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PREFACE 

This book is a natural outgrowth of my notes for a senior undergraduate course on probability and 
random signals that I have been teaching twice a year over the past several years at the University 
of New Orleans and the University of Hartford. It is intended as an elementary introduction to 
the principles and applications of probability, random variables, random processes and signals, 
and statistics. The prerequisite is a basic knowledge of calculus, signals, and systems. 

In short, the distinctive features of this book include 

• Unique "textgraph" format 
• Succinct and lucid presentation 
• Well-integrated with companion software and computers 
• Good balance between basic and more advanced topics 
• 200 worked-out realistic examples from a myriad of engineering applications 
• 50 computer exercises 
• 40 self-test problems with complete solutions 
• Chapter summary and requirements 
• Valuable instructor's manual with 40 suggested exam problems, solutions to all homework 

problems and computer exercises, and all larger-type pages as transparencies. 

The book is intended to be both instructor-friendly and student-friendly. It is written in 
an innovative format of "textgraph"1 consisting of separate pages in fonts of different sizes, 
respectively: 

• Larger-typeface pages form a relatively concise text for basic topics, written in a way suitable 
for use as viewgraphs/transparencies for classroom teaching directly. 

• Pages with smaller type provide more detailed explanations, examples, and/or more advanced 
materials. 

This format has several advantages. First, it provides a good balance between basic and more 
advanced topics such that the latter is covered without losing the emphasis on the former. This 
should be ideal for both average and good students. Secondly, the main task of the instructor 
of a course is converting the text into his or her own course notes, which requires a clear and 
concise presentation of carefully selected topics of the subject. The "textgraph" format makes 

1The word "textgraph" first appeared in the graduate text Estimation and Tracking: Principles, Techniques, and 
Software by Y. Bar-Shalom and myself, which, however, differs in format from this one. 



such a conversion unnecessary. In fact, i t gives the instructor time to cover more material, to 
explain important concepts and to review examples in class. Thirdly, it helps the student see the 
forest rather than just die trees by eliminating the need to copy down large numbers of equations 
necessary in such a course. For probability and random signals a clear understanding of basic 
concepts and principles is far more important than mathematical skills and tricks, unlike some 
other subjects in mathematics, science, and engineering. The "textgraph" format frees the student 
from spending too much valuable classroom time on the nitty gritties of the mathematics involved. 

As part of the requirement of a textgraph, the book was written in such a way that the 
material presented in the larger typeface is self-contained. 

Another distinctive feature of the book is that it is well-integrated with a companion software 
package named P&R, found in the enclosed CD-ROM. Its updated version can be downloaded 
from the Downloads Section of the web site: http://www.crcpress.com/. Written in M A T L A B 2 

and running under a Windows environment, P&R is entirely menu-driven and extremely user-
friendly. It does not require the knowledge of any programming language (including MATLAB). 
It is demonstrated via examples throughout the book that many practical problems can be solved 
easily using this package. 

You have not really learned a theory unless you know how to use it. There is no doubt that 
the student can gain tremendously, particularly in terms of how to put the theory to use, with 
the help of carefully designed computer exercises. That is why some of the more recent texts on 
the same subject include the use of computers. The use of computers suggested in these texts 
requires some familiarity with a computer language, most often MATLAB. Most students in my 
class, however, are not skillful enough in MATLAB and as a result these computer exercises are 
too much of a burden. The companion software for this textgraph solves this problem well. It has 
been extremely well received by my students. For example, many of the more than 50 computer 
exercises included in this textgraph, especially the more practical ones, would require too much 
computer programming effort without the companion software. A l l the practical examples solved 
by P&R in the book can be repeated by the student easily and thus i t helps the student get a 
real feel of how random problems are solved. In other words, the software makes it possible to 
include many practical examples, which are easily repeatable by the student, and many computer 
exercises which give the student practice in solving "real world" problems. 

Engineering students love examples. As one of my students put it, "we learn the material 
through examples only." This is true even more so for a course on probability and random signals. 
Engineering probability is a subject in which the mathematics involved appears deceptively simple 
to students. The major difficulty is knowing which equations or formulas to apply for a particular 
problem. In addition to conveying a clear and good understanding of the basic concepts and 
principles as much as possible, such a know-how ("know-which," more precisely) is hard to teach 
other than through good examples. Many of my students over the years have complained that not 
enough good examples were included in the half-dozen texts I have tried. Of course, examples 
are such that for students "the more the better." In addition to the 40 self-test problems, I have 
integrated about 200 examples into this textgraph, each with a complete and detailed solution. 

2 MATLAB is the registrated trademark of The MathWorks, Inc., Natwick, MA, USA. 
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These examples were carefully made and selected to demonstrate not only the basic concepts and 
principles, but also how to put the theory to use, as well as how to stimulate the student's interest. 
They cover a wide variety of application areas, including communications, signal processing, 
radar technology, control systems, quality control, electric power, reliability, statistical inference, 
stochastic simulation, computer engineering, operations research, and everyday life problems. 

Still another distinctive feature of the book is its succinctness. This is partly due to my writing 
style and partly due to the requirements of the viewgraph/transparency part of the "textgraph" 
format. Most students and myself do not like excess verbosity. A number of compact and 
unambiguous notations have been adopted, which helps to achieve the goal. 

Guide to the Instructor 
This book is intended to be extremely instructor-friendly. It includes many features that an in-
structor loves. Writing course notes, selecting and grading homework problems and computer 
exercises, and creating exam problems are three of the most time-consuming tasks for the in-
structor. An instructor can save a lot of time if he or she adopts this book. The "textgraph" 
format makes it unnecessary to prepare his or her own notes. Complete and detailed solutions of 
all problems and computer exercises at the end of each chapter are provided in the Instructor's 
Manual (ISBN 0-8493-0092- 4), which makes the second task easier. What is more innovative 
is that the Instructor's Manual also includes 40 suggested exam problems, with complete and 
detailed solutions. The following two additional items are also included in the Instructor's Man-
ual: (1) a floppy disk that updates the companion software to include menu-driven solutions of 
all computer exercises, including solutions to the exercises with parameters modified arbitrarily 
by the instructor; and (2) a copy of all the pages in the larger typeface of the book, which is 
provided to help the instructor make viewgraphs/transparencies directly. 

The companion software is capable of the following tasks: 

® Generate random numbers 
• Plot probability density (or mass) functions 
• Look up tables of probability distributions and percentiles 
« Plot histograms and scatter diagrams of data 
• Identify distributions of data 
• Generate Gaussian processes, random sinusoids, and random pulse trains 
• Estimate correlation functions and power spectra of random processes 
• Generate system responses 
• Some other miscellaneous tasks 
® Solutions to all computer exercises (instructor's version only) 

A more detailed description of the software can be found in Appendix A. 
Each chapter is written in such a fashion that whenever possible more important and basic 

topics are covered first and the least important topics are put at the end. 



Chapter 1 provides a general introduction to and a global picture of probability, random 
signals, and statistics. It explains what they are about and why they are important. It also tries 
to stimulate student interest. 

Basic concepts of probability, along with the total probability theorem and Bayes' rale, are 
studied in Chapter 2. The material covered in this chapter forms the first hurdle the student must 
overcome. 

Chapter 3 introduces the concept of a random variable, its distribution and expectation. It also 
includes the topic of random number generation, which allows the student to play with random 
numbers early on using the companion software and/or computers to gain better understanding of 
the material covered and to arm the student with a powerful tool for solving practical problems. 

Chapter 4 extends the topics of Chapter 3 to two or more random variables. The emphasis 
is on the relation between random variables, which was unfortunately not treated well in most 
previous texts. I have tried hard to present a clear picture of such relations. The companion 
software should prove to be particularly useful for this chapter. 

An introduction to elements of statistics is given in Chapter 5. This chapter was written in 
such a way that provides three possible levels of coverage that are self-contained, depending on 
how much statistics the instructor wants to cover in his or her course. I am aware of the fact that 
different instructors in different or the same schools may choose quite different levels of coverage 
of elements of statistics in such a course. 

Chapter 6 presents the basic concepts of random processes and its time-domain analysis. 
This chapter is probably the most difficult one for the student. I have tried hard to reduce the 
difficulty as much as possible. For example, correlation functions are explained using common 
sense and sample correlation functions are studied through examples and computer exercises to 
provide the student with a real feel for what correlation functions are. The companion software 
should prove to be particularly useful for this chapter. 

The power spectrum of a random process is covered in Chapter 7. The emphasis is on the 
interpretations of various components of a power spectrum and on white noise. 

The response of a linear system to random input is the topic of Chapter 8. It is an application 
of the material covered in the previous chapters, in particular Chapters 6 and 7. It is also the 
heart of random signal processing. 

A variety of optimal linear systems are treated in Chapter 9. It deals with the synthesis of 
linear systems that are optimal in some sense, as opposed to the analysis of a linear system with 
random input in Chapter 8. 

Approximate teaching hours for each chapter 

~ ^ ^ T ~ T ^ 2 3 4 5 6 7 8 9 1-9" 
Hour(s) 1 7 10 7 4 5 4 5 3 46 

I have been able to cover most of the material presented in this book in a three-credit course in 
one semester. The following table lists the approximate hours per chapter for classroom teaching, 
assuming all materials presented using the larger-type pages are covered. For convenience, one 



hour stands for the actual 50 minutes of classroom teaching time such that a three-credit course 
has three hours each week. 

It is clear from the above table that the material might be slightly more than what can be 
covered in a three-credit course in one semester of 14 weeks. Some topics may have to be skipped. 
For this purpose, the following table gives a breakdown of sections in terms of importance in my 
opinion. 

Importance of each section 

Most Important Important Less Important Least Important 
1.1, 1.2, 1.3, 1.4 1.6 1.5 
2.1, 2.2, 2.3, 2.4, 2.5, 2.6 
3.1, 3.2, 3.3, 3.4, 3.5, 3.7 3.8, 3.10 3.11, 3.9 3.6, 3.12 
4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 4.8, 4.9 4.10 
5.1, 5.2 5.3, 5.4 5.5, 5.6, 5.7 
6.1, 6.2, 6.3, 6.4, 6.5, 6.8 6.6, 6.7 6.9 
7.1, 7.2, 7.3, 7.5 7.6 7.4 
8.2, 8.3, 8.5 8.1, 8.6 8.4 8.7 
9.1, 9.2 9.3, 9.4 

A couple of times I have also used a draft of the book, along with supplementary material, 
for a graduate-level introductory course on engineering probability and random processes. 

I look forward to receiving comments and/or complaints on this book. I can be reached 
at xli@uno.edu or at the Department of Electrical Engineering, University of New Orleans, 
Lakefront, New Orleans, L A 70148, USA. 

Guide to the Student 
This book is indended to be very friendly to you no matter i f you are a good, average, or below 
average student. The "textgraph" format makes it crystal clear what is important and what is 
less important. I f you are a below average student, you do not need to worry too much about the 
material covered by the smaller typeface, especially the more advanced topics. You should be 
able to get the most out of this book by studying the material presented in the larger type only 
given your disadvantageous background knowledge or limited study time. If, however, you are 
a good student, you should study the material written in the smaller face for better mastering of 
the subject matter. You should take a middle ground i f you are an average student. For example, 
you should usually study the explanations and additional examples written in the smaller type 
but you may be better off skipping the more advanced topics. 

The book includes many worked-out examples. Almost every example attempts to illustrate 
something important. You should study these examples well unless the corresponding section is 
not covered by your instructor. 

mailto:xli@uno.edu
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The brief summary and basic requirements presented at the end of each chapter are intended 
to highlight the important concepts, topics, and/or results as simply as possible so that you can 
be more focused and you can check how well you understand the material covered in the chapter. 
I advise you to study the corresponding summary and requirements each time your instructor has 
finished a chapter or at least when you are preparing for an exam. 

A number of well-designed and balanced self-test problems are provided at the end of each 
chapter, along with complete solutions. I have actually used most of these problems to test my 
students. You should try to solve these problems yourself in a limited time frame without referring 
to the solutions first. Then compare your answers with the solutions and see how well you did. 
Some of these problems might be slightly harder than your actual exam problems, obviously 
depending on your instructor. 

The companion software is extremely easy to use and quite powerful in solving many prob-
lems of this course. I guarantee that you wi l l be well rewarded i f you spend time to play with it. 
The best starting point is to repeat the examples solved by the software presented in the book. 

More challenging problems and examples are identified by a star *. 
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INTRODUCTION 

The most important questions of life are, for the most part, really only 
problems of probability. 

Laplace 

Life is a school of probability. 

Walter Bagehot 

Probability is the very guide of life. 

Cicero 

This chapter provides a general introduction to the topics covered in the book. 

Main Topics 

• What Is Randomness? 
• What Are Probability and Random Processes? 
• Why Study Probability and Random Processes? 
• Key Features of the Book 
• Rules for the Presentation 

1 



1.1 Randomness, Random Signals and Systems 

1.1 Randomness, Random Signals and Systems 

The primary goal of this book is to study probabilistic tools and methods for 
solving various types of problems encountered in engineering that contain a degree 
of randomness, in particular, random signals and random systems. It is then 
natural to ask "What is randomness?" Loosely speaking, randomness simply 
means not predictable with certainty. For example, an event is random if and 
only i f its outcome cannot be predicted with certainty. Otherwise, the event is 
deterministic. Here are some examples: 

• Your final grade of this course is random at this moment. 
• Your body weight at a certain time next year is random now. 
• The age of a friend whose birth date you do not know is random. 

A signal is a time function that carries useful information for the problem un-
der consideration. A random signal is a signal whose values cannot be predicted 
for sure. Examples include: 

• Dow Jones Industrial Average Index, which jumps up and down with uncer-
tainty although with a growing trend over time. 

• - Your grade point average at this university, whose future value cannot be 
predicted with certainty. 

• The output voltage from a solar detector, which depends on weather conditions 
that are impossible to be exactly predicted. 

• The bit stream through a digital communication channel, which fluctuates 
with time between 0 and 1 due to e.g., unpredictable interference. 

• The exact position of a gas molecule in a box. 

A random time function containing no useful information about the problem is 
known as noise. Examples include: 

• Thermal noise in an electronic circuit. 
• Background hiss from a radio receiver. 
• Picture interference ("snow") on a TV screen. 
• Sea sounds in a sonar system. 

A noise process may also be said to be a random signal (in its wide sense). 
The state of a random system as a time function is random. 

2 



1.2 Probability and Random Processes 

1.2 Probability and Random Processes 

There are primarily two reasons for studying randomness. 

• Many practical problems "in fact" involve random effects. 
• Many practical problems are too complex to be described accurately in a de-

terministic manner and thus may be (artificially but) more effectively modeled 
as problems with random effects. 

There is always a gap between mathematical models and reality. Real-world 
problems are usually neither completely deterministic nor truly random. What 
is important is that the model used is tractable and leads to satisfactory results. 
With this in mind, i f all the primary driving forces of a phenomenon are 'known 
accurately, a deterministic model is usually good. If they are not known accurately 
or no primary driving forces exist, then a random model may be more appropriate. 

There are two sciences that study random problems: probability and statis-
tics. They are essential for solving problems involving randomness, in particular, 
problems with random signals and systems. 

Probability and statistics can be viewed as an analysis-synthesis pair: 

• Probability deals with topics of analyzing a random problem. 
• Statistics studies various aspects of how to establish probabilistic models 

from observations of a random phenomenon. 

In a narrower sense, probability deals with either a time-invariant problem 
involving randomness or a snapshot of a time-varying problem with randomness. 
Time-varying random problems are the topics of random processes, which are 
more useful in engineering practice in a direct sense. 

Probability is essential for the study of random processes because the theory of 
random processes is a generalization/extension of (and thus more complex than) 
probability. Thus, probability has to be studied prior to the more interesting 
topics of random processes. More relevant and realistic examples in engineering 
practice are given in a later part of the book although every effort is made to 
include good engineering examples and problems in the first part. 
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1.3 Typical Engineering Applications 

1,3 Typical Engineering Applications 

• Communications 
• Computer networks 
• Decision theory and decision making 
• Estimation and filtering 
• Information processing 
• Power engineering 
• Quality control 
• Reliability 
• Signal detection 
• Signal and data processing 
• Stochastic systems 

Figure 1.1: Coverage of this book and relation to some other subjects. 
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1.4 Why Study Probability and Random Processes? 

1.4 Why Study Probability and Random Processes? 

Whereas a random phenomenon is not predictable with certainty, it usually con-
tains some elements of predictability. In other words, it can usually be predicted 
to some degree, albeit not perfectly, as the examples in Section 1.1 suggested. 
The reason for this condition is that there are a variety of regularities, known 
as statistical regularities, associated with a random phenomenon which exhibit 
themselves only over a large number of occurrences of such phenomena. Were 
this not true, the study of probability and random processes would gain nothing. 
In fact, the aim of the entire probability and random process theory is to study 
these regularities so as to make appropriate predictions of various aspects of a 
random phenomenon. 

The theory of probability and random processes is abstract. It is abstract so 
that it can be applied to a wide spectrum of problems, making it extremely useful. 
This abstractness does not prevent us from learning the theory by taking either a 
top-down approach through numerous examples, as provided in this book, or a 
bottom-up approach by deriving various laws from the most fundamental ones. 
Because the theory is abstract, it is also easier and more economical to learn 
since no exact knowledge of any particular practical background field and no 
expensive or sophisticated facilities are needed. The prerequisites for this book 
are calculus and a basic knowledge of signals and systems. 

The importance of the subject matter covered by this book: 
• What you will learn will have many applications, not just for random signals 

and systems. 
• This is the only course that is dedicated to random (uncertain) effects, while 

there are many courses dealing with nonrandom (deterministic) effects. You 
will be handicapped in engineering practice without mastering the material 
covered in this book. 

Specifically, this book will 
• Provide you with the appropriate concepts to help you understand random 

phenomena, in particular random signals and random systems. 
• Provide you with the appropriate tools (theory, models, and techniques) and 

training to help you analyze problems and/or design systems with uncertainty. 
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1.5 Key Features of the Book 

1.5 Key Features of the Book 

• "Textgraph" Format. This book is in an innovative form of "textgraph": 
• Larger typeface pages form a concise text for basic topics suitable for use 

as viewgrap/is/transparencies for classroom teaching directly. 
• Smaller typeface pages provide more detailed discussions, examples, and 

more advanced materials. 
This format gives the instructor more time to explain concepts and review 
examples in class and frees the student from copying down large numbers of 
equations necessary in such a course. It also provides a good balance between 
basic and more advanced topics such that the latter is covered without losing 
the emphasis on the former. 

• Integration with Software. The book is integrated closely with the companion 
software P&R. Written in MATLAB and running under Windows 95, 98, and 
NT, P&R is menu-driven and user-friendly. It does not require the knowledge 
of any programming language. It provides a useful tool for solving many 
problems. Many examples in the book are solved by using the software. The 
computer exercises are integrated particularly well with the software. 

• Many Realistic Examples. A large number of realistic examples are provided 
with complete and detailed solutions. These examples were drawn from a 
wide variety of application areas, including communications, signal process-
ing, radars, control systems, electric power, quality control, reliability, statis-
tical inference, stochastic simulation, computer engineering, and operations 
research, as well as everyday life problems. 

• Self-Test Problems. Self-test problems, along with complete and detailed 
solutions, are provided at the end of each chapter to help the reader test how 
well he or she understands the material and studies for exams. 

• Hands-On Emphasis. Not only is the understanding of important concepts 
emphasized, special attention is also given early on to help and encourage the 
reader to apply what has been learned. 

• Clear Distinction of Importance. Important concepts and results are written 
in bold typeface or boxed equations. 

• Summary and Requirements. Each chapter includes a brief summary and 
specific requirements to help the reader focus on the more important material 
and to make it clear how thoroughly the material should be mastered. 
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1.6 Rules for the Presentation 

1.6 Rules for the Presentation 

• Text in the larger typeface presents more important and basic topics (or con-
cepts, results, etc.), which are essential and should be mastered well. 

