 
Iterative learning based on the SP-D-type update law. 
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F IGURE 9.6 (a) 
Joint angle position and velocity trajectories of link 2 after 30 trials. 

regressor Y(q, il, 4) (see Slotine and Li [6]), that  is, 

H(q)4 + {1/2/(q) + S(q, i l )+ B}it + g(q) = Y(q, it, q)O (9.19) 

it is convenient to define the estimate fie in the form 

A 

r = Y(qa, ~),~, c)e)| (9.20) 

Further ,  note that  the estimate for the unknown  parameter  can be calculated in a causal way: 

(9.21) 

where F is an m x m constant  positive diagonal  matrix. Then, substi tut ing Eq. (9.18) into Eq. 
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F IGURE 9.6 (b) 
Joint angle position and velocity trajectories of link 2 after 30 trials using Ay. 
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(9.1) yields 

dt 1 } 
H(q) ~ +-~ H(q) A i l +  {S(q, il) + B + B1}A 0 + AAq + DAy + h(kq, k0) 

= f i a -  u~ = Au = Y(qd, Oa, 0"a) A| (9.22) 

A 

where A| = | - O and h is a nonlinear function of Aq and A//defined as in Eq. (9.14). 
It is now important to see that taking an inner product between Ay and Eq. (9.21) yields 

d V(Aq, A//) + A| - - 
1 

) 
2 

at J 
(9.23) 

where V and ~ can be determined as they appeared in Eq. (9.15). Thus, it is possible to show 
that Aq(t) ~ 0 and A//(t) ---, 0 as t ~ oo; that is, the joint trajectory tracking is established in 
an asymptotic manner. 

A similar argument can be applied for the ability of iterative learning and adaptive 
trajectory tracking in such two cases that a robot tool endpoint is holonomically constrained 
and a set of multiple robots manipulates a rigid object cooperatively. Detailed discussions 
with experimental and computer simulation results may be found in Whitcomb et al. [15] 
and Naniwa and Arimoto [17, 18]. 

5 REALIZATION OF FRICTION/GRAVITY-FREE ROBOTS 

Motion of actual mechanical robots is subject to unknown parasitic dynamics mainly caused 
by friction in motors themselves and transmission mechanisms. Therefore, the damping term 
r(O) in Eq. (9.1) cannot be modeled explicitly. However, principal contributions to the term 
r(O) must be static, Coulomb, and viscous frictions, all of which can be compensated by 
updating the estimates for those friction coefficients on the basis of measured regressors. In 
fact, suppose that 

m 

r(O) = Bit + C sgn(//) (9.24) 

where B and C signify diagonal matrices whose diagonal components express coefficients of 
viscous and Coulomb frictions, respectively, and sgn(0)= (sgn(//1),...,sgn(//,)) r. Static 
friction is defined as the maximum torque level a /+  6/with 6 />  0 that can start to rotate the 
corresponding joint from the rest position (see Figure 9.7). In the case of DD (direct drive) 
robots, it can be assumed that the level of static friction at the j th joint is almost coincident 
with the coefficients of Coulomb friction ~/of the DD motor itself (i.e., 6 / ~  0). In this case, 
compensation for both friction and gravity forces can be realized by constructing regressors 
for the friction term r(O) and the gravity term g(q) in such a manner as 

A 

u = -- AAq - B 1 it + Z(q, 0 )0  (9.25) 

where ~ denotes the estimate of unknown parameters | = (01, . . . ,  0,,) r consisting of 
diagonal components of B and C and link masses appearing linearly in 9(q), and Z(q, it) 
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FIGURE 9.7 
Characteristics of Coulomb's friction. 
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signifies the regressor for r((1) and g(q), that is, 

m 

Z(q, ~)| = Bit + C sgn(O) + g(q) 

A 

The estimator O should be updated in the following way: 

(9.26) 

O(t) = 6(0) - f l  F-1Zr(q(r) '  il(v))y(r) dr (9.27) 

where y is defined as in Eq. (9.9). 
An experimental study of the realization of friction/gravity-free robots was carried out by 

using a DD robot with three degrees of freedom (DOF) at Yamaguchi University. Experi- 
mental data are available in a master-course dissertation [19], in which compensation for 
static friction was also fulfilled (see [20] for compensation for static). 

6 GENERALIZATION OF IMPEDANCE MATCHING TO NONLINEAR DYNAMICS 

The concept of impedance is inherent in linear dynamical systems such as lumped-parameter 
electric circuits. However, the concept can be generalized for nonlinear mechanical systems 
in terms of input-output  relations called "passivity" and "dissipativity." Preliminary dis- 
cussions of this problem were published by one of the authors [12, 13] in relation to coping 
with design problems of controllers for nonlinear mechanical systems such as anthropoid 
robots and mechanical hands. Another direction of extension of the impedance concept is to 
generalizing the framework of impedance matching to nonlinear dynamics. Consider the 
simplest problem of impedance control depicted in Figure 9.8, where a single DOF tool 
whose end is covered with soft material must press a rigid object at the desired force fd- In 
ordinary situations the mass M of the tool is uncertain and the nonlinear characteristics 
f(Ax) of reproducing force with respect to displacement Ax are unknown (see Figure 9.9). 
The dynamics of the system can be described by 

M2 + c5c = - f  + u (9.28) 
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FIGURE 9.8 
Impedance control for a single DOF system. 

where u denotes the control  input. A reasonable way to design u is as 

A 
u = fd + Mi" + ?.r + v (9.29) 

where ~ / a n d  ~ stand for estimates for M and c, r is an appropr ia te  signal defined later, and 
v is an extra input. Substi tuting Eq. (9.29) into Eq. (9.28) yields 

M(Y - k )  + c ( 2 - r )  + A M i ' +  A c r =  - A  f + v (9.30) 

where AM = M - / Q  and Ac = c - ~. By denoting y = 2 - r and setting 

]~(t) = 1s - f l  7M ~k(r)y(r) dr (9.31) 

f(t) = f(O) - f l  7~- l r(~)Y(r) dr (9.32) 

it is possible to see that an inner product  between y and Eq. (9.30) yields 

d 1 { M y  2 + 7MAM 2 + 7cAc2} + cY 2 = - y ( A f  + v) (9.33) 
dt 2 

(Az) 

Axa A x  
(Disp lacement )  

FIGURE 9.9 
Nonlinear characteristics of reproducing force. 
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FIGURE 9.10 
A circuit-theoretic expression of impedance control. 

This form suggests the best design for signal y through the design of signal r. In other words, 
if the pair {y, A f} satisfies passivity or dissipativity, then the input v and the output y of the 
overall system satisfy passivity or dissipativity. This observation leads to the definition 

r = - c~Ax - fiAF, AF = f l  A f  dr (9.34) 

where c~ and fl are appropriate positive constants. Then, 

y = ~ + c~Ax + f lAF 
m 

= ~ + c~6x + f iAF (9.35) 

m 

where 6x = Ax - Axd, f(Axd) = fd, and AF = AF + c~Ax~/fi. If v is considered to be an extra 
damping injection Dy plus an original disturbance n, then Eq. (9.35) can be written in the 
form 

MjV + (c + D)y + (AMi" + Acr) = - A f  + n (9.36) 

The pair of Eqs. (9.35) and (9.36) can be expressed in a circuit as shown in Figure 9.10. Note 
that the circuit of Figure 9.10 is just a kind of nonlinear version of an electric circuit depicted 
in Figure 9.11. A further analysis of this system in relation to the theorem of maximum power 
supply as well as preliminary experimental results may be found in [21, 22]. 

7 LEARNING AS MAKING PROGRESS TOWARD IMPEDANCE MATCHING 

Iterative learning can be considered to be a process of acquiring a desired control ud(t) 
realizing the given desired motion qd(t) for t ~ [0, T] by making progress toward impedance 
matching through repeated practice. To see this, it is necessary to simplify the argument and 
gain physical insight into the problem by treating the simplest case in which the objective 
system is linear and time invariant, and satisfies dissipativity. First note that the circuit in 
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* * is the complex conjugate of Z o. Impedance matching is realized when Z = Z o. Z o 

Figure 9.11 can be rewritten in the form of a negative feedback control system as shown 
in Figure 9.12. Suppose that, given a desired periodic output Yd(t) (corresponding to E in 
Figure 9.12) with period T, that is, Yd(t) = Yd(t + T) ,  the problem is to find the desired ud 
(corresponding to V in Figure 9.12) that realizes Z u  d = Yd" It should be noted that the 
impedance function of the objective system is strictly positive real and the internal impedance 
Z o must be very close to zero. Then, as discussed in Section 3, the iterative learning control 
system can be depicted as in Figure 9.13, where the learning update law is described by Eq. 
(9.17). Because the strict positive realness of Z implies the existence of a positive constant 
y > 0 such that 

fl AukAykd~C ~ Vk(t ) -- Vk(0 ) -+- f l  ~llAYkll2 dr (9.37) 

where V expresses a storage function that is nonnegative (see [23]), it is possible to obtain 
the following inequality (subtract Ud from both sides of Eq. (9.17) and take an inner product 
of both sides of the resultant equation through (I)-a): 

~-XllAUk+lll 2 + Vk+a ~ ~ xllAUkll2 + K + ( ~ -  27)IIAYkll 2 (9.38) 

where Yk(t) = y( t  + k T ) ,  Uk(t ) = u(t + k T ) ,  Vk(t ) = V( t  + k T ) ,  and IIAull denotes the norm of 
Au in L2[0, T]. Hence, if (P is chosen so that 0 < �9 < 27, then Eq. (9.38) means that 
Yk(t) ~ Yd(t) in LzE0, T] as k ~ ~ .  This indicates that the forward path in the system of 
Figure 9.13 tends to realize the zero impedance (the infinitely large admittance), because 
A y k --, 0 and u k --, u d as k --, ~ .  

Another type of learning with nonzero real part of the internal impedance (i.e., 
Re(Z o) ~- 0) can be discussed in a similar way. Some results concerning this problem together 
with its extension to nonlinear dynamics will be presented at the ILC (Iterative Learning 
Control) Workshop preceding the IEEE CDC '98. 

.~1 Zol l V 
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FIGURE 9.12 
This negative feedback structure is equivalent to the circuit depicted in Figure 9.11. 
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FIGURE 9.13 
Iterative learning as impedance matching with internal zero-impedance. 

8 CONCLUSION 

This chapter attempted to unveil some secrets of the complicated dynamics of a robot that 
can fulfill prescribed tasks with a relatively simple control scheme without referring to the 
full knowledge of its physical parameters, regardless of the fact that Lagrange's equation of 
its motion is nonlinear and has strong couplings between joints. The most important result 
is the observation that a generalized concept of impedance matching to nonlinear mechanical 
systems is essential for a robot executing given tasks with sufficient smoothness and with the 
use of less knowledge of its dynamics. 

In parallel with this research, we are also attempting to show that exact calculation of 
Jacobian matrices of the camera coordinates and the task coordinates with respect to the 
joint coordinates is unnecessary in the cases of visual feedback and hybrid position-force 
control under constraint (see [24]). 
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1 I N T R O D U C T I O N  

The notion of telerobotics is relatively new. Although considerable research has addressed 
telerobotics since the 1970s, actual accomplishments of real-world working systems have been 
limited. Most work has been at the laboratory scale and has addressed elements of 
telerobotics-related concepts rather than integrated systems working under realistic condi- 
tions. Integrated telerobotic systems that can have impact must provide robust operations 
under the unabridged constraints of the application domain being addressed. Sensing, 
planning, and control issues are most usefully considered in the context of the realities of 
real-world applications. One of the most challenging application domains for telerobotics is 
nuclear remote operations, where everyday workers attempt to perform complex mainten- 
ance and manufacturing operations through remote control. Activities in the nuclear domain 
are broadly applicable to other domains such as space and undersea operations. To provide 
context, this chapter will use details of nuclear applications to steer the discussion concerning 
planning, sensing, and control issues as they relate to robust telerobotics. The nuclear context 
is very specific, yet it also provides general considerations that are widely relevant in other 
applications. 

Various forms of remote handling systems have been in use since humans have dealt with 
hazardous environments. Around 1940, research in atomic physics led to a new era in remote 
handling as scientists sought to explore the nature of the atom safely in the presence of 
ionizing radiation. As related experiments and developments became more complex, mech- 
anical manipulator systems were created that allowed operators to perform increasingly 
complex tasks safely behind thick biological shielding. These mechanical systems then 
evolved into electrical systems that allowed larger work volumes to be covered, such as the 
large production plants that were being built to produce nuclear weapons. Incredible 
engineering achievements occurred in a brief period of 15 years, primarily within the Remote 
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Control Division of the Argonne National Laboratory. Even though this era represented 
tremendous technical achievement, it went further in illustrating the instrinsic complexity of 
remote operations. The best work performance achieved with sophisticated teleoperations- 
based remote systems is quite poor in comparison with the work efficiency that human 
workers can achieve with direct contact operations and common tools. Typically, this form 
of teleoperation (i.e., manual control over a physical distance or barrier) is ten to hundreds 
of times slower than contact operations! Remote operations are extremely expensive and time 
consuming because of this effect and have been the continual target of engineering improve- 
ments [1]. 

Many research and development efforts have focused on different avenues for improving 
the work efficiency of remote operations. These efforts have included the development of 
better manipulators, control stations, control algorithms, and so forth, all intended to 
enhance reliability and maintainability. In the late 1960s and early 1970s, as digital 
electronics became more cost effective, interest began to emerge in the integration of 
automation with teleoperations as a scheme for effectively increasing the work efficiency of 
remote operations. It was around this time that industrial robot concepts were also 
introduced. Combining selective automation of specific subtasks with traditional teleoper- 
ations offers the potential to reduce labor requirements and to improve the quality of 
repetitive task executions. 

This integration of automation with teleoperation became the foundation of what is now 
termed "telerobotics." From the 1970s until today, telerobotics has been an active area of 
research and development in many different domains, including nuclear, space, and military 
applications. Unlike manufacturing automation, remote operations in hazardous and un- 
structured work task environments necessitate human-in-the-loop control, or teleoperations, 
as a backstop to ensure safe operations. Human-in-the-loop control greatly enhances the 
likelihood of successful recovery from automated task faults and failures. 

This chapter is intended to provide the reader with an introduction to the concepts and 
issues that pertain to the realization of practical, useful, and cost-effective telerobotic systems. 
Sensing, planning, and control functions are the fundamental ingredients necessary to 
implement robust automation within the hybrid character of a telerobot. This discussion is 
intended to be an introduction to the concepts and technical challenges that telerobotics 
involves. The first section provides the reader with background on the history of teleoper- 
ations and remote handling, which ultimately defines the baseline of performance against 
which practical telerobotic systems will be evaluated. The next section discusses the definition 
of a telerobotic system from the different prevailing perspectives and presents recent examples 
of actual systems that have been built. As with any engineering systems, practical telerobot 
concepts are totally driven by application requirements. The next section discusses a nuclear 
application domain and the inherent problems and constraints included therein. With this 
requirements-driven foundation, the technical features of a robust telerobot are presented in 
their idealized form. The chapter concludes with discussions of current research and 
remaining challenges pertaining to the realization of the robust telerobot. 

2 HISTORY OF TELEOPERATIONS AND REMOTE HANDLING 

As will be discussed in more detail in Section 3, telerobotics, by definition, involves the 
combination, or integration, of teleoperations with automation. Much can be gained toward 
analyzing the synergy between manual and automatic control in telerobotics by first 
understanding the foundations of manual control as represented in teleoperations. The 
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standards of established remote operations design and performance are the reference states 
against which telerobotics concepts will ultimately be judged. It is useful to review the history 
of teleoperations and remote handling to acquire a perspective on these important reference 
levels of performance. 

The creation of special tools for remote handling has been an integral part of humans' 
natural adaptation to their environment throughout history. This process intensified greatly 
as scientists explored atomic physics and natural radioactivity at the turn of the century. The 
engineering implications of production-scale nuclear weapon manufacture resulted in a new 
generation of remote handling technology. During this era, remote engineering projects 
occurred throughout the U.S. Atomic Energy Commission (AEC) complex, in Europe, and 
in the former Soviet Union. Early remote handling systems were surprisingly simple. Walls 
were built from suitable shielding materials, which were usually lead bricks. Periscopes and 
mirror arrangments were configured to see over the shielding walls into the work task areas. 
Imaginative forms of long-handled tools were fabricated to allow workers to manipulate 
objects from behind and over the walls as necessary to accomplish experiments and tests 
involving radiation. 

As the science and experiments became more complicated, it became increasingly difficult 
to accomplish the research effectively with unnatural long-handled tools and mirrors. It was 
determined that it would be desirable to have transparent shielding that one could look 
straight through to observe the work area and to have some type of mechanical arms in the 
radiation area that could do a much better job than long-handled tools in emulating human 
motions. These ideas represented schemes whereby human capabilities could be more 
completely "projected" into the remote work environment. The tacit assumption was that 
human projection would naturally result in improved remote work efficiencies. The Remote 
Control Division of the Argonne National Laboratory was created to explore this type of 
R&D in the early 1940s for the AEC. This extraordinary group was led by Ray Goertz, and 
over a period of approximately 15 years the division achieved incredible engineering 
accomplishments in manipulators, teleoperations, and other aspects of remote handling. 

One of the first challenges that the Argonne group tackled was the development of 
mechanical master-slave manipulator systems that would allow operators to perform more 
complex tasks in remote areas. The basic concept was to create a mechanism that would have 
a master controller side where an operator could provide position and orientation commands 
to a slave-side mechanism or linkage system that would "replicate" motions and forces in the 
remote work area. From the beginning, Goertz felt that force reflection to and from the 
master and slave systems was essential for the operator's sensory awareness of the task 
execution. Human factors experimentation has repeatedly verified the significance of both 
kinesthetic (muscular) and tactical (touch) feedback in performing more complicated 
tasks [2]. The first test unit of the mechanical master-slave manipulator idea is shown in 
Figure 10.1. 

This initial engineering development hardware ultimately led to the development of 
modern mechanical master-slave manipulators (MSMs) such as the one depicted in Figure 
10.2. Today, thousands of MSMs are in use around the world in nuclear, biological, and 
other types of hazardous remote experimentation and operations. MSMs have been refined 
over the years in terms of their payloads, kinematics, friction properties, and reflected inertia 
properties. Metal tape drives and pulley systems that minimize friction and inertia are 
normally used to transmit master motion and torque to the slave side with incredible fidelity. 
For example, MSMs are routinely used in remote hot cells to perform chemistry experiments 
constructed from standard laboratory glassware. The remote work efficiency of a dual-arm 
MSM with shield-window viewing is about 5 to 10 times slower than that of equivalent 



288 CHAPTER 10 / SENSOR-BASED PLANNING AND CONTROL IN TELEROBOTICS 

FIGURE 10.1 
First mechanical master-slave manipulator. (Courtesy of Oak Ridge National Laboratory.) 

FIGURE 10.2 
Modern mechanical master-slave manipulator. (Courtesy of Oak Ridge National Laboratory.) 
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contact operations. Most remote handling technologists consider the remote work efficiency 
of MSMs as a standard of comparison for the performance evaluation of alternative systems. 
The reader should save this fact for later reference during the discussion of telerobotics and 
the basic concept of selective automation as a scheme to enhance remote work efficiency. 

MSMs provide noteworthy teleoperations capabilities; however, they have a very severe 
limitation because of their purely mechanical construction. Because the master and slave 
sections are mechanically coupled through the metal-tape drive transmission, the physical 
separation that can exist between the safe operating area and the hazardous remote work 
area is limited to a maximum of approximately 10 m. As shown in Figure 10.2, the through 
the shielding wall physical arrangement of the MSMs results in an elbows-up kinematic 
configuration that is best suited for tabletop operations rather than reaching into work areas. 
Because of these characteristics, MSMs are quite restrictive in many applications and often 
have overly constrained the physical design of remote cells. Goertz and others recognized 
that it would be much better to have the equivalent of a fly-by-wire MSM in which the 
physical separation of the master and slave would be essentially unconstrained. This need led 
to the development of electrical master-slave manipulators (EMSs), which are commonly 
called electrical servomanipulators [-3,4]. R&D on the EMS began in the late 1940s and 
continued into the early 1950s. 

The Argonne group was at that time limited by the available electrical control technology. 
Nonetheless, they made noteworthy progress toward integrated systems as depicted in Figure 
10.3. The system shown is a dual-arm anthropomorphic system with head-aiming remote 
television viewing and bilateral force reflection. This system provided (at least at the research 
level) an unprecedented degree of human projection in remote operations. One has the sense 
that the Argonne group had all of the correct fundamental concepts but lacked the 

FIGURE 10.3 
An integrated electrical master-slave manipulator system. (Courtesy of Oak Ridge National Laboratory.) 
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supporting technology necessary to implement practical and cost-effective systems. In the late 
1950s, the Argonne team began to disband because of declining support from the AEC, who 
had concluded that remote handling technology had reached an apex constrained by 
supporting technologies and that further R&D would yield limited returns. 

The Argonne group performed outstanding R&D in a wide range of remote handling 
technologies, especially manipulator systems. Their fundamental research on remote manipu- 
lators is still quite valid today. Worldwide use of MSMs really stems from the pioneering 
work done at Argonne. In terms of modern telerobotics, the history of teleoperations and 
remote handling offers some important lessons. Good force-reflecting teleoperators with 
effective remote viewing can be used to perform tasks with the complexity typical of contact 
operations but with slowdown factors of 5 to 10. Prior experience clearly defines the high 
sensitivity of remote operations to remote sensing and/or viewing and the anthropomor- 
phism of the manipulation system. It seems clear that new telerobotic systems must exceed 
the established performance standards set by early teleoperations, or they will be avoided 
because of the increased costs and risk factors associated with their perceived complexity. 
New ideas survive only if they pay off. 

The early work at Argonne led to the invention of robot manipulators and made great 
strides toward effective teleoperators for remote operations. After the Remote Control 
Division was disbanded, limited R&D occurred until the 1970s, when commercial nuclear 
power growth was driving a number of research programs in the United States, West 
Germany, France, and Japan. During this time, the programs in the United States and 
France were by far the most aggressive; several generations of electrical servomanipulator 
systems were developed, most of which incorporated emerging microprocessor technology 
[5,6-]. The Central Research Laboratories model M2 system, shown in Figure 10.4, was 
jointly developed with the Oak Ridge National Laboratory and was the first force-reflecting 
servomanipulator system to use distributed digital electronics to implement position-posi- 
tion force reflection with multiplexed serial communications between the master and slave. 
This system also incorporated a menu-driven alphanumeric operator interface that greatly 
improved operator efficiency and reduced training time [5]. The model M2 system was used 
over the years to perform a wide range of complex demonstration tasks for military, space, 
and nuclear applications. In addition to mechanical assembly and disassembly tasks, difficult 
tasks such as manual electric welding have been performed through force-reflecting teleop- 
erations. The M2 was used to replicate the assembly of the NASA ACCESS space truss 
assembly, and excellent results were obtained regarding robot replacement of astronaut tasks 
for many operations. Refer to Figure 10.5. This system played a major role in demonstrating 
the potential of electrical servomanipulator systems for efficient teleoperations in highly 
unstructured task environments. 

The development of the advanced servomanipulator (ASM) followed the M2 in an effort 
to improve the remote maintainability of the remote manipulators themselves by making 
them mechanically modular so that one robot system could be used to repair another. The 
motivation for this work was to reduce maintenance technician radiation exposure and to 
increase the overall availability of the remote maintenance system. The ASM was designed 
from the beginning to provide a foundation for telerobotics in addition to effective 
teleoperations [7]. See Figure 10.6. Its control system, which was advanced for its day, was 
a modern distributed digital system with a complete "glass cockpit" approach to the controls 
and displays. The ASM was considered a successful demonstration of remote manipulator 
maintainability. In fact, the M2 manipulator was used to dissassemble and successfully 
reassemble one of the ASM manipulator arms in a total of 8�89 hours of remote operating time. 
Trajectory teach-playback and automated tool-changing functions were also demonstrated. 
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FIGURE 10.4 
CRL model M2 servomanipulator maintainance system. (Courtesy of Oak Ridge National Laboratory.) 

Unfortunately, the Department of Energy (DOE) program supporting the work was canceled 
along with the nation's breeder nuclear reactor program before telerobotic automation 
functions could be incorporated and evaluated, although simple teach and playback 
trajectory control using the master controller as the teaching pendant was implemented. 

At the time of the M2 and ASM developments, Jean Vertut and his colleagues in the 
Commission d'lZnergie Atomique (CEA) focused their research on the development of 
telerobotic functionality for their MA-23 electrical servomanipulator systems as shown in 
Figure 10.7. This work may very well be one of the earliest experimental demonstrations of 
telerobotic functions [6].They called their concept computer-assisted teleoperations, and it 
included both operator assists and robotic teach-playback functions. Operator assists 
included software jigs and fixtures designed for the improvement of the remote operation of 
tools such as saws and drills. For example, they demonstrated how an imaginary software 
plane could be defined to constrain the motion of a rotating disc cutter, much like a 
carpenter's miter box. Similarly, drilling along an arbitrarily oriented centerline was demon- 
strated. In both of these cases, the operator would "feel" excursions from the constraint 
through the system force reflection. They also implemented surface or object-tracking assists 
using end-effector proximity sensing [6]. These telerobotic assists were studied in laboratory- 
scale experiments and demonstrated significantly improved (with respect to both task time 
and work quality) remote disc cutting and drilling. 
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FIGURE 10.5 
CRL model M2 manipulator system performing space truss assembly. (Courtesy of Oak Ridge 
National Laboratory.) 

In the 1980s and 1990s, nuclear remote operations technology migrated into other areas 
such as space and the military as nuclear power activities began to decline. Nuclear- 
style teleoperations influenced the Space Shuttle remote manipulator system and the short- 
lived Flight Telerobotic Servicer program. Lesser but nonetheless important influences 
occurred in undersea remote technology as well. As we look forward to robust telerobotics, 
it is important that we understand what has been accomplished and learned to date. 
Hazardous environments are highly unstructured in comparison with repetitive manufactur- 
ing environments. Task "unstructuredness" ultimately results in high task uncertainty. Task 
uncertainty drives the use of systems based on effective teleoperations, because human-in-the- 
loop operations ensure the availability of human cognition, creativity, and innovation to 
counteract the certain occurrence of unexpected events. Experience has shown that minor 
perturbations in any planned scenario can disrupt automated task execution. There is a 
noteworthy track record of effective teleoperations in highly complex environments. This 
track record is the baseline, or reference state, against which any telerobotics schemes will be 
judged. For ideas to go beyond the R&D laboratory, their performance in the field must 
exceed these established standards. 

This history discussion touches the surface of teleoperations developments and experience. 
We can draw a few generalizations from the baseline that should be applied to the pursuit 
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FIGURE 10.6 
Advanced servomanipulator system. (Courtesy of Oak Ridge National Laboratory.) 

of more robust telerobotics. First, the mind-set of people who perform actual remote 
operations is very focused on the task at hand. There is zero tolerance for systems and 
equipment that do not perform their intended functions correctly and reliably. This mind-set 
is also a conservative one toward new ideas, and rightly so because there are many instances 
in which hardware failures have resulted in total failure of the overall mission. Only systems 
that perform reliably out of the box are used consistently. Second, the functionality and 
performance capabilities of the state of the art in modern teleoperations set the standards of 
expectation. New telerobotic system concepts must do more than equal this performance 
level; they must exceed it so that users are motivated to try something new. The teleoper- 
ations baseline (see [6] for more details of other systems than those discussed here) that 
provides remote work efficiencies of 5 to 10 relative to contact operation can be characterized 
as follows: 

�9 Dual-arm manipulator configurations for anthropomorphism and the ability to handle 
tools and object simultaneously and in a coordinated manner. 

�9 Manipulators with human-compatible operating characteristics: 
(1) No load tip speeds between 36 and 48 in/s 
(2) Link lengths near human upper and lower arm sizes 
(3) High degree of anthropomorphism with respect to size and kinematic arrangement 
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FIGURE 10.7 
Computer-assisted teleoperation experiment. 

(4) Systems that feed back forces (i.e., provide force reflection) from the remote task 
environment to the operator; modern teleoperators have achieved 0.5-1.0% of 
maximum payload. 

�9 Systems that provide high-fidelity sensory feedback from the remote task environment 
to the operator: 
(1) Stereo and multiview remote television that is easily steered and zoomed 
(2) Audio remote feedback 
(3) Kinesthesia and tactility through the master controller and the manipulator force 

reflection. 
�9 Humanly sensible controls and displays: 

(1) Manipulator master controllers with intuitive correspondence to the slave manipu- 
lators 

(2) Intuitive kinematics in all system articulations including the manipulators 
(3) Ergonomically designed controls and displays. 

�9 Systems that were designed for and have the innate ability to handle and operate 
standard and special tooling efficiently. 
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The complex synergy of these characteristics (at least these; there are probably many 
others) establishes the remote work efficiency of an integrated system. There are impressive 
and promising new hardware and software technologies that vastly enhance our ability to 
implement effective telerobotics including improved teleoperator functions. New ideas built 
around these technologies must provide a clear benefit/cost ratio relative to the existing 
teleoperations baseline. 

3 THE NOTION OF TELEROBOTICS 

Given the history of teleroperations, let us now step back to discuss the fundamental 
structures associated with telerobotic systems as a foundation for later consideration of 
related sensing, planning, and control issues. Several groups and individuals have claimed the 
creation of the concept of a telerobot. Although it is not known who really deserves the full 
honor for inventing the new terminology, it is clear what a reasonable definition is: A 
telerobot is a system that beneficially combines human interaction and automation in a single 
robot system. This distinction can be quite general, but for the purposes of this discussion, 
the concept is applied to the general problem of remote operations in hazardous environ- 
ments. A telerobot in remote operations is best thought of as a system that provides a 
continuum of remote capabilities from fully manual operations through fully autonomous 
task execution where the mixture of operations is chosen to improve overall system 
performance [8]. 

Fully manual operations in the sense of remote manipulation are basically classical 
teleoperations in which a human operator uses some form of manual controller (master) to 
direct continuously the operation of the remote manipulation system (slave). The system 
architecture of telerobots as they were envisioned in the late 1970s is shown in Figure 10.8. 
The nature of this control interconnection can be quite sophisticated and variable in the 

FIGURE 10.8 
Telerobot architecture circa 1978. 
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overall work efficiency it provides the human operator. The most elaborate systems are 
designed to provide the operator with kinesthetic feedback, humanly compatible dynamic 
performance, and humanly compatible controls and displays, but the best of such systems 
are quite inefficient compared with equivalent direct human task execution. The key issue 
with regard to teleoperations, regardless of the remote work efficiency, is that remote work 
is performed in one-to-one correspondence with a human operator. That is to say, there is 
always a dedicated operator with each system. Consequently, the aggregate work efficiency 
can be no better than that of a single human operator. This fundamental limitation of 
teleoperations has been one of the factors that has motivated the concept of telerobotics. 

The fundamental idea embodied in telerobotics is to enhance performance, especially task 
efficiency, by integrating automated functions that can be selected and used on demand by 
the operator. In this sense, the telerobot can be viewed as a combined teleoperator and robot. 
Many factors are critical to the value and utility of the concept. The telerobot system must 
preserve effective teleoperational features. The automatic functions must be readily usable 
under extremely unstructured task conditions, which places high demands on the in situ 

programmability. The perspective assumed in telerobotics is very important. One can 
consider the telerobot as a modified robot or as a modified teleoperator. These two 
perspectives provide fundamentally different results. Symbolically, this can be summarized as 

Tr = Teleoperator  w R o b o t  (10.1) 

tR  = R o b o t  w Teleoperator  (10.2) 

Tr # tR  (10.3) 

These simple expressions mask the complexity of the underlying differences. A Tr system is 
one that is foremost a teleoperator but that can be "programmed" to perform specific 
subtasks automatically. A tR  system is a programmable robot that has been augmented with 
control features that allow it to be operated manually in a teleoperator mode. Robot 
manipulators, which are used in tR systems, are commercially available and are designed to 
fundamentally different criteria than manipulators typically used in remote operations [9]. 
Manufacturing-driven robot manipulators place high value on position repeatability, cost, 
and other factors such as factory floor environmental requirements. These emphases result 
in manipulator designs with extreme structural rigidity and corresponding bulk (i.e., weight 
and physical size). They also generally involve digital controllers that are specialized, 
proprietary, and with narrow functional capabilities. In comparison with modern force- 
reflecting telemanipulators developed for nuclear applications, efforts to convert robots into 
teleoperators (e.g., space balls and PUMAs) have resulted in less effective systems in terms 
of remote dexterity and work efficiency. 

Remote force-reflecting manipulators are usually designed to optimize the ability to 
"reflect" the force and moment conditions at the remote slave end effector "back" to the 
human operator. This critical sensory feedback effectively allows the operator to "feel" what 
is happening. Kinesthetic, tactile, and visual feedbacks are extremely important in executing 
the complex types of tasks that are typical of hazardous work environments [2]. This class 
of robot manipulators places very high value on the minimization of inertia, friction, and 
physical cross sections in the interest of obtaining sensitive force reflection and minimal arm 
cross section for maneuverability. Although these design objectives enhance teleoperation, 
they result in (compared with industrial robots) compliant structural characteristics that 
make precise programmed trajectory execution difficult. One can say that industrial robots 
do not make very good teleoperators (tRs) and teleoperators do not make very good robots 
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(Trs). One would ask, "What is the best approach for telerobots that must be able to perform 
both basic functions?" 

Because a telerobot in the sense of this discussion (i.e., a Tr) is an extension of 
teleoperations intended to improve (in some sense) remote operations, it is imperative that 
the system provide effective teleoperability first. In the applications discussed in Section 4, 
nuclear radiation levels are often sufficiently high that remote operations without any 
amount of human intervention are necessary. Under these conditions, the baseline for 
comparison of operational alternatives is classical remote operations. Classical remote 
operations using tools such as force-reflecting teleoperators represent established and 
acceptable methods. Any alternative, such as telerobotics, must provide clear benefits in 
terms of performance, safety, or work quality. 

The fundamental telerobot concept is very simple and obvious. It is not so obvious how 
one should balance the trade-offs already discussed or how one can actually realize a robust 
system with the task versatility that real-world hazardous environments require. It has been 
about 20 years since the concept was first discussed, and to this date a comprehensive 
telerobotic system has not actually been used in a real-world remote application. Clearly, 
much work remains to achieve the ideals established for telerobots. Let us look to an example 
of an actual application domain to study further the challenges implicit in robust telerobotics. 

4 TYPICAL APPLICATION DOMAIN 

There are many application domains for telerobots in the hazardous operations associated 
with undersea, space, nuclear, and other dangerous environments. Using the author's direct 
experience, the focus of this discussion will be on applications of telerobotics to the 
decontamination and decommissioning (D&D) of defunct nuclear facilities located around 
the world, but with emphasis on U.S. facilities. Nuclear D&D examples are quite useful 
because they present a range of problems and challenges due to the wide variety of facilities 
being considered. This range and variety provide excellent examples that typify unstructured 
and hazardous work environments in general. 

