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PREFACE

Since the first edition of this book was published in 1965, many changes have
taken place in process control. Nearly al undergraduate students in chemical
engineering are now required to take a course'in process dynamics and control.
The purpose of this book is to take the student from the basic mathematics to a
variety of design applicationsin a clear, concise manner.

The most significant change since the first edition is the use of the digital
computer in complex problem-solving and in process control instrumentation.
However, the fundamentals of process control, which remain the same, must be
acquired before one can appreciate the advanced topics of control.

In its present form, this book represents a major revision of the first edition.
The material for this book evolved from courses taught at Purdue University and
Drexel University. The first 17 chapters on fundamentals are quite close to the
first 20 chapters of the first edition. The remaining 18 chapters contain many
new topics, which were considered very advanced when the first edition was
published.

A knowledge of caculus, unit operations, and complex numbers is presumed
on the part of the student. In certain later chapters, more advanced mathematical
preparation is useful. Some examples would include partial differential equations
in Chap. 21, linear algebra in Chaps. 28-30, and Fourier series in Chap. 33.

Analog computation and pneumatic controllers in the first edition have been
replaced by digital computation and microprocessor-based controllers in Chaps.
34 and 35. The student should be assigned material from these chapters at the
appropriate time in the development of the fundamentals. For example, obtaining
the transent response for a system containing a transport lag can be obtained easily
only with the use of computer simulation of transport lag. Some of the software
now available for solving control problems should be available to the student;
such software is described in Chap. 34. To understand the operation of modem
microprocessor-based controllers, the student should have hands-on experience
with these indruments in a laboratory.

XV
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Chapter 1 is intended to meet one of the problems consistently faced in pre-
senting this material to chemical engineering students, that is, one of perspective.
The methods of analysis used in the control area are so different from the previous
experiences of students that the material comes to be regarded as a sequence of
special mathematical techniques, rather than an integrated design approach to a
class of real and practically significant industrial problems. Therefore, this chap-
ter presents an overal, abeit superficial, look at a simple control-system design
problem. The body of the text covers the following topics:

1. Laplace transforms, Chaps 2 to 4.

2. Transfer functions and responses of open-loop systems, Chaps. 5 to 8.
3. Basic techniques of closed-loop control, Chaps. 9 to 13.

4. Stability, Chap. 14.

5. Root-locus methods, Chap. 15.

6. Freguency-response methods and design, Chaps. 16 and 17.

7. Advanced control strategies (cascade, feedforward, Smith predictor, internal

model control), Chap. 18.

8. Controller tuning and process identification, Chap. 19.

9. Control valves, Chap. 20.

10. Advancegrodgssamics, Chap. 21.
11. Sampled-data control, Chaps. 22 to 27.

12, State-space methods and multivariable control, Chaps. 28 to 30.

13. Nonlinear control, Chaps. 31 to 33.

14. Digital computer simulation, Chap. 34.
15. Microprocessor-based  controllers,  Chap. 35

It has been my experience tha the book covers sufficient material for a one-
semester  (15-week) undergraduate course and an  elective undergraduate course or
pat of a graduate course. In a lecture course meeting three hours per week during
a lo-week term, | have covered the following Chapters: 1 to 10, 12 to 14, 16,
17, 20, 34, and 35.

After the first 14 chapters, the instructor may select the remaining chapters
to fit a course of particular duration and scope. The chapters on the more advanced
topics are written in a logica order; however, some can be skipped without creating
a gap in understanding.

| gratefully acknowledge the support and encouragement of the Drexel Uni-
versity Department of Chemical Engineering for fostering the evolution of this
text in its curriculum and for providing clerica staff and supplies for several edi-
tions of class notes. | want to acknowledge Dr. Lowell B. Koppel’s important
contribution as co-author of the first edition of this book. | aso want to thank
my colleague, Dr. Rgjakannu Mutharasan, for his most helpful discussions and
suggestions and for his sharing of some of the new problems. For her assistance
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in typing, | want to thank Dorothy Porter. Helpful suggestions were aso provided
by Drexel students, in particular Russell Anderson, Joseph Hahn, and Barbara
Hayden. | aso want to thank my wife Effie for helping me check the page proofs
by reading to me the manuscript, the subject matter of which is far removed from
her specialty of Greek and Latin.

McGraw-Hill and | would like to thank Ali Cinar, Illinois Institute of Tech-
nology; Joshua S. Dranoff, Northwestern University; H. R. Heichelheim, Texas
Tech University; and James H. McMicking, Wayne State University, for their
many helpful comments and suggestions in reviewing this second edition.

Donald R. Coughanowr



CHAPTER

L

ANl NTRODUCT ORY
EXAMPLE

In this chapter we consider an illustrative example of a control system. The goal

is to introduce some of the basic principles and problems involved in process
control and to give the reader an early look at an overall problem typica of those
we shall face in later chapters.

The System

A liquid stream at temperature T; is available at a constant flow rate of w in units
of mass per time. It is desired to heat this stream to a higher temperature T. The
proposed hesting system is shown in Fig. 11. The fluid flows into a well-agitated

tank equipped with a heating device. It is assumed that the agitation is sufficient

to ensure that al fluid in the tank will be at the same temperature, T. Heated fluid
is removed from the bottom of the tank at the flow rate w as the product of this

heating process. Under these conditions, the mass of fluid retained in the tank
remains constant in time, and the temperature of the effluent fluid is the same as

that of the fluid in the tank. For a satisfactory design this temperature must be
Tg. The specific heat of the fluid C is assumed to be constant, independent of

temperature.

Steady-State Design

A process is sad to be a steady state when none of the variables are changing with
time. At the desired steady state, an energy balance around the heating process
may be written as follows

gs = wC(Ts — Tj)) (1.1)
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Agitator

to, Ti-ﬁ

—w, T
l I FIGURE [l

Heater Agitated heating tank.

where ¢, is the heat input to the tank and the subscript s is added to indicate a
steady-state design value. Thus, for example, T;; is the normally anticipated inlet
temperature to the tank. For a satisfactory design, the steady-state temperature of
the effluent stream T, must equal Tr. Hence

qs = wC(Ir - T;,)) (1.2)

However, it is clear from the physical situation that, if the heater is set to deliver
only the constant input ¢, , then if process conditions change, the tank temperature
will aso change from Tg. A typical process condition that may change is the inlet
temperature, T;.

An obvious solution to the problem is to design the heater so that its energy
input may be varied as required to maintain T at or near Tk.

Process Control

It is necessary to decide how much the heat input ¢ is to be changed from ¢
to correct any deviations of T from Tg. One solution would be to hire a process
operator, who would be responsible for controlling the heating process. The op-
erator would observe the temperature in the tank, presumably with a measuring
indrument such as a thermocouple or thermometer, and compare this temperature
with Tz. If T were less than Tk, he would increase the heat input and vice versa.
As he became experienced at this task, he would learn just how much to change
g for each situation. However, this relatively simple task can be easily and less
expensively performed by a machine. The use of machines for this and similar
purposes is known as automatic process control.

The Unsteady State

If a machine is to be used to control the process, it is necessary to decide in
advance precisely what changes are to be made in the heat input q for every
possible stuation that might occur. We cannot rely on the judgment of the machine
as we could on that of the operator. Machines do not think; they simply perform
a predetermined task in a predetermined manner.

To be able to make these control decisions in advance, we must know how the
tank temperature T changes in response to changes in T; and ¢. This necessitates
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writing the unsteady-state, or transient, energy balance for the process. The input
and output terms in this balance are the same as those used in the steady-state
balance, Eq. (1.1). In addition, there is a transient accumulation of energy in the
tank, which may be written
i drT. i
Accumulation = pVC ar energy  unitsltime*

where p = fluid density

V = volume of fluid in the tank

t = independent variable, time

By the assumption of constant and equal inlet and outlet flow rates, the term pV,
which is the mass of fluid in the tank, is constant. Since

Accumulation = input — output

we have

daT
pvcgt_ =wC{T;—T)+gq (1.3)
Equation (1.1) is the steady-state solution of Eq. (1.3), obtained by setting the
derivative to zero. We shall make use of Eq. (1.3) presently.

Feedback Control

As discussed above, the controller is to do the same job that the human operator
was to do, except that the controller is told in advance exactly how to do it.
This means that the controller will use the existing values of T and Ty to adjust
the heat input according to a predetermined formula. Let the difference between
these temperatures, Tg= T, be called error. Clearly, the larger this error, the less
we are satisfied with the present state of affairs and vice versa. In fact, we are
completely satisfied only when the error is exactly zero.

Based on these considerations, it is natural to suggest that the controller
should change the heat input by an amount proportional to the error. Thus, a
plausible formula for the controller to follow is

qy = wC(Tr = Ti,) + K(Tr = T) (1.4)

where K is a (positive) constant of proportionality. This is called proportional
control. In effect, the controller is instructed to maintain the heat input at the

* A rigorous application of the first law of thermodynamics would yield a term representing the
transient change of internal energy with temperature a constant pressure. Use of the specific hea,
a either constant pressure or condtant volume, is an adequate engineering approximation for most
liquids and will be applied extensively in this text.
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steady-state design value ¢ aslong as T is equal to Tg [compare EqQ. (1.2)], i.e,,
as long as the error is zero. If T deviates from Tg, causing an error, the controller
is to use the magnitude of the error to change the heat input proportionally.
(Readers should satisfy themselves that this change is in the right direction.) We
shall reserve the right to vary the parameter K, to suit our needs. This degree of
freedom forms a pat of our instructions to the controller.

The concept of using information about the deviation of the system from its
desired state to control the system is called feedback control. Information about the
state of the system is “fed back” to a controller, which utilizes this information
to change the system in some way. In the present case, the information is the
temperature T and the change is made in q. When the term wC(Tg = T;)) is
abbreviated to gy, Eq. (1.4) becomes

q=0qs+ K(Tr-T) (1.4a)

Transent  Responses
Substituting Eq. (1.44) into Eq. (1.3) and rearranging, we have

ar K, K, qs
— - +UT =T, + —=Tr+ =% .
Tldt (WC I)T T+WCTR+WC (15)
where
T] = ..,.J.K
w

The term 7, has the dimensions of time and is known as the time constant of the
tank. We shall study the significance of the time constant in more detail in Chap.
5. At present, it suffices to note that it is the time required to fill the tank at the
flow rate, w. T;is the inlet temperature, which we have assumed is a function
of time. Its normal vaue is T;,, and g, is based on this value. Equation (1.5)
describes the way in which the tank temperature changes in response to changes
in T; and g.

Suppose that the process is proceeding smoothly at steady-state design con-
ditions. At a time arbitrarily called zero, the inlet temperature, which was at T;,,
suddenly undergoes a permanent rise of a few degrees to a new vaue T;, + AT, &
shown in Fig. 1.2. For mathematical convenience, this disturbance is idealized to

T, Ti./

0 Time —> FIGURE 1-2 _
Inlet temperature Versus time.
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Ti.+ A Ti

L %

FIGURE 13
|dedlized inlet temperature versus time.

0 Time ——»

the form shown in Fig. 1.3. The equation for the function T;(¢) of Fig. 1.3
is

_ T, 1 <0
Ti(1) = {T, +AT,  1>0

This type of function, known as a step function, is used extensively in the study
of transient response because of the simplicity of Eq. (1.6). The justification
for use of the step change is that the response of T to this function will not
differ significantly from the response to the more realistic disturbance depicted in
Fg 12

To determine the response of T to astep changein T;, it is necessary to
substitute Eq. (1.6) into (1.5) and solve the resulting differential equation for
T(t). Sincetheprocessisat steady state at (and before) time zero, the initial
condition is

(1.6)

T(0) =T (L7)
The reader can easily verify (and should do so) that the solution to Egs.
(1.5), (1.6), and (1.7) is

AT;
!+ (1 - e-(Kc/wC'Fl)t/Tl) (18)

Lo
K/wC) 1

This system response, or tank temperature versus time, to astep changeinT; is
shown in Fig. 1.4 for various values of the adjustable control parameter K .. The
reader should compare these curves with Eq. (1.8), particularly in respect to the
rddive pogtions of the cuves & the new deady daes

It may be seen that the higher K is made, the “better” will be the con-
trdl, in the sense that the new dteedy-date vdue of Twi | | bedosr to Tk, At firg

T = Ty

Ty +AT,

K=0
Ky=uwC
T K. =3uwC
T I FIGURE 14
Tak temperature versus time for various values of
Kc.
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FIGURE 1-5
‘ Time —> A fluctuating behavior of T;.

glance, it would appear desirable to make K. as large as possible, but a little
reflection will show that large values of K. are likely to cause other problems.
For example, note that we have considered only one type of disturbance ip T.
Another possible behavior of T; with time is shown in Fig. 1.5. Here, T; is
fluctuating about its steady-state value. A typical response of T to this type of
disturbance in T;, without control action, is shown in Fig. 1.6. The fluctuations
in T; are delayed and “smoothed” by the large volume of liquid in the tank, so
that T does not fluctuate as much as T;. Nevertheless, it should be clear from
Eq. (1.4a) and Fig. 1.6 that a control system with a high value of K. will have
a tendency to overadjust. In other words, it will be too sensitive to disturbances
that would tend to disappear in time even without control action. This will have
the undesirable effect of amplifying the effects of these disturbances and causing
excessve wear on the control system.

The dilemma may be summarized as follows: In order to obtain accurate
control of T, despite “permanent’ changes in T;, we must make K. lager (see Fig.
1.4). However, as K. isincreased, the system becomes oversensitive to spurious
fluctuations in T;. (These fluctuations, as depicted in Fig. 1.5, are called noise.)
The reader is cautioned that there are additional effects produced by changing
K . that have not been discussed here for the sake of brevity, but which may be
even more important. This will be one of the major subjects of interest in later
chapters. The two effects mentioned are sufficient to illustrate the problem.

Integral Control

A considerable improvement may be obtained over the proportional control sys-
tem by adding integral control. The controller is now instructed to change the
heat input by an additional amount proportiona to the time integral of the error.
Quantitatively, the heat input function is to follow the relation

T | FIGURE 1-6
e fespoige, without control action, to a fluctuating
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FIGURE 1-7
Tank temperature versus time: step input for
0 Timg ~———> proportional and integral control.
r .
q(t) = g+ Kc(Tp = T) + KRI (Tr = T)dt (1.9)
0

This control system is to have two adjustable parameters, K . and K.

The response of the tank temperature T to a step change in T;, using a
control function described by (1.9), may be derived by solution of Egs. (1.3),
(1.6), (1.7), and (1.9). Curves representing this response, which the reader is
asked to accept, are given for various values of K at afixed value of K, in Fig.
17. The vdue of K. is a modade ong ad it may be sen thet for dl three veues
of Kx the steady-state temperature is Tg; that is, the steady-state error is zero.
From this standpoint, the response is clearly superior to that of the system with
proportional control only. It may be shown that the steady-state error is zero for
dl Kg > 0, thus eliminating the necessity for high values of K.. (In subsequent
chapters, methods will be given for rapidly constructing response curves such as
those of Fig. 1.7.)

It is clear from Fig. 1.7 that the responses for Kr = K, and Kr = Kg,
are better than the one for Kz = K, because T returns to Tg faster, but it may be
difficult to choose between Kg,, and Kg, . The response for K g, “settles down”
sooner, but it also has a higher maximum error. The choice might depend on the
particular use for the heated stream. This and related questions form the study of
optimal control systems. This important subject is mentioned in this book more
to point out the existence of the problem than to solve it.

To recapitulate, the curves of Fig. 1.7 give the transient behavior of the
tank temperature in response to a step change in T; when the tank temperature is
controlled according to Eq. (1.9). They show that the addition of integral control
in this cae dimnaes deedy-dde araor and dlons ue of modade vdues of K.

More Complications

At this point, it would appear that the problem has been solved in some sense. A
little further probing will shatter this illusion.

It has been assumed in writing Egs. (1.4a) and (1.9) that the controller re-
ceives instantaneous information about the tank temperature, T. From a physical
standpoint, some measuring device such as a thermocouple will be required- to
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measure this temperature. The temperature of a thermocouple inserted in the tank
may or may not be the same as the temperature of the fluid in the tank. This
can be demonstrated by writing the energy balance for a typical thermocouple
installation, such as the one depicted in Fig. 1.8. Assuming that the junction is
at a uniform temperature T, and neglecting any conduction of heat along the
thermocouple lead wires, the net rate of input of energy to the thermocouple
junction is
hA(T = T,,)
where h = heat-transfer coefficient between fluid and junction
A = area of junction
The rate of accumulation of energy in the junction is

dT,
mCm =t

where C,, = specific heat of junction
m = mass of junction

Combining these in an energy balance,
n—+T, = (1.10)

where 1, = mC,,/hA is the time constant of the thermocouple. Thus, changesin
T ae not instantaneoudly reproduced in T, . A step change in T causes a response
in T,, similar to the curve of Fig. 1.4 for K. = 0 [see Eq. (1.5)]. This is
analogous to the case of placing a mercury thermometer in a beaker of hot water.
The thermometer does not instantaneously rise to the water temperature. Rather,
it rises in the manner described.

Since the controller will receive values of T, (possibly in the form of a
thermoelectric voltage) and not values of T, Eq. (1.9) must be rewritten as

f
q=¢qs tK(Tg = Tr) + KRI (Tg — Tpp)dt (1.9a)
0

The apparent error is given by (Tk = T,,), and it is this quantity upon which the
controller acts, rather than the true error (Tg — T). The response of T to a step

Thermocouple juriction,
atTn
S N
_ EMF, fed back to
7 controller
- - FIGURE I-8
1 Thermocouple  indtallation  for  heated-tank ~ system.
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FIGURE 1-9
| Time —> Tank temperature versus time with measuring lag.

change in T; is now derived by simultaneous solution of (1.3), (1.6), (1.9a), and
( 1. 10), with initiadl conditions

T(0) = Tw©) = Tk (1.11)

Equation (1.11) implies that, at time zero, the system has been at rest at T for
some time, so that the thermocouple junction is at the same temperature as the
tank.

The solution to this system of equations is represented in Fig. 1.9 for a
particular set of values of K. and Kg. For this set of values, the effect of the
thermocouple delay in transmission of the temperature to the controller is primarily
to make the response somewhat more oscillatory than that shown in Fig. 1.7 for the
same value of Kg. However, if Ky is increased somewhat over the value used in
Fig. 1.9, the response is that shown in Fig. 1.10. The tank temperature oscillates
with increasing amplitude and will continue to do so until the physical limitations
of the heating system are reached. The control system has actually caused a
deterioration in performance. Surely, the uncontrolled response for K. = 0 in
Fig. 1.4 isto be preferred over the unstable response of Fig. 1.10.

This problem of stability of response will be one of our major concerns
in this text for obvious reasons. At present, it is sufficient to note that extreme
cae must be exercised in specifying control systems. In the case considered, the
proportional and integral control mechanism ‘described by Eq. (1.9a) will per-
form satisfactorily if Kgis kept lower than some particular value, asillustrated in
Figs. 1.9 and 1.10. However, it is not difficult to construct examples of systems
for which the addition of any amount of integral control will cause an unstable
response. Since integral control usualy has the desirable feature of eliminating
steady-state error, asit did in Fig. 1.7, it is extremely important that we develop

0 FIGURE I-10
Time — Tank temperature versus time for increased K.




10 PROCESS SYSTEMS ANALYSIS AND CONTROL

11}
Ty=>) Comparator EIMOT sl Controller °°'_“"‘a“ Heater i _o Tank |wp=>T
signal Heat
L——Jd input

T:

Tn

- Thermocouplg

FIGURE I-11
Block diagram for heated-tank  system.

means for predicting the occurrence of unstable response in the design of any
control  system.

Block Diagram

A good overdl picture of the relationships among variables in the heated-tank
control system may be obtained by preparing a block diagram. This diagram,
shown in Fig. 1.11, indicates the flow of information around the control system
and the function of each part of the system. Much more will be said about block
diagrams in Chap. 9, but the reader can undoubtedly form a good intuitive notion
about them by comparing Fig. 1.11 with the physical description of the process
given in the previous paragraphs. Particularly significant is the fact that each
component of the system is represented by a block, with little regard for the
actual physical characteristics of the represented component (e.g., the tank or
controller). The major interest is in (1) the relationship between the signals entering
and leaving the block and (2) the manner in which information flows around the
system. For example, 7 and 7, enter the comparator. Their difference, the error,
leaves the comparator and enters the controller.

SUMMARY

We have had an overal look at atypical control problem and some of its ramifi-
cations. At present, the reader has been asked to accept the mathematical results
on faith and to concentrate on obtaining a physical understanding of the transient
behavior of the heated tank. We shall in the forthcoming chapters develop tools
for determining the response of such systems. As this new material is presented,
the reader may find it helpful to refer back to this chapter in order to place the
material in proper perspective to the overal control problem.

PROBLEMS

11 Draw a block diagram for the control system generated when a human being steers
an automobile.
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CHAPTER

2

THELAPLACE
TRANSFORM

Even from our brief look at the control problem of Chap. 1, it is evident that
solution of differential equations will be one of our major tasks. The Laplace
transform method provides an efficient way to solve linear, ordinary, differen-
tial equations with constant coefficients. Because an important class of control
problems reduces to the solution of such equations, the next three chapters are
devoted to a study of Laplace transforms before resuming our investigation of
control  problems.

Definition of the Transform

The Laplace transform of a function f(t) is defined to be f(s) according to the
equation

X

f(s) = I. f()e " dt 2.1
o .

We often abbreviate this notationally to
f(s) = L{f(0)}
where the operator L is defined by Eg. (2.1). *

*Many texts adopt some notational convention, such as capitalizing the transformed function as #(s)
or putting a bar over it as f(s). In generd, the appearance of the variable s as the argument or in
an equation involving f is sufficient to signify that the function has been transformed, and hence any

such notation will seldom be required in this book.

13
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Example 2.1. Find the Laplace transform of the function

f =1
According to Eq. (2. 1),

1
1
P
0
il
|-

fls) = f:(l)e‘“dt -

Thus,

L{1}

G | —

There are severa facts worth noting at this point:

1. The Laplace transform f(S) contains no information about the behavior of f(t)
for ¢ < 0. This is not a limitation for control system study because ¢ will
represent the time varisble and we shdl be interested in the behavior of systems
only for postive time. In fact, the variables and systems are usudly defined so
that T (t) = 0for r < 0. This will become dearer as we study specific examples

2. Since the Laplace transform is defined in Eq. (21) by an improper integrd,
it will not exist for every function f(t). A rigorous definition of the class of
functions possessing Laplace transforms is beyond the scope of this book, but
readers will note that every function of interest to us does satisfy the requirements
for possesson of a transform.*

3. The Laplace transform is linear. In mathematical notetion, this means:

L{afi(®) + bfa(t)} = aL{fi(D} + bL{f2(1)}
where a and b are constants, and f ; and f7 are two functions of .

Proof. Using the definition,

L{afi(t) + bf2(1)} = fom[afl(t) + bfy(t)le ' dt

a |;) filt)e™Sdr + bfo fr(t)e™*d1

al{f ()} + bL{f2(1)}

4. The Laplace transform operator transforms a function of the varidble ¢ to a func-
tion of the variable s The ¢ variable is diminated by the integration.

Transforms of Simple Functions
We now proceed to derive the transforms of some simple and useful functions.

*For details on this and related mathematica topics, see Churchill (1972).
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1. The step function

] t <0
f0 = 1 t>0
This important function is known ag the unit-step function and will henceforth
be denoted by u(t). From Example 2.1, it is clear that

Liu(@®)} = -

N

As expected, the behavior of the function for ¢t < 0 has no effect on its
Laplace transform. Note that as a consequence of linearity, the transform of
any constant A, that is, f(z) = Au(t), is just f(s) = A/s.

2. The exponential function

0 <0 _
t : - at
f@® e r> 0} u(t)e
where u(t) is the unit-step function. Again proceeding according to definition,
) » ;o |
L{u(ne™*} = [ e~Gtadgy = _ ~(s+a)t
{ ( ) } 0 S + aelo M + a

provided that s + a > 0, that is, § > -a In this case, the convergence of
the integral depends on a suitable choice of 5. In case s is a complex number,
it may be shown that this condition becomes

Re(s) > -a
For problems of interest to us it will aways be possble to choose s so that these
conditions are satisfied, and the reader uninterested in mathematica niceties
can ignore this point.

3. The ramp function

0 t<0
f@® ={t t>0} = tu(t)

o0

L{tu(t)} = J te *'dt

0
Integration by parts yields

L{tu(t)} - -—e—(I;L " )

4, The sine function

0 t<0 )
f@) = {Sin kt t>0} = u(t)sin kt

L{u(t)sin kt} = J sn kt e~ds
0
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TABLE 2.1
Function Graph Transform
1
u(') o —————eeeermn. l
S
tu(t) 5
o2
) n!
u gntl

1
e~ u(r) \ 1
sta

- n!
t"e "u(r) — T
(s + a)n+1

sin ktu(t
® l \_/ T
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TABLE 2.1 (Continued)

Function Graph Transform

coskt u(t) .\\/p §

st+ k2

k
sinhkt u(?)

S
coshkr u(t) i1 / ?—_kf

e~ Sink? u(r) o

e % cos kt u(t) \ T N———— sta

Area=1
8(1), unit impulse 1




18 THE LAPLACE TRANSFORM

Integrating by parts,
. —e % . ®
L{u(t)sm kt} = m(s sn kt + k cos kt) )

_ k
- s2+ k2

In alike manner, the transforms of other simple functions may be derived.
Table 2.1 is a summary of transforms that will be of use to us. Those which have
not been derived here can be easily established by direct integration, except for
the transform of &(¢), which will be discussed in detail in Chap. 4.

Transforms of Deivatives

At this point, the reader may wonder what has been gained by introduction of the
Laplace transform. The transform merely changes a function of ¢ into a function
of s. The functions of § look no simpler than those of t and, as in the case
of A — A/s, may actually be more complex. In the next few paragraphs, the
motivation will become clear. It will be shown that the Laplace transform has the
remarkable property of transforming the operation of differentiation with respect

to ¢ to that of multiplication by s. Thus, we claim that
df(t
L[ 2O =51 - 50) 22

where

fis) = L{f(n)}
and f(0) is f(t) evaluated at f = 0. [It is essential not to interpret f(0) as f(s)
with s = 0. This will be clear from the following proof.]*

Proof.

To integrate this by parts, let

= ij—rdt
dt

u=e % dv

Then
du = —se™'dt  v= f@1)

* If f(t) is discontinuous at t = 0, £(0) should he evaluated at t = 0%, i.e., just to the right of the
origin. Since we shal seldom want to differentiate functions that are discontinuous at the origin, this
detail is not of great importance. However, the reader is cautioned to watch carefully for situations
in which such discontinuities occur.
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ludv: uv--I vdu

we have

-}

ro ﬂe_”dt = f(t)e !

® -5t 3, — _
o 3t +sJO fe tdt = -f(O) + sf(s)

0

The salient feature of this transformation is that whereas the function of ¢
was to be dfferentigled with reppedt to ¢, the coreponding fundion of s is mady
multiplied by s. We shall find this feature to be extremely useful in the solution
of differential equations.

To find the random of the second daivaive we meke ue of the trandfom
of the first derivative twice, as follows:

S2F) _[d(dfY _ o [df] _ df)
U =@ E) - {3 -4
slsf(s) = f(O)] = £'(0)
s2f(s) = s£(0) - ' (0)

where we have abbreviated
df(t) _
dt t=0 - f (0)

In a similar manner, the reader can easily establish by induction that repeated
application of Eq. (2.2) leads to
" f
L
{ dm
where f©(0) indicates the ith derivative of f(#) with respect to ¢, evaluated for
t = 0.

Thus the Laplace tranform may be seen to change the operdtion of differen
tiation of the function to that of multiplication of the transform by s, the number
of multiplications corresponding to the number of differentiations. In addition,
some polynomia terms involving the initial values of f(t) and its first (n —~ 1)
derivatives are involved. In later applications we shall usualy define our variables
so that these polynomial terms will vanish. Hence, they are of secondary concern
hee

1=0

} = s”f(s)_ Sn_lf(O)— sn—Zf(l)(O)_ R, Sf("_2)(0)— f(n_l)(o)

Example 2.2. Find the Laplace transform of the function x(¢) that satisfies the
differentia equation and initid conditions

3 2
LAWY LN S
de3

dr? dt
_dx(0) _ d%x(0) _
*(0) = dt " dr 0
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It is permissible mathematically to take the Laplace transforms of both sides of
a differentid equation and equate them, since equality of functions implies equaity
of their transforms. Doing this, there is obtained

s3x(s) = s2x(0) = sx'(0) ~ X" (0) + 4[s%x(s)~ 5x(0) = X' (O)]
+ 5[sx(s) = x(0)] + 2x(s) =

@ |

where x(s) = L{x(¢)}. Use has been made of the linearity property and of the
fact that only positive values of ¢ are of interest. Inserting the initial conditions and
solving for x(s)

_ 2
X(s) = s(s3 + 452+ 55 +2) 2:3)

This is the required answer, the Laplace transform of X(t).

Solution of Differential Equations

There are two important points to note regarding this last example. In the first
place, application of the transformation resulted in an equation that was solved for
the unknown function by purely algebraic means. Second, and most important,
if the function x(t), which has the Laplace transform 2/s(s 3 + 4s% + 55 + 2)
were known, we would have the solution to the differential equation and bound-
ary conditions. This suggests a procedure for solving differential equations that is
andlogous to that of using logarithms to multiply or divide To use logarithms, one
transforms the pertinent numbers to their logarithms and then adds or subtracts,
which is much easier than multiplying or dividing. The result of the addition or
subtraction is the logarithm of the desired answer. The answer is found by refer-
ence to atable to find the number having this logarithm. In the Laplace transform
method for solution of differential equations, the functions are converted to their
transforms and the resulting equations are solved for the unknown function alge-
braically. This is much easier than solving a differential equation. However, at
the last step the analogy to logarithms is not complete. We obviously cannot hope
to construct a table containing the Laplace transform of every function f(t) that
possesses a transform. Instead, we shall develop methods for reexpressing com-
plicated transforms, such as x(s) in Example 2.2, in terms of simple transforms
that can be found in Table 2.1. For example, it is easily verified that the solution
to the differential equation and boundary conditions of Example 2.2 is

Xt) =1 ~2te”! —e7¥ (2.4)
The Laplace transform of x, using Eq. (2.4) and Table 2.1, is
! l !
= - =2— - Ry
D=5 e 42

Equation (2.3) is actually the result of placing Eq. (2.5) over a common denomi-
nator. Although it is difficult to find x(z) from Eq. (2.3), Eq. (2.5) may be easily

(2.5
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inverted to Eq. (2.4) by using Table 2.1. Therefore, what is required is a method
for expanding the common-denominator form of Eq. (2.3) to the separated form
of Eg. (2.5). This method is provided by the technique of partia fractions, which
is developed in Chap. 3.

SUMMARY

To summarize, the basis for solving linear, ordinary differential equations with
constant coefficients with Laplace transforms has been established.
The procedure is:

1. Take the Laplace transform of both sides of the equation. The initial conditions
are incorporated at this step in the transforms of the derivatives.

2. Solve the resulting equation for the Laplace transform of the unknown function
dgebraicaly.

3. Find the function of ¢ that has the Laplace transform obtained in step 2. This
function satisfies the differential equation and initial conditions and hence is
the desired solution. This third step is frequently the most difficult or tedious
step and will be developed further in the next chapter. It is called inversion of
the transform. Although there are other techniques available for inversion, the
one that we shall develop and make consistent use of is that of partial-fraction
expansion.

A simple example will serve to illustrate steps 1 and 2, and a trivial case of
step 3.

Example 2.3. Solve

dx
—+3x =0
dt *

x(0) = 2
We number our steps according to the discussion in the preceding paragraphs:
Lsx(s)=2+3x(s) =0
2 1
573 %5¥3
3. x(t) = 273

2. x(s) =




CHAPTER

3

INVERSION
BY PARTIAL
FRACTIONS

Our study of the application of Laplace transforms to linear differential equations
with constant coefficients has enabled us to rapidly establish the Laplace transform
of the solution. We now wish to develop methods for inverting the transforms to
obtain the solution in the time domain. The first part of this chapter will be a series

of examples that illustrate the partial-fraction technique. After a generalization of
these techniques, we proceed to a discussion of the qualitative information that
can be obtained from the transform of the solution without inverting it.

The equations to be solved are al of the general form

d’x + d" lx dx
a Oyl ——— , "~ tay—— taox = f(¢
n dt" n =1 dtn_l + ldt 0 f()
The unknown function of timeisx(t), and a,,a,-1,. .., &, &g, are constants.

The given function f(r) is caled the forcing function. In addition, for all problems
of interest in control system analysis, the initial conditions are given. In other
words, values of x, dxldt,. . ., d" lx/dt""! are specified at time zero. The
problem is to determine x(¢) for al 1 = 0.

Partial Fractions

In the series of examples that follow, the technique of partial-fraction inversion
for solution of this class of differential equations is presented.

22
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Example 3.1. Solve
dx

E +x=1
x0) =0
Applicetion of the Laplace trandorm yields
1
sx(s) + X9 = 5
or
n(s) = _.....1__
s(s +1)

The theory of patid fractions endbles us to write this as

! A B
= ~ = — +
X(s) o D s T sAl (3.2)
whee A and B ae condants. Hence using Table 21, it follows that
x(t) = A+ Be’ (32

Thedfore, if A and B were known, we would have the solution. The conditions on
A and B are that they must be chosen to make Eq. (3.1) an identity in s.
To determine A, multiply both sides of Eq. (3.1) by s.

1 Re
=A+
s+1 s+1

(3.3)

Since this must hold for all s, it must hold for s = 0. Putting s = 0 in Eq. (3.3)
yields

A=1
To find B, multiply both sides of Eq. (3.1) by (s+ 1).

1 _A
s=,6+)+B (3.4)
Since this must hold for all s, it must hold for s = = 1. Thisyields
B =-1
Hence,
1
—_— - — (3.5

and therefore,

x(t)=1-e7! (3.6)
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Equation (3.5) may be checked by putting the right side over a common denomi-
nator, and Eq. (36) by subditution into the origind differentid equation and initia
condition.

Example 32. Solve
d3x d*x  dx )
2 - = —2x =4+ ¥
dr’ MR P ¢
x0 =1 X0 =0 x"(0) = -1
Taking the Laplace tranform of both sides

1
s-2

[s3x(s) = 52 + 1] + 2[s%x(s) = §] = [sx(s) — 1] = 2x(s) = % +

Solving  dgebracdly for  x(s),

x(s)= _ St=6s7+95-8
s(s =~ 2)(s3 + 252 =5 = 2)

The cubic in the denominator may be factored, and x(s) expanded in patid fractions

X(s) = s =652+ 9s =8 A, B ., C D E
(s =+ Ds+Ds-D=s s-2 s+1 s+2 s-1
37
To find A, multiply both sides of Eq. (3.7) by s and then set s = O; theresult is
A -8

S @00 =

The other condants are determined in the same way. The procedure and results are
aummaized in the following table. .

To determine  multiply (37) by and st s to Result

B s-2 2 B=1lp
c s+1 -1 c=13
D s+2 -2 D=-1Y,
E s -1 1 E=1%

Accordingly, the solution to the problem is

x(1) = -2 +e¥ * Mt - %8_2' * g

A comparison between this method and the classical method, as applied to

Exanple 32, may be pdfitdde In the desscd method for olution of differentid
equations we first write down the characteristic function of the homogeneous

eguation:

P+ 2%t=s=-2=0
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This must be factored, as was also required in the Laplace transform method, to
obtain the roots -1, -2, and + 1. Thus, the complementary solution is

x.(t) = Cre™" + Cae™ + Cye

Furthermore, by inspection of the forcing function, we know that the particular
solution has the form
x,(t) = A + Be¥

The constants A and B are determined by substitution into the differentid equation

and, as expected, are found to be -2 and ﬁ respectively. Then

x(t) = -2 + 'ﬁez’ + Cre™' + Cae % + Cae*

and the constants C, C», and C3 are determined by the three initia conditions.
The Laplace transform method has systematized the evaluation of these constants,
avoiding the solution of three simultaneous equations. Four points are worth not-

ing:

1. In both methods, one must find the roots of the characteristic equation. The
roots give rise to terms in the solution whose form is independent of the forcing
function. These terms make up the complementary solution.

2. The forcing function gives rise to terms in the solution whose form depends
on the form of the forcing function and is independent of the left side of the
equation. These terms comprise the particular solution.

3. The only interaction between these sets of terms, i.e., between the right side
and left side of the differential equation, occurs in the evaluation of the con-
dants  involved.

4. The only effect of the initial conditions is in the evaluation of the constants.
Thisis because the initial conditions affect only the numerator of x(s), as may
be seen from the solution of this example.

In the two examples we have discussed, the denominator of x(s) factored
into real factors only. In the next example, we consider the complications that

arise when the denominator of x(s) has complex factors.

Example 3.3. Solve

dx dx
—d-’;z— + 2*3; +2x =12
x(0) = X' (0) = 0
Application of the Laplace transform yields
2
x(s) =

s(s2+ 2s+ 2)

The quadratic term in the denominator may be factored by use of the quadratic
formula. The roots are found to be (-1 ~ ;) and (-1 + j). This gives the partial-
fraction expansion

2 A B C

sGr1+)s+1-j)=s5s+(s+1+ )+ (s+1~))

x(s) = (3.8
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where A, B, and C are congtants to be evaluated, so that this relation is an identity
in s. The presence of complex factors does not ater the procedure at al. However,
the computations may be dightly more tedious.

To obtain A, multiply Eq. (3.8) by s and s&t 5 = O
2

A —— 1
=@+t =j=
To obtain B, multiply Eq. (3.8) by (s+ 1 +j)and sets = (-1-):
_ 2 _-1-j
(=1 = j)}=2j) 2
To obtain C, multiply Eq. (3.8) by (s+ 1=j) and sets = (-1 +j):
2 -+
C= - — =
(=1 + j)2j) 2
Therefore,
1 -1 1 +14 1
X(S)_§+ 2 s+l+] 2 s+ -]

This is the desired result. To invert n(s), we may now use the fact that 1/(s + &) is
the transform of ¢ =*, The fact that ¢ is complex does not invaidate this result, as
can be seen by returning to the derivation of the transform of ¢ ~4¢, The result is

“(t) = 1+ ‘IZ_”Je—uw)r L{ie—(l—j)r

Using the identity
e@tibr = get (o5 pt + j sin bt)
this can be converted to
x(t) =1=e"*cost+ SN ¢)

The details of this conversion are recommended as an exercise for the reader.

A more general discussion of this case will promote understanding. It was
seen in Example 3.3 that the complex conjugate roots of the denominator of
X(S) gave rise to a pair of complex terms in the partial-fraction expansion. The
constants in these terms, B and C, proved to be complex conjugates (— 1 = j)/2 and
(— 1+ j)/2. When these terms were combined through a trigonometric identity,
it was found that the complex terms canceled, leaving a real result for x(f). Of
course, it is necessary that x(t) be rea, since the original differential equation
and initial conditions are resdl.

This information may be utilized as follows. the general case of complex
conjugate roots arises in the form

F(s)
(S+ kit jko)(s + ki~ jko)
where F(s) is some real function of .

x(s) =

(3.9
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For instance, in Example 3.3 we had

F(S)=§ k1=1 k2=]
Expanding (3.9) in partia fractions,
F(s)
; - = Fi(s
G R+ k)G + Rim gk - 610
a + jb1 ar + ]bz .

s+ki+ jka s+ ki~ jky

where ay, a3, by, by are the constants to be evaluated in the partia-fraction ex-
pansion and F(s) is a series of fractions arising from F(s).
Again, in Example 3.3,
! ! | 1
= - = - - b = —= by = =
=35 ®= -5 T2 TP
Now, since the left side of Eq. (3.10) isred for all rea s, the right side must also
be red for al rea 5. Since two complex numbers will add to form a real number
if they are complex conjugates, it is seen that the right side will be real for dl red
s if and only if the two terms are complex conjugates. Since the denominators of
the terms are conjugates, this means that the numerators must aso be conjugates,
or

Fis) = ~
S

a = ag
b2 = “bl

This is exactly the result obtained in the specific case of Example 3.3. With this
information, Eq. (3.10) becomes

F(s)
(S+ ki + jho)(s + ky = jk2)

= Fui(s)

ap + jb N a— jb

- 311
s+ ky+ jka s+ ki = jko (31

Hence, it has been established that terms in the inverse transform arising
from the complex conjugate roots may be written in the form

(a1* jbeThTIDN (a)— jhyeThrtIk!
Again, using the identity
eC1iCDt = L1t (cos Cat +j sin Cyt)
this reduces to
2¢ M1'(ajcos kyt + by Sin kyt) (3.12)



28 THE LAPLACE TRANSFORM

Let us now rework Example 3.3 using Eg. (3.12). We return to the point at
which we arrived, by our usual techniques, with the conclusion that
-1 -
2
Comparison of Egs. (3.8) and (3.11) and the result for B show that we have

two possible ways to assign a1, by, &1, and k, so that we match the form of Eq.
(3.11). They are

B =

ar= -1 ar = -

b1=—% blz%
or

ky=1 k=1

ky=1 k= -1

The first way corresponds to matching the term involving B with the first term of
the conjugates of Eg. (3.1 1), and the second to matching it with the second term.
In either case, substitution of these constants into Eq. (3.12) yields

—e Y(cos t +sin 1)

which is, as we have discovered, the correct term in x(t).

What this means is that one can proceed directly from the evaluation of one
of the partiad-fraction constants, in this case B, to the complete term in the inverse
transform, in this case —e ~(cos t + sin t). It is not necessary to perform all the
algebra, since it has been done in the genera case to arrive at Eq. (3.12).

Another example will serve to emphasize the application of this technique.

Example 3.4. Solve
2
x(0) =x‘(0) =0
The Laplace transform method yields
2
o Tras D
Factoring and expanding into partia fractions,
2 _ A B + c
s+ Ds+2)s 2i) s+1+s+2 s=-2j
Multiplying Eq. (3.13) by (s + 1) and setting s = -1 yield
2 —
(-1 +2)(-1-2j) ~ 5

(3.13)

[
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Multiplying Eq. (3.13) by (s + 2j) and setting s = -2 j yield

B = 2 _ -2+
(=25 + )(—4)) 10
Matching the term
(-2 + jy10
s+ 2

with the firg tem of the conjugates of Eq. (311) requires that

a1 =—% = -}
blzﬁ
ki=0
k2:2

Subdtituting in (3.12) results in
—%cos 2t + %sin 2t
Hence the complete answer is
X(t) = 3" =2cos2t+ § sin 2t

Readers should verify that this answer sdidfies the differentid  eguation and  boundary
conditions. In addition, they should show that it can adso be obtaned by matching
the term with the second term of the conjugates of Eq. (3.11) or by determining C

ingead of B.

ALTERNATE METHOD USING QUADRATIC TERM. Another method for solv-
ing Example 3.3, which avoids some of the manipulation of complex numbers,
is as follows. Expand the expression for x(s):

2
A, _BS*C (314)

s(s2+2s+2) =5 s2+2s5+2

In this expresson, the quedratic tam is retaned and the ssoond tem on the right
side is the most genera expression for the expansion. The reader will find this
fom of egandon for a quedrdic. tam in books on advanced dgdra

Solve for A by multiplying both sides of Eg. (3.14) by s and let 5 = 0.
The result is A= 1. Determine B and C algebraicaly by placing the two terms
on the right side over a common denominator; thus

2 C(s2+ 25+ 2A+ Bs?+ Cs
s(s2+2s+2) s(s2+2s+2)
Equating the numerators on each side gives
2=(A+ B)s?+ (2A+ C)s + 2A

x(s) =

X(s) =
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We now equate the coefficients of like powers of s to obtain

A+B=0
2A+C =0
24 =2

Solving these equations gives A =1, B = - 1, and C = -2. Equation (3.14)
now becomes
g = 1 s _ 2
X(9) = s s2+25+2 §2425+42

We now rearrange the second and third terms to match the following transform
pairs from Table 2.1:

e %%sin kt  k/[(s + a)? + k7] (3.15a)
e %cos kt (s + a)(s + a)* + k7 (3.15b)
The result of the rearrangement gives
! !
x(s) s+ 1

sTGEFIPAIE (St P12
We see from the quadratic terms that a = 1 and k =1, and using the table
of transforms, one can easily invert each term to give
x(t) =1 =¢"'cost—e 'sint

which is the same result obtained before.
A general discussion of this case follows. Consider the general expression
involving a quadratic term

F(s)
s2+as+ B
where F(s) is some function of s (e.g. I/s). Expanding the terms on the right side
gives

x(s) = (3.16)

Bs + C
s?+as+ B
where F(s) represents other terms in the partial-fraction expansion. First solve
for B and C agebraically by placing the right side over a common denominator
and equating the coefficients of like powers of s. The next step is to express the
quadratic term in the form

x(s) = Fi(s) + (3.17)

s+ as+ B=(s+ a)P+ k?

The terms a and k can be found by solving for the roots of s 2+ @s+ B=0
by the quadratic formulato give s | = —a + j k, s3=-a = j k. The quadratic
teem can now be written

sP+ast B (s=s)s—s)=(s+a=jk)s+a+ik=(+a)l+k
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Equation (3.17) now becomes

Bs + C
(s* ay¥’ k2
The numerator of the quadratic term is now written to correspond to the transform
pairs given by Egs. (3.15a and b)

/B
R [ - LI

x(s)+ Fy(s)+ (3.18)

C —aB
k

= B(s +a) + k

Equation (3.18) becomes

(s + a) C—aB\ K
x(s) = Fi(s) + B(s+ apR’ k2+< ko [+ aP+ k2

Applying the transform pairs of Egs. (3.15a and b) to the quadratic terms on the
right gives

C By _,, .
X(t) = Fi(t) + Be *'cos kt +( )e “sin kt (319
where Fj (t) is the result of inverting Fi(s). We now apply this method to the
following example.

Example 3.5. Solve

1 A+ Bs + C
s2—25+5

X(s) = s(s2=2s+5) = s
Applying the quadraic equation to the quadratic term gives
2+ J/4-20

S22 T = 1%

Using the method just presented, we find that a = — 1, k = 2. Solving for A,
B, and C gives A =1/5, B = —1/5, C = 2/5. Introducing these values into the

expression for x(s) and applying Eqg. (3.19) gives
— 1 ] t 1 [
x() = 5 s¢ cos 2t + 10¢ sin 2¢

The reeder should solve Example 34 with this dternate method, which uses
Eqg. (3.19).

In the next example, an exceptional case is considered; the denominator of
X(s) has repeated roots. The procedure in thiscase will vary slightly from that of
the previous cases.

Example 3.6. Solve

d3x  3d%*x LY
dr3 " di? 7 dr

x(©0) =x'0)=x"0)=0
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Application of the Laplace trandform yields

!
s(s3+ 352+ 35+ 1)

Factoring and expanding in  patid fractions,

o A B c D
X = e =5 +Gr P+ r R +571

x(s =

(3.20)

As in the previous cases to determine A, multiply both sides by s and then st s to
zero.  This yields

A=1
Multiplication of both sides of Eq. (3.20) by (s+1)3 resultsin
3
i:‘u+8+ C(s+ 1)+ D(s+ 1)? (3.21)

[

5
Setting s = -1 in Eqg. (3.15) gives
B= -1

Having found A and B, introduce these valuesinto Eq. (3.20) and place the right
dde of the eguation over a common denominator; the result iS:
I _(s+ 1P =5+ Cs(s+1)+ Ds(s + 1)
s(s+ 13 s(s + 1)3

(322

Expanding the numerator of the right sde gives

1 _(1+D)s3+ (3+ C+ 2D)s2+ (2+ C+ D)s+1
s(s+ 1 (s + 13

We now equate the numerators on each sde to gef

(3.29)

1=(1+D)s>+ (3+ C+ 2D)s?>+ (2+ C+ D)s+ 1
Equating the coefficdents of like powers of s gives
1+D =0
3+4C+2D =0
2+C+D =0

Solving these equationsgivesC==1and D = - 1.
The find rexult is then

U1 ! o1

_(s+ 1)-3 (s + 1)? s+i
Referring to Table 21, this can be inveted to

x(s) = 1; (3.24)

2
X(t) = 1-¢7" % +r+1 (3.25)
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The reader should verify that Egq (324) placed over a common denominator results
intheorigina form
!
X = s(s + 1)’
and that Eq. (325) sdidfies the differentid equation and initid conditions.

The result of Example 3.6 may be generalized. The appearance of the fac-
tor (s + a)* in the denominator of x(s) leads to n terms in the partial-fraction
expandon:

C1 C2 Cn
(s+a)"'(s+a)“-"...'s+a

The constant C; can be determined as usual by multiplying the expansion by
(s + a)" and setting s = —a. The other constants are determined by the method
sown in Example 36. Thexe tems according to Table 21, leed to the fdlowing
expreson & the invere trandom:
Ci tn—-l C, tn—2
(n - 1! * (n=2)! +
It is interesting to recall that in the classical method for solving these equations,

one treats repeated roots of the characteristic equation by postulating the form of
Eq. (3.26) and selecting the constants to fit the initial conditions.

et Cpogt + C+ e (3.26)

Qualitative Nature of Solutions

If we are interested only in the form of the solution x(t), which is often the
case in our work, this information may be obtained directly from the roots of the
denominator of x(s). As an illudraion of this “quditdive’ approach to dfferentid
equations consider Example 3.3 in which

s(s2+2s+2)= 5 s+1+j s+1—j
is the trandormed <olution of

d’x  2dx
drt + dt
It is evident by inspection of the partia-fraction expansion, without evaluation of
the constants, that the s in the denominator of x(s) will give rise to a constant in
x(t). Also, since the roots of the quadratic term are = 1+ j , it is known that x(t)
must contain terms of the form e ~*(C icos t + Cysin ¢t). This may be sufficient
information for our purposes. Alternatively, we may be interested in the behavior
of x(¢t) ast — <. It is clear that the terms involving sin and cos vanish because
of the factor e ~*. Therefore, x(¢) ultimately approaches the constant, which by
ingection mugt be unity.
The qualitative nature of the solution x(¢) can be related to the location of
the roots of the denominator of x(s) in the complex plane Thee roats are the roats

x(s) =

+2X=2
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Imaginary
axis

(‘“é-bz) "‘3
0b) &
(¢4lrb4)
5 66 66 Real
(""01,0) (0,0) (asro) axis

.
4

L
(¢4n—b4)
"3
0,-b,)
0% FIGURE 31
Location of typical roots of char-
acterigic  equation.

of the characteristic equation and the roots of the denominator of the transformed
forcing function. Consider Fig. 3.1, a drawing of the complex plane, in which
several typical roots are located and labeled with their coordinates. Table 3.1 gives
the form of the terms in the equation for x(f), corresponding to these roots. Note
that all constants, ay, a», . . ., by, by, . . ., are taken as positive. The constants
Cy and C; are arbitrary and can be determined by the partia-fraction expansion
techniques. As discussed above, this determination is often not necessary for our
work.

If any of these roots are repeated, the term given in Table 3.1 is multiplied
by a power seriesin ¢,

Ki+ Kt + K3t2 + oo+ K,-tr—l

where r is the number of repetitions of the root and the constants Ky, K, . . . ,
K, can be evaluated by partia-fraction expansion.

It is thus evident that the imaginary axis divides the root locations into dis-
tinct areas, with regard to the behavior of the corresponding terms in x(t) as ¢
becomes large. Terms corresponding to roots to the left of the imaginary axis
vanish exponentialy in time, while those corresponding to roots to the right of

TABLE 3.1

Roots Terms in x(?) for t > 0

51 Cre !

52, 85 e~ %' (C} cos bat + C3 sin bat)
54, 83 Cycos byt + Cysin bt

54, 54 e%4*(Cy cos byt + C2 SiN bat)
55 Cpe%s!

6 Cy
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the imaginary axis increase exponentially in time. Terms corresponding to roots
a the origin behave as power series in time, a constant being considered as a
degenerate power series. Terms corresponding to roots located el sewhere on the
imaginary axis oscillate with constant amplitude in time unless they are multiple
roots in which case the amplitude of oscillation increases as a power series in

time. Much use will be made of this information in later sections of the text.

SUMMARY

The reader now has available the basic tools for the use of Laplace transforms to
solve differential equations. In addition, it is now possible to obtain considerable
information about the qualitative nature of the solution with a minimum of labor.
It should be pointed out that it is aways necessary to factor the denominator
of x(s) in order to obtain any information about x(t). If this denominator is a
poynomid of ode three or morg this may be far from a trivid problem. Chapter
15 is largely devoted to a solution of this problem within the context of control
gplications

The next chapter is a grouping of several Laplace transform theorems that
will find later application. In addition, a discussion of the impulse function &(t)
is presented there. Unavoidably, this chapter is rather dry. It may be desirable for
the reader to skip directly to Chap. 5, where our control studies begin. At each
point where a theorem of Chap. 4 is applied, reference to the appropriate section
o Chep. 4 can be mede

PROBLEMS

31 Sove the following usng Laplace trandorms
(@) %+j—:+x=l x©0) = x'(0) =0
()] %%+—2‘;d—f+x=l x(0) = x'0) =0
(0) %%wﬁgf+x=1 @ =x'®=0

Sketch the behavior of these solutions on a single graph. What is the effect of
the coefficient of dxldt?

32. Solve the following differentid equations by Laplace trandforms:

d*x  d3x
—_— —_— = — ‘ = i = “ O - 1

(a) T + 57 - cos t x(0) = x‘(0) = x “(0) =0 x “(0)
d’q dq _ ,

b —_— F — = = (0) = -2

(b) =3+ - =+ qO =24 a0

33 Invet the following transforms:
@ 3s

(s2+ 1)(s2 + 4
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!
) s(s2=2s + 5)
353 = 52 -35+2
s2(s = 1)2

©)

Expand the following functions by partizl-fraction expansion.

ficients or invert expressons.

2

(@ X(s) = (s+ D2+ D(s + 3)
1
) X(s) = s3s+ (s + 2)(s + 3)3
1
(0 X(s) =

S+ D(s+ (s + 3)s +4)

(@ Invert: x(s) = 1/[s(s + 1)(0.55 + 1)]
(b) Solve: dx/dt + 2x =2, x(0) =0
Obtain y(r) for

s +1
s2 4+ 25+ 5

2
® ys) = S
s

2s
(s— 1)
(@) Invert the following function

y(s) = 1/(s% + 1)?2

@ y(s) =

H

() y(s)

(b) Plot y versus ¢ from 0 to 3.
Determine £(r) for f(s) = 1/[s%(s + 1)].

Do not evdude cod-



CHAPTER

4

FURTHER
PROPERTI ES
OF TRANSFORMS

This chapter is a collection of theorems and results relative to the Laplace trans-
formation. The theorems are sdected because of their applicability to problems in
control theory. Other theorems and properties of the Laplace transformation are
available in standard texts [see Churchill (1972)]. In later chapters, the theorems
preented here will be used as needed.

Rnal-Value Theorem
If f(s) is the Laplace transform of f(t), then

Hm[f()] = lLim[sf(s)]

provided that sf(s) does not become infinite for any value of s satisfying
Re(s) = 0. If this condition does not hold, f(t) does not approach a limit
&t [ ». In the practical application of this theorem, the limit of f(t) that is found
by use of the theorem is correct only if f(t) is bounded as ¢ approaches infinity.

Proof. From the Laplace transform of a derivative, we have

CAf ey - -
fo dte dt = sf(s) = f(0)

37
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Hence,

o Pdf s, . _
shlron . —e dt —slgm[sf(S)] f(0)

It can be shown that the order of the integration and limit operation on the left
side of this equation can be interchanged if the conditions of the theorem hold.
Doing this gives

“df _
j Ldt = Hmlsf()] - fO)

0
Evaluating the integral,

Lm[f()] = £(0) =xl})im[Sf ()] = f0)
which immediately yields the desired resuilt.
Example 4.1. Find the final value of the function x(¢) for which the Laplace trans-
formis
!
s(s3+ 352+ 35+ 1)
Direct application of the find-vaue theorem yidds

1
1
s3+ 32+ 3s+ 1=

n(s) =

li )] = li
tllozn [n(®) lelm
As acheck, note that thistransform was inverted in Example 3.6 to give
2
x(t) = 1 e"(%+t+l)

which approaches unity a ¢ goproaches infinity. Note that since the denominator of
sx(s) can be factored to (s +1)?, the conditions of the theorem are satisfied; that
is, (s+ 1)># 0 unless s = -1.

Example 4.2. Find the final value of the function x(¢) for which the Laplace trans-
formis
__ s*-6s2+0s~8
s(s ~2)(s3+ 252 -5~2)
In this case, the function sx(s) can be written

x(s)

s* = 652+ 9s =8
sx(s) _ s+ Dis+ s =1D(s - 2

Since this becomes infinite for s = 1 and s = 2, the conditions of the theorem
ae not stisfied. Note that we inverted this tranform in Example 32, where it was
found that

11

1, - 17 _ 2
x(t)= -2+ Ee't+-1-e Fm g2t F 2y

12 3
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This function continues to grow exponentially with ¢ and, as expected, does not
aoproach a  limit.

The proof of the next theorem closely parallels the proof of the last one and
is ldt & an exadse for the reeder.

Initia-Value  Theorem
lli(I)an(t)] = llim [sf(s)]

The conditions on this theorem are not so stringent as those for the previous one
because for fundions of interes to us the oder of integrdion and limiting process
need not be interchanged to establish the result.

Example 4.3. Find the initial value x(0) of the function that has the following
transform

s =652+ 9s -8
s(s =23+ 252 =5 =2

The function sx(s) iswritten in theform

x(s) =

s =652+ 9s -8
s* =552+ 4

After  pefforming the indicated long divison, this becomes

sx(s) =

s2=0s+ 12

S e

which clearly goes to unity as s becomes infinite Hence
x(0) =1
which again checks Example 3.2.

Translation of Transform
If L{f (1)} = f(s), then
e f)} = f(s + @

In other words, the variable in the transform s is trandlated by a.
Proof.

L{e™%f (t)} = I:f(t)e"(””)'dt =f(s +a)

Example 4.4. Find L{e ~%'cos kt}. Since

L{cos kt} = }'Zﬁ
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then by the previous theorem,

s+a

—at _
L{e cos kt} = m

which checks Table 2.1.
A primary use for this theorem is in the inversion of transforms. For example,
using this theorem the transform
!

x(s) = GT ar

can be immediately inverted to

x(t) - te—at

In obtaining this result, we made use of the following transform pair from Table
2.1

Lir} = s—lz

Translation of Function
If L{f(r)} = f(s), then
L{f(t = to)} = e™*"0f(s)
provided that
f@ =20 for t <O

(which will dways be true for functions we use).

Before proving this theorem, it may be desirable to clarify the relationship
between T (¢ - o) and f(t). This is done for an arbitrary function f(t) in Fig.
4.1, where it can be seen that T (+ — #0) is simply trandated horizontally from
T(t) through a distance ¢.

f(t)

——

f(t-to)

FIGURE 4-1
lllugtration of f(r = to) as related to f(t).
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Proof.

L{f(t = to)} = L f@t = tg)e™*'dt

2]

e~ st ft = tg)e *UT0d(t = 1)
1 —to

But since f(t) = 0 for ¢t < 0, the lower limit of this integral may be replaced by

Zero.

Since (¢ = tp) is now the dummy variable of integration, the integral may

be recognized as the Laplace transform of f(t); thus, the theorem is proved.

This result is also useful in inverting transforms. It follows that, if f(t) is

the inverse transform of f(s), then the inverse transform of

e—st()f (g

is the function

f(t)

£

) t<to
8(1) = {f(t -1 t>1

Example 4.5. Find the Laplace transform of

0 t<0
f =1+ 0<t<h
0 t>h

This function is pictured in Fig. 42. It is clear that f(s) may be represented by the
difference of two functions,

1
f(t) = 5 Lu(®) = ut = h)]

where u(¢t = h) is the unit-step function trandated h units to the rightt We may now
ue the lineaity of the tranform and the previous theorem to write immediately

11 =ehs

f(S) = _h

This reallt is of congderable vaue in edablishing the transform of the unitimpulse
function, a will be described in the next section.

N

- FIGURE 42
t—> Pulse function of Example 45.
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Transform of the Unit-impulse Function

Consider again the function of Example 4.5. If we alow A to shrink to zero, we
obtain a new function which is zero everywhere except at the origin, where it is
infinite. However, it is important to note that the area under this function always
remains equal to unity. We call this new function 8(¢), and the fact that its area
is unity means that

ee]
o(ydt = 1

—0

The graph of 6(¢) appears as a line of infinite height at the origin, as indicated in
Table 2.1. The function 8(¢) is called the unit-impulse function or, alternatively,
the delta function.

It is mentioned here that, in the strict mathematical sense of a limit, the
function f(t) does not possess a limit as & goes to zero. Hence, the function
5(r) does not fit the strict mathematical definition of a function. To assign a
mathematically precise meaning to the unit-impulse function requires use of the
theory of distributions, which is clearly beyond the scope of this text. However,
for our work in automatic control, we shall be able to obtain useful results by
formal manipulation of the delta function, and hence we ignore these mathematica
difficulties.

We have derived in Example 4.5 the Laplace transform of f(t) as

. e—hs

1
L{f(n)} = —

Formally, then, the Laplace transform of &(¢) can be obtained by letting # go to
zero in L{f(¢)}. Applying L’Hopital’s rule,
1 —ehs se™hs

L5} = Jim —=— = lim —

=1 4.1)

This “verifies’ the entry in Table 2.1.
It is interesting to note that, since we rewrote f(t) in Example 4.5 as

() = 20u) = ute = A

then §(¢) can be written as

5() = lim WO =4 h)
h—0 h
In this form, the delta function appears as the derivative of the unit-step function.
The reader may find it interesting to ponder this statement in relation to the graphs
of 8(r) and u(t) and in relation to the integral of &(¢) discussed previously.
The unit-impulse function finds use as an idealized disturbance in control
systems analysis and design.
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Transform of an Integral
If L{f(#)} = f(s), then

LUtf(t)dt} = @
0

N

This important theorem is closely related to the theorem on differentiation. Since
the operations of differentiation and integration are inverses of each other when
applied to the time functions, i.e.,

d t JI df
— = —dt = f(t
— L finde = | = f@) 4.2)
it isto be expected that these operations when applied to the transforms will also
be inverses. Thus assuming the theorem to be valid, Eq. (4.2) in the transformed
vaiable s becomes

) _

© = D550 = 5

In other words, multiplication of f(s) by s corresponds to differentiation of f(t)
with respect to ¢, and division off(s) by § corresponds to integration off(t) with
respect to t.

The proof follows from a draghtforward integration by parts.

f(s) = f f(t)e 'ds
0

Let
u=e?* dv = f(®)dt
Then

t
du = —se™**dt v = J f()dt
0

vs |

0 0
Since f(t) must satisfy the requirements for possession of a transform,

it can be shown that the first term on the right, when evaluated at the upper
limit of o, vanishes because of the factor ¢ =%, Furthermore, the lower limit
clearly vanishes, and hence, there is no contribution from the first term. The

second term may be recognized as sL{jo’ f (t)dt}, and the theorem follows im-
mediately.

Hence,

1
f f(t)dt} e tdt
0

f(s) = e_”f f(t)dt
0
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Example 4.6. Solve the following equation for x(t):

dl:f'x(t)dt-t

dt 0
x(0) =3
Taking the Laplace trandform of both ddes and making use of the previous
theorem
_3.xs) 1
sx(s) == 2
Solving for x(s),
X(s) = 3521 352 = |

s(s2=1) = s(s +I)(s = 1)
This may be expanded into patid fractions according to the usuad procedure to give
! !

1
x(s) = - + —
s s+1 s-|

Hence,
XM =1+ 71+ ¢

The reader should verify that this function satisfies the origind equation.

PROBLEMS

4.1. If aforcing function f(t) has the Laplace transform
1 + e __e-2s e—3s

f(S)=- 52 - 7

N

graph the function f(t).
4.2. Solve the following equation for y(t):

f d
foy(r)df = —jﬁ’—) y(0) = 1

4.3. Express the function given in Fig. P4.3 in the t-domain and the s-domain.

FIGURE P4-3
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44. Sketch the following functions:
f) =ul®) = 2u(z =1 + ut - 3
f(t) = 3ru(t) = 3u(t =1 —u(t - 2)
4.5. The function f(t) has the Laplace transform
f(s) = (1 - 2e % + e"zs)/s2

Obtain the function f(t) and graph f(t).
4.6. Determine f(t) at + = 1.5 and at ¢ = 3 for the following function:

f(t) = 0.5u(r) = 0.5u(t =) + (t = 3u(t = 2
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Example 4.6. Solve the following equation for x(t):

dx t
—_— = - t
= Lxmm
x(0) = 3
Taking the Laplace tranform of both ddes and making use of the previous
theorem
-3 _ 1
sx(s) . 2
Solving for x(s),
X(9) = 3s%-1 352 = |

s(s? = 1) =g(s+ (s =1
This may be expanded into partiad fractions according to the usud procedure to give

x(s—l+ : !
s s+1 s—1

Hence,
() =1+ e+ ¢

The reader should verify that this function stisfies the origind equation.

PROBLEMS

4.1. If aforcing function £(r) has the Laplace transform
1 -s _ ,—2s ,—3s

feo=-+t& £ ¢
5 s

N

graph  the function  f£(¢).
4.2. Solve the following equation for y(t):

f _dy® _
[, y@ar =2 o =1

4.3. Express the function given in Fig. P4.3 in the t-domain and the s-domain.

b{0)]
T

0
0 1 2 3 4 5 6

FIGURE P4.3



FURTHER PROPERTIES OF TRANSFORMS

44, Sketch the following functions:
f(t) = u(t) = 2u(t = 1)+ u(z~ 3
f(t) = 3tu(t) = 3ut = D)= u(t ~ 2
4.5. The function f(t) has the Laplace transform
fs) = (1 —-2° + e_2‘)!s2

Obtain the function f(t) and graph f(t).
4.6. Determine f(t) at t = 1.5 and at t = 3 for the following function:

f(t) = 0.5u(r) = 0.5u(t = 1) + (¢t ~ u(t - 2)
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CHAPTER
S

RESPONSEOF
FI RST- ORDER
SYSTEMS

Before discussing a complete control system, it is necessary to become familiar
with the responses of some of the smple, basic systems that often are the building
blocks of a control system. This chapter and the three that follow describe in detail
the behavior of several basic systems and show that a great variety of physical
systems can be represented by a combination of these basic sysems. Some of the
tems and conventions that have become well established in the field of automatic
control  will aso be introduced.

By the end of this part of the book, systems for which atransient must be
calculated will be of high-order and require calculations that are time-consuming
if done by hand. The reader should start now using Chap. 34 to see how the
digital computer can be used to simulate the dynamics of control systems.

TRANSFER  FUNCTION

MERCURY THERMOMETER. We shdl develop the transfer function for a firss-
order system by considering the unsteady-state behavior of an ordinary mercury-
in-glass thermometer. A cross-sectiond view of the bulb is shown in Fig. 5 /1 .
Consider the thermometer to be located in a flowing stream of fluid for which
the temperature x varies with time. Our problem is to calculate the response or
the time variation of the thermometer reading y for a particular change in x.*

*In order tha the result of the andysis of the thermometer be generd and therefore applicable to
other first-order systems, the symbols x and y have been sclected to represent surrounding temperature
and thermometer reading, respectively.

49



5 0 LINEAR OPEN-LOOP SYSTEMS

x=surrounding _ -~ Film resistance
temperature /7 >§/

FIGURE 5
Cross-sectional view  of  thermometer,

The following assumptions* will be used in this anaysis:

1. All the resistance to heat transfer resides in the film surrounding the bulb (i.e.,
the resistance offered by the glass and mercury is neglected).

2. All the thermal capacity is in the mercury. Furthermore, at any instant the
mercury assumes a uniform  temperature  throughout.

3. The glass wall containing the mercury does not expand or contract during the
transient response. (In an actual thermometer, the expansion of the wall has

an additional effect on the response of the thermometer reading. (See linoya
and Altpeter (1962) .)

It is assumed that the thermometer is initially at steady state. This means
that, before time zero, there is no change in temperature with time. At time zero
the thermometer will be subjected to some change in the surrounding temperature

x(1).
By applying the unsteady-state energy balance

Input rate — output rate = rate of accumulation

we get the result
d
hA(X -y)-0 = mC% G.1)

where A = surface area of bulb for heat transfer, ft?
C = heat capacity of mercury, Btu/(1b,,)(°F)
m = mass of mercury in bulb, 1b,,
t = time, hr
h = film coefficient of heat transfer, Btu/(hr)(ft2)(°F)

For illustrative purposes, typical engineering units have been used.

*Making the first two assumptions is often referred to as the lumping of parameters because all
the resistance is “lumped” into one location and al the capacitance into another. As shown in
the andyss, these assumptions make it possble to represent the dynamics of the system by an
ordinary differentid equation. If such assumptions were not ma&, the anaysis would lead to a
patid differentid  equation, and the representation would be referred t0 as a distibuted-parumeter
ggem. In Chap. 21, digtributed-parameter systems will be considered in detail.
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Equation (5.1) states that the rate of flow of heat through the film resistance
surrounding the bulb causes the internal energy of the mercury to increase at the
same rate. The increase in interna energy is manifested by a change in temperature
and a corresponding expansion of mercury, which causes the mercury column, or
“reading” of the thermometer, to rise.

The coefficient £ will depend on the flow rate and properties of the sur-
rounding fluid and the dimensions of the bulb. We shall assume that k is constant
for a particular installation of the thermometer.

Our andyss has resulted in Eq. (5. 1), which is a firg-order differentid equa
tion. Before solving this equation by means of the Laplace transform, deviation
variables will be introduced into Eq. (5.1). The reason for these new variables
will soon become apparent. Prior to the change in x, the thermometer is at steady
state and the derivative dy/dt is zero. For the steady-state condition, Eq. (5.1)
may be written

hA(x; ~ys)=0 <0 (5.2)
The subscript s is used to indicate that the variable is the steady-state value.
Equation (5.2) simply states that ys = x 4, or the thermometer reads the true,
bath temperature. Subtracting Eqg. (5.2) from Eq. (5.1) gives
diy = ys)
dt
Notice that d(y = y)/dt = dyldt because y; is a constant.

If we define the deviation variables to be the differences between the vari-
ables and their steady-state values

hA[(x = x5) = (y = ¥s)1 = mC (5.3)

X=x—-x
Y =y-y;
Eq. (5.3) becomes
dy
hAX -Y) = mC—d—t— (5.4)
If welet mC/hA = 7, Eq. (5.4) becomes
dy
X—-Y= TE (5.5)
Taking the Laplace transform of Eq. (5.5) gives
X(s) = Y(5) = 75Y () (5.6)
Rearranging Eq. (5.6) as aratio of Y(9 to X(9 gives
Y(s) _ |
)T(S =Tl (5.7)

The parameter 7 is cdled the time constant of the system and has the units of
time.
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The expression on the right side of Eq. (5.7) is caled the transfer function of
the system. It is the ratio of the Laplace transform of the deviation in thermometer
reading to the Laplace transform of the deviation in the surrounding temperature.
In examining other physical systems, we shall usually attempt to obtain a transfer
function.

Any physical system for which the relation between Laplace transforms of
input and output deviation variables is of the form given by Eq. (5.7) is cdled a
first-order system. Synonyms for first-order system are first-order lag and single
exponential stage. The naming of all these terms is motivated by the fact that Eq.
(5.7) results from a first-order, linear differential equation, Eq. (5.5). In Chap. 6
is a discusson of a number of other physicd systems which are first-order.

By reviewing the steps leading to Eg. (5.7), one can discover that the in-
troduction of deviation variables prior to taking the Laplace transform of the
differential equation results in a transfer function that is free of initial conditions
because the initial values of X and Y are zero. In control system engineering,
we are primarily concerned with the deviations of system variables from their
steady-state values. The use of deviation variables is, therefore, natural as well
as convenient.

PROPERTIES OF TRANSFER FUNCTIONS. In general, a transfer function re-
lates two variables in a physical process; one of these is the cause (forcing function
or input variable) and the other is the effect (response or output variable). In terms of
the example of the mercury thermometer, the surrounding temperature is the cause
or input, whereas the thermometer reading is the effect or output. We may write
Transfer function = G(8) = o2
ransfer function = G(s) = 0]
where G(s) = symbol for transfer function
X(s) = transform of forcing function or input, in deviation form
Y(s) = transform of response or output, in deviation form
The transfer function completely describes the dynamic characteristics of the
system. If we select a particular input variation X(t) for which the transform is
X(s), the response of the system is simply
Y(S) = G(s)X(s) (5.8)

By taking the inverse of Y (s), we get Y(t), the response of the system.

The transfer function results from a linear differentiad equation; therefore, the
principle of superposition is applicable. This means that the transformed response
of a system with transfer function G(s) to a forcing function

X(s) = a1Xi(s) + a2Xa(s)
where X; and X, are particular forcing functions and a ; and g, are constants, is
Y(s) = G(s)X(s)
= a1G(8)Xy(s) + a2G(s)Xa(s)
= aihi(s) + axb(s)
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Y(s)
G(s) >  FIGURE 5-2
Block diagram.

Yi(s) and Y»(s) are the responses to X, and X, alone, respectively. For example,
the response of the mercury thermometer to a sudden change in surrounding
temperature of 10°F is simply twice the response to a sudden change of 5°F in
surrounding  temperature.

The functiona relationship contained in a transfer function is often expressed
by a block-diagram representation, as shown in Fig. 5.2. The arrow entering the
box is the forcing function or input variable, and the arrow leaving the box is
the response or output variable. Insde the box is placed the transfer function. We
state that the transfer function G(s) in the box “operates’ on the input function
X(9 to produce an output function Y (s). The usefulness of the block diagram
will be appreciated in Chap. 9, when a complete control system containing severd
blocks is anayzed.

TRANSIENT  RESPONSE

Now that the transfer function of a first-order system has been established, we
can easily obtain its transient response to any forcing function. Since this type of
system occurs so frequently in practice, it is worthwhile to study its response to
several common forcing functions: step, impulse, and sinusoidal. These forcing
functions have been found to be very useful in theoretical and experimental aspects
of process control. They will be used extensively in our studies and hence, each

one is explored before studying the transient response of the firgt-order system to

these forcing functions.

Forcing Functions

STEP FUNCTION. Mathematically, the step function of magnitude A can be ex-
presed  as

X() = Au(t)

where u(t) is the unit-step function defined in Chap. 2. A graphica representation
is shown in Fig. 5.3.

X=0,t<0
X=A,t20
A
. S — X(s)=3
vl
0 FIGURE 5-3

¢ Sep input.
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X=0;t<0

=4;0<e<p
Al X=0;¢t>b
= b Iirlr:th)=A8(t)

-
> L{A8(1)}=A

0—0% FIGURE 5-4
t Impulse function.

The transform of this function is X(3 = A/s. A step function can be
approximated very closely in practice. For example, a step change in flow rate
can be obtained by the sudden opening of a valve.

IMPULSE FUNCTION. Mathematically, the impulse function of magnitude A is
defined as
X(t) = Ad(2)

where 8(t) is the unit-impulse function defined and discussed in Chap. 4. A
graphical representation of this function, before the limit is taken, is shown in
Fig. 5.4.

The true impulse function, obtained by letting b [ 0 in Fig. 5.4, has
Laplace transform A. It is used more frequently as a mathematical aid than as
an actua input to a physical system. For some systems it is difficult even to
approximate an impulse forcing function. For this reason the representation of
Fig. 5.4 is valuable, since this form can usualy be approximated physically by
application and removal of a step function. If the time duration b is sufficiently
small, we shall see in Chap. 6 that the forcing function of Fig. 5.4 gives a
response that closely resembles the response to a true impulse. In this sense, we
often justify the use of A as the Laplace transform of the physically redlizable
forcing function of Fig. 5.4.

SINUSOIDAL INPUT. This function is represented mathematically by the equa-
tions

X=0 t<0

X = A sih wt t=0

where A is the amplitude and w is the radian frequency. The radian frequency

o is related to the frequency f in cycles per unit time by = 27 f. Figure
5.5 shows the graphical representation of this function. The transform is X (s) =

Aw/(s? + w?). This forcing function forms the basis of an important branch of

control theory known as frequency response. Hidoricaly, a large segment of the
development of control theory was based on frequency-response  methods, which
will be presented in Chaps. 16 and 17. Physically, it is mote difficult to obtain a
snusoidd forcing function in most process varigbles than to obtain a sep function.

This completes the discusson of some of the common forcing functions. We
shall now devote our attention to the transient response of the first-order system
to each of the forcing functions just discussed.
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2m X=0;t<0

) | Period= & | I X=A sinot; 120

XI(t)

FIGURE 5-5
Sinusoidal input.

Sep  Regponse

If a 9gp change of megnitude A is introduced into a fird-order sydem, the trans
fom of X() is

X@ =2 (5.9
The transfer function, which is given by Eq. (5.7), is
Yis) _ 1
ORETES &7
Combining Egs. (5.7) and (5.9) gives
A1l
= .. 5.10
Y (s) sTts+1 (.10
This can be expanded by partial fractions to give
C
Y = 7 G, & (511)

)G+ 1) s MRS

Solving for the constants C; and C, by the techniques covered in Chap. 3 gives
Ci1= A and C, = -A. Inserting these constants into Eq. (5.11) and taking the
inverse transform give the time response for ¥:

Yt)= 0 t<0

512
YBO=AL =) t=0 1)

Hereafter, for the sake of brevity, it will be understood that, as in Eq. (5.12), the
response is zero before t = 0. Equation (5.12) is plotted in Fig. 5.6 in terms of
the dimensionless quantities Y (¢)/A and t/r.

Having obtained the step response, Eq. (5.12), from a purely mathematical
gproech, we shoud condder wheher o nat the reslt seams to be coredt from
physical principles. Immediately after the thermometer is placed in the new envi-
rorment, the tempaaure dffaence bewen the mercury in the bub and the beth
temperature is at its maximum value. With our simple lumped-parameter model,
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0 FIGURE 5-6
0 1 2 3 4 5 Reyponse of a fird-order system to
Y/ a step input.

we should expect the flow of heat to commence immediately, with the result
that the mercury temperature rises, causing a corresponding rise in the column
of mercury. As the mercury temperature rises, the driving force causing heat to
flow into the mercury will diminish, with the result that the mercury temperature
changes at a slower rate as time proceeds. We see that this description of the
response based on physical grounds does agree with the response given by Eq.

(5.12) and shown graphicaly in Fig. 5.6.
Several features of this response, worth remembering, are

1. The value of Y(t) reaches 63.2 percent of its ultimate value when the time

elapsed is equal to one time constant 7. When the time elapsed is 27, 37,
and 4r, the percent response is 86.5, 95, and 98, respectively. From these

facts, one can consider the response essentially completed in three to four

time constants.

2. One can show from Eq. (5.12) that the slope of the response curve at the
origin in Fig. 5.6 is 1. This means that, if the initia rate of change of Y (t)
were maintained, the response would be complete in one time constant, (See

the dotted line in Fig. 5.6.)
3. A consequence of the principle of superposition is that the response to a step

input of any magnitude A may be obtained directly from Fig. 5.6 by multiplying
the ordinate by A. Figure 5.6 actudly gives the response to a unit-step function

input, from which all other step responses are derived by superposition.
These results for the step response of a first-order system will now be applied

to the following example.
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Example 5.1. A thermometer having a time constant* of 0.1 min is & a steady-
date temperature of 90°F At time ¢+ = 0, the thermometer is placed in a temper-
ature bath maintained at 100°E. Determine the time needed for the thermometer to
read 98".

In terms of symbols used in this chapter, we have

r=01mn xs =9° A=10°

The ultimate thermometer reading will, of course, be 100°, and the ultimate value
of the deviation variable ¥ () is 10°. When the thermometer reads 98°, Y(t) = 8.
Substituting into Eq. (5.12) the appropriate values of Y, A, and  gives

8= 10(1 - e*t/O.l)
Solving this equation for ¢ yields
t = 0161 min

The same result can dso be obtained by referring to Fig. 5.6, where it is seen that
Y/A=08 at/r =

Impulse Response

The impulse response of a firg-order system will now be developed. Anticipat-
ing the use of superposition, we consider a unit impulse for which the Laplace
trendorm is

X(s) = 1 513

Combining this with the rade fundion for a fird-order sydem, which is gven
by Eq. (5.7), results in

1
= 5.14
Y(s) s +1 ¢ )
This may be rearranged to
Vi
Y(s) = pyy= (5.15)

The inverse of Y(s) can be found directly from the table of transforms and can
he written in the form

TY(t) = e " (5.16)

A plot of this response is shown in Fig. 5.7 in terms of the variables /7
and 7Y (t). The response fo an impulse of magnitude A is obtained, as usual, by
multiplying 7¥ (¢) from Fig. 5.7 by A/r. /

*The time constant given in this problem applies to the thermometer when it islocated in the
temperature  bath. The time congtant for the thermometer in ar will be considerably different from
that given because of the lower heat-transfer coefficient in air.
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1.0
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7Y (t)
]

] FIGURE 5-7
0, 1 2 3 [ Unit-impulse  response  of a first-
tr order  system.

Notice that the response rises immediately to 1.0 and then decays exponen-
tially. Such an abrupt rise is, of course, physically impossible, but as we shall
see in Chap. 6, it is approached by the response to a finite pulse of narrow width,
such as that of Fig. 5.4.

Sinusoidal Response

To invesigate the reponse of a fird-order system to a sSnusoidd fordng function,

the example of the mercury thermometer will be considered again. Consider a
thermometer to be in equilibrium with a temperature bath at temperature x ;. At
sometimet = O, the bah tempeaure begins to vay acoording to the rdaionship

X = xs + Asin ot t>0 (5.17)
where x = temperature of bath
x, = temperature of bath before sinusoidal disturbance is applied

A = amplitude of variation in temperature
w = radian frequency, rad/time

In anticipation of a simple result we shall introduce a deviation variable X
which is defined as

X=X-X, (5.18)
Using this new variable in Eq. (5.17) gives
X=A sn wt (5.19)
By referring to atable of transforms, the transform of Eq. (5.19) is
A
X(s) = —m (5.20)

52 + w?
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Combining Egs. (5.7) and (5.20) to eliminate X(9) yields
Aw t/r

S )+ w? s+ 1/7

Y(S*

(5.21)
This equation can be solved for Y (t) by means of a partia-fraction expansion, as
described in Chap. 3. The result is

Awte™ " AwT

Pe?+1 T?+ 1

A .
cos wt + ——=—— Sh wt (5.22)

Yo = T2w? + 1

Equation (5.22) can be written in another form by using the trigonometric
identity
pcosA+ gsnA=r sin(A+ 8) (5.23)

where
r= Jp*+q* tamf = %
Applying the identity of Eq. (5.23) to (5.22) gives

Aot —tir +

A
——e ——————
72(02 +1 J2w? +1

¢ = tan"'(—w7)

Y(t) = sn (Wt + @) (5.24)

where

Ast -, the first term on the right side of Eq. (5.24) vanishes and leaves
only the ultimate periodic solution, which is sometimes called the steady-state
solution

A
Y(t) = —————=sin (@t + ¢)
5 v 720)2 +1

By comparing Eqg. (5.19) for the input forcing function with Eq. (5.25) for
the ultimate periodic response, we see that

(5.25)

1. The output is a sine wave with a frequency o equal to that of the input signal.
2. The ratio of output amplitude to input amplitude is 1/ V7202 + 1. This is al-
ways smaler than 1. We often state this by saying that the signal is attenuated.

3. The output lags behind the input by an angle ¢ |. It is clear that lag occurs,
for the sign of ¢ is aways negative.*

*By convetion, the output snusaid lags the input snusaid if ¢ in Eq. (529 is nggtive In tams
o a recording of input and output, this means that the input pesk ooours before the output peek.
If ¢ is postive in Eq. (529, the sysem exhibits pheee lead, or the output leeds the input. In this
book we gdl dweys ue the tam phese ade (¢) ad intepret whether there is lag or leed by the

convertion 6<0 e lag
>0 pee led
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For a particular system for which the time constant 7 is a fixed quantity,
it is seen from Eq. (5.25) that the attenuation of amplitude and the phase angle
¢ depend only on the frequency w. The attenuation and phase lag increase with
frequency, but the phase lag can never exceed 90° and approaches this value
asymptoticaly.

The dnusoidd response is interpreted in terms of the mercury thermometer
by the following example.

Example 5.2. A mercury thermometer having a time congtant of 0.1 min is placed
in a temperature bath at 100°F and allowed to come to equilibrium with the bath. At
time ¢ = O, the temperature of the bath begins to vary sinusoidally about its average
temperature of 100°F with an amplitude of 2°F If the frequency of oscillation is 10/
cycles/min, plot the ultimate response of the thermometer reading as a function of
time. What is the phase lag?

In terms of the symbols used in this chapter

7=01
xy; = 100°F
A= 2°F

f = 0 cycles/min
i
10 .
w = 27f = 27— = 20 rad/min
w
From Eg. (5.25), the amplitude of the response and the phase angle are cdl-

culated; thus

A
Jwl+ 1  Ja+1
¢= —tan"! 2 = -63.5

= 0.896°F

or
Phase lag = 63.5°
The response of the thermometer is therefore
Y(t) = 0.896 sin (20t ~ 63.5°)
or
y(#) = 100 + 0.896 sin (20t = 63.5°)

To obtain the lag in terms of time rather than angle, we proceed as follows. A
frequency of 10/ cycles'min means that a complete cycle (pesk’ to pesk) occurs in
(10/7r)~1 min. Since one cycle is equivaent to 360" and the lag is 63.5°, the time
corresponding to thislag is

63.5

30 X (time for 1 cycle)
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or
_ 635w
360 10
In general, the lag in units of time is given by

1]
= 360f

= 0.0555 min

Lag

when ¢ is expressed in degrees.

The response of the thermometer reading and the variation in bath temper-
ature are shown in Fig. 5.8. It should be noted that the response shown in this
figure hdds only &fter auffidet time hes dgpsad for the nonpeiodic tem of Eg
(5.24) to become negligible. For all practical purposes this term becomes negli-
gible after atime equal to about 37. If the response were desired beginning from
the time the bath temperature begins to oscillate, it would be necessary to plot
the complete response as given by Eq. (5.24).

SUMMARY

In this chapter several basic concepts and definitions of control theory have been
introduced. These include input variable, output varigble, deviation variable,
transfer function, response, time constant, first-order system, block diagram, at-
tenuation, and phase lag. Each of these ideas arose naturally in the study of the
dynamics of the first-order system, which was the basic subject matter of the
chapter. As might be expected, the concepts will find frequent use in succeeding
cheptas

In addition to introducing new concepts, we have listed the response of
the first-order system to forcing functions of major interest. This information on

102.0

100.9
100.0
9.1

|
i I Bath
BofF~-+————— +————— temperature

Thermometer
temperature

Ultimate periodic response

t, min

FIGURE 5-8
Response  of thermometer in Example 5.2
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the dynamic behavior of the first-order system will be of significant value in the
remander of our Sudies.

PROBLEMS
5.1. A thermometer having atime congtant of 0.2 min is placed in a temperature bath,

and after the thermometer comes to equilibrium with the bath, the temperature of

the bath is increased linearly with time at a rate of 1%min. What is the difference

between the indicated temperature and the bath temperature (8) 0.1 min, (b) 1.0

min after the change in temperature begins?

(¢) What is the maximum deviation between indicated temperature and beath tem-
perature, and when does it occur?

(@) Plot the forcing function and response on the same graph. After a long enough
time, by how many minutes does the response lag the input?

5.2. A mercury thermometer bulb is % in. long by % in. diameter. The glass envelope is

very thin. Caculate the time constant in water flowing at 10 ft/sec a a temperature
of 100°F. In your solution, give a summary which includes

(& Assumptions used

(b) Source of data

(0) Results

5.3. Given a system with the transfer function Y(s)/X(s) = (T1s + 1)/(T2s + 1). Find

Y(r) if X(t) is a unit-step function. If T}/T; = 5, sketch Y(r) versus ¢/T5. Show
the numerica vaues of minimum, maximum, and ultimate vaues that may occur
during the transient. Check these using the initid-value and fina-value theorems of
Chap. 4.

5.4. A thermometer having first-order dynamics with a time constant of 1 min is placed

in a temperature bath at 100°F. After the thermometer reaches steady dtate, it is
suddenly placed in a bath & 110°F at ¢+ = 0 and Ieft there for 1 min, after which it
is immediately returned to the bath at 100°F.

() Draw a sketch showing the variation of the thermometer reading with time.
(b) Cdculate the thermometer reading & ¢ = 0.5 min and & ¢ = 20 min.

5.5. Repeat Prob. 5.4 if the thermometer is in the 110°F bath for only 10 sec.
5.6. A mercury thermometer, which has been on atable for some time, is registering the

room temperature, 75°F. Suddenly, it is placed in a 400°F oil bath. The following
data are obtained for the response of the thermometer.

Time, sec Thermometer reading, °F

0 75
1 107
2.5 140
5 205
8 244
10 282
15 328
30 385

Give two independent estimates of the thermometer time congtant.
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5.7. Rewrite the sinusoidd response of a fird-order system [Eq. (5.24)] in terms of a
cosine wave. Reexpress the forcing function [Eg. (5.19)] as a cosine wave, and
compute the phase difference between input and output cosine waves.

5.8. The mercury thermometer of Prob. 5.6 is again alowed to come to equilibrium in
the room air a 75°F. Then it is placed in the 400°F oil bath for a length of time less
than 1 sec, and quickly removed from the bath and reexposed to the 75°F ambient
conditions. It may be estimated that the heat-transfer coefficient to the thermometer
in ar is onefifth that in the oil bath. If 10 sec after the thermometer is removed
from the bath it reads 98°F, estimate the length of time that the thermometer was in
the bath.

5.9. A thermometer having a time congtant of 1 min isinitidly at 50°C. It isimmersed in
a bath maintained a 100°C a ¢ = 0. Determine the temperature reading a ¢ = 1.2
min.

510. In problem 5.9, if a r = 1.5 min, the thermometer is removed from the bath
and put in a bath a 75°C, determine the maximum temperature indicated by the
thermometer. What will be the indicated temperature a ¢ = 20 min?

5.11. A process of unknown transfer function is subjected to a unit-impulse input. The
output of the process is measured accurately and is found to be represented by the
function y(t) = te~'. Determine the unit-step response of this process.



CHAPTER

6

PHY SICAL
EXAMPLES

OF FIRST-ORDER
SYSTEMS

In the first part of this chapter, we shal consider several physical systems that can

be represented by a first-order transfer function. In the second part, a method for

approximating the dynamic response of a nonlinear system by a linear response
will be presented. This approximation is called linearization.

EXAMPLES OF FIRST-ORDER SYSTEMS

Liquid Level

Consider the system shown in Fig. 6.1, which conssts of a tank of uniform cross-
sectional area A to which is attached a flow resistance R such as avalve, apipe,
or a weir. Assume that ¢g,, the volumetric flow rate (volume/time) through the
resistance, is related to the head h by the linear relationship

o = — 6-1
q R 6.1
A resistance that has this linear relationship between flow and head is referred
to as a linear resistance.” A time-varying volumetric flow ¢ of liquid of constant
density p enters the tank. Determine the transfer function that relates head to flow.

*A pipeis alinear resistance if the flow is in the laminar range. A specially contoured Weir,
cdled a Sutro weir, produces a linear head-flow relationship. Formulas used to prepare the shape of

64
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4(¢)————¢

— ——

()

R FIGURE 6-1
> gy (t) Liquid-level  system.

We can analyze this system by writing a transient mass balance around the
tank:

Mass flow in = mass flow out = rate of accumulation of mass in the tank

In terms of the variables used in this analysis, the mass balance becomes

_ _ d(pAh)
pq(t) = pq.(t) = ar
dh
q(t) = qo(t) = AE; (6.2)

Combining Egs. (6.1) and (6.2) to eliminate g,(t) gives the following linear
differential equation:

dh
dt
We shall introduce deviation variables into the analysis before proceeding
to the transfer function. Initially, the process is operating at steady state, which
means that dh/dt = 0 and we can write Eq. (6.3) as
h
-5 = 6.4
qs R 0 6.4)
where the subscript s has been used to indicate the steady-state value of the
vaiable.
Subtracting Eq. (6.4) from Egq. (6.3) gives

h
-==A

d(h — hs)

o 6.5

1
(q-q5)=1—e(h-hs)+A

such a weir have been reported in the literature; see Soucek, Howe, and Mavis (1936). Turbulent
flow through pipes and valves is generally proportional to \/}T Flow through weirs having smple
geometric shapes can be expressed as Kh", where K and n are postive congtants. For example, the
flow through a rectangular-shaped weir is proportional to A32.
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If we define the deviation variables as
Q=q—gq;
H=h-h,
Eg. (6.5) can be written
dH

1
= —H+A— 6.6
Q=3 T (6.6)

Taking the transform of Eq. (6.6) gives
1
Q(s) = ZH(s) + AsH(s) (6.7)

Notice that H(0) is zero and therefore the transform of dH/dt is simply sH(s).
Equation (6.7) can be rearranged into the standard form of the first-order
lag to give
H(s) R

0@(s) 7s+1 ©6-8)

where 7 = AR

In comparing the transfer function of the tank given by Eq. (6.8) with the
transfer function for the thermometer given by Eq. (5.7), we see that Eq. (6.8)
contains the factor R. The term R is simply the conversion factor that relates h(t)
to g(r) when the system is at steady state. For this reason, a factor K in the
transfer function K/(rs + 1) is often called the steady-state gain. We can readily
show this name to be appropriate by applying the final-value theorem of Chap.
4 to the determination of the steady-state value of H when the flow rate Q(t)
changes according to a unit-step change; thus

o) = u(t)
where u(t) is the symbol for the unit-step change. The transform of Q(t) is

1
Q(s) = -
N
Combining this forcing function with Eq. (6.8) gives

1 R
H = —
) sts+1

Applying the final-value theorem, proved in Chap. 4, to H(s) gives

R
= lir%[sH(s)] = lim =R
5> 5

H
@ t -0 75 + 1

This shows that the ultimate change in H(t) for a unit change in Q(t) is simp-
ly R.

If the transfer function relating the inlet flow g(¢) to the outlet flow is
desired, note that we have from Eq. (6.1)
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s
R

Subtracting Eq. (6.9) from Eq. (6.1) and using the deviation variable @, =
9o = qo, giVes

qos (69)

H

o = — 6.10
Qo = o (6.10)

Taking the transform of Eq. (6.10) gives

_ H(s)
Qol(s) = R (6.11)
Combining Egs. (6.11) and (6.8) to eliminate H(s) gives

Qols) .

o(s) s+ 1 (6.2

Notice that the steady-state gain for this transfer function is dimensionless,
which is to be expected because the input variable g(¢) and the output variable
q,(t) have the same units (volume/time).

The possibility of approximating an impulse forcing function in the flow rate
to the liquid-level system is quite real. Recall that the unit-impulse function is
defined as a pulse of unit area as the duration of the pulse approaches zero, the
impulse function can be approximated by suddenly increasing the flow to alarge
value for a very short time; i.e. we may pour very quickly a volume of liquid
into the tank. The nature of the impulse response for a liquid-level system will
be described by the following example.

Example 6.1. A tank having a time constant of 1 min and a resistance of g ft/cfm
is operating at steady state with aninlet flow of 10 ft3/min. At time s = 0, the flow
is suddenly incressed to 100 ft3/min for 0.1 min by adding an additiona 9 > of
water to the tank uniformly over a period of 0.1 min. (See Fig. 6.2 for this input
disturbance.) Plot the response in tank level and compare with the impulse response.

Before proceeding with the details of the computation, we should observe that,
as the time interval over which the 9 ft3 of water is added to the tank is shortened,
the input approaches an impulse function having a magnitude of 9.

From the data given in this example, the transfer function of the process is

He _1. 1 _
Q9 9s+1
The input may be expressed as the difference in step functions, as was done in

Example 45.
Q(t) = 90[u(t) ~ u(t = Ol)]

The transform of thisis

0(s) = (1 - e™0H)
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Combining this and the transfer function of the process, we obtain
1 e—OJs
s(s+1 - s(s+1

The first term in Bq. (6.13) can be inverted as shown in Eg. (5.12) to give
10( 1 —e™*). The second term, which indludes e ~01, must be inverted by use
of the theorem on trandation of functions given in Chap. 4. According to this theo-
rem, the inverse of e ~S*ef(s)is f(t = tg) with f(t) =0for t =5 <0or t < to.
The inverse of the second term in Eq. (6.13) is

e—OJs
Lt J =y for t < 0.1

(6.13)

H(s) = 10(

s(s + 1)
=10[1 - e 0D} forr>01

The complete solution to this problem, which is the inverse of Eq. (6.13), is
H(f) = -t
(f) = 10(1 e_t) o t co.l 614)
Hf) = 10{1 = e = [1 — e ¢0D}} >0
Simplifying the expresson for H(t) for ¢ > 0.1 gives
H(r) = 1.052¢~* t>0.1
From Eq. (5.16), the response of the system to an impulse of magnitude 9 is
given by
H)| impuse = Dde™ = ¢!
In Fig. 6.2, the pulse response of the liquid-level system and the ideal impulse
response are shown for comparison. Notice that the leve rises very rapidly during the

0.1 min that additiona flow is entering the tar& the leve then decays exponentialy
and follows very closdly the ided impulse response.

The responses to step and sinusoidal forcing functions are the same for the
liquid-level system as for the mercury thermometer of Chap. 5. Hence, they need

1.01
/Araa=9 % _ Pulse response
o Impulse response
£ 100 2 3] (ideal)
o~
* 7 /
6‘ 10 ;%/ e o 1 1
0lo01 02 0 1 t 2
i o |
(a) (b)
FIGURE 6-2

Approximation of an impulse function in a liquid-level system. (Example 6-1) (a) Pulse input;
(b) response of tank level.
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not be rederived. This is the advantage of characterizing al first-order systems by
the same transfer function.

Liquid-Level Process with Constant-flow Outlet

An example of a transfer function that often arises in control systems may be
developed by considering the liquid-level system shown in Fig. 6.3. The resistance
shown in Fig. 6.1 is replaced by a constant-flow pump. The same assumptions
of constant cross-sectional area and constant density that were used before also
apply here. For this system, Eq. (6.2) still applies, but ¢(t) is now a constant;
thus

dh

q(t) — g0 = AE (6.15)
At steady state, Eq. (6.15) becomes
4s = g4o=0 (6.16)

Subtracting Eq. (6.16) from Eq. (6.15) and introducing the deviation variables
Q=g=gsand H=h~ h; gives
dH

=A— 6.17

0 =A— (617)

Taking the Laplace transform of each side of Eg. (6.17) and solving for H/Q gives
H(s) 1

— 6.18

Q(s) = As (618

Notice that the transfer function, I/As, in Eq. (6.18) is equivaent to integration.
One redlizes this from the discussion on the transform of an integral presented in
Chap. 4. Therefore, the solution of Eq. (6.18) is

t
h(r) = hy + lf 0(t) dt (6.19)
A Jo

If a step change Q(r) = u(r) were applied to the system shown in Fig. 6.3 the
result is
h(t) = A; + UA (6.20)

The step response given by Eq. (6.20) is a ramp function that grows without
limit. Such a system that grows without limit for a sustained change in input is

q(r)

Q—Wozcc’”m AGRE 63
Liquid-level system with constant flow outlet.
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said to have nonregulation. Systems that have a limited change in output for a
sustained change in input are said to have regulation. An example of a system
having regulation is the step response of a first-order system, which is shown in
Fig. 5.6.

The transfer function for the liquid-level system with constant outlet flow
given by Eq. (6.18) can be considered as a special case of Eq. (6. 8) asR — .
The next example of afirst-order system is a mixing process. \

L
Mixing Process

Consider the mixing process shown in Fig. 6.4 in which a stream of solution
containing dissolved salt flows at a constant volumetric flow rate ¢ into a tank of
constant holdup volume V. The concentration of the salt in the entering stream,
x (mass of sat/volume), varies with time. It is desired to determine the transfer
function relating the outlet concentration y to the inlet concentration x.

Assuming the density of the solution to be constant, the flow rate in must
equal the flow rate out, since the holdup volume is fixed. We may analyze this
system by writing a transient mass balance for the salt; thus

Flow rate of salt in — flow rate of salt out
= rate of accumulation of salt in the tank

Expressing this mass balance in terms of symbols gives

aw
ax - qy = 10V (6.21)

We shdl again introduce deviation variables as we have in the previous
examples. At steady state, Eq. (6.21) may be written

9xs = qys = 0 (6.22)
Subtracting Eq. (6.22) from Eq. (6.21) and introducing the deviation variables
X=X-X,
Y =y-ys
give
gX —qY = Vd—Y

FIGURE 6-4
Mixing  process.
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Taking the Laplace transform of this expression and rearranging the result
give
Yis) 1
X(s) 75+ 1

(6.23)

where 7 = V/q.
This mixing process is, therefore, another first-order process, for which the

dynamics are now well known. We next bring in an example from DC circuit
theory.

RC Circuit

Consider the smple RC circuit shown in Fig. 6.5 in which a voltage source v(t)

is applied to a series combination of a resistance R and a capacitance C. For
t <0, v(t) = v,. Determine the transfer function relating e () to v(t), where

e(t) is the voltage across the capacitor.
Applying Kirchhoff’s law, which states that in any loop the sum of voltage

rises [v(t) in this example] must equal the sum of the voltage drops, gives
v(t) = Ri(t) + %I i dt (6.24)

Recalling that the current is the rate of change of charge with respect to time
(coulombs per second), we may replace i by dg/dt in Eq. (6.24) to obtain

dg(t) 1
v(t) = R —q(t 6.25
0= RE =4 740 (6.25)
Since the voltage across the capacitance is given by the relationship
e = % (6.26)

the initia charge on the capacitor is smply
gs = Cecs

Initidly, when the circuit is at steady date and the capacitor is fully charged,
the voltage across the capacitor is equal to the source voltage v; therefore, Eq.
(6.25) can be written for these steady-state conditions as

1
vy = cis = e (6.27)

v,
v(t)

FIGURE 6-5
RC circuit.

OofF~—=—-
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Subtracting Eqg. (6.27) from Eg. (6.25) and introducing the deviation vari-
ables

V=v—v
Q=494 (6.28)
E.= e = e = E
we obtain the result
V= R—d—,Q— + Q_ (6.29)
dt C
or
dE .
V = RC +F 6.30
dt ¢ (6:30)
Taking the transform of Eq. (6.30) and rearranging the result give
E.(s) _ !

= e (6.31)
V(s) s+ 1
where 7 = RC. Again we obtain a first-order transfer function.

The three examples that have been presented in this section are intended to
show that the dynamic characteristics of many physicd systems can be represented
by a first-order transfer function. In the remainder of the book, more examples of
firt-order systems will appear as we discuss a variety of control systems.

SUmmary

In each example of afirst-order system, the time constant has been expressed in
terms of system parameters, thus

mC

T= for thermometer, Eq. (5.5)
7= AR for liquid-level process, Eq. (6.8)
T = y for mixing process, Eq. (6.23)

4

T =RC for RC circuit, Eq. (6.31)

LINEARIZATION

Thus far, dl the examples of physica systems, including the liquid-level system of
Fig. 6.1, have been linear. Actually, most physica systems of practica importance
are nonlinear.

Characterization of a dynamic system by a transfer function can be done only
for linear systems (those described by linear differential equations). The conve-



PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS [ 3

nience of using transfer functions for dynamic analysis, which we have already
seen in applications, provides significant motivation for approximating nonlinear
systems by linear ones. A very important technique for such approximation is
illustrated by the following discussion of the liquid-level system of Fig. 6.1.