• Text in the smaller typeface presents one or more of the following: 
• more detailed discussions 
• additional examples 
• more advanced topics 
• less important results 

They should be read (with less attention though), especially i f the reader 
wants to have a better understanding of the subject matter. 

• The most important terms (or results, concepts, etc.) are emphasized with 
words in italic bold face. 

• Boxed equations are the most important ones. 
• Numbered equations are either referenced elsewhere in the book or are more 

important than the ones without a number. 
• (2.3)-(2.6) stands for Equation (2.3) through Equation (2.6). 
• The following innovative shorthand notations are adopted: 

. (2.3) - (2.6) stands for 
LHS of (2.3) - LHS of (2.6) = RHS of (2.3) - RHS of (2.6) 

where LHS = left-hand side, RHS = right-hand side. 
Similar notations are used for other operations, such as +, x , / , and ex-
pectation. For example, ^(2.3) stands for 

J»[LHSof(2.3)] = £[RHSaf(2.3)] 
• Others: 

stands for "equal due to P I " 
stands for "equal due to Equation (2.3)" 
stands for "equal, but why?" 
stands for "denoted in shorthand as" 
stands for "equal by definition" 

p i 

(23) 

? 

shorthand 
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BASIC CONCEFfS IN PROBABILITY 

We see that the theory of probability is at bottom only common sense reduced 
to calculation; it makes us appreciate with exactitude what reasonable minds 
feel by a sort of instinct, often without being able to account for it ... It is 
remarkable that this science, which originated in the consideration of games of 
chance, should become the most important object of human knowledge. 

Laplace 

This chapter covers fundamental topics on probabilities of events. 

Main Topics 

® Basics of Set Theory 
• Fundamental Concepts in Probability 
• Conditional Probability 
• Independent Events 
• Total Probability Theorem and Bayes' Rule 
• Combined Experiments and Bernoulli Trials 

The materials covered in this chapter are essential for the study of the remaining 
chapters. Emphasis should be put on the understanding of concepts and how 
they can be applied. 
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2.1 Basics of Set Theory 

2.1 Basics of Set Theory 

2.1.1 Basic Definitions 

• set = a collection of objects, denoted by an upper case Latin letter 
Example: A = {1,4} ? D = {di, d<i, d$}. 

• element = an object in a set, denoted by a lower case Latin letter 
We say "a is an element of A," "a is in A," or "a belongs to A," denoted as 
a G A 

• empty set = null set = a set with no elements, denoted by 0 
• space = the set with all the elements for the problem under consideration 

(sometimes called universal set), denoted by S 

Convention: 

Upper case Latin letter = set 
Lower case Latin letter = element 

If every element of set A is also an element of set B, then A is said to be a 
subset of B9 denoted as A C B or B D A. Set A is said to be equal to set B if 
Ac B and AD J5, denoted as A = B. In this case, A and J? have exactly the 
same elements. Two sets are said to be disjoint if they do not have any element 
in common. 
Example 2.1: Consider the set of all positive integers smaller than 7: 

rule method : A = {x : 0 < x < 7}x an integer} 
tabular method : A = {1,2,3,4 5 55 6} 

= the space (universal set) of a 6-face die 

Tabular form is not universally applicable. 
Example 2.2: Consider the set of all positive numbers smaller than 6: 

rule method : 5 — { x : 0 < x < 6 , x a real number} 
There is no tabular form for this set because it is uncountable. 
Example 2.3: Consider the set of all positive integers: 

C = {x : x > 0, x an integer} = {1,2,3,.. .} 

Example 2.4: The set of human genders G = {female, male} 
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2.1 Basics of Set Theory 

Set theory is the foundation of the entire modern mathematics. This is even more true 
for probability theory. Manipulation (i.e., calculation) of probability is based on set operation. 
The well-known Russian mathematician A. N . Kolmogorov recognized this and developed the 
prevailing axiomatic system of probability. It is one of the most important achievements in 
probability theory. 

Two sets A and B are said to be equivalent if there is a one-to-one correspondence between 
(the elements of) A and B. For example, set G = {male, female} is equivalent to set { 0 , 1 } , 
which is equivalent to {1 ,2} . 

A set is finite if it has finitely many elements. It is equivalent to the set {1,2, . . . , r c } for 
some natural number (i.e., positive integer) n. For example, set A of Example 2.1 is finite; set 
G of Example 2.4 is also equivalent to set {1,2} and is finite. 

A set is infinite if it has infinitely many elements. An infinite set that is equivalent to the set 
of all natural numbers is said to be denumerable. A finite, denumerable, or empty set is said to 
be countable; otherwise, it is an uncountable set. A denumerable set is said to be "countable" 
because there is a definite and explicit way by which all the elements of the set can be counted 
(without missing) provided that the counting process goes on (for ever if necessary). For an 
uncountable set, no such way exists. An uncountable set has to have infinitely many elements. 
However, not every set that has infinitely many elements is uncountable. As a matter of fact, a 
denumerable set is the smallest set that is infinite and all denumerable sets are equivalent to the set 
of natural numbers and thus are equivalent to each other. All other infinite sets are uncountable. 

Set C of Example 2.3 is denumerable and thus countable; set B of Example 2.2 is uncountable 
because there is no definite and explicit manner to count all of its elements. 

In fact, the set of all rational numbers1 is countable because there is a one-to-one correspon-
dence between it and the set of all natural numbers. However, the set of all irrational numbers 
is uncountable — there are much more irrational numbers than rational numbers! This is quite 
a surprise to people who are new to this theory. 

If two sets A and B are equivalent, they must have the same number of elements; otherwise 
there cannot be a one-to-one correspondence between them. Conversely, two sets are said to have 
the same number of elements if they are equivalent. This is obviously true for finite sets but 
not so clear to beginners for infinite sets. For example, let A = {1 ,2 ,3 ,4 , . . . } be the set of all 
positive integers and B = {2 ,4 ,6 ,8 , . . . } be the set of all positive even integers. Then they are 
equivalent since every element of B has a corresponding element in A (e.g., the one with exactly 
half of the value) and vice versa. Note that the above sets A and B are equivalent even though 
every element of B belongs to A and some elements of A do not belong to B (i.e., B is a subset 
of A but A is not a subset of B , hence A ^ B). Consequently, we say that A and B have the 
same number of elements and thus A is not larger than B although A appears to be "larger" 
than Bl This is interesting and surprising to beginners. In fact, sets A and B and the set of all 
rational numbers all have the same number of elements, which is equal to the smallest infinity. 

1 A rational number is one that can be expressed in the form of n/m for some integers n and m. A real number 
that is not rational is called irrational. For example, \/2, e, and w are irrational numbers. 
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2.1 Basics of Set Theory 

2.1.2 Basic Set Operations 

Definitions: 

• The set of all elements of A or B is called the union (or sum) of A and B, 
denoted as A U B or A + B. Union of disjoint sets A and B may be denoted 
as A W 5. 
Convention: "A or £ " = "either i or B or both." 

• The set of all elements common to A and B is called the intersection (or 
product) of A and £?, denoted as A n 5 or AS. 

• The set of all elements of A that are not in B is called the difference of A 
and B, denoted as A — B. 

• The set of all elements in the space S but not in A is called the complement 
of A, denoted as A. It is equal to S — A. 

A simple and instructive way of illustrating the relationships among sets is 
the so-called Venn diagram, as illustrated below. 

A f \ \ 

V - J BJ 
s 

/A \ • ' - V 

BJ 
s 

Figure 2 .1 : Basic set operations. 
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2.1 Basics of Set Theory 

Example 2.5: Set Operations 

For A, B, and C considered in Examples 2.1, 2.2, and 2.3: 

AcC 
A U B = {x : 0 < x < 6, x a real number} 
A U C = C 
B U C = {x : x a positive integer or a real number satisfying 0 < x < 6} 

This set has a mixed type. 
A n B = {l,2,3,4,5} 
AnC = A 
B n C - { U , 3 3 4 ; 5 } 
A-B = {6} 
A - C = 0 
B — A = {x : 0 < x < 6,x a. noninteger real number} 
B — C^{x:0<x<6,x& noninteger real number} 
C — A = {x : x >7,x m integer} = { 7 5 8 ,9 , . . . } 
C — B = {x : x > 6, x an integer} = {6,7,8, . . .} 

Space 5 depends on what we are considering. If we are considering only positive 
real numbers, then S = {x : x > 05 x real}. Thus, 

A = {x : x a positive real number other than 1,2,3,4,5,6} 
B = {x : x > 6, x a real number} 
C={ .T :a ; a noninteger positive real number} 

If, however, we are considering all real numbers, then S = {x : x real}. Thus 

A = {x : x a real number other than 1,2,3,4,5,6} 
B = {x : x < 0 or x > 6, x a real number} 
(7 = {x : x < 0 or x a noninteger positive real number} 
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2.1 Basics of Set Theory 

2.1.3 Basic Algebra of Sets 

Algebra of sets Algebra of numbers 
Union U sum "+" 

Intersection D product "•" 
1 AUB=BUA a + 6 = b + a 
2 , 4 0 5 = Bfl A a-b — b • a 
3 a + (b + c) — a + b + c 
4 An(BnC) = AnBnc a • (b • c) — a • b • c 
5 A n (B u c) = (A n 5) u (A n c ) a-(b + c) = a- b + a- c 
6 A u ( B n C ) = ( i u B ) n ( i u c ) see below 

Since A n A = A, (A n B) c A, (A n C) c A, and 

(a + ft) (a + c) = a- a + a- 6 + a- e + 6- c 

Line 6 in the table above follows from 

(A u B) n (A u C) = (A n A ) u ( i n B ) u ( A n C) u(jg n C) = A u {B n C) 

This illustrates that set algebra has its own rules. 
Z)e Morgan's laws: 

~AUB = AnB (2.1) 
A n B ^ A u B (2.2) 

Similarly, 

A~U~BUC = ~A~UD=InB = I n B~UC = A n ( B n C ) = I n 5 n ^ 
AiU- - -uA n = ATn---n 

(Ai U J42) n (A3 U AA) = (A~1nA~2)U(A~sC\7[A) 

Rules: (1) interchange U and Pi; (2) interchange (*) and (*). However, care 
should be taken when dealing with multiple nests, as demonstrated below. 

Example 2.6: 

Qr\B)u'C = Duc = DnC = (AnB)nc = AuBnC (2.3) 
D 

14 



2.1 Basics of Set Theory 

The set union A U B is sometimes denoted by A + B , and is called the "sum of A and B , " 
or simply " A plus B . " The set intersection A n B is sometimes denoted by A B , especially when 
dealing with probability, and is called the "product of A and B , " or simply " A times B . " A 
reason for such notations is that set union and intersection obeys similar laws as that of the sum 
and product of numbers, respectively, as illustrated in the previous table. In some publications, 
A + B is used to mean A i±i B , i.e., A U B when A and B are disjoint. We wi l l maintain the 
following convention: A +B = AUB ^ AwB, where A l±i B is the disjoint union of A and B . 

(2.1)-(2.3) can be verified easily using Venn diagram. The Venn diagram for (2.1) is shown 
in Fig. 2.2, where in (b) the total shaded area and the densely shaded area stand for A U B and 
A n B , respectively. See also Problems 2.2 and 2.3. However, a Venn diagram is not effective 
for complex set operations. 

I f a set identity holds, then it is guaranteed by the so-called duality principle that another 
identity also holds by: (1) interchanging union U and intersection D; and (2) interchanging S 
and 0 in the first identity. For example, the table on the last page consists of three dual pairs: 
interchanging U and ft in Line 5 yields Line 6 and vice versa; interchanging U and (1 in Line 
3 yields Line 4 and vice versa; interchanging U and f i in Line 1 yields Line 2 and vice versa. 
Another example is the following pair of identities connected by the duality principle is 

SuA = S} 0 n A = 0 

The analogy of set algebra and algebra of numbers and the Venn diagrams are introduced 
here primarily to facilitate the understanding of set algebra. They are not necessarily good tools 
for actual algebraic manipulation of sets. 

The good news is that .the algebra of sets used in this book wi l l not be too involved. 
While the concept of a set has nothing to do with the relationship among its elements, a 

countable set is often called a discrete set in engineering practice and the term "continuous set" 
is sometimes used nonrigorously to mean a continuous region of a space, such as an interval 
of the real line or a continuous region of the x-y plane. For Examples 2.1 through 2.4, B is 
"continuous" while the others are discrete. We wi l l try to avoid this latter terminology. 

We could have "a set of sets," that is, a set whose elements are sets. In such cases, we 
usually say "a collection of sets" or "a family of sets." Note that {0} ̂  0 since the number of 
elements in 0 is zero while the number of elements in { 0 } is 1 (i.e., the empty set is included in 
{ 0 } as the unique element). 

AuB shaded = i u 5 , densely shaded = AnB 
Figure 2.2: Proof of (2.1) by Venn diagram. 
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2.2 Fundamental Concepts in Probability 

2.2 Fundamental Concepts in Probability 

2.2.1 Definitions 

• random experiment = experiment (action) whose result is uncertain (cannot 
be predicted with certainty) before it is performed 

• trial = single performance of the random experiment 
• outcome = result of a trial 
• sample space S = the set of all possible outcomes of a random experiment 
® event = subset of the sample space S (to which a probability can be assigned) 

= a collection of possible outcomes 
• sure event = sample space S (an event for sure to occur) 
• impossible event = empty set 0 (an event impossible to occur) 

We say an event has occurred if and only if the outcome observed belongs to 
the set of the event, as explained below. 

Example 2.7: Die-Rolling Events 

Rolling a die is a random experiment. An outcome can be any number from 1 
to 6. Sample space = {1,2,3,4,5,6}. Some possible events are 

A = {an even number shows up} = {2,4,6} (3 outcomes) 
B = {a number greater than 5 shows up} 

= {6} (single outcome) 
C = {2 shows up} = {2} (single outcome) 
D = {a number greater than 6 shows up} = 0 (no outcome) 
E = {2 and 4 show up} = 0 (no outcome) 
F = {2 or 4 shows up} = {2,4} (2 outcomes) 
G = {a number from 1 to 6 shows up} 

- {1,2,3,4 5 5,6} = 5 (all outcomes) 

Thus, i f "2" showed up, then we say that events A, C, F, and G have all 
occurred. 
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2.2 Fundamental Concepts in Probability 

222 Probability of an Event 

Traditional definitions of the probability of an event A: 
. . „ r # of possible outcomes for event A 

Classical: P{A\ = —— — - -
# of possible outcomes for space b 

n , . „ r^f ^ i . # of occurrences of event A Relative frequency: P{Aj = lim 

Geometric: P{A} 

N-^oo N (total # of trials) 
geometric measure of set A 

geometric measure of space S 
These definitions are very natural but limited: 

• The classical definition is virtually applicable only to events with finitely (or 
countably) many outcomes that are equally probable. 

• The geometric definition is an extension for events with uncountably many 
outcomes that are uniformly probable. 

• The relative-frequency definition is more general than the other two defini-
tions but is still limited. It is difficult to be applied to problems in which 
outcomes are not equally probable. 

Example 2.8: Classical Probability: Die Moling 

Consider Example 2.7. The probabilities of events are 

P{A} = P{an even number shows up} = ^ g ̂  ^ = ~ 

P{E} = P{2 and 4 show up} = 0/6 = 0 
=> Impossible event has zero probability 

P{F} = P{2 or 4 shows up} = 2/6 = 1/3 
P{G} = P{a number from 1 to 6 shows up} = 6/6 = 1 

=> Sure event has unity probability 

Note, however, as illustrated in the next example, 
• An event of zero probability is not necessarily an impossible event. 
• An event of unity probability is not necessarily a sure event. 

These counter-intuitive results are possible only when the sample space has in-
finitely many elements. 
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2.2 Fundamental Concepts in Probability 

Example 2.9: Geometric Probability: Waveform Sampling 

The following voltage waveform is to be sampled at a random time r over the 
period — 1 < t < 5. 

v(t) 

1.5 

1.0 

0.5 

1.5 

1.0 

0.5 / 
• \ 

- 1 

-.5 

- 1 

o i k k 4 5 
t 

(a) Determine the probability that the sampled value v(r) < —0.25: 

A = {sampled value v(r) < —0.25} 
s x time in which sampled value v(r) < —0.25 3/4 _̂ 1 
I | - total time " " 6 ~~ 8 

(b) Determine the probability that the sampled value v(r) > 1.0: 

B = {sampled value v(r) > 1.0}, P { £ } - - ^ ^ ^ = 1 

(c) Determine the probability that the sampled value v(r) = 0.5: 

C = {sampled value v(r) = 0.5}, P{C} = (1.5 - 0.5)/6 = 1/6 

(d) Determine the probability that the sampled value v(r) = 1.2: 

D = {sampled value v(r) = 1.2}, P{D} = 0/6 = 0 

(e) Determine the probability that the sampled value satisfies —1 < v(r) < 1.5 
but not equal to —0.5: 

E = {-1< v(r) < 1.5, V(T) ^ -0.5}, P{E} = 6/6 = 1 

Note: 

• D is not an impossible event but P{D} = 0. 
• E is not a sure event but P{E} = 1. 
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2.2 Fundamental Concepts in Probability 

To be more rigorous, an experiment is a random one only i f all the following three conditions 
are satisfied: (1) it can be repeated under the same conditions; (2) i t has more than one outcome 
and they are all known before the experiment; and (3) which outcome wi l l show up cannot be 
determined prior to the experiment. 

Everyone has the experience that the relative frequency of the occurrence of a random event 
under "identical" conditions is quite stable. This is the physical foundation for the relative-
frequency definition of probability. Of course, were this not the case, we most likely (with an 
extremely high "probability"!) would not have a probability theory. The stability of relative 
frequency reflects the regularity about the occurrence of an event, which is usually imbedded in 
the apparent irregularities (uncertainties) involved in the event occurrence. The regularity wi l l 
overcome the irregularities only through a large number of trials since the irregularities tend 
to cancel out each other. As a result, probability laws exhibit themselves only through a large 
number of trials. 

In general, a probabilistic solution to a problem with random effects includes die following 
steps: 

51. Determine (prior) probabilities of certain elementary events. 
52. Obtain .probabilities of other events according to certain rules. 
53. Make certain inference based on the obtained probabilities. 

The probability theory calculates the probabilities of other (composite) events based on these 
elementary event probabilities (Step 2). Both Steps 3 and 1 belong to the science of statistics. 

It should be understood that the probability of an event based on the relative-frequency 
concept is defined to be the limit as the number of trials increases. In other words, probability 
is the limit of relative frequency at infinitely many trials. Otherwise, probability would be 
random, depending on how many trials are performed. With this interpretation, both classical 
and geometric definitions of probability can be thought of as special cases of the relative-frequency 
definition. This is the case for Examples 2.8 and 2.9. 

The relative-frequency interpretation of probability is important in application of probability 
theory, especially for Step 1 above. Specifically, the probabilities of certain events can be assigned 
according to the relative frequency based on experimental results (or based on intuition or common 
sense). In history, the theory of probability (or chance) started from the study of gambling, which 
supports this interpretation. 