D&D is essentially the task of demolishing and cleaning up old radioactive facilities, 
buildings, processing equipment, and sites such that buildings and property can be rendered 
to a safe condition or possibly reused. As shown in Figure 10.9, D&D is an iterative process 
of characterizing, decontaminating, and dismantling process systems and buildings until 
specific criteria for radiation release and other factors are achieved. Characterization is the 
process of making measurements to determine the concentration and location of con- 
taminants. Decontamination is the process of removing contaminants. Dismantlement is the 
process of tearing down equipment and facilities. Within these fundamental operations, there 
are numerous possibilities for the beneficial integration of new technologies such as 
telerobotics. Telerobotic systems can contribute in several general respects: (1) reduction of 
human exposure to radiation and hazardous materials through remote operations; (2) 
increased productivity and quality of operations through selective automation of specific 
tasks; (3) reduction of secondary waste generation during D&D; and (4) facilitation of in situ 
survey, decontamination, and dismantling operations. 

Within governement facilities and in areas such as the former Soviet Union, there is a wide 
range of D&D requirements that stem directly from the numerous types of research and 
production facilities which face demolition in the future. Facilities range from production- 
scale nuclear reactors and processing plants to small hot-cell and glove box research facilities. 
Physical requirements for load capacity and reach range from kilograms to metric tons and 
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FIGURE 1 0 . 9  
D&D operational flow diagram. 

from centimeters to tens of meters [10]. These facilities include a correspondingly wide range 
of mobility and access requirements, from overhead crane-type configurations to very 
demanding floor terrains involving climbing and stepping over obstacles. Nuclear radiation 
levels range from benign, but legally significant, conditions to lethal exposures. 

From a general telerobotics perspective, one can characterize these task environments as 
geometrically complex, visually confusing, occluded, and environmentally harsh (i.e., radi- 
ation, chemicals, humidity, and temperature). Figure 10.10 depicts a typical task scene from 
a distance and Figure 10.11 shows a close view. Notice the complex equipment and piping 
arrangements, which involve occlusions, poor contrast, nonspecular reflective properties of 
surfaces, and high vertical reach requirements. Imagine a telerobotic system that approaches 
this scene. The goal will be to dismantle the equipment and structure systematically for 
removal and further materials processing. Obviously, dismantling the entire structure will 
require multiple stages of operation. The equipment module is a layered structure when 
considered from a D&D perspective. Inner layers cannot be seen or sensed until outer layers 
are removed. The dismantlement sequence must be based on a strategy that takes into 
account the structural design characteristics of the equipment module. Care must be taken 
to ensure that the cutaway strategy will sustain structural integrity to ensure safety of the 
telerobot and other equipment in the area. A telerobotic system that could function effectively 
in this domain requires high mobility, comprehensive manipulation and tools, and extremely 
robust sensory perception and task-planning capabilities. Subtask automation will require 
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FIGURE 10.10 
Typical D&D far-field task scene. (Courtesy of Oak Ridge National Laboratory.) 

that the immediate outer equipment layers be at least geometrically characterized (e.g., in-situ 
construction of a mathematical representation of the relative location of the components). 
This will require steerable and robust range imaging sensors. The sensors will have to work 
with poor lighting and nonideal surface properties. Work and task planning must be very 
smart to be able to include position and dexterity constraints associated with the mobile 
telerobot, to be able to account for equipment-defined task sequence constraints, and to be 
able to include multiple tooling systems. Tooling, mobility, and manipulation controls that 
provide robust automatic subtask execution under these realistic conditions are difficult to 
realize. 

The established approach to D&D operations of the type shown in Figure 10.11 would 
be remote operations based on teleoperations in which the human operators perform all of 
the dismantlement functions directly and sequentially. Work planning would be formalized 
but would be performed off line by the work team. In-situ sensing would include remote 
television viewing with audio monitoring. Human involvement with man-in-the-loop control 
of virtually every operation would provide a level of robustness that can be quite high in 
well-trained teams. Fault detection and recovery would be accomplished by the team as 
necessary. This mode of operation has been used numerous times successfully around the 
world to the level of proficiency represented in a 5 to 100 slowdown factor (relative to contact 



300 CHAPTER 10 / SENSOR-BASED PLANNING AND CONTROL IN TELEROBOTICS 

FIGURE 10.11 
Typical D&D near-field task scene. 

operations). This level of teleoperations proficiency represents a norm, or baseline, that must 
be exceeded by a sufficient margin to justify the additional complexity and cost of any 
telerobot. Ideas and concepts for telerobots that can possibly meet this challenge abound. 
The far more uncertain issue is the achievement of sufficient operational robustness. The next 
section discusses what is meant by robustness and what types of system structures will 
provide such robustness. 

5 A ROBUST TELEROBOTIC CONCEPT 

In terms of this overall discussion, a "robust" telerobot is defined as one that (1) provides 
effective teleoperability, (2) permits efficient in situ subtask automation, (3) is able to monitor 
and detect fault conditions reliably, (4) is able to facilitate smooth or bumpless transfer 
between manual and automatic control modes, and (5) performs these functions reliably 
under realistic hazardous task conditions. 

Robust telerobotics requires that the system be capable of reliably identifying fault 
conditions and that the system provide operator-interactive features that allow the operator 
to commingle with system operation, to assist in planning operations, and to assist in the 
recovery from fault conditions. This level of human interaction is essential, given the state of 
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intelligent systems technology in comparison with the extreme multidimensional complexity 
of typical hazardous work environments such as those described in the previous section. A 
robust telerobot must emphasize human interaction not only for effective teleoperability but 
also for the aspects of robotic execution. Specifically, the system must provide the ability to 
program robotic functions quickly and efficiently so that when the operator chooses to 
automate a particular subtask it can be done faster than simply executing the task under 
manual control. Also, it is extremely important that the system provides the operator with 
"seamless transfer" between teleoperation and robotic execution. This intrinsic robustness is 
essential if the system is to function effectively under the highly unstructured task conditions 
that are typical of hazardous environments. The operator must be able to "maneuver" the 
system in and out of automated task execution to ensure smooth, continuous, and time- 
efficient overall operation. 

The robust telerobotic system must be able to detect tooling malfunctions of all types (e.g., 
when a nut runner exceeds reasonable torque levels while attempting to loosen corroded 
fasteners). Task planners must be able to deal with a range of tooling systems, some of which 
are functionally redundant. Tooling and remote handling system monitors must be able to 
detect the effects of unexpected task hardware responses such as load shifting or structural 
faults. The system must deal with realistic image sensing and analysis requirements. It cannot 
afford the time that might be involved in being computationally confused by scene 
complexity or obscured sensors. There are also a host of functions associated with telerobotic 
system infrastructure, such as data communications networks that move data and command 
signals back and forth from the operator to the remote systems. Many of these requirements 
are relevant to any remote system, whether it is automated or not. Today's teleoperator 
systems are quite complex. The situation is substantially more complex when automation is 
integrated into the basic system functionality. The automation functions are essentially 
autonomous subfunctions. Autonomous subfunctions that are slow or "get lost" as a result 
of task complexity effects will not be successful in real-world remote operations environments 
such as nuclear D&D. Telerobotics comes down to the implementation of autonomous 
subfunction behaviors within the context of a human-controlled and supervised remote 
systems. These autonomous subfunctions are, in principle, not different from any auton- 
omous system abilities that have been and continue to be the subject of innumerable research 
efforts. Perhaps these practical applications of autonomy to things such as nuclear D&D will 
provide the proverbial acid test for much of the basic research embodied within today's 
intelligent systems R&D. 

The robotic functionality of the telerobot requires that the system have all of the necessary 
features (e.g., sensing, planning, controls) to characterize and program a specific subtask in 
situ. As a minimum, the telerobot must have the ability to construct geometric models 
adequate for trajectory and tooling sequence planning. Almost always, the geometry of the 
task environment is highly unstructured and uncertain. Likewise, the precision and accuracy 
of the requisite geometric knowledge vary from task to task, as does the extent of the task 
space itself. Also, a significant fraction of the tasks to be performed are complex by any 
standard. These factors put full automation of many large tasks (e.g., removing an entire 
equipment module) beyond the reach of current technology. However, there are certain 
subtasks that are amenable to automatic planning and execution; interjection of telerobotic 
subtasks into the overall sequences is the most attainable exploitation of automation benefits 
in the foreseeable future. 

Automation of a task requires complete quantitative data about the task and/or subtasks 
to be performed, the manipulation systems, and the tooling systems to be used. Task space 
scene analysis (TSSA) [11] refers to the phase in which the telerobotic work system gathers 
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FIGURE 10.12 
Functional architecture of a robust telerobot. 

geometrical and other types of information that are necessary to characterize, analyze, and 
plan the automated subtask execution. For example, in a dismantlement scenario, the subtask 
may be to remove a segment of process piping using remote manipulators and cutting tools. 
If such a task is to be automated, then it is necessary to describe the location and orientation 
of each piping element to be removed with respect to the telerobot system. This data 
representation, or model, must be complete and accurate to the extent dictated by the specific 
tool to being used; positioning a shear cutter demands less accuracy than achieving the 
proper standoff distance for a plasma torch. Once a sufficient model is available, planning 
the manipulator motions is relatively straightforward. The TSSA process is in essence a 
model builder of the near field of view of the telerobotic work system. Current research 
[-11, 12] has addressed both human-interactive and fully automated TSSA features. The 
functional architecture of a robust telerobot that includes TSSA is shown in Figure 10.12. 
We see that a robust telerobot is a hybrid machine that must allow sequences of manual and 
automated subtasks to be interleaved as shown in Figure 10.13. The telerobotic subtask 
sequence will consist of the modeling, planning, execution, and verification steps also shown 
in Figure 10.13. This diagram describes the nominal operational case in which subtask 
execution evolves as planned. As discussed earlier, there are numerous events that can disrupt 
the planned execution in a realistic unstructured task environment. The operational flow 
symbolized in Figure 10.14 depicts the occurrence of off-nominal faults that halt or defeat the 
planned task execution. In the simplest case, the telerobot would include sufficient intelli- 
gence to analyze the fault and replan an alternative execution. In the worst case, it is 
necessary for the human operator to take over control to rectify the situation if possible. 
Seamless transfer between manual and autonomous operation across all of the basic 
telerobot functions is critically important in both of these cases. At this point, it is 
constructive to look at relevant examples of current research as discussed in the next section. 

6 CURRENT RESEARCH IN INTEGRATED D&D TELEROBOTICS 

A next-generation D&D telerobot [13] is being developed in the U.S. Department of Energy 
Robotics Technology Development Program to provide a platform for the exploration of 
modern telerobotic principles and how they might be used to improve D&D remote 
operations. The system can be thought of as a "tool kit" consisting of a number of modular 
and reconfigurable subsystems for mobility, manipulation, tooling, and other support 
functions. Figure 10.15 shows graphical descriptions of the three modes of mobilty deploy- 
ment (i.e., overhead, crane, and floor mounted) that are envisioned. Another goal of this 
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FIGURE 10.15 
Selective equipment removal system concept. 

design approach is to facilitate scaling of the system module sizes to accommodate a wide 
range of application requirements with minimal engineering development and modifications. 
In this way, a majority of the hardware and software R&D costs can be amoritized across a 
large number of D&D applications. This system has been named the Selective Equipment 
Removal System (SERS). The modifier "selective" was coined to describe the SERS ability 
to be used as a highly mobile and versatile system to dismantle problematic (i.e., unusually 
high radiation) equipment in otherwise benign areas, as well as projects requiring compre- 
hensive remote operations. The system will be used in quantitative tests and evaluations of 
advanced teleoperation and telerobotic functions under full-scale D&D demonstrations in 
the Robotics Technology Assessment Facility at the Oak Ridge National Laboratory 
(ORNL). The dual-arm work module (DAWM) is a principal element of SERS. The DAWM, 
as shown in Figure 10.16, incorporates dual Schilling Titan II hydraulic manipulators with 
six degrees of freedom (DOF) mounted on a torso mechanism. The torso mechanism 
provides an addition five degrees of freedom that include left and right shoulder separation, 
chest rotation, and manipulator base rotations. The Titan II hydraulic manipulators are used 
to provide high payloads of approximately 200 lb. The torso mechanism is designed to allow 
the dual arms to be configured and positioned to handle large and cumbersome objects, 
which are typical in dismantlement tasks. The total 17 DOF of the DAWM provide task 
flexibility but lead to significant control challenges. The operator control station for the 
DAWM is a modified version of the control station for the Advanced Integrated Mainten- 
ance System shown in Figure 10.6. Note that the manipulator master controllers [i.e., elbows 
down, P-R-P-(P,Y,R)] are an entirely different kinematic configuration than the Titan II 
slaves (i.e., Y-P-P-P-R-P). The initial control implementation [14] of the DAWM was 
designed to provide effective force-reflecting teleoperation with dissimilar master and slave 
kinematics. To accomplish this goal, the slave is controlled in a Cartesian space associated 
with the end effector. Cartesian space control of the slave is straightforward in the automatic 
trajectory control mode. In manual control, commands from the kinematically dissimilar 
master controllers are transformed by treating the controller grip inputs as equivalent 
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FIGURE 10.16 
Dual-arm work module. (Courtesy of Oak Ridge National Laboratory.) 

Cartesian commands for the Cartesian positioning of the slave end effector. This scheme 
works reasonably well, although it is somewhat cumbersome in certain manipulator 
configurations. It involves human factors attributes that are not intuitive and have not been 
fully evaluated. 

The most interesting mobility module is the ROSIE vehicle [15], which was developed by 
RedZone Robotics. ROSIE is an omnidirectional wheeled floor transporter with an integral 
three-DOF heavy positioning manipulator that has a 28-ft reach and a payload capacity of 
approximately 25001b. See Figure 10.17. Consequently, ROSIE has the dexterity and 
payload to position the DAWM in a very large work volume relative to the floor. The 
ROSIE/DAWM SERS configuration would be capable of dismantling the large structure 
shown in Figure 10.10, from the floor. Although ROSIE provides maneuverability of a 
high-capacity work module, it is large and heavy (it weighs approximately 12,000 lb). The 
system requires a 60-hp onboard hydraulic power supply. Many nuclear applications restrict 
the use of flammable fuels such as gasoline in remote areas. In this initial configuration, 
ROSIE is powered and controlled through a special tether and tether management system. 
Although the tether is a highly reliable connection to the remote work system, its mass and 
size restrict mobility. A human-interactive stereo range analysis TSSA system [11] is an 
integral part of the SERS. This system shows real promise as a technique for the in situ 
development of near-field-of-view geometric models. Because the approach is human inter- 
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FIGURE 10.17 
Robot mobile transporter, ROSIE. (Photography by Matt Bulvony and courtesy of RedZone Robotics, Inc.) 

active, it is useful for extremely complex task scenes. The operator uses point and click tools 
with the remote video views to define objects of interest in the right and left camera views. 
The stereo disparity calculations become straightforward in complex scenes when the points 
of correspondence are specified by the operator. The prototype stereo TSSA at ORNL has 
achieved accuracies of about 0.5 in at a standoff and concurrence viewing distance of about 
15 feet in a pipe modeling experiment. Carnegie Mellon University [12] is working on an 
automated TSSA system called Artisan. This work uses surface reconstruction and object 
recognition schemes to analyze the near field of range camera scenes to produce model 
primitives of objects in the scene. 

Several full-scale mock-ups of actual DOE facility equipment systems that are scheduled 
for D&D have been constructed for nonradioactive testing in the next few years. These tests 
will address many important issues such as remote procedure development, tooling evalu- 
ations, and remote sensing evaluations. In addition, basic telerobotic functions will be 
quantitatively evaluated against baseline teleoperation execution. Specifically, a human- 
interactive scene analysis subsystem called the task space scene analyzer will be used to 
construct a geometric model of a piping and support structure to be removed from the near 
field of view with respect to the SERS. These results will be used to define task tooling to be 
used, operational sequences to be followed, and end-effector trajectories necessary to 
accomplish the pipe removal automatically. The SERS telerobotic control system will be used 
to transform all of these planning results into executable forms. The same tasks will be 
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performed with direct teleoperation. Parameters such as total task execution time, manipu- 
lation errors, and work quality measures will be carefully recorded for the comparison of the 
two approaches. 

7 KEY REMAINING CHALLENGES AND SUMMARY 

When one considers the implementation of practical telerobotic systems such as the SERS 
in work task environments such as D&D environments, a long stream of research needs 
begin to surface; however, there are several key research areas that involve fundamental 
challenges. These fundamental challenges are associated with essential system functions that 
are at the very heart of robust telerobotics. 

As has been mentioned, a high degree of operational robustness will be essential to achieve 
the confidence levels that operators routinely expect. Many of the ingredients required for 
this level of robustness exist. However, there are several critical and fundamental areas in 
which the concepts are well defined, but yet practical and working implementations are 
lacking. It is believed that basic and applied research is needed to bridge this gap with results 
that are ready for integrated systems. These critical areas represent the principal remaining 
challenges: 

Fault Detection, Isolation, and Interpretation. A system must be able to realize when it 
cannot achieve automated task objectives. It must be able to alert the human operator to 
likely causes for malfunction, and it must be able to assist the operator in developing work 
around strategies and alternatives. This will require on-line diagnostic capabilities that go far 
beyond existing system diagnostic concepts. 

Recovery Interaction. The workable telerobotic system must provide operator utilities that 
facilitate effective and fast replanning, including detailed safety and consequence assessments 
(i.e., operational readiness restrictions in operations involving nuclear materials can be 
extremely demanding and stringent). The nature and complexity of hazardous environment 
operations will require that humans be an integral part of, and have final approval for, 
recovery plans. R&D is needed to develop such interactive systems that give proper 
consideration to the human engineering issues. 

Efficient in Situ Programmability. The programming cycle time for selected subtasks must 
be short enough to make telerobotic execution advantageous. Refer back to Figure 10.13. 
Programming must be accomplished on station as needs and opportunities arise. Sensors and 
visualization schemes that facilitate task parameterization must be developed. Efficient 
interactive task planners that can handle the complexity must be developed. 

Seamless Transfer. Seamless transfer is the process whereby a telerobot can make a 
transition between manual operation and automatic control effectively. For the telerobotic 
concept to be viable in practical applications such as D&D, dynamic seamless transfer is 
needed to give operators the freedoms they will need to drive these systems through their 
complex tasks efficiently and effectively. The realization of systems that can literally jump 
from manual and automated machine states reliably and confidently is a major challenge. 
R&D is needed to develop the fundamental real-time software concepts and structures to 
implement these systems. 
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Human-Machine Interfaces. It has been argued that human interaction is the glue that 
will hold telerobot systems together in the sense of ensuring flexibility and robustness. 
Human-machine interfaces (HMIs) cross-cut virtually every system function that has been 
discussed, including the key remaining challenges. Unfortunately, modern intelligent systems 
research too often tacitly treats HMI issues as secondary matters. HMIs are often whatever 
workstation window structures programmers define in the course of building their systems. 
Experiences in aerospace and nuclear applications have shown that the efficacy of the HMI 
is always a first-order factor in terms of overall system functionality and efficiency. This is 
certainly the case in robust telerobotics, and much more research investment must be devoted 
to the human factors issues of human interaction at all levels. 

In summary, we have discussed the straightforward concepts associated with the notion 
of telerobotics. We have found that, in practice, robust telerobotic systems are virtually 
nonexistent for a host of reasons, some of which are technical and many of which are 
nontechnical. Remote systems applications in hazardous environments provide valuable 
experience in the teleoperations dimension of telerobotics and richly define the requirements 
facing robust telerobotics systems. New research into the human interaction functions of 
these systems is needed in key areas associated with fault handling, fault recovery, in situ 
programming, and system control. Robust telerobotics should be a central focus of human- 
centered robotics research. 
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CHAPTER 11 

Automated Integration of Multiple 
Sensors 

J. E. BAKER 
Oak Ridge National Laboratory, Oak Ridge, Tennessee 

1 I N T R O D U C T I O N  

Multisensor integration (MSI) is the combining of data and information from more than one 
source in order to generate a more reliable and consistent representation of the environment 
[1]. This chapter focuses on specific MSI algorithms developed for recent Department of 
Energy (DOE) applications. These applications included autonomous robotic guidance for 
deployment in hazardous environments, scene mapping and environmental characterization, 
buried waste localization and identification, sensor self-calibration through automated scene 
quality assessment, and waste stream object identification. 

To be useful in many real-world applications, such as autonomous or teleoperated 
robotics, real-time feedback is critical [2, 3]. Unfortunately, many MSI-image processing 
algorithms require significant processing time [4-7]. This is especially true of feature 
extraction, object isolation, and object recognition algorithms because of their typical 
reliance on global or large neighborhood information. The techniques presented in this 
chapter attempt to exploit the speed currently available in state-of-the-art digitizers and 
highly parallel processing systems by developing MSI algorithms based on pixel-level rather 
than global-level features. Hence, the basic direction of these approaches to conceptual 
enhancement is the potentially faster and more robust formation of cluster from pixels rather 
than the slower process of segmenting images into clusters. (Note that although this process 
and the resulting representation are generally called "segmentation" in the literature [8-11], 
I will use the term "clustering" to reinforce this distinction in the basic direction of the 
approaches.) 

The "data enhancement" algorithm presented is a specific sensor anomaly detection and 
remediation technique. This technique is invoked to remedy an anomaly that can reduce the 
applicability of the sensor data and is given as an example of a traditional MSI approach. 
Addressing such anomalies is necessary if real sensor data are to be targeted. It is a great 
temptation to develop and evaluate image processing (IP) algorithms on simulated data with 
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the rationalization that the results can be easily adapted to real images. Although this may 
well be true theoretically, often the problems and difficulties inherent in processing real sensor 
data are such that simulation-based techniques resolve few of the real problems. That is, the 
distortions, sensor anomalies, noise, and so on inherent in real images so dominate the 
processing problem and either the simulation-based technique is solving such a trivial 
component or the anticipated mapping function from real images to simulation quality 
images is at least as complex as the original IP problem. It is our view, therefore, that real 
sensor data must be the focus from day one for all but function encoding verification, 
graphical explanation, or preliminary concept generation. The techniques presented in this 
chapter are developed and evaluated on actual multimodal sensor data consistent with 
real-world robotic applications, that is, a laser range camera used for robotic navigation and 
ground conductivity data used for buried waste assessment. 

The following section describes the traditional approach and provides a comparative 
overview of our adaptive learning approach to MSI. This approach is detailed in Section 3. 
Section 4 describes the sensory target domains, including a description of the physical nature 
of each sensor system (laser range camera, LRC, and ground conductivity, GC, sensor) and 
their targeting environments. Section 5 presents a specific sensor anomaly common to LRCs 
and our MSI approach to resolving its distortions, complete with empirical results. The sixth 
section presents an empirical evalution of the performance of our automated MSI system 
applied to LRC images. Section 6 validates these results empirically in the learned (LRC) and 
unlearned (GC) domains. A summary section follows. 

2 BACKGROUND 

Although MSI has a generally accepted overall purpose, that is, to generate a more reliable 
and consistent representation, the specij'ic goals of each MSI implementation vary from one 
application to another [-4, 5, 7]. MSI techniques combine multimodal sensor images (e.g., 
sonar and visual [12], distance and reflectance [-1, 13]), multiple single modal sensor images 
(e.g., multisampling, a single sensor's images displaced in time or in space [-14]), or com- 
binations of these. 

MSI is necessary because of basic ambiguities inherent in our current sensor imaging 
technologies. Sensor ambiguities derive from two basic causes: limitations of the physical 
attribute being measured by the sensor (e.g., visible light's inability to permeate opaque 
surfaces, sonar edge effects) and the sensor's inaccuracies in making measurements (e.g., noise, 
resolution). Ambiguity exists as long as the mapping from reality to image is not one to one. 
That is, if different "realities" lead to identical images, a single image cannot reveal the 
particular reality that was the truth; for example, a two-dimensional (2-D) visual image of 
an opaque object cannot reveal its interior or its hidden surfaces, hence an infinite number 
of "realities" would result in the same sensor image. 

MSI techniques attempt to resolve some of these ambiguities by appropriately coupling 
complementary images to eliminate possible inverse mappings. What constitutes the most 
advantageous MSI technique is dependent on the given application domain, available 
sensors, and task requirements. Multisampling is perhaps the simplest MSI technique and is 
used primarily to reduce noise. Merging multiple single modal images [14] displaced in space 
can improve three-dimensional information, reveal otherwise occluded areas, and reduce 
orientation-induced artifacts, such as glare or sonar positional anomalities. Merging multiple 
single modal images displaced in time can be used to reduce temporal effects or to isolate 
them. Employing multimodal sensors permits exploitation of each sensor's strengths without 
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suffering their intrinsic weaknesses; for example, using both sonar and vision can provide 
both accurate distance (sonar) and edge detection (vision) [12]. Clearly, the choice of sensors 
and MSI techniques is critical to achieving performance gains from MSI; MSI provides 
nothing if the images to be merged are not complementary. 

The goal of MSI is to improve the representation's reliability and consistency, and the 
means of achieving this goal can be divided into three categories based on the information 
content of the original images relative to that of the desired representation. 

In the first case, "detail enhancement," the relative information content of the original 
images is less rich than that of the desired representation. This case occurs whenever the 
original images are integrations of the target (e.g., raw nuclear magnetic resonance, X-ray 
photography) or undergo a distorting function (e.g., unfocused lenses, interference patterns). 
These images can be translated into a more accurate and detailed representation if the 
original integration or distortion function is sufficiently known to permit an inverse mapping 
function to be well approximated [10]. 

In the second case, "data enhancement," the MSI techniques are concerned with 
improving the accuracy of the data rather than either increasing or decreasing the level of 
detail. Techniques in this category inclode noise reduction, resolution enhancement, and 
reduction of sensor artifacts. One such technique is discussed in Section 5. 

In the third case, "conceptual enhancement," the image contains more detail than is 
desired, making it difficult to recognize objects of interest easily. In these images one can 
group together pixels corresponding to the same conceptual object and thereby reduce the 
level of extraneous detail. This task may require significant amounts of global knowledge and 
processing time. For example, if one wishes to distinguish "walls" from "floors," one could 
separate objects on planar edges; however, this would subdivide complex structures into their 
many facets. Collecting these facets into single multiplanar objects without combining 
separate, adjacent objects requires detailed knowledge of each complex structure of interest 
(object definition) and recognition of that structure within the image (object recognition). 
This problem extends to all sensor modalities as well (e.g., color, texture, composition, shape). 
Either one accepts the shortcomings inherent in making clustering decisions independent of 
global knowledge or one accepts the time and computational complexity associated with 
object definition and recognition code. This chapter concerns real-time applications and, 
hence, restricts its focus to optimizing the performance ability of rapidly executable 
approaches. 

Rapid execution is not only useful but also indispensable for many applications involving 
autonomous or teleoperated robotics. Unfortunately, many image processing algorithms 
require significant processing time. This is especially true of feature extraction, object 
isolation, and object recognition algorithms because of their typical reliance on global or 
large neighborhood information. For example, many object isolation algorithms are based 
on expected object templates, feature extraction, and "hypothetical" feature extension (i.e., 
extension of edges to possible intersection points in order to form closed polygons from only 
partial edge line segments). These methods have the advantage of global knowledge, large 
neighborhood features, a priori  expectations, and so on but are, for the same reasons, rather 
slow and domain or target specific. 

State-of-the-art image digitizers are capable of performing complex functions at the pixel 
level at full image acquisition rates [15]. This permits one to obtain pixel-level features with 
little processing delay time and may permit MSI images to be produced at near-original 
image acquisition rates, leading to virtual "multimodal sensors." The methods described 
herein exploit this speed capability by developing MSI algorithms based on pixel-level 
features. Hence, the basic direction of this approach to conceptual enhancement is the 
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potentially faster and more robust formation of clusters from pixels rather than the slower 
process of segmenting images into clusters. 

This pixel-level approach to conceptual enhancement assumes that the sensors have 
sufficient resolution, relative to the objects, to ensure that adjacent pixels corresponding to 
the same object are similar, that is, in zero, first, or second order derivatives, in at least one 
of the sensor modalities and that the objects of interest span several pixels. If these conditions 
are not met, either the objects are out of range or the sensors' modalities are inappropriate 
for the task. 

The following two subsections provide a basic overview of the traditional approach and 
our adaptive learning approach to multisensor integration. 

2.1 Traditional Approach 
Current state-of-the-art in MSI application involves a series of sequential, time-consuming 
steps that often only highly qualified and experienced researchers in sensors and image 
processing can conduct [-6, 7]. As the knowledge and experience gained in one step are often 
critical to performing the next successfully, a single researcher or team must generally 
perform most of the work. This substantially constrains the critical path of the schedule; that 
is, in general, because the steps cannot be performed in parallel, the length of the overall 
schedule will not be shortened by the addition of researchers to the development team but 
may be seriously lengthened by their departure. These basic steps are as follows: 

1. Understand and characterize the application domain. The conditions within the applica- 
tion domain that must be considered include ambient conditions (e.g., temperature, 
background radiation, lighting, humidity, air quality), targeting conditions (e.g., specific 
characteristics of the target, false targets, obstructions, background objects), and 
anomalistic effects (e.g., glare, shadows, changing air conditions). Any conditions in the 
operating environment that will affect the choice of sensors, their performance, and the 
image interpretation techniques must be sufficiently understood to direct selection and 
exploitation of the sensor suite. It is important to note that specific conditions affecting 
sensor operations are a function of the sensors themselves. Therefore, this step cannot 
be executed without a detailed familiarity with the candidate sensors, their physical 
operation, and corresponding interpretation techniques. This step interdependence and 
required sensor and image processing expertise necessitate the high qualifications 
required of the MSI researchers. 

2. Determine and dejine the appropriate sensor suite. This step requires an in-depth 
knowledge of the various available sensors (i.e., their advantages, disadvantages, and 
complementary behaviors with respect to the application domain and task require- 
ments) and modifications that potential manufacturers could implement. Sensor 
capabilities must be weighed against both the operating domain and available potential 
image processing techniques. Furthermore, secondary considerations (e.g., weight, 
kinetic shock survivability, radiation hardening, signal-to-noise ratios, long-term prod- 
uct support, power requirements, field-of-view) must also be understood and consider- 
ed when determining the best sensor suite for a given application. 

3. Analyze, characterize, and calibrate the sensor suite. An empirical evaluation of the 
sensor(s) must be performed within the designated operating domain and must include 
realistic targets, obstacles, and all expected ambient conditions. The purposes of this 
step are to validate the sensor selection, drive image interpretation software develop- 
ment, and understand any sensor anomalous behavior. It includes sensor accuracy as 
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a function of measurements discontinuity (e.g. color quality at boundaries), impact of 
theoretically unrelated modalities (e.g., range accuracy as a function of surface 
reflectance), scene dynamics (e.g., moving targets and/or moving obstacles), active 
sensor "cross talk" (e.g., acceptable proximity and frame rate of sonar ranging sensors), 
and ambient noise (e.g., presence of an ambient light source that corresponds to a laser 
camera's operating frequency). If a sensor proves to be unacceptable, one may need to 
return to step 1 for both the single erroneous sensor and potentially the entire sensor 
suite. The entire suite may be affected, because in some cases individual sensors are 
selected for their behavioral compatibility and/or complementary modalities. Hence, 
the unexpected replacement of an unacceptable sensor may affect the utility of the 
others. 

4. Recognize and accommodate sensor interactions. This step involves two distinct types of 
sensor interactions. In the first type, the individual accuracy of the data is affected (e.g., 
"cross talk" interactions affecting the interpretation of data correspondences). As 
mentioned in step 3, cross talk can occur whenever two or more active sensors confuse 
each other's signals for their own. This is a common potential problem for sonar range 
sensors and is usually redressed by controlled firing. Clearly, this changes the effective 
data stream rate. Other interactions occur because of incompatibilities between the 
physical measurement properties of the sensors. For  example, the performance of a 
magnetic t ransducer-based positional system or magnetic conductivity sensor can be 
adversely affected by the near proximity of a highly conductive object, such as another 
sensor system [16]. Further, since some sensors are based on physically unreliable 
phenomena, multiple physical characteristics of each point must be determined in order 
to represent the scene accurately. For example, in some range cameras, the accuracy of 
the range data is a function of the reflective quality of the surface being measured. 
Hence, by coupling a range sensor with a reflectance sensor, one can obtain the 
information to correct the range image. 

The second type of sensor interaction that must be understood and addressed is the 
accurate interpretation of data correspondences. Determining which pixels in multiple 
distinct images of the same or similar scenes correspond to each other is a very difficult 
problem and has yet to be fully solved [17-19]. The problem, called image or data 
registration, is complicated by the possibilities of occlusions, dynamic changes in the 
scene, variations in sensor quality as a function of position or time, and so forth, which 
may prevent the existence of any correctly corresponding pixel. The image registration 
problem is not directly a subject of this chapter but must be addressed if spatially or 
temporally (for dynamic scenes) disjoint images are to be merged. Generally, one 
concentrates on registering images exhibiting only trivial changes or one determines the 
precise relative spatial positions of the sensors so that simple geometry can be used. 
However, even if these conditions are met, the actual integration can be extremely 
complicated by the association and resolution problems [17-19].  That is, given two 
distinctly different pixels that are geometrically determined to lie in very close four- 
dimensional proximity (space and time), (1) should they be merged (and by what 
function)? (2) is one anomalous or less reliable because of its sensor's point-of-view 
(e.g., due to lighting, object sheen, timing)? or (3) do they represent distinct, albeit 
spatially proximate, objects? In most cases, the problem is even worse because 
four-dimensional placement is unknown (e.g., CCD images effectively yield vector data, 
not point data). 

5. Develop and optimize robust merging code. Based on the results obtained in the 
preceding four steps and the MSI goal (e.g., improved human display, rapid evaluation 
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of vast sensor data, target detection, object characterization, target tracking, self- 
location), specific merging software must be designed, implemented, tested, and 
empirically tuned. Because of the variety of potential MSI goals, the resulting merging 
code varies tremendously from one application to another. Developing this code 
involves issues similar to those for image registration described earlier. If two perfectly 
registered and corresponding pixels have different values for the same physical 
characteristic, (1) is one erroneous and to be ignored? (2) are both erroneous and can 
any information be garnered from them? (3) if they are to be merged, by what 
function--simple average, weighted average, the minimum, the maximum, or some 
complex weighted function of secondary variables (e.g., temperature, air quality, timing, 
lens focal length)? The number of merging possibilities grows substantially if the two 
pixels represent different physical properties, such as distance and reflectance. 