We now assume that the resistance follows the squareroot relationship

g, = Ch'? (6.32)

where C is a congant.
For aliquid of constant density and a tank of uniform cross-sectional area

A, a material balance around the tank gives

dh
1) —qo(t) = A— 6.33
q(t) — qo(r) T (6.33)
Combining Egs. (6.32) and (6.33) gives the nonlinear differential equation
dh
- Ch'? = A= 6.34
q i (6.34)

At this point, we cannot proceed as before and take the Laplace transform.
This is owing to the presence of the nonlinear term h 2, for which them is no
simple transform. This difficulty can be circumvented as follows .

By means of a Taylor-series expansion, the function g.(h) may be expanded
around the steady-state value #; thus

qq(hs)(h = h)?
2! '

Go = qolhs) + g (h)(h =h,) +

where g/ (h,) is the first derivative of ¢, evaluated a h 4, g,(h ;) the second
derivative, etc. If we keep only the linear term, the result is

qo = QD(hs) + q;(hs)(h - hy) (6.35)

Taking the derivative of g, with respect to h in Eq. (6.32) and evauating the
derivative at h = hy gives

ql(hs) = (12)ChV?
Introducing this into Eqg. (6.35) gives

"1
9o = Go, T —(h = hy) (6.36)
Ry
where gq,, = qo(hy)
(Rl)—l - %Chs_la

Substituting Eq. (6.36) into (6.33) gives

h = h; dh
- - = A—
7 Tos R1 dt

(6.37)
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At steady state the flow entering the tank equals the flow leaving the tank; thus

Qo = 9os (6.38)
Introducing this last equation into Eq. (6.37) gives
dh h—h;
A R, 4 =g (6.39)

Introducing deviation variables Q = q = gs;and H=h h; into Eqg. (6.39)
and transforming give

H(s) _

Q(s)  rs+1

(6.40)

where R, = 21Y%/C
T= R1A

We see that a transfer function is obtained that is identical in form with that of
the linear system, Eq. (6.8). However, in this case, the resistance R; depends on
the steady-state conditions around which the process operates. Graphically, the
resistance R; is the reciprocal of the slope of the tangent line passing through
the point (g,,hs) as shown in Fig. 6.6. Furthermore, the linear approximation
given by Eq. (6.35) is the eguation of the tangent line itself. From the graphical
representation, it should be clear that the linear approximation improves as the
deviation in h becomes smaller. If one does not have an analytic expression such
as k12 for the nonlinear function, but only a graph of the function, the technique
can dill be applied by representing the function by the tangent line passing through
the point of operation.

Whether or not the linearized result is a valid representation depends on the
operation of the system. If the level is being maintained by a controller at or
close to afixed level h g, then by the very nature of the control imposed on the
system, deviations in level should be small (for good control) and the linearized
eguation is adequate. On the other hand, if the level should change over a wide
range, the linear approximation may be very poor and the system may deviate
significantly from the prediction of the linear transfer function. In such cases, it
may be necessary to use the more difficult methods of nonlinear analysis, some
of which are discussed in Chaps. 31 through 33. We shall extend the discussion
of linearization to more complex systems in Chap. 21.

Tangent line
-1 _ %otk
Slope =%="a

Nonlinear
h(t) resistance %,

>, (1) 0

FIGURE 6-6
Liquid-level system with nonlinear resistance.
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In summary, we have characterized, in an approximate sense, a nonlinear
system by a linear transfer function. In general, this technique may be applied
to any nonlinearity that can be expressed in a Taylor series (or, equivaently, has
a unique slope at the operating point). Since this includes most nonlinearities
aising in process control, we have ample justification for studying linear systems
in considerable detail.

PROBLEMS

6.1. Derive the transfer function H(s)/Q(s) for the liquid-level system of Fig. P6.1 when
(@) The tank level operates about the steady-state value of p = 1 ft.
(b) The tank level operates about the steady-state value of hg = 3 ft.
The pump removes water at a congtant rate of 10 cfm (cubic feet per minute); this
rate is independent of head. The cross-sectiona area of the tank is 1.0 ft? and the
resgance R is 0.5 ft/cfm.

q, fta/min

2 ft
@ FIGURE P¢-1

6.2. A liquid-levdl system, such as the one shown in Fig. 6.1, has a cross-sectiona area
of 3.0 ft? . The vave characteristics are

q=8~/i_l

where ¢ flow rate cfm
h = levd above the vdve, ft

Cdculate the time congtant for this system if the average operaing levd is
(@ 3 ft
(b) 9 ft

6.3. A tank having a cross-sectiond area of 2 ft? is operating a steady state with an
inlet flow rate of 2.0 cfm. The flow-head characteridtics are shown in Fig. P6.3.
(@ Find the trandfer function H(s)/Q(s).
(b) If the flow to the tank increases from 2.0 to 2.2 cfm according to a step change,

cdculate the level ki two minutes after the change occurs,

h.ft FIGURE P6-3
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6.4. Develop a formula for finding the time constant of the liquid-level system shown
in Fig. P6.4 when the average operating levd is h,. The resstance R is linear. The
tank has three vertica walls and one which dopes @& an angle a from the vertica
as shown. The distance separating the paradld walls is 1.

FIGURE Pé¢-4

6.5. Consider the dirred-tank reactor shown in Fig. P6.5. The reaction occurring is

A—B
and it proceeds at a rate
r= kC,
where r = moles A reacting/(volume)(time)

k = reaction velocity condant
C,(t) = concentration of A in reector, molesivolume
V = volume of mixture in reactor
Further let F = condant feed rate, volumeltime
C;(t) = concentration of A in feed stream

Assuming constant density and constant V, derive the transfer function relaing
the concentration in the reactor to the feed-stream concentration. Prepare a block
diagram for the reactor. Sketch the response of the reactor to a unit-step changein C ;.

C, F——1 /

—>C.F  FIGURE P6-5

6.6. A thermocouple junction of area A, mass m, heat capacity C, and emissvity e is
located in a furnace that normally is a T;, °C. At these temperatures convective and
conductive heet transfer to the junction am negligible compared with rediative heet
trandfer. Determine the linearized transfer function between the furnace temperature
T; and the junction temperature T,. For the case

m= 0.1g

c = 0.12cal/(g)°C)
e= 07

A = 0.lcm?
T;. = 1100°C

plot the response of the thermocouple to a 10°C step change in furnace tempera
ture. Compare this with the true response obtained by integration of the differential
equation.
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6.7. A liquid-level system has the following properties.

6.8.

Tank dimensions: 10 ft high by 5 ft diameter
Steady-state operating characterigtics:

Inflow, Steady-state
gal/hr level, ft
0 0
5,000 7
10,000 1.1
15,000 2.3
20,000 3.9
25,000 6.3
30,000 8.8

(8 Plot the leve response of the tank under the following circumstances: The inlet
flow rate is held a 300 gal/min for 1 hr and then suddenly raised to 400 gal/min.

(b) How accurate is the steady-state level caculated from the dynamic response in
part () when compared with the value given by the table above?

(©) The tank is now connected in series with a second tank that has identica
operating characterigtics, but which has dimensions 8 ft high by 4 ft diameter.
Plot the response of the origina tank (which is upstream of the new tank) to
the change described in part (@) when the connection is such that the tanks are
(1) interacting, (2) noninteracting. (See Chap. 7.)

A mixing process may be described as follows: a stream with solute concentration

C; (poundsivolume) is fed to a pefectly stirred tank a a constant flow rate of q

(volumetime). The perfectly mixed product is withdrawn from the tank, adso at the

flow rate q a the same concentretion as the materid in the tank, C,. The total

volume of solution in the tank is congtant a V. Density may be considered to be
independent of concentration.
A trace of the tank concentration versus time appears as shown in Fig. P6.8.

(@) Plot on this samefigure your best guess of the quantitative behavior of theinlet
concentration versustime. Be sure to label the graph with quantitative informa:
tion regarding times and magnitudes and any other data that will demonstrate
your understanding of the Stuation.

(b) Write an equation for C; as a function of time.

21

n
o

C, tb/gal—>
o

—
oo

=
N

—>Time FIGURE P68



78 LINEAR OPEN-LOOP SYSTEMS

Data: Tank dimensions: 8 ft high by 5 ft diameter
Tank volume V: 700 gd
Flow rate ¢: 100 gal/min
Average density: 70 [b/ft3

6.9. The liquid-levedl process shown in Fig. P6.9 is operating a steady state when the
following disturbance occurs: a time ¢ = 0, 1 ft* water is added suddenly (unit
impulse) to the tank; at + = 1, 2 ft3 of water is added suddenly to the tank. Sketch
the response of the leve in the tank versus time and determine the level & ¢ = 0.5,

1, and 15.

10 cfm — Disturbance

R =05 FIGURE P6-9

6.10. A tank having a cross-sectiond area of 2 ft?> and a linear resistance of R = 1 ft/cfm
is operating a steady state with a flow rate of 1 cfm. At time zero, the flow varies
as shown in Fig. P6.10.

(&) Determine Q(t) and Q(s) by combining smple functions. Note that Q is the
deviation in flow rate.

(b) Obtain an expression for H(t) where H is the deviation in leve.

(c) Determine H(r) at t =2 and ¢ = o,

I 1
o0 1 2 3

t, min FIGURE P6-10

6.11. Determine Y(5) if Y(9 = e735/[s(7s + 1)].

6.12. Derive the trandfer function H/Q for the liquid level sysem shown in Fig. P6.12.
The resistances are linear. H and Q are deviation varigbles. Show clearly how you
derived the trandfer function. You are expected to give numericd vaues in the
transfer function.
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q
ft3/min

Ry=2 Ry=5 FI GURE P6-12

6.13. The liquid-level system shown in Fig. P6.13 isinitidly a steady state with the inlet
flow rate a 1 cfm. At time zero, one ft3 of water is suddenly added to the tank;
a ¢ =1, one 3 is added, etc. In other words, a train of unit impulses is applied
to the tank a intervals of one minute. Ultimately the output wave train becomes

periodic as shown in the sketch. Determine the maximum and minimum vaues of
this  output.

Train of impulses
.¢fm

HARE P6-13

6.14. The two-tank mixing process shown in Fig. P6.14 contains a recirculaion loop that
transfers solution from tank 2 to tank 1 at a flow rate of « g ,.

(8) Develop a transfer function thet relates the concentration in tank 2, ¢z, to the
concentration in the feed, x; i.e. Ca(s)/X(s) where C, and X ae deviation
varigbles. For convenience, assume tha the initid concentrations are x =
c1=¢p =0

(b) If a unit2—step change in x occurs, determine the time needed for ¢, to reach 60
percent of its ultimate vaue for the cases where a = 0, 1, and .

(c) Sketch the response for a = =,

Assume that each tank has a constant holdup volume of 1 ft3. Neglect trans-
portation lag in the line connecting the tanks and the recirculation line. Try to answer
parts (b) and (c) by intuition.

24,

q,=1cfm

x(t) = feed
concentration

FIGURE P6-14




CHAPTER

7

RESPONSE
OF FIRST-ORDER
SYSTEMS
IN SERIES

Introductory Remarks

Very often a physical system can be represented by severa first-order processes
connected in series. To illustrate this type of system, consider the liquid-level
systems shown in Fig. 7.1 in which two tanks are arranged so that the outlet flow
from the first tank is the inlet flow to the second tank.

Two possible piping arrangements are shown in Fig. 7.1. In Fig. 7. la the
outlet flow from tank 1 discharges directly into the amosphere before spilling into
tank 2 and the flow through R | depends only on k. The variation in £ 5 in tank
2 does not affect the transient response occurring in tank 1. This type of system
is referred to as a noninteracting system. In contrast to this, the system shown
in Fig. 7. Ib is said to be interacting because the flow through R1 now depends
on the difference between 4 | and 4,. We shall consider first the noninteracting
system of Fig. 7.1a.

Noninteracting System

As in the previous liquid-level example, we shall assume the liquid to be of
constant density, the tanks to have uniform cross-sectional area, and the flow
resistances to be linear. Our problem is to find a transfer function that relates
hs to ¢, that is, H,(s)/Q(s). The approach will be to obtain a transfer function

80
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9, 9%
(a) ()]
FIGURE 7-1

Two-tank liquid-level system: (&) noninteracting; (b) interacting.

for each tank, Q1(s)/Q(s) and H,(s)/Q1(s), by writing a transient mass balance
around each tank; these transfer functions will then be combined to eliminate the
intermediate flow Q i(s) and produce the desired transfer function.

A balance on tank 1 gives

dh,
— g = A =1 7.1
9 q1 1 (7.1)
A balance on tank 2 gives
dha
—qy = Ay—— 1.2
0~ 4 = A (1.2)

The flow-head relationships for the two linear resistances are given by the
expressions

q1 = R—l (7.3)
_h
2= & (7.4)

Combining Eqs. (7.1) and (7.3) in exactly the same manner as was done in Chap.
& and introducing deviation variables give the transfer function for tank 1; thus

Ois) _ |
06)  ms+1

where Q1= g1 = q1,, 0 = g = g5, and 7 = Ry,
In the same manner, we can combine Eqgs. (7.2) and (7.4) to obtain the
transfer function for tank 2; thus

Hys) _ Ry
Qi(s) ms .1
where Hy = hy — ha, and 7 = R,A;.

(7.5)

(7.6)
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Having the transfer function for each tank, we can obtain the overal transfer
function H(s)/Q(s) by multiplying Eqgs. (7.5) and (7.6) to eliminate Q 1(s):

Hy(s) _ | Ry
Q)  mstlims+1

Notice that the overall transfer function of Eq. (7.7) is the product of two
first-order transfer functions, each one of which is the transfer function of a
single tank operating independently of the other. In the case of the interacting
system of Fig. 7.1b, the overdl transfer function cannot be found by simply
multiplying together the separate transfer functions; this will become apparent
when the interacting system is analyzed later.

(1.7)

Example 7.1. Two noninteracting tanks are connected in series as shown in Fig.

7. la. The time constants are m» = 1 and n; = 0.5; R, = 1. Sketch the response

o the levd in tark 2 if a unit-gep change is mede in the inlet flow rete to tank 1
The trander function for this sysem is found directly from Eq. (7.7); thus

H(s) L)

0(s)  (ms+ Dms+ D) (7:8)
For a unit-gtep change in Q, we obtan
1 Ry
H = - 7.9
29 = s Dims + D 7.9
Inverson by means of patid-fraction  expanson  gives
Hy(t) = Rz‘l - —’-1-’2-.-(—?”1 le—'/fz)] (7.10)
n—m\n T
Substituting in the values of 7y, 7, ad Ry gives
Hyt) =1 = 2e™" = ¢72 (7.12)

A plot of this response is shown in Fig. 7.2. Notice tha the response is S-shaped
and the sloped Hy/dt at origin is zero. If the changein flow rate were introduced
into the second tank, the response would be firg-order and is shown for compaison
inFig. 7.2 by the dotted curve.

10— ————————
= One tank >// -
X’ //
05f // Two tanks
/
/
//
0 ) \ N FIGURE 7-2
0 1 2 3 Transient response of liquid-level system (Example

t 71).
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- "{3 Fkl Xl kz Xg' Xi-l ki k, X,
> T T35 H1 T el 7e+l >

FIGURE 7-3
Noninteracting ~ first-order ~ systems.

Generalization for  Several  Noninteracting
Sysems in Series

Having observed that the overal transfer function for two noninteracting first-order
systems connected in series is simply the product of the individual transfer func-
tions, we may now generdize by consdering n noninteracting first-order systems
as represented by the block diagram of Fig. 7.3.

The block diagram is equivalent to the relationships

X;i(s) _ k)
Xo(s) ms+1
Xo(s) _ ko
Xi(s) mstl
Xn(s) _ kn

X,-1(s) T s+ 1

To obtain the overal transfer function, we simply multiply together the individual
transfer  functions,  thus

kin(s) _ 1"
Xo(s) i]-____ll'r,-s +1 (712)
From Example 7.1, notice that the step response of a system consisting of
two first-order systems is S-shaped and that the response changes very slowly
just after introduction of the step input. This sluggishness or delay is sometimes
cdled transfer lug and is dways present when two or more firg-order systems ate
connected in series. For a single first-order system, there is no transfer lag; i.e.,
the response begins immediately after the step change is applied, and the rate of
change of the response (slope of response curve) is maximal at ¢ = 0.
In order to show how the transfer lag is increased as the number of stages
increases, Fig. 7.4 gives the unit-step response curves for several systems con-
taning one or more first-order stages in  eries.

Interacting System

To illustrate an interacting system, we shall derive the transfer function for the
system shown in Fig. 7.1b. The analysis is started by writing mass balances on
the tanks as was done for the noninteracting case. The balances on tanks 1 and
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FIGURE 7-4

Step response of noninterecting first-order systems.

2 am the same as before and are given by Egs. (7.1) and (7.2). However, the
flow-head relationship for tank 1 is now

—(hi=12) (7.13)

The flow-head relationship for R; is the same as before and is expressed
by Eqg. (7.4). A simple way to combine Egs. (7.1), (7.2), (7.4), and (7.13)
is to first express them in terms of deviation variables, transform the resulting
equations, and then combine the transformed equations to eliminate the unwanted
variables.

At steady state, Egs. (7.1) and (7.2) can be written

4s =41, =0 (7.14)
41, =qa -0 (7.15)

Subtracting Eq. (7.14) from Eg. (7.1) and Eq. (7.15) from Eq. (7.2) and
introducing deviation variables give

dH,
- = - 7.16
Q-01= A 7 (7.16)
dH,
- = Ay —= 7.17
Q1= Q2 = A— (7.17)
Expressing Egs. (7.13) and (7.4) in terms of deviation variables gives
H, —H
0, = 2% (7.18)

R
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Q2 = %— (7.19)
Transforming Egs. (7.16) through (7.19) gives
Q(s) = Q1(s) = A1sH\(s) (7.20)
Q1(s) — Qa(s) = AasHx(s) (7.21)
Ri1Qi(s) = Hi(s) = Hy(s) (7.22)
RyQ7(s) - Ha(s) (7.23)

The analysis has produced four algebraic equations containing five unknowns:
(@, Q4, 0>, Hy, and H,). These equations may be combined to eliminate Q ;, Q »,
and H; and arrive at the desired transfer function:

Hy(s) _ R,
a(s) nmstt(ntnt AR)s+ 1

Notice that the product of the transfer functions for the tanks operating separately,
Egs. (7.5) and (7.6), does not produce the correct result for the interacting system.
The difference between the transfer function for the noninteracting system, Eq.
(7.7), and the interacting system, Eq. (7.24), is the presence of the term AR, in
the coefficient of s.

The term interacting is often referred to as loading. The second tank of Fig.
7.1b is said to load the first tank.

To understand the effect of interaction on the transient response of a system,
consider a two-tank system for which the time constants are equal (11 =1 = 7).
If the tanks are noninteracting, the transfer function relating inlet flow to outlet
flow is

(7.24)

1 2

s + 1

Qa(s) _
Q(s)

The unit-step response for this transfer function can be obtained by the usual
procedure to give

(7.25)

Qz(l‘) =] = e"*t/T - }t_eﬂ/r (7.26)
If the tanks zre interacting, the overall transfer function, according to Eq. (7.24),
is (assuming further that A, = A,)

Q2(s) !
~ I 7.27
Q(s) 7252 + 3rs + 1 (7.27
By application of the quadratic formula, the denominator of this transfer function
can be written as

Q0a(s) _ |
0(s)  (0.387s + 1)(2.627s + 1) (7.28)
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For this example, we see that the effect of interaction has been to change the
effective time constants of the interacting system. One time constant has become
considerably larger and the other smaller than the time constant 7 of either tank
in the noninteracting system. The response of @2(¢) to a unit-step change in Q(t)
for the interacting case [Eq. (7.28)] is

Q2(t) =1+ 0.178-—‘/0.381' - l'l7e-t/2.62‘r (729)

In Fig. 7.5, the unit-step responses [Egs. (7.26) and (7.29)] for the two
cases ae plotted to show the effect of interaction. From this figure, it can be seen
that interaction slows up the response. This result can be understood on physical
grounds in the following way: if the same size step change is introduced into the
two systems of Fig. 7.1, the flow from tank 1 (g,) for the noninteracting case
will not be reduced by the increase in level in tank 2. However, for the interacting
case, the flow gy will be reduced by the build-up of level in tank 2. At any time
t, following the introduction of the step input, g, for the interacting case will be
less than for the noninteracting case with the result that 2 (or q3) will increase
a a dower rate

In general, the effect of interaction on a system containing two first-order
lags is to change the ratio of effective time constants in the interacting system.
In terms of the transient response, this means that the interacting system is more
duggish than the noninteracting system.

This chapter concludes our specific discussion of first-order systems. We
shall make continued use of the material developed here in the succeeding chap-
ters.

10

08| @=u) [ 1].¢
Ta+l s+l 7

% Noninteracting
< Interacting

- 1 1 Q
02 Ul O g Frrrwrs g Prororsy el

1 1 A 1 1
00 1 2 3

t/r —

FIGURE 7-5
Effect of interaction on step mespomnse of two-tank System.
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PROBLEMS

71. Deemine the trander funcion H(s)/Q(s) for the liquidlevd sysem shown in Fig.
P7. 1. Resistances R; and R are linear The flow rate from tank 3 is maintained
constant at b by means of apump; i.e., theflow rate from tank 3 isindependent of
heed h. The tanks ae noninteracting.

FIGURE W-I

72. The mercury themometer in Chap. 5 was conddered to have dl its resstance in the
convective film surrounding the bulb and dl its capacitance in the mercury. A more
detaled andyss would condder both the convective resstance surrounding the bulb

and tha between the bulb and mercury. In addition, the capacitance of the glass hulb
would be included. Let

A; = inside area of bulb, for heat transfer to mercury
A, = outside area of bulb, for heat transfer from surrounding fluid
m = mass of mercury in bulb
my, = mass of glass bulb
C = heat capacity of mercury
C}, = heat capacity of glass bulb
h; = convective coefficient between bulb and mercury
ho = convective coefficient between bulb and surrounding fluid
T = temperature of mercury
T, = temperature of glass bulb
Ty = temperature of surrounding fluid

Determine the transfer function betweenT, and T. What is the effect of the
bulb resstance and capacitance on the thermometer responss? Note that the inclusion
of the bulb resultsin apair of interacting systems, which give an overall transfer
function somewhat different from that of Eq. (7.24).

7.3. There are N storage tanks of volumeV arranged so that when water isfed into the
first tank, an equal volume of liquid overflows from the first tank into the second
tank, and so on. Each tank initidly contains component A a some concentration C,p
and is equipped with a pefect stirrer. At time zero, a stream of zero concentration is

fed into the fird tank a a volumetric rate ¢. Find the resulting concentration in each
tank a a function of time
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7.4. (8) Find the transfer functions H»/Q and H1/Q for the three-tank system shown in
Fig. P7.4 where H4, H3 and Q are deviation variables. Tank 1 and Tank 2 are
interacting.

(b) For a unit-step change in ¢ (i.e., Q = I/s), determine H3(0), H3(x), and sketch
Ha(r) versus ¢.

Tank 1

FIGURE W-4

7.5. Threeidentical tanks are operated in series in a noninteracting fashion as shownin
Fig. P7.5. For each tank, R=1, 7 = 1. If the deviation in flow rate to the first tank
is an impulse function of magnitude 2, determine
() An expression for H(s) whereH is the deviation in level in the third tank.

(b) Sketch the response H(t).
(c) Obtain an expression for H(t).

FIGURE W-5
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7.6. In the two-tank mixing process shown in Fig. P7.6, x varies from O Ib salt/ft3 to 1
Ibsalt/ft® according to a step function. At what time does the salt concentration in
tank 2 reach 0.6 Ibsalt/ft>? The holdup volume of each tank is 6 ft°.

X
3ft3/min _l
I,

Tank 1 Tank 2

FIGURE W-6

7.7. Sating from firg principles, derive the trandfer functions H(s)/Q(s) ad Hy(s)/Q(s)
for the liquid level system shown in Fig. P7.7. The resistances are linear and R{ =
R; = 1. Note that two streams are flowing from tank 1, one of which flows into
tank 2. Y ou are expected to give numerical values of the parameters in the transfer
functions and to show dealy how you deived the transfer functions.

FIGURE W-7
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3

H GHER- ORDER
SYSTEMS:

SECOND- ORDER

f\IXDG TRANSPCRTATI ON

SECOND-ORDER SYSTEM

Transfer Function

This section introduces a basic sysem caled a second-order system or a quadratic
lug. A second-order transfer function will be developed by considering a classi-
cal example from mechanics. This is the damped vibrator, which is shown in
Fig. 8.1.

A block of mass Wresting on a horizontal, frictionless table is attached to a
linear spring. A viscous damper (dashpot) is also attached to the block. Assume
that the system is free to oscillate horizontally under the influence of a forcing
function F(t). The origin of the coordinate system is taken as the right edge of
the block when the spring is in the relaxed or unstretched condition. At time zero,
the block is assumed to be at rest at thisorigin. * Positive directions for force and
displacement are indicated by the arrows in Fig. 8.1.

Consider the block at some instant when it is to the right of Y = 0 and
when it is moving toward the right (positive direction). Under these conditions,

*In effect, this assumption makes the displacement varisble Y(r) a deviation variable. Also, the
assumption that the block is initially a rest permits derivation of the second-order transfer function
in its standard form. An initial velocity has the same effect as a forcing function. Hence, this
assumption is in no way restrictive.

90
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L——>y  FIGURE &1
0 Damped  vibrator.

the position Y and the velocity d¥/dt arc both positive. At this particular instant,
the following forces are acting on the block:

1. The force exerted by the spring (toward the left) of -KY where K is a positive
constant, called Hooke's constant.

2. The viscous friction force (acting to the left) of —C d¥/dt, where C is a postive
constant called the damping coefficient.

3. The external force F(¢) (acting toward the right).

Newton’s law of motion, which states that the sum of all forces acting on
the mass is equad to the rate of change of momentum (mass X acceleration), takes
the form

W a?%y ay
'g dt2- = -KY - CW + F(t) (81)
c
Rearrangement  gives
W d2y Y
-g dt2_ + C%;— + KY = F(t) 8.2)

where W = mass of block, Ib,
gc = 32.2(Ib,)(ft)/(Ib)(sec?)
C = viscous damping coefficient, Ib s/(ft/sec)
K = Hooke's constant, 1by/ft
F(t) = driving force, a function of time, 1bs

Dividing Eg. (8.2) by K gives

W d%Y Cdy | F(1)
- - — = —= 8.3
chd12+Kdt+Y X (8.3)
For convenience, this is written as
d?y dy
12+ Ur— + Y = X(t
7l £T 7 ® (8.4)
where
2= (8.5)

gk
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2T = ;C<- (8.6)
_F®
X0 = = ©7)

Solving for 7 and ¢ from Eqgs. (8.5) and (8.6) gives

T = /giVK sec (8.8)
{ = 8.C* dimensionless
V awk (89)

By definition, both 7 and ¢ must be positive. The reason for introducing 7 and {
in the particular form shown in Eq. (8.4) will become clear when we discuss the
solution of Eq. (8.4) for particular forcing functions X(t).

Equation (8.4) is written in a standard form that is widely used in control
theory. Notice that, because of superposition, X(t) can be consdered as a forcing
function because it is proportional to the force F(t).

If the block is motionless (dY/dt = 0) and located at its rest position
(Y = 0) before the forcing function is applied, the Laplace transform of Eq.
(8.4) becomes

T2 52Y(s) + 2L7TsY(5) + v(s) = x(S) (8.10)
From this, the transfer function follows:
Y(s) |
X(s) 7252 + 201s + 1

The transfer function given by Eq. (8.11) is written in standard form, and
we shall show later that other physical systems can be represented by a transfer
function having the denominator 7252 + 2¢7s + 1. All such systems are defined
as second-order. Note that it requires two parameters, 7 and ¢, to characterize the
dynamics of a second-order system in contrast to only one parameter for a first-
order system. For the time being, the variables and parameters of Eq. (8.11) can
be interpreted in terms of the damped vibrator. We shal now discuss the response
of a second-order system to some of the common forcing functions, namely, step,
impulse, and sinusoidal.

(8.12)

Step Response

If the forcing function is a unit-step function, we have

X(s) = % (8.12)

In terms of the damped vibrator shown in Fig. 8.1 thisis equivalent to suddenly
applying a force of magnitude K directed toward the right at time ¢ = 0. This
follows from the fact that X is defined by the relationship X(t) = F(¢t)/K . Super-
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position will enable us to determine easily the response to a step function of any
other  magnitude.

Combining Eg. (8.12) with the transfer function of Eqg. (8.11) gives
| !
s T2+ s+ 1

The quadratic term in this equation may be factored into two linear terms
that contain the roots

Y(s) =

(8.13)

(72 —

5] = —é + # (814)

T T
5= =t NE-L (8.15)

T T

Equation (8.13) can now be written
2

Y(s) U (8.16)

= (5)(s = s1)(s = 52)
The response of the system Y (t) can be found by inverting Eq. (8.16). The roots
sy and 53 will be real or complex depending on the parameter {. The nature of

the roots will, in turn, affect the form of Y (t). The problem may be divided into
the three cases shown in Table 8.1. Each case will now be discussed.

CASE | STEP RESPONSE FOR ¢ < 1. For this case, the inversion of Eq. (8.16)
yieds the result

Yf)=1 -~ e *"sin

— 72

! J-25 + tane L) (817)

J1=-2 T {
To derive Eq. (8.17), use is made of the techniques of Chap. 3. Since { <1,

Egs. (8.14) to (8.16) indicate a pair of complex conjugate roots in the left-half
plane and a root at the origin. In terms of the symbols of Fig. 3.1, the complex
roots correspond to s; and s, and the root at the origin to s.
By referring to Table 3.1, we see that Y (t) has the form

t
Y(f) = €1+ e (Cy 008 /T - ;?é +casn J1- 42;) (8.18)
The constants C , C,, and C5 are found by patid fractions. The resulting equation
is then put in the form of Eq. (8.17) by applying the trigonometric identity used

TABLE 81

Case 4 Nature of roots Description  of  response

| <1 Complex Underdamped or  oscillatory
I =1 Red and equal Critically  damped
1 >1 Real Overdamped or  nonoscillatory
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in Chap. 5, Eq. (5.23). The details are left as an exercise for the reader. It is
evident from Eq. (8.17) that Y(t) — 1 as t — .

The nature of the response can be understood most clearly by plotting Eq.
(8.17) as shown in Fig. 8.2, where Y(t) is plotted against the dimensionless
varidble t/r for several values of ¢, including those above unity, which will be
considered in the next section. Note that, for ¢ <1, al the response curves are
oscillatory in nature and become less oscillatory as ¢ is increased. The slope at
the origin in Fig. 8.2 is zero for al values of {. The response of a second-order
system for { < 1 is sad to be under-damped.

CASE Il STEP RESPONSE FOR ¢ = 1. For this case, the response is given by
the expression

Yit)= 1= (1+ 5)e—f/f (8.19)
T

This is derived as follows. Equations (8.14) and (8.15) show that the roots s
and s, are real and equal. Referring to Fig. 3.1 and Table 3.1, it is seen that
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Eg. (8.19) isin the correct form. The constants are obtained, as usual, by partial
fractions.

The response, which is plotted in Fig. 82, is nonoscillatory. This condition,
{ =1, iscaled critical dumping and allows most rapid approach of the response
to Y = 1 without oscillation.

CASE Il STEP RESPONSE FOR ¢ > 1. For this case, the inversion of Eq.
(8.16) gives the result

Y(t) =1 = e ¢ |cosh 2 — % + _—Z’f——lsmh V- 1; (8.20)

where the hyperbolic functions are defined as

snha= & "¢
2
a -a
cosh a = ¢ +2e

The procedure for obtaining Eq. (8.20) is paralel to that used in the previous
CasEs.

The response has been plotted in Fig. 8.2 for several values of . Notice that
the response is nonoscillatory and becomes more “sluggish” as { increases. This
is known a an over-dumped response. As in previous cases, al curves eventudly
approach the line Y = 1.

Actualy, the response for { > 1 is not new. We met it previously in the
discusson of the step response of a system containing two first-order systems in
series, for which the transfer function is

Y(s) _ !
X(s)  (ms+ D(ms + 1)

This is true for { > 1 because the roots s; and s, are real, and the denominator
of Eq. (8.11) may be factored into two real linear factors. Therefore, Eq. (8.11)
is equivalent to Eqg. (8.2 1) in this case. By comparing the linear factors of the
denominator of Eq. (8.11) with those of Eq. (8.21), it follows that

n=(+ V- (622)
n=¢=JE-br (8.23)

Note that, if = = »,then r = 7y = m and { = 1. The reader should verify
these results.

(8.21)

Terms Used to Describe an Underdamped
Sygem

Of these three cases, the underdamped response occurs most frequently in  control
sysems. Hence a number of terms are used to describe the underdamped response
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Terms used to describe an  underdamped second-order response.

quantitatively. Equations for some of these terms are listed below for future ref-
erence. In general, the terms depend on ¢ and/or 7. All these equations can be
daived from the time reponse as gven by Eq (817); howeve, the mahemdicd
derivations are left to the reader as exercises.

1. Overshoot. Overshoot is a measure of how much the response exceeds the
ultimate value following a step change and is expressed as the ratio A/B in
Fig. 8.3.

The overshoot for a unit step is related to { by the expression

Overshoot = exp(— ¢/ 1 = {2) (8.24)

This relation is plotted in Fig. 8.4. The overshoot increases for decreasing {.

1C \\
08 7
f’l
0.6 \
0.4
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0 T~ | ficuresa
2 0

0. 4 06 08 19 Characteristics of a step response of an

4 underdamped  second-order  system.
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2. Decay ratio. The decay ratio is defined as the ratio of the sizes of successive
peaks and is given by CIA in Fig. 8.3. The decay ratio is related to { by the
expression

Decay ratio = exp(—2m{/ 1 — {?) = (overshoot)* (8.25)

which is plotted in Fig. 84. Notice that larger { means greater damping, hence
Qrester  decay.

3. Rise time. Thisis the time required for the response to first reach its ultimate
value and is labeled ¢ , in Fig. 8.3. The reader can verify from Fig. 8.2 that
t, increases with increasing {.

4. Response time. This is the time required for the response to come within 35
percent of its ultimate value and remain there. The response time is indicated
in Fig. 8.3. The limits =5 percent are arbitrary, and other limits have been
used in other texts for defining a response time.

5. Period of oscillation. From Eqg. (8.17), the radian frequency (radianstime) is
the coefficient of ¢ in the sine term; thus,

— 72
w, radian frequency = % (8.26)
Since the radian frequency w is related to the cyclical frequency f by
w = 2xf, it follows that

L= Yo (8.27)

where T is the period of oscillation (time/cycle). In terms of Fig. 8.3, T is
the time elapsed between peaks. It is aso the time elapsed between aternate
crossings of thelineY = 1.

6. Natural period of oscillation. If the damping is eliminated [C = 0 in Eq.
(8.1). or ¢ = 0], the system oscillates continuously without attenuation in
amplitude. Under these “naturd” or undamped conditions, the radian frequency
isl/r, as shown by Eq. (8.26) when £ = 0. This frequency is referred to as
the natura frequency wp:

w, = - (8.28)
T
The corresponding natural cyclical frequency f, and period T, are related by
the expression
1 1
= — = —— 8.29

f T, 27T (8.29)

Thus, 7 has the significance of the undamped period.
From Egs. (8.27) and (8.29), the naturd frequency is related to the actual

frequency by the expression

L--p
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which is plotted in Fig. 8.4. Notice that, for { < 0.5, the natural frequency is
nearlly the same as the actud frequency.

In summary, it is evident that ¢ is a measure of the degree of damping,
or the oscillatory character, and r is a measure of the period, or speed, of the

reponse of a second-order system.

Impulse Response
If a unit impulse &(¢) is applied to the second-order system, then from Egs. (8.11)
and (4.1) the transform of the response is
!
252+ 2frs + 1
Asin the case of the step input, the nature of the response to a unit impulse
will depend on whether the roots of the denominator of Eq. (8.30) are real or

complex. The problem is again divided into the three cases shown in Table 8.1,
ad exh is discussed below.

CASE | IMPULSE RESPONSE FOR ¢ < 1. The inversion of Eq. (8.30) for

¢ < 1 yields the result
1 t
—_ ¢ %M — 722
0 gze sin/1 —¢ " (8.31)

1
Y(t) = -
.
which is plotted in Fig. 8.5. The dope at the origin in Fig. 85 is 1 .0 for all
values of £.

Y(s) =

(8.30)

08

06

04

e o

7Y(t)
o
N
S
= i
&0 %
5

0 =/
W71 1)
\ 4
—0.2
/
~oal 1 4\/ L . FIGURE 8-

; Response of a second-order system
/v to a unit-impulse forcing function.
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A simple way to obtain Eg. (8.31) from the step response of Eq. (8.17) is
to take the derivative of Eqg. (8.17). Comparison of Egs. (8.13) and (8.30) shows
that

Y(s)limpulse = SY(S)|step (8.32)
The presence of s on the right side of Eq. (8.32) implies differentiation with

respect to ¢ in the time response. In other words, the inverse transform of Eq.
(8.32) is

d
Y (1) |impulse = —d‘t— (Y(t)|step) (8.33)

Application of Eq. (8.33) to Eq. (8.17) yields Eq. (8.31). This principle aso
yields the results for the next two cases.

CASE Il IMPULSE RESPONSE FOR { = 1. For the critically damped case, the
response is given by

1
Y(t) = —te " (8.34)
T

which is plotted in Fig. 8.5.

CASE Il IMPULSE RESPONSE FOR ¢ > 1. For the overdamped case, the
reponse is given by

11 et t
Y(t) = - ng——le 1inh /{2 — . (8.35)

which is plotted in Fig. 8.5.

To summarize, the impulseresponse curves of Fig. 85 show the same gen-
eral behavior as the step-response curves of Fig. 8.2. However, the impulse re-
sponse always returns to zero. Terms such as decay ratio, period of oscillation,
etc., may also be used to describe the impulse response. Many control systems
exhibit transient responses such as those of Fig. 8.5. This is illustrated by Fig.
17 for the dtirred-tank heat exchanger.

Snusoidal  Response
If the forcing function applied to the second-order system is sinusoidal,
X(t) = Asin ot
then it follows from Egs. (8.11) and (5.20) that
Aw

= (s2+ w?)(t2s2+ 27s + 1)

The inversion of Eq. (8.36) may be accomplished by first factoring the two
Quadratic terms to give

Y(s)

Y(s) (8.36)

Aw/T?

= 8.37
(S= jw)s+ jw)s = si)(s = s2) (837
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Here s; and s, are the roots of the denominator of the transfer function and

are given by Egs. (8.14) and (8.15). For the case of an underdamped system
(¢ <1), the roots of the denominator of Eq. (8.37) are a pair of pure imaginary
roots (+jw, — jw) contributed by the réreinig function and a pair of complex
roots (—=¢/r + jJ1 — {7, —¢/r = | JL={%1). We may write the form of the
response Y (t) by referring to Fig. 3.1 and Table 3.1; thus

Y(t) = C,c0s wt + Cy SN wt + ¢ 7" (ca cos /1 — §2£ + C489n V1 - {23)
T
(8.38)

The constants are evaluated by partial fractions. Notice in Eq. (8.38) that, as
t — », only the first two terms do not become zero. These remaining terms are
the ultimate periodic solution; thus

Y()|;5w = Cicos ot + Cysin ot (8.39)

The reader should verify that EQ. (8.39) is also true for ¢ = 1. From this little
effort, we see dready that the response of the second-order system to a sinusoida
driving function is ultimately sinusoidd and has the same frequency as the driving
function. If the constants C and C» are evaluated, we get from Egs. (5.23) and
(8.39)

A

Y(t) = i t + 8.40
® [1 = (w7)?]? + (2{(1)7)29” (ot + ¢) (8:40)
where
-1 Yor
(i) = tan m

By comparing Eq. (8.40) with the forcing function
X() = Asin wt
it is seen that:

1. The ratio of the output amplitude to the input amplitude is
!
JI = (@2 + oT)?

It will be shown in Chap. 16 that this may be greater or less than 1, depending
on ¢ and wr. Thisis in direct contrast to the sinusoidal response of the first-
order system, where the ratio of the output amplitude to the input amplitude
is always less than 1.

2. The output lags the input by phase angle | ¢ |. It can be seen from Eq. (8.40),
and will be shown in Chap. 16, that ¢ fproaches 180" asymptoticly as @
increases. The phase lag of the firdt-order system, on the other hand, can never
exceed 90”. Discussion of other characteristics of the sinusoidal response will
be deferred until Chap. 16.
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We now have at our disposal considerable information about the dynamic
behavior of the second-order system. It happens that many control systems that
are not truly second-order exhibit step responses very similar to those of Fig.
82. Such systems ae often characterized by second-order equations for approx-
imate mathematical analysis. Hence, the second-order system is quite important
in control theory, and frequent use will be made of the materia in this chapter.

TRANSPORTATION LAG

A phenomenon that is often present in flow systems is the transportation lag.
Synonyms for this term are dead time and distance velocity lag. As an example,
consder the sysem shown in Fig. 86, in which a liquid flows through an insulated
tube of uniform cross-sectional area A and length L at a constant volumetric flow
rate . The density p and the heat capacity C are constant. The tube wall has
negligible heat capacity, and the velocity profile is flat (plug flow).

The temperature x of the entering fluid varies with time, and it is desired to
find the response of the outlet temperature y(t) in terms of a transfer function.

As usudl, it is assumed that the system is initially at steady state; for this
system, it is obvious that the inlet temperature equals the outlet temperature; i.e.,

Xs=Ys (8.41)

If a step change were made in x(t) at ¢ = 0, the change would not be detected at
the end of the tube until r sec later, where 7 is the time reguired for the entering
fluid to pass through the tube. This simple step response is shown in Fig. 8.74.

If the variation in x(t) were some arbitrary function, as shown in Fig. 8.7b,
the response y(t) at the end of the pipe would be identical with x(¢) but again
delayed by 7 units of time. The transportation lag parameter 7 is ssimply the time
needed for a particle of fluid to flow from the entrance of the pipe to the exit, and
it can be caculated from the expression

volume of pipe
volumetric  flow rate

o1

AL

T = e (8.42)

q
It can be seen from Fig. 8.7 that the relationship between y(t) and x is
yt) = x(t - 7) (8.43)

Cross-sectional area=A

s () —( >y @
L P 7 HGURE 86
. System with transportation lag.
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=
L/y(t)t
I l FIGURE 87
0 Ty 0 r ¢ Response of transportation lag to
(a) (b) various  inputs.

Subtracting Eq. (8.41) from (8.43) and introducing the deviation variables X =
x—xsand¥Y =y - y; give
Y(r) = X(t = 1) (8.44)

If the Laplace transform of X(t) is X(s), the Laplace transform of X(z — 1)
is e 57X (s). This result follows from the theorem on trandation of a function,
which was discussed in Chap. 4. Equation (8.44) becomes

Y(s) = e *"X(s)

or

Y(s) _ s

X(s)
Therefore, the transfer function of a transportation lag ise 757,

The transportation lag is quite common in the chemical process industries

where a fluid is transported through a pipe. We shall see in a later chapter that
the presence of a transportation lag in a control system can make it much more

difficult to control. In general, such lags should be avoided if possible by placing
equipment close together. They can seldom be entirely eiminated.

(8.45)

APPROXIMATION OF TRANSPORT LAG. The transport lag is quite different
from the other transfer functions (first-order, second-order, etc.) that we have dis
cussed in that it is not arational function (i.e., aratio of polynomials.) As shown
in Chap. 14, a system containing a transport lag cannot be analyzed for stability
by the Routh test. The transport lag is aso difficult to simulate by computer as
explained in Chap. 34. For these reasons, several approximations of transport lag
that are useful in control calculations are presented here.

One approach to approximating the transport lag is to write ¢ ™ as 1/e™
and to express the denominator as a Taylor series; the result is

1 1
e7s 1+ 75+ 72522 + 7353/31 +

Keeping only the first two terms in the denominator gives

!

e_TSE
1+7s

(8.46)
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This approximation, which is simply a first-order lag, is a crude approximation of
atransport lag. An improvement can be made by expressing the transport lag as

~rs/2
_ e
e TS —

e‘rs/2

Expanding numerator and denominator in a Taylor series and keeping only terms
o firg-order give
1 7572
TS = |st-order 3 8.47
€ 1+17s/2 Pade (8.47)
This expression is do known as a first-order Pad.4 gpproximation.
Another well known approximation for a transport lag is the second-order
Padé approximation:

0T = 1 =752+ 725412
T 1+ 152 + 7252/12

2nd-order Padé (8.48)

The dep reponsss of the three goproximations of trangport lag presented here ae
gown in FHg. 88 The 9 repone of e =7 is d dhown for compaison. Natice
that the reponse for the fird-order Padé goproximation drops to — 1 before risng
exponatidly towad + 1 The reypone for the sscondorder Padé  goproximation
jumps to + 1 and then descends to below zero before returning gradually back
to+1.

Although none of the approximations for e =¥ is very accurate, the approx-
imation for e =75 is more useful when it is multiplied by several first-order or
soond-oder rande fundions In this cass, the other trander functions filter out
the high frequency content of the signals passing through the transport lag with
the resit tha the trangoort lag goproximaion, when combined with other trander
fundions provides a stidadtary resut in mary ceses The accuacy of a trangport
lag can be evaluated most clearly in terms of frequency response, a topic to be
covaed laer in this book.

FIGURE 8-8

Step response to  approximations
of the transport lag ¢ ~™*.

Q) 1/rs + 1), (2) Ist-order Padé,
2 - (3) 2nd-order Padé, (4) ¢ 77,
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PROBLEMS
8.1. A step change of magnitude 4 is introduced into a system having the transfer function
Y(s) _ 10
X(s) s2+ 1.65s+4
Determine
(@ Percent overshoot
(b) Rise time

(©) Maximum vaue of Y(t)
(d) Ultimate vdue of Y(f)
(e) Period of oscillation

8.2. The two-tank system shown in Fig. P8.2 is operating &t steady Stete. At time ¢ =0,
10 f® of water are quickly added to the first tank. Using appropriate figures and
equations in the text, determine the maximum deviation in level (fegt) in both tanks
from the ultimate steady-state values and the time at which each maximum occurs.

Daa
A= A = 10f?
Ry =01 ft/cfm
Ry = 0.35 ft/cfm
3 i 3
20 ft /m.ﬂr lfl 10 ft
T
(L
T
h2

Rz
S FIGURE P8-2

8.3. The two-tank liquid-level system shown in Fig. P8.3 is operating at Steedy dSete
when a step change is made in the flow rate to tank 1. The transent response is
critically damped, and it takes 1.0 min for the change in level of the second tank
to reach 50 percent of the total change.

If the ratio of the cross-sectiond arees of the tanks is Aj/A; = 2, calculate
the ratio R /R,. Cdculate the time congtant for each tank. How long does it take
for the change in leve of the first tank to reach 90 percent of the totd change?

Rz
—> FIGURE P8-3
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84. A mercury manometer is depicted in Fig. P8.4. Assuming the flow in the manometer

85.

8.6.
8.7.

8.8.

8.9.

to be laminar and the steady-date friction law for drag force in laminar flow to apply
a each ingant, determine a transfer function between the applied pressure p 1 and
the manometer reading k. It will smplify the cadculations if, for inetiad terms,
the velocity profile is assumed to be flat. From your transfer function, written in
standard second-order form, list (8) the steady-state gain, (b) 7, and (¢) ¢. Comment
on these parameters as they are related to the physical nature of the problem.

FIGURE P8-4

Design a mercury manometer that will measure pressures up to 2 am absolute and

will give responses that are dightly underdamped (thet is, { = 0.7).

Veify Egs (8.17), (8.19), and (8.20).

Verify Egs. (8.24) and (8.25).

Verify Eq. (840).

If a second-order system is overdamped, it is more difficult to determine the pa

rameters ¢ and 7 experimentaly. One method for determining the parameters from

a step response has been suggested by R. C. Oldenbourg and H. Sartorius (The

Dynamics of Automatic Controls. ASME, p. 78, 1948), as described below.

(@ Show that the unit-step response for the overdamped case may be written in the
form

rlergt _ rZerll
T
where »; and r, ae the (red and negdive) roots of
252 +2rs +1=0
(b) Show that s has an inflection point at

[ o= In(ra/ry)
r n
(c) Show that the dope of the step response at the inflection point
das(t o]
dﬁ ) -, = 5(;)
has the vaue
S'(t)) = —rye"ti = —pye?i

I

|

~

b
ety
N

)’1/(”_’2)
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{d) Show that the value of the step response & the inflection point is

+
Sty =1+ L2257,
rira
and that hence
1-8¢) _ 1. L
Sty T ron
(e) On atypica sketch of a unit-step response, show distances equal to
1 1= S()

an
S'(t;) S'(t;)

and hence present two smultaneous equations resulting from a graphica method
for determination of r ; and r;.
() Rddate { and 7t0 r | ad rj.
8.10. Determine Y(O), Y(0.6), and Y () if

Y(s) _1 25(s + 1)
=5 52+ 25 + 25

8.11. In the liquidlevel sysem shown in Fg. P8.11, the deviation in flow rate to the
firgt tank is an impulse function of magnitude 5. The following data apply: A =
112, Ay = A3 =2 fi2, R =1 ft/icfm, R, = 1.5 ft/cfm.
(a) Determine expressions for Hy(s), Hy(s), ad Hi(s) where Hy, Hy, and H3 are
deviaions in tank level for tanks, 1, 2, and 3.
(b) Sketch the responses of Hi(t), Hy(t), and H3(t). (You need show only the
shape of the responses; do not plot.)

T Constant flow

FIGURE P8§-11
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(c) Determine H(3.46), H»(3.46), and H3(3.46). For Hy and H3, use graphs in
Chap. 8 of this text after first finding vaues of 7 and ¢ for an equivadent
second-order system.

8.12. Sketch the response Y(t) if Y(s) = e ~25/[s2 + 125 + 1]. Determine Y(t) for
t=0,1,5 ad x,

8.13. The two tanks shown in Fig. P8.13 are connected in an interacting fashion. The
system is initidly at steady state with ¢ = 10 cfm. The following data apply to the
tanks A; =1 ft2, Ay = 1.25 ft2, R; = 1 ft/cfm, R; = 0.8 ft/cfm.

(@ If the flow changes from 10 to 11 cfm according to a step change, determine
Hofs), i.e, the Laplace transform of Ho(t), where H is the deviation in hj,

(b) Determine Ho(1), Hy(4), and H»(w).

(c) Determine the initid levels (actud levels) £ 1(0) and & 5(0) in the tanks.

(d) Obtain an expression for H (s) for the unit-step change described above.

Ry

FIGURE P8-13

8.14. From figures in your text, determine Y (4) for the system response expressed by

2 2s +4

e e S
s452 +0.8s5 1

8.15. A step change of magnitude 3 is introduced into the transfer function
Y(s)/X(s) = 10/{2s% + 0.3s + 051

y(s) =

Determine the overshoot and the frequency of oscillation.
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CHAPTER

9

THECONTRCOL
SYSTEM

INTRODUCTION

In the previous chapters, the dynamic behavior of several basic systems was
examined. With this background, we can extend the discussion to a complete
control system and introduce the fundamental concept of feedback. In order to
work with a familiar system, the treatment will be based on the illustrative example
of Chap. 1, which is concerned with a dtirred-tank heater.

Figure 9.1 is a sketch of the apparatus. To orient the reader, the physical
description of this control system will be reviewed. A liquid stream at a tempera-
ture T; enters an insulated, well-gtirred tank a a condant flow rate w (massitime).
It is desired to maintain (or control) the temperature in the tank at Tx by means
of the controller. If the measured tank temperature T,, differs from the desired
temperature Ty, the controller senses the difference or error, € = Tg = T, and
changes the heat input in such a way as to reduce the magnitude of ¢. If the
controller changes the heat input to the tank by an amount that is proportional to
€, we have proportional control.

In Fig. 9.1, it isindicated that the source of heat input g may be electricity
or steam. If an electrical source were used, the final control element might be a
varidble transformer that is used to adjust current to a resistanceheating element;
if steam were used, the fina control element would be a control valve that adjusts
the flow of steam. In either case, the output signal from the controller should
adjust g in such away as to maintain control of the temperature in the tank.

111
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. Final controf Recorder-
Electrical power / element controller
or steam 3 "

‘ ]
T s
w, T; ?
:__F- |- Temperature
E — measuring
Process—7]- ¥ — % element FIGURE 91
NN Control  system for a tirred-tank
b———a>w, T heater.

Components of a Control System
The system shown in Fig. 9.1 may be divided into the following components:

1. Process (dtirred-tank heater).

2. Measuring element (thermometer).

3. Controller.

4. Fina control element (variable transformer or control valve).

Each of these components can be readily identified as a separate physical
item in the process. In general, these four components will constitute most of
the control systems that we shall consider in this text; however, the reader should
realize that more complex control systems exist in which more components are
used. For example, there are some processes which require a cascade control
sysem in which two controllers and two measuring elements are used. A cascade
system is discussed in Chap. 18.

Block Diagram

For computational purposes, it is convenient to represent the control system of
Fig. 91 by means of the block diagram shown in Fig. 9.2. Such a diagram makes
it much easier to visudize the relationships among the various signas. New terms,

which appear in Fig. 9.2, are set point and loud. The set point is a synonym for

the desired value of the controlled variable. The load refers to a change in any

variable that may cause the controlled variable of the process to change. In this
example, the inlet temperature T; is a load variable. Other possible loads for this
system are changes in flow rate and heat loss from the tank. (These loads are not
shown on the diagram.)

The control system shown in Fig. 9.2 is called a closed-loop system or a
feedback system because the messured vaue of the controlled variable is returned
or “fed back” to a device cdled the comparator. In the comparator, the controlled
variable is compared with the desired value or set point. If there is any difference
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Controlier Tmhanism

T;, load
N Final *
inal 4+
Controller »(%)-) Process T
ontr control Controlled

element
variable

Error

Tn Measuring
Measured variable | element

FIGURE 9-2

Block diagram of a simple control system.

between the measured variable and the set point, an error is generated. This error
enters a controller, which in turn adjusts the final control element in order to
return the controlled variable to the set point.

Negative Feedback versus Positive Feedback

Severa terms have been used that may need further clarification. The feedback
principle, which is illustrated by Fig. 9.2, involves the use of the controlled vari-
able T to maintain itsdlf at a desired value Tg. The arrangement of the apparatus
of Fig. 9.2 is often described as negative feedback to contrast with another ar-
ragamat cdled podtive feabedk. Negdive fesbeck esres that the differace
between Tx and T, is used to adjust the control element so that the tendency is
to reduce the error. For example, assume that the system is at steady state and
that T = T,, = Tg. If the load T; should increase, T and T, would start to
increase, which would cause the error € to become negative. With proportional
control, the deoreese in eror woud caue the contrdler and find contrd  dement
to decrease the flow of heat to the system with the result that the flow of heat
would eventually be reduced to a value such that T approaches Ty. A verba de-
siption of the opaaion of a feedback contrd system, such as the one just given,
is admittedly inadequate, for this description necessarily is given as a sequence of
evaits Acdudly dl the componets opaade dmultaneoudy, and the only adequae
description of what is occurring is a set of simultaneous differential equations.
This more accurate description is the primary subject matter of the present and
succeeding chapters.

If the signal to the comparator were obtained by adding Tk and T,, we
would have a positive feedback system, which is inherently unstable. To see that
thisis true, again assume that the system is at steady state and that 7 = T, = Tr.
If T; were to increase, T and T,, would increase, which would cause the signal
the comparator (¢ in Fig. 9.2) to increase, with the result that the heat to the
system would increase. However, this action, which is just the opposite of that
needed, would cause T to increase further. It should be clear that this situation
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would caue T to “run away” and control would not be achieved. For this reason,
positive feedback would never be used intentionaly in the system of Fig. 9.2.
However, in more complex systems it may arise naturally. An example of thisis
discussed in Chap. 21.

Servo Problem versus Regulator Problem

The control system of Fig. 9.2 can be considered from the point of view of its
ability to handle either of two types of situations. In the first situation, which is
called the servomechanism-type (or servo) problem, we assume that there is no
change in load T; and that we are interested in changing the bath temperature
according to some prescribed function of time. For this problem, the set point Tk
would be changed in accordance with the desired variation in bath temperature.
If the variation is sufficiently dow, the bath temperature may be expected to follow
the variation in T very closely. There are occasions when a control system in
the chemical industry will be operated in this manner. For example, one may be
interested in varying the temperature of a reactor according to a prescribed time-
temperature pattern. However, the majority of problems that may be described as
the servo type come from fields other than the chemica industry. The tracking of
missiles and aircraft and the automatic machining of intricate parts from a master
pattern are well-known examples of the servo-type problem. The other situation
will be referred to as the regulator problem. In this case, the desired value Ty is
to remain fixed and the purpose of the control system is to maintain the controlled
variable at Ty in spite of changesin load T;. This problem is very common in the
chemica industry, and a complicated industria process will often have many self-
contained control systems, each of which maintains a particular process variable
at a desired value. These control systems are of the regulator type.

In considering control systems in the following chapters, we shal frequently
discuss the response of a linear control system to a change in set point (servo
problem) separately from the response to a change in load (regulator problem).
However, it should be realized that this is done only for convenience. The basic
approach to aobtaining the response of either type is essentidly the same, and
the two responses may be superimposed to obtain the response to any linear
combination of set-point and load changes.

DEVELOPMENT OF BLOCK DIAGRAM

Each block in Fig. 9.2 represents the functional relationship existing between the
input and output of a particular component. In the previous chapters, such input-
output relations were developed in the form of transfer functions. In block-diagram
representations of control systems, the variables selected are deviation variables,
and inside each block is placed the transfer function relating the input-output pair
of variables. Finaly, the blocks are combined to give the overall block diagram.
This is the procedure to be followed in developing Fig. 9.2.
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Process

Consder first the block for the process. This block will be seen to differ somewhat

from those presented in previous chapters in that two input variables are present;

however, the procedure for developing the transfer function remains the same.
An unsteady-state energy balance* around the tank gives

g+ wC(T;=To) ~ wC(T = T,) = pcv‘fi—Tt 9.1)

where T, is the reference temperature.
At steady state, dT/dt is zero, and Eq. (9.1) can be written
qs + wC(Ti, = T,) =wCT—=T,) =0 (9.2)

where the subscript s has been used to indicate steady state.
Subtracting Eq. (9.2) from Eq. (9.1) gives

d(T — T,
g = g+ wCI(Ti = Ty,) = (T = Tl = pCV (T) ©3)
Notice that the reference temperature T, cancels in the subtraction. If we
introduce the deviation variables

T, =T, = T; 949
Q=q9-4g;s (9.5)
T'=7T-T, (9.6)
Eqg. (9.3) becomes
TI
Q+ wC(T/=~T) = pCVid—;— 9.7

Taking the Laplace transform of Eq. (9.7) gives
Q(s) + wC[T/(s) = T'(9] = pCVsT'(s) 9.8)
or

= 29 4 719 9.9)
W C

v
T'(s)(%s +1

*In this anaysis, it is assumed that the flow rate of heat g is instantaneously available and independent
of the temperature in the tank. In some dtirred-tank heaters, such as a jacketed kettle, ¢ depends on
both the temperature of the fluid in the jacket and the temperature of the fluid in the kettle. In this
introductory  chapter, systems (electricaly heated tank or direct steam-hested tank) are selected for
which this complication can be ignored. In Chap. 21, the analysis of a steam-jacketed kettle is given
in which the effect of kettle temperature on ¢ is taken into account.



116  LINEARCLOSED-LOOP SYSTEMS

This last expression can be written
1

vy wC .
T'(s) = i 1Q(s) + p— 1T,-(s) (9.10)
where
Lo
w

If there is a change in Q(t) only, then T,(t) = 0 and the transfer function
relating T' to Q is
T'(s) _ 1wC
0(s)  7s+1
If there is achange in T;(t) only, then Q(t) = 0 and the transfer function relating
T'toT/is

(9.12)

T'(s) |
Ti(s) 7s+1
Equation (9.10) is represented by the block diagram shown in Fig. 9.3a.
This diagram is simply an aternate way to express Eq. (9.10) in terms of the
transfer functions of Egs. (9.11) and (9.12). Superposition makes this representa-
tion possible. Notice that, in Fig. 9.3, we have indicated summation of signals by
the symbol shown in Fig. 9.4, which is called a summing junction. Subtraction
can also be indicated with this symbol by placing a minus sign at the appropriate
input. The summing junction was used previoudy as the symbol for the compara
tor of the controller (see Fig. 9.2). This symbol, which is standard in the control
literature, may have severa inputs but only one output.
A block diagram that is equivalent to Fig. 9.3g is shown in Fig. 9.3b. That
this diagram is correct can be seen by rearranging Eg. (9.10); thus

1/wC
75 + 1

(9.12)

T'(s) = [Q(s) + wCT;(s)] (9.13)

T:(s) ‘l'll+1
w0 (2)
Q(s)—> 78+l | + T’(i) 7s+1 __2-'-'3)
(a)
FIGURE 9-3

Block diagram for process.
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nput

Input — outpt  FIGURE 9-4

Summing junction.

In Fig. 9.3b, the input variables Q(s) and wCT/(s) are summed before being
operated on by the transfer function /wC/(rs + 1).

The physical situation that exists for the control system (Fig. 9.1) if steam
hegting is used requires more careful analysis to show that Fig. 9.3 is an equivaent
block diagram. Assume that a supply of steam at constant conditions is available
for heating the tank. One method for introducing heat to the system isto let the
steam flow through a control valve and discharge directly into the water in the
tank, where it will condense completely and become part of the stream leaving
the tank (see Fig. 9.5).

If the flow of steam, f (poundsitime), is smal compared with the inlet flow
w, the totd outlet flow is approximately equa to w. When the system is a steady
state, the heat balance may be written

WC(T;, = To) = wC(T; = Tp) + fy(Hy = Hy,) = 0 (9.14)

where T, = reference temperature used to evaluate enthalpy of all streams en-
tering and leaving tank
H, = specific enthalpy of the steam supplied, a constant
H,, = specific enthalpy of the condensed steam flowing out at 7's, as part
of the total stream

The term H,;, may be written in terms of heat capacity and temperature; thus
H,= CT; = T,) (9.15)

From this, we see that, if the steady-state temperature changes, H;, changes
In Eq. (9.14), f,(H, - H,,) is equivalent to the steady-state input g used pre-
viously, as can be seen by comparing Eq. (9.2) with (9.14).

Now consider an unsteady-state operation in whichfis much less than w and
the temperature T of the bath does not deviate significantly from the steady-state

Steam at
constant
conditions

FIGURE 9-5
Supplying heat by steam.
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temperature Ts. For these conditions, we may write the unsteady-state balance
approximately;  thus

WC(T; = T,) = wC(T = To) + f(Hy = Hy,) = pcv‘;—f (9.16)

In apractical situation for steam, H , will be about 1000 Btu/lb,,. If the tempera-

ture of the bath, T, never deviates from T, by more than 10°, the error in using the
term f(Hg— H,,) instead of f(H,— H) will be no more than 1 percent. Under
these conditions, Eqg. (9.16) represents the system closdy, and by comparing Eq.
(9.16) with Eq. (9. 1), it is clear that

q= f(Hy —H,,) (9.17)

Therefore, q is proportiona to the flow of steam f, which may be varied by
means of a control valve. It should be emphasized that the analysis presented
here is only approximate. Both f and the deviation in T must be small. The
smaller they become, the more closely Eq. (9.16) represents the actual physical
system. An exact analysis of the problem leads to a differential equation with
time-varying coefficients, and the transfer-function approach does not apply. The
problem becomes considerably more difficult. A better approximation will be
discussed in Chap. 21, where linearization techniques are used.

Measuring Element

The temperature-measuring element, which senses the bath temperature T and
transmits a signa T, to the controller, may exhibit some dynamic lag. From
the discussion of the mercury thermometer in Chap. 5, we observed this lag to
be first-order. In this example, we shall assume that the temperature-measuring
element is afirst-order system, for which the transfer function is

T,(s) _ !

TG) ~ mms+ 1 (©.18)
where the input-output variables T' and T, are deviation variables, defined as
T'=T-T,
Ty = Ty = T,

Note that, when the control system is at steady state, T = T,,, , which means that
the temperature-measuring element reads the true bath temperature. The transfer
function for the measuring element may be represented by the block diagram
shown in Fig. 9.6.

T'(s) >

>Tn(s)  FIGURE 9-6

Block diagram of measuring element.

Tms+1
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Controller and Final Control Element

For convenience, the blocks representing the controller and the final control ele-

ment are combined into one block. In this way, we need be concerned only with
the overall response between the error and the heat input to the tank. Also, it is
assumed that the controller is a proportional controller. (In the next chapter, the

response of other controllers, which are commonly used in control systems, will
be described.) The relationship for a proportional controller is

g= Ke+A (9.19)
where ¢ = T = T,
T = set-point temperature
K. = proportional sensitivity or controller gain
A = heat input when ¢ = 0

At steady state, it is assumed* that the set point, the process temperature,
and the measured temperature are all equal to each other; thus
T, = Ty = Ty, (9.20)
Let €' be the deviation variable for error; thus

€= €—¢€ (9.29)

where €5 = Tg, = T,
Since Tz, = Tn,, €, = 0 and Eq. (9.21 becomes

e =e—-0=c¢ (9.22)

This result shows that ¢ is itsdlf a deviation variable.
Sincee; = 0, Eq. (9.19) becomes at steady state

gs= K.e,+ A=0+ A=A
Equation (9.19) may now be written in terms of ¢5; thus
qg= K+ ¢
or
Q= K. (9.23)

where Q = q = ¢,
The transform of Eq. (9.23) is simply

Q(s) = K €(s) (9.24)

*|n apractical situation, the equality among the three variables, T, T,,, and T, at steady state as
given by Eq. (9.20) can aways be established by adjustment of the instruments. The equality between
T and T, can be achieved by calibration of the measuring element. The equality between T, and
Tp can be achieved by adjustment of the proportional controller.
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Tris) —>= A &, = 06s)

, FIGURE 9-7
Tofs) Block diagram of proportional ~ controller.

Note that €, which is also equal to € ', may be expressed as
€=Tr— Tr, = (Tm — Tn,) (9.25)
or
e=Tg =T, (9.26)

Equation (9.25) follows from the definition of € and the fact that Tr, = Th,-
Taking the transform of Eq. (9.26) gives

E(S) = Tg(s) = Tp(s) (9.27)

The transfer function for the proportional controller given by Eq. (9.24) and the
generation of error given by Eq. (9.27) may be expressed by the block diagram
shown in Fig. 9.7.

We have now completed the development of the separate blocks. If these
are combined according to Fig. 9.2, there is obtained the block diagram for the
complete control system shown in Fig. 9.8. The reader should verify this figure.

SUMMARY

It has been shown that a control system can be trandated into a block diagram that
includes the transfer functions of the various components. It should be empha-
sized that a block diagram is simply a systematic way of writing the simultaneous
differential and algebraic equations that describe the dynamic behavior of the
components. In the present case, these were Egs. (9.10), (9.18), and (9.24) and
the definition of €. The block diagram clarifies the relationships among the vari-
ables of these ssimultaneous equations. Another advantage of the block-diagram
representation is that it clealy shows the feedback relationship between measured
variable and desired variable and how the difference in these two signals (the

T;(s)
' € Q 1 uw@ T
TR(S) K, + TetT —T'(3)
= s FIGURE 98
m Block diagram of control system.
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error €) is used to maintain control. A set of equations generally does not clearly
indicate the relationships shown by the block diagram.

In the next several chapters, tools will be developed that will enable us to
reduce a block diagram such as the one in Fig. 9.8 to a single block that relates
T(9 to T/ or Tz. We sl then obtan the transient response of the contrdl system
shown in Fig. 9.8 to some specific changes in T and T/ However, we shall first
pause in Chap. 10 to look more carefully at the controller and control element
boks which have ben &«immed over in the presat chgte.

PROBLEMS

9.1. The two-tank heating process shown in Fig. P9.1 conssts of two identical, well-
dirred tanks in series. A flow of heat can enter tank 2. At time ¢ = 0, the flow
rate of heat to tank 2 suddenly increases according to a step function to 1000
Btu/min, and the temperature of the inlet water T; drops from 60°F to 52°F accord-
ing to a step function. These changes in heat flow and inlet water temperature occur
simultaneoudly.

(8) Develop a block diagram that relates the outlet temperature of tank 2 to the inlet
temperature to tank 1 and the flow of heat to tank 2.

(b) Obtain an expression for T,(s) where T, is the deviation in the temperature of
tank 2. This expression should contain numerical vaues of the parameters.

(c) Determine T5(2) and To(e).

(d) Sketch the response T(r) versust.
Initidly, T; = Ty = T, = 60°F and ¢ = 0. The following data apply:

w = 250 Ib/min

holdup volume of each tank = 5 ft3
density of fluid = 50 Ib/ft3

heat capacity of fluid = 1 Btu/(Ib) (°F)

I %’/ __“___;/ 74 T2

Tank1 Tank2 FIGURE P9-1

9.2. The two-tank heating process shown in Fig. P9.2 conssts of two identical, well-
dirred tanks in series. At steady dtate, T, = Ty, = 60°F At time ¢ = 0, the
temperature of each stream, entering the tanks changes according to a step function,
i.e, T, = 10u(r), T, = 20u(t) where T, and T, are deviation variables
(@) Develop the block diagram thet relates T, the deviation in temperature in tank

2, toT,and T,.
(b) Obtain an expression for T;(s).
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T
__*
Wa= wy+wy

Tank 1 © Tank 2 FIGURE P9-2

(c) Determine T,(2).
The following data apply:

wy = wp = 250 Ib/min

Holdup volume of each tank = 10 ft3
Density of fluid = 50 1b/ft3

Heat capacity of fluid = 1 Btu/(Ib)(°F)

9.3. The heat transfer equipment shown in Fig. P9.3 consists of two tanks, one nested
inside the other. Heet is transferred by convection through the wall of the inner tank.
The contents of each tank are well mixed. The following data and information apply:

1 Tf31e holdup volume of the inner tank is 1 ft3. The holdup of the outer tank is 1
ft>,

2. The cross-sectional area for heat transfer between the tanks is 1 ft2.

3. The overdl heat transfer coefficient for the flow of heat between the tanks is 10
Btw/(hr)({t2)(°F).

4. The heat capacity of fluid in each tank is 1 Btu/(Ib)(°F). The density of each fluid
is 50 1b/ft3.

Initidly the temperatures of the feed stream to the outer tank and the contents
of the outer tank are equal to 100% The contents of the inner tank are initidly a
100°F. At time zero, the flow of hest to the inner tank (Q) is changed according to
a step change from 0 to 500 Btu/hr.
(a) Obtain an expression for the Laplace transform of the temperature of the inner
tank, T(9).
(b) Invert T(s) and obtain T for time = 0, 5 hr, 10 hr, and e,

Q , Inner tank

10 Ib/hr ——'—l'

Outer tank

FIGURE P9-3
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CONTROLLERS
AND FI NAL
CONTROL
ELEMENTS

In the previous chapter, the block-diagram representation of a simple control sys
tem (Fig. 9.2) was developed. This chapter will focus attention on the controller
and find control element and discuss the dynamic characteristics of some of these
components that are in common use. As shown in Fig. 9.2, the input signa to
the controller is the error and the output signal of the controller is fed to the final
control element. In many process control systems, this output signal is au air
pressure and the final control element is a pneumatic valve that opens and closes
as ar presure on the digphragm changes.

For the mathematical analysis of control systems, it is sufficient to regard
the controller as a simple computer. For example, a proportional controller may
be thought of as a device that receives the error signal and puts out a signal pro-
portiona to it. Similarly, the final control element may be regarded as a device
that produces corrective action on the process. The corrective action is regarded
as mathematically related to the output signal from the controller. However, it is
desirable to have some appreciation of the actual physical mechanisms used to
accomplish this. For this reason, we begin this chapter with a physical descrip-
tion of a pneumatic control valve and a ssimplified description of a proportional
controller.

Up to about 1960, most controllers were pneumatic. Although pneumatic
controllers are till in use and function quite well in many installations, the con-
trollers being installed today are electronic or computer-based instruments. For this
reason, the proportional controller to be discussed in this chapter will be eectronic

123
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or computer-based. The transfer functions that are presented in this chapter apply
to either type of controller, and the discussion is in no way restrictive.

After the introductory discussion, transfer functions will be presented for
simplified or idealized versions of the control valve and the conventional con-
trollers. These transfer functions, for practical purposes, will adequately represent
the dynamic behavior of control valves and controllers. Hence, they will be used
in subsequent chapters for mathematical analysis and design of control systems.

MECHANISMS
Contrd  Valve

The control valve shown in Fig. 10.1 contains a pneumatic device (valve motor)
that moves the vave dem as the pressure on a spring-loaded diaphragm changes.
The stem positions a plug in the orifice of the valve body. As the pressure in-
creases, the plug moves downward and redtricts the flow of fluid through the valve.
This action is referred to as air-to-close. The valve may also be constructed to
have air-to-open action. Vave motors are often constructed so that the valve stem
position is proportiona to the valve-top pressure. Most commercia valves move
from fully open to fully closed as the vavetop pressure changes from 3 to 15 psig.

In generd, the flow rate of fluid through the valve depends upon the upstream
and downstream fluid pressures and the sze of the opening through the vave. The
plug and seat (or orifice) can be shaped so that various relationships between stem
position and size of opening (hence, flow rate) are obtained. In our example, we
shall assume for simplicity that at steady state the flow (for fixed upstream and
downstream fluid pressures) is proportiona to the valve-top pneumatic pressure.
A valve having this relation is caled a linear valve. An extensive discussion of
control valves is presented in Chap. 20.

Controller

The control hardware required to control the temperaiure of a stream leaving a heat
exchanger is shown in Fig. 10.2. This hardware, available from manufacturers of

» in\'/ Motor
b

Stem Valve

L

—_— —
\_/ ~/ FIGURE 10-1

Plug Pneumatic  control  valve (air-to-close).
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120V Controtier 120V120V 20 psig air
Transducer J LConverter{J
L» 4-20ma 4»20mi
—> I__}

Set point l Gain

3-15 psig

Recorder

Heat exchanger

~<— Hot process stream

Temperature
measuring = >
unit
(thermocouple)

FIGURE 10-2
Schematic diagram  of control  system.

such equipment, consists of the following components lised here adong with their
respective  conversions,

Transducer  (temperature to  current).
Controller-recorder  (current to  current).
Converter (current to  pressure).
Control valve (pressure to flow rate).

Figure 10.2 shows that a thermocouple is used to measure the temperature;
the signal from the thermocouple is sent to the transducer, which produces an
output in the range of 4-20 ma, which is a linear function of the input. The
output of the transducer enters the controller where it is compared to the set point
to produce an error signal. The controller converts the error to an output in the
range of 4-20 ma according to the control law stored in the memory of the com-
puter. The only control law we have considered so far has been proportional.
Later in this chapter other control laws will be described. The output of the con-
troller enters the converter, which produces an output in the range of 3-15 psig,
which is alinear function of the input. Finally, the output of the converter is sent
to the top of the control valve, which adjusts the flow of cooling water to the
heat exchanger. We shall assume that the valve is linear and is the pressure-to-
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open type. The externa power (120 V) needed for each component is aso shown
in Fig. 10.2. Electricity is needed for the transducer, controller, and converter. A
source of 20 psig ar is needed for the converter.

To see how the components interact with each other, consider the process to
be operating at steady state with the outlet temperature equal to the set point. If
the temperature of the hot process stream increases, the following events occur:
After some delay the thermocouple detects an increase in the outlet temperature
and produces a proportiona change in the signal to the controller. As soon as the
controller detects the rise in temperature, relative to the set point, the controller
output increases according to proportional action. The increase in signal to the
converter causes the output pressure from the converter to increase and open the
valve wider in order to admit a greater flow of cooling water. The increased flow
of cooling water will eventually reduce the output temperature and move it toward
the set point. From this qualitative description, we see that the flow of signas
from one component to the next is such that the temperature of the heat exchanger
should return toward the set point. In a well-tuned control system, the response of
the temperature will oscillate around the set point before coming to steady state.
We shall give considerable attention to the transient response of a control system
in the remainder of this book. Further discussion will also be given on control
valves in Chap. 20 and on controllers in Chap. 35.

For convenience in describing various control laws (or agorithms) in the
next part of this chapter, the transducer, controller, and converter will be lumped
into one block as shown in Fig. 10.3.

This concludes our brief introduction to valves and controllers. We now
present transfer functions for such devices. These transfer functions, especidly for
controllers, are based on ideal devices that can be only approximated in practice.
The degree of approximation is sufficiently good to warrant use of these transfer
functions to describe the dynamic behavior of controller mechanisms for ordinary
design purposes.

Transducer Controller Converter
|
Py ma ma psig »
measured |
variable
{a)
“Controller”
L
(b)
FIGURE 10-3

Equivalent block for transducer, controller, and converter.
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IDEAL TRANSFER FUNCTIONS
Control Valve

A pneumatic valve aways has some dynamic lag, which means that the stem
motion does not respond indtantaneoudy to a change in the applied pressure from
the controller. From experiments conducted on pneumatic valves, it has been
found that the relationship between flow and valve-top pressure for alinear valve
can often be represented by a first-order transfer function; thus

06) _ K,
P(s) st 1

where K, is the steady-state gain, i.e., the constant of proportionality between
steady-state flow rate and valve-top pressure, and 7y is the time constant of the
vave.

In many practical systems, the time constant of the valve is very smal when
compared with the time constants of other components of the control system, and
the transfer function of the valve can be approximated by a constant

Q(s) _
P(s) Ky

Under these conditions, the valve is said to contribute negligible dynamic lag.
To justify the approximation of a fast valve by a transfer function, which
is simply K, consider a first-order valve and a first-order process connected in
series, as shown in Fig. 10.4.
According to the discussion of Chap. 7, if we assume no interaction, the
transfer function from P(s) to Y(9) is

Y(s) K.,Kp
P(s) (ms+ D(ps + 1)

The assumption of no interaction is generally valid for this case.
For a unit-step change in P,

1 K. Kp

S (rys + D(mps + 1)

Y =
the inverse of which is

Y(t) = (KvKp)

1 - TvTpP l_e—-t/‘rv - _l_e—r/rp)]
Ty — Tp \Tp Ty

Valve Process
FIGURE 104 | K,
P=Bjock diagram ™| Te+1 Y Block diagram for a firg-order valve and a first-order

process.
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If 7, << 1p, this equation is approximately
Y(t) = K,Kp(1 e ")
The last expression is the unit-step response of the transfer function

Y(s) _ . Kp
P(s) " Vmps+1

so that the combination of process and vave is essentiadly first-order. This clearly
demonstrates that, when the time constant of the valve is much smaller than that
of the process, the valve transfer function can be taken as K .

A typical pneumatic valve has a time constant of the order of 1 sec. Many
industridl  processes behave as firs-order systems or as a series of fird-order sys
tems having time constants that may range from a minute to an hour. For these
systems we have shown that the lag of the valve is negligible, and we shall make
frequent use of this approximation.

Controllers

In this section, we shal present the transfer functions for the controllers frequently
used in industrial processes. Because the transducer and the converter will be
lumped together with the controller for simplicity, the result is that the input will

be the measured variable x (e.g. temperature, level, etc.) and the output will be
a pneumatic signal p. (See Fig. 10.3) Actually this form (x as input and p as
output) applies to a pneumatic controller. For convenience, we shall refer to the
lumped components as the controller in the following discussion, even though the
actual electronic controller is but one of the components.

PROPORTIONAL CONTROL. The proportiona controller produces an output Sig-
nal (pressure in the case of a pneumatic controller, current or voltage for an elec-
tronic controller) that is proportional to the error €. This action may be expressed
as

p = KCG + ps (101)

where p = output signal from controller, psig or ma
K. =gan, or sensitivity
€ = error = set point — measured variable
ps = a constant

The error €, which is the difference between the set point and the signa
from the measuring element, may be in any suitable units. However, the units of
set point and measured variable must be the same, since the error is the difference
between these quantities.

In a controller having adjustable gain, the vaue of the gain K. can be varied
by moving a knob in the controller. The value of p; is the value of the output
signal when € is zero, and in most controllers p;s can be adjusted to obtain the
required output signal when the control system is at steady state and € = 0.
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To obtan the trander fundion of Eg. (10. 1), we firg introduce the deviation

vaicie
P =p-p;s
into Eq. (10.1). At time ¢ = 0, we assume the error ¢, to be zero. Then ¢ is
aready a deviation variable. Equation (10.1) Becomes
P(t) = K.e(t) (10.2)

Taking the transform of Eq. (10.2) gives the transfer function of an ideal

propartiond  contraller

(s)
g s p (103
The term proportional band is commonly used among process control en-
gineers in place of the term gain. Proportional band (pb) is defined as the error
(expressed as a percentage of the range of measured variable) required to move
the valve from fully closed to fully open. A frequently used synonym is band-
width. These terms will be most easily understood by considering the following

exarnpe

Example 10.1. A pneumatic proportiona controller is used to control temperature
within the range of 60 to 100°FE The contraller is adjusted so that the output pres-
sure goes from 3 ps (vave fully open) to 15 ps (vave fully closed) as the measured
temperature goes for 71 to 75° F with the set point held constant. Find the gain and
the proportiona band.

(75°F - 71°F)
(100°F — 60°F)
= 10%

Ae (75°F — 71°F)

Now assume tha the proportional band of the controller is changed to 75
percent. Find the gain and the temperature change necessary to cause a vave to go
from fully open to fully closed.

AT = (proportiona band) (range)

Proportiona band = X 100

Gain = 3 psi/°F

= 0.75(40°F)
= 30°F
. 12 ps
Gain = === =04 psi/°F
ain = = psi/°

Fom this example we see that propotiond gan ocoresponds inversdy  with
proportiond  bend;  thus
Proportional gain « |/proportional band

The gain K has the units of psi/unit of measured variable (e.g. psi/°F in Example
10. 1). If the actual controller of Fig. 10.3a is considered, both the input and the
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output units are in milliamperes. In this case the gain will be dimensionless (i.e,
ma/ma). Furthermore, the relation between proportional band (pb) in percentage

and K, will be
K. = 100/[pb(%)]

ON-OFF CONTROL. A specia case of proportional control is on-off control. If
the gain K. is made very high, the valve will move from one extreme position to
the other if the pen deviates only dightly from the set point. This very sensitive
action is called on-off action because the valve is either fully open (on) or fully
closed (off); i.e., the valve acts like a switch. Thisis a very simple controller and
is exemplified by the thermostat used in a home-heating system. The bandwidth
of an on-off controller is approximately zero.

For various reasons, one of which was suggested in Chap. 1, it is often
desirable to add other modes of control to the basic proportional action. These
modes, integral and derivative action, are discussed below with the objective of
obtaining the ideal transfer functions of the expanded controllers. The reasons for
introducing these modes will be discussed briefly at the end of this chapter and
in more detail in later chapters.

PROPORTIONAL-INTEGRAL (PlI) CONTROL. This mode of control is described
by the relationship

t

K,
p= K.e+— €dt+p, (10.4)
T D

where K, = gan
77 = integral time, min
ps = constant

In this case, we have added to the proportional action term, K.e, another term
that is proportiona to the integral of the error. The values of K, and 7, may be
varied by two knobs in the controller.

To visualize the response of this controller, consider the response to a unit-
step change in error, as shown in Fig. 105. This unit-step response is most directly
obtained by inserting € = 1 into Eq. (10.4), which yields

! FI GURE 10-5
0 Response of a Pl controller to a unit-step change in
¢ aror.
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. K.
p#) =K.+ Tt + ps (10.5)
1

Notice that p changes suddenly by an amount K ., and then changes linearly with
timeat arate K /7.

To obtain the transfer function of Eq. (10.4), we again introduce the devia
tion variable P = p ~ p, into Eq. (10.4) and then take the transform to obtain

PO _ i, L
€(s)

TIS
Some manufacturers prefer to use the term reset rate, which is defined as
the reciprocal of 77, The integral adjustment knob on a controller may be marked
in terms of integral time or reset rate. The calibration of the proportional and
integral knabs is often checked by observing the jump and slope of the step
response shown in Fig. 105.

(10.6)

PROPORTIONAL-DERIVATIVE (PD) CONTROL. This mode of control may be
represented by

p= K+ KCTD%:— +Pps (10.7)

where K, = gan
1p = derivative time, min
p; = constant

In this case, we have added to the proportional term another term,
Kc.mp d e/dt , which is proportiond to the derivative of the error. The vaues of K,
and 1p may be varied separately by knobs on the controller. Other terms that are
used to describe the derivative action are rare control and anticipatory control.

The action of this controller can be visualized by considering the response
to alinear change in error as shown in Fig. 10.6. This response is obtained by
introducing the linear function e(t) = At into Eq. (10.7) to obtain

p(t) = AK.t+ AK.1p + p;

— Derivative
/ alone
S I A———

A\Proporﬁonal alone

-
L.
Y

FIGURE 10-6
Response of a PD controller to a linear input in error.

of-
”
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Notice that p changes suddenly by an amount AK .7p as aresult of the derivative
action and then changes linearly at arate AK,. The effect of derivative action in

this case is to anticipate the linear change in error by adding additional output

AK .p to the proportional action.
To obtain the transfer function from Eq. (10.7)) we introduce the deviation

variable P = p = p, and then take the transform to obtain

POY - k. + ms) (10.8)

€(s)

PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROL. This mode of
control is combination of the previous modes and is given by the expression

de K, ('
= — 4+ — | 0 (t+ p; 10.9
p=Ke+Kmp 7 + p fo )4
In this case, the controller contains three knobs for adjusting X , 7p, and 7;. The
transfer function for this controller can be obtained from the Laplace transform of
Eg. (10.9); thus

P(s) 1
— = - 0.10
pres) c (1 + 1ps + 'r[s) (10.10)

Motivation for Addition of Integral
and Derivative Control Modes

Having introduced ideal transfer functions for integral and derivative modes of
control, we now wish to indicate the practicd motivation for use of these modes.
The curves of Fig. 10.7 show the behavior of atypical, feedback control system
using different kinds of control when it is subjected to a permanent disturbance.
This may be visualized in terms of the tank-temperature control system of Chap.
1 after a step change in 7;. The value of the controlled variable is seen to rise

Control action

1 None

2 Proportional

3 Proportional-integral

4 Proportional-integral-derivative

from initial value

Controlled variablz, deviation

Offset  FIGURE 10-7
Response of atypical control
o 4 8 12 16 system showing the effects of
Time, min — various modes of contral.
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at time zero owing to the disturbance. With no control, this variable continues to
rise to a new steady-state vaue. With control, after some time the control system
begins to take action to try to maintain the controlled variable close to the value

that existed before the disturbance occurred.

With proportional action only, the control system is able to arrest the rise of
the controlled variable and ultimately bring it to rest at a new steady-state value.
The difference between this new steady-state value and the origind vaue is caled
offset. For the particular system shown, the offset is seen to be only 22 percent
of the ultimate change that would have been redlized for this disturbance in the
absence of contral.

As shown by the PI curve, the addition of integral action eliminates the off-
set; the controlled variable ultimately returns to the origina value. This advantage
of integral action is balanced by the disadvantage of a more oscillatory behavior.

The addition of derivative action to the Pl action gives a definite improve-
ment in the response. The rise of the controlled varigble is arested more quickly,
and it is returned rapidly to the original value with little- or no oscillation. Dis-
cussion of the PD mode is deferred to a later chapter.

The sdection among the control systems whose responses are shown in Fig.
10.7 depends on the particular application. If an offset of 22 percent is tolerable,
proportional action would likely be selected. If no offset were tolerable, integral
action would be added. If excessive oscillations had to be eliminated, derivative
action might be added. The addition of each mode means, as we shall seein later
chapters, more difficult controller adjustment. Our goal in forthcoming chapters
will be to present the material that will enable the reader to develop curves such
as those of Fig. 10.7 and thereby to design efficient, economic control systems.

SUMMARY

In this chapter we have presented a brief discussion of control valves and con-
trollers. In addition, we have presented ideal transfer functions to represent their
dynamic behavior and some typicad results of using these controllers.

The ided transfer functions actually describe the action of many types of
controllers,  including  pneumatic,  electronic, computer-based,  hydraulic,  mechan-
icd, and dectricd sysems Hence, the mahemdtica andyses of control systems
to be presented in later chapters, which are based upon firg- and second-order
systems, transportation lags, and ideal controllers, generalize to many branches
of the contrd fidd. After dudying this text on process cortrd, the reeder should
be able to apply the knowledge to, for example, problems in mechanical control
systems. All that is required is a preliminary study of the physical nature of the
Sydams involved.

PROBLEMS

10.1. A pneumatic Pl controller has an output pressure of 10 ps when the set point and
pen point are together. The set point and pen point are suddenly displaced by 0.5
in. (i.e., adep change in error is introduced) and the following data are obtained:
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Time, sec psig
0- 10
o+
20 7
60 5
90 3.5

Determine the actud gain (psg per inch displacement) and the integrd time.
10.2. A unit-gtep change in error is introduced into a PID controller. If K, = 10, 77 = 1,
and 7 = 0.5, plot the response of the controller, P(t).
10.3. An ided PD contraller had the transfer function

P
6_ = K,;('TDS + l)
An actud PD controller had the transfer function
P s+ 1

€ = (1p/B)s + 1
where 8 is a large congant in an indudria controller.
If a unit-step change in error is introduced into a controller having the second
transfer function, show that
P(t) = Kc(1 + Ae™P¥D)

where A is afunction of g which you are to determine. For g =5and K. = 0.5,

plot P(t) versus t/rp. As B — o, show that the unit-step response approaches that
for the ided controller.

10.4. A PID controller is at steady state with an output pressure of 9 psig. The set point
and pen point are initially together. At time ¢ = O, the set point is moved away
from the pen point a a rate of 0.5 in./min. The motion of the set point is in the
direction of lower readings. If the knob settings are
K. =2 psig/in. of pen travel
7; = 1.25min
m =04 min

plot the output pressure versus time.

10.5. The input (¢) to a Pl contraller is shown in Fig. P10.5. Plot the output of the
controller if K, =2 and 7; = 050 min.

1 -
0.5
w 2 3 .
% 1 4
4, min
-0.5
-1r

FIGURE P10-5
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11

BLOCK

DIAGRAM

OF A
CHEMICAL-REACTOR
CONTROL

SYSTEM

To tie together the principles developed thus far and to illustrate further the pro-
cedure for reduction of a physica control system to a block diagram, we consider
in this chapter the two-tank chemical-reactor control system of Fig. 11.1. This
entire chapter serves as an example and may be omitted by the reader with no
loss in continuity.

Description of System

A liquid stream enters tank 1 at a volumetric flow rate F cfm and contains reactant
A at a concentration of ¢q moles A/ft’. Reactant A decomposes in the tanks
according to the irreversible chemica reaction

A—B
The reaction is first-order and proceeds a a rate
r = ke

where r = moles A decomposing/(ft?)(time)
c = concentration of A, moles A/ft3
k = velocity constant, a function of temperature

135
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@ L— Controller

Composition
measuring

/ element

5 Sample
stream

Product
stream

FIGURE 11-1
Control of a stirred-tank chemical reactor.

The reaction is to be carried out in a series of two stirred tanks. The tanks
are maintained at different temperatures. The temperature in tank 2 is to be greater
than the temperature in tank 1, with the result that k2, the velocity constant in
tank 2, is greater than that in tank 1, k3. We shall neglect any changes in physical
properties due to chemical reaction.

The purpose of the control system is to maintain ¢;, the concentration of A
leaving tank 2, at some desired value in spite of variation in inlet concentration
co. This will be accomplished by adding a stream of pure A to tank 1 through a
control  valve.

Reactor Transfer Functions
We begin the analysis by making a material balance on A around tank 1; thus

d C1
V—= F¢y —
a0
where  m = molar flow rate of pure A through the valve, Ib moles/min
pa = density of pure A, Ib moles/ft3

V = holdup volume of tank, a constant, ft*

c1 - kiVeir+ m (11.1)

F+ 2
PA

It is assumed that the volumetric flow of A through the valve m/p4 is much less
than the inlet flow rate F with the result that Eq. (11.1) can be written

V% + (F+ kiV)ey= Feg+ m (112
This last equation may be written in the form
dc 1 1
g T - T RVIFQ + B+ kviE)™ (1L3)
where
\Y

N FY N
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At steady state, d cy/dt = 0, and Eqg. (11.3) becomes

! !
= ¢ s 11.4
G =TT VES T RO ViR (14
where 5 refers to steady dState.
Subtracting Eq. (11.4) from (11.3) and introducing the deviation variables

Ci= ¢y = cy
Co = ¢co = o
M=m-—m;
give
dC, 1 1
hithii = M
T T T T kiVIF Co BT+ K ViF)

(11.5)

Taking the transform of Eg. (115) yields the transfer function of the first reactor:

/(1 + k1V/F)C (s) + U] F(l + kV/IF)]
s+l 0 s+1

Ci(s) - M(s) (11.6)

A material balance on A around tank 2 giv&s

V%z = F(c) = c2) = kVey (1L.7)
As with tank 1, this last equation can be written in terms of deviation variables

and aranged to give

dc, 1
Sl + = ee— 11.
ot T T TivEC! (1.8)
where
v
2 Friv

Ca=c¢y—cy
Taking the transform of Eg. (11.8) gives the transfer function for the second
reactor:
/(1 + kaVIF)
Cats) = ) (11.9)

To obtain some numerical r%ults we shall assume the following data to
apply to the system:
Molecular weight of A = 100 Ib/lb mole
pa =08 Ib mole/ft’
co, = 0.1 1b mole A/t
F = 100 cfm
my; = 1.0 Ib mole/min
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ki = L min~!

ky = 2 min
v =300 ft’
Substituting these congtants into the parameters of the problem vyields the following
values:
71 =2 min
7 =1 min
¢,. = 00733 Ib mole A/ft’

s

¢,. = 0.0244 b mole A/ft®

§

ms/psy = 1.25 cfm

Contrd  Valve

Assume that the control valve selected for the process has the following charac-
teristics: The flow of A through the valve varies linearly from zero to 2 cfm as the
valve-top pressure varies from 3 to 15 psig. The time constant 7, of the valve is
so small compared with the other time constants in the system that its dynamics
can be neglected.
From the data given, the valve sensitivity is computed as
2 - .
y = -IS—_% = % cfm/psi

Since m/pa = 1.25 cfm, the normal operating pressure on the valve is
1.95 .
ps =3+ T(IS - 3) = 105 psi (11.10)

The equation for the valve is therefore
m = [1.25+ K,(p — 10.5)]p4 (11.12)
In terms of deviation variables, this can be written
M = K,psP (11.12)
where
M = m=1.25p4
P=p - 105
Taking the transform of Eq. (11.12) gives
M(s)

75 = Ko (11.13)

as the vave transfer function.
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Measuring Element

For illugtration, assume that the measuring element converts concentration of A to

a pneumatic signal. Specifically, the output of the measuring element varies from
3 to 15 psig as the concentration of A varies from 0.01 to 0.05 b mole A/ft>. We
shall assume that the concentration measuring device is linear and has negligible

lag. The sengitivity (or gain) of the measuring device is therefore

15~3
™0.05 - 0.01
Since ¢,, is 0.0244 Ib mole/ft*, the normal signal from the measuring device is

M(B —3)+3.0=4.32+3.0 = 7.32 psig

The equation for the measuring device is therefore
b = 7.32 + Kn(c2 — 0.0244) (11.14)

where b is the output pressure (psig) from the measuring device. In terms of
deviation variables, Eq. (11.14) becomes

B = KnC, (11.15)

where B = b—7.32and C2 = ¢3 — ¢y,
The transfer function for the measuring device is therefore

B&) _ g, (11.16)
Ca(s)

A measuring device that changes the units between input and output signals
is called a transducer; in the present case, the concentration signal is transduced
to a pneumatic signa.

K =300 psi/(Ib mole/ft’)

Controller

For convenience, we shall assume the controller to have proportional action, in
which case the relation between controller output pressure and error is

Pp=ps+ K(cr=Db) =ps+ Kce (11.17)
where cg = desired pneumatic signal (or set point), psig
K. = controller sensitivity, psig/psig
€ = error = cg — b, psig
In terms of deviation variables, Eq. (11.17) becomes
P =K. (11.18)
The transform of this equation gives the transfer function of the controller

PGs) =K, (11.19)
€(s)
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Assuming the set point and the signal from the measuring device to be the same
when the system is at steady state under normal conditions, we have for the
reference value of the set point

CR, = b =732 pSg
The corresponding deviation variable for the set point is
Cr = cp = cr;

Transportation Lag

A portion of the liquid leaving tank 2 is continuously withdrawn through a sample
line, containing a concentration-measuring element, at a rate of 0.1 cfm. The
measuring element must be remotely located from the process, because rigid
ambient conditions must be maintaned for accurate concentration measurements.
The san;ple line has a length of 50 ft, and the cross-sectional area of the line is
0.001 ft*,

The sample line can be represented by a transportation lag with parameter

__volume _ (50)(0.001)
Td A . T T

" flow rate 01 0.5 min

The transfer function for the sample line is, therefore,

e TS = e-—0.5s

Block Diagram

We have now completed the analysis of each component of the control system
and have obtained a transfer function for each. These transfer functions can now
be combined so that the overall system is represented by the block diagram in
Fig. 11.2.

In Fig. 11.2, a block containing the transfer function X,, is placed at the
positive inlet of the comparator in order to relate the set point in concentration
units to a pneumatic signal, which matches the units of the feedback signal B. If
the pneumatic controller in Fig. 11.2 were replaced by an electronic or computer-

Co
G; iy 1 |c 1
Co—>] Ky QY K. ka1 SO TriViE LL| Tk viF T»cz
peig -’;4 75 +1 Tps +1
psig B Ko =
FIGURE 11-2

Block diagram for a chemicd-reactor control system.
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Co—>» K;= 1
0 17 (1+ &, VIF) (1+ k,VIF)

c s (SAE KK —;%- 1 - C
R 2 et (75 +1) (75 +1) T2

e~

71'-: 21 72= 1, Td= 0.5 K1= Il'g

Operrioop gain = KK, = —25Bh g 00k
pen-loop gain = b}(lﬁ‘ﬁz) (1+ﬂ) : =0.09K,
F F

FIGURE 11-3
Equivaent block diagram for a chemica-reactor control system (Cg is now in concentration units).

based controller, the block for the controller in Fig. 11.2 would be replaced by
two blocks; one for the electronic controller and one for the converter, which
converts the controller output (ma) to the pneumatic signal (psig). An equivalent
dagam is down in Hg 113 in whch some o the bodks hae been combined

Numgicd quartiies for the paamges in the trander funcions ae gven in
Fg 113 It shoud be enpheszad tha the blok diagam is written for deviaion
vaiddes The tue deedy-date vdues which ae not gven by the dagam, mut
be obtained from the analysis of the problem.

The example analyzed in this chapter will be used later in discussion of
conrd sydem design. The desgn pradlem will be to sHet a vdue of K. that gives
satisfactory control of the composition C; despite the rather long transportation
lag involved in getting information to the controller. In addition, we shall want
to condder possble ue of ohe modes of contrd for the sydem.

PROBLEMS

11.1. In the process shown in Fig. P11, 1, the concentration of sdt leaving the second
tank is controlled using a proportional controller by adding concentrated solution
through a control valve. The following data apply:

1. The controlled concentration is to be 0.1 Ib salt/ft3 solution. The inlet concen-
tration ¢; is dways less than 0.1 1b/ft>.

2. The concentration of concentrated salt solution is 30 Ib salt/ft3 solution.

3. Transducer: the output of the transducer varies linearly from 3 to 15 psig as the
concentration varies from 0.05 to 0.15 1b/ft3.

4. Controller: the controller is a pneumatic, direct-acting, proportiona controller.

5. Control valve: as vave-top pressure varies from 3 to 15 psig, the flow through
the control vave varies linearly from 0 to 0.005 cfm.
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Concentrated  solution

Controller
r———‘ <— Set point,
Salt solution l
1 ft3/min
H
o /|(_-}——->
Transducer

vy= 3ft3 Vo= 41t

FIGURE P11-1

6. It takes 30 sec for the solution leaving the second tank to reach the transducer
at the end of the pipe.

Draw a hlock diagram of the control system. Place in each block the appropriate
transfer function. Calculate all the constants and give the units.
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12

CLQSED- LOOP
TRANSFER
FUNCTI ONS

Standard Block-Diagram Symbols

In Chap. 9, a block diagran was developed for the control of a dtirred-tank heater
(Fig. 9.2). In Fig. 12.1, the block diagram has been redrawn and incorporates
some dandard symbols for the variables and transfer functions, which are widely
used in the control literature. These symbols are defined as follows:
R = set point or desired value
controlled variable
€ = error
B = variable produced by measuring element
M = manipulated variable
U = load variable or disturbance
G. = transfer function of controller
G, = transfer function of final control element
G, = transfer function of process
H = transfer function of measuring element

In some cases, the blocks labeled G and G | will be lumped together into asin-
gle block as was done in Chap. 9. The series of blocks between the comparator and

@]
I
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FIGURE 12-1
Standard  control  system  nomenclature.

the controlled variable, which consist of G, Gi, and G, is referred to as the
forward path. The block H between the controlled variable and the comparator is
cdled the feedback path. The use of G for a transfer function in the forward path
and H for one in the feedback path is a common convention.

The product GH, which is the product of al transfer functions (G .G G»H)
in the loop, is called the open-loop transfer function. We cal GH the open-loop
transfer function because it relates the measured varigble B to the set point R if the
feedback loop (of Fig. 12.1) is disconnected (i.e., opened) from the comparator.
The subject of this chapter is the closed-loop transfer function, which relates two
variables when the loop of Fig. 12.1 is closed.

In more complex systems, the block diagram may contain several feedback
paths and several loads. An example of a multiloop system, which is shown in
Fig. 12.2, is cascade control. Several multiloop systems of industrial importance
are presented in Chap. 18.

Overall Transfer Function
for Single-Loop Systems

Once a control system has been described by a block diagram, such as the one
shown in Fig. 12.1, the next step is to determine the transfer function relating

Cto Ror Cto U. We shal refer to these transfer functions as overall transfer

functions because they apply to the entire system. These overal transfer functions
are used to obtain considerable information about the control system, as will be
demonstrated in the succeeding chapters. For the present it is sufficient to note
that they are useful in determining the response of C to any change in R and U.

Inner loop U, U,
=Ty Aol
+
R G, HX G, H 6, :* ¢, B a6, t>c
_ = i ‘
!
B
i
g H, !
N . /
B
1 H1
FIGURE 122

Block diagran for a multiloop, multiload system.
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1+GH

r -
Pl
Bkl

(a)

()
FIGURE 12-3
Block-diagram reduction to obtain overal transfer function.