The underlying assumption for the relative-frequency interpretation of probability (or the 
classical theory of probability completed by Laplace) is that every elementary event is equally 
probable (likely), which is sometimes called the principle of indifference or the principle of 
sufficient reason. Even though justifiable in some cases, this assumption may be questionable in 
other cases in which the elementary events are not equally likely. In some other cases involving 
infinitely many possible outcomes, how to define equiprobable elementary events cannot be done 
unambiguously and thus may lead to confusing paradoxes. That is part of the reasons why the 
axiomatic approach to probability is prevailing. This is presented next. 
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2.2 Fundamental Concepts in Probability 

2.2.3 Axioms of Probability Theory 

A set of events A\, A2, . . . , An is said to be mutually exclusive or disjoint i f 

A{ nAj = $ Vs ^ j 

That is, at most one event can occur (if one occurs, any other cannot occur). 
In the contemporary theory of probability, the following properties have been 

identified as fundamental (necessary and sufficient) for probability as a measure, 
which are taken as axioms: 

• Axiom 1 (nonnegativity): Probability of any event A is bounded by 0 and 1: 

(2.4) 0 < P{A} < 1 

• Axiom 2 (unity): Any sure event (the sample space) has unity probability: 

(2.5) P{S} = 1 

• Axiom 3 (finite additivity): If Ai, A-2, . . . , An are disjoint events, then 

P{AVy A2(±)• • • y An} 4 p{ y At] = E p{A>} 

• Axiom 3' (countable additivity): If A\, A2, . . . are disjoint events, then 

(2.6) 

1 i = i J i = i 
(2.7) 

All other probability laws can be derived from these axioms. Keep in mind that 
(2.6) and (2.7) are valid only for mutually exclusive events. 

These axioms imply that probability can be interpreted as mass associated with 
various events. They are clearly reasonable from relative-frequency perspective: 

Q<P{A} = ^<1 

P{S} 

P\ \SA\ = 
2=1 

N 
NAL + 

N N + 
N A n 

+ % = E P{M 
8=1 

N 
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2.2 Fundamental Concepts in Probability 

Many people know more than one person named John Smith. So ambiguity may arise i f 
we use a person's name to define a person, although this is natural, convenient, and common 
practice. The traditional definitions of probability suffer from a similar ambiguity in some cases. 
However, science and engineering cannot tolerate any ambiguity. This was partly the reason 
why the axiomatic method of probability was developed. It is similar in some sense to defining 
a person by the exact date, time, and place of his or her birth, which is precise and avoids 
ambiguity but is less convenient. 

The axiomatic method is one of the most important approaches of science, especially modern 
mathematics. It is the most rigorous approach, omnipresent in the entire domain of mathematics. 
It consists in setting forth certain basic statements about the concepts to be studied that are self-
evident, known as axioms or postulates, and then using classical logic to deduce all other results. 
These "taken-for-granted" basic statements must be consistent, independent, and complete in the 
sense that they do not lead to any contradiction, they do not imply each other, and they suffice 
to deduce all other results of the subject. A typical example of this method is that of defining a 
mathematical entity by a consistent, independent, and complete set of its fundamental properties. 

The axiomatic method has several important advantages over other methods. For example, 
it makes it clear what can be used as the root or most fundamental for any further study of the 
subject. I f an axiomatic system exists for a theory, it is usually believed that the theory is quite 
mature. The axiomatic method can be traced back to the ancient Greece around the Aristotle's 
time. It was popularized by Euclid's celebrated work Elements, which was written about 300 
B.C. In his two books that provided a foundation for the classical mechanics, Archimedes (287¬
212 B.C.) employed the method featured in Euclid's work. Newton's famous work Principia, 
published in 1686, is organized in a deductive way that can be considered an early form of 
the axiomatic system. The treatise on analytic mechanics published by Lagrange in 1788 is a 
masterpiece of logical perfection, containing many elements of an axiomatic system. Hilbert's 
classic work Grundlagen der Geometrie on the foundation of geometry, published in 1899, has 
been generally regarded as the first that displays the axiomatic method in its modem form. 

The axiomatic system of probability was developed by the Russian mathematician A. N . 
Kolmogorov in 1933 based on set theory and measure theory. It was one of the early success 
of the modem axiomatic method in a branch of mathematics other than geometry. It overcomes 
many limitations of the traditional definitions of probability. 

The axioms of probability clearly make perfect sense. Axioms 1 and 2 follow from our 
custom of treating probability as a positive percentage in everyday life. The condition in Axiom 
3 that the events are disjoint cannot be removed. Take die rolling as an example. Let A = 
{ 2 , 4 . 6 } 3 B = { 1 , 3 , 5 } , C - { 1 , 2 , 3 } . Then clearly 

P{A U B} = P { 1 , 2,3,4,5,6} = 1 - P{1,3 , 5} + P{2 ,4 ,6} - P{A} + P{B} 

but 
P{A U C] - P{1 ,2 ,3 ,4 ,6} = 5/6 ^ 1/2 - f 1/2 - P{A} + P{C} 

because A and C are not mutually exclusive since both A and C occur i f face 2 shows up. 
Note that Axiom 3' implies Axiom 3 but not the other way round. In other words, a property 

that is valid for an arbitrary but finite number does not necessarily hold for infinity. 
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2.2 Fundamental Concepts in Probability 

22 A Probability of the Union of Two Events 

The union of events A and P in space S is the set of all outcomes of A or P 
(or both). In other words, if any outcome of either A or B occurs, then we say 
the union of events A and P, denoted by A U P, occurs. 

By Axiom 3, i f A n B = 0 (A and B cannot both occur), then 

P{either A or B occurs} = P{A l±) B} = P{A} + P{B} 

What i f A n B ^ 0 (A and B may both occur)? Note that 

which can be shown easily by Venn diagram. Clearly, A D (A D B) = 0. Hence, 

P{A U B } = P{A i±l (A OB)} Axi=m 3 P{A} + P{A n 5} (2.8) 

Similarly, B = (An B)& (An B) and ( A n 5 ) n ( I n B ) = 0, and thus 

P{P} - P{(A n B ) y ( i n P)} 1 P{A n P } + p { 3 n P} (2.9) 

Thus, (2.8) — (2.9) yields title probability of union of two events or addition 
rule of probability: 

This is intuitively correct: 

P{either A or B or both occur} = P{A occurs} + P{B occurs} 
- P{A and B both occur} 

since P{A and B both occur} is double counted in P{A occurs}+P{P occurs}. 

223 Probability of the Complement of an Event 

If A is an event in space 5, then S = A l±J A, and 

AUB = AW(AnB) 

P{A UB} = P{A} + P{P} - P{A n P} (2.10) 

double counted 

1 ̂  2 P{S} = P{A i±i 7L} *W3 P { A } + P{A} 

Thus, the probability of the complement of an event is 

P{A} = 1 - P{A} (2.11) 
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2.2 Fundamental Concepts in Probability 

2.2.6 Joint Probability 

The joint events A and B is the intersection of sets A and B, which is the set 
of outcomes common to both A and B. As such, the joint probability of events 
A and B is the probability that they both occur. This probability is denoted by 

P{A (1B} = P{A, B} = P{AB} (2.12) 

which is given by, from (2.10), 

P{A HB} = P{A} + P{B} - P{A U B} (2.13) 

This can be interpreted as follows: 

P{A and B both occur} = P{A occurs regardless B occurs or not} 
+ P{B occurs regardless A occurs or not} 
— P{A or B or both occur} 

If A n B = 0, then 

P{A HB} = P{A} + P{B} - P{A W B} A x i ^ m 3 0 

or 
P{AHB} = P{0} = P{S} 1 - P{S} = 0 

which makes sense: '"mutually exclusive events have zero joint probability" and 
"impossible events have zero probability.J9 

Example 2.10: Axiomatic Probabilities of Die-Rolling Events 

Rolling a die is a random experiment whose outcomes can be any face from 1 
to 6. Let Fi be the event that face i shows up. Assume the die is a fair one — 
each outcome is equiprobable. Let us use the probability axioms to (determine 
how to) assign a probability to every outcome. 

1 A x i ^ m 2 P{S} = P{ y F^ A x i^ m 3 E P{F>} f a i^d i e 6P{Fi} 

which yields P{Fj} = 1/6, i = 1,..., 6 and hence: 

P{an even numbered face shows up} A x i = m 3 P{F2} + P{F4} + P{F6} = 1/2 
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2.3 Conditional Probability 

2.3 Conditional Probability 

The probability of an event A under the condition that event B has occurred is 
called the conditional probability of A given B (or probability of A conditioned 
on B ) , defined as 

P{A\B] a PjAnB} 
P{B} 

if P{B} ^ 0 (2.14) 

The relative-frequency interpretation of this is 

# of outcomes for event (A n B ) 
P{A\B} # of outcomes for event B 

NAHB/N P{A n B} 
NB 

NB/N P{B} 

Since A n S = A and P { S } - 1, we have P { A } = ^gp- = P{,4|5}. A 
comparison of this with (2.14) indicates that conditional probability of A given 
B is simply the probability of A assuming the entire sample space is B , which 
is reasonable since event B has occurred (and the occurrence of any outcome 
outside B is impossible), as illustrated below. 

Figure 2.3: Illustration of conditional probability. 

(2.14) implies that the following product rule or multiplication rule holds 

P{AB} = P{An B} - P{A\B}P{B}\ if P{B} J - 0 (2.15) 

24 



2.3 Conditional Probability 

Whenever we define certain probability, theoretically we have to check i f i t satisfies all the 
axioms of probability. The conditional probability as defined above does satisfies the axioms. 
Specifically, 

• It satisfies Axiom 1 since P{A n B} and P{B} are both nonnegative and thus P{A\B} is 
also nonnegative. 

• It satisfies Axiom 2 since by letting A = S, we have P{S\B} = P ^ } } = fff} = L 

• It satisfies Axiom 3 since for two disjoint events A\ and A2, events AiHB and A2 D B are 
also disjoint and thus 

P{(AXuA2)nB} = P{(AtnB) u ( A 2 n B ) } A x i = m 3 p{Ax n B } + P { A 2 n B } 

which implies that Axiom 3 holds for the conditional probability: 

PUAuAMm P{(AiUA2)nB} PjA.nB} P{A2HB} PHA, U A2)\B} = ^ = p { B } + p { B } 

= P{A1\B} + P{A2\B} 

There are three ways to calculate the conditional probability P{A\B}: 

• Calculate P{A Pi B} and P{B} in the sample space S and then use (2.14). 
• Calculate P{A} in the reduced sample space Sb = B consisting of all outcomes of event 

B. 
• Calculate P{A} assuming B has occurred. 

By the definition of P{B\A}, we have P{A n B} = P{B\A}P{A}9 which can also be 
obtained by interchanging A and B in (2.15). Similarly, we have the following product rule or 
multiplication rule: 

P{ABC} = P{C\A, B}P{B\A}P{A] 

In general, we have the following chain rule, multiplication rule or product rule: 

P{A1A2 ••-An} = P{An\An^ • • • Ax} • • • P{A2\A1}P{Al} (2.16) 

Example 2.11: Consider rolling a die. Let 

A = {number 1 shows up} 
B = {an odd number shows up} 
C = {number 1 or 2 shows up} 

Then, 

P{A\B} 

P{C\B} 

P{B\C} 

P{AnB} P{A} _ V 6 _ 1 
P{B} P{B} 3/6 3 

P{CDB} P{A} _ V 6 _ 1 
P{B} P{B} 3/6 3 

P{Cf)B} P{A} _ 1/6 _ 1 
P{C} P{C} ~ 2/6 ~ 2 
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23 Conditional Probability 

Example 2.12: Double Luck with Lottery 

The probability that a person will win the lottery twice can be calculated as 
follows. Let A( = {win the ith time}. Then 

P{win twice} = P{AhA2} = P{A2\Al}P{A1} ^ P{A2}P{A1} 

where P l ^ l ^ i } is the probability of winning the second time after winning the 
first time, which is equal to P{A2} in reality. When this is the case, we say that 
the two wins are statistically independent, to be studied later. 

Example 2.13: A pair of resistor and capacitor was chosen at random from 
a box of nine pairs of resistors and capacitors with the following resistance and 
capacitance, respectively. 

Pair 1 2 3 4 5 6 7 8 9 
R (kQ) 1 1 1 2.5 2.5 2.5 5 5 5 

20 40 50 20 40 50 20 40 50 
r = RC (ms) 20 40 50 50 100 125 100 200 250 

(a) What is the probability that the time constant r < 50 or r > 125? 
Let T — {50 < r < 125}. Then 

5 4 
P{r < 50 or r > 125} - P{T} = 1 - P{T} ^ 1 

(b) Determine P{T\C ^ 20}: 

P { 7 n ( C ^ 2 0 ) } 3/9 1 

9 9 

P{T\C ^ 20} 

(c) Determine P{C ^ 20\T}: 

P{C ^ 20|T} : 

P{C ^ 20} 6/9 

P{Tn(C^20)} ( a),(b)3/9 
P{T} 4/9 

3 
4 

(d) Determine P{C ^20,R^ 5|T}: 

P{C W ^ 5|T} = n * 5 » - ^ - 1 

P{T} 4/9 4 
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2.3 Conditional Probability 

Example 2.14: Life Expectancy 

Let t be the age of a person when he/she dies. The probability that he/she dies 
at an age not older than to is given by 

P{t < t0} = a(t)dt 

where a(t) is a function determined from mortality records by 

ait) = { 3 X 1 0 " 9 t 2 ( 1 0 0 ~ f ) 2 ° < * < 1 0 0 years 
[ 0 otherwise 

(This model is approximate — it implies a zero probability to have a life ex-
pectancy longer than 100 years.) 

(a) The probability that a person will die between the ages of 60 and 70 is 

# of people who die between 60 and 70 
^P{60 < t < 70} 

total population 
r70 , x reo , x r70 , v 

/ a(t)dt - / a(t)dt = / a(t)dt = 0.154 
JO JO JQ0 

(b) The probability that a person will die between the ages of 60 and 70 assuming 
that his/her current age is 60 is 

„ r „ r t ^ . # of people who die between 60 and 70 P{60 < t < 70 * > 60} = \ ^ — , r - K — 
total population of age older than 60 

r70 
- W < t < n } _ L ° W _ R 4 8 6 

Pit > 60} £ma(t)dt 

(c) The probability that a person will die between the ages of 20 and 50 assuming 
that his/her current age is 60 is 

P{20 < t < 50| t > 60} - P « 2 ° * *f 5°» ^ S 6°» = = „ 
P{t>60} P{t>60} 

The results of this example are useful for e.g., determination of the premiums of 
a life insurance policy. 
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2.3 Conditional Probability 

Example 2.15: Winning Strategy for a TV Game 

A TV game that was popular in some European countries is as follow. A car is 
behind one of three doors. A player chooses one door. The player wins the car 
if it turns out to be behind the selected door. After the player chooses, the TV 
host will open another door which does not have the car because the host knows 
where the car is. After the host opens that door, the player is allowed to switch 
to choose the third door or stick to the original choice. 

Question: Is it better to switch to the third door? 
Assume for notational simplicity that the player has chosen door B and the 

host has opened door A. Then, since by now we know that door A does not 
have the car, switching to choose door C will win i f and only if door B does not 
have the car, denoted by B; that is, 

P{Winning by switching} = P{C\A,B}P{B} = P{B} - 1 - P{B} = 2/3 

Clearly, switching and not switching are mutually exclusive because they cannot 
both win. Thus, we have 

P{Winning by not switching} < 1 — P{Winning by switching} = 1/3 

In fact, the probability of winning by choosing door B in the first place is 1 /3. 
By not switching, the probability of winning stays unchanged because the new 
information that door A does not have the car is not utilized since it would be 
the same if instead door C was opened by the host. Thus, 

Consequently, the chance of winning is doubled by switching! This answer would 
be hard to come by without a good understanding of probability concepts. 

The above analysis can be extended to the general n-door problem as follows. 
Assume for simplicity that the original choice of the player was door P, door A 
was opened by the host, and door C is chosen i f the player changes his or her 
choice. Then, switching will win i f and only if door B does not have the car 
and door C turns out to have the car among the n — 2 remaining doors; that is, 

P {Winning by not switching} = P{B} = 1/3 

P{Winning by switching} = P{C\A, B}P{B} = ~ 
n — 2 n 

1 n - 1 

which is greater than P{Winning by not switching} = P{C} = ^. 
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2.4 Independent Events 

2.4 Independent Events 

Two events A and B are said to be independent if the probability of occurrence 
of one event is not affected by the occurrence of the other event, that is, 

P{A\B} = P{A} and P{B\A} = P{B} (2.17) 

where P{A} and P{B} are assumed nonzero. An equivalent but more compact 
form of (2.17) is 

P{ADB} = P{A}P{B} (2.18) 
Thus, formally two events A and B are said to be statistically (or probabilistically) 
independent if (2.18) holds. The equivalence of (2.17) (with P{A} ^ 0 ^ 
P{B}) and (2.18) can be seen as follows: 

(2.17) P{AHB} {=4) P{A\B}P{B} (=7) P{A}P{B} (2.18) 

(2 18) ! P ^ > P ^ > ^ } P ^ n 5 > ( = 4 > P{A\B}P{B} 1 
\ P{^l}F{5} ( = 8 ) P { £ n A} ( 2 = } P{5 |A}P{A} J 

Events are said to be statistically dependent if they are not independent. 
Independence simplifies the calculation of joint probability greatly: 

joint probability l f m d e Jf n d e n t product of probabilities 

Independence of n Events 

For n events A\, A2,..., An, if 

PiAiHAj} = P{Ai}P{Aj} Vi^j 
PiAnAjHAk} = P{Ai}P{Aj}P{Ak} Vijtj^k 

P{AlnA2n---nAn} = P{A1}P{A2}---P{An} 

then events Ax, A2, • • • ,An are said to be statistically independent. Otherwise, 
they are dependent. 
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2.4 Independent Events 

Statistical independence is a mathematical abstraction of the concept of (practical or intuitive) 
independence as used in everyday life. They are, however, not identical. Practical independence 
of events A and B means that they have no mutual effect (or relation, information, constraints, 
etc.). However, statistical independence of events A and B merely implies that the knowledge of 
one event gives no information, in the sense of changing the odds, about the occurrence of the 
other. For example, i f A C S (sample space), then the occurrence of A implies that of S and 
thus A and S are not independent in the practical sense. They are, however, always statistically 
independent since P{AnS} = P{A} = P{A}P{S}. This is because although the occurrence of 
A does imply that of S, i t does not change the probability of S. Also, i f AnB = 0, then A and B 
cannot be independent in the practical sense. They are, however, statistically independent i f and 
only i f P{A} = 0 or P{B} = 0. Thus, not all statistical independent events are independent in 
the practical sense. However, practical independence implies statistical independence: I f events 
are practically independent, then they are statistically independent. In practice, whether events are 
statistically independent or not is usually determined by whether they are practically independent 
or not; that is, by physical meaning of the events via common sense or intuition rather than the 
mathematical definition. 

In fact, (2.18) is more general than (2.17) in that the former, but not the latter, is still 
meaningful i f P{A} = P{B} = 0. Furthermore, it can be shown easily (see problem 2.15) that 
P{A\B} = P{A} and P{B\A} = P{B} are equivalent (i.e., one implies the other) i f P{A} ^ 0 
and P{B} ^ 0. 

The symbol V is simply the mathematical shorthand for "for all" or better "for every." 
Every subset of a set of independent events is independent. 
Independence of a set of events requires that the probability of intersections of any group of 

the events in the set be equal to the product of the probabilities of the events in the group. For 
example, the following equation P {flLi At\ = nj=i P{A{}, k < n , has to be true in order for 
the events A\,..., An to be independent. This equation alone, however, does not guarantee the 
independence of any group of events Au ..., An. 