Once completed, such carefully orchestrated and expertly crafted MSI systems are 
expensive, fragile, and suboptimal. Any change (e.g., to the sensor suite, environmental 
domain, task specification, target description) may require a complete reanalysis. This 
problem is exacerbated by the typically multiple human-years necessary to complete the cycle 
for real-world applications, as replacing a researcher lost to natural attrition can often 
necessitate a significantly time-consuming learning curve. Similarly, because most state-of- 
the-art MSI implementations are performed on proof-of-principle demonstration test beds, 
the entire development cycle will need to be reperformed even if the initial development was 
successful (i.e., prototyping the hardware system will probably result in sensor system 
changes due to obsolete models, new weight or power constraints, etc.). 

Another critical deficiency in this approach is that because of the development costs of 
even a single MSI "solution," the only empirical quality comparison generally available is 
against the original, non-MSI system. Hence, traditionally developed MSI systems can 
undergo little more than a minor tuning from their original design parameters. As it is 
financially and timewise infeasible to develop fully even two MSI systems to compare 
competing sensor suites, initial design decisions must be accepted on faith unless they prove 
unworkable; optimizing for them is cost prohibitive. 

2.2 Adaptive Learning Approach 
Much of the MSI development process described in the previous subsection could benefit 
from adaptive learning [1]. That is, an Automated MSI Solution Generator (AMSG) could 
be designed that would take actual sensor data and the desired merged results as input during 
a training stage in order to develop or determine adaptively an effective method of merging 
the sensor data (see Figure 11.1). An AMSG would significantly reduce the time required to 
apply MSI to a given problem, while increasing the quality of the final result and providing 
both an objective analysis and comparison of competing MSI techniques and sensor suites. 

The AMSG that we developed consists of four basic components (see Figure 11.2): 

1. Search space. This is not a "component" in the strictest sense, but the specification of 
the search space, more than anything else, defines the potential quality of the AMSG. 
The search space must be composed of algorithms sufficiently specialized to provide 
high-quality MSI performance and sufficiently robust to permit working latitude in the 
fielded system. Furthermore, the search space must be sufficiently broad to include 
solutions applicable to a wide variety of domains and sufficiently small to permit 
reasonable search (preferably no more than perhaps 10 2~ candidate algorithms). 
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FIGURE 11.1 
Data interface with AMSG. 
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2. MSI implementation code. This component is responsible for applying an MSI algo- 
rithm to the incoming sensor data at near-real-time rates. Once an appropriate MSI 
algorithm is generated for a given application domain, this component will constitute 
the entire fielded system; see Figure 11.3. 

3. Learnin9 strategy. The learning strategy must select an MSI algorithm from the 
candidate solutions within the search space according to the quantified performances 
of prior selections. This learning strategy must efficiently exploit the feedback so that 
a sufficiently high-performing solution can be found in a reasonable amount of time. 

4. Evaluation function. The evaluation function compares the MSI results of the candidate 
algorithm with the user-provided desired results and quantifies the algorithm's quality. This 
quantification can be used as an objective comparison of MSI algorithms. To guide the 
AMSG efficiently, this function should have high resolution and monotonically encourage 
MSI quality; that is, it should be such that even small improvements in the MSI algorithm 
will be reflected in the evaluation measure and have a positive impact on the learning process. 
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FIGURE 11.2 
Basic schematic of AMSG data flow. 
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FIGURE 11.3 
Fielded MSI system (single component from AMSG). 
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During the learning stage, the AMSG is provided with a set of sensor data and the 
corresponding desired MSI results. The system then progresses through a basic feedback 
learning cycle (see Figure 11.2): (1) apply candidate MSI algorithm to sensor data, (2) 
compare results with desired results and quantify performance quality, and (3) use the quality 
measure to determine the next MSI algorithm to evaluate. This cycle proceeds until some 
user-specified stopping criterion is met (e.g., minimum performance quality, given number of 
iterations). When the user is satisfied with the performance quality of the MSI algorithm 
generated, that MSI algorithm can be directly applied to incoming sensor data; see Figure 
11.3. 

Each of these components will be detailed in Section 3 and the implemented system 
empirically analyzed in Sections 6 and 7. 

3 AUTOMATED MSI SYSTEM 

Although an AMSG could be developed for a variety of MSI tasks, we will restrict our 
consideration to conceptual enhancement, wherein the original image contains more detail 
than is desired, making it difficult to recognize objects of interest easily. This research focuses 
on merging pixels into "homogeneous" clusters and leaving the unification of conceptually 
related clusters for some more abstract, postprocessing phase. 

Our approach to conceptual enhancement is based on the premise that given appropriate 
sensors (i.e., those capable of distinguishing the significant conceptual regions, or facets) and 
sufficient resolution (i.e., providing multiple pixels of each such facet), clusters of pixels can 
be formed that correspond to the facets by accurately answering the fundamental question 
for each pair of adjacent pixels: "Do these pixels belong to the same facet?" Given an accurate 
response for each pair of adjacent pixels, forming accurate clusters is trivial. This question 
applies to cluster formation regardless of the sensor or application domain. The answer, in 
the form of a confidence value, provides a universal and uniform interface--applicable to 
any sensor system and MSI technique to be integrated. 
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This fundamental question suggests simply comparing the adjacent values across each 
sensor modality. But when posing the same question in the negative, "Is there a surface edge 
lying between these two pixels?" one is drawn to compare the pixel neighborhoods on each 
side of the questioned interface, for example, comparing the linear extrapolation of pixels on 
the first side of the interface with the second pixel's value, comparing the average adjacent 
pixel value variation on each side of the interface, and so forth. The AMSG is a system that 
searches for a function that best answers this question for each sensor in the suite 
simultaneously and merges their results, and optimizes those functions in accordance with 
the user-defined, desired results. 

As outlined in the previous section, the AMSG consists of four primary components: the 
search space, the implementation code, the learning strategy, and the evaluation function. 
This section will detail each of these components. 

3.1 Search Space 

There are competing interests driving the search space design. First, the space must be 
searchable; that is, there must be sufficient regularity for an automated global search 
technique to be applicable. Second, grossly dissimilar sensors must be accommodated. Third, 
all sensor inputs must be transformed into a single format for merging. Fourth, the MSI 
algorithm must be very robust and general purpose to permit maximum domain application. 
Fifth, the MSI algorithm must be highly specialized to ensure quality solutions. And sixth, 
the search space design must be extendable to as yet unforeseen sensor types and suites. 

To these ends, we have chosen a hierarchical organization of highly parameterized 
functions. Each sensor's input is transformed into an edge confidence map for subsequent 
confidence combination merger. The edge confidence map was chosen as a universal- 
fundamental interface that is based on perhaps the most reliable and basic property of 
sensors-- the ability to detect discontinuities in some physical phenomenon. (That is, 
although absolute measurements may be erroneous and the detectors may not even be 
measuring the physical property intended by their designers, significant changes in output 
can be reasonably inferred to correspond to some significant change in some physical 
property in the scene. Hence, at the very least, an edge confidence map can be generated.) 
Edge confidence maps have the added advantage of being sufficiently universal that almost 
any source (e.g., CAD model, intelligence reports) can be translated into one and thereby 
merged by this sytem. 

In our approach, each sensor to be merged is analyzed separately, according to its "affinity 
function." This real-valued, parameterized function provides a "degree of match" for each 
pair of adjacent pixels within that sensor's image. This operation translates the image into 
an edge confidence map. These maps are then merged across the sensor suite by combining 
the confidences for each pixel interface. This merging operation results in a single edge 
confidence map for the entire sensor suite; see Figure 11.4. A fully segmented image can then 
be produced by threshold-based region growing. Hence, a single MSI algorithm is defined by 

1. The pixel interface statistics used by each sensor's affinity function. 
2. The affinity function and corresponding parameter values for each sensor in the suite. 
3. The merge function and corresponding parameter values that define how to combine 

confidences across the sensor suite. 
4. The region growing algorithm and corresponding parameter values that indicate 

cohesion or disjunction for a given pixel interface. 
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FIGURE 11.4 
Schematic of sensory data flow through execution of an AMSG's MSI algorithm. 

Hence, the search space consists of 

1. Statistical definitions: A set of low-level pixel-interface statistics (e.g., change in pixel 
value, change in slope of adjacent pixel values). 

2. Affinity.function definitions: A set of affinity functions, each of which is a parameterized 
function of various pixel-interface statistics. 

3. Merge function definitions: A set of merge functions, each of which is a parameterized 
function of affinity values. 

4. Region 9rowin9 algorithm definitions: A set of region growing algorithms, each of which 
is a parameterized function of merge function values. 

5. Parameter/threshold values: The possible ranges and precisions of parameter values for 
each of the preceding functions or algorithms. 

To be included in the statistics and function sets, a definition need only be considered 
potentially useful in distinguishing facet interface boundaries in at least some sensor modality. 

This search space design has several significant advantages: 

1. It is applicable to most sensor systems, sensor modalities, and application domains, by 
simply augmenting or modifying the definition sets or parameter spaces. 

2. Its design is applicable to spatial or temporal images; a pixel interface need not be 
considered a uniform spatial quantity. 

3. Its hierarchy permits arbitrarily complex definitions at each stage; for example, an 
image edge finding algorithm or a misregistered, inaccurate world map could supply 
affinity values. The AMSG's architecture permits the results from diverse systems to be 
readily merged using standard confidence combination approaches. 

4. Its reliance on bottom-up image processing; that is, forming clusters from pixels rather 
than segmenting images into clusters permits extremely robust statistic and function 
definitions, applicable to a wide variety of sensor systems and modalities. 
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5. Changing the sensor suite has little impact on the AMSG, requiring at most augment- 
ing, not changing, the definition sets. 

6. State-of-the-art image digitizers [ 15] are capable of performing complex functions at the 
pixel level at full image acquisition rates. This may permit one to execute a given MSI 
algorithm with little processing delay time, leading to virtual "multimodal sensors." 

7. It transforms the MSI development problem into a global search optimization problem. 
This permits the system to leverage existing technology in the area of global optimization. 

8. By enabling an automated global search mechanism to "find" an appropriate MSI 
algorithm, new application and sensor domains can be targeted with minimal develop- 
ment costs and increased speed and quality. This, in turn, should permit a better and 
more objective analysis of the synergistic capabilities of various sensor suites while 
reducing the need for the developer to recognize and understand the "best" sensor 
interactions to be exploited for a given task. 

S t a t i s t i c a l  D e f i n i t i o n s  

The statistical definitions are determined by the needs of the affinity function definitions. The 
statistical values can either be precalculated and stored or determined at runtime for each 
affinity function invocation. This decision is an implementation detail, and the relative 
trade-off analysis of memory space versus learning stage runtime depends largely on the 
available hardware system. 

A f f i n i t y  F u n c t i o n s  

In this chapter we define four distinct affinity functions for comparison and evaluation. These 
differ in the size and use of pixel neighborhoods. For the following definitions, refer to Figure 
11.5 and let 

E(x, y)~ = the edge confidence for the interface between pixels x and y using 
affinity function z, for any sensor 

L(x, y, z)~ = the linear extrapolation at point e, using a least squares fit to the 
points x, y, and z 
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1. "2-pt" - -  uses only the two pixels adjacent to the interface, that is, 

E(1, a)2-pt  = i V  1 _ ra 

This function is a simple delta value across the interface. It is likely to be too simplistic 
for real images because of its required assumptions of uniform pixel quality across the 
detector's sensitivity range and sensor's image. That is, a single edge-indicating 
threshold parameter probably does not exist that would be appropriate everywhere, 
even in a single sensor image. 

2. "4-pt General" - -  uses the best linear fit to any four adjacent pixels spanning the 
interface, that is, 

g(1, a) 4-ptGeneral = min{max{ L(3, 2, 1)a -- r a ,  Ig(3, 2, a)~ - V~I}, 

max{[L(2, 1, b). - V~, IL(2, a , b ) ~  - 1/1[}, 

max{ L (  1, b, c ) .  - V~ , IL(a,  b, c) ~ - 1/11} } 

This affinity function assumes that the facet is at least 4 pixels in width. Hence, each 
contiguous 4 pixels, which span the interface, are considered separately. If both pixels 
are common to one linear facet, then every linear fit involving those pixels should yield 
a low error. Hence, for each 4-pixel set, we take the worst (max) linear fit. However, 
since only o n e  of the three 4-pixel sets needs to match, we take the best (min) of these 
three matches. 

3. "4-pt Predic t ive"--uses  the three adjacent pixels on each side of the interface to predict 
the pixel on the other, that is, 

E( 1, a)  4-pt Predictive = min{ L(3, 2, 1),, - V~,  L ( a ,  h, c) 1 - V~I} 

This affinity function is a subset of 4-pt general. It still assumes a 4-pixel-wide facet but 
also assumes that at least 3 pixels are on one side. This assumption significantly 
increases the implementation speed but may undesirably reduce the effectiveness. 

4. "6 -p t " - -uses  the three adjacent pixels on each side of the interface to measure the 
linear discontinuity at the interface, that is, 

E(1, a) 6-p' = max.[ Ig(3, 2, 1)~ - V~,  I g ( a ,  b, c)a - 1,111} 

This, the most restrictive affinity function tested, assumes a 6-pixel-wide facet and requires 
a low 4-point linear fit error across the interface from b o t h  directions. 

From these definitions, it is clear that many other potentially useful affinity functions exist. 
These four affinity functions provide a sample which differ in their minimum size require- 
ments of the facets that can be detected. These facet size assumptions are detailed in 
Table 11.1. 

Merge Functions 
Four  merge functions are defined, two basic merge functions and two relative merge 
functions. The two basic merge functions differ in the assumed independence of the sensors 
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Table 11.1. Comparison of affinity modes by the strictness of the size 
requirements of interfaced facets (i.e., how "wide" do two facets need to 
be for their interface to be detectable?) 

Method Min. Size of Interfaced Facets Therefore... 

2-pt 1 and 1 
4-pt General 2 and 2 or 3 and 1 
4-pt Predictive 3 and 1 
6-pt 3 and 3 

One cluster ~> 1 pixel 
One cluster f> 2 pixels 
One cluster ~> 3 pixels 
Both clusters ~> 3 pixels 

in the suite, that is, the expectation for multiple sensory conformation. For  the following 
definitions let 

E(x, y)~ = the edge confidence for the interface between pixels x and y using 
sensor S, for any affinity function 

BM(x, y)Z = the basic merged edge confidence for the interface between pixels 
x and y using merge function z, across the sensor suite 

W s = affinity function weighting factor for sensor S 

1. "OR" - -  assumes the pixels belong to the same facet if any of the sensors confirm it. 
This function is more appropriate if the sensors being merged have dissimilar 
modalities, because it assumes facet continuity if any of the sensors are able to confirm 
it. Hence, the basic merged edge confidence is equal to the minimum edge confidence 
across the sensor suite for that pixel interface, that is, 

BM(x, y)OR = min{WsE(x, Y)s] VS e Sensor Suite} 

2. "AND" - -  assumes that the pixels belong to the same facet only if all of the sensors 
confirm it. This function is more appropriate if the sensors being merged have common, 
or similar, modalities, as it assumes that all of the sensors should be able to confirm 
the facet continuity if it is appropriate. Hence, the basic merged edge confidence is 
equal to the maximum edge confidence across the sensor suite for that pixel interface, 
that is, 

BM(x, y)AND = max{WsE(x, Y)sl VS ~ Sensor Suite} 

Unfortunately, these two functions may be too absolute. Just as "2-pt" affinity is likely to 
be insufficiently robust across an entire image because of variations in sensor measurement 
quality, precision, and so on, these two basic merge functions are assuming a uniform edge 
confidence quality and precision. By examining the consistency of the basic merged edge 
confidence map in the pixel interface neighborhood, a relative indication of discontinuity is 
readily available. This technique provides an adaptive measure of local pixel consistency. By 
examining the ratio of the current interface's edge confidence to that of its neighbors, this 
measure becomes more strict in smooth regions (e.g., corresponding to an artificial surface 
or a region of low noise) and more forgiving in rough regions (e.g., corresponding to natural 
surfaces or to regions of high signal-to-noise ratios). In this way, relative merge functions 
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vary their clustering requirements over the image based on local measuring precision or 
quality. 

The two relative merge functions provided in this chapter use the basic merged edge 
confidences obtained by either "OR" or "AND" as a meta-level description of the pixel 
interfaces. For the following definitions, let 

z 

n(x, Y)s = 

N(x ,  Y)s = 

R M ( x ,  y)~ = 

WS 

the edge confidence for the interface between pixels x and y 
normalized with the edge confidence for the interface between 
pixels y and z, where z is the pixel adjacent to y on the opposite 
side from x, using sensor S, for any affinity function 

the combined edge confidence for the interface between pixels x 
and y based on the interface's two adjacent normalized confidences, 
using sensor S, for any affinity function 

the relative merged edge confidence for the interface between 
pixels x and y using merge function z, across the sensor suite 

merge function weighting factor for sensor S 

Specifically, referring to Figure 11.5, the two normalized confidences for the interface between 
pixels 1 and a are 

2 
n(a, 1)s = (IBM(l, a)~l + 1)~(IBM(2, 1)~l + 1) ~ ~ ~ merge functions 

n(1, a) b. = (IBM(l, a) ~ + 1)/(IBM(a, b) ~ + 1) ~ ~ ~ merge functions 

and the combined edge confidence for the interface is 

N(1, a) s max{N(a, 1)2, N(1, b , = a ) s } / W  s ~ S ~ Sensor Suite 

3. "Re l_OR"- -assumes  the pixels belong to the same facet if any of the sensors confirm 
it using normalized edge confidences. This function, like "OR," is more appropriate if 
the sensors being merged have dissimilar modalities. The merged edge confidence is 
equal to the minimum edge confidence across the sensor suite for that pixel interface, 
that is, 

R M ( 1 ,  a)Rel OR = m i n { l B M ( 1 ,  a) ~ , min{N(1, a)s}} VS ~ Sensor Suite 
such that c~ is the merge function used in the determination of N 

4. "Rel_AND" - -  assumes that the pixels belong to the same facet only if all of the sensors 
confirm it using normalized edge confidences. This function, like "AND," is more 
appropriate if the sensors being merged have common, or similar, modalities. The 
merged edge confidence is equal to the maximum edge confidence across the sensor 
suite for that pixel interface, that is, 

R M ( 1 ,  a )  Rel-AND = min{[BM(1, a)~[, max{N(1, a)s}} VS ~ Sensor Suite 
such that ~ is the merge function used in the determination of N 

By minimizing with respect to the original merge function results, BM(1, a)~[, one 
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FIGURE 11.6 
Hypothetical plot of two pixel value neighborhood cases. Case 1: consistent data yields: low absolute edge 
confidence, high relative ratio. Case 2: erratic data yields: high absolute edge confidence, low relative ratio. 

reduces the heightened sensitivity in otherwise smooth regions (see Figure 11.6). Recall 
that this "relative" approach is intended to handle properly both smooth regions 
(wherein the original merge results would be highly reliable, while the normalization 
ratio would be inappropriately high) and highly erratic regions (wherein the original 
merge results are very high in an absolute sense, while the normalized ratio would 
correctly indicate that the discontinuity is not inconsistent with the neighboring data). 
Adding one to both the numerator and denominator in the normalized edge confidence 
equation similarly reduces heightened sensitivity when the denominator is at or near 
zero. 

There are various different flavors of "Rel_OR" and "Rel_AND," based on which merge 
function ("OR" or "AND") and which affinity function are used to form the initial merged 
confidence map used to determine the normalized edge confidences. As there are four affinity 
functions and two nonrelative merge functions, there are eight nonrelative MSI algorithms 
to compare. Each of these algorithms could be coupled with either of the two relative merge 
functions, providing an additional 16 MSI algorithms. The empirical evaluation of these 24 
approaches will be presented in Section 6. 

R e g i o n  G r o w i n g  A l g o r i t h m  

The choice of region growing algorithm is an ongoing research area, and although the latest 
results are very promising, much remains to be done. Hence, the system described in this 
chapter is limited to a single region growing algorithm. This algorithm uses a simple, 
parameter specified threshold to determine whether the merged edge confidence of adjacent 
pixels warrants merger. 

From these set definitions, we derive our search space. The search space consists of a 
dimension for each sensor in the suite that defines the affinity function to be used, a 
dimension defining the merge function(s), and dimensions for each parameter used by those 
functions. Hence, this search space encompasses all MSI algorithms that can be formed by 
combining those affinity and merge functions and all combinations of corresponding 
parameter values (within user-specified bounding and precision conditions). 
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3.2 Implementation Code 

Application of a given MSI solution is performed in four separate stages; see Figure 11.4: 

Collect s ta t i s t ics - -Each sensor image to be merged is processed separately and 
meaningful low-level statistics (e.g., change in pixel value, change in slope of adjacent 
pixel values) are collected for each pixel interface in accordance with required affinity 
functions. In our implementation, statistics were calculated only once and saved for 
later, direct access--since during the learning stage the images remain constant; the 
statistics are repeatedly required; and, in our system, memory space was readily 
available. This was only to save runtime during the learning stage and in no way affects 
the system's MSI performance. 

2. Process each sensor - -For  each sensor image, its "affinity function" is applied to each 
pixel interface (e.g., for a two-dimensional image grid, both "horizontal" and "vertical" 
interfaces would be processed). The resulting numerical edge confidence for each pixel 
interface is stored for the subsequent stage. This value indicates the "degree of 
confidence" that the two pixels sharing the interface belong to the same facet according 
to this sensor image. 

3. Merye s ensor s - -A  single edge confidence value is determined for each pixel interface 
by applying a merge function to the corresponding affinity values across the entire 
sensor suite. The process is repeated for each pixel interface and results in a single 
(merged) edge confidence map. 

4. Form clustered i m a y e - - A  region growing algorithm is employed to combine pixels 
whose interface "edge confidence value" is below some parameterized threshold. 

3.3 Learning Strategy 
Genetic algorithms, GAs, are extremely powerful adaptive global search techniques derived 
from natural population genetics [20-23]. GAs have been shown to perform well for many 
types of functions, including those exhibiting very difficult characteristics (e.g., discontinuities, 
nondifferentiability, multimodality, high dimensionality, huge search spaces, and noise). GAs 
require no specific, a priori function information; only the form of a candidate solution, that 
is, the number of parameters to be optimized and the desired level of precision (number of 
bits), and a comparative performance measure for candidate solutions is needed. These 
capabilities and requirements make GAs well suited to this global optimization task [24, 25]. 

GAs are a simplified simulation of the natural genetic model. As such, GAs simulate a 
population of individuals evolving over multiple generations: individuals are specified by a 
series of genes (bits) that can be independently inherited, reproduction is accomplished by a 
crossover operation that forms offspring from the genetic material of their parents, and a 
individual's reproduction frequency is based on his performance in the environment (evalu- 
ation function). Thus, trait encoding, sexual reproduction, and "survival of the fittest" 
propagation are all simulated, and the average performance of the population tends to 
improve over successive generations. When some user-specified stopping criterion is met, the 
best individual produced is taken as the GA's solution for function optimization. 

Clearly, GAs cannot guarantee discovery of the optimal solution, but they have proved to 
be powerful global search techniques capable of simultaneously searching extensive regions 
of the parameter space. The basic GA framework used in this research was provided by the 
GENESIS [26, 27] GA package with modifications as suggested by Baker [20, 28]. 
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3.4 Evaluation Function 

The evaluation function guides and directs the GA's search by providing performance 
feedback for candidate MSI algorithms. To guide efficiently, the evaluation function should 
have a high resolution and monotonically encourage clustering quality [20], so that even 
small improvements will be reflected in the evaluation measure and have a positive impact 
on the search. 

Because the goal is to form pixel clusters that most nearly approximate some user-defined 
level of detail, the desired MSI results for a given sensor suite's data set are provided as input 
during the learning stage. This "truth image" has its most meaningful pixels correctly 
grouped into their separate facets. Erroneous pixels or those corresponding to objects too 
small to be of interest are associated with a single group understood to be "don't care" pixels; 
the cluster association of those pixels will have no affect on the evaluation. 

In this AMSG system, the GA is executed as a minimization technique. This requires the 
evaluation function to be written as a "penalty function"; the function increases its evaluation 
measure with each type of undesirable behavior that it detects. The evaluation function 
measures how closely the results of a given candidate solution (MSI algorithm) match the 
desired results (truth image). To do this, the candidate solution is applied to the sensor data; 
see Section 3.2. Next, each pixel is assigned a "cluster number," which is constant for all pixels 
within a single cluster and distinct from all other pixels. The actual cluster number associated 
with any given cluster is arbitrary. Hence, the evaluation function cannot simply compare 
the number of pixels in each cluster with the correspondingly numbered facet of the truth 
image. Rather it must determine the best association of candidate clusters to truth facets. 
These candidate clusters must be evaluated according to how fully they cover their respective 
truth facets and how little they exceed the true facet's boundaries. Thus, the evaluation 
function must penalize both undesirable fragmentation and undesirable amalgamation. 

Specifically, evaluation is performed by considering each true facet in order of decreasing 
size and associating with each the candidate cluster that has not already been associated and 
has the greatest representation within that true facet, that is, 

let Aje {Candidate Clusters} 

T~ {Truth Facets} 

D = {Previously Associated Candidate Clusters} 

then A/~ is associated with T if and only if 

VJ ~ J g= K and Aj ,  Au. q} D 

IAK ~ TI ~ [Aj c~ TI and K < J VJ ~ IA~ c~ TI : IAj c~ TI 

For each associated cluster, the evaluation function increments the penalty based on the 
amount by which that cluster failed to cover its true facet and by the amount  by which it 
lies outside its true facet; see Figure 11.7. For  example, 

let A, B ~ {Candiate Clusters} 

B r {Previously Associated Candidate Clusters} 

A = A' w A" and B = B' w B" 

T~ {Truth Facets} 

T = A' w B' and Ia'l < IB'l 
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FIGURE 11.7 
Cluster matching against truth facet, T. Cluster B associated with facet T, penalty f(A', B"). 

then B will be associated with T and the penalty resulting from T is f(]A'], [B"]). This penalty 
combination encourages clusters to "grow" within the true facets' boundaries and "shrink" 
outside those boundaries. Note also that this function makes no distinction between pixels 
of different facets; every valid, misassociated pixel causes the same amount of penalty. Hence, 
an "N" pixel improvement in a small facet has the same impact as an "N" pixel improvement 
in a large facet, although the two resulting images may appear to have very different levels 
of "clustering quality," depending on the application. A truly "optimal" evaluation function 
is highly application specific and cannot be considered within the scope of this chapter. Even 
so, this general evaluation function should be sufficiently sensitive to direct the search 
strategy effectively for a wide variety of applications. 

4 TARGET SENSOR DOMAINS 

Two imaging domains were used to test and validate the AMSG. The first was a laser range 
camera targeting a "typical indoor warehouse" environment, specifically our autonomous 
robotic navigation domain. This domain was used for training the AMSG and validating its 
application robustness. The second imaging domain was a ground conductivity sensor 
targeting a buried waste field. This domain, while representing an equally important 
characterization task, provided a highly dissimilar modality and data format for integration. 
That is, while the laser range camera provided two 2-dimensional images of the surface 
characteristics targeted, the ground conductivity sensor provided two 0-dimensional data 
points of the integrated character of the targeted region. 

This section presents a description of the physical nature of each of these sensor systems 
and their targeting environment. 

4.1 Ground Conductivity Sensor 

The available subsurface data consist of a set of ground conductivity (GC) readings [-1] of a 
cold test pit at the Idaho National Engineering and Environmental Laboratory (INEEL) 
waste storage site [13]. This set was originally to include ground penetrating radar data, but 
the ground water and clay soil of that region rendered that sensor modality impotent. Despite 
that loss, MSI can still be usefully applied by merging the multiple GC data sets and the two 
measured signals inherent in GC data: quadrature and in-phase strength. 
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The GC sensor used consists of a magnetic transmitting coil and a receiving coil placed 
3.66 m apart [1]. The transmitting coil sets up a magnetic field in the ground that induces 
eddy currents and in turn a secondary magnetic field, 90 ~ out of phase. The receiving coil 
measures both the primary magnetic field (in-phase component) and the secondary field 
(quadrature component). Thus, a GC sensor measures the integrated dielectric constant of 
the ground in the three-dimensional proximity of the two coils. By its very nature, data from 
a GC sensor is very ambiguous and unfocused, since a buried conductive object will disturb 
all readings taken anywhere within its vicinity and the amount of disturbance is a function 
of the object's size, dielectric constant, orientation with respect to the coils, distance from 
each magnetic pole, uniformity and distribution of ambient material, the relative position of 
other magnetic conductive objects, and so on. Hence, from a set of GC data, it is impossible 
to determine which of the infinite number of perfectly data-consistent possibilities actually 
corresponds to "reality." 

Given GC data's ambiguous and unfocused nature, it would appear a perfect candidate 
for inverse mapping using MSI "detail enhancement" techniques. However, the inverse 
mapping function is unresolvable from the GC data alone, because of its inherent ambi- 
guities. Ground penetrating radar was an excellent complementary sensor and, if available, 
may have permitted the inverse mapping function to be roughly approximated. 

The GC data's representation may be improved by using MSI "clustering" techniques. 
However, since precise truth for the GC data is not available, these data sets cannot be used 
for designing or training MSI clustering algorithms. This necessitated the use of a second 
sensor domain, the laser range camera, for the development of general-purpose, MSI 
clustering algorithms that could eventually be applied to the GC sensor domain. Even so, 
the GC data is still well suited for the validation of the AMSG's domain robustness and 
sensor type independence. 

4.2 Laser Range Camera 

The Odetics laser range camera (LRC) used for this research [29] produces images of 
128 x 128 pixels, where each pixel's value is determined by the reflection properties 
of a directed laser. This LRC measures two values: the reflected light's phase shift, indic- 
ating the distance to the target; and its intensity, indicating the target surface's sheen 
or degree of reflectivity at the camera's operating wavelength of 820nm. This LRC 
provides a 60 ~ x 60 ~ field of view with an unambiguous measurement range for targets 
lying between 3 and 10m distant. The target chosen for analysis was a portion of our 
laboratory [30], with distances ranging from 3 to 15 m and scattered, miscellaneous objects 
(e.g., furniture, boxes, 55-gallon drums). For this domain, MSI could be performed using 
either multiple LRC images or the multimodal distance and reflectance images from a single 
view. 

The LRC was chosen for MSI algorithm development for four reasons: (1) it is consistent 
with the requirements of many autonomous and teleoperated robots' environments, including 
many automated navigation tasks; (2) since its two multimodal images (distance and 
reflectance) are obtained from the same reflected laser light, they are perfectly registered 
images, thus eliminating the dependence on separate image registration algorithms; (3) a 
calibrated LRC was readily available in our laboratory and fully integrated with our 
computer network; and (4) precise truth measurements could be taken and used for AMSG 
design, development, training, and evaluation. 
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5 SENSOR A N O M A L Y  CORRECTION 

The LRC used in this research bases its distance values on time-of-flight estimates by 
comparing the relative phase shift between the original light transmitted and that of its 
detected reflection. Unfortunately, this method is ambiguous, as it is impossible to determine 
the integer number of phase lengths traversed (i.e., objects at 0.1, 1.1, and 2.1 phase length 
distances will all be detected as 0.1 out of phase). This problem produces what is known as 
"wraparound error" and can be avoided only by limiting the LRC to viewing targets residing 
within a single phase length of the transmitter. Figure 11.8 displays the raw LRC data when 
imaging one corner of our laboratory. Figure 11.8(a) presents the distance image shown as 
a two-dimensional grid with darker color indicating pixels with smaller phase shift fractions. 
Figure 11.8(b) presents the reflectance image with darker color indicating greater reflectivity 
(sheen). In Figure l l.8(a), the dark region in the upper left corner actually corresponds to 
the most distant targets and is an example of a wraparound error. 

Figure 11.9 presents the reflectance data of Figure 11.8(b) plotted in three dimensions by 
using the distance data of Figure 11.8(a). (Note that Figure 11.9's point of view is offset from 
the original LRC's viewpoint to amplify the three-dimensional effect.) Most areas apparently 
missing data are the result of object occlusion or wraparound errors. The wraparound error 
results in a phase length discontinuity and a smearing of data points toward the LRC's view 
position. 

To resolve a sensor anomaly, one must (1) recognize its presence and (2) know how to 
correct its effect. For the wraparound error, both conditions can be met. First, although 
erroneous pixels cannot be recognized in isolation, most can be recognized by their distinct 

FIGURE 11.8 (a and b) 
Raw laser range camera (LRC) data of a corner of our laboratory, with various objects interspersed, 2-D plots: (a) 
colored by distance and (b) colored by reflectance. [Note that the dark region in the upper left corner of in (a) is 
due to a "wraparound" anomaly; i.e., since this LRC determines distance by differential phase shift and since only 
fractional phase shifts can be measured, targets or slightly greater than one phase length appear to be very close.] 
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FIGURE 11.9 
LRC data of Figure 11.8, 3-D plot colored by reflectance. 

interface with nonerroneous pixels (i.e., the presence of drastic discontinuities in distance 
coupled with insignificant changes in reflectance). Second, our physical understanding of this 
sensor anomly provides us with a clear knowledge of how to correct it in most cases: add 
one phase length to the erroneous pixel's distance. 

This data enhancement approach is implemented by scanning for pixel interfaces that have 
very large distance discontinuities (approaching one phase length) and very small reflectance 
discontinuities (indicating little change in intensity). Whenever such an interface is found, the 
closer pixel's distance is incriminated by one phase length. The results of this MSI technique 
are shown in Figure 11.10. By repeating this approach, multiple phase length losses can be 
resolved, as long as the image contains a somewhat continuous gradient. Note that some 
situations cannot be correctly resolved with this method. They include adjacent pixels 

FIGURE 11.10 
Wraparound anomaly corrected LRC data of Figure 11.9, 3-D plot colored by reflectance. 
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corresponding to targets that (1) actually are more than one phase length disjoint, yet have 
similar reflectance values; (2) are of similar range, yet have a large discontinuity in reflectance 
values, and the distance value(s) suffer from the wraparound anomaly; or (3) are of multiple 
phase length discontinuity. There is simply insufficient data to guarantee correct resolution 
for all possible cases. However, for the indoor domain these situations are rare; the results 
shown in Figure 11.10 and the following empirical analysis demonstrate the effectiveness of 
this approach. 

6 EMPIRICAL EVALUATION 

The evaluation function described in Section 3.4 provides a numerical measure of the quality 
of a conceptually enhanced image, that is, how well it compares with the desired result. This 
measure is useful not only for feedback to guide the GA's global search but also for the 
objective comparison of competing MSI techniques. However, it should be noted that 
although the GA is a powerful search technique, it does not guarantee any particular 
proficiency relative to that technique's global optimum, such as a guarantee of achieving X% 
of the technique's optimum performance. For example, in the empirical evaluation presented 
in this chapter, each search was permitted the same amount of computing resources yet the 
search space sizes ranged from 21~ to 2 4-7. Hence, the competing techniques had significantly 
different proportions of their search spaces investigated. In each experiment, the GA was 
permitted to examine 5000 MSI algorithms. For the smaller search spaces, this was sufficient 
to cover the entire space, but for the largest spaces, the GA could examine less than 2.3 
candidate solutions for every trillion defined in the search space. Although the evaluation 
measure can be used to compare the quality of the resulting images, it can only imply the 
corresponding technique's relative potential. 