The response to a change in set point R, obtained by setting U = 0, represents
the solution to the servo problem. The response to a change in load variable U,
obtained by setting R = 0, is the solution to the regulator problem. A systematic
approach for obtaining the overal transfer function for set-point change and load
dege will nov be presated

Overall Transfer Function for Change
in Set Point
For this case, U = 0 and Fig. 12.1 may be simplified or reduced as shown in
Fig. 12.3. In this reduction, we have made use of a simple rule of block-diagram
reducion which dates tha a blodk diagram ocondding of severd trander fundions
in series can be simplified to a single block containing a transfer function that is
the produd of the indvidud trander fundions

This rule can be proved by considering two noninteracting blocks in series
as shown in Fig. 12.4. This block diagram is equivalent to the equations

Y z
X =06 (=08
Multiplying these equations gives
YZ
T = GaG
X Y AYB
which smplifies to
z
5 = GaGs

Thus, the intermediate variable Y has been diminated, and we have shown the
overal transfer function Z/X to be the product of the transfer functions G 4G s.
This prodf for two blocks can be esdly extended to ay number of blocks to gve
the rule for the general case. This rule was developed in Chap. 7 for the specific
ce of svad nonintemding, fird-oder sydems in saies

X~ G,

Gy »7Z FIGURE 124
Two aoaiateractiag blocksin series.
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With this simplification the following equations can be written directly from
Fig. 12.3b.

C = Ge (12.1)
B = HC (12.2)
e=R-B (12.3)

Since there are four variables and three equations, we can solve the equations
simultaneously for C in terms of R as follows:

C=GR =B)
C = G(R-HC)
C = GR-GHC
or finaly
G
1+GH

Thisis the overal transfer function relating C to R and may be represented
by an equivaent block diagram as shown in Fig. 12.3c.

% (12.4)

Overall Transfer Function for Change in Load

Inthiscase R = 0, and Fig. 12.1 is drawn as shown in Fig. 12.5a4. From the
diagram we can write the following equations:

C= GyU + M) (125)
M = G.Ge (12.6)
B = HC (12.7)
e= -B (12.8)

Again the number of variables (C, U, M, B, €) exceeds by one the number
of equations, and we can solve for C in terms of U as follows:

C= Gy(U + G.Gr€)
C= G[U + G.Gi(—HC)]

U

5 v :
= - G. > —2_
R=0 G, G, 2 c U Ton e (1
l B

H

(a) (b)
FIGURE 12-5
Block diagram for changein load.
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or finaly
C G

U 1+GH

where G = G.G1G>. Notice that the transfer functions for load change or set-
point change have denominators that are identical, 1 + GH.

The following simple rule serves to generalize these results for the single-
loop feedback system shown in Fig. 12.1: the transfer function relating any pair
of variables X, Y is obtained by the relationship

Y T

X 1+m
where 7y = product of transfer functions in the path between the locations of
the signals X and Y
m; = product of all transfer functions in the loop (i.e., in Fig. 12.1,
m = GGGy H)
If this rule is applied to finding C/R in Fig. 12.1, we obtain
C _ G.G\G; G
R~ I+ G.G,G,H = 1+GH
which is the same as before. For positive feedback, the reader should show that
the following result is obtained:

(12.9)

negative feedback (12.10)

Y 'ﬂ'f

positive feedback (12.11)

X l-m

Example 12.1. Determine the transfer functions C/R, C/U,, and B/U; for the sys-

tem show in Fig. 12.6. Also determine an expression for C in terms of R and U,

for the situation when both set-point change and load change occur simultaneoudly.
Using the rule given by Eq. (12.10), we obtain by inspection the results

G.G1G2G3

c

R™1+G (12.12)
£ _ 56 (12.13)
U; 1+G

B _ GH\H, (12.14)
U, 1+ G

(2 A
+ + + ‘
R G. 6, p G, G, >C

FIGURE 12-6
Block diagram for Example 12.1.
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where G = GG | GyG3H 1 H,. The reader should check one or more of these results
by the direct method of solution of simultaneous equations.

For separate changes in R and Uy , we may obtain the response C from Egs.
(12.12) and (12.13); thus

G:.G1G2G3
= —— 12.15
¢ 1+G X (12.15)
and
G2G3
= 12.16
C=1rc" (12.16)

If both R and U; occur smultaneoudy, the principle of superpostion requires that
the overall response be the sum of the individua responses; thus
G.G1G2G3 G2G3
= 121
¢ 16 *tizgd (1219

Overall Transfer Function for Multiloop

Control ~ Systems

To illustrate how one obtains the overall transfer function for a multiloop system,
ocondder the nedt example in which the method used is to reduce the blodk diagram
to a single-loop diagram by application of the rules summarized by Eqgs. (12.10)
and (1210).

Example 12.2. Determine the transfer function C/R for the system shown in Fig.
12.7. This block diagram represents a cascade control system, which will be dis-
cussed later.

[lnner loop U U,
+ { ¥ i*é >C
R G, : G, G, : G, n G, >
- = {
i H, I
i 1
| .
Hy
(a)
G, G GG,
= 1 ¢ b —3p
R G, [~ 176.,6" | e, a0 | O
|
(b) ©
FIGURE 12-7

Block diagram reduction: (@) origind diagram, (b) first reduction, (c) find single-block diagram.
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Obtaining the overall transfer function C/R for the system represented by Fig.
12.7a is graightforward if we first reduce the inner loop (or minor loop) involving
G, G, and H, to asingle block, as we have just done in the case of Fig. 12.1. For
convenience, we may aso combine G, and G3 into a sngle block. These reductions
are shown in FHg. 12.7b. Figure 12.7b is a singleloop block diagram that can be
reduced to one block as shown in Fig. 12.7c.

It should be clear without much detail mat to find any other transfer function

such as C/U; in Hg. 12.7a, we proceed in the same manner, i.e, fird reduce the
inner loop to a single-block equivaent.

SUMMARY

In this chapter, we have illustrated the procedure for reducing the block diagram
of a control system to a singleblock that relates one input to one output variable.
This procedure consists of writing, directly from the block diagram, a sufficient
number of linear algebraic equations and solving them simultaneoudly for the
trander fundion of the dedred par of vaiddes For dngeloop conrd sydems
a dmple rde was devdopad for findng the trander fundtion bawen awy desrad
pair of input-output variables. This rule is aso useful in reducing a multiloop
gydan to a dngeloop sydem.

It should be emphasized that regardless of the pair of variables selected,
the denomingtor of the dosdHoop trander function will dweys ocontan the same
tam, 1 + G, whae G is the opeloop trander function of the Sngleloop contrd
system. In the succeeding chapters, frequent use will be made of the materia in
this chepter to delemine the ovedl repone of conrd sydems

PROBLEMS

12.1. Determine the transfer function Y (s)/X(s) for the block diagrams shown in Fg.
P12.1. Express the results in terms of G, Gy, and G,

fle

®)
FIGURE P12-1
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12.2. Find the transfer function Y (s)/X(s) of the system shown in Fig. P12.2,

>Y

FIGURE P12-2

123. For the control sysem shown in Fig. P12.3 determine the transfer function

C(s)/R(s).

+

R

+

wl

Y

FIGURE P12-3

12.4. Derive the transfer function Y/X for the control syssem shown in Fig. P12.4.

vl

vl

25

FIGURE P12-4



CHAPTER

13

TRANSI ENT
RESPONSE
OF SIMPLE

CONTROL
SYSTEMS

In this chapter the results of &l the previous chapters will be applied to determining
the transent response of a simple control system to changes in set point and load.*
Consderable use will be made of the results of Chaps. 5 through 8 (Part 11) because
the overdl transfer functions for the examples presented here reduce to first- and
second-order  systems.

Consider the control system for the heated, stirred tank that has been dis-
cussed in Chaps. 1 and 9 and is represented by Fig. 13.1. The reader may want
to refer to Chap. 9 for a description of this control system.

In Fig. 13. la, the sketch of the apparatus is drawn in such a way that
the source of heat (electricity or steam) is not specified. To make this problem
more redistic, we have shown in Fig. 13. Ib tha the source of heat is steam tha is
discharged directly into the water and in Fig. 13. Ic the source of heat is eectrical.
In the latter drawing, a device known as a power controller provides electrical
power to a resistance heater proportional to the signal from the controller.

*The reader who is interested in the simulation of control systems by digita computer is advised to
study Chap. 34 at this point.

151
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Steam or Pressure-motion
electricity Electrical U2A8uG0k

power

FIGURE 13-1
Block diagran of temperature-control  system.

The block diagram is shown in Fig. 13. 1d. The block representing the pro-
cess is taken directly from Fig. 9.3. To reduce the number of symbols 1/wC has
been replaced by A in Fig. 13.1e.

Throughout this chapter, we shall assume that the valve does not have any
dynamic lag, for which case the transfer function of the valve (G in Fig. 13.1)
will be taken as a constant K. This assumption was shown to be reasonable in
Chap. 10. To smplify the discussion further, K, has been taken as 1. (If K , were
other than 1, we may simply replace G, by G K, in the ensuing discussion.)

In the first part of the chapter, we shal aso assume that there is no dynamic
lag in the measuring element (1, = 0), so that it may be represented by a transfer
function that is simply the constant 1. A bare thermocouple will have a response
that is so fast that for al practicd purposes it can be assumed to follow the dowly
changing bath temperature without lag. When the feedback transfer function is
unity, the system is caled a unity-feedback system.

Introducing these assumptions leads to the simplified block diagram of Fig.
13.1e, for which we shadl obtain overal transfer functions for changes in set point
and load when proportional and proportional-integral control are used.

Proportional Control for Set-Point Change
(Servo Problem)

For proportional control, G, = K,. Using the methods developed in the previous
chapter, the overal transfer function in Fig. 13. leis

T'  KAlrs+ 1) KA

- (13.1)
Ty 1+ KANrs+ 1)=75+1+ KA
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This may be rearranged in the form of afirst-order lag to give
T A

= (13.2)
T, ms+1l
where 7 = S
'~ 1+K.A
1
A = KA

1+KA =1+ VKA

According to this result, the response of the tank temperature to change in
set point is first-order. The time constant for the control system, 7y, is less than
that of the stirred tank itself, 7. This means that one of the effects of feedback
control is to speed up the response. We may use the results of Chap. 5 to find the
response to a variety of inputs.

The response of the system to a unit-step change in set point T4 is shown in
Fig. 132. (We have sdlected a unit change in set point for convenience, reponses
to steps of other magnitudes are obtained by superposition.) For this case of a
unit-step change in set point, T' approaches A1 = K A/ 1 + K A), afraction
of unity. The desired change is, of course, 1. Thus, the ultimate value of the
temperature T'(e) does not match the desired change. This discrepancy is called
offset and is defined as

Offset = Tg(®) = T'(«) (13.3)
In terms of the particular control system parameters
1
Offset =1 = KA (13.4)

1+K:A 1+K.A
This discrepancy between set point and tank temperature at steady state is charac-
teristic of proportional control. In some cases offset cannot be tolerated. However,
notice from Eq. (13.4) that the offset decreases as K. increases, and in theory the
offset could be made as small as desired by increasing K . to a sufficiently large
vaue. To give a full answer to the problem of eiminating offset by high controller
gain requires a discussion of dability and the response of the system when other
lags, which have been neglected, are included in the system. Both these subjects
are to be covered later. For the present we shall simply say that whether or not
proportional control is satisfactory depends on the amount of offset that can be
tolerated, the speed of response of the system, and the amount of gain that can
be provided by the controller without causing the system to go unstable.

FIGURE 13-2
Unit-step response for set-point change (P contral).
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Proportional Control for Load Change
(Regulator  Problem)

The same control system shown in Fig. 13.1e is to be considered. This time the
set point remains fixed; that is, Tz = 0. We are interested in the response of the
system to a change in the inlet stream temperature, i.e., to aload change.

Using the methods of Chap. 12, the overall transfer function becomes

" AA V(s + 1) !
= = (13.5)
T‘.’ 1+ KA(rs+1) =15+ 1+ KA

This may be arranged in the form of the first-order lag; thus

!
r __ 4% (13.6)

Tl.' s+ 1

1
1+ KA
T
-1+ KA

As for the case of set-point change, we have an overall response that is firg-order.
The overal time constant 7 is the same as for set-point changes. The response of
the system to a unit-step change in inlet temperature T is shown in Fig. 13.3. It
may be seen that T ' approaches 1/( 1 + K A). To demonstrate the benefit of control,
we have shown the response of the tank temperature (open-loop response) to a
unit-step change in inlet temperature if no control were present; that is, K. = 0.
In this case, the major advantage of control is in reduction of offset. From Eq.
(13.3), the offset becomes

where 4, =

Offset = Th(e) — T'(®) = 0 — 1—o—lK—A
[4

!
T 1+ KA

As for the case of a step change in set point, the offset is reduced as controller
gain K. isincreased.

(13.7)

Without controll

-4

[
. [ [W|th control (K.A=2)
itKA
Offset
0 L i FIGURE 13-3

0 ¢ Unit-step response for load change (P control).
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Proportional-Integral Control for Load Change

In this case, we replace G, in Fig. 13.1e by K (1 + 1/7;s). The overdl transfer
function for load change is therefore
tl _1
L AA" V(s + 1) 138)
T/ 1+ [KA/ts + D)1 + 1/75)

Rearanging this gives

1 UE
T~ (rs + 1)(ms) + K A(mys + 1)

or
T T8
T, T st + (KAT + 1)s + KA

Since the denominator contains a quadratic expression, the transfer function
may be written in the standard form of the transportation lag to give
T (11/K ;A)s
T,  (t1/KA)s? + 7(1 + UK A)s + 1

or

T' _ A1S
TT T st Yms + 1 (139
T
where =
A K.A
R n o= TTY
! KA
1 _ 1 [m1+KA

‘T ka4

For a unit-step change in load, T/ = I/s. Combining this with Eq. (13.9)
gives
TSt Ums+ 1

Equation (13.10) shows that the response of the tank temperature is equivalent to
the response of a second-order system to an impulse function of magnitude A ;.
Since we have studied the impulse response of a second-order system in Chap.
8, the solution to the present problem is already known. This justifies in part
rour previous work on transients. Using Eg. (8.3 1), the impulse response for this
{ system may be written for { < 1 as

11 t
T' = A)| — —————e ¢ gin /1 — - (13.12)
1

(13.10)
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FIGURE 13-4
Unit-step response for load change (Pl control).

Although the response of the system can be determined from Eq. (13.11)
or Fig. 8.5, the effect of varying K, and ; on the system response can be seen
mote clearly by plotting response curves, such as those shown in Fig. 134. From
Fig. 13.4a, we see that an increase in X, for a fixed value of 7y, improves
the response by decreasing the maximum deviation and by making the response
less oscillatory. The formula for ¢ in Eq. (13.9) shows that ¢ increases with K,
which indicates that the response is less ostillatory. Figure 13.4b shows that, for a
fixed value of K,, a decrease in 7; decreases the maximum deviation and period.
However, a decresse in 7, causes the response to become more oscillatory, which
means that { decreases. This effect of 7; on the oscillatory nature of the response
is aso given by the formula for ¢ in Eq. (13.9).

For this case, the offset as defined by Eq. (13.3) is zero; thus

Offset = Tg(®) — T'(x)
=0-0=0
One of the most important advantages of Pl control is the elimination of offset.

Proportional-Integral Control for Set-Point
Change

Again, the controller transfer function is K (1 + 1/7;s), and we obtain from Fig.
13. le the transfer function

T KAQ + Vns)U(rs + 1))

—_— = 1312
Tx 1+ KA(L+ Vrps)[M/(7s +1)] ( )
This eguation may be reduced to the standard quadratic form to give
!
r _ s +1 (13.13)

TT; T omis2+ UYms + 1
where 7, and ¢ are the same functions of the parameters as in Eq. (13.9). Intro-
ducing a unit-step change (T = 1/s) into Eq. (13.13) gives

r _ 1 s+ 1
- 571252 +2€ms+ 1

(13.14)
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T’

X
i

A

0 2 4 6 FIGURE 135
t Unit-step response for set point change (P control).

To obtain the response of T’ in the time domain, Eq. (13.14) is expanded into
two tems

T 1 1 13
2+ YUns + 1 +s7f°sz+ 2ns + 1 (1315

The first term on the right is equivalent to the response of a second-order
system to an impulse function of magnitude 7;. The second term is the unit-step

response of a second-order system. It is convenient to use Figs. 8.2 and 8.5 to
obtain the response for Eq. (13.15). For { < 1, an analytic expression for T'is

T _ . t
T' = _.I—e {t/m sin /1 _§2_
yt

T =
3
T

/1 =2
+1- e "M gnl /1 - 2= + tan™!
1—42 T '

The last expression was obtained by combining Egs. (8.17) and (8.31). A typical
repone for T ' is shown in Hg 135. The ofst as ddined by Eq (133) is zao,
thus
Offset = Tg(e0) = T'(x0)
=1-1=20
Again notice that the integral action in the controller has eiminated the offset.

Proportional  Control of Sysem
with Measurement Lag

In the previous examples the lag in the measuring element was assumed to be
nggighle for which cae the festbak trandfer fundion wes teken s 1L We now
condder the same contrdl system, the dimedttank heater of Fg. 131, with a first-
ode megaring dement having a trandfer fundion 1/(7»s + 1). The blodk dagram
for the modified system is now shown in Fig. 13.6. By the usual procedure, the
trander function for s-point chenges may be written
!
L _ 2/:1(7',,,5‘ + 1) (1317)
Tg Tisc+ 2oms + 1
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T;
wC
+ A
Ty i Tetl |17
1 FIGURE 136
metl Control system with measurement lag.
where A = KA
"= J1+kaA
T+ 7 !
& =

2 /T J1+K A

We shall not obtain an expression for the transient response for this case,
for it will be of the same form as Eq. (13.16). Adding the first-order measuring
lag to the control system of Fig. 13.1 produces a second-order system even for
proportional control. This means there will be an oscillatory response for an
appropriate choice of the parameters 7, 7, K, ad A In order to understand the
effect of gain K, and measuring lag 7,, on the behavior of the system, response
curves are shown in Fig. 13.7 for various combinations of K. and 7, for afixed
value of ¢ =1. In general, the response becomes mom oscillatory, or less stable,
as K. or 7, increass.

1

T,8+1

(c)

FIGURE 13-7
Effect of controller gain and measuring lag on system response for unit-step change in set point.
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For a fixed value of 1, = 1, Fig. 13.7a shows that the offset is reduced as
K. increases; however, this improvement in steady-state performance is obtained
at the expense of a poorer transient response. As K. increases, the overshoot
becomes excessive and the response becomes more oscillatory. In general, we
shall find that a control system having proportional control will require a value of
K, that is based on a compromise between low offset and satisfactory transient
response.

For a fixed value of controller gain (K, = 8), Fig. 13.7b shows that an
increase in measurement lag produces a poorer transient response in that the over-
shoot becomes greater and the response more oscillatory as 7,, increases. This
behavior illustrates a genera rule that the measuring element in a control system
should respond quickly if satisfactory response is to be achieved.

SUMMARY

In this chapter, we have confined our attention to the response of simple control
systems that were either first-order or second-order. This means that the transient
response can be found by referring to Chaps. 5 and 8. However, if integra action
were added to the controller in the system of Fig. 13.6, the overall transfer
function would have a third-order polynomia in the denominaor. Inverson would
require factoring a cubic, which is generdly a difficult task. Actudly, systems with
denominator polynomials of order greater than two are the rule rather than the
exception. Hence, we shal develop in forthcoming chapters convenient techniques
for dudying the response of higher-order control systems. These techniques will
he of direct use in control system design.

In Chap. 1, Pl control of a heated, stirred tank with measurement lag was
discussed. It was indicated that incorrect selection of controller parameters could
lead to a response with increasing amplitude. These unstable responses can occur
in all systems with third- or higher-order polynomials in the denominator of the
overal transfer function. In the next chapter, we shall present a concrete definition
of stability and begin the development of methods for determining stability in
control  systems.

PROBLEMS

13.1. The set point of the control system shown in Fig. P13.1 is given a sep change of
01 unit. Deamine
(@ The maximum vdue of C and the time & which it ooours
(b) The offst.
(© The period of ogdllaion.
Drav a skeich of C(f) as a fundion of time

+ 5
R_)-%ﬂ K=16 &I
FIGURE P13-1

Y
(o]
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K(1+r,,s+,l—1,) ! >C

FIGURE P13-2

132. The control sysem shown in Fig. P132 contans a threemode controller.

(a) For the closed loop, develop formulas for the natural period of oscillation 7
and the damping factor { in terms’of the parametersx, tp, 17, and 7y,

For the following parts, 7p= 7, = 1 and 7 = 2,

(b) Calculate { when K is 0.5 and when K is 2.

(c) Do ¢ and 7 approach limiting values ask increases, and if so, what am these
values?

(d) Determine the offset for aunit-step changein load if K is2.

(e) Skeich the response curve (C versus f) for a unitgtep change in load when K
is 0.5 and whenk is2.

(/ Inboth cases of part (€) determine the maximum value of C and thetime at
which it occurs.

133. The location of a load change in a control loop may affect the sysem response. In
the block diagram shown in Fg. P133, a unit-gep change in load enters & either
location 1 or location 2.

(a) What is the frequency of the trandent response when the load enters a location
1 and when the load enters & location 2?
(b) What is the offset when the load enters at location 1 and when it enters at

location 2?
(¢) Sketch the transient response to a step changein¥/; and to a step change in
Us.
Ul U2
+ = + 2 + 1 >
R X K.=5 ¥ 26+l | + 2641 >C
FIGURE P13-3

13.4. Consider the liquid-level control system shown in Fig. P13.4. The tanks are non-
interacting. The following information is  known:

1. The resdances on the tanks ae linear. These redstances were teded separaely,
and it was found that, if the steady-state flow rate g cfm is plotted against
steady-state tank level h ft, the slope of the line dg/dh is 2 ft%/min.

2. The cross-sectional area of each tank is 2 ft2.

3. The control valve was tested separately, and it was found that a change of 1
ps in presure to the vave produced a change in flow of 01 cfm.

4. Thereisno dynamic lag in the valve or the measuring element.
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controller

L

{Proportional

=

I !
’

R
[ %2>  FIGURE P13-4

(@) Drav a block diagram of this control system, and in each block give the transfer
function, with numericd vaues of the paameers

(b) Determine the controller gain K for acritically damped response.

(© If the tanks were comnected 0 that they were interacting, wha is the vaue of
K. needed for critical damping?

(@ Usng 15 times the vadue of K. determined in pat (c), determine the response
of thelevel in tank 2 to astep changein set point of 1in. of level.

13.5. A PD controller is used in a control system having a first-order process and a

measurement lag as shown in Fig. P13.5.

{(a) Findexpressions for { and 7 for the closed-loop response.

® If =1 min, 7 =10 sec, find K, so that { = 0.7 for the two cases:
D mp=0(2 m= 3 sec.

(¢) Compare the offset and period realized for both cases, and comment on the
advantage of adding the derivative mode

‘,g_" —_—

<+

+ 1

R K (1+ 758) == s »C

FIGURE P13-5

13.6. The thermal system shown in Fig. P13.6 is controlled by a PD controller.

Datas w = 250 1b/min
p =625 Ib/ft?

v =41
V=5 f3
V3=6 ft3

C = 1 Btw/(Ib)°F)
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/PD controller

Final
control
element
psi

L
— T e e
YOI o [%

FIGURE P13-6

A change of 1 psi from the controller changes the flow rate of heat g by 500
Btu/min. The temperature of the inlet stream may vary. There is no lag in the

measuring element.
(a) Draw a block diagram of the control system with the appropriate transfer
function in each block. Each trandfer function should contain numericd vaues

of the parameters.
(b) From the block diagram, determine the overall transfer function relating the

temperature in tank 3 to a change in &t point.
(¢) Fnd the offst for a unit-step change in inlet temperature if the controller gan
K. is3psi per °F of temperature error and the derivative timeis 0.5 min.
13.7. (a) For the control sysem shown in Fg. P137, obtan the closed-loop transfer

function C/U.
(o) Find the vdue of K, for which the closedHoop reponse has a ¢ of 23

(c) Find the offst for a unit-step change in U if K, = 4.

u
+

+,(% el [ st + & [z ,
R Iﬁl |0.25$+1 at s ¢

FIGURE P13-7

13.8. For the control system shown in Fig. P138, determine
(@ C(s)R(s)

(b C(»)

(¢) offset

@ C0.5)

(¢) whether the closed-loop response is  ocillatory
U=0
+

R=2_% + 2 | .

- s(s+1)

s

FIGURE P13-8
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+ 1 1
Ra(% 143 11 c
- FIGURE P13-9

13.9. For the control system shown in Fig. P13.9, determine an expression for C(t) if
a unitgep change occurs in R. Sketch the responee C(f) and compute C(2).
13.10. Compare the responses to a unit-gep change in st point for the sysem shown in
Fig. P13.10 for both negative feedback and positive feedback. Do thisfor X of

05 and 10. Compare thee responses by sketching C(r).

s+1
+or-—" FIGURE P13-10




CHAPTER

14

STABILITY

CONCEPT OF STABILITY

In the previous chapter, the overall response of the control system was no higher
than second-order. For these systems, the step response must resemble those of
Fig. 5.6 or of Fig. 8.2. Hence, the system is inherently stable. In this chapter
we shall consider the problem of stability in a control system (Fig. 14.1) only
dightly more complicated than any studied previoudly. This system might repre-
sent proportional control of two stirred-tank heaters with measuring lag. In this
discussion, only set-point changes are to be considered. From the methods de-
veloped in Chap. 12 for determining the overall transfer function, we have from

Fig. 14.1.
R~ 1+K.GH
In terms of the particular transfer functions shown in Fig. 14.1, C/R be-
comes, after some rearrangement,
C - Ke(ms + 1) (142)
R (ms+ D(ms + Dims + 1) + K,
The denominator of Eq. (14.2) is third-order. For a unit-step change in R,
the transform of the response is

c K.G
(14.)

K. (ms+ 1)
14.3
(ms+ D(ns+ D(nzs + 1D + K¢ (143

C.:_l.
S

164
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U
b —
G=
+ (Tla+l)(-r,c+l) C
H= 1-,;14»1 FIGURE 14-1
Third-order  control ~ system.

To obtain the transient response ((t), it is necessary to find the inverse of Eq.
(14.3). This requires obtaining the roots of the denominator of Eq. (14.2), which
is third-order. We can no longer find these roots as easily as we did for the second-
order systems by use of the quadratic formula. However, in principle they can
dways be obtaned by dgebrac methods.

It is apparent that the roots of the denominator depend on the particular
values of the time constants and K. These roots determine the nature of the
transient response, according to the rules presented in Fig. 3.1 and Table 3.1. It
is of interest to examine the nature of the response for the control system of Fig.
141 as K, is varied, assuming the time congtants =y, 73, and 75 to be fixed. To be
specific, consider the step response for = = 1,7 = % and 73 = % for several
values of K. . without going into the detailed calculations at this time, the results
of inversion of Eq. (14.3) ae shown as response curves in Fig. 14.2. From these
response curves, it is seen that, as K. increases, the system response becomes
more oscillatory. In fact, beyond a certain value of K., the successve amplitudes
of the response grow rather than decay; this type of response is called unstable.
Evidently, for some values of K, there is a pair of roots corresponding to 54 and
53 of Fig. 3.1. As control system designers, we are clearly interested in being
able to determine quickly the values of X that give unstable responses, such as
that corresponding to K, = 12 in Fig. 14.2.

C(t)

FIGURE 14-2

Response of control system of
Fig. 14-1 for a unit-step change
in Set point.
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If the order of Eq. (14.2) had been higher than three, the calculations neces-
say to obtain Fig. 14.2 would have been even more difficult. In the next chapter,
on root-locus methods, a powerful graphical tool for finding the necessary roots
will be developed. In this chapter, the focus is on developing a clearer under-
standing of the concept of stability. In addition, we shall develop a quick test for
detecting roots having positive real parts, such as s4 and sj in Fig. 3.1.

Definition of Stability (Linear Systems)

For our purposes, a stable system will be defined as one for which the output
response is bounded for al bounded inputs. A system exhibiting an unbounded
response to a bounded input is unstable. This definition, athough somewhat loose,
is adequate for most of the linear systems and simple inputs that we shall study.

A bounded input function is a function of time that adways fals within certain
bounds during the course of time. For example, the step function and sinusoidal
function are bounded inputs. The function f(t) = ¢ is obviously unbounded.

Although the definition of an unstable system dates that the output becomes
unbounded, thisis true only in the mathematical sense. An actual physical system
aways exhibits bounds or restraints. A linear mathematical model (set of linear
differential equations describing the system) from which stability information is
obtained is meaningful only over a certain range of variables. For example, a linear
control valve gives a linear relation between flow and valvetop pressure only over
the range of pressure (or flow) corresponding to values between which the valve
is shut tight or wide open. When the valve is wide open, for example, further
change in pressure to the digphragm will not increase the flow. We often describe
such alimitation by the term saturation. A physical system, when unstable, may
not follow the response of its linear mathematical model beyond certain physical
bounds but rather may saturate. However, the prediction of stability by the linear
model is of utmost importance in area control system since operation with the
valve shut tight or wide open is clearly unsatisfactory control.

STABILITY  CRITERION

The purpose of this section is to trandate the stability definition into a more simple
criterion, one that can be used to ascertain the stability of control systems of the
form shown in Fig. 14.3.

U

+
RFR< Gnéraz >C
+

H FIGURE 14-3
Basic single-loop control  system.
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CHARACTERISTIC EQUATION. From the block diagram of the control system
(Fig. 14.3), we obtain by the methods of Chap. 12

Gle R + G2
1+G,G,H  1+GGH

In order to simplify the nomenclature, let G = G1G,H . We call G the open-loop
transfer function because it relates the measured variable B to the set point R if the
feedback loop of Fig. 14.3 is disconnected from the comparator (i.e., if the loop
is opened). In terms of the open-loop transfer function G, Eq. (14.4) becomes
GG, G2

14.5
1+GR+1+GU (143)

In principle, for given forcing functions R(s) and U(s), Eg. (14.5) may be inverted
to give the control system response.
To determine under what conditions the system represented by Eq. (14.5) is

stable, it is necessary to test the response to a bounded input. Suppose a unit-step
change in set point is applied. Then

GGy 1 _ G1GF (5)

C =

U (14.49)

C =

CGs) 1+Gs S(s=r)s=ry)...(s =rn) (146)
where rq,ra,. ... ryaethe nroots of the equation
1+G(s)=0 (14.7)

and F(s) is afunction that arises in the rearrangement to the right-hand form of
Eqg. (14.6). Equation (14.7) is called the characteristic equation for the control
system of Fig. 14.3. For example, for the control system of Fig. 14.1 the step
response is
G162
C(s) = ——=—
®) = Sa+0
K, K. ‘
/ s[l +
(s + Dims + 1) (s + 1)(ms + 1)(m3s + 1),

which may be rearranged to ,

K.(ms + 1)
siimmsd + (nn + M+ nw)s? + (M4 m + m)s + (1 + Ko

C(s) =

This is equivaent to

K. (ms + Dimimms
s(s =r)(s = ra)(s —r3)

C(s) =

wherer 1, r7, and r; are the roots of the characteristic equation

nmms’ + (Mmt Mt mm)sty (e o+ s +(1+K)= 0 (148
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Evidently, for this case the function F(s) in Eq. (14.6) is
(ris + I)(ms + 1) (s + 1)
TI™73

In Chep. 3, the quditaive ndure of the invere trandorms of egudions such
as Eq. (14.6) was discussed. It was shown that (see Fig. 3.1 and Table 3.1), if
there are any of therootsry,rs, . . ., r, in the right haf of the complex plane,
the response C(t) will contain a term that grows exponentialy in time and the
sydem is undable If thae ae one or more roois of the charadeidic equdion &
the origin, there is an s™ in the denominator of Eq. (14.6) (where m= 2) and
the response is again unbounded, growing as a polynomia in time. This condition
specifies m as greater than or equal to 2, not 1, because one of the s termsin the
denominator is accounted for by the fact that the input is a unit-step (I/s) in Eq.
(146). If there is a par of conjugate roats on the imaginary axis the oontribution
to the overall step response is a pure sinusoid, which is bounded. However, if the
bounded input is taken as sin w ¢, where w is the imaginary part of the conjugate
roots, the contribution to the overall response is a sinusoid with an amplitude that
increases as a polynomid in time.

It is evident from Eq. (14.5) that precisely the same considerations apply
to a change in U, Therefore, the definition of stability for linear systems may
be trandated to the following criterion: a linear control system is unstable if any
roots of its characteristic equation are on, or to the right of, the imaginary axis.
Ohawie the sydam is ddde

It is important to note that the characteristic equation of a control system,
which daemines its dadllity, is the same for sgtpant or load changes It depands
only on G(s), the open-loop transfer function. Furthermore, athough the rules
derived above were based on a step input, they are applicable to any input. This
is trug, fird, by the definition of Sability and, ssoond, because if there is a root of
the chaadaidic equdion in the right hdf plang it contributes an unbounded tam
in the response to any input. This follows from Eq. (14.5) after it is rearranged
to the form of Eq. (14.6) for the particular input.

Therefore, the stability of a control system of the type shown in Fig. 14.3
is determined solely by its open-loop transfer function through the roots of the
chaadaidic  eguation.

F(s) =

Example 14.1. In terms of Fig. 14.3, acontrol system has the transfer functions

6 =102 @ ol
N
Gy = L (dimed tak)
2 2s+1
H=1 (measuring element without |ag)

We have suggested a physcd sysem by the components placed in parentheses. Find
the characteristic eguation and its roots, and determine whether the system is dtable
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The firs dep is to write the open-loop transfer function:

10(0.5s + 1)

€= GaH = Tasr
The chaacterisic  equation is  therefore

100.55 + 1) _
s@s+1)

which is eguivdent to
s2435+5=0
Solving by the quadratic formula gives

ST T T
or
_—3+./ﬁ
177571
-3 /0
s:_—__
T I

Sincetherea part of syandszis negative(f2—3), the system is stable.

ROUTH TEST FOR STABILITY

The Rauth tes is a purdy dgaorac mehod for detlemining hov may roats of the
chaadeidic equation have podtive red pats from this it can dso be deemined
wheher the sygem is dable for if there ae no roots with podtive red pats the
sydem is ddble The tet is limited to sydems that have polynomid charadeidic
eguations This means that it cainat be usad to test the dablity of a contrd sysem
contaning a trangoortaion lag. The procedure for goplicdtion of the Routh tet s
presented without proof. The proof is available elsewhere (Routh, 1905) and is
mathematicdly beyond the scope of this text

The procedure for examining the roots is to write the charadteridic eguetion
in the form

ags" + ajs" '+ as" 24+ @, =0 (149

where g is positive. (If aq is origindly negative, both sides are multiplied by
-1) Inthisform, it is necessary that all the coefficients

ag, 41,42,...,48,-1,8y

he positive if al the roots are to lie in the left half plane. If any coefficient is
negative, the system is definitely unstable, and the Routh test is not needed to
answer the question of stability. (However, in this case, the Routh test will tell
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us the number of roots in the right half plane.) If al the coefficients are positive,
the system may be stable or unstable. It is then necessary to apply the following
procedure to determine  stability.

Routh  Array

Arrange the coefficients of Eg. (14.9) into the first two rows of the Routh array,
& follows

Row
! an az a4 ag
2 ai as as a7
3 by by by
4 Cl c2 c3
5 dy da
6 el €2
7 fl
n+1 g1

The array has been filled in for n = 7 in order to simplify the discussion. For
any other value of n, the array is prepared in the same manner. In general, there
are(n + 1) rows. For n even, the first row has one more element than the second
row.

The elements in the remaining rows are found from the formulas

aia; = apds ajas = apas

b1= b2:

ai aj
byas; = ab; B b1a5 -abs .
= —bl Cy = —bl
The dements for the other rows are found from formulas that correspond to those
just given. The elements in any row are always derived from the elements of
the two preceding rows. During the computation of the Routh aray, any row can
be divided by a positive constant without changing the results of the test. (The
application of this rule often simplifies the arithmetic.)

Having obtained the Routh array, the following theorems are applied to
determine stability.

Theorems of the Routh Test

1. The necessary and sufficient condition for al the roots of the characteristic
equation [EQ. (14.9)] to have negative rea parts (stable system) is that all
elements of the first column of the Routh array (ag, a 1, b 1, C 1, €fc.) be positive
and nonzero.
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2. If some of the elements in the first column are negative, the number of roots
with a positive real part (in the right half plane) is equal to the number of sign
changes in the first column.

3. If one pair of roots is on the imaginary axis, equidistant from the origin, and
dl other roots are in the left half plane, al the elements of the nth row will
vanish ad none of the demants of the preosding row will vanish. The locdion
of the pair of imaginary roots can be found by solving the equation

Cs’+D =0 (14.10)
where the coefficients C and D are the elements of the array in the (n— 1)th

row & reed from Ieft to right, repedivdy. We sl find this leg rule to be of
value in the root-locus method presented in the next chapter.

The algebraic method for determining stability is limited in its usefulness in
thet dl we can lean from it is whether a sysem is dable It does nat gve us ay
idea of the degree of stability or the roots of the characteristic equation.

Example 142 Given the chaacterisic equation
s+ 352+ 552 +45+2=0
determine the dability by the Routh criterion.

Snce dl the codfficients are pogtive, the sysem may be dable To tet this,
foom the following Routh aray:

ROW

5
4
B 4%
2, 0

Sl B~ w ~ —

The dements in the aray ae found by applying the formulas presented in the rules;
for example, b 1, which is the dement in the firg column, third row, is obtained by
b = a4y — apas
a
or in tems of numerica values,

_O® =M@ _15 4 _11

- =

3 3 3 3

Since there is no change in sign in the firg column, there are no roots having positive
red pats, and the sysem is dable

b

In the appendix of Chap. 15, a BASIC program for computing the roots of
: a poynomid eguetion is gven.
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Example 14.3. (a) Using 7= 1,7, = 4, 73 = 1, determine the values of K for
which the control system in Fig. 14.1 is stable. (b) For the value of K . for which
the sysem is on the threshold of indtebility, determine the roots of the characteristic
equation with the help of Theorem 3

Solution. (@) The characteristic equation 1 + G(s) = 0 becomes

I+ K
(s+ D[(s/2) + 1][(s73) + 1] =

Rearrangement of this equation for use in the Routh ted gives

0

s2+ 652+ 1ls+ 6(1+ K,) =0 (14.11)
TheRouth array is
Row
! ! 11
2 6 6(1 + K¢)
3 10~ K,
4 61 + K;)

Snce the proportiona sengtivity of the controller (K) is a postive quantity,
we se that the fourth entry in the fird column, 6(1 + K) is postive. According to
Theorem 1, dl the dements of the fird column must be postive for dtability; hence

10~K.>0
K. <10
It is concluded that the system will be stable only if K, < 10, which agrees with
Fig. 14.2.

(b) At K. = 10, the sytem is on the verge of ingability, and the element in
the nth (third) row of the aray is zero. According to Theorem 3, the location of the

imaginary toots is obtained by solving
Cs*+D =0

where C and D are the dements in the (n = 1)th row. For this problem, with K. = 10,
we obtain

652+ 66 =0
s=tjm

Therefore, two of the roots on the imaginary axis_are located at /l_f and = ﬁT .
The third root can be found by expressng Eq. (14.11) in factored form:

(s = s1)s=s9)(s~53)=0 (14.12)

whereyy, 55, and s3 are the roots. Introducing the two imaginary roots(s; =j Jﬁ
and s = -j V11) into Eq. (14.12) and multiplying out the terms give

$3= 5352+ [ls=1ls3=0 v
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Comparing this equation with Eq. (14.11), we see that s3_= -6. The roots
of the characteristic equation are therefore s = V11, s9= = V11, and 53 = -6.

Example 14.4. Determine the stability of the system shown in Fig. 14.1 for which
aPl controller isused. Use 1y =1, =4, 3 =4, K, =5, and r; = 0.25.

Solution. The characteristic equation is

(Kc/mmm)(rs + 1) 0
msls + (U/m)Hs + (Um)lls + (M/m3)] =

Using the parameters given above in this equation leads to
st + 657 +115% + 365+ 120=0

Notice that the order of the characteristic equation has increased from three to four
as a result of adding integra action to the controller. The Routh array becomes

Row |
1 1 11 120
2 6 36
3 5 120
4 — 108
5 120

Because there are two sign changes in the first column, we know from Theorem 2 of
the Routh test that two roots have positive real parts. From the previous example we
know that for K, = 5 the system is stable with proportional control. With integral
action present, however, the system is unstable for K¢ = 5.

SUMMARY AND GUIDE FOR FURTHER
STUDY

A definition of stahility for a control system has been presented and discussed.
This definition was trandated into a simple mathematical criterion relaing stability
to the location of roots of the characteristic equation. Briefly, it was found that a
control system is stable if all the roots of its characteristic equation lie in the left
half of the complex plane. The Routh criterion, a smple agebraic test for detecting
roots of a polynomial lying in the right half of the complex plane, was presented
and applied to control system stability analysis. This criterion suffers from two
limitations: (1) It is applicable only to systems with polynomial characteristic
equations, and (2) it gives no information about the actual location of the roots
and, in particular, their proximity to the imaginary axis.

This latter point is quite important, as can be seen from Fig. 14.2 and the
results of Example 14.3. The Routh criterion tells us only that for K, < 10
the system is stable. However, from Fig. 14.2 it is clear that thevaue K, = 9
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produces a response that is undesirable because it has a response time that is too
long. In other words, the controlled variable oscillates too long before returning

to steady state. It will be shown later that this happens because for K, = 9 there
isapair of roots close to the imaginary axis.

In the next chapter tools will be developed for obtaining more information
about the actual location of the roots of the characteristic equation. This will
enable us to predict the form of the curves of Fig. 14.2 for various values of
K,. The advantage of these tools is that they are graphica and are easy to apply
compared with sandard algebraic  solution of the characteristic equation.

There are two distinct approaches to this problem: root-locus methods and
frequency-response methods. The former are discussed in Chap. 15 and the latter
in Chaps. 16 and 17. These groups of chapters are written in paralel, and the
reader may study one or both groups in either order. As a guide to making this
decison, here are some genera comments concerning the two approaches.

Root-locus methods allow rapid determination of the location of the roots
of the characteristic equation as functions of parameters such as K. of Fig. 14.1
However, they ate difficult to apply to systems containing transportation lags.
Also, they require a reasonably accurate knowledge of the. theoretical process
transfer  function.

Frequency-response methods are an indirect solution to the location of the
roots. They utilize the sinusoidal response of the open-loop transfer function to
determine values of parameters such as K. that keep these toots a “safe distance”
from the right haf plane. The actual transient response for a given value of
K. can be only crudely approximated. However, frequency-response methods are
easily applied to systems containing transportation lags and may be used with
only experimental knowledge of the unsteady-state process behavior.

A mastery of control theory requires knowledge of both methods because
they ate complementary. However, the reader may choose to sudy only frequency
response and dill be adequately prepared for most of the materia in the remainder
of this book. The choice of studying only root locus will be more restrictive in
terms of preparation for subsequent chapters. In addition, much of the literature
on process dynamics relies heavily on frequency-response  methods.

PROBLEMS

14.1. Write the characteristic equation and construct the Routh aray for the control
system shown in Fig. P14.1. Is the system stable for (@) K, = 9.5, (b) K, =
11, (c) K, = 127

+ 1
i\ (s+1)(050+1)

s+3

FIGURE P14-1
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R K (+3 K, =1~> 2 >C

0.2s°+0.4s+1

FIGURE P14-2

@ By mens of the Routh test, determine the <tability of the sysem shown in Fig.
~ P14.2 when K, = 2.

4.3. In the control sysem of Prob. 136, determine the vaue of gan (psi/® F) that just
causes the system to be unstable if (a) Tp = 0.25 min, (b) 7p = 0.5 min.

144. Prove tha, if one or mom of the codfficients (ag, a1, . . . , a,) of the characteridic
equation [Eq. (14.9)] is negdive or zero, then there is necessaily an undable root.
Hint: First show that ay/ag is minus the sum of all theroots, ay/ay is plus the
sum of all possible products of two roots, a j/ag is(—1)J times the sum of all
posshle products of | roots, etc.

145. Prove that the converse dtatement of Prob. 144, ie, that an unstable root implies
tha one or mom of the coefficients will be negdive or zero, is untrue for al n > 2.
Hint.: To prove that a datement is untrug it is only necessay to demondrate a
single counterexample.

146. Deduce an extenson of the Routh criteion that will detect the presence of roots
with real parts greater than—¢ for any specifiedo > 0.

14.7. Show that any complex number s satisfying|s < 1yields avalue of

_1+s

¢ = 1-35
tha sdidfies

Re(z) > 0

(Hint: Let s =x +jy; z = u + jv. Rationalize the fraction, and equate real and
imaginary pats of z and the rationdized fraction, Now consder what happens to
the drde x2+ y2= 1 To show tha the inside of the cirdle goes over to the right
hdf plane, consder a convenient point insde the circle)

On the bads of this trandformation, deduce an extenson of the Routh crite
rion that will determine whether the system hasroots ingde the unit circle. Why
might this information be of interet? How can the trandformation be modified to
congder circles of other radii?

@8. Given the control diagram shown in Fig. P14.8, deduce by means of the Routh
citerion those values of 7y for which the output C is stable for dl inputs R and U.

1
Tastl v
+w§ | ) e
+ (8 +1)(78+1) -

s+l e

FIGURE P14-8
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+ 'k 1 >
R "(% LKe] (s+1)° ¢
- FIGURE P14-9

14.9. In the control system shown in Fig. P14.9, find the value of K, for which the
sydem is on the verge of ingtability. The controller is replaced by a PD controller,

for which the transfer function isK (rps +1).If K, = 10, determine the range

o 7p for which the sysem is dable
(& Write the characterisic equation for the control system shown in Fig. P14.10.
= 4.

14.10.
(b) Use the Routh Test to determine if the system is stable for K, =
(0 Detemine the utimae vaue of K., above which the sysem is undable

u
+

+ 2 + 1
Kc<1+s) 2s +1 ¢

i

$+1

FIGURE P14-10
14.11. For the control sysem in Fig. P14.11, the chaacterigic equetion is
st 443+ 62+ 45 +(14K)=0

(8 Detemine the vdue of K ebove which the system is ungable
(b) Determine the value of K for which two of the roots are on the imaginary

axis, and determine the values of these imaginay roots and the remaning two

roots.

+ i 1
1K} c

(s+1)®

FIGURE P14-11

=




CHAPTER

15

ROOT
LOCUS

In the previous chapter on stability, Routh’s criterion was introduced to provide
an algebraic method for determining the stability of a simple feedback control

system (Fig. 14.3) from the characteristic equation of the system [Eq. (14.7)].
This criterion also yields the number of roots of the characteristic equation that
are |ocated in the right haf of the complex plane. In this chapter, we shal develop

a graphical method for finding the actual values of the roots of the characteristic
equation, from which we can obtain the transient response of the system to an

arbitrary  forcing  function.

CONCEPT OF ROOT LOCUS

In the previous chapter, the response of the simple feedback control system, shown
again in Fig. 15.1, was given by the expression

G G
¢ 1+% +1+GU 153
where G = G1G,H. The factor in the denominator, 1 + G, when set equa to
zero, is caled the characteristic equation of the closed-loop system. The roots of
the characteristic equation determine the form (or character) of the response C(t)
to any particular forcing function R(t) or U(t).

The root-locus method is a graphical procedure for finding the roots of
1+ G =0, as one of the parameters of G varies continuously. In our work,
the parameter that will be varied is the gain (or sensitivity) X . of the controller.
We can illustrate the concept of a root-locus diagram by considering the example

177
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H FIGURE 15-1
Simple feedback control system.

presented in Fig. 14.1, which is represented by the block diagram of Fig. 15.1
with
Gl = Kc
G |
2= (ms + D(ms + 1)
1
T oms+ 1
For this case, the open-loop transfer function is

K.
G = (s + Dims + Dimys + 1)
which may be written in the aternate form

K
G(s) = 152
(9 (s = p1)(s = p2)(s = p3) (152)
= K
where ¥ T
P1=—?3; P2=‘% P3=—%

The terms py, p2, and ps are called the poles of the open-loop transfer function.
A pole of G(s) is any vaue of s for which G(s) approaches infinity. For example,
it is clear from Eq. (15.2) that, ifs = p;, the denominator of Eq. (15.2) is zero
and therefore G(s) approaches infinity. Hence p ;= = 1/7; is a pole of G(9).
The characteristic equation for the closed-loop system is
K 0
(s = p1)(s ~ p2)(s — p3) =
This expression may be written

(s —p1)(s = p2)(s = p3) + K= 0 (153)

Using the same numerical values for the poles that were used at the beginning of
Chap. 14 (-1, -2, -3) gives

(S+Ds+2(s+3)+K=0 ‘ (154)
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where
K = 6K,
Expanding the product of this equation gives
s+ 652+ 11s+ (K+6)=0 (15.5)

which is third-order. For any particular value of controller gain K., we can
obtain the roots of the characteristic equation [Eq. (15.5)]. For example, if
K.= 4.41(K = 26.5), Eg. (15.5) becomes

3+ 652+ 115 +325=0

Solving* this equation for the three roots gives

ry = -5.10
ry = -045 - j25
ry = —0.45% j2.5

By Heding other vdues of K, other ss of roots ae ootaned as dhown in Teble
151

For convenience we may plat the roats r 1, 2, ad ry on the complex plane
as K changes continuously. Such a plot is called a root-locus diagram and is
shown in Fig. 15.2. Notice that there are three loci or brunches corresponding
to the three roots and that they “emerge” or begin (for K =0) at the poles of
the open-loop transfer function (=1, — 2, -3). The direction of increasing K is
indicated on the diagram by an arrow. Also the values of K are marked on each
locus The roat-locus degram for this sydem ad others to fdlow is symmericd
with regpect to the red axis and only the portion of the diagram in the upper haf
plane need be drawn. This follows from the fact that the characteristic equation
for a physical system contains coefficients that are real, and therefore complex
roos of such an equation mud gopear in conjugdle pars

The root-locus diagram has the distinct advantage of giving at a glance the
character of the response as the gain of the controller is continuously changed.
The dagan of FHg 152 reveds two aiticd vaues of K; one is & K, whae wo
of the roots become equd, ad the other is & K3 where two of the roots ae pure
imaginary. It should be clear from the discussion in Chap. 14 that the nature of
the response C(t) will depend only on the roots r 1,72, r3. Thus, if the roots are
dl red, which ooours for K < Kj in FHg. 152, the reponse will be nonosallatory.

*The procedure for obtaining the roots of a higher-order equation, such as Eq. (15.5), is covered in
any text on advanced agebra In a later section of this chapter, we shdl find the roots by a graphica
technique caled the root-locus method. There are aso numericdl methods for finding the roots. In
Appendix 15A of this chapter, a BASIC computer program for computing the roots of a polynomia
equation is given.
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TABLE 15.1
Roots of the characteristic equation

S+D(s+2)(s+3)+K=0

K= 6K, n n n
0 -3 -2 -1
0.23 -3.10 -1.75 -1.15
0.39 -3.16 -1.42 - 1.42
1.58 -3.45 w 128 = j0.75 128 + j0.75
6.6 -4.11 095 - j 15 -0.95 + jl.5
26.5 -5.10 -0.45=j2.5 -0.45 +j2.5
60.0 -6.00 0.0 = j3.32 00 + j3.32
100.0 -6.72 035 - j4 035 + j4

If two of the roots are complex and have negative rea parts (K <K < K3), the
response will include damped snusoidd terms, which will produce an oscillatory
response. If K > K3, two of the roots are complex and have positive real parts, \
and the response is a growing sinusoid. Some of these types of response were
sown in Fig. 142

As another example of a root-locus diagram, let the proportiona controller
be replaced with a PI controller, for which case G yin Fig. 15.1 is

Gi= K.(1 + —1—)
TIs

For this case, the open-loop transfer function is

K(ms+ 1)
18(11s + 1)(ms + 1)(m3s + 1)

G(s) =

FIGURE 15-2
Root-locus ~ diagram ~ for
G+1)(s+2(s+3)+K=0.
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which may be written in an aternate form

K(s = z1)
G =
(s) s(s = p1)(s = p2)(s = p3)

(15.6)

K
where K = R =5

=- | = -1 - -1
Pr=" Ty p2 = 7o, 2
The term z, is caled a zero of the open-loop transfer function. A zero of G(s)
isany value of g for which G(s) approaches zero. By comparing Eg. (15.6) with
Eq.(15.2), we se that the addiion of integrd action contributes to the openHoop
transfer function one zero at z; and one additional pole at the origin.
The dwaradegidic egudion coresponding to Eg. (156) is

K (s = 21) _
s(s = p1)(s = p2)(s = p3)
This eqreson may be witten
s(s =p(s ~pa)(s —p3) + K(s = 2) =0 (158)

As a specific example of the root-locus diagram corresponding to Eq. (15.8), let
n =1,m = },m =} and 7 = }. These parameters are the same as those
used in Example 14.4. The root-locus diagram is shown in Fig. 15.3.

Notice that for this case there are four loci corresponding to the four roots
and that they emerge (at K = 0) from the open-loop poles (0, = 1, -2, — 3).
One of the loci moves toward the open-loop zero at -4 as K approaches infinity.
The diagram in Fig. 15.3 should be compared with the one in Fig. 15.2 to see
the effect of adding integral action to the control system. Notice that the value
of K = 3.84, above which the roots move into the right haf plane, is lower

than the corresponding value of K = 60 for proportiona control. The effect of

0 (15.7)

>
It
w
o
B
]

K=0.28
K=384 - FIGURE 15-3
Root-locus  diagram  for
4-3 s(s + (s + (s + I+

K(s +4) = 0,k = 6K..
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adding integral action has been to destablize the system in terms of the amount
of proportional action that can be used before ingtability occurs.

A method for quickly sketching the root-locus diagram was developed by
Evans (1954, 1948) and has been presented in many textbooks on control theory.
In the next section, this method will be presented.

PLOTTING THE ROOT-LOCUS DIAGRAM

Having introduced the concept of root locus by two examples, here are some rules
that were first introduced by Evans (1954, 1948) for plotting root-locus diagrams
of characteristic equations of any order. Without these rules, the time and effort
needed to plot root-locus diagrams would be too great to render them useful in
engineering computations.

The first step in applying the root-locus technique to determine the roqts
of the characteristic equation of the closed-loop control system is to write the
open-loop transfer function (G = G1G2H) in the standard form

N

= K— 15.9
G n (15.9)

where K = constant
N=(06-z0(6-22) (s —2m)

D=(@G=p)s—p2) . (5= pn)
The term z; is called a zero of the open-loop transfer function. The term p; is
caled a pole of the open-loop transfer function. This term was defined earlier in
this chapter. A zero of G(s) is any value of s for which G(s) equals zero. The
factored terms (s = z;) and (s -pi) in N/D arise naturally in the open-loop transfer
function. For example, in the control system considered at the beginning of this
chapter, Eq. (15.2) was written in the standard form with

K.
TIT273

D= (s = pi)(s = p2)s — p3)

N = |
The second example for Pl control considered earlier [Eq. (15.6)] illustrates a
situation where aterm (z = z,) appearsin N.

Using the form of G given by Eqg. (15.9), the characteristic equation 1 + G =
0 may be written in the aternate form

N
+K— =0
1+K

or
D+KN =0 (15.10)
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It is assumed in the remainder of this chapter that n = m, which is true for all
physical systems. This being the case, the characteristic equation will be of nth
order and have nroots, r ,ra2, ..., 'n.

To develop the graphicd method for determining the root locus, the charac-
teristic equation is rewritten as

N
— = -1 15.11
K5 (15.11
In terms of the poles and zeros of the open-loop transfer function, Eq. (15.11)
becomes
PG 3V Gl 2V A Gl ) S
(s =p)(s—p2) ' (s=py)

Since the left-hand member is in general complek, we may write Eq. (15.12) in
the equivalent form involving magnitude and phase angle; thus

(15.12)

ls—zills—z2] |s—2zm| _
Is=pills—p2|-|s—pal
(s —z1)+ X(s—z2)+ v X(5=2Zm)
- [X(s=p1)+ "+ X(s = p] = (2i + Dmr

where i is any integer (positive or negative) or zero. Equations (15.13) and (15.14)
may be used to find the root locus by trial and error as follows: The trace of
the locus is found entirely from the angle criterion of Eg. (15.14), which is
independent of K. After the locus is established, the gain K for any point on
it may be obtained from Eq. (15.13), which we shall refer to as the magnitude
criterion.

To understand the procedure for determining the root locus from the angle
criterion [Eq. (15.14)], consider the simple example

N K(s =2z1)

D - (s —p1)s —p2)

for which the poles and zeros are located as shown in Fig. 15.4. (It is convenient to
indicate open-loop poles by X and open-loop zeros by O in root-locus diagrams)
To plot the root locus, a trial point (labeled s, in Fig. 15.4) is selected and the
vectors representing (s¢ = z1), (S¢ —p1), ad (s¢ — p,) are drawn. If the trid point

is correct, al the angles associated with these vectors (labeled 64, 62, and a | in

Fig. 15.4), when substituted into Eq. (15.14), will yield an odd multiple of .

For this example, the trial point s, is correct if

a1 =0 = 6, =i+

1 (15.13)

(15.14)

for some value of i. The trid point is moved until the angle criterion [Eq. (15.14)]
is satisfied. After a sufficient number of trial points have been established as
correct, the root locus is drawn by connecting them with a smooth curve. The
gains K associated with various points on the locus are determined by use of the
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FIGURE 154
Use of the angle criterion to es-
tablish root locus.

magnitude criterion [Eq. (15.13)]. Again with reference to the example shown
in Fig. 15.4, if we find the point s, to be on the root locus by using the angle
criterion, then the gain is obtained from Eq. (15.13); thus

Ksc—21
lsc—pillsc—pz| =

1
Solving for K gives

|sc_P1Hsc_P2|
lsc_zll

It should be emphasized that the root-locus plot is symmetrical with respect
to the real axis (i.e.,, complex roots occur as conjugate pairs). For this reason,
the trial-and-error procedure for finding points on the loci need be done for only
the upper half plane. The loci in the lower half plane can be drawn from symme-
try.

In principle, the trial-and-error method will produce the root-locus plot;
however, to save time it should be used only after applying the following rules,
which give a rapid guide to the genera location of the loci. These rules are proved
in other texts [see Coughanowr and Koppel (1965)]. We state them below and then
illustrate thelr use with examples. It will probably be expedient first to glance over
the list of rules and then study them mote carefully in conjunction with Examples
151 and 15.2.

K =

Rules for Plotting Root-Locus Diagrams
(Negative  Feedback)

In the following rules n = m,

RULE 1. The number of loci or branches is equal to the number of open-loop
poles, n.
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RULE 2. The root loci begin a open-loop poles and terminate at open-loop zeros.
The termination of (n — m) of the loci will occur at the zeros at infinity along
asymptotes to be described later. In the case of a gth-order pole? g loci emerge
from it. For a gth-order zero, ¢ loci terminate there.

RULE 3. LOCUS ON REAL AXIS. The red axis is pat of the root locus when
the sum of the number of poles and zeros to the right of a point on the rea axis is
odd. It is necessary to consider only the read poles and zeros in applying this rule,
for the complex poles and zeros aways occur in conjugaie pars and their effects
cancel in checking the angle criterion for points on the real axis. Furthermore, a
gth-order pole (or zero) must be counted ¢ times in applying the rule.

RULE 4. ASYMPTOTES. There are (n — m) loci that approach (as K — ®)
asymptoticaly (n — m) straight lines, radiating from the center of gravity of the
poles and zeros of the open-loop transfer function. The center of gravity is given
by

n m
ZPJ "'ZZi
_ i=l i=1

15.1
e (15.15)

Y
These asymptotic lines make angles of #{(2k + 1)/(n = m)] with the real axis
and are, therefore, equally spaced at angles 2#/(n — m) to each other (k =
0,1,2...,n=m~1).

RULE 5. BREAKAWAY POINT. The point a which two root loci, emerging
from adjacent poles (or moving toward adjacent zeros) on the rea axis, intersect
and then leave (or enter) the red axis is determined by the solution of the equation

: => : (15.16)
j_

15T =157 Pj

These loci leave (or enter) the real axis at angles of +47/2. Equation (15.16) is
solved by trial by checking it for various test points, s = s ., on the rea axis
between the poles (or zeros) of interest. For real poles or zeros, the termsin the
denominator of Eq. (15.16) are obtaned by simply measuring distances aong the
real axis between the test point and the poles and zeros. If a pair of complex
poles, p; = a; = jb;, are present, add to the right side of Eq. (15.16) the term
2s — a;)
(cm a2 + B2
(s—a)+b i

*A pole p, of order ¢ is present in the open-loop transfer function if the denominator of G contains
(s = pa)?. A zero z, of order ¢ is present if the numerator of G contains(s —z4)?.
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(This term accounts for both poles of the complex pair) This term is merely the
result of simplifying the sum

! . 1 .
s—a;—jb; s—a;+ jb;

For a pair of complex zeros, add a similar term to the left side of Eq. (15.16).

RULE 6. ANGLE OF DEPARTURE OR APPROACH. There are g loci emerging
from each qth-order open-loop pole a angles determined by

1 < N
6 = ;[(2k+ DT+ > %(pa = z:)= Awa-pj)}
i=1 1z

= (15.17)

k =01,2,..., g-
where p, is aparticular pole of order g. Each of the m loci that do not approach

the asymptotes will terminate at one of the m zeros. They will approach their
paticular zeros a angles

1 n m
= —|@k+ D7+ > 4@ —pp)— > 4@2s — 22)
v j=1 =l (15.18)

k=0,1,2,...,V =]

where z,, is a particular zero of order v. For simple poles (or zeros) on the real
axis, the angle of departure (or approach) will be O or 7.

An andog from potentiad theory is useful in plotting a root-locus diagram. It
may be shown that the loci correspond to the paths taken by a positively charged
particle in an electrostatic field which is established by poles (positive charges)
and zeros (negative charges). In generd, we may expect a locus to be repeled by
a pole and attracted toward a zero.

Another general aid to plotting the loci is to be aware of the fact that for
n-m = 2, the sum of the roots (r1+ra+ ++ + r,) is consant, rea, and indepen-
dent of K. This requires that motion of branches to the right be counterbalanced
by the motion of other branches to the left.

Most of the open-loop transfer functions encountered in single-loop chemica
process control systems will have al their poles on the rea axis. In exceptional
caes where the feedback path includes second-order measuring eements, such as
a pressure transmitter, the open-loop transfer function will contain complex poles,
but very often they will be located so far from the remaining dominant poles that
they can be ignored.

These rules and guides will now be explained by applying them to specific
examples.
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P S—
(s+1)(s+2)(s+3)

Root-locus construction for Example 15.1.

Example 15.1. Plot theroot-locus diagram for the open-loop transfer function:*

K

6 GG+ 6+ 9

In general, our stepwise procedure will follow the same order in which the rules
were presented.

1. Plot the open-loop poles as shown in Fig. 15.54. The poles are indicated by X .
There are no open-loop zeros for this example.

2. (Rule 1) Since we have three poles, there are three branches.

3. (Rue3) A portion of the locus is on the red axis between -1 and -2 and
another portion is to the left of -3.

*To grasp more easily the graphicad procedure for plotting the mot locus, the reader should actualy
plot these examples according to the steps given in the solution. Also note that this is the same
example that was treated by agebraic methods a the beginning of this chapter.
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4. (Rule 4) Since n - m = 3, we have three asymptotes and the center of gravity

isy=(-3 =2 ~1)3 = -2. Angles which the asymptotes make with the real
axisae m/3, 3w/3, and 5a/3. These asymptotes are shown in Fig. 15.5a.

With these few steps completed, a rough sketch of the root-locus diagram
can be made as follows: Since the red axis to the left of -3 is an asymptote
and one branch emerges from the pole at -3, it should be clear that one entire
branch is the red axis to the left of the -3. Furthermore, from the fact that two
loci must emerge from the poles = 1 and -2 and that the red axis between these
poles is part of the locus, we see that two loci move toward each other dong
the red axis between «~ 1 and -2 and eventualy meet a some common point.
Since the location of the asymptotes is known, it is therefore necessary that the
two loci that meet on the red axis must bresk away and eventudly follow the
asymptotes. From these observations, we could sketch a root-locus diagram that
closaly resembles that of Fig. 15.5¢. If the breskaway point and the crossings
of the imaginary axis were known, the sketch could be made with consderable
accuracy. We now continue the example by applying Rule 5 to find the breskaway
point and the Routh test to find the crossings of the imaginary axis.

5. Breakaway point. (Rule5) Therootsemergingfrom= 1and= 2 move toward

each other until they meet, a which point the loci leave the red axis a angles
of = a/2. The breskaway point is found from Eq. (15.16) as follows

1 | 1

0= + +
S=p1 $—p2 S—p3

or

1 + 1 + 1
s+1 s+2 s+3

Solving this by trial and error gives
s = -1.42

6. To find the points a which the loci cross the imaginary axis, the Routh test

(theorem 3) of Chap. 14 may be used. Writing the characteristic equation D +
KN = 0 in polynomia form gives

D+ KN= (s +1)s+2(st3)+K=0

52 +652 +11s+K+6 =0

from which we can write the Routh array:
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The theorem states that, if one pair of roots are on the imaginary axis and all
others in the left half plane, all the elements of the nth row must be zero. From
this we obtain for the element b,

= @D K6

Solving for K,
K =60

A root on the imaginary axis is expressed as simply ja. Substituting s = j a and
K = 60 into the polynomial gives

—ja® - 6a® + llg + 66 = 0

(66 = 6a%) + (1la=a*j=0

Equating the real part or the imaginary part to zero gives
a==*Jl= %332

Therefore the loci intersect the imaginary axis at +j V11 and — j J11.

7. Having found these general features of the root-locus plot, we can sketch the root
locus. If it is desirable to have a more accurate plot of the loci, the construction
is continued by the trial-and-error method described earlier in this chapter. tTo
illustrate the method of finding roots, suppose the trial point, sé =-0.75+15]
of Fig. 15.5b, is selected. This point is checked by the angle criterion [Eq.
(15.14), which for this example may be written

A(s+1) +X(s+2)+ X(s+3) =2 +1)m
or
61+ 0+ 63=(2i + D)7
From Fig. 15.5b, these angles are found to be
6= 81° By=51° g3 =34
and we have

81° 4+ 51°+ 34° = 166° # (2i + D)7

TSeveral computer software packages are now available for plotting the root-locus diagram. For
example, the program CC is especially useful for root-locus plotting. Details on CC and other
software packages are given in Appendix 34A (of Chap. 34). Evans (1954, 1948), who developed
the root-locus method, produced an instrument for plotting root-locus diagrams called the Spirule.
The Sprirule was essentidly a drawing instrument that was used to add angles by rotating an arm
with respect to a disk. The Sprirule, which is no longer available, is now obsolete as a result of the
avalability of computer programs for plotting root-locus diagrams.
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Shifting the triad point horizontally to the left will increase the sum of the angles.
As a second trid point, s/ = =0.95 + 1.5 ] gives for the sum of the angles
88° + 56° + 37°=181° =7

This result is sufficiently close to ar, which is (2i + 1)z with i =0, and we
accept the point as one on the locus. In this manner, more points on the locus
can be found and a curve drawn through them.

8. Gain. To determine the gain a various points aong the loci, the magnitude

criterion [Eq. (15.13)] is used. For example, if the gan a s = -095 + jl.5
(labeled s/ in Fig. 15.5b), is wanted, we measure the distances directly with a
ruler; thus

|s =p1| =150
s —py =182
|s—p3| = 252

(It is important to measure the vector lengths in units that are consistent with
those used on the axes of the graph.)
Substituting these values into Eq. (15.13) gives

K
E R

or K =(1.50)(1.82)(2.52) = 6.8. To find the point corresponding to K = 6.8
on the branch dong the red axis to the left of py requires atrid-and-error solution
if the graphica gpproach is used. For example, if s = -4.5 is tried, we obtain

|s—p1| =35
|s—p2| = 25
s—p3 =15

from which we get
K= (1.5)2.5)3.5) = 131

We see that s = -4.5 does not correspond to a gain of 6.8. It is therefore
necessary to try other values of s greater than -4.5 until the desred vadue of
K = 6.8 is obtained. Although this procedure may seem very tedious, the actua
cdculaions go quite quickly as the reader will discover while working out this
examnple

We aso may find the root on the real axis more directly by applying the
following theorem from agebra

The sum of the roots (ry+ ry + . '+ r,) of the nth-order polynomia
equation

apx"+ a;x" 1+ i+, =0
is given by
ay

...+r - - ——
(ri+r+ n) P
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In this case, we have just found the complex roots for K = 6.8 to be
rp, 13= -095 +j 15
The polynomia equation is
(s+D(s+2)s+3)+K = 0
which can be expanded into
s3+6s2+11s+(K +6)=0
According to the theorem
ry + (095 + j1.5) + (095 =~ j1/5)= —=
or
6 = ~[r = 2(0.95)]
or
r = -4.10

All the detailed steps needed to plot the root locus for this problem have been
discussed. The complete locus is shown in Fig. 15.5¢. This same plot is also shown
in more detal in Fig. 15.2.

Example 15.2. Consider the block diagram for the control system shown in Fig.
15.6. This system may represent a two-tank, liquid-level system having a PID con-
troller and a first-order measuring lag. The open-loop transfer function is

1+ 2s/3+1/3s
(20s + 1)(10s + 1)(0.55 + 1)
Rearranging this into the standard form, KN/D, gives
- K-z)6~-2)
s(s = p1)(s = pa)(s = p3)

G_K,;

where K = K./150

= -0.5
2 = -1
p1 = -0.05
;- -0.1
p3 = -2
Kc(”’%”';_-) (203+1)1(100+1) C

FIGURE 15-6

05et1 Block diagram for Example 15.2.
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FIGURE15-7
Root-locus diagram for Example 15.2.

In this casg, there are four poles a 0, -0.05, -0.1, and -2 and two zeros &
-0.5 and -1 These are plotted in Fig. 15.7. Note that the three-action controller
contributes the pole at the origin and the zeros, -0.5 and = 1. The steps for plotting
the root-locus diagram are as follows:

1. Since there are four poles, there are four branches emerging from them.

2. Three portions of the root locus are on the red axis between 0 and -0.05,
between -0.10 and -0.5, and between -1 and -2

3. Since n -m = 2, there are two asymptotes, and the center of gravity is

= (-0.05 -0.1 -22) -(05-10 = -0.325

The angles that the asymptotes make with the red axis are £#/2. These asymptotes
are shown in Fig. 15.7.

At this stage, we can sketch part of the root-locus diagram. Since the locus
is on the red axis between -0.1 and -05 and between -1 and -2, it should
be evident that one branch moves from the pole at -2 to the zero at -1 and an-
other branch moves from the pole a -0.1 to the zero a -0.5. The remaining two
branches move from the poles a 0 and -0.05 toward eech other adong the ted axis
until they meet, at which point they must bresk away from the red axis and move
in some way toward the vertica asymptotes that intersect the red axis at -0.325.
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With the information now available, it is difficult to continue the sketch with confi-
dence, for the breskaway point is o close to the origin that there is some likelihood
that the loci will move into the right half plane before approaching the asymptote. If
this should occur, each locus would have to cross the imaginary axis twice, in which
case there would be an intermediate range of K over which the system is unstable.
On ether end of this range of K, the system is stable. This condition is caled
conditional stability. The possibility of the locus crossing the imaginary axis twice
is suggested by the anadlog from potentia theory that was mentioned eerlier. This
can be explained as follows. immediately after the locus leaves the red axis at the
breskaway point, it has a tendency to move to the right half plane because the pole
a -0.1 “repds’ the locus. However, after the locus moves to a point sufficiently
far from this repelling pole, it is attracted more strongly by the two zeros at -0.5
and — 1 and has the tendency to return to the left half plane where we know it must
eventualy approach the vertical asymptote. Actudly to determine whether or not
the locus moves into the right haf plane requires that the points a which the loci
cross the imaginary axis be determined. This can be done by use of the Routh test
asillugrated in Example 15.1. The details of the cdculation will not be given here;
however, the reader can show that there are two vaues of gain K which give a pair
of roots of the characterigic equation that lie on the imaginary axis. These gains
and corresponding roots are approximately

K=0004 o K,=06 §==j0.1
K =24 or  K,=360 s ==xj11

From these results, we conclude that the system will oscillate with constant amplitude
with a frequency @ = 0.1 raditime when K, = 0.6; it will aso oscillate at constant
amplitude with @ = 1.1 when K. = 360. The system is unstable for 0.6 < K, <
360. The system is stable for K, < 0.6 and for K, > 360. The complete root-locus
diagram is sketched in Fig. 15.7.

SUMMARY

In this chapter, the rules for plotting root-locus diagrams have been presented
and applied to severa control systems. It should be emphasized that the basic
avatage of this mehod is the goead and esse with which a rough skeich of the
lod can be doaned. This sketch frequetly gves much of the desred information
on stability. A few further calculations of points on the locus are usualy al that
ae neosssay to obtan aoccurde quantitative behavior of the roots

The root locus for variation of parameters other than K,, such as 7, has
not been discussed here. The method of constructing this type of diagram is
similar to that presented here and is discussed in detail in other texts [see Wilts
(1960)].

Once the roots are available, the response of the system to any forcing
fundtion can be oddbtaned by the usid procadures of patid fradions and inverdon
given in Chap. 3.
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APPENDIX 15A

Table15.1A gives a BASIC computer program for finding the roots of a polyno-
mial equation by the Lin-Bairstow method [see Hovannessian and Pipes (1969)].
To use this program, arrange the polynomial equation in the form

ans”+-an_ls”_1+-an_2s"_2+- .+a =0

Before running the program, a DATA statement is used to list the order (n) and
the coefficients of the polynomia equation as follows:

DATA n, ayn an-—lr LRI | a1

An example of the use of the root-finding program is shown in Table 15.2A; the
example involves finding the roots of Eq. (15.5) for the case of K = 26. 5.

TABLE 15.1A o _ _
BASIC program for finding roots of a polynomial equation

10 REM ROOTS OF POLYNOM AL EQUATI ON

20 REM USING LI N- BAI RSTOW METHOD

30 REM AN*SxxN + A(N-1)*S*#(N-1) + A(N-2)*S+»(N-2) + ..t A0 =10

4yp RM DATA N AV ANIL), . . ,,AO

50 REM REFERENCE: DI G TAL COHP 'METE |N ENGRG, HOVANNESSI AN, S.A.
AND L. A. PIPES

100 DI'M A(lU) B(10),C(10),D(10)

110 READ N

120 PRI NT "DEGREE"N

130 PRINT " COEFFI Cl ENT"

140 FOR | = N TO 0 STEP -1

150 READ A(I)

160 PRINT a(I) ;

170 NEXT |

180 PRINT

190 PRI NT

200 LET R=RA())/A(2)

210 LET s=A(0)/A(2)

220 LET B(N)=A(N)

230 LET c(X)=0

240 LET D(N)=0

250 LET B(N-1)=A(N-1)-R*B(N)

2k0 LET C(N-1)=-B(N)

270 LET D(N-1)=0

280 FOR I=g TO N-2

290 LET B(N-1)=A(N-1)-R*B(N-1+L)- S*B(N-1+2)

300 LET C(N-I)=-B(N-I+1)-R#C(N-I+1)-S*C(N-I+2)

330 LET D(N—I)=—B(N—I+E)-S*D(N—I+E)—R*D(NtI+L)
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TABLE 15.1A (Continued) ] )
BASIC program for finding roots of a polynomial equation

320 NEXT |

330 LET RL=A(L)-R*B(2)-S*B(3)

340 LET Sk=A(0)-S+*B(2)

350 LET T=-B(2)-R*C(2)-S*C(3)

3k0 LET U=-B(3)-S*D(3)-R*D(2)

370 LET v=-5=+C(2)

380 LET W=-B(2)-S+*D(2)

390 LET R2=(-RL*W+SL+*U)/(T*W-Ux*V)
400 LET S2=(-T*S1+V#R1)/(T*WN-UxV)
410 LET S=S+S2

420 LET R=R+Re2

430 | F ABS(R2)<.0000Lk TEEN 450
440 GOTO 220

450 LET G=R*R-Y=$§

4e0 I F G<O TEEN 490

470 PRINT "ROOTS";-R/2;"+OR-";SQR(G)/2d
480 GOTO 500

490 PRINT "ROOTS";-R/2;"+0R-";SQR(-G)/2;"J"
500 LET N=N-2

510 PRINT

520 |F §=0 THEN b30

530 FOR | = NTO 0 STEP-L

540 LET A(I)=B(I+2)

550 NEXT

560 | F §>2 THEN 200

570 | F §<g@ THEN p10

580 LET R=R(N-1)/A(N)

590 LET S=A(N-2)/A(N)

500 GOTO 450

610 PRINT "ROOT",-A(N-1)/A(N)

620 DATA %,lfgylglggfs

530 END ,.,Jrr_ ééf\c|¢n¢43

TABLE 15.2A o
Use of BASIC program of Table 15.1A for finding roots of Eg. (15.5):

$+652+11s + (K +6) = 0with K = 26.5

RUN

DEGREE 3
COEFFI Cl ENT

} b 113 32.5

ROOTS-, 4534395 +OR- 2.485065 J
ROOT -5.093121
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LINEAR CLOSED-LOOP SYSTEMS

PROBLEMS

15.1.

15.2.

15.3.

15.4.

Draw the root-locus diagram for the system shown in Fig. P15.1 where G, =
K.(1+ 055 + I/s).

T 1
(s+1)(2s4+1)

FIGURE P15-1

Draw the root-locus diagram for the system shown in Fig. P13.4 for (a) 7; =
0.4 min and (b) 1; = 0.2 min. (The proportional controller is replaced by a Pl
controller.) Determine the controller gain that just causes the system to become
ungable. The vaues of paametes of the sytem am:

K, =valveconstant 0.070 cfm/psi
K, = trangducer condant 6.74(in. pen travel)/(ft of tank leve)
Ry = 0.55 ft level/cfm

7 = time constant of tank 1 = 2.0 min

m = time constant of tank 2 = 0.5 min

The controller gain K. has the units of pounds per square inch per inch of pen
travel.

Sketch the root-locus diagram for the system shown in Fig. P14.2. If the system
is undeble a higher vaues of K,, find the roots on the imaginay axis and the
coresponding  vadue of K .

Sketch the root loci for the following equations:

(@ 1+ 5+ D@5+ 1) D2s + 1) = 0

K

O+ e =0

K@s + 1)
s(s+ D@2s + 1) =
K(1.5s + 1) 0
s(s+ D2s + 1) =

K@©.5s +1)
s(s + D2s + 1) =

@1+

@ 1+

@1+

On your sketch you should locate quantitatively al poles, zeros, and asymptotes. In
addition show the parameter that is being vaied dong the locus and the direction in
which the loci travdl as this parameter is increased.



15.5.

156.

15.7.

root Locus 197

+ _ 1 _
R a K (1+7;,8) > (a+1)[(./2)+1] >C
1
(s/3)+1

FIGURE P15.5

For the control sysem shown in Fig. P15.5.

Case l: ip = %

Case 2: 1p = é

(8 Sketch the rootlocus diagram in exch case

(b) If the sysem can go undable find the value of K, that just causes indtahility.

(c) Using Theorem 3 (Chap. 14) of the Routh test, find the locations (if any) at
which the loci cross into the unstable region.

Draw the root-locus diagram for the control system shown in Fig. PI56.

(a) Deermine the vaue of K. nesded to obtan a root of the characteridic equation
of the closedHloop response which has an imaginary pat 0.75.

(b) Using the value of K, found in part (a), determine al the other roots of the
cherecterigic  eguation  from  the motlocus  diagram.

(¢ If a unit impulse is introduced into the st point, determine the response of the
system, C(t).

2 2
& | Ke (l+3/ ') (05s+1) (0587 +s+1)

FIGURE P15-6

Plot the root-locus diagram for the sysem shown in Fg. P15.7. We may consder this
sydem to condst of a process having negligible lag, an underdamped, second-order
messuring element, and a PD controller. This sysem may approximate the control
of flow rate, in which case the block labeled K, would represent a valve having
no dynamic lag. The feedback element would represent a flow measuring  device,
awch & a mecuy manomeler placed aross an orifice plae  Mercury  manometers
are known to have underdamped, second-order dynamics. Plot me diagram for
™ = 143,

R K,(1+r,,s)<— X,

1
0.26°+0.8s +1

=>-C

[

o

()
+—3—

FIGURE P15-7
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15.8. Draw the root-locus diagram for the proportional control of a plant having the
transfer function 2/[(s +1)3]. Determine the roots on the imaginary axis and the
corresponding value of K,.

159. (@ Show how you would adopt the usud root-locus method for varigion in con-

troller gan to the problen of obtaning the root-locus diagram for variation in
7p for the control system shown in Fig. P15.9for k.= 2.

(b) Plot the root-locus diagram for variation in 7p withK . = 2.

(c) Determine the response of the system C(t) for a unit-step change in R for
7p =05, and K, = 2. Sketch the response. What is the ultimate value of
C@)?

Hint: Rearange the openloop trander funcion to be in the form

s

G - U5
© §2 + 155+ 15

Then apply the usud root-locus rules with 7p taking the place of K,

+ 1 N
R—’?i Ke(1 + oS) s+1)(2s+1) ¢

FIGURE P15-9
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| NTRODUCTI ON
TOFREQUENCY
RESPONSE

Chapters 5 and 8 discussed hriefly the response of first- and second-order systems
to snusoidd forcing functions. These frequency responses were derived by using
the standard Laplace transform technique. In this chapter, a convenient graphical
technique will be established for obtaining the frequency response of linear sys-
tems. The motivation for doing so will become apparent in the following chapter,
where it will be found that frequency response is a valuable tool in the analysis
and design of control systems.

Many of the caculations in this chapter make use of complex numbers. The
reader should review the two forms of complex numbers (rectangular and polar)
and the basic operations used on complex numbers.

SUBSTITUTION RULE
A Fortunate Circumstance

Consder a simple firgt-order system with transfer function

G(S) =

16.1
s + 1 (16.2)

Substituting the quantity jw for s in Eq. (16.1) gives

G(jw) =

jot+1

201
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We may convert this expression to polar form by multiplying numerator and
denominator by the conjugate of (jwt + 1); the result is:

—joT+1 1 . WT

GUO) = Gorr D—jor+ D =17 @22 ' 17 022

(16.2)

To convert a complex number in rectangular form (z = a+ jb) to polar form
(| z %z) one uses the relationships:

lz|=+va2+b* and 7 = tan-

Applying these relationships to Eq. (16.2) gives

G(jw) = 4 tan~'(~wr) (163)

1
Joir?t +1
The quantities on the right side of Eq. (16.3) are familiar. In Chap. 5 we found
that, after sufficient time had elapsed, the response of a first-order system to a
sinusoidal input of frequency w is aso a sinusoid of frequency w. Furthermore,
we saw that the ratio of the amplitude of the response to that of the input is
1/ Jw?r2 + 1 and the phase difference between output and input is tan~!( —e7).
Hence, we have shown here that for the frequency response of a first-order system,

AR =|G(jo)|
Phase angle = £.G(jw)

That is, to obtain the amplitude ratio (AR) and phase angle, one merely substitutes
jo for s in the transfer function and then takes the magnitude and argument (or
angle) of the resulting complex number, respectively.

Example 16.1. Rework Example 5.2. The pertinent transfer functionis

1
GE) = os+1

The frequency of the bahtemperature variaion is given a 10/7 cycles/min which
is equivdent to 20 rad/min.

Hence, let
s = 20j
to obtain
G20j) = 2 +1
In polar form, thisis
1
G(20j) = ﬁ 4 = 63.5

which agrees with the previous result.
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Generalization

At this point, it is necessary to ascertain whether or not we may generalize the
result of the last section to other systems. This can be done by checking the result
for second-order systems, third-order systems, eic. However, it is more satisfying
to prove the general validity of the result as follows. (The reader may, if desired,
accept the result as general and skip to Example 16.2. We remark here that an
important restriction on this rule is that it applies only to systems whose transfer
functions yidd stable responses.)
An nth-order linear system is characterized by an nth-order differentia equa
tion:
d"y a"'y

dy )
—— b @y —— oo = )
an 77 a, v +a1dt + agY =X (1) (16.4)

where Y is the output variable and X(t) is the forcing function or input variable.
For specific cases of Eq.(16.4), refer to Eq. (5.5) for afirst-order system and
Eq. (8.4) for a second-order system. If X(t) is sinusoidal

X(t) = Asinw!?
the solution of Eg. (16.4) will consst of a complementary solution, and a partic-
ular solution of the form
Yp(t) = Cy sinwt + Cacoswt (16.5)

If the system is stable, the roots of the characteristic equation of (16.4) al lie
to the left of the imaginary axis and the complementary solution will vanish
exponentialy in time. Then ¥, is the quantity previously defined as the sinusoidal
or frequency response. If the system is not stable, the complementary solution
grows exponentidly and the term frequency response has no physica significance
because Y,(t) is inconsequential.

The problem now is the evaluation of C; and C; in Eq. (16.5). Since we
are interested in the amplitude and phase of Yp(¢), EQ. (16.5) is rewritten as

Yp = Dy sSn wt + Dy) (16.6)

as was done previoudy [compare to Eq. (5.23) and related equationg].
It will be convenient to change X(t) and Y,(¢) from trigonometric to expo-
nential form, using the identity

. elb = =i
Thus,
X(1) = i.(ef‘"’ - e I (16.7)
2j
and from Eq. (16.6)

D . .
Yp(f) = 'é?;'[e](wt+D2) -e j(o)t+D2)] (168)
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Substitution of Egs. (16.7) and (16.8) into Eq. (16.4) yields:

D, ei@+D2) ‘ - '
1T[an(]w)” + ap-1(jw) ey ai(jw) + aol
Dy e—J@i+Dy) B .
"leT[a,(- jo)' + api(— jo)" T+ o+ ay(—jw) + ag)
= {—;:(e“" - e /v (16.9)

The coefficients of ¢/’ on both sides of Eq. (16.9) must be equal. Hence,
Die/Pa,(jo)' + ap—1(jo)" 1+ o+ ay(jo) + ag = A (16.20)
Equation (16.10) will be satisfied if and only if
1 | Db
a,(jo)t + apa(joyt+ o+ ai(jw)+ ag| A
!
an(jo) + apoi(jo)' T+ ek ay(j) + ao

But D,/A and D, are the AR and phase angle of the response, respectively, as
may be seen from Eq. (16.6) and the forcing function. Furthermore, from Eq.
(164) the trander fundtion rdaing X ad Y is

Y(s) _ 1
X(s) ap,s" + an__lsnAl + .0+ a8+ ag

Equations (16.11) and (16.12)* establish the genera result.

(1612)

Example 16.2. Find the frequency response of the sysem with the generd second-
order trandfer function and compare the results with those of Chap. 8 The transfer
function is

!
257 + Yrs + 1

Putting s = jw yields
|
1= 1202+ j2wr
which may be conveted to the polar form
1
(1 = 0212)2 + (2 wr)?

ern,,( =2wT )

1 — w272

*In writing this equation, it is assumed that X and Yhave been written as deviation variables, so that
initial conditions are zero.
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Hence,
!
R=
J = @2 + Qr)?

Phase angle = tan-’ %

which agree with Eqg. (8.40).

A

(16.13)

Transportation L ag

The response of a transportation lag is not described by Eq. (16.4). Rather, a
transportation lag is described by the relation

Y(@t) = X(t - 7) (16.14)

which states that the output Y lags the input X by an interval of time 7. If X is
sinusoidal,

X =A sn gt
then from Eq. (16.14)
Y=Asne(t=7=A3n (wt = w7)
It is apparent that the AR is unity and the phase angle is (—w7).

To check the subdtitution rule of the previous section, recal that the transfer
function is given by

G(s) = 3o = ¢
Putting s = jeo,
G(jw) = e
Then,
AR =| e7/oT |=| (16.15)
Phase angle = xe /" = —wr
and the validity of the rule is verified.

Example 16.3. The dtirred-tank heater of Chap. 1 has a capacity of 15 gal. Water
is entering and leaving the tank at the constant rate of 600 1b/min. The heated water
that leaves the tank enters a well-insulated section of 6-in.-ID pipe. Two feet from
the tank, a thermocouple is placed in this line for recording the tank temperature,
as shown in Fig. 16.1. The eectrical heat input is held constant a 1,000 kw.

If the inlet temperature is varied according to the relation

T; =75 + 5sin46¢t

where T; is in degrees Fahrenheit and ¢ is in minutes, find the eventual behavior of
the thermocouple reading T,,. Compare this with the behavior of the tank temperature
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T;=75+5 sin 46t
600 Iy/min

600 Ib/min
=l N FIGURE 16-1
2 6" 1D pipe Tank-temperahue  system  for  Example 163,

T. It may be assumed that the thermocouple has a very small time constant and
effectivdly messures the true fluid temperature a &l times.

The problem is to find the frequency response of Ty to T . Deviation variables
must be used. Define the deviation vaiable T, &

T{ = T; = 75 = 5sin46¢
To define adeviation variable for T,,, note that, if T; were held at 75°F, T, would
come to the deady dae satisfying
gs = wC(Tm; = Tig)

This may be solved for Top,:

=9 . = (1,000)(1, 000)0.0569) +
s T owCc TN (600)(1.0)
Hence, define

Tm 75 = 170°F

T, = Ty = 170

Now the overdl system between Ti' ad T, is made up of two components
in sies the tank and the 2ft section of pipe The trander function for the tank is

Gi(9) = 57

where, & we have seen before 7 is given by
BK (60.3)(15)
w - (600)(7.48)

The trander function of the 2-ft section of pipe which corresponds to a transportation
lag, is

=

= 0.202 min

Gas) = e M5
where  is the length of time required for the fluid to transverse the length of pipe
This is

n = Lo QEODOIN _ e i

600

<

The factor 0197 is the crosssectiond) aea of the pipe in square fedt.
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Snce the two systems ae in sies the ovedl trandfer function between Tl.’
and Ty, is
Tr;l e—Qs e -0.0396s
T/ " ms+1 02025+ 1

To find the AR and phase |ag, we merely substitute s = 46j and take the magni-
tude and agument of the rexulting complex number. However, note tha we have
previoudy derived the individua frequency regponses for the firs-order sysem and
trangportation lag. The overdl trandfer function is the product of the individud trans
fer functions, hence, its magnitude will be the product of the magnitudes and its
agument the sum of the aguments of the individud transfer functions. In generd,
if
G(9) = Gi(5)G2(s) "+ Gnls)

then

|G(jw)| = |G1(jo)] |Ga(jw)| " |Gnljw)|
XG(jo) = £G1(jo) + £Ga(jo) + *** + %Ga(jw)

This rue mekes it vey convenient to find the frequency response of a number of
systems in  seies.
Using Eqg. (16.3) for the tank,
1 1
AR = = e = 0.107
46)x 02022 + 1 935

Phase angle = tan™'[(—46)(0.202)] = —84°

For the section of pipe, the AR isunity, so that the overall AR isjust 0.107. The
phase lag due to the pipe may be obtaned from Eg (16.15) as

Phase angle = —wm = —(46)(0.0396) = -1.82 rad = —104°
The overall phaselag from Til toT,, isthe sum of theindividual lags,
!
Z",i = —84— 104 = —188°
T;
Hence
Ty = 170 + 0535 sin (467 — 188°)
For comparison, aplot of Tf, T,,, and T is given in Fig. 16.2, where
T = tank temperature = 170°F

It should be emphasized that this plot applies only after sufficient time has eapsed
for the complementay <olution to become negligible This redtriction applies to dl
the forthcoming work on frequency response. Also, note that, for convenience of
sde, the tak and thermocouple temperatures have been plotted as 2T and 2T,
respectively.
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fe——Overall lag, 188°——4

Tank lag, | Transport la

Inlet
temperature

temp. (27T,)

Time =——>

FIGURE 16-2
Temperature Variation in Example 16.3.

A Control Problem

An interesting conclusion may be reached from a study of Fig. 16.2. Suppose
that we are trying to control the tank temperature, using the deviation between
the thermocouple reading and the set point as the error. A block diagram for
proportional control might appear asin Fig. 16.3, where T, isreplaced by U, T'
by C, and T, by B to conform with our standard block-diagram nomenclature.
The vaidde R denates the deviation of the st pant from 170°F and is the desred
value of the deviation C. The value of R is assumed to be zero in the following
adyss (cord a 170°F). The fdlowing aguments while nat rigorous save to
give some insight regarding application of frequency response to control system
adyds

The heat being added to the tank is given in deviation variables as —K .B.
With reference to Fig. 16.2, which shows the response of the uncontrolled tank
to asinusoidal variation in U, it can be seen that the peaks of U and B are amost
exadly opposte because the phase difference is 188°. This means that, if the loop

U=T}
o+
+ € Q 1 1 _ ~_mr
R K, wC)| 3 e+l >C=T
B=T},
e'r"
FIGURE 16-3

Proportional control of heated, stirred tank.
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were closed, the control system would have a tendency to add more heat when
the inlet temperature T; is at its high peak, because B is then negative and — K B
becomes positive. (Recal that the set point R is held constant at zero.) Conversdy,
when the inlet temperature is at alow point, the tendency will be for the control
system to add less heat because B is positive. This is precisely opposite to the
way the heat input should be controlled.

Therefore, the possibility of an unstable control system exists for this partic-
ular sinusoidal variation in frequency. Indeed, we shall demonstrate in Chap. 17
that, if K, is taken too large, the tank temperature will oscillate with increasing
amplitude for all variations in U and hence we have an unstable control sys-
tem. The fact that such information may be obtained by study of the frequency
response (i.e., the particular solution for a sinusoidal forcing function) justifies
further sudy of this subject.

BODE DIAGRAMS

Thus far, it has been necessary to caculate AR and phase lag by direct substitution
of § = je into the. transfer function for the particular frequency of interest.
It can be seen from Egs. (16.3), (16.13), and (16.15) that the AR and phase
lag are functions of frequency. There is a convenient graphical representation of
their dependence on the frequency that largely eiminates direct calculation. This
is called a Bode diagram and consists of two graphs: logarithm of AR versus
logarithm of frequency, and phase angle versus logarithm of frequency. The Bode
diagram will be shown in Chap. 17 to be a convenient tool for analyzing control
problems such as the one discussed in the preceding section. The remainder of the
present chapter is devoted to developing this tool and presenting Bode diagrams
for the basic components of control loops.

Fird-Order  System

The AR and phase angle for the snusoidd response of a first-order system are

AR = S S (16.16)
Jriw? + 1
Phase angle = tan-*(--or) (16.17)

It is convenient to regard these as functions of w7 for the purpose of generality.
From Eg. (16.16)

log AR = —1log [(wr)? + 1] (16.18)

The first part of the Bode diagram is a plot of Eg. (16.18). The true curve is shown
as the solid line on the upper part of Fig. 16.4. Some asymptotic considerations
can simplify this plot. As (w7) —> 0, Eq. (16.16) shows that AR — 1. This
is indicated by the low-frequency asymptote on Fig. 16.4. As (w7) — o, EQ.
( 16.18) becomes asymptotic to

log AR = ~ log(wT)
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10 20

Low-frequency Corner frequency

asymptote \1
! i *7\ \ High-frequency 0
True curve

asymptote

ratio

Amplitude

01 -20

Decibels

0.01 -40

Phase
angle

—15

~Ro1 01 1 10 100

Wwr—>

FIGURE 16-4
Bode diagram for firs-order system.

which isaline of dope ~ 1, passing through the point
or =1 AR =1

This line is indicated as the highfrequency asymptate in Hg 164. The freguency
w, = 1/, whae the two as/mpidtes interssd, is known as the corner frequency;
it may be shown that the deviation of the true AR curve from the asymptotes is
amaximum ét the corner frequency. Using w, = 1/7 in Eq. (16.16) gives

AR = L = 0.707

J2

as the true value, whereas the intersection of the asymptotes occurs at AR = 1.
Since this is the maximum deviation and is an error of less than 30 percent, for
engineering purposes it is often sufficient to represent the curve entirely by the
asymptotes. Alternately, the asymptotes and the value of 0.707 may be used to
sketch the auve if mate acoracy is reouired.

In the lower half of Fig. 16.4, we have shown the phase curve as given by
Eq. (16.17). Since

¢ = tan"!(~w7r) = - tan"Hw7)

it is evident that ¢ goproaches 0" a low frequendes and —90° & high frequendes
This veifies the lon- and highfreguency partions of the phese cuve At the comer
frequency, w, = 1/7,

6. = —tan Nw.r) = -tan-() = —45°

There are asymptotic approximations available for the phase curve, but they are
not so accurate or so widely used as those for the AR. Instead, it is convenient
to note that the curve is symmetric about -45".
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It should be stated that, in a great deal of the literature on control theory,
amplitude ratios (or gains) are reported in decibels. The decibel is defined by

Decibels = 20 log ;4(AR)

Thus, an AR of unity corresponds to zero decibels and an amplitude ratio of 0.1
corresponds to -20 decibels. The abbreviation for the decibel is db. The value
of the AR in decibels is given on the right-hand ordinate of Fig. 16.4.

First-Order Sysems in Series

The advantages of the Bode plot become evident when we wish to plot the fre-
quency response of systemsin series. As shown in Example 16.3, the rules for
multiplication of complex numbers indicate that the AR for two first-order systems
in series is the product of the individual ARs:

1
AR= Jo?r?+1 Jww +1
Similarly, the phase angle is the sum of the individual phase angles
¢ = tan"!(~w7) + tan"(—wn) (16.20)

Since the AR is plotted on alogarithmic basis, multiplication of the ARs is
accomplished by addition of logarithms on the Bode diagram. The phase angles
ae added directly. The procedure is best illustrated by an example

(16.19)

Example16.4. Plot the Bode diagram for the sysem whose overal transfer function
is
N
(s+1)s+5
To put this in the form of two fird-order systems in sevies it is rewritten &
B
(s+ 1) %s+1)

The time constants are r; = 1 and =, = 1. The factor £ in the numerator corre-
gonds to the Seady-dae gain.
From Egs. (1621) and (16.19)

(16.21)

Y%

AR =
Jo? + 1/(w/5)2 +1

Hae

2
log AR = log-;— - %log(m2 +1)— %IOg l(‘;—)) .1

or

log AR = log ¥ + log (AR), + log (AR), (16.22)
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where (AR); (AR); are the ARs of the individual first-order systems, each with
unity gain. Equation (16.22) shows that the overdl AR is obtaned, on logarithmic
coordinates, by adding the individual ARs and a constant corresponding to the
Seady-date  gan.

The individud ARs must be plotted as functions of log w rather than log (w7)
because of the different time condants. This is easly done by ghifting the curves of
Fig. 16.4 to the right or left so that the comer frequency falls at o = 1/r. Thus,
theindividual curves of Fig. 16.5 are placed so that the comer frequenciesfall at
we, =landw,, = 5 These cuves are added to obtain the overdl curve shown.
Note tha in this case the logaithms ae negaive and the addition is downward.
To complete the AR curve, the factor log % should be added to the overdl curve.
This would have the effect of chifting the entire curve down by a condant amount.
Ingeed of doing this the factor 1 is incorporated by plotiing the overdl curve as
AR/% ingead of AR. This procedure is usudly more convenient.

Asymptotes have aso been indicated on Fig. 165 The sum of the individua
asymptotes  gives the overdl asymptote, which is seen to be a good goproximation
to the overdl curve. The overdl asymptote has a dope of zero bdow w =1, = 1 for
w between 1 and 5, and -2 above w = 5. Its slope is obtained by simply adding
the dopes of the individud asymptotes

To obtan the phae angle, the individud phase angles are plotted and added
according to Eq. (16.20). The factor %has no effect on the phase angle, which
gproaches = 180" & high frequency.

1 ——
N
05 NN
g N\ N
ﬂg s A\ %c+1
33
% 3 2.+1ji%.+1; A
g3 o1 \
38 Overall curve 1
-:‘:-7 g s+l
2l = 0.05
: Se Overall asymptote,/ \
L d slope=-2
0.01
o
Iy
-45 1 1—
A 0y In
LI AN
o
—135 (s+1){$s+2) -
—180
0.1 05 1 5 10
0 —>
FIGURE 16-5

Bode diagram for 0.2/[(s + 1)(0.2s + 1)].
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Graphical Rules for Bode Diagrams

Before proceeding to a development of the Bode diagram for other systems, it is
desirable to summarize the graphical rules that were utilized in Example 16.4.

Consider a number of systems in series. As shown in Example 16.3, the
overall AR is the product of the individual ARs, and the overall phase angle is
the sum of the individual phase angles. Therefore,

log (AR) = log (AR), + log (AR), + ... + log (AR), (16.23)
and

¢=¢1+42+_..+¢n

where n is the total number of systems. Therefore, the following rules apply to
the true curves or to the asymptotes on the Bode diagram:

1. The overal AR is obtained by adding the individual ARs. For this graphical
addition, an individual AR that is above unity on the frequency response di-
agram is taken as ‘poditive; an AR that is below unity is taken as negative.
To understand this, recall that the logarithm of a number greater than one is
positive and the logarithm of a number less than one is negative. A convenient
way to combine two or more individua AR curves is to use a par of dividers
to transfer distances at a selected value of .

2. The overall phase angle is obtained by addition of the individual phase angles.

3. The presence of a constant in the overal transfer function shifts the entire AR
curve verticaly by a constant amount and has no effect on the phase angle. It
is usualy more convenient to include a constant factor in the definition of the
ordinate.

These rules will be of considerable value in later examples. Let us now
proceed to develop Bode diagrams for other control system components.

The Second-Order System

As shown in Example 16.2, the frequency response of a system with a second-
order transfer function

!
252+ Urs + 1
is given by Eq. (16.13), repeated here for convenience,

AR = : (16.13)

(1-wir?)? + 2wT)?

1 —2{w7
1=(w7)?

G(s) =

Phase angle = tan-
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FIGURE 166
Bode diagram for second-order system 1/(r2s2 + 2{rs + 1).

If @t is used as the abscissa for the general Bode diagram, it is clear that £ will be
aparameter. That is, there is a different curve for each value of {. These curves
appear asin Fig. 16.6.

The calculation of phase angle as a function of @ from Eq. (16.13) requires
careful attention. The caculation can be done most clearly with the aid of a plot
of tan™'x (or arctan x) as shown in Fig. 16.7. As @T goes from zero to unity, we
see from Eq. (16.13) that the argument of the arctan function goes from 0 to —w
and the phase angle goes from 0" to -90” as shown by the branch from A to B
in Fig. 16.7. As T crosses unity from a value less than unity to a value greater
than unity, the sign of the argument of the arctan function in Eq. (16.13) shifts
from negative to positive. To preserve continuity in angle as w7t Crosses unity, the
phase angle must go from -90” to - 180" as wr goes from unity to +o« and the
branch of the arctan function goes from C to D (in Fig. 16.7).

The arctan function available in calculators and digital computers normally
covers the principal branches of the arctan function, shown as BAE in Fig. 16.7.
For this reason, one must be very careful in calculating the phase angle with
Eq. (16.13). If a calculator programmed for the principal branches of the arctan
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tan—1 x
210 +——————=—===
””—
-
180° 1~
/”,
"""" 90° —
”"—__ E
1 1 [l OOA // 1 1 1
-3 -2 -1 1 2 3
B X
-90°
Cc
-180°
/”’/ D
_____ ==="" FIGURE 16-7
Use of plot of tan~lx for com-
puting phase angle of second-order
system.

fundion is usd ad the agumet is podtive one obians the cored phese age
by subtracting 180" from the answer given by the calculator. Notice that for
wT = 1, the phase angle is —90°, independently of ¢. This verifies that al phase
curves intersect at -90" as shown in Fig. 16.6.

We may now examre the arplitude cuves doanad from Eq (1613). For
ot <K 1, the AR, or gain, approaches unity. For wr > 1, the AR becomes
asymptotic to the line

1
AR = (w7)?

This asymptote has slope -2 and intersects the line AR = 1 a wr = 1. The
asymptotic lines are indicated on Fig. 16.6. For { = 1, we have shown that the
second-order system is equivalent to two first-order systems in series. The fact
that the AR for { = 1 (as well as for ¢ < 1) attains a slope of -2 and phase of
~ 180 is therefore, conddert.