A set of events A i , . . . , An is sometimes said to be pairwise independent (or independent 
by pairs) i f 

P {Ai n Aj} = PiA^PiAj} Vz ̂  j 

In general, i f n events are independent then they are pairwise independent. But the fact that 
they are pairwise independent does not imply they are independent. This is a surprise to many 
people. For a set of events, i f none of the events individually wi l l affect the occurrence of any 
other event in the set, then these events are pairwise independent. They are independent i f none 
of the events individually or collectively w i l l affect the occurrence of any other event in the set. 
For example, P{ABC} = P{A}P{B}P{C} neither implies nor is implied by the following 

P{AB} = P{A}P{B} P{BC} - P{B}P{C} P{CA} = P{C}P{A} 

See problem 2.26. 
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2.4 Independent Events 

Example 2.16: Independent vs. Disjoint Events 

Can two events be both independent and disjoint (i.e., mutually exclusive)! Note 
that 

P{A}P{B} inde^ndent P{A n B} 0 
indicates that i f two events are both independent and disjoint, then at least one 
of them has zero probability — nonzero-probability events cannot be both inde-
pendent and disjoint. Intuitively, if two events are disjoint, the occurrence of one 
precludes the other and thus they cannot be independent. Note the difference: 

joint probability l f i n d _^ n d e n t p r o d u c t of probabilities (2.19) 

union probability l f d l j t o m t sum of probabilities (2.20) 

Example 2.17: Reliability of Communication Channel 

Consider the following communication network. Assume the links are indepen-
dent and the probability that a link is operational is 0.95. 

Since independence of links implies that paths are independent, the probability 
of being able to transmit from AtoB can be calculated as follows: 

P{path 1-2 OK} = P{link 1 OK}P{link 2 OK} = 0.95 x 0.95 = 0.9025 
P{path 1-2 fails} = 1 - P{path 1-2 OK} = 1 - 0.9025 - 0.0975 

P{path 3 fails} - 1 - P{link 3 OK} - 1 - 0.95 = 0.05 
P{all paths fail} = P{path 1-2 fails}P{path 4-5 fails}P{path 3 fails} 

- 0.0975 x 0.0975 x 0.05 - 0.000475 

Finally, 

P{able to transmit from AtoB} = l — P{all paths fail} 
= 1 - 0.000475 = 0.999525 (very high) 
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2.4 Independent Events 

Example 2.16 indicates that independent events are quite different from disjoint (or mutually 
exclusive) events. Recall that two events A and B are mutually exclusive (disjoint) i f AnB = 0. 
In other words, disjoint events are those which have no common outcome — the occurrence of 
one event precludes the occurrence of the others. As a result, the occurrence of one of the disjoint 
events gives definite information about the probabilities of the others — they cannot occur —-
and thus either these events are not independent or at most one of them has nonzero probability. 
In short, i f events with zero probabilities are not considered (i.e., for nontrivial events), disjoint 
events cannot be independent and independent events cannot be disjoint. In practice, i f the 
occurrence of one event does not affect the chance of the others, then they are independent; i f 
the occurrence of one event does preclude the occurrence of the others, then they are mutually 
exclusive. 

It is interesting to know that a confusion of independent and disjoint events actually led to 
the first serious investigation into probability and is one of the things that gave birth to probability 
theory. In the 17 th century a Frenchman named De Mer6 was perplexed about certain gambling 
schemes he was using. At the beginning, he bet he would receive at least one 6 in 4 rolls of a 
die because he thought his chance of winning was 2/3, based on the following reasoning: Since 
6 shows up with probability (chance) 1/6 and it is independent and thus disjoint from roll to roll, 
his chance of winning was 

1 1 1 1 2 
- + - H h - = -
6 6 6 6 3 

Although the calculation was wrong, he was lucky to make money because the correct probability 
of his winning is actually 0.5177 > 0.5 (see problem 2.42). de Mer6 later switched to betting 
that he would receive at least one 12 in 24 rolls of two dice and falsely reasoned that his chance 
of winning was 

1 1 _ 1 2 
_ + . . . + _ = 24 • — = -
36 36 36 3 

due to again a confusion of independence and disjoint events. He was not lucky this time 
because the probability of his winning for this scheme is actually 0.4914 < 0.5 (see problem 
2.43). Perplexed by his loss of money, de Mer6 wrote to Pascal, who contacted Fermat and the 
two mathematicians began the first investigation into probability theory.2 

The first " = " in Example 2.17 follows from the independence of links since 

{path 1-2 OK} = {(link 1 OK) n (link 2 OK)} 

The last " = " follows from the independence of paths. 
In Example 2.17, the probability of being able to transmit from A to B can be calculated 

alternatively as, 

P{able to transmit from A to B} = P{(path 1-2 OK) U (path 3 OK) U (path 4-5 OK)} 

which requires, however, the use of the result of problem 2.10 since the independence of different 
paths implies that the events that these paths are OK are not mutually exclusive. 

2 A somewhat different account of this story can be found in Warren Weaver, Lady Luck — The Theory of 
Probability, Dover, New York, 1982. 
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2.4 Independent Events 

Example 2.18: Security of Nuclear Power Plant 

A nuclear power plant will shut down if systems A and B or A and C fail 
simultaneously. A, B, and C are independent systems and their probabilities of 
failure are 0.01, 0.03, and 0.02, respectively. 

(a) What is the probability that the plant will stay on line? 
Let Fail = 0 and OK = 1. Then 

Case A B c Plant P Probabilities 
0 0 0 0 0 (0.01)(0.03)(0.02) 
1 0 0 1 0 (0.01)(0.03)(1 -0.02) 
2 0 1 0 0 (0.01)(1 -0.03)(0.02) 
3 0 1 1 1 (0.01)(1 -0.03)(1 -0.02) 
4 1 0 0 1 (1 -0.01)(0.03)(0.02) 
5 1 0 1 1 (1 -0.01)(0.03)(1 -0.02) 
6 1 1 0 1 (1 -0.01)(1 -0.03)(0.02) 
7 1 1 1 1 (1 -0.01)(1 -0.03)(1 -0.02) 

P{plant shut down} 1 (0.01)(0.03)(0.02) + (0.01)(0.03)(1 - 0.02) 
+(0.01)(1 -0.03)(0.02) 

= 0.000494 
P{plant on line} = 1 - P{P = "0"} = 1 - 0.000494 

or = P{Cases 3 through 7} 
= 0.999506 (very high) 

(b) What is the probability that the plant stays on line given that A failed? 

P{plant on line|A failed} = P{P = "1"\A = "0"} 
_ P{(P = "l") n (A = "0")} 

P{A = "0"} 
_ (0.01)(1 - 0.03)(1 - 0.02) 

0.01 
= 0.9506 (still not low) 
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2.5 Total Probability Theorem and Bayes* Rule 

2.5 Total Probability Theorem and Bayes9 Rule 

2.5.1 Total ProbabMty Theorem 

A set of events Au A2, • • *, An is said to be 

• mutually exclusive (or disjoint) i f Ai fl Aj = 0, Vi ^ j , meaning that at most 
one event can occur (if one occurs then any other cannot occur). 

• (collectively) exhaustive i f A\ U A2 U • • • U An = 5, meaning that at least 
one of the events will occur. 

• a partition of sample space S i f one and only one of the events will occur. 
Symbolically, 

partition = mutually exclusive + exhaustive 

Clearly, the probabilities of the member events of a partition A\} A2j • • •, An 

sum up to unity: 

P{Ai} + • • • + P{An} = P{At W A2 m • • • W An} - P { 5 } - 1 (2.21) 

Consider an event B in S and a partition A\, A2, • • •, A n of 5. Clearly, 

B == J3 n 5 = J3 n (Ai W • • • W .4n) = (5 n Ai) W • • • W (B n 4 n) (2.22) 

Since (5 n Ai),..., (B n An) are mutually exclusive, we have 

P{B} = P{{B n Ai) w (5 n A2) i±i -. • w (5 n A n)} 
Axi^m3 ni4i} + P { 5 n A 2 } + . . . + p { 5 n A n } 

But, for P{Ai} ^ 0, 

P{5 n Ai} (2^} 

Hence, we have the following result, known as total probability theorem: 

+ - - - + P{B\An}P{A} 
(2.23) 

This theorem is valid for any event B and any partition Ai,A2, • • •, A n of the 
sample space S. It facilitates greatly the calculation of P{B} in many situations 
because both P{B\Ai} and P{A{} may be much easier to calculate than a direct 
calculation of P{B}. 
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2.5 Total Probability Theorem and Bayes* Rule 

Total probability theorem is often useful for the calculation of the uncondi-
tional probability of an event P{B} knowing various conditional probabilities 
of the events P{B\Ai] and the probabilities of the conditioning events P{Ai}. 
Intuitively, it provides a way to find an "effect" from its "causes": It calculates 
the probability of an "effect" (event B) from the probabilities of all its possible 
"causes" (events A+s) and the relationships between these possible "causes" and 
"effect" (P{B\Ai}). 

(a) sample space partitioning and event B 

(b) probability decomposition 

Figure 2.4: Illustration of total probability theorem. 
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2.5 Total Probability Theorem and Bayes' Rule 

2.5.2 Bayes' Rule 

Since 

P{A\B}P{B} (=5) P{AnB} = P{Bn A} (=5) P{B\A}P{A} 

we have the Bayes' rule, Bayes' formula, or Bayes' theorem: 

(2.24) 

In particular, for any partition Ai, A2, • • *, An of the sample space S, we have 

P{B\Ai}P{Ai} 
PIMB} = p { B } 

(223) P{B\Ai}P{Ai} ( 2 2 5 ) 

P{J3|Ai}P{Ai} + • • • + P{B\An}P{An} 
How Bayes' rule should be interpreted divides statistics into two schools: 

Bayesian and non-Bayesian. The Bayesian school interprets the various proba-
bilities involved in the Bayes5 rule as follows: 

P{Ai} = a priori probability of event Ai 
= probability of event Ai without knowing event B has occurred 

P{Ai\B} =a posteriori probability of event Ai 
= probability of event A{ knowing event B has occurred 

In this sense, Bayes' rule provides a way of calculating the a posteriori proba-
bility by combining the a priori probability with the evidence from the current 
experiment in which the occurrence of event B has been observed. 

Bayes' rule is usually used to find the conditional probability P{A\B} of 
event A given another event B knowing the reversely conditional probability 
P{B\A}. Intuitively, it is often used to find a "cause" from the "effect": given 
an "effect" (event B), it calculates the probability of a particular possible "cause" 
(event Ai) among all its possible "causes" (events Ai,..., An). 

Total probability theorem and Bayes' rule are two of the most important and 
useful probability laws. 
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2.5 Total Probability Theorem and Bayes' Rule 

Example 2.19: Probability of Correct Communication 

A binary (with element 0 or 1) digital communication channel has the following 
error probabilities 

P{R1\S0} = 0.1 

P{Ro\Sx} = 0.05 

where 

50 = {"0" sent} RQ = {"0" received} 
51 = {"1" sent} Rx = {"1" received} 

Since only "0" or "1" can be received, we have 

P{Ro\S0} = P{17|S 0} = 1 - P{Ri\S0} = 0.9 
P{Ri\Si} = P{ i^ |Si} = 1 - P{i2o|Si} = 0.95 

Suppose that it is discovered that "0" is received with probability 0.8 (i.e., 
P{R0} = 0.8). 

(a) Determine the probability that "1" is sent: Let x = P{Si}. Since SQWSX = S 
(sample space), P{S0} = 1 - P{Si} = 1 - x. Then by total probability 
theorem, 

0.8 = P{RQ} ( = 3 ) P{Po |MP{Si} + P{Po|So}P{S 0} = o m x + 0 - 9 ( 1 - x ) 
Solving the above equation yields 

P{"1" sent} = P{Si} = x = = 0.1176 
0.85 

(b) Determine the probability that "1" was sent given that "1" is received: 

P { S i m ™ g i M = ( 0 - 9 5 ) < ° 2

1 1 7 6 ) = 0.5588 

(c) Determine the probability that "0" was sent given that "0" is received: 

P m = ^ M g p = (0.9)(1-1176) = Q ^ 

Note that it is much more reliable to transmit "0" for this channel. 
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2.5 Total Probability Theorem and Bayes' Rule 

Example 2.20: Random Selection and Sampling of Waveform 

Consider the waveforms and the following random experiment: 

51. First, select one waveform at random. 
52. Then, sample the selected waveform at a random time r, —1 < r < 6. 

If the sampled value gir) > 0.5, what is the probability that it was sampled from 
gi(t)l Let 

Ai = {waveform gi(t) is sampled}, i = 1,2 => a partition 
B = {sampled value g(r) > 0.5} 

By total probability theorem, 

P{B} = P{B\A1}P{A1} + P{B\A2}P{A2} 
= 2-M + 2/3 1 1/2 + 1/2 + 1 + 1/2 + 1 1 

7 2 7 2 
Thus, by Bayes' rule, 

P{9l(t) sampled^) > 0.5} = P{AX\B} = P { B ^ }

{ M } 

(ll/21)(l/2) 
0.5119 = 0.5116 
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2.5 Total Probability Theorem and Bayes' Rule 

Example 2.21: Random Selection of Capacitor 

Given the table below, consider the following random experiment: (1) first select 
a box; and (2) then choose a capacitor from the box. 

Box # 
Capacitance (i-iF) 1 2 3 Total 

0.1 35 25 40 100 
0.5 75 95 70 240 
1.0 60 10 65 135 

Total 170 130 175 475 
Assume that the box selection and the capacitor selection are both with equal 
probability. If a 0.1/iF capacitor is selected, what is the probability that it came 
from box 3? Let 

Ai = {capacitors in box i} 

B = {0.1pF chosen} 

Then, from the table, 
35 

= 4 - P{Ai} = ± i = 1,2,3 

P{B\AX} = P{B\A2} = 
25 
130' 

P{B\A3} 40 
175 170' 

A\,A2, A3 form a partition: 
• A capacitor cannot be in both Ai and Aj — mutually exclusive 
• A capacitor must be in one of Ai — exhaustive. 

Thus, by total probability theorem and Bayes' rule, 
P{B} = P{B\Al}P{A1} + P{B\A2}P{A2} + P{B\A3}P{A3} 

35 1 25 1 40 1 n n n n n ,100 , , O N + — - + — t : = 0.2089 ^ — (why?) 
1703 

P{box 3|0.1/xF} = P{A3\B} = 
1303 1753 ' 475 

P{B\A3}P{A3} (40/175)(l/3) 0.3647 
P{B} 0.2089 

Note that P{box 3|0.1//F} ^ 40/100. What if we assume (unrealistically for 
this problem) the following? 

170 
475' 

130 
475' ^ { ^ 3 } = 

175 
475 

See Example 2.31. 
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2.6 Combined Experiments and Bernoulli Trials 

2.6 Combined Experiments and Bernoulli Trials 

2.6.1 Combined Experiments 

Consider the following random experiment: 

51. First roll a die. 
52. Then toss a coin (independent from Step 1). 

The sample space of these two individual experiments are, respectively, 

51 = {1,2,3,4,5,6} 
5 2 = {U,T} 

This is a combined experiment with sample space 

S = Si x S2 (Cartesian product of S\ and S2) 
= {(1, ), (1, T), (2, H), (2, T), (3, H), (3, T), 

(4, H), (4, T) ,(5 ,H) ,(5 ,T) ,(6,#), (6, T)} 

What is the probability that an even number and head H will show up? 

A = {(2,H),(4,H),(Q,H)} 

Alternatively, this can be obtained as follows: 

A\ — {an even number shows up in die rolling} 
A2 = {head shows up in coin tossing} 

P{A} = P{AX x A2} 

1 P{A1}P{A2} = ? x 1 

_ _3_ 
~ 12 

The combined experiment of more than two experiments can be handled 
similarly. 
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2.6 Combined Experiments and Bernoulli Trials 

2.6.2 Bernoulli Trials 

Bernoulli trials are a special random combined experiment for which 
• Only two outcomes (A and A) are possible on any single trial. 
® Repeated trials are independent (from trial to trial). 

A typical problem is: What is the probability that A occurs exactly k times out 
of TV (independent) trials? Let 

p = P{A} (on a single trial) 
q = P{A} = 1 — p (on a single trial) 

B — {A occurs exactly k times out of N trials} 

Consider events 

B\ = {A, A,..., A, "A, A,..., ,4} = {A occurs on and only on each of first k trials} 
k times (N--k) times 

B2 = {A, A,...,A,~A, A, A, A,..., A} 
k-l times (N~k-l) times 

BM = {A, A,... ,A,A,A, ...,A) 
(N-k) times k times 

where M is the number of distinct orders for choosing k out of N trials: 
(N\ Nl 

M = I = 777——-— = binomial coefficient of k out of N (2.26) 
\k J k\{N — k)\ 

All these events have identical probability, given by, for i = 1,..., M , 

P{Bi} = P{.4} • • • P{A}P{A} • • • P{A} = / ( l - p)*-* = 
Since such sequences consist of mutually exclusive events, we have finally 

P{B} = P{A occurs exactly k times in any order out of N trials} 

= P{B1 W B2 W . . . W £?M} = E F{5 ,} = MP{A} - I fc JpV*"* 
or 

P{A occurs exactly A; times in N trials} = © [ P M } ] * ^ ^ } ] * - * (2.27) 
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2.6 Combined Experiments and Bernoulli Trials 

The n factorial n\ is defined as n! = n(n -l)(n-2) • • • (2)(1), where n is a positive integer. 
Note that 0! = 1. Factorial n\ increases extremely fast with n. For example, 70! > 10 1 0 0 . 

To find the probability of an event using the classical definition, knowledge of combinatorics 
is essential. 

There are the following four ways to choose a sample of m elements from a set of n 
distinguishable objects: 

Table 2.1: Sample selection combinatorics. 

Order matters? Repetition allowed? The sample is known as 
# of ways 
to select 
the sample 

Yes Yes m-permutation with replacement 
Yes No m-permutation n\/(n — m)\ 
No 
No 

Yes 
No 

ra-combination with replacement 
m-combination 

(n+m-l)! 
m!(n-l)! 

n! 
ml(n—m)\ 

The meaning of combination with or without replacement and permutation with or with-
out replacement is explained below. The binomial coefficient (j^j is equal to the number of 
combination ,/nl ... 

m!(fi—m)l 

Example 2.22: Sample Selection Combinatorics 

Selection of a 2-element sample from the set {a, b} has the following combinatorics: 

Sample type 
# of ways to select 
the sample 

set of samples 

permutation with replacement 
permutation 
combination with replacement 
combination 

2 2 = 4 
2 ! / ( 2 - 2 ) ! = 2 

(2+2-1) ! o 
2!(2-l)! ~~ 0 

2!(2-2)! 1 

{ a a , ah, 6a, bb} 
{abj ba} 

{a&, aa , bb} 
{ab} 

With replacement, the same element may be used to form a sample repeated. This is reflected in 
the samples aa and bb. The difference between permutation and combination is that ab and ba 
are considered to be different in permutation but the same in combination since the latter does 
not take order into account. 

Note that © = (N»m), (3 = 1, and (a + b)n = E ^ i {^oTb^. 
Two individual experiments Ex and E2 with sample spaces Si and S2, respectively, are 

independent if and only if every event Ai of Ei is independent of every event A2 of E2: 

PiAx x A2} = P{Al x S2}P{S1 x A2} = P{A!}P{A2} 
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2.6 Combined Experiments and Bernoulli Trials 

Example 2.23: Repeated Die Rolling 

A die will be rolled 5 times. 
(a) What is the probability that "3" will show up exactly twice? 

First identify for (2.27) that k = 2, N = 5, and 

P = P{A} = \ q = P{A} = \ 

Then 

(5\ 5! / 1 \ 2 / 5 \ 3 

2 1pV~2 = ^jgj f gj (-J 
= 0.16075 

(b) What is the probability that "4" will show up at least twice? 
P{"4" shows up at least twice} = 1 - P{"4" does not show up} 

— P{"4" shows up once} 

= 1 _ 5! / l \ ° / 5 \ 5 5! (l\ /5 
0!5! V6/ \6 / 1!4! \6J V6 

= 0.1962 
Alternatively, 

P{"4" shows up at least twice} = P{"4" shows up twice} 
+ P{"4" shows up 3 times} 
+ P{"4" shows up 4 times} 
+ P{"4" shows up 5 times} 

= g ) , V + g ) , V + C ) A + g ) / 
= 0.1962 

(c) What is the probability that "4" shows up at least 5 times? 