For each experiment, the GA was given an initially random population of 50 candidate 
solutions (MSI algorithms). The GA was permitted to search until it had evaluated 5000 MSI 
algorithms or its population had stagnated (failed to produce a distinct individual for two 
successive generations), whichever came first. As described in Section 3, the MSI algorithm to 
be evaluated was applied to the sensor data and the resulting segmented image compared with 
the user-defined desired results. To evaluate the relative quality and effectiveness of the various 
affinity and merging models presented in Section 3.1, 16 separate experiments were performed. 
Each of the four affinity functions (2-pt, 4-pt General, 4-pt Predictive, and 6-pt) was applied 
with the two basic merge functions (OR and AND) using the two sensor images (Distance and 
Reflectance) and they were applied to the two sensor images independently. The single sensor 
result provides a baseline to verify the advantage and effectiveness of multisensor integration 
itself. The performances of the overall best solutions are compared in Figure 11.11. (Note that 
the overall degree of match is a penalty function, and therefore lower values are better.) 

Several interesting tendencies are worthy of note. First, and most important, the basic goal 
of MSI was achieved; MSI led to better representations of the real environment (i.e., more 
closely in line with the desired results) than the single-sensor systems. By combining the 
sensors, superior performance was achieved in all four affinity modes (see Figure 11.11). 
Second, for all modes, the distance image led to better clustering than the reflectance image 
(see Figure 11.11). This may be a result of primarily planar objects and linear-based affinity 
functions; the distance image embodies the linearity of the surfaces, while the reflectance 
image is subject to nonlinear reduction of the intensity signal with distance. Third, there is 
an interplay between the strictness of the affinity mode (in its size requirements on the 
interfaced facets, see Table 11.1) and the strictness of the MSI merge function (see Figure 
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11.12). For less strict affinity modes (e.g., 2-pt and 4-pt General) the stricter AND merge 
function leads to better clustering by preventing overamalgamation. For more restrictive 
affinity modes (e.g., 4-pt Predictive and 6-pt) the less restrictive OR merge function leads to 
better clustering by preventing overfragmentation. This result implies that the methods 
investigated span the proper range of facet size requirements for this LRC domain. 

The relative merge functions (Rel_OR and Rel_AND) are based on the local uniformity 
of the affinity mode's results. Hence, there are also 32 different relative methods, correspond- 
ing to the 16 nonrelative methods listed in Figure 11.11. Rather than execute the GA an 
additional 32 times, the choice of method was defined as an additional dimension in the 
search space to be simultaneously optimized by the GA. The GA determined that the best 
method for relative operation is "6-pt, R or D," which is also the method found to perform 
best in the nonrelative mode. Figure 11.11 shows the superiority of relative operation, as it 
outperforms the best of the nonrelative methods by a significant margin (>  27%). 

The truth image is shown in Figure 11.13. This image is based on the data shown in Figure 
11.8. Its features include (1) floor; (2) a box with two facets facing the camera; (3) a movable 
wall partition; (4) two facets of the back wall, divided by a supporting pillar; (5) a tool chest; 
(6) a segment of the left wall; (7) a small crate; (8) a supporting pillar in the middle of the 
back wall; and (9) a triple-faceted corner support structure. 
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Comparison of eight basic MSI algorithm modes, showing merge function trade-off with respect to affinity mode 
strictness. 

For human display, adjacent pixels corresponding to the same facet are graphically 
connected. This display mode makes it easier to discern the facets and their edges. The color 
of the facets is based on their relative size in pixels. The black space between facets is the 
result of (1) missing data due to occlusion (e.g., behind the box in the middle of the room); 
(2) the display mode not graphically connecting adjacent pixels that correspond to different 

FIGURE 11 .13  
Truth image (user-defined, desired MSI results) of Figure 11.10, 3-D plot colored by size of facet and numbered for 
reference. 
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facets (e.g., separating the two faces of the box and separating the wall supports); or (3) 
erroneous data labeled as "don't care pixels" (e.g., the random clutter next to facet #7). 
(Note that the "don't care pixels" were not excluded from processing; the MSI techniques 
had to deal with them. But the correct clustering of these pixels was not evaluated because 
we wished to optimize the MSI techniques for their ability to ignore erroneous data, not for 
their ability to correctly cluster both valid and erroneous data.) In the following figures 
showing the MSI results, erroneous data is shown with its corresponding clusters; however, 
to "declutter" the display, only the larger clusters are shown. 

Figure 11.14 shows the MSI results of the relative "Rel_OR, 6-pt, OR" method using the 
GA's optimized parameter settings. This image reveals the major facets ( 4/: 1-  4/:6) and some 
of the minor ones, including two of the corner supports (#9) .  The top surface of the tool 
chest and a region of clutter in the upper right corner of the image were also correctly 
differentiated. These facets were considered too small and their data too erroneous to be 
included in the truth image. Furthermore, despite wraparound affecting facets 4/= 1, 4/:4, 4/,6, 
and 4/,8, this MSI technique was able to form clusters smoothly across the wraparound 
boundaries and lying within this erroneous region. These results indicate the accuracy and 
continuity of the MSI wraparound technique described in Section 5. 

Although "Rel_OR, 6-pt, OR" failed to differentiate all of the known detail in the image, 
it was very successful. To get an impression of the quality of these results, one need only 
review the original images that were merged; see Figures 11.8-11.10. In these images, most 
of the facets (e.g., 4/=3 +)  are difficult to discern visually despite our detailed knowledge of 
them. 

Figure 11.15 shows the MSI results of the "6-pt OR" MSI technique using the GA's 
optimized parameter settings. This technique also differentiated most of the major facets, 
failing only to amalgamate facet 4/=6. (Because of facet #6 's  greater distance, its spatial 

FIGURE 11.1 4 
Clustering results of "Rel_OR, 6-pt, OR" MSI algorithm applied to data of Figure 11.10 and trained by 
corresponding "Truth Image" (Figure 11.13), 3-D plot colored by size of cluster. 
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FIGURE 11.15 
"6-pt, OR" MSI algorithm results applied to data of Figure 11.10, 3-D plot colored by size of cluster. 

sampling resolution is lower. This leads to greater variation in the data, and a non- 
relative technique that amalgamated those pixels correctly would probably fail to isolate 
other, more consistent facets. To handle this problem correctly, one must base matching on 
the local dynamics of the data, i.e., the relative MSI techniques.) All three of the Corner 
supports, facet #9, the top of the tool box, facet #5, and a facet in the upper right corner 
were found. 

It should be noted that the uniform emphasis on pixels rather than any special emphasis 
on finding each of the primary 14 truth facets explains this technique's ~'failure" to isolate the 
smaller facets. However, to do otherwise would require global and/or a priori knowledge that 
would demean the general applicability and robustness of the AMSG. The promise of the 
AMSG is the quality of its results despite its total lack of global, conceptual shape, or a priori 

knowledge--a  common requirement in many robotic applications. These MSI results are of 
sufficient quality to enhance an autonomous system's world map, a teleoperated display, or 
a higher level object recognition system. 

7 VALIDATION 

The AMSG is highly domain and application robust. Domain robustness refers to its 
suitability for a wide variety of environments and sensor types, once it is tuned to the level 
of image detail desired by the user. Application robustness refers to the suitability of a given 
optimized MSI algorithm to a wide variety of situations within a tuned or learned domain. 
This section validates the AMSG's application robustness by evaluating the performance of 
its optimized MSI algorithm in the learned domain (i.e., LRCs operating in an indoor 
environment) and validates its domain robustness by demonstrating its suitability to another, 
highly dissimilar domain (i.e., GC images of a waste test site). 
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7.1 Learned Domain, LRC 

An MSI algorithm and its control parameters were chosen from an extensive search space 
(see Section 3) based on a single LRC image set (Figure 11.8) and user-defined truth image 
(Figure 11.13). The following validation test is to demonstrate the suitability of that MSI 
algorithm and its parameters to LRC images of other scenes taken within the same domain. 

Figure 11.16 shows the LRC's distance and reflectance images of another corner of our 
laboratory. For clarity of description, the primary facets of interest are numbered: (1) floor; 
(2) a cylindrical barrel; (3) a movable wall partition; (4) two facets of the back wall, separated 
by a supporting pillar; (5) a 55-gallon drum; (6) a door set in the right wall; (7) a box with 
two facets in view; (8) a supporting pillar in the middle of the back wall; (9 and 10) two halves 
of a windowed door; (11) a suspended hoist and its draped extension cords; (12) three more 
facets of the back wall separated by #11; (13) a box with one facet in view; (14) a fire 
extinguisher; and (15) an electrical cable lying on the floor. This image partially overlaps the 
previous image; facets numbered 1, 4, and 8 match the correspondingly numbered facets of 
Figure 11.13. 

The image in Figure 11.16 is more difficult than the learned image of Figure 11.8. This 
image contains cylindrical objects (facets 4,2 and #5), very narrow objects (facet 4" 15 and 
parts of facet #11), and significantly more detail. The best performing MSI technique from 
Section 6 ("Rel_OR, 6-pt, OR") and its tuned parameter set were applied to the distance and 
reflectance images of Figure 11.16. 

Figure 11.17 shows the MS! results of the "Rel_OR, 6-pt, OR" MSI technique using the 
GA's optimized parameter settings. For image clarity, only the larger clusters are displayed. 
This technique resolved most of the facets enumerated in Figure 11.16, including those 
corresponding to both the cylindrical and narrow objects. (Note that cylinders are difficult 
because the various affinity functions defined in Section 3 are based on linear extrapolation 
and the parameters were tuned on an image consisting entirely of planes.) Furthermore, three 

FIGURE 11.16 
New scene from the domain of Figure 11.8: raw LRC data of another corner of our laboratory, with new objects 
interspersed, 2-D plot colored by (a) distance and (b) reflectance. 



340 CHAPTER 11 / AUTOMATED INTEGRATION OF MULTIPLE SENSORS 

FIGURE 11.17 
Clustering results of "Rel_OR, 6-pt, OR" MSI algorithm applied to data of Figure 11.16, using parameters tuned 
to Figure 11.10, 3-D plot colored by size of cluster and numbered for reference. This example demonstrates AMSF's 
task robustness by applying a solution from one image to an unknown image from the same domain. The scene in 
Figure 11.16 is more difficult than the training scene of Figure 11.8. This scene contains cylindrical objects, very 
narrow objects, and significantly more detail. [Note that cylinders are difficult only because (1) the various affinity 
functions currently used are based on linear extrapolation and (2) the parameters were tuned on an image consisting 
entirely of planes, i.e., Figure 11.8.] 

facets in the far right corner were unexpectedly differentiated: the door facing, parallel to facet 
#6;  the doorway offset, parallel to facet #12; and a narrow strip of the right wall, again 
parallel to facet #6.  One can also discern the sign and doorknob of facet #9,  the wire 
connecting the two primary components of facet 4,11, and the speaker and electrical outlet 
near the top of facet #8.  Unfortunately, facet # 8  itself was not distinguished from facet # 4  
and the extreme detail of the hoist and its cables (facet #11)  prevented it from being 
amalgamated into a single, cohesive object, although this technique did correctly isolate it 
from the other objects. (Note that the support pillar, facet #8 ,  was not distinguished in the 
training image either, see Figures 11.14 and 11.15, and hence was not expected to be resolved 
here.) 

Figure 11.17 clearly demonstrates the application robustness of the tuned "Rel_OR, 6-pt, 
OR" MSI algorithm. After the technique was trained to just one application image, it was 
able to isolate almost all of the significant facets in an a priori unknown image. These facets 
included surface types hitherto never seen: curved surfaces. The success of this MSI technique 
on curved surfaces, despite its purely linear extrapolation approach and complete lack of 
experience with this surface type, strongly supports the utility of using local pixel properties 
to form clusters. 

7.2 Unlearned Domain, GC 

The MSI algorithms described in Section 3 are designed to be independent of the sensor 
modalities being merged and the application being addressed. These are general-purpose 
MSI techniques for determining edge confidences from multiple sensor data sets and merging 



7 VALIDATION 341 

the results into a single, conceptually enhanced representation. The desired level of image 
detail, and hence the intrinsic definition of facets, must be defined by the user according to 
the application and purpose. This definition must be communicated to the system in order 
for it to tune the parameters for a given application domain. For the LRC, the truth image 
implicitly embodied the user's definition of facets and of extraneous detail. From this image, 
the system could infer the relative information content of the sensor modalities being merged 
and hence optimize the various tuning parameters. If a "truth" definition is not supplied, the 
user must either rely on general-purpose parameter settings (tuned to a diverse suite of 
domain types) or "manually" adjust the parameters to achieve the desired level of detail. 

The unlearned domain chosen to demonstrate the domain robustness of the AMSG is 
ground conductivity, GC, images (see Section 4.1) of a buried waste test site. This sensor is 
an excellent test case because of its extreme dissimilarity with the LRC: it measures internal 
rather than surface properties; it obtains an integration measure rather than a point measure; 
it has a wide signal dispersion, leading to sampling overlap; its truth is almost indeterminable, 
due in part to the effects of varying environmental conditions (e.g., ground water, soil type) 
across the region being mapped; it is a single rather than an array sensor, and hence its 
sample positioning must be determined externally; and so on. Since accurate truth for these 
GC images is unknown, the system cannot be automatically trained as it can for the LRC 
images. Furthermore, developing general-purpose parameter settings will require images and 
truth from many diverse sensor modalities and was not the intention of this research. Hence, 
we must demonstrate the robustness of this MSI approach applied to GC data by examining 
the results of manually selected MSI algorithms and parameter settings. The purpose here is 
not to provide a definitive MSI solution for the GC domain but rather to demonstrate that 
the AMSG is applicable and that, given a "truth image," the system could be trained on this 
domain as it was on the LRC domain in Section 6. 

The raw GC data consists of hundreds of samples taken over a 3-day period. These 
samples consist of an X - Y  position (based on dead reckoning from a given starting point) 
and two sensor readings: the quadrature component and the in-phase component (see 
Section 4.1). The data is plotted in Figure 11.18. Because of the unequal spacing of the data 
points, the MSI techniques described in Section 3 cannot be directly applied. The data must 
first be transformed into a grid representation. A grid resolution and registration are chosen 
so that all of the internal grid elements are represented in the original data set. The value of 
each grid element is then defined as the average value of the raw sample points lying within 
its corresponding area; see Figure 11.19. (Note that the white elements on the lower edges 
have no corresponding data samples and that the extreme edges of the original data set were 
discarded; see Figure 11.18.) 

Figure l l.20(a) presents the MSI results of the "4-pt OR" technique with a manually 
selected parameter set. With this MSI algorithm, the main cluster (near the middle of the 
image) is isolated, as are smaller clusters just below it and in the upper right corner of the 
image. This result is intuitively consistent with the data in Figure 11.19, based on casual, 
visual inspection. However, without defined truth (e.g., the relative importance of the two 
sensor images, an indication of the desired level of detail), other solutions are equally viable. 
Figure 11.20(b) presents the MSI results of the "6-pt, AND" technique with manually selected 
parameter set. In this image, the smaller cluster in the upper right corner of the image is 
considered insignificant, while the main cluster is examined more critically. Again, neither 
image of Figure 11.20 is offered as a solution. Rather, without "ground truth" they represent 
different, yet equally valid interpretations of the data. 

Despite the lack of a truth image to which the approach could be trained and its results 
evaluated, the two results presented in Figure 11.20 clearly indicate the ability to isolate 
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FIGURE 11.18 
Raw GC data of INEEL waste storage site, superimposition of three data sets in a 2-D plot colored by (a) 
quadrature and (b) in-phase measure. 

FIGURE 11.19 
Raw GC data of Figure 11.18, represented in a 2-D uniform grid colored by (a) quadrature and (b) in-phase measure. 
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FIGURE 11.20 
MSI clustering results applied to data of Figure 11.19 using manually selected parameter values, 2-D plot colored 
by size of cluster (a) "4-pt, OR" MSI algorithm; (b) "6-pt, AND." 

significant facets and yield significantly different conceptual interpretations. As such, these 
figures demonstrate the suitability of the AMSG to the GC domain and provide an 
indication of its overall domain robustness. 

8 S U M M A R Y  

The Automated MSI Solution Generator (AMSG), presented in this chapter, is designed to 
take actual sensor data and a user's definition of the desired merged results as input during 
a training phase and independently find an efficacious method of merging the sensor data. 
While the basic AMSG approach could be applied to a variety of MSI tasks, we chose to 
restrict our consideration to the conceptual enhancement problem. Conceptual enhancement 
is an MSI technique used when the original image contains more detail than is desired, 
making it difficult to recognize objects of interest. This problem can be resolved by 
segmenting the image into meaningful clusters of pixels that correspond to conceptually 
homogeneous regions. The AMSG's underlying MSI approach is based on the premise that 
given appropriate sensors, clusters of pixels can be quickly and accurately formed by 
evaluating the continuity between each pair of adjacent pixels based on the local pixel 
neighborhoods. Hence, the basic direction of this approach is the potentially faster and more 
robust formation of clusters from pixels rather than segmenting images into clusters. This 
approach is based on low-level functions that capture fundamental characteristics of 
continuity and, as such, are applicable to cluster formation regardless of the sensor or 
application domain. This approach constitutes a robust, automated, MSI methodology. 

The AMSG employs a hierarchy of potentially useful definitions for solving conceptual 
enhancement tasks, from the bottom up. These definitions form a pool of low-level MSI tools 
that can be automatically selected and optimized for a given sensor suite and application 
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domain. In our implementation, this adaptive search for superior MSI solutions is performed 
by GA global optimization. Thus, the overall system is domain and application robust and 
provides a universal interface for diverse MSI tools and techniques to be merged, through 
standard confidence combination mechanisms. 

The AMSG is validated on real distance and reflectance images from a laser range camera 
(LRC) by its ability to develop a high-quality MSI solution for the merger of this sensor's 
images in the defined application domain. This MSI solution was able to isolate nearly all 
of the significant facets of the training image. The domain robustness of this optimized 
solution was validated by applying it to an unknown LRC image set within the same 
application domain, containing new types of objects. Nearly all of the significant facets of the 
new image were correctly clustered. The application robustness of the AMSG was validated 
by applying the techniques to an extremely dissimilar sensor and application domain- -  
ground conductivity data of buried waste [6]. 

Future research includes time optimizing the MSI solution on a state-of-the-art digitizer 
to produce a virtual "multimodal sensor"; extending the sets of definitions being investigated; 
permitting heterogeneous resolution sensors to be easily merged; improving the conceptual 
quality of the evaluation function by the addition of facet-based terms; and extending the 
GA's search to include the actual formation of affinity functions for consideration. 
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ABSTRACT 

In this section, the problem of intelligent robotic system architecture, referred to here as 
perception-action Net (PAN), is presented. Connecting sensing and action in real time. PAN 
automatically synthesizes goal-oriented behaviors under uncertainties, errors, and faults, through 
task monitoring and replanning. 

PAN is composed of the perception and action nets interconnected in closed loops. The 
perception net connects features of various levels of abstraction or logical sensors in hierarchy. 
The net is capable of self-calibrating itself by maintaining the consistency of logical sensors based 
on the forward propagation of sensor outputs and uncertainties as well as based on the backward 
propagation of errors from constraints. The action net consists of a hierarchy of state transition 
networks of multiresolution time scales. The net embeds all the feasible system behaviors in 
various levels of abstraction, such that the system can replan and control its behaviors toward 
the set goals under errors and faults. 

A novel geometric method is presented as a unified framework for computing forward and 
backward propagations through which the net achieves the self-reduction of uncertainties and 
self-calibration of biases. The proposed method is applied to the self-calibration of the eye-hand 
system equipped for a JPL-NASA planetary rover. Simulations and experimental results are 
shown. 
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1 I N T R O D U C T I O N  

Robotic systems aim at achieving intelligence in behavior and dexterity in motion through a 
real-time connection between sensing and action. Achieving such intelligence and dexterity 
often requires an integration of distributed sensors and actuators to provide a rich source of 
sensory and movement patterns that can be clustered into higher levels of concepts and 
actions. The key to successful integration may be a system architecture that supports com- 
putational requirements unique to robotics, including uncertainty management and adaptive 
error recovery through the interaction among such processes as feature transformation and 
abstraction, data and concept fusion [1-14], consistency maintenance among data and 
knowledge, and monitoring and replanning. 

In spite of the fact that a decade of research and development in robotics has produced 
numerous theoretical and experimental results, robots are yet to acquire the level of 
intelligence and dexterity required for autonomous task execution in unstructured environ- 
ments. Conventional approaches to building robotic systems without underlying computa- 
tional principles of integrating sensing, knowledge, and action in real time seem to suffer from 
limitations in the task complexity they can handle. If robot intelligtence is measured in terms 
of a power-to-weight ratio, where the power is defined by the product of the complexity and 
execution speed of tasks and the weight is defined by the product of volume and cost 
associated with the required hardware and software, an order of magnitude improvement in 
the power-to-weight ratio seems necessary for the new generation of robotics. A robot's 
intelligence may be manifested by its extended autonomy. However, the extension should not 
simply be the result of aggregating additional functional units, which may cause a reduction 
of the power or power-to-weight ratio by increasing space and time complexity. It is 
necessary to develop a system architecture that supports extended autonomy without a 
decrease in the power or power-to-weight ratio. An architecture that embeds system 
knowledge as well as a general problem-solving paradigm in itself may be desirable. 

Planetary science sampling robots should possess extended autonomy with the capabilities 
of uncertainty management, adaptation to new situations, and fault tolerance. To provide the 
robot with extended autonomy requires the integration of a high level of discrete event 
planning and low level of continuous time control in a hierarchy of multiresolution time 
scales. However, such integration should be done under the limitation of computational 
power and the requirement of real-time operation. Conventional architectures for intelligent 
robotic systems, such as the subsumption architecture [15] and Nasrem architecture [16], 
do not directly address the problem of reducing uncertainties as well as dealing with 
unexpected events and system faults. Furthermore, the efficacy and efficiency of integrating 
planning and control in multiresolution time scales are yet to be consolidated. 

An architecture of intelligent robotic systems, referred to here as a perception-action net 
(PAN), is presented for planetary robotic sampling. While connecting sensing and action in 
real time. PAN automatically synthesizes goal-oriented behaviors or sequences of actions 
toward the set goals under uncertainties, errors, and faults, through task monitoring and 
replanning. 

In this chapter, we present a method of system uncertainty management based on 
representing the overall system sensing capabilities by a perception net and propagating 
uncertainties and errors forward and backward through the net for consistency by a 
geometric algorithm. A geometric fusion method with a statistical basis can be found in the 
literature [17]. However, there are number of problems that statistical methods cannot 
handle, such as uncertainty propagation in feature transformation when nonlinearity is 
involved and treating system constraints for consistency. The perception net is capable of 
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self-calibrating biases existing in the parameters of transformation modules while carrying 
out uncertainty minimization. This is important because the modeling of sensors as well as 
feature extraction algorithms are often subject to biases. These biases are not only from the 
errors at the time of initialization but also from the physical variations of a system and an 
environment during operation. The perception net automatically corrects such biases on the 
basis of the errors at the constraint modules that are exposed further and further as the 
uncertainties of the net states become smaller and smaller with iterations. 

2 PAN ARCHITECTURE 

PAN is composed of two major building blocks, the perception and action nets, interconnec- 
ted in closed loops, as shown in Figure 12.1. 

The perception net connects logical sensors or features of various levels of abstraction that 
can be identified by the given sensor system. In Figure 12.2, the logical sensors or features that 
can be extracted from the physical sensors, such as camera, proximity sensor, and tactile sensor, 
are organized in a hierarchy, where the logical and physical sensors are depicted, respectively, 
as rectangular and elliptical boxes. However, in the perception net, the connections between 
logical sensors are further elaborated with their relationships in terms of feature transform- 
ation, data fusion, and constraint to be satisfied. For instance, Figure 12.3 illustrates the 
perception net constructed from the logical sensor system of Figure 12.2 as follows: The surface 
orientation feature may be determined by the distance-to-surface logical sensor based on 
feature transformation. The same surface-orientation feature may be measured directly by the 
tactile sensor, so that the feature can be finalized by fusing the two sources of data, one from the 
distance-to-surface logical sensor and the other from the tactile sensor. By the same token, the 
hole-3D-position feature can be determined by fusing the tactile sensor output and the result of 
feature transformation from the hole-2D-position, surface-orientation, and distance-to-surface 
logical sensors. Furthermore, assuming two holes of the known relative distance, the two 
hole-3D-position features should be constrained by the known relative distance. 

In general, the perception net is formed by the interconnection of logical and physical 
sensors with three types of modules: feature transformation module (FTM), data fusion 
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FIGURE 12.1 
Two major building blocks of PAN: perception and action net. 
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Hole-3D-Position 
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Surface Orientation 

Distance to Surface 
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FIGURE 12.2 
Schematic illustration of a logical sensor system. 
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FIGURE 12.3 
A perception net representation of a logical sensor system of Figure 12.2. FTM, feature transformation, module; 
DFM,  data fusion module; CSM, constraint satisfaction module. O, X, and A indicate the identification of possible 
error sources by the net. 
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module (DFM), and constraint satisfaction module (CSM), as shown schematically in Figure 
12.4. An FTM transforms a set of primitive features into a more abstract and higher level of 
feature. A D F M  takes multiple data of a feature to generate an optimal estimate of the 
feature. A D F M  may represent either spatial or temporal data fusion: for the spatial data 
fusion (s-DFM), data are from the single readings of multiple sensors, while for the temporal 
data fusion (t-DFM), data are from the multiple readings of a single sensor. Each D F M  
module is responsible for determining which input data are valid for fusion at the current 
sensor configuration. A CSM represents system knowledge that imposes a constraint upon 
a set of feature values. 

The output of each logical sensor is a tuple representing the current estimates of 
corresponding feature value and its uncertainty measure and is regarded as the current state 
of the sensor. Then, the net state is defined as the collection of the states of individual logical 
sensors. The net is operated in such a way that a state change at a logical sensor propagates 
to adjacent logical sensors, triggering a chain of state changes throughout the net. For 
example, the state of a logical sensor can be updated by fusing its current state with a new 
reading from FTM through t-DFM, as depicted schematically in Figure 12.4. 

Note that the propagation of state change is bidirectional, forward and backward, such 
that the net automatically updates, and maintains the consistency of, its state not only 
through the forward propagation of state change but also through the backward propagation 
of state errors to satisfy constraints. In Figure 12.4, the backward signal propagation is 
explicitly represented by feedback connections from CSMs to the corresponding modules. 

Through the bidirectional state-updating process, the net provides not only reduction of 
uncertainties but also monitoring of errors and faults, based on which decision making and 
replanning take place in the action net. The perception net presents a formal yet general 

s-DFM Module 
i i 

r Module 

FIGURE 12.4 
The architecture of perception net composed of three types of module: FTM, DFM, and CSM, connecting logical 
sensors (LS) as well as physical sensors (PS). Two types of DFM, t-DFM and s-DFM, are shown, where D implies 
delay. 
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architecture for sensor fusion and planning. That is, the net can also be used for curbing 
uncertainties based on active modification of sensing parameters through sensor planning. 

The action net consists of a hierarchy of state transition networks of multiresolution time 
scales, as shown in Figure 12.8. More precisely, the net represents system dynamics in 
multiresolution time scales ranging from continuous time to discrete event dynamics, where 
an action of a higher level of hierarchy is represented by a state transition network of a lower 
level. The net embeds all the feasible system behaviors in various levels of abstraction. This 
allows the system to replan and control its behaviors efficiently toward the set goals through 
errors and faults with feedback to the various levels of action hierarchy. 

The action net can be interpreted by analogy to linguistics. The system behaviors that can 
be generated by the action net are equivalent to the sentences that can be generated by the 
vocabularies and grammar of a language. Applying planning and control to the action net 
to generate a goal-oriented behavior for the given task is equivalent to searching for a 
sequence of grammatical rules to generate a sentence of particular semantics. In this sense, 
the action net is designed to embed all the feasible behaviors of the system from which a 
particular goal-oriented behavior can be searched for through planning and control. 

In summary, PAN can be considered as a computational knowledge base in which 
concepts are understood by the system through their interconnections and computational 
dependences. 

3 UNCERTAINTY MANAGEMENT 

The management of uncertainties by the perception net consists of the self-reduction of 
uncertainties and the self-identification of possible biases. The uncertainties propagate in the 
perception net through the input-output  relationships of FTM and DFM modules, as well 
as through the constraints defined by CSM modules. 

3.1 Uncertainty Representation 

The uncertainties of logical sensor outputs are due to the random noise and biases involved 
in measurement data as well as to the biases involved in modeling feature transformations. 

Although Gaussian randomness of noise and independence of data measurements are 
assumed in sensing, the noise involved in a logical sensor output may not be Gaussian 
because of possible nonlinearity in feature transformation. For convenience, we assume that 
noise is bounded by an uncertainty hypervolume or hyperellipsoid and that the size of the 
uncertainty ellipsoid is small enough for a good linear approximation around the nominal 
point in feature transformation. Formally, we represent the uncertainty, dx, of a logical 
sensor value, x, as an ellipsoid of the following form: 

dxtW,,dx ~< 1 (12.1) 

where W x represents a symmetric weight matrix determining the size and shape of the 
ellipsoid. 

3.2 Forward Propagation 

Feature Transformation Module 

The forward propagation of input data, (x z, Wxi), i =  1,.. .  ,m, through FTM is straightfor- 
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ward once the input -output  relationship of F T M  is given: the output of FTM, (y, Wy), can 
be obtained directly from (12.2) and (12.6). 

Let us first define the mapping relationship between the input vector, x, and the output 
vector, y of an FTM by 

y = f(x, p) (12.2) 

where p represents a parameter vector associated with the module. Then the uncertainty 
propagation through (12.2) can be approximated as the first-order Jacobian relationship with 
the assumption that f is smooth and dx is small, as follows: 

ef 
y + dy = f (x  + dx, p) ~ f ( x ,  p) + ~ x  Ax (12.3) 

Therefore, 

of 
dy ~ ~ dx = J(x, p)dx (12.4) 

where J(x, p) represents the Jacobian relationship between dy and dx. The uncertainty of x, 
represented as an ellipsoid of (12.1), can now be propagated to the uncertainty of y, 
represented as an ellipsoid in terms of dy, through (12.4). By substituting dx = J+(x, p)dy, 
obtained from (12.4), to (12.1), we have 

dyt(j + )tWx J+ dy ~ 1 

where J + represents the pseudo-inverse of J. Equation (12.5) can be rewritten as 

(12.5) 

dytWydy ~< 1 (12.6) 

where the symmetric weight matrix, Wy, is defined as Wy - (J+)tWxJ+. Equation (12.6) is of 
the same form as (12.1). The forward propagation of uncertainties toward the modules of a 
higher level of hierarchy can be done with the properly defined weight matrices of their input 
vectors. In the case in which the input, x, of a module is composed of two or more vectors, 
x 1 and x 2, with their respective weight matrices defined as W~I and Wx2, the weight matrix, 
W~, of x can be specified by combining the individual weight matrices W~I and W~2 as 

W~ = Diag[Wxl, Wx2] (12.7) 

Note that Wy is a function of x and p, since J is a function of x and p. 

Data Fusion Module 

Because D F M  can be represented by an input -output  relationship, the forward propagation 
through D F M  can also be done with (12.2) and (12.6). The input -ou tpu t  relationship of 
D F M  can be derived from one of the existing data fusion methods [6]. However, we present 
here a new geometric method of data fusion to derive the inpu t -ou tpu t  relationship and to 
propagate the uncertainty ellipsoid in a geometrical basis. 
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For simplicity, consider the two measurements,  X lm and X2m , defined respectively in the 
two measurement  spaces, xl and x 2, where their uncertainty bounds are defined by the 
weight matrices, WXlm and Wx2m, respectively. The proposed geometric data fusion method 
starts with defining the augmented space, z, z = (x~, x2) T, such that the measurement data, 
(Xlm, WXlm) and (XZm , Wxzm) , are represented in an augmented space as (Zm, WZm), where 
Z m - -  (X lm ,  X2m) T and WZm = D i a g [ W x l m ,  WX2m]. Then the problem of fusing ( X l m  , Wx,,,,) and (N2m , 

Wx~,) is equivalent to finding a point, y, on the constraint manifold, x~ - x2 = 0, defined in 
the z space in such a way that the weighted distance between y and Zm or �89 y -  Zml 2 is , Wz m 
minimum, as shown in Figure 12.5. The uncertainty propagat ion is a crucial factor for the 
system convergence and stability property. Overestimating or underestimating an uncertainty 
bound will cause instability of the system. The Jacobian relationship, as described in the 
preceding section, is used for F T M  due to the nonlinearity of transformation. However, unlike 
the other modules, D F M  has a special constraint, x~ = x2, which is a linear constraint and an 
exact projection of uncertainty bound onto the constraint, X l = x2, can be obtained. Once we 
obtain y as a function of (Xlm, Wx,,) and (X2m , Wx2,.), y -- f ( x  lm, X2m)" Wy can be derived based 
on the geometric uncertainty propagat ion method as shown in Figure 12.5. 

More specifically, the output,  y, of D F M  with xlm and X2m as its inputs can be determined 
1 2 . as the vector that minimizes ~ ~ y -  X~m Wx,o 

- .3t_ W x 2  X2m) y = (Wx,~ + Wx~) l (Wx,, ,Xlm ,,, (12.8) 

In the case of multiple inputs, it can be expressed as 

Y = Wxim ~ Wxi,.Xim (12.9) 
i 

Then, as shown in Figure 12.5, the uncertainty bound, Wy, associated with y can be 
obtained by projecting the uncertainty ellipsoid of z m onto subspace x 1 - x 2. 

Wy --" WX1 m + WX2 m ( 1 2 . 1 0 )  

x2 T Wz.=, DialflWxl.,Wz2.! Constraint 

X l.X 2aO 

Xl 

FIGURE 12.5 
Proposed  geometric data  fusion method.  The y is obtained as a function of (Xlm, ~[/~lm) and (x2m, [,~2m) , such that  
the weighted distance between y and z m is minimum. The p ropaga ted  uncertainty ellipsoid is obtained by the 

project ion of the uncer ta inty ellipsoid of z m onto the subspace, x I = x 2, along the direction of y - z m. 
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In the case of multiple inputs, it can be expressed as 

Wy = ~ Wx~ (12.11) 
i 

Refer to the Appendix for the proof of (12.10) and (12.11). Note that (12.8) is the same result 
as the maximum Bayesian posteriori probability with the Gaussian assumption of noise. 