Figure 16.6 also shows that, for ¢ < 0.707, the AR curves attain maxima
in the vicinity of w7 = 1. This can be checked by differentiating the expression
for the AR with respect to @t and setting the derivative to zero. The result is

@Nmx = V1 —22 (<0707 (16.24)
for the vdue of @7 a which the maximum AR ooous The vdue of the maximum
AR, obtained by substituting (w)max into Eq. (16.13) is

(AR),,, ¢ < 0.707

_ 1
PNeYE
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0.8

\
0.6
w04 \

02 \\
\
— FIGURE 16-8
o 2 4 6 8 10 Maximum AR versus damping for second-order
Maximum A. R. sydem.

A pa o the maximum AR agand { is gven in Hg. 168. The freouency & which
the maximum AR is ataned is cdled the resonat frequecy and is dotaned from
Eq. (16.24),

w, = -::\/1 - 22 - (16.25)

The pheomaon of resonance is frequatly obsaved in or evayday expaience
A vase may vibrate when the stereo is playing a particular note. As a car decel-
gdes paogtibe vibraions may ooor & paticdla ek A sugpendon  bridge
ogdllaes videtly when soouts mach aooss dgping & a oatan cadence

It may be seen that AR values exceeding unity are attained by systems for
which ¢ < 0.707. Thisisin sharp contrast to the first-order system, for which
the AR is always less than unity.

The auves of Hg. 166 for { < 1 are not Smple to congruct, particulaly in
the vidnity of the resonant frequency. Fortunatdy, dmost dl sscond-order contrd
system components for which we shall want to construct Bode diagrams have
{ > 1. That is, they are composed of two first-order systems in series. Actualy,
the cuves of Hg 166 ae presated pimaily because they ae usfu in andyzng
the closed-loop frequency response of many cord  sygams

Transportation Lag
As shown by Eq. (16.13, the frequency response for G(s) = e~ " is
AR =1
¢ = —pr radians  or ¢ = -57.2958 wr degrees

In this expression, @ is in radians and 57.2958 is the number of degrees in one
radian. There is no nead to plat the AR dnce it is condant & 1 .O. On logaithmic
coordinates, the phase angle appears as in Fig. 16.9, where @7 is used as the
abscissa to make the figure general. The transportation lag contributes a phase
lag, which increases without bound as @ increases. Note that it is necessary to
covat @7 from radans to degress to prepare FHg. 169,
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-270
01 02 05 1 2 5 10 FGURE 16-9

wr, frequency —» Phase characteristic of transportation lag.

Proportional Controller

A proportional controller with transfer function K, has amplitude ratio K. and

phase angle zero at all frequencies. No Bode diagram is necessary for this com-
ponent .

Proportional-Integral ~ Controller

This component has the ided transfer function

1

G(s) = Kc|1+ —)

T8
Accordingly, the frequency response is given hy

l; =K¢\/1+—1—

AR = jw)| = K

Tjw T

The Bode plot of Fig. 16.10 uses (wTy) as the abscissa. The constant fac-
tor K, is included in the ordinate for convenience. Asymptotes with a corner

Phase = £G(jw) = 4(1 s L ) _ tan—l(__l_)

100

g 10
By

< 1

0.1
0 [—
24
f - .
98.01 ~0.1 1 10 100 FIGURE 16-10
wh ——> Bode diagram for PI controller.
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frequency of w. = 1/1y are indicated. The verification of Fig. 16.10 is recom-
mended as an exercise for the reader.

Proportional-Derivative Controller
The transfer function is
G(s) = K.(1 + 7ps)

The reader should show that this has amplitude and phase behavior that is just the
inverse of the first-order system

!
75+ 1

Hence, the Bode plot is as shown in Fig. 16.11. The corner frequency isw, =
1/mp.

This system is important because it introduces phase lead. Thus, it can be
seen that using PD control for the tank temperature-control system of Example
16.3 would decrease the phase lag a dl frequencies. In particular, 180" of phase
lag would not occur until a higher frequency. This may exert a stabilizing influence
on the control system. In the next chapter, we shall look in detail at designing
stabilizing controllers using Bode diagram analysis. It is appropriate to conclude
this chapter with a summarizing example.

Example 16.5. Plot the Bode diagram for the open-loop transfer function of the
control system of Fig. 16.12. This sydem might represent PD contrd of three tanks
in sies, with a trangportation lag in the measuring element.

The opeloop trandfer function is

10(0.55 + 1)e~s/10
GO - s+ 201s + D

100

-
o

Amplitude ratio
K.

1 L
% =
g8
gg 45
8ot 01 1 10 700  FIGURE 16-11

> Bode diagram for PD controller.
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Y
Q

Y
R K.(1+7s) —_é% 1

A (-+1)2(T‘5+1)

FIGURE 16-12
Block diagram of control sysem for Example 16.5.

The individud components are plotted as dashed lines in Fg. 1613 Only the as
ymptotes are used on the AR portion of the graph. Here it is easiest to plot the factor
(s+1)~2 asaline of slope -2 through the comer frequency of 1. For the phase-

angle graph, the factor (s +1)™! is plotted and added in twice to fom the overdll
curve. The overdl curves are obtaned by the graphicd rules previoudy presented.
For comparison, the overdl curves obtained without derivative action [ie, by not
adding in the curves corresponding to (0.5s + 1)] are aso shown. It should be noted,

tha, on the asymptotic AR diagram, the dopes of the individud curves are added to
obtan the dope of the overdl curve

7
/
/
5 /
1 //
--s+l) %
(o)
0
g /~
3 1 <
= 1 T 1
g G+ N\ 350+
3 05 4
k= \
o \
2 AR
5 Slope=—2 |_Slope=—1 N
g 0.1 \
[~
A
0.05 ' \ Overall curve with
derivative action
Overall curve without—"
derivative action Slope
=-2
001 005 01 05 5 10 500
w— (a)
FIGURE 16-13

Bode diagram for Example 165: (3) amplitude ratio; (b) phase angle
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FIGURE 16-13 (Continued)
Bode diagram for Example 165: (@) amplitude ratio; (b) phase angle.

PROBLEMS

16.1.

16.2.

For each of the following transfer functions, sketch the gain versus frequency,
asymptotic Bode diagram. For each case find the actud gan and phese angle &
w =10. Note: It is not necessary to use log-log paper; simply rule off decades

on rectangular  paper.

@ 100
@0s+D(s + D
(b) 10s

(s + DO.1s + 1)2

+1
© O F DA+

-1
@) o FDa6 D)
(© (105 + 172

() (10 + 5)2

A temperature bath in which the temperature varies sinusoiddly a various frequen-
ces is usd to memure the frequency response of a temperauremessuring eement
B. The apparatus is shown in Fg P162. A dandard thermocouple A, for which
the time constant is 0.1 min for the arrangement shown in the sketch, is placed
nexr the dement to be messured. The reponse of each temperduremessuring de
ment is recorded Smultaneoudy on a two-chand recorder. The phase lag between
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FIGURE P16-2

the two chat records a different frequencies is shown in the table From these
data, show that it is reasonable to condder dement B as a firt-order process and
cdculate the time condant. Describe your method clearly.

Phase lag of

Frequency, B behind A,
cycles/min deg
0.1 71
0.2 12.9
0.4 .8
0.8 28.2
10 29.8
15 26.0
2.0 23.6
3.0 18.0
4.0 14.2

16.3. Plot the asymptoic Bode diagram for the PID controller:

G(s) = Kc(l +7ps + ——1——)
TS
where K. =10, 77 = 1, 7p = 100. Label comer frequencies and give slopes of
asymptotes.

164. One way of expeimentdly measuring frequency response is to plot the output sine
wave versus the input sne wave The results of such a plot look like the figure
shown in Fig. P164. This is the snusoidd deviation in output versus sSinusoida
deviation in input and appears as an dlipse centered a the originn Show how to
obtan the AR and phase lag from this plot.

Qutput
\

A e
o

FIGURE P16-4
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165. For the trandfer function shown below, sketch caefully the gan versus frequen
cy portion of the asymptotic plot of the Bode diagram. Determine the actual
(exact) value of gain and phase angle at @ = 1. Determine the phase angle as
© >

_20.15 + 1)
GO = Za0s+ 1)

Indicte very dealy the dopes of the asymptotic bode diagram of G(9).

16.6. (a) Plot accurately and neatly the Bode diagram for the process shown in Fig.
P166 usng loglog paper for gan vs frequency and semi-log paper for phase
vs frequency. Plot the frequency as rad/min.

(b) Find the amplitude ratio and phase angle for Y/X at w =1 rad/min and w =4

rad/min.
X—>{ 25 S €055 >y
FIGURE P16-6

16.7. For the system shown in Fig. P16.7, determine accurately the phase angle in

degrees between Y (t) and X(t) for @ = 0.5. Determine the lag between the input
wave and the output wave

3
952 +0.55 +1

X =2sinwt—

FIGURE P16-7

168. (@ For the trandfer function given beow, sketch caefully the asymptotic approx-
imation of gan vs frequency. Show detal such a dopes of asymptotes.

2
G(s) = a+s)

(b) Find the actual (exact) value of gain and phase angle for » = 1 and for
w= 2.

16.9. Derive expressons for amplitude ratio and phase angle as functions of w for the
transfer function G(s) = 1/(s2 - ).

16.10. The daa gven in the following table represent experimenta, frequency response
datafor aprocess consisting of afirst-order process and a transportation lag.
Determine the time condant and the transportation lag parameter. Write the transfer
function for the process, giving numericd vaues of the parameters
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Frequency, com Gain Phase angle, deg
0.01 1.0 0.0
0.02 1.0 -2.0
0.04 1.0 -6.0
0.06 1.0 -7.0
0.08 1.0 -8.5
0.10 1.0 -11.0
0.15 1.0 - 170
0.20 1.0 -23.0
0.30 1.0 - 36.0
0.40 0.98 -48.0
0.60 0.94 -73.0
0.80 0.88 -96.0
1.00 0.83 = 122.0
1.50 0.71 - 180.0
2.00 0.61 = 239.0
4.00 0.37 —
6.00 0.26 -
8.00 0.20 -
10.00 0.16
20.00 0.080 -
40.00 0.041 -

223



CHAPTER
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CONTRCL
SYSTEM

DESI GN
BYFREQUENCY
RESPONSE

The purpose of this chapter is twofold. First, it will be indicated that the stability
of a control sysem can usudly be determined from the Bode diagram of its open-
loop transfer function. Then methods will be presented for rational selection of
controller parameters based on this Bode diagram. The material to be presented
here is one of the more useful design aspects of the subject of frequency response.

Tank-Temperature Control System

It was indicated in the discussion following Example 16.3 that the control system
of Fig. 17.1 might offer stability problems because of excessive phase lag. To
review, this system represents proportional control of tank temperature with a
delay in the feedback loop. The factor 5(‘,.7 is the process sensitivity 1/wC, which
gives the ultimate change in tank temperature per unit change in heat input Q.
The proportional sensitivity K., in Btu per hour per degree of temperature error,
is to be specified by the designer.
The open-loop transfer function for this system is
B (KC/600)e_0'0396s

G(s) = .
(s) 0.202s + 1 ary

224
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U=T;'
+ K. /uC =
€ < wC 1 _m
R =K._/600 0.202 s+1 c=T
B-T;
o= 003080 FIGURE 17-1

Control system for stirred-tank
1 heater of Example 16.3.

The Bode diagram for G(s) is plotted in Fig. 17.2. As usual, the constant factor
K /600 is included in the definition of the ordinate for AR. At the frequency of
43 rad/min, the phase lag is exactly 180° and

AR
— = (0,12
K /600
1
2 |- Asymptote
gl N
8|2 05 N
%*4
0.2 N
0.1
0 T
M — ~0.0396s
-~45
N 203551
T~
" -90
§ e—0.03961 x \
3_135 0.202 s +1 AN \
: AN
-180 \
\ FIGURE 17-2
-225 Bode diagram for open-loop trans-
fer function of control system for
270 stirred-tank heater. (K ./wC)e ~™2*

1 2 5 10 20 50 100 [W/(ms + D). (Block diagram
& —> shown in Fig. 17.1)
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Therefore, if a proportional gain of 5000 Btu/(hr)(°F) is used,

5000
AR = 0.12 00 1
This is the AR between the signals € and B. Note that it is dimensionless as it
must be, since ¢ and B both have the units of temperature.
The control system is redrawn for K, = 5000 in Fig. 17.3a, with the loop
opened. That is, the feedback signal B is disconnected from the comparator. It is
imagined that a set point disturbance

R = sn 43t

is applied to the opened loop. Then, since the open-loop AR and phase lag are
unity and 180°

B = sin(43¢t — 180°) = ~ sin43¢

Now imagine that, a some instant of time, R is set to zero and simultaneoudy the
loop is closed. Figure 17.3b indicates that the closed loop continues to oscillate
indefinitely. This oscillation is theoretically sustained even though both R and U
are zero.

Now suppose K. is set to dightly higher value and the same experiment
repeated. This time, the signa ¢ is amplified dightly each time it passes around
the loop. Thus, if K. is set to 5001, after the first time around the loop the signa
€ becomes (5001/5000) sin 43t. After the second time, it is (5001/5000)?sin 43¢,
gic. The phase-angle relations are not affected by changing K, We thus conclude

U=0
+c\ €=sin 43¢ .33 1 1 _
R=sin 43¢ - 0.202s+1 C=sin (43t-83°)
Loop open
B=-sin 43t Before
e-o.oass: closing loop
(a)
U=0
+O\ €=5in 43¢ + 1 .
> 833 P °
R=0 | + 0.202s+1 C=sin (43t-83°)
B=-sin 43¢ After
e-o.oass- closing loop
(b)
FIGURE 17-3

Sustained closed-loop oscillation.
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that, for K, > 5000, the response is unbounded, since it oscillates with increasing
amplitude.

Using the definition of stability presented in Chap. 14, it is concluded that
the control system is unstable for K, > 5000 because it exhibits an unbounded
response to the bounded input described above. (The bounded input is zero in this
case, for U = R = 0.) The condition K. > 5000 corresponds to

AR > 1

for the open-loop transfer function, & the frequency 43 rad/min, where the open-
loop phase lag is 180°.

This argument is not rigorous. We know the response B only if € remains
constant in amplitude because of the definition of frequency response. If, however,
the change in K. is very small, so that € is amplified infinitesmally, then B will
closely approximate the frequency response. While this does not prove anything,
it shows that we are justified in suspecting instability and that closer investigation
is warranted. A rigorous proof of stability requires application of the Nyquist
stability criterion [See Coughanowr and Koppel (1965) or Kuo (1987)], which
uses the theory of complex variables. For our purposes, it is sufficient to proceed
with  heurigic  arguments.

The Bode Sability Criterion

It is tempting to generalize the results of the anaysis of the tank-temperature
control system to the following rule. A control system is ungable if the open-loop
frequency response exhibits an AR exceeding unity at the frequency for which the
phase lag is 180°. This frequency is called the crossover frequency. The ruleis
cdled the Bode dgability criterion.

Actudly, since the discussion of the previous section was based on heurigtic
arguments, this rule is not quite general. It applies readily to systems for which
the gain and phase curves decrease continuoudy with frequency. However, if the
phase curve appears as in Fig. 17.4, the more general Nyquist criterion must
usually be used to determine stability. Other exceptions may occur. Fortunately,
most process control systems can be andyzed with the simple Bode criterion, and
it therefore finds wide application.

¥
b
5 LN,
T X
FIGURE 17-4
Phase behavior of complex sysem for which Bode

Frequency —> criterion is not applicable.
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U
+
+

H FIGURE 17-5
Block diagram for generd control system.

Application of the criterion requires nothing more than plotting the open-
loop frequency response. This may be based on the theoretica transfer function,
if it is available, as we have done for the tank-temperature system. If the theo-
reticd system dynamics are not known, the frequency response may be obtained
experimentally. To do this, the open-loop system is disturbed with a sine-wave
input at several frequencies. At each frequency, records of the input and output
waves are compared to establish AR and phase lag. The results ate plotted as a
Bode diagram. This experimental technique will be illustrated in more detail in
Chap. 19.

For the remainder of this chapter, we accept the Bode stability criterion as
vaid and use it to establish control system design procedure.

Gain and Phase Margins

Let us consder the general problem of sdecting G «(s) for the system of Fig. 17.5.
Suppose the open-loop frequency response, when a particular controller G,(s) s
tried, is as shown in the Bode diagram of Fig. 17.6. The crossover frequency,
at which the phase lag is 1 80°, is noted as w., on the Bode diagram. At this
frequency, the AR is A. If A exceeds unity, we know from the Bode criterion that
the system is unstable and that we have made a poor selection of G.(s). In Fig.
17.6 it is assumed that A is less than unity and therefore the system is stable.

It is necessary to ascertain to what degree the system is stable. Intuitively,
if A isonly dightly less than unity the system is “almost unstable” and may be
expected to behave in a highly oscillatory manner even though it is theoretically
stable? Furthermore, the constant A is determined by physical parameters of the
system, such as time constants. These can be only estimated and may actually
change dowly with time because of wear or corroson. Hence, a design for which
A is close to unity does not have an adequate safety factor.

To assign some quantitative measure to these considerations, the concept of
gain margin is introduced. Using the nomenclature of Fig. 17.6,

Gain margin = 1
A

* Again, heuristic arguments are used. This statement is self-evident to the reader who has studied
Chap. 15, where it is shown that the roots of the characteristic equation vary continuously with
system parameters. Proof of the statement requires the Nyquist stability criterion.
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Gain
margin
¥

Amplitude
ratio
£ -
—3!

|

!

!
s |
& o —_— |
23 Ph i 1
2 ase margin
£ -180 . |

= FIGURE 17-6

W ——> o Open-loop Bode diagram for typica control  system.

Bypical specifications for design are that the gain margin should be greater than
1.7. This means that the AR at crossover could increase by a factor of 1.7 over
the design value before the system became unstable. The design vaue of the gain
margin is really a safety factor. As such, its value varies considerably with the
application and designer. A gain margin of unity or less indicates an unstable
gydem

Ancther margin frequently usad for desgn is the phese magin. As indicated
in Fig. 17.6, it is the difference between 180° and the phase lag at the frequency
for which the gain is unity. The phase margin therefore represents the additional
amount of phase lag required to destabilize the system, just as the gain margin
represants the additiond gain for  destabilization. Typical design specifications are
that the phase margin must be greater than 30°. A negdive phese magin indicates
an uddde gygam.

Example 17.1. Find a reation between reative sability and the phase margin for
the control system of Fig. 17.7. A proportiona controller is to be used.

This block diagram corresponds to the gtirred-tank heater system, for which
the block diagram has been given in Fg. 13.6. The particular set of condants is

1

=7, =1 =1
7= Tm we
U
+ 1 )
R K. Et Pr=) i
1 1
s+1 FIGURE 17-7
Block diagram for Example 17.1.
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Amplitude ratio

Phase
angle

KX,

These am to be regarded as fixed, while the proportiona gain K is to be varied to
give satisfactory phase margin. The closed-loop transfer function for this system is
given by Egq. (13.17), rewritten for our particular case as

C K. s+1

_—= 172
R 1+K, 1-2232+272{23+1 (17.2)

1
{2_\/1+Kc

Since the closed-loop system is second-order, it can never be unstable. The shape of
the response of the closed-loop system to a unit step in R must resemble the curves
of Fig. 8.2. The meaning of relative stability is illugtrated by Fig. 8.2. The lower
& is made, the mom oscillatory and hence the “less stable” will be the response.
Therefore, a relationship between phase margin and ¢ will give the relation between
phase margin and relative stability.

To find this relation the open-loop Bode diagram is prepared and is shown in
Fig. 17.8. The smplest way to proceed from this diagram is as follows consider a
typica frequency w = 4. If the open-loop gain were 1 at this frequency, then since
the phase angle is ~152°, the phase margin would be 28°. To make the open-loop
gan 1 at w = 4, it is required that

1

K,;= O—@ = 16.1

} 1
$H = ]]_+Kc—0.24

Hence, a paoint on the curve of {; versus phase margin is

&L = 024 phese magin = 28°

Then

0.062

—152 FIGURE 17-8

Bode diagram for system of Example
17.1.
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Other points are caculated smilarly a different frequencies, and the resulting curve
is shown in Fig. 17.9. From this figure it is seen that {; decreases with decreasing
phase margin and tha, if the phase margin is less than 30°, {3 is less than 0.26.
From Fig. 8.2, it can be seen that the response of this system for £, < 0.26 is highly
otillatory, hence rdatively unstable, compared with a response for the system with
phase margin 50° and §; = 04.

For the particular system of Example 17.1, it was shown that the response
became moe ogilldoy e the phese magn wes deoresssd. This reslt genad-
izes to more complex sydams Thus the phese magn is a usfu desgn tod for
goplicdtion to sysems of higher complexity, where the trandent response canat
be easily determined and a plot such as Fig. 17.9 cannot be made. To repeat, the
rule of thumb is that the phase margin must be greater than 30°.

A similar statement can be made about the gain margin. As the gain margin
is incessd, the sytem reponse generdly becomes less ogdlldory, hence more
stable. A control system designer will often try to make both the gain and phase
magns equd to or geter then pedfied minimum vaues typicdly 17 and 30°.
Note that, for the case of Example 171, the gan magn is dways infinite because
the phese lag never quite reeches 180°. However, the phese magn requiremat of
30° necessitates that ¢, > 026, hence K. < 14, which meens thet an offst of &
[see Eq. (17.2)] must be accepted. This illustrates the importance of considering
both margins. The reader should refer to Fig. 17.6 to see that both margins exist
smultaneoldy.

Example 17.2. Specify the proportional gain K, for the control sysem of Fig.
16.12. The Bode diagram for the particular case K, = 10 is presented in Fg.
16.13. The gain is to be specified for the two cases:

1. ™ = 0.5 min
2. 15 =0(noderivative action)

1. Condder firgt the gain margin. The crossover frequency for the curve with deriva-

tive action is 8.0 rad/min. At this frequency, the open-loop gain is 0.062 if the
vaue of K. is unity. (Including the factor of 1/10 in the ordinate is actudly

0.6

]

0.4 <
K /
0.2 A
0 FIGURE 17-9
0 30 60 90 Damping versus phase magin for sysem of Fig.

Phase  margin 177,
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eguivalent to plotting the case K, = 1.) Therefore, according to the Bode cri-
terion, the value of K, necessary to destabilize the loop is 1/0.062 or 16. To
achieve a gan margin of 1.7, K, must be taken as 1611.7 or 9.4. To achieve
proper phase margin, note that the frequency for which the phase lag is 150°
(phase margin is 30°) is 5.3 rad/min. At this frequency, avaue for K of 1/0.094
or 10.6 will cause the open-loop gain to be unity. Since thisis higher than 9.4,
we use 94 as the design vaue of K,. The resulting phase margin is then 38°,
2. Proceeding exactly asin case 1 but usng the curve in Fig. 16.13 for no derivetive

action, it is found that K, = 5.3 is needed for satisfactory gain margin and
K. = 3.7 for stisfactory phase margin. Hence K. isteken as 3.7 and the
resulting gain margin is 24.

To see the advantage of adding derivative contral in this case, note from
Fig. 16.12 that the find value of C for a unit-step change in U is 1/(1 + K,)
for any value of . The addition of the derivetive action alows increase of the
vaue of K, from 3.7 to 9.4 while maintaining approximetely the same rdative
gability in terms of gain and phase margins. This reduces the offset from 21
percent of the change in U to 9.6 percent of the change in U.

The reader is cautioned that the values of K. sdected in this way should
be regarded as initid gpproximations to the actud values, .which give “optimal”
control of the system of Fig. 16.12. More will be said about this matter later in

this chapter in conjunction with the two-tank chemica-reactor control system of
Chap. 11.

Thus far, nothing has been said about upper limits on the gain and phase
margins. Referring to Example 17.1 and Fig. 8.2, it is seen that, if {, is too
large, the response is duggish. In fact, Fg. 82 suggeds that for the system
of Fig. 17.7 one should choose a value of ¢ low enough to give a short rise
time without causing excessve response time and overshoot. In other words, one
wants the most rapid response that has sufficient relative stability. The results
of Example 17.1 generalize to many systems of higher complexity, in terms of
margin. Hence, the designer frequently chooses the controller so that either the
gain or phase margin is equd to its lowest acceptable vaue and the other margin is
(probebly) ove its lowvest aogdble vdue This wes the proosdre followed in
Example 17.2. In almost every situation, the designer faces this conflict between
eed of response and degree of ocillation. In addition, if integral action is not
usd, the anout of the offss mugt be conddaed.

The conogats of gan and phese magn ae usfu in Heding K. for propor-
iond adion. Howeve, for addtiond modes of contrd such as PD, these concepts
ae dfficult to goply in practice Condder the sHedtion of K, ad 7p in Exanpe
17.2. For a different value of 1 the derivative contribution is shifted to the right
o left on the Bode diagram'of Hg. 1613 This means thet a different value of K.
will provide the proper magins A typicd desgn procedure is to et the value
of 7p for which the value of K. resulting in a 30° phase margin is maximized.
The motivation for this choice is that the offset will be minimized. However,
the procedure is clearly trial and error. In the case of three-mode control, there
ae two paamgas 7; ad 1p, which mus be vaied by tid to megt vaious design
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criteria. Fortunately, for this case and others there are simple rules for directly
establishing values of the control parameters that usually give satisfactory gain
and phase margins. These are the Ziegler-Nichols rules, which we develop in the
next section.

Ziegler-Nichols  Controller  Settings

Consider selection of a controller G, for the general control system of Fig. 17.5.
We first plot the Bode diagram for the final control element, the process, and

the measuring element in series, G1G,H(jw). It should be emphasized that the
controller is omitted from this plot. Suppose the diagram appears as in Fig. 17.6.
As noted on the figure, the crossover frequency for these three components in

series is w.,. At the crossover frequency, the overal gainis A, asindicated.
According to the Bode criterion, then, the gain of a proportiona controller which
would cause the system of Fig. 17.5 to be on the verge of instability isl/A. We

define this quantity to be the ultimate gain K,. Thus

K, = ~ (17.3)

The ultimate period P, is defined as the period of the sustained cycling that would
occur if a proportional controller with gain K, were used. From the discusson of
Fig. 17.3, we know this to be

P, = 2m time/cycle (17.3a)
Weo
The factor of 27 appears, so that P, will be in units of time per cycle rather than
time per radian. It should be emphasized that K, and P, are easily determined
from the Bode diagram of Fig. 17.6.

The Ziegler-Nichols settings for controllers are determined directly from K,
and P, according to the rules summarized in Table 17.1. Unfortunately, speci-
fications of K, and 7p for PD control cannot be made using only K, and P, .
In generd, the vaues 0.6K, and P,/8, which correspond to the limiting case of
no integral action in a three-mode controller, are too conservative. That is, the

TABLE 17.1 .
Ziegler-Nichols Controller  Settings
Type of control Ge(s) K. Ui 7D
Proportional K. 0.5k,
Proportiona-integra  (PI) Kc(l + L) 0.45K, Lk
7S 1.2

. . . . 1 Pu Pll

Proportiona-integral-derivative ~ (PID) K. |l+ — +ps 0.6K, > 3
TS
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resulting system will be too stable. There exist methods for this case which are in
principle no more difficult to use than the Ziegler-Nichols rules. One of these is
selection of 7p for maximum K. at 30° phase margin, ywhich was discussed above
Another method, which utilizes the step response and avoids trial and error, is
presented in Chap. 19.

The reasoning behind the Ziegler-Nichols sedlection of values of K. is rda
tively clear. In the case of proportional control only, a gain margin of 2 is estab-
lished. The addition of integral action introduces more phase lag a al frequencies
(see Fig. 16.10); hence alower value of K. isrequired to maintain roughly the
same gain margin. Adding derivative action introduces phase lead. Hence, more
gan may be tolerated. This was demondrated in Example 17.2. However, by and
large the Ziegler-Nichols settings are based on experience with typical processes
and should be regaded as fird edimates.

Example 17.3. Using the Ziegler-Nichols rules, determine K. and 7; for the control
system shown in Fig. 17.10.

For this problem, the computation will be done without plotting a Bode di-
agram; however, the reader may wish to do the problem with such a diagram. We
first obtain the crossover frequency by applying the Bode stability criterion:

e

—180° = = tan-(0) - 57.3(1.02)(w)

The vaue 57.3 converts radians to degrees. Solving this equetion by tria and error
gives for the crossover frequency, w¢, = 2 rad/min. The amplitude ratio (AR) a
the crossover frequency for the open loop can be written

1 K,
AR = 1) =
1+w2() 2.24

where we have used Eq. (16.16) for the first-order system and the fact that the
amplitude ratio for a transport lag is one. According to the Bode criterion, the AR
is 1.0 a the crossover frequency when the system is on the verge of ingtability.
Inserting AR = 1 into the above equation and solving for K, divesK,., = 2. 24.
From the Ziegler-Nichals rules of Table 17.1, we obtain

Ke = 0.45K,, = (0.45)(2.24) =101

and
7= PJ/1.2 = [2u/w,)1.2 = 27/2)/1.2 = 262 min.
e
al-d
R Kc(1+%) e et ¢

FIGURE 17-10
Block diagram for
Example 17.3.
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U

G —:é— 1 c
c X (e+1)(2s41) >

FIGURE 17-11
Block diagram for twotank chemical-
reactor - system.

Pty

Example 17.4. Using the Ziegler-Nichols rules, determine controller settings for
various modes of control of the two-tank chemica-reactor system of Chap. 11. The
block diagram is reproduced in Fg. 17.11.

For convenience, the process gain K and the controller gain K. are combined
into an overdl gain K. The equivaent controller transfer function is regarded as

G = K1(1 + L +‘rDs)
T8
where K (as well as 77 and 1p) is to be sdected by the Ziegler-Nichols rules. The
required vaue of K, is then easly determined as
-k
K

where K = 0.09 for the present case (see Chap. 11.)
The Bode diagram for the trandfer function without the controller

e—‘(l/2)s
s+ D@2s + 1)

is prepared by the usua procedures and is shown in Fig. 17.12. From this figure, it
is found that

K.

®¢o = 156 rad/min

= ——=6.9
Ku = 515 (17.4)
27 . ‘
P, = 1356 - 4.0 min/cycle

Hence, the Ziegler-Nichols control constants determined from Table 17.1 and Eg.
(17.4) are given in Table 17.2.

A plot comparing the open-loop frequency responses including the controller
for the three cases, using the controller constants of Table 17.2, is given in Fig.
17.13. This figure shows quite clearly the effect of the phase lead due to the deriva-
tive action. The resulting gain and phase margins are listed in Table 17.3. From this
table it may be seen that the margins are adequate and generdly consarvative.
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Note that to obtain the Bode diagram for systems including the PID controller,
the controller transfer function is rewritten as
1 st +rs+1
Kc(l +— + TDS) S SELA L L (17.5)
TS TS
This is second-order in the numerator and has integra action in the denominator.
In generd, the numerator factors into firg-order factors, hence it contributes two
TABLE 17.2
Control 4 T )
P 35
Pl 31 33

PID 4.2 2.0 0.50
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22 A\ Open-loop Bode diagrams féor vegi-
01 05 1 5 10" ous controllers with Sysem of Fig.
@ ——> 1711,
curves Smii to that of Fig. 16. 11 to the overall diagram. For the Ziegler-Nichols
settings it is seen from Table 17.1 that r; = 47, Making this substitution into Eq.
175
2 o+ 12
G. = Kc4r,§s +4mps+1 _ Ke(2mps + 1) 176)
41ps ' 41ps
shows that the numerator is equivalent to two PD components in series. This AR
is represented by a high-frequency asymptote of dope +2 passing through the fre-
TABLE 17.3
Control Gain margin Phase margin
p 2.0 45°
! 1.9 33"
PID 2.6 34°
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quency w = 1/2rp and a low-frequency asymptote on the line AR = 1. It should
be emphaszed that these specid consderations apply only to the Ziegler-Nichals
stings. In the general case the two times congtants obtained by factoring the numer-
ator of Eq. (17.5 will be different. The Bode plot of the denominator follows from

1 1 o

njew lwnm % :

The gain js a straight line of slope = 1 passing through the point (AR =1, @ =
1/7). The phaee lag is 90° a all frequendes Platting of the ovaadl Bade diagram
for the PID cae to dhek the reults of Fg 1713 is reommedad &s an exade
for the reada.

Transient Responses

For ingtructive purposes, the two-tank reactor system of Fig. 17.11 was simulated
on a computer. Responses of C(t) to a unit-step change in R(t) are shown in
Fig. 17.14. These responses were obtained using the Ziegler-Nichols controller
settings determined in Example 17.4.

The responses to a step load change were adso obtained on a computer. These
are the curves of Fig. 10.7 that were discussed in Chap. 10 to illustrate the function
of the various modes of control. A load change for this system corresponds to
a change in the inlet concentration of reactant to tank 1 (refer to Fig. 11.1).
As process control engineers, we would be more interested in controlling agangt
this kind of disturbance than against a set-point change because the set point or
desired product concentration is likely to remain relatively fixed. In other words,
this is a regulator problem and the curves of Fig. 10.7 are those we would use to
determine the quality of control.

However, the step change in set point is frequently used to test control sys
tems despite the fact that the system will be primarily subject to load changes
during actual operation. The reason for this is the existence of well-established
terminology used to describe the step response of the underdamped second-order
system. This terminology, which was presented in Chap. 8, is used to assign
quantitative measure to responses that am not truly second-order, such as those

0 4 ] 1 | 1 1 4 [
0 2 4 b ] 10 12 " 16
Time ——=
FIGURE 17-14

Closed-loop response to step change in R(t) for control system of Fig. 17.11, using various control
modes (obtained by computer).
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of Fig. 17.14. Of course, the terminology can be applied only to responses that
resemble damped snusoids. Vaues of the various parameters determined for the
responses of Fig 17.14 am summarized in Table 17.4. Offset, realized only with
proportional  control, is included for completeness.

It can be seen from Fig. 17.14 and Table 17.4 that addition of integral action
eliminates offset at the expense of a more oscillatory response. When derivative
action is dso included, the response is much faster (lower rise time) and much less
osillatory (lower response time). The large overshoots redized in al three cases
are characteristic of systems with relatively large time delays. In this case the
controller is receiving information about the concentration in the second reactor
that was true % min ago. Thisis to be compared with the reactor time constants
of 1 and 2 min. Hence, it is not surprising that the system overshoots before the
controller can take sufficient action.

Figure 17.15 is presented for two purposes. (1) to illustrate that the Ziegler-
Nichols controller settings should be regarded as first guesses rather than fixed
values and (2) to show the effects of changing the various controller settings.
These figures, which were obtained on a computer, am transent responses to step
changes in set point for the three-mode PID control. They show the effects of
individually varying the three control parameters K ., 77, and rp.

As an example of the use of these figures, suppose that it is decided that the
maximum overshoot that can be tolerated is 25 percent. Figure 17.15a shows that
overshoot may be reduced by decreasing K. a the expense of a consderably mom
sluggish response. From Fig. 17.15b, we see that overshoot may be reduced by
increasing 7; (decreasing integral action) & a lesser expense in speed of response.
Thus, for 7; = 5 min, the overshoot is reduced to 20 percent without a serious
sacrifice in speed. The overshoot cannot be significantly reduced by changing
Tp , &s can be seen from Fig. 17.15¢. However, the speed of response may be
sgnificantly increased by increasing the derivative action, a the expense of more
oxillation before the response has seitled (higher decay ratio, lower period). From
this brief study of these figures, it may be concluded that, to decrease overshoot
without serioudy dowing the response, a combination of changes should be made.
A possible combination, which should be tried, is to reduce K. dightly and to
increase 7; and tp moderately. These changes would probably be tried on the
actual reactor system when it is put into operation. Such adjustments from the
preliminary settings are usudly made by experienced control engineers, using tria
procedures that are more at than science. For this reason, we leave the problem
of adjustment a this point.

TABLE 174
Rise Response Period of
Decay time, time, oscillation,
Control Overshoot ratio min min min Offset
p 0.49 0.26 13 104 5.0 021
Pl 0.46 0.29 15 118 55 0

PID 0.42 0.05 0.9 4.9 5.0 0
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Effects of vaying controller seitings on sysem response. (Z-N indicaies response using cicgiet-

Nichols settings.)

PROBLEMS

17.1. Cdculde the vaue of gan K, needed to produce continuous oscillations in the
control system shown in Fig. P17.1 when

(@ nis 2.
(b) nis3.

Do not use a graph for this caculaion.

2R &,

- (2¢+1)"

FIGURE P17-1

17.2. (a) Plot the asymptotic Bode diagram |B/e | versus @ for the control system shown

in Fig. P17.2.
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FIGURE P17-2

(b) The gain K, is increased until the system oscillates continuoudy a a frequency
of 3 rad/min. From this informaion, caculae the transportation lag parameter

Td -
17.3. The frequency response for the block G, in Fig. P17.3 is given in the following
teble
5 Phase angle,
cycles/min Gain degrees .
0.06 1.60 -68
0.08 1.40 -88
0.10 1.20 =105
0.15 0.84 ~ 145
0.20 0.61 -177
0.30 0.35 -235
0.40 0.22
0.60 0.11
0.80 0.066

G, contains a distance velocity lag e =" with ¢ = 1 (this transfer function is

included in the data given in the teble).

(@ Find the value of K. needed to produce a phase magin of 30° for the sysem
if 7 = 0.2

)] Us'né the vaue of K, found in pat (@ and usng 7; = 02 find the percentage
change in the paameer 7 to cause the sysem to oillate continuoudy with
congant  amplitude.

R-3 x¢(1+-r;l;)—ﬂ G,

Q

¥

FIGURE P173

17.4. The system shown in Fig. P17.4 is controlled by a proportional controller. The
concentration of salt in the solution leaving the tank is controlled by adding a
concentrated  solution  through  a  control  valve.  The following data apply:

1. Concentration of concentrated sdt solution €y = 25 Ib salt/ft®  solution.
2. Controlled concentration C = 0.1 |b salt/ft3 solution.
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FIGURE P17-4

3. Trangducer: The pen on the controller moves full scde when the concentration
varies from 0.08 to 0.12 Ib/ft3. Thisrelationship islinear The pen moves 4.25
inches during full-scae travel.

4. Control vave The flow through the control vave vaies from 0002 to 0.0006
cfm with a change of vavetop pressure from 3 to 15 ps. This rdationship is
linear.

5. Digance velocity lag: It takes 1 min for the solution leaving the tank to reach
the concentration-messuring eement a the end of the pipe

6. Neglect lags in the vave and transducer.

(a) Draw ablock diagram of the control system. Place in each block the ap-
proprigte  trandfer  function. Calculate dl the condants and give the units

(b) Using a frequency-response diagram and the Ziegler-Nichols rules, deter-
mine the sdtings of the controller.

(c) Using the controller settings of part (b) calculate the offset when the set

point is changed by 002 unit of concentration.

175. The dirred-tank heater system shown in Fig. P17.5 is controlled by a P controller.
The following data apply:

w, flow rate of liquid through the tanks: 250 Ib/min

Holdup volume of each tank: 10 ft

Density of liquid: 50 Ib/ft3

Transducer: A change of 1°F causes the controller pen to move 0.25
inch.

Final control element: A change of 1 psi from the controller changes
the heat input g by 400 Btu/min. Thefinal control element islinear. ¢

pSi ‘ PI controller
I Final 4 K., p.si/in.
g&nr}ar:rlu S— K
w L
Y Transducer

FIGURE P17.5
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(a) Draw ablock diagram of the control system. Show in detail such things as

®)
©

units and numericd vaues of the parameters.

Determine the controller  settings by the Ziegler-Nichols rules.

If the control system is operated with proporiond mode omly, using the vaue
o K. found in pat (b), detemine the flow rate w a which the system will be
on the verge of indability and oillate continuoudy. What is the frequency
of this osillation?

176. The transfer function of a process and measurement element connected in series s

gven by o 04
(s + 1)
(@) Sketch the open-loop Bode diagram (gain and phase) for a control system
involving this process and measurement  lag.
(b) Specify the gan of a proportiond controller to be used in this control system.
17.7. (a) For the contrdl system shown in Fig. P17.7, detemine the transfer function

178.

)
(©

C/U.

For K, = 2 and 15 = 1, find C(1.25) and the offset if U(t) = u(t), a
unit-step.

Sketch the oper-loop Bode diagram for K, = 2 and 7p = 1. For the upper pat

of the diagran (AR vesuis @), show the asymptotic approximation. Include
in the opendoop Bode diagram the trandfer function for the controller.

(d) From the Bode diagram, what do you conclude about dahility of the closed-
loop system?
U
%
+ + [2]
R K. (1 + 1ps) Ls_| c
FIGURE P17-7

The proportiond controller of the temperature-control sysem shown in Fg. P17.8

is properly tuned to give a good trandent response for a dandard set of operating

Steam——t}——

Controller

FIGURE P17-8
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conditions. If changes are made in the operating conditions, the control system
may become more or less dable If the changes lised below ae made separately,
determine whether the system becomes more stable, less stable, or remains the

same. Try to use the Bode doability criterion and sketches of frequency response
graphs to  solve this problem.

1. Controller gain incresses.

2. Length of pipe between messuring edement and tank incresses.
3. Measuring eement is inseted in tank.

4 Integra action is provided in controller.

5. A larger valve isused (i.e., one with ahigher C, value).

179. For eaxch control system shown in Fig. PL7.9, determine the characteristic equation
of the closedloop response and determine the vaue of K , that will cause the system
to be on the verge of indability (i.e, find the ultimate gan, K,). If possble, use
the Routh tes. Note that the feedback element for Sysem B is an approximation

to e,
System A: - + I__Kc_l 1 e
17 (8s+ 1)2
! e—2$ L
System B: . + w ﬁ o
| b} [6s + 12
1-s
1+s
FIGURE P17-9

17.10. (a) For the system shown in Fig. P17.10 determine the value of K . that will give
30° of phee magin.
(b) If aPI controller with; = 2 is used in place of the proportional controller,
determine the value of K . for 30° of phase margin.

+ 1 1
R 1] (s+1)? ¢

FIGURE P17-10
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FIGURE P17-11

17.11. A dirredtank heating process and its block diagram are shown in Fig. P17.11. The
control sysem is tuned by the Ziegle-Nichols method, and the ultimate frequency,
®, 1S 2 rad/min.

(@ Deermine the vdue of K, by the Ziegler-Nichols method of tuning.

(b) Wha is the length of the pipe between the tank and the meesuring eement?

(0 Wha ae the gan magin and the phese magin for the control sysem when
K. isset to the Ziegler-Nicholsvalue found in part (a).

Data on process
p, density of fluid = 62 Ib/ft>
C, heat capacity of fluid = 1.0 Btu/(Ib)(°F)
inside diameter of pipe=2.0in.
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ADVANCED
CONTROL
STRATEG ES

Up to this point, the control systems considered have been single-loop systems
involving one controller and one measuring element. In this chapter, severd mul-
tiloop systems will be described; these include cascade control, feedforward con-
trol, ratio control, Smith predictor control, and internal model control. The first
three have found wide acceptance in industry. Smith predictor control has been
known for about thirty years, but it was considered impractical until the modem
microprocessor-based  controllers provided the simulation of transport lag. Internd
model control, which is new and is based on a rigorous mathematica foundation
and an accurate model of the process, has been the subject of intense research for
the past ten years. The controller hardware and instrumentation for al of these
sysems are readily avalable from manufacturers. Since this chapter is quite long,
the reader may wish to select the type of advanced control strategy that is of par-
ticular interest. The descriptions of the five strategies are independent and need
not be read in the order presented.

CASCADE CONTROL

To provide mativation for the study of cascade control, consider the single-loop
control of a jacketed kettle as shown in Fig. 18. la The system consists of a kettle
through which water, entering at temperature T3, is heated to T, by the flow of hot
oil through a jacket surrounding the kettle. The temperature of the water in the
kettle is measured and transmitted to the controller, which in turn adjusts the flow
of hot oil through the jacket. This control system is satisfactory for controlling
the kettle temperature; however, if the temperature of the oil-supply should drop,
the Kkettle temperature can undergo a large prolonged excursion from the set point
before contral is again established. The reason for thisis that the controller does
not take corrective action until the effect of the drop in oil-supply temperature

249
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w__ water
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____._l controller
| — Pt hot oil

FIGURE 181
@ Single-loop control of a jacketed kettle (b) cascade control of a jacketed kettle.

has worked itself through the system of severd resistances to teach the measuring
€lement.

To prevent the sluggish response of kettle temperature to a disturbance in
oil-supply temperature, the control system shown in Fig. 18. Ib is proposed. In this
system, which includes two controllers and two measuring elements, the output
of the primary controller is used to adjust the set point of a secondary controller,
which is used to control the jacket temperature. Under these conditions, the pri-
mary controller adjusts indirectly the jacket temperature. If the oil temperature
should drop, the secondary control loop will act quickly to maintain the jacket
temperature close to the vaue determined by the set point that is adjusted by the
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L, oil - supply temperature
+

+ + ®
R— Gc Gv Gjacket erttle - TO

@

G,
b)

FIGURE 18-2
Block diagram: (a) single-loop conventional control () cascade control.

primary controller. This system shown in Fig. 18. b is called a cascade control

system. The primary controller is aso referred to as the master controller and the
secondary controller is referred to as the dave controller.

A dmplified block diagram of the sngle-loop system is shown in Fig. 18.2a.
Figure 18.2b, which is a block diagram representation of the cascade control
system, shows clearly that an inner loop has been added to the conventiona
control  system.

Analysis of Cascade Control

To develop the closed-loop transfer functions for a cascade control system, con-
sider the general block diagram shown in Fig. 18.3. In this diagram, the load
disurbance U enters between two blocks of the plant and the inner loop encloses
this load disturbance.

To determine the transfer function C/R, the inner loop is reduced to one
block by the method shown in Chapter 12. The result is shown in Fig. 18.3b, and
the block diagram of Fig. 18.3b can be used to give the result

C _ G GaGy
R~ 1+ G.,G,G3H,
GchlGZ
1+ GCZGlG2H2

(181)

where G, =
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®
FIGURE 18-3
Block diagram for cascade control for set-point change.

To obtain the transfer function relating output to load, C/U, the block di-
agram of Fig. 18.3a isrearranged by placing the transfer function G .,G 1 in the
feedback paths of the primary and secondary loops, the new arrangement is shown
in Fig. 18.4a. Since R = 0O for the case under consideration, the block diagram
can be redrawn as shown in Fig. 18.4b. This diagram, which has the same form
as the one in Fig. 18.3a, can now be reduced to the form shown in Fig. 18.4¢.
Application of the rules of Chapter 12 to Fig. 18.4c findly gives

c _ G; G,
U GGy 1+ GaGe H\G3
where G, is the same as given in Eq. (18.1).

(182)

Example 18.1. To compare conventiona control with cascade control, consider the
conventional contrdl sysem of FHg. 18.5a in which a third-order process is under A
control. A cascade version of this single-loop control system is shown in Fig. 18.5b
in which an inner-loop having proportiona control encloses the load disturbance U.
To obtain a response of the conventiona control system for use in compari-
son with the response of the cascade system, the block diagram of Fg. 18.5a was
smulated on a computer. The values of K, and 7; were chosen by trial and error to
gvethe reponse toa step: change in & point shown as Curve | of Hg. 186; this
response, which has a decay ratio of about i. was obtained with K, = 2.84 and
77 = 5. The Ziegler-Nichols sttings (K, = 365 and 7; = 3.0 ) gave a st-point
response that was too oscillatory. Having obtained satisfactory controller settings
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FGURE 18-4
Block diagram for cascade control for load change.

(K, =284 and 7; = 5.0), the response of the system to a step change in U of
4 units is shown as Curve Il of Fig. 18.7. The load response for no contral (i.e,
K. = 0) is dso shown as Curve | for comparison.

The cascade control system of Fig. 18.5b was dso smulated to obtain a load
response. The controller gain K, of the inner loop was chosen arbitrarily to be
10.0. This vaue was chosen to be high in order to obtain a fast-responding inner
loop, a desirable Stuation for cascade control. Because of the introduction of the
inner loop, the dynamics of the control system have changed and it is necessary to
tune the primary controller parameters for a good response to a step change in set
point. By trid and error, primary controller settings of K., =1 .0 and 7; = 0.63
were found that produced the response to a unit step in set point, shown as Curve ll
in Fig. 18.6. The use of Ziegler-Nichols settings produced a less desirable response.

Using the controller parameters found from the step change in set point
(Ke; =10, 7= 0.63), the response of the cascade system to a step change
in load of 4 units was obtained and is shown as Curve Il of Fig. 18.7. As shown
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FIGURE 18-5
Block diagrams for Example 18.1:(a) Single-loop conventional control (b)  cascade control.

in Hg. 187, the loed regponse for the cascade contrd sydem is far superior to the
load response of the conventional control system. The maximum deviation of the
cagade regponse hes been reduosd by a fedior of about four and the frequency of
oscillation has nearly doubled.

Generalizations

Cascade control is especially useful in reducing the effect of aload disturbance
that moves through the control system slowly. The inner loop has the effect of
reduding the lag in the outer loop, with the result thet the cascade sysem responds
more quickly with a higher frequency of oscillation. Example 18.2 will illustrate
this dfedt of cescade contral.

| Conventional control

Il Cascade control

© FIGURE 18-6
0.5 Responses to step change in set point for
single-loop control and cascade control for
Example 18.1. | Conventiona control with
ol | | ! ] K. =284 7 =5 I Cascade control with
5 10 15 20 t K; = 10,7=06 K, = 10
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—

I No controt

II Conventional P1 control

III Cascade control

FIGURE 18-7

Responses to step change in load for Example 18.1.
| no control; 1 conventional control with K. =
, . 2.84, 1 =5 Il cascade control with K. =
0 5 10 15 t+ 10,m=063K, = 10.

The choice of control action and tuning of the primary and secondary con-
trollers for a cascade control system must be given careful consideration. The
control action for the inner loop is often proportional with the gain set to a high
value. The rationale for the use of proportional control rather than two- or three-
mode control is that tuning is smplified and any offset associated with proportiona
control of the inner loop can be handled by the presence of integral action in the
primary controller. The gain of the secondary controller should be set to a high
value to give a tight inner loop that responds quickly to load disturbance; how-
ever, the gain should not be so high that the inner loop is unstable. Although the
primary control loop can provide stable control even when the inner loop is un-
stable, it is conddered unwise to have an unstable inner loop because the system
will go unstable if the primary controller is placed in manua operation or if there
is a break in the outer loop.

The action for the primary controller is generaly Pl or PID. The integral
action is needed to reduce offset when sustained changes in load or set point
occur. The problem of adjusting a primary controller is essentialy the same as
for a single-loop contral system. Since the addition of the inner loop can change
the dynamics of the outer loop significantly, the primary controller must be re-
tuned when the inner loop is closed or when the secondary controller settings are
changed.

The microprocessor-based  controllers  avallable today can implement cascade
control very easily. A discussion of such controllers will be given in a later
chapter.

Example 182 The claim is often made that cascade control gives a better response
than conventiona control because the lags in the outer loop are reduced. To illustrate
this benefit, consider the conventional control and the cascade control of a third-order
plant in Figs. 18.8a and b. The inner loop of the cascade system surrounds two of
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FIGURE 18-8
Block diagram for Example 182.

the first-order blocksin the plant. To smplify the discussion, the load disturbanceis
not shown since we are interested only in the closed-loop dynamics. The equivalent
single-loop control system of the cascade system, shown in Fig. 18 8¢, was obtained
by the usual method for reducing a loop to a single block.

Comparing Fig. 18.8a with Fig. 18.8¢ shows that the use of cascade con-
trol has replaced a second-order critically damped system represented by the firgt

two blocks of the plant [1/(s + 1)%] with the following underdamped second-order
system:

K
7252+ rs + 1

where K = 10/11

T= JUI1
{=Jim

This second-order underdamped system, for which 7 and ¢ are smal, responds much
faster than the critically damped second-order transfer function of the first two blocks

of the open-loop system. Consequently, the cascade system will respond faster with
a higher frequency of oscillation as we have dready seen in the smulated response
of Fig. 186.
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FEEDFORWARD CONTROL

If a paticular load disturbance occurs frequently in a control process, the quality of
control can often be improved by the addition of feedforward control. Consider the
composition control system shown in Fig. 18.9a in which a concentrated stream of
control reagent containing water and solute is used to control the concentration of
the dream leaving a threetank system. The dream to be processed passes through
a preconditioning stirred tank where composition fluctuations are smoothed out
before the outlet stream is mixed with control reagent. A three-tank system has
been chosen for ease of computation in a numerical example that follows.

In the conventional feedback control system shown in Fig. 18.94, the mea-
surement of composition in the third tank is sent to a controller, which generates

k/’/,// Pl
controller

T
uly

breconditioning tank 1 tank 2 tank 3

tank

(a)
1 1
Ci | Bs+1 (s +1)3
+
+ 1 1 +
R Kc(1+m ) T > — >
{b)
FIGURE 18-9

Composition control system: (a) physical process, (1) block diagram.
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3 1 Ziegler-Nichols
ST\ FIGURE 18-10
I Improved response Responses to a St€p change in set point for Pl
1 control.
Curve 1 Ziegler-Nichols settings: K, = 3. 65,
0 1 L1 ] 1 71 = 3X;Curve Il Settings for improved re-

5 10 15 20 25 t sponse: K. = 284, 7 = 5.0.

a d9gd tha opens o dosss the contrd vave, which in tum supplies concertrated
reagent to the first tank. The block diagram corresponding to the control system
of Fig. 18.9a is shown in Fig. 18.95.* To obtain some specific control system
responses, numerical values of the time constants of the tanks have been chosen
as shown in Fig. 18.95. To study the response of this control system, the block
diagram shown in Fig. 18.9b was simulated on a computer. The values of K,
and 7 were chosen by trial and error to give the response to a step change in
= pant shown in Cuve Il of Hg 1810; this reponss which hes a decay ratio

of about % was obtained with K, = 2.84 and 1; = 5.0. The Ziegler-Nichols
wtings (K. = 3.65 and 77 = 3.0) give a set-point response shown as Curve | of
Fig. 18.10, which is too oscillatory. Having obtained satisfactory settings for the
controller (K, = 2.84, 17 = 5.0), the response of the system to a step change in

C; of 10 units was obtained and is shown as Curve | in Fig. 18.11. Note that the
repone is ogdllaory and hes a long tal. This repponse illusraes the fadt tha the
feadback contrd system does nat begn to reppond until the load disubence hes
woked its way through the fowad loop and reeches the mesaring deamat, with
the resllt that the compostion can move far from the s&t paint duwing the trangent.

*In Figure 18.9a, concentration is denoted by c (lower-case letter). In the block diagram of the
process in Fig. 18.95, the symbol for concentration is denoted by C (capital letter) to denote a
deviation variable. This use of symbols follows the procedure established in Chap. 5.

I

[\ S FIGURE 18-11
© 0 A
1
v
I

0 1J5 20 T + Responses to a step change in load for
feedforward-feedback control.
I Curve I: PI control with K, = 2.84, 7 = 5.0
Curve IL: FF control with K, = 2. 84, 14 =
5.0, Gy=—1/5s+1))

2 Curve IIl: FF control with K, = 2. 84, 7 =
5. 0, Gf =-1
Curve TV: FF control with K, = 2.84, # =

3k 5.0, Gy = -0.5
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If the change in load disturbance (C;) can be detected as soon as it occurs
in the inlet stream, this information can be fed forward to a second controller
that adjusts the control valve in such a way as to prevent any change in the outlet
composition from the set point. A controller that uses information fed forward from
the source of the load disturbance is called a feedforward controller. The block
diagram that includes the feedforward controller (Gy) as well as the feedback
controller (G,) isshown in Fig. 18.12.

Analyss of Feedforward Control

The response of C to changes in C; and R can be written from Fig. 18.12 as
follows:
C(s) = G1(5)Gp(s)Ci(s) + Gp(s)Gp(s)Ci(s) + G(5)G,H(S)E(s)  (183)
where E(s) = R(s) = C(9)
In order to determine the transfer function of G(s) that will prevent any

change in the control variable C from its set point R, which is 0, we solve Eq.
(18.3) for Gy(s) with C =0, R= 0. The result is

Gi(s) = —Gi(s) (18.4)
For the example under consideration in Fig. 18.12.
Gs(s) = —1U@Ss + 1) (185)

This transfer function can be implemented easily with control hardware now avail-
ale

If the load response of the control system in Fig. 18.12, with G ¢(s) given
by Eq. (18.5), were obtained for a step change in C ; , there would be no deviation
of C from the set point (i.e., perfect control). This response is shown as Curve
Il in Fig. 18.11, which, of course is a horizontal line at C = 0.

G1 GP
1 A -
Ci "I 5s+1 (s +1)3
‘ Feedfotward
-controller
Gf(s)
G, ' G, 1
[ Y
+ E 1 + 1 i+ (
K {l+— —>
R ‘< 1,s> (s +1)3| 8 ¢

Feedback Controller

FIGURE 18-12
Control system with feedback and feedforward controllers.
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Rather than use the G¢(s) of Eq. (18.5) in the feedforward controller, one

can try using only the constant term of G ¢(s), that is,
Gr(s) = -1

The response for Gy = = 1 gives Curve Il in Fig. 18.11; this response has a
very large undershoot before the feedback controller returns C to the set point. If
we try using G(s) = -0.5, we obtain Curve IV of Fig. 18.11; the undershoot
islessin this case, but the response is till unsatisfactory. As shown by Curves
[l and IV, omitting the dynamic part of G ¢(s) can give very poor results. The
success of using a feedforward controller depends on accurate knowledge of the
process model, a luxury that may not be available in many applications.

Implementing Feedforward Transfer Functions

In applications of feedforward control, G¢(s) may take the form of a lead expres-
sion, such as Gy(s) = 1 + 7¢5. When this occurs, it is necessary to approximate
1 + 745 by alead-lag expression, such as
Gf(s) = (l + 'rfs)/(l + BTfs)

where 8 << 1. To see how G (s) takes the form of a lead expression, consider the
load disturbance, ¢;, of Fig. 189 to enter tank 2. Since no change in concentration
occurs in the stream entering the preconditioning tank, we may eliminate it from
the diagram for the case under consideration to obtain the diagram in Fig. 18.13.

Adding feedforward control and feedback control to the system in Fig. 18.13
gives the block diagram of Fig. 18.14. The diagram shown in Fig. 18.14 is the
same as that in Fig. 18.12 with the exception that the disturbance C; enters tank
2 instead of the preconditioning tank. As shown previoudy, the response of C to
achangein C; and R can be written directly from Fig. 18.14 as follows:

C(s) = Gi(s)Ci(s) + Gp(s)Gy(5)Ci(s) + G ($)GH()E(s) (18.6)
where E(s) = R(s) — C(9

tank 1 tank 2

FIGURE 18-13
Composition control with disturbance to second tank.
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R > PI s ki >
X ——r QQ1>c
FIGURE 18-14

Feedforward-feedback control for sysem in Fig. 18.13.

In order for C not to change from the set point R, which is 0, we solve Eq.( 18.6)
for G¢(s) with C = 0 and R = O to obtain:

- G(s)
Ge(s) = - 18.7
£(s) Go(s) (18.7)
Introducing the expressions for G(s) and G(s) from Fig. 18.14 into Eq. (18.7)
gives
Ge(s) = —(s + 1) (18.8)

It is not practical to implement —(s + 1). To see this, consider the response of
—(s + 1) to a step change as shown in Fig. 18.15. There is no hardware that
will produce an impulse as shown in Fig. 18.15; however, one can approximate
—(s + 1) by means of alead-lag transfer function of the form.

Y(s) _  mstl

X(s)  PBrs+1 (189)

where B <1

If we let 8= 0.1 and 74 = 1 for the control system under consideration, we
obtain as an approximation to Eq. ( 18 .8)
s+1

X=1—i s+ >

FIGURE 18-15
~oo Step response for —(s + 1)
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-10 Step response for —(s + 1)/

(01s + 1)

The response of this transfer function to a step input is shown in Fig. 18.16.

The effect of this transfer function, —(s + 1)/(0.1s + 1), on the output of the
feedforward controller for a step change in load is to give a sudden drop in flow
followed by afast exponentia increase in the flow to a steady-state flow of — 1.
Note that for the parameters chosen for the transfer functions in Fig. 18.14, a unit
increase in C; must eventually be compensated by a unit decrease in the signal
from the feedforward controller if there is to be no change in the process output.

The sudden, initial drop in flow may be too abrupt for the control hardware, in

which case the output would saturate. In practice, B can be increased (perhaps to
0.5) in order to reduce the magnitude of the initial drop.

The effect of using G(s) = —(s + 1)/(0. 1s + 1) with feedback control is
shown in Fg. 1817. The responses shown, which were obtained by simulation,
are for a unit-step change in C;. Curve | is for the case of feedback control only
withK, = 284 and 7 =5 .0. Curve |l is for feedforward-feedback control
using Eq. (18.10) for Gp(s) ad K. = 2.84 and 1, = 50. One can see that the
overshoot for the feedforward-feedback response has been reduced significantly.

Tuning Rulesfor Feedforward-Feedback Control

In the practical application of feedforward control, one does not have a block
diagram with transfer functions as shown in Figs. 18.12 and 18.14. For such a
practical situation, one can still tune the feedforward controller by introducing a
step change in the disturbance that enters the feedforward controller (C; in Fig.
18.14) and then applying some tuning rules. The rules to be discussed here are
from a training film on feedforward control produced by the Foxboro Co. (1978).

Fedforward Rules

In describing these rules, reference will be made to the genera block diagram
for a feedforward-feedback system shown in Fig. 18.18. It is assumed that G 4(s)
will be alead-lag transfer function of the form

Gs(s) = Ke(Ths + DiT2s+1]) (18.11)

where Ky = steady-state gain of the feedforward controller
T, T, = time condants of dynamic pat of the feedforward controller
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FIGURE 18-17

Comparison of conventiona feedback
control  with  feedforward-feedback  control
for system shown in Fig. 18.14.

Curve I: Pl control with K. = 2.84 and
=5

Curve Il: Feedforward-feedback control
with X, = 2.84, =5, and Gy =
—(s + DAO.1s + 1)

Commadd micoprocessor-besad  contrdlles  provide  this  leedHag  trander func

tion.

The tuning rules listed below are explained with the help of Fig. 18.19. In
that figure, a unit step is selected for the distubrance C; and Ky has been taken
as = 1. Inpractice, Ky will, of course, depend on the particular process being

controlled.

1. Remove the control action in G,(s) by setting the controller to manual.

2 S the fesbeck conrdler to the computed deedy-date gan (Ky) necessty
to companste Utimady for a sep cdhange in C ; . This means tha the dynamic
portion of G(s) will be revoved and only the condart tem (K ) will remen

3. Make a step change in C; and observe the open-loop transient of C. The
genad dhegpes of the repone to be expedted ae down in FHg 1819

4. If the response shown in Fig. 18.19a occurs, lead must predominate in G ¢(s)
of Eq. (18.11) (i.e., T, > T). If the response of Fig. 18.19b occurs, lag must
predominate in G(s) (i.e., Ty < T,). The values of T and T, in Eq. (18.11)
are found by use of the information in Table 18.1. The value of Ky in Eq.

(18.11) has been obtained in step 2.

The next example will help clarify the use of these tuning rules.

FIGURE 18-18
Feedforward-feedback control
sysem.
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FIGURE 18-19

Open-loop response to determine lead-lag time constants in feedforward tuning rules. (a) lead must
predominate in G ; (b) lag must predominate in Gy.

Example 183. Use offeedforvard tuning rules. Apply the feedforward tuning rules
to the system in Fig. 18.14. Since this example is concerned with the application
of the tuning rules to a system for which a mathematicd mode is not generdly
avalable, the reader should assume that the transfer functions for G (s) and G (s)
in Fg. 18.14 are unknown. The determination of G ¢(s) is to be obtained solely by
information from open-loop transients.

We must first determine the steady-dtate gain (K y) for the system of Fig.
18.14. If a gep change in C; is made, C will undergo a trandent and eventudly
level out a a steady-state vaue. If the controller parameters are properly selected,
the value of C & the end of the trangent will be the same as it was before the
transient occured. By computation or experiment, one can determine the value of
K ¢ needed to obtain no change in C. For the system in Fig. 18.14, one can see that
Ky of Eg. (18.11) must be equa to -1.

We must now apply the feedforward tuning rules to obtain T; and T3 in
Eqg. (18.11). After removing the feedback controller action [G,(S)] we have the
equivalent diagram shown in Fig. 18.20. A unit-step change in C; produces the

TABLE 18.1

Tuning parameters for feedforward control

Predominant mode 1 T,

Lead L5t, 071

Lag 0.7t 1.51,
Gf(s)z Kf T1s+l

Ths +1
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Gy(s)

FIGURE 18-20
Kp=-1 Gpls) | C  Opetloop feedforward test to deter-
mine parameters for Gy.

transient for C shown as Curve | in Fig, 18.21. Comparing the shape of the transient
with those of Fg. 18.19, we see that leed must predominate in G ¢(s). The pesk
vaue occurs a tp = 2. Applying the rules in Table 181 gives

Ty= L5ty = 3
T,=07t,= 14
The feedforward contraller transfer function is therefore
Gr(s) = —(3s+ /(145 + 1) (18.12)

It is of interest to show the response of C for feedforward only when the
feedforward transfer function of Eq. (18.12) is used; the result for a unit-step change
in C; is shown as Curve Il in Fig. 18.21.

When the G ¢(s) of Eq (18.12) is used and the controller parameters for
G(9 ae K, = 284 and 7; = 50, the feedforward-feedback response to a unit-
gep changein C; is shown asCurve II'in Fig. 18.22. For comparison, the response
for feedback control only is dso shown in Fig. 18.22.

RATIO CONTROL

An important control problem in chemical industry is the combining of two or
more dreams to provide a mixture having a desred raio of components Examples
of this mixing operation include the blending of reactants entering a chemica
reactor or for the injection of a fuel-air mixture into a furnace.

In Hg. 18.23a is oM a conrd sydem for blendng two liquid sreeams A
and B to produce a mixed stream having the ratio K, in units of mass B/mass A.
Stream A, which is uncontrolled, is used to adjust the flow of stream B so that
the dedred rdio is mentaned. The messred dgnd for dreem A is mutigied by

04+
I
0-2 N II
8
O 0 2 % 3 L ., FIGURE 18-21
\_/ Open-loop response for gep change in C; for
~0.2} Example 18.3.

Curve I Gy = -1
Curve Il: Gp= —@s+ Di(1.4s + 1)



266 PROCESS APPLICATIONS

FIGURE 18-22

Comparison of conventiona feedback control
with  feedforward-feedback  control  for  Example
18.3.

Curve I: Pl control with

8 'K, =284,7 =50

-0.2+ Curve TI: Feedforward-feedback control  with
K. =284, 1 =50 adGy=

-(3s +1)/(14s + 1)

the desired ratio X, to provide a signal that is the set point for the flow-control
loop for dreem B.  The paange K, can be adugtad to the desred vdue Conrd
hardware is available to perform the multiplication of two control signals.

A block diagram of the ratio control system is shown in Fig. 18.23b. In
a flow-control loop, the dynamic elements consist of the controller, the flow-

Ruid A || | > 4y
Flow-measuring
element
Set
int
K, iad Controller
flow-measuring
element
Fluid B | | > gp

Pp = Supply pressure
(a)

FPp G,
+
G K L G. H 6, H 1 > — 0
QA ™ [measured " | set ¢ v B
variable point ~
Gm,

1))
FIGURE 18-23
(@) Ratio control system; (b) block diagram for ratio control (set point = Gm,K,Q 4)-
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measuring element, and the control valve. For incompressible fluids, there is no
lag between the change in valve position and the corresponding flow rate. For
this reason, the transfer function between the vave and the measurement of flow
rate is simply unity. The block diagram also shows a transfer function G, that
relates. the flow rate of B to the supply pressure of B. A transfer function G,

is al'so shown that represents the dynamic lag of the flow measuring element for
gream A

From the block diagram, the flow of B may be written:
Gm K:G.Gy

Qs = 0+ 22

= P
2 14G6\Gmy " 1 GG \Gmy

The control action for a flow-control system is usually Pl. The integra action
is needed to eliminate offset and thereby establish a precise ratio of the mixed
streams of A and B. Derivative action is usualy avoided in flow control because
the signal from a flow-measuring element is inherently noisy. The presence of
derivative action would amplify the noise and give poor control.

DEAD-TIME ~ COMPENSATION
(SMITH PREDICTOR)

Processes that contain a large transport lag [exp ( —rps)] can be difficult to control
because a disturbance in set point or load does not reach the output of the process
until 7p units of time have elapsed. The control strategy to be described here,
which is adso known as dead-time compensation, atempts to reduce the deleterious
effect of transport lag. Dead-time compensation, which is also referred to as a
Smith predictor, was first described by 0. J M. Smith (1957).

Consder the single-loop control sysem of Fig. 1824 in which the process
transfer function G,(s) is to be modeled by

Gy(s) = G(s)e™™’ (18.13)

The right side of Eq. (18.13) is the product of a transport lag [exp( = 7ps)]
and a ftrandfer function G(s), which has minimum phase characterigtics, such as
1/(rs + 1). For convenience in developing the dead-time compensation method,
only a change in set point R will be’ considered. If a step change is made in R,

R=(R)— 6.(5) R G,(5) —=> €
_T FIGURE 18-24
Control ~ system.
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the disturbance will not bresk through and appear a C until 1p units of time eapse.
Up to time 7p, no control action occurs, with the result that the overall closed-
loop response will be sluggish and generally unsatisfactory. To overcome this
difficulty, Smith suggested that G,(s) be modeled according to Eq. (18.13) and
that additional feedback paths be inserted into Fig. 18.24 as shown in Fig. 18.25a.
If Gp(s) is modeled exactly by Eq. (18.13), a close sudy of Fig. 18.25a shows that
the signals entering comparator A will be identical; as a result, the signals cancel
and cause the output of comparator A to be zero. The net effect is to completely
giminate the outer feedback path; this simplification is shown in Fig. 18.258.
The system of Fig. 18.25bh is now much easer to control because the trans
port lag is not present in the loop. Of course, in the real system the transport
lag is still present; we have eiminated it in a mathematical sense from the feed-
back path by the additional feedback paths of Fig. 18.25a and the assumption
that the process transfer function, G,(s) can be modeled exactly as shown in Eq.
(18.13). To achieve the simplification suggested by Fig. 18.25b we must now
face redlity and realize that the signal C; in Fig. 18.25b is not available to feed
back. Only the signd C can be measured and fed back to the controller. In terms
of controller hardware implementation, the diagram of Fig. 18.25¢ is redrawn in
Fg. 18.26a to show which portion of the diagram will be implemented with con-
troller hardware. Figure 18.265, which is another way to represent Fig. 18.26a,
is a form sometimes presented in the literature for dead-time compensation. The
reader may legitimately ask whether or not hardware exists to actually imple-
ment what is shown within the dotted lines in Fig. 18.26. Until the appearance

o W
%

Comparator A

(a)

R G.(5) = G s) >C

b G(s)

(b}

FIGURE 18-25
(@ Dead-ime compensation (Smith predictor) block diagram; (n) Equivalent diagram for pat (3
when G, = G(s)e~™*.
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of microprocessor-based controllers, the answer was no. However, today many
commercialy available controllers provide dead-time [exp(—7ps)] and G(s) in
the form of a first-order lag [1/(7s + 1)]. Festures such as these will be discussed
in Chap. 35.

The recommended procedure for applying dead-time compensation is as
follows:

1. By means of an open-loop test of the process, model Gp(s) by the transfer
function

e—TDS

s+ 1
In this step, we have chosen G(s) of Fig. 18.26a to be first-order. Many
processes in chemical engineering can be modeled by a first-order lag with
dead-time.

2. By means of appropriate hardware, implement the controller portion of Fig.

Controlter
e e S e —_—
% |
R | a u Gs) M : G,(5) - C
|
! |
| :
| @ - e05) G(s) {
[ 1
| |
e e J
(@
Controller
[ ________________________ “1
' |
|
RLE x 5 G.s) Gy > C

I

- |

\ * _] |

G(s) ]

!

|

{

G(s) e~ s |

|

A _‘I_ ____________________ 1

(b)
FIGURE 18-26
Hardware implementation of deadtime compensation.
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- FIGURE 18-27
l Control system for Example 18.4.

18.26a or Fg. 18.26b. If G,(9) can be exactly modded by a firg-order pro-
cess with deed-time, the response of the control system in Fig. 18.26 will be
eguivaent to the response obtained for the system in Fig. 18.2% in which the
loop involves the control of a firsg-order process. In most practicd Stuetions,
there will be some mismaich between Gp,(s) and its modd of first-order with
deed-time. The greater the mismach, the grester the deterioration in control
response from the ided dStuation of Fig. 18.256. The application of the dead-
time compensdtion technique and the effect of mismatch between Gp(s) and
its modd will be illugrated in the next example

Example 18.4. Dead-time compensation. Consider the control system shown in
Fig. 18.27 in which the process is fourth-order; thus '

1
Gp(s)=<s+l)

In a practica Stuation, we would not know the transfer function of the process.
In this example, we have taken the process modd to be fourth-order to provide a
system aufficiently complex to show considerable transfer lag.

One can show for the system in Fig. 18.27 tha the ultimate gain and the
corresponding period ae K., = 40 ad P, = 2#. Usng the Ziegle-Nichols
rules, one gets K, = 2.0. The response for a unit-step change in st point for
K. = 2 is shown in Curve | of Fig. 18.29. Notice that the decay ratio is about

L
i

We shall now use the dead-time compensation method to control the process
Gyfs)
L= % K YL
T ¢ s+1,
(I -1.55) 1
SR T2
FIGURE 18-28

Deadtime compensdtion for Example 184
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1.04
0.90} I Dead-time compensation, K= 4
0.80}
0.70}
0.60}
I Tonventional controf, K =2
© 0.50
0.40
0.301
FIGURE 18-29
0.20 Comparison of response for con-
0.10L ventional control  with response
0.00 [ 1 1 4+ 1 1 1 1 1 v, fordead-time compensation for
15 30 Example 184.

in Fig. 18.27. If one fits the step response of (s + 1)~ to a first-order with dead-time
modd, one obtains

1
-1.55_
§s +1

Thismode was obtained from a unit-step response using aleast squares fit procedure.
We can now draw the diagram for the dead-time compensation system as shown in
Fig. 18.28. The system shown in Fig. 18.28 was smulated by computer in order
to compare the responses of the two control systems as shown in Fig. 18.29. Using
akK, of 20 (the Ziegle-Nichals vaue) for the conventiona control we see from
Curve | that the response is quite oscillatory and has an offset of 0.333 as required
for this vdue of gain. Usng a K. of 4.0 for the dead-time compensation, we see
that the response is less oscillatory and the offset is 0.20. It should be noted that if
aK, of 40 were gpplied to the conventiona control system, the system would be
on the verge of ingtability sncea K. of 4.0 is the ultimate gain.

In conclusion, the dead-time compensation has permitted the use of a higher
vaue of K., reduced the offset, and produced a less oscillatory response. The dead-
time compensation response shown in Fig. 18.29 can be improved by adding integrd
action to the controller and tuning the controller parameters.

To successfully apply dead-time compensation to the control of a process, one
must have an accurate modd of the process, such as a first-order with dead-time
modd. The parameters in this mode (r and 7p) can be conddered as controller
parameters dong with the controller parameters of G,(S). For the case of dead-time
compensation with proportional control in Example 184, we actually have three
controller parameters: K., 7p, and 7. If the process dynamics [Gp(s)] changes dl
three parameters may need adjusiment in order to achieve good control.

INTERNAL MODEL CONTROL

Intend modd conrd (IMC) hes been the ajett of intense ressarch Snce aoout
1980. This method of control, which is based on an accurate mode! of the pro-
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cess, leads to the design of a control system that is stable and robust. A robust
control system is one that maintains satisfactory control in spite of changes in the
dynamics of the process. In applying the IMC method of control system design,
the following information must be specified:

Process model

Model  uncertainty

Type of input (step, ramp, etc.)

Performance objective (integrad square error, overshoot, etc.)

In many industrial applications for control systems, none of the above items
is available, with the result that the system usudly performs in a less than optimum
manner. Determining the mathematical model and its uncertainty can be a diffi-
cult task. When the process is not sufficiently understood to obtain a mathematical
model by applying fundamental principles, one must obtain a model experimen-
tally. A discussion on the modeling of a process is presented in the next chapter.
The choice of a performance objective is subjective and often arbitrary. In the
IMC method, the integral square error is implied.

A simple description of the IMC method will be presented here. The in-
terested reader is advised to consult the book by Morari and Zafiriou (1989) for
a full treatment of internal model control. The literature on IMC is difficult to
understand without a good foundation in control theory and mathematics. A full
treatment of IMC is beyond the scope of this text. It is hoped that the simple
treatment given here will stimulate interest in this important new area of process
control.

Internal Model Control Structure

A block diagram of an IMC system is shown in Fig. 18.30a. Notice that the
diagram is similar to the diagram for the Smith predictor method shown in Fig.
18.25a. In this diagram, G is the transfer function of the process and G, isthe
model of the process. Although G and G,, are called the transfer functions of
the process, they actualy include the valve and the process. The transfer function
of the measuring element is taken as 1.0. The portion of the diagram that is
implemented by the computer includes the IMC controller and the model; this
portion is surrounded by the dotted boundary.

In order to compare the IMC structure of Fig. 18.30a with the conventiond
control  structure, the diagram of Fig. 18.30a has been rearanged as shown in Fig.
18.30b. For convenience, the transfer function through which the load U passes
has been omitted. We show only the output from the load block (U1). We may
use the structure in Fig. 18.30b to relate the IMC controller to the conventional
controller. Replacing the inner loop of Fig. 18.30b with a single block gives the
structure shown in Fig. 18.30c. Since this structure is the conventional single-
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[
Comparator 1 IMC

: Controller
Set point +
R ] G
: _
B

(b)

. +,
G
R + 1 M GI + c
1-G,G,, L]

(c)
FIGURE 18-30

Internal model control structures: (a) basic structure, () aternate Structure, (c) Structure equivalent
to conventional control.

loop control structure, we can identify the single controller block as G, After one
designs the IMC controller (G;) by the method to be described, one can determine
the equivalent conventional controller G by the relation

G.= G/(1 = GGp) (18.14)
For the structure shown in Fig. 18.30a, one can show that
G
C=U+ GG, R = Uil (18.15)

1+G1(G-Gn)
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If the model exactly matches the process (i.e., G, = G), the only signa
entering comparator 1 in Fig. 18.30a is U, . ( The signas from G and G,, are
equal and cancel each other in going through comparator 2.) Since U is not the
result of any processing by the transfer functions in the forward loop, U; is not
a feedback signal but an independent signal that is equivalent to R in its effect
on the output C. In fact, there is no feedback when G = G,, and we have an
open-loop system as shown in Fig. 183 1. In this case the stability of the control
system depends only on G; and G,. If G;and G, are stable, the control system
is dable

Ideally, we should like to have C track R without lag when only a set-point
change occurs (i.e., U; = 0). In order for this to occur, we see from Fig. 18.3 1
or Eqg. (18.15) that G;G = 1 or since G = G,,, we may write G;G,, = 1.
Solving for G, gives

G; = 1/Gn (18.16)

Equation (18.16) simply states that the IMC controller should be the inverse of
the transfer function of the process model. Keep in mind that Eq. (18.16) is based
on the assumption that the model exactly matches the process.

For the case of only a change in load U (i.e., R = 0), we should like to
have the output C remain unchanged (i.e., C = 0). In order for this to occur, we
see again from Fig. 18.31 or Eq. (18.15) that G;G,, = 1; this leads to the same
result as given by Eq. (18.16).

Even if there is no mismatch between the model and the process, the ap-
plication of Eq. (18.16) will usually lead to a transfer function that cannot be
implemented  because it will be unstable, requires prediction, or requires pure dif-
ferentiation. For example, if G,, = 1/rs + 1), the application of Eq. (18.16)
gives

Gi=q1s+1

This result is equivaent to an ideal PD controller, which cannot be implemented
because of the derivative term. If G, = e ~™/(m;s + 1), we obtain

G = (ms + 1)e™

The term e™, which represents prediction, cannot be implemented. If G, =
A = YT + s)7s + 1))

Gr=[(1+s)rs + DI(1=5)

RS Gy G — é)—»c
R FIGURE 18-31
IMC dructure when model matches bro-

Uy cess (G, = G).
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The term 1 = s in the denominator means that a pole is in the right haf plane,
which leads to an undable controller. With such difficulties of implementation of
the internad model controller, one might ask if any practica result can be obtained.
These difficulties can be overcome by application of the following simplified
procedure.

Dedgn of IMC Controllers

In using these rules, only a step change in disturbance is considered. The procedure
for disturbances other than a step response is more complicated and beyond the
scope of the limited discusson presented here.

1. Separate the process model G, into two terms
Gm = GmaGmm (18.17)

where G,, is a transfer function of an all-pass filter. An all-pass
filter is one for which |Gm,(jo)| = 1 for al . Examples are ¢ ~™* and
(1=s)Y(1+59). Gy, is a transfer function that has minimum phase character-
istics. A sysem has non-minimum phase characteristics if its transfer function
contains zeros in the right half plane or transport lags, or both. Otherwise, a
system has minimum phase characteristics. For a step change in disturbance
(R =I/sor Uy = 1/5),Gy is determined by

For a disturbance other than a step change, obtaining Gy is more complicated
and the reader is referred to Morari and Zafiriou (1989).

The results of applying Eq. (18.18) will yield a transfer function that is
stable and does not require prediction; however, it will have terms that cannot
be implemented because they require pure differentiation (e.g., s + 1).

2. To obtain a practical IMC controller, one multiplies G, in step 1 by a transfer
function of a filter, f(s). The simplest form recommended by Morari and
Zdfiriou is given by

f(s) = /(As + 1)” (18.19)
where A is afilter parameter and n is an integer. The practical IMC controller
(Gr) can now be expressed as

G = flGp, (18.20)

The value of n is selected large enough to give aresult for G, that does not
require pure differentiation. For the simple trestment of IMC design presented
here, A will be conddered as a tunable parameter. In the full treatment of IMC
given by Morari and Zafiriou, A can be related to the model uncertainty. In
practice, model uncertainty may not be available, in which case one is forced
to treat A as a tunable parameter.

3. If one wants to obtain the conventional controller transfer function G ., use is
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made of Eq. (18.14), with G; obtained from Eq. (18.20). For many simple
process models,G . turns out to be equivalent to a PID controller multiplied by
a firg-order transfer function; thus

1
7is+1

1
G, = KC<1 + 1ps + —) (18.21)

T8

where K., 7p, 71 and 7 ae functions of A and the paameters in G; ad
G, The examples that follow will illustrate the application of this smplified
procedure for designing an IMC controller.

Example 18.5. Internal model control. Design an IMC controller for the process
which, is firgt-order:

Gw = K/(ts+ 1)
For this case G, = 1and G, = K/(7s + 1). Applying Eq. (18.18) gives
Gy = 1/Gp,, = (s + /K

In order to be able to implement this transfer function let f(s) = 1/(As + 1). The
IMC controller becomes
lrs+1

Cr="kas+1

This result is a lead-lag transfer function that can be implemented with modem
microprocessor-based controllers. We may now obtain G, from Eq. (18.14)

Gy
G —,
¢ 1- G]Gm
Introducing the expressions for G; and G, into this equétion gives
7s+1
G. = K(As + 1) ~75+1—L1+L)
€T - _1s+l1 _K Kis XK Ts

Khs+D7s+1

This reault is in the form of a Pl controller:
1
Ge =K [1+ — K. = 7/AK =T
TS

Although this design procedure results in the equivaence of a Pl contraller, only
one parameter (A) must be used to tune the controller. This is a digtinct advantage
over the use of a conventional cortroller in which both K. and r; must be tuned.

Example 18.6. Internal model control. Design an IMC controller for a process
which is first-order with transport lag:
e-‘TdS

s + 1
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In the model of this process, use as an approximation to the transport lag a first-order
Padé gpproximation [See Eq. (8.47)], thus

TS = 1- (Td/Z)S

1+ (74/2)s
The modd becomes
G. — 1=(ry/2)s 1
m 1+ (g/2)sts+ 1
For this modd,
Gn, = % (an al-pass filter)
and
_ K
mm T s+ 1
Following the same gteps as used in Example 18 .5, we obtain for the IMC controller
175 +1
O = Kl

It is ingructive to see the form G, takes for this example. Applying Eg. (18.14)
gives

s + 1
G _ G _ KQs +1)
¢ 1-G/Gm (= Ts+1 K[l = (14/2)s]
KQs + D [1+ (1z/2)s)(rs + 1)

This may be reduced dgebraicdly to the form given by Eq. (18.21) with

_2r .y
Ke = 2\ +74)
T = T+ (Td/2)
TT4

™D - 7+ 1, T
)tTd
TR

The response of this first-order with transport lag system for several values of A and
forK =1 r=1 1;=1 isgivenin Fig. 18.32. The values of K, 77, 74, and 7}
obtained from the above relations are shown in Table 18.2. Notice that once a model
is accepted, the tuning of the modified IMC controller [Eq. (18.21)] depends only
on the choice of A. For the range of A used, Fig. 18.32 shows that the step response
isonly dightly oscillatory for al values of A and the fastest responseisfor A = 0.5.
Also notice that A affectsonly K. and 7. This example shows that the design of a
controller by the IMC method is a straightforward procedure and leads to a controller
that requires the adjustment of only one parameter, A.
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1.60
1.401
1.20

0.601
0.401
0.201
O.OO0

2.0

1.001
0.801
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FIGURE 18-32
Response for IMC-designed controller of Example 186.

It is ingtructive to compare the response for the IMC-derived controller with
the response for a Pl controller using Ziegler-Nichols settings. The responses, which
ae given in Fg. 18.33, show that for this paticular example the controller using
Z-N settings produces a response with less overshoot and a higher frequency of
oscillation than the controller designed by the IMC method.

Thee two examples show cdlearly how the parameters of the conventiond
controller G, are related to the parameters of the model and the filter.

The treatment of interna modd control presented here has been limited to sin-
gle input/single output continuous systems for which the disturbance is a step change.
Furthermore, we have not discussed the use of model uncertainty in sdecting the
filter parameters. Internd model control has been extended to sampled-data control
systems and to multiple input/multiple output systems. IMC is anew approach to the
design of control systems that congiders the process modd as an essentid part of the
control system design. As the method becomes better understood it will most likely
affect the design of industrid control systems. Microcomputer-based controllers now
have the capability of implementing many of the control dgorithms designed by the
IMC method. There is no longer a need to be tied to the dlassicd control dgorithms.

TABLE 182

IMC derived controller settings for Example 18.6
A 0.5 1.0 15 2.0
K, 1.0 0.75 0.60 0.5
T 1.5 1.5 1.5 1.5
™ 0.33 0.33 0.33 0.33

!

0.167 0.25 0.30 0.33
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18¢
16¢
144
12L
QO
10t
8 FIGURE 18-33
6 Comparison of response for IMC controller
AL and conventiond controller for Example 18.6:
25 | IMC-derived controller with A = 1.0,
0.0 [l Pl controller with Ziegler-Nichols settings
K. = 1.02, 7, = 2.84).
SUMMARY

In this chepter, we have examinad five advanced contrd drategies The fird three
on caxade oonrd, fesdforwardfesdbedk oontrd, and retio conrd  are  advanod
only in the sne that each drategy is more complex then the Sngledoop sysems
we have encountared up to this chepter. Thee three drdegies ae usd extensvdy
in industry and modern microprocessor-based controllers can implement them
exdly. The aher draegies on Smith predicion and intend modd contrd  (IMC),
ae less likdy to be usd in indusry and ae dosdy rdaed in thar blodk diagram
structure. Of the five control strategies, the IMC method has the most rigorous
mahemdicd foundetion and is presatly the foous of intense acedemic ressarch,
Three of the strategies, feedforward-feedback, Smith prediction, and IMC, are
Oependat on accurate modds of the processes for thar  gpplication.

Cascade control is especially useful in reducing the effect of a load dis-
turbance that is located far from the control variable and which moves through
the system slowly. The presence of the inner control loop reduces the lag in the
outer logp with the resuit thet the cascade sydem responds more quickly to a load
disturbance.

If a paticdar loed digubence ocours frequently, the qudity of confrd can
often be improved by goplying feadforwad conirdl. Idedly the trander fundion of
the feedforward conrdler is ootained from knowledge of the modd of the process
In caxs whee the feadfowad contrdler trandfer fundion requires predicion (for
exarge 7rs + 1), one must be sidfied with an goproximation of the feedforward
controller, which takes the form of a lead-lag transfer function. When a model
of the process does nat exiq, the feadforward controller can be tuned dter daing
0me oparHloop gep tedts tha rdae the contrd vaidde to the load digurbance To
provide for loed ddubences thad canat be messred or atidpeed, fesdforward
conrd is dways combined with fesdback conrd in a pradticd  Stuation.

Ratio control iswidely used in industry in the blending of two component
streams (A and B) to produce a mixed stream of desired composition (i.e., ra-
tio of components). Ratio control is essentialy a flow-control problem in which



280 PROCESS APPLICATIONS

the flow measurement of stream A (the wild stream) is used to compute the set
point for the flow of stream B so that the desired ratio of components will be
obtained.

The Smith predictor control scheme (dead-time compensation) was devel-
oped to improve the control of a system having a large transport lag. The method
is based on a model of the process that is first-order with dead time. By intro-
ducing inner loops that contain elements of the transfer function of the model,
the control system is transformed ideally to one without transport lag, a system
that is much easier to control. Thisideal situation occurs when the process and
the model are in exact agreement. In reality, the success of the Smith predictor
drategy depends on the degree of agreement between process and model.

Internal model control resembles the Smith predictor strategy in terms of
the structure of the block diagram. To apply the IMC method, one must have an
accurate model of the process, the model uncertainty, the type of disturbance (step,
ramp, eic) and the performance objective (integra of square error). The method,
which is based on a rigorous mathematical foundation, leads to an IMC controller
that is the best that can be designed in terms of the performance objective. The
IMC structure can be reduced to a conventional control structure in which the
conventional controller is related to the IMC controller and the parameters of
the model. For many simple processes with simple disturbance (impulse, step,
etc.), the equivalent conventional controller based on the IMC design method
turns out to be the equivalent of a PID controller.

PROBLEMS

18.1. (&) Obtain Gyfor the feedforward-feedback system shown in Fig. P18.1 so that C
does not change when a disturbance in C; occurs. Would there be any problem
in implementing this G#?
(&) If Gy is to be a lead-lag transfer function

Tis+1
Ths+1

s+1

FIGURE P18-1



ADVANCED CoNTROL STRATEGIES 281

determine Ty and T by the Foxboro rule. How do you determine whether lead
or lag is to predominate? Use ¢, = 1 .0 in the Foxboro rule

(c) When feedforward-feedback control is present, sketch the response C(¢) when
C; = /s and when G from part (a) is used.

(d) Repeat (c) whenG ¥ from part (b) is used. Only arough sketch that suggests
the ftrandent response is expected in this case.

(e) Determine C(t) when C; = I/s, and G = = 1, and the feedback loop is
broken at AA. Obtain the numerical value of C(t) att =0.5,1.0, and 1.5.
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The selection of a controller type (P, PI, PID) and its parameters (K ., 77, 7p) IS

intimately related to the model of the process to be controlled. The adjustment
of the controller parameters to achieve satisfactory control is called tuning. The
selection of the controller parameters is essentially an optimization problem in
which the designer of the control system attempts to satisfy some criterion of
optimdity, the result of which is often referred to as “good” control. The process
of tuning can vary from a tria-and-error attempt to find suitable control parameters
for “good” control to an elaborate optimization calculation based on a model of
the process and a specific criterion of optima control. In many applications, there
is no model of the process and the criterion for good control is only vaguely

defined. A typical criterion for good control is that the response of the system to
a sep change in set point or load should have minimum overshoot and one-quarter
decay ratio. Other criteria may include minimum rise time and minimum settling
time.

In the first part of this chapter, some of the widely used tuning rules for con-
tinuous controllers will be presented. In the second part of the chapter, methods
for determining the modd of a process from experimental tests will be described.
Determining the model of a process experimentally is referred to as process iden-
tification.

282
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CONTROLLER  TUNING

Before presenting tuning rules, some discussion of the effect of each modein a
PID controller on the transient response of a controlled process will be instructive.

Sdection of Controller Modes

Consider a typica loop as shown in Fig. 19.1 in which the process is second-order
and the measuring element is a transport lag. (The transfer function of the valve
istaken as 1.) Load responses for this process for four types of controllers (P,
PD, P, PID) are shown in Fig. 19.2. For each response curve, the process was
subjected to a unit-step change in load (U = 1/s) and the controller parameters
were selected by tuning rules to be presented later. Regardless of the specific
tuning rules used, the responses shown in Fig. 19.2 are typical of well-tuned
controllers for systems found in industry. The nature of the response for each type
controller will now be described. (The reader should also refer to Figs. 10.7 and
1714 to reinforce this discussion.)

PROPORTIONAL CONTROL. As shown in Fig. 19.2, proportional control pro-
duces an overshoot followed by an oscillatory response, which levels out at a
value that does not equal the set point; this ultimate displacement from the set
point is the offset.

PROPORTIONAL-DERIVATIVE CONTROL. For this case the response exhibits a
smaler overshoot and a smaller period of oscillation compared to the response for
proportional control. The offset that still remains is less than that for proportional

control.

PROPORTIONAL-INTEGRAL CONTROL. In this case, the response has about
the same overshoot as proportional control, but the period is larger; however,
the response returns to the set point (offset = 0) after a relatively long settling
time. The most beneficia influence of the integral action in the controller is the
elimination of offset.

R—> —:é% L > C
G =% (10s + s + 1) >

FIGURE 19-1
Typical control system used to study the effect of controller modes on load responses shown in
Fig. 19.2.



284 PROCESS  APPLICATIONS

0.20+ - ; PD
0.10 \\\\ -, ~wml = -
Py, \.—F!
0.00 \K’/ =X~  FIGURE 192
_odob it 10 M T Load response of a typica contro_l system using various
0 10 t 20 modes of control (process shown in Fig. 19.1).

PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL. As one might expect,
the uee of AD conrd combines the bendfidd fedures of PD and A contrd. The
response has lower overshoot and returns to the set point more quickly than the
reponsss for the other types of contrdlers

From the nature of the responses just described, we can make the follow-
ing generalizations. Integral action, which is present in Pl and PID controllers,
eliminates offset. The addition of derivative action speeds up the response by
contributing to the contrdller output a component of the dgnd that is proportiond
to the rae of change of the proces vaiadde

For smple lowv-ode (fird or ssoondorder) processss thet can tdade some
offset, P or PD control is satisfactory. For processes that cannot tolerate offset
ad ae of low odea, A conrd is required. For processss thet ae of high-order
(those with trangoort lag or may fird-order lags in saies), PID contrd is nesded
to prevent large overshoot and long settling time.

Beore the avalddlity of micoprocessor-besad contrdles it was customary
to et a contrdler bessd on price Preumdtic and dectronic contrdlles with pro-
potiond adion were the leeg expansve and those with PID adion were the mogt
expensive. It was considered uneconomical to purchase a controller with more
control actions than needed by the process. Today this price incentive no longer
exists in the selection of the type of controller, for the modern microprocessor-
based controller comes with al three actions, as well as other functions such as
leeHag ad trangport lag A disusson of the fedures of modem contrdlles will
be given in Chgp. 35. Thee is probably little judificetion to sdet a P or PD oo+
troller for most processes. The PI controller is often the choice because it elim-
inates offset and requires only two parameter adjustments. Tuning a PID con-
traler is more dfficlt becaue three paramdas mud be aduded. The presance
of derivative action can also cause the controller output to be very jittery if there
is much noise in the signals. We now turn our attention to some of the criteria
for good control that are used to judge whether or not a control system is well
tuned.

Criteriafor Good Control

Before we can be satisfied with the response of a control system for a choice
o conrd paandas we mud have some conogt of what we wat as an ided
response. Most operators of processes know what they want in the form of a
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response to a change in set point or load. For example, a response that gives min-
imum overshoot and % decay ratio is often considered as a sdtisfactory response.
In many cases, tuning is done by trid and error until such a response is obtained.
In order to compare different responses that use different sets of controller param-
eters, a criterion that reduces the entire response to a single number, or a figure
of merit, is desrable.

One criterion that is often used to evaluate a response of a control system
is the integrd of the square of the error with respect to time (ISE). The definition
of ISE is as follows

Integral of the square of the error (ISE)
00
ISE = J o2t (19.)
0

where e is the usual error (i.e., set point — control variable). For a stable system
for which there is no offset (i.e, e() = 0), Eq. (19.1) produces a single number

as a figure of merit. The objective of the designer is to obtain the minimum vaue
of ISE by proper choice of control parameters. A response that has large errors and
persists for a long time will produce a large ISE. For the cases of P and PD control,
where offset occurs, the integra given by Eg. (19.1) does not converge. In these
cases, one can use a modified integrand, which replaces the error r(t) = c(t), by
c(®) — c(t). Snce c() ~ c(t) does approach zero as ¢ goes to infinity, the integral

will converge and serve as a figure of meit.

Two other criteria often used in process control are defined as follows:

Integral of the absolute value of error (TAE)
IAE = J le| dt (192)
0
Integral of timeweighted absolute error (ITAE)
»
ITAE = | le]t dt (19.3)
0

Each of the three figures of merit given by Egs. (19.1), (19.2), and (19.3) have
different purposes. The ISE will penalize (i.e., increase the value of ISE) the
response that has large erors, which usualy occur a the beginning of a response,
because the error is squared. The ITAE will pendize a response which has errors
that persist for along time. The IAE will be less severe in penalizing a response
for large errors and treat al errors (large and smal) in a uniform manner. The ISE
figure of merit is often used in optima control theory because it can be used more
easly in mathematical operations (for example differentiation) than the figures of
merit, which use the absolute value of error. In applying the tuning rules to be
discussed in the next section, these figures of merit can be used in comparing
responses that are obtained with different tuning rules.
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TUNING RULES
Ziegler-Nichals Rules (Z-N)

These rules were first proposed by Ziegler and Nichols (1942), who were engineers
for a major control hardware company in the United States (Taylor Instrument
Co.). Based on their experience with the transients from many types of processes,
they developed a closed-loop tuning method still used today in one form or ancther.
The method is described as a closed-loop method because the controller remains
in the loop as an active controller in automatic mode. This closed-loop method
will be contrasted with an open-loop tuning method to be discussed later. We have
dready discussed the Ziegler-Nichols rules in Chap. 17 as a naturd consequence
of our study of frequency response. Ziegler and Nichols did not suggest that
the ultimate gain (K.,) and ultimate period (P,) be computed from frequency
response calculations based on the model of the process. They intended that K.
and P, be obtained from a closed-loop test of the actual process. When the rules
were first proposed, frequency response methods and process models were not
generaly available to the control engineers. The rules are presented below, and
ae in the form that one would use for actua application to aread process.

1. After the process reaches steady dtate at the normal level of operation, remove
the integral and derivative modes of the controller, leaving only proportional
control. On some PID controllers, this requires that the integral time (7;) be =
to its maximum value and the derivative time (7p) to its minimum vaue. On
modern  controllers  (microprocessor-based), the integrd  and  derivative  modes
can be removed completely from the controller.

2. Select a value of proportional gain (K,), disturb the system, and observe the
transient response. If the response decays, select a higher value of K, and
again observe the response of the system. Continue increasing the gain in
small steps until the response first exhibits a sustained oscillation. The value
of gain and the period of oscillation that correspond to the sustained oscillation
are the ultimate gain (K,,) and the ultimate period (P,).

Some very important precautions to take in applying this step of the
tuning method are given in the next section.

3. From the values of K., and P, found in the previous step, use the Ziegler-
Nichols rules given in Table 19.1 to determine controller settings (K ., 77,7p).
This table is the same as Table 17.1 in Chap. 17.

Although variations in the tuning rules given in Table 19.1 are used by
industry, the same approach of using K., and P, to obtain controller parameters
is used. The Ziegler-Nichols rules generally provide conservative (and safe)
controller settings. The Z-N settings should be considered as only approximate
settings for satisfactory control. Fine tuning of the controller settings is usudly
required to get an improved control response.

The experimental determination of K., and P, described in step 2 can
be replaced by a computation using frequency response methods if an accurate
model of the process, valve, and measuring element is known. This type of
calculation was done in Chap. 17.
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TABLE 19.1
Ziegler-Nichols controller  settings
Typeof control G(s) K, 7 D
Proportional  (P) K. 0.5K,

. . [ 1] P,
Proportional-integra  (P) K. (1 + ﬁ_s) 045K, 15

Yo
<0

Proportiona-integral-derivative ~ (PID) K c( 1+ L + TDS) 0.6K,
TS

PRECAUTIONS TO TAKE IN APPLYING THE Z-N METHOD. Some discussion
is needed to avaid some pitfdls in goplying sep 2 of the Z-N methad to obtain K,
ad P, . Thee precations ae conoaned with the type and sze of the didurbance
that induces the response and with the avoidance of using a limit cycle as the
indication that the system is on the threshold of instability.

The simplest way to introduce a disturbance is to move the set point away
from the contrd varigble for a short time and then return the st paint to its origind
value. This procedure, which is equivalent to introducing a pulse function in the
aro, causs the sydem to repond ad ye day within a narow band  surounding
the normd opeding point of the proces

An dtamae type of ddutbence woud be to inroduce a vdl dep change in
« pont. If 9ep dhanges in & pont ae used to induce trandents the Successve
dep changes should dtenate around the nomd operding paint of the process It
is also important to make the disturbance as small as possible, especidly as the
gan of the contrdler is increessd, <0 thet the vadve and other components do not
exceed their physical limits.

When the valve moves to its limits during a closed-loop transient, we say
that the valve saturates. Under these conditions, a sustained oscillation occurs,
which is called a limit cycle. The limit cycle that is caused by saturation is a
nonlinear phenomenon, which will be covered in Chap. 33 on nonlinear control.
If a limt cyde oocours the gain thet produces it and the period of the cyde should
not be used in the Ziegler-Nichols rules. Since the limit cycle will appear to the
osaver to be the same as a adaned ogdllaion when the sydem is on the veage
of instability, the novice will often mistakenly use the information derived from
the limit cycle (controller gain and period) to obtain controller settings. A smple
way to know if one has a limit cycle is to observe the swing in pressure to the
valve. If the limits of the valve (e.g., 3 ps to 15 psi) are reached repeatedly
during the oscillatory response, one has a limit cycle and the controller gain and
period should not be used to determine controller settings. It is for this reason
step 2 states that K. should be increased in small steps until the response first
exhibits a sustained oscillation.

To gpredde the ue of dep 2 of the tuning mahod, ore shoud have some
laboratory experience in tuning areal process, or at least a computer simulation
of a process The expaiencad opgaar can devdop some short auts to finding the
ultimate gain and ultimate period.
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Cohen and Coon Rules (C-C)

The next method of tuning to be discussed is an open-loop method, in which the
control action is removed from the controller by placing it in manual mode and
an open-loop transient is induced by a step change in the signal to the valve.
This method was proposed by Cohen and Coon (1953) and is often used as an
dternative to the Z-N method. Figure 19.3 shows a typica control loop in which
the control action is removed and the loop opened for the purpose of introducing
a step change (M/s) to the valve. The step response is recorded at the output of
the measuring element. The step change to the valve is conveniently provided
by the output from the controller, which is in manua mode. The response of the
system (including the valve, process, and measuring element) is caled the process
reaction curve; atypical process reaction curve exhibits an S-shape as shown in
Fig. 19.4. After presenting the Cohen and Coon method of tuning, the basis for
their recommendations will be discussed. The C-C method is summarized in the
following  seps.