P{"4" shows up at least 5 times} = P{"4" shows up 5 times} = ^jp5 

= 0.0001286 
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2.6 Combined Experiments and Bernoulli Trials 

Example 2.24: Probability of Typos 

A typist makes an error while typing a letter 0.3% of the time. There are two 
types of errors. Type A and B errors occur 80% and 20% of the time, respectively, 
whenever an error occurs. 

(a) What is the probability of no error in 10 letters? Let 

£ f = {i errors in N letters} P{E\} = 0.003 
Af = {i type A errors in N letters} =>• P{A\\E\] = 0.80 

Then, from (2.27), 

P{E™} = P{no error in 10 letters} = ĵ j (P{£j}) 0 ( l - P{E{})10 

= ^ 0°j (0.003)°(1 - 0.003)10 = 0.9704 
(b) What is the probability of no type A error in 10 letters? By (2.23), 

P{.4}} = P{A\\El}P{El}+P{A\\El} P{El} = (0.8) (0.003)+0 = 0.0024 
=0 (why?) 

Then, 

P{Al

Q

0} = P{no type A error in 10 letters} - J ĵ (P{A\})°(1 - P{A\})10 

= (o°) (0.0024)°(1 - 0.0024)10 = 0.9763 > P{i? 0

1 0} (why?) 

(c) Given that exactly one error has occurred in 10 letters, what is the probability 
that it is a type A error? By Bayes' rule, 

p { A \ ° m = n s ^ w m = ( s i n c e P { E i o l A l o } = i) 

T)(^{^i}) 1(l - P{A\})9 _ (0.0024)(1 - 0.0024)9 _ Q ^ 
~~ (f)(P{El}y{l - P{El}f ~ (0.003)(1 - 0.003)9 

Note that 

P{A\°\E{0} = 0.8043 ̂  0.8 - P{A\\E\} = P{a type A error given an error} 

You are invited to provide an explanation (see problems 2.38 and 2.39). 
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2.6 Combined Experiments and Bernoulli Trials 

Example 2.25: Bernoulli Trials by P&R 

Bernoulli trials can be performed easily using the companion software P&R as follows: 3 

51. Click "Miscellaneous" in the main window of P&R. 
52. Click "Bernoulli Trials" and choose "Trial Generator." The "Bernoulli Trial Generator" window 

wil l appear. 
53. Enter the parameters (i.e., 20 trials and P{A} = 0.36) as shown in Fig. 2.5. Click "Ok." 

The total times event A occurs in this experiment is then given and the outcome of the trials 
plotted as a sequence of "0" and " 1 , " as shown in Fig. 2.5. 

=>fA> 

20 

«• * »ut<:r.irm? of Bernoull i I n u l $ 

J2L_„ I ,R: - -->-- - -----

0.5 

o 

Occurrence of event A = 4 
<j> 

1 0 

Figure 2.5: Bernoulli trials by P&R. 

Example 2.26: Probability Calculation for Bernoulli Trials by P&R 

The probability of an event in Bernoulli trials can also be computed easily using the companion 
software P&R as follows: 

51. Click "Miscellaneous" in the main window of P&R. 
52. Click "Bernoulli Trials" and choose "Probability Calculator." The "Probabil ity Calculator for 

Bernoulli Trials" window wil l appear. 
53. Enter the parameters (i.e., 35 trials, event A occurs at least 7 times and P{A} = 0.29) as 

shown in Fig. 2.6. Click "Ok." The probability of the event A occurs at least 7 times is then 
given, as shown in Fig. 2.6. 

3You are strongly encouraged to repeat all P&R examples. You will definitely learn faster and more this way. 
These examples are fairly easy to follow and repeat. 
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2.7 Summary and Requirements 

The probability of an event occurs exactly, at least, or at most k times can be calculated this way. 

" • li*-e"wV» f L' F rt~ t*,F ~>>^s f?GfC9r«M.* *a4 rsVi--, M}«-^- Miaous R P ^ » ^ * r © K > ' 

GEO 
l l i l l l 

K :^ 5ri« »t*f t tbt?f s,<* Rita's. 

tw*,;.$ *h*** *« o c c u r s 

Probabi l i ty that A occurs at least 7 t imes =0 .91757 

Probabi l i ty that A occurs exactly 7 times = 0.079375 

Probabi l i ty that A occurs at mos t 7 t imes = 0 16131 

Figure 2.6: Probability Calculation for Bernoulli trials by P&R. 

2.7 Summary and Requirements 

Probability is a number assigned to an event that satisfies the following three axioms: (1) It is 
nonnegative and not larger than unity; (2) a sure event has unity probability; and (3) probability of 
the union of mutually exclusive events is equal to the sum of probabilities of the events. Special 
attention should be paid to the condition of the last axiom above. Probability of an event can be 
interpreted as (the limit of) the relative frequency of the occurrence of the event. 

Random events are subsets of the sample space and thus manipulation of events is based on 
set operation. 

The probability of the union of two events A and B is 

P{A 4- B} = P{A U B } = P{A] + P{B] - P{A n B} 

where P{A D B} is the joint probability of events A and B, given by 

P{AB} = P{A f l B } = P{A} + P{B} - P{A U B} = P{A\B}P{B} 

where P{A\B} = F p p ^ is the conditional probability of A given B. The probability of the 
complement of an event A is P{A} = 1 — P{A}. 
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2.7 Summary and Requirements 

Two events are independent i f the occurrence of one does not affect the occurrence of 
the other. Mathematically, that is, P{A n B} == P{A}P{B}. They are disjoint (or mutually 
exclusive) i f the occurrence of one excludes the occurrence of the other; that is, A ft B = 0. 

P{AB} « A ' B ^ ^ P{A}P{B} 

P{A + B} i f A ' B

=

d i s J ° i n t P{A} + P{B} 

Total probability theorem is given by 

P{B} = P{B\A1}P{A1} + P{B\A2}P{A2} + ••• + P{B\An}P{An} 

where A\,..., A n form a partition of the sample space. It calculates the probability of an "effect" 
(event B) from the probabilities of all its possible "causes" (events Ai's) and the relationships 
between the possible "causes" and the "effect" (P{B\Ai}). 

Bayes* rule 

P{Ai\B} = P i B \ A ^ P i A ^ - P { B | ^ } P { ^ } 
P{B} P{B\A1}P{A1} + . • • + P{B\An}P{An} 

is often used to find a "cause" from the "effect": given an "effect" (event J3), it calculates the 
probability of a particular possible "cause" (event Ai) among all its possible "causes" (events 

Independent trials where each trial is identical and has only two possible outcomes (A and 
"A) are known as Bernoulli trials. The probability of the number of the occurrence of A is given 
by 

P{A occurs exactly k times in N trials} = F) [P{A}]k[P{A}]N~~k 

Basic Requirements 

• Understand the concept of probability and its relative-frequency interpretation. Be familiar 
with the properties of probability. 

• Know how to find probability of an event for simple problems using the classical, geometric, 
and/or relative-frequency definitions. 

• Be familiar with the formulas of probabilities of the union, intersection, and complement of 
events. 

• Know how to judge whether two events are independent from both common sense and 
definitions. Have a good understanding of the difference between independent and mutual 
exclusive events. 

• Comprehend conditional probability and know how to calculate it. 
• Know when and how to apply the total probability theorem and Bayes' rule. 
• Learn what type of problem can be formulated as Bernoulli trials and know how to apply 

(2.27). 
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2.8 Additional Examples 

In addition, be clear about the limitations of the traditional definitions of probability. 
The major difficulties with the classical problems of probability are the manipulation of 

events (i.e., how to express an event in terms of some known events) and the correct recognition 
of the' problem type. The most difficult topics of the chapter are the total probability theorem 
and the Bayes5 rule, especially how they can be applied to solve problems. 

2 . 8 A d d i t i o n a l E x a m p l e s 

2.27 Jury verdict. DMA evidence is introduced on a murder trial. Suppose it is correct that i f 
the accused is not guilty then the chance that the two DNA samples (one from the accused 
and the other found at the murder scene) have an exact match is one out of fifty million. 
A match is found. Do you think the accused is guilty or not? On what scientific ground 
is your judgment based? 

Solution: I f an event with an extremely small probability, based on a probabilistic model 
of the event, has occurred on a single trial, then in practice we have strong reasons (beyond 
a reasonable doubt) to believe that the underlying probabilistic model is incorrect. Since 
one out of fifty million i r extremely- small, we should think the underlying assumption 
that the accused, is not guilty is incorrect and thus a reasonable verdict should be that the 
accused is guilty. Abandoning the underlying probabilistic model due to the occurrence 
of an extremely small probability event on a single trial is common practice in science 
and engineering and should also be acceptable by most people concerning court cases. Of 
course, such a judgment is based on the assumption that the statistics (one out fifty million 
in this case) is correct (or at least with an extremely high confidence of small errors) as 
well as some other assumptions, such as that the samples and the test are reliable and the 
probability that there is a conspiracy to frame the accused is extremely small. 

2.28 A/D conversion. The following voltage waveform is to be sampled at a random time r 
over the period — 1 < £ < 5. 

v(t) 

1.5 
1.25 

t 
1 0 1 2 5 

.5 

1 

(a) What is the probability that the sampled value v(r) < —0.5? 
(b) What is the probability that the sampled value v(r) > 1.25? 
(c) What is the probability that the sampled value v(r) = 1.25? 
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2.8 Additional Examples 

(d) What is the probability that the sampled value V(T) = -0.5? 
(e) What is the probability that the sampled value satisfies - 1 < V(T) < 1.5 but not 

equal to -0.5? 

Solution: 

(a) P{V(T) < - 0 . 5 } = 2Zi = I . 

(b) P{V(T) > 1.25} = ^+2Z§ = A 

(c) P { « (T ) - 1.25} = f = 1/12. 
(d) P{v(j) = - 0 . 5 } - | = 0. 
(e) P { - 1 < V(T) < 1.5, V(T) ^ - 0 . 5 } = 6/6 = 1. 

2.29 Life insurance premium. The probabilities that a husband and a wife will be alive 15 
years from now are assigned as 0.9 and 0.95, respectively, by an insurance company to 
determine premiums. Find the probability that in 15 years (a) both will be alive; (b) neither 
will be alive; (c) at least one will be alive; (d) only one will be alive; (e) the husband 
will be alive alone. Assume that the husband and the wife will be alive independently. 

Solution: Let H = husband alive, W = wife alive. 

(a) P{both alive} = P { H n W} i n d e n P | ? d e n c e

 P{H}P{W} = (0.9)(0.95) = 0.855. 

(b) P{neither alive} = P { H n W} i n d e n P 5 ? d e n c e p(ff}P{W} = (1 - 0.9)(1 - 0.95) = 
0.05. 

(c) P{at least one alive} = P{HuW\ = P{II} + P{W} - P I H f)W} = 0.9 + 0.95¬
0.855 = 0.995. 

(d) P{only one alive} = P{(H f l F ) m ( I n W)} = P { H n W} + P { H n W} = 
P { / / } P { l i ' } + P{H}P{W) = ( 0 ^ ( 1 - 0.95) + ( 1 _ - 0.9)(0.95) = 0.14. 

(e) P{husband alive alone} = P { H f)W} = P{H}P{W} = (0.9)(1 - 0.95) = 0.045. 

2.30 Quality control. A box of 100 resistors with certain resistance and tolerance is given 
below 

Resistance (ft) 2% tolerance 5% tolerance Total # 
20 10 16 26 
50 25 14 39 
100 29 6 35 

Total 64 36 100 

(a) What is the probability of drawing a resistor of 50O with 2% tolerance? 
(b) What is the probability of drawing a resistor of 50O or having 2% tolerance? 
(c) What is the probability of drawing a resistor of 50O given that the resistor has 2% 

tolerance? 
(d) What is the probability of not drawing a resistor of 100O with 5% tolerance? 
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2.8 Additional Examples 

(e) What is the probability of drawing a resistor with 2% tolerance given that it is of 
200? 

Solution: 

(a) P f (500) n (2%)} = § j = 0.25. 
(b) Since 50O and 2% are not mutually exclusive, we have 

P{(50O)U(2%)} = P { 5 0 f i } + P { 2 % } - P { ( 5 0 O ) n ( 2 % ) } = J |+J±-J| 
( C ) ^{50^12%} =

 Pi(5Sf°)} = IS = f = 0.3906.. 
(d) P { ( i o o o ) n (5%)} = i - P { ( i o o o ) n (5%)} = i 
(e) P{2%|20fi} = = 12Z100 = ^ = 

0.78 

_6_ = 47 = Q Q 4 

100 50 

13 P{20O} 26/100 

2.31 Quality control Given the table below, which lists the number of capacitors of a certain 
capacitance and tolerance in a box, assume a capacitor is chosen at random (with equal 
probability) out of all 475 capacitors. 

Tolerance 
Capacitance (pF) 1% 2% 5% Total 

0.1 35 25 40 100 
0.5 75 95 70 240 
1.0 60 10 65 135 

Total 170 130 175 475 

(a) What is the probability that a 0.1/xF capacitor is chosen? 
(b) What is the probability that a capacitor of 5% tolerance is chosen? 
(c) I f a OAfiF capacitor is selected, what is the probability that it has tolerance 5%? 
(d) Comparing with Example 2.21, why P{box 3|0.1/iF} = 0.3647 ^ ^ there? 

Solution: 

100 
. 475' (a) P{0.lfj,F} 

(b) P { 5 % } = § § . 
(c) P(5%10 luF\ = F ( ( 5 % ) n ( Q - W } =

 4 ° / 4 7 5 _ 40 
* \o/o\u.Lfj,r | P{0.1/xF} 100/475 ™~ 100* 

(d) In Example 2.21, we assume selection of a box has equal probability ~, which is not 
proportional to the number of capacitors in them: 170/130/175. As a result, Example 
2.21 and the current problem are based on two different random experiments. I f we 
assume (which is realistic for the current example but not for Example 2.21) 

P { A l } = 170/475, P { A 2 } = 130/475, P { A 3 } - 175/475 

then, it can be obtained easily that Pfbox 3|0.1/iP} = The key is that by the 
above assumption of P{Ai}9 each capacitor has equal probability of being chosen 
and thus it is equivalent to having all capacitors in one box. 
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2.32 Random selection. A technician has two electronic parts cabinets with drawer arrange-
ments as below. 

4-drawer cabinet 3-drawer cabinet 
PNP PNP 
PNP PNP 
NPN NPN 
NPN 

The technician selects one cabinet at random and withdraws a transistor from one of die 
drawers which is also chosen at random. Assume that each cabinet and each drawer 
within the selected cabinet are equally likely to be selected. 

(a) What is the probability that a PNP transistor is chosen? 
(b) Given that an NPN transistor is chosen, what is the probability that it came from the 

3-drawer cabinet? 

Solution: 

(a) By total probability theorem, 

P{PNP} = P{PNP\4}P{4} + P{PNP\3}P{3} = I . I + H . I = JL = 0.5833 
Z> L o Z JLZ 

(b) By Bayes5 rale, 

M%\PNP\ = P{PNP\3}P{3} ( l / 3 ) ( l / 2 ) 2 
1 , 1 P{PNP} 1 - 7 / 1 2 5 

2.33 AH roads lead to Rome. Toss a coin three times. Find the probability that head shows up 
at least once. 

Solution: Let A = {head shows up at least once}, H = head, T = tail. 

Method 1: Since each toss has two possible outcomes H and T with equal probability, 
there are 2 3 = 8 possible outcomes when toss three times. Then 

P{A} - 1 - P{a l l tails} = 1 - 1 = 1 
8 8 

Method 2: In all 8 possible outcomes, 7 are in favor of A. Thus 

Method 3: Let An = {head shows up exactly n times}, n = 1,2,3. Clearly, 

P{AX) = P{HTT} + P{THT} + P{TTH} = | 
8 

P{A2} = P{HHT} + P{HTH} + P{THH} = | 
8 

P{A,} = P{HHH}=1-
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Since A±, A2, A 3 are mutually exclusive, 

P { A } = P { A , W A 2 W ^ } = P { A 1 } + P { A 2 } + P { A 3 } = | + § + I = Z 
o o o o 

Method 4: Tossing three times is an experiment with three independent trials, each with 
two possible (equally probable) outcomes. By Bernoulli trials, p = 1/2, 

P{ A} - 1 - P{exactly 0 times out of 3 trails} = 1 - Q ( l / 2 ) ° ( 1 / 2 ) 3 = ~ 

Method 5: Tossing three times is an experiment with three independent trials, each with 
two possible (equally probable) outcomes. By Bernoulli trials, p = 1/2, 

P{A} = P{once out of 3 trails} + P f twice out of 3 trails} + P{3 times out of 3 trails} 

= Q (i/2) i(i/2)a+Q m'm1+(3) ( i / 2 ) 3 ( i / 2 ) ° = I 
2.34 Preference of multiple-choice problems. A test consists of 5 multiple-choice problems, 

each with 4 choices and only one is correct and only one is allowed to choose. A poor 
student does not know the correct answer to any of the problems. He/she selects the 
choices at random. What are the probabilities that he/she has 1, 2, 3, 4, or 5 correct 
choices? 

Solution: Let P{n} = {n correct choices}. Then since the probability of a correct choice 
for each problem is 1/4, by Bernoulli trials, 

P{n}= f ^ ( l / 4 ) n ( l - l / 4 ) 5 - n 

Thus, 

P{no correct choice} = P { 0 } 

P { 1 correct choice} ••= P { 1 } 

P { 2 correct choice} = P { 2 } 

P{3 correct choice} = P { 3 } 

P { 4 correct choice} = P { 4 } 

P{5 correct choice} = P { 5 } 

= Q ( l / 4 ) ° ( l - l / 4 ) 5 " 

= Q ( l / 4 ) 1 ( l - l / 4 ) 5 -

= Q ( l / 4 ) 2 ( l - l / 4 ) 5 

= ^ ( l / 4 ) 3 ( l - l / 4 ) 5 

= Q ( l / 4 ) 4 ( l ~ l / 4 ) 5 

= ( f ) ( l / 4 ) 5 ( l - l / 4 ) 5 

0 = 243/1024 = 0.2373 

1 = 405/1024 = 0.3955 

2 = 270/1024 = 0.2637 

3 = 90/1024 = 0.08789 

4 = 15/1024 = 0.01465 

5 = 1/1024 = 0.000977 



2.8 Additional Examples 

Note that these probabilities do sum up to unity. The student would have scored 0 point 
were the test not in the form of multiple choices. He/she, however, wi l l have only 23.73% 
chance of getting 0 point now. Clearly, multiple-choice problems are in favor of poor 
students and the average test score wi l l be higher than what it should be. 

2.35* Probability of modem error.4 A digital modem makes an error in transmitting a bit of a 
message with 0.01% probability. 60% of the errors are type A errors: the actual bit is 0 
but the modem sends/receives it as 1. The other type (type B) of errors are: the actual bit 
is 1 but the modem sends/receives it as 0. 

(a) What is the probability of no error when sending a 100-bit message? 
(b) What is the probability of no type B error when sending a 100-bit message? 
(c) Given that an error has occurred when sending a 100-bit message, what is the prob-

ability that it is not a type B error? 
(d) Given that two errors have occurred when sending a 50-bit message, what is the 

probability that exactly one type B error occurs? 

Solution: Let 

= {exactly i errors in N bits} 

A f — {exactly i type A errors in N bits} 

= {exactly i type B errors in N bits} 

The problems then can be treated as Bernoulli independent trials. The single event prob-
abilities are 

P{E\] = 0.01% 

and, by total probability theorem, 

P{A\) = P{A\\E\}P{E\} + P{MmP{El} = P{A\\El}P{El} 
=o 

= (60%) (0.01%) = 0.006% 
P{B\] = P{B\\E\}P{E\} + P{B\\E\]P{E\} = P{B\\E]}P{E\} 

=o 

= (40%) (0.01%) = 0.004% 

where Pf/lJIEj} = 0 and P{B\\E\} = 0 because E\ stands for no error in sending a 
single bit. 