3.3 Backward Propagation 

Constraint Satisfaction Module 

The backward propagation process starts with a CSM. For instance, consider that the two 
logical sensor outputs x and y are constrained by f(x, y) - c .  CSM evaluates whether the 
current estimates, x I and yY, of x and y from the forward process satisfy the given constraint. 
If not, CSM updates (x y, Wx~) and (yY, Wy0, where Wxr and W/ are the weight matrices 
associated with x I and yY, respectively, into (x b, Wx0 and (yb, Wy0 in such a way that x b and 
yb satisfy the constraint. 

More specifically, let us first define the augmented space z with x and y, z = (x, y)r. Then 
the constraint of CSM can be represented as a manifold in the augmented space. Further- 
more, (x I, Wx0 and (yY, Wy0 can be represented in the augmented space as (z I, W~0, with 
z i =  (x ~, y l ) r  and Wzz = Diag[Wxz, W/]. Finally, by selecting a vector, gb, z b =  (X b, yb)T, on 
the constraint manifold, f(x, y) = c, in such a way that the weighted distance from z b to z y, 
1 m 2 z b zl Wz~, is minimum. Then x b and yb can be obtained by solving the corresponding 
minimization problems in x b and yb space by applying Lagrange multipliers. By using the 
Lagrange multiplier, 2, transform the problem to 

E = �89 x ~ - x b ~xr + lY ~" - yb ~VyJ + 2T(f( xb, yb) _ C) 

Then we have the following conditions for x b and yb t o  be satisfied: 

(12.12) 

c~xb=O:Wx,(X z - x  b ) -  ~ 2 = 0  

c~E 
t~y b 

OE 

~2 

= O: Wy~(yf -- yb) -- (~--~fyb) T 2 = 0  

= 0: f (x  b, yb) _ C = 0 (12.13) 

From Eq. (12.13), x b and yb can be obtained by applying various search methods, such as 
the Newton-Raphson  method. Lyapunov's method, and the recursive least-squares method, 
depending on the form of Eq. (12.13). Then the uncertainty bound, Wx b or Wyb, associated 
with x b or yb, respectively, can be obtained by projecting W~ onto the constraint manifold. 
To project the uncertainty ellipsoid onto the constraint manifold, linearization around z b is 
needed and the resulting uncertainty bound Wz~ is approximated by linearization with 
assumption that the uncertainty ellipsoid is small enough for a good linear approximation 
around the point, z b, on the constraint manifold as shown in Figure 12.6. 

Wx~ : Wxf + (Wxy(y b - yl)r+(xb - -  x f ) T W y O W y I ' ( W x I ( y  b - yf)r+(x b -- xf)rWyO r (12.14) 

% = Wy, + (Wy,(X ~ - x Y ) ~ + ( y  ~ - y Y ) ~ W x ~ ) W x , ' ( W y , ( X  ~ - x Y ) ~ + ( y  ~ - yY)~WxO ~ ( 1 2 . 1 5 )  
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x2 I 

Wr ,b 
x ~ 

Constra in t  f~X) m c 

Wt/' 
Xl 

FIGURE 12.6 
Proposed geometric method to determine x b as a point on the constraint manifold f(x) = c that minimizes the 
weighted distance from x I to the constraint manifold. The uncertainty ellipsoid is projected onto the constraint 
manifold along the direction of x h - x I. 

where . r  + represents the pseudoinverse and t ranspose of ..  The proof  of (12.14) and (12.15) 
is very complicated,  but it is very similar to the D F M  case and not shown here. Refer to the 
Appendix for the proof  of the D F M  case. 

In general, the constraint  of the CSM can be expressed as f ( x ) = c  with x = 
(X 1, X2 . . . . .  Xm) T and ~ = Diag[W~l, W~2,.. W,, ]. Let the input of a CSM from the forward 

. f ix I "  p ropaga t ion  be (xl, Wx[), (x2, W@,. .  , ,,, W~), such that x I ~ ( x l , . . . , x m )  f and 

W~, g Diag[W~f, . . . .  W~s 
Then backward  propaga t ion  at CSM modifies x I and W,, into x b and W,b in such a way 

that  x h and Wx~ are consistent with the constraint.  The proposed geometric method  
determines x b as the point  on the constraint  manifold, f (x )  = c, that  minimizes the weighted 
distance from x f to the manifold, 

x b : m i n l  xy xb ~vx, subject t~  h) = c  
xb 2 

(12.16) 

Once x b is obtained from (12.16) as a function of x f, x b = 9(xf), then W,,b can be obtained 
by projecting W,,f onto the constraint  manifold. 

Data Fusion Module 

Backward  p ropaga t ion  in D F M  is straightforward.  Unlike other  modules,  such as CSM and 
b and b F T M ,  the constraint  of D F M  is x 1 = x 2. Therefore inputs of D F M ,  xl,  x2, must  be same 

as the ou tpu t  of D F M ,  yb, to keep consistency of the network.  Also, inputs of D F M  must  
carry the same uncer ta inty  ellipsoid as the output  of D F M  in backward  propagat ion.  

yb b b 
= X 1 = X 2 (12.17) 

Wyb = Wx~ = Wx~2 (12.18) 
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Feature Transformation Module 

In the backward propagation, the updated logical sensor output plays the role of a constraint 
for the subsequent module. For instance, assume that the output, yl, of an FTM, f (x  I) = yl, 
is updated by the backward propagation as (yb, Wxh)" Then x y needs to be updated to x b such 
that f ( x  b) -- yb. Therefore, it is equivalent to say that x I is input to a CSM, f(x) = c, with 
c = yb. 

However, unlike the previous case of CSM where c has no uncertainty, yb has uncertainty 
represented by Wyb. In this case, x b is computed in the same way as (12.16) but with c = yb. 
But the computation of Wxb needs to consider the uncertainty of yb, W/, as follows: x b 
obtained by (12.16) can be represented as x b = 9(x ~, yb). Then, by the same procedure as for 
CSM, W,~ can be obtained as an initial uncertainty bound. According to the uncertainty of 
yb, W,~ is swept along the yb variation according to its uncertainty boundary and then the 
uncertainty boundary, Wx~, can be generated. Wxb is now approximated with an ellipsoid that 
circumscribes the swept region. 

3.4 Sensor Planning 

It has been shown that the uncertainties of logical sensor outputs can be reduced by the 
forward and backward propagation of errors through D F M  and CSM. However, the rate of 
the uncertainty reduction based on D F M  and CSM tends to reach saturation rather quickly 
as fusion cycles increase. This may cause, in some cases, an excessive number of fusion cycles 
in order to reduce the uncertainty bound of a logical sensor to the level required by the action 
net for decision making. One way to solve this problem is to change the controllable sensing 
parameters (including sensor positions) during fusion cycles in such a way that the 
uncertainty in sensing is maximally reduced. 

In general, the objective of sensor planning is to change sensor configurations or 
parameters dynamically in such a way that the system achieves sensing goals, measuring 
necessary features with desired accuracy, at the minimum sensing cost. Sensor planning has 
been a subject of interest in robotics and vision [18-24]. Sensor planning offers extended 
sensing capability with enhanced accuracy and efficiency. However, most work on sensor 
planning has been based on ad hoc methods customized to particular problems. For sensor 
planning with an integrated sensor system, more formality and generality in problem 
representation and solution methodology are required. Sensor planning here focuses on 
reducing the uncertainties of logical sensor outputs to the desired level by controlling system 
parameters subject to system and parameter constraints at the minimum sensing cost. 

Representation of Sensing Goals 

The desired accuracy of a logical sensor output can be represented by the desired ellipsoidal 
bound of uncertainty associated with the output. For  example, the desired uncertainty 
ellipsoid, Ee(y), of an output vector, y, can be represented as dy'Wyady ~< 1, with Wy a being 
the desired weight matrix. Then a closeness measure between the desired and actual 
uncertainty ellipsoids of the output vector can be defined as follows: Assume that the desired 
uncertainty ellipsoid has principal radius vectors of (1/x//21)ul and (1/x//22)u2, as shown in 
Figure 12.7. 

u 1 and u 2 are the orthonormal singular vectors of Wa, whereas 21 and 22 are the 
corresponding eigenvalues. Then we define c~lu 1 and %u 2 to represent the vectors from the 
origin of the actual error ellipsoid to its boundary in the direction defined by u 1 and u2, 
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dYlWadY I = 1 

dy2 
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FIGURE 12.7 
An example of desired and actual error ellipsoids for the representation of network performance. 

respectively: 
2 t 

~X i b l iWab l  i 1, for i = 1, 2 (12.19) 

where W a represents the weight matrix of the actual uncertainty ellipsoid, which is a function 
of controllable parameter vector p. Note that ~i, i =  1, 2, can be computed directly from 
(12.19). Then the closeness of two ellipsoids can be defined by comparing between c~ z and 
(1/w/~) for i =  1, 2, such that the sensing performance, defined as the closeness between the 
desired and actual ellipsoids, can be expressed as 

1 

where k represents the kth output. 
Although the example shown in Figure 12.7 is for a two-dimensional (2-D) case, the 

method described here is general and can be applied to any dimensional space. 

Parametric Sensor Planning 

Parametric sensor planning implies the determination of controllable parameters, p, that 
maximize sensing performance, (12.20), under system and parameter constraints at the 
minimum sensing cost. 

We propose an iterative parameter update method for the parametric sensor planning. In 
the iterative parameter update method, the parameter vector, p, is updated iteratively by 

for a continuous-time system, or 

p(t) = p(O) + f l  pdz (12.21) 

p(k + 1)= p(k)+ ap(k) (12.22) 

for a discrete-time system, until an equilibrium is reached when [~ or dp is 0. 
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The parameter update, p or dp, can be generated in the parameter space as the direction 
that maximally satisfies the following criteria ordered in terms of their priorities: 

1. The satisfaction of system and parameter constraints 
2. The minimization of network performance measure 
3. The minimal sensing cost 
4. The avoidance of local minima 

To determine the parameter update based on these criteria, let us first derive the three 
directional vectors, pl, P2, and P3, from each of the top three criteria that can be combined 
into the final parameter update p. The directional vector, i01, changes p in a direction that 
leads the network to satisfy existing system and parameter constraints. To determine p~, we 
define the following Lyapunov function candidate, 1/1: 

where 

2 

V1 = ~ V~k (12.23) 
k = l  

Vll = ~ h21i (x, p) (12.24) 
i = 1  

1 t~S2Eh2i(x,p) ] (12.25) 

1/1 ~ is defined from the equality constraints of the system and parameter constraints such that 
h,~(x, p) represents the ith equality constraint, h~i(x, p) = 0. On the other hand, 1/12 is defined 
from the inequality constraints of the system and parameter constraints such that h2i(x, p) 
represents the ith inequality constraint, h2i(x, p) > 0, where 

__ ~fh2i(x, P), 
S[h2~(x, P)-I ~0, 

if hz i (X , p) < 0 
if hz~(X, p) >~ 0 (12.26) 

From (12.23), (12.24), and (12.25), we cn see that 1/1 = 0 only when both the equality and 
inequality constraints are satisfied, that is, only when the system and parameter constraints 
are completely satisfied. Based on (12.23), (12.24), and (12.25), we can derive the parameter 
update, pl, that makes the time derivative of 1/1 negative, 1/1 < 0, when 1/1 # 0, as follows: 

where 

and 

[ } 1 :  L dVlk /] dVlk 
--k=l ---~-P/I dp (12.27) 

k ( c3 (x'p) Sx 8 ) dV~ = h~i(x' P) -~x h~i ~ + ~ h~i(x, p) (12.28) 
dp i: 1 

/2 ( 8 (x 'P)]Sx 8 / drl2 = E SEh2i( X, P)] ~x S[hli ~p + 8pp S[hli(x, P)] (12.29) 
dp i: 1 
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Equation (12.27) guarantees that only when 1/1 = 0, that is, when both the equality and 
dVl~ 

inequality constraints are satisfied. The term ~ used in the denominator of (12.27) allows 

the value of p~ to be exploded in the vicinity of local minima, which helps to avoid local 
minima. 

In the same way as we derived Pl, we can define a directional vector, ~)2, that changes p 
in the direction to minimize the closeness measure, V 2, defined by 

1 

where ~k is a function of x and p. Then, from the condition that keeps the time derivative of 
V2 negative when V2 4= 0, we can determine i~2 as follows: 

P2--~(~ - 1 / ~  d~ik/ 
k i ik dp / dp[I 

where 

d~ik ~)~ik dx ~ik  
= - - "  t (12.32) 

dp ~x dp ~p 

The directional vector, P3, that incurs the minimum sensing cost can be searched by 

P 3  - -  min C(li) (12.33) 
0 

where C(li) represents sensing cost in terms of the parameter change, Ik at the current sensor 
configuration. 

With i~1, i~2, and !~3, defined, respectively, for the constraint satisfaction, the performance 
optimization, and the minimum sensing cost, the final parameter update, p, can be 
determined by combining p l, P2, and !~3, as follows" 

i~ = i~1 + x ( 0 , ) 0 ~  + N(pl  + N(0 , )02)0~  (12.34) 

where N ( l i l ) [ t  2 implies the projection of P2 onto the null space of ~l 1. Note that, when the 
system and parameter constraints are satisfied, then Pl = 0, consequently, N ( l i l ) P 2  = [I 2. 

Equation (12.34) is referred to here as the iterative parametric sensor planning equation. 
Note that the priority given to Pl, P2, and P3 for the computation of i~ can be changed, that 
is; a different order of pl, P2, and P3, can be used in (12.34) for computing i~. 

4 ERROR MONITORING AND RECOVERY 

D F M  and CSM of the perception net make it possible to monitor errors, that is, biases and 
faults in sensing and action. Upon the identification of biases and faults in sensing and action, 
the action net invokes error recovery and repairment actions. In PAN, error monitoring and 
recovery consist of (1) error detection, (2) error identification, and (3) sensor calibration and 
action replanning for error recovery and repairment. 
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4.1 Error Detection 

Errors may be detected from the following information: 

1. The discrepancy between the planned and measured states 
2. The inconsistency among the input data of D F M  
3. The violation of constraints at CSM 

To clarify the meaning of discrepancy, inconsistency, and violation, we need to define 
quantitatively the thresholds that separate the effect of biases and faults from that of 
uncertainties. 

The inconsistency among the input data of D F M  can be evaluated on the basis of the 
ellipsoidal representation of uncertainty bounds: The input data of D F M  are said to be 
inconsistent if the ellipsoidal uncertainty bounds of input data have no common intersection. 
The existence of a common intersection among the input data, (Xx, W1), (x2, W2),.-., (x,, Wn) , 

where W~ are the weight matrices associated with x i for i = 1 , . . . ,  n, can be evaluated by the 
following rule: 

If IIx - xillw~ll ~ 1, for i = 1 , . . . ,  n with x = (Z W~)-1 2; W~x i, then there exists a 
common intersection among the ellipsoidal uncertainty bounds of x i, i = 1 , . . . ,  n. 

Similarly, the violation of constraint at CSM can be detected by checking whether the vector, 
Zb, Z b = (Xb, yb) r, on the constraint manifold that minimizes the weighted distance from z b to 
zf. z b - zf w~, is inside the uncertainty ellipsoid of z f" 

If z b - z s Wzr ~< 1, then (x s, Ys) does not violate the constraint where z s = (x s, Ys) 

The discrepancy between the planned and measured states can also be detected by checking 
whether there is a common intersection between the uncertainty ellipsoids of planned and 
measure states, where the uncertainty ellipsoid of the planned state can be determined by the 
expected uncertainty involved in plan execution. 

4.2 Error Identification 

Upon the detection of errors, it is necessary to identify the source of errors. When more than 
two input data are involved in DFM,  we can check which input data are isolated from the 
rest in terms of sharing a common intersection. In general, for a D F M  with multiple input 
data, it is possible to identify groups of input data that share a common intersection (based 
on the method presented before this). The input data that belong to the group of single or 
small number of members may be considered as a likely source of error. 

When error is detected in the input data, (x s, W~s ) and (yf, Wys), of CSM, we can check 
whether x b and Yb are inside the uncertainty ellipsoids of (x s, W~s ) and (Ys, Wys), respectively. 
That is, if x b - x s Wxs > 1 or if Yb -- Ysl[Wys > 1, then x s or Ys may be a likely source of 
error. 

Further  isolation of error sources can be done through the net hierarchy. By applying the 
preceding error detection method to D F M s  and CSMs distributed in the net, the logical 
sensors associated with D F M s  and CSMs can be classified as either likely-in-error, unlikely- 
in-error, or possibly-in-error. Then these classifications are propagated through the net to 
extend the classifications to other logical sensors connected through the hierarchy. The 



362 CHAPTER 12 / ROBOTICS WITH PERCEPTION AND ACTION NETS 

cross-checking of these classifications propagated through the net hierarchy provides further 
isolation of errors, as shown in Figure 12.3. For instance, assume that the D F M  for 
Hole-3D-Pos detects error due to the inconsistency of its inputs, such that Hole-3D-Pos-A 
and Hole-3D-Pos-B are marked as 6 to indicate that they are in possibly in error. Assume 
also that the DFMs for Surface-Orientation-1 and Distance-to-Surface-1 detect no inconsist- 
ency, such that their inputs, Surface-Orientation-A and Surface-Orientation-B, as well as 
Distance-to-Surface-A and Distance-to-Surface-B, are marked as O indicating that they are 
in unlikely-in-error. The propagation of O markings backward results in the tactile and 
proximity sensors being in unlikely-in-error (assuming that FTMs are not in error here). The 
fact that the tactile sensor is not likely in error propagates forward to Hole-3D-Pos-B that 
Hole-3D-Pos-B is in unlikely-in-error, which forces Hole-3D-Pos-A to be reclassified as 
likely-in-error. The likely-in-error status of Hole-3D-Pos-A propagates backward to indicate 
that the camera is in likely-in-error. We can extend the propagation and cross-checking of 
classifications to the action net, because the discrepancy between the planned and measured 
states provides additional error detection. If the preceding DFM- and CSM-based error 
identification method fails to isolate error sources, sensor planning or error-isolation action 
should take place in the action net for complete isolation of errors. 

4.3 Error Recovery 

Once error sources are isolated, the system must take actions to repair the errors and to 
recover from the errors. Two types of actions can take place: (1) calibration of sensors to 
eliminate biases and (2) replanning the actions to reach the desired goal state under errors. 
For the first, a predefined sensor calibration routine for the sensor in error will be invoked 
by the action net. For the second, the action net replans the task based on the PAN modified 
according to the isolated errors. 

5 PLANETARY ROBOTIC SCIENCE SAMPLING 

We consider autonomous soil and rock science for planetary robotic science sampling. 

5.1 Autonomous Soil Science 

Autonomous soil science includes the trenching of planetary soil by a robot to collect and 
analyze subsurface soil samples. Autonomous soil science is composed of the following 
activities: trenching site designation by scientists, visual and tactile verification of trenching 
site by a robot, planning of optimal trenching trajectories with measured soil property, 
adaptive trenching, planning of optimal scooping trajectory, and adaptive scooping. Un- 
doubtedly, uncertainty management and error monitoring and recovery play an important 
role. 

The PAN architecture for soil science is illustrated in Figures 12.8-12.13. 

5.2 Autonomous Rock Science 

Autonomous rock science includes 

�9 Rock designation by scientists interactively with the system 
�9 Rock identification, localization 
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s 

FIGURE 12.8 
Action net of PAN. 

�9 Description with visual and tactile exploration 
�9 Classification of rocks as 

1. Graspable and collectable directly 
2. Graspable and collectable indirectly 
3. Graspable and movable but not collectable 
4. Not graspable but movable 
5. Not graspable and not movable 

�9 Grasp and pick-up the rock; push and reorient the rock for grasping; grasp or push to 
move the rock; and abrade the rock 

PAN architecture for rock science based on the preceding steps is illustrated in Figures 12.12 
and 12.13. 

5.3 PAN Operations 

Through the perception net, shown in Figure 12.3, PAN explicitly manages uncertainties. 
Uncertainties associated with individual logical sensors (depicted as circles) are propagated 
through such functional modules as DFM, FTM (trapezoidal shape), and CSM (double 
hexagon). The values associated with logical sensors are updated through the forward and 
backward process of reaching an equilibrium point. 

In the perception net, the reduction of uncertainty in locating the scoop at the designated 
trenching site is highlighted by the data fusion with the joint encoders, the stereopsis with a 
marker, and the tactile exploration, as well as the constraint from the trenching plane. In the 
action net, the top level of the action net of PAN for soil trenching and scooping is shown 
in Figure 12.10, where actions are depicted by boxes and states are depicted by (double) 
circles. The lower level of the action net includes the details of actions defined at the higher 
level, for example, the adaptive trenching state transition network in Figure 12.11. 
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FIGURE 12.9 
Perception net of PAN for soil science. 

Example" Error Monitoring and Recovery-1 

The arm is commanded to move to the preplanned approach point. The following two 
scenarios can occur: 

1. The task is successfully completed; that is, the sensor reading coincides with the planned 
position (within some allowed error range). 

2. The task is not successfully completed, within the expected time); that is, the system 
fails to reach the planned position. 

Now we can check the actual end-effector position by using a 3-D marker. 
In the first case, if the 3D-marker reading coincides with the encoder reading, then the 

system is in a normal operational mode, and data fusion can occur. However, if the 
3D-marker reading does not coincide with the encoder reading, we can say that either the 
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A~ 

A3 

FIGURE 12.10 
Action net of PAN for soil science. 

encoder is biased or the marker reading (vision) is biased. The encoder bias can be calibrated 
through the arm calibration procedure (using a zero position or a reference position and 
potentiometer). Once the encoder bias is calibrated, we know whether the inconsistency is 
due to the bias in marker reading. If so, we need to follow the vision calibration procedure. 

In the second case, if the 3-D marker reading coincides with the encoder reading, it is likely 
that the actuator or controller is in fault. In this case, the system can make a sense of that 
motion (for individual joints) to isolate further which actuator is in error. If the 3-D marker 
reading does not coincide with the encoder reading, the error may be in the encoder and/or 
in the actuator and/or in the marker reading. Encoder calibration and the actuator fault 
isolation routines are necessary for further identification of the problem. 

Example: Error Monitoring and Recovery-2 

During trenching, the abnormal encoder reading or impedance measure indicates that the 
trenching is not progressing well. This may be a case in which the scoop is stuck in the rigid 
soil or underground rock site or a failure of adaptive impedance control for trenching. The 
failure of adaptive impedance control may come from actuators, encoders, power supply, 
controllers, or force sensor. Abnormal impedance readings mean violation of the preset force 
and position error relationship. In the case in which the impedance measure is normal but 
encoder readings indicate a jamming situation, we apply the discrete event control to modify 
the trenching trajectory. In the case in which the impedance measure is not normal, we 
perform a series of actions to identify the source exactly, for instance, routines for the 
calibration of encoders and force sensors and for checking actuator performance. Based on 
these steps, the problem can be pinpointed. 

6 SIMULATION 

Computer simulation is performed to test the validity of the proposed method of state 
estimation and self-calibration. In this simulation, we consider the fixed stereo camera 
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FIGURE 12.12 
Perception net of PAN for rock science. 

measuring the 3-D coordinates of manipulator as shown in Figure 12.14. The stereo camera 
is assumed to have a baseline length of 150 mm and a focal length of 35 ram. 

A marker on the manipulator end effector is detected by the stereo camera while the 
manipulator moves. The proposed method is applied to reduce the uncertainty of the 
manipulator position in terms of feature points as well as to identify the possible biases of 
the parameters. 

In simulation, the true 3-D feature points generated by the computer are projected onto 
the image planes based on the pinhole camera model. Then white Gaussian noise is added 
to the projected 2-D image points to simulate uncertainty associated with the measured 
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FIGURE 12.13 
Action net of PAN for rock science. 

feature point. For realistic simulation, the standard deviation of the Gaussian noise on the 
image planes is selected in such a way that the final error in the detected marker point 
coordinate is _+ 0.01 m. By simple triangulation of the 2-D image points, the measured 3-D 
coordinates of feature points are reconstructed. Details of the system parameters are shown 
in Tables 12.1 and 12.2. Then the reconstructed 3-D coordinates are transformed with respect 
to the base frame, B, for comparison with the 3-D coordinates generated by encoder readings 
of the manipulator. Bias is added to extrinsic parameters of the stereo camera rig Ethe 
displacement from the world coordinate system to the camera coordinate system is represen- 
ted with rotation and translation and this transform matrix depends on six parameters, here 
referral as extrinsic: three rotation (~,/~, 7) and three for translation (x, y, z)]. 
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FIGURE 12.14 
Simulation setup with stereo camera and manipulator. 

Table 12.1. Camera Parameters and Values Used in the Simulation 

Cameras 

Camera focal length 35 mm 
Base line length 150 mm 
Image size 0.5 inch x 0.5 inch 
Pixel resolution 640 x 480 
Noise standard deviation 10- 2 m 

Simulation data are obtained in the following way. The coordinates  of the marker  on the 
manipula tor  end effector are obtained from encoder readings at time k. The noise added to the 
encoder reading is assumed to be very accurate and is selected in such a way that it causes 
_+0.001 m error on the end-effector position. The coordinates of the marker  relative to the 
camera coordinate frame are determined the basis of on the camera image points at time k 
updated  through forward and backward  propagat ion.  The manipu la tor  is assumed to move 
smoothly and continuously and not  too rapidly to capture the camera image at each time 
instant. Simulation is carried out in two modes: (1) no bias is assumed for extrinsic parameters  
or camera pose parameters;  (2) a bias is added to rotation, R, of the stereo camera rig to verify 
the capability of the system to locate the source of the bias and to calibrate the stereo camera rig. 

Table 12.2. Manipulator Link Parameters Used in the Simulations 

Joint 0 i [rad] di [inch] ai [inch] C( i [rad] 

01 0 0 0 0 
0 2 0 3.0 4.0 --re/2 
03 0 3.0 44.0 0 
04. 0 2.0 43.895 0 
05 0 4.38 4.72 0 
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The perception net representation of the simulation is shown in Figure 12.15. Through 
FTMs,  raw sensor inputs transformed to logical sensor output  and through DFM,  position 
informations are fused with the proposed geometric data fusion algorithm. The fact that 
coordinates obtained from stereo camera and from encoder readings of manipulator  must be 

t t 

the same is used as a constraint. In FTM2,  output  of this module is Pk-1 + Pk -- Pk-1, and 
in FTM3,  output  is equal to Pk -- Pk-1 + P'k. These two modules are used to expose the bias 
effect as well as to enhance the tracking capability of the perception net. The equations used 
in this simulation are all based on the equations derived in Section 3. 

Simulation results are shown in Figure 12.16 through Figure 12.20. As shown in Figure 
12.16, data can be processed accurately in few iterations. The error is reduced to less than 
1% of noise levels as a result of updating through the net. 

Figure 12.17 shows the error reduction with bias added on stereo camera rig parameters. 
In this case, bias is added on orientation of camera frame. As shown in figure, error increases 

TW1x + TW2x2" This value is used due to the bias effect. Figure 12..18 shows the values of Xl 1 x2 
as a measure of the distance between two ellipsoids in this simulation. As shown in Figure 

T 18, due to the bias the value of xr~WlXl + x2 Wzx2 is huge and never reduced. Note that x 1 
! t t t 

is equal to x l - x I and x 2 is equal to x2 - x I, where x l and x2 are the estimated values and 
x I is the nominal value or fused value. 

To calibrate the camera parameter,  the parametric update method is applied based on 
Lyapunov's  method. Whenever separation of ellipsoids occurs, parameters are updated such 

Parameter Update 

CSM 

DFM 1 /~ ~ DFM2 

T 
Stereo 

Camera 

:Forward Propagation 

:Backward Propagation 

FIGURE 12.15 
Perception net representation of a logical sensor system for simulation. 
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T xTWIx1 "~- X 2 W2X  2. reduction of this value represents the reduction of bias. Parametric update algorithm is applied. 

a way that two ellipsoids intersect. The followings are governing equations to update 
parameters. 

1 TW2x2 2 (12.35) P = ~ x1TWIx1 + X 2 

OP 
J = - -  (12.36) 

O(k) = if(k) - j V ( p  _ p,)  (12.37) 

r WlX + x ~ W z x  is less than or equal to 2, then we assume that there is If the value of X l 1 2 
no bias effect and no update method is applied. Otherwise, an update method is applied 
because we can assume that there are possible error sources other than noise. 

The parametric update method is applied and results are shown in Figures 12.19 and 
12.20. As shown in Figure 12.19, the error is reduced and biased parameters are converged 
to the true value by the parametric update method. 

7 E X P E R I M E N T A T I O N  

We applied the perception ne t -based  self-calibration method to the automatic calibration of 
the stereo camera mounted on the base, which provides 3-D data for the Mars sampling 
manipulator.  More specifically, we intend to remove the biases involved, in particular, in the 
orientation of the stereo camera with reference to the base frame. It is known that the 3-D 
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FIGURE 12.21 
Picture of the Lightweight Survivable Rover (LSR-1), rover-mounted manipulator, and MicroArm-1. A camera is 
shown in the bottom of the right corner. 

data from the stereo camera are very sensitive to the precise setting of camera orientation in 
terms of the base frame. The capability of a system to self-calibrate such biases should allow 
the system performance to be very robust. Figure 12.15 illustrates the perception net 
configured for the self-calibration of stereo camera pose in terms of the base frame. A 
sequence of 3-D positions of a single feature point on the manipulator is measured by the 
stereo camera as well as by the encoders while the manipulator is in motion. 

Our experimental platform consisted of the National Aeronautics and Space Administra- 
tion (NASA)-Jet  Propulsion Laboratory (JPL) Lightweight Survivable Rover (LSR-1) and 
rover-mounted manipulator MicroArm-1 Link parameters are shown in Table 12.4. LSR-1 
is a six-wheeled, skid-steered, rocker-bogie design, having approximately half the mass (7 kg) 
and twice the deployed volume of the Sojourner rover used in the Mars Pathfinder mission. 
MicroArm-1 is a 1.5 kg, all-composite five-degrees-of-freedom manipulator arm, 0.7 m at full 
extent, driven by piezoelectric ultrasonic motors, possessing a multifunction powered end 
effector [25]. The picture is shown in Figure 12.21. 

A black-and-white stereo CCD camera pair, with 512 x 486 resolution, as shown in 
Figure 12.21, 10-cm baseline, and 130 ~ field-of-view lenses (camera parameters shown in 
Table 12.3), was mounted on LSR-1 directly (4 cm) beneath MicroArm-1. This camera pair 
was calibrated using a least-squares calibration technique, producing a camera model that 
attempts to compensate for radial lens distortion. A black calibration grid having a 16 • 13 
array of 5-mm-diameter white calibration circles with 1-cm center spacing was presented to 
the cameras in both the horizontal and vertical configurations to provide calibration points 
for the least-squares camera model estimation [26]. 

A VME chassis containing one 68040 processor running VxWorks and two Galil motion 
control boards were used to control the LSR-1 rover and MicroArm-1 robotic manipulator. 
A Sun Sparc SLC was used as a terminal to connect to the VME chassis. The Sparc SLC 
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Table 12.3. Camera Parameters and Values Used in the Experimentation 

Cameras 

Camera focal length 35 mm 
Base line length 100 mm 
Image size 0.5 inch x 0.5 inch 
Pixel resolution 512 x 486 
Noise standard deviation 10- 2 m 

was also connected to a video switcher, which allowed multiplexing of the video feeds into 
our frame-grabbing hardware, a Silicon Graphics Indy workstation. A command parser 
process ran on the 68040, accepting network socket connections, over which commands were 
passed from a remote Java-based graphical user interface running on a Sun Sparc 20. 

To acquire a data set for the perception net-based self-calibration algorithm, we placed 
a black ring-shaped marker with 3.75 cm outer diameter and 1.25 cm inner diameter and 
white background on the end effector of MicroArm-I. The end effector was then moved in a 
5 x 5 x 5 cube pattern, by specifying the desired end-effector position in 3-D space and 
computing the joint rotations required to achieve the desired end-effector position using the 
inverse kinematics. 

At each location in the 5 x 5 x 5 cube, an image of the end effector was taken from both 
the left and right stereo cameras. When the motion through the cube pattern was complete, 
these images were run through our stereo localization code to determine the 3-D location of 
the end-effector marker. These 3-D marker locations were then translated by a constant 
vector in the plane of the manipulator so that they could be compared with the end-effector 
position as known from the manipulator kinematics. 

Figure 12.22 shows the error reduction on stereo camera rig parameters. Bias may be 
present in the orientation or translation of the camera frame to the base frame. As shown in 
Figure 12.22, the error level increases because of the possible bias effect. Figure 12.23 shows 

rWzx 2. This value represents a measure of the distance between two the value of xrW:x:  + x2 
ellipsoids in this experiment [27]. As shown in Figure 12.23, because of the bias effect, the 

T TW2x 2 fluctuates and gives peaks that are greater than 2. Note that xl value of xl W:x: + x2 
t t / t 

is equal to x~ - x~ and x 2 is equal to x2 - x z in DFM, where x~ and x2 are the estimated 
values and x I is the nominal value or fused value. This ellipsoid separation checking 
procedure is performed on each module. 

To calibrate the camera parameter, the parametric update algorithm based on Lyapunov's 
method is applied. In particular, the same update algorithm as for simulation is used for 
experimentation (Eqs. 12.35-12.37). 

Table 12.4. Manipulator Link Parameters Used in the Experimentation 

Joint Oi [rad] d i [inch] a i [inch] ei [rad] 

0: 0 0 0 0 
0 2 0 0 2.96 -re/2 
0 3 0 --2.0 11.21 0 
04 0 --2.0 10.9425 0 
05 0 -1.82 1.43 0 
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r rw2x 2 is less than or equal to 2, then we assume that there is If the value of x 1WIX 1 -~- X 2 
no bias effect and no update algorithm is applied. Otherwise an update algorithm is applied 
to correct erroneous parameters, which may include systematic errors such as biases and 
modeling errors. 

The parametric update algorithm is applied and the results are shown in Figures 12.24 
and 12.25. As shown in Figure 12.24, error is reduced and biased parameters are converged 
to the true value by the parametric update algorithm. Figure 12.25 shows no ellipsoid 
separation, and that means the biases are removed. 

8 CONCLUSION 

The proposed PAN architecture provides a formal mechanism for intergrating sensing, 
knowledge, and action in real time for intelligent robots. The architecture emphasizes 
uncertainty management as well as error monitoring and recovery so that the system can 
provide robots with the capability of generating goal-oriented, yet robust and fault-tolerant, 
behaviors. 

We construct a perception net that connects features of various levels of abstraction, 
referred to here as logical sensors, with their functional relationships in terms of feature 
transformations, data fusions, and constraints to be satisfied. 