1. After the process reaches steady state at the normal level of operation, switch
the controller to manual. In a modem controller, the controller output will
remain at the same value after switching as it had before switching. (Thisis
cdled “bumpless’ trandfer.)

2. With the controller in manual, introduce a small step change in the controller
output that goes to the valve and record the transient, which is the process
reaction curve (Fig. 19.4).

3. Draw a dtraight line tangent to the curve a the point of inflection, as shown in
Fig. 19.4. The intersection of the tangent line with the time axis is the apparent
transport lag (T4); the apparent first-order time constant (7) is obtained from

T = B,JS (19.4)

where B, isthe ultimate value of B at large t and § is the slope of the tangent
line. The steady-state gain that relates B to M in Fig. 19.3 is given by

K, = B,/M (19.5)
Ms U=0
-+
:O le e Gv + Gp =
LLoop\ nopened
B VL H
To recorder

FIGURE 19-3
Block diagram of a control loop for measurement of the process reaction curve.

AR S 375
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N Bu
Tangent line, slope = - =S

!
FIGURE 194

Typical process reaction curve show-
ing graphical construction to deter-
mine first-order with transport lag

4. Using the values of k,, T,

! model.

and T, from step 3, the controller settings are

found from the relations given in Table 19.2.

Notice in Table 19.2 that all of the controller settings are a function of the
dimensionless group T,/T , the ratio of the apparent transport |ag to the apparent

time condat. Al K,

is invedy propartiond to K, .

TABLE 192 )
Cohen-Coon controller settings
Type of control Parameter  sting
i L P 4
Proportional  (P) K. = X, T (1 + 3T)
N 1L T(9 Ty
Proportional-integral ~ (PI) K. = X, 7; (10 + 12T)
o=, 30+ 3TyT
1 20T, T
. - 1 T(5 Ty
Proportional-derivative  (PD) K. = %, A (4 + 6T)
" = 6 —2Ty/T
D= A3,
) . L 1 T4 Ty
Pr - - PID =—(-4+ 2
oportional-integral-derivative  (PID) K. X, Ty (3 + 4T)
"= 32 +6Ty4/T
S K
_ 4
T -

e T,
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The rationale for the C-C tuning method begins with the representation of
the Sshaped process reaction curve by a fird-order with transport lag model; thus

Ki,e_TdS
Ts +1

Using the system expressed by Eq. (19.6)) Cohen and Coon obtained by theoretical
means the controller settings given in Table 19.2. Thelr computations required that
the response have % decay ratio, minimum offset, minimum area under the load-
response curve, and other favorable properties.

In applying the C-C tuning method, an important task is the graphical con-
struction, shown in Fig. 19.4, which reduces the process reaction curve to the
first-order with the transport lag model given by Eq. (19.6). To understand the
basis for the graphical procedure, consider the response of the transfer function
of Eq. (19.6) to a step change in input; the resulting transient is shown in Fig.
19.5. After t = T4, the response is a first-order response. The point of inflection
of the curve in Fig. 19.5 occurs at ¢ = T; and the slope of the tangent line at
this point is related to the time constant by the relation:

S = B,/T

Gy(s) = (19.6)

Solving for T gives the expression in Eqg. (19.4). The response after t = T,
shown in Fig. 19.5, was aso presented in Fig. 5.6.

The attempt to model the process reaction curve by the method shown in
Fig. 194 is crude and does not give a very good fit. Finding the point of inflection
and drawing a tangent line at this point is quite difficult, especialy if the data for
the process reaction curve are not accurate and if they scatter. A better method
for fitting the process reaction curve to afirst-order with transport lag model is
to perform a least-square fit of the data. The disadvantage to this fitting proce-
dure is the time and effort required. An example to be presented later will study
the effect of the type of model fitting procedure on the selection of controller
parameters.

Bl——— g ——.
a Tangent lime, slope = %
0 i
0 T, ¢
M
input FIGURE 19-5
0 Step response for a first-order with transport lag

0 ! model.
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More recently, Lopez et a. (1967) studied the tuning of controllers with
error-integral criteria for the first-order with transport lag model of Eq. (19.6).
The error-integral criteria that they considered were ISE, IAE, and ITAE. In their
work, a search procedure was used to find the controller parameters that minimized
each particular figure of merit. Their results, developed for T4/T varying from 0 to
10, were presented in graphical form and as empiricd equations that were fitted
to ther graphica results. Their results, which can be considered as a variation of
the C-C tuning method, were not compared with the C-C method. The interested
reader may wish to compare the method of Cohen and Coon and the method of
Lopez et d. as a project.

To illustrate the two methods of controller tuning just presented, the system
sown in Fg. 191 was smulated by use of a computer program caled TUTSIM.
(This simulation software is described in Chap. 35.) Table 19.3 gives the values
of the controller parameters obtained by applying each tuning method; Figure 19.6
shows the resulting transients. Since the Z-N method does not give a rule for a
PD controller, the settings listed for a PD controller under the Z-N heading of
Table 193 were obtaned by using a theoreticd frequency response caculation in
which the design was based on 30° phase margin and a maximum K,. No general
conclusions can be made about the relative merits of the two tuning methods from
the results shown in Fig. 19.6, since these results apply to one specific example.
About al that can be said is that for this specific example, both methods give
reasonable first guesses of the control parameters.

Example 19.1. For the control system shown in Fig. 19.7, determine controller
settings for a Pl controller using the Z-N method and the C-C method. This problem
will be ingtructive because the transfer function of the model is aready in the form
of first-order with transport lag, which is the form used by Cohen and Coon to derive

their tuning rules.

C-C method. Since the transfer function of the plant isin the form of Eg. (19.6),
we obtain T and T; immediaely without having to draw a tangent line through
the point of inflection, i.e, T =1and T; = 1. We aso observe from the block

TABLE 193
Controller sdtings for the sygem of Fig. 19.1
Control Closed-loop  method Open-loop  method
Type Parameter (Z-N method) (C-C  method)
P K. 6.4 8.1
PI K. 5.8 7.0
i 5.6 4.4
PD K. 11.4% 9.8
)] 1.0 0.43
PID K. 1.1 10.5
s 3.4 3.9
) 1.6 0.59

* Obtained by desgn for 30" phaze margin and maximum K.
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FIGURE 19-6
Comparison of load responses for the system of Fig. 19.1 using controller seitings obtained by the
Ziegler-Nichols method (Z-N) and the Cohen and Coon method (C-C).

diagram that K, = 1. Substituting these values into the appropriate equations of
Table 19.2 gives

T T, 1 1
Ke=—709+ %) =209+ —| = 0.
c K,,Td( 12T) 1(09+12) 0.983

and

30 +3T4/T _ 30 +3
49+ 20T, /T ~ 9 +20

Using these valuesfor K. and 7y, the step response shown in Fig. 19.8 was obtained

= 1.14

7=

by smulation.
Z-N Method. Application of the Bode criterion from Chap. 17 gives the following
results
wep = 2.03 o P, =27mlw. = 3.09
Kew = 2.26
- N 1 1 ~ | >
R=ut) { KC<1+ m) — e | C
FIGURE 197

Process for Example 191
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FAARE 19-8
Response to unit step in set point for the system in Fig.

19.7 (Example 19.1).

The details for obtaining these results will not be given here since this type cacula
tion was covered in depth in Chap. 17. Applying the Z-N rules for PI control from
Table 19.1 gives.

K. = 045K, = (0.45)(2.26) = 102
ad
7 = Py/1.2 = 3.09/1.2 = 258

The step response for these controller settings is shown in Fig. 19.8. The ISE value
for each response was caculated out to a sufficiently long time (10 units of time)
for the integral to converge; the results are as follows:

CC repone ISE = 154 ar=10

Z-N response: ISE = 149 ar=10

Although the ISE values are nearly the same, the trandent for the Z-N seitings
is better than the transient for the C-C settings. The Z-N trandent has much less
overshoot. The lesson to be learned from this example is that the comparison of
two transients based on only one criterion (in this case, the ISE) may be midead-
ing in the selection of the best transent. It is dso important to judge the quality
of atrangent by its actua appearance. It should be noted that for this example,
in which there is a relaively large trangport lag (T = 1), much of the con-
tribution to the ISE occurs from ¢ = 0 to ¢ = 1, during which time the ISE
reaches 1.0. This vaue of the ISE a ¢ = 1 is the same, regardiess of the tuning
method used because the transport lag causes error to be constant from ¢ = 0 to
r =1

Example 19.2. For the control system shown in Fig. 19.9, determine the controller
settings for a Pl controller using the Z-N method and the C-C method. In this
problem, the process reaction curve must be modeled by the method shown in Fig.
194.

C-C method. Since the transfer function of the plant is given as 1/(s + D* wecan
obtain the value of T; and T for use in the C-C method analytically. A unit-step
response for the plant transfer function is

c(t) = 1- %t3 + 15r2+ t+1)e”!
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FIGURE 199
Process for Example 192

From this result one can readily obtain the first and second derivatives; thus

1,5 _
e(t) = 5’3‘3 !

¢ = ée"‘(3t2 )

The location of the inflection point on the transient c(t) is obtained by setting
the second derivative to zero:

1
0= 6«3"(31‘2 -

Solving for ¢ gives as the root of interest in this problem ¢ = 3. Knowing tha the
point of inflection occurs a ¢ = 3, we can compute the dope of the tangent line
through this paint to be

S = ¢@3) = %(3)3(3-3 = 0.224

We can now determine T; as shown in Fig. 19.10. From the expression for
c(t), we obtain the value of c a the inflection point to be ¢(3) = 0.353. The
velue of + where the tangent line intersects the t-axis is obtained from the dope §;
thus

0.353 = 0

=S =0.224
3 =T,

solving for T, gives
T; = 142
Solving for T from Eq. (19.4) gives
T = B,/S = 10.224 = 4.46

Having found 77 and T, we can apply the appropriate equations from Table
19.2 to get

Kc=291 7,=1286
The trandent for these settings that was obtained by simulation is shown as curve
C-Cl in Fig. 19.11. To our surprise, it is unstable.

Z-N method. When we apply the Z-N method for a Pl controller, we obtain the
following results: X, = 4, P, = 2w, K. =18, ad 7 = 523,
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Siope = 0.224

FIGURE 1910
L Process  reaction curve for Example
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The transient for this s&t of controller parameters is aso shown in Fig. 19.11.
We see that the response is stable and well damped.

The lesson learned in this example is that the gpplication of a tuning method
may not produce a satisfactory transient. Fine tuning of these first guessesis usualy
needed.

Before abandoning the C-C method for this example, the process reaction
curve was fitted to a first-order with transport lag model by means of a least square
fitting procedure. Applying the least square fit procedure out to ¢+ = 5 produced the
following results

T; = 15 and T=30
Applying the C-C method for these valuesof T; and T gives
K. =205 ad 1= 2.49

Notice that the value of K, is now considerably less than the value obtained
from the fitting procedure shown in Fig. 19.10. This leads to the expectation that
the response will now be stable. This expectation is fulfilled as shown by the transient
labded C-C2 in Fg. 19.11.

FIGURE 1911

Comparison of transients produced by
different tuning methods for Example
19.2 (process shown in Fig. 19.9).
Z-N: Ziegler-Nichols method; C-Cl:

- 0.60F \ Cohen-Coon method based on tangent

-080F line through paint of inflection; C-C2

«1.00 | I o | I Cohen-Coon method using model based
0 15 ¢t 30 on least square fit.
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PROCESS IDENTIFICATION

Up to this point, the processes used in our control systems have been described by
transfer functions that were derived by applying fundamental principles of physics
and chemicd engineering (eg., Newton's law, materid baance, heat transfer, fluid
mechanics, reaction Kinetics, etc.) to well defined processes. In practice, many
of the industrial processes to be controlled are too complex to be described by
the application of fundamental principles. Either the task requires too much time
and effort or the fundamentals of the process are not understood. By means of
experimental tests, one can identify the dynamical nature of such processes and
from the results obtain a process model which is at least satisfactory for use
in designing control systems. The experimental determination of the dynamic
behavior of a process is called process identification.

The need for process models arises in many control applications, as we have
seen in the use of tuning methods. Process models are adso needed in developing
feedforward control algorithms, self-tuning agorithms, and internal model con-
trol algorithms. Some of these advanced control strategies were discussed in the
previous  chapter.

Process identification provides severa forms that are useful in process con-
trol; some of these forms are

Process reaction curve (obtained by step input)
Frequency response diagram  (obtained by Snusoidd  input)
Pulse response (obtained by pulse input)

We have aready encountered the need for process identification in applying the
tuning methods presented earlier in this chapter. In the case of the Z-N method, the
procedure obtained one point on the open-loop frequency response diagram when
the ultimate gain was found. (This point corresponds to a phase angle of = 180°
and a process gain of 1/K ., a the crossover frequency w.,.) In the case of the
C-C method, the process identification took the form of the process reaction curve.

Sep Teding

As dready described in the application of the Z-N tuning method, a step change
in the input to a process produces a response, which is caled the process reaction

curve. For many processes in the chemical industry, the process reaction curve
is an S-shaped curve as shown in Fig. 19.4. It is important that no disturbances
other than the test step enter the system during the test, otherwise the transient

will be corrupted by these uncontrolled disturbances and will be unsuitable for
use in deriving a process model. For systems that produce an S-shaped process
reaction curve, a general model that can be fitted to the transient is the following
second-order  with transport  lag  model:

K, e T’ _ Y

G = Ts+ DT+ D - Xs)

(19.7)
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This model is an extension of the one used in the C-C tuning method, in which
there was only one first-order term.

We shdl now describe a graphical procedure for obtaining the transfer func-
tion of Egq. (19.7) from a process reaction curve.

SEMI-LOG PLOT FOR MODELING. The transfer function given by Eq. (19.7)
can be obtained from a process reaction curve by a graphical method in which
the logaithm of the incomplete response is plotted againgt time In prindple, this
method can exdradt from the process reection curve the two time condants in Eq.
(19.7). The method, referred to as the semi-log plot method, is outlined bel ow.
The method applies for T; > T».

1. Determine (if transport lag is present) the time at which the process reaction
curve of Fig. 19.12 first departs from the time axis; this time is taken as the
trangport |Z':g T, .

2. From the process reaction curve of Fig. 19.12, plot I versus ¢ | on semi-log
paper as shown in Fig. 19.13 where Z is the fractional incomplete response
and t; isthe shifted time starting at 7, (i.e.,t;=t—Ty). Iisdefined by

_B,-Y

I
B,

whae B, is the utimae vdue of Y.

3. Extend a tangent line through the data points at large values of t | (see Fig.
19.13). Refer to this tangent line as I, and let the intersection of the tangent
line with the vertica axisat ¢ | = 0 be caled P.

4. To find the time constant T; , read from the graph in Fig. 19.13 the time at
which I, = 0.368P. Thistimeis Tj.

5. Plot A versus t { where A = I, -~ [, If the data points (A, ¢ ) fdl on a
straight line, the system can be modeled as a second-order transfer function

By ——————g————===I"
Incomplete
Y response
0
0 t t
L]
t1=0
M
X F 1 G U R E 1 9 - 1 2
o Process reaction curve used in the semi-log plot method

0 t of modeing.
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(log scale)
P

FIGURE 19-13
l Graphical construction for use in modeling by
LT (arithmetic scale) semi-log plot method.

with transport lag as given by Eq. (19.7) with time constants T, and T,. The
value of T, is the time a which A = 0.368R where R is the intersection of
the line A with the vertical axisat 1, = 0.

If one does not get a straight line when A is plotted against ¢, the
procedure can be extended to get more first-order time constants, T3, T4, and
0 on;, howeve, the daa mugt be vay acourae for this mehod to be sucoessful
in identifying more then two time condants Uaudly the daa scater, espeddly
a large vaues of time, and one must be satisfied in drawing straight lines
through the scatered points

6. The process gain is smply
K,= B./M

PROOF OF SEMI-LOG METHOD. By shifting the time axisfrom ¢ to ¢ | in Fig.
19.12 we have accounted for the effect of T4 in Eq. (19.7) and the transient to
be coddaad (Y vs ¢ 1) is desxibed by the trander function

K, _Y(s)

Gyls) = (Tis+ 1)(Tas + 1) X(s) (198)
Introducing X = M/s and K, = B,/M into Eq. (19.8) gives
) - : (199
B, s(Tys + 1)(T2s + 1)
The time reponse of this expression is gven by
Biu =1- % %2-6_’1”1 - Tile“I’Tz (19.10)

This result was also given in Eqg. (7.10). Letting ] = (B, Y)/B, as was done
in step 2, we obtain from Eqg. (19.10)
T

T
e S 11/ T SR 3V/ | 1911
I =7 ‘ I - T2e (191
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Assume that T > T,. Ast | approaches «, the second term on the right side of
Eg. (19.11) becomes much smaller than the first term and we can write as an
approximation to Eq. (19.11) for large ¢

Iy —t\IT:
I, == 71T = pe~t/Ti 19.12
T=T¢ e (19.12)

where the term I, is the approximation of I at large values of time and P is the
valueof [, a t; = 0.
When ¢/T) = 1, or t; = T}, we obtain from Eq. (19.12)

I, = Pe’l = 0.368P (19.13)

This proves step 4 of the graphical procedure. Now let A =1, - 1. From Egs.
(19.11) and (19.12) we obtain

I,
h-T
This relation plots as a straight line on semi-log paper.

When /T, = 1, or t; = Tz, we obtain from Eq. (19.14)

A = Re '= 0.368R

A= e VT2 m ReTWT2 (19.14)

This proves Step 5.
To appreciate the nature of this graphical construction, the reader is encour-
aged to solve the problems requiring its use a the end of the chapter.

Frequency Testing

We have shown in the section on frequency response that a process having a
transfer function G(s) can be represented by a frequency response diagram (or
Bode plot) by taking the magnitude and phase angle of G(jw). This procedure
can be reversed to obtain G(s) from an experimentally determined frequency re-
sponse diagram. The procedure requires that a device be available to produce a
sinusoidal signal over a range of frequencies. We describe such a device as a
sine wave generator. In frequency testing of an industrial process, a sinusoidal
variation in pressure is applied to the top of the control valve so that the ma-
nipulated variable can be varied sinusoidally over a range of frequencies. The
block diagram that applies during frequency testing is the same as the one of
Fig. 19.3 with the step input (M/s) replaced by a sinusoidal signal. The sine
wave generator used to test electronic devices operates a frequencies that are too
high for many dow moving chemicd processes. For frequency testing of chem-
ical processes, special low-frequency generators must be built that can produce
a sinusoidal variation in pressure to a control valve. To preserve the sinusoidal
signa in the flow of manipulated variable through the valve, the valve must be
linear.

In the 1960s when frequency response methods were first introduced to
chemical engineers as a means for process identification, severa chemical and
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petroleum companies constructed mobile units containing low-frequency sine  wave
generators and recorders that could be moved to processing units in a plant for
the purpose of frequency testing.

The great disadvantage of frequency testing is that it takes a long time to
collect frequency response data over a range of frequencies that can be used
to construct frequency response plots. The time is especially long for chemical
processes, often having long time constants measured in minutes or even hours.
The frequency test at a given frequency must last long enough to make sure
that the transients have disappeared and only the ultimate periodic response is
represented by the data. Frequency testing usually ties up plant equipment too
long to be recommended as a means of process identification. Step testing and
pulse testing take much less time and can usually provide satisfactory process
identification.

Pulse Testing

Pulse testing is similar to step testing; the only difference in the experimental
procedure is that a pulse disturbance is used in place of a step disturbance. The
pulse is introduced as a variation in vave top pressure as was done for step testing
(see Fig. 19.3). In applying the pulse, the open-loop system is allowed to reach
steady state, after which the valve top pressure is displaced from its steady-st@'te
value for a short time and then returned to its origina value. The response Is
recorded at the output of the measuring element (B in Fig. 19.3). An arbitrary
pulse and a typical response are shown in Fig. 19.14. Usually the pulse shape
is rectangular in experimental work, but other well defined shapes are also used.

The input-output data obtained in a pulse test are converted to a frequency
response diagram, which can be used to tune a controller. The transfer function
of the vave, process, and measuring element (referred to as the process transfer
function, for convenience) is given by:

Y(s)
= —— 1 .1
Gy(s) XG) (19.15)
where Y(s) = Laplace transform of the function representing the recorded output

response
X(s) = Laplace transform of the function representing the pulse input

Applying the definition of the Laplace transform [Eq. (2. 1)] to the numerator and
denominator of Eq. (19.15) and replacing s by jw gives

X Y
pulse input response
T 1
FIGURE 19-14

Typical process response to a pulse input.
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_ o Y(e itdr

p(] ) J»oog ([)e j ¢ t ( )
or

_ Iow Y(t)coswt dt - | fom Y(t)sinwt dt
[o X()coswt dt =] [;°X(t)sinwt dt

Reducing the input-output data of Fig. 19.14 to an expression for G,(jw) by
means of Eq. (19.17) is a difficult, tedious task that has been described in the
literature [Hougen (1964); Smith and Corripio (1985)]. The integration is done
numericaly: the time axis is divided into equal increments and the function Y(t)

is represented linearly over successve time increments. A computer is necessary
to evauate the integrals. Since the input-output variables (X and Y) are deviation
variables that return to zero as ¢ progresses, the integras in Eq. (19.17) converge.

If the input is a rectangular pulse, the integral in the denominator of Eq. (19.16)
can be determined analytically. After the integrals in Eq. (19.17) are evaluated
for several values of w, Gp(jw) for each value of w can be expressed as

. A+ jB .
Gjo) = BLIE s i

The magnitude and angle of a + jB can be found easily and used in plotting a
frequency  response  diagram.

This brief outline describing pulse testing may appear deceptively smple.
In practice, the data on the response must be very accurate and noisefree in or-
der for the method to succeed. This means that the recorder used to measure the
response must be very sensitive. The selection of the pulse height and width is
also critical. If the pulse height and width are too small, the disturbance to the
system will be too smal to produce a transent that can be measured accurately by
the recorder. If the pulse height is too large, the system may be operating too far
from the linear range of interest. Obtaining the proper pulse height and width can
be determined by some preliminary open-loop experiments. The pulse test is the
least disruptive to plant operation among the process identification methods we
have conddered. The pulse disturbance does not cause the process output to depart
far from its normal operating point. Also, the length of time that the process is
tied up for an open-loop test is short compared to the frequency response method.

Gy(jo) (19.17)

SUMMARY

In the practicd application of process control, some methods for tuning and pro-
cess identification are needed. The selection of controller modes depends on the
process to be controlled. Proportiona control is simple, but the response ex-
hibits offset. The derivative action in PD control makes it possible to increase the
controller gain with the result that the response has less offset and responds more
quickly compared to proportiona control. To eiminate offset, integra action must
be present in the controller in the form of Pl and PID control. PI control often

causes the response to have large overshoot and a slow return to the set point
especially for high-order processes. The presence of derivative action in a PID
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controller gives less overshoot and a faster return to the set point, compared to
the response for Pl control.

To compare the quality of control on a numerical basis, severd criteria that
integrate some function of the error with respect to time have been proposed.
These include the integral of the square of the error (ISE), the integral of the
absolute error (IAE), and the integral of the time-weighted absolute error (ITAE).

In the first part of this chapter two well known tuning methods are presented:
the Ziegler-Nichols (Z-N) method (a closed-loop method) and the Cohen-Coon
(C-C) method (an open-loop method). These two methods were applied to severd
exanples and the transients for each compared. The lesson to be learned through
these examples is that the controller parameters obtained from a tuning rule should
be considered as first guesses; fine on-line tuning is usually needed to get a
satisfactory  transient.

The Z-N and C-C methods actually require information about the process
model. The Z-N method is based on the ultimaie gain a the crossover frequency,
which is equivalent to knowing one point on the open-loop frequency response
diagram. The C-C method requires the use of an open-loop step response (process
reaction  curve).

In the advanced control strategies discussed in Chap. 18, a process model
is often needed to apply the strategy. When a process model cannot be found by
application of theoretical principles, one must obtain a model experimentaly. The
experimental approach to obtaining a model is called process identification. The
three methods of process identification discussed in this chapter are step testing,
frequency testing, and pulse tedting. The frequency method is seldom used because
of the time it takes to test a system over a wide range of frequencies. Step testing is
easy to apply and ties the process up for only enough time to obtain one transient.
Pulse testing is also smple to apply, but the analysis of the input-output data
require extensve caculations that must be done by a computer.

PROBLEMS

19.1. Use the semi-log graphical method to determine the process model for the following
unit-step response data:

time. t response. Y

0 0

0.25 0.07
0.50 0.20
0.75 0.34
1.00 0.47
1.25 0.57
1.50 0.66
2.00 0.79
2.50 0.87
3.00 0.92
3.50 0.94
4.00 0.96

4 1.00




CHAPTER

20

CONTROL
VALVES

One of the basic components of any control system is the fina control element,
which comes in a variety of forms depending on the specific control application.
The most common type of finad control element in chemical processing is the pneu-
matic control valve, which regulates the flow of fluids. Some other types include
the variable speed pump and the power controller (used in electrical heating).

Since the pneumatic control vave is so widdy used in chemicd processing,
this chapter will be devoted to the description, selection, and sizing of control
vaves.

CONTROL VALVE CONSTRUCTION

The control valve is essentidly a variable resistance to the flow of a fluid, in
which the resistance and therefore the flow, can be changed by a signal from a
process  controller.

As shown in Fig. 20.1, the control valve consists of an actuator and a
vave. The vave itsdf is divided into the body and the trim. The body conssts of
a housing for mounting the actuator and connections for attachment of the valve
to a supply line and a ddlivery line. The trim, which is enclosed within the body,
consists of a plug, a valve seat, and a valve stem. The actuator moves the valve
stem as the pressure on a spring-loaded diaphragm changes. The stem moves a
plug in avalve seat in order to change the resistance to flow through the valve.
When a valve is supplied by the manufacturer, the actuator and the valve are
attached to each other to form one unit.

303
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Air signal _l

Diaphragm
ACTUATOR
c”;
Packing q71 Stem
VALVE
e
Supply e———p v ——> Delivery
FIGURE 20-1
Pressure-to-close valve with single seat-
Seat Plug ing.

For mog actuators, the motion of the gem is proportiond to the pressure g
plied on the digohragm. In genad, this type of actudior can be usd for funcions
other than moving a valve stem. For example, it can be used-to adjust dampers,
variable speed drives, rheostats, and other devices. As the pressure to the valve
varies over its normal range of operation (3 to 15 psig) the range of motion of
the stem varies from a fraction of an inch to several inches depending on the
Sze of the aduaor. Manufedurers provide a range of adugtors for vaious vave
sizes.

The valves available vary over a wide range of sizes. The size is usualy
rfared to by the dze of the edd comedtors For exanple, a oneiinch vave woud
have connectors (threaded or flanged) to fit into a one-inch pipe line. In generd,
the larger the valve size the larger the flow capacity of the valve.

For the conird vave shown in FHg 201, an increese in sgnd pressre ebove
the diaphragm exerts a force on the diaphragm and back plate, which causes the
stem to move down; this causes the cross-sectional area for flow between the
pug ad the st to deoessg thadby redudng o thraling the flov. Such vave
adion as shown in FHg 201 is cdled presretodose adion. The revae adion,
pressureto-open, can be accomplished by desgning the adudtor 0 thet presare is
applied to the under dde of the digohvegm, for which cese an inoeese in pressre
to the valve raises the stem. An aternate method to reverse the valve action is to
leave the actuator as shown in Fig. 20.1 and to invert the plug on the stem and
place it under the valve seat.

The valve shown in Fig. 20.1 is single-seated, meaning the valve contains
one plug with one seating surface. For a single-seated valve, the plug must open
against the full pressure drop across the valve. If the pressure drop is large, this
means that a larger, more expensive actuator will be needed. To overcome this
problem, valves are also constructed with double seating as shown in Fig. 20.2.
In this type valve, two plugs are attached to the valve stem and each one has
a seat. The flow pattern through the valve is designed so that the pressure drop
across the seat at A tends to open the plug and the pressure drop across the seat
a B teds to dose the plug. This countebdandng of foroes on the plugs reduces
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FIGURE 20-2
Double-seated ~ valve.

the effort needed to open the valve with the result that a smaller, less expensive
actuator is  needed.

In a double-seated valve, it is difficult to have tight shut-off. If one plug
has tight closure, there is usudly a smal gap between the other plug and its seat.
For this reason, single-seated valves are recommended if the valve is requited to
be shut tight. In many processes, the valve is used for throttling flow and is never
expected to operate near its shut-off position. For these conditions, the fact that
the valve has a small leakage at shut-off position does not create a problem.

VALVE SIZING

In order to specify the size of a valve in terms of its capacity to provide flow
when fully open, the following equation is used:

Ap,

q=CV G

(20.1)

where ¢ = flow rate, gpm
Ap, = pressure drop across the wide-open valve, psi

G = gecific gravity of fluid at stream temperature relative to water; for
water G = 1.

C, = factor associated with capacity of valve

Equation (20.1) applies to the flow of an incompressible fluid through a
fully open valve. Manufacturers rate the size of a vave in terms of the factor C..
Sometimes the C, is defined as the flow (gpm) of a fluid of unit specific gravity
through a fully open valve, across which a pressure drop of 1 .0 Ibgf/in? exists. This
verbal definition is, of course, obtained directly from Eq. (20.1) by letting ¢ =1,
Ap, =1, and G = 1. Equation (20.1) is based on the wel-known Bernoulli
equation for determining the pressure drop across valves and resistances. It is
important to emphasize that C, must be determined from Eg. (20.1) using the
units listed. Since so many valves in use are rated in terms of C,, Eq. (20.1)
is of practical importance; however, some industries now are defining a valve
coefficient K, that is defined by the equation

_ Ap,
q -Kv\/ G
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where ¢ = flow rate, m3/hr
Ap, = pressure drop across valve, Kg¢/cm?
G = specific gravity relative to water
The relation between K, and Cy is:
K, = 0.856C,

For gases and steam, modified versions of Eq. (20.1) are used in which C,
is dill used as a factor. Manufacturers of valves provide brochures, nomographs,
and special dlide rules for sizing valves for use with gases and steam.

In generd, as the physicad size of a vave body (i.e, size of pipe connectors)
increases, the value of C, increases. For a sliding stem and plug type of control
valve, the value of C, is roughly equal to the sguare of the pipe size multiplied
by ten. Using this rule, a three-inch control valve should have a C,, of about 90,
with units corresponding to those of Eq. (20.1).

Example 20.1. A vave with a C, rating of 4.0 is used to throttle the flow of
glycerine for which G = 1.26. Determine the maximum flow through the vave for
a pressure drop of 100 psi.

100
q = 4.0 126 = 35.6 gpm

The coefficient C, varies with the design of the valve (shape, size, rough-
ness) and the Reynolds number for the flow through the vave. This relaionship is
andogous to the relationship between friction factor and roughness and Reynolds
number for flow through a pipe. For relaively nonviscous fluids, C. in Eg. (20.1)
can be taken as a constant for a valve of given size and type. The reason for this
is that a high Reynolds numbers, the friction factor changes very little with flow
rate. Except for very viscous fluids, the flow through a valve, which involves
sudden contraction and expansion, is in the turbulent regime of fluid flow; turbu-
lence in the valve exists even if the flow in the supply pipe is near the critical
Reynolds number of 2 100.

Consequently, for relatively nonviscous fluids, Eq. (20.1) is saisfactory for
sizing avalve for any fluid. For the control of flow of very viscous fluids, such
as tar or molasses, the value of C, found from Eq. (20.1) must be multiplied by
a correction factor that depends on viscosity, density, flow rate, and valve size
(i.e, on the Reynolds number). Methods for determining the viscosity correction
factor are provided by manufacturers for their valves. If one does not apply the
correction factor for a very viscous fluid, the value of C, will be too low and the
vave will be undersized.

VALVE CHARACTERISTICS

The function of a control valve is to vary the flow of fluid through the valve
by means of a change of pressure to the valve top. The relation between the
flow through the valve and the valve stem position (or lift) is caled the valve
characteristic, which can be conveniently described by means of a graph as shown
in Fig. 203 where three types of characteristics are illustrated.
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g0 1 Inherent valve characteristics (pressure drop across valve is con-
& 0 0.5 1.0 stant) | linear, |1 increasing sensitivity (e.g. equal percentage

x, fraction of maximum [ift vave), Il decreasing senstivity.

In general, the flow through a control vave for a specific fluid at a given
tanpgaue can be eqresd &
4 = fitL, po,p1) (20.2)
where g = volumetric flow rate
L = vdve sem podtion (or lift)
po = upstream pressure
p1 = downstream pressure
The inherent valve characteristic is determined for fixed values of paand p, for
whch e By (202 beoomes
4 = fol) (20.3)
For convenience et
m = q/qmax and X = L/Lpmax
where g,y is the maximum flow when the valve stem is at its maximum lift
L. (vave is full-open)

X is the fraction of maximum lift
m is the fradion of maximum flow.

Equetion (2039) may now be witten
M= q/qmax = f(L/Lmpax)
or
m= f(x) (20.4)

The types of vave charadteridics can be ddined in tams of the sengtivity of
the valve, which is smply the fractional change in flow to the fractional change
in stem position for fixed upstream and downstream pressures, mathematically,
sndtivity may be written

sngtivity = dm dx

In terms of valve characteristics, valves can be divided into three types:
decreasing sensitivity, linear, and increasing sensitivity. These types are shown
in Fig. 20.3 where the fractional flow m is plotted against fractional lift x . For
the decressing sendtivity type, the sendtivity (or dope) decreses with m . For the

P —
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linear type, the sensitivity is constant and the characteristic curve is a straight
line. For the increasing sendtivity type, the senstivity increases with flow.

Valve characteristic curves, such as the ones shown in Fig. 20.3, can be
obtained experimentally for any valve by measuring the flow through the valve
as a function of lift (or valve-top pressure) under conditions of constant upstream
and downstream pressures. Two types of valves that are widely used are the linear
valve and the logarithmic (or equal percentage) valve. The linear valve is one for
which the sengitivity is constant and the relation between flow and lift is linear.
The equal percentage valve is of the increasing sensitivity type.

It is useful to derive mathematica expressions for these types of valves. For
the linear valve,

dmidx = « (20.5)

where o is a constant.

Assuming that the valve is shut tight when the lift is at lowest position, we
have that m =0 a x = 0. For a single-seated valve that is not badly worn, the
valve can be shut off for x = 0. Integrating Eq. (20.5) and introducing the limits
m=0a x=0and m= la x =1 gives

! !
J dm = adx
0 lo

Integrating this equation and inserting limits gives
a =1

Recall that the definitions of x and mrequirethat m= 1 a x = 1. For a =1,
Eg. (20.5) can now be integrated to give

m = X (linear valve) (20.6)
For the equa percentage valve, the defining equation is
dmldx = Bm (20.7)
where B is constant. Integration of this equation gives
J dm = j Bdx (20.8)
mg m 0
or
m
In— = 0.
nm0 Bx (20.9)

where myg is the flow at x = 0. Equation (20.9) shows that a plot of m versus x
on semi-log paper gives a straight line. A convenient way to determine if avalve
is of the equal percentage type is to plot the flow versus lift on semi-log paper. The
relation expressed by Eq. (20.9) is the basis for caling the valve characteristic
logarithmic. The basis for cdling the vave characteristic equal percentage can be
seen by rearranging Eg. (20.7) in the form

dnim = Bdx or  hmim = BAx
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In this form it can be seen that an equal fractiona (or percentage) change in
flow (Am/m) occurs for a specified increment of change in stem position (AX),
regardless of where the change in stem position occurs along the characteristic
curve.

The term B can be expressed in terms of ma by insertingm= latx =1
into Eq. (20.9). The result is

B = In(1/my)
Solving Eq. (20.9) for m gives
m= mgeP*  (equd percentage valve) (20.10)

In integrating Eq. (20.7), the flow was assumed to be mg a x = 0. Mathe-
matically this is necessary, because mg cannot be taken as zero at x = O because
the term on the left side of Eq. (20.9) becomes infinite. In practice, there may
be some leakage (hence mq # 0) when the stem is at its lowest position for a
double-seated valve or for a vave in which the plug and seat have become worn.

For some vaves, especidly large ones, the valve manufacturer intentionaly
allows some leakage at minimum lift (x = 0) to prevent binding and wearing of
the plug and seat surfaces. For a valve that does shut tight and is dso classfied as
an equa percentage valve, the equal percentage characteristic will not be followed
when the valve is nearly shut. In practice, the control valve serves as a throttling
valve and is not intended to be wide-open or completely closed during normal
operation.

In order to express the range over which an equal percentage vave will
follow the equal percentage characteristic, the term rangeability is used. Range-
ability is defined as the ratio of maximum flow to minimum controllable flow over
which the vave characteristic is followed.

Rangesbility = —vmex

M min, controllable

For example, if mg is 0.02, the rangeability is 50. It is not uncommon for a
control valve to have a rangeability as high as 50.

In practice, the ideal characteristics for linear and equal percentage valves are
only approximated by commercially available valves. These discrepancies cause
no difficulty because the inherent characteristics are changed considerably when
the valve is ingtalled in a line having resistance to flow, a situation that usualy
prevails in practice. In the next section, the effect of line loss on the effective
vave characterigtic will be discussed.

Effective Valve Characterigic

When a vave is placed in a line that offers resistance to flow, the inherent charac-
teristic of the valve will be atered. The relation between flow and stem position
(or valve-top pressure) for a valve installed in a process line will be caled the
effective  valve characterigtic.
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HORE 20-4
Control valve with supply line.

Consider a control valve having an inherent linear characteristic to be at-
tached to the end of a pipeline that delivers water to an open tank. A diagram
of the system is shown in Fig. 20.4. If the pipe is of large diameter relative to
the size of the control valve, the pressure drop in the line will be negligible and
the full pressure drop pg — p1 will be across the valve as the lift varies between
zero and one. In this case a plot of flow versus lift will give a linear relation as
shown by Curve | of Fig. 205. This curve is for the flow of water a 5° C through
a control valve for which C, = 4.0 and the overall pressure drop, po — p1, IS
100 psi. To show the effect of line loss, Curve Il is constructed for the same
conditions as Curve |, with the exception that 100 ft of 1.0 in. (inside diameter)
pipe is used to supply the valve.

Example 20.2 will give the detailed calculations used to obtain the results
in Fig. 205. For 100 ft of pipe the plot of flow versus lift gives Curve Il, shown
in Fig. 205, in which the curve fals away or droops from the linear relation that
holds for no line loss. Since line loss is proportional to the square of the velocity,
the line loss is very small when the valve is nearly closed, for which case the
total pressure drop is across the valve. For this reason, Curves | and Il in Fig.
205 ae close together a low rates. A rule often followed in industria application
of control valvesis that the pressure drop across the wide-open valve should be
greater that 25 percent of the pressure drop across the closed valve. A valve not
selected according to this rule will lose its effectiveness to control at high flow
rates.

40
30+ I
g I
S 201
)
10k FIQRE 20-5
Effect of line loss on effective control valve character-
o igics from Example 20.2. | no pressure drop in supply

0 0'_ 2 0'_ 4 o', 6 o', 8 10 line to vave Il pressure drop present in supply line to
x, fraction lift valve.
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Example 20.2. Determine the flow versus lift relation for the linear control valve
ingaled in the flow system of Fig. 20.4. The fluid is water & 5° C. The following

dataapply:

pipe length 100 ft
indde pipe diameter 10in
density of water 624 Ib/ft?
viscosity of water 15¢cp
C, of control vave 40
total pressure drop, po — p1 100 ps

If there is no line loss as is the case for a large diameter ling, the maximum
flow can be cdculated from Eq. (20.1):

P

q =c, /ég—v=4.0/—1i2=40.0gpm

To determine the flow/lift relation for the case of line loss, we arbitrarily dart the
caculation with a flow of 30 gom. The pressure drop in the 100 ft pipe can be
cdculated from the wel known expression from fluid mechanics.

= M (20.12)

Ap= 14472g D3

where Ap = pressure loss in line, ps

g = flow through pipe, ft3/sec

g = 32174 (Ibw/Tog)(ft/sec?)

L = pipe length, ft

p = density of fluid, Iby/ft3

D = indde pipe diameter, ft

f = fanning friction factor, dimensionless

The fanning friction factor is a function of the Reynolds number and the pipe

roughness. Equation (20.11) and a correlation for the fanning friction factor can be

found in the literature (Perry and Chilton, 1973). We now caculate the Reynolds
number (Re):

Re = Dup/u
Replacing the velocity u with g/[(w/4)D?] dives

Re = 4P (20.12)
wuD

q = 30/(60)(7.48) = 0.0668 ft%/sec or 2406 ft/hr

(4)(240.6)(62.4)

(m)(1.50)(2.42)(1/12) = 63, 224




312 PROCESS APPLICATIONS

For this value of Reynolds number and for smooth pipe, the fanning friction factor
f is 0.005. Equation (20.11) may now be used to cdculate line loss.

_ (32)(0.005)(100)(62.4)(0.0668)2
- (144)(12)(32.2)(1/12)°

therefore Ap across vave = 100 = 24.2 = 75.8 ps

Ap

= 24.2 psi

We next cdculate the flow through the wide-open vave for a pressure drop of 75.8

psi:
qmax = Cv,/Agv = 4.0 /7—51‘8 = 34.8 gpm

Since the flow through the wide-open vave of 34.8 gpm at a pressure drop
across the valve of 75.8 pd is greater than the sdlected value of 30 gpm, which was
used to begin the caculation, we know the valve must be partidly closed. Since the
vave is linear, we cdculate the lift x as follows.

x=30134.8 = 0.86

By means of smilar caculations, saverd points on the effective characteristic curve
of Fig. 205 can be found; the results are summarized in Table 20.1. The reaults
shown in this table were used to obtain Curve Il in Fig. 20.5.

Example 20.3. A control valve is to be ingaled in the flow system of Fig. 20.4.
The vave is supplied by water a 5°C through 200 ft of pipe having an insde
diameter of 1.0 in. The total pressure drop, pg = P1, is 100 ps. When the vave is
wide-open, the flow isto be 30 gpm. Determine C,, for the valve. Plot the effective
characterigtic curve for the vave as flow versus lift. Do this problem for a linear

vave and for an equa percentage vave. The equa percentage vave has an mu of
0.03.

Linear Valve. To obtain the pressure drop in the ling, use is made of Egs. (20.11)

and (20.12) as was done in Example 20.2. From Eqg. (20.12), we obtain the Reynolds
number as follows:

g = 30/(60)(7.48) = 0.0668 ft3/sec or 2406 ft3/hr

dgp _ (4)(240.6)(62.4)

Re = 704D =~ 52402

= 63,200

TABLE 20.1
Effective characteristic for a linear valve with supply line loss
(Example 20.2).

¢, gpm X, fraction lift Apinline, psi
0 0 0
20 0.53 10.8
30 0.86 24.2

33 1.0 30.0
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From a correlaion for the fanning friction factor, we obtain f = 0.005. From Eq.
(20.11), theline loss is calculated to be:

Ay = (32)(0.005)(200)(62.4)(0.0668)2
P = 140 (7mH(32.2)(1/12)3

Ap, = 100 = 485 = 51.5psi

From knowledge of the maximum flow through the wide-open vave (30 gpm) and
Ap,, we cdculate C, from Eq. (20.1) as follows

= 48.5psi

Cy = 418

_ q _ 30
JApy/G J51.5
From C,, one can now calculate the stem position x needed for various flow retes
m.
For ¢ = 20 gpm, one obtains from Eq. (20.11)

Ap = 216 ps
and
Ap, =100 - 216 = 784 ps
For a wide-open vave (x = 1), across which the pressure drop is 784 pd, we

obtain
gmax = C» /Ag” = 4.18 /# = 37.0 gpm

The fraction of lift needed to reduce the flow to 20 gpm is
X =20/37 = 0.4

For other flow rates, one can repeet this cdculation to obtain values of x . The
results are shown in Table 20.2 and in Fig. 20.6. The latter dso shows the inherent
characteridtic of the linear vave for comparison with the effective characteristic of

the vave when line loss is present.

TABLE 202 o _
Effective characteristics for a linear valve and an equal percentage valve

(Example 20.3).

Maximum Row Of water at 5" C: 30 gpm
Pressure drop across flow system: 100 psi

Pipe length: 200 ft, Ingde pipe diameter: 1.0 in.
C, =418 my = 003

q Ap, x X
gpm psi linear equal percentage
0 100 0 i
10 94.6 0.25 0.60
20 785 054 0.82
30 514 100 100

* For the equal percentage valve, mg = 0.03 when x = 0.
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Linear valve

II

FIGURE 20-6
Equal percelntage valve Comparison of effective valve characteristics of a linear
i i

0 L vave and an equal percentage valve from Example 20.3.
0 0.2 0406 0810 | ided lineer characteridtic, Il linear vave, Il equd per-
x, fraction lift centage valve.

Equal percentage valve. Cdculation of the effective characteristic will now be made
for an equa percentage valve having the same €, of 4.18 as caculated for the linear
vave in the firg part of this example.

For mg = 0.03, the value of B is calculated to be

B = In(l/mp) = In(1/0.03) = 351
For a flow rate of 20 gpm,
M= g/qmax = 20/37 = 0.54
Solving Eq. (20.9) for x and inserting the velues for 8, mg, and m give
x = (1/3.51)In(0.54/0.03) = 0.82

For other vaues of flow, corresponding vaues of x are cdculated and the results
are shown in Table 20.2 and Fg. 20.6.

BENEFIT OF AN EQUAL PERCENTAGE VALVE. It is often stated in the control
literature that the benefit derived from an equal percentage valve arises from its
inherent nonlinear characteristic that compensates for the line loss to give an
effective valve characterigtic that is nearly linear. A study of Fig. 20.6 shows
that in this example an equal percentage valve overcompensates for line loss and
produces an efedive charadeidic thet is not linear, but is bowed in the oppogte
direction to that of the effective characteristic of the linear valve. In summary,
neither vave in this example produces an effective characterigic that is linear.
Ore can dow tha as the line loss increeses the liner vdve will depat more from
the ided linear rdation and the equa percentage vadve will move more dosdy
tovad the liner rdation.

In practice, a valve designated as linear will not give a linear characterisitic
exactly as defined in this chapter. To achieve a truly linear characteristic would
require very careful design and precision machining of the valve plug and seat.
The ssme commat can be made far an equd paoaage vdve as ddined by Eg
(20.10). In order to know the effective characteristic of a valve, one must test it
experimentdly.

VALVE POSITIONER

The fridion in the packing ad guidng sufaces of a cord vave causss a oo
trol valve to exhibit hysteresis as shown in Fig. 20.7, in which stem position is
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x, stem position

FHGRE 20-7
Py, signa to valve Control valve hysteresis.

plotted against valve-top pressure. When the pressure increases, the stem position
increases along the lower curve. When the pressure decreases, the stem position
decreases along the upper curve. At the moment the ar pressure signa reverses,
the stem position stays in the last position until the dead band H is exceeded,
after which the pressure begins to decrease or increase adong the paths shown by
the arrows. If the valve is subjected to a ow periodic variation in pressure, a
typical path taken by the stem position is shown by the closed curve ABCDA in
Fig. 20.7.

The hysteresis described in the previous paragraph should be distinguished
from the dynamic lag of a vave discussed in Chap. 10. The dynamic lag discussed
in Chap. 10 is caused by the volume of space above the valve diaphragm, the
resistance to flow of air to the valve top, and the inertia of the valve stem and
plug; such a lag is expressed by a fird-order or second-order transfer function. On
the other hand, hysteresis, which is caused by the friction between the stem and
the packing, is a nonlinear phenomenon and cannot be expressed by a transfer
function. A valve can exhibit both dynamic lag and hysteresis.

The presence of hysteresis in the valve can cause the controlled signal to
exhibit an oscillation or ripple caled a limit cycle Since this limit cycle is usudly
considered objectionable and contributes to wear of the valve, a method is needed
to eliminate it. Since the limit cycle is a nonlinear phenomenon related to the
hysteresis, controller tuning is not a solution to the problem.

To reduce the deleterious effect of hysteresis and to also speed up the re-
sponse of the valve, one can attach to the control valve a positioner which acts
as a high-gain proportional controller that receives a set-point signa from the
primary controller and a measurement from the valve stem position. In this sense,
the addition of a valve positioner introduces a form of cascade control, which
was discussed in a previous chapter. A sketch of a control valve with a positioner
attached is shown in Fig. 20.8. The positioner, bolted to the valve actuator, has
an arm that is clamped to the valve stem to detect the stem position.

Notice that the valve positioner shown in Fig. 20.8, has the usua connec-
tions for a controller: a set point that calls for a desired stem position in the
form of a signal from the primary controller p., a measurement in the form of
stem position x, and a pneumatic output in the form of a pressure to the valve
top p,. The mechanical details of an actua valve positioner involve a pneumatic
mechanism functioning as a high-gain proportiona controller. The gain is built
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Output to valve,p,

Valve positioner

— "
— <— Signal from
controlier, p,

Valve position
EI/ indicator
1,:
Arm attached to stem

— {‘_‘ W ——> o sense valve position

FIGURE 20-8
Control valve with postioner (Compare with Fig. 20.1).

into the design of the positioner and cannot be adjusted. The valve positioner is
especialy important for speeding up the valve motion, and diminating hysteresis
ad vdve dem friction

SUMMARY

The control valve is a component of a control system often overlooked in a
ocouse on process cordl. In this chepter, the desription, sdedtion, and dzing of
preumdic contrd vaves were presated. Vdves may be of the presuretodose
or the pressure-to-open type; the selection of the type is often related to safety
conddadions If the ar presure fals the vadve shoud rdumn to a podtion which
edres sfe opading condtions for a prooces

The flow capacity of a valve is based on an equation relating flow to the
Quae root of the pressre drop aoross the vave the proportiondity congat C,
in this equetion is a messure of the velve's cepedty for flow. The lager €, then
the lager the flow.

Vaves ae dasdfied aoodng to their inherat flow charedaidics such &
linear or equal percentage. A linear valve produces a flow (for constant pressure
drop across the valve) that is proportional to the valve stem position, which in
tun is propotiond to the vavetop presure

The presence of a long, small-diameter line supplying a vave causes the
presre dop aoss the vave to dexese with the inceese of flow, for a fixed,
ovadl presure drop aooss the sydem. If the pressre drop in the line is excesdve,
the characterigic of the liner vave will become nonliner and in tams of contral
theory, the desdy-date gain K, of the vave deoessss with flow. As a reait of the
change in valve gain, the controller in the loop must be readjusted for different
flow raes in oder to mantan the same degree of dablity. To overcome this lime
itation of the linear valve, an equal percentage (or logarithmic) valve is available
for which the gan of the vave incressss with flov rade Such a vdve compansaes
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for the line loss and produces an effective charateristic that approaches a linear
relation. The basis for the name equal percentage (or logarithmic) is related to
one form of the mathematical expression that describes the valve. In this form, an
equal percentage change in flow occurs for a specified change in stem position,
regardless of the stem position.

In order to diminate hysteresis, which can produce cycling and cause wear
of the valve plug and seat, a valve positioner may be attached to a control valve.
The positioner also speeds up the motion of the valve in response to a signa from
the controller.

PROBLEMS

20.1. A linear contral valve having a C, of 0.1 is connected to a source of water. If
the pressure drop across the vave is 400 ps and if the pneumatic pressure to the
vave top is 12 pdg, what is the flow rate through the valve? The vave goes from
completely shut to completely open as the valve-top pressure varies from 3 to 15
psg.

20.2. (@) Under what conditions would an equal percentage valve be used instead of a

liner vave?
(b) What are some reasons to use a vave postioner?
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In order to investigate theoretically the control of a process, it is necessary first to
know the dynamic character of the process that is being controlled. In the previous
chapters, the processes have been very simple for the purpose of illustrating con-
trol theory. Many physical processes are extremely complicated, and it requires
considerable effort to construct a mathematical model that will adequately simu-
late the dynamics of the actual system. In this chapter, we shall analyze severad
complex systems to indicate some of the types of problems that can be encoun-
tered. In these examples, the technique of linearization, first presented in Chap.
6, will be applied to a function of severa variables. One example will lead to a
multiloop control system. In the last section, distributed-parameter systems will
be discussed.

CONTROL OF A STEAM-JACKETED
KETTLE

The dynamic response and control of the steam-jacketed keitle shown in Fig. 21.1
ae to be considered. The system conssts of a kettle through which water flows
at avariable rate w Ib/time. The entering water is at temperature T';, which may
vary with time. The kettle water, which is well agitated, is heated by steam con-
densing in the jacket at temperature T, and pressure p,. The temperature of the
water in the kettle is measured and transmitted to the controller. The output signa
from the controller is used to change the stem postion of the valve, which adjusts
the flow of steam to the jacket. The major problem in this example is to determine

318
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@ |— Controller

Temperature-measuring
element.

A NN

<J{L\/Contml valve
Steam

| 3 FIGURE 21-1
: Control Of a stam-jacketed kettle.

N

wt
T, Condénsate

the dynamic characteristics of the kettle. The kettle is actually a nonlinear system,

and in order to obtain a linear model a number of simplifying assumptions are
needed.

Analyss of Kettle
The following assumptions are made for the kettle:

1. The heat loss to the atmosphere is negligible.
2. The holdup volume of water in the kettle is constant.

3. The thermal capacity of the kettle wall, which separates steam from water, is
negligible compared with that of the water in the kettle.

4. The therma capacity of the outer jacket wall, adjacent to the surroundings,
is finite, and the temperature of this jacket wall is uniform and equa to the
steam temperature at any instant.

5. The kettle water is sufficiently agitated to result in a uniform temperature.

6. The flow of heat from the steam to the water in the kettle is described by the
expression

4 =UT - T,
where ¢ = flow rate of hest, Btu/(hr)(ft?)
U = overdl heat-transfer coefficient, Btw/(hr)(ft2)(°F)
T, = steam temperature, °F
T, = water temperature, °F

The overall heat-transfer coefficient U is constant,
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7. The heat capacities of water and the metal wall are constant.
8. The density of water is constant.
9. The steam in the jacket is saturated.

The assumptions listed hem are mote or less arbitrary. For a specific kettle oper-
aing under a paticular set of conditions, some of these assumptions may require
modification.

The approach to this problem is to make an energy balance on the water side
and another energy balance on the steam side. In order to ad the development of
the transfer functions, a schematic diagram of the kettle is shown in Fig. 21.2.
The symbols used throughout this andysis are defined as follows.

= temperature of inlet water, °F

temperature of outlet water, °F

temperature of jacket steam, °F

= temperature of condensate, °F

flow rate of inlet water, Ib/time

w, = flow rate of seam, Ib/time

w, = flow rate of condensate from kettle, Ib/time
m = mass of water in kettle, |b

my = mass of jacket wall, Ib

v = volume of jacket steam space, ft3

c = heat capacity of water, Btu/(Ib)(°F)

C1 = heat capacity of metal in jacket wall, Btu/(Ib)(°F)

g 83
I

A = crosssectiondl area for heat exchange, ft?

t = time
H, = specific enthalpy of steam entering, Btu/lb
H_ = specific enthalpy of condensate leaving, Btu/lb
U, = specific internal energy of steam in jacket, Btu/Ib

py = density of steam in jacket, Ib/ft?

Water w
T

FIGURE 213
Schematic diagram of kettle.
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An energy balance on the water side gives

dT,
dt

In Eq. (21.1), the terms C, U, A, and m are constants. The first term in Eq. (21.1)
is nonlinear, since it contains the product of flow rate and temperature, that is, wT;

and w T,. In order to obtain atransfer function from Eq. (21. 1), these nonlinear
terms must be linearized. Before continuing the analysis, we shall digress briefly
to discuss the general problem of linearization of a function of severa variables.

Consider afunction of two variables, z(x,y). By means of a Taylor series

expansion, the function can be expanded* around an operating point x ¢y, as
follows:

wC(T; = T,) + UA(T, = To) = mC (21.1)

a9z
P (x = x5) + 3y

+ higher-order terms in (x = x) and (y = ys)

The subscript s stands for steady dtate.

In control problems, the operating point (X s,y ), around which the expan-
sion isto be made, is selected at steady-state values of the variables before any
disturbance occurs. Linearization of the function z consists of retaining only the
linear terms, on the basis that the deviations (x = x |), etc., will be small. Thus,

xs')hv (y - yS)

x )+ 9z
Z= 2 » -
»YIF 5% (21.2)

Z= 75+ Ze,(Xx = x5) + 2y, (y= ¥s) (213
where z,, and z,, are the partial derivatives in Eq. (21.2). If z is a function of
three or more vaiddes the lineaized fom is the same as that of Eg (21.3) with
an additional term for each variable.

The linearization expressed by Eq. (21.3) may be applied to the terms wT;
and wT, in Eqg. (21.1) to obtain

wl; = wiTiy + wi(Ti=T;)) 4+ T; (w=ws) (214)
and
wT, = wiTo, + w(To = T,) + Ty (w = wy) (215)

Notice that for these cases the nonlinear terms are wT; and wT,. The first partia
derivatives, evaluated at the operating point, are

IWT;) _
Jw IWS'TI'S - Tis
3(WT,') _
aT; |WS’Ti_;- = W

*The reader may refer to 1. S Sokolnikoff and R. M. Redheffer (1966) for further discussion of this
expansion.
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Introducing Eqg. (21.4) and (21 .5) into (21.1) gives the following linearized
equation:

(T, = To)w = W) + wy(T; = T)IC + UAT, = T)) = mC ‘ZT;’ (21.6)

At steady state, dT,/dt = 0, and EqQ. (21.1) can be written

wsC(T;, = To,) + UAT,, = T,,) = O (21.7)
Subtracting Eq. (21.7) from (21.6) and introducing the deviation variables
T! =T, =T,
T,= T, = T,
Tv' = Tv - Tvs
W= W-Ww,

and rearranging give the result

drT,
CUTi, = To)W + wsTi = Tl + UAT, = T,) = mC—= (21.9)
Taking the transform of Eq. (21.8) and solving for T,(s) give
K1 K2 K3
T,(s) = T/(s) + T)(s)— 21.9
o(8) Tws + 1 i(5) Tws + 1 (8 TwS + IW(S) @19)
w,C
where Ky = m
K, = UA
UA+ w,C
— C(TOS = Ti:)
Ks = T e
_ mC
™ " UA+ w,C

From Eqg. (21.9), we see that the response of T, to T}, T,, or W is first-order with
atime constant 7,,. The steady-state gains (Ks) in Eq. (21.9) are al positive.
The following energy balance can be written for the steam side of the kettle:

Vd(p,U,) + dT,
dt miCi—r

Notice that we have made use of assumption 4 in writing the last term of Eq.
(21. 10), which implies that the metal in the outer jacket wall is always ét the
Steam  temperature.

A mass balance on the steam side of the kettle yields

wyH, = w.H, = UA(T, = T,) + (21.10)

dp,
W, = We = Vﬁ”t— (21.10)
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Combining Egs. (21.10) and (21.11) to eliminate w,. gives

dT,
dt

dp,
wy(H, = H,) = (U, = HC)V—de +mC 1 + UA@T, - T,)

. (21.12)

dt

The variables p,, Uy , H,, and H . are functions of the steam and conden-

sate temperatures and can be approximated by expansion in Taylor series and
linearization as follows:

+ Vp,

o
<
1

Pv, + a(l, - Tv;)

Uy= U,+ §T,~T,) (21.13)

H, - Hy,,+ y(T,-T),)
H, - HCs + o —~ Tc_;)
dpy
h =
wnere o dTv ls
du,
= ar, ls
_ dH, l
Y =T, s
_ dH,
o= dT, |s

The parameters a, ¢, y, and ¢ in these relationships can be obtained from the
steam tables once the operating point is selected.*
Introducing the relationships of Eq. (21.13) into Eq. (21.12) and assuming

the condensate temperature 7. to be the same as the steam temperature 7', give
the following result:

*For example, if the operating point is at 212° F and the deviation in steam temperature is 10° F,
we obtain the following esimate of y from the steam tables

T,, = 212°F

H,, =1150.4 Btu/lb
AtT, = 222° F,

H, = 11541
AtT, = 202° F,

H, = 11466

1154.1 -~ 1146.6
v~ —orz0z =03
and
H, = 11504+ 0.375(T, = 212)

In a smilar manner, the properties of saturated steam can be used to evaluate @, ¢, and o.
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[Hvs ._ HCS + (y - U)(Tv - Tvs)]wv = |(Uvs - Hcs)

¢ miCyl _dT,
+ (2¢ — o )T, T,,) + ans + oV aV 7

+ UAT, - T,) (21.14)

Some of the termsin EqQ. (21.14) can be neglected. The term
(y =T - T))

can be dropped because it is negligible compared with (H,, — H,,). For example,
for steam a atmospheric pressure, a change of 10°F gives a vaue of (y = o)T, =
T,,) of about 7 Btu/lb while (H, — H_,) is 970 Btudb. Similarly, the term
(2¢ — o)(T = T,,) can be neglected. For example, this term is about -4 Btu/lb
for a change in steam temperature of 10°F for steam at about 1 atm pressure; the
term (U,, = H,) is 897 Btu/lb under these conditions. Also, the term ¢p, /o
is about 15 Btu/Ib and can be neglected. Discarding these terms, writing the
remaining terms in deviation variables, and transforming yield

! — ' Ks
T,(s) = . 1To(s) + st 1Wv(s) (21.15)
where T, = T, ~ T,
W= wy = wy,
— HV.Y - HCS
K="
7 = (Uvs - HCS)aV + m1C1
! UA

From Eq. (21.15), we see tha the steam temperature&&depends on the steam flow
rate W, and the water temperature T,. The combination of Egs. (21.9) and (21.15)
give the dynamic response of the water temperature to changes in water flow rate,
inlet water temperature, and sSteam flow rate. These equations are represented by
a portion of the block diagran of Fig. 21.4. Before completing the analysis of the
control system, we must consider the effect of vave-stem postion on the steam
flow rate.

Analyss of Valve

The flow of steam through the valve depemds on three variables: steam supply
pressure, steam pressure in the jacket, and the valve-stem postion, which we shal
assume to be proportional to the pneumatic value-top pressure p. For simplicity,
assume the steam supply pressure to be constant. with the result that the steam
flow rate is a function of only the two remaining variables; thus

wy = f(p,pv) (21.16)

Because of the assumption that the steam in the jacket is always saturated, we
know that p, is afunction of T,;thus

pv = g(T,) (21.17)
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This functiona relation can be obtained from the saturated steam tables. Equations
(21.16) and (21.17) can be combined to give

wy, = flp.g(M1 = f1lp,Tv)

The function fi(p. Tv) is in general nonlinear, and if an analytic expression* is
available, the function can be linearized as described previously.-In this example,
we shall assume that an analytic expression is not available. The linearized form
of fi(p, Ty) can be obtained by making some experimental tests on the valve.
If the valve-top pressure is fixed at its steady-state (or average) value and w, is
measured for severa values of T, (or p,), a curve such as the one shown in Fig.
21.3a can be obtained. If the steam temperature T, (or p,) is held constant and
the flow rate is measured at several values of valve-top pressure, a curve such
as that shown in Fig. 21.3b can be obtained. These two curves can now be used
to evaluate the partial derivatives in the-linear expansion of f1(p,T) as we shall
now  demongrate.

Expanding w,. about the operating point p,,T,, and retaining only the linear
terms  give

o dwy, : aw,
We = Wt T i, 0P+ G b, T = T
This equation can be written in the' form
1
W, = K,P - R—Tv’ (21.20)
where W, = w, — st '
P=p ~Ds- | _
Tv' ='Tv_Tvvs ’\ . .
‘_~t9wv : 1 } S -
Kv - ap '|ps’TVs .» )
L dwy A
E - . (9Tv ‘pS’TVs o e

*The flow of steam through a control valve can often be represented by the relationship.
PRt
w, = AsCy Jps — pv (21.18)
where ps = supply pressure of steam '
py = pressure downstream of valve
Ap = cross-sectional area for flow of steam through valve
C, = constant of the vaive

For alinear valve, Ay iSpropo;-tiona] to stem position and the stem position is proportional to
valvetop pressure p; under these conditions, Eq. (21.18) takes the form

wy = Cyp JPs — Py . (21.19)

-y oa
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T \/Slope =(g;’.:) =—z;
w,

L— ]
(a) p=p, b)7T,=T, T ©

FIGURE 213
Linearization of valve characteristics from experimental tests.

The coefficients K, and -I/R, in Eq. (21.20) are the slopes of the curves of
Fig. 21.3 at the operating point p,, Ty,. This follows from the definition of a
partial derivative. Notice that 1/R, has been defined as the negative of the slope
so that R, is a positive quantity. The experimenta approach described here for
obtaining a linear form for the flow characteristics of a vave is always possi-
ble in principle. However, it must be emphasized that the linear form is use-
ful only for small deviations from the operating point. If the operating point is
changed considerably, the coefficients K, and I/R,, must be reevaluated. Notice
that, in writing Eq. (21.20), we have assumed the valve to have no dynamic
lag between p and stem position. This assumption is valid for a system hav-
ing large time condants, such as a steam-jacketed kettle, as was demonstrated in
Chap. 10.

Block Diagram of Control System

We have now completed the analysis of the kettle and valve. A block diagram
of the control system, based on Egs. (21.9), (21.15), and (21.20) is shown in
Fig. 21.4.

The controller action is not specified but merely denoted by G, in the block
diagram. Also, the feedback element is denoted as H. From Fig. 214, we see tha
the steam-jacketed kettle is a multiloop control system. Furthermore, the loops
overlap. The block diagram can be used to obtain the overal transfer function be-
tween any two variables by applying the methods of Chap. 12. After considerable
algebraic manipulation, the following result is obtained:

T = GcGstKvR' + G1(1 + Gs/Ry) - G3(1.+ Gs/R,)
¢ D(s) D(s) ! D(s)
where D(s) = 1+ Gs/R, + G.G,GsK,H — G,G4. The terms G1,G2,G3,Gy,
Gs,G,, and Hare defined in Fig. 21.4. For example, if G, = K. and H = 1,
one obtains from Eq. (21.21) the transfer function
T, _ K
R~ 7252+ 2Wrs+1

W (21.21)

(21.22)
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FIGURE 214

Block diagram for control of steam-jacketed kettle.

where K = KK KaKs
D,
' D,
Tt Tt Ks7w/Ry
2T = D,

K
D=1+ R_i + K.K,K2Ks5 — K2

It is seen that the response of the control system is second-order when proportional
control is used and the measuring element does not have dynamic lag. Notice that
the parameters K, 72, and 2{7 in Eq. (21.22) are positive. This follows from the
fact that the parameters K,, K,, K7, Kg, R,, 7,, and 7,, are al positive and that
K, < 1. When ablock diagram of a control system becomes very complicated,

such as the one in this example, it is convenient to simulate the control system

with a computer. When computer sSmulation is sdlected as the means of studying
the transient response of the control system, the block diagram can be trandated
directly into a computer program. This computer-simulation technique will be
coveted in detail in Chap. 34.
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DYNAMIC RESPONSE OF A GAS
ABSORBER

Another example of a complex system is the plate absorber* shown in Fig. 21 .5.
In this process, air containing a soluble gas such as ammonia is contacted with
fresh water in a two-plate column in order to remove part of the ammonia from the
gas. The action of gas bubbling through the liquid causes thorough mixing of the
two phases on each plate. During the mixing process, ammonia diffises from
the bubbles into the liquid. In an industrial operation, many plates may be used;
however, for smplicity, we consider only two plates in this example, since the
basic principles am unaffected by the number of plates.

Our problem is to analyze the system for its dynamic response. In other
words, we want to know how the concentrations of liquid and gas change as a
result of change in inlet composition or flow rate.

Throughout the analysis, the following symbols are used:

L, = flow of liquid leaving nth plate, moles/min

V. = flow of gas leaving nth plate, moles/min

x, = concentration of liquid leaving nth plate, mole fraction NH3
ya = concentration of gas leaving nth plate, mole fraction NH3
H, = holdup (or storage) of liquid on nth plate, moles

*The reader who has not studied gas absorption may find this subject presented in any textbook on
chemical engineering unit operations. For example, see Bennett and Myers (1982).

Water,
Ly x4 V, »

3 N Plate 2

Bubble cap ~— "1}3’1 t{
%2 Plate 1
Downcomer - A
weir \N\( *”
—
pir-  FIGURE 215

Lyx < % % {ammonia Bubble-cap gas absorber.



THEORETICAL ANALYSIS OF cowpLex PROCESSES 329

In order to avoid too many complicating details, the following assumptions
will be used:

1. The temperature and total pressure throughout the column are uniform and do
not vary with changes in flow rates.

2. The entering gas stream is dilute (say 5 mole percent NH3) with the conse-
guence that we can neglect the decrease in total molar flow rate of gas as
ammonia is removed. Likewise, we can assume that the molar flow rate of
liquid does not increase as ammonia is added.

3. The plate efficiency is 100 percent, t which means that the vapor and liquid
streams leaving a plate are in equilibrium. Such a plate is caled an ideal
equilibrium stage.

4. The equilibrium relationship is linear and is given by the expression

Yu = mx® + b (21.23)

where m and b are constants that depend on the temperaiure and total pressure
of the system, and x}, is the concentration of liquid in equilibrium with gas of
concentration y,. For an ideal plate

Xn= X,

5. The holdup of liquid H, on each plate is constant and independent of flow rate.
Furthermore, the holdup is the same for each plate, that is, H = H, = H .

6. The holdup of gas between plates is negligible. As a consequence of this
assumption and assumption 2, the flow rate of gas from each plate is the same
and egual to the entering gas flow rate; that is,

o=W=Wn=V

In this list of assumptions, the one which is most likely to be invalid for a
practical process is that the plate is an ideal equilibrium stage.

tIf the efficiency of the plate is not 100 percent, we can introduce an individua tray efficiency of
the Murphree type, defined as

= ¥n® Xn+l
X5 = Xn+l

En

where x  is the concentration of the liquid in equilibrium with gas of composition y 4. Notice that for

ani&a plate E,= 1 and x» = xj,. In generd the efficiency of a plate depends on the design of the

plate, the properties of the gas and liquid streams, and the flow rates. We could include efficiency in
our mathematicd model; however, to do so would greatly increase the complexity of the problem. To
account properly for the variation in efficiency with flow rates would require empirica relationships
for a specific plate design.
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Analysis

We begin the andyss of this process by writing an ammonia balance around each
plate. A mass balance on ammonia around plate 1 gives

dx
Hd_tl = Laxa+ Vyg = Lixy = Vy; (21.24)
This last equation states that the accumulation of NnH3 oOn plate 1 is equa to the
flow of NH3 into the plate minus the flow of NHj3 out of the plate. Notice that V
and H do not have subscripts because of assumptions 5 and 6.
A mass balance on anmonia around plate 2 gives

dJC2

H—== Vi1 = Lixs - vy, (21.25)

The last equation does not contain a term L3x3, since we have assumed that
X3= 0.

For an idedl plate x , = x,, and the equilibrium relation of Eq. (21.23)
becomes

Yo = MX, + b

Substituting the equilibrium relationship into (21.24) and (21.25) gives

d
H-;tzl Lyxy = Lix1+ Vm(xg = x1)
and
dx
H——-2— = Vm(x; = xq) — Lyxa

dt

where xo = (yo = b)/m is the composition of liquid that would be in equilibrium
with the entering gas of composition yq. Solving these last two equations for the
derivatives gives

1
%xtl = ﬁ(szz =Lixy) + YI?‘(-’CO -X1) (21.26)
d Vm 1
%2 = ?(xl -X3) ﬁLZIZ (21.27)

Thus far the analysis has resulted in two nonlinear first-order differential
equations. The nonlinear terms in Egs. (21.26) and (21.27) are Lyx, and Lx 1.
The forcing functions in this process, which must be specified as functions of ¢,
are the inlet gas concentration [x¢ = (ye ~ b)/m] and the inlet liquid flow rate
Ls. In order to solve for x 1(¢) and x 2(¢), we must have two more equations, ob-
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tained by considering the liquid-flow dynamics on each plate. Assume that
each plate can be considered as a first-order system for which the following
equations hold: *

dL,
—t =L.—-L 21.28
e 3— L (21.28)
and
Tl% = L,—L, (21.29)

The time constants in these equations (7; and 72) can be determined exper-
imentally by the methods of Chap. 19. The first-order representation for liquid
dynamics was found to be adequate by Nobbe (1961). We now have four dif-
ferential equations [Egs. (21.26) to (21.29)], and six variables (x 1, x2, x9, L1,
L,, L3). Since x¢ and L3 are the forcing functions, which are specified functions
of time, these four equations can be solved for x1(t), x5(t), L1(¢), and L2(?) in
terms of xc and L3..

We shdl now divide the problem into two cases. The first case requires that
we find the response of y; to a change in the inlet gas concentration only, the
liquid flow rate remaining constant. In this case, the problem is linear and only
Egs. (21.26) and (21.27) are needed.

In the second case, it is assumed that we want to know the change in outlet
concentration y, for a change in both inlet flow and inlet gas concentration. For
this case, four simultaneous differential equations must be solved, two of which
contain nonlinear terms. One approach to this problem is to linearize the nonlinear
terms as was done in the case of the steam-jacketed kettle of the previous example;
however, since this technique has already been illustrated, we shall not repeat it
here.

*The assumption that the plate behaves as a first-order system with respect to liquid-flow dynamics
would have to be justified experimentaly. For the common bubble-cap plate, liquid builds up on the
plate and flows over a welr, which may consist of a circular pipe or a verticd plate. The resistance
to flow from the plate is therefore a weir, for which flow-head relationships are known (see footnote
in Chap. 6). However, these flow-head relationships for weirs have been developed for the flow of
liquids that am not aerated. In the case of flow of liquid over a bubble-cap plate, the liquid is very
turbulent as a result of the agitation of the bubbles rising through the liquid. For this reason, one
cannot expect the flow-head relations developed for quiescent flow to apply to the turbulent conditions
present in the liquid on a plate. The true flow-head relation should be determined experimentally.

The fact that the flow rate is assumed to vary without change in holdup on the plate (assumption
5) appears to be contradictory. Actually, to increase the flow rate, a dlight increase in level (and
therefore holdup volume) above the crest of the weir is required. However, for the example under
consideration, it will be assumed that the change in level needed to produce a substantial increase in
flow is so smal that the change in the amount of liquid on the plate is a small fraction of the total
liquid holdup.
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For the first case where the inlet liquid flow rate remains constant (L, =
Ly =L), Eqgs. (21.26) and (21.27) can be written

d
_axt—l = —ax;+ bxy+ cxo (21.30)
d_;tz = cx1 - ax (2131)
L Vm
wherea = — + —
H H
L
b= —
H
¢ = Vm
H

At steady state, dxy/dt = dxy/dt =0, and Egs. (21.30) and (21.31) can be
written

0

—axy, + bxy t cxg
=X, — axy,
Subtracting these steady-state equations from Egs. (21.30) and (21.3 1) and intro-
dpcingthedeviation variables X) = x;—x,, X2 = x9—x2,, and Xp = X0~ Xo,
give
dX,
dr
dX,
dt
Notice that Xy = Yo/m because

= —aX;+ bX; + cX, (21.32)

= CX] - aX2 (21.33)

Xo = xo = xg,
Xo=2u"b- b _Yo—Yo N
m m m m
Equations (21.32) and (21.33) can be transformed to give
sXi= —aX;+ bX,; + cXp
sXy = cX;) = aX,

We now have two algebraic equations and three unknowns (X, X3, and Xg).
Solving this pair of equations to eliminate X, and replacing X, by Y»/m and X
by Yy/m give the transfer function

Ya(s) c/(a? = be)

Yo(s)  [1/(a? - bc))s? + [2al(a? - be)]s + 1

(21.34)
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This result shows that the response of outlet gas concentration to a change in ‘inlet
gas concentration is second-order. One can show* that { for this system is greater
than 1, meaning that the response is overdamped. If the anaysis is repeated for a
gas absorber containing n plates, it will be found that the response between inlet
gas concentration and outlet gas concentration is nth-order.

DISTRIBUTED-PARAMETER SYSTEMS
Heat Conduction into a Solid

In Chap. 5, the analysis of the mercury thermometer was based on a “lumped-

parameter” model. At that time, reference was made to a distributed-parameter
model of the thermometer. To illustrate the difference between a lumped-parameter
system and a distributed-parameter system, consider a slab of solid conducting
material of infinite thickness, as shown in Fig. 21.6. Let the input to this system
be the temperature at the left face (x = 0), which is some arbitrary function of
time. The output will be the temperature at the position x = L. For convenience,
we may consider this system to represent the response of a bare thermocouple

embedded in a thick Wall, as the surface of the wall experiences a variation in
temperature. The conductivity k, heat capacity C, and density p of the conducting
materia are constant, independent of temperature. Initialy (¢ < 0), the dab is at

a uniform steady-state temperature. Therefore in deviation variables, which will

be used henceforth, the initid temperature is zero. The cross-sectiond area of the
dab is A.

ANALYSIS. In this problem the temperature in the slab is a function of position
and time and is indicated by T'(x ,t). The temperature at the surface is indicated
by T(0,s), and that at x = L by T(L,t). To derive a differentia eguation that

*Equation (21.34) is of the standard second-order form, K/(+2s2 + 2frs + 1), with the parameters
1 2a
2 . -
TS T and x4 a’ = be
Solving these two equations to eliminate 7 gives

1
LS Trem
Writing a and b in terms of the origind system parameters (L,H,V,m) gives
[ = b _ (UHYVmiE) ™
(LIH + Vm/H)? |
Simplifying this expresson gives

vmiL |~V

(= [1 T U+ VmiLy
Since Vm/L > 0, we see that { > 1.
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describes the heat conduction in the slab, we first write an energy balance over a
differential length Ax of the dab. This energy balance can be written

Flow of heat Flow of heat out Rate of accumulation
into left face } —{ of right face } = { of internal energy in } (21.35)
by conduction by conduction the volume element

The flow of heat by conduction follows Fourier's law: -

q= k5 (21.36)

where ¢ = heat flux by conduction
dT/ox = temperature gradient
k =therma conductivity

Applying Eg. (21.36) to Eq. (21.35) gives
aT ar J
—Ak";x- x (—Aka |x+Ax) = E[CpAAx(T - T,-)] (2137)

where T, is the reference temperature Used to evaluate internal energy. The term
dT/ox | ,, can be written

aT oT d aT

E‘x" |x+Ax— 'l';—x- |x +55Ax (2138)
Substituting Eq. (21.38) into (21.37) and smplifying give the fundamental equa-
tion describing conduction in a solid

T oT
ko = PC%
This is often written as
*T 9T
K ;975 = 3; (21.39)

where K = k/pC = thermal diffugvity.
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Severa points are worth noticing at this time. In this analysis, we have
dlowed the capacity for storing heat (pCA per unit length of x) and the resistance
to heat conduction (1/kA per unit length of x) to be “spread out” or distributed
uniformly throughout the medium. This distribution of capacitance and resistance
is the basis for the term distributed parameter. The analysis has aso led to a
partial differentia equation, which in general is more difficult to solve than the
ordinary differentid  equation that results from a lumped-parameter model.

TRANSFER FUNCTION. We are now in a position to derive a transfer function
from Eq. (21.39). First notice that, since T is a function of both time ¢ and position
x, atransfer function may be written for an arbitrary value of x. In this problem,
the temperature is to be observed & x = L; hence the transfer function will relate
T(LY) to the temperature a the left surface T(Ot), which is taken as the forcing
function.

Equation (21.39) will be solved by the method of Laplace transforms. Taking
the Laplace transform of both sides of Eq. (21.39) with respect to ¢ gives

w“‘92T -t g, — * T -5t
KJ:0 dxz(x’ e tdr = o E(x, Ne **dt (21.40)
Consider first the integral on the left side of Eq. (21.40). Interchanging the order
of integration and differentiation* results in
® 6T -5t d? r st d’T(x, s)
il = — , dt = ————— 21.41
L axz(x,t)e dt 727 ), T(x,t)e — ( )
where T(x ,s) is the Laplace transform of T(x ,t). ! It should be noted that the
presence of x has no effect on the second integral of Eq. (21.41) because the
integration is with respect to ¢. Also note that the derivative on the right side of
Eq. (21.41) is taken as an ordinary derivative because T'(x ,s) will later be seen to
be a function of only one independent variable x and a parameter s. Next consider
the integral on the right side of Eq. (21.40). Again, the presence of x has no effect

on the integration with respect to ¢, and the rule for the transform of a derivative
may be applied directly to yield

J’ g—f(x,t)e‘”dt = sT(x,5) = T(x,0) (21.42)
0

where T(x ,0) is the initial temperature distribution in the solid. Introducing the
results of the transformation into Eq. (21.40) gives

*This interchange is alowed for most functions of engineering interest. See R. V. Churchill (1972).

¥ In this chapter the overbar will often be used to indicate the Laplace tranform of a function of two
variables.
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d’T(x,s) _
dx?

The partial differential equation has now been reduced to an ordinary differentia
equation, which can usually be solved without difficulty. It should be clear that

s in Eq. (21.43) is merely a parameter, with the result that this equation is an

ordinary second-order differential equation in the independent variable x. This
follows because there are no derivatives with respect to s in Eq. (21.43). Since
we have taken T(x,0) = O for the example under consideration, Eq. (21.43)

becomes

K sT(x,s) = T(x,0) (21.43)

d*T s
— T = 21.44
dx? K r=20 ( )
Equation (21.44) is a linear differential equation and can be solved to give

T = Aje™ V9Kx 4 ppe V5Kx (21.45)

The arbitrary coefficients A; and A, may be evauated as follows: In order that
T may be finite as x —» =, it is necessary that A; = 0. Equation (21.45) then
becomes

T = Ale_‘/;/—i" (21.45q)

The transformed forcing function at x = 0 is T(0,s), which can be substituted
into Eq. (21.4%) to determine A; then

T0,9 = Aye®
or
A= TQO, 9
Substituting A; into Eq. (21.45~) gives
—7_:("»3) = o~ V/Kx
T(,s)
By specifying a particular value of x, say x = L, the transfer function is

T(L’s) — ¢~ VKL
T(0,s)

(21.46)

(21.47)

STEP RESPONSE. To illudrate the use of this transfer function, consider a forcing
function that is the unit-step function; thus

T, ) = u®)
for which case T(0,s) = I/s. Substituting this into Eq. (21.47) gives

TL,s) = %e‘ s/KL (21.48)
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To obtain the response in the time domain, we must invert Eq. (21.48). A table
of transforms* gives the following transform pair:

L{ 1e‘ ‘/s—/?"} = erfc

N

21.49
V4Kt ( )

where erfc x is the error-function complement of x defined as

2 [* _.»2
effc X =1 = —=1| e *du
J7h
This function is tabulated in many textbooks+ and mathematical tables.
Using this transform pair, Eq. (21.48) becomes

1(K_)

= eff
602L2

T(L, t) = erfc

L
21.50
Jak: (21.50)

A plot of T versus the dimensionless group K ¢/L? is shown in Fig. 21.7.

SINUSOIDAL RESPONSE. It is instructive to consider the response in temperature
a x = L for the case where the forcing function is a sinusoidal variation; thus

T, t) = Asinot

Using the subdtitution rule of Chap. 16, in which s is replaced by jw, Eq. (21.47)
becomes

T, jw) — o~ JiwKKL

= 2151
TQ, jw) -

*Tables of transforms that include transform pairs frequently encountered in the solution of partia
differentid equations may be found in many textbooks on heat conduction and applied mathematics.
For example see Mickley, Sherwood, and Reed (1957).

Inversion of complicated transforms such as that of Eq. (21.48) can be achieved systematicaly by
the method of complex residues, which is afso discussed in the above reference.

*See Carslaw and Jaeger (1959), p. 485.

10

0.6
04
0.2
e 1 2 3 FIGURE 217
K Response of temperature in the interior of a solid to
Lt a unit-step change in temperature a the surface
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To obtan the AR and phase angle requires that the magnitude and argument
of the right side of Eq. (21.51) be evaluated. This can be done as follows: First
write j in polar form; thus

| = T2

from which we get
. . 1
\/_7 = [ej(‘IT/Z)]I/Z = ie"ﬂM = iﬁ(l + ])

Substituting the positive form* of /j into Eq. (21.51) gives
T, jw) = ¢~ JWRKL,~j JorKL

T, jw)
From this form, we can write by inspection
=| z(L, jw) l= e~ VORKL (21.52)
T, jo)
L,
Phase angle = % _( J w) Y et rad (21.53)
10, jw) 2K

From these results, it is seen that the AR approaches zero as v — @ and
the phase angle decreases without limit as w — . Such a system is said to have
nonminimum phase lag characteristics. With the exception of the distance-velocity
lag, al the systems that have been considered up to now have given a limited
value of phase angle as w — ®, These are called minimum phase systems and
dways occur for lumped-parameter systems. The nonminimum phase behavior is
typicd of distributed-parameter  systems.

Transport Lag as a Distributed-parameter
System

We can demonstrate that the transport lag (distance-velocity lag) is, in fact, a
distributed-parameter system as follows. Consider the flow of an incompressible
fluid through an insulated pipe of uniform cross-sectiond area A and length L, &s
sown in Fig. 21.8a. The fluid flows a velocity v, and the velocity profile is flat.
We know from Chap. 8 that the transfer function relating outlet temperature 7', to
the inlet temperature T; is

T {th)sm

Tis)

*Notice that the substitution of —(1+ j)/ /2 into Eq. (2L51) leads to a result in which the AR is
greater than 1 and the phase angle leads. This is contrary to the response of the physical system and
is not admitted as a useful solution.
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L
(a)
v | | |
n = [l dld . —>T%  FIGURE 21-8

b Obtaining the transfer function of a transport lag
® from a lumped-parameter model.

Let the pipe be divided into n zones as shown in Fig. 21.8b. If each zone of
length Lin is considered to be a well-stirred tank, then the pipe is equivaent to n
noninteracting first-order systems in series, each having a time constant*
L1
T=- -
nv
(Note that taking each zone to be a well-stirred tank is called lumping of param-
eters) The overal transfer function for this lumped-parameter model is therefore

Tus) [ 1 1 ]"
Ti(s) \7s+1 (Lv)s/in + 1

To “distribute” the parameters, we let the size of the individual lumps go to zero
by letting n — o,

n

To(s) _ lim 1 ("
Ti(s) n-w|(LV)s/n + 1]
The therma capacitance is now digtributed over the tube length. It can be shown
by use of the calculus that the limit is
e—(L/v)s

which is the transfer function derived previousdy. This demonstration should pro-
vide some initial insight into the relationship between a distributed-parameter
system and a lumped-parameter system and indicates that a transport lag is a
distributed system. ‘

Heat Exchanger

As our last examplet of a distributed-parameter system, we consider the double-
pipe heat exchanger shown in Fig. 21.9. The fluid that flows through the inner

*This expression for ¢ is equivalent to that appearing in Eq, (9.10). Since the transfer function for
flow through a tank was developed in Chap. 9, the analysis will not be repeated here.

tThe analysis presented here essentially follows that of W. C. Cohen and E. E Johnson (1956).
These authors also present the experimental results of frequency response tets on a double-pipe,
deam-to-water heat exchanger.
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pipe at constant velocity v is heated by steam condensing outside the pipe. The
temperature of the fluid entering the pipe and the steam temperature vary according
to some arbitrary functions of time. The steam temperature varies with time, but
not with position in the exchanger. The metal wall separating steam from fluid is

assumed to have significant thermal capacity that must be accounted for in the
analysis. The heat transfer from the steam to the fluid depends on the heat-transfer
coefficient on the steam side (h.) and the convective transfer coefficient on the
water gde (hi). The resstance of the metal wall is neglected. The god of the
analysswill beto find trangfer functions relating the exiting fluid temperature
T(L, 1) to the entering fluid temperature T'(0,¢) and the steam temperature T'(¢).

The following symbols will be used in this analysis:

T(x, t) = fluid temperature
Tw(x, t) = wal temperature
T,(r) = Steam temperature
T, = reference temperature for evaluating enthalpy
p = dengty of fluid
C = heat capacity of fluid
pw = dengty of metd inwal
C,, = heat capecity of metd inwall
A; = cross-sectiond area for flow inside pipe
A,, = cross-sectional area of metal wall
D; = indde diameter of inner pipe
D, = outside diameter of inner pipe
h; = convective heat-transfer coefficient inside pipe
h, = heat-transfer coefficient for condensing steam
v = fluid v ocity

ANALY SIS. We begin the analysis by writing a differential energy balance for the

fluid ingde the pipe over the volume element of length Ax (see Fig. 21.9). This
balance can be stated
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Heat transferred
{ Flow of' } _{ Flow of } +[ through film on}

enthalpy in enthalpy out inside wall
(21.54)
Rate of accum-
= ulation of
internal energy
The terms in this balance can be evaluated as follows:
Flow of enthalpy in a x = vA; pC (T = T,)
T
Flow of enthalpy out at x + AX = vA;pC || T + Z—xAx) - T,}
Heat transfer through film = #D;h i Ax (T, = T)
. . d
Accumulation of interna energy = E[Aipr C(T-T)]
Introducing these terms into Eq. (21.54) gives, after simplification,
or _  odT 1
— = —v—+ —(T 21.55
= vt n @D (2155

where 1 _ @Dih;
T A;pC

An energy balance is next written for the metd in the wal, over the volume
element of length Ax. This can be stated as follows:

[ Heat transfer in] _ { Heat transfer out } _ { Accumulation of }

through steam . ¢
condensate film through fluid film energy in wall

Expressing each term in this balance by symbols gives
aT,,
'n'DohoAX(Tv - Tw) - 7rD,-h,~Ax(Tw - T) = Awapr_wW (2156)

Simplifying this expression gives

dTyw
—T"‘Tw——-T—T 21.57
TR ( ) ( ) ( )
Where 1 ’ﬂ'Dih,' 1 WDoho

712 AwaCw 722 = AwaCw

We now have obtained the differentid equations that describe the dynamics
of the system. As in previous problems, the dependent variables will be trans-
formed to deviation variables. At deady dstate, the time derivatives in Egs. (21.55)
and (21.57) are zero, and it follows that
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0= —y—-= -T .
v— + I(Tws ) (21.58)
and
1 1
0=—(T,, =-Ty) - —Tw, =Ty (21.59)
™2 T12

where the subscript § is used to denote the steady-state value. Note that to de-
termine the steady-state values of the temperature requires the solution of two
simultaneous equations, the first of which is an ordinary differential equation.

Thus, the steady-state temperature Ts is afunction of x and may be obtained by

solution of Egs. (21.58) and (21.59) as
_ X / (1 N z)]
V' T2

where Ty, is the norma entrance temperature. All equations for T ' to be derived
below should be recognized as deviations from this expression.

Subtracting Eq. (21.58) from (21.55) and Eqg. (21.59)- from (21.57) and
introducing deviation variables give

T, =T,, + (T;, = T,,)exp

';—Tt' = —v%Tx—’ + —(T -T) (21.60)
and
oT,, 1
= ;(T T = T, =T) (21.61)
where T'= T-T,
T, =Ty = Ty,
T,=T,-T,
Equations (21.60) and (21.61) may be transformed with respect to t to yield
sT = —v%T— + —(T -T) (21.62)
and
T, = L7 -7y~ LT - 7) (21.63)
™ Ti2
where T = T'(x,5)
T, = T,(x.5)
T, = T,(s)

In Egs. (21.62) and (21.63) it has been assumed that the exchanger isinitially at
steadly state, so that T(x,0) = Ty, Tw(x,0) = T, adT,(0) = T,,.
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Eliminating T:V from Egs. (21.62) and (21.63) gives, after considerable
smplification
dT'  a= b

——+-T =T, (21.64)

1
where a(s) = § + — - ke
n T(T272S + 712 + T2)

b s) = 712
) T(T12T28 + 712 + T22)
Equation (21.64) is an ordinary first-order differential equation with boundary
condition T (x,s) = T (0,s) a x = 0.
It can be readily solved to yield

T(x,5)=T©, 9 + [1-e @] T ") - T, s)‘ (21.65)

where T (0 s) is the transform of the fluid temperature at the entrance to the
pipe and T, »(8) is the transform of the steam temperature. From Eqg. (21.65), the
transfer functlons can be obtaned as follows.

If the steam temperature does not vary, T,(s) = O; the transfer function
relating temperature at the end of the pipe (x = L) to temperature at the entrance
is

T ) _ ¢ —(@mL
T'O,s)

Setting 1/m to zero in the expression for a(s) [Eq. (21.64)] shows that
a(s) = s and hence the response is simply that of a transport lag. This is in
agreement with the physical stuation where h; approaches zero [Eq. (21.55)], for
which case the wall separating cold fluid from hot fluid acts as a perfect insulator.
We saw in Chap. 8 that this situation is represented by a transport lag.

If the temperature of the fluid entering the pipe does not vary, the transfer
function relating the exit fluid temperature to the steam temperature is

—
T_(’L, 9 = P—[l - e~@MLy
T,(s) ¢

In principle, the response in the temperature of the fluid leaving the ex-
changer can be found for any forcing function, 7(0,¢) or T,(t), by introducing
the corresponding transforms into Eq. (21.66) or (21.67). However, the resulting
expression is very complex and cannot be easily inverted. For the case of sinu-
soidal inputs, the subgtitution rule discussed in Chap. 16 can be used to determine
the AR and phase angle of the frequency response. Cohen and Johnson give a
Bode diagram corresponding to Eq. (21.67) for a specific set of heat-exchanger
parameters. This diagram is shown in Fig. 21.10.

(21.66)

(21.67)
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1.0
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~\ \ 0.2
5 4_\ 0.04

_20% J i ' FIGURE 21-10
1 02 04 10 20 40 Bode diagram of heat exchanger for variation insteam
W, rad/sec temperature  (Cohen and  Johnson).

Notice that the theory predicts an interesting resonance effect at higher fre-
quencies. The resonance effect has been observed experimentally in a steam-to-
water exchanger. See Lees and Hougen (1956). Unfortunately, the experimental
data of Cohen and Johnson do nat exded to auffidetly high frequendes to exhibit
resonance. The reader is referred to the original article for further details.

SUMMARY

In this chater, sevad ocomplex sydems have been andyzed maherdicdly. The
result of each analysis was a set of equations (algebraic and/or differential) that
presumably describe the dynamic response of the system to one or more distur-
bances. The process of obtaining the set of equations is often called modeling,
and the set of equations is referred to as the mathematical model of the system.
In general, the model is based on the physics and chemistry of the system. For
example, in the analysis of a heat exchanger, one may write that the heat flux
through a wall is equal to a convective transfer coefficient times a temperature
diving force

For a process not well understood, there is little chance that an accurate
modd can be ddtaned from the theordicd goproech used here For such sydens
a direct dynamic test can be made. To do this, a known disturbance such as a
puss dep, o snusoidd input is goplied and the response recorded. This gpproech
was discussed in Chap. 19. On the other hand, a model based on a theoretical
analysis is extremely valuable, for it means that the system is well understood
ad tha the dfet of changes in sydem dedgn and opadtion can be predicted.

The analysis of a steam-jacketed kettle provided an example of a nonlin-
ear system containing nonlinear functions of several variables. The problem was
handled by linearizing these functions about an operating point and ultimately
obtaining a block diagram of the system from which the transfer function of the
control system could be obtained. Although this approach is relatively straight-
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forward, the resulting linear model can only be used over a narrow range of
variables.

The analysis of the gas absorber gave some insight into the dynamic char-
acter of atypical multistage process that is widely used in the chemical process
industries. A linear anaysis of an n-plate column leads to n ordinary differen-
tial equations, which combine to give an overdamped nth-order response. Non-
linearities may be present in this system in such forms as a product of flow and
concentration or a nonlinear equilibrium relationship. When changes in inlet flow
occur, a set of differential equations describing the dynamics of the liquid flow
must be added to those describing mass transfer. When the change of plate effi-
ciency with flow is conddered, the model of a gas absorber becomes even more
complex. Most of the design techniques developed in the past for multistage
operations (gas absorption, distillation, etc.) have applied to steady-state opera-
tion. The dynamic analysis of such processes calls for dynamic parameters that
are usualy unavailable. For example, the liquid-flow dynamics of trays used in
digtillation towers are relatively unknown.

The discusson of distributed-parameter  systems  further illustrated  the com-
plexities that can arise in physicd systems. The distributed-parameter systems lead
to partial differentia eguations, which may be very difficult to solve for most of
the forcing functions of practical interest. However, we saw that the response
of distributed-parameter systems to sinusoidal forcing functions can be obtained
directly by application of the substitution rule, in which s is replaced by jw. A
distributed-parameter  system  features nonminimum phase lag characteristics.  This
isin sharp contrast to the lumped-parameter systems for which the phase angle
approaches a limit a infinite frequency.

As systems are analyzed in mom detail and with fewer assumptions, the
models that describe them become more complex, although more accurate. To
predict the response of the system from the model requires that equations of
the model be solved for some specific input disturbance. The only practical way
to solve a complex model is to use a computer. This method of solving the
mathematical model is often called computer simulation. The computer response
will resemble that of the physical system if the model is accurate. In the last
section of this text, the computer and its use to simulate control systems will be
discussed in considerable detail.
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The wide use of digital computers in control makes the inclusion of a section on
sampled-data control imperative. Sampled-data control was actually established
over 25 years ago by electrical engineers before the digital computer was widely
used to control chemical processes. A sampled-data system is one in which the
flow of signalsin the control system is interrupted at one or more points. In this
book, the interruption or sampling will occur every T units of time. Such sampling
is caled uniform sampling and is the usual type in practical applications.

To understand the nature of a sampled-data system, consider a typica, single-
loop continuous control system, shown in Fig. 22.1ag. The system is referred to
as continuous because the signal flow between blocks is continuous or without
interruption; i.e., at any instant of time and at any location in the loop, one can
observe a changing vaue of the signa during a transient. For example, the re-
sonse from the measuring element varies in a continuous manner from moment
to moment. A typical temperature transmitter would provide such a continuous
dgnd. In chemicd processes, some measurements cannot be made continuoudly.
Chemical composition is a measurement that may not be continuous. For exam-
ple, a sample of a process dream may have to be subjected to a chemica andysis
that takes some finite period of time. An example would be an automatic chro-
matograph that must process a sample of fluid in a packed column for a fixed
time T. For this example the measured value of composition is known only a the
end of the processing time T. If a new sample of fluid is taken successively ev-
ery T units of time and the result of the chemica anaysis is held constant between

349
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sampling instants, one can represent the control system as shown in Fig 22.1b.

In this case, the measured signal B is held constant between sampling instants
and delayed by an amount T. The delay occurs because of the time needed to
process the sample of fluid in the chromatograph. Note that for simplicity, the
chromatograph processing time and the sampling time have been taken to be the
samevaue T. In Fig. 22. Ib this disruption in the flow of signal B is represented
by a sampling switch and the holding of the value of the signa is obtained by
the block labeled “hold.” The nature of the signals from the measuring element B

and the sampled signad B, are shown in Fig. 22.1 b. The output from the hold is a
dair-step  response, which approximates the continuous signa B mote accurately
as the sampling period T decresses.

Another reason for studying sampled-data control is to be able to describe
the operation of a digital computer as a controller. The output of a continuous
electronic or pneumatic controller changes in a continuous manner. When a digi-
td computer is used to implement a control law, a calculation must be performed
to calculate the new vaue of the controller output every T units of time. The
calculation, which is based on a numerical expression of the control law, will be
developed in detail later. At each sampling instant, the computation of the con-
troller output is made and then held at a constant value until the next sampling

R Controlter |—| vave M Process »C
B Measuring
element
(a)
RZ Controller Valve Process C
- Sampling  switch
| —— |
B ~ Mcasuring
L Hold B element
T with delay
B =
¢ prdi B
sil
// 1 | | 1
0 T 2rar 471 t T 3T t
(b)
FIGURE 22-1

Comparison of (@) continuous control and (b) sampled-data control.
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Set

point
—>  Digital D/A —-/T——| Hold W > C
computer
1 L Measuring
A/D T element
FIGURE 22-2

Computer  control ~ system.

instant occurs, at which time a new controller output is computed and held. This
computation and holding is repeated every T units of time, Figure 22.2 shows a
diagram that represents a digita control system. In this figure, the typica elements
of the system (valve, process, and measuring element) are continuous and behave
the same as those in a continuous control system. The usual continuous controller
is replaced by a digital computer, which is programmed to implement a control
law, such as Pl control. Since the digita computer works with digital information,
an andog-to-digitd converter (A/D) is needed to convert the continuous (analog)
sgnal to a digitd sgnad that can be used by the computer. Since the output from
the calculation is a digital signal, a digital-to-analog converter (D/A) is needed
on the output of the computer so that a continuous (analog) signd is available
to operate the valve. Typica analog signals associated with the A/D and D/A
converters range from 4-20 ma or 1-5 V. The sampling switches are shown to
indicate the sampled nature of the signals. These switches are purely symbolic;
there are no mechanical switches in the hardware used to implement a controller.
The hold block, which is shown in the figure, holds the value of the controller

output constant between sampling instants. The output of the hold is a stair-step
function.

CLAMPING

The continuous function f(¢) is sad to be clamped to produce the function f.(¢) as
shown in Fig. 22.3. The period of sampling is T and the frequency isw; = 2#/T
radians/time. The clamping can be described mathematically by the combination

of impulse modulation and the application of a zero-order hold as will soon be
shown.

FIGURE 22-3
Clamping.
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1)
*
. i
7f (t) T
{ FIGURE 22-4
0O T 21 3T 47 t Impulse  modulation.

Impulse Modulation

As shown in Fig. 22.4, an impulse-modulated function consists of a sequence of
impulse functions, the magnitudes of which equal the values of the continuous
fudion & sarpling ingats The impusemodulated fundion is gven the symbal
f*(t). A convenient symbol for the impulse modulation sampler is shown as a
switch (- ), which closes momentarily every T sec. It should be noted that the

impuse modudion switch is pudy symbdic, for thee is no switch of this type

present in the hardware used in sampling signals.

Zero-order Hold
The zeoode hod is defined by the trandfer fundtion

- TS
Gy (s) =1+ 22.1)

Combining impulse modulation with the zero-order hold, as shown in Fig. 22.5,
provides the damping. To illisrate how the zaooder hdd shapes the sguence
of impulses into a clamped signal, a block diagram of the hold is shown in
Fig. 22.6 in which an integrator and a transport lag are connected to implement
the zero-order hold. The operation of a zero-order hold can be understood by
expressing F,(s) as follows (see Fig. 22.5):
1= e T F*(s) _py

N $
where F*(s) is the Laplace transform of the impulse-modulated function, f*(t).
This expresson shows that the damped fundion f.(¢) is daaned by a combre
tion of integration, transport lag, and subtraction. Recall that integration in Eq.

(22.2) is represented by I/s and transport lag by e ~7*. To understand the signals
at the output of the integrator, one must recall that the integration of an impulse

F.(s) = F*(s)

(22.2)

fly o M) 1-pTs JAG)
Fs) T F*) § Fi(s) FIGURE 22-5
F(z) Clamping.