(a) Here p = P{El}, 

P{E™0} = (W°) (0.01%)°(1 - 0.01%)100 = 99% 

A number with a star means that the example or problem is more challenging. 
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(b) Herep = P { B 1

1 } , 

P{B™} 

(c) 

(d) 

100 
(0.004%)°(1 - 0.004%)100 = 99.6% 

P{B\n\E™} = P f A H - E i 0 0 } = 
P{(A\°°) n (El00)} P{A\°°} 

P{El°°} P{El°°} 

(™)(P{A\mi-P{A\})«> _ ( 0 .006%) 1 (1- 0.006%)" 

( 7 ) ( P { £ J 1

1 } ) 1 ( 1 - P{E}})m (0M%Y(1 - 0.01%)" 

( 0 . 6 ) 1 ( 2 ^ ) " = 0.6024 
v 1 \ 0.9999 / 

P{B™\Ef} = - P { £ 0

5 0 | £ 2

5 0 } - P { 5 2

5 0 | £ 2

5 0 } 
P{(p. 0

5 0 ) n (Ej0)} + P{(B%°) n (Ej0)} 
P{E?) 

P{Af} + P{Bf} 
P{E?} 

(?) i(P{A\})2(l - P{A\}r + (P{Bl}ni - P{Bl})" 

(™)(P{Eimi-P{E}}Y* 
_ (0.00006)2(0.99994)48 + (0.00004)2(0.99996)48 

(0.0001)2(0.9999)48 

where 

{(#o°) D (£ f ° ) } = {two errors (but not type B) in sending 50-bit message} 
= {two type A errors in sending 50-bit message} = A\ 50 

2.9 Problems 

Words we use create states on us. 
So you want to change "problems" to "challenges." 

— Antony Robbins, Personal Power 

2.1 Venn diagram. Draw Venn diagrams to verify 

A n (B u C) = {A n B) u (A n C) 
A u (B n C) = (A U B) n {A U C) 
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2.2 Venn diagram. Draw Venn diagrams to show (2.2). 

2.3 Venn diagram. Draw Venn diagram to verify 

(A n B) u c - (A n B) n C 

2.4 Set operation. Determine whether each of the following is true or false: (a) A U B = 
AB U J5; (b) (AB)(AB) = (c) A U 5 = AB; (d) Z U P n C = A B C ; (e) UAcB, 
then A = AB, Al) B = B9 B C A; (f) If AB = 0 and C C B, then A C = 0. 

2.5 Set operation. Let sample space S = { 0 , 1 , . . . ,9} and two sets B = { 4 , 5 , 9 } , C = 
{ 2 , 3 , 5 } . Find C U B, BC9 and CBC. 

2.6 Probability of set difference. Find P{A - B} in terms of P{A} and P{B} if (a) A and 
B are mutually exclusive or (b) A c B. 

2.7 Properties of probability. Assume in this problem that events A C B. (a) Is it always 
true that P{A} < P{B}7 Justify your answer, (b) Find P{A U B} in terms of P{A} 
and P { £ } . (c) Use the axiomatic approach to show that P{B - A} = F { B } - P { A } . 

2.8 Dwjoinl probability. Find P { A B } if P{ .4} - 0.8, P{ .4 - B} = 0.5. 

2.9 Summation law. Given P{A} - 0.4, P { P } - 0.25, and P{AuB} = 0.55, find P { A B } . 

2.10 Probability of union of three events. Derive an expression for P{A UBUC} in terms of 
P { A } , P { P } , P { C } , P { . 4 P } , P { P C } , P { C A } , and P{ABC}. 

2.11 Probability of three events. Given P { A } = 0.2, P { S } = P{C} = 0.25, P { B C } = 0, 
and P { A P } = P{CA} = 0.1, find 

(a) the probability that at least one of the events A, B, and C occurs 
(b) the probability that none of the events A, B, and C occurs 

2.12 Minimum number of hits to kill. Assume that an aircraft carrier will be sunk with a 
probability of 0.3 if hit by a torpedo. At least how many torpedoes are required to hit the 
aircraft carrier so that it is sunk with a probability of 0.9? 

2.13 Elementary probability of sampling with replacement. In a lottery, 10 different numbers 
are in a box. Each of 10 persons gets a number from the box at random (without 
putting it back). Which one in the sequence to get the number has the maximum winning 
probability? How large is the probability? 

2.14 Birthday problem. Assume that the birthday of a student is random over the 365 days of 
a year. A class has 20 students. Find the probability that at least two students have the 
same birthday. 
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2.15 Equivalent formulas for independence. Show that i f P{A} ^ 0 and P{B} •=£ 0, then 
P{A\B} = P{A} and P{B\A} = P{B} are equivalent; that is, one implies the other. 

2.16 Die-rolling problem. For the die rolling experiment, let Ft = {face i shows up}. Find 

(a) P{Fi, i even|Fi U F2 U F 3 U F 4 } 
(b) P { F i U F 2 U F 3 U F 4 \ F h i even} 
(c) P { F i n F 2 n F 3 n F 4 |F , , i even} 
(d) P { F 2 U F 6 | F 1 U F 2 U F 3 U F 4 } 

2.17 Relation of various probabilities. Consider two events A and B. (a) Under what condi-
tion^) is P{A} - P{A U B}1 (b) Under what condition(s) is P{A] = P{A n B}1 (c) 
Under what condition(s) is P{A} = P { / 1 | P } ? 

2.18 Relation of various probabilities. Given P { J 4 } = 0.4, P { P } = 0.15, and P{A\B} = 
0.65, find P{A U P ) . 

2.19 Probabilities of two events. Two cities A and B have an identical probability 0.24 of 
raining in an arbitrary day, and the probability 0.15 of raining in the same day. Find 

(a) the probability that it wi l l rain in either A or B (or both) 
(b) the probability that it is raining in A knowing that it is raining in B 
(c) the probability that it is raining in B knowing that it is raining in A 

2.20 Lower bound on event probability. Give a lower bound for P{A} in terms of P{B} and 
P{C} i f A always occurs whenever B and C occur simultaneously. 

2.21 Hit probability. A and B are shooting at the same target independently with probabilities 
0.6 and 0.15 of hitting it. Find 

(a) the probability that the target is hit by either A or B 
(b) the probability that the target is hit by A knowing that it is hit 

2.22 Quality control. In a drawer of 12 capacitors, there are 3 defected ones. Two capacitors 
are taken out from the drawer, one at a time without replacement. Find 

(a) the probability that the first capacitor is defective 
(b) the probability that the second capacitor is defective knowing that the first one is 

defective 
(c) the probability that both capacitors are defective 
(d) the probability that the second capacitor is defective 

2.23* Fraud probability. Students A and B may make an identical and uncommon mistake in 
solving an exam problem. I f the students should work independently, A and B would 
have 0.05 and 0.02 probabilities of making this mistake. Assume that the probability that 
A and B make the same mistake (independently or dependent) is 0.008. Find 
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(a) the probability that they make the mistake independently 
(b) the probability that A copies P's mistake 
(c) the probability that B copies A's mistake 

2.24 Reliability. A hospital has three independent power supplies with reliability of 0.99, 0.995, 
and 0.95, respectively. Find the probability of the hospital's power outage. 

2.25 Reliability. An alarm system consists of N independent subsystems connected in parallel, 
each with reliability 0.97. What is the smallest N that guarantees 0.9995 reliability of the 
overall system? 

2.26 Independence vs. pairwise independence. A regular tetrahedron has three of its four sides 
in red, green, and yellow, respectively. Its fourth side is in a mixed color with red, green, 
and yellow simultaneously. Consider a random experiment of tossing this tetrahedron (the 
side facing down is chosen). Let 

Note that in the above "a side with red color" does not mean "a side with red color alone." 

(a) Find probabilities P { P } , P { G } , and P{Y}. 
(b) Find probabilities P{RG}, P{GY}, P{YR}$ and P{RGY}. 
(c) Are events R, G, and Y independent? 
(d) Are events R, G, and Y pairwise independent? 

2.27 Condition for independence. Show that i f P{A\B} + P(A\B} = 1 and 0 < P{A} < 1, 
0 < P{B} < 1, then A and B are independent. 

2.28 Condition for independence. I f P{A\B} - P{A\B} and 0 < P{B} < 1, show that A 
and B are independent. 

2.29 Probability of independent events. Events A, J3, and C are independent. Given P{A} = 
0.3, P{B} = 0.4, P{C} - 0.5, find (a) P{A U P } ; (b) P{AUBUC}; (c) P{.4 - B}. 

2.30 Probability of independent events. Given two independent events A and B with P{A} = 
0.3, P{B} = 0.4, find (a) P{A U B}; (b) P{AB}; (c) P{B\A}; (d) P(B\A}. 

2.31 Cause finding. Suppose that independent missiles A, J3, and C have probabilities 0.4, 
0.5, 0.6 of hitting the enemy's headquarters, respectively. Assume that the enemy's head-
quarters wi l l be destroyed with a probability 0.3, i f hit by a single missile, 0.6 i f hit by 
two missiles, and 1 i f hit by all three missiles. Find 

(a) the probability that the headquarters is destroyed 

Y 

G 

R {a side with red color shows up} 

{a side with green color shows up} 

{a side with yellow color shows up} 
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(b) the probability that the headquarters is destroyed by a single missile knowing mat i t 
is destroyed 

(c) the probability that the headquarters is destroyed by missile A knowing that it is 
destroyed 

2.32 Power system security. A power system wi l l collapse i f a ground fault occurs on any two 
of lines A, B, and C simultaneously. Assume that ground faults on lines A, B, and C 
are independent and have identical probability of 0.01. 

(a) What is the probability that the system wi l l collapse? 
(b) What is the probability that the system wi l l collapse given that a ground fault on line 

A has occurred? 
(c) What is the probability that a ground fault on line A occurred given that the system 

has collapsed? 

2.33 Winning probability. At 14-14 tie in a volleyball game, the game wi l l be over i f a team 
scores additional 2 points more than the other team. Suppose that teams A and B have 
the probabilities 0.55 and 0.45 of wining a single point, respectively. Find the probability 
that team A w i l l win. 

2.34* Spot-check. To control the quality of 200 oscilloscopes, 4 of them are taken out at random 
and tested independently. I f at least one is found defective, then all 200 oscilloscopes wi l l 
be rejected. Assume that a defective oscilloscope wi l l be found defective with 0.98 prob-
ability and a defect-free one wi l l be mistakenly declared defective with 0.01 probability. 
Find the probability of accepting these 200 oscilloscopes i f in fact 5 of them are defective. 

2.35 Probability of success. Suppose that event A has the probability p of at least one occur-
rence in N independent trials. Find 

(a) the probability of event A on a. single trial 
(b) the probability that A occurs at most once 
(c) the probability of event A on a single trial i f p = 79/81 and N = 4 

2.36 Probability of winning. Consider the following combined experiment 

• Roll a die. 
• Toss a coin. 

• Play a fair game (with no tie and equal probability for win and loss). 

Assume that these experiments are independent of each other. 

(a) What is the probability that an odd number and head show up and win the game? 
(b) What is the probability that an odd number shows up and win the game given that 

the head shows up? 
2.37* Probability of a code. The code of a safe consists of four distinct digits. Find 
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(a) the probability that the code includes neither digit 3 nor digit 4 
(b) the probability that the code includes digit 3 but not digit 4 

2.38* Effect of nonoccurrence. For Example 2.24, explain why P{A\°\El0} ^ P{A\\El). 

2.39 Effect of nonoccurrence. For Example 2.24, show that P{A?\E?} > P{Af -^E?-1} > 
P{A\\E1},VN > 2 . 

2.40* Probability of communication error. Consider a communication link which consists of 
two independent and identical channels of self-test problem 2.5 in series. Find 

(a) the probability that a " 1 " is received correctly 
(b) the probability that a single digit is received correctly 
(c) the probability that a 10-digit number is received correctly 
(d) the probability that a 10-digit number is received with exactly one incorrect digit 
(e) the probability that a 10-digit number is received with some error 
(f) the probability that a " 1 " is incorrectly received as a "0" in a 10-digit number given 

that the number is received with exactly one incorrect digit 

2.41* Probability of communication error. Consider a communication link which consists of 
two independent and identical channels of self-test problem 2.5 in parallel, meaning that 
a bit is sent through both channels at the same time. Suppose that the receiver accepts the 
bit i f they match, otherwise, it requests that the bit be sent again through both channels. 
Find 

(a) the probability that a " 1 " is received correctly 
(b) the probability that a single digit is received correctly 
(c) the probability that a 10-digit number is received incorrectly 
(d) the probability that a 10-digit number is received with exactly one incorrect digit 
(e) the probability that a " 1 " is incorrectly received as a "0" in a 10-digit number given 

that the number is received with exactly one incorrect digit 

2.42 De Mere's perplexity. Consider rolling a fair die 4 times. Let Ai = {6 shows up on roll i}. 
Find the probability of de Mer6's first scheme (p. 32); that is, the probability of at least 
one 6 out of 4 rolls. 

2.43 De Mere's perplexity. Consider rolling a pair of fair dice 24 times. Let A{ = {12 shows 
up on roll i}. Find the probability of de Mer6's second scheme (p. 32); that is, the 
probability of at least one 12 out of 24 rolls. 

2.44 Set number preference. In a tennis match, a player has the probability 0.6 of winning 
each single set. Find the probability that he wi l l win (a) two out of three sets; (b) three 
out of five sets; and (c) four out of seven sets. I f you were the player, would you prefer 
to have more sets in a match? Why? The more the better? 
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2.45 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too involved. 

2.10 Computer Exercises 

2.1 Probability calculation for Bernoulli trials. 

(a) Write a MATLAB function subroutine bn_exact . m, with the top line P = bn_exact 
(p, JV, fc), implementing (2.27) to calculate P = P{A occurs exactly fc times in N 
trials}, where p = P{A} is the probability of event A on any single trial; N is the 
total number of trials; and fc is the number of occurrences of event A. 

(b) Use bn_exact .m to solve part (a) of Example 2.23. Make sure the results are 
correct. Compare the results with those obtained using the companion software P&R. 

(c) Find P for p = 0.36643, N = 1205 fc = 47. 

2.2 Probability calculation for Bernoulli trials. 

(a) Write a MATLAB function subroutine b n . a t l e a s t .m, with the top line P = 
bn_at least (p , N, fc), calculating P = P{A occurs at least k times in N trials} 
based on subroutine bn_exact .m, where p = P{A} is the probability of event A on 
any single trial; N is the total number of trials; and k is the number of occurrences 
of event A. 

(b) Use b n _ a t l e a s t .m to solve parts (b) and (c) of Example 2.23, and problems 2.42 
and 2.43. Make sure the results are correct. 

(c) Find P for p = 0.36643? N = 1205 k = 47. 
(d) Use the companion software P&R to find P and compare the result with the above. 

2.3 Probability calculation for Bernoulli trials. 

(a) Write a MATLAB function subroutine bn_atmost .m, with the top line P = 
bn_atmost(p, N, fc), calculating P = P{A occurs at most fc times in N trials} 
based on subroutine bn_exact .m, where p = P{A} is the probability of the oc-
currence of event A on any single trial; N is the total number of trials; and fc is the 
number of occurrences of event A. 

(b) Find P for p = 0.36643, N = 1205 fc = 46. 
(c) Use the companion software P&R to find P and compare the result with the above. 

2.4 Bernoulli trials. 

(a) Use the companion software P&R to conduct 60 Bernoulli trials in which event A 
has a probability 0.23 of occurrence on each trial. Record the number of occurrences 
of event A. 
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(b) Repeat (a) 10 times. How many times did event A have at least 45 occurrences out 
of 60 trials in your experiment? What is the corresponding theoretical probability? 

(c) Is the relative frequency of occurrence of event A approximately equal to 0.23? Why 
or why not? 

.11 Self-Test Problems 

If you can't solve a problem, 
you can always look up the answer. 

But please, try first to solve it by yourself; 
then you11 learn more and you 'II leam faster. 

Donald E. Knuth, The T&book (1983) 

2.1 Answer the following questions briefly. 

(a) Are events A and A mutually exclusive? Given two mutually exclusive events A and 
B, is it always true that B = A? 

(b) Is it reasonable to use traditional definition to find the probability that a particular 
face of an unfair die wi l l show up? 

(c) Is it always true that P{A + B} = P{A U B} = P{A} + P{B}7 
(d) Can we use the three axioms of probability alone to find the probability of an event? 
(e) Are P{A f l £ } , P{AB}, and P{A, B} different notations of the same thing? 
(f) Is it true that P{A n B} = P{A}P{B} i f A and B are mutually exclusive? 
(g) Is it true that P{A U £?} ™ P{A} + P{B} i f A and B are independent? 
(h) Under what condition for the set of events A±,..., An, can the total probability 

theorem be applied to event Bl 

2.2 Let A, B, C be three random events. Express the following in terms of A, B, and C. 

(a) B occurs, A, C do not occur. 
(b) A and B occur, but C does not occur. 
(c) A, B and C all occur. 
(d) One and only one event occurs. 
(e) At most one event occurs. 
(f) At least one event occurs. 
(g) None of the events occurs. 
(h) At least two events occur. 
(i) At most two events occur. 

2.3 Given P{AB} = P{AB} and P{A} = 0.3, find P{B}. 
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2.12 Solutions to Self-Test Problems 

2.4 An Internet user A would like to send an important message to user B. Assume that there 
are two links from A to B, each with 6 relay nodes connected in series. A message may 
reach B through a link only i f every relay node in that link is operational. Assume that 
a node is operational with probability 0.99, which is independent of any other node. 

(a) Find the probability that one link is operational regardless of the other link. 
(b) Find the probability that at least one link is operational. 
(c) Find the probability that both links are operational. 
(d) What is the probability that a message wi l l reach B i f i t is sent through a link chosen 

at random? 
(e) What is the probability that a message wi l l reach B i f i t is sent through both links? 

2.5 A binary (with element 0 or 1) computer communication channel has the following error 
probabilities 

P{Ri\S0} = 0.1 P{Ro\Si} - 0.05 

where 

S 0 = {"0" sent} Ro = {"0" received} 

St = { " 1 " sent} Rt = { " 1 " received} 

Suppose that 0 is sent with probability of 0.8. Find 

(a) the probability that "1" is received 
(b) the probability that " 1 " was sent given that "1" is received 
(c) the probability that "0" was sent given that "0" is received 

2.6 A professor answers 4 times questions raised by students in a class. Let W denote 
"wrong answer" and R "right answer." Suppose that the professor's answer is incorrect 
with probability 1/10 each time, that is, P { W } = 0.1. Find 

(a) the probability of WWRW in that order 
(b) the probability that the professor answers correctly exactly 3 times 
(c) the probability that the professor answers correctly at least 3 times 

2.12 Solutions to Self-Test Problems 

2.1 (a) Two events A and B are mutually exclusive i f A D B = 0. Since events A and A 
satisfy A n A = 0 as well as A U A = S, they are mutually exclusive. However, 
not every pair of mutually exclusive events A and B are complement events of each 
other (i.e., it is not always true B = A) because it could be the case A U B ^ 5. 

(b) The traditional definitions of probability assume that each outcome has equal prob-
ability. Since an unfair die wi l l have unequal probability for different faces, these 
definitions should not be used. 

62 



2.12 Solutions to Self-Test Problems 

(c) Since A + B and A U B are different notations of the same thing, P{A + B} = 
P{A U B}. However, P{A + B} = P{A} + P{B} i f and only i f P{A n B } = 0 

since P{A + B} (2=0) P{A} + P { P } - P { A n 5 } . Note that P { A n P } - 0 i f and 
only i f A and B are mutually exclusive, P{A} = 0 or P { P } = 0. 