Then we develop a geometric data fusion algorithm on the basis of which the net can 
maintain the consistency of logical sensors through the forward propagation of uncertainties 
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T x~'W1x 1 n t -  X 2 W 2 X  2 .  reduction of this value represents the reduction of bias. Parametric update algorithm is applied. 

as well as the backward propagation of constraint errors. The forward and backward process 
of updating logical sensors toward consistency provides the system with the capability of 
automatically reducing uncertainties and identifying possible biases. This process may be 
regarded as a general form of Kalman and extended Kalman estimation. 

The proposed geometric method for uncertainty management and error monitoring 
through the perception net is novel and powerful because of its systematic approach. One 
might find it interesting to compare it with the existing probability network. The perception 
net provides a more general but formal way to accomplish sensor fusion and planning. 

Simulations and experiments have been conducted by applying the self-calibration of the 
eye-hand system equipped for a J P L - N A S A  planetary rover. As shown in Section 7, biases 
are removed by the updating algorithm with back-propagated errors from the CSM, and the 
uncertainties are reduced through the net. 

The proposed approach is new and promising, but there is a definite need for further 
development in both theories and implementations. This includes the analysis of perform- 
ance, stability, and robustness against various types of noises, biases, and faults; the 
enhancement of systems in terms of theories and implementations; and analytical as well as 
experimental evaluation of the method. Applications of the proposed method to such 
complex systems as spacecraft, aircrafts, and power plants are recommended. 
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APPENDIX 

Projection onto the constraint begins with putting the uncertainty ellipsoid at the origin for 
simplicity. The ellipsoid equation and the direction of projection are given by 

rWgx 2 = 1 X~WlXl + x2 

y = (Wl + Wz)-l(WlX1 + Wzx2) 

(12.38) 

(12.39) 



380 CHAPTER 12 / ROBOTICS WITH PERCEPTION AND ACTION NETS 

For  conceptual  simplicity, the uncertainty ellipsoid is t ransformed to a hypersphere.  Because 
the weight matrices are symmetric and semipositive definite, singular value decomposi t ion  
for the uncertainty ellipsoids is possible and is as follows: 

WI Z T A I Z 1  ! r ± = = (A[Z~) (A [~1) (12.40) 

W 2 = ZzrAzX2 = (A~Z2)r(A ~X2) (12.41) 

Then  using (12.40) and (12.41), (x 1, x2) is t ransformed to (x 1, x'2) as 

x 1 = (A 1Xl)X 1 (12.42) 
, 

x 2 = (A2X2)x 2 (12.43) 

and plugging (12.42) and (12.43) into (12.38) and (12.39) gives 

r, , r, , = 1 (12.41) Xl x1 + x 2 x2 

y = (W~ + Wz) 1((A~5~l)Tx'l + (A~Zz)rx~) (12.45) 

By differentiating (12.44) and (12.45), we have 

T t - -  1 x~'Ax' 1 + x 2 ~ x :  = 0 (12.46) 

(AI]~I)TAx'I  + (AISZ2)TAx' 2 = 0 (12.47) 

Project ing onto  the constraint  space is equivalent to finding the intersection between a 
tangential line and the constraint  space. Therefore,  from the condit ion that  (12.46) is the same 
as (12.47), to find out  the tangential line, we have the following relationship: 

t 

x2 = (A~Z2)(A~Z0 ~x'~ (12.48) 

Then  plugging (12.48) into (12.44), we obtain 

xlr,xl, + x~r'(A~Z1) - r(A~Z2)r(A ~Zz)(A)Z1)- 'x'~ = 1 (12.49) 

Transforming (12.49) to the original coordinates,  we have 

x~I'WI x + x~Wzx I = 1 

Finally, rewriting (12.50) in terms of xl,  we have 

x[ (W,  + W2)x, = 1 

w~ = wi + w2 

(12.50) 

(12.51) 

(12.52) 

Q.E.D. 
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1 I N T R O D U C T I O N  

Sensor-based operation of autonomous robots in unstructured and/or outdoor environments 
has proved to be an extremely challenging problem, mainly because of the many uncertainties 
that are always present in the real world. In robot control, these uncertainties are primarily 
due to sensor imprecisions and unpredictability of the environment, that is, lack of full 
knowledge of the environment characteristics and dynamics. In this chapter, we present an 
approach that attempts to remedy some of these difficulties and derives from two basic 
principles, or philosophies. The first principle is based on the concept of "minimal models" 
for accomplishing given tasks and proposes to utilize only the minimum level of information 
and precision necessary to accomplish elemental functions of complex tasks. This approach 
diverges completely from the direction taken by most artificial perception studies, which 
conventionally call for crisp and detailed analysis of every available component in the 
perception data. The second principle that is proposed is based on the representation of the 
system's uncertainties using Fuzzy Set Theory-based approximations and on the represen- 
tation of reasoning and control schemes as sets of elemental behaviors. The next subsection 
provides an overview discussion of these principles and some motivating examples for 
introducing them into a generic approach for sensor-based robot reasoning and control. For 
this and the remaining discussions of this chapter, the context of mobile robot navigation 
has been chosen to help in providing specific application examples of the developments. 
Extensions of the developments into other application domains of robotics are, of course, 
feasible but are not specifically addressed in this chapter. The reader can find aspects of such 
possible extensions in several of the other chapters of this book. 

381 
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1.1 Background 
The past two decades have seen significant research activity take place in the area of 
sensor-based robot reasoning and control, in particular for application to the problem of 
autonomous mobile robot navigation. Several successful applications have been reported in 
which robots showed robust sensor-based navigation features in nonlaboratory, although 
fairly well-structured, corridor-type environments such as hospitals, energy producing and 
manufacturing plants, and/or warehouses [1-4]. One of the greatest challenges facing the 
research community is to extend the domains of application of autonomous robot 
navigation to the general class of unstructured environments, that is, environments that are 
generally dynamic, not fully known a priori ,  and typically unpredictable. The paramount 
complexity of the sensor-based navigation problem in unstructured environments arises 
mainly from the uncertainties that exist and become pervasive in the overall system (which 
includes the robot and its surrounding domain). In addition to the typical sensor 
inaccuracies (there are no such things as "perfect" sensors), the dynamics and unpredictabil- 
ity of the environment generate very large uncertainties in the perception and reasoning 
systems; it becomes impossible to generate complete or exact models of the system (robot 
and environment) and/or of its behavior. These uncertainties, in turn, typically propagate 
through the control systems and lead to further inaccuracies or errors (e.g., in the robot 
position, in the sensor orientation) that compound the problem by increasing the 
uncertainties in the perception. In these conditions, the overall cost (time, computational 
needs, computing resources, etc.) of achieving the type of precision that was common in 
structured and static environments jumps by orders of magnitude, either from a require- 
ment for much more refined sensors and perception data or from the need for very time- 
and computation-expensive methods such as uncertainty analysis and propagation 
techniques. The impact of this cost increase is particularly important for real-time systems 
(where real-time is defined as the guarantee of producing a response within a prescribed 
amount of time), which become much more difficult to design if not impractical to 
implement in realistic situations. 

Humans, on the other hand, seem to cope very well with unccrtain and unpredictable 
environments, often relying on approximate or qualitative data and reasoning to make 
decisions and to accomplish their objectives. Furthermore, humans seem to gather informa- 
tion in what we will refer to as the "approximate first" fashion: they first look for and perceive 
some "general-type" information, of a symbolic, iconic, approximate, or even "blurry" nature, 
and then progressively focus their perception on details, particular regions, or further 
precision as they judge necessary to supplement the "general" information. This is quite 
opposed to the approach that conventional artificial perception techniques seem to pursue; 
that is, precision-aimed analysis of every piece of acquired data is performed first (e.g., every 
pixel in every region of every image produced by a CCD camera), followed by progressive 
extraction of more and more "general" information through successive applications of 
"filters" or mathematical models (e.g., edge finders, region extraction, analyses of geometric 
properties). In this progressive processing, each extractive pass generates more "general" but 
also more "approximate" information because of the cumulative propagation of the basic 
uncertainties existing in the original data. In other words, humans seem to perceive and 
reason using information cycles progressing, on an "as needed" basis, from "general and 
blurry" to "precise and detailed," whereas conventional artificial perception systems seem to 
operate using the opposite direction, from "detailed analysis of every data" to "general" 
information extraction. Quite a difference, indeed. 



1 INTRODUCTION 383 

1.2 Need for Minimal Models 

One of the significant features that humans exhibit when they reason is their capability to 
make rapid trade-@ among various aspects of their inferencing. In particular, humans are 
very apt at trading the quantity and precision of the information they could acquire or derive 
(but chose not to) for some other characteristics of the reasoning process that they deem 
much more essential in accomplishing their objectives. Speed of achieving a decision, for 
example, is one of the most intuitively known factors for which humans will trade off 
precision or quantity of information. There are, of course, many other factors that humans 
will trade off in their reasoning, but for the sake of analogy with real-time sensor-based 
robotic systems, speed versus quantity and precision will be the focus of our discussions here. 

It is interesting to note that people who are consistently successful in resolving previously 
unencountered challenges in changing environments are those who deliberately change or 
adapt their reasoning to correspond to the situation at hand; that is, they consistently look 
for a reasoning strategy that has a chance of solving the problem, find what the "right 
amount" of information to implement that reasoning is, and then adapt their information- 
gathering process to focus (and generally in an exclusive fashion) on acquiring that particular 
information. The key, therefore, to successfully and consistently accomplishing objectives 
over a variety of tasks in real-time conditions seems to consist of finding what the "minimal 
amount" of information needed to reach the desired goals is and what other nonessential 
process can be traded off so that focus or priority can be given to acquiring the essential 
information first. For robotic systems, this translates into capabilities to (1) select, on a 
task-dependent basis, the minimal information, be it qualitative or quantitative, that can be 
assembled (with available resources or from memory) and is needed to reach any decision 
that would satisfy the goal and (2) process that information, with a reasoning scheme 
commensurate with the acquired qualitative or quantitative information, to produce a decision 
that meets the objective. It is clear that the selected "reasoning scheme" is also a part of the 
needed information and therefore becomes an integral part of the "minimal model" necessary 
to reach the objective successfully. 

To provide one illustrative example of what a minimal model may be for a specific task, 
consider the problem of a camera-equipped mobile robot having to follow a moving object 
such as an automobile, while maintaining a safe separation distance. The conventional 
artificial vision approach would consist of analyzing every pixel of the image and every detail 
of the background environment to identify the car and try to determine its motion 
parameters (e.g., through a very computation-intensive optic flow method). This seems quite 
an inefficient perception procedure, since the only desired information for the task is the 
approximate size in the image plane of the "form" that is ahead and has "approximately this 
color." On the other hand, if the system could first acquire an indication of the approximate 
size in the image plane of the "form" that has this approximate color, it could quickly 
determine its approximate location and recent size variation (e.g., the size in the image plane 
increases slowly, decreases rapidly) and take appropriate control actions relative to the task 
(e.g., speed up, slow down) using a few simple and computationally inexpensive rules, with 
the consequence that the system could react and operate much faster than in the previous 
case. Thus the capability to rapidly extract data that is approximate but has high information 
content, directly from perception systems, is one of the items that we argue would put 
"intelligent machines" on a better footing (with respect to speed, survivability, efficiency/cost, 
etc.) for operation in changing and unstructured environments by allowing the use of the 
necessary, albeit minimal, models to accomplish their goals. 
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1.3 Need for Approximate Reasoning 

From the discussion of the previous section, it is clear that the information to be processed 
during the reasoning phase may appear in either quantitative or qualitative form. Further- 
more, significant uncertainty ranges may be associated with the data, be it of a quantitative 
or qualitative nature. Methods for representing, encoding, and processing quantitative data 
are quite advanced today with the computer technology explosion. This is not the case, 
however, for qualitative data or information, for which few methods of representation, 
encoding, or processing are formally or firmly established. 

Qualitative reasoning (also termed approximate reasoning) refers to a set of methodolo- 
gies that have been developed to provide decision-making capabilities in systems where not 
all uncertainties can be fully engineered away (e.g., there are limits on maximum sensor 
precision, on the predictability of the environment). These methodologies attempt to capture 
some aspects of the reasoning methods typically exhibited by humans when controlling 
systems; that is, they aim at implicitly incorporating uncertainties in the information 
gathering and reasoning processes, rather than explicitly determining and propagating them 
through numerical calculations or representations. Several approximate reasoning theories 
and associated mathematical algebra have been developed over the past two decades (e.g., 
see methods and references in [5]), the one most commonly used today for applications to 
control systems being Zadeh's Theory of Fuzzy Sets [6-8]. This theory is at the basis of very 
successful implementations varying from control of subway cars, elevators, cement kilns, 
washing machines, cameras and camcorders, and inverted pendulums, to painting processes 
and color image reconstruction, and even to Ping-Pong-playing robots [-9-15]. 

One of the important factors that have prevented the widespread utilization of approxi- 
mate reasoning methodologies in real-time systems has been the lack of computer hardware 
allowing processing and inferencing directly in terms of approximate or linguistic or "fuzzy" 
variables (e.g., far, fast, slow, left, faster) and approximate rules (e.g., if obstacle is close, then 
go slower; if temperature is high and pressure is increasing, then decrease power a lot). 
Prospective implementations thus had to rely on simulations of the approximate reasoning 
schemes on conventional computers based on "crisp" processing. The result was a significant 
penalty in speed of operation, typically prohibiting applications in most "hard real-time" 
systems. Over the last decade, however, several innovations have allowed some bridging of 
this gap; in particular, unique computer boards have been developed that use custom- 
designed VLSI fuzzy inferencing chips [16-18] on VME bus-compatible boards. These 
systems can be directly programmed in terms of qualitative variables and rules and, when 
incorporated in a control system, can directly communicate and interface with robotic 
hardware (e.g., with motors, actuators). Such computer hardware developments have proved 
extremely useful in supporting the developments needed in the area of approximate reasoning 
for real-time "intelligent" machines and have been a strong basis [18, 19] for the activities 
reported here. 

FUZZY BEHAVIORIST APPROACH AND RULE GENERATION 
FOR VEHICLE NAVIGATION 

In everything that follows, we have selected the problem of autonomous mobile robots 
navigating in a priori unknown and unpredictable environments as an illustrative context to 
exemplify the methodologies for development of qualitative reasoning systems. This choice 
was motivated by the fact that the characteristics of the navigation problem rank very high 
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on the list of criteria that typically indicate a strong need for resolution through qualitative 
reasoning and decisional trade-offs: 

�9 The input to the control system, particularly when provided by sonar range finders and 
odometric wheel encoders, is inaccurate, sparse, uncertain, and/or unreliable. 

�9 No complete mathematical representation exists of the process termed "navigation," 
although, as demonstrated by humans, a logic for this process exists that can typically 
be represented and successfully processed in terms of linguistic variables. 

�9 The approximations involved in the numerical representation of the system and its 
environment (e.g., geometric representations, map discretization in grid) are significant. 

�9 By its nature, the behavior of an outdoor environment is unpredictable, leading to large 
uncertainties in its representation and frequent need for trade-off of speed versus 
precision. 

Several research groups have studied approximate reasoning techniques, in particular 
fuzzy logic, to mimic human reasoning capabilities in navigation tasks [18-22]. In all these 
applications, the sensor-based decision-making process has been implemented as a set of 
fuzzy rules that, together, express the desired navigation decisions of the robot for various 
combinations of the input data. Very successful results have been achieved when the number 
and complexity of the rules were small. When these increased, however, and/or the perception 
system grew more sophisticated (i.e., more sensory input data was provided), the typical 
difficulties encountered with large rule base systems emerged: the lack of established 
formalism for the development of rule bases-- in  particular with respect to completeness, 
interaction, and redundancy of the rules--made the actual coding of the fuzzy rules an 
iterative empirical process, requiring lengthy trial-and-error experiments. 

In an attempt to alleviate this general shortcoming of rule-base system development, we 
proposed the "Fuzzy Behaviorist Approach" (FBA), which provides a formalism for the 
development of fuzzy rule systems for control of autonomous robots [19, 23-26]. The basic 
premises underlying the FBA are as follows: 

1. Each action of a robot results from the concatenation of elemental behaviors. 
2. Each elemental behavior is a direct mapping from a single stimulus mode to a single 

output control. 
3. Each behavior is represented by one or a set of fuzzy rules that are defined by the 

membership functions of the rule's antecedent (stimuli) and consequence (output 
controls). 

4. Each mode of stimulus corresponds to a single dimension of the input space and is 
independent, in a possibilistic framework, of other stimulus modes. 

5. Each type of input data provided by the sensors is fuzzified with a membership function 
expressing, as a possibility distribution, the uncertainty associated with the specific 
measurement or calculation (see Section 2.3). 

6. Triggering of any behavior takes place when the current input data and the antecedents 
of the behavior's fuzzy rules have nonempty fuzzy intersection. The triggering strength 
transferred to the output control is dictated by the fuzzy intersections of the input data 
and the rule antecedents (see Section 2.1). 

7. In each of the output dimensions, the merging of all triggered behaviors is accomplished 
using the Union Operation of Fuzzy Sets. In the system discussed here, a typical "center 
of area" defuzzification scheme is then used to generate "crisp" control set points for 
those output variables that represent direct actuator commands. 
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8. For behaviors affecting the same output control dimension, the possible conflicts between 
behaviors with stimuli that overlap in the multidimensional input space must be 
resolved through the expression of the respective dominance between the various 
behaviors (see Section 2.4). 

In the following subsections, the implications of these basic axioms for the development 
of FBA-consistent rule bases are discussed in detail. 

2.1 Basic Fuzzy Inferencing 
The inferencing methodology utilized in the FBA is inspired by the Theory of Fuzzy Sets 
(TFS). In what follows, the reader is assumed to have only a very basic knowledge of this 
theory. If necessary, Refs. I-6] to [9], as well as many textbooks, can also provide further 
understanding of the foundation of this theory. In the TFS, the function lax(X ) defining the 
membership of an element x in a subset X of a universe of discourse U can take any value 
in the interval [0, 1], rather than only the discrete {0, 1} values (0 for does not belong, 1 for 
belongs) used in conventional (crisp) set theory. The function lax(X) thus defines the degree 
of membership of the element x in X. Such a subset X of U is termed a fuzzy (or approximate, 
or linguistic, or qualitative) variable for reasoning on the universe of discourse U. 

In the FBA, reasoning is embodied in programmable "production rules" operating on 
qualitative input and output variables, as in 

IF (A is A 1 and B is B 1 and C is C 1 and D is D 1 and. . . ) ,  

THEN (E is E 1 and F is F 1 and . . . )  (13.1) 

where A1, B I , . . . , F I  are qualitative variables whose representative membership functions 
define the rule, and A, B, C . . . . .  F are the time-varying qualitative input data and output 
variables analogous to memory elements in conventional production systems. 

The Fuzzy Set theoretic operations can be directly applied to qualitative variables and their 
membership functions on the same universe of discourse: given two subsets A and B of U, 

laA~R(X) = min(laA(X), laB(x)) 

laA~B(X) = max(laA(X), laB(x)) 

(13.2) 

(13.3) 

The laws of logical inferences including modus ponens, Cartesian product, projection, and 
compositional inferences (e.g., see Refs.[6], [7], and [8] for detailed description of these laws 
of inferencing) can also be applied to multivariable systems. In particular, the extension 
principle is used in the mapping between a set A of the input universe of discourse U and its 
extension through F to the output universe of discourse V, as: 

laV(A)(V) = Sup (la,t (u)) (13.4) 
u 

where v = F(u), u ~ U, v ~ V. 
For VLSI implementations such as those described in Refs. [16] and [17], each fuzzy 

variable is represented by its membership function discretized over a (64 x 16) array of 
(x, la(x)) values. Equations (13.1)-(13.4) can thus be easily implemented using series of rain. 
and max. gates, with all rules operating in parallel. Figure 13.1 schematically represents an 
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FIGURE 13.1 
Schematic of a fuzzy inference with two rules operating on two input and one output channels. 

inference with two rules: IF (A is A 1 and B is B1) T H E N  (E is El), and IF (A is A 2 and B 
is B2) T H E N  (E is E2) , operating on two fuzzy input A and B and producing a composite 
membership function for E. 

The data from the sensors, A and B, are first matched within their corresponding IF clause 
in each rule to determine the degree to which they verify each rule (e.g., ]~AisAI(X) = ]~A~AI(X)). 
The extension principle EEq. (13.4) and Eq. (13.2)] to implement the logical AND are then 
used to produce the truncated membership function (e.g., E~) for each rule. Merging of all 
the rules' output membership functions into a single membership function for each output 
dimension is done using the Union operation [-Eq. (13.3)]. If needed, for an actuator 
command for example, a "defuzzification" scheme, such as the "center of area" illustrated in 
Figure 13.1, can be used to generate single control set points from the output membership 
functions. 

2.2 Elemental Behaviors 

The overall inferencing, I, of the (robot) reasoning system represents a relationship between 
the input space (or stimulus space) U and the output space (or response space) V. The input 
space U is multidimensional, with each dimension representing a type of input data (i.e., a 
universe of discourse) on which the inferencing can act (e.g., distance to obstacle to the right 
of route, direction to the goal, distance to the goal). In other words, each input dimension is 
a mode of stimulus, s i ,  that can excite the inferencing. Similarly, the output space, V, is 
multidimensional, with each dimension representing a type of output data, that is, a type of 
control, cj, (e.g., turn control, motor # 1 speed) that can be implemented. Thus we have 

I :  U ( s  l ,  s z ,  . . . , s i ,  . . . , s , )  ~ V ( C  l , C z ,  . . . , C j ,  . . . , C m )  (13.5) 

The total numbers of possible stimulus modes, n, and of control modes, m, are of course 
dependent on the sensory and actuation capabilities implemented on the robot. Each 
dimension si or cj is a one-dimensional space on which fuzzy sets can be defined using 
membership functions in the conventional manner [6-9].  An elemental behavior, Bij, is thus 
defined as a direct mapping from s i  to cj: 

B u :  S i ---)" Cj  (13.6) 

which is represented by one or several fuzzy rules relating fuzzy subsets of si to fuzzy subsets 
of cj. As an example, assume s 3 represents the "direction to the goal" input dimension and 
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c 2 represents the "turn control" output dimension; then the behavior B32 , "turn control as a 
function of the goal direction," would include fuzzy rules of the type: IF (direction to the goal 
is left) THEN (turn value is positive), where left and positive are fuzzy subsets defined by their 
membership functions on s 3 and c2, respectively. 

Note that the fourth requirement of the approach specifies that the input space be 
designed such that the stimulus modes (input dimensions), si, are independent of each other, 
that is, such that the possibility for the ith input to be any fuzzy subset in si is completely 
independent of the possibility for any other input to be any fuzzy subset on their stimulus 
mode. In other words, the possibilities for any and all stimuli to occur are unrelated and 
independent of each other. This allows a behavior B u to be extended to a mapping B* from 
U t o  Vas 

B*' U(# ,  # ,  # , . . . , s , ,  # , . . . ,  # )  ~ V(~b, qS,...,cj, 4 , . . . ,  ~b) (13.7) 

where the # and q~ signs represent "nonsignificant" input and output dimensions, respect- 
ively. By definition, s i and cj are the "significant" input and output dimensions of behavior 
B*. For example, the behavior B32 has 3 (for input) and 2 (for output) as significant 
dimensions and would be extended to a behavior B~2 on the multidimensional input and 
output spaces with fuzzy rules now expressed as: 

IF (input 1 is anythinq and input 2 is anythiny and direction to the goal is 
left and input 4 is anything and . . . )  THEN (output 1 is do nothin,q and turn 
value is positive and output 3 is do nothinq and . . . )  (13.8) 

and the fuzzy subsets anythinq and do nothiny have membership functions uniformly equal 
to 1 and to 0 over the entire range of their respective input and output dimensions. 

2.3 Membership Functions 
One of the major challenges when implementing a Fuzzy Set-based approach is the 
generation of membership functions. In our system, there are two types that require attention: 
the membership functions representing the various qualitative variables used in the rules, 
such as A 1, B 1 . . . .  , E 1, in Eq. (13.1) or Figure 13.1, and the membership functions of the input 
data, such as A or B in Eq. (13.1) or Figure 13.1. 

For the first type, conventional approaches to fuzzy rule development usually define a set 
of basic qualitative variables and their membership functions first and then use conjunction 
or disjunction of these variables to express the rule condition variables (such as A1, B 1 in Eq. 
(13.1)). Here, we diverge from this approach and allow each A1, B1...  variables in each of 
the rules to be specifically designed on a behavior-by-behavior basis. This allows direct 
tailoring of the qualitative variables in each rule with respect to their specific behavior, with 
the added benefit of a dramatic saving in the number of rules needed to describe a behavior. 
Examples of behavior-specific membership functions will be found in the section on 
experimental investigations. 

For the second type, input data membership functions, it should be noted that conven- 
tional sensors typically provide data in "crisp" form, that is, they provide a single number 
that does not reflect the uncertainty that is always involved in any measuring process. In 
order to reflect the imprecisions or uncertainties of the measuring process that are neglected 
in the "crisp" numbers, it is desirable to add this uncertainty on the data, effectively mapping 
it to a fuzzy variable, prior to processing through the fuzzy reasoning scheme. This step 
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FIGURE 13.2 
Example of fuzzification membership function for typical "distance to obstacle" data provided by (a) an acoustic 
and (b) a laser range finder. 

(which has been termed fuzzification) is of course not necessary if the data is already in the 
form of a fuzzy set. 

However, if the data provided by the sensors is "crisp," then the intent of the fuzzification 
process is to add on the input data some level of information expressing the imprecision or 
inaccuracies involved in the measurement. This is of course sensor dependent and generally 
also environment dependent and, according to the Fuzzy Set framework [6-9] ,  should be 
expressed in terms of possibilities rather than probability distributions. As an example, Figure 
13.2 shows two membership functions that could be associated with a distance measurement, 
R, provided by a typical acoustic range finder and by a laser range finder working with phase 
shift. For the acoustic range finder, the example membership function expresses the fact that 
the possibility of the object being closer than R is small (e.g., due to specular reflections) and 
that it is very high at R and greater distances, decreasing with increasing distances. 

For the laser range finder with an ambiguity (wraparound) interval, W, of about 10 m and 
9 bits data (512 levels), the measurement, R, could correspond to any location within the 
resolution value of about 2cm (1000cm/512) at any of the wraparound distances. This is 
expressed by the successive square functions of width 2cm at the distances R + n W, 
n = 0, 1, 2 . . . .  In addition, if there are possibilities for the laser light to be fully reflected by 
the object surface, the measurement could correspond to absolutely any location. Depending 
on the environment characteristics, this possibility may be small, as that shown in Figure 
13.2, very significant (e.g., in mainly metallic environments), or nonexistent, and the 
respective membership functions should reflect these differences. One key point, however, is 
that "there are no such things as uncertainties on the uncertainties," and our approach has 
been to use single, most conservative membership functions for each sensor and the 
environment considered. 

2.4 Resolving Potential Interrule Conflict with Dominance Concepts 

A very important aspect of the FBA formalism that needs to be emphasized here is the 
requirement for independence and nonconflict of the stimuli of the behaviors affecting the 



390 CHAPTER 13 / SENSOR-BASED REASONING AND ROBOT NAVIGATION 

same  o u t p u t  controls .  This requirement simply expresses that only one action command can 
be sent to a single output control for any given stimulus (a single point in the input space). 
This leads to the concept that certain behaviors must "dominate," or "be dominated by," 
some of the other behaviors in one or more regions of the input space. This concept of 
dominance between behaviors, which exhibits itself in almost every action of our everyday 
life, is illustrated here using a simple example: consider two behaviors acting on the same 

output control, say the two object-holding fingers of a child or, for analogy, the gripper of a 
robot. Initially, the child or the robot has only one behavior, which is a "don't get burned" 
behavior and which could consist of one fuzzy rule expressing that IF (the object being held 
is hot) T H E N  (release the object). The input dimension for this behavior is "temperature of 
object being held," and the fuzzy set "hot" can be represented with a typical membership 
function as on the left-hand side of Figure 13.3. Suppose that the child is now being taught 
the value of things, or assume that the robot is being given a new perception device so that 
it can recognize the value of objects. A new behavior could be given to the robot or taught 
to the child, stating that IF (the object being held is expensive) T H E N  (don't release the 
object). The input dimension for this behavior is "value of the object being held," and the 
fuzzy set "expensive" can be represented with a typical membership function as that shown 
at the bottom of Figure 13.3. Taken separately, the two behaviors are fully independent and 
each has a different one-dimensional input space. They could therefore be developed and 
exhibited independently of each other. When these two behaviors are merged to create a 
more complex reasoning system, then the new input space for the system becomes two- 

FIGURE 13.3 
Example of possibly conflicting behaviors operating on different input dimensions and the same output dimension. 
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dimensional. Within that new system, the two behaviors are still independent because they 
trigger from stimuli on different input dimensions that do not affect each other. However, 
every time the child or the robot will handle one of great grandmother's priceless china cups 
filled with very hot tea, the implicit dominance of one behavior over the other in their 
overlapping region of the input space will be exhibited: the cup will, or will not, be dropped, 
signifying respectively that the "don't get burned" behavior dominates, or is dominated by, 
the "don't drop valuable objects" behavior at that particular point in the input space. 

It is clear that which behavior dominates the other may vary over the region of overlap 
(see Figure 13.3) and that (for both the child and the robot) some instruction, reinforcement 
learning, experience, and so forth may cause the dominance process and its resulting outcome 
to vary over time. However, it is also clear that an indication of what behavior dominates 
the other in what region of their overlapping areas in the input space does exist at all times 
within the child or the robot. For the robot, therefore, this dominance information must be 
included at the time the second behavior is added and merged with the other into the system's 
reasoning module. In the FBA formalism and in the automated system discussed in the next 
section, this is accomplished either through the "suppression" mechanism, in which the 
output membership function of the dominant behavior is modified so that its weight will 
appropriately overpower that of the other behavior in the center of area (c.a.) calculation, or 
using the concept of "inhibition," in which the input membership function of the "weaker" 
behavior is partially truncated so that the dominant behavior always triggers with greater 
strength. Although both suppression and inhibition mechanisms result in expressing the 
desired dominance, their concepts are quite different: one basically operates on the relative 
weight of the behaviors in the output space, whereas the other modifies the triggering 
conditions of the behaviors in the input space. This difference, which is transparent in the 
automated system, becomes significant when one seeks to couple the system with learning 
modules for refinement of the behaviors and/or of the rule membership functions through 
reinforcement learning. 

Figure 13.4 schematically shows these very intuitive suppression and inhibition mechan- 
isms on a simple example in which two rules, each with two inputs and one output, act on 
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the speed control of a robot. The first rule, which may be part of a behavior for speed control 
as a function of frontal obstacle proximity, states that if the obstacle is close (and the goal 
direction is anything) then the speed should be slow. The second rule states that if the goal 
is straight ahead (and the obstacle distance is anything) then the speed is fast. The 
membership functions uniformly equal to 1 over their entire range represent the nonsignifi- 
cant input dimensions of each behavior. In the example of the figure, the output membership 
functions of both rules initially are similar in weight at both ends of the speed spectrum. In 
situations in which both behaviors will trigger, that is, when the goal is straight ahead and 
an obstacle is very close in the frontal direction, then the merging of the two behaviors will 
result in speed that will be in the center of the range, say medium. However, it is clear that 
a medium speed may be too large to maintain the safety from obstacles embodied in rule 1 
and that rule 1 should dominate rule 2 in that situation. If using the suppression mechanism 
to express this dominance, the output membership function of the dominant rule, rule 1, is 
modified so that it overpowers the output membership function of rule 2 when the merging 
and defuzzification is performed; that is, it is made sufficiently large to "attract" the resulting 
center of area within a n  E h value of the initial output center of rule 1, as shown on the 
right-hand side of Figure 13.4. This suppression mechanism can be thought of as analogous 
to "conditioning" in which, for example, parents would repeatedly reinforce the outcome of 
one behavior of a child over another of his or her behaviors in specific ambiguous (or 
conflicting) situations. 

If the inhibition mechanism is used to express the dominance, then the nonsignificant 
input dimension of the dominated rule is truncated to prevent the dominated rule from 
triggering in the particular conflicting situation. This is essentially equivalent to removing 
some type of stimulus from a particular behavior and can also be seen as analogous to some 
inhibition conditioning in learning processes. A mathematical representation and implemen- 
tation of these two dominance mechanisms is presented in the following subsections. 

Suppression Mechanism 

Given a rule i and its output function/li(y) on the y output dimension, the center of mass y~ 
and weight m; of its output are given by 

- - -  Y/~i(Y) dy (13.9) 
Yi mi 

m i = ~ l t i (y)dy (13.10) 
3 

and, by definition, m~ > 0 and Ymin ~< Yi ~ Ymax, where Ymin and Ymax are the extremum values 
of the y output dimension. Assume that two rules, which control the same output y, have 
respective output membership functions #~(y) and lLj(y), with corresponding centers of mass 
and weights given by Eqs. (13.9) and (13.10). When both rules trigger under the same input 
conditions, the resulting output membership function is the union (or max operation) of #~(y) 
and/tj(y) and, assuming a "center of area" defuzzification scheme is used (other schemes and 
their respective representation could of course also be used as alternatives), the overall output 

Yo is 

Yo = miY~ + mjyj  (13.11) 
rn i + mj 
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From Eq. (13.11), it is clear that the relative value of the output weight of the rules can 
change the output Yo. In particular, if the weight of one rule is strong enough, the output Yo 
can be "attracted" within the output membership function of this rule, even though the other 

rule still "works"  and contributes to the overall output.  This constitutes the basis for 
implementing the suppression mechanism. 

In the general case, a rule, labeled rule h, may be required to suppress a set S of other 
rules i, i e S. The suppression mechanism can be expressed as the requirement that, when all 
the rules h and i, i e S, trigger, their combined output Yo must fall within an "allowable error," 
Eh, of the center of mass Yh of rule h. Typically, a small value E h indicates a "strong" 
dominance of rule h over the rules in S, while a large E h represents a "weak" dominance or 
what we will refer to as a "preference." The suppression condition can thus be written as 

Since 
lYo - Yh ~ Eh (13.12) 

we have 

mhYh + 2 miYi 
Yo - i~s (13.13) 

rrlh + 2 mi 
ieS 

lYh -- Yi[mi i~S 
mh + 2 mi ieS 

<~ E h (13.14) 

from which a minimum value for m h can be calculated. Since the distances between the 
centers of mass ]Yi-  Yh] are always less than or equal to Y~ = Ymax - -  Ymin, the selection of m h 
a s  

(-~h --1) i~s mi ~ mh (13.15) 

guarantees that rule h suppresses the other rules i, i e S. From mh, and the selected shape (e.g., 
rectangular, triangular) of the output membership function, the width of, and/or the full #h (Y), 
can easily be determined. 