SAMPLING AND Z-TRANSFORMS 353

o - Fad )]
T £
-Ts
—-e
fn Fx) FAG
0 T 2T 3T 47 0 T 21 3T 0 T 2T 3T
FIGURE 22-6

Congtruction of a clamped signa.

function is a step function. The impulse occurring at ¢ = O results in a pulse*

of width T. (See Fig. 22.6.) The impulse occurring at ¢ = T results in a pulse of

width T starting & ¢ = T. The remaining impulses each contribute a pulse of width
T starting at successive values of T. The height of each pulse equals the magni-

tude of the impulse that produced it. The combination of these pulse functions
provide the dtair-step function associated with clamping. This rather “mechanical”
description of clamping through implementation of the zero-order hold transfer
function may give the reader an intuitive fed for the abstract mathematical
expression  involved.

LAPLACE TRANSFORM OF THE
IMPULSE-MODULATED FUNCTION

Let i(¢) be a sequence, or train, of unit impulses that are separated by period T.
This may be expresed as follows

i) = 8(r) + 8t = T) + 8(t = 2T) + =+« = > 8(t = nT) (22.3)
n=0

The “starred” function f*(¢) may be written as the product of f(¢) and i(z):
fH @0 = f@i) (22.4)

Introducing the expression for i(t) from Eq. (22.3) into this equation gives

f(t) = f(t) > 8(t = nT)
n=0

*The pulse occurs because the integration of the impulse a ¢ = 0 is combined with the integration
of adelayed impulse of the same magnitude, but opposite sign, att=7.
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Since i(t) has a non-zero value only a sampling instants (¢ = aT), f(t) may be
replaced by f(nT) and then placed within the summation to produce the result

fr 6y = D f(T)é(t = nT) (225)
n=0

Applying the Laplace transform of a unit. impulse, which is unity, and applying
the theorem on trandation of a function (See Chap. 4) to this expression for f*(t)
give the Laplace transform of the impulse-modulated function:

F*s) = L{f*®)} = > f(nT)e™™™ (22.6)
n=0

The function F*(s) isreferred to as the starred transform of f(t).

An aternate form for F*(s) which is useful in proofs and derivations is
given in the appendix of this chapter. This alternate form is based on the Fourier
series representation of a periodic  function.

THE Z-TRANSFORM

We have now reached the point where the Z-transform can be introduced. The
Z-transform is simply the Laplace transform of the impulse-modulated function,
f*(t), in which z = eT$ Keeping this point in mind, we may write Eq. (22.6)
in the form

F@) = Z{f(")} = LIF* @0} = D fD)e™ |, _ z (22.7)
n=0
or

F2) = Z{f®O} = D> f(xrT)z™ (228)
n=0

In the definition of the Z-transform given by either of these equations, we have
expressed the Z-transform by F(z) or Z{f (#)}. Two examples of the use of this
definition of the Z-transform will be given.

Example 22.1. Theunit step.

f =u) =1
therefore, f(nT) =1 forn=0

From Eq. (22.8) we write
Zu@n} = > 27"
0
This infinite series hasthe sum z/(z = 1); therefore the result is

Zut)t = —

z
z—1
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Example 22.2. The exponential function.
f(t) = e “u(r)

=]

Z{e_m'u(t)} = ;e—nﬂrl—n = %“(eT/rz)—n
This infinite series has the sum as shown below

Z{e Tu(n)y = —=
Z

- Tt

Table of Transform Pairs

Tables have been prepared that give the Z-transforms of various functions. A short
table of transform pairs is given in Table 22.1. This table was adapted from an
extensive table in Tou(1959). Table 22.1 includes for each function of ¢ listed, the
Laplace transform, F(s), the Z-transform, F(z), and the modified Z-transform,
F(z ,m). The modified Z-transform will be discussed later. An example of a Z-
transform pair from this table is

-at . Z
e ) 7 - e—aT
Note that this is the same as Example 22.2 with a = 1/r. Tables of Z-
transforms are very useful in obtaining the transients for sampled-data systems
and they are used in much the same way as tables of ordinay Laplace transforms
ae used for continuous systems.

SUMMARY

One reason for studying sampled-data control is to be able to describe mathe-
matically a process in which the flow of signals is interrupted periodically. An
example of such a system is one that contains a chemical analyzer (e.g., a chro-
matograph) that produces a measured vaue of compostion after a fixed processing
time. Another reason for studying sampled-data control is to be able to describe
the operation of a microprocessor-based controller.

The form of sampling used in practical applications is clamping, a process
of sampling that holds a signd constant between sampling instants. It was shown
that clamping is produced by sending an impulse modulated signal through a
zero-order  hold.

Two forms of the Laplace transform of the impulse-modulated function f *(¢ )
were presented. One of these forms was used to define the Z-transform in which
the Laplace variable s is replaced by z through use of the transformation z = e ™.
A short table of Z-transforms was provided. The Z-transform will be used in
the next chapter to compute the response of sampled-data systems at sampling
ingtants.
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APPENDIX
22A

An Alternate Form of F*(s)

Another form for F*(s) which is useful in proofs and derivations can be obtained
by the application of a Fourier series expansion. (See Tou, 1959 for more detail).
An outline of the derivation is given below.

A Fourier series representation of a periodic function g(t) may be written

g(t) = Z Ckejkwst

k=—

wherej = ,/—1 and the coefficients C , are obtained from the following equation
in which the integration is done over one period T. For this application, it is
convenient to choose the period from —T/2to T/2.

1 T2 .
Ck I g(t)e—kastdt
Ti-tn

Applying this to i(t), the sequence of unit impulses given by Eq. (22.3)) one
obtains

+4]
it) = Z Creltwst
k=—-o
where
1 (T2 2 N
Cy = —J 8(t — nT)e 155 dy

In the range of integration from —T/2to T/2,the only term in the summation of
delayed unit-impulse functions that contributes to the integrand is &(t); therefore,
we may write the eguation for Cy as

1 TR .
Cy = —j S(t)e“”“""dt
)

One can show that this integral becomes 1; therefore

Cr =

~5| =

Equation (224) can now be written

fro = f(t)% > efkest

k=—x
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After placing f(t) inside the summation, we take the Laplace transform of each
side of the above equation and apply the theorem on the trandaion of a transform
from Chap. 4 to each term on the right side; the result is

[+ 2]

F*(9) = L{f*@)} = % > F(s+ jkoy) (22.9)

k=-®

Use will be made of this expression in the next chapter.



CHAPTER

23

OPEN- LOCP
AND

CLOSED- L OOP
RESPONSE

To cdculate the open-loop response of a sampled-data system, one can develop a
pulse transfer function that is the counterpart of the transfer function for continuous
systems.

OPEN-LOOP RESPONSE
Pulse Transfer Function

Consider the block diagram in Fig. 23.1 in which an impulse-modulated signa
enters a block having the transfer function G(s). We may write

C(s) = G(s)F*(s) (23.)

Let there be a fictitious sampler attached to the output of G(s). Using the aternate
definition for a starred transform from the previous chapter [Eq. (22.9)], the
sampled function C*(9 in Fig. 23.1 may be written:

1 < =
C*(s) = 7 Z C(s + jnwy) = ~717 Z G(s + jrw)F*(s + jnw,) (23.2)
n=-—-« n=-w

As shown in the appendix of this chapter, F*(s) is periodic in s with fre-
quency s, which means that

F*s) = F*(s + jnwy) (23.3)

360
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CEPAAL) (0
Fo T Fe) | rce)
F(2) I
Fictitious sampler —> | L

C'is; FIGURE 23-1
Cl Open-loop  sampled-data  system.

Equation (23.2) may be written:

% —_ * 1 o :
C(9 = PO ';wc(s + ]nws)l (23.4)
Recognizing the term within braces on the right side to be simply G *(s) according
to the alternate definition of the starred transform given by Eq. (22.9), we may
write
C*(s) = F*(s)G™(s) (23.5)

Recalling that the Z-transform is simply the Laplace transform of the starred
function in which z = ¢”* | Eq. (23.5) may be written

C(z) = F()G(z) (23.6)

The term G(2) is called the pulse transfer function. Equation (23.6) states that
the sampled output is equal to the product of the sampled input and the pulse
transfer function. This is andlogous to the continuous case where we write C(s) =

F(5)G(s). Note that the inverse of C(z) gives information about c(t) only at
sampling instants, O, T, 27, 3T, . . . nT.

Example 23.1. Use of the pulse transfer function. To see how Eq. (23.6) may
be used, consder the example shown in Fig. 232 in which a triangular wave signd
enters the sampler. For this example

1 1/7
G = = 23.7
©) rs+1 T:; (23.7)
From a tadle of Ztranforms (Table 221) we obtan for this G(s)
1 z
G(z) = ;:ﬁ (23.8)
ﬁ)_._/__.ﬁ:u)_ 1 c(1)
F(s) T F*(s) s+ 1 I'C(s)
F(z) 1
S t =_;_/’__£¥ltl
T=1 T C*(s)
C(z)

FIGURE 23-2
Example of an open-loop system.
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Usng the basic definition of a Z-ranform in Eg. (22.8), we may express the output
of the sampler as

Fo)= > fT)z " =0+ 271 +2272+ 27340 (239)
0
Applying Eq. (236) gives
C(z)=F(2)G(z) = (z_l +2772+ 2_3) {E_Z—T] (23.10)
Tz —e 4T

or
1142771+ 22

C) = - p—— T (23.11)

For the purpose of having a numerical result, letT =1andr=1. ThenT/r = 1
and e~ 7/7 = 0.368.

The problem now facing us is the inverson of Eq (2311). Two methods will
be discussed: (1) long divison and (2) use of a table of Z-trandorms. To apply the
method of long division, we simply divide the denominator of Eq. (23.11) into its
numerator  as shown  here.

27+ 2368772+ 1871273 + -+
z-0368 |1 + 2¢7' + 72
| =0.3687"1

2368271 + 272
2.3687 ! ~ 0.871772
1.871z72

From this result, we may write
C(z)= 27"+ 2368272+ 1871273 + + v (23.12)

Interpretation of Eq. (23.12) in the time domain may be done with the aid of the
basc ddfinition of the Ztrandorm of Eq (228 by recognizing the coefficients of
the terms on the right side of Eq. (23.12) to be the values of ¢(¢) at sampling
ingtants;  thus

c0)=0
¢(T) =10
¢(2T) = 2.368
c(3T) = 18711
and 0 on

Recdl that the inverson of the Z-trandform gives information about the continuous
function c(t) only at sampling instants. The values of c(t) at times other than
sampling instants must be obtained by some other means. Later, we shdl show that
the modified Z-trandform can be used to obtan intersample information.

One may also apply basic knowledge of the response of the system to de-
termine c(t) at times between sampling instants. For afirst-order response, this
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Expavential.. decay

FIGURE 23-3
Response of open-loop system in
4 t Fig. 23.2 (T = 1).

gpproach is quite easy. In Figure 23.3 is shown the continuous response of c(t).
Between sampling indants, the response decays exponentialy.

(=]
[N
N
wh——-

Inversion of Z-transform
Two methods often used to invert Z-transforms are

1. Method of long division. (This method was just covered in the previous ex-

ample)

2. Method of partial fraction expansion.

The method of partial fraction expansion follows the same procedure as that

for inversion of ordinary Laplace transforms. To illustrate this method, consider
the following example.

Example 23.2. Invert the following C(2):

_ z
c@= (z~a)z - b)
This may be written:
z - (Z - a)(z - b) = z-a+z-b (2313)

The reason for placing z in the denominator on the left side is for mathematical
convenience, as will be shown later. Evauating the constants A and B gives

A= 1a—b) and B = —1/a - b)
We may now write

_ 1 z z
€@ = |75 - (23.14)

Bach term within the brackets can be inverted by referring to a table of transform
pairs. From Table 22.1, we have the transform pair

Mz ~a): aT
At sampling instants, a “T becomes a”T/T or &'. In a similar manner, the inverse
of z/z = b) is b*. Usng these results gives

o(nT) = [ - b’] (23.15)

1
a—b
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For the problem solved by long division in Example 23.1, we obtain the
following result if the method of partial fraction expansion is used:

c(nT) = e D + 277D + =(n=3) (23.16)

The three terms in brackets do not apply until = 1, n =2, and n = 3,
respectively. To obtain this result, we need to use a theorem on the Z-transform
of a trandated function, which will be discussed |ater.

Comparison of Methods of Inversion

1. Long division. This method is good when one is interested in the solution
for only the first few sampling instants. One must be careful not to make
errors in performing the long division, for an error at one sampling instant
will propagate errors at later sampling instants. The method of long division
can be programmed for a computer to obtain an error-free solution for as many
sampling instants as desired. A computer program written in BASIC for long
divison is given in the appendix of this chapter for use by the interested reader.

2. Partial fraction expansion. This method requires the usual agebra of partial
fraction expanson. However, once the solution is obtained, the response a any
sampling instant can be found without relying on values at previous sampling
instants.

CLOSED-LOOP  RESPONSE

The closed-loop response for a sampled-data system can be obtained in a man-
ner similar to that for continuous closed-loop systems. However, there are some
differences that will be explained in this section.

Consder the sampled-data negative feedback control system shown in  Fig.
23.4. In this process, clamping is provided by the combination of an impulse
modulator and a zero-order hold. To obtain expressions that relate C to R or C to
U, we proceed as follows. From the diagram, we can write

C(s) = Ge(8)Gp(IR(s) = G(5)Gp(s)Gh(s)C*(s) + Gp(s)U(s)  (23.17)

This expression is obtained by combining the signals resulting from R(s), C *(s),
and U(s) after they move through their respective paths to the output C. This
expresson may aso be written as

U

. .
> 1, éé} >
R—> G.(s) Gy(s) > C
c* N
Gifs) ;
C. T FIGURE 23-4

Closed-loop  sampled-data  system.
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C(s) = G GpR(s) ~ GGp,Gn(s)C*(s) + GpU(s) (23.18)

where the overbar above severa terms means that the functions of s corresponding
to each term are multiplied together to form one function of s. Further discussion
of the usefulness of the overbar will be given later.

Taking the starred transform of both sdes of Eq. (23.18) gives

C*(5) = G.G,R"(s) = GG,Gp, “(s)C*(s) + G,U *(s) (23.19)

Again, it must be pointed out that the overbar above several terms means
that these terms arc multiplied together before taking the starred transform. The
middle term on the right side of Eqg. (23.18) requires special attention; taking the
starred transform of G.G,G ,(s)C*(s) gives G.G,G ,(s)C*(s). The explanation
of this result is given in the appendix.

Solving for C*(s) gives

G:G,R*(s) + G,U *(s)
1+ G:GpyGr*(s) 1+ G:GpGh*(s)

The starred functions of s appearing in Eq. (23.20) can be converted to functions
of z formally by letting z = e”* aswas done in the previous chapter to obtain
the definition of a Z-transform. The result is

=1+ G2 1+G(2

C*s) = (3.0

C(z) (23.21)

where G(z) = G.G,Gr(z)

The overbar above a group of termsin Eq. (23.21), such as G,U, is useful
in reminding one that the functions of s corresponding to each term in the group
are multiplied together to form one function of s before the starred transform
or the equivalent Z-transform of the group of termsis taken. For example, one
cannot obtain G,U(z) by looking up the Z-transform of G(s) and then looking
up the Z-transform of U(s) in tables and multiplying these two functions of z
together, i.e., it iswrong to write

UG,(z) = U(z)Gp(2) Wrong

The correct procedure is to obtain one function of s, written as G,U(s), and to
use this combined function of sto look up its Z-transform. Although the overbar
is useful to remind one that the terms must be multiplied together before taking
the Z-transform, this convention is not always used in the literature or in this
book, for it is often difficult and inconvenient to place a bar above a group
of terms. For this reason, the overbar will not be used in the equations follow-
ing this section. If a group of terms are multiplied together followed by the argu-
ment z, the overbar above the terms will be understood. The examples to follow
should clear up this rather subtle, mysterious taking of a Z-transform of a group
of terms.

The two expressions on the right side of Eq. (23.21) may be said to contain
the transfer functions relating C to R and C to U, However, this is not strictly
true, for R cannot be separated from G.G, as in the case of a continuous system.
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To clarify this important point, the expression for C(z) for a change in set point
only (i.e, U =0) is
G.G,R(z)

‘@._ 176

(23.22)

It is wrong to write

Q(Z) Gpo(Z)
R(@z) 1+G(2
In other words, the term G.G,R(z) must be worked out for each R(s) to be

studied. A similar comment applies to the term G,U(z). These subtle points in

the correct use of Eq. (23.21) can be made much clearer by the example shown
later.

Wrong

Table Relating Z-Transform Outputs
to Sampled-Data Systems

Obtaining the expression C(2) in Eq. (23.22) for the sampled-data block diagram
of Fig. 23.4 requires considerable effort. As we shall seein later chapters, other
sampled-data block diagrams occur for which an expression for C(z) is needed.
In the literature (Tou, 1959), one can find tables of various types of sampled-data
block diagrams with the corresponding expressons for C(z). A short table, which
will be useful later, is shown in Table 23.1. This table also lists the modified Z-
transform C(z ,m), which will be discussed in Chap. 25. (Notice that the overbar
is not used in this table.) It is important to know how to interpret the entries in
the table. For the diagram in Fig. 23.4, we see that item 2 in Table 23.1 applies.
For this case

GR(z)
1+ GH(2)
The expression GR(z) in Eq. (23.23) is equal to G.GpR(z) in Fig. 23.4 and
GH(z) is equa to G:G,G(z). Using these equivalent expressions for GR(z)
and GH(z), we write directly from Table 23.1

G.G,R(z)
=1+ G.GpGu(z)

Cz) = (23.29)

CQ@)
This agrees with Eq. (23.22).

Example 23.3. Closed-loop response. For the diagram shown in Fig. 234, let
Gp=1rs + 1) G.= K

The process is now equivalent to the sampled-data control of a first-order pro-
cess with proportional control. For this specific example, we obtain for G(s) =
GpoGh(S)

K(1 = %)

Gl = Ts(s+ D) = S(H %)

(23.24)
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Output Z-transforms for sampled-data systems

Sampled-data  system C(z) and C(z, m)
1. C(z) = G()R()
R—"—> G(s) —>C C(z, m) = G(z, MR()
2. GR(z)
R—% > G(s) >C €@ - v orw
_ C(z, m) = RG(z, m)
GH(z, m)RG(z)
H(s) N T TI1+GHG
3 _ G@RQE)
R— S ——1 Gls) >C €@ = 1+ onw
- ) G(z, m)R(z)
Cem - T+vorE
H(s)
4, U _ G,U(z2)
+ €@ = 1566
R=0—7 Gq(s) > Gals) > C C(z, m)= UGaz, m)
- - UGz!zzgleg(z,m)
+
H(s) O 102 (Z)
5. c@) G1(2)G2(2)R(z)
R— —>{ Gy(s) "> Gals) >C = [+ GIGHR)
- G1(z)Gy(z, MIR(2)
RO e e (6]
H(s) + G1(z)G2H(z)
6. U _ Gy U(z)
+ D) = T 6,06HD
L7 Gofs) > C C(z, m) = UGa(z,m)
+

R= 07?-/—01@)

H(s)

_G, Z)UGzH(z)Gz(z,m)
+ G H(2)G1(2)
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G(s) may now be written as two terms:

Vr  _ (r)e’™
sls + (/M1 sls + (/)]
To obtain G(z) for Eq. (23.25), the Z-transform of each term on the right must be

found. The first term can be transformed easily by using the following transform
par from Table 22.1:

G(s) = K

(23.25)

a 1 (L = e—aT)
s(sta) (7~ 1)(z - e—aT)

The scond tem can be tranformed with the use of the following important theorem.

Theorem. If g(r) is Z-transformable and has the Z-transform G(z), then the Z-
transform of the delayed function g(t = n T) is given by

Z{g(t = nT)} = 27"G(2) (23.26)

This theorem applies when the delay time aT is an integra number of sampling
periods. This theorem applies only when g(t) = 0 for ¢+ < 0, a condition that will
always apply in this book. The proof of this theorem can be found in other refer-
ences (Tou, 1959). Note that this theorem is similar to the one for the transform of
a ddlayed continuous function (i.e., L{g(¢t = 1)} = e "™G(s)).

Applying the transform pair and the theorem just given to the terms on the
right sde of Eq. (23.25) gives

z (1 - e'T"’) ~ z'lz(l - e'T/")

G K 23.2
@ = (z-1) (Z - e—T/a-) (z=1) (Z - e—T/'r) (2327)
or
6 = Kz (1 - z_l)(l - e-T/") (2328)
= (z - 1)(2 - e—T/-r) ’
Smplifying  gives
1-b
Gz)=K—— (23.29)
z-=b

where b = ¢~ T/7,
To obtainG.GpR(z) for aunit-step changein R, we proceed as follows:

_ kK _ i/
GeGpR(s) s(rs + 1) K s[s + (/7)) (2330)

Taking the Z-transform.
Kz(1 - b)

GCGPR(Z) = m (2331)
For a unit-step change in R, Eq. (23.21) becomes
CQ) = G&GPR(Z) _ Kz(1= b}z =)z - b) (2332)

17 Gk) 1+[K(1-blz-b)
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K(l =~ b)z
C@) _ (Z =Dz =b+ K(1 - b)]

(23.33)

INVERSION. Theinversion of C(z) may be obtained by long division or by partial
fraction expansion. Using the latter method, we proceed as follows

Ck) _ K(l = b)
. T G-Dk-B-KA-00 (2339

or
Ciz) _ K( =Db) A B
z  @Z=-Nz-a)=z-1+z-a
where @ = b = K(I = b). Solving for the constants A and B gives A = K/(1 +
K), B = =K/( 1+ K). Inverting by means of the table of transforms gives
K K

—— (' —a" = = (1= [b=K( =" (23.36)

(23.35)

c(nT) =

Stability. From the result given by Eq. (23.36), the stability of this system can be
Sudied as follows.

For ¢(nT) to converge, |b = K(I = b)| < 1
Note that b < 1since b = ¢~7/7 and T/T is positive.
The inequality may be written in two ways:
l.bawK(la=b)<1
. b-K(Q1=-5b)>-1
Forl. —b+K(1—-b)>—-1
K(i—- b)) >-1+b
K>-1=5b)(1-Dhb)
or K>-1
Since K is dways positive, this result is of no practical vaue.

For Il.. b-K(I-b)>-1
-b+K(1-b)<1
K(I =b) <@+ h)
1+h . .
K< (requirement for stability) (23.37)

Thisis a useful result and shows how a sampled-data system differs from a contin-
uous system. For a continuous system, proportional control of a first-order system
is dways stable. For the sampled-data case, them is a value of controller gain K,
doove which the sygem goes ungadle

Transient response. For this example, the transient response consists of connected
arcs of exponentials. A typical response is shown in Fig. 23.5. The sampled-data
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c(t)

Ultimate
c(nT) value
O I . N W . N
1K
Arcs of exponential curves FIGURE 23-5
o L L | L — Transient response of a sampled-data
0 T 27 3T 47 5 t ygem.
response, ¢(nT), gives only values of c(f) a sampling instants. The continuous
response c(t) is obtained from basic knowledge of the first-order system.
Offst. From Eq. (23.36), one can see that for a stable system, ¢(o) = KA1 +
K). This is the same result that would be obtained for a continuous system under
proportional control. In terms of offset, we have
Offset = r(®) = ¢(®) = 1 = K/(1 + K) = 1/(1 + K)
This result should not be surprising, for once the transient terms have disappeared,
which is dways the condition under which offset is determined, the sampled-data
system is equivalent to the continuous system.
SUMMARY

The methods used to obtain the response of open-loop and closed-loop sampled-
data systems are smilar to those used for continuous systems. The block diagram
for a sampled-data system contains one or more sampling switches. For an open-
loop system, the response at sampling instants is obtained by expressing the Z-
transform of the output C(z) as the product of the pulse transfer function G(z) and
the Z-transform of the forcing function F(2) : C(z) = G(z)F (). This expression
is analogous to the one used for continuous systems. C(s) = G(s)F(s). The
inversion of C(z) can be obtained by (1) partial fraction expansion and use of a
table of Z-transforms or (2) by long division.

The method using partial fraction expansion gives an analytical result that
can be used to find the response at any sampling instant. The process of long
division must be continued until the particular output term of interest is reached,;
for this reason long division is better suited for obtaining the response during
the first few sampling periods. Because of the sampling switches present in a
sampled-data system, obtaining the expresson for the closed-loop response C(2)
requires considerable effort. To assist in this effort, a table relating Z-transform
outputs to a variety of closed-loop sampled-data configurations was presented.
The response of a sampled-data system containing a transport lag can be obtained
easily as an analytical expression; thisisin contrast to the difficulty one has for
continuous systems that contain transport lag.
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APPENDI X
23A

Al. Derivation of Eq. (23.3)
The basic definition of F*(s) given by Eq. (22.9) is

o

F'(s) = % > F(s+ jkoy)

k=—ow

Replacing s by s + jnw;, where n is an integer, gives

F'(s + jnog) = £ > FGs + j(n+ kwy)

k=—x
Let u = n + K, then the above equation becomes

€

* , 1 .
F*(s + jnws) = T Z F(s + jpowy)

M:—m

Since the limits on k are o and —oo, the limits on g are the same. By the definition
of Eq. (22.9), the term on the right is simply F*(s) and we may write

F*(s + jnws) = F*(9)

which is Eq. (23.3). We describe this relation by stating that F*(s) is periodic in
s with frequency @ , .

ATl Taking the Starred Transform
of GeGpGx(5)C*(s) in Eq. (23.18)

In obtaining the closed-loop transfer function for the system in Fig. 23.4,
we took the starred transform of G.Gp,Ga(s)C*(s) in Eq. (23.18) to get
G.G,Gy *(s)C*(s). An explanation of this step is as follows.

For convenience, let G.G,Gn(s) = G1(s). Consider the block diagram in
Fig. 23.6 in which G;(s) operates on the sampled value of C, which is C*(s).
From this diagram, we write

Y(s) = G1(s)C*(s)

Ci
C(S) _{_ip G1(~‘) —l—-> Y(S)
1 FIGURE 23-6

L~ _ ¥s) Taking the starred transform of
Gyls) =G:GpGils) T G:GpGr(s)C*(s) inEq. (23.18).
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Taking the starred transform of both sides of this equation and using the definition
of a starred function given by Eq. (22.9) give

1 oo o
V() =2 D V(s + ) = % S Gls + jnw)CGs + jnay)

n=-—o n=-w
From Eg. (23.3), we can write
C*(s + jnwy) = C*(9
therefore
x * 1 < .
Y's)=¢C (s)[; > Gys + ;nws)}
n=-—-w

The term in brackets, according to the definition of Eq. (22.9), is Gf(s). We can
now write

Y*(s) = C*(5)G}(s)
Converting G to the origina variables gives
Y*(s) = C*(5)G.G,Gp *(s)

Alll. BASIC Program for Long Division

The BASIC program given in Fig. 23.7 is useful to invert a Z-transform by the
method of long division. To use the program, one must arrange the Z-transform
C(z) inthe form

-1 -2 -m
apt a1z "t axz ‘o anz
C) = =

(23.38)

1 + blz_l + b2Z_2 + bnz*"
When the computer program is run, one enters the values of ag,a4,..., b,
by, ..., m andn when requested by the program. One also enters the number

of terms desired in the long division. To illustrate the use of the program, we
shdl do the long division that was done in Example 23.1. After introducing the
parameters of Example 23.1 into Eq. (23.11), C(z) becomes
1+2771+ 272

7 —0.368

To put this in the form of Eq. (23.38), multiply numerator and denominator by
z “land the result is

C@z) =

g+ 2772+ 73
1=0.3687"1

From the numerator of this expression, we see that a9 = 0, a; = 1, g5 = 2,
az; = 1, and m = 3. From the denominator, we see that b, = -0.368 and
n = 1. Introducing these values into the sample run shown in Table 23.2 gives a
result that agrees with that of Example 23.1.

C) =
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5 DM A(20), B(20), X(=20), D(20)

13 PRINT "Z- 'f'RANSFO?M | NVERSI ON BY LONG DI VI SI ON*
15 PRINT

20 PRINT "ORDER OF NUHERATIOR, M": |NPUT M

25 PRINT

30 PRINT "1 NPUT NUMERATOR COEFFI CI ENTS A OF THE FORM "
4g PRINT "AU + RL/Z#+*) + R2/Z**2 + . . . + AM/Z*+NV
SO FORI =g TO M

L0 PRINT "COEFFICIENT", |: |INPUT A(I)

70 NEXT |

75 PRI NT

80 PRINT "ORDER OF DENOMINATOR,N": | NPUT N

85 PRINT

90 PRINT "1 NPUT OF DENOM NATOR COEFFI Cl ENTS, B, OF THE FORM "
100 PRINT "1 + Bl/Zx+) + B2/Z**2 + . . . + BN/Z#+N"
110 PRINT "NOTE THAT BG = 1"

Y20 FOR1 = 13 TON

130 PRINT "COEFFI CIENT", 1: INPUT B(I)

140 NEXT |

I4y2 PRI NT

143 PRINT vgow MANY TERMS DO YOU WANT |IN THE | NVERSE FORE?"
145 PRINT "CO + CL/Z#*) + C28/Z*+2 + . . . + CJ/ZxxJ"
147 | NPUT N3

150 N3 = N. | F M>N THEN Nl=M

160 FOR I = 1 TO {1

170 D(I) = A(I)

180 |F >N TEEN B(1) = 0

190 |F 1> THEN D(1) =0

200 NEXT |

210 D(N1+1) = O

220 |F a¢g)y = 0 GOTO 270

230 x(0) = A(0)

240 FOR I = 3 TO N D(I) = D(I) - X(0)*B(I): NEXT I
250 X(1) = p(1)

260 GOTO 280

270 X(O = 0: X(L) = a(w)

280 PRINT x(0),"/Z+« 0 +"

282 PRINT X(1),"/Z#** L +"

288
290
300
310
320
330

FORJ = 2 TO N3

FOR K = 3 TO Ni: D(K) = D(K+}) - X(J-1)+*B(K): NEXT K
X(J) = D(L)

PRINT X(J),"Z/%xn;J;040

NEXT J

END

FIGURE 23-7

BAS

| C program for long division.
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TABLE 23.2 L
Output from a BASC program for long divison

RUN
Z-TRARSFORM | NVERSI ON BY LONG Di VI SI ON

ORDER OF NUMERATOR, X

? 3

I NPUT NUMERATOR COEFFI CI ENTS A OF THE FORM:
A0 + AL/Zx+) + RR2/Zxs28 + . . . +RM/ZxsN
COEFFI Cl ENT 0

?0

COEFFI Cl ENT 1

? 1

COEFFI Cl ENT 2

? 2

COEFFI Cl ENT 3

?1

ORDER OF DENOMINATOR,N

?1

I NPUT OF DENOM NATOR CCOEFFI CI ENTS, B, OF TEE FORM
3 + BY/Zx+) + B2/Z+»2 + . . . + BN/Z*xN\

NOTE TRAT BO = 1}

COEFFI CI ENT 1

? -.3b8

HOW MANY TERMS DO YOU WANT IN THE INVERSE FORM?
S«OS"' CL/Z#+) + C2/Zxx2 + . . . + CJ/T*4J

0 /Zex O +
1 /Zxx )+
2.3k8 /Zxx 2 +
1.87142Y /Tax 3 +
.b88bk3Y /Zax Y 4
.2534357 /Zx% 5 +
Ok

PROBLEMS

23.1. (8) For the open-loop system shown in Fig. P23.1, determine ¢(nT) for R = &(¢),
u(t), tu(t) when T = 1 and T = 0.5. Sketch the continuous response c(t) for
each disturbance.

(b) Repest part a for the case in which the zero-order hold is removed.
Note: The complete solution to this problem requires the solution of 12 open-

loop  problems.
R——" ——] 1'?7: > L ¢
T s+1 FIGURE P23-1

23.2. For the sampled-data process in Fig. P23.2, determine
(@ C(z).
) c(nT) for severa vaues of n.
(c) Plot the continuous response, c(t).
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fiy=tu() __~- leTs | | 1 - 1-¢Ts 1 |c - *
ramp T=1 s s+1 T=1 s N T=1_>C
FIGURE P23-2
23.3. Consider the transfer function )
G, = LtTs) 1—eTs
k= T s

If the function X(t) shown in Fig. P23.3 is fed to an impulse sampler, which
is followed by Gy , , determine the output Y(f) . Present your resuits graphically. The
term Gy, is caled a first-order hold.

X—rt— G |—>v
T=1
3
=2
o
I
%1 2 3 4 7 FIGUREP2].3

23.4. For the sampled-data control system shown in Fig. P23.4, determine ¢(nT) for
K =1and K = 2. Sketch the continuous response c(t). Determine the ultimate

controller gain.
7=1
+ 1 N
R=u(t) K o+l » C
1-eTs
s -
=1 FIGURE P23+4

23.5. For the sampled-data control system shown in Fig. P23.5, determine ¢(nT) for
K = 0.2. Sketch the continuous response c(t).

+ 1-¢Ts 10
R=u(t) T | s (s+1)15+2)

FIGURE P23-5
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24

STABILITY

We have seen in Example 23.3 of the previous chapter on the proportional,
sampled-data control of afirst-order system that the question of stability arises.
By solving the response ¢(nT) for this relatively easy problem [Eq. (23.36)] we
were able to derive the conditions for stability [Eq. (23.37)]. Using this same ap-
proach for finding conditions for stahility for higher-order processes can be quite
complicated. Fortunately, one may develop general rules of gability that resemble
those for continuous systems.
Consider the response of a sampled-data system to be of the form;

Fi(z) Fx(z)

Cz) _ 1+G6(@=@G=2u)z=22) ... (z = z,)

(24.1)

To obtain the response ¢(nT), we may expand the right side by the method of
partial fractions to obtain

Fi(z) z z .

C@)= ———=—= + A + .- 242
() 1+G6@) = 25 z (242)
In anticipation of an entry in the table of transform pairs, each term within the
parentheses of Eq. (24.2) is written as z/(z - z;). The term z =}, which has been
placed outside the parentheses to balance the z placed insde, will smply shift the
time response by T units and in no way affect the conclusion on stability to be
given in the following discussion.

For the moment, consider theroots z 1, 73, . . . to be real. We have seen
from previous examples that the inverse of atypical term z/Az = z;) is.
- b4
z™! { } = 2! 24.3
| =4 (243

376
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For this term to contribute a bounded response to c(nT') requires that |z;| < 1.

We shall now extend this special case of real roots, which has been presented to
introduce the subject, to the genera case of roots being complex.

GENERAL CONDITIONS FOR STABILITY

The general conditions for stability of a continuous system are that the roots of thé

characteristic equation fall in the left half of the complex plane. Before the sampled
signa C*(9) is changed to the form C(z) by introducing the transformation z =

eTs, the characteristic equation of the sampled system is

1+G*(9) =0
We may apply the genera stability criterion and require that al roots of the
characteristic equation be in the left half of the s-plane. When the characteristic

equation expressed in the ss-domain is transformed to the z-domain through the
transformation z = e™*, we get

1+G(2)=0
Consider atypical stable root of the characteristic equation to have the value
§ = —at jo where g >0

This root is shown in the complex s-plane in Fig. 24.1. By applying the transfor-
mation z = eT* , we may write

z= el = e T0eeT
This expression for z, a complex number, is of the form

1= Me®  or  z= 7] %z

where M or |z|is the magnitude of the complex number and 6 or X z isthe angle
associated  with  the  complex  number.

Sinceg >0, e 77 <1

therefore |z] < 1

In terms of the complex z-plane, this result states that stability for a sampled-data
control system requires that the roots of the characteristic equation 1 + G(z) = 0
fall within the unit circle as shown in Fig. 24.2.

§ -plane

FIGURE 24-1
Root location in complex plane.
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j z-plane

radius = 1
FIGURE 24-2

Region of stability in the z-plane.

Routh Tes

The Routh test, which is often used to examine the roots of the characteristic
equation of a continuous system (see Chap. 14), may also be used to examine
the roots of the characteristic equation of a sampled-data system. Recall that the
Routh test detects the presence of roots in the right half plane. Since the crite-
rion of stability of a sampled-data system requites that al roots fall within the
unit circle of the z-plane, one must first apply a transformation that will map
the inside of the unit circle of the z-plane into the left half of the w-plane. One
can then apply the Routh test to discover roots in the right half of the w-plane,
and if none are found, we know that the roots of the characteristic equation 1 +
G(2) = 0 fall within the unit circle and that the sampled-data control system is
gtable.

A transformation that will map the inside of the unit circle of the z-plane
into the left half of the w-plane is

w + |
w - |

z = (24.4)

This transformation is called the bilinear transformation. The regions involving
the transformation are shown in Fig. 24.3. An dternate transformation is

_l+w 05
2= 10 (24.5)

The reader should check to see that the transformations given by Egs. (24.4) and
(24.5) do what is claimed. For example, if w ==1 + | , apoint in the left half
of the w-plane, then Eq. (24.4) becomes

I I +j+1 j

e+ -1 =2+
Multiplying numerator and denominator by -2 — j , the complex conjugate of
-2 + j, gives
_J-2-i M 1
-2+4+j-2-j 5 5

a point inside the unit circle

Wi
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J

Transformation from the z-plane to the w-plane.

J z-plane

unit circle

A genera proof that the transformation maps the inside of the unit circle into the
left half plane is given here. Solving Eq. (24.4) for w gives

z+1

w = (24.6)
z -
Let z = x + jy. Equation (24.6) becomes
_xt+ly+1l _ (x+D+jy
TX+jy-1 0 (x=1D+ jy (24.1)
or
(x+D)+jy(x=1) -y 249

w . -
=x=D+jyX =1) =y
Multiplying out the factors in the numerator and the denominator gives, after
dodydac  rearagamat
-1 2
w_ =J
=(Xx =12+ y2 (X =12+ y?

(24.9)
We may now use the analytical expression for a unit circle, x2+y 2= 1, to
complete the proof. If a point is inside the unit circle of the z-plane,
lzl <tand x*+y’<1
Introducing this inequality into Eq. (24.9) leads to the result that the real part of
w is nedive thus
R{w < 0 (24.10)

Since this is equivalent to stating that the values of w fall in the left half plane,
we have compleed the genad prodf.
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Root Locus

One may determine the stability of a sampled-data system by plotting the root

locus diagram for the characteristic equation. In this case, there is no need to

use a transformation, as is needed in applying the Routh test. In general, the

open-loop transfer function for the sampled-data system can be placed in the form
an=x“ vi)z=v2) (24.11)

(e = pi)e=pa) -

where vy, v, . . . @e the zeros of the open-loop transfer function and p 1, ps, ...

are the poles of the open-loop transfer function.

To obtain the root locus plot for 1 + G(z) = 0, one places the open-loop
zeros and poles on the complex plane and applies the angle criterion used in root
locus construction. The stability boundary occurs when one of the branches of
the root locus diagram crosses the unit circle. To find the gain K at the stability
boundary, one applies the magnitude criterion of root locus construction. (See
Chap. 15.)

Example 24.1. The stability of proportiona control of a first-order process will be
examined. This same problem was presented as Example 23.3. Both the Routh test
and the root locus method will be used. The system is shown in Fig. 24.4. For this
system, we have shown in Eq. (23.29) that

qa:K%?%
where b= 7T/,
Using the transformation given by Egq. (24.4), we obtain for 1 + G(z) = 0
L+ XA=b a2
w-i P
or
Kl=-bw=1) _

1+w+1-mw-n“

(24.13)

Rearranging this result in polynomia form for applying the Routh test gives
(K+ DA =blw+ [1+ b)=K(l=-b)] =0 (24.14)

R ——>| K

1-eT ~

Block diagram for Example 24.1.
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The Routh array for this expresson becomes

Row term

1 K+ 1)1 =D
2 1+Db) =K( =b)

Since b = ¢~T/7 is dways positive and less than one and K is positive, the first
element in the array is positive. For stability, the Routh test requires that al elements
of the first column be positive. Therefore,

(L+Db)=K(l=b)>0

or

1+ b>K(1-b)
or
l+b .
K< 6 for stability

This is the same result given by Egq. (23.37), which was obtained from an expression
for ¢(nT).

We shdl now use the root locus method on the same example. For this smple
problem, there is only one pole of the open-loop transfer function, G(z), which is
located at b as shown in Fig. 24.5. The root locus consists of one branch that moves
from the pole a b aong the red axis to the left. The intersection of this branch
with the unit circle at z = = 1 gives us the stability boundary. Using the magnitude
criterion of root locus construction gives

K1-b) _
|zi = p1l
We can obtain the value of K at the stability boundary by solving for K; thus

_zi=pi|l _ 140
| - b Il -b

1

K

z-plane

/ unit-circle

VD
N

P1=b Root locus plot for Example 24.1.
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Since the root locus branch moves to the left with increase of K, we see tha

I+Db -
K< T8 for stability

For this smple example, the root locus method is easier, for one does not need to
use atransformation and the root locus diagram is very smple. However, for higher-
order systems, the apparent advantage of the root locus method over the Routh test
is lost. To appreciate the details of applying the stability criterion to sampled-data
systems, the reader is encouraged to work a few of the more complex problems a
the end of this chapter.

Other methods for determining stability of sampled-data systems include the
Schur-Cohn criterion and the Jury criterion (see Jury, 1964 and Tou, 1959). The
Jury criterion is a smplification of the Schur-Cohn criterion. These methods, which
can be applied directly to the characteristic equation written in the z-domain, can
detect roots outside the unit circle of the z-plane. Since these methods require the
evauation of high-order determinants, they are limited to smple systems.

SUMMARY

The presence of sampling in a control system contributes to instability. The crite-

rion for stability of a sampled-data system requires that the roots of the character-
igic eguation, 1 + G(z) = 0, fdl within the unit circle of the complex z-plane.
Based on this criterion, two methods were developed to determine stability: (a)
the modified Routh test and (b) the root locus method. To use the Routh test, one
must first apply the bilinear transformation, which maps the inside of the unit

circle into the left half of the w-plane. The usua rules of the Routh test am then
applied to the transformed characteristic equation. Using the root locus method
is simpler, for one simply constructs the root locus diagram from the poles and
zeroes of the open-loop transfer function G(z). When a branch of the root locus
diagram crosses the unit circle, the system becomes unstable. It is of interest
to note that systems having transport lag can be analyzed easily for stability in
sarpeddda sydems by dther the modfied Routh teg o the root locus method,

this was nat the case for continuous sydems having trangoort lag.

PROBLEMS

24.1. For the systlem shown in Fig. P23.5, determine the ultimate gain by use of the
Routh test and by use of the root locus method.

24.2. For the control system shown in Fig. P24.2, determine
(@ an expression for C(z) when a unit-step change occurs in U, R remaining O.
(b) the stahility criteria for the control system.
(c) plot the continuous response c(t) for at least a period of time equa to 2T.

Obtain this information from basic knowledge of firgt-order systems.

Note: Clamping is not present in this system, for them is no zero-order hold in the
block diagram.
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i

-0 KL U
R_o-_'»?_f/:r s+1 [T ¢

FIGURE P24-2

24.3. The sampled-data control system shown in Fig. P24.3 contains a firs-order hold,
for which the transfer function is

G, - 1+ Ts){l ~ e Ts}
LS S W
(a) Determine G(z) for the closed-loop response.
(b) Determine the value of K for which the closed-loop response is on the verge of
instability by means of the root locus method. Sketch the root locus diagram.

(c) If azero-order hold were used in place of the firgt-order hold, what would be
the value of X for the system to be on the verge of ingtability?

1
K —
T=2 ' s+1 rc

FIGURE P24-3

24.4. One can show that for the sampled-data system in Fig. P24.4

_ Kiz+a)
Gl2) = 2(z = b)
where o = 0517, b = 0.607, K| is proportiona to K.

Draw accurately the root-locus diagram and from it determine the ultimate vaue of
K, above which the system is unstable.

U .
%
+ + e~ 04s
k K 2s+1 >C
I-¢eTs
§ T=1

FIGURE P24-4
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MODIFIED
Z-TRANSFORMS

Theinverson of the Z-transform C(z) gives information about c(t) only at sam-
ping inderts This of coursg is a reslit of introdudng the sampling switch. The
“simplicity” of the mathematics of Z-transforms must be paid for by the limited
information about c(t). For some processes, knowing the response at sampling
idants is quite affidet. Howeve, if one wants informdion between sampling
instants (intersample information, as it is called), a procedure other than the use
of Ztraadoms is repuired.

One method, which can be very tedious except for first-order processes,
is to compute the continuous response c(t) by solving the differential equations
describing the process. If one were to go through this much effort, there would
be litle reeson to ue ZHrandoms in the fird place

Another method for finding intersample information is to use the modified
Zrandom. This method is nealy as essy t0 ue as the odinaty ZHrandfom ad
gves the intasample infomeation about the reypone & awy dedred time betwean
sanping  indats

Ancther reeson for introdudng the madified Z-randfom is to have a method
for obtaining the pulse transfer function of a system that includes a transport
lag (¢~ ™) for which 7 is not equal to an integral number of sampling periods
(r #nT). The development of such a pulse transfer function will be described
in the next chepter.

384
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DEVELOPMENT OF MODIFIED
Z-TRANSFORM

Consider the process shown in Fig. 25.1 in which a fictitious delay e ~*T has
been placed after the block G(s). The value of A is between 0 and 1. The use
of ordinary Z-transforms will give ¢(nT), which is obtained by inverting C(2).
From Eq. (23.6), C(2) can be found quite simply from the expression:

C@z) = G(z)F(z) (25.1)

To obtain c(t) a times other than sampling instants, c(t) is delayed (or trandated)
by an amount AT before sampling. The choice of A gives the desired intersample
value of c(t).

Before developing the definition of the modified Z-transform, Fig. 25.2
provides a simple example that will clarify the timing of signalsin Fig. 25.1. In
Fig. 25.2 f(t) = u(t), a unit-step function, G(s) = 1/(s + 1), and A = 0.7.
By studying Fig. 25.2, one can see the nature of the signal at each position in
the diagram. Notice that the continuous signal ¢(¢) from the delay block is the
response c(t) shifted by 0.7T to the right. The sampled response ¢(¢) consists
of atrain of impulses; the magnitudes of which equal the values of c(t) at 0.3T
into each sampling period. As will be shown later cA(nT) gives the intersample
information that is provided by the modified Z-transform.

We may now turn to the general development of the modified Z-transform.
From Fig. 25.1, we may write

Ca(s) = GA(s)F™(s) (25.2)
where G,(s) = G(s)e AT
Taking the starred transform of this expression:

Ci(s) = GY()F*(s) (25.3)

The basis for performing this last step has been discussed in detail in connection
with Eg. (235).

To develop the modified Z-transform, consider separately the processing of
c(t) as shown in Fig. 25.3. To find the Z-transform C(z) corresponding to C }(s),

£, () e(t)
Fs) T FRs) oW Cls)
F(z)

UG 1 Cis)

1
B *
|.—'J| e —Ms '_‘2‘.(1)_// £x)
|
L——_-i‘,__—.—] C}\'(Z):C(va)

FIGURE 25-1
Development of modified  Z-trandform.
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fy=un) £l 0
—_— 7 1
T s+1 L o __-._c0
Gls) : T
I ~———
l *,
:.__J £0.Ts 'L_?(t_)_.,’__f’zit)_
| | T
1
2 foty)
1+ cl(t)
0 L '
0 0.7T 17T 2.7
2— C*(t)
14 <
i I 1
% T 2T 3T
1 vl
fio
0 1 | § |
0 ir 2T 37 4T
FIGURE 252

Example to illustrate the development of the modified Z-transform (A = 07 or m

we may use the definition of Eq. (22.8) to write

[«

Ca2) = > c(nT = AT)z ™"

n=0

t <0, wehavefor n=0

c@ AT)=c(—-AT)=0

aolt) =cle=27) . ol

T CXs9
Cy(2)

e —ATs

FIGURE 25-3
Delay and sampling of c(¢).

= 03).

(25.4)

Since we work only with functions of ¢ for which the function is zero for
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Equation (254) may now be written

o]

CA@) = > (T = AT)z™" (25.5)
n=1
If weletm =1 =), we may write for the argument of c in Eq. (25.5)
nT —=AT=nT -1 ~m)T=(MN=-DT+mT (25.6)

Equation (255) may now be written

=]

CA@) = > cl(n = T + mT]z™" (25.7)

n=1

If weletn” = n=1, Eq. (25.7) may be written

e <}

CA@ = > cl(n' + mT1z "z~ (25.9)
n'=0
or
CA@) = 27t > el(n' + mTlz™ (25.9)
n'=0

This last expression is the definition of the modified Z-transform. Replacing the
index n ' with n, to avoid an awkward symbol in the definition, we have the
expression for the modified Z-transform:

Cx@) = Cemy= 271 > cl(n + mTl™" (25.10)
n=0
The symbol C{z,m) hasreplaced Cp(z)and m =1 - A.
Tables of transform pairs have been developed that relate a function f(t) to
its modified Z-transform. Table 22.1 provides the modified Z-transforms for the
functions of t listed in the table.

PULSE TRANSFER FUNCTION
FOR MODIFIED Z-TRANSFORM

Returning to Eq. (25.3), we may write

C(s) = G(s)F*(s) (25.11)
Writing this in terms of Z-transforms, we have
Ca(z) = GA2)F(2) (25.12)

The convention has been established to replace the Z-transform of the delayed
function, such as Cx(z) in Eqg. (25.12), with the symbol C(z,m) where mis
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related to A by therelationm =1  A. Changing the subscripted symbolsin Eq.
(25.12) according to this convention gives the equivalent expression

C(z,m) =.G(z,m)F(2) (25.13)

where G(z ,m) is the Z-transform corresponding to G ,(s). Remember that G ,(s)
is simply the transfer function for the process G(s) multiplied by the transfer
function for the fictitious delay; thus.

G(s) = G(s)e M* (25.14)

To find G(z ,m) one may refer to a table of transforms and find the entry G(z ,m)
corresponding  to the desired G(s).

SUMMARY OF USE OF THE MODIFIED Z-TRANSFORM. To find the output
of the block diagram in Fig. 25.4 at times other than sampling instants, one uses
the modified Z-transform and  writes

C(iz,m) =G(z,m)F() (25.15)

It should be redlized that C (7, m) is Simply a Z-transform and that it can be inverted
by the same procedures used for inverting ordinary Z-transforms. Furthermore,
the inverson gives information about the response only a sampling instants. The
result from the inversion of the modified Z-transform gives the values of c(t)
between sampling instants. By choosing m between 0 and 1, one can obtain the
values of c(t) at any desired time within the sampling intervals.

For convenience, one may apply the following rule to determine the effect
of the size of m on the time into the sampling intervals.

Rule.  Inverson of C(z,m) givesaresponse that is equivaent to stepping back one
sampling period in ¢(¢) and advancing mT units of time. Thus, for m = 1, there is
no delay and the result is the same as that obtained from the ordinary Z-transform.
This can be seen from the fact thet A =1 =m =1 = 1 = 0. On the other extreme,
for m = 0, one has a delay that approaches a full sampling period.

The system presented earlier in Fig. 25.2 for the purpose of explaining the
imng o the vaious dgds will nov be woked es an exande uding the mehod
just discussed.

Example 25.1. Obtain by means of ordinary and modified Z-transforms the response
for the system shown in Fig. 25.5. Determine the response c(t) at sampling instants
and at times positioned 0.3T from the beginning of sampling instants.

) | c(t)
F(s) T Gls) l' C(s)

' ..€1) AGURE 254
T C*s)  Operloop sampled-data system.
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fi=u(ty—r— =2 ()

T=1 s+ 1 r =1 FIGURE 25-5
Open-loop system of Example 25.1.

Using ordinary Z-transforms, one obtains.

C(z) = G(2)F(z) (25.16)
From the table of transforms,
1 z Z
Gz) = P— 3 F(z) = P (25.17)

Introducing these expressions into Eq. (25.16) gives
Z z 1 22
e—‘T/'T z—1 T (Z - e—-T/r)(z - 1)

We next determine the intersample response by using the modified Z-transform
as expressed by Egq. (25.13). From the table of transforms, we obtain for G(z ,m)

(25.18)

1
Cz) = ;z

1 e—mT/f
G m) = —— 7% (2519
C(z,m) then becomes
-mT/r
Ceymy = L (25.20)

Tz-eThz-1

Inverson OF Cz. The inversion of C(2) from Eqg. (25.18) may be obtained by
the method of partial fraction expansion, which has been discussed previoudy.
Theresault is:

cnT) - (127 bty (25.21)

(1 = b)

where b = ¢~ T/
Introducing the parameters (T = 7 = 1) for this example gives

- ! +1
c(nT) = (1_-—0.368)(1 - 0.368" ) (25.22)

Inversion of C(z, m). The inversion of C(z ,m) is obtained in exactly the same
manner as the inverson of C(z). It should be remembered that C(z ,m) is Smply
a Z-transform of the output of a process in which some delay has been introduced.
We may use ether the method of long division or the method of partial fraction
expangon to invert C(z ,m). Using the laiter, we proceed as follows

Clz,m) 1 A 5
[T =E=de=D z-b 7 o (2523

where b = 177
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Evauating A and B givesA = —~1/( 1 =b)and B = 1/( 1 - b), therefore

C(z,m) =

et ( z__ .3 ) (25.24)
T1-b)iz—-1 z-b
From the table of transforms (Table 22.1), Eq. (25.24) becomes
e-—mT/r
c)(nT) = T_(l_—-‘b_)(l - b") (25.25)
Using the parameters of this example, we get
-0.3

e
—————(1-0.368"
1- 0.368(1 )

c\(nT) =

Note that
c\(nT) = e %3 c[(n = DT
This result is to be expected for this process, i.e, the intersample vaue is a

congtant fraction, e ~™, of the peak value, which occurred at the previous sampling
ingtant.

CLOSED-LOOP INTERSAMPLE RESPONSE

Consider the following closed-loop system in Fig. 25.6, which was discussed in
Chap. 23. If C(2) for this system is inverted, we obtain values of the response
c(t) at sampling instants, ¢(nT). To obtain information about c(t) at intersample
positions, we may insert in the loop e ~ATs and e*’* as shown in Fig. 25.7. This
atifidd instion of lag ad leed does not dter the sydem, but provides a means
for calculating the desired information, ¢(t).

For simplicity, consider only the case of set-point disturbance. If load dis-
turbance is al'so present, the same approach to be used here can be applied.
From Fig. 25.7, we can write directly

CA(9 = RG.G,G4(s) = C*(s)GrG GG 4(s) (25.26)
where G4(s) = e A5,
Taking the dared trandom of both ddes of this equation gives

Ci(s) = RG.GpGy(s) — C*(5)GnG GG y(s) (25.27)

U

+
RQ(?» G,(s) = G,(s) P> C

Gyfs) ~N FIGURE 25-6
T Closed-loop sampled-data system.
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U
+ Gd(s)
R— Gols) = G, (s) e s G,
Gyfs) C_? C| o

HAQRE 257
Modified closed-loop system for obtaining intersample information.

From Eq. (23.19) we may write for only a set-point disturbance:
C*(s) = RGCG;(s) = GG,G(5)C*(s)
Solving for C*(9) gives

RG.G3(s)
*o) = ———C¢PV 25.28
€)= 176.6,6,6) (25.28)
Introducing C* (9 from Eq. (25.28) into Eq. (25.27) gives
RGCG;(S) .
A(s) = sy - ———F—— 25.29
Ci(s) = RG.G,G4(s) i+ GCG,,G;(s)GhGCG”Gd(S) ( )

Expressing this as a modified Z-transform, we obtain

RGCGP(Z)GthGp(Z ,m)
1+ G.GpGi(2)

In going from Eq. (25.29) to Eq. (25.30), any symbol with a subscript A or any
group of transfer functions containing G 4 (the transport lag e ~47%) is converted
to the modified Z-transform symbol according to our previous discussion.

In using this last equation, one must calculate the terms on the right side
caefully. For example, to find G,G.Gp(z,m) one first obtains GG .G p(s), which
is obtained by multiplying together the individua transfer functions. One then
obtains the desired result from a table of modified Z-transforms.

Table 23.1 gives the modified Z-transform outputs C(z ,m) for some
sampled-data systems of interest in this book. The modified Z-transform output
given by Eq. (25.30) for Fig. 25.6 corresponds to item 2 in Table 23.1.

C(z, m) = RG:Gy(z,m) = (25.30)

SUMMARY

The modified Z-transform is needed to obtain the response of a sampled-data
system at intersample positions. It is also needed to obtain the pulse transfer
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function of a system containing transport lag (e ™) for which 7 is not an integrd
number of sampling periods. It should be remembered that a modified Z-transform
is dmply a Z-transform of a function in which a transport lag (e "‘TS) has been
included. The inverson of a modified Z-transform is obtained in the same manner
as the inverson of an ordinary Z-transform, by long divison or by use of partid
fraction  expansion.

PROBLEMS

25.1. For the control system shown in Problem P23.4, determine the response between
sampling for the case m = 0.4 by use of the modified Z-transform.

25.2. For the process shown in Fig. P25.2, determine Y (2). By means of long division,
determine Y(t) for t = 0, 1, 2, 3, 4, and 5.

_ - Ts ~1.45
x=tu(t) —_— 1-e — £
ramp T=1 s s+1

FIGURE P25-2

25.3. (8 For the control system shown in Fig. P25.3, obtain a general expression for
C(z) for the case where R = 0 (no sat-point change) in terms of G 1, G2, and U.
(b) One can show that for R=0and U = /s that C(z,m = 0.3) = 0.259z ~' +
0.587z72 +0.556z 7 +....
From this result and any other information you wish to use, determine if
possible the values of C at the following times: 9, 0.3, 0.5, 0.7, 1.0, 1.3, 15, 1.7,
2.0, 2.3, and 3.0. Present your results in a table.

G, (s) " Gy(s)
+
R__;%_/—» _}__ + i > C
T=1 s+1 s+1

FIGURE P25-3

al




CHAPTER

26

SAMPLED-DATA
CONTROL
OF A
FIRST-ORDER
PROCESS
WITH
TRANSPORT
LAG

The tools developed in the previous chapters for sampled-data systems will now
be applied to a modd found to fit a large class of systems in chemical processing.
This model consists of a first-order process with transport lag (or delay). The
transfer function may be written

—-ars
e

GP(S) = ;‘S_Ti- (261)

where 7 is the time constant and a7 is the transport lag parameter (a is a positive

number). Consder the sampled-data control sysem shown in Fg. 261 in which
this transfer function is used as a model of the process. In this discussion, the

hold will be a zero-order hold for which the transfer function is

Gn(s) = ;J(l - ™) (26.2)

Recall that the combination of the sampling switch and the zero-order hold pro-
vides clamping. We shall take the control action to be proportional, for which

G. = K (26.3)

393
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FIGUKE 26-1
Sampled-da ta control of a first-
arder sygtem With transport lag.

Gy(s)

For the case of no transport lag (a = 0), the proportional control of this
process was discussed in Chap. 23. As will be shown, the higher the value of a,
the highe the adar of the chaadtaidic equation for the dosedHoop system.

We ddl condder a number of cases thet ae besd on the 9z of a For this

puposs, et
nT <ars=@n+ DT (264)

wheren=0,1, 2, 3, . ..
For convenience in obtaining G(z), ar may be written as follows:
ut = nT + UT = nT) (269

In this form a7 is equal to an integral number of sampling periods (nT) plus a
fraction of a sampling period [i.e., (ar = nT) < T]. Using this expression for
ur in Eq (26. 1), the operloop trander fundion becomes

—(at—nT)s

- — o, Tsy,—nTs
G(s) = K(I = e e s 7 ) (26.6)
Using the theorem on trandation in Chap. 23 [Eq. (23.26)], we may write G(z)

as
B K(l - z—1)7 e—(ar—nT)s
Gz) = z = { s(rs +1) } (2%6.7)

Note that the expression within braces is equivdent to ddaying the response from
1/[s(rs + 1)] by (ur =« nT). We may apply the concepts used in developing the
modified Z-transform to find the Z-transform of the expression within braces in
Eq. (26.7) by equating (ur= nT)to AT and recalling that m= 1 = A. Thisleads
to
AT = gr ~nT
m = |—A=1—a%+n (269)

Equetion (267) may now be written

K1 = z7Y 1
6@ = " Zm{ s(Ts + 1)} (26.9)
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From the table of modified Z-transforms (Table 22. 1), we obtan

- -1 art
SRR R ST
Rearranging this expresson  gives
G) :K(zz,,fl D - L T 4 b1 (26.11)
where d = expla = (n + )T/rland b = ¢~/
The characteristic equation for the closed-loop response may be written
1+G(2)=0
or
N <7 I R (26.12)
1 o lz-1 z-b = '
or
"2 bt 1 K( - d)z+ K(d=b) =0 (26.13)

Note that the order of the characteristic equation increases if (1) the delay time a 7
isincreased for a fixed sampling period T (2) the sampling rate increases (lower
T) for afixed delay time.

STABILITY

The stahility of the sampled-data system represented by Eq. (26.13) can be ex-
amined by applying the Routh test as discussed in Chap. 24. As the order of
the characteristic equation increases, the effort involved in determining stability
criteria greatly increases. A few cases corresponding to various vaues of n in Eq.
(26.13) are presented here.

Caeln =0
For this case, the delay is less than one sampling period, i.e.,
O0<ar=T
The characteristic equation given by Eq. (26.13) becomes
2+ [KA—-d)-blz-K(b=-d) =0 (26.14)
For convenience, this may be written
Z2+yz—a=0 (26.15)

where y = [K(1-= d) = b] and @ = K(b = d).



396  SAMPLED-DATA CONTROL ~ SYSTEMS

Applying the bilinear transformation given by Eq. (24.4) to Eq.(26.15) gives
w+1? w+l
W12 +w-1"

a=o (26.16)

After agebraic rearrangement, one obtains
wi(l+ty—-a) + w2+ a)]+1=-y=-a=0
Replacing y by K(I = d) = b and o by K(b —d) gives
wil—b+K(1=b)]+2w[l+K(b—d)]+1—-[K(1-d)—b+K(b—-d)] = 0
or
wil = b)(I + K) + 2w[l + Kb —d)] + 1 = [K(1 = d) = b+ K(b = d)] =0
The coefficient of w? is positive since b = e ~T/7 js always positive and less than
one. For stahility, the Routh test requires that al coefficients be positive; therefore
1+Kb-d) >0
and
1+b=-K(l+b=2d)>0

These inequalities may be rewritten

!

K<— (26.17)
1+b

c_1*t0 26.18

K< p=2a (20.15)

Both of these inequalities must be satisfied simultaneously. The best way to un-
derstand the result is to plot the dtability boundaries as shown in Fig. 26.2 where
the ultimate gain K, is plotted as a function of a. Recall that d is a function of
a as shown under Eqg. (26.11). For stability, K must fall under the boundary as
indicated in the figure. One can see that K, reaches a maximum at a ggy in Fig.
26.2. The value of ag,, is determined by the intersection of the two congiraints,
which leads to

(1+ by
b(3 + b)

For the value of T/ of 0.8 used in Fig. 26.2, one can compute that a max = 0.304.
Figure 26.2 shows that up to a certain point, adding delay time to a system
with T/r = 0.8 increases the ultimate gain. One suggested design criterion is to
set K/K,, = 0.5. The assumption is made that the “relative stability” of the loop
is constant, for constant K/K,. This would imply for this particular example that
adding delay time to the loop up to a = 0.304 will be beneficial, since increas-
ing K gives less deady-state offset and also faster system response. However, the
relative stability of the sampled-data system does not remain the same for con-
stant K/K, Figure 26.3 illustrates this point. The response of the system to a unit-

exp (Amax) =
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e—dth
K K=139-5a
4

L\
) .

d-b
Ku
3
Tit=0.8
2
Stable
1 /
Q FIGURE 26-2
0.2 to4 o6 4 Stahility boundary of a sampleddata system & a
Imax - function of delay time.

step change in set point is shown for various amounts of delay time in the loop.
Although K/K,, is maintained at 0.5, increasing the delay time toward @ yax has
definitely destabilized the system. Hence, use of constant K/K,, is not a good
design rule for sampled-data systems and the conclusion that control can be im-
proved by adding delay time is false.

Case2:n=1

For thiscase, T < ar = 2T

One can see from Eq. (26.13) that the order of the characteristic equation is three.
Using the same stability analysis as for the case for n = 0, one can show that
stability requires that the following inequalities hold simultaneoudy

(2d +1=3b)K <3 =b (26.19)
(2d-1-bK <1+b (26.20)
(d—b2K*+ (1-b)( +b-d)k ~1<0 (26.21)
20~
16}
/‘\\ Tie=0.6 KiKi= 0.5
S1.2- I"\\ .
“o.8l i /. P —.a=
g\ WA
/ FIGURE 26-3
0 [ I I I I I Closed-loop transient response of sampled-

0 2 2 3 4 5 6 1 8 #r data system for aunit step in set point.
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The stability boundaries represented by these three equations have been plotted by
Moder et a. (1966). The stability constraints for the case of » = 2, which require
four inequalities, also may be found in Modler (1966). This demonstrates that as
the value of transport lag (a) increases relative to a fixed sampling period T,
the order of the characteristic equation increases and the stability criteria become
more and more complex.

TRANSIENT RESPONSE OF CLOSED-LOOP
SAMPLED-DATA  SYSTEMS

We shdl consider the transient response for the system shown in Fig. 26.1 for a
step change in set point. For this particular disturbance, the block diagram may
be dravn as shown in Fig. 26.4. For the specid case of a step change in set point,
the sampling switch and the hold in Fig. 26.1 can be placed in the forward loop
of Fig. 26.4. For a step change in R occurring just before a sampling instant, it
does not matter whether the sampling occurs before the comparator or after the
comparator. The reason for redrawing the block diagram is that the expression for
C(z) for Fig. 264 is simpler than the expression for Fig. 26.. 1.
Using the method described in Chap. 23, one can obtain for C(z)

_ G(2)R(z)
C() = T+ 6@ (26.22)
where G(z) = G.G,Gn(z)
The expression for C(z ,m) is
_ G(z,m)R(z)
C(z,m) = W (26.23)

Equations (26.22) and (26.23) can adso be found from Table 23.1.
If one were to obtain expressions for C(z) and C(z ,m) for the system in
Fig. 26.1, the result would be as follows:

_ GGRQ@)

= 26.24
C(2) 11 GGQ) (26.24)
and
_ — G(z,m)RG.Gp(z)
C(z,m) = RG:Gy(z,m) @ (26.25)
U
+ GP(S)
R—+->®_/T—— G,fs) G.(s) u ;::L —[—>c
FIGURE 26-4

Rearranged  block  diagram.

Rzt
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If one were to use Eq. (26.24) or Eq. (26.25) for a step change in R,
the result for ¢(nT) and cA(nT) would be, of course, the same as that obtained
using Egs. (26.22) and (26.23); these latter two are simpler than Egs. (26.24) and
(26.25).

The diagram in Fig. 26.4 may replace the diagram in Fig. 26.1 for the more
general set-point function r(t), which is piecewise constant and where changes
in r occur just before sampling instants. This more genera function is a stair-step
function.

The transient response for the system shown in Fig. 264 will be considered
in detal for two cases

Case |: no transport delay, i.e, a=0
Caell:0<agr=T,ie,n=0

The results can be used to establish design criteria

Case I: No Transport Lag
For this case, one can-show that Eq. (26.22) becomes

C(2) K( = b)
Rz) z+K(1-b)-0b

where b= ¢~ 17
For a unit-step change in set point, R = z/(z= 1) and the response is expressed
by
K( = b)z
(z = DIz + K( = b) —b]
Inverting this expression gives

C(z) =

K
c(nT) ra 1{1 [b—-K(I-b]Y n=0,12,... (26.26)

This result was derived in Chap. 23 [Eq. (23.36)] and is presented again for
convenience in developing design criteria. The transient response for a specific
set of parameters, shown in Fig. 26.5, consists of arcs of exponential functions
that intersect a sampling instants.

It is possible to make the loop gain of the system (K) so small that the
response is overdamped. In fact, the value of K, below which the response is
overdamped, can be found by examining Eq. (26.26). When the expression in
brackets, b — K( 1 = b), is greater than 0, the system no longer oscillates; therefore,
we may write

b=K(1-b)>0
or

K< I—h—b for overdamped response (26.27)

An overdamped response is dso shown in Fig. 265.
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An overdamped response for a closed-loop system is usudly considered too
sluggish; consequently, the design criteria to be developed will be based on the
underdamped response, such as the one shown in Fig. 26.5.

Since the peaks (maximum and minimum) of the underdamped response
occur at sampling instants, Eq. (26.26) may be used to compute overshoot and
decay ratio. For a stable response, the ultimate value of c(t) is

K
K+1

This result, which is the same as tha for a continuous proportional control system,
should not be surprising if one recals that the system's seady dtate is determined
by steady-state relationships that are the same for both sampled-data control and
continuous  contral.

The first peak in the direction of set-point change occurs at ¢t = T and the
second peak in the same direction occurs at + = 3T. From this information one
may compute from Eq. (26.26) the fractional overshoot and the decay ratio; the
results are as follows:

c(nT)|pose = (26.28)

Fractional overshoot = % =K( =b)~Db (26.29)
. cGT) —c(®) _ ) _ 312
Decay ratio = ) = o) [K(1 - b) — b] (26.30)

= ()

It is interesting to note that the relationship between decay ratio and fractional
overshoot for the first-order, underdamped sampled system is the same as that for
the second-order, underdamped continuous system, namely:

Decay ratio = (fractional overshoot)? (26.31)

For a decay ratio a?, where 0 < a < 1, the loop gain may be computed
from EQ. (26.29) to be

K, = (26.32)

c(t) for K= 172 (underdamped)

0.8} 4

0.6

0.4k 2¢( t) fork= 02 (overdamped)
T=

0.2 =
77 =% FI GURE 26-5

0 L L L | I Transient response of a firs-order, sampled-

|
0 1 2 3 4 5 6 t data system (no transport lag).
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For any choice of sampling rate, one may determine from Eq.(26.32) the loop
gain required for a desired decay ratio. Increasing the sampling rate (lower T)
increases the speed of the response and decreases the period, which is 2T. This
increase in sampling rate will also provide a larger open-loop gain, which gives
less steady-state offset. From Egs. (23.37) and (26.32), we may write

Kpp L ath (26.33)
K, I+b

For quarter-decay ratio (a? = %), one obtains from Eq. (26.33) for T ranging

fromOtow

1 < Kus < 3 (26.34)
2 K, 4

The ratio varies from % for T = o to 3 for T =O.

One may contrast this result with the Ziegler-Nichols rule for proportional
control of continuous systems (see Chap. 17). The Ziegler-Nichols rule requires
that K/K, = %; if thisruleis used for a continuous system, one expects to obtain
a “good” transient response, for which quarter-decay ratio is often considered
good in industria practice. We see from Eq. (26.34) that K /K, varies from %
to % as the sampling period varies from infinity to zero. The Ziegler-Nichols rule
and the rule provided by Eq. (26.34) are comparable.

Example26.1. A dmple exanpe will hdp illudrae the use of the desgn equation,

Eq. (26.32). For the sampled-data sysem shown in Hg. 26.6, deemine the open-

loop gain K for quarter-decay ratio for the fallowing sampling periods @ T = 1,

(b) T = 05, ad (¢) continuous contrd. Also find the paiod of osdllaion and the
offst for each case

@7=125 T=10 b=e7m=¢08=0449

For quarter-decay retio, a2 = 025 or @ = 05
Sisiting @ into Eq. (2639 gves

V4 = 1—~—5 = 05 + 0449

K 1= 0449 =1724
From Eg (26.28), the ulimate veue of ¢ is
K 1724
o) = gFT = zrow - 0O

offset = r(®) c¢(®)=1 0.633 =0.334
period = 2T =2

+ K 1 o
k " 1.25s+ 1 >C
% AGURE 266
Gyls) | T Sampled-data  control  system  for  Exam-

ple 26.1.
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(b) For this case, where T/r = 04 and b = 0.670, the answers are:
Ky = 3.550
offset = 0219
period = 21 =1
(c) For continuous proportional control of a first-order process, the transient re-
sponse is never oscillatory; therefore, Eq. (26.32) does not apply.

This example illustrates that a faster sampling rate permits a higher propor-
tiona gain and less offset for a fixed decay ratio.

Call: Transport Lag, 0<gr=<T, n = 0

For this case, the response will be delayed by an amount uT. To determine the
decay ratio and overshoot, we must be able to compute the pesks of the transient
response. Because of the delay ar, the peaks will not occur until ar after the
sampling instants. This observation is based on an understanding of the behavior
of a first-order system and the transport lag. The sketch shown in Fig. 26.7
illustrates  the  Situation.

To determine the peak values, we must invert C(z,m) with

AT =T = gagr and m=1=A= ar/T

As shown in Eq.(26.23), we must obtain G(z,m) in order to determine C(z,m).
The transfer function G(S) is
Ke 978 (1 -— e—TS)
s + 1 s (%635)
We cannot obtain G(z,m) for G(s) in Eqg. (26.35) directly from the table of
transforms because G(s) contains e ™4™ where g7 is a nonintegral number of
sampling periods (i.e, gt < T). However, we can obtain G(z,m) by using the
approach taken in developing the modified Z-transform in Chap. 25. We express
G(s) as Ga(s) where Ga(s) = G(s)e . Recal that AT is the amount by which
the response is to be shifted. We see from Fig. 26.7 that AT = T = a1. Now
GA(9) can be written

G(s) = G.G,H(s) =

Ke—a'rs
GA($) = | ———(1 = ¢ T5)} ¢~ Tmams (26.36)
(rs  Ds
This expression may be smplified to give
K(I = e T5)eTs
= 26.3
Gals) s(ts + 1) (2637)
T-azt
[
! o(r) ddayed by (T-a7)
:
| FIGURE 267
R S ) m T Reoone of fird-order, sampled-data

at sdemwith trangport leg.
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Note that the right side of Eq. (26.37) does not include a term involving a nonin-
tegrd power of T. Obtaining the Z-transform of Ga(s) gives an expression, which
is G(z, m). The details are shown in the following steps.

GA(z) = Glz,m) =K( =z )z7'Z { _1_~_}

s(rs + 1)
Kz=D[ 1 e T

Simplifying this expression gives
_K( = b)

The other terms needed to evaluate C(z,m) in Eq. (26.23) are G(z) and R(2).

G(z) isgivenin Eq. (26.11). For a unit-step change in set point
2

z-1

Substituting Eqs. (26.11), (26.38), and (26.39) into Eqg. (26.23) gives, after con-
siderable algebraic manipulation

R(z) = (26.39)

K(1 - b)
(z=D{z2 + [K(1 = d) ~ b)z + K(d ~ b)}

Inversion of this expression will give the value of the delayed response cft = (T —
uT)]. These values am, of course, the peak values of c(t) as illustrated in Fig.
2.7,

Modler (1966) has inverted Eq. (26.40) by partial fraction expansion; the
result is a rather complex expression. He used this result to obtain some design
rules for determining the values of K and T that will produce a transient with
guarter-decay ratio. The development of the rules is quite involved and beyond
the scope of this book.

C(z,m) = (26,40

SUMMARY

In this chapter, the principles of sampled-data theory have been applied to the
proportional control of a process, which represents a large class of systemsin
chemica processing, namely, a process that consists of a fird-order process with
transport lag [e™¢"*/(7s + 1)]. Since the transport lag parameter (UT) may not be
an integral number of sampling periods, the modified Z-transform was used to
obtain the pulse transfer function of the system. As the order of the characteristic
equation for the closed-loop system increases, the dtability criteria become more
and mom complex and require that severd inequdities be satisfied simultaneoudy
for dability.

For the case of proportiona control of a first-order system without transport
lag, some simple design rules were developed for tuning the proportiona controller
to obtain a desired decay ratio.
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PROBLEM
26.1. The dtirred-tank control system shown in Fig. P26.1 blends a stresm of concentrated

solution with a process stream to maintain a desired concentration of solute in the

outlet stream. The flow rates and concentrations are indicated in the diagram. The

chemica andyss, which must be done manualy by withdrawing a smal sample
from the tank, takes 1.0 min. At the end of each andyds, the chemist sets a dia
immediately to a vaue corresponding to the concentration just determined. The

did, in turn, feeds a concentration signd to the controller. As soon as one sample

is analyzed, a new one is withdrawn from the tank and anayzed.

The flow rate through the valve varies linearly from O to 0.02 liter/min as the
vave-top pressure varies from 3 to 15 psig. Under norma conditions, the process
stream s free of solute. However, from time to time, a load change may occur in
the form of a change in concentration of solute in the process stream entering the
tank.

(8 Show that the system is equivaent to a sampled-data control system and draw
its block diagram.

(b) From the design rules developed by Moder (1966, Eq. 65), one can show thet
the vadue of K required for quarter-decay ratio and fast sampling (T = af) is
10.3 psi/(g/1). Using this value of K., sketch the transient response for ¢ and ¢
for a step change in ¢; of magnitude 0.5 g/l. Determine the extreme values of
¢, p, and g during the transient. Determine the value of ¢().

(0) If the chemigt uses a continuous analyzer having no lag, but gill sts the did
manually as just described, every 60 sec, show how the block diagram changes
and determine K to obtain quarter-decay ratio. Use the design rule given by
Eq. (26.32) to determine this gain.

Concentrated  solution

Proportional controller

Setpoint = 1.0g/!

p. psig |

C  Concentration, g/!

V= 2liter

1.0 min needed
for analysis

Y

-

Dial

Chemist
HGURE P26-1
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DESI GN
OFSAMPLED- DATA
CONTROLLERS

In this chapter, sampled-data control theory will be applied to the design of
direct-digital control algorithms. In the most general terms, direct-digital con-
trol is the automatic control of a process by means of a digital computer. Today
the single-station, anaog-type continuous controller (pneumatic or  electronic) has
been amost completely replaced by an instrument that is essentialy a small,
sdf-contained digita computer. Such ingruments are described as microprocessor-
based controllers. This change, of course, was brought about by the great decrease
in the cost of computing components and the tremendous increase in the speed of
computation. In this chapter, the design philosophy for designing specia purpose
controllers will be developed and illustrated with some examples.

The block diagran of the control sysem to be considered is shown in Fig.
27.1 The elements of the block that are implemented by the computer are enclosed
by a dotted line and labeled “computer.” These elements, which consist of two
impulse-modulation switches, the Z-transform of the digital control algorithm
D(z), and the zero-order hold G( s), will be described later. For the moment,
it is necessary to understand only the general operating features of the control
system.
To smplify the discussion, Gp(s) in Fig. 27.1 contains the valve, the current-
to-pressure converter, and the process. The transfer function for the measuring
element has been taken as one for this reason, no measurement block is shown in

the feedback path of Fig. 27.1. The output from the hold is a current (or voltage)
signal.

405
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Computer
"""""""""" - U= GLls)

() P 606

G(s) c

me

FIGURE 27-1
Block Diagram for a computer control system.

Every T units of time, the computer reads and stores the measured value
of the process variable C. The computer operates on this signa, according to the
algorithm D(z) stored in it, to produce a signal to the valve M.. It is assumed
that the computation of M. is instantaneous, relative to the sampling period of
the process. For many chemical processes that am slow, thisis a reasonable as-
sumption. By means of the hold, the signal to the vave, M., is held constant
(e, clamped) between sampling ingtants. Consequently, the valve response dur-
ing transient operation of the process will resemble a stair-step function. The
control agorithm is simply a mathematical description that tells the computer
how to calculate the signal to the valve each sampling instant.

The digital computer implements an agorithm of the form

k P
m(nT) = Zg;e[(n = )T] = Zhjm[(n - j)T] (21.1)
=3 =t

This eguation gives the value at which m(¢) is to be held constant during the
following sampling period, that is,

m(t) = m(nT) for nT =t<(n+ DT

The term T is the sampling period and g; and h ; are constants. The set of constants
(i, hj) conditutes the control agorithm. In the following pages, methods will be
developed for finding these constants for a specific design of a controller.

To understand Eq. (27.1) more readily, consider the case where k = 2 and
p = 2. If we want to compute m at the one-hundredth sampling instant, Eq.
(27.1) is written

m(100T) = goe(100T) + g1e(99T) + g2e(98T) = hym(99T) — hom(98T)
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o(o8T) , €99T) = €(1007)

L
/ me(100T) \‘\\

me(®8D) | q00m ||

97T 98T 99T 100T 101T 1027 103T t
FIGURE 27-2
Typical relationship between m (t) and &) for a computer control system.

Figure 27.2 illustrates the nature of the signals used in this expression for
m(1007T). Notice that m(100T) is computed instantaneoudly at ¢ = 1007T. For
this particular example, the computation requires the present value of error, two
pegt vdues of aror, ad two pet vdues of manipuaed vaidde The more con
dants (g, h;) in the dgorithm, the more complex it becomes in tams of computer
dorage and computer time nesded to sdlve the dgorithm.

To illustrate how an agorithm of the form of Eq. (27.1) is derived, severa
algorithms will be derived for a process consisting of a first-order process with

trangport  lag.

ALGORITHMS FOR A FIRST-ORDER
WITH TRANSPORT LAG MODEL

A vaidy of dgoithms will be daived for a process with a trander fundion thet
is fird-order with trangoort lag, theat is

—ars
4

s +1
Figure 27.1 is redrawn as Fig. 27.3 with Gp(s) expressed as a first-order pro-

cess with transport lag and G(s) expressed as a zero-order hold. In Fig. 27.3
the damped dgd M. is dianed from the zeo-order hdd, which datans its input

Gpls) =

(27.2)

Computer

---------------------------

1
|
G,s) : + G,s)
M M1 || M, e .
D(z) =" = > C
T s 1+ Ts+1
|

FIGURE 27-3
Computer  control ~ system.
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signal from an impulse-modulated sampling switch. Since this signa from the
switch is a pulsed signal, it is given the symbol M * in the diagram. At the outset
of this discussion, the reader should realize that the components enclosed in the
dotted line do not represent any physical components or hardware; they are sSimply
mathematical symbols that aid in deriving the control algorithm. From Fig. 27.3,
we may write

M(z) = D(Z)E(2) (27.3)

To obtain the algorithm in the form of Eq. (27.1), D{(z) may be written
go+ giz ' + goz 24 0 M)
T+ hyz7l+ pyg=2+ 00 E(z)
Cross-multiplying this expression and solving for M(z) give
M(z) = 8E@)+g1z 'E@)+ - —{hiz 'M@) + hpz M) + -+ } (27.5)
Recognizing the term z ~YE(z) to be equivalent to the Z-transform of the error
delayed by i sampling periods, e(nT = T), we may write Eq. (27.5) in the time
domain as
m(nT) = goe(nT) + gre[(n = DT] + gael(n = DT] + ++

—{him[(n = DT1+ hym[(n = T)+ -}  (276)
Since this expresson matches Eq. (27. 1), we see that Eq. (27.4) is a satisfactory
expression for  D(2).

D(z) = (27.4)

Performance  Specifications

Before the details of the design method for digital control agorithms are presented,
the performance specifications for the control system will be listed. The minimal
prototype response of Bergen and Ragazzini (1954) considered the response of
the system only at sampling instants. The requirements for the minimal prototype
response are given in the following list.

1. The compensation algorithm must be physically realizable (i.e., no prediction
is needed by the algorithm).

2. The output of the system must have zero steady-state error at sampling instants.

3. The output should equa the set point in a minimum number of sampling
periods.

However, for the practical application of a digital control algorithm to a red
system, severa additional requirements are important. These are

4. The digital control agorithm should be open-loop stable.

5. Unstable or nearly unstable pole-zero cancellations should be avoided, since
exact cancellation in red processes is impossible, and the resulting closed-loop
sysem may be unstable or excessively oscillatory.
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6. The design should consider the entire response of the system in order to elim-
inate hidden oscillations (intersample ripple).

7. In addition to the system output responding in a desired manner to the input
disturbance selected for the design of the control agorithm, the system output
should be sdtisfactory for other possible disturbances.

These additional constraints are necessary to ensure that the proposed al-
gorithm will perform satisfactorily on read sysems. To meet these requirements,
the resulting system may respond with a settling time longer than the minimal
prototype settling time (item 3 in the preceding list). The concept of a minimum
settling time is used only as a theoretical performance criterion. In real systems,
where modeling error and noise are present, it is not possible to bring the state
of the system completely to rest. This does not negate the value of the theoret-
ical concept of minimum settling time, because systems designed to meet this
requirement are likely to give satisfactory performance in tests on rea processes.
In addition, all digital control agorithms to be presented here contain the equiva-
lent of an integrator, which ensures zero steady-state offset for step disturbances,
regardless of modeling error and the location of the disturbance in the loop. Fi-
naly, the minima prototype response concept provides the basis for a systematic
approach to the design of digitd control agorithms.

Analysis and Design of Sampled-Data

Controllers
From Fig. 273, we may write directly from observation
E(S) = R(9 = GpGr(s)M*(s) = UG(s) (27.7)
and
M*(s) = D*(s)E*(s) (27.8)
Taking the Z-transform of each equation gives
E(2) = R(z) = GpGu(2)M(z) = UGp(2) (27.9)
M(z) = D(2)E(z) (27.10)
Combining the last two equations gives
EQ) Re) UG (27.12)

=1+ G(z)D(z) 1+G(z)D(z)
where G(z) = G,Gx(z)
We may also obtain from Fig. 27.3
C(z) = R(z) — E(2) (27.12)
Combining Egs. (27.11) and (27.12) gives
C@) G(2)D(z)R(z) + UGy(z)
=1+ G@D@) 1+G(E)D(I)

(27.13)
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Note that R(z) in Egs. (27.11) and (27.13) is not bound to other transfer functions.
This can be advantageous in design computations.

Design Methods

It is convenient to design D(z) for a load change or a set-point change. For a
given disturbance in load or set point, the designer proposes a desired response
at sampling instants, which means that C(nT') must be specified. This desired
response will be written as Cd. From the desired response C 4(nT), one obtains

Cd(2). Consider the case of only aload disturbance, i.e., R(z) = 0. Solving Eq.
(27.13) for D(z) and replacing C by C 4 to indicate that the desired response of
C has been selected by the designer give
1 [UGL(2)
)= = |——-1
Xz) G(2) [ Ca(z)

Equation (27.14) is the equation to be used to design D(z) for aload change.

In asimilar manner, one can obtain from Eq. (27.13) a design equation for
set point change, i.e. U(z) = 0. The result is

D(z) Cal2)
= G(2)[R(z) = C4(2)]

(Design  equation for load change) (27.14)

(Design equation for set-point change)
(27.15)

It is necessary that the highest power of z in the numerator of D( z) not
exceed the highest power of z in the denominator. If this restriction is not satis-
fied, the algorithm will require knowledge of the future values of the error, i.e.,
prediction. An dgorithm not satisfying this redtriction is caled unredizable. Note
that Eq. (27.4) is written in such a form that it does not admit the case where
the highest power of z in the numerator exceeds the highest power of z in the
denominator. If an unredizable D(z) is obtained, we obtan the expresson given
by Eg. (27.4) multiplied by some postive power of z .

To show how the control agorithms are obtained, severa detailed examples
that apply to Fig. 27.3 will be presented.

Example 27.1. (T = ar, fat sampling, load)

With regard to Fig. 27.3, consider the design of D(z) for T = ar. This
relaion between the sampling period and the process transport lag will be referred
to as fas sampling. Later, an example involving dow sampling will be considered,
in which T>ar.

Consider a unit-step change in load to enter the system at an instant of sam-
pling. The Z-transform of the output can be written in general form:

C(2) = Mo+ mz l+ Mz T2+ (27.16)
where the coefficients (n;) correspond to the desired outputs of the system at sam-
pling instants. It is the task of the designer to specify a desired output that leads
to a redizable agorithm and fulfills the performance specifications listed earlier. In

some cases, the nature of the physical process being controlled will ad in choosing
a itable Cd(Z) as expressed by Eq. (27.16).
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The response diagram in Fig. 27.4 will hep explan how the output C4(z) is
sdected by the designer. Because the transport lag in Gp(s) is one sampling period
T, the output will reman a 0 for the fird two sampling ingtants, that is,

¢ =0, ¢(T) =0

The response of ¢, which is the usud first-order exponentid rise dating & ¢ = T,
will reach 1 = e~ T/" gt t = 2T, that is,

c@T)=1=-¢Tr=1«p (27.17)
where b = ¢ 177,

The control algorithm in D(z) cannot start to respond until # =27, at which time
the eror e has become — (1 =h). The vdue of the manipulated vaiable m . generaed
by the algorithm at t = 2T will depend on the actual algorithm used. However,
regardless of the value of m at 1 =2T, c will not change its course until ¢ = 3T
because of the transport lag e ~75. The output of ¢ from ¢ = 2T to ¢ = 3T will
continue as an exponential riseand reach 1 = ¢ P T 3T, thatis,

cBT)=1=-e =1 -2
Aftr + = 3T, the designer is free to choose any vaues of ¢ a sampling indants
If ¢ is choen a zeo a sampling indants beyond r = 37T, the resulting agorithm
will be cdled a minimd prototype dgoritm because the output refurns to the set

point in a minimum number of sampling periods. The response shown in Fig. 274
illustrates  the minimal  prototype response for a unit-step change in  load.

1-p e g
I
I

2 [ FIGURE 27-4

) ) , Minima prototype response to a unit-step change in load
0O T 2 3T 4T for Example 27.1
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The important point to be emphasized is that ¢ follows the response 1 - e ~#7
from ¢ =T to t = 3T, regardless of the algorithm D(z). The values of 7 in Eq.
(27.16) for this example are summarized below

n=20
m=20
m=1-b
m=1= b2
M N5 ., ;i = 0 (for  minimd  prototype)

The designer, of course, may choose monzero vaues of p; for i > 3, for which case
the response will be a nonminimad prototype response.
For the minimad prototype response, we obtan from Eq. (27.16)
Ca@ = (1= b)z™2+ (1 - b}z 73
or
1-bz+ 1-p?
For the sysem under condderation in Fig. 27.3, we have

e o=Ts _—-Ts
G(s) = GpGals) = . ¢

§ s+ 1
for which the corresponding G(2) is
I -b
@ = ; Z=b (27.19)
For a unit-gep change in U,
UG e—Ts
PO s D
for which the corresponding Z-tranform s
l1-b
UGp(z) = ——— 27.20
= e =B (2720

Substituting Egs. (27.18), (27.19), and (27.20) into Eq. (27.14) gives, after con-
Sderable  agebraic  manipulation
.- b(l+ b)

D(Z):1+b+b2z 1+b+ b2

1-b @EZ-Dlz+ @+ b))
It isinstructive to find the expression for the manipulated variable in the form of
Eq. (27.6). This is the form that one must use to write a computer program for
control of the process. We may write Eq. (27.21) in the form

_ M@z _ az(z =)
P& = %) = =D+ @+ b
where @ = (L + b+ b2)/(1 - b)
y=b(l+b)(1+b+ p?)

(27.21)

(27.22)
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Crossmultiplying  Eq.  (27.22) gives
(z=Dlz+ @+ BIM(z) = az(z = y)E(2)
Expanding the terms and rearanging give the result
M@) = aE(z) = ayE(z)z "} - bM@2)z ™'+ (1 + b)M(2)z 2 (27.23)

Thisform matches Eq. (27.1) or Eq. (27.5), and one can see that the algorithm is
quite simple, with k =1 and p = 2. The form corresponding to Eq. (27.6) is

m{(nT) = ae(nT) - aye(nT =~ T) = bm(nT - T)
+(L+ bym(nT - 2T) (27.24)

To obtain the sequence of vaues of manipuladed vaiable for a unit-gep change in
load, we proceed as will be shown. Before the load change occurs, assume that
the system is at steady state for which case e(t) = 0 and m(t) = 0. Furthermore,
assume that the load disturbance occurs at t = 0O, i.e,, a n = 0. These are the
usud initid deady-date conditions that ae used in tesing the dynamic performance
of a control system.

To se how EQ (27.24) is used by a computer, the computation can be orga
nized as shown in Table 27.1. At exh sampling indant, m(nT) is cdculaed from
Eq. (27.24). For the example under consideration, we know that m=0and e=0
for t+ < 0. The leftmost column in the table gives the time at sampling instants
when the computation is mede For convenience in computation, the coefficients of
the tems on the right sde of Eq (27.24) ae placed in a row under the appropriate
terms of this equation.

The cdouldtion of m(nT) for sverd vdues of » ae now shown; these calou
lation seps ae the same as those the computer would follow in implementing Eg.

(27.24).
For m( Q. Substituting n = 0 into Eq. (27.24) gives
m(O) = ae(0) = aye(=T) = bm(-T) + (1 + b)m(—2T) (27.25)
TABLE 271
Computation of m(nT) from computer control algorithm
n e(nT) e[(n — I)T] m(nT) ml(n = D)T] m((n = )T}
a -ay -b 1+b
0 0 0 0 0 0
I~ I~ =
1 0 0 0 0 0
I~ S I~
2 —(1-b) 0 —(1+b+b? 0 0
Y I~ >
3 —(1-b%H —(1-b) -1 —-(1+b+b? 0
I~ I~ =y
4 0 -(1-8hH -1 -1 ~(1+b+bYH
I~ I~ I~
5 0 0 -1 -1 -1
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From the initid conditions dtated ealier,
e0) = ¢-T) =0
and
m(-T) = m(-2T)= 0

Introducing these values into Eq. (27.25) givesm(O) = 0.

In preparation for the next computation of m(nT), the values of ¢(aT),
mnT), and m[(n =~ 1)T] are shifted to the next sampling instant as shown by
the arows in the tadle

For m(T). To compute m(T), we change n inEq. (27.24) to 1 to obtain

m(T) = ae(T) = aye(0) ~ bm(0) + (1 + b)m(—-T) (27.26)
Subdtituting the approprite values of e and m as given in the table into this expres
sion givesm(T) = 0.
For m(2T). Letting n = 2 in Eq. (27.24) gives

m2T) = aeRT) - aye(T) = bm(T) + (1 + b)m(0) (27.27)

At ¢ =2T, the disturbance has worked its way through the transport lag and the
error now differs from zero. We have at¢t = 2T as shown in the table or in Fig.
274

e(2T)= —(1-b)
T =0

m(T) = 0

mo) = 0

Substituting these values into Eq. (27.27) givesm(2T) = a[ —(1=b)].
Introducing the expression for a from Eq. (27.22) givesm(2T)= —(1+ b + b?)

For m3T). Letting n = 3 in Eq. (27.24) gives

m(3T) = ae(3T) = aye(2T) = bm(2T) + (1 + b)m(T) (27.29)
At t =3T,
e(3T) = —(1 - b?)
eT)= —(1 - b)
mQ2T)= —(1+ b+ b?)
m(T) = 0

Subdtituting these values into Eq. (27.28) gives
mB3T) = al[~(1- b)) = ay[~(1 = b)} = b[-(1 + b + b?)]
Reducing this expresson dgebraicaly gives m(3T) = = 1.
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Settling 5T
time
0
-1
m(®) FIGURE 27-5
-2 Response under fast sampling, load, minimd  proto-
0 type dgorithm to a unit-step change in load (a =

0 12 3 4 5 T  05).

If one continues in this sequentid manner, which is how the computer handles the
computetion, one can show that

m@T) = m(5T) = m(nT) =+ = -1

In other words, the manipulated variable reaches -1 at + = 3T, and remains at
this vaue theresfter. A grgph showing the response and the manipulated variable is
shown in Fig. 21.5 for the case where a = 0.5. For this case

b =e T = e—0.5 = (.606
and
m(2T) = -1974

The manipulated variable m(nT) that results for this caseis not surprising when
one condders the naure of the firg-order sysem with trangport lag. In fact, for this
smple process one can cdculae the vaues of manipulated varigble directly, without
use of Eq. (27.24). However, for other disturbances and for more complex algo-
rithms, the caculation becomes very involved withowt a systematic approach such
asthat given by Eq. (27.24).

Settling Time

A useful parameter for describing a transient response of a control system is
settling time. For aload change, the settling time is defined as the time required
to reduce the error to zero; this time is measured from the sampling instant for
which nonzero error is recorded to the sampling instant for which the output
returns to the set point and remains at the set point at future sampling instants.

For the example under consideration, the settling time ¢, is 2T. This can be seen
most easily from Fig. 27.5.
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For a set-point disturbance, the settling time is defined as the time required
to reduce the error to zero; this time is measured from the sampling instant for
which the set-point change is first detected to the sampling instant for which the
response returns to the set point and remains there a future sampling instants.

OBTAINING M(z) DIRECTLY FROM KNOWLEDGE OF C(2). If one wishes to
compute M(z) without using the sequential method just discussed and shown in
Table 27.1, the following direct procedure can be used.

For the servo problem, where U(s) = 0, one can write directly from Fig.
27.3

C(z) = M(2)G(z) (27.29)

where G(z) = GyGp(z)
Solving for M(2) gives

M(z) = C(2)/G(z) (27.30)
For the regulator problem, where R(s) = 0, one can obtain directly from Fig.
273

M(z) = —D(z)C(z) (27.31)

For Example 27.1, one can use Eq. (27.31) to obtain M(z) for a unit-step change
in load; C in Eq. (27.3 1) is replaced by C4 of Eq. (27.18). The reader should
try this approach to see that it leads to the same results as those obtained in Table
27.1.

Example 272. (T > ut, dow sampling, load)
In this example, the minimal prototype D(z) will be designed for the following
conditions:

T > ar (dow sampling)

U = lls (load disurbance)

Gp=e l(rs + 1), ar < T

The fact that a7 is not an integral number of sampling periods will make the deriva

tion of this agorithm more complicated. Based on the response of a first-order
system with transport lag, the minimal prototype response shown in Fig. 27.6 can

be written;

c® =10

C(T) =1 - e—-(T—aT)/T

¢2T) = c(3T) = ++» ¢(nT) = 0

The desired response € is therefore

Ca@) =0+ [1- e-(T—ar)/—r]z—l Fog2E
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FIGURE 27-6

! Minimd prototype response for Example
21.2.
or
Ci@ =1 -d)z! (27.32)

where d = el@~ T/

For aload algorithm, we use Eq. (27.14) to obtain D(z). Notice that the peaksin
Fig. 27.6 occur at timear into each sampling interval. For this problem, we may
use Eg. (26.11) with K = 1 and 5 = O to obtain, after simplification

1-4d d-»b
= 27.33
60 = =5+ Ty (2739
For this example,
UGpls) = s(rs + 1) = s+ (/1)

To obtan UGp(z), we sl meke use of the modfied ZArandorm as wes done in
Chap 25. With this in mind,

let e ATS = g—ars
or AT = ar
orA = ar/T
We can now wite the m paameer in the modified Z-transforms as
m=1 A=1- (a7
The Z-transform of UGp(s) becomes
~ars

UGp(z) = Z[ E(is—+_l—)l = Zm{ s(‘r_sl;T)
with m= 1 -~ (a/T).
From the table of transforms (Table 22. 1), we obtain

1 e—(l —at/T)T/t

UGP(Z):Z-I“ z-b
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1~
(1-bt
<
0
0 2 0T 6
0
FIGURE 27-7
K 3l 1 .+ 1 1 PReyone under dow sampling, load, minimad prototype

0 2 °T 6 dgorithm to unit-step inload. a = 05, T/ = L

This may be smplified to
(1- d)[z + ‘{_‘—ﬂ

= 27.34
vG() @ -1z - b) (27.34)
where b = e " and d = @~ T/
Introducing Egs. (27.32),(27.33), and (27.34) into Eq. (27.14) gives
21 - db)[z - b_l(%]
D() = (27.35)

(- dpe -1z - 4B

It is indructive to examine the continuous response for this example a shown in
Fig. 27.7. Although the response is zero at sasmpling instants after t = T, there is
intersample  ripple.  Futhermore, one can show that the manipulated variable does
not settle down, aswas the case in Example 27.1, but continues to oscillate with
decreasing amplitude as shown in Fig. 27.7. The reason for this unsatisfactory
behavior is that the minima prototype response is too demanding in returning the
process vaiable to the st point. If the designer sdects a nonminimal  prototype
response, which permits the response to return to the set point a 37 or laer, the
intersample  ripple  will be diminaed. A posshle nonminima prototype response is
showninFig. 27.8.

] ! ¢ é FIGURE 27-8

0 T T 2r 3T 4T t poshle nonminimad prototype response for  Example

21.2.
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Response of Sampled-Data System to Other
Disturbances

As dtated in item 7 of the design specifications in this chapter, it is important

to test the control algorithm for inputs that differ from the input for which the

agorithm was designed. The computation for other inputs is sraightforward, but it

can be quite tedious. One uses Eq. (27.13) with the appropriate R(z) or UG ,(z).
For the algorithm developed in Example 27.1, the response to two different inputs
will be considered: a step change in set point, and a ramp change in load.

STEP CHANGE IN SET POINT. For a set-point change, Eq. (27.13) becomes:

G(2)D(z)R(z)

@ - ¥ ewopR)

(27.36)

For a unit-step change in R

Z

-1

Substituting this expression for R(z) and those for G(z) and D(z) from Egs.
(27.19) and (27.21), respectively, into Eq. (27.36) gives

R(z) =

3 N A Pl
2z -Dlz+ 1+ zZ -
C(@) = . 1-b a2z = v) (27.37)

z2(z = b) @ = Dlz + (1 + b)]
The inversion of this expression gives a result, shown graphically in Fig. 27.9.

1+ b+b2)}
1+
0
4|
g L
21
0 FIGURE 279
B Response under fast sampling, load, minimal
1 | P L | prototype agorithm to a unit-step change in

0 2 4 6 uT st point (@ = 05)
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Notice that the response gives an overshoot with a settling time of 3T and the
response is free of intersample ripple. From this result, one concludes that the
response is satisfactory for a step change in set point.

RAMP CHANGE IN LOAD. For the algorithm developed in Example 27.1, con-
sider a ramp change in load, for which u(t) = ¢ or U(s) = 1/s2 For a load
change, Eq. (27.13) becomes

UG
C@) _ “—G(% (21.3)
For this case, one can show that
UG,(z) = 1| 12 2l ~ b) (21.39

2lGE—12 UGz -z - b

Introducing this expression for UG,(z) and G(z) and D(z) from Egs. (27.19)
and (27.2 1), respectively, into Eqg. (27.38) gives, aker considerable algebraic
manipulation

-3

Ci) = p—

[2+ @+ D)z[T = 71-b))=[bT = (1—b)r]}

Inverting this expression by the method of long division gives

c® =0

qn =0
c@T) =T - (1=b)r
c(3T) = 2T = (1=-b%r

c(nT) = 7a(l=-b)2+b) forn = 4

The response to the ramp input is shown in Fig. 27.10. The response is stable and
shows offset that is typica for proportional control of continuous systems when
subject to a ramp input in load.

I FIGURE 27-10

0 T S S Response under fast sampling, load, minima prototype al-
0 2 4 6 yT gorithm for ramp change in load (@ = 0.5).
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The two examples given here should be sufficient to show how the control
algorithm D(z) can be obtained. The interested reader will find a number of
agorithms developed by Modler et al. (1967), two of which have been presented
here as Examples 27.1 and 27.2.

D(z) FOR CONVENTIONAL CONTROLLERS

The conventional continuous controllers discussed in Chap. 10 have their equiv-
alent forms in sampled-data control. The control algorithms in terms of D(z) for
Pl and PID controllers will be developed in this section.