(d) Any probability has to satisfy these three axioms. Conversely, i f an assignment of 
numbers satisfies these three axioms, then it can be used as probability. In other 
words, the three axioms are actually the fundamental properties of probability and all 
the other properties and laws of probability can be derived from these three properties. 
As properties, these axioms alone cannot provide probability of any event. They just 
specify the necessary and sufficient conditions for a quantity to be probability. 

(e) As stated in (2.12), P{A n P } , P{AP} , and P{A, B} are different notations of the 
same thing. 

(f) No, it is true only i f A and B are independent. 
(g) No, i t is true only i f A and B are mutually exclusive. 
(h) The events A i ? . . . , An should be a partition of the sample space. More specifically 

and more precisely, they should satisfy the following equation 

P{A1} + P{A2} + ... + P{An} = l 

Even more precisely, A i , . . . , An need only to satisfy (2.22): 

B = AXB W A 2 B AnB 

where A i B , A2B,..., AnB are mutually exclusive (i.e., A{B n AjB = 0, Vi ^ j); 
that is, B must be the disjoint union of A\B, A2B,..., AnB. 

2.2 (a) BAC; (b) BAC;(c) ABC\J$ [ABC) U (ABC) U (ABC); (e) ABUBCUCA, 
or equivalently, ( A P C ) U ( A P C ) U (ABC) ^(ABC); (f)_Au P UC^(g ) A B C ; (h) 
A P U B C U C A ; (i) A B C or equivalently, (ABC) U (ABC) U (APC) U ( A B C ) U 
(ABC) U (ABC) U ( A B C ) . 

23 Note that 

( 2 ^ 3 ) p ^ n B } ^ " ^ ( 2 - 1 } 

1 - U 5 } 

P{,4} + P { 5 } - P{AU B} v = y P{An 5 } e = P { A B } v = ' P{AiTB} 
(2.11) 

This leads to 

P{A} + P{B} = 1 => P{B} = 1 - P{A} = 1 - 0.3 = 0.7 

2.4 (a) P{a link O K } = P{each node in the link O K } = pe = (0.99)6 = 0.9415 
(b) 

P{both links down} = P{neither link O K } = [1 - P{a link O K } ] 2 

= (1 - 0.9415)2 = 0.00342 
P{at least one link O K } = 1 - 0.00342 = 0.9966 
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2.5 

2.12 Solutions to Self-Test Problems 

(c) P{both links OK} = (0.9415)2 = 0.8864 
(d) P{message reaches B } | u s e o n e = P { a link OK} = 0.9415 
(e) P { message reaches P } | u s e 5^ \ [ n ^ s = P{at least one link O K } = 0.9966 

P{R0\S0} - P { P i | 5 o } = 1 - P{Ri\SQ} = 0.9 
P j P x l ^ } - P{W0\St} = 1 - PiRolSt} = 0.95 

(a) By total probability theorem, 

P{Rt} = P { i 2 i | 5 0 } P { 5 0 } + P { i J i | 5 i } P { 5 i } = (0.1)(0.8)+(0.95)(l-0.8) = 0.198 

(b) By Bayes' rule, 

P / c i p i P{Ri\Sl}P{S1} (0.95)(l-0.8) 

p { S i \ R i } = — ¥ m — = — o i 9 8 — = ° - 9 5 9 6 

(c) By total probability theorem and Bayes' rule, 

P{Po |S 0 }P{So} _ P{i?o|5o}P{5o} P{So|Po} = P{Ro} P{Ro\S0}P{So} + PiRolS.jPlSi} 
(0.9)(0.8) 

(0.9)(0.8) + (0.05)(0.2) 
0.9863 

2.6 (a) P{WWRW} = (0.1)(0.1)(1 - 0.1)(0.1) = 0.0009. 
(b) 

P{exactly 3 correct answers} = Pjexactly 1 wrong answer} 

= ^ ( O . l ) 1 ^ . ! ) 3 = 0.2916 

(c) 

P{at least 3 correct answers} = P{at most 1 wrong answer} 

4 \ (0.1)°(0.1) 4 + (A\ ( O . l ) 1 ^ . ! ) 3 = 0.9477 
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T H E R A N D O M V A R I A B L E 

Moral: There is no safety in numbers, or in anything else. 

James Thurber, The Fairly Intelligent Fly 

Chapter 2 covers probabilistic tools effective primarily for simple events with 
countably many or equally probable outcomes. They are ineffective or compli-
cated for problems with more involved events. 

This chapter deals with the random variable approach, a powerful and effec-
tive tool for many random problems. It is based on describing every outcome of 
a random experiment as a unique number and thus makes many powerful tools 
In calculus applicable. 

Main Topics 

• Concept of Random Variable 
• Cumulative Distribution Function 
• Probability Density Function 
• Uniform Distribution 
• Gaussian Distribution 
• Expectation and Moments 
• Functions of a Random Variable 
• Generation of Random Numbers 

65 



3.1 Concept of Random Variable 

3.1 Concept of Random Variable 

Recall that a (dependent) variable u = f(v) is a function /(•) of an independent 
variable v such that to every value of v there corresponds a value of u. That is, 
/(•) is obtained by assigning a (unique) number to every value of v. 

A random variable is simply a dependent variable as a function of an in-
dependent variable — the outcomes of a random experiment. It is a numerical 
description of the outcomes. Specifically, to every outcome a; of a random ex-
periment, we assign a unique number X(UJ). The Junction X(-) thus defined is 
then a random variable (RV) (since its value is uncertain prior to performing 
the experiment). The value x = X(u)f) for a given outcome a / is called its 
realization or the value on which the RV X takes. 

Convention: 

Upper case Latin letter = RV 
Lower case Latin letter = the value 

RVs may be grouped into three types, depending on the range of the function: 

• A discrete RV is one that may take on only discrete values. 
• A continuous RV is one having a continuous range of values. 
• A mixed RV is one with both discrete and continuous values. 

Only discrete RVs may be defined on a discrete sample space S. However, a 
discrete RV may have a sample space consisting of a continuous range of points 
or of a mixture of such regions and isolated points. 

X Xi x2 x3 

Figure 3.1: Mapping of a random variable. 
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3.1 Concept of Random Variable 

The Moral cited above was drawn out from the following story about a Fairly Intelligent 
Fly told by James Thurber: 

A large spider in an old house built a beautiful web in which to catch flies. Every 
time a fly landed on the web and was entangled in it the spider devoured Mm, so 
that when another fly came along he would think the web was a safe and quiet 
place in which to rest. One day a fairly intelligent fly buzzed around above the 
web so long without lighting that the spider appeared and said, "Come on down." 
But the fly was too clever for him and said, " I never light where I don't see other 
flies and I don't see any other flies in your house." So he flew away until he came 
to a place where there were a great many other flies. He was about to settle down 
among them when a bee buzzed up and said, "Hold it, stupid, that's flypaper. A l l 
those flies are trapped." "Don't be silly," said the fly, "they're dancing." So he 
settled down and became stuck to the flypaper with all the other flies. 

Probability studies various statistical regularities of random phenomena mathematically and 
thus numerically. It is thus natural and convenient to quantify various random events. Since a 
random event has different outcomes due to random effects, the quantity describing the event wi l l 
also take different values. This leads to the concept of the random variable. The introduction of 
the random variable makes it possible to apply many powerful tools in calculus. 

In this chapter, the approach based on the concept of random variable is studied, which is an 
extremely powerful tool for many probabilistic problems. It is based on describing every outcome 
of a random experiment as a unique number and thus converts various events into their equivalent 
{xi < X < x2} form, where xi and x2 are two real numbers. As a result, many powerful tools 
in calculus can be applied. The study in this chapter is limited to problems that can be handled 
with a single random variable. Multiple random variables wi l l be studied later. 

A random variable as a single-value function differs from a conventional function in the 
following: Prior to an experiment, while the possible values of a RV are known, the exact value 
on which a RV takes is random depending on the outcome of the experiment, but with definite 
statistical regularity in the sense that each value has a certain probability of being taken on. Also, 
although die domain of a conventional function is the set (or a subset) of all real numbers, a 
RV is defined over a sample space whose elements are not necessarily (actually often not) real 
numbers. 

Example 3.1: For the random experiment of tossing a coin, the following assignments 
defines three RVs X , F , and Z: 

X(head) = 0, X(tail) = 1 
F(head) = 1, F(tail) = 0.5 
Z(head) = 0, X(tail) = - 1 
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3.1 Concept of Random Variable 

Example 3.2: Some Random Variables Defined on Die Rolling 

Consider rolling a die. Let Fi be the event that face i shows up. Three RVs X , 
Y, and Z are defined by the following assignments: 

X(Fi) = i 
Y(Fi) = -i 
Z{FX) = 3.3, Z(F2) = -1.2, Z(F 3 ) = 3.3 
Z(F4) = -2.1, Z(F 5 ) = 0.2, Z(F6) = -3.7 

After defining RVs, the calculation of event probabilities reduces to that of prob-
abilities of the RVs taking on certain values. For example, 

P{an even number shows up} = P{X = 2,4, or 6} = P{Z < 0} 
= P{Y = - 2 , - 4 , or - 6} 

Example 33: Events in the Form of { X < x} 

This example demonstrates that {X < x} is an event. Consider the RV X of 
Example 3.2 of rolling a die, that is, X(Fi) = i Since X can only take on 
integers 1,2,... ,6, we have 

{X < 3.4} = {X < 3.8} = {Fh F 2 , F 3 } , {X < 0.5} = 0, { X < 8} = 5 

Thus, P{X < 3.4} = P{X < 3.8} = 3/6 = 0.5. 

F2 F3 F4 F 5 ^ 6 

1 
1 1 

i 
• 

1 1 1 
• 1 1 

I 
1 

1 f 
o i i 2 3 i ; 4 5 6 7 8; 

\X < 0.5} * {X < 3.4} 
{X < 3.8} 

{ i < 8 } 

Figure 3.2: Illustration of {X < x} as an event for Example 3.3. 
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3.1 Concept of Random Variable 

Not every function can be used to define a RV. For example, a multi-valued function is 
illegal here: There may have more than one number to describe some individual outcomes. This 
is so stipulated to avoid unnecessary ambiguities in the numerical description of the outcomes. 
However, the same number may be assigned to (used to describe) different outcomes, such as 
the RV Z in Example 3.2 and the RV of Example 3.4 below. In addition, we assign oo and —oo 
only to either an empty set or a set of outcomes with zero probability; that is, 

P{X(UJ) = 00} = P{X(ou) = - o o } = 0 (3.1) 

Otherwise, we could have P{X > 00} ^ 0 and P{X < —00} ^ 0, which is not convenient. 
Since the sample spaces of Examples 3.1 and 3.2 are discrete, only discrete RVs can be 

defined. 
Example 3.4: A 10/iF capacitor with 10% tolerance is taken off the shelf. Its capacitance 

C is unknown but is known in the continuous range of < C < llfiF. C is quantized 
into 4 levels of continuous sections of equal size such that a discrete RV X is generated, where 
X = l 5 2 5 3 , 4 . 

9 9.5 10 10.5 11 
, , , , . c 

, , , , x 

1 2 3 4 

Note that X is a RV since its value is random before C is determined. For example, 

P{X = 1} = P{9fiF <C< 9.5/xF} 

Example 3.5: Consider the random experiment of testing the life span of a bulb. Let X 
be the life span (in hours) of the bulb. Then X is a random variable because its value for a 
particular bulb is uncertain before the bulb is tested. Note that X is a nonnegative continuous 
RV because its range of possible values is x > 0. 

Example 3.6: The teaching performance of a professor wi l l be evaluated by all 20 students 
in his class. Each student can give him either "bad," "fair," "good," "very good," or "excellent." 
Let Xi and Y{ be the numbers assigned to the evaluation given by student i determined as in the 
following table: 

Evaluation bad fair good very good excellent 
1 2 3 4 5 

Yi 0 1 2 3 4 

Then both X and Y are RVs defined for the same random experiment. Let U = ^ YH=\ Xi and 
V = Jq E | £ I Yi. Then both U and V are also RVs, which can be used as the final performance 
grades of the professor. 
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3.2 Cumulative Distribution Function 

3.2 Cumulative Distribution Function 

3.2.1 Motivation and Definition 

{X < x} is an event that corresponds to the set of all outcomes o;/s for which 
X{u)i) < x. Its probability is of interest in many cases. This leads to defining 
the cumulative distribution function (CDF) of a RV X as 

i.e., Fx(x) is the probability that RV X takes on a value not greater than x. 
It can be shown that 

• A discrete RV is one having a stairway-type (and thus discontinuous) CDF 
(see Figure 33). 

• A continuous RV is one having an absolutely continuous CDF (see Figure 

F(x) = Fx(x) = P{X < x} 
(3.2) 

3.4). 

F{x) 

0 x 

Figure 3.3: The general pattern of the CDF of a discrete RV. 

F{x) F{x) 

Figure 3-4: Some general patterns of the CDF of a continuous RV. 
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3.2 Cumulative Distribution Function 

More rigorously, in order for X to be a RV, {X < x} must be an event for every real x. In 
fact, {X < x} is the set of all the outcomes aVs (i.e., a subset of the sample space) such that 
X(uji) < x, where X(ui) is a given number depending on a;*. For instance, in Example 3.2, 

because for instance, Z(F2) = -1 .2 < 0, Z ( F 4 ) = - 2 . 1 < 0, Z(F6) = -3 .7 < 0. In Example 
3.1, {X < 0} = {head} 5 {Y < 0} = 0 and in Example 3.4, {X < 3} = { 9 / i F < C < 10.5/iF}. 

Clearly, events in the form of {X > x) or {xi < X < x2} can be represented in terms of 
{X < x} as 

{X > x} = { -oo < X < oo} - {X < x} = S - {X < x} = {X<x} 

{xi < X < x2} = {X< x2} - { X < xt} 

Events in the form of {X = x} w i l l be studied in Section 3.3. 
The cumulative distribution function (CDF) is a function (of x) distributed over possible 

values of the RV X, hence the name. To completely describe a RV, not only the set of all its 
possible values must be specified, but also a description of the probability of each value on which 
it may take is essential. More generally, i t is better to have a description of the probability that 
the RV takes on a value within an arbitrary interval (a, b]. The CDF provides such a description 
and thus contains all probabilistic information of the RV. It w i l l be shown in the next section 
that a description (called probability density or mass function) of the probability of each value 
on which a RV may take can be obtained easily from the CDF. 

The CDF is a conventional real-valued function with some nice properties, to be studied next. 
Such functions are studied extensively in calculus. As such, introduction of the CDF builds a 
bridge between probability and calculus and thus random phenomena can be studied using the 
familiar methods and tools developed in calculus. 

I f all possible values of a RV can be listed or counted, then the RV is discrete. Otherwise, i t 
is either continuous or mixed. Since a continuous RV has an (absolutely) continuous CDF and a 
discrete RV has a stairway-type CDF, i f the CDF of a RV is neither (absolutely) continuous nor 
of a stairway type, it has to be a mixed RV 

A CDF F{x) is absolutely continuous i f i t is the integral of a nonnegative and integrable 
function f(x) (f(x) cannot include any delta function); that is, F(x) = J*^ f(v)dv. This means 
that the probability mass is distributed smoothly (i.e., without concentration of probability mass 
at any point). An absolutely continuous CDF must be continuous but a continuous CDF is not 
necessarily absolutely continuous, just like not every continuous function G(x) has a derivative 
function g(x) such that G{x) = J^g^dv. I f the CDF is continuous but not absolutely 
continuous then the RV is not continuous. However, we wi l l not deal with such cases and thus 
from now on we wi l l not distinguish between continuous and absolutely continuous CDFs. 

{X<3} 
{Y < - 3 } 

{Z<0} 
{ ^ 5 , ^ 6 } 
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3.2 Cumulative Distribution Function 

3.2.2 Properties of CDF 

1. 0 < F(x) < 1, Vx, since F(x) is probability. 
2. F(-oo) = P{X < -oo} = P{X = -oo} - 0, which follows from (3.1). 
3. F(oo) = P{X < oo} = 1, since {X < oo} is a sure event. 
4. F(x) is nondecreasing as x increases: 

F(x2) > F(ari) Vxx < x 2 (3.3) 

This follows from the fact that {X < x\} C {X < x2}. Specifically, 

F(x2) = P{X < x2} = P{(X < Xl) W (xi < X < x2)} 
I P{X < xi} + P{Xl < X < x2} 
= F(Xl) + P{xx <X <x2}> F(xi) (3.4) 

5. By (3.4), 
P{Xl <X<x2} = F(x2) - F(xi) (3.5) 

A special case is: 

P{X > x} = P{x < X < oo} = F(oo) - F{x) = 1 - F(x) (3.6) 

6. The CDF of a discrete RV X taking on values xi, x2,..., xn is given by 

F{x) = P { X < x} = P { X = x j + P { X = x 2 } + • • • + P{X = Xj] 

i f X{ < Xi+ij Vi and x̂  < x < X j + i 

F(x) = E P{X = xju(x - x,) = E = a*} = E P» 0.7) 
2—1 Xi ̂ -X Xi ̂ -X 

where pi — P{X — x j , « = 1,... ,n, are known as point masses and 
u(x — x^ is the unit step function with a jump at x = Xj , defined by 

, x J 0 x < a u ( x - a ) = x x > q (3.8) 
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3.2 Cumulative Distribution Function 

Vx is a common mathematical shorthand for "for every x." 
The third equation in (3.4) follows from Axiom 3 and the fact that (—oo,.xi] and (xi,x2] 

are mutually exclusive. The second equation follows from the fact: 

(-oo, x2) = (-oo, Xi] U (xu x2] 

(3.5) is extremely important: It relates the probability of the event {.xi < X < x2} to the 
CDF and here lies the primary use of the CDF. Thus the probability of the events in the form of 
{xi < X < x2} or {X > x} can be found easily from the probabilities of events in the form of 
{X < x}. 

A point mass pi = P{X = x^} is the height of the jump at Xi in the CDF. 
(3.7) can be viewed as the definition of the C D F for a discrete RV. It basically states that 

CDF of a discrete RV = sum of point masses located to the left of (and including) x 

Note that the definition (3.8) of the unit step function differs slightly from the following 
commonly used one: 

u(x — o) = 

where the value of u(x — a) is not defined at x = a. For (3.7) to be correct, however, u(x — a) 
has to be defined to be equal to 1 at x = a, as in (3.8), which will make a difference if x = x% 
for some x{. 

Two additional properties of a C D F that are important are 

7. A C D F defined by (3.2) is always "continuous from right"; that is, 

F(x+) = ]imF(x + e) = F(x) 

See Fig. 3.3. It is not necessarily "continuous from left." However, see the remarks below. 
8. The C D F can have at most countably many discontinuous points. 

Proofs and discussions of these properties can be found in many more advanced textbooks, e.g., 
A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 
1991. 

In fact, if a function satisfies properties 1, 2, 3, 4, and 7, then it must be the C D F of some 
RV. These properties can be used to test if a function can be a valid C D F of a RV. 

While we define C D F as P{X < x}> it is sometimes defined as P{X < x}. The former 
definition is commonly used in North America and Western Europe and the latter in the former 
Soviet Union countries. The only difference resulted is that the latter leads to "continuous from 
left" rather than "continuous from right." As a result, for a continuous RV there is no difference 
but for a discrete RV, the difference lies in whether the point x is counted in the interval or not. 

Note that C D F is not unique to a RV; that is, two distinct RVs may have the same CDF. 
This can be understood easily by considering Example 3.2. Let RV U be defined by U(Fi) = 
i + l,i = 1,2,3,4,5 and U(F6) = 1. Then U and X are different but have identical CDF. 
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3.2 Cumulative Distribution Function 

Example 3.7: Determination of CDF: Power Consumption 

Consider 3 independent machines, each having 75% of the time in operation and 
a power consumption of lkW when in use. We wish to predict the average total 
power consumption of the 3 machines. 

Let X — {total # of machines in operation}. Note that X is discrete since it 
can only take on 0, 1, 2, or 3. Given X, the total power consumption is known 
and thus the problem becomes how to find the CDF of X. 

Note that this is a Bernoulli trial problem with a total of 3 trials. Then, from 
(2.27) with p - 0.75, 

Fx(0) = P{X < 0} = P{X = 0} = (0.75)°(1 - 0.75)3 = 0.0156 

F(l) - F(0) = P{X < 1} - P{X < 0} 
= P{(X = 1) W (X = 0)} - P{X = 0} 

= P{X = 1} = Q {Q.7b)\l - 0.75)2 = 0. 1406 

F(2) - F{1) = P{X = 2} = y (0.75)2(1 - 0.75)1 = 0.4219 

F(3) - F(2) = P{X - 3} = (^j (0.75)3(1 - 0.75)° = 0.4219 

Check: 0.0156 + 0.1406 + 0.4219 + 0.4219 = 1 

F(x) 

1.0¬

0.8 

0.6 

0.4 

0.2 

"0 

1.0000 

0.5781 

0.1562 
0.0156 -x (kW) 

Note that the CDF is of a stairway type since the RV is discrete. 
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3.2 Cumulative Distribution Function 

Example 3.8: From CDF to Probability — Machine Failure 

Let X be the service time (i.e., time before failure) of a machine. Suppose that 
it has the following (approximate) CDF 

F(x) = 

0 x<\ 
0.75(x - 1) 1 < x < 2 
0.75 2 < x < 6 
(0.25/3)(x-6) + 0.75 6 < x < 9 
1 x > 9 

This is a continuous RV since its CDF is continuous, though not smooth. 
Find the following probabilities: 

P{X>7.5} ( = 6 ) 1-F(7.5) = l-[(0.25/3)(7.5-6) + 0.75] = 0.125 

P{1.5 < X < 7.5} (= 5 ) F(7.5) - F(1.5) 

P{X >7.5\X >2} = 

(0.25/3)(7.5 - 6) + 0.75 - 0.75(1.5 - 1) = 0.5 
P{(X > 7.5) n (X > 2)} _ P{X > 7.5} 

P{X>2} ~ P{X>2} 
P{X > 7.5} _ 0.125 

1 - F{2) ~ 1 - 0.75 = 0.5 

Note that P{X > 1.5|X > 5.5} = 1 makes sense since X > 1.5 will always 
be true given that X > 5.5 is true. 
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3.3 Probability Density Function 

3.3 Probability Density Function 

The probability density function (PDF) of a continuous RV X is defined as 

(3.10) /(*) = fx(x) = 
dFjx) 

dx 

which is a density function indicating where the RV values are more (or less) 
consolidated. 

For a discrete RV X taking on values x i , . . . , xn, its probability mass function 
(PMF) is the sequence of its point masses, defined by, for Xj = x\, £ 2 , . . . , xnj 

n n 
Pj = p(Xj) = P{X = Xj} = P{X = Xi}6i-j = 

t = l i=l 

where p^s are pom? masses and 5 is the Kronecker delta function 

' 1 « = i 

(3.11) 

0 
(3.12) 

By introducing the delta function 

6(x - = ^u(x -x^ = 1 °^ X -—- X>i 

elsewhere (3.13) 

the PDF of a RV X taking on values x\,...,xn with point masses p^s is 

/ ( » ) = 
*(3.7) E - - * 0 - E PAX - (3.14) 

i=l i=l 

which is a probabilistically weighted sum of delta functions. 

pi 

p(x) 

P2 

Pn-l Pi8(x - Xi) 
ip2S(x-

Xi x2 x3 Xn-i xn 

Pn-\S{X ~~ Xn-i) 

Xi X2 X3 Xn^i Xn 

Figure 3.5: PMF and PDF of a discrete RV. 
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3.3 Probability Density Function 

The introduction of the CDF and PDF makes it possible to study random events systematically 
by well-established, deterministic mathematical tools. 

PDFs are usually more convenient than CDFs to describe a RV. Most RVs are known by 
their PDFs. The PDF has a clear physical interpretation, conceptually in analogy with the mass 
density function, which indicates where the mass is concentrated: 

P{x < X < x + Ax} = f(x)Ax for small Ax 

However, although every RV has a CDF, not every RV has a PDF well-defined over the entire 
region because the required derivative may not exist at places where the CDF as a curve is not 
smooth, such as at a sharp comer or at places where the CDF has a jump. 

The Kronecker delta function is also known as the discrete delta function. 
To broaden the scope of application of the PDF, the delta function is introduced here to 

handle possible jumps in the CDF. The delta function is also known as the Dirac function or 
unit impulse function. It is the most well-known representative of the so-called generalized 
Junctions. It has the following unique property, in addition to (3.13), 

/
oo 

g(x)6(x — a)dx = g(a) (3.15) 
-oo 

or more precisely, 

ra+b 
I g(x)6(x — a)dx = g(a), 6,c > 0 (3.16) 

Ja—c 
ra+b ra—b 
/ g(x)S(x — a)dx = / g(x)6(x — ajdx — 0, 6, c > 0 (3.17) 

J a+c Ja—c 

The rule is that i f the integral is over an interval that includes the point of the delta function that 
is infinite then it is equal to the function evaluated at the location of the delta function; otherwise 
it is equal to zero. This unique property is the most important fact concerning the delta function 
to be used. 

The following two interpretations of the delta function are appropriate for an engineering 
student, as depicted in Fig. 3.6: 

• It is the derivative of the unit step function, given by (3.13). 
• Consider a single rectangular impulse centered at x = a. A delta function 6(x — a) is simply 

the limit of this impulse as its width goes to zero while holding its area equal to unity. 
Simply put, it is an impulse at x = a with zero width, unit area and thus infinite height. The 
name "impulse function" came from this interpretation. 

The delta function can also be interpreted as a density function with all its mass (which is 
unity) concentrated entirely on point x = a. 

Note that delta (impulse) function and Kronecker delta function are related but different. The 
former is defined over a continuous region, while the latter is over discrete points only. A delta 
function is equal to infinity where its argument is zero, and zero elsewhere; while a Kronecker 
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3.3 Probability Density Function 

delta function is equal to unity where its argument (subscript) is zero, zero at other discrete points 
and undefined elsewhere. 

Although (a) = pi6(x — a)\x=a and 2/2 (a) = P2&{x — o)\x=a are both infinity, i t is fine to 
compare them: 

yi{a) = pi6(x - a) = p± 

2/2(a) P28(x - a) p2 

which can be interpreted as the ratio of the heights of the impulses. This is similar to the 
comparison of infinities in calculus. 

The introduction of the delta function makes it possible and convenient to use a single system 
to represent both continuous and discrete RVs. 

The type of a RV can be determined by its PDF or CDF easily: 

• The PDF of a discrete RV must be a weighted sum of delta functions. 
• The PDF of a continuous RV cannot involve any delta function. 
• The PDF of a mixed RV consists of both delta functions and other functions. 

These are equivalent to the following, respectively: 

• The CDF of a discrete RV consists of discontinuous points and constant portions (i.e., 
stairway type) only. 

• The CDF of a continuous RV cannot have any discontinuous point. 
• The CDF of a mixed RV must have both discontinuous points and smooth (but not constant) 

portions. 

It can be shown that the PDF of a continuous RV can have at most finitely many discontinuous 
points. 

The P M F p i , . . . , p n satisfies 

n 
X > j = 1 Pj > 0, j = 1,2,... ? n 
i = i 

Conversely, any set of numbers that satisfies this equation may be the set of the PMF of some 
discrete RV. 

6(x — a) 

area = 1 0̂ d 
1-

u(x — a) 

Figure 3.S: Interpretations of the delta function. 
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3.3 Probability Density Function 

Properties of PDF 

1. Nonnegativity: f(x) > 0, Vx, since F(x) is nondecreasing (i.e., > 
0, Vx). 

2. Relation with CDF: Integrating PDF over (-oo,x] yields CDF: 
(310) fx 

F(x) = J f(v)dv = area under f(x) over interval (—00, x] (3.18) 
3. Normalization property: By (3.18) and property 3 of CDF, 

/
oo 

f{x)dx = F(oo) = 1 (3.19) 
-00 

4. Area under f(x) over interval (xi,X2] is equal to P{x\ < X < £2}: 

P{xi < X < x2} = J*2 f(x)dx (3.20) 

which follows from (3.18) and (3.5): 

fX2 f(x)dx = fX2 f(x)dx-fXl f(x)dx = F(x2)-F(xi) = P{xi < X < x2} 
J X\ J OO J ~00 

5. For a continuous EV X and any given value c, although {X = c} is not an 
impossible event, its probability is zero: P{X = c} = 0, Vc, since 

P { X = c} = lim P{c - 6 < X < c} = l i m ^ /(v)clt; = 0 (3.21) 

where = follows from the fact that the PDF of a continuous RV does not 
involve a delta function. This is also clear from the fact that the CDF of a 
continuous RV is continuous and thus P{X = c} = F(c + 0) — F(c — 0) = 0. 

t 
P{X = c} = 0 

Property 5 can be understood via the following example: Throwing a point 
of zero size over an interval (a, 6], the probability that the point is exactly on 
x = c for any given c in between a and b is zero. This is not true for a discrete 
or mixed RV because its PDF involves a delta function. 
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3.3 Probability Density Function 

Example 3.9: CDF, PDF and PMF of Waveform Sampling 

The following waveform git) of a period T = 8 is sampled at a random time r. 

9(t) 

2 

1 

Let X = {sampled value of g(r)}. Note that X is a discrete RV taking on 
four possible values: —1,0,1,2. The corresponding point masses are 

P{X = - 1 } - 2 . 5 / 8 = 0.3125 
P{X = 1} = 1/8 -0.125 

P{X = 0} - 2.5/8 = 0.3125 
P{X = 2} = 2/8 = 0.25 

Hence, its PDF, PMF and CDF are, respectively, 

f(x) Q=} 0.3125% + 1) + 0.3125%) + 0.125% - 1) + 0.25% - 2) 

p(xi) (3.11) 

F(x) ( = } 0.3125% + 1) + 0.3125%) + 0.125% - 1) + 0.25% - 2) 
Q .3125^ i + 1 + 0.31254, + 0.1254,-1 + 0.254,-2 

f(x) 

.3125£(ar + 1) 
0.3 

0.2 

0.1 

.31256(x) 

.2b6(x - 2) 

. 1 2 5 % - ! ) 

F{x) 
1.0 

0.75 

0.50 

0.3125 

-1 0 

0.625 

0.25 

0.75 

1.0 
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3.3 Probability Density Function 

Example 3.10: The following waveform v(t) of a period T = 1 is sampled 
at a random time r. 

v(t) 

0 0.6 1 1.6 2 2.6 

Let X = {sampled value of v(r)}. It will be clear that X is a mixed EV. 

(a) Find PDF and CDF of X: By inspection, 

V{T) = 0 is true 40% of the time = > P{X = 0} - 0.4 
v(r) is always in between 0 and 4 = > P{0 < X < 4} = 1 

1 - 0.4 
points in (0,4) are equally probable = > f(x) = — - — , 0 < x < 4 

where (1 — 0.4) is the probability mass uniformly distributed over (0,4). 
Hence 

0.6 r f(x) = 0.4%) + —\u(x) - u(x - 4)] 

0 
F(x) = f{x)dx = | 0.4 + ^ x 

x < 0 
0 < x < 4 
x > 4 

(b) Find P { X - 3} and P{\ < X < 3}: 

P{X = 3} = 0 (since no delta function at x = 3) 

P { | < X < 3 } = F(3) - =0.4 + ^ - 3 - (o.4 + ^ • 1) = 0.365 

or = jl f(x)dx = 0.4 jl 6(x)dx + ̂  J*[u(x) - u{x - 4)}dx = 0.365 

m 
0.5h 

0.15 

0.4S(x) 
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3.3 Probability Density Function 

A typical mistake by many students when obtaining the CDF from a PDF is the following: 

For a discrete RV, such as the one in Example 3.9, its PDF, CDF, and PMF can be determined 
in general by the following procedure: 

1. Find the locations x\,..., xn of all point masses p/s . 
2. Use (3.14), (3.7), and (3.11) to write out its PDF, CDF, and PMF, respectively. 

The determination of the PDF and CDF of a continuous or mixed RV is usually more 
involved. It could be quite difficult sometimes. 

For a continuous RV, although its CDF has to be continuous, its PDF can be discontinuous as 
well as continuous. The PDF is in general piecewise continuous; that is, the PDF of a continuous 
RV can have at most finitely many discontinuous points. 

The PDF and CDF of a continuous RV can be determined in general by the following 
procedure: 

1. Find the intervals outside of which the PDF is identically zero (it is possible that no such 
interval, exists). 

2. Find the places where two adjacent continuous pieces of the PDF connect. 
3. Determine each individual continuous piece of the PDF. 
4. Obtain the CDF from the PDF. 

For a mixed RV, its PDF and CDF can be determined in general by the following procedure: 

1. Find the locations # i , . . . , xn of all point masses p^s. 
2. Use (3.14) and (3.7) to write out the discrete part of its PDF and CDF, respectively. 
3. Proceed as for a continuous RV for the remaining part. 

To summarize, note the following: 

When obtaining a PDF from the corresponding CDF, do not forget to include a delta function 
at each point where the CDF is discontinuous and determine the associated scaling factor of the 
delta function (i.e., the point mass), such as at x = 0 in Example 3.10. 

After the PDF or CDF of a RV is obtained, its validity should be checked by verifying the 
appropriate properties. For a PDF, its nonnegative property (i.e., property 1) and the normalization 
property (3.19) (i.e., property 3) and for a CDF, its first 4 properties are usually checked, which 
can be done easily. I f both PDF and CDF are obtained, then (3.10) should be checked. 

The PDF of a RV is not unique: I f its values at finitely many points are changed (provided 
not delta functions), the CDF of the RV remains unchanged because integration over a single 
point is zero. 

a delta function at x{ in the PDF <=> a jump at x = Xi in the CDF 

weight (or quantity) of the point mass = height of the jump 
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3.4 Uniform Distribution 

3.4 Uniform Distribution 

A uniform random variable X over (a, b) is one having a nonzero constant PDF 
over the single interval (a, b): 

1 
f(x) = U(x;a,b) -

for some a and b. In this case, we use notation 

b — a 
0 

a < x < b 

elsewhere 

X ~ W ( o , 6 ) 

Note that 

/
+ 0 0 rO 1 

f(x)dx = / cfa = 1 (total area = 1) 
-oo Ja b — a 

rb 1 

J — 0 0 

x < a 
rx 1 x — a 

/ T = a < x <b 
JQ> b — a b — a 

x > b 

(3.22) 

Clearly, a uniform RV is a continuous one. Thus, P{X = XQ} = 0 for any given 
XQ and an evenly distributed discrete RV (e.g., X or Y of Example 3.2 for die 
rolling) cannot be a uniform RV. 

b—a 

; 
! 

a b 

F i g u r e 3.7: T h e P D F and C D F of a uniform random variable. 

Example 3.11: A capacitor has capacitance X ~ U(90fxF, HO/xF). What is 
the probability that X is between and 102/xF? 

P{95 < X < 102} = P{95 < X < 102} = P{95 < X < 102} 

= P{95 < X < 102} = / 1 0 2 — - c f e = 0.35 1 ~ } hs 110-90 
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3.4 Uniform Distribution 

A uniform RV is usually a good model for random effects that (are assumed to) occur equally 
probable over continuous sample points. This arises in many practical situations, such as 

• Quantization errors: The error introduced by quantizing (i.e., rounding off the sampled values 
of) a continuous curve (or waveform, signal, etc.) into discrete levels is (approximately) 
uniformly distributed over the interval between the two adjacent quantization levels. 

• Random phase angle: The unknown phase angle of a sinusoid in many cases may be fairly 
well assumed to be uniformly distributed over a range of 2tt radians. 

• Random pulse location: The time position of pulses in a periodic sequence of pulses may be 
reasonably assumed to be uniformly distributed over one period. 

An arbitrary random variable may be obtained by a procedure from uniform random vari-
ables. This is particularly important for the generation of random numbers, which is required for 
computer simulation of problems with random effects. That is why only uniform random number 
generators are usually provided in many software packages. 

Another nice property of a uniform RV is that it is easy to handle mathematically. It is 
among the most important and simplest. 

The uniform distribution is only defined for continuous RVs and thus a discrete RV cannot 
be uniformly distributed. This is the case even i f the RV is evenly distributed over a number of 
discrete points (such as X of Example 3.2), or in other words the RV has a constant PMF, rather 
than a constant PDF over a finite interval. Such a random variable may be said to have an even 
distribution or discrete uniform distribution. 

Since a uniform RV is a continuous one, whether its PDF is zero or not at the two end points 
of the interval a and/or b is immaterial. That is why we shall use U(a, b) to denote also U[a, 6), 
U(a} b], and U[a, 6], where [a, 6), (a, 6], and [a, b] denote, respectively, 

(a, b] = {a < x < 6} 5 [a, b) = {a < x < &}, [a, b] = {a < x < b} 

A continuous RV with a PDF having more than one piece of nonzero constant portion is not 
a uniform RV. For example, the following PDF 

0.25 
a < x < b 

b — a 

fix) 0.75 
d — c 

b < c < x < d 

0 elsewhere 

is not the PDF of a uniform RV. 
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3.5 Gaussian Distribution and Central Limit Theorem 

3.5 Gaussian Distribution and Central Limit Theorem 

A Gaussian (or normal) random variable X is one having the PDF: 

f(x) = J\f(x; x, a ) 
0V27T 

e 

for —oo < x < oo. Its CDF is 

F ( X ) : 

(3.23) 

(3.24) 

A shorthand for such a RV is (read as "X is Gaussian distributed with x and 
CJ 2 ' 9) J 

*X ~N{x,a2)\ (3.25) 

where x and a2 are two parameters, called mean and variance, which will be 
studied later. Note that this CDF has no closed-form expression. 

Although the expression of the Gaussian PDF is weird, the Gaussian distri-
bution is extremely popular and useful. It is the most important distribution and 
will be treated extensively later. It arises in so many practical situations that it 
is honored as the "normal" distribution above all other distributions. It deserves 
this honor well in view of the central limit theorem, to be studied later. 

Some typical examples of Gaussian RVs are: thermal noise, measurement 
error, test score of a large class, and height or weight of a large group of people. 

x — a x x — o 
Figure 3.8: The PDF and CDF of a Gaussian random variable. 
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3.5 Gaussian Distribution and Central Limit Theorem 

Figure 3.9: The probability areas of a standard Gaussian random variable. 

A JV(0, 1) RV is called standard Gaussian (or standard normal). Its CDF 
is tabulated with notation 

$(x) = F(x)\ = f e-^dv (3.26) 

The table of is sometimes given only for x > 0. For x < 0, by even 
symmetry of M(x; 0,1), we may use 

$(-a?) = 1 - (3.27) 

How to use the table of #(x) for a nonstandard Gaussian RV N{x, a2)! The 
answer is simple: 

1 fX (v-x)2 

Fix) = — 7 = / e ^*~dv 

= — T = / * e_^"d(cru) (let u = then v = au + x) 

= * ( ^ ) (3-28) 
$(a?) and in general the CDF F(x) of a general Gaussian RV N(x, a2) are 
tabulated in the companion software P&R: You can get the value of Fix) by 
specify x, x and a2 in P&R, as shown in Example 3.12. 

A function closely related with <&(•) is the so-called error function: 
eii(x) = ~ (X e~t2dt 
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3.5 Gaussian Distribution and Central Limit