Inhibition Mechanism 

In some cases, the suppression mechanism may not be implementable because the output 
membership function of the dominant rule cannot be made sufficiently overpowering to 
obtain the desired control result. This will typically occur when E h is specified to be very 
small [see Eq. (13.15)] or several dominance mechanisms need to be implemented within the 
rule base, resulting in progressively large weights calculated from Eq. (13.15). In those cases, 
the inhibition mechanism can be used instead of the suppression mechanism, and the 
dominance of rule h over rules i, i ~ S, is forced by appropriately truncating some of the input 
membership functions of rules i so that these rules do not trigger when rule h does. The only 
membership functions that are truncated are those in the dimension that is significant for 
rule h and nonsignificant for rules i. For example, if (A1, B 1CI ,  D1, E~,F~)  defines a rule 
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[see Eq. (13.1)] that has B as a significant input dimension and dominates rule 
(Az, B2, C2, Dz, Ez, F2) , then B 2 is the overlapping input to be truncated. The truncated 
condition B~ is expressed as B~ = B 2 F5/~1, where B1 represents the complement of condition 
B1. Note that this effectively removes the overlap of the rules' input in the multidimensional 
input space (and therefore the conflict between the rules) and that no truncation is necessary 
in the other input dimensions (that are nonsignificant for the dominant rule). 

2.5 FBA Control Architecture 

With the FBA features described in the previous subsections, rule bases can be generated, as 
will be discussed in the following section. At this point, it is important to note that all 
behaviors are acting simultaneously and in parallel as illustrated in Figure 13.5. The user 
should keep this in mind when designing rules and/or creating strategies for rule base 
assembly, as this concurrency of operation is what allows complex reasoning to be performed 
through simultaneous execution of multiple rules, but it also may lead to some of the 
conflicting situations resolved using the dominance concept described in Section 2.4. 

As illustrated in Figure 13.5, it may sometimes be desirable to group sets of rules in 
individual rule bases, each rule base corresponding to a particular task that the robot could 
perform. Aside from providing a clean organization of the overall rule base for robots that 
can perform many and varied tasks (e.g., navigation, manipulation, vision, and assembly), 
this grouping also illustrates how a complete rule base corresponding to an entirely new task 
can be added to the system through simple superposition. A modular hierarchy thus becomes 
apparent in a reasoning rule base, where rules can be grouped into behaviors, behaviors can 
be grouped into tasks, tasks can be grouped into activities, and so on. 

From Figure 13.5 and Eqs. (13.7) and (13.8), it is apparent that all input data is available 
to every rule in the system. When a new sensory mode is added to the robot, for example, 
when a new task (and its corresponding rule base) using a new sensor or a different input 
calculated from existing sensor data is added to the system, then the dimension of the input 
space is increased. The resulting modifications needed to the previously existing rule base are 
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FIGURE 13.5 
Schematic of the FBA basic control architecture. 
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very simple, because the new input dimension is "nonsignificant" for every one of the rules 
in the existing rule base. Therefore, according to Eq. (13.7), membership functions uniformly 
equal to 1 over their entire range need to be added to each existing rule in the new input 
dimensions. Similarly, if new actuation modes and corresponding action commands are 
added to the robot, then the dimension of the output space of the system is correspondingly 
increased, and membership functions uniformly equal to 0 over their entire range simply need 
to be added to each existing rule in the appropriate output dimension, according to Eq. 
(13.7). Growth of an FBA-type system, be it by addition of sensory modalities, output 
capabilities, or new behaviors, tasks, or activities to be performed, is thus straightforward, as 
it requires only a simple superposition of rules or entire rule bases on the already existing 
rule base and/or simple additions of "standard" membership functions to all the existing 
rules. 

3 RULE BASE GENERATION METHOD AND AUTOMATED SYSTEM 

Just as different people may use different strategies, different rules, and different qualitative 
variables to express their navigation process and still navigate efficiently "in their own way," 
several strategies may be used to embody a particular process in a rule base; that is, there is 
not a single or unique rule base representation of a given process. For example, a rule base 
for obstacle avoidance may be built on the basis of a distance-to-obstacle strategy, as was 
done in Refs. [18] and [19], with behaviors organized and developed for input conditions in 
which obstacles are very near, near, far, very far, and so forth. It could also be built on the 
basis of the direction to obstacles, with behaviors organized and developed for obstacles 
located on the right, center, or left of the travel direction. Because of the requirement of our 
FBA for each behavior to trigger from a single input dimension, the expression in rules of 
various possible strategies may appear quite different, even though the overall process and 
resulting actions of the robot may be similar. Thus, one of the very first activities that a user 
should perform when developing an FBA-based rule base is to develop a "strategy" for 
representing the reasoning scheme embodied in the rule base. This will include the defining 
of what variables will constitute the input and output of the system, depending on the type 
of data and control modes available in the hardware system. From this strategy, an initial 
expression of the behaviors and rules, possibly written in "qualitative" terms, can be 
produced, for example, IF goal is to the left (alternatively, straight ahead, right), T H E N  turn 
left (alternatively nothing, right), or IF obstacle is far T H E N  speed is fast. At this point, the 
user should also define the qualitative values, or fuzzy sets, such as left, right, far, that are 
used in the qualitative expression of the behaviors or rules, by defining their membership 
functions (e.g., see Figures 13.1-13.4 and Section 2.3). When generating the list of rules in 
"qualitative" form, the user needs to verify the proper implementation of the FBA principles 
listed in Section 2. This is generally easily done and the method can be automated. In fact, 
to ease the development and modification of rule bases for our experiments, we have 
developed a computer system to automate this process. In what follows we will present the 
methods and processes for the development of FBA-based rule bases by describing our 
automated system, so that the reader can better perceive both the FBA formalism and its 
methodical implementation. 

In the current version of our automated system, each rule is assumed to be of the form 

I F ( A i s A  1 a n d B i s B 1  a n d C i s C ~  a n d D i s D ~ )  T H E N ( E i s E ~  a n d F i s F ~ )  (13.16) 
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therefore operating on four input and two output channels. This configuration was chosen 
in our version of the automated system because it corresponds to what is available on the 
custom-designed VLSI fuzzy inferencing chips and boards [16-18] that we utilize in our 
experimental work. However, extension to any number of input and output channels is 
possible, and the reader can very easily tailor an automated system for his or her particular 
conditions and applications if desired. 

In our automated system, the user inputs the strategy for the rules in a "qualitative" form 
using the format shown in Figure 13.6. The five-line format on the left and the four-line 
format on the right in Figure 13.6 both describe one rule. In either case, the first line gives 
the "reference name" of the rule, and the last two lines specify what the desired input and 
output of the rule on the "significant" input and output dimensions of the behavior are. For 
example, the five-line-format rule on the left of Figure 13.6 specifies that IF the input data 
in the second input dimension is near, THEN the output membership function in the first 
output dimension is centered at 20% of the x-axis range, while the four-line-format rule on 
the right specifies that IF the input data in the third input dimension is far, THEN the output 
membership function in the second output dimension is centered at 10% of the x-axis range. 
In the notation of Eqs. (13.5) to (13.7), n = 4, m = 2, and the rule on the left of Figure 13.6 
corresponds to a behavior B21 while that on the right corresponds to a behavior B32. 

If the subject rule must dominate other rules, then the five-line format on the left of Figure 
13.6 is used, with the second line listing the names of the rules or behaviors that are 
suppressed (or inhibited) by this rule and the third line giving the corresponding suppression 
parameter E (see Section 2.4). Use of the character "?" in the suppression list of line 2, such 
as "G?" in the example of Figure 13.6, indicates that the rule suppresses all other rules whose 
name includes the other character, in this case all rules whose name begins with the letter 
"G." If the subject rule does not suppress other rules, then the four-line format on the right 
of Figure 13.6 is used, where the first character of line 2 is the letter M followed by a number 
expressing the desired initial weight m of the output membership function (discussed in the 
following paragraphs), and the line giving the suppression parameter E is omitted. 

When the user has listed all the rules of the desired behaviors in the format of Figure 13.6, 
the automated system can generate a "skeleton" of the rule base and check whether it verifies 
the input-related requirements of the approach. In particular, the system constructs the 
four-dimensional input spaces for each of the two output dimensions, so that it can evaluate 
completeness of, and redundancy in, the rule base and report all instances to the user. For 
any region of incompleteness, that is, regions of the input space not covered by any of the 
behavior stimuli, the user decides on either the addition of a behavior to cover these possible 
stimuli, extension of the current behaviors (through extension of their input membership 
function) to include these input regions, or no modification if input data within these 
uncovered regions or "blind spots" are never expected to occur (for example, if these regions 
correspond to values outside the operating range of the sensors). For the regions of 
redundancy, that is, areas where stimuli from two or more behaviors are overlapping, the 

name : RN name : LF 
suppressing list : G? LF M : 
E : 50 or Outputs : 
Outputs : 20 - Inputs : 
Inputs : - Near - - 

FIGURE 13.6 
Input format for the automated rule generation system. 
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system reports every rule for which a dominance has not been specified but may be required 
because of the input overlapping. The user can then interactively add or modify the 
dominance specifications in lines 2 and 3 of each rule, until all requirements of the approach 
are verified and all desired dominances are expressed in the rule base. The process explained 
in this paragraph is iterated until no further modification by the user is needed in the list of 
rules in "qualitative" format. 

The actual generation of the rule base, including the suppression and/or inhibition 
mechanism, can then proceed as follows: initially, all rules are given a "standard" output 
membership function with a weight of 1 or, if specified, the weight following the letter M in 
line 2. The output membership function is centered at the percent value of the x-axis range 
specified in the one-before-last line of the "qualitative" expression of the rule (see Figure 
13.6). The system then checks the sets of rules that are affecting the s a m e  output dimension. 
If no suppression mechanism has been expressed between the rules because dominance is not 
necessary, then the output membership functions are unconstrained and they remain at their 
"standard" value. If a dominance has been expressed between two or more rules, then the 
dominant rule is the one that is modified if suppression is possible; otherwise the dominated 
rules are modified using inhibition, as explained in Section 2.4. The output membership 
functions are first finalized from the application of Eqs. (13.9) to (13.15) for the suppression 
mechanisms. As mentioned in a previous section, the membership functions defining the 
significant input fuzzy sets are defined by the user on a behavior-by-behavior basis (and can 
possibly be stored according to their "name" in a "membership function library"). Using 
these, the input membership functions in the nonsignificant dimensions that are affected by 
inhibition mechanisms are then appropriately modified. The full set of membership functions 
for the entire rule base can thus be generated by the automated system. Examples of such 
automatically generated rule bases can be found in the next section on experimental results. 

4 SAMPLE EXPERIMENTAL RESULTS 

The FBA and associated automated system were utilized to generate rule bases for the 
sensor-based navigation of autonomous robots and the resulting rule bases were tested on 
navigation problems in a variety of a pr ior i  unknown environments. In this section, sample 
results from some of these experiments are presented to illustrate the approach and the rule 
base generation process including the suppression and inhibition mechanisms. Actual paths 
taken by the robot in test environments are displayed to show the sensor-based navigation 
behaviors resulting from various rule bases. Note that, except for specifying the goal, no 
information on the environment is given a pr ior i  to the robot, nor is any map generated 
during the motion. The navigation, therefore, is purely reactive, that is, it involves no memory 
or real-time information storage of any type. Purely reactive systems are known to have 
limitations, and Section 5 will discuss an approach to remedy some of them. 

The first series of experiments took place in laboratory-type environments using our 
recently designed omnidirectional platform [27], pictured in Figure 13.7. The photograph in 
the figure shows the two batteries (rear right and rear left) and the seven-slot VME bus (center 
front), which hosts the fuzzy inferencing board. On top of the six threaded poles visible in the 
figure fits a ring of 24 acoustic range sensors mounted at the edge of the platform. The control 
system of the platform (detailed in Ref. [27]) includes a velocity loop servoing at 100 Hz on 
the commanded motor velocities. The motor velocities are very simply calculated from the 
desired translational and rotational velocities of the platform [27]. These latter velocities will 
be referred to hereafter as the platform speed control and turn control, respectively. 
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FIGURE 13.7 
The omnidirectional holonomic robotic platform prototype. 

The fuzzy inferencing chips and boards described in Refs. [16], [17], and [18] were used 
in this experimental work. Because these boards allow only inferencing on four input 
variables to produce two output variables, the sensory inputs to the fuzzy inferencing were 
selected as the goal direction and obstacle proximity in three sectors located at the left, center, 
and right of the travel direction. As shown in Figure 13.8, each sector was selected to 
encompass five sonars with an overlapping of one sonar between the sectors. In each sector 
the distance returns from each of the five sonars are weighed by a factor proportional to their 
firing direction and the smallest value is utilized to indicate obstacle proximity within the 
sector. Effectively, this corresponds to giving the platform the equivalent of three "very wide 
and blurry" eyes, each 75 ~ wide. For added flexibility in the series of experiments, the 
navigation goal specification was made user selectable with capability to specify the goal as 
a point or as a heading to be maintained (see the right-hand side of Figure 13.8) at the 
beginning of the experiment. When the goal is a point, the odometry system updates the 
position of the robot at each loop rate and calculates the relative direction to the goal point 
as input to the inferencing system. When the goal is a heading, a compass is used to provide 
directly the relative goal direction as the difference between the platform current heading and 
the goal heading. The two output channels of the inferencing were selected as the speed and 
turn control of the platform. Thus, with these input and output channels, behaviors 
corresponding to speed control (SC) and turn control (TC) as functions of goal orientation 
(GO) and obstacle proximity (OP) could be developed. 
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FIGURE 13.8 
Schematic of the three 5-sonar sectors providing obstacle proximity input data and of the two methods for 
calculating the goal direction depending on the mode of goal specification. 

4.1 Example of Basic Navigation Behaviors 

As mentioned previously, several rule bases, representing various "strategies," may be 
developed to solve a complex problem or to embody a complex behavioral process. Figure 
13.9 shows the rules for one of the rule bases we investigated for sensor-based navigation, in 
which front obstacle proximity is used only for speed control, while side obstacle proximity 
is used only for turn control. The behaviors shown in Figure 13.9 are thus organized as 
follows: 

GO ~ TC (3 rules) 

GO ~ SC (1 rule) 

"front" OP ~ SC (4 rules) 

"left" OP ~ TC (4 rules) 

"right" OP ~ TC (4 rules) 

The input file that was used to generate the rules through the automated system is shown 
on the left of the figure. Each group of four "qualitative" rule descriptions (in the format of 
Figure 13.6) of the input file is presented next to the automatically produced rule membership 
functions graphically displayed on the right side of the figure. Each of the 16 rules in the 
figure is displayed as a vertical arrangement of six graphs of membership functions. The top 
four graphs in each rule show the membership functions corresponding to the input variables 
A1, B1, C~, and D~ in Eq. (13.16), that is, the direction angle to the goal and the distances 
returned by the left, center, and right "wide blurry eyes," while the bottom two graphs 
correspond to the output variables E~ and F1, that is, the turn command and the speed 
command. The vertical axis of each membership function is labeled in bits (for the 
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Sample rule base for sensor-based navigation. 
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implementation on the VLSI chip) where the [1,0] interval is discretized over the 16 
{0, . . . ,  15} bit values. 

Note that every behavior, and consequently every rule, represents a mapping from only 
one input dimension to only one output control. In the other input dimensions, membership 
functions uniformly equal to 1 over their entire range signify that the behavior is not affected 
by stimuli in these dimensions or, in other words, that the data in these dimensions is 
"unimportant" or "can be anything." For the output controls that are not affected by a given 
behavior, a membership function uniformly equal to 0 over the entire range of that output 
ensures no contribution of the behavior to that particular actuator control. 

The three rules of the GO ~ TC behavior simply express that if the goal is to the center, 
left, or right, respectively, then the robot should make a zero, positive (i.e., left), or negative 
(i.e., right) increment of turn, respectively, and there is no command for speed change. The 
GO ~ SC rule states that if the goal is toward the back sector of the robot, the robot should 
slow down (i.e., apply a negative contribution of speed). The four rules of the front OP ~ SC 
behavior express that if the obstacles in front are very far, then a speed close to the maximum 
possible can be applied, and that the closer the frontal obstacles, the slower the robot should 
go, eventually stopping when the obstacles are dangerously close. Note that the weight of the 
velocity command (i.e., the membership function) increases with "increasing danger." 
Similarly, the eight rules of the OP --, TC behaviors express that the closer the obstacles on 
a side, the greater the increment of turn in the opposite direction and the "heavier" the turn 
command should count in the output control calculation. 

Note the large weight of the output membership function of the "very near" OP-- ,  TC 
rules, which results from this behavior having been selected as suppressing the GO-- ,  TC 
behavior, that is, expressing that when obstacles are very close, their avoidance is always of 
greater importance than tracking the goal. It is clear that without this expression of 
dominance, the GO ~ TC and OP ~ TC behaviors would often result in deadlock or 
oscillatory situations in which the robot would not turn at all or would oscillate between 
two orientations. This type of situation constitutes one of the very serious drawbacks of the 
navigation methods using potential field techniques and has been alleviated here using the 
suppression mechanism. 

Figures 13.10 and 13.11 show plots of actual runs made with the robot to illustrate the 
overall reactive navigation obtained with the automatic generation of fuzzy rules. These plots 
are also given here to provide an example of the effect on the navigation behaviors that a 
dominance mechanism (suppression or inhibition) can produce. In the figures, the shaded 
areas represent the obstacles that were placed in the room, while the path of the robot is 
illustrated using the succession of circles showing the position of the robot every 20 loop 
rates. In Figure 13.10, the rules shown in Figure 13.9 were used, which embody a very strong 
dominance of the obstacle avoidance (OP--.  TC) rules over the goal tracking (GO ~ TC) 
rules. Consequently, due to the almost constant proximity of the corridor walls, the 
suppression mechanism is quite effective in the early part of the run and the robot wanders 
around for quite a long time, guided principally by obstacle avoidance. It eventually gets 
positioned ideally to enter the corridor and then turns right, in a direction closest to the goal. 
Clearly, the dominance of the obstacle avoidance rules over the "move to the goal" behavior 
may be too strong in this environment. 

For the sample run shown in Figure 13.11, this dominance has been decreased; that is, the 
suppression parameter Eg h explained in Eqs. (13.12) to (13.15)] has been doubled from 20 to 
40 in the obstacle avoidance rules named LC, LN, RC, and RN (see input file on the left-hand 
side of Figure 13.9), and a corresponding rule base has been generated using the automated 
system. For comparison with the original rule base of Figure 13.9, Figure 13.12 shows the 
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FIGURE 13.10 
Actual run of the robot with strong behavioral dominance of obstacle avoidance over goal tracking. 

FIGURE 13.11 
Same as Figure 13.10 with lesser behavioral dominance of obstacle avoidance over goal tracking. 
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Modified OP ---, TC rules due to a change of suppression parameter from 20 to 40 in the RC, RN, LC, LN behaviors 
of the rule base of Figure 13.9. 

OP--* TC behaviors after they have been modified due to the change of the suppression 
parameter.  Only the turn control output  membership  functions of the LC, LN (the two rules 
on the left of the top row in Figure 13.12) and RC, R N  (the two rules on the left of the bo t tom 
row) rules have been modified, now exhibiting a lesser weight on the turn control. In Figure 
13.11, the robot  is seen to negotiate the entrance of the corr idor  much more rapidly because 
of the greater effect of the goal-tracking behavior,  resulting in a much shorter run to the goal. 

F rom an overall behavioral  point of view, the simple change of the dominance  of the 
"obstacle avoidance" over "move to the goal" behaviors in the rule base has t ransformed the 
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"shy" robot driven mainly by obstacle avoidance in Figure 13.10 into a "much braver" robot 
proceeding more rapidly toward its goal in Figure 13.11. Note that this "transformation" has 
been accomplished without modification of the qualitative logic embodied in the elemental 
behaviors. Also note that the change in speed when the robot exits the corridor and faces the 
open space in the upper right section of the environment is very similar in both sample runs, 
illustrating that, as expected, the effect of the speed control behaviors on the robot motion 
has not been affected by the change of relative dominance in the turn control behaviors. 

4.2 Extension to Robots with Kinematic Constraints 

One of the expected strengths of the FBA using elemental "human-like" behaviors is that the 
linguistic logic embodied in the behaviors should be invariant among systems of similar 
characteristics. In other words, for robots with similar perceptive abilities and motion 
capabilities, the linguistic expression of given behaviors, and therefore their representation in 
the fuzzy framework, should be the same for compatible input and output. For example, a 
"goal-tracking" behavior connecting the perceived goal direction to a rate of turn [e.g., IF 
(goal is to the right) THEN (apply increment of turn to the right)] should be invariant for 
any robot that has a means of perceiving the goal direction and performing the required turn. 
Using this property (and realizing that the rate of turn of a car is proportional to the steering 
angle of the wheels [2]), all navigation behaviors developed for the laboratory omnidirec- 
tional platform appear directly applicable to the driving of a car of similar size, except for 
behaviors that require a rate of turn too large for the car to perform because of its limited 
steering angle. The "very near" OP ~ TC rules (see Figure 13.9), which require the platform 
to perform high rates of turn (using its omnidirectional capability) when obstacles are 
detected at dangerously close ("very near") distances on the left or right of the travel 
direction, are the only ones that therefore would require attention when changing from the 
omnidirectional platform to a car with a small maximum steering angle. 

As a demonstration of this transportability of invariant behaviors from one system to 
another, the same behaviors and the same fuzzy rules that were utilized for the omnidirec- 
tional platform were used to implement the autonomous control of a car with a large limit 
on the steering angle, on the basis of the same three ~'wide and blurry" eyes and goal direction 
input. Figure 13.13 shows a simulation example of such a navigation in which the car has to 
reach a goal (in the upper right section) and then return to its start position (in the lower 
left section). Note that the out and return paths are different. Also note that the large 
maximum steering angle that has been selected for the car in this simulation allows a small 
radius of turn (e.g., see the sharp turn in the upper right section) and therefore prevents 
situations with very near obstacles. 

To take into account the car's limited radius of turn and to complete the navigation rule 
base for the driving of the car, a behavior had to be included to handle the situations in which 
very near obstacles are detected. Another strength of the FBA is its capability for superposi- 
tion of elemental behaviors allowing progressive addition of behaviors to the system to 
resolve situations of increasing complexity. Because the other basic behaviors assume 
collision-free navigation amid far and near obstacles, the situations involving very near 
obstacles would occur only when the car does not have enough space to complete a turn 
away from obstacles because of its limited steering angle and radius of turn and thus would 
require some maneuvers using reverse gear. By observing human reactions to such stimuli, a 
human-like response was created that can be expressed as follows: IF [obstacle is very near 
on right (alternatively, left)] THEN [steer right (alternatively, left) AND (back up)]. This 
response was further divided into a steer control behavior, "very near" OP ~ TC, and a speed 
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FIGURE 13.13 
Simulation example of the autonomous navigation of a car using three "wide" sonars and the same invariant 
navigation behaviors as for the omnidirectional platform. 

control (back up) behavior, "very near" OP ~ SC, to respect our approach's requirement for 
a single input dimension of behaviors. 

Both simulation and outdoor experiments were performed with the maneuvering 
behavior-augmented rule base. These experiments and results are presented in detail in Ref. 
[23] and are only briefly reviewed here to illustrate the augmentability and transportability 
of FBA-compatible rule bases. Once the basic fuzzy rule base (e.g., see Figure 13.9) 
augmented with the maneuvering behaviors had been tested for autonomous navigation in 
simulated environments [23], the system was implemented on a real car for outdoors 
experiments. Because of the unavailability of a car with automated actuation, no autonomous 
navigation tests were performed outdoors. However, the system was investigated for use as 
a "driver's aid" using one of the company cars. In this driver's aid mode, the same sensors 
and inferencing system as in the previous experiments are used; however, the commands 
produced by the rule base are displayed to the driver to guide him or her in driving the car. 
The driver conventionally uses the gas and brake pedals and the steering wheel to implement 
the commands that are displayed on a portable computer screen located next to him or her 
in the cabin (see Figure 13.14). During these tests, the driver is prevented from seeing the 
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FIGURE 13.14 
Photograph of the inferencing results displayed as '~qualitative" commands on the computer screen located inside 
the cabin. 

environment while driving by having to drive in the "backward" direction while looking at 
the screen in the cabin. Note that the commands are not displayed to the operator as crisp 
control values but as bars of variable lengths over the generic speed and steering scales, 
effectively providing only the direction of the command (left or right, forward, or back) and 
the relative strength (i.e., more steering, faster, slower, etc.) which the driver should apply on 
the controls. Had a speech synthesizer been available on the portable computer, these 
commands could have been given in linguistic form using a few simple words. 

The types of environments in which the tests were performed were the diversely occupied 
parking lots of Oak Ridge National Laboratory (ORNL), as can be seen in the background 
of the photograph in Figure 13.15. In these types of nonengineered environments, the car was 
successfully driven in the "blind driver" aiding mode. With the nonnegligible reaction time 
of humans and the short clearances, sometimes less than 3 m, provided by the parking lot 
corridors, dynamics and safety considerations called for speeds of up to but not exceeding 
10 km/h to be used in the experiments. It was interesting to observe each operator develop 
his or her own interpretation of, and response to, the relative and qualitative commands 
displayed on the computer screen, leading to different routes and maneuvering situations for 
the same start and goal positions. From the system's development point of view, this 
inclusion of the human in the control chain effectively consists of including a source of 
unpredictable noise and delays in the actuation system of the autonomous operation mode. 
The successful operation of the rule base in this mode of driving thus provided a stringent 
robustness test of the qualitative inferencing scheme and navigation system. 
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FIGURE 13.15 
Photograph taken during one of the outdoor sensor-based navigation experiments with driver's aid mode in one of 
the ORNL parking lots. 

AUGMENTING THE SYSTEM WITH MEMORY A N D  
MEMORY-PROCESSING BEHAVIORS 

In the previous sections, we discussed the FBA and its use for the development of approxi- 
mate sensory data-based reasoning systems for robot control. The resulting fuzzy rule bases 
consist of a superposition of elemental fuzzy behaviors that represent direct mappings from 
the perception systems to the motion controllers. This essentially produces a purely reactive 
system that has no possibility for temporal reasoning because it does not involve any on-line 
memorizing or storing of information. Due to this totally reactive nature, such reasoning 
schemes can encounter problems such as infinite loops and limit cycles. Adding a memory 
and memory-processing capabilities to an existing reactive system is, of course, one method 
for remedying such undesirable phenomena. 

In this section, we discuss how to perform the addition of memory-related behaviors to 
an FBA-based robot control system. It is important that these new behaviors be developed 
in such a way that they conform to the formalism of the FBA in order to preserve the 
parallelism of the existing control system's architecture and other desirable features (e.g., 
augmentability, transportability, dominance concepts) of the FBA. As in the previous 
sections, we will present the approach through an illustrative example within the context of 
an autonomous robot navigating in a priori unknown environments, dealing in particular 
with the recognition and avoidance of limit cycles. In this example, the robot identifies a limit 
cycle when it recognizes that its current position and motion direction approximately 
correspond to some that it previously encountered. The robot then uses "virtual obstacles" 
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to avoid these regions of local minima. Other ways of detecting and avoiding navigation limit 
cycles are certainly feasible; however, this method is selected here mostly for the purpose of 
providing a simple illustrative implementation of the concepts. 

5.1 Architecture 

Figure 13.16 shows the conceptual architecture and corresponding typical flow of control for 
enhancing the basic reactive system with memory and memory-processing capabilities. The 
lower part of the figure shows the architecture of a basic reactive system similar to that which 
was described in Figure 13.5 of Section 2.5. In Figure 13.16, memory (or information storage 
capability) is added to the basic reactive system, and memory feeding behaviors are 
responsible for processing and sending sensor data to the memory. This data is stored and 
maintained in memory in an orderly, useful manner by memory management behaviors. 
When necessary, data from the sensors and/or the memory are used by memory utilization 
behaviors to perform various memory-dependent functions, for example, recognize limit 
cycles or infinite loops so they may be avoided, as will be discussed here in the illustrative 
example. When these memory utilization behaviors are activated, they can act in three ways: 
(1) send commands to the actuators, (2) modify the data stored in memory, or (3) modify the 
processed sensor data that serves as input to the basic reactive system. Note that, in all cases, 
the reactive behaviors themselves are not modified; only the input, output, or memory data 
is affected. 

A very important aspect of this architecture is that it preserves the basic parallelism of 
execution of all the behaviors in the system, thereby maintaining the FBA principles and 
associated formalism and ensuring suitability for implementation on very fast, parallel 
processing-based VLSI fuzzy inferencing chips and boards (e.g., see Ref. [16] or [17]). 
Although not conspicuous in the diagram of Figure 13.16, this parallelism is quite obvious 
in the system data flowchart of Figure 13.17. In this chart, the memory is clearly seen as a 
"fact-providing" device, analogous to the robot sensors. Together, these two devices consti- 
tute the robot perception system at any given instant in time (i.e., a given loop rate). The raw 
perception data (from memory or sensor) is processed to produce the input data to the 
behavior-based system. In a similar fashion, the output of the behaviors, that is, the action 
commands, are processed to generate either an actuator move or a modification of stored 
information. Together, the motion generation and information-changing devices constitute 

Memory Management 
Behaviors 

Sensors ~ N ~ 1  Reactive Behaviors Actuators 

FIGURE 13.16 
Overall architecture of memory-enhanced FBA-based robot control systems. 
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FIGURE 13.17 
Flow of control and data in a memory-enhanced FBA system. 

the robot response system. In Figure 13.17, example behaviors that are called reactive, 
memory feeding, memory management, and memory utilization in Figure 13.16 are labeled 
R, F, M, and U, respectively. Table 13.1 shows typical input-output  data for each of them, 
illustrating their roles and functioning. However, it should be clear that for the reasoning 
system, all behaviors are similar in nature and operate in the same fashion. They process, 
concurrently and in parallel, data from the perception system to generate data (action 
commands) for the response system. In the following section, a sample implementation of this 
approach for limit cycle detection and avoidance is presented to illustrate the functioning of 
the proposed architecture in a very simple case. Of course, other methods or behaviors could 
be implemented for the same purpose using the overall memory-enhanced FBA approach 
because, as discussed in previous sections, several reasoning strategies are usually available 
to resolve a particular problem successfully. However, the efficiency of this simple illustrative 
implementation should provide a clear example of the role of the memory-enhanced FBA in 
increasing the reasoning capabilities of "intelligent" robots. 

5.2 Sample Implementation for Detection and Avoidance of Navigation Limit Cycles 

For the illustrative implementation described in the following subsections, we use the same 
computational and experimental framework as was described in the previous sections, in 

Table 13.1. Typical Input-Output Data for Various Types of Behaviors 

Type of Behavior Type of Perception Data Type of Response Data 

Reactive Sensor 
Memory Feeding Sensor 
Memory Management Memory 
Memory Utilization Sensor and/or Memory 

Acuator Command 
Modify Information 
Modify Information 
Actuator Command and/or 

Modify Information 
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FIGURE 13.18 
Sample run without the memory behaviors. The robot rapidly enters a limit cycle oscillating against the far wall of 
a local minimum nearest the goal. 

particular, the autonomous omnidirectional platform equipped with a set of 24 ultrasonic 
sensors. The shortcomings of a purely reactive navigation system with respect to the potential 
occurrence of limit cycles can be very easily illustrated: Figure 13.18 shows a navigation run 
with a purely reactive scheme, that is, without the use of memory or temporal information. 
The robot is placed in a room that constitutes a very strong local minimum. After initially 
moving straight toward the goal, the robot quickly finds itself oscillating back and forth in 
a limit cycle against the far wall of the room. The robot will remain in a limit cycle in this 
strong local minimum area due to its lack of temporal reasoning; without memory, it cannot 
"remember" and detect that it accomplishes the same path repeatedly. Indeed, a system with 
no memory or temporal information storage capability of any type cannot detect limit cycles 
and therefore cannot avoid them. 

The basic principle of limit cycle detection and avoidance that is used in the illustrative 
implementation here consists of giving the robot the capability to memorize the current 
status of absolute position and speed so that, at a later date, it can detect limit cycles as 
"having passed here already" and consequently perform appropriate reasoning to avoid 
further looping. The robot identifies a limit cycle when it recognizes that its current position 
and motion direction approximately correspond (in the sense of Fuzzy Sets) to some 
previously encountered. Thus, memory-feeding behaviors can be developed that are respon- 
sible for generating the robot's position and speed data at each sampling period and for 
sending them to the memory for storage. Memory management behaviors can also be 
developed that are responsible for storing and maintaining this data in an orderly, easily 
retrievable manner. Then memory utilization behaviors can use both stored and current 
sampling data to identify previously visited positions, leading to the recognition of limit 
cycles. The following paragraphs give examples of how these behaviors can be very simply 
implemented. 

Memory-Feeding Behaviors 

For its navigation, the robot already uses its sonar and wheel encoder readings to calculate 
its x, y position coordinates, speed, and orientation with respect to the absolute coordinate 



5 AUGMENTING THE SYSTEM 411 

frame (taken as the initial position and orientation of the robot) using simple odometry 
calculations. The function of the memory-feeding behaviors is thus simply to obtain this data, 
pass it through an intermediate buffer, and eventually transfer it to the memory management 
behaviors for storage. The use of such a buffer for temporary storage of new position 
information prevents the control system from mistaking two consecutive sets of position data 
as being approximately the same position with the same orientation. In our example 
implementation, this buffer queue holds 10 sets of position data, essentially producing the 
necessary "delayed remembrance of positions" while the robot navigates. 

Memory Management Behaviors 

To manage and ease the retrieval of previous robot positions in memory, a conventional 
hashing technique is used here as an example: a memory management behavior stores each 
new set of data into memory according to the following formula: 

1 y2 1 3 hashvalue = �89 2 + X Y + -~ + -~X + ~ Y  (13.17) 

where X = x/(size of grid) and Y = y/(size of grid). Position memory is split into four 
sections representing the four quadrants in a two-dimensional Cartesian plane. Each 
quadrant is broken into grids in accordance with formula (13.17) as shown in Figure 13.19. 
A linked list holds all positions within a particular grid. These linked lists are stored in an 
array indexed by the hash values. These indices represent the different grid elements sketched 
in Figure 13.19. 

As described in the following subsection, the system uses the concept of "virtual obstacles" 
to avoid areas detected as dead ends or limit cycles. Once a virtual obstacle is created, all 
stored positions falling within the bounds of that virtual obstacle are no longer needed and 
should be forgotten by the control system. Another memory management behavior frees the 
precious memory space containing all of these positions. Because of the large number of 
positions typically stored during a limit cycle recognition, large portions of memory are freed 
up upon creation of a virtual obstacle. This behavior may be thought of as an example of 
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FIGURE 13.19 
The robot's surrounding environment is represented as a two-dimensional Cartesian plane broken into grids in 
accordance with a hash formula. 
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"information sorting" behaviors that essentially "clean" the memory of no-longer-needed 
data. 