Pl Contral
The Pl control law can be written as

m(t) = K.e(t) + % Lt e(t) dt (27.40)

To develop D(z) we first write Eq. (27.40) for m(nT) and m[(n — )T] as
follows:

nT
m(nT) = K.e(nT) + Ke e(t) dt (27.41)
T 10
K n—-1)T
mi(n — DT} = Kce[(n — DT} + _7£ o e(t) dt (27.42)
I

Subtracting Eq. (27.42) from Eq. (27.41) gives

nT
m(nT)=ml(n= DT] = K {e(nT)~e[(n— DTT}+ %d

e(t) dt (27.43)
n-1)T
To convert this equation into a form that involves past values of m and present and
past values of e, asisrequired by Eq. (27. 1), we must approximate the definite
integral. Many possible approximations can be used, but the one used here will
consider e(t) to remain a e(nT) during the time interval (n = DT to nT. The
nature of this approximation is shown in Fig. 27.11. The approximation may be
written

nT
J e(t)dt = Te(nT) (27.44)
(n—1T
|
1
e(nT)f———~C :
el(n-1)T) ——;
FIGURE 27-11
A E t Approximation of a definite integra: ABDEA = exact

(n-1)T nT vdue, ACDEA = approximate value.
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Using this approximation in Eq. (27.43) and solving for m(nT) gives
K.T
U

m(nT) = m[(n = )T} + K e(nT) = el(n = DT]} + e(nT)

In terms of Z-transforms, this equation becomes
M@) = M(z)z"' + KE(2) ~ KEQ@)2 ™'+ KcT/m)E(2)

Solving for M(z)/E(z), which is D(z), gives the following expression for D(z)
for the Pl controller:
_Mz) K.z-«

b@) = g5 = =T

(27.45)

TI
n+ T

where a =

Before developing D(z) for the PID controller, it will be instructive to study the
nature of the response for D(z) in Eq. (27.45) to a unit-step change in E. The
block diagram for this case is shown in Fig. 27.12. For*this block diagram, we
write  directly

M(z) = D(2)E(2) (27.46)
where E(z) = z/(z ~ 1)

For this example, let K., = 7, = T = 1, then @« = 0.5 and D(z) from Eq.

(27.45)  becomes

1 z-05 2z-1

D = e =
@=557=1 = 71

Using this expression for D(z) in Eq. (27.46) gives

T 2Z-1 22—z _
Mz)= z-1 z-1 22=-27+1
By long division, one obtains

M) = 2+327 +4772+5773 +

In terms of the time domain, this equation gives

m(O) = 2
m(l) = 3
m(2) = 4
m(3) = 5
E=u<r)—/T—> D(z) —/Tﬂ 1‘;’% | e, gﬁmpz',s-tlef) response of a
sampled-data PI controller.
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mc(t)
4t
m(r) for
3L continuous
| | response
|
2 !
| |
1 ] I
: : : FIGURE 27-13
0 ! \ | Comparison of sampled-data response and continuous re-
0 1 2 3 4t sponse of a Pl controller subjected to a step change in input.

A ggh o the sampleddaa reponse and the reponse for a continuous  contraller
for the same paameas (K. = 1, 77 = 1) is shown in Fig. 27.13.

Notice that the sampled-data response equals the continuous response at
sampling instants for n = 1. As the sampling period is reduced, the sampled-
data response approaches the continuous response. Based on this observation,
we can see that the sampled-data controller is a reasonable approximation of the
continuous  controller.

PID Control

In a similar manner to the development of D(z) for PI control, we shall develop
D(z) for AD contrd. The PAD oconird lav may be written

K. (¢ d
Ge(s) = Kee + —c[ edt + Komp—
T Jo dt
Writing m(¢) a nT and (n = I)T gives

1 ("7 de
m(nT) = K. e(nT) + ——J e(t)dt + tp —
71 Jo dt

} (2747)
t=nT
and

(n—1T

m[(n = DT] = K de[(n — DT] + —J e(t)ydt + 1p _c_i_e_;
7 Jo dt |- (-1t

(27.48)

For this cas the goproximation to the integrd will be the same as used for

Pl control [Eq. (27.44)]. The approximation for the derivative will be taken as a
dmple bedkwad dffeece gopraximdion; thus

de _e(nT) = e[(n = 1)T]

— = 2749

This smply states that the derivative is approximately equa to the change in e
over one sampling period divided by the sampling period.
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If we introduce these approximations for the integrd and the derivative into
Egs. (27.47) and (27.48), we obtain after subtracting Eq. (27.48) from Eq. (27.47)

m(nT) = m[(n -~ DNT] = Kc{e(nT) —el(n-1)T] + %e(nT)

D
+ =
T

e(nT) = 2e[(n= DT] + e[(n - 2)T]11 (27.50)

Converting this equation to the z-domain and solving for M(z)/E(z), which is
D(2), finally gives the agorithm:

Kc[22 - BZ + 'Y]
D(z) = 2751
(2) i =D (27.51)
where g = (T + 2m)m
T2+ T+ TI™D
. T+ T
Y T2+ T+ 71p
TT]
I.L —

T2+ Tt + m1p

The nature of the response for a unit-step change in input for K.=71; =
T =1and 1p = 2 isshown in Fig. 27.14. The details of obtaining this result are
|eft as an exercise for the reader. The response of the continuous PID controller
to a unit-step change in input for the same parameters (K ¢,77,7p) is also shown
in Fig. 27.14. Notice that the impulse at + = 0 for the continuous response is
replaced by a pulse during the first sampling period that reaches a value of 4.0
instead of infinity. After + = 1, the sampled-data response is the same as for
the Pl sampled-data response shown in Fig. 27.13. As 1p is increased, the pulse
during the first sampling period will become larger, thereby approximating more
closdy the jump to infinity for the continuous response.

The smple backward difference formula used to approximate the derivative
term in the PID control algorithm can be replaced by a higher order difference

At
st o
4
o

3r bl
oA T

] 1 m{t) for 1

| continuous
‘ | {responsel FIGURE 27-14
oL J'| J'J : L{_ Comparison  of sampled-data response and continuous response for a
0 1 2 3 4: PID controller subjected to a step change in input.
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approximation to give an aternate version of D(z). In fact, many aternate dif-
ference approximations for the integral term and the derivative term can be used
to give a variety of forms for D(z). As the sampling period T is reduced, the
response of the control system using different forms of D(z) for Pl or PID control
should approach the response for continuous versions of the algorithms. One of
the problems at the end of this chapter involves the calculation of the response of a
system that uses the D(z) for a Pl controller given by Eq. (27.45). In generd, the
replacement of a continuous controller by its equivaent sampled-data version will
give aless stable response for the same set of controller parameters (K ., 7;,7p).

SUMMARY

In this chapter a systematic procedure for the design of direct-digital control
dgorithms was described. The procedure requires that a model for the process be
known and that the location of the disturbance (set point or load) and the type of
disturbance (step, ramp, etc.) be specified. These requirements are similar to those
for designing a controller by the internal model control procedure discussed in
Chap. 18. The design. procedure presented here gives the designer a wide choice
of the desired response of the control system; this choice is usually based on

knowledge of the response of the process model. The minima prototype response
is an ideal response that reduces the error (at sampling instants) to zero in the
least time. The control algorithm D(z) obtained by the design procedure can be

written in a form that can be used by a digital computer to control the process.

The need to test a proposed algorithm for a disturbance other than the one used
to desgn the agoritm ‘was emphasized and illusrated by examples.

The equivaent sampled-data control agorithms for conventional (Pl and
PID) control were derived and the open-loop response for each algorithm was
compared to the response for the corresponding continuous algorithms. As the
sampling period T decreases, the response of the digital algorithm approaches
that of the continuous agorithm.

PROBLEMS

27.1. Derive D(z) for the control system shown in Fig. P27.1 for a unit-step change in
R and for a response in which C is returned to the set point in one sampling period
and remains there & sampling indants Notice thet C 4 is 1/(z = 1) for this problem.

Express the manipulated varisble m in terms of present and past values of ¢
andm Plotn(t) and c(t) during thefirst few periods.

= s | ¢

FIGURE P27-1
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27.2. (8) Determine the pulse transfer function, D(z), for the syssem shown in Fig. P27.2
if the input disturbance is a unit-step function and if the output is to reach the
st point one sampling period after the disturbance occurs. Plot the manipulated
variable. Notice that C; is 1/(z « 1) for this problem.

(b) If the input is r(t) = ru(z), plot the output if the D(z) of part (8) is used.

+ —-eTs | M i
k — o) —— =< >C
T T § (s+1)(s+2)

»

FIGURE P27-2

27.3. The sampled-data system shown in Fig. P27.3 uses the following agorithm

1 z2(z = b)
PO - t=m g+ =D

where b = ¢ T/7 = ¢71

Fortheprocess 1t =1, a=1 T = ar = 1 If a unit-step enters as a
load change (i.e, U(s) = 1/s), determine C(2). Plot the continuous response c(t).
Determine vaues of c(t) a ¢ = 1, 1.5, 2, 3, and 4. Determine m(¢t) for ¢ = O,

1,2 3 and 4

U

+
R=>Q—— Do) 7 B M}é— Caly
FIGURE P27-3

27.4. Determine the minima prototype response for a unit-step change in load for the
control system shown in Fig. P27.4 for the following plant transfer functions:
@ Gp=e T5/s + 1)
(b) Gp=1/25s + 1)
(c) Gp = e~ Ts/g
(@ Gp= 1/(s* + 0.4s + 1)
Express your result as Cy = mg+ myz “1+ oz 72+ .-
Give numerica values of g, 1, 72, - - -

§
L4
+ 1-eT | +
R=0 ] D(2) pmee” — > C
‘-%)—T/:l 0 =7 5 G(s)

FIGURE P27-4



DESIGN OF SAMPLED-DATA CONTROLLERs 427

27.5. (a) For the sampled-data process shown in Fig. P27.5a show that

K(z ~« a)
Gy = 2k ~a
@ = Z=De-p
where b = e~ T/7
a=2=1/b

K isproportiona to K,

For 7 = 2, determine the value of K. for which the system becomes unsteble.
Use the root locus method. For K. = 1, determine c(nT).
(b) For the process in Fig. P27.5b, usefor D(z) the following PI equivaent:
_K.z-a
by =321
7

where a =
T+ T

For K, = 1, 7 =1, and 7 =2, deermine ¢(nT) and compare with ¢(nT)
of part (a).

(¢) For the continuous contral process shown in Fig. P27.5¢, determine the ultimate
vaue of K,. Compare this vaue of K, with that of part (a) to see the effect of

sampling.
! |
QQ P 1-¢77 1 e
R=u () = c— 1 ) — - C
ul)— T=1 s K +f,s| s+ 1 |
- 1'[= 1
(a)
+ 1-¢ -Ts e -~Ts
P S a— ..J >
R T T=1 bz) T='1_4 s s+ 1 ¢
b
+ l e ~Ts -
R—>®-— Kf( 1 +1',s s+ 1 >C
I 7= 1 T=1
=2

(c)
FIGURE P27-5
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CHAPTER

23

STATE- SPACE
REPRESENTATI ON
OFPHYSI| CAL
SYSTEMS

Up.to this point, we have described dynamic physical systems by means of dif-
ferentid equations and transfer functions. Ancther method of description, which
is widely used in dl branches of control theory, is the state-space method. In fact,
other disciplines of engineering (e.g., electrical engineering) introduce the state-
space description before the transfer function description. The reader who plans to
go beyond an introductory course in control or read from other engineering disci-

plines should be familiar with state-space methods. In the chapters of this part of
the book, the dtate-space method will be developed and compared with the trans

fer function method. It is much easier to start with the transfer function method
and then develop the state-space method. The mathematical background needed
for the transfer function approach involves differential equations and Laplace
transforms. The additional mathematical background needed for the state-space
method involves matrix algebra. Nearly all students today receive information on
matrices in their mathematics courses. For those who are rusty in this topic, it

is recommended that they review some of the fundamental matrix operations. A
brief review of matrix algebra is given in Appendix 28A.

The transfer function approach is sufficient to calculate the response of linear
control systems. The state-space approach is especialy valuable in the field of
optimal control of linear or nonlinear systems. The concepts developed in this
part of the book will be used in the next part on nonlinear control.

431
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STATE VARIABLES
A linear physical system can be described mathematically by:

. an nth order differential equation
. a transfer function

. n firs-order differential equations
. amatrix differential equation

So far, we have used the first two mathematical representations for describing
physical systems. The third and fourth representations are referred to as state
vaidble  descriptions.

To illustrate these four methods of description, consider the familiar second-
order process relating an output y to an input ¥, The four expressions for this
process ae liged below.

1. nth order differentia equation (n = 2)

d?y dy
2
2. Transfer function. The transfer function corresponding to Eq. (28.1) is
ls) . 1 (282)

U(s) 722+ 2Urs+1

3. n first-order differential equations (r» = 2). Equation (28.1) can be expressed
by the following differential equations:

X1 = X (28.3a)
1 . 25 !

Xp = — X1~ —X2 + U (28.3b)
T T T

where x; =y and xp = y

In Egs. (28.3a) and (28.3b), x; and x, are the state variables.
To see that Egs. (28.3) are the equivalent to Eqg. (28. 1), differentiate both
ddes of Eqg. (28.3~); the result is

1= x (28.4)
In Eq. (28.3b), we may now replace x; by X and x2 by % ; theresult is

I U S
X = “ﬁxl — 73?1 + ;Eu (285)

Since x; =y, we may write
x1=yand i1 =y

Using these expressions in Eg. (28.5) gives

1 2 . 1
b= ——=y - — - 28.6
y sz Ty + 72” (28.6)
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Equation (28.6) is, of course, the same as Eq. (28.1). We shall see later that
other choices for x ; and x, are possible; at this point, the reader is asked
to accept Egs. (28.3a) and (28.3b) as a valid description of the second-order
sysem under  consideration.

4. Matrix differential equation. Equations (28.3a) and (28.3b) can be written as
one matrix differential equation as follows:

X= Ax+bu (28.7)
where
- X - |*1
X2 X2
0 ! 0
A=|-1 -2 b= |1 uis ascaar
72 T T

The representation given by Egs. (28.3) and the representation given by Eq.
(28.7) are exactly the same; Equation (28.7) is in a more compact form. The state
variables x1 and x, are represented by the column vector x. The coefficients of
the state variables on the right sides of Egs. (28.3a) and (28.3b) are the elements
of the matrix A. In this example, there is only one input or forcing term, u,
which is a scalar. Each term on the right side of Eq. (28.7) must be a vector
containing two elements (i.e., a2 x 1 matrix). In order for the expression given
by Eq. (28.7) to agree with Eqgs. (28.3a) and (28.3b), the coefficient of u must be
a vector with the upper element zero. With some practice, the reader will be able
ta look at a matrix expression such as Eq. (28.7) and quickly see the equivalent
st of differentid  equations.

The output y in representations 1 or 2 often represents a physical variable
of interest, such as the temperature of a process or the position of a mechanical
system. The aternate state variable representation given by Egs. (28.3) or Eq.
(28.7) contains two state variables, one of which is y and the other the derivative
of y (i.e., y). Inthis case only y may be of interest to the control engineer; y is
available, but may not be of interest since it cannot always be measured easily.
(For example, there is no easy way to measure the rate of change of temperature
if y represents temperature.)

State-Space Description
In generd, a physcd sysem can be described by date varigbles as follows

X] = fl(xlxx2r. XU, U2, wum)
562 = f2(x17x2¥- CoXn U Ug, )um) (288)

Xp = fn(xlxex ooy Xp, UL, U, o ':um)
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where x1, x,,... ,x, are n State variablesand u 1, uy, . . . ,u,, @€ m iNputs or
forcing terms. The above set of equations may be written as a matrix expression
as follows

X = f(x, U)

If the system parameters vary with time, the vectorfwill contain explicit functions
of time. An example for an element off might be the expression on the right side
of the following equation:

X1=2tx1+ x3 Pug+ wp

In this chapter, we shall be concerned with time-invariant systems for which x;
is a linear combination of state variables and the coefficients are constant. For the
time-invariant case, we may write the general term x; in Eq. (28.8) as follows:

.i?,' =apx1tapxyt oot apx, t bi1u1 + 4 b,-mum (289)
fori=1,2,3,....n
The equivalent matrix expression for Eq. (28.9) is

X an an Ce ay|| *1

X as an L daa || X2

Xn ani an2 . Annl| *n

b b1 bim|| 1

b by b | | %2
+ . (28.10)

bn by . . . bpm||lnm

Writing this in the more compact matrix form, we have

X = Ax + Bu (28.11)

In this expression, there are m different inputs where m = ., The nature of
the linear physical system expressed by Eq. (28.11) is completely stated by the
matrices A and B. For the time-invariant system, the elements of A and B are
congtants.

The outputs of interest to the control engineer may differ from the state
variables (x;). The most general statement for relating the output to the state
variablesis

y = CX (28.12)

where y is the vector of outputs (y;, y2, - . . , y,) chosen by the control engineer
for some practical reason. The matrix C is a p x n matrix containing constant
elements. The way in which the matrix C is selected will be clarified in the
example to follow. In summary, the state-space description for a linear time-
invariant system is given by Egs. (28.11) and (28.12).
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Example 281 For the twotank noninteracting liquid level system shown in Fig.
281, obtan the daespace description as expressed by Egs (2811) and (28.12).
The output y of interest is the levdl in tank 2. Notice that dreams enter both tanks.

For this example, let the date variables be the phydcd variables & | and k 3,
which are the levels in tanks 1 and 2. These state variables am called physical
variables because they can be easily measured or observed. (In another example,
we shdl condder a different st of dae vaiables)

For the liquid-level system shown in Fig. 28.1 we may write

-

Al% = uy - % (28.13)

Azid'it"i =uy + Z-i - % (28.14)
or 4
d—:;l— =_'R—11A_lhl + 21‘1'“1 (28.15) 3

‘% _ 7?'1172’” - Kélfz'hz + Xlz-uz (28.16)

Thee eguations can be written as follows

h = Ah+Bu (28.17)
where

-1 i

0 — 0
h

h= 1 A= RlAl B = Al
h, 1 -1 0 _l
RiA; RyA | Ay

Ry
91 “2

) 42
FIGURE 28-1
Liquid-level system for Examples 28.1 and 28.2:

A1=1,A =05 Ri=05 Ry=123
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If the output is to be the level in tank 2 (k5), we have
y = Ch
wherey = y; = hy C=100 1j

In this case y is a scdar (i.e, a1l x 1 matrix).

The choice of output can be stated in many ways. Regardless of the choice,
the output is related to the state variables by Eq. (28.12). To see how the matrix C
depends on the choice of output, consider the following examples:

If y is to be a scaar that is the arithmetic average of the levels in the two
tanks one can show that, C = [0.5 0.51.

If the output is to be h, and h,, one can show that

1
0]
Sdection of Sate Variables

To the beginner, the selection of state variables may seem mysterious. The state
variables of a system are the smalest set of varigbles tha contain sufficient infor-
mation to permit all future states to be determined. Although the number of state
variables is fixed, the actual selection of these date variables is not unique. If pos
shle, it is convenient to choose state variables that are directly related to physica
variables which can be measured or observed (e.g., temperature, level, compo-
gtion, position, velocity, etc) For mechanica systems, transducers are available
for measuring velocity; for this reason, velocity is considered a physicd variable.
On the other hand, since the measurement of rate of change of composition is not
easily made, this variable is not usually considered a physical variable.

If one solves a dynamic problem by means of an analog computer or by
means of a simulation language such as TUTSIM or ACSL} which involves
simulated integrator blocks, one legitimate set of state variables is the output
from each integrator.

In the control literature, the types of state variables have been classified as
follows.

cC =

1. Physical variables State variables are called physica variables when they
are readily measured and observed (level, temperature, composition, etc.).
Physicd variables were discussed at the beginning of this chapter and illustrated
for aliquid-level system in Example 28.1 where x ;= hiand X 2 = ha.

2. Phase variables State variables that are chosen to be the dependent variable
and its successve derivatives are cdled phase variables. Phase variables were

*Although the anadog computer will not be discussed in this book, simulation software, such as
TUTSIM or ACSL (Advanced Computer Simulation Language), will be discussed in a later chap-
ter. These simulation languages contain integrator blocks that are equivalent to the response of an
integrator in an analog computer
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selected at the beginning of this chapter in Eqgs. (28.3a) and (28.3b) where
X1 =Yy and Xy = y

3. Canonical variables If the state variables are selected to be canonica vari-
ables, the result is that the matrix A is diagonal. At this point, it is sufficient
to say that canonical variables are selected as state variables for ease in matrix
computation. In generd, the canonica variables are not readily identified with
physcd  variadles.

In addition to the types of state variables listed above, any other legitimate
set of variables can be selected. In Example 28.1, we used physical variables,
namely the levels in the tanks of the liquid-level system. In the next two examples,
the method for selecting state variables will be shown.

Example 282. For the two-tank liquid-level system of Example 28.1, shown in
Fig. 28.1, obtain the state-space description as expressed by Egs. (28.11) and (28.12)
when phase variables are selected for the state variables. To simplify the problem,
let up = 0, i.e, there is only one input .

For the system shown in Fig. 28.1, one can show that

HZ(S) - R2 28.1
Ui(s) (ms+ Dims+ 1) (28.18)

where 7 = AjR; and = = A3R;

Introducing the parameters in Fig. 28.1 into Eq. (28.18) gives

H(s) 213

28.19
Uls)  (s+1x§s+1) 2819

or

Hy(s) 4
Uits)  (s+2)(s +3)

To obtain the differential equation corresponding to Eq. (28.20), we crossmultiply
to obtain

(28.20)

(s+2) (s +3)Hy =4U;
o1
(52 + 55 + 6)Hy = 4U,
This may be expressed as the following differentiad equation:

hy +5hy + 6hy = 4uy (28.21)
Let the dtate variables be the following phase variables:
X1 = hy (28.22)

X2 = (28.23
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We may now write

i1 = xol= hol (28.24)
k2 = by (28.25)
Equation (282 1) becomes
X3+ Sxp2+ 6x1= 4uy (28.26)
The sysem can be described by Egs (2824) and (28.26):
1= x2 ‘ (28.27~)
X2 = —6x1 —5x3 + 4uy (28.276)

In terms of amatrix expression, Eqgs. (28.27) may be written:

X = AX + bu;

-4

If the output y istobe thelevel in tank 2,

where A = [ 0 1]
-6 -5

y = cX
where
c =11 0]
Example 283. For the Pl control sysem shown in Fg. 282, obtan a date-space
representetion in the form of Eq (287); thus
X = Ax+ br
where r is a sda. Let
xy1=c¢c , (28.28)
X2 = ¢= Xy (28.29)
With this choice of dae vaisbles we have sdected phase varlables.
From Fig. 28.2, we may write

C(S) - Kp - Kp/’l'ﬂ':
M) " mse Dmse D [s+ 1)fs+ 1)

or
C(s) _ A

M(s) ~ (s+a)s+b) (2830)

G, G,

+ E gs+l | M| K,
k k. s (75 +1) rp5+1) >C
- FIGURE 28-2
Pl Control System for Example 28.3.
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where A= K,/mm
a = 1/n
b=1im

Crossmultiplying  Eq.  (28.30) gives
[s? + (@ + b)s + ab]C(s) = AM(s)

or
¢+ @+ b +abc=Am (28.31)
From Egs. (28.28), (28.29), and (28.31) we obtain
i = xp (28.32)
Xy =—abx;=(@+ b)xy + Am (28.33)

We must now obtan the state variables associated with the Pl controller. From
Fig. 28.2, we obtain

M@s) - g s D
E(s) s
or

1sM(s) = K.rysE(s) + K E(s)
In tems of the time doman, this expresson becomes
m= Kce+ (Kc/rp)e (28.34)

From the sgnds entering and leaving the comparaior, we may write

e=r-c
or, since x| = ¢, we may write

e=r—x1 (28.35a)
and

e=r—x (28.35b)

Combining Egs. (28.34) and (28.35) gives
m= Kc(F = x1)+ Ke/r)(r = x1)
or
m= K¢t = Kexa+ (Kelrp)r — (Ke/r)x1 (28.36)

At this sage we ae faced with the difficulty of having a derivaive tem on
the right sde of Eg (28.36). In date-space representation, al varisbles on the right
dde must be dae vaisbles, not derivatives of dtate varisbles One way to handle
the present difficulty is to define a new date vaidle x73; It

x3 =m-—Kr (28.37)
or
X3 = = K.F (28.38)



440 STATE-SPACE METHODS

Combining Egs. (28.38) and (28.36) leads to
X3 = —(K/rp)x1 = Kexy + (Kolmpr (28.39)
or
X3 = —axy1 =K. xy + ar (28.40)
where a = K./7 "

Summarizing the date variable equations given by Eqs. (28.32), (28.33), ad
(28.40) and using the definition of x3 in Eq. (28.37) gives

)'Cl = X2
Xy = =abxi=(a + b)xy + Ax3 + AK.r
x3= —ax;— K.xp + ar

where A = Ky/mim
a = ln b =1lUn a= K7

The A and b termsin x = Ax + br are

0 1 0 0
A=|—-ab ~(a+b) A b = | AK,
- -K. 0 t o
If misrequired asafunction of t, it can always be found by solving Eq. (28.37)
fo m thus
m= x3+ K¢r
SUMMARY

State-space representation is an alternative to the transfer function representation
of a physical system that we have used up to this point. A transfer function that
relates an output variable to an input variable represents an nth-order differential
equation. In the state-space representation, the nth-order differential equation is
written as n first-order differential equations in terms of n state variables. These
n differential equations can aso be written in a more compact form as a matrix
differential equation:

X = AX + Bu

For an nth-order dynamic system, the number of state variables is fixed
a n, but the selection of the variables is not unique. Of the many sets of state
variables that one can choose, we discussed three sets that are useful in control
theory; namely, physical variables, phase variables, and canonical variables. The
state-space representation gives al of the dynamic detail of a system (e.g., the
Ogpendant vaidle and its successve daivdives for the cae of phae vaiddes).
Whether or not this detail is needed depends on the problem being solved. We
shall see the value of state-space representation in multivariable control and in
nonlineer contrd in laer chepters

i,
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APPENDIX 28A
ELEMENTARY MATRIX ALGEBRA

The purpose of this section is to provide in a convenient location a review of some
of the elementary operations of matrix algebra for use in state-space methods. It is

expected that the reader has had a course in linear agebra discussing the concepts
of a vector and a matrix and the operations performed on them.

VECTORS. An n-dimensiona column vector is an ordered series of elements
(numbers): x1, X2, . .., X, and iswritten as

X1
X2

Xn

Multiplication of a vector by a scalar (Ax) results in a vector for which each
eement is multiplied by A.

MATRICES. A malrix is a rectangular aray of elements (numbers) that takes the
form:

an an aim
any . A

A = . . . .
ani an2 Ce Anm

in which ¢he elements are written a ;; . The subscript i refers to the ith row and j
to the jth column. A is caled an n X m matrix where n is the number of rows
and misthe number of columns. If n = m, the matrix is called a square matrix.
If m= 1, the matrix is a column vector (r X 1). If np = 1, the matrix is a row
vector (1 X m).

The transpose of a matrix, AT, is a matrix for which the rows and columns
of the marix A are interchanged. If the diagonal elements (a ;;) of a sguare matrix
are unity and all off-diagonal elements are zero, then the matrix is called a unit
matrix and is given the symbol I.

If A = AT for asquare matrix, the matrix A is said to be symmetrical.

When two matrices are added (or subtracted), the corresponding elements
ae alded (or subtracted), thus

ay +bu ap +bn ... Ay + bim

az + by ap+tbn .. ay + bum
A+B= .

Anl + ba1 @yt bz ... Apm + bam
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The product of two matrices C = AB is a matrix whose elements are
obtained by the expression

m
Cij = Zaikbkj fori=1...n
k=1

andj = 1...p

where A is an n X m matrix and B is an m X p matrix. The matrix Cisann X p
matrix.

INVERSE OF A MATRIX. The inverse of a matrix is related to the concept of
division for numbers. The inverse of a number x is written 1/x or x !, The
product of a number x and its inverse is equal to unity. The inverse of a matrix
A is written A-" and the product of a matrix and its inverse is equa to the unit
matrix; thus

AT'A = |
The expression used for matrix inversion for the examples used in this chapter
takes the form:
adjA

ATl = ——
Al

(28A. 1)
where |A| is the determinant of A and adj A is the adjoint of A. These two terms
will now be desoribed .

The determinant of a matrix |A| is a scalar which is computed from the
elements of the matrix as follows:

|A] = aindit + anAin + o+ + ainAin

.

or
A} = Za,-jA,- j  foranyi (28A.2)
j=

where A;; , the cofactor of the element a ;;, is computed as
Aij = (1) M;,

The determinant M;; is the minor of the element a;; and is defined as
follows. If the row and column containing the element a ;; are deleted from a
square matrix A, the determinant of the resulting matrix, which isan (n = 1) X
(n = 1) matrix, is the minor M;; . An alternate expression for the calculation of a
determinant which uses the elements of a specific column and its cofactors is as
follows:

A] = Zai,-A,- j  forany] (28A.3)

A determinant of a matrix with two equa rows or columns is zero.
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We now define the adjoint of a matrix. Let the matrix B be an n x n matrix

whose elements b;; are the cofactors Aji of A, i.e, the transpose of the cofactor
matrix. B is the adjoint of A; thus B = adj A = transpose of cofactor matrix

or
A11 An . . Anl

An A2 . . . Am

adj A =

. Ay Ay . Am
Some useful properties of the inverse are
(AB)™! = B~'A"!
AT = @H™
AhH1=A
The derivations of relationships presented here, as well as other properties
of matrices, can be found in textbooks on linear algebra (see Anton, 1984).

EXAMPLES

1. Evauate the determinant of A for the following matrix
2 3 35
A=1]1 o 1
2 10

For this problem, we use Eq. (28A.2) withi =1 (i.e., use row 1)
01 11 10
= afl ] ol g el )
10 20 21
|A] = 2[(0)0) = (D] =3[(1)O) = (1)(2)] + SIAXD) = (0)(2)]

|A| =2(-1) =3(-2 + 5(1) = 9
2. Find the inverse of the matrix

1.1
A=11

_ WA
|A|

The determinant of A is
|A| =24 -3 =5

{43211

The matrix of minorsis
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2

The adjoint of the matrix, which is the transpose of the cofactor matrix, is

4 -3
adjA = [ ]
-1 2
therefore A=! = + [ 4 —3] = { % ‘3'5] ‘
51 2 -y %
3. Obtain the inverse of the matrix
2 3 1
A=|12 3
31 2
One can show that
A| = 18
The cofactor matrix is
1 7 -5
-5 7
7 -5 1
The adjoint matrix is
1 -5 7
-3 1 -5
] 1 57 1
7]
1
A= — 7 1 -
18 5
| -5 7 |

PROBLEMS

28.1. In the liquid level process shown in Fig. P28.1, the three tanks are interacting. The
process may be described by:

X = Ax+ Bu

u
uz

X1

where x = [ X2 andu =

X3
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L)
Ay =1/2

R =1 | R, = 1 .
A
FIGURE P28-1
(a) If
-3 1 0l
A= 2 -3 2
0 1 -3

determine values of R4, R4, and Rs. If one of these values of Ris negative,
what is your interpretetion?
(b) Determine B.

28.2. For the system shown in Fig. P28.2, find A and b in
X = AX + bu
The tanks are interacting. The following data apply:

1 1
A= 1 A= E’Rlz :ZRQZ 2, R3=1

Ry

Y

FIGURE P28-2




CHAPTER

29

TRANSFER
FUNCT| ON
MATRI X

In the previous chapter, we have seen that a linear dynamic system can be ex-
pressed in terms of the following equations

X = Ax+Bu (29.7)
y = X (29.2)
where X = column vector of n state variables (x 1,x2, . . . ,Xp)
u = column vector of m inputs or forcing terms (u | ,u 3, . . . U )
y = column vector of p outputs (y1,y2. , - - »¥p)

A = n xn matrix of coefficients

B = n xm matrix of coefficients

C = p x n matrix of coefficients
One of the objectives of this chapter is to show how one solves Egs. (29.1) and
(29.2) in a systematic manner.

Before discussing the solution of the matrix differential equation of Eq.
(29. 1), consder the scdar differentid equation

dxldt = Ax + Bu (29.3)

In this equation al of the terms are scalars. The solution to Eq. (29.3) can be
written as the sum of the complementary function and the particular integral as
follows:

t
x(t) = ex(0) + | e OBu(r)d 1 (29.4)
0

446
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Equation (29.4) is awell known result that has been derived in many books on
the solution of ordinary differential equations.

TRANSITION MATRIX
Let us now turn our attention to the solution of the matrix differential equation
x = AX (29.5)

Thisis Eq. (29.1) for the case of no inputs (i.e., v = 0). The initial conditions
for Eq. (29.5) may be expressed as x(O). One can show that the solution to Eq.
(29.5) with initial conditions x(O) is given by

nAZ Ak
x(t) = {I + At + 3'—t2 +... *+ Ftk} x(0) (29.6)

The infinite series of matrix terms within the braces is given the symbol e¥. This

symbol is chosen to recall that the infinite series of the scalar term ¢! is

") ok
2 k
+ at+ —p° + —
1+ at !t . !t

Using the symbol e*, we may write Eq. (296) as
x(t) = eA'x(0) (29.7)

The symbol ¢A* is an n X n marix in which exh element contains a power series
of ¢. The solution to Eq. (29.1) can be shown to be

f
x(t) = eA'x(0) + j ACTIBu(r)d T (29.8)
0

Notice that Eq. (29.8) resembles Eq. (29.4), which is the solution for the scalar
differentid equation. Since e’ is awkward and perhaps mideading as to its nature,
et is sometimes replaced by &(t); thus

&) = €M (ranstion  matrix) (29.9)

Either of the terms ¢(t) and eA* can be used for the transition matrix. In this
book, we shall use e?’.

Example29.1. Solution of a matrix differential equation. Solve the following
matrix differential equation

10 _12‘x+

where u(t) is a unit-step function and

*:

(1) u(t)

o <)
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One can show that

-t 2t

e ! el we”

Al ={ . e'; |

In the next section, the method used to obtain the elements of this matrix will be
developed. Applying Eq. (29.8) gives

-t

e et —e 21 -1 1 g—(t=7) e~ (=T — =211
*) = [ 0 e H OHO{ 0 e~ 2= H 1}‘”
or
_e—t e*(t—'r) - 0.56~2(t_1_) T=1
X(1) = [ 0 +[ 0.5~ 2= =10
or

Determining e A

One method for determining the elements of the transition matrix e 4 is to use
Laplace transforms. Consider the matrix differentia equation of Eq. (29.1)

x = AX + Bu
If we take the Laplace transform of each side, we obtain
sX(s) ~ x(0O) = AX(s) + BU(s)
or )
sX(s) = AX(s) = x(O) + BU(s)
Solving for X(3) gives
(sI - A)X(s) = x(O) + BU(s) (29.10)

To obtain an expression for X(s), pre-multiply both sides of Eq. (29.10) by
(sI ~ A)-*; thus

(sI— A)7I(sT = A)X(s) = (5T = A)"!x(0) + (sI — A)"'BU(s)
This equation  becomes

X(s) = (5T = A)-x(0) + (sI ~ A)~'BU(s) (29.11)
To obtain x(t) from Eq. (29.11), we may take the inverse transform; thus
X(t) = L™ (s = A)-x(O)} + L™} (s1 = A)"'BU(s)} (29.12)

By comparing Egs. (29.8) and (29.12), we see that
A = L7 (s - A)-} (29.13)
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and

jt ACDBu(r)dT = L'l{ (sI - A)_IBU(S)} (29.14)
0

TRANSFER FUNCTION MATRIX

When x(O) = 0, a case frequently used in control applications, we obtain from

Eq. (29.11)

X(s) = (sI - A)"'BU(s) (29.15)
This may be written
X(s) = G(s)U(s) (29.16)
where
G(s) = (sI— A)-'B  (transfer function matrix) (29.17)

The term G(9) is caled the trandfer function matrix and serves the same purpose
as the transfer function for the scaar case; namely, it relates a set of dtate variables
X(s) to a set of inputs U(S).

If we prefer to relate the output to the input as expressed by Eq. (29.2), we
may proceed as follows.
Taking the Laplace transform of both sides of Eg. (29.2) gives

Y(s) = CX(s) (29.18)
Combining Egs. (29.15) and (29.18) gives
' Y(9 = C(sI— A)"'BU(s)
We may now write
Y(s) = Gi(s)U(s) (29.19)
where
Gi(s) = C(sI—- A)-'B (29.20)

The term Gi(s) in Eq. (29.20) is aso a transfer function matrix that relates
the output vector Y to the input vector U.

Example 29.2. Determine the transfer function matrix for the 2-tank liquid-level

system shown in Fig. 29.1. As developed in Example 28.1 [Eq. (28.17)] of the
previous chapter, this sysem is described by

h = Ah+Bu
where

SRS
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FIGURE 29-1

Liquid-level system for Example

2920 Aj=1, 4 = 05 Ry =
92 0.5, R2 = 2/3,

From the definition of the transfer function matrix of Eq. (29.17), we write
G = (sI-A)7!'B

-

The invese of (sI = A) is obtaned as follows (see Appendix 28A for deals
on the inverson of a matrix):

-1 _adisI=A)
CGI=A =T1-a
_[s+2 0
ame 2
st-3 4
cofactor of (sI=A) = { 0 s+
We can now find the adjoint:
. _[s+3 0
adJ(sI'A)‘[ 4 s+2
The determinant of (s  A) is
s+2 0
4 s+3.—(s+2)(s+3)

We can now deermine the inverse of (sI = A).

_ s+3 0
(s~ A1 - [ 4 s+2] (2021)
(s+ 2)(s+ 3 '
s+3 0 s+3 0
G _ |7y s+2Hl o] 4 As+2)

(s+2(s+3) 0 2 = (s+ 2)(s +3)
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Smplifying  this  expresson  gives

o= '}’ j
(s +2)(s + 3) s+3
From Eq. (29.16) we write
H(s) = G(s)U(s)
therefore )
| ! i
Hy(s), _ s+24 2 Z[Uz(s)l (29.22)
(s +2)(s+ 3) s+3

From Eq. (29.22), we obtain

1

Hl(s) = s+2

Ui(s)
and

4 2
Hy(s) = (s_"'Z)—(s"TUl(s) + mUz(S)

For given inputs, the above eguations may be inverted to obtan h (¢) and ho(2).
For the case of Uji(s) = I/s and U,(s) = 0, we get

! _ 05
s(s+2)  s5(055+1)

Hy(s) =

and
4
) - S5 e+ 3

Inverson of Hy(s) and Ho(s) gives
hy(t) = 0.5(1 = 72
ha(r) = (2/3){1 - 0.5(3¢7 - 2e“3’)]
The reallts given above can be obtained, of course, by the methods presented earlier

in this book.
The ftranstion matrix can be obtained by applying Eq (29.13) to Eg. (29.21):

i

0
s+2
4 1

A = ] (8 +52)(s2+ 3) st3
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Inverting each term in the matrix gives

Ar _ e ¥ 0
4(e-2t - e—3t) e—?lt1

This matrix can be used in Eq. (29.8) to caculate h(r) and ho(r). The result will
be the same as obtained by inverson of Eq. (29.22).

e

SUMMARY
The matrix differential equation
x = AX + Bu

used to describe a control system by the date-space method can be solved for the
vector of state variables (x) by use of the transfer function matrix. It consists of a
matrix of transfer functions that relate the state variables to the inputs. The transfer
function matrix serves the same purpose in a multiple-input multiple-output system
as the transfer function does for a singleiinput single-output system. The transfer
function matrix is obtained from the matrix differential equatien by application of
Laplace transforms. '

PROBLEMS
29.1. Determine x(t) for the system
X = Ax + Bu '
—5t =2t + ,=5t .
where eA! = eO ¢ e—z:e |

w0 F] w-[} -lf
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‘ MULTIVARIABLE
CONTROL

Up to this point, the fundamentals of process dynamics and control have been il-
lustrated by single-input single-output  (SISO) systems. The processes  encountered
in the real world are usually multiple-input multiple-output systems (MIMO). To
explore these concepts, consider the interacting, two-tank liquid-level system in
" Rig.” 30.1 where there is one input, the flow to tank 1 (m 1) and one output, the
level in tank 2 (hy). In thisfigure, k; isrelated to m | by a second-order transfer
function. From the point of view of a SISO system, the relation between k&, and

m; may be represented by the block diagram in Fig. 30.16. One may place a

feedback control system around the open-loop system of Fig. 30. Ib to maintain

control of Hj.

" * Now consder the same process of Fig. 30.1 in which there are two inputs
(m1 4nd m;) and two outputs (2 and k3). This system is shown in Fig. 30.24.
. A change in m ; alone will affect both outputs (k| and k). A change in m»

. done will aso change both outputs. (Remember that this is an interacting process
* for which the level in tank. 1 is affected by the level in tank 2.) The interaction
~ between inputs and outputs can be seen more clearly by the block diagram of Fig.
' 30.2b, In this diagram, the transfer functions show how the change in one of the
mputs affects both of the outputs. For example, if a change occursin only M,
the responses of Hyand Hy are

A Hy(s) = Gui(s)Mi(s)
Hy(s) = Gu(s)My(s)

& .
ﬁThe transfer functions in Fig. 30.2b will be worked out for a specific set of pro-
@"’:: «cess parameters in Example 30.1 (If the tanks were noninteracting, G 12 = 0, with

453
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my

M,y > ks > H)

7252 + 2E 75+ 1]

(b)
FIGURE 30-1
Single-input - single-output  system  (SISO): (@) two-tank interacting level system, (b) block diagram
for SISO sysem.

+
MI Gy4(5) =®—> Hy

+
G (s)
Gyo(s)
+
M. +
2 Gos (5) > > H,

(b)

FIGURE 30-2

Multiple-input  multiple-output  system (MIMO): (a) level process, (b) block diagram.
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the result that a change in flow to tank 2 would not affect H ;.) If both H | and H,
are to be controlled, a single control loop will not be sufficient; in this case two
control loops are needed. The addition of control loops to the interacting system
will be considered in the next section.

CONTROL OF INTERACTING SYSTEMS

The problem of controlling the outputs of an MIMO system will be discussed
by means of a2 X 2 system showtt in Fig. 30.3. The problem can be extended
to the case of more than two pairs of inputs and outputs by the same procedure
described here. The control objective is to control C ; and C, independently, in
spite of changes in M; and M, or other load variables not shown. Two control
loops are added to the diagram of Fig. 30.3 as shown in Fig. 30.4. Each loop
hes a block for the conrdle, the vave and the messuring dement. In prindple,
the multiloop control system of Fig. 30.4 will maintain control of C, and C».
Howeve, because of the interacion presant in the sydem, a change in Ry will d0
e Cy to vay becaue a ddubence ates the lower loop through the trandfer
function Gy;. Because-of interaction, both outputs (Cy and C») will change if a
change is mede in ether input done If Gy ad Gy provide wesk interadtion, the
two-controller scheme of Hg. 304 will gve sidadoy ocontrd. In the extreme
if G12 = G2 = 0, we have no interaction and the two control loops are isolated
from esch other.

To compledy diminge the interacion beween outpuis and st paints two
more contrallers (cossocontrdles) ae added to the diag)am of Hg 304 to give
the diagram shown in Fig. 30.5. In principle, these cross-controllers can be de-
signed to eliminate interaction. The following analysis, which is expressed in
matrix form, will lead to the method of design for cross-controllers that will
eliminate interaction.

+
M > Gy, >—>c,
+
Gy
Giy >
, 4
M, > Gy =S >C,
Fl GURE303

MIMO system for two pairs of inputs and outputs.
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Gml
+ E M
Rl—»é)—% Gy b= Gy 4Gy - > Cy

+
G2y
(.
G1z
+
Re=2 Qg Ge22[ ] G2 ;] Oz 'é —> (3
Gm2
FIGURE 30-4

Multiloop control system with two controllers.

Reponee of Multiloop Control  Sysem -

From Fig. 30.5, we may write by direct observation the following relationships
in the form of the matrix expression

C = GM (30.1)
_|Gu Gn _ | C _ | M
where G, { Gt Gzz] C= { C, M= M,
We dso may write from Fig. 30.5
My = G,1G1Ey + GyiGenEs (30.2)
M; = G2G21E + GG enkEs (30.3)
Gml

=ge

FIGURE. 305
Multiloop control system with two primary controllers and two cross-controllers,
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where G,; and G,, ae the transfer functions for the valves. Equations (30.2) and
(30.3) may be written in matrix form as

M = G,G,E (30.4
where G, = G(;‘ G02 (vave matrix)
GC Gc . .
G, = Gc; Gc;; (controller  matrix)
E,
E =
E,,

From Fig. 30.5, we write directly
Ey =R —GmCy (30.5)
E; = Ry = Gm2Cr (30.6)

where E1 and E; are the error signals from the comparators. Equations (30.5) and
(30.6) can be written in the matrix form

E = R-G,C (30.7)

Gm O

ks

where G,, =[ } (measuring  element  matrix)

From Egs. (30.1) and (30.4), we obtain

C = G,G,G.E (30.9)
If we let G, = G,G,G, Eq. (30.8) becomes
C = G,E (30.9)
Combining Egs. (30.7) and (30.9) gives
C = G,R - G,G,C (30.10)

We may now solve Eq. (30.10) for C to obtain
C=[l + GoGn] 'G,R (30.12)
Notice that the closed-loop behavior expressed by this matrix equation is
andogous to the closed-loop response of a SISO system, which may be written
Go(s)

- R 30.12
€O = 56,0060 (40.12
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R 6 = 6 HL g, C
- FIGURE 30-6
G, ) Block diagram for MIMO control  sys

tem in tems of matrix blocks.

The matrix tem [I+G,G,,] ! is equivdet to the scdar tam 1/[1 + G o(5)G (s)].

A bok dagan eqivdet to the degan for the MIMO ocord sygem in
Fig. 30.5 is shown in Fig. 30.6. In this diagram, the blocks are filled with the
matrices in Egs. (30.1), (30.4), and (30.7). The double line indicates that more
than one variable is being transmitted. Each block contains a matrix of transfer
functions that relates an output vector to an input vector. The diagram can be
simplified by multiplying the three matrices in the forward loop together and
caling the result G,, as was done to obtain Eq. (30.9). The simplified diagram
is shown in Fig. 30.7.

Noninteracting  Control 2

In order for no interaction to ooor between C ad R in Fig. 305 (i.e, R ; dfects
only C ; and R, affects only C3), the off-diagonal elements of [l + G ,G,] 'G,
in Eq. (30.11) must be zero. Since | and G, are diagonal, [I + GG ] "G, will
be diagonad if G, is diagonal. Multiplication of the matrices in the expression for
G, is now shown:

G, = G,G,G,
G G Gu} Gq, O } Genl GCIZ}
° =| Gy Gn 0 Gnl|| Go G2

The result of multiplying these matrices gives

G11GviGent + Gi12Gv2Geat G11GyiGerz + G12G2Ger
G21G1Geit + GGG G21GviGe2 + GG nGen

Setting the off-diagonal elements to zero and solving for G .12 and G .2 give

G, =

7 (30.13)

G12G2Gea2
G, s m— 30.14
'z G11Gu ( )
G21G1Gent
Gy = ~———— 30.
2 GaGon (30.15)
R El g, c
+
- ’ FIGURE 30-7
G, Redifedd Bsik dagran for MIMO control system where
G, = G,G,Ge.
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The following example will give some experience with the computations
involved in applying the theory developed so far in this chapter.

Example 30.1. For the two-tank, interacting liquid-level system shown in Fig. 30.8,
develop the block diagram for an MIMO system corresponding to Fig. 30.3.
Materiad balanceswround tank 1 and tank 2 give the following differentid equations.

Arer= my - =L ;1” -% (30.16)
Ay = mp+ cl—;l—c& - % (3017)
Introduding the parameters given in Hg. 308 into Eogs (3016) and (30.17) gives
&1=m =31+ 2¢; (3018
€2 = 2ma + 4cy = 5¢p (3029
These equations may be written in matrix fom s
¢ = Ac+Bm
where
A= ) el g
We e Eq. (29.15) to obtan
C(9 = (s = A)"'BM(s) (3020)
Whiting Eq. (30.20) in the foom of Eq. (30.1) gives
C = G,M

where G, = (sI ~ A)"!B

After severd Seps invalving the inverson of (sI— A) and mulitiplying the result of
inverdon by B, one gets

s+5 4

4  2s+3)
66 77 (30.21)

P =

ma

FIGURE 30-8
) G Process for Example 30.1: Ay =
R LA=12Rk = VLR = 2,

R3 = 1.
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1.0, 1.0

[
0.81 0.8k
%]
0.6 ‘4 L
o 0.6 .
0.4L 0.4} %
0.2 0.2 1
0.0 1 ) 0.0 | ]
0 1.5 t 3 0 1.5 t 3
(a) (b)
FIGURE 30-9

Open-loop response for Example 30.1. (a) M, = I/s, M5 = 0, (D) M2 = IS, M, = 0.

The block diagram can now be drawn as shown in Fg. 30.3 with

s+5 4
G sTern -cFeEn
- 4 2As + 3

=G D+ R EE s T
Notice thet the diagond elements of G,(s) are of the form

a(s + )
(s+ (s +7)

These dements, which rdate cd to m ; and ¢; to mj, will produce a second-order

response to a step change in input that has a finite dope at the origin because of

the numerator term s + B . In contradt, the off-diagond elements have second-order
transfer functions without numerator dynamics, for which case the step response
will be second-order with zero dope a the origin. The responses of ¢ and ¢ for

unit-step changesin m; axdm, taken separately are shown in Fig. 30.9.

Example 30.2. For the two-tank liquid-levdl system of Example 30.1, determine the
controller transfer function matrix G, needed to diminate interaction. The primary
controllers are to be proportiond, i.e, G = K1, Gy = Kz, The diagram of
the control system is shown in Fig. 30.10. The block labeled controller contains the

FIGURE  30.10
Processfor Example 30.2. 4, =

; > La2= 12, Ri= 1R, Ry =

2 Ry = 1, Gt = Ky, Gez
K.

N
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four transfer functions that are the dements of G,. In this problem, G, is a unit
diagond metrix i.e, Gy1 = Gyy = 1

From Egs. (30.14) and (30.15) we obtain
G12Gen2 __ 4 g, St Ds+7)

L o N AR

or

—4K,

Ger2 = (30.22)

GuGen  _ 4 g St Ds+7)
G = (G+DE+D " As+I

GCZl = -

or

-2K4
s+3

G = (30.23)
Having found the transfer functions for the cross-controllers, we can now determine
the nature of the uncoupled response of ¢ | to achangein r y and of ¢z to a change
inrj.

Insarting G, = Gy = 1 and the expressions for G .13 ad G gy from Egs.
(30.14) and (30.15) into Eq. (30.13) gives for G,

- G11Ge11 + G12Gent 0

Go 0 G2 Gez + GnGen2 |

(30.24)

Inserting the appropriate lements of the G, matrix [Eq. (30.21)] and the G
matrix in Eq. (30.24) gives after consderable smplification
K 0
G, =|% + 3 2%, (decoupled system) (30.25)

s+35

The block diagram for this decoupled MIMO system is shown in Fig. 30.11.
Assuming thet the measurement matrix G, is a unit diagond matrix, the diagram

G,
Ky
E_| s+3 c

2K,

- 5+6
Gm 0

o Guo FIGURE 30-11 _
Block diagram for decoupled system in Example

G, 30.2.
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R:%E s+1 = C
¥ o 2K

STATE-SPACE  METHODS

AN <
- s+5 .

FIGURE 30-12
Smplified block diagram for Example 30.2.

in Fg. 30.11 can be smplified to the unity feedback diagram of Fig. 30.12. From
Fg. 30.12, we may write directly

C:GoE
E=R-C

therefore C = G,R - G,C

or
Cl} =[G011 0 [Rl}_[Goll 0. [C’l
C2 0 GonllR 0 GonllCo
From this expresson, we may write
C1 = Gonky = Gon1Ci
C2 = GonaRy = Gon2C
Solving for Cy{s) gives
1) = T ARi()
Inserting G, from Eq. (30.25) gives
K
Cis) = Ri(s) (30.26)
s+3
In a smilar way, one can show thet
2K,
Ca(s) = Pi—’fﬁ%-kz(s) 1(30.27)
s+5

The result shows that the cross-contrallers of Egs. (30.22) and (30.23) give two
Separate noninteracting control loops as shown in Fig. 30.13.

The response of the control system of Fig. 30.10 is shown in Fig. 30.14
for a unit-step change in R;. In Fg. 30.14a, no cross-controllers are present in
the matrix G,. In Fg. 30.14b, cross-controllers having the transfer functions given
by Eq. (30.22) and (30.23) are present. As expected, for the case of no cross-
controllers, one sees from Fig. 30.14¢ that a request for a unit-step change in r |
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Ky

+ 2 > FIGURE 30-13
R k2 “~2  Decoupled control system for Exam-
- ple 30.2 where primary controllers

are proportional.

Cy

k]

iy

+
%
+ i
w

4

=]

w
+
[$)]

causss both ¢y and ¢, to change. For the case where cross-controllers are present,
one sees from Fig. 30.14% that a change in r; does not affect ¢; as demanded by
a decoupled system.

To avoid the offset associated with proportional control, we can use Pl
controllers for the primary controllers for the decoupled system. To study the
effect of Pl controllers for the decoupled system, let

1 1
Gc11=K11+; and Gc22=K21+;

For this case, the cross-controller transfer functions may be obtained from, Egs.
(30.14) and (30.15); the results are

—4Ks(s + 1)
s(s+ 5)

—2Ki(s +1)
s(s+3)

A smulation using these four controller transfer functions with Ky = K5 = 4 is
shown in Fig. 30.15. From the transient response, we see that ¢; moves toward
the set point of 1.0 and that ¢; does not change, as is expected for a decoupled
system.

Geiz - and Gc21 =

1.0~ 1_0r

0.8 0.8

06} = os| o1

0.4 4 0.4

0.2 2 0.2 .

OO 1+ .+ o ¢ ¢ 11 114y 0.0l N it
1.5 3 "0 1.5 3
{a) {b)

FAQRE 30-14

Response for control system in Example 30.2 for Ry =1/s, k3 =0, Geu=K1=4, Gexp =
K, =4 (3 no crosscontrollers, ('b)  cross-controllers present.
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Cougnanowr
1.0,
0.8
0.6 ]
0.4
0.2 FIGURE 30-15 _
Response of decoupled control system in Example 30.2
0.0 for Pl primary controllers: Gei1 = Geaz = 4(1 + Us),
0 1.5 3 Ry =ls, Ry = 0.

STABILITY OF MULTIVARIABLE SYSTEMS

Determining the stability for a multivariable control system, such as the one in
FHg 304 o Hg 305 can be much moe complicated then for en 9SO gydem
The transfer function for the closed-loop response of an MIMO system is given
by Eq. (30.11):
C=[l+G,Gnl"'G,R
To invat this expresson, we wiite

adj [T + G,GAlG,R
T+ G,G,,

The numerator of this expression is an »n X n matrix; the denominator is a
nth order polynomial. To simplify the following argument, let the matrix in Eq.
(30.28) be 2 x 2. Let the elements of the numerator, after expansion, be written
& fdlons

C=

(30.28)

: _ | Buls) PBra(s)
G,G,IG,R = 2
adill + G,G,1G [ ) Bais) (30.29)
Let the elements of G,G,, be written as follows:
_ lanls) an(s)
GG = | o1 ) an(s)} (30.30)

Expansion of the determinant in Eq. (30.28), using Eq. (30.30), is shown below

|1, auls)  anls)
¥+ GoGal _‘ an(s) 1+ an(s)

or
T+ GoGu| =1 + a1 + a2(s)] = aja(s)az(s) (3031)

Equation (30.31) is a polynomial expression, for which the order will depend on
the order of the transfer functionsin G, and G,. Equation (30.28) can now be
written in tams of the expandons down in Egs (3029 and (3031) as fdlows
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Bu(s) Bi2(s)

c = | T+ 6GoGn| [T+ GoGn|
- Bai(s) B22(s)

¢ | T+ GoGm| |1+ GGyl

Since each term contains the polynomial |I + G,G, in the denominator, the

stability of the multivariable system will depend on the roots of the polynomial
equation

T+ G,Gn| = 0  (characteristic  equation) (30.32)

Equation (30.32) is the characteristic equation of the multivariable system.
Although Eg. (30.32) has been derived here for the case where G G, isa 2 X
2 matrix, one can show that Eq. (30.32) applies to the general MIMO system
of Fig. 30.7 in which G,Gn is a matrix of any size (n X n). If the roots of
the characteristic equation are in the left half of the complex plane, we know
that the system is stable. One method to be used for examining the stability of a
multivariable system is to apply the Routh test to the characteristic equation of Eq.
(30.32). In practice, the characteristic equation can be of high order for a smple
2 X 2 multivariable control system. Example 30.3 illustrates the determination of
stability for a multivariable control system.

Example 30.3. For the control system of Example 30.2, which is shown in Fg.
30.10, determine stability for the case where G .1 = K1, Gez = Kz, and there
are no cross-controllers present (i.e, Geia = Geo1 = 0) dso let G, and Gy, be
unit matrices. From Example 30.1, we have for the eements of G,

s+35 4
GegEnern =GEEDeED
4 2s + 3)
S )
Snce G, = |, G, = GpG,. Snce G, = |, the characteristic equation of Eq.

(30.32) can now be written as
I+G,Gc| =0 (30.33)

Introducing the dements of the matrices G and G, into Eq. (30.33) gives, after
expansion of the determinant

[(s + s+ D+ Kils + s + D(s+ ) + 2Ky(s +3)] = 16K1K2 = 0

For given valuesof K7 and K, this expression can be expanded into a fourth
order polynomia equation of the form

s+ asP+ B+ s+ A =0 (30.34)
where a, 8, y, and A will indudethegains K | and K.
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The Routh test can be applied to Eq. (30.34) to determine whether or not the system
is gable. From this sSmple example, the reader can gppreciate the dgebraic tedium
that may be needed to determine the stability of a multivariable system.

Oneway to express the stability of this system isto plot the stability boundaries
on agraph of K versus K. The region within the boundaries gives the combinations
of vaues of K7 and K5 for which the system is stable. Since the details of gtability
boundaries is beyond the scope of this chapter, the reader may consult Seborg,
Edgar, and Médlichamp (1989) for examples of stability boundaries for multivarigble
systems.

SUMMARY

Most of the systems encountered are multiple-input multiple-output (MIMO) sys-
tems. Such sysems have severa inputs and severa outputs that are often inter-
acting, meaning that a disturbance a any input causes a response in some or dl
of the outputs. This interaction in an MIMO system makes control and stability
andydss of the sysem very complicaed compared to a single-input single-output
(SISO) system. A convenient way to describe an MIMO system is by means of
a block diagram in which esch block contains a matrix of transfer functions that
relates an input vector to an output vector.

It is often dedirable to have a control system decoupled so that certain outputs
can be controlled independently of other outputs. A systematic procedure was
described  for decoupling a control sysem by including cross-controllers  adong
with the principd controllers. This gpproach to decoupling requires an accurate
mode of the system; the number of controllers (principa controllers and cross-
controllers) increases rapidly with the number of inputs and outputs. A system
represented by two inputs and two outputs requires as many as four controllers, a
system of three inputs and three outputs requires as many as nine controllers, and
S0 on.

The characterigtic equation for a multivariable control system, from which
one can determine dability by examining its roots, can be of high order for
a rdaivey smple sysem. Expressng dability boundaries in terms of controller
paameters becomes complex because of the large number of controller parameters
that can be adjusted.

PROBLEMS

30.1. For the liquid-level system shown in Fig. P30.1 determine the cross-controller trans-
fer functions that will decouple the system. Fill in each block of the diagram shown
in Fig. 30.5 with atmnsfer function obtained from an andysis of the control system.
The trandfer function for each feedback measuring dement is unity. The following

data apply:
A1= 1, Ay =05 Res; =05 Res; = 23, Genn = Ky, G = K>

The resistance on the outlet of a tank has been denoted by Res to avoid confusion
with the symbol for set point (R).
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Res » FIGURE P30-1

30.2. (@) For the interacting liquid-level system shown in Fig. P30.2, draw very nesatly
a block diagram that corresponds to Fig. 30.4. Each block should contain a
transfer function obtained from an analyss of the liquid-levdl system. There
are no cross-controllers in this system. The transfer function for each feedback
dement is unity. The following data apply:

A= 1LA>=1/2, Rest = 1/2, Resp = 2, Resz3 = 1
(b) Obtain the characterigtic equation of this system in the form
sn+as"_1+ Bsn—2 +...=0

Obtain expressons for cv, B, ec. intems of K, (K1 = 1)
() How would you determine stability limits for this interacting control system?

Proportional controller Proportional controller

R,
K2 = K22
Ry

FIGURE P30-2
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CHAPTER

31

EXAMPLES
OF NONLINEAR
SYSTEMS

In the previous chapters, we have confined our attention to the behavior of lin-
ear systems or to the analysis of linearized equations representative of nonlinear
systems in the vicinity of the steady-state condition. While much useful informa-
tion can be obtained from such anadyss, it frequently is desrable or necessary to
consder nonlinearities in control  system  design.

No real physical system is truly linear, particularly over a wide range of
operating variables. Hence, to be complete, a control system design should alow
for the possibility of a large deviation from steady-state behavior and resulting
nonlinear behavior. The purpose of the next three chapters is to introduce some of
the tools that can be used for this purpose and to indicate some of the complications
that arise when nonlinear systems are considered.

DEFINITION OF A NONLINEAR SYSTEM

A nonlinear system is one for which the principle of superposition does not apply.
Thus, by superposition, the response of a linear system to the sum of two inputs
is the same as the sum of the responses to the individua inputs. This behavior,
which alows us to characterize completely a linear system by a transfer function,
is not true of nonlinear systems.

As an example, consider a liquid-level system. If the outflow is proportiond
to the square root of the tank level, superposition does not hold and the system
is nonlinear. If the tank will always operate near the steady-state condition, the
square-root behavior may be adequately represented by a straight line and super-

471
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Earth jesmge— — = = = — e e e m

Distance from moon

Launch
4 - FIGURE 31-1
Time =——>- Distance-time plot for moon rocket.

position applied, as we have done before. On the other hand, if the tank level
should fall to half the steady-state value, we would no longer expect the transfer
function derived on the linearized basis to apply. The analysis becomes more
complicated, as we shal see in our introduction to the study of nonlinear systems.

THE PHASE PLANE

The analysis of nonlinear dynamic systems may often be conceptualy simplified
by changing to a coordinate system known as phase space. In this coordinate
system, time no longer appears explicitly, it being replaced by some other property
of the system. For example, consider the flight of a rocket to the moon. In a grosdy
oversimplified manner, we may describe this motion by a plot of the distance of
the rocket from the moon versus time. If al goes wel, we would like such a plot
to resemble Fig. 31.1. Note the initial acceleration during launch and the find
deceleration at landing. We may, however, also represent this motion by a plot
of rocket velocity versus distance from moon. This plot is shown in Fig. 31.2,
where velocity is defined as d(distance from moon)/dt. Figure 31.2 is called a
phase diagram of the rocket motion. Time now appears merely as a parameter
along the curve of the rocket motion. It has been replaced as a coordinate by
the rocket velocity. Although in the present example Fig. 31.2 may not be of
significant advantage over Fig. 3 1.1, we shall find phase diagrams very helpful
in the anaysis of certain nonlinear control systems.

To begin our study of phase diagrams, we convert a linear motion studied
previoudly in Chap. 8 to the phase plane. The linear motion will be that of the
spring-mass-damper system.

Distance from moon 4Earth
——

Velocity

Time FIGURE 312
‘ Velocity-distance plot for moon rocket.
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PHASE-PLANE ANALYSIS
OF DAMPED OSCILLATOR

The differential equation describing the motion of the system of Fig. 8.1 in re-
sponse to a unit-step function is
d?y dy
2
L 4y ¥y =1 311
g & dt (LY
Equation (31.1) has previoudy been solved to yield the motion in the form of
Y (t) versus ¢ as shown in Fig. 8.2. For phase analysis, however, we want the
motion in terms of velocity versus postion, Y versus Y, where the dot notation is
used to indicate differentiation with respect to ¢ Hence, we rewrite Eg. (3 11) as

dyY

aw _,

d . (312)
ay _ =Y -2r¥ +1

dt 12

It is usually convenient in phase-plane analysis to write the variables in terms of
deviation about the final condition. In this case, the spring will ultimately come
torest a Y = 1. Hence we define

X=Y-1
X=Y
Then, Eg. (31.2) becomes
dX .
o X
. . (3L3)

dX _ -X —2{rX
dat T 2

These are now viewed as two simultaneous, first-order differential equations in
the variables X and X.

To solve Egs. (31.3), we may use the methods presented in Chaps. 28 and
29. For this purpose, let X; = X and X; = X. Egs. (31.3) may be written in the
form

X = AX (31.4)
0 1
Xl]
where X = A = _
[Xz Logx

Equation (31.4) is in the standard form of a matrix differential equation
[Eg. (28.7)]. Notice that the term by of Eq. (28.7) is not present because no

e e o
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forcing term is present in Egs. (31.3), Equation (3 1.4) may be solved by use of
Eq. (29.7):
X(t) = €A*X(0) (29.7)
where A= L7 - A7) (29.13)
Following the usual steps required to solve these equations gives the result
X1 = X = Cre®t + Cre™

- t (3L5)
Xy = X = §51Ci€° + 5,Cre™
where ¢, = X0~ Xo
§y= 5
Xo = 51X
C, = X0 1Xo
52 ™ §8)

and X, and X, are the initia conditions; thus Xo = X(O) and X, = X(O). The
terms g, and s, are the roots of the characteristic equation

sl — A|= 0 ) (31.6)
Expanding this equation gives
252+ Ars+1=0
This quadratic equation has two roots.

_gt\/ZQ___l

T

S12 =

If we take s, as the root with the positive sign

B S/
T

the constants take the form

C = T—(Szxo = Xo)
2/ -1
. (3L7)
Cyr = ————Xp =~ 51X,
2= 3 {2_1(0 1Xo)

Equations (31.5) and (31.7) together give X(t) and X(t) for al possible
initia conditions Xq and Xo. For a given set of initial conditions, we compute
Cand C; from (3 1.7), and then each value of ¢ in Eq. (3 1.5) yields a pair
of values for X and X. These may be plotted as a point on an XX diagram
(i.e., a phase plane). the locus of these points as ¢ varies from zero to infinity
will be a curve in the XX plane. As an example, consider the case Xc = — 1,
X0 =0, { < 1. The solution is aready known to us in the form of X versus
t (Chap. 8) and is replotted in Fig. 3 1.3 for convenience, together with a plot of X
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t—>
X N
\/ T
t—> FIGURE31-3

Typical motion of second-order system.

versus t. If these curves are replotted as X versus X, with ¢t as a parameter,
the result is as showi in Fig. 31.4. The reader should carefully compare Figs.
3 1.3 and 3 1.4 to be satisfied that they ate indeed equivalent. The relationship
betwemn the two may be expressad by the datemat tha Hg 3 1.3 is a paaneric
representation of Fig. 31.4. Having only the curve X versus f of Fig. 3 1.3, one
cn codrud Hg 314

To explore the phesediagran conogpt further, note thet divison of the sscond
of Egs. (31.3) by the first yields

dX - x =X
ax — 72X
in which the vaiable ¢ hes ben diminded Equetion (3 18) may be recognized as

a homogeneous first-order differential equation. Hence, the substitution X = VX
yields

(3L8)

XdvV _ -1-2{V v = ~(1+ %7V + 12V?)
X 1 TV
an equation which is separable in X and V. This can then be easily solved for V
in terms of X. Finaly, replacing V = X/X gives the solution for X versus X, or

aY
—1 t=°°/($_/ X —>

at origin

FIGURE 31-4
Phase plane corresponding to motion of Fig. 3 1.3.
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Interpolation for
‘< X,=0,X,=1

\

X,=1X,=0  FIGURE 31-§
Interpolation on the phase plane.

the equation for the curve of Fig. 314. The dgebraic details of this rather tedious
process are omitted. (See Graham and McRuer, 1961, pp. 287-289.) The point
of the discussion is to emphasize further the equivalence between the description
of the motion as X versus t or X versus X.

A convenient feature of the phase diagram is that several motions, corre-
sponding to different initid conditions, can be readily plotted on the same diagram.
Thus, if we add to Fig. 31.4 a curve for the motion under the initial condition
Xc =1, Xo =0, weobtain Fig. 31.5. This new trajectory represents the motion
of the system after it is stretched 2 units and released from rest. (This follows from
the definition X =Y =~ 1.) Furthermore, we have also interpolated in Fig. 31.5
to obtain the motion corresponding to Xo = 0, X = 1. As we shall see later,
this interpolation is justified. Hence, it is evident that the phase diagram gives us
the “big picturé’ of the motion of the underdamped spring-mass-damper system.
No matter where the system starts, it spirals to the condition Xo = Xc = 0, the
steady-state position. This spiral motion in the phase plane corresponds to the
oscillatory nature of the X versus t curve of Fig. 313

Before beginning a more detailed study of the mechanics of phase andyss, it
may be worthwhile to see how stuations amenable to such andysis arise naturaly
in the physicd world.

MOTION OF A PENDULUM

Consider the pendulum of Fig. 31.6. As the pendulum is moving in the direction
shown, there are two forces acting to oppose its motion. These forces, which
act tangentially to the circle of motion, are (1) the gravitational force mg sin
# and (2) the friction in the pivot, which we suppose to be proportional to the
tangential velocity of the mass, BR(d6/dt). We shall assume the air resistance
to be negligible and the rod to be of negligible mass. Application of Newton's
second law gives
2

dé
~mR=— = mg sinf + BR=—
m T mg sin 6 + ar
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/\ Pivot

BRS?

mgsin @ FIGURE 31-6
mg Forces acting on pendulum.

Motion

Rearrangement leads to

2 deé .
dg{g—+DE+wﬁsm0 =0 (319

xR J|®

where D

w? =
This equation resembl es the equation for the motion of the spring-mass-damper
system. However, the presence of the term involving sin 8 makes the equation
nonlinear.

Equation (31.9) has the following form in phase coordinates:
ﬂ)_
d
de
dt
and a phase diagram would be a plot of angular velocity 6 versus position 6. At
this point, we can gain some insight by simple analysis of Eq. (31.10) without
actually obtaining a solution.

Referring for the moment back to the spring-mass-damper sysem, we saw
that the system ceased to oscillate when the point X = X = 0 was reached. That
is, al curves stopped at the origin of Fig. 3 1.5. The reason for this is quite clear;
when X = X = 0 is substituted into Egs. (31.3), there is obtained

X _ dX

dt dt
Since neither X nor X is changing with time, the motion cesses. Further examina-
tion of Egs. (31.3) shows that X = X = 0 is the only point at which both dX/dt
and dX/dt ae zero. Thus, we see that the mass will come to rest only when the
dtuation of zero displacement and zero velocity is reached.

=
(31.10)
= —@>sin § - Dé
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Now we perform a similar analysis on Egs. (31.10). We are asking the
following question: At what point or points in the phase plane (8 versus @ diagram)
do both 4@/dt and 4@/dt become zero? From the first of these equations, we see
that this can happen* only when 6 = 0. Using this result in the second equation,
it can be seen that it is also necessary that

sinf = 0 (31.11)
Equation (3 1.11) is satisfied a any of the points
6 = nm

where p is a positive or negative integer or zero. However, from a physical
gandpoint, we can redly digtinguish between only two of these points, which we
take as § = 0 and @ = . Thus, the positions 8 = 0, 2w, 47, —2m, €tc., al
look the same to us; i.e., the pendulum is hanging straight down. Similarly, the
points 8 = =, 31, etc., al correspond to the pendulum standing straight up.

Thus, the analysis leads to the conclusion that the motion will cease when
the pendulum comes to rest in either of the positions shown in Fig. 31.7. In ad-
dition, it is clear from Egs. (31.10) that, if the pendulum stops at any other
point, the motion continues. Of course, this analysis agrees with our physical
intuition. However, we expect to find a distinction between the stability char-
acteristics of the two equilibrium points, since the position at  is likely to be
hard to attain and maintain. This distinction will be explored in more detail in
Chap. 32

*The reader should not be lulled into a false sense of security at this. point. It would be wise to
disregard the fact that 46/dt and ¢ are, in fact, the same quantity; € should be thought of asa
coordinate in the phase plane, and d@/dt as the rate of change with time of the other coordinate.
The virtue of making this distinction will become clear in the next example, a chemica reactor.

Qo-r

Two possible equilibrium
positions for pendulum

Pivot

FIGURE 31-7

6=0 Equilibrium  positions for  pendulum.
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A CHEMICAL REACTOR

Consider the stirred-tank chemical reactor* of Fig. 3 1.8. The contents of the
reactor are assumed to be perfectly mixed, and the reaction taking place is
A—>B (3112
which occurs a a rate
Ry = kCyue ERT (3L13)

where R4 = moles of A decomposing per hour per cubic foot of reacting mixture

k = reaction velocity constant, hr™!

C, = concentration of A in reacting mixture, moles/ft3

E = activation energy, a constant, Btu/mole

R = universal gas law constant

T = absolute temperature of reacting mixture

The reaction is exothermic; AH Btu of heat are generated for each mole

of A that reacts. Hence, in order to control the reactor, cooling water is supplied
to a cooling coil. The actual reactor temperature is compared with a set point,
and the rate of cooling-water flow adjusted accordingly. To indicate this control
mathematically, we write that Q(T) Btw/hr of heat are removed through the cooling
cail. In Chap. 32 we shdl make a more detailed analysis of the dynamic behavior
of the reactor. For the present preliminary analysis, it is not necessary to look

carefully at Q(T), and hence it is merely assumed that, as T rises, more heat is
removed in the cail.

mole fraction of A in feed stream
mole fraction of B in feed stream

Let X 4

xgo

*This example is based on the work of R. Aris and N. R. Amundson (1958).

Feed: reactant

__ﬂ‘ie“t /

Reaction A—>B

* Product

FIGURE 31-8

Coolin ; . !
watlerg Schematic of exothermic  chemica  reactor.
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Then (1 ~ x4, ~ xp,) isthe fraction of inerts in the feed stream. A mass balance
on A,

(A in feed) = (A in product) — (A reacting) = (A accumulating in reactor)
takes the form

Fpxa, — Fpxy—kpVe “ERTy, = py—2 (31.14)

where F = feed rate, ft3/hr
x4 = mole fraction of A in reactor
p = density of reacting mixture, moles/ft’
V = volume of reacting mixture, ft>

To arrive at Eq. (31.14) we have used Eq. (31.13) and made the following as-
sumptions:

1. The density of the reacting mixture is constant, unaffected by the conversion
of Ato B.

2. The feed and product rates F are equa and constant.
3. Together, 1 and 2 imply that V, the volume of reacting mixture, is constant.
4. Perfect mixing occurs, so that x4 is the same in the reactor and product stream.

-

A similar mass balance may be derived for substance B. However, Eg. (31.12)
shows that one mole of B appears for every mole of A destroyed. Hence
Xp = XBy = XAy — X4 (31.15)

Equation (3 1.15) permits us to circumvent the mass balance for x g, since knowing
x4 We can calculate x 5 directly.

The energy baance on the reactor

(Sensible heat in feed) = (sensible heat in product)

+ (heat generated by reaction) = (heat removed in cooling coil)

= (energy accumulating in reactor)

can be written as

dT
FpCp(Ty - T + ka(AH)e"E/RTxA - Q(T) = pVC

vy (31.16)

where Ty = temperature of feed stream
T = temperature in reactor
C, = specific heat of reacting mixture

In writing Eq. (31.16), it is assumed that

1. The specific heat of the reacting mixture is constant, unaffected by the con-
version of A to B.
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2. The perfect mixing means that the temperatures of the reacting mixture and
product stream are the same.

3. The heat of reaction AH is congtant, independent of temperature and compo-
sition.

We remark here that these assumptions, as well as those made in Eq. (31.14),
may be relaxed without affecting the conceptual aspects of the phase analysis.
They are made only to keep the example as uncluttered as possible, without being
trivial.

Equations (3 1.14) and (3 1.16) may be rearanged to the system

dxA _ F —E

7 = V(xAO - x4) ~ ke /RTxA 17
ﬂ = F—(T - T) + k(AH)e—E/RTx — o) LA
v’ Cr 47 pvC,

As atypica application of this system of equations, we might consider starting
up the reactor, initidly filled with a mixture a composition x 4(0) and temperature
T(O). Suppose the feed rate, feed composition, feed temperature, and flow rate
of cooling water are held constant and the reactor is operated in this manner
until steady state is reached. To describe the transient behavior of the chemical
reactor, one can solve Eqgs . (3 1.17) by integrating them numerically, using a typica
stepwise procedure such as the Euler or Runge-Kutta method. This will result in
functions x 4(t) and T(t) for values of ¢ from zero to some value (if one exists)
at which, for practical purposes, x 4(¢) and T(t) cease to change with .

Alternatively, we may consider a phase-plane analysis of Egs. (31.17) and
seek solutions in the form of x, versus T curves. Note that division of the first
of Egs. (3 I. 17) by the second gives

dxs _ (FIV)(xay = x4) = ke ERT y, -
I EwyT, - 1) + KAH) "(AH )o-ERTy, = 2T) '

" VG,

The parameter ¢ has been eiminated in Eq. (3 1.18), which is smply a differentia
equation relating x4 ad T. As we shal see in Chap. 32, this phase-plane andysis
of the chemicd reactor offers significant advantages over the ordinary andyss.

In the chemical reactor, we no longer have the specia relationship among
the phase variables that we had in both previous cases. For both the spring and
pendulum problems, we more or less atificidly changed a second-order differen-
tial equation to two first-order equations by introducing the phase variable X (or
8). This phase variable was directly related to the other phase variable X (or 6)
by the equation

- dX
X = =
dt
For the chemica reactor, there is no such simple relation between x4 and T.
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We can study the steady-state solutions to Egs. (31.17) without solving
the equations, much as was done in the case of the damped pendulum of the
previous example. As before, we note that steady state requires that x4 and T
smultaneoudy cease to change with time,

dxs _dl _0
dt ~ dt
From Egs. (31.17), thisimplies that
F _
T = xa) = ke T, = 0 9
311
F =T+ KAH) _pr, QT _ (31.19)
1% 0 g Cp As pVCp
where x4, and T are the steady-state values of x 4 and T.
The first of Egs (3 1.19) can be solved for x4 , yidding
1
Fa = Xt TH 0y /e R, (31.20)
Subgtitution of (3 1.20) into the second of Egs. (3 1.19) yields
k(AH)x4/C, _ Q(Ty) , F
eERTs + kVIF — pVC, prils= T (@120

Equation (3 1.21) is implicit in Ts , the steady-state temperature. In physical terms,
it expresses an equality between the heat generated by the reaction and the heat
removed in the cooling coil and product stream. To emphasize this, we have
arranged it so that the left Side is the heat generation and the right side is the hea
removal.

Solution of Eq. (31.21) for T, requires numerical vaues for the various
parameters. Without going into this much detail at present, we may obtain some
qualitative information. To do this, we sketch the right and left sides of this
equation as functions of T,. A typical shape for the left side is given by the
sgmoidal curve of Fig. 319. (See Aris and Amundsen, 1958, p. 121) The unusua
curvature, of course, is caused by the eE/RTs term in the denominator. To plot the
right side, we must know Q(T). While we have avoided specifying the form of
Q(T), we know it increases with T. If there were no control action, i.e,, if the
flow rate of cooling water were maintained constant regardless of T, then Q(T)
would increase dmost linearly with T. This is because a constant water rate, the
heat transfer in the cail is approximately proportional to the difference between
T and the mean temperature of the cooling water. This latter temperature would
not vary so rapidly as T a practicd flow rates. However, since we expect to have
control action, we know that the cooling-water flow rate will be increased with
increasing T. Therefore, Q(T) may be expected to increase faster than linearly
with T, which means that the right side of (31.21) increases faster than linearly.
Several typical curves of thisright side are shown in Fig. 31.9.
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Different possible locations
of heat/{emoval

r N
@/ (b)) fle) Jld)

Heat
generated

FIGURE 319
Steady-state generation and re-
moval functions for exothermic
chemicad  reactor.

Heat generated or removed, Btu/hr

I, —

A solution of Eq. (3 1.21) requires that the graphs of the right and left
sides intersect. As shown in Fig. 31.9 there may be one, two, or three such
intersections, depending on the rddive locdions of the hest generdtion (left Sde)
and heat removal (right side). This means that there may be one, two, or three
possble deady daes for the reector.

As we shall see in Chap. 32, the steady state actually attained by the re-
ador depends on initid  condiions x 4(0) and T(O). The deady-dde temperature
T; is then the tempadure & the patinent intesection, and the deady-dae com:
position can be determined from Eq. (31.20). We shall also see that some of
the deedy daes ae undable In fadt, the low-tempeaaure deedy dae for curve
(c) of Fig. 31.9, occurring as a point of tangency, is to be regarded with suspi-
don. Pradicdly soesking, a peafet tangency woud not ocor. Minor  vaiations
in operating conditions (i.e.,, noise), which occur continually in actual process
operation, may shift the curve (c) dlightly to the left or right, resulting in two or
za0o lowtempardure  intersedions,  repectively.

SUMMARY

In this chepter, we have introduced the concept of a phese andyss and some of its
besc dements We have ssn how phydcd gtudions gve rise ndurdly to phese
lutions Futhemore, we have hed our fird look a true nonliner behavior. In
9 doing, we have come to a leet ore intereting condugon: a nonlinear mation
or control-system response may have more than one steady-state solution. This
was true for the chemical reactor and for the pendulum. In contrast, the linear
motions and control-system responses we studied in the previous chapters had
only one steady-state solution. In the next chapter, we shall discover still more
differences which render nonlinear analysis more difficult than linear analysis.



CHAPTER

32

METHODS OF
PHASE-PLANE
ANALYSS

The advantages of the phase analysis introduced in Chap. 31 can be more fully
appreciated after some acquaintance with the tools available for such andysis. To
give a detailed exposition of all, or even most, of the aspects of this subject is
not intended. Instead, this chapter strives to indicate its flavor and to stimulate
further  study.

PHASE SPACE

In Chapter 3 1, we considered three examples for which the dynamic response can
be described by two state variables. For the cases of the damped oscillator and
the pendulum, the state variables were phase variables in which the dependent
variable and its derivative (X, X or 8, 8) were chosen as the state variables. For
the exothermic chemical reactor, the dstate variables selected were temperature and
composition (T, x »); these variables, which arose naturally in the analysis of the
chemical reactor, were called physical variables in Chap. 28.

In general, an nth-order dynamic system can be described by n state vari-
ables. The dtate variables (x 1, x 2, . . . ,»X,) Can be located in a coordinate system
called phase space. Each value of ¢, say t 1, defines a point in this space: x (¢ 1),
x2(t1), . ,x, (t1). The solution curve is a locus of these points for al values
of ¢. It is called a trajectory and connects successive states of the system. For

484
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the damped oscillator presented in Chap. 31, the coordinate system was a plane
with an axis for each state variable; we shall refer to this coordinate system as

a phase plane. Figure 3 1.5 is atypical phase-plane representation of a dynamic

system. When the physicd system is third-order, the coordinate system consists
of three axes, one for each dtate varisble. Of course, systems of fourth- or higher-
order require treatment in space that is of too many dimensions to be visualized.
The graphic aspects of phase-space representation are advantageous primarily in
the case of two dimensions (the phase plane) and to a limited extent for three
dimensions. The bulk of practical use of phase-space analysis has been made in

the two-dimensiona autonomous (time invariant) case

d

% = filxy,x2)

P (32.)
X

= = falxix)

For this reason, we largely confine our atention in the remainder of this study to
systems that may be written in the form of Egs. (32.1). As we have seen, there
isno loss in conceptual generality, but we cannot expect the graphical aspects
of the material we shall develop to generalize to higher-dimensional phase space.
The solution of the system (32.1) may be presented as a family of trgjectoriesin
the x yx ; plane. If we are given the initial conditions

x1(t0) = Xpp
x2(to) = x20

the initial state of the system is the point (x10,X20) in the x,x 1 plane and the
trajectory may, in principle, be traced from this point.
By dividing the second of Egs. (32.1) by the first, we obtain

ﬂz — f2(X],x2)
dx;  fi(xy,x2)

Now dx,/dx | is merely the sope of a trgectory, since a trgjectory is a plot of x »
versus x; for the system. Hence, at each point in the phase plane (x 1,x2), Eq.
(32.2) yields a unique value for the dope of a trgectory through the point, namely,
falx 1sX2)/f1 (X 1 ,xp). This last statement should be amended to exclude any point
(x1,x2) a which fi(x1,x2) and f2(x,x2) are both zero. These important points
are caled critical points and will be examined in more detail below. Since the
slope of the trgjectory at a point, say (x1,x2), is by Eqg. (32.2) unique, it is
clear that trajectories cannot intersect except at a critical point, where the slope
is  indeterminate.

(322)

THE METHOD OF ISOCLINES

Let us now utilize this information about the trgjectory slope to approximate the
trgjectory. We shal illustrate the technique with an example.
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Example 321. Find the trgectory of the sysem

dx
dr -t
(32.3)
dxy _
ar S5x1=2x2

which passes through the point
x1=1 x3 =0
The dope of any ftrgectory is given hy
dx; _ _5x1+2x2
dx| X2

We sarch for dl points through which the trgectories must have the same dope |If
this dope is cdled S, then

___5x1 +2x3 -5
X2 "

is the equation that must be satisfied by dl points a& which the dope is to be S. This
may be rearanged to

_ T5x;

27 542

which is the equation of aline through the origin in the x,x | plane. Thus, for
example,

X2 = X

isthelocus of al points at which the trajectories have slope 3. Similarly, thex
axis is the locus of points a which the dope of the trgectory is infinite Such lodi,
which in this specid case ae draight lines ae caled isoclines. Severd isoclines,
with the dopes indicated, are plotted on Fg. 32.1.

To sketch the desired trgjectory, we firsd note that it darts a the point (1 ,0).
At this point, according to Egs. (32.3),

dx,
dt

dxy _ _
dt

Hence, the traectory dats out veticdly downward. Between the isoclines S =
and S = 10, the slope of the trajectory must vary between infinity and 10. The
points on the S = 10 isocline, which would be reached if the trajectory had a
condant dope of infinity or 10, are labded a and b, respectively, in Fig. 321 The
atud point & which the trgectory reaches the S = 10 isodline is taken as midway
between a and b, which is eguivdent to an averaging of the dopes. The congruction
is continued in this manner, and the trgectory skeiched so as to comnect the indi-
caed points and to have the correct dope as it passes through each isocline The short
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t0  S=-4
0
3 / / sz
/
& ] N o5
I |h S=-12
S=—c0 . , A : - §=00
-10 —05 X k
A
- 6’~10
3
1
S==4 -1 0
S=-2
FIGURE 32-1

Isocline condruction of phase plane for Egs (32.3).

dashed marks between isoclines, indicating the correct slope, are also helpful in
sdisfying this latter  condition.

Ancther trgectory, dating from the point (06, 0), is fown on FHg. 321
This saves to emphesze that, once the isodines have been located, interpdlaion
is possible on the phase plane, and many trajectories representing various initial
condiions ae eddly vigdizad o ketched.

There are other graphical techniques for construction of phase portraits.
These are discussed in, for example, Thaler and Pastel (1962). The method of
isoclines is usualy suitable when the isocline equation

falxy, x2) _ S
fi(x1, x2)

is not ovaly complicsied ad whae a good ovadl knowledge of the phase plane
is required. In pradice for more complex sydems such as the chemicd resctor
of Chep. 3 1, the phae plae is often dotaned by use of a computer.

Analyss of Critical Points

In the situations of most interest to us, Eq. (32.2) will represent the behavior of
a (nonlinear) contrd system, as in Eq. (3 118). Theefore we sl be interested
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in maintaining the system at or near a steady state. Since, from Eq. (32.1), a
Steady-state point is defined by

filxy, x2) = falxy, x2) = 0

it is clear that the steady states are critical points. At the critical points, the Slope of
the trgjectory is undefined; hence, many trgectories may intersect a these points.
In Fig. 32.1 the origin is a critical point. It can be seen from the isoclines that,

in this case, al trgjectories spiral into the origin. Hence, this particular system
is such that, no matter what the initial state (i.e., for any disturbance which is
applied), the system returns to steady state at the critica point.

The critical point of Fig. 32.1 is called a focus, because the trajectories
spiral into it. This spiral motion of the trajectories corresponds to the oscillatory
approach of the system to steady state. The oscillatory motion occurs because the
system of Egs (323) is underdamped, as indicated by the characteristic equation

|s1 —Al=0
or
sl o245 =0
5 s+2
When put into standard form, -this characteristic equation has parameters
T = —-1— .§ = 1

J5

Since ¢ < 1, the system is underdamped.
An overdamped system, such as that generated by the system

4%

=X
dr =2
dx
d_t2 = =5x; = 6x;
having characteristic  equation
s2+6s+5=0
so that
1 3
T = — { = —_—
J5 J5

has a critical point such as that of Fig. 32.2a4. Here the trgjectories enter the criti-

cal point directly, without oscillation. This type of critical point is called a node.
For comparison, atypical focusis sketched in Fig. 32.2b, In fact, other types of
behavior may be exhibited by critica points of a second-order system, depending
on the nature of the roots of the characteristic equation. These are summarized
for linear systems in Table 321 and sketched in Fig. 32.2. The digtinction between



METHODS OF PHASE-PLANE ANALYsls 489

\ (a) (b)

(d) (c)

1) {
TN

FIGURE 32-2
Second-order critical points: (8) stable node, (b) stable focus, (c) unstable focus, (d) unstable node,
(6) saddle point.

stable and unstable nodes or foci is made to indicate that the trajectories move
toward the stable type of critical point and away from the unstable point. The
sdde pont aises when the roots of the chaadeidic eguation ae red and have
opposite sign. In this case there are only two trgjectories that enter the critical
point, and dter entering, the trgeciories may leave the aiticd point (permanantly)

TABLE 321 L

Classification of critical points

Type of Characterigtic Pertinent Nature of  Sign of

critical  point equation values of ¢ roots roots

Stable node P22+ 2Ars+1=0 {>1 PRd Both =

Stable focus w2st+ Yrg+1=0 o<e<1 Complex Red parts both =
Unsable focus 252+ 2Zrs+1=0 —-1<{¢<0  Complex Red parts hoth +
Unstable node  72s*+ 275 +1=0 {<-1 PRd Both +

Saddle point 2524+ 24rs =1=0 All Red One +, one ~
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on either of two other trgectories. No other trgjectory can enter the critical point,
dthough some approach it very closely.

This categorization of critical points according to the particular linear system
is often of value in the analysis of nonlinear systems. The reason for thisis that,
in a sufficiently small vicinity of a critical point, a nonlinear system behaves
approximately linearly. Thus, the system of Eq. (31.10) for the pendulum is
nonlinear. It has two physically distinguishable steady states, corresponding to
the pendulum pointing up or down. The nonlinear term sin § may be linearized
around each steady state. Near the steady state at § = 0,

sinf = 0
and near the steady state at @ = 7, a Taylor series yields
sinf = —( ~ m)

Therefore, near 8 = 0, Egs. (31.10) are closely approximated by the linear
equations
do
dt
do
dt

=6
(324)
= —w2§ - Db

and near 0 = 7, by
dx

a

dx

— 2

at ¢
where x = 6 — 77, These linearized versions of Egs. (3 1.10) can be easily solved

to determine the nature of the linear approximations to the critical points. Thus,
the characteristic equation for Egs. (324) is

52+ DS + w?

(32.5)

x = Dx

0 (32.6)
while that for Egs. (32.5) is
s2+DS—w2 =0 (32.7)

As shown in Table 32.1, Eq. (32.6) yields a stable critical point, which
may be a node or focus depending on the degree of damping. (Note that, as the
damping is increased, the behavior changes from focus to node, or from oscillatory
to nonoscillatory.) On the other hand, Eq. (32.7) indicates a saddle point for the
motion near 6 = 7,

These conclusions apply drictly only to the linearized phase equations, EGs.
(324) and (32.5). To compare them with the behavior of the true system of Egs.
(3 1. 10), the actual phase diagram is sketched for a lightly damped case in Fig.
32.3. For simplicity, this diagram is extended beyond the range 0 < 8 = 27
even though this is the only region of physical significance. Actualy, the section
for 0 < 6 = 27 should be cut out and rolled into a cylinder so that the lines
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corresponding to 6 = 0 and @ = 27 coincide. This phase cylinder would more re-
didtically represent the motion of the pendulum. As seen from Fig. 323, the point
a 0 = mis, indeed, a saddle point and the point @ = 0 (or 27) is a stable focus.
If the sysem were more heavily damped, this latter point would be a dable node.

A greater understanding of the saddle point may now be obtained by ana
lyzing the & = 7 point in terms of what we know to be the physical behavior of
the pendulum at this point. That is, the point may be approached from either of
two directions. When the pendulum is at the point, an infinitessimal disturbance
will cause it to fall in either of two directions. Other trgjectories narrowly miss
this point, indicating that just the right initial velocity must be imparted to the
pendulum at a given initial point to cause it to stop in the @ = 7 position.

In summary, it can be concluded that in this case the linearized equations
give vauable, accurate information about the behavior of the nonlinear system in
the vicinity of the critical points. Because the linearized equations are more easily
solved, it is adways desrable to be able to relate the behavior of the actua system
to the behavior of the linearized solutions in the vicinity of the operating point.
In fact, in our previous work on control systems, we have assumed for nonlinear
systems that design of a stable control system based on the linearized equations
was adequate to ensure stable operation of the actual system. The basis for this
assumption is given by the following theorem of Liapunov (see Letov, 1961).

Let the nonlinear equations of a motion be linearized by expansion in devi-
aion variables around a particular critical point. If the linearized solution for the
deviation variables is stable, the actua motion will be stable in some vicinity of
the critical point. If the. linearized solution is neutrally stable (i.e., its character-
istic equation has roots on the imaginary axis), no statement can be made about
the actual motion. If the linearized solution is unstable, then the actual motion
will be unstable.

It is necessary to define what is meant by stability and instability of the
actual nonlinear motion in the vicinity of the critical point. Although stability in
nonlinear systems is a complex subject, for our purposes it will suffice to state
that a stable nonlinear motion in the vicinity of a critica point is one for which all
phase-plane trgectories in this vicinity travel toward and end a the critica point.
An unstable motion is one for which trgectories move away from the critica point.
This would mean that, while theoretically the state of the system may remain at
the critical point indefinitely, any dight disturbance causes the unstable system

~

FIGURE 32-3
Phase portrait of lightly damped pendulum.
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to move away from the criticd point. These conclusions agree with our physicd
understanding of the pendulum motion, since the steady condition at 6 = 7 is
easly  destroyed.

It is because of Ligpunov's theorem that linear control theory is so successful
in control system design. One redly hopes to control the system so that it remains
permanently in the vicinity of a particular point (i.e., a steady state). However,
when serious upsets occur in an automatically controlled plant, moving it far from
steady dtate, it is often necessary to return the plant to manua control until condi-
tions are again close to steady state. This is because the controllers are designed
for satisfactory operation in the linear range only. One of the great drawbacks of
linear control theory is the fact that gtability of the linearized equations guarantees
stability of the nonlinear system only in some vicinity of the particular critical
point. No information about the size of this vicinity or about the behavior outside
this vicinity is obtained. If the linear vicinity is extremely small, then unknown
to the designer who has used linear methods, almost any plant disturbance of
practical size may result in control system failure. An example of this behavior
will be given later.

Limit Cycles

The first magjor difference between linear and nonlinear motions is the possible
existence of more than one critical point in the latter type. The second is the
posshle existence of limit cycles.

A limit cycle is defined as a periodic oscillation whose amplitude and fre-
quency depend only on the properties of the system and not on the initia state
of the system (provided the initial state lies in a certain non-trivial region of the
phase space). In the phase plane, stable limit cycles are recognized as closed
curves which are approached asymptotically by al nearby trgectories. Unstable
limit cycles are closed curves from which all nearby trajectories diverge. An ex-
ample of a stable limit cycle is the “steady-state” behavior of a home heating
system when controlled by a thermostat. A periodic oscillation in house temper-
ature is always reached, and the amplitude and frequency of the oscillation are
independent of the temperature that existed in the house at the time that the fur-
nace was started. Unstable limit cycles can never be realized physicaly for any
system by definition. However, as will be seen later, they divide the phase plane
into regions of totally different dynamic behavior and hence are of considerable
importance.

It is important to distinguish between limit cycles and other closed curves
which may occur. The linear system

2d%x -
T -;17 +x =0
has phase-space  solution

x+ tHx)? = C? (32.8)
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where ¥ = dxldt and the constant C depends on initial conditions. Equation
(32.8) defines afamily of concentric ellipses in the phase plane. However, these
are not limit cycles, because the closed curve which is followed by the system
depends on the initial state of the system through the constant C. In the next
section, we shal study some limit cycles occurring in typica control systems.

OTHER ASPECTS. We have presented only those aspects of phase-plane anaysis
that will be of use in the examples to follow. This can be considered only as a brief
introduction to the subject, and the interested reader is referred to the references
dready cited for more information. Among the important subjects that have been
omitted are graphica methods for determination of time along a trgectory, various
aspects of phase-plane topology, and the mathematical aspects of stahility.

EXAMPLES OF PHASE-PLANE ANALYSIS

In this section, we shall consider two different examples of the use of the phase
plane to analyze nonlinear control systems. The first is a simple on-off control
system for a dtirred-tank heater. The second is the chemical reactor of Chap. 3 1.
In both cases, the systems am second-order and autonomous, o that they ate idesl
dtuations for use of the phase plane.

On-Off Control of Stirred-tank Heater

The use of on-off control offers significant economic advantages over proportiond
control or other more sophisticated modes of control. The control mechanism is
simply a relay that turns on or off depending on the value of the measured variable.
The disadvantage is usually that the quality of control isinferior to that realized
with proportional  control.

Consider the stirred-tank heater of Fig. 32.4. Water is being heated to a
controlled temperature by mixing with steam. It is assumed for the analysis that
the cold-water input rate is constant. Heated water overflows into an outlet pipe
at the top of the tank, so that no accumulation of mass occurs in the tank. Most
of the steam is added, at a fixed flow rate, from the main steam supply. However,
this amount of steam is set at a value somewhat less than the amount required
to heat the cold water to the desired temperature. An additional amount of steam
may be added whenever the solenoid vave is opened. When this additiond steam
is admitted, the sum of the two steam inputs is enough to heat the water to
a temperature somewhat in excess of the desired temperature. A temperature-
measuring device such as a thermocouple or vapor-pressure bulb transmits the tank
temperature to the relay. When this temperature is below the set point, the relay
closes, which opens the solenoid valve, thus admitting more steam. Eventually,
the additional steam will result in the temperature exceeding the set point, the
relay will open, the vave will close cutting off the additiona steam, and the
temperature will fall again.
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Main steam

supply [Temperature ~ sensing
] lSet point
Relay
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~— Voltage
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Cold | Control
water—l- stgéﬁ
FIGURE 32-4

On-off control of dirred-tank heater.

It is apparent that an oscillating control will be achieved. In fact, from the
discusson in the previous section, we recognize that a limit cycle will occur. We
consider now a numericadl example of this type of control system.

Water at 40°F, at a rate of 100 Ib/min, is to be heated to 150°F The main
steam supply is to be set so that it will heat this much water to 125°F, while
additional steam, through the controlled solenoid valve, is available to heat the
water another 50°F. This means that the steady-state temperatures with the solenoid
closed and open, 125 to 175°F, are equaly spaced about the set point. Heat losses
to the surroundings are negligible. The volume of the tank is 1.6 ft>. The relay
control system has a vapor-pressure bulb for measurement of temperature. This
measuring system has a time constant of 30 sec. The solencid vave is very rapid
in  response.

We first analyze this system considering the relay to behave ideally. This
means that it opens precisely at the instant the temperature exceeds the set point
and closes similarly. Later, we shall correct this to conform more closely to the
behavior of actud relays.

If the tank is perfectly stirred, it is a first-order system with a time constant
of

_pV _ (62)(1.6)

= 1.0 min
@ loo

and its transfer function relating changes in the steam input rate to temperature is

10
G0 = 53T
where 10 (°F) (min)/(Ib) is the change in steady-state temperature per unit change
in steady-state steam flow. The necessary fixed and controlled steam rates are
(using 1,000 Btu/Ib for latent heat)



METHODS OF PHASE-PLANE ANALYSIs 495

_ (125 = 40)(100) _

Qfixed = 1,000 = 8§ 5 Ib/min
(175 = 125)(100) .
Qcontrolled = 1, 000 = 5 0 Ib/min

The amount of steam that would be necessary to maintain the water at a steady-
state temperature of 150°F is
_ (150 - 40)(100)
¢ 1,000

Hence, in terms of deviation variables, the controller output may be taken as *+2.5
Ib/min of steam.

A block diagram may now be constructed for this sysem, as shown in Fig.
325. This diagran uses deviations from 150°F as temperature variables, so the set
point is taken as zero. The action of the relay is symbolized by the input-output
relations, indicating that +2.5 1b/min of steam are admitted when the error is
positive and -2.5 Ib/min when the error is negative, again in deviation variables.
The transduction from the vapor-pressure bulb to a temperature reading is included
implicitly in Fig. 32.5 in the comparator. The comparator is physically a device
that balances the pressure generated by the bulb against a mechanical tension
caused by positioning the set point. It need not be explicitly shown because its
dynamics are very fad.

It is convenient to use a dimensionless version of Fig. 32.5. This is provided
in Fig. 32.6, where the changes

= 11.0 1b/min

M = ﬂ
2.5
€
!
€ = —
25
c'=5
25
o2
25
have been made.
Ot e e DA g
X o 5] s+1 i
B
!
FIGURE 32-5
054+ Block diagram for system of Fig. 324.
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—— ’ .
0 o €= M=M/25] 1 C'=g/25
XL 6/25| g €7 s+l T
FIGURE 32-6
B’=B/25 051+1 Dimensionless  block ~ diagram
- 8 for sysem of Fig. 324.

The usual methods of linear control theory are not applicable to the block di-

agram of Fig. 32.6 The relay does not obey the principle of superposition in
its input-output relation. It is necessary to revert to the differential equations
describing the control loop. These are

ac’
M=—+C' :
T (32.9)
1dB’
e 227 4+ g
c T B “ (32.10)
e = —-B' (3211
In addition we have
M' = { L e>0 (32.12)
-1 € <0
Combination of Egs. (32.9) to (32.12) yields
1d%'  3de’  , [ >0
Y+ —+€ = € )
2412 2dt { 1 e <0 (3213
Equation (32.13) can be rewritten in phase notation as
de’
da €
dé' [-Ge+2c+2)  €>0 (3214)
dt - +2' -2 €'<0

Equation (32.14) breaks up into two regions, the region for which e’ > 0 will be
refered to as R, and that far which €" < 0 as L. The aiticd point for R ocours a

e€=-1 €&=0
and thet for L &

e€=1 ¢=o0
Note that each critical point is outside the region to which it pertains. In region
R, the isocline equation is

2 42"+ 3¢
—
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or
g A"+ 1)
. Sp+3
The corresponding isocline equation in L is
. —Ae'—1)
h Sy +3

Theisoclines in R, which is the right half of the é e’

(32.15)

(32.16)

plane, radiate from the R

critical point (= 1,0) and have dopes = 2/(Sg + 3). The isoclines in L radiate from

the critica point (1

,0) and have dopes —2/(S; + 3). These isoclines are indicated

in Fig. 32.7. Note that, in this figure, the ¢’ scale has been expanded by a factor

of. 10 to magnify the behavior near the origin.

A typical trajectory has been constructed, using the method of isoclines.
When the tragjectory crosses from one region to the other on the € ' axis, the
applicable isoclines also change. It can be seen from Fig. 32.7 that the trgectory

approaches the origin-,

Since the trajectories must be verticd as they cross the €'

axis, the fina state isalimit cycle of zero amplitude and infinite frequency about
the origin. In other words, the relay aternately opens and closes at very high

frequency, a condition known as chattering.