Separately from the position grid, the main navigation goal, specified as a relative x, y 
position and orientation of the robot with respect to its position and orientation at the start 
of the navigation experiment, is stored in the bottom of a stack. When the stack is empty, 
the robot has achieved its main goal and the navigation stops. A memory management 
behavior is also responsible for adding and removing from the stack the subgoals that are 
generated with the virtual obstacles, as explained in the following paragraphs. 

Memory Utilization Behaviors 
Memory utilization behaviors are developed to determine whether or not the robot has 
visited a particular position before, with or without the same orientation. In this illustrative 
example, these memory utilization behaviors consist of two fuzzy rules (the rules in the other 
memory utilization behaviors are simple "crisp" production rules triggering a conventional 
numerical procedure). These fuzzy rules compare the current position and motion direction 
of the robot with those stored in memory. One rule establishes recognition of the x, y position 
of the robot while the other determines whether or not the same motion direction exists. In 
these fuzzy behaviors, as well as all other behaviors involving checking for the relative 
distance or orientation between two robots' configurations (e.g., the "goal reached" or "goal 
proximity" behaviors discussed in later sections), the rules take the form 

IF [ F U N C T I O N  (P 1, P2) is zero] THEN [-INFORM-MOD] (13.18) 

where F U N C T I O N  represents the appropriate norm difference operator between the com- 
ponents of the two configurations P~ and P2, I N F O R M - M O D  represents a modification of 
memory information, and zero is one of the fuzzy sets representing the thresholded and 
approximate proximity. The interesting aspect of using fuzzy rules here, just as in the basic 
reactive system, is that the full strength of approximate reasoning using membership 
functions can be utilized. For example, the threshold of recognition of "having been here 
before" (in the fuzzy set zero) can be adjusted based on the precision (uncertainty) of the 
odometry sensors and the length of the already executed journey (during which position 
uncertainty increases). 

In this illustrative implementation, the robot detects that it is in a limit cycle or infinite 
loop through two consecutive recognitions of a previously visited position with the same 
orientation; that is, a point in the memory is revisited twice with the same motion direction. 
For this, the fuzzy rules just described increment a counter in each set of position and 
orientation data hashed in memory. When the counter reaches 2, a behavior activates a buffer 
in which the successive robot x,y position data are stored. When the counter reaches 3, a 
limit cycle has been recognized, and the avoidance scheme behaviors to exit and avoid 
reoccurrence of the limit cycle are triggered. These behaviors trigger the creation of a virtual 
obstacle and of a temporary subgoal to be placed on top of the goal stack. The robot then 
continues its navigation process, but now trying to reach this subgoal and taking into 
account this virtual obstacle. The virtual obstacle is formed by using the x,y coordinate 
values of all positions collected in the buffer between the two consecutive encounters, that is, 
while in the limit cycle. The minimum and maximum of these values form the points 
representing the four corners of the virtual obstacle. 

The subgoal is established on the basis of the position of the virtual obstacle just created. 
The space surrounding a virtual obstacle is divided into eight sectors and the sector opposite 
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the current goal is determined [see Figure 13.20(a)]. If that sector is one of the four corner 
sectors, the subgoal is placed at a 45 ~ angle from the corner in the opposite direction of the 
current goal, 1500 mm from the virtual obstacle [-see Figure 13.20(b)]. Otherwise the subgoal 
is placed 1500 mm from the middle of the virtual obstacle wall facing the chosen sector as 
seen in Figure 13.20(c). As mentioned in the previous paragraphs, subgoals are stored in 
memory in the goal stack and are removed in accordance with their accomplishments. The 
subgoal at the top of the stack is the active navigation subgoal. 

This method for computing a subgoal will sometimes create one in an unreachable 
position, that is, too close to an obstacle. To remedy this, a "goal reached?" behavior 
constantly checks for reachability of all existing subgoals (e.g., is a subgoal within a fuzzy 
distance of one robot diameter?). If a goal or subgoal that supersedes the current goal (i.e., 
is lower on the goal stack) is reached, then the current and all superseded goals are removed 
from the goal stack, and navigation continues. 

Following their creation, the virtual obstacles' data are kept in memory. At each sensor 
sampling period, a behavior checks each of the existing virtual obstacles, determines the 
sonar distances to them, compares these distances with the real sonar distances, and outputs 
the shorter of the two as the sonar readings to be used for the current time step reactive 
inferencing. In calculating distances to virtual obstacles, it is important  to realize that because 
of their rectangular shape, at most two walls of each virtual obstacle will be used at any given 
time. These are determined by the distances from the current robot's position to the four 
corners of the virtual obstacle being considered. Two possible cases exist: only one side of 
the virtual obstacle, that which faces the robot, is needed [-i.e., when the robot falls in one of 
the four side sectors shown in Figure 13.20(a)], or two walls, both facing the robot, are 
needed [i.e., when the robot falls in one of the four corner sectors of Figure 13.20(a)]. 

In the case in which only one wall is needed, the shortest distance between the current 
robot's position and the virtual wall is calculated. Then, based on the current orientation of 
the robot with respect to the initial orientation, the orientation in space of each sonar facing 
toward the virtual obstacle is determined. Assuming a 15 ~ cone angle for each sonar sound 
wave, the shortest sonar returns from the virtual obstacle can be easily computed. In the 
second case in which the robot faces two walls (i.e., a corner) of the virtual obstacle, the 
calculation method is the same as described for a single wall, but with the determination of 
which particular sonar intersects the corner being done first, to simplify the treatment of the 
other surrounding sonars on the two walls. 

There is a particular case that requires attention when creating virtual obstacles in the 

FIGURE 13.20 
(a) Environment surrounding a virtual obstacle broken into eight sectors; (b) and (c) examples of the location of a 
subgoal based on the position of the navigation goal and a virtual obstacle just created. 
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way described here: the robot may end up "surrounded" by virtual obstacles. In this case, 
the "discrete minima" behavior (which is included in the totally reactive system) is invoked. 
When the robot gets "stuck" in a discrete minimum, that is, all of its wheel velocities are zero, 
this behavior essentially "looks around," checking all of the sonar distances (including 
toward the back), finds the direction of the largest free distance, and sets a subgoal in that 
direction, three-fourths of the free distance away. Until it reaches this subgoal, the robot 
ignores all virtual obstacles. Once this subgoal is achieved, the robot continues its navigation 
using all virtual obstacles. 

5.3. Sample Experimental Results 
Experiments were performed in which the new memory-related behaviors were added to the 
existing totally reactive navigation system discussed in the previous sections. Figure 13.21 
shows a navigation run in the same environment conditions as those in Figure 13.18, but 
with the memory-related scheme and behaviors added to the control system. After two 
instances of noting an already visited position and orientation, the robot recognizes it is in 
a limit cycle. Virtual Obstacle 1 is created on the basis of the minimum and maximum x,y 
coordinate values collected. Subgoal 1 is created according to the position of the new virtual 
obstacle, and the robot navigates toward that subgoal. The robot reaches the subgoal and 
navigation then continues with the real sonar readings being overridden by the distances to 
the virtual obstacle when necessary. A very similar limit cycle occurs again, this time 
involving the creation of Virtual Obstacle 2 and Subgoal 2. With the control system repeating 
the process while keeping all virtual obstacle data in memory, the robot is progressively 
"forced" out of the "dead-end" chamber. This "dead-end" chamber is eventually "filled" with 
virtual obstacles, preventing reentrance by the robot, which can then successfully continue 
toward its original goal. 

FIGURE 13.21 
Sample run with the memory-related behaviors, illustrating the use of virtual obstacles and subgoals to force the 
robot out of a "dead-end" chamber. 
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FIGURE 13.22 
Sample run with the memory-related behaviors illustrating the use of virtual obstacles and subgoals, the "discrete 
minima" behavior, and the relative precedence of goals and subgoals. 

A slightly more complicated test environment can be viewed in Figure 13.22. This 
navigation test run exemplifies many different capabilities of the new memory-using navi- 
gational system. Navigation begins with the point labeled start. The initial orientation is 
shown by the arrow pointing right. The robot identifies a first limit cycle and creates Virtual 
Obstacle A and Subgoal 1. Upon reaching Subgoal 1, navigation continues with the use of 
Virtual Obstacle A. A new limit cycle is recognized and Virtual Obstacle B is created, along 
with Subgoal 2. Subgoal 2 is reached and navigation once again continues with the robot 
exiting the first "dead-end" chamber. A third Virtual Obstacle C and Subgoal 3 are created 
in the second chamber, but while attempting to reach Subgoal 3, the robot gets "stuck" in 
the upper right-hand corner of that chamber. The "discrete minima" (or "look around") 
behavior triggers, Subgoal 4 is created, and all virtual obstacles are ignored for the time 
being. Once Subgoal 4 is reached, the robot again looks for Subgoal 3. After reaching 
Subgoal 3, again using all virtual obstacles, the robot finds itself in another limit cycle and 
creates Virtual Obstacle D and Subgoal 5. However, Subgoal 5 is positioned in an 
undesirable location within an existing wall. In an attempt to find Subgoal 5, the robot 
generates Virtual Obstacle E and Subgoal 6. Subgoal 6 is reached and the robot continues 
to look for Subgoal 5. In doing so, it identifies reachability of the main goal and reaches it. 
Because the goal holds precedence over Subgoal 5, that is, it is lower on the goal stack, 
Subgoal 5 is pushed off the stack and forgotten. Navigation ends since the main goal is 
reached and the goal stack is empty. 
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6 C O N C L U D I N G  REMARKS 

Autonomous robot control in a priori  unknown, unpredictable, and dynamic environments 
requires many calculational and reasoning schemes to operate on the basis of very imprecise, 
incomplete, sparse, or unreliable data, knowledge, or information. In such systems, for which 
engineering all the uncertainties away from the hardware is not currently fully feasible, 
approximate reasoning may provide an alternative to the complexity and computer require- 
ments of conventional uncertainty analysis and propagation techniques. 

The concepts of Minimal Models and the Fuzzy Behaviorist Approach have been 
presented for the development of fuzzy rule bases embodying "human-like" behaviors in 
sensor-based decision-making systems. The concepts of suppression and inhibition of 
behaviors to resolve possibly conflicting behaviors have been described. An automated 
system has been developed that embodies all the FBA formalism and principles. This 
automated system can generate fuzzy rules from the user-provided qualitative description of 
a reasoning process. Examples of the use of the automated system to generate fuzzy rule bases 
for the sensor-based navigation of autonomous robots have been discussed. Sample runs of 
the robots have been presented to illustrate the overall navigation behaviors as well as the 
effect of a change in the interbehavior dominance expressed through the suppression and/or 
inhibition mechanism. Experiments with a real car have also been discussed to illustrate the 
capability of readily adding behaviors to the fuzzy rule base to resolve situations of increasing 
complexity and, as shown in the driver's aid feasibility study, the straightforward "linguistic" 
interfacing capability of the fuzzy behavior-based system. 

An approach to remedy some of the shortcomings of purely reactive systems has also been 
presented. This proposed approach calls for the addition of memory and memory-processing 
behaviors to the system, but, respecting the principles of the Fuzzy Behaviorist Approach in 
order to utilize the strengths of both Approximate Reasoning and the Behaviorist Theory in 
uncertainty-prone decision-making conditions. The proposed memory enhancement method 
also provides for preserving the existing system's architecture and its parallelism. Three forms 
of memory-related behaviors, memory feeding, memory management, and memory utiliz- 
ation, have been discussed for addition to existing, totally reactive, FBA-based robot control 
systems. The overall memory-enhanced FBA has been illustrated through a sample imple- 
mentation for the detection and avoidance of limit cycles in the sensor-based navigation of 
an autonomous robot in a priori unknown environments. 

A variety of lessons and observations can be drawn from these experiments. Several of 
these, relevant to the topics dealt with here, are listed and/or discussed in the following. 

�9 Entire FBA-consistent navigation codes or schemes can be developed that consist of 
about 20 to 30 fuzzy rules. Compared with the 50,000 or more lines of "crisp" coding 
that were previously utilized to accomplish the same task, the efficiency and gain in code 
development time, code and data storage space, and so on, of the approach can be great 
indeed. However, it should be noted that not all robotic processes may be as well suited 
for resolution through approximate reasoning as is the navigation task. The criteria 
listed in Section 2 can provide a good evaluation in that respect. 

�9 Our observations showed the approximate reasoning scheme to be much more robust 
and reliable than the previously used "crisp" codes when faced with sensor inaccuracies 
and environmental uncertainties. This seems to support the claim that, for situations in 
which precision is not the primary goal, robotic tasks can be very efficiently accom- 
plished using an approximate reasoning scheme but can also be made more robust with 
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respect to uncertainties through an implicit "folding" of these uncertainties within the 
approximate variables of the reasoning scheme. 

�9 As illustrated through the various experiments involving small omnidirectional and 
indoor robots and/or  an outdoor  car, approximate reasoning schemes can be built to 
embody very generic functions; that is, neither the sensory data nor the code itself need 
to be specifically developed for a particular robotic platform. This seems to indicate that, 
contrary to what is typically obtained with "crisp" logic codes, approximate reasoning 
schemes need not be system specific but rather can be f u n c t i o n  specific: they can embody 
a reasoning s t ra tegy  rather than a specific instantiation of the strategy. 

�9 An implication of this genericness of the approximate  reasoning schemes is the resulting 
straightforward transportabili ty of codes among various systems with similar perception 
and mot ion means.  

�9 Another significant consequence of this genericness of approximate reasoning schemes 
is, of course, their scale-up capability. As shown in the experiments, basic navigation 
schemes could be augmented and/or  enhanced with additional behaviors wi thou t  

rewriting the previously tested behaviors. The gain in development time resulting from 
this property of approximate reasoning schemes is expected to be substantial. 

�9 With respect to the minimal model concept, it should be noted that the sparsity of the 
data typically utilized with approximate reasoning schemes may be somewhat  mislead- 
ing. This sparsity exists only on the time scale of one sampling period. If accumulated 
over time, however (e.g., using memory-related behaviors), a very large part  of the 
environment is sampled because the robot and consequently the sensors are translating 
and rotating. This obviously brings the question of trade-off between the type of 
information which is minimally needed at the sampling rate versus that which is 
minimally needed at the overall task rate. It is clear that in making such trade-offs, 
consideration must  be given to the amount  of information that will result from 
accumulation over time of the data, rather than simply snapshot-type information. 
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direct drive robot, 76 
disc conveyor, 154 
discontinuous control, 220 
discrete event, 6, 352 
discrete scattering operator, 258 
disparate sensor, 150, 184 
disparate sensor feedback, 185 
disparity, 193 
dissipative, 274 
dissipativity, 271, 276 
distributed computing, 43, 46 
distributed computing architecture, 24 
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distributed operating system, 43 
DOE, 313 
driving force, 19 
dual-arm, 24 
dual-arm coordination, 24 
dual-robot coordination, 38 
dynamic, 11 

environment, 4, 59 
feedback, 95 
look and move, 61 
model, 8, 63, 161 
network, 258 
performance, 7 
programming, 95, 102 
visual tracking, 150 

E 
edge confidence, 325 
edge-following, 96 
eigenvalues, 189 
eigenvector, 189, 195 
elastic, 199, 221 
elastic collision, 220 
electrical servomanipulator, 290 
ellipse, 153 
ellipsoid, 189, 194, 358 
elliptic cone, 181 
encoder, 77 
end-effector, 92, 118, 158 
energy function, 95, 102 
enhancement, 315 
environmental model, 223 
equilibrium, 70, 228 
equilibrium point, 225 
ergonomically, 294 
error 

detection, 360, 361 
identification, 360, 361 
monitoring, 360 
recovery, 360, 362 
reduction term, 161, 162 

estimation and calibration, 153 
estimator, 70, 270 
event-based, 3, 5, 6, 8, 42, 161 

control, 16 
coordination, 25, 42 
dynamic model, 10 
impact control, 220 
motion reference, 18. 29 
plan, 15 
planning, 164 
robot tracking, 165 
tracking, 161, 165 

extended Kalman, 378 
eye-in-hand, 91, 92, 115, 150, 186, 192 

F 
FBA, 385 

FBA control architecture, 394 
feature 

based, 59, 93 
manifold, 65 
points, 81 
selector, 204 
space, 61 
tracking, 203 
transformation, 349, 357 
variance, 201 
vector, 67 

feedback, 5, 7 
feedback control, 183 
feedback linearization, 222 
feedback loop, 61 
feedforward, 61 
field of view, 196 
figure 8 motion, 74 
figure-ground, 95 
fine resolution, 204 
finite switches, 228 
fixed disc frame, 157 
flexibility, 218 
flexible, 246 
flexible joint, 5 
focal length, 196 
focal point, 190, 192 
focus, 187 
force 

control, 31, 147, 186, 218 
control law, 172 
controller, 222 
feedback, 42, 185, 188, 201 
regulation, 217 
resolvability, 197 
sensing, 218 
sensitivity, 201 
sensor, 245 
servoing, 185, 188 
torque sensor, 36, 150, 174, 226 
vision control law, 185 
vision servoing, 183 

frame, 94 
friction, 50 
friction/gravity-free robots, 279 
frictionless, 170 
fulcrum, 264 
fusing force and vision, 187 
filzT.y~ 381 

behaviorist approach, 384 
inferencing, 386 
set, 384, 386 
set theory, 381 

G 
GA, 328 
Gaussian, 62 
Gaussian noise, 368 
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general 
-ized Hough Transform, 111 
-ized coordinate, 25 
force, 27 
force space, 33 
position space, 33 
redundant joint space, 33 

generic, 96 
GENESIS, 328 
genetic algorithm, 328 
glass cockpit approach, 290 
global tracking problem, 162 
globally asymptotically stable, 175 
graphic controller chip, 77 
graphics, 95 
grasp, 147 
grasping, 151 
gravity compensation, 270 
gravity loading, 17 
greedy, 94 
greedy methods, 95 
gripper, 140 
ground conductivity, 314 
ground conductivity sensor, 330 
gyrator, 273 

H 
Hamiltonian, 11 
hand-eye visual tracking, 95 
hands, 219 
hazardous, 246 
hazardous sites, 93 
Hertz impact model, 221 
Hertz model, 220 
heuristic techniques, 6 
heuristics, 95 
hierarchical, 43 
high 

bandwidth, 188 
communication speed, 48 
level heuristic layer, 7 
productivity, 220 
ratio gears, 76 
speed, 52 

holonomically, 273 
Hooke's law, 198 
host computer, 77 
Hough Transform, 97 
human operator, 219 
human-like, 404 
Human-machine interface, 308 
hybrid 

control design, 169 
force-position control, 218 
hybrid, 36, 205 
hybrid control, 172, 186, 220 

hypersphere, 380 

I 
image-based, 150 

controller, 134 
tracking, 133, 140 

image 
convolution, 77 
differencing, 95 
digitizers, 323 
energy, 103 
force, 96 
Imageflow, 105 
Jacobian, 65, 81,201 
plane, 61 
resolution, 204 

impact control, 217, 218 
impact dynamics, 220 
impact force, 183, 186, 217, 222 
impedance, 247, 249 

control, 150, 186, 220, 271 
driving point, 251 
matching, 269 

impulsive, 220 
inductance, 247 
inertia matrix, 17 
inertial effect, 205 
information sorting, 412 
infrared sensor, 245 
inhibition mechanism, 393 
integrate, 150 
integration, 183, 348 
Intelledex IntelleVue vision processor, 166, 176 
intelligence, 348 
intelligent, 409 

highways, 92 
machines, 383 
manipulation, 147 
multirobot system, 42 
planning and control, 5 
robotic system, 3, 32 

intensity gradient, 204 
interface board, 77 
lnterframe displacement, 94 
internal force, 27, 29 
interpolation algorithms, 61 
inverse dynamics, 76, 79 
invertible, 75 
Investigation-decision, 5, 7, 30 
lterative, 94 
iterative learning, 269 

J 
Jacobian, 33, 65, 188, 191, 194, 353 
Jacobian inversion algorithm, 43 
Jacobian matrix, 18, 26, 188 
Jacobian scattering operator, 255 
jerk-free, 10 
jerk-free constraint, 11 
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joint 
control, 218 
encoder, 147, 206 
general redundant joint space, 33 
level, 3 
limits, 204 
motor dynamics, 24, 32 
servo, 70 
space, 5, 170 
torque vector, 17 
travel limits, 260 
velocity, 50 
flexible, 5 
wrist, 201 

JPL-NASA planetary rover, 347, 378 

K 
Kalman, 378 
Kalman filter, 61, 95, 184 
Khepera robot, 84 
kinematic, 11, 200, 245 
kinematic constraints, 404 
kinematic model, 62, 63 
kinesthesia, 294 
kinesthetic feedback, 296 
kinetic energy, 273 
KirchotFs laws, 253, 255 

L 
Lagrange multiplier, 355 
Lagrange's equation, 269, 270 
Laplace, 247 
Laplace frequency, 258 
Laplace transform, 229 
LaSalle's theorem, 226 
laser range camera, 314, 331 
learnability, 275 
learning, 328 
least squares algorithm, 176 
Lie derivative, 18 
linearized 

controller, 76 
dynamics, 76 
observer, 76 

linear 
bilinear, 250 
elastic model, 220 
feedback linearization, 222 
local linearization, 220 
motion, 81 
plastic model, 220 
time-invariant, 251 

linguistic logic, 404 
linguistics, 352 
load distribution, 27 
load sharing, 36 
local contrast, 93 
local linearization, 220 

look and go, 148 
low curvatureness, 99 
low-curvature points, 99 
LQG regulator, 94 
LRC, 331 
Luenberger-type observer, 62 
lumped parameter, 279 
Lyapunov, 355 
Lyapunov function, 70, 226, 230 
Lyapunov's direct method, 225 
Lyapunov's method, 370 

M 
machine tending, 218 
manifold, 68 
manipulability, 187 
manipulation, 115, 148 
manipulator singularities, 201 
manipulator stability, 186 
manufacturing, 92 
manufacturing work cell, 151 
Mars, 373 
Mars Pathfinder mission, 373 
master-slave, 24, 30, 43 
master-slave coordination, 23 
master-slave manipulator, 287 
material transfer, 218 
mathematical model, 5 
MB1 Port scattering operator, 254 
membership function, 388 
memory mapping, 176 
merge function, 322 
merge functions, 324 
microprocessor, 270 
MIMO, 95 
minimal models, 383 
minimization, 94 
minimum 

energy, 19 
energy plan, 14, 25 
energy planning, 162 
time, 19 
internal force, 30 

mobile robot, 84, 381 
model fitting, 131 
model reference, 95 
model-based controller, 60 
modeling error, 225 
modular, 245, 246 
moment of inertia, 72 
monocular, 116 
monocular system, 189, 195 
motion 

control law, 172 
field, 121 
Jacobian, 65 
Motion Tek controller, 166 
perceptibility, 187 
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motion (continued) 
plan, 8 
planning, 4, 148, 175 
reference, 6, 10, 19, 164 
reference base, 7 
reference variable, 6 
servoing, 150 

motor dynamics, 31 
motor friction coefficient, 72 
multi 

-arm coordinated control, 23 
-arm coordination, 30 
-arm system, 29, 46 
-fingered robot, 24 
-microprocessor system, 43 
-modal sensors, 323 
-ple cameras, 188 
-processor, 245 
-rate control system, 61 
-resolution, 352 
-robot coordination, 23 
-sensor fusion, 147 
-sensor integration, 188, 313 
-step velocity filter, 50 
intelligent multirobot system, 42 
Lagrange multiplier, 355 
premultiplier diagram, 200 
robot, 24 

muscles, 219 

N 
navigation behaviors, 399 
navigation task, 385 
negative definite. 8 
network theory, 251 
Newton-Raphson. 355 
nonlinear 

control, 68, 245 
controller. 60 
feedback, 8, 31,222 
feedback control, 4, 42, 171, 218 
oscillation model, 220 
regulator theory. 117 
switching nonlinearity, 261 

nonredundant rigid robot, 169 
nonrigid, 95 
nuclear remote operation, 285 
nuclear waste cleanup, 92 
numerical instability, 69 
Nyquist frequency, 251 

O 
OAT angles, 137 
object boundary, 93 
object motion model, 63, 74 
observability, 187 
observer, 70 
observer-based, 59 

observer-based controller, 70, 76 
obstacle avoidance, 36 
occlusion, 103 
on-line, 164 
optic flow, 383 
optical axis, 66, 117 
optical flow, 93, 194, 207 
optimal, 11 

control, 11 
estimate, 351 
load distribution, 30 
motion reference, 29 
parallel tracking, 162 
time and energy, 24 
time, 161, 162 

optimization, 323 
optimize, 27 
orthogonal, 194 
orthonormal, 118 
oscillation, 61 
outdoor navigation, 92 
overshoot, 61 

P 
P & P algorithm, 97, 100 
painting, 218 
PAN, 347, 360, 362 
parallel 

algorithms, 43 
guidance, 153, 161, 162 
interface, 176 
jaw gripper, 118 
optimal parallel tracking, 162 
tracking, 161 

parameter drifting, 7 
parameter estimation, 133 
parameter/threshold values, 322 
partially occluded, 91 
passive, 252 
passive network, 258 
passivity, 245, 252, 271 
path planning, 4, 5, 260 
PD controller, 18, 202 
perception. 149 
perception net, 370 
perception-action net, 347 
performance, 5 
periscopes, 287 
pespective projection, 63, 174 
perspective system, 95 
phase space, 5 
phase transition, 219 
photogrammetric, 60 
PID feedback, 270 
Ping-Pong-playing robots, 384 
pinhole camera, 190, 367 
pinhole model, 174 
pixel, 77, 96, 190 
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plan 
action replanning, 360 
base plan, 5 
event-based plan, 15 
event-based planning, 164 
intelligent planning and control, 5 
minimum-energy plan, 14, 25 
minimum-energy planning, 162 
motion plan, 8 
motion planning, 4, 148, 175 
path planning, 4, 5, 260 
planned error reduction, 161 
planner, 5 
planning, 3, 148 
planning and control, 6, 42, 147, 161, 164 
replanning, 4 
robot tracking plan, 163 
sensor planning, 187, 357, 358 
task planner, 29 
task plans, 29 
trajectory plan, 8 
trajectory planning, 4, 11 

planetary robotic science sampling, 362 
planning, 352 
planning and control, 6 
platooning, 92 
Poisson's ratio, 221 
pole placement, 8 
Pontryagin maximum principle, 11 
Popov's theorem, 274 
position based, 59, 150 
position control, 186 
position error, 21 
position-force control, 23, 30, 32, 36, 150 
positional variance, 201 
positive acceleration feedback, 223 
positive definite, 7, 69, 70 
positive definite function, 226 
positive real, 251 
possibilistic framework, 385 
possibilities, 389 
possibility distribution, 385 
potential energy, 273 
potential field, 4 
premultiplier diagram, 200 
principal axis, 189 
principal component, 201 
production rules, 386 
productivity, 217 
proportional and integral feedback, 32 
proportional derivative control, 270 
proximity sensor, 245 
pseudo-inverse, 199, 353, 356 
PUMA, 19 
PUMA 550, 81 
PUMA 560, 36, 60 
PUMA robot, 76 
pyramidal search scheme, 203 

Q 
quadratic equation, 158 
qualitative reasoning, 384 
quasi-static, 199 
quaternion, 247 

R 
reaction force, 224 
real time, 6, 29 
realization-theory, 95 
reasoning scheme, 383 
recovery, 360 
recursive least squares, 133 
redundancy, 24, 149 
redundant feature, 66, 74 
reference features, 68 
reference point, 121 
reflectance data, 332 
region growing, 322 
region growing algorithm, 327 
regressors, 270 
regularization, 93 
regulator problem, 133 
reliability, 204 
reliable, 149 
remote control, 285 
replanning, 4 
resistance, 247 
resolvability, 185, 194, 201 
resolve, 189 
resolved motion control, 218 
rigid, 95 
rigid object, 121 
rigid-object handling, 24 
robot 

anthropoid, 270 
calibration, 153, 157 
control, 161 
coordinated, 32 
D&D telerobot, 302 
direct drive, 76 
dual-robot coordination, 38 
dynamic model, 48 
event based robot tracking, 165 
friction/gravity free, 279 
intelligent multirobot system, 42 
intelligent robotic system, 3, 32 
Khepera, 84 
mobile, 84~ 381 
model, 63, 71 
module, 252 
multifingered, 24 
multirobot, 24 
multirobot coordination, 23 
navigation, 381 
nonredundant rigid, 169 
Ping-Pong-playing, 384 
planetary robotic science sampling, 362 
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robot (continued) 
PUMA, 76 
reasoning, 382 
six-link PUMA, 80 
telerobot, 245 
telerobotics, 285 
tracking, 161 
tracking plan, 163 
two-link, 71 

robust, 161,225 
robust grasping control, 165 
robust impact control, 222 
robust statistic, 322 
robustness, 5 
rotating conveyor, 151 
rotating part, 147 
rotation matrix, 21, 247 
rule-based, 188 

S 
sampled data system, 264 
sampling rate, 38, 224 
satellite docking, 92 
saturate, 61 
scattering operator, 250, 251,252, 254 
scattering theory, 246, 249 
Schunk grippers, 166 
scribing part, 149 
search space, 318 
segmentation, 313 
semi-rigid object, 91 
semipositive definite, 380 
sensor 

anomaly, 332 
assimilation, 185 
based, 3 
based control, 148 
calibration, 360 
complementary sensor fusion, 147 
disparate sensor, 150 
disparate sensor feedback, 185 
disparate sensors, 184 
feedback, 204, 260 
force sensor, 245 
force torque sensor, 36, 150, 174, 226 
fusion, 147, 148, 183, 352 
goals, 357 
ground conductivity sensor, 330 
infrared sensor, 245 
integration, 156, 183, 184, 213, 245 
multimodal sensors, 323 
multisensor fusion, 147 
multisensor integration, 188, 313 
parametric sensor planning, 358 
planning, 187, 357 
proximity sensor, 245 
resolution, 187 
resolvability, 183, 188, 197 

space, 191, 192, 201 
static sensor, 95 
suite, 316 
tactile sensor, 188 
ultrasonic sensor, 245 
visual sensor, 61 
wrist force sensor, 198 
wrist force-torque sensor, 147 

sensor-based control, 148 
sensor-fusion, 148 
sensory information, 5, 6 
servo code generator, 234 
servoing, 94, 148 
SGI Indigo, 105 
shared memory, 43, 105 
singular, 75 
singular cylinder, 67 
singular points, 64 
singular value, 69, 195 
singular value decomposition, 189, 380 
singularly perturbed, 224 
six-link PUMA robot, 80 
skew symmetric, 122 
SMART, 245 
smooth, 121 
snake, 95, 105 
snake constraint, 96 
snakes, 91, 92, 101 
SP-ID control, 274 
space, 92 
Spaceball Port, 254 
spheroid, 189 
spline, 95 
SSD optical flow, 203 
stability, 5, 7, 60, 202, 225 
stability analysis, 220 
stable global tracking, 165 
stable grasping, 121, 162 
stable impact, 207 
standard least squares, 155 
state equation, 202 
static sensor, 95 
statistical, 322 
steady-state error, 21 
stereo, 60, 187, 192 
stereo camera, 367 
sticktion, 50 
stiff manipulator, 183, 185 
stiff system, 205 
stiffness, 199, 201 
straight line path, 15 
straight motion, 74, 77 
strain, 199 
strain gauge, 199, 201 
subspace, 171 
suppression mechanism, 392 
SVD, 189 
switching control, 217, 226 
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switching logic, 228 
switching nonlinearity, 261 
switching system, 228 
symmetric, 380 

T 
tactile sensor, 188 
tangent plane, 150, 174 
task 

assembly tasks, 217 
feasibility, 64 
frame, 191, 192 
independent, 8 
level, 3 
level controller, 36 
navigation task, 385 
oriented approach, 184 
planner, 29 
plans, 29 
space, 170, 189, 191, 201 
specific constraint, 96 

teleoperation, 206, 260 
teleoperator, 206 
telerobot, 245 
telerobotics, 285 
TFS, 386 
thresholding, 96 
time and energy optimal, 24 
time-based, 4, 8, 161 
time-optimal, 11, 161, 162 
tool kit, 302 
touch feedback, 188 
track, 147 
trackball, 207 
tracking, 115 
tracking and grasping, 117, 130 
tracking problem, 133 
trajectory constraint, 10 
trajectory plan, 8 
trajectory planning, 4, 11 
trajectory tracking, 19 
transformer, 247 
transmission line, 249 
transputer, 80 
transputer board, 77 
triangulation, 368 
Troikabot, 207 
turn control, 388 
turntable, 157 
Tustin's method, 258 
two-circle tracking, 25 
two-link, 60 
two-link robot, 71 
Two-Port scattering operator, 254 

U 
ultrasonic sensor, 245 
UMC controller, 176 

uncalibrated, 91, 148 
uncalibrated camera, 175 
uncertainties, 225 
unconstrained motion, 228 
uncontrollable, 68 
unexpected events, 5 
unknown surface, 149, 175 
unstable, 19 
unstructured environment, 382 
user-friendly, 42 

V 
variational calculus, 95, 102 
vector field, 18 
velocity constraint, 10, 11 
velocity error, 21 
velocity profile, 11 
vergence, 187 
video digitizer chip, 77 
virtual displacement, 170 
virtual obstacles, 407, 411 
virtual rotation, 154, 155, 181 
virtual work, 255 
viscous frictions, 275 
vision, 148 

artificial vision, 383 
based exploration, 95 
computer vision, 95 
controlled active vision, 148, 203 
feedback, 201 
force servoing, 204 
force-vision control law, 185 
force-vision servoing, 183 
fusing force and vision, 187 
Intelledex IntelleVue vision processor, 166, 176 
processing-board, 77 
resolvability, 188, 189 
system, 147 

visual 
dynamic visual tracking, 150 
feature state, 206 
feedback, 59, 185 
feedback control, 61 
hand-eye visual tracking, 95 
sensor, 61 
servo, 61 
servoing, 59, 91, 92, 95, 115, 150, 185, 186, 188, 190, 

202 
tracker, 103 
visually guided, 59, 115 

VLSI, 408 
VME bus, 207 

W 
wave equation, 253, 255 
wave variable, 250 
welding, 149, 218 
WHAP, 245 
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white Gaussian noise, 79, 367 
window position predictor, 62 
work space, 75, 117 
work space analysis, 10 
world coordinate frame, 117 
wraparound error, 332 
wrench, 188 
wrenches, 26 
wrist force sensor, 198 

wrist force-torque sensor, 147 
wrist joints, 201 

Y 
Young's modulus, 221 

Z 
Zadeh's theory, 384 
zoom, 115 
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