0.6
Solenoid valve Té ' Solenoid valve
closed open
S=3 04
N\ s=-11
§=9 402
\ s=—21
A e
-008 -0.06 Koo4 —-0.02 \ \\ /o.oz 0.04 0.06 0.08
s=-21 \/ / 5=9
; _{'2 S=5
s=-11
-04
}-06
FIGURE 32-7

Phase-plane trgjectory for on-off control of sysem of Fig. 324
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Physically, this condition will never be realized because the dynamics of
the solenoid valve and the-relay itself would become important. Instead, the fina
condition will be a limit cycle of high, rather than infinite, frequency and low,
rather than zero, amplitude.

However, the basic idealization which has led us to this suspect conclusion
is in the behavior of the relay. True relays have input-output characteristics more
similar to that shown in Fig. 32.8. There is a dead band around the set point,
of width 2¢;, over which the relay is insensitive to changes in the error signal.
Anyone who has made fine adjustments in the setting of a home thermostat has
observed this  behavior.

Consider as an example the case for ¢; = 0.01. The effect of this dead
zone is to change the dividing line between R and L to that shown in Fig. 32.9.
The new dividing line has the equation:

¢ = 0.01 €>0

-0.01 €'<0
Now, as shown in Fig. 329, al trgectories gpproach a limit cycle, for which the
error amplitude is approximately 0.03, The frequency is finite and is obtained by
computing the time around the limit cycle. Although we have not presented here

the graphical methods for determining this time, it can always be calculated by
noting from the first of Egs. (32.14) that

!

t = Jdt = J de (32.17)
€

Thus, time around the limit cycle can be computed by graphica evauation of the

integral in Eq. (32.17). The only difficulty is near the € ' axis, where € ' goes to
zero. To circumvent this, we may use the second of Egs. (32.14)

t__J dé’
B 3¢ +2' £ 2

IT Output

—>—1

A

—€ €

=1

FIGURE 32-8
Characterigtics of true relay with dead zone.
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FIGURE 32-9
Phase plane for system of Fig. 324 using relay with characteristics of Fig. 32.8.

over a smal segment of the trajectory as it crosses the e ' axis. The result of this
graphical calculation is @ = 9.2 rad/min.

The frequency thus computed for the error signal is, for obvious physical
reasons, the same as the frequency of the controlled signal, C . However, the
amplitude of C ‘, which is of more direct interest, is not the same as the amplitude
of €'. It may be found in this case by noting from Egs. (32.10) and (32.11) that

C! = _%f.l - 6'
It is therefore clear from Fig. 32.9 that C' attains a maximum value near the
switching  points  where
C' = +0.17

Reverting to the origina variables, it follows that the water temperature will
oscillate with an amplitude of

(0.17)(25) = 4.25°F

The effect of a small dead zone, 2¢q = 2(.01)(25) = 0.5°F is thus quite signifi-
cant.

In practice, the width of this dead zone is usualy an adjustable design pa
rameter. This width is adways chosen as a compromise. The wider it is made the
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lower will be the limit-cycle frequency, thus saving excessve switching or chatter.
However, the limit-cycle amplitude increases with dead-zone width, decreasing
the quaity of control.

The Exothermic Chemical Reactor

We now wish to consider the phase-plane behavior of the chemical reactor of
Chap. 31. This study is based on the paper by Aris and Amundson (1958). For
convenience, the dynamic equations are reproduced here:

dxA

F .
W = V(xAO - XA) —ke E/RTJCA
dT _F k(AH)e ®RT  Q(T)
—_— = - ~T - 3117
a -y Dt T " "y, @)
Defining the dimensionless variables
T = E—E y = x_A 0 = CPT 0 :ﬁ —CPTO
v X4 XaAH) 07 xu(AH)
these equations  become
dy _
zi—; =1 y r(y' 0)
do
I =6y~ 0+ r(y, 6) —q(® (32.19)

where r(y, §) = kvye[—ECp/Ron(AH)B]

__0oMm
10 = Foxsg(AH)

As a control heat-removal function g(#), Aris and Amundson chose the form
q(0) = U0 = 0)[1 + K0 — 8;)] (32.20)

where 6, is the dimensionless mean temperature of water in the cooling coil. This
indicates that the heat removal is always proportional to the difference between
the reactor temperaiure and mean cooling-water temperature. In addition, the term
in brackets indicates that proportional control on the cooling-water flow rate is
present. The flow rate is increased by an amount proportional to the difference
between the actual reactor temperature 8 and the desired steady-state tempera-
ture 8,. Thisincrease in cooling-water flow rate is assumed for convenience to
cause an approximately proportional increase in heat removal. The constant U is
adimensionless analog of Up A, the overall heat-transfer rate.
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As a specific numericdl example, Aris and Amundson selected the following
values for congtants.

’_‘K — ,25
= =
EC, = 50
RXAO(AH)
6, = 2
00 = 60 = 1.75
U=1
Under these conditions, Egs. (32.19) become
Q =1=y- ye50(1/2—1/0)
3; (32.20)
So=L75 -0+ ye T — (0 - LIS)L + Ke(® - 2)]
It can be seen that there is a critical point of Egs. (32.21) at
y=13=Y
6=2=86

and this is the location at which control is desired. This point has the correct
steady-state temperature and a 50 percent conversion of reactant. In addition,
there may be two more critical points of Eq. (32.21) depending on the proportional
control constant K,, as will be discussed below.

Since we are primarily interested in control about 6, we make use of Li-
apunov’s theorem on local stability, presented earlier. Linearizing Eq. (32.21) in
deviation variables 8 - 8, and y — y, by using Taylor's series yields

d(y -
2073 = a5 -y - 62560 - 0,
d - 8,)
dr
where y; = 3. Aswe have seen before, the solution to this linear system is

=@y-y+

4.25 — 545)(0 ~05) (32.22)

y — }’s - cleslt + czeszt

6 — 0; = c3e’t’ + cue?
where, in this case, s; and s, are the roots of [see Eq. (31.6) and the steps
following this  equation]

2 Rem 2+ 2Ke 0 (32.23)
4 4

According to the Routh criteria, al coefficients in this characteriic equation must
be positive in order that the real parts of the roots s and s3 be negative. Hence,
we can see immediately from Eq. (32.23) that, in order to achieve a stable node
or focus, it is necessary that K> 9.
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However, Aris and Amundson obtained the phase plane for (among other
vlues) a vaue of K. dightly greater than 9. This was accomplished by numerica
solution of Egs. (32.21). It was found that, in the vicinity of the steady-state point,
the situation is as depicted in Fig. 32.10. There are two limit cycles surrounding
the stable focus critical point. The inner limit cycle is unstable, and the outer
limit cycle is stable, according to the definitions given ealier. 1t may be seen that
any disturbance (or initia condition) which moves the system no further from
the critical point than the unstable limit cycle can be controlled. That is, the
control system will eventually bring the system back to steady state. However,
once the system is forced outside this limit cycle, it will eventually spiral out
to the stable limit cycle. Control cannot be restored, and the reactor temperature
and concentration oscillate continuously. This example illustrates very well the
limitations of linear control theory. All that the linear investigation could reved is
that, for K.> 9, the system will be stable in some vicinity of the control point.
The phase-plane analysis shows that, for K, slightly greater than 9, this vicinity
is ingde the unstable limit cycle of Fig. 32.10. If K, is increased further, the two
limit cycles disappear and good control can be achieved. This example points out
the importance of unstable limit cycles. Although a physical system can never
follow an unstable limit cycle, the limit cycle divides the phase plane into distinct
dynamic regions for the physicd system.

Other values of K. were analyzed by Aris and Amundson. For low values
of K, there are two other critical points besides the control point. For example,
for K. = 0.8, there are critical points at

y = 0.95 0 =177
and

y = 0.15 g =215
Linear andysis shows tha both these are dtable, but for K, < 9, the control point
(y = 0.5, 8 = 2) is not. Phase-plane analysis shows that, if the reactor is started
at high temperatures, it will come to steady state at the high-temperature critica
point and vice versa Starting the reactor at the desired control point will be of no

FIGURE 32-10
| Stable and unstable limit cycles in exothermic chem
12 6 —> ical reactor.
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FIGURE 32-11
Phase-plane portrait of the con-
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trol of a chemical reactor (limit
cycle  forms).

aval, as it will leave and go to one of the ather Steedy-date points depending on
the direction of the initial disturbance. For high values of K, there is only one
critical point, which is at the control point. Phase-plane analysis shows that K .
must exceed approximately 30 before rapid return to steady state at the desired
conral  poirt, folowing dl dgubences is achieved Some pheseplane portrats
for this system that were obtained by means of a computer are shown in Figs.

3211 to 3213
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FIGURE 32-12
Phase-plane portrait of the con-
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trol of a chemical reactor (no
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FIGURE 32-13
0 \ Phase-plane of the control of a
1.75 2.0 2.25 chemicd reactor (no limit cycle
0 forms).

This discussion is only arather brief introduction to the extensive work by
Aris and Amundson. The reader is strongly urged to consult the origina paper
for a more comprehensive treatment of the problem.

SUMMARY

We have seen that phase-plane analysis can be used for two typical nonlinear
control problems. The results of this andysis give extensive information about the
control  system behavior. The responses to various disturbances can be visuaized
by sketching only a few trgectories.

On the other hand, the method is effectively limited to second-order systems.
Furthermore, andlysis is considerably more laborious than the linear anadysis, and
a decision regarding the value of the additional information must be made.

PROBLEMS

32.1. For the system shown in Fig. P32.1, obtain equations for plotting the isoclines in
the e versus ¢ phase plane. Plot a few isoclines and sketch carefully the trgjectory
from the initid point e = 2 and ¢ = 0.

| 1 e (s+1)? >C
_ C4-1

FIGURE P32-1
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FIGURE P32-2

32.2. For the system shown in Fig. P32.2, plot isoclines for § = 0, 1, -3, and « on the
phase plane having coordinates e,é.Use 7 =1, { = 1/2, K= 1, b=025. L&
R = 0. Sketch the trgectory startinga e=1, é = 0.
32.3. Condder the phase-plane equations
X1 = X2
Xy = —x1 + Tlﬁx2 - x% - %Qx%
(8 Determine the type of critical point a x (= =1, x2 = 0.
(b) If there ate any other critical points, find them.
32.4. The system shown in Fig. P32.4 is to be controlled by an i&d on-off rlay.

(@ From the block diagram, write the differentid equations for phase-plane de-
scription of the physica system in the form:

X1 = fin(xq,x2)
i3 = ftn(xq,x2)

where x; = cand x3 = ¢.

(b) Plot on the phase plane (x 1,x7) afew isoclines. Include isoclines for S = 0,
1, o, Show clearly the switching line where the forcing changes from one sign
to the other.

(c) Make a rough sketch of the trajectory that sarts at x ;= 2, x; = 0 and extend
it only to the switching line.

(d) Cdculate accurately the vaues of x jand x 3 for the trgjectory of part (c) for
t=0 051,15 ad 2

(e) Determine the vaues of x j and x4 where the first switch occurs.

[
+
=Y
ta

FIGURE P32-4

32.5. Cdculate the period of the limit cycle in Fig. 32.9.
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33

THEDESCRI Bl NG
FUNCTI ON
TECHNI QUE

In Chap. 32, an on-off temperature-control system was studied in the phase plane.
This work led to information about the limit cycle of the system as well as about
the manner in which trgectories approached the limit cycle. Very often, this
latter information about the transient approach to the limit cycle is unnecessary.
Of primary interest to the designer are the amplitude and frequency of the limit
cycle. The describing function method facilitates rapid, accurate estimates of these
quantities without construction of the phase plane.

In this chapter we shal study application of the describing function method
to the analysis of the on-off controller for the temperature bath of Chap. 32. The
treatment will be introductory only and largely confined to a single example. The
purpose is to indicate the existence of the method and to show how it complements
the phase-plane technique. The reader desirous of a more extensive treatment is
referred to the text by Graham and McRuer (1961).

HARMONIC ANALYSIS

Consider the block diagram for the on-off control of the stirred-tank heater of
Chap. 32, shown in dimensionless form in Fig. 33.1. In the following analysis,

we omit the primes from the variables of Fig. 33.1. Our objective is to find
the amplitude and frequency of the limit cycle that occurs in the control loop.
The describing function method assumes that the error signal, in the limit cycle
condition, is sinusoidal:

€ = Asinot (33.2)

506
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o[ THoor | M| 1 _
SPR AN st1| [ ¢’

FIGURE 33-1
Block diagram for control of sirred-tank hester
using relay with dead zone.

1,
05541

A dance & FHg 39 dows that the eror dgd is not edudly Snusoidd, dnce a
snuoidd 9gd gopears & an dlipe in the phese plane However, the diffarence
between the actua limit cycle and an ellipse is not great, particularly if only the
anplitude and frequecy ae o interet

If the eror dgnd is Shusoidd, the rday output M can be daived from Hg
33.2, where it can be seen from the input-output relations that M(t) is a square
wave that lags e(t) by atime (1/w)sin~!(e¢/A). The time lag is due to the dead
zone in the rday. Thus

1 27
M) = S(f - ;sm ! Z,; (33.2)
where
! 0o<t< PR
S(t,P) l: -1 P2 <t<P (33.3)
S+ P,P) dl ¢

is the undelayed unit square wave of period P shown in Fig. 33.3.

1M4 - M+ a—l_,sin-l(%)
T
- -r
=€p €o — ‘7\ L_M <_t_ !/ «“
€ | -
‘_1 I vi|\—7r/w+% sin I(Til)
N N { |
! ]
rf! i : 1
R | | !
: I l | ! I
] h N . | I:
If €=4 sin wt I by
1t | |
|
| o~ h
| e : i
} : €=Asin wt=¢, 11
Y |
| T ———
—~€=Asin wt == € \
FIGURE 33-2

Result of application of sinusoidal error signa to relay with dead zone.
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TS(t.p)

-P/2 P/2

FIGURE 33-3
I The unit square wave S(t, P).

Asiswell known from Fourier series analysis, (see Churchill and Brown,
1986), S(z, 27/w) may be expanded in a series of sine waves to give

2 4.
S(t,—w) = ~(smwt + Lsin3wr + lsinSwr + ) (33.4)
(0] m

Hence, by Eqg. (33.2)

M() = %[;in (ut - sin~! %0) +%sin<3wt ~ 3sin~! %0)

(33.5)

+%sin(5wt —55in_1'£2)+ 1

According to Eq. (33.5), M(t) contains a fundamental and odd harmonics.

Let us consder what happens to these components of M as they pass around the

control loop. Assuming that @ is sufficiently large, the harmonics are much more

heavily atenuated by the two first-order elements than is the fundamental, because

the harmonic frequencies are higher. For example, if w is 9 rad/min, the relaive

attenuation of the fundamenta and third harmonic between M and B is expressed
by the quotient

1
J1+ QN2 J1+ 722
1
J1+ (92 /1 + (9/2)2

Since the initial amplitude of the third harmonic in Mt ) is one-third of the
fundamental, it is clear that the amplitude of the third harmonic will be less than
4 percent of the amplitude of the fundamenta in B(t). The amplitudes of the
higher harmonics will be even less. To al intents and purposes, B(t) is snusoidd

and, hence, so is eft). Furthermore, the presence of harmonics in Mt) may be
ignored, and the approximation

0.11
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M(t) = £ sn (wt - sin- %0 (33.6)

is acceptable because the higher harmonics are filtered out by the rest of the loop.
In order for alimit cycle to be maintained, it is necessary that

B(f) = -et) = —Asinwt (33.7)

However, if M(1) is given by Eq. (33.6), B(t) can be calculated by frequency
response. The AR between M and B is

A

B 1
—|= 33.8
|M‘ J1+ (@)2 /1 + (/2)? 33.8)

and the phase difference between B and M is
4B = AM = - tan"lo ~ tan-' = (339)

2

According to Eg. (33.7), the overall amplitude ratio between B and € must be
unity and the overall. phase lag 180°. Also, according to Eqg. (33.6), the AR
between € and M is 4/mA and the phase lag is sin~'(0.01/4). Combining these
facts results in

4 |
=1
2 2
m(t) (;/11 + (@) /1 + (012) (33.10)
i 1o -l a1 = —180°
sin A tan ‘w — tan 3

Equations (33.10) are a system of two equations in the unknowns A and @ . Trial-
and-error  solution  yields

A = 0.03
® = 9 rad/min

in excellent agreement with the results of the phase-plane method presented in
Chap. 32. The reason for the accuracy of these results is the high attenuation of
harmonics provided by the linear elements in the loop. The labor saving of this
method over the phase-plane method is apparent.

Of more direct interest is the amplitude of the signal C in the limit cycle.
This may now be estimated by frequency response to be

|C|= \/1 + ($0.03) = 0.14

The true result derived by the phase-plane method is 0.17, so that an error of
18 percent is attributed to the neglect of harmonics in C. The reason for the de-
creased accuracy in the amplitude of C over that in the amplitude of € is that
only one of the linear elements has acted on the squarewave output of the relay
before it reaches C. Hence, the harmonics are not fully attenuated in C and the
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signa C will be less sinusoidal than €. However, for engineering purposes the
gror in C is probably not excessive. -

THE DESCRIBING FUNCTION

Because the basic technique of harmonic analysis often yields accurate results
with modest effort, it is profitable to systematize the procedure. To do this, a
describing function is defined for the nonlinear loop element. This function as-
sumes a sinusoidal input to the nonlinearity and gives the AR and phase lag of
the fundamental in the output. Thus, for the relay considered in the last section,
the describing function is defined by
4 . —1 €0

N A X — sin 1

where N is used as the symbol for the describing function.
In genera, the loop diagram for arelay control system appears as in Fig.

33.4. As shown previoudly, the necessary condition for a limit cycle, ignoring
harmonics, is

|N”GPH| =1
AN + %G,H = —180°

Asin the case of the relay, the magnitude and angle of N in genera depend on
the amplitude A of the input to N. The magnitude and angle of G,H depend on
w. Equations (33.11) can be rewritten

1
|GpH @) = T (33.12)
4G,H(w) = —180° - &N(A)

Equations (33.12) can be solved graphically on a gain-phase plot. Thisis a plot
of the log of AR versus phase, as shown in Fig. 33.5 for the case treated in

the previous section. The linear elements are plotted as |G ,H| versus AGH,
with  plotted as a parameter on the curve. The relay is plotted as 1/| N(A) |

versus —180° -~ &N(A), with A plotted as a parameter on the curve. Accord-
ing to Egs. (33.12), a limit cycle occurs at the intersection of the two curves,
where the amplitude and frequency can be read from the parametric labeling of
Aand w.

(33.11)

QL N M a6 >C
B iGURE 33-4—

Typica control loop containing nonlinear element.



THE DESCRIBING FUNCTION TECHNIQUE 911

: 1 03

05
05
2
N2 3
1 0.2 / GpH{w)
TN(A) ™
0.1
A
0.05

i} o.ols
'S Limit cycle at —
A=003,w=9 1of\*
002
001 J
1 ~~o01
0.005 5
S0 =240 80~ 17 =60 )
Phase
FIGURE 33-5

Gain-phase plot for system of Fig. 33.1

The advantages of the gain-phase plot are (1) elimination of trial-and-error
lution of equations such a5 Egs (3310) ad (2 e of tredment of complex
linear systems G,H. In addition, the gain-phase plot can be used to estimate
the ooccurence or nonoccurrence of a limit cyde, acocording to whethe or nat an
intersection . ooours

SUMMARY

The desibing fundion can be usad to good advatage for edimeion of amplitude
and frequency of limit cycles in systems similar to the one studied here. The
success of the method depends on the presence of a sufficient number of linear
daments in the loop to filter out the harmonics generated by the nonlineer dement.
No information about the transient response is obtained. However, the method
requires considerably less labor than does the phase-plane method, and the limit
cyde amplitude and frequency ae often the quartiies of primary  interest.

It shoud d0 be noted thet the desaibing funcion method is nat limited to
soondorder sydems as is the phaseplane method. In fadt, the higher the order
of G,H in Fg 334, the more accurde will be the destibing fundion resuits
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PROBLEMS .
33.1. For the contral system shown in Fig. P33.1 determine the frequency and amplitude

33.2.

of the limit cycle if one exists. Use the describing function method.

m
-0.55 2
R=0—>QE> N I —>C
s+1
- €
-2
N

FIGURE P33-1

(@) For the system shown in Fig. P332, 7= 1,{ =12, K= 1, M= 1 b =
025 and R = 0.
(b) Show that the describing function is
2
Sy T

A A

where A is the amplitude of the sine wave entering the nonlinearity.

(c) For K = 2, does a limit cycle exi? If so, describe it.

(d) If atransport lag ¢~* is introduced in the feedback loop, determine if a limit
cyde exigs for K = 2.

]

-b m K »C
l _] b 7252+ 2075+ 1
- M

FIGURE l.’33-2

33.3. The gtirred-tank system shown in Fig. P33.3 produces an agueous solution of salt by

use of asolenadid valve that switches from one reagent tank to the other as described
below. The reagent tanks contain concentrated solutions of sdt. When the measured
concentration is above the st point, the control reegent of lower concentration
enters the mixing tank at a congtant flow rate of 0.01 liter/mitt. When the measured
concentration is less than the set point, the control reagent of higher concentration
enters the mixing tank a a congtant rate of 0.01 liter/min. The hold-up volume of
the tank is 2 liters, the transport lag between the tank and measuring element is 1.2
min, and the set point is 2 g sdt/liter.

(a) Obtain ablock diagram, in terms of deviation variables, for this control system.
(b) By means of the describing function method, determine the characteristics of

the limit cycle (frequency and amplitude), if one exists.
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f Control reagent

100g salt/
liter

Solengg valve — relay f«—— Set point

I
I
0.01 Iiter/mi:[(- ————— 4

Concentration measuring
element

FIGURE P33-3

33.4. For the control system shown in Fig. P33.4, determine if a limit cycle exists for
K =1 2, and 3. If alimit cycle exists, describe it in terms of amplitude and
frequency. For the nonlinearity shown,

21 . -q[1 1 1

= - — —_— OforA=1
N - sin (A)+A 1 yv X0 for
N=1forA<1

A isthe amplitude of the sine wave entering the nonlinearity

— C
| 1 s(s+ 1)2
- ~—4-1

FIGURE P33-4
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CHAPTER

34

DI G TAL
COVPUTER
S| MULATI ON
OFCONTROL
SYSTEMS

The purpose of this chapter is to describe some of the methods for obtaining the
transient response of a control system from a set of differentiadl equations or transfer
functions. Inversion of a high-order transfer function can be a time-consuming
task. If a control system includes a nonlinearity or a transport lag, obtaining the
response as an andyticd expression is often impossble. The appearance of anaog
computers and digital computers after World War Il made the task of solving the
dynamic response of control sysems much easer.

During the period from the mid-fifties to the mid-seventies, the analog com-
puter was widely used to obtain the response of control systems. During that time,
digitd computing was very cosly and dow compared to the sSituation today. There
was little software available, a the beginning, one had to program the solution to
a problem using machine code. The basic elements of the analog computer con-
ggded of integrators, summers, gain potentiometers, and some nonlinear devices,
such as multipliers. By connecting these computing elements together with wires,
one could obtain the transient response to a rather large-scae control problem in
the form of a voltage that varied with time.

As the cost of digital computing decreased and its speed of operation in-
creased, the analog computer was gradually replaced with the digital computer.
This change was especidly noticed with the availability of the persona computer.

517
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One advantage of the analog computer was that the flow of voltage signds through
the computing elements closely resembled the flow of signds in the block diagram
of the control system; the andlog computer diagram and the block diagram of the
control system looked nearly the same. In fact, this advantage has been retained
in some of the digital computer simulation software that has been developed to
solve control  problems.

The basic operation needed to solve control problems by either an analog
computer or a digital computer is integration. The integration device, in the case of
an andog computer or the simulation software in the case of a digitd computer, is
cdled an integrator. Some of the symbols used to represent integration are shown
in Fig. 34.1. The operation performed by the integrator is

t
y = [ x dt + y(0) (34.1)
0

where y(0) is the initial value of y at = 0.

The symbol shown in Fig. 34. lais used in analog computing where sign
inversion occurs. The symbol shown in Fig. 34.16 is used in block diagrams
for state-space problems. The symbol in Fig. 34.1c is used in digital computer
simulation software. Since the focus of this chapter is on the digital computer,
the method of achieving integration by means of an analog computer will not be
considered further. The reader may consult Coughanowr and Koppel (1965) or
other sources for this topic.

In the branch of mathematics called numerical analysis, many routines or
algorithms to perform integration have been developed. Perhaps the simplest
method, which is often discussed in a course in calculus or differential equa-
tions, is the Euler method. The Euler method is easy to understand, but it has a
large truncation error that makes it too inaccurate for general use. Many methods
of numerical integration have been devised that are far more accurate than the
Euler method; one of these is the Runge-Kutta method. In this chapter, only the
fourth-order Runge-Kutta method will be used. This method is often used to solve
sets of first-order differentiadl  equations.

Runge-Kutta Integration

The Runge-Kutta method for solving a differential equation is often called a
“marching” solution because the calculation starts at an initial value of the inde-

pendent variable ¢ and moves forward one integration step at a time.

-x —->|:]>—y» x »D—y—» x—>| INT 2>
(a) (b)

FIGURE 34-1
Symbols used to represent integrators.
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Consider the first-order differentid  equation

& 34.2

AR (34.2)

for which 'y = yq a t = #o. In control problems, the initid time ¢, is usualy
taken as zero. When the dependent variable y is defined in terms of a deviation
variable, which is usudly the case in control problems, the value of y a #o is d
zero. The Runge-Kutta method divides the independent variable ¢ into increments
of equal length At as shown in Fig. 34.2.

The fourth-order Runge-Kutta method uses the following equations:

ki = £ (o, to)At (34.3)
k2 = f (yo + k1/2, to + At/Z)At (34 4)
ks =T (yo + kof2, to + At/2)At (34.5)
ka=T (yo+ ks, g+ ADAL (34.6)
yi =yo+ (ki+ 2ky+ 2k3+ kg)/6 (34.7)

.= 1 AL (34.8)

The equations just listed are applied during the first increment At from ¢
to t 1. The values obtained at the end of the first increment (y ;,¢;) are then used
as anew set of initial conditions in these equations to obtain a set of values of y
and t at the end of the second interval. This procedure of computing y and ¢ at
the end of successive intervals generates the solution to the differentid equation.

The set of equations [Eqs. (34.3) to (34.8)] used to solve a single first-
order differential equation can be applied to each dependent variable in a set of
differential equations. Consider the pair of differential equations

dy
_d_t— = fi,w, 1) (34.9)
d
= = po.wn (34.10)

with the initial conditions yg, wy, tg.
The Runge-Kutta equations used to solve for y(t) and w(s) ae given below.

= fi(vo, wo, to)At (34.12)
i = fa(yo, wo, to)At (34.12)
| At |At |At |AL
N
FIGURE 34-2

o 2 n ! Dividing the independent variable ¢ into equal increments At.
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ka = fiyo + k172, wo + 11/2, tg + At/2)At (34.13)
Ly= folyo + k1/2, wo + 11/2, 10 + At/2)At (34.14)
k3 = fi(yo + k2/2, wo + 15/2, 19 + At/2)At (34.15)
5= faQyo + ka/2, wo + 1272, to + At/2)At (34.16)
ki = fiyo + k3, wo + I3,10 + At)At (34.17)
w= falyo + k3, wo + 31 + AAL (34.18)
y1= yo+ (16)(ky + 2k + 2k3+ ky) (34.19)
wi = wy + (U6)I1 + 20, + 215 + 1y) (34.20)
1 =ty + At (34.21)

Example 34.1. Smulation of a second-order system. The differentid equation
describing the dynamics of a second-order system, which was given in Chapter 8,
is as follows:
dzy
dr?
Develop a computer program to solve this problem by use. of the Runge-Kutta
method, for the following conditions. 7= 1,¢ = 04, x(¢) = u(t) = 1, y(0) = O.
We must firgt express Eq. (34.22) as two first-order differentid equations by

29 257%+ y 5 x(t) (34.22)

letting
Y=y (34.23)
and
Y 2 =d)’1d—t=dyd—t (34.24)
Using these expressions in Eq. (34.22), we obtain
%yle Y2 (34.25)
d 1 1
% =~ —%yz ¢ (1) (34.26)

The reader who has studied Chapter 28 will notice that Egs. (34.25) and (34.26)
have been written in terms of the state varigbles, y; and y;, We are now ready to
apply the Runge-Kutta method to these equations.

A computer program written in BASIC is shown in Fig. 34.3. In the program,
the functions DY and DY 2 are defined on lines 20 and 30 and correspond to Egs.
(34.25) and (34.26). After defining the parameters (r, {, and At), the Runge-Kutta
procedure is started on line 170.

The results from running the program in Fig. 34.3 are shown in Table 34.1.
The reader can check these results with the analytica eguation given in Chapter 8
(Eq.(8.17)}.

Example 34.2. Simulation of a Pl control system. In this example, the trandent
response of the liquid-level control system shown in Fig. 34.4q is to be obtained
usng a digitd computer. The block diagram of this sysem is shown in Fig. 34.4b.
The vaues of the parameters of the block diagram are as follows.
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LIST

10 REM RESPONSE OF SECOND ORDER SYSTEM BY RUNGE-KUTTA
20 DEF FRDY1(Y1,Y2) = Y2

30 DEF FNDY2(Y1l,Y2) = 1/TAU"2 - Y./TAU*2 - 2+«ZETA*Y¥2/TAU
4o ZETA = .4

50 TAU = 1

k0 DT = .0S

70 Y1 =0

80 Y2 = 0

0 T=0

100 PRINT w»Tw, nyn

110 K =0

120 K = K+l

130 | F K = 11,THEN 150

140 GOT0 170

150 PRI RT USING "##.#### ":T,Y1
10 K = 1

170 K1 = FNDY1(Y¥1,Y2)+DT

180 L1 = FNDY2(Yl,Y¥2)+DT

190 K2 = PNDYL(Y¥Yl+.5#K),Y2+,.5#L1)+DT
200 L2 = FNDY2(Y¥l+.5#K1,Y2+.5+L1)+DT
210 K3 = FNDYL(Yl+.5+K2,¥2+.5%L2)+DT
220 L3 = FNDY2(Y1+.5+K2,¥2+.5+«L2)+DT
230 K4 = FNDYL(Y1+K3,Y2+L3)*DT

240 L4 = PNDY2(Y1+K3,Y2+L3)+*DT

250 Yi = YL + (Kl+2+«Ke+2*K3+K4)/b

b0 Y2 = Y2 + (Ll+2+*L2+2+L3+LY4)/k
2710 T =T + DT

280 | F T>10,05 THEN END

290 GOT0 120

300 EBD

310 RUN

Ok

FGURE 34-3

BASIC program for gtep response of second-order sydem of Example 34. | (r = 1,¢ = 04).

K. = proportiond gain, psi/ft tank level
7 = integrd time, min

K, =vave consant = 0. 070 (ft3/min)/psi
Ry = 055 (ft level)/(ft*/min)

7t = time congtant of tank = 2. 0 min
7 = time congtant of tank 2 = 1.0 min
73 = time congant of tank 3 = 1.0 min

For convenience in smulaing this system, the diagram of Fig. 34.4b has been
reduced to that of Fig. 34.5 in which K, has been combined with the PI control
transfer function in one block and the trandfer functions for the three tanks have
been combined in one block.
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TABLE 34.1

Step response of second-order system of Example 34.1
RUN

T Y
0.5000 0.1077
1.0000 0.3599
11.5000 0.b582
2.0000 0.7273
2.5000 1,1221
3.0000 1.2281
3.5000 11.2532
4.0000 11.2189
4.5000 1.15)7
5.0000 1.07bX
5.5000 1.0100
6.0000 0.9637
b.5000 0.9400
7.0000 0.93k2
7.5000 0.94k5
8.0000 0.9ky43
8.5000 0.9833
9.0000 0.99495
9.5000 1.0104
10.0000 1.0157
Ok

To obtain the differentid equations for use in the Runge-Kutta method, we
proceed as follows. From the controller block, we may write

% - KCKV(I + Tlis) - KCKV{‘T‘:_I: b (34.2)
Crossmultiplying gives
TsM(s) = K Ky1psE(s) + KK, E(s)
This may be converted to the time domain to give
m = K.Kyé + [K:Ky/tle (34.28)
From the comparator of Fig. 34.5, we have
e=1-¢ (34.29)
and
e =—¢ (34.30)
Replacing e and ¢ in Eq. (34.28) by the expressions in Egs. (34.29) and (34.30)
gives

o= —KoKyi+ KKy g (34.31)
T
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@ [« P| Controller

J

R C
1% K(1+i) 1
R-s ¢ Ts s+1
(b)
FIGURE 34-4

Process for Example 3422 (3) liquic-level control system, (b) block diagram.

The three tanks are represented by
40 0.55 (34.32)
M(s) = (2s + 1)(s + 1)?

The differentid equation represented by Eq. (34.32) can be formed by cross-
multiplying. The result is

(2s + 1)(s + 1)*C(s) = 0.55M(s)

or
@253 + 552 + 4s + 1)C(s) = 0.55M(s) (34.33)

Recognizing s*C (s) to be the nth derivative of c in the time domain, Eq. (34.33)
can be written as
2¢+5¢+ 4¢+ c= 0.55m
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KEKv(l +l) M 0.55 >C
4s (25+1) (s+1)2

FIGURE 34-5
Reduced diagram of control sysgem for Example 34.2.

or
&= —0.5¢ = 2¢ =2.5¢ + 0.275m (34.34)
In order to apply the Runge-Kutta method, we must express Eq. (34.34) as three

first-order differential equations. The procedure will now be shown.
Let

X=cC (34.35)
y=¢ (34.36)
z2=2¢ (34.37)
Equation (34.34) can now be written
x=y (34.38)
y=2z (34.39)
7= —05x =2y ~ 252+ 0.275m (34.40)

We can now summearize the set of first-order differential equations with initid con-
ditions by listing Egs. (34.38), (34.39), (34.40), and (34.31). In Eq. (34.31), c ad
¢ have been replaced by x and y according to Egs. (34.35) and (34.36).

Summary of differential  equations

i=y (34.38)
y=1z (34.39)
i= —0.5x = 2y - 2.5z + 0.275m (34.40)
m= KK,y + (KK,/m)(1 — X) (34.41)
Initial  conditions
x(@ =0
y©0) =0
z(0)=0
m(O) = K K,

Notice that the control problem has been converted to a state-variable representation
in which the date variables are X, y, z, and m. The initid conditions for the state
vaiablesx, y, and z are dl zero, in kegping with the fact that these variables represent
deviation variables that are, by definition, zero initidly. In this formulation x, y, and
7 represent leve, derivative of level, and second derivative of level, respectively.
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A comment is needed to explain the fact that the initid value of m is X X ,.
At time zero, the system is disturbed by a unit-step change in set point. This signd
is transmitted through the controller block and causes m to jump to K K, because
of the proportiona action present in the controller.

The Runge-Kutta method will now be applied to solving Egs. (34.38) to
(34.41). The Runge-Kutta eguations given by Egs. (34.11) through (34.21) must,
of course, be extended to handle the four differential equations. A BASIC computer
program for this problem is shown in Fig. 34.6. The output from running the program
is given in Table 34.2.

Example 34.3. Simulation of a control system with transport lag. Consider the
proportiona control system in Fig. 34.7 in which a transport lag is located in the
feedback path. The equations representing this system are as follows:

.___l 1
y= -ry+?m
m= K.e
e=r—x

x =yt ~1)

The difference between this problem and the previous ones considered in this
chapter is the presence of a trangport lag. In the previous digital simulations, only
the current vaue of y was needed and hence stored. In this problem, we must store
values of y over the time interval ¢ — 745 to ¢ (i.e, over the intervd 7). Snce we

TABLE 34.2

Response of level for Example 34.2
TIME, MIK LEVEL,FT
0.500 0.033
1.000 0.199
1.500 0.504
2.000 0.334
2.500 1.24b
3.000 1.505
3.500 1.k08
4.000 1.543
4.500 1.342
5.000 1.067
5.500 0.794
b.000 0.591
b.500 0.503
7.000 0.543
7.500 0.690
3.000 0.899
8.500 1.113
7.000 1.279
9.500 1.359
10.000 1.34¢2

Ok
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5 REM CONTROL OF THREE-TANK SYSTEM; USE OF RUNGE-KUTTA;EX. 2
10 DEF FNM(M,X,Y,Z) = —KV*KC*Y + KC*KV+(1-X)/TAUI
20 DEF FNX(M, x Y Z) =

30 DEF FNY(H X, Y, Z) = Z

40 DEF FNZ(M,X,Y,Z) = -2.5+7 -2+Y -.5+X + .275+M
kO KV = .07

70 KC = 107.2

80 TAU = 3.7

90 ¥ = KC*KV

100 x =0

110 Y = 0

20z = 0

130T =0

w40 DT = .|

141 PRINT “TIME,MIN","LEVEL,FT"

w2 K =0

14y K = K+3

145 | F K=b TEEN 14?7

14k GOTO 150

14? PRINT USI NG g, ## ".7,X

148 K=)

150 ¥1 = FNM(M,X,Y,2)+DT

160 XL = FNX(M,X,Y,Z)+DT

170 Y1 = FNY(M,X,Y,2)+DT

180 21 = FNZ(M,X,Y,Z2)*DT

190 M2 = PNM(M+M1=*.5,X+Xk+*.5,Y+YL+*,5,2+2L+#.5)+DT
200 X2 = PNX(M+ML#.5,X+XL+.5,Y+Y1+.5,2421%.5)+DT
210 Y2 = FNY(M+M1+*.5,X+X)#,5,Y+Y1+#,5,2+2)+,.5)+DT
220 22 = PNZ(M+M1*.5,X+X)*.5,¥+Y1+.5,2+ZL*,5)*DT
230 M3 = FNM(M+M2*.5,X+X2+,5,Y+Y2+.5,2+22+%.5)+DT
240 X3 = FNX(M+M2#,5,X+X2+.5,Y+Y2+.5,2+22+.5)+DT
250 Y3 = FNY(M+M2+.5,X+X2+%.5,Y+Y28%.5,Z+Z2+.5)*DT
gb0 Z3 = PNZ(M+M2+.5,X+X2+.5,Y+Y2+.5,2+22+%.5)+*DT
270 M4y = FNM(M+M3,X+X3,Y+Y3,2+23)#DT

280 X4 = FNX(M+M3,X+X3,Y+Y3,Z+23)+DT

290 Y4 = PNY(M+M3,X+X3,Y+Y3,Z+Z3)«DT

300 24 = FNZ(M+M3,X+X3,Y+Y3,%+23)+DT

310 8 = M+(1/b)*(MI+M2*2+M3*2+MY)

320 X = X+(1/b)* (X1+X2+2+X3+2+XY)

330 Y = Y+(1/b)*(Yl+Ye#2+Y3I+2+YY)

340 Z = 2+(1/b)*(Z1+Z2+2+23#2+24)

350 T = T+DT

370 | F T>10.1 THEN END

380 GOTO 1uy

390 END

FIGURE 34-6

BASIC computer program for [liquid-level control system for Examle 34.2 for a step change in set
point of 1.0 ft and K, = 107 psi/fe and = = 3.7 nin.
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+ E

7s+1

FIGURE 34-7

Block diagram of a proportional
control system with transport lag
(Example 34.3).

compute y only at discrete times, we must store vaues of y in an array of computer
storage locations, cdled a sack. The diagram in Fig. 34.8 will hdp daify this
storage.

The array will be used to store past values of y that were computed at the end
of each computation interva. At the end of each computation interva the vaues of
y will be moved one position toward the end of the stack and the value of y just
computed will be placed in the firg storage location of the stack. By this means, a
current value of y will not appear a the end of the stack until it has moved through
eech gtorage location. The amount of time the current vadue of y is delayed will
depend on the number of storage locations and At. The number of storage locations
N is determined-by:,

N = 7;/A¢
Let the vaues stored in the array be S(i) where i, which represents the array position,
will vary from 1 to N + 1. The following terms are now defined for the computer
program to be developed.
Y =y, present vaue of y
S(i) = stored past values of y
S(1) = current value of y, obtained & end of most recent
computation interval

S(N + 1) = X, the ddlayed value of y, i.e, X = y(t ~ 1)

r—— Present value of Y

Delay

s(1)

$(2)

5(3)

=1d

S(N)

Siv+ 1) FIGURE 34-8

l Array used to obtan transport
Delayed value of Y (i.e., X} lag in Example 34.3.
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An outline of the procedure for computing y a discrete vaues of ¢ is as follows.

1. Let the array for storing values of y be of “length” N + 1
where N = 7,4/At.

2. Initidize the dements of the array to zero.
3. Initidize the time varidble, T = 0.

4. S X = (N +1).

5 Print T, Y, and X.

6

. Start the Runge-Kutta routine to integrate the differentid equation over the first

computation interval AT.

7. Rearrange the contents of the array as shown in Fig. 34.8 by shifting the contents
of each storage location by one pogtion. Start shifting from the bottom. In this
shifting, the oldest value of Y will be discarded and the vdue of Y just computed
will enter the first cell to become §( 1).

8. Store the vaue of Y just computed into (1), i.e, S(1) =Y.

9. Increment T by AT and return to step (4) to repeat another cycle of caculation.

Usng the geps just listed, the BASIC computer program shown in Fig. 34.9
was written for the conditions 7 = 1.0, 74 = 02, R = u(t), K, = 84, ad
At = 0.02. For these conditions,

N = 74/At = 0.2/0.02= 10
The output from the computer program is shown in Table 34.3.

The computer program for smulaing a transport lag that has just been
presented is quite primitive compared to those provided in commercid software
in which the ddlayed function is not held constant during the time step At, but
is dlowed to vay by use of an interpolaion scheme Some of the smulation
software packages that provide the smulation of transport lag (eg, TUTSIM,
ACSL, and CC) are liged a the end of this chapter.

Example 34.4. Simulation of PID control. The presence of derivative action in
a control dgorithm, such as PID contral, gives some difficulty in the writing of a
program for digital computer smulation. Consider the PID control of a first-order
system as shown in Fig. 34.10. To obtain a st of first-order differentid equations
for use with the Runge-Kutta method, we proceed as follows. Prom the controller

block, we obtain
M(s) 1 K, 2
= — = — + + 4.42
EGs) KC(I + s + Tds) TIS(TdTls TS I) (3 )
Cross-multiplying this expression, solving for sM, and writing the result in the time
domain give
m= K.+ (Kcirj)e + Kery & (34.43)

This expression is not in the form in which the right sSide is free of derivatives of
the variables. To obtain the correct form, we proceed as follows. Since R = 0 for
this problem, we may write
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LO
15
c0
30
40
50
L0
70
a0
10
100
110
120
130
140
150
1b0
170
140
190
200
2l0
220
230
24l
250

2b0
270

REM FI RST ORDER sYSTEM W TH TRANSPORT LAG
DIH s(11)
DEF FNDY(Y) = ~Y+KC-KC+X
KC=8.399999
Y=10
T=10
DI-.02
FORI1 =1 TO 11
S(I) =0
NEXT |

PRI NT wwn, nyn nxn

X=5(11)

K1=FPNDY(Y)+DT

Ke=FNDY(Y+.5#K))*DT
K3=FNDY(Y+.5%K2)+*DT
Ky4y=FNDY(Y+K3)*DT

Y=Y+ (Kl+2+K2+2+K3+K4) /b

T=T+DT ,
PRINT USI NG "#.### ",1T,Y1,X°
K-LO

FORI =1 TG 20

S(K+1)=S(K)

K=K-1

NEXT |

S(L)=Y

I[F T > 1.00k THEN END

GOT0 110

END

FIGURE 34-9
C computer program for control of a firgd-order system with transport lag (Example 34.3).

BAS

o o
I n
1

A -HIR

From Fig. 34.10, we may write

1
Y(s) = ;;—-}:_I[M(s) + U(s)]

In the time domain, this equation becomes
y= (Unu@) + m =y

®

88 &

Y

(3447)

where U(s) = I/s has been written as k(¢) (a unit step) in the time domain. Taking

the derivative of both Sdes of Eq. (3447) gives
y= (Umb() + m = yl

(34.48)

where use has been made of the fact that the derivative of a unit-step function is a
unit-impulse function (see Chap. 4). Combining Eqs. (34.44), (34.45), and (34.46)

with Egs. (34.47) and (34.48) gives



TABLE 34.3 . )
Computer output for control of first-order system with transport lag

(Example 34.3)

T Y X

0.020 0.1bb 0.000
0.0110 0.327 0.000
0.060 0.489 0.000
0.080 0.b4b 0.000
0.100 0.799 0.000
0.120 0.950 0.000
0.140 1.097? 0.000
0.1k0 L.242 0.000
0.1a0 1.384 0.000
0.200 11.523 0.000
0.220 1.659 0.000
0.240 1.7k5 0.lbb
0.260 1.64) 0.329
0.280 1.890 0.489
0.300 1.91) D.bYb
0.320 1.907? 0.799
g.340 1.877 0.950
0.3k0 1l.824 11.077
0.380 1.748 11.242
o.u0o 1.b49 1.38Y4
0.420 1.530 1t.523
0.440 11.390 }.k59
D.4k0 11.235 }.7?k5
0.440 1.07L 1.8Y4)1
0.500 0.90L 1.890
0.520 0.732 1.91)
D.540 0.5k7? 1.907
0.560 0.410 1.877
0.580 D.cbY 1.8624
0.600 0.1235 1.748
0.620 0.024 1.b49
D.bu40O -.0bY 1t.530
0.kLD -.128 1.390
0.680 -.1b5% 11.235
0.700 -.173 11.071
0.720 -.153 0.901
0.?740 -.106 0.732
U.?l:u —-ual U.SB?
0.780 0.0k? 0.410
0.800 0.188 D.2bY
0.820 0.329 0.135
0.840 0.484 0.024
0.8k0 0.k52 -.0bY
0.880 0.827 -.1lz8
0.700 11.0011 -.1kS
0.920 1.179 -.173
0.990 1.348 -.153
0.960 11.505 -.10b
0.980 1.647? -.03)
1.000 1.769 0.0L7
11.020 1.869 0.1488

530
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+
+ E 1 M + é 1
= —H%)——»K 1+=+T1 -
R=0 C[ 113 ds] Y Y

FIGURE 34-10
PID contral of a fird-order process (Example 34.4).

é= —y= —(Un)u(t) + m=y] (34.49)
€= =§= —(Ur{d(t) + m = (I/m)[u(t) + m = y]} (34.50)

Subgtituting the expressions fore, é, and ¢ from Egs. (34.44), (34.49), and (34.50)
into Eq. (34.43) gives after smplification

m= C[—1476(t) + A+ By + Am] (34.51)
where A= 15 ~1
2
r
B=r1- P T4
K.

¢= (7 +Kco7h)T

The right side of Eq. (34.51) contains the forcing term —C7,78(¢). If Eq. (34.51)
were integrated, this term would contribute a constant value of —Cr;7. The reason
for thisis that the integration of a unit impulse is a unit step, thus

|0' S(tydt = u(t) = 1

We may now write Eq. (34.51) in the form

) m = C(A+By+Am)
with

m0)= —Crrg= —Korg/(t + Kc1y)

The differentid equations to be solved by the Runge-Kutta method now can be
summarized

y={U/m+m vy (34.52)
m = CA+CBy+CAm (34.53)
with
y©0) =0

m(0) = —(Kcea)/(r + Kcetg)
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Solving Egs. (34.52) and (34.53) with the initial conditions given will produce a
response for the control system of Fig. 34.10. The procedure for programming Egs.
(34.52) and (34.53) by use of the Runge-Kutta method is straightforward and will
not be done here

SIMULATION  SOFTWARE

In the first part of this chapter, we have seen how one can write a digita computer
program for the solution of a control problem. Even for the simple examples
presented, there is considerable work in writing and debugging the program.
A number of software programs have been written to solve dynamic problems,
including process control problems. One of the earliest was CSMP developed
by IBM. More recent programs include ACSL, TUTSIM, Simnon, and CC. The
ouress of thee dmuldion programs are given in the lig of references & the ed
of the chapter. Some of these programs provide blocks that simulate the basic
trander fundions of process contrd such as integrator, fird-order,  second-order,
lead-lag, and transport lag.

TUTSIM  Simulation

One of these ssimulation programs to be discussed here is TUTSIM, which is

distributed in North America by Tutsim Products (formerly Applied i) in Palo
Alto, Cadlifornia. This program provides about eighty blocks, such as summer,
integrator, gain, and transport lag. The use of this software is similar to the use
of the analog computer in that computing blocks are selected and connected to

one another in a manner similar to the connecting of analog computing e ements
by wires The comedion of the blodks which is done with computer code in the
Dftware, is omdimes refared to a5 “oftwiring” For the pupose o illudraing
the solution of control problems by simulation software, only a few of the many
blocks available in TUTSIM will be considered. A complete manual on TUTSIM
is avalade from the didributor. (See rdferences & the end of this dhepter) For use
in our first example, the following TUTSIM blocks will be described: Summer,

Integrator, Gain, and Pulse

SUM. The summer block, designated as SUM, is shown in Fig. 34.11a.
The output U is the sum of the inputs. The sign of the inputs can be designated
& pus o mns

INT. One of two types of inteyaor blodks avaladle in TUTSM, desgneed
as INT, is shown in Fig. 34.115b. For this block, the output U is the sum of the
inputs integrated with respect to the independent variable ¢. The initia condition
of U, designated as I, is a parameter that may be assigned. The inputs can be
labeled plus or minus.

GAL The gain block, designated as GAlI, is shown in Fig. 34.1 Ic. This

block multiplies the sum of inputs by a gain P. The inputs can be labeled plus or
minus.



1y ——>

I = sum

1, =

—U

U=%I,

(@)

P=

Gain

l=—>
1 ——

n

GAIl

e U

U=Pil,

(c)

FIGURE 34-11
Some TUTSIM blocks (8) Summer, () Integrator, () Gain, (d) Pulse.
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Iy ——
Iy =
I, —

n

I I. = Initial condition

INT U

U= IOZI,,dt +1,

= U(0)

(b)

Parameters:

T1 = Start time

T2 = End time

P = Pulse amolitude

PLS .—»U

0

T, T, t
(d)

ALS The puse fudion block, desgated as FLS is $own in Hg 341 1d4.
This block provides a pulse of magnitude P starting at 7; and ending at T;. If
T| istakenas0.0 and T, isequal to or greater than the length of the run, one
odtains a gep fundion of megnitude P.

In the next example, we shall learn how one uses the TUTSIM blocks to

Llve a contrd  prodem.

Example 34.5. Smulation of proportional control with TUTSIM. Consider the
control system shown in Fig. 34.12. To simulate this system by TUTSIM, we shall
use the blocks shown in Fig. 34.11. To simulate the first-order lag, we first write

E

Y(s) !
M(s) Ts+ 1

Rt
-FIGURE

K. Ts+1 >¥
34-12
Block diagram for control system of Ex-
K,=2,7=2 ample 34.5.
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Gan= L I.=0
| J .
GAI 2 INT —> Y
= FIGURE 34-13 _
I TUTSIM block diagramn for a firg-order sys-
L tem, 1/(rs + 1).

Cross-mulltiplication of this expression and solving for s¥(s) gdives

sY(s) = —-Y?% M—ffl

The equivaent expression in the time domain is

y=-2+2 (34.54)
T T
We can obtain a TUTSIM diagram for this equation by using a gain block and an
integrator block as shown in Fg. 34.13. In this figure, the gain block multiplies
m by 1/r and (-y) by 1/7. The sum of these two signds is then integrated by the
integrator. The operations performed by the software blocks of Fig. 34.13 match
those in Eq. (34.54).

With a block diagram for a first-order lag avaladle (Fig. 34.13), we can now
simulate the control system of Fig. 34.12. The result is shown in Fig. 34.14. In
this figure, a gain block, no. 2, combines the function of the comparator and the
proportiona controller.

Set-up of model with TUTSIM software. The method for setting up a mode with
TUTSIM software is straightforward and the diagram of Fig. 34.12 will be used
to illustrate the setup. After trandating the control problem of Fig. 34.12 into a
TUTSIM dmulation diagram of Fg. 34.14, one enters into the computer through
keyboard commands the following blocks of deta

Modd structure

Model parameters

Plotblocks and ranges

Timing data
Each block of data will be described bdlow in terms of Fg. 34.14.
Model structure. The modd structure lists the types of computing blocks needed
to solve the problem; a number is assigned arbitrarily to each block. The sources to

the input of each block, with appropriste sign, are ao listed. The format for the
mode dructure deta is

Format : Block number, Type, input 1, input2, . . .
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Start =0

Stop = 3.0 1
Pulse height = 1.0 =

Gain= K.=2

PLS

_ GAl _ GAl INT y
no. 1 no. 2 no. 3 no. 4 /

-

-

FIGURE 34-14
TUTSIM block diagram for Example 345.

For Fig. 34.14, the data to be entered into the computer are

1, PLS (Block 1 is a pulse generator, there are no inputs)
2, GAl, 1 -4 (Block 2 is agan block, inputs are from blocks 1 and -4)
3, GAI, 2, - 4 (Block 3 is agan block, inputs are from blocks 2 and -4)
4, INT, 3 (Block 4 is an integrator, input is from block 3)

Model parameters. The modd parameters for each block to be entered into the
computer are entered with the following format.

Format : Block Number, parameter 1, parameter 2, . . .
The number of parameters entered depends on the specific block. For Fig. 34.14,
the parameter data take the form

1,0.0,3.0,1.0 (The pulse garts a 0, ends a 3.0, and is of magnitude 1.0)

2,20 (The gan is 2.0)
3 05 (The gain is 0.5)
4, 00 (The initial condition on the integrator is O)

Plotblocks and ranges. In TUTSIM, one can plot up to four dependent variables,
desgnated as Y1, Y2, Y3, and Y4, with a range specified for esch varidble These
variables appear on the vertica axis of the plot. One must also sdlect the independent
vaiable (usualy time) on the horizontd axis, designated as HORIZ. Block O is
reserved for a block that produces time. The choice of the variables and ranges is
determined by the programmer. The format for this data is

Forma : Block number, minimum, maximum
For Fg. 34.14, the following choices are mede

HORIZ: 0, 00, 30 (Run varies from? = 0tot = 3.0)

YI: 4, 00, 10 (Y! represents output from block 4; range is from
oto 1)
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L)

Y2 (Y2 not us=d)
Y3 (Y3 not used)
Y4 (Y4 not used)

Outputs Y2, Y3, and Y4 were not used in this example.

liming Data. The timing data sdlects the step size and the length of the run, the

format is

Format : Ddta time, Find time

The step sSze of ddta time must be chosen to fit the nature of the trandent. The
simulation starts a ¢ = 0.0 and ends when ¢ is equd to the fina time. The ratio
of find time/ddta time determines the number of steps taken in the caculation and
determines the number of points plotted. If this ratio is too smal, numericd insta
bility may occur because of inexact integrations. The TUTSIM manua recommends

ardio that is in the range of 500 to 5000.

A summary of the data used in setting up the mode can be listed by keyboard
command. For the system under consideration, this summary is shown in Fig. 34.15.

After the modd is set up, it can be exercised by smple keyboard commands
to produce numerica output and plots. The results for Fig. 34.14 using the data

chosen is shown in Table 344 and Fg. 34.16.

After the model is set up, one can change esesily the Structure, the parameters,

the choice of plots, and the timing by keyboard commands.

Model File: PCON.SINM

Date : 27 gb / 1989
Time 10 : o4
Timing: 0.00v0000 ,DELTIA 4.0000 +RANGE
PlotBlocks and Scales:
Format:
BlockNo, Plot-MINimum, Plot-MAXimum; Comment

Horz: o, 0.0000 , 3.0000 ; Time

Yl: Yy, 0.0000 , 1.0000 ;

Ye: ! f :

Y3: ' ' ,

Y ' ' ;

0.0000 1 PLS

3.0000

1.0000

2.0000 2 GAI 1 -4

0.5000000 3 GAI 2 -4

0.0000 4 INT 3

FIGURE 34-15
Summary of TUTSIM mode for Example 34.5.
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TABLE 34.4
Numerical output for Example 34.5, using TUTSIM

Model File: PCON.SIX

Dat e: 27/ 2k / 1989
Ti nme: 0 25
Timng:  0.0010000 ,DELTA ; 4.000 ,RANGE
PlotBlocks and Scal es:
For mat :
BlockNo, Plot-MINimum, Plot-MAXimum; Comment
Horz: 0, 0. 0000 , 3.0000 i Tinme
Yl: ¥, 0. 0000 , 1,.0000 ‘
Ye: ' ‘ ;
13: t ! i
Y4: ’ . :
0.0000 0.0000
0.2000 11.1723880
0.4000 0.3007920
0.L000 0.395L200
0.8000 "0.4L58700
1.0000 0.5179130
1.2000 0.5564670
1.4000 0.5850290
1.L000 0.60628480
1.8000 0.b233630
2.0000 0. 6334750
2.2000 0.6420780
2.4000 0.6484510
2.5999 0. 6533720
2.7999 0.6565700
2.9999 0.6592k10

OTHER TUTSIM BLOCKS. The TUTSIM software can solve far more com-
plicated systems than the one shown in Fig. 34.14. Many of the computer
blocks were developed specifically for process control calculations, such as
blocks that simulate a first-order lag, a second-order lag, a transport lag, a
lead-lag transfer function, and a PID controller. There are also blocks (referred

1.0

0.8

0.6
»
0.4f

02 FIGURE 3416
ool 1y Plot of response from TUTSIM model for Example
0 1.5 r 3 U5
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to as Z blocks) that are used to simulate sampled-data systems. There are also
thermodynamic property blocks that provide the thermodynamic properties (en-
thalpy, temperature, heat capacity, etc.) of air, steam, and other substances. To
comprehend the full range of the TUTSIM software, one should have access to
the TUTSIM user’s manual.

SUMMARY

Obtaining the response of a control system analyticaly can be very difficult, if not
impossible, for high-order systems or for systems containing nonlinearities and
transport lags. To study the effect of control strategies and controller parameters
on the response of a complex control system, one must often use a computer
smulation. Fortunately, we have today a number of simulation software packages
for obtaining the response of control systems. The Appendix lists some of these
software packages, along with their features and sources. If one does not have
such smulation software, it is necessary to write on€'s own computer program.
Even if one has such simulation software, it is still instructive to learn how to
write some computer programs for the purpose of understanding the problems and
limitations associated with commercialy available smulation  software.  Examples
of such problems are selecting the step size of the independent variable (At),
establishing initial conditions, and providing sufficient storage for the simulation
of transport lag.

In the first part of this chapter, the methods for writing computer programs
were presented by means of four examples of control system. A computer routine
for integration is at the center of any computer program for dynamic simulation.
The fourth-order Runge-Kutta method was selected because of its accuracy and
wide use. The literature on numerical analysis, of course, covers many other
methods of integration, some of which are needed for difficult cases. The first
sep in obtaining a computer simulation based on numericadl methods is to reduce
the block diagram containing the transfer functions of the components to a set of
first-order differentiad equations. This step is equivalent to obtaining a state-Space
model of the control system (see Chap. 28). Since the Runge-Kutta method is a
marching solution, which starts at time zero and moves one time step with each
cycle of computation, the selection of initial conditions must be considered. In
some cases, the initial conditions are obvious, in other cases (e.g., the presence
of derivative action in a controller), selection of the initial conditions are more
subtle. The smulation of a transport lag is of great importance in the simulation
of contral systems. In the example involving a transport lag, a simple method
usng a dack (an array of computer storage locations) was used and it was shown
that the size of the stack depends on the ratio of the transport lag to the step size
(14/At).

In the second part of this chapter, the use of commercidly available software
for solving control problems was discussed. The progran TUTSIM  was presented
and applied to some simple control problems. The use of TUTSIM is closely
related to the block diagram of a control system in that a specific computer cal-
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culation block is used for each transfer function in the block diagram. Much of the
other simulation software requires that the model be represented as a date-space
model (i.e., a set of first-order differential equations.)

Since s0 many commercid simulation software packages for solving control
problems are now being developed and distributed it is impossible to cover al
of them in a book of this type. A listing is given in the appendix; however, the
list is by no means complete and an entry in the list should not be considered as
a recommended product. The field of computer applications changes so rapidly
that the reader must keep abreast of developments in this area through technical
journas and contacts with professional  colleagues.

APPENDIX 34A
COMPUTER SOFTWARE
FOR PROCESS CONTROL

Many computer software packages are available for use in solving problems in
process dynamics and control. A short selection of software packages that are
useful for simulation of control systems s listed here. A more extensive list (17

packages) is given in Seborg, Edgar, and Mellichamp (1989). Since software
changes occur frequently in terms of version and cost, the reader is advised to

write to the vendor for the most recent information.

TUTSIM. TUTSIM is a computer simulation program that provides a numerical
and graphic representation of linear or piecewise linear systems. It can adso han-
dle nonlinear functions. A problem is solved by constructing a TUTSIM model
consisting of interconnected blocks that match the block diagram of the control
system. The block diagram for the model resembles an anadog computer diagram,
but all the computations are done numerically by the digital computer. Once a
TUTSIM model has been created, it is very easy to change its structure and param-
eters. The output on the screen of the monitor can display four process variables
versus time. The blocks for continuous control include the usua ones, such as
first-order, second-order, lead-lag, and transport lag. TUTSIM aso provides “Z”
blocks for use in sampled-data systems. TUTSIM, which contains about eighty
different blocks, is available in three versions:

short version, 15 blocks dlowed per mode, $35
collegiate version, 35 blocks allowed per model, $150
professional version, 999 blocks alowed per model, $500

There are specid prices for academic use. A sudent version is available for
$28.00. TUTSIM was described in detail in this chapter. TUTSIM was adapted
from Twente University of Technology in the Netherlands. TUTSIM is available
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for the IBM-PC computers and their compatibles. Information can be obtained

from:
TUTSIM Products

200 Cadlifornia Avenue, Suite 212
Palo Alto, CA 94306

PROGRAM CC. Progran CC is a smulation software package for the andyss and
design of linear control systems. Linear systems are represented in the program by
transfer functions that can be continuous (Laplace transforms) or sampled-data (Z-
transforms). The linear systems can aso bhe represented by dState-space equations.
Approximately sixty commands are avalable and include transient response, root-
locus plots, frequency analyss (Bode, Nyquist, Nichols), and converson between
transfer function and dtate-space systems. CC software is available for the IBM-
PC computers and their compatibles. A student version, which is a subset of a
much larger package, is available at the suggested price of $95.00. Information
on CC can be obtained from:

Systems  Technology, Inc.
13766 S. Hawthorne Blvd.
Hawthorne, CA 90250

ACSL. ACSL (Advanced Continuous Simulation Language) simulates the dy-
namic response of physical systems through the integration of differential equa-
tions. This software is used for very complex systems containing a large number
of independent variables (states). A variety of integration algorithms (Adams-
Moulton, Euler, Runge-Kutta, etc.) can be selected. The software has a discrete
section for simulating sampled-data systems. Many plot commands are available
for displaying the output in a variety of graphicd forms. This software is available
at a discount to educational institutions. ACSL is available for mainframe com-
puters and aso for IBM-AT computers and their compatibles. Information can be
obtained  from:
Mitchell and Gauthier Associates
73 Junction Square Drive
Concord, MA 0 1742-9990

SIMNON. Simnon is a generd-purpose software for simulation of linear and non-
linear systems, operating in continuous time or discrete (eg., sampled-data) time.
Models containing up to three hundred states can be simulated. The software is
available for a VAX computer or for IBM-AT computers and their compatibles.
The IBM version of the software is available to educational ingtitutions for $350.
This software, which was developed in the Depatment of Automatic Control a
the Lund Ingditute of Technology in Lund, Sweden, is available in North America
from
Engineering Software Concepts
436 Palo Alto Ave.
P.O. Box 66
Palo Alto, CA 94301
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PROBLEMS
3.1 The following differentid equation is to be solved by digitd computation:

Dog-15y =0

dt
A portion of a computer program, which uses the RungeKutta method, is
shown  below:
25 DY (T,Y) = 2*T = 1.5*Y
26 DT =01
27 Y =00
28 T=00

29 K1 = DY (T,Y)*DT
30 K2 = DY (T + DT*.5, Y + K1*.5/*DT

31 K3 =DY (T + DT*.5, Y + K2*.5*DT

32 K4 = DY (T + DT*5, Y + K3* 5DT
BY = Y+ (KI+ 2%K2 + 2¥K3 + K4)*DT/6
MT=T+AT

35 PRINT T,Y

36 IF (TLT.2) GO TO 28

37 STOP

38 END

(@ Indicte any erors you find in this program by noting the Statement number of
the line where it gopears dso describe the eror and correct it if you can.
() Do one cyce of cdculation by hand usng the RungeKutta method and obtan
the value of K1, K2, K3, and K4 for usein getting Y atz = 0.1.
(c) Also obtain Y att = 0.1 by using the Runge-Kutta method.
342. The control sysem shown in Fig. P34.2 is to be smulated by digitd computation.
A portion of a computer program, which uss the RungeKutta method, is
shown  below.

24 DY (T)Y) = (1 + KC*DT = KC*Y

25 KC = 20

26 DT = 0.1

27Y =10

28 T =00

29 K1 = DY(T,Y)*DT

30 K2 = DY(T + DT, Y + KI)*DT

31 K3 = DY(T + DT*.5, Y + K2*.5)*DT
32 K4 = DY(T + DT*.5, Y + K3*.5)*DT
BY =Y + (Kt + 2*K2 + 2*K3+K4)*DT
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R=nu(—= K 1 >y
Ramp st1

FIGURE P34-2

34T =T +AT

35 PRINT T,Y

36 IF (T.LT.2) GO TO 27
37 STOP

38 END

(@ Indicate any errors you find in this program by noting the Satement number of
the line where it appears dso decribe the eror and correct it it you can.

(b) After correcting the program, do one cycle of calculation by hand using the
Runge-K utta method and obtain the value of K1, K2, K3, and K4 for usein
getting Y at r = 0.1.

33 The dep repone of the following differentid equation is to beobtaned numericaly
with the ad of a digitd computer.

d?y dy . _

272— + 085 +y=1

dyldt = O and y=0at=0

Integration step sizes (Af) of 0.1, 05 ad 10 ae to be used.

(@ Which of the dep szes will give a numericd solution closst to the anaytica
solution?

(b) Which sep size will require the lesst computation time?

(¢ If it is posshle to g an impulse response for the above differentid  equation,
show how you would provide for it in solving the differentid equation by the
computer.

34.4. Write a computer program in BASIC to simulate the response of the PID control
system of Example 34.4 for a unit-step change in load (U = I/s) for the case of

Kc.=20,7=171=1Land7=2
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35

M CROPROCESSOR- BASED
CONTROLLERS

AND DI STRI BUTED
CONTROL

In this chapter, some of the highlights of modern industrid microprocessor-based
controllers and distributed control systems will be presented. A microprocessor-
based controller is essentially a digita computer programmed to perform the func-
tion of a process controller. For our purpose, the term microprocessor is synony-
mous with computer and we could refer to a microprocessor-based controller as
a computer-based controller. The number of features of these modern controllers
is far too great to cover in one chapter. The best way for the reader to acquire
some experience with modern controllers is through laboratory and plant use and
by attending some of the short courses offered by the major suppliers of the
equipment.

HISTORICAL RACKGROUND

During the past fifty years tremendous development has occurred in process con-
trol hardware. The three phases of development am pneumatic control, electronic
control, and microprocessor-based control. During the 1940s, the predominant
controller was pneumatic, meaning that signals to and from the controller and
within the controller mechanism were ar-pressure signals that usudly varied from
3 to 15 psig. The development of the high-gain operationa electronic amplifier
during the second world war led to the development of the electronic controller
and aso the analog computer. The electronic controller mimicked the control
functions of the pneumatic controller. It aso provided some improvements, such
as accurate and reproducible control parameter settings and reduction in size of
the instruments. In contrast, the pneumatic controller required frequent calibration
of the knobs used to set the various controller parameters (K,, 77, 7p). The pneu-

543
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matic controller had interaction among the control modes and had inherent lags
that became significant a  high-frequency operation. There were frequent debates
over the pros and cons of pneumatic and electronic controllers. For example, the
pneumatic controller was rugged, ssimple to install, and required little mainte-
nance. Only a source of ar pressure was needed to operate the controller. There
was initialy great concern about the possibility of explosions with the use of
electronic controllers, so the instrument cases for these controllers were purged
with deady <oreams of ar when used in plants producing flammable substances.
The maintenance of electronic controllers also required highly trained technicians.
In the 1960s, the chemica industry made its first attempt at computer
process control. These control systems used large mainframe computers, for
which the control prograns had to be written from scratch. The first attempts at
computer control were met with mixed reactions. In the 1970s, there appeared on
the market the first generation of digital control hardware, which was based on the
advances in  microprocessor-based  technology. This  equipment was user  friendly
and all the software accompanied the hardware. The operator did not face the
problem of writing computer code to implement the control functions, it was only
necessary to learn the ingtructions needed to configure (set up) the controllers.

HARDWARE COMPONENTS

The hardware requirements for pneumatic, €lectronic, and  microprocessor-based
controls arc shown in Fig. 35.1. In this figure, al of the components are obtained
from a manufacturer of control equipment; severa of the components are common
to the three systems. In Fig. 35.1a, dl the signds are pneumatic (3-15 psig). The
energy needed to operate these pneumatic components is a source of clean, dry
air at a pressure of about 20 psig. The pressure can vary from 20 psig by about
* 10% without adversely affecting the operation of the instruments.

The dectronic system shown in Fig. 35. |b requires both eectrica and pneu-
matic power to operate the components. A transducer or converter is needed be
tween the controller and the valve to convert current (4-20 ma) to pressure (3-15
psig).

The components for a microprocessor-based system are shown in Fig. 35. Ic.
In this case, the control agorithm resides as a computer program in the memory of
the computer. The operator communicates with the control system with a keyboard,
amonitor, and a printer. The computer can perform many mom functions than
implementation of the control agorithm as will be discussed later. The recorder
of the pneumatic or electronic system is replaced by a monitor screen on which
the transents are shown.

In a modem controller both analog and digital signals are processed. The
analog signal is the type that represents a continuous variable that varies over
arange of vaues. The digital signal is a binary signal that can be represented
by two states (on, off, or logic 1, logic O, etc.). Examples of analog signals are
the measurement from a temperature transmitter or the signal sent to a valve.
Examples of digital signals are the output to a motor, which causes it to be
on or off, or the output to an alarm light causing it to be on or off. The focus
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FIGURE 35-1

Controller  components for (a) pneumatic control, (b) electronic control, (c) microprocessor-based
control.

of this book has been on analog signals that are applicable to continuous control
systems. However, there is an important area of control called batch control, which
is receiving more attention in industry. Batch control, as the name suggests, is the
control of processes that are done in a baich operation. Many examples of batch
processing occur in the pharmaceutica industry where smal amounts of products
of high unit cogt are produced.

TASKS OF A MICROPROCESSOR-BASED
CONTROLLER

The primary task of a microprocessor-based controller is implementation of a
control agorithm; however, the presence of a computer makes it possible to assign
a number of periphera tasks that are useful in process control. Some of these tasks
provided in a modem control system are to:

Implement classcad and advanced control  agorithms
Provide static and dynamic displays on the monitor
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Provide process and diagnostic adarms
Provide mathematical  functions
Provide data acquisition and storage (archiving)

The software to support al of these tasks is supplied by the manufacturer
of the control equipment. We shall now look briefly at the nature of each task.

Implementation of Control Algorithms

The portion of the software that covers this task is organized into large numbers
of blocks that can be connected together to solve a specific control problem. A
partial listing of the blocks typically provided are as follows:

analog input

andog  output

conventional control algorithms (P, PI, PD, PID)
linearization

lead lag

dead time

self-tuning

There are many other blocks that have been omitted from this list because
of the limitation of space in this chapter. There are also a number of blocks that
process digita (or logic) signals (on/off) such as comparators, selectors, or timers,
which are needed in batch control and automatic plant start-up and shut down.

ANALOG INPUT BLOCK. The asialog input block is an analog-to-digital device
that converts a continuous signal from a transducer, which is in the form of a
current or voltage, to a digitd signa that can be used in the microprocessor.

ANALOG OUTPUT BLOCK. The analog output block reverses the operation of
the andog input block by converting a digitd signa, which has been computed in
the microprocessor, to a voltage or a current that can be sent out to a transducer
in the process in the field. Sometimes this block is called a field output block.

CONTROL BLOCK. The control block is a block for which many parameters
can be specified. The manufacturer does not give any information on the method
of implementing the control agorithms; however, the reader who has read the
section of Chap. 27 on the design of conventiona control algorithms {D(z)] will
have some idea on how the signals are manipulated within the microprocessor
to implement the desired control action. The sampling period T is one parameter
that cannot be adjusted in a commercial controller; it is fixed by the developer of
the software. In most of the operating manuals provided with the control equip-
ment, the sampling time may not be mentioned. Typical vaues of T in commercid
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controllers vary from 0.1 to 0.25 sec. A controller operating with such a small
T can be considered as a continuous controller for many chemical processes with
large time constants. Parameters that can be selected are the controller parameters
(K,, 17, 7p), limits on set point and controller output, and others.

LINEARIZATION BLOCK. The linearization block is used to “straighten out” a
nonlinear relation. The most common example of the need for this block is in

processing a signd from an orifice plate used to measure flow. The signa (pressure)

across an orifice plate is proportional to the square of the flow. To obtain a linear
relation between flow rate and signa, the signal is sent through a linearization

block, which has been configured to extract the square root of the input signal.

The linearization block can aso be configured to linearize any nonlinear relation

that can be plotted on a coordinate system. This aspect of the linearization block
can be useful for linearizing the input-output relation to a valve that is nonlinear

in behavior. In Chap. 20, an egqual percentage valve was proposed as a device
to linearize the relation between flow and valve-top pressure when line loss was
large.

LEAD-LAG BLOCK. The lead-lag block simulates the lead-lag transfer function,

K(Tys + 1)/(Ts + 1). The parameters K, T4, and T, can be selected over awide

range of values. If one needs a first-order lag, T; can be set to zero. We have
seen the need for the lead-lag block in feedforward control in Chap. 18.

DEAD-TIME BLOCK. The dead-time block simulates dead time (or transport
lag), e "°. For this block, 7; can be selected over a wide range of values. We
have seen the need for this block in the Smith predictor control agorithm of Chap.
18. The nature of the computer program needed to simulate the dead-time block
was presented as an example in Chap. 34.

Figure 35.2 shows a simple flow example using some of the blocks just
described. The blocks are connected together by computer code at a keyboard
during the configuration of the control system. This connection of blocks is caled
softwiring since it is done through the use of computer software. The actual con-
nection between the flow transmitter and the anadog input block in the controller,
which is made with wires, is called hardwiring.

SELF-TUNE BLOCK. For years, one of the goals of control engineers has been
to develop a device that would automatically tune a controller, on-line, while
the process is operating. Until recently, this goal was reached for some specia

cases by the application of adaptive control theory, a branch of control that is
beyond the scope of this book. Recently (mid-1980s) a commercia device be-
came available that uses the normal transients occurring in a controlled process
(caused by set-point and load upsets) to update the control parameters of a PID
controller. This device is called a self-tuner and is one of the blocks available in

the microprocessor-based controller of severa hardware manufacturers.  When  the
sdf-tuner is first applied to a process for which no process identification has been
performed, the self-tuner is placed in the pre-tune phase, during which time the
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Example of the use of control blocks to control a flow process.

process is subjected to a pulse while it is operated open-loop. The introduction of
the pulse and the anaysis of the trandent is done automatically by the self-tuner.
The outcome of the pre-tune phase of operation is the selection of controller pa
rameters. A conceivable approach to the development of the pre-tune phase of a
self-tuner is to monitor an open-loop step response and apply a tuning method
similar to the Cohen-Coon tuning method of Chap. 19. After the pre-tune phase,
the control system is returned to closed-loop and the self-tuner continues to mon-
itor the transients and make changes in controller parameters when needed. The
self-tuning that occurs during closed-loop operation is based on the characteris-
tics of the transients, such as decay ratio, overshoot, period of oscillation, etc.
The self-tuning algorithm, being proprietary information, is described in only a
general manner in the reference manual that accompanies the control equipment.
Since many industrial processes are poorly tuned, the general-purpose self-tuner
represents an impressive achievement in the application of a digital computer to
control technology. The reader may consult the paper by Krause and Myron (1984)
to obtain more information on the development of the EXACT self-tuner of the
Foxboro Co. The term EXACT stands for expert automatic control tuning and
suggests that the method of tuning is based on a branch of artificial intelligence
known as “expert system” design.

Displays

The software in a modem controller has made the strip chart recorder almost
unnecessary. Through the use of skilled programming, the transients (or trends)
produced in a control system can be displayed on a monitor screen dynamically.
As time progresses, the values of selected variables are displayed as a function
of time. The segment of time shown on the screen can be selected to be a few
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minutes to a few hours to show dynamic detail or long-term trends. Transients
that occurred in the past can be stored and displayed again.

Many process operators are more comfortable with control instruments that
have a faceplate which shows bar graphs or pointers indicating set point, control
variable, and output to the valve. In the older instruments, those indicators were
obtained by use of mechanicd motion or other means. The software provided with
a microprocessor-hased controller can be used to obtan a dynamic display on the
screen that mimics the faceplates of traditiona instruments.

Alarms

An extensive amount of the software in modem controllers is devoted to detecting
and reporting a problem in the form of an alarm. The alarm takes the form of a
visual signal (flashing light), an audible signa (beeping horn), or the actuation of
a switch. Examples of the use of switch closures include turning on or off a pump
motor or opening or shutting a vave. The dams are classfied as process alarms
and diagnostic alarms. The diagnostic alarm detects a malfunction in the control
equipment or the loss of communication. For example, if a wire connecting the
output of a temperature transmitter to an analog input block breaks, a diagnostic
alarm would go off indicating that the signal to the analog input block is out of
range. The manufacturer of the control equipment provides all the software for
detecting the problems that trigger diagnostic aarms.

The engineer who configures the control blocks selects the variables that arc
to trigger process darms and specifies the darm limits and the type of annunciation
(flashing light, beeping horn, etc.) The alarms can be assigned a priority rating.
Those variables in a process that are most critical arc given the highest priority;
less critical variables are given alower priority.

Mathematical Functions

The software provides basc mathematicd functions such as summation, subtrac-
tion, multiplication, and accumulation (i.e., integration). These functions can
be used along with other blocks in the design of a control system. A simple
example of these functions is the caculation of mass flow rate of a gas from mea
surements of velocity, pressure, and temperature. These three measurements are
combined according to the following relationship, which is based on the ided gas
law:

w = vAPM/RT

where w = the mass flow rate, mass/time
v = the velocity
P = pressure
T = absolute temperature
A4 = molecular weight of the gas
R = the gas constant
A = crosssectional area for flow
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The signal from the math block that represents w can then be sent as the control
variable to a control block that controls the mass flow of gas.

»

Data Acquisition and Storage

Long-term storage of the transients can be obtained easily with a digita computer.
This task is referred to as archiving The automatic storage of critical process-
control variables on disk or tape can be refrieved later to explain process operating
difficulties. The computer can adso be used to automatically record or log the type
and location of an adarm, the time of a process aam, the time of acknowledgment
of an darm, and the time it was cleared by operator intervention: this information
is useful to supervisors in detecting violation of safety regulations or process
malfunctions.

SPECIAL FEATURES
OF MICROPROCESSOR-BASED
CONTROLLERS

In addition to the tasks just described, there are three specid features available in
modern - microprocessor-based  controllers that deserve attention. These are limit-
ing, tracking, and anti-reset windup. Each will be discussed separately.
Limiting

In configuring a control system from basic control blocks, one can select lower
and upper limits on controller output and set point. These limits are narrower
than the limits inherently present in the hardware. Limits are often placed on a
controller output for safety reasons or to protect equipment. For example, if one
knows the flow rate of a liquid that causes a tank to overflow, one can set the limit
on the output of a controller at a value less than the value that causes overflow.
The limits on the controller output are active when the controller is in ether
automatic or manual mode. An example of alimit on set point is the selection of

an upper limit on pressure for a steam-heated sterilizer to prevent damage to the
equipment.

Tracking

A very useful feature of a microprocessor-based controller is tracking. Although
tracking is not needed to successfully control a system, its presence is of great con-
venience to the process operator. Two examples of tracking are set-point tracking
and controller-output  tracking.

Set-point tracking is useful when a controller is transferred from manua to
automatic. When a process is started up for the first time, a common procedure is
to bring the process on-stream in manual mode. In this case the operator adjusts the
output of the controller (which goes to the valve) until the process variable comes
to a desired steady state. When the tracking feature is not present in the controller,
the set point must be manualy adjusted until it equals the process variable before
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the controller is transferred to automatic; the process then continues running in
a smooth manner. If the operator adjusts the set point to the process variable
after switching to automatic, there may be a temporary disturbance in the process
variable. The expression for the disturbance is called a “bump.” With set-point
tracking, the operator does not need to think about adjusting the set point to
the process variable, because it is done automatically. In other words, set-point
tracking provides “bumpless’ transfer when switching from manuad to automatic.

A second example of tracking can be seen in its use for transferring a
cascadle system from manual to automatic. (The reader should be familiar with the
information on cascade control provided in Chap. 18 to understand this example)
To explain the use of tracking in cascade control, reference to Figs. 18.16 and
18.2b6 will be made. In darting up this system, the primary controller is placed in
a dand-by condition and the secondary controller is placed in manua mode. The
means for accomplishing this is built into the software of the controller. With the
secondary controller in manual mode, its output is adjusted until the temperature
of the tank contents (Tp) is a the desired vaue. Then, with the control system at
Seady dtate and T a the desired vaue the system is transferred to cascade mode
by placing both controllers in automatic. Since the output of the primary controller
adjusts the set point of the secondary controller, it is necessary to have the output
of the primary controller equal to the jacket temperature (T;) when the system is
transferred to cascade mode. This goal can be achieved by having the output of
the primary controller track the jacket temperature while the secondary controller
is used in manual mode to adjust the tank temperature to the desired value. For
this example, the set point of the primary controller can also automatically track
the tank temperature (Zp) before the transfer to cascade mode occurs. In this
cascade control example, we have seen tracking used for both the set-point and
the controller output.

Anti-Reset Windup

A troublesome problem with a controller having integral action (Pl or PID) is the
possible occurrence of reset windup. When the error to a controller remains large
for along time, the integra action of the controller builds up a large value of
output which often approaches the saturation value of the controller output. This
accumulation of output is caled reset windup. When the process variable returns
to the set point, the output of the controller does not immediately return to a
value that will hold the process variable at the set point because the controller
output has built up (or has been wound up) and must be reduced by the presence
of error of opposite sign over some duration of time. Thus the transient for the
control variable exhibits a large overshoot that can persist while the output signa
is being reduced through integral action being applied to the error of reversed
sign.

Reset windup typicaly occurs during the dtart-up of a process. To gan some
insight into the cause of reset windup, consider the start-up of the liquid-level pro-
cess shown in Fig. 35.3 in which the level in the third tank is to be controlled
by a Pl controller. The valveis linear and saturates at 0 and at 0.5 as shown in
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FIGURE 35-3
Plant start-up illustrating reset windup (tanks are initially empty): (a) process, (b) linear valve with
saturation limits, (c) block djagram of process.
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Fig. 35.3b. Upon start-up with the PI controller in automatic mode, the tanks are
empty, and the error (R — C) is large and positive. The action of the controller on
this error will result in a large output M due to proportiona action and a rising
contribution to M due to the integra action. The output of the controller will
be at its saturation value, which is typically about 10% above the top of the 4
to 20 ma scale (i.e,, 22 ma). The large saturated value of M will in turn cause
the valve to reach its saturation value, which has been taken as 0.5. During the
initid phase of the operation, the tanks are being filled at the maximum rate of
flow provided by the upper limit of the control valve. During this filling stage
of operation the controller is not exercising any control since the valve is at its
limit. As the level rises toward the set point, the large error that existed at start-up
gradually diminishes toward zero. If only proportional action were present in the
controller, the output of the controller would return quickly to a mid-scale value,
however, because of the integral action, the controller output remains high, at
its saturation value, long after the process variable first reaches the set point. To
reduce the output M, the integral action must be applied to-negative error so that
the integration can lower the output to mid-scale. This negative error occurs as
a result of the tank level remaining above the set point for some time after the
tank level reaches the set point. Other causes of reset windup and some methods
to prevent it are discussed by Shinskey (1979).

The control system shown in Fig. 35.3¢ was smulated for a dtart-up transient
with the tanks initially empty; the transient is shown as Curve | in Fig. 35.4.
The large overshoot in tank level after the level reaches the set point is clearly
illustrated. Now that the problem of reset windup has been described, we focus
our attention on how to reduce or eiminate it. The development that follows on
the use of external feedback to eliminate reset windup is based on the work of
Shunta and Klein (1979).

A feature of microprocessor-based controllers is the availability of externa
feedback in the configuration of a Pl or PID controller. The block diagram of a
PI controller with external feedback is shown in Fig. 35.5. The output of this
controller is given by
t

t
M(t) = K e(t) + _If_;j e(t)dt + lj [F(t) = M(t))dt (35.2)
T Jo 7T Jo

i | No external feedback
Set
1.0p0
g H External feedback
N FIGURE 35-4
ol vy o4y Start-up transients for system in Fig. 353 with and
0 10 t without external  feedback.
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where M(t) = controller output
e(t) = error = setpoint — control variable
F(t) = externa feedback signal
If the Laplace transform of both sides of Eq. (35.1) is taken, the result is
M(s) = Kee(s) + K;(s) + —I—[F(s) - M(s)] (35.2)

If the feedback signal is the controller output, F(s) = M(s), Eq. (35.2) becomes
the usd trande fundion for a P contrdller:

M(s) = K,

1
L+ el (35.3)

The feedbadk dgd Hi) can be ay dgd avalddle to the microprocessor-besed
controller. When F(t) is not equal to M(t), Eq. (35.2) can be solved for M(s) to
give

M(s) = K.e(s) + TF(S) (35.4)

s+ 1

A controller following this equation provides a signal consisting of propor-
tional action plus first-order tracking of F(t). If F(t) in Eq. (35.1) is taken as the
output of the vave (or the output sgnd of the current-topresare transducer thet
goes to the valve) in our example in Fig. 35.3¢, we have the basis for eliminating
reg windup. Duing the filling dage of the tak, the fesdbedk dgnd F(t) will be
constant at the saturation value of the valve output. When the tank level reaches
the set point, the error will be zero and the only contribution from the controller
ouput will be the tracked dgnd represated by the seoond tem on the right Sde
o Eg (BA4). This vdue will be les than wodd be the cae if exdtard fesdback
were not employed. The ovadl reddt is that the contrdller output is less with the
extend feecback a the time the levd fird equds the st point ad the overshoot
is reduced. The transient’ using external feedback is also shown in Fig. 35.4 as
Curve Il. Notice that the overshoot is less when external feedback is used. To
emphadze the bendfit of edemnd feabadk for diminding ret windup, no limits
were placed on the output of the controller in the simulation of Fig. 35.3. In
practice, there are physical limits on the controller output, and when this is the
cae the redudion of ovashoot with the use of extand fesdbedk may not be 0
pronounced s down in Hg B4
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DISTRIBUTED CONTROL

So far we have been concerned in this chapter with the operation of a single

controller. Such a controller is referred to as a stand-alone controller because it
is not communicating with other controllers, but only with the one control loop
of which it is a part. Present-day microcomputer-based control systems have the
capability of communicating with other controllers through a network, which is
caled distributed control. Figure 35.6 shows one version of the communication
linkages that are usualy present in a digtributed control system. Each manufacturer
of didributed control systems has a different way of organizing them.

A distributed control system is intended to be used for a large processing
facility that involves as many as fifty to one hundred loops. Examples include
arefinery, a brewery, a power plant, and the like. In Fig. 35.6, the modules of
control equipment that communicate with each other are as follows.

Control  processor  (CP)
Applications  processor  (AP)
Workstation (WS)
Fieldbus module (FBM)

The firgt three of these modules communicate with each other through a nodebus
or “data highway,” as it has been called. The fieldbus modules serve as devices
that interface with transducers and valves in the process.

The control processor contains the blocks described earlier (analog input,
analog output, control, linearization, etc.) that are connected together by soft-
wiring to provide the control agorithm required for each loop. Communication
between the control processor and the process (a distance away) in the field takes
place in the fieldbus module. Two types of fieldbus modules are available. One
type provides a set of analog inputs and a set of analog outputs that send to and
receive from the field continuous signals (4-20 ma). The other type of module

Nodebus
| | | | |
CcP CP mmmmmm = cpP AP ws
| | | 1]
FBM FBM |~~~ "~ ~ FBM
| | | Printer Monitor | Keyboard
Process 1

FIGURE 35-6
Typical connections in a distributed control system: CP: control processor, AP: applications processor,
WS workstation, FBM: fieldbus module.
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sends to and receives from the field digital signals that often take the form of
switch-contact ~ closures.”

The application processor is a microprocessor (or computer) in which the
programs (or software) are dored for performing the many tasks described earlier
and for managing the communication among modules.

The workstation module is connected to a keyboard, a mouse, a monitor,
and a printer for use by process operators to interact with the system. At the
workstation, the process operator can call up on the screen various displays,
change set points and controller parameters, switch from automatic to manual,
acknowledge darms, and perform other tasks needed to operate a control system
consisting of many loops. A control system can also be configured as an off-
line task a the workstation. After configuration, the configured control system is
downloaded to the control processor. If necessary, more than one workstation can
be attached to the nodebus in order to provide communication at several locations
in a plant. If more than one workstation is used, only one of them should have
the authority at a given time to be in charge of the control system.

SUMMARY

During the past 15 years, the computer has greatly changed the nature of industrial
process control equipment. The microprocessor has become the heart of control
instruments and the computer programs stored in the memory of the hardware have
provided many functions besides the basic control agorithm. When the pneumatic
controller was the predominant type, one purchased a controller with very specific
attributes (e.g., mode of control, type of measured variable, chart speed, etc.}.
The microprocessor-based control instruments available today contain not only
the conventiond control agorithms, but many other functions such as simulation
of basic transfer functions (e.g., lead-lag and transport lag), display-building,
mathematical functions, process and diagnostic alarms and data acquisition. The
modem instruments aso provide logic functions (comparators, timers, counters,
etc.) for use in batch control and plant start-up and shutdown. Recently, self-tuning
dgorithms have been added to the microprocessor-based instruments.

In this chapter, some of the specia features of modem controllers were
discussed (e.g., limiting, tracking, and anti-reset windup). Any controller having
integral action can cause reset windup under certain conditions when the error
persists for along time. The result of such a phenomenon is a transient that has
large overshoot. Manufacturers of control instruments now offer severa methods
for reducing reset windup; the one presented in this chapter was use of externa
feedback.

Before computer control appeared, most process loops were served by in-
dividua controllers with signals to and from these controllers being collected on
alarge pand board in a special control room. To obtain communication between
the control room and the controllers regquired much wiring and piping (for pneu-
matic systems). Today, microprocessor-based control systems have the capability
of communicating with other control instruments through networks, called dis-
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tributed control, with the result that much of the hardwiring used in the older
systems is done within the computer. Such internal computer connections are
called softwiring because the connections are made through software. A distributed
conirol system can control an entire plant and involve as many as one hundred
or more control loops. Since each manufacturer has a different way of organizing
a distributed control system, the practicing engineer must obtain the details of a
particular system from the manufacturer. Most manufacturers offer a variety of

short courses for technicians and engineers on the installation and use of their
hardware and software.
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Absorption, dynamics of, 328-333
ACSL gmulaion oftware, 540
Adjoint of matrix, 443

Alarm, process and diagnogtic, 549

Amplitude ratio, 202

Andog computer, 517
Andog-to-digital  converter, 35 1
Attenuation, 59

Autonomous  system,  definition, 485

Bandwidth, 129
Batch control, 546
Bilinear  tranformation, 378
Block diagram, 53, 112-113
chemical reactor, 135-141
standard symbols, 143-144
Bode  diagram:
asymptotic approximations,
210-212
controllers, 217-218
definition, 209
first-order system, 209-211
graphical  rules, 213
second-order system, 213-216
sysems in  series,  211-212
transportation  lag, 205
Bode stability criterion, 227-228
Bumpless transfer, 288, 551

INDEX

C, for valve, 305
Cascade control, 249-256
in vave pogtioner, 315
CC dmulaion software, 540
Characteristic equation, 167-168
roots of, 33-35, 167
sampled-data sysem, 377, 3%
Chattering, in  on-off control, 497
Chemical reactor, 135-141, 235
phase plane of, 479-483, 500-504
Clamping, 35 1
ClosedHoop  system, 112
Closed-loop transfer functions, 143-149
Cofactor matrix, 442
Cohen-Coon tuning, 288-289
Comparator, 112
Computer control, 405-427, 543-557
Control  sysem response,  151-159
Control  valve (see Vave, control)
Controller, 128-133, 545-556
cdibration of, 13 1
cascade, 249-256
direct digital, 405
feedforward, 257-265
internal model, 272-279
microprocessor-based, 543-556
pneumatic versus electronic, 543-544
ratio, 265-267
sampled-data, 405-427

361
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Controller mechanism, 124-126

Controller modes, choice of, 283-284
motivation for, 132-133

Controller tuning, 282-295
Cohen-Coon process reaction curve,

288-290

comparison of methods, 291-295
Ziegler-Nichals, 233-234, 286-287

Comer frequency, 210

Criteria of control quality, 284-285

Critical damping, 95

Criticd points, andyss of, 487-492
definition  of, 485

Cross-controller, 455

Crossover frequency, 227

Damped oscillator  (see  Spring-mass-
damper system)
Damping, viscous, 90-92
Dead time (see Transportation lag)
Dead zone, in on-off control, 498-500
Decay ratio, 97
Decibd, 211
Derivative action in control, 131
Derivatives, Laplace transform of,
16-19
Describing  function, 5065 11
of actud rday, 510
definition  of, 510
Determinant of matrix, 442
Deviation variables, 51-52, 115
in didributed parameter  systems, 342
Differential equations, 20-21
computer solution, 517-532
Digital-to-andlog  converter, 35 1
Displays, 548-549
Digance-velocity lag  (see  Transportation
lag)
Distributed control, 555-556
Distributed-parameter systems, 333-344

Error, 111

EXACT  odf-tuner, 548

Exponentid  dage  (see  Firg-order
system)

Extend feedback for  anti-resst windup,
553-54

Feedback:
negative, 113
postive, 113

Feedforward control, 257-265
Foxboro tuning rules, 262-265
Fieldbus module, 555-556
Filter in internd model contral,
275
Final-value theorem, 37-38
Firg-order lag, 52
(See also Firg-order  system)
First-order system, 49-53
computer ssimulation, 533-534
impulse response, 57-58
interacting, 83-86
noninteracting, 80-82
in series arrangement, 80-86
snusoidd  response, 5861
step response, 55-57
trander  function, 5 i-52
Flow control, 547-548
Focus, 487-490
Forcing function, 22, 52-55
Fourier series, 358-359, 507-509
Frequency response, 20 1-240
Bode diagram, 209-220
(See ds0 Bode diagram)
Bode stahility criterion, 227-228
comparison  with root locus, 174
in control  system design, 224-240
of controllers, 2 17-2 18, 22 1,

236-238

definition, 203

of  didributed-parameter  systems,
337-338, 343-344

from dlipticd phase diagram, 221
experimental determination of,
299-300
gan ad phase margins, 228233
heurigic ~ dtability — arguments,  208-209,
224-227
Nyquist  stahility  criterion, 227
from pulse test, 300-301
subgtitution  rule,  201-202
of systems, 209-216
in series, 207, 211-213
Ziegler-Nichols settings, 233-234,
286-287
Frequency testing, 299



Gan margin, 228-233

design  specifications, 229
Gan-phese plot, 5 11
Gas absorber, dynamics of, 328-333

Harmonic analysis, 506-5 10
Heat conduction, dynamics of, 333-338
Heat exchanger:
dynamics, of counterflow, 339-344
resonancein, 343-344
steam-jacketed kettle, 318-324
Hedter, dirredtank  (see  Stirredtank
heater)
Hold
firg-order, 375
zero-order, 352-353
Hyseress in vaves, 315

Impulse function, 42, 54
Impulse  modulated  function, 353
Impulse  modulation, 352
Initid-vdue theorem, 39
Integral, Laplace transform of, 43—44
Integrl  action in control, 130-131
Integrd  of eror criteria
abolute vdue of eror (IAE), 285
sguare of error (ISE), 285
time-weighted  absolute  eor  (ITAE),
285
Integrator, 5 18, 532-533
Interacting systems, 80-86
Interaction:
in control system, 453-454
in mercury thermometer, 87
Internal model control, 272-278
Inverse of matrix, 442-443
Inveson of Laplace ftrandorms —22-33
Isoclines, method of, 485-487

Lag, 61
Laplace transform, 13—44
of integral, 4344
inversion of, 22-33
table, 17-18
ue in patid differentid  eguations,
335-336
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Lead-lag transfer function, 547
Ligounov, method of, 491492
Limit cycle, 315, 492-493
in  exothermic  chemical  resctor,
502
in on-off control, 498, 506-511
Limiting in controller and valve, 550,
551-553
Linearization, 72-75, 321-324
in andyss of critica points, 490
Liquid level, 64-70
computer simulation, 520-525
Load change, 112
Loading, in liquid-leved process, 85
Long divison, BASIC program,
372-374
Lumped-parameter model, of distance-
velocity lag, 338-339
for  mercury thermometer, 50

Manometer,  mercury, 105
Matrix, 441-442
Matrix differential equation, 432-433
Minimal  prototype response, 408
Minor of matrix, 442
Mixing process, 70-7 1
Modeling, 344
Modified Z-transform, 384-392
table, 356-357
Multiloop system, block  diagram
reduction, 148-149
Multiple input-multiple  output  system
(MIMO), 453
Multivariable  control,  453-466
decoupling, 46 1
interaction,  453—454
stability, 464-466

Natural frequency, 97
Naturd period, 97
Negative feedback, 113-114
overall transfer function, 144-148
Node, 488—490
Nodebus in digtributed control, 555
Noninteracting ~ control,  458-463
Nonlinear systems, 469-505
definition of, 47 1
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Nonminimum phase characteristics, 275
Nonminimum phase lag, 338
Nyaquist stability criterion, 227

Offset, definition, 153
On-off control, 130

of stirred-tank heater, 493-500
Open-loop transfer function, 167
Overdl trander  function, from block

diagram, 144-149

for positive feedback system, 147
Overdamped response, 95
Overshoot, 96

Padé approximation to transport lag, 103
Partid fractions, 22-33
Pendulum, 476-478
phese plane of, 490-492
Period:
of oscillation, 97
ultimate, 233
Phase angle, 59, 202
Phase lag, 59
Phae lead, 59
Phase margin, 228-233
desgn  specification, 229
Phase plane, 471-493
graphicd  methods in, 484493
Phase space, 471-483
Poles and zeros, 178, 182
Postive feedback, 1 13-114
overall transfer function, 147
Process dynamics, experimental,
296-301
theoreticd, 3 18-345
Process  identification, 296-301
semi-log method, 297-298
Process reaction curve, 283
Proportiona  band, 129
Proportional  control, 111
Proportiond  controller, ideal
transfer function, 128-129
Proportiona-derivative  control,  ided
transfer function, 131-132
Proportiona-integrl ~ control,  ided
transfer function, 130-131

Proportiona-integral-derivetive control,
ideal transfer function, 132
Pulse  function:
as approximaion to unit impulse,
67-69
reponse of liquid-levd sysem to,
67-69
Pulse Festing, 300
Puse trander function, 360-361

Quadratic lag (see  Second-order  system)

Ramp function, 15
Ratio control, 265-267
RC circuit, 71-72
Regulator problem, 114
Relay:
actual , harmonic analysis of, 506510
dectronic, ideal, in on-off control,
493-494
Reset windup, 551-554
Resistance, 64
linesr, 64
Resonance, 216
in heat exchanger, 344
Resonant peak, 215-216
Response  time, 97
Rise time, 97
Root locus, 177-193
comparison with frequency response,
174
concept, 177-182
plotting of diagrams, 182-184
rides for plotting, for negative
feedback, 184-186
sampled-data system, 380-382
Roots of equation, BASIC program,
193-195
Routh test for dahility, 169-171
extensons, 175
in sampled-data systems, 378-379

Saddle point, 487-491
Sampled-data control, 347428
closed-loop response, 364-366



desgn methods, 410-415
for firg-order with trangport  lag,
393403
open-loop response, 360-363
performance specifications, 408—409
puse trandfer function, 361
stability, 376-378
Sampling, 349-35 |
fad and dow, 410
Second-order system, 90-101
computer  simulation, 520-521
dynamic parameterst and ¢, 91-92
impulse response, 93-99
overdamped, graphical calculation of
time condants, 105-106
overdamped, semi-log graphical
method, 297-298
snusoidd  response,  99-101
step response, 92-98
transfer function, 92"
Self-tuner, 547-548
Sengttivity,  controller, 128
Servomechanism problem, 114
Set point, definition, 112
Settling time, 415-416
Smnon  sSmulation  software, 540
Simulation, computer, 517-539
Simulation software, 532-540
Sngle input-single  output  system
(S1S0), 453
Spirule, 189
Spring-mass-damper system, 90-92
phase plane of, 472-476
Stability, 164-174
Bode criterion, 227228
conditional, 193
definition, 166
in - nonlinear systems,  491-493
in multivariable system, 464-466
Routh tes, 169-171
sampled-data control, 376-382
Started function, 353
Sae of sydem, definition, 484485
State vaidle 432433
sdlection and  types, 436437
State-space methods, 429-468
trander  function matrix, 449
transition matrix, 447

INDEX 565

Steady-state  gain, 66
Step function, 15, 53-54
Step testing, 296-299
Stirredtank  hegter:
block diagram for contol df,
111-120
closed-loop response of, 151-159
on-off control, 493-494
Subdtitution rule in  frequency  response,
201-204
Summer, 532-533
Superposition, 52-53, 47 1
Sutro weir, 64

Taylor-series  expandon, 73, 32 1
Thermometer dynamics, 49-52
Time congant, 5 1, 72
Tracking in controller and  vave,
550-551
Trgectory, definition of, 484
Transducer, 139
Transfer function, 49, 52-53
for  didributed-parameter  systems,
335-337, 343
dmulation by computer, 532-534
Transfer function matrix, 446-452
Trandfer lag, 83
Trandorm  (see  Laplace trandorm  and
Z-transform)
Trangtion  matrix, 447
Trandation:
of function, 40
of transform, 39
Transportation  lag:
computer simulation, 525-528
& a didgributed parameter system,
338-339
Padé gpproximation, 102-103
transfer function, 101-102
Tuning rules, 282-295
TUTSM  dmulation  software,
532-540

Ultimate periodic  response, 59
Underdamped response, 93-94
Unity feedback, 152



566 INDEX

Valve, control, 303-316 Weir, 64-65
Cy, 305
characteristics, 306-309
construction, 303-305 Zero-order hold, 352-353
equal percentage, 308 Zeros and poles, 178-182
hyseress, 315 Ziegler-Nichols settings, 233-234,
linear, 308 239-240, 286-287
linearization of, 324-326 z-transfoml, 354-355
logarithmic, 308 inverson by long division,
postioner, 3 14-3 16 362
Szing, 305-306 inverson by patid fractions,
transfer function, 127-128 . 363-364

Vector, column and row, 441 table, 356-357
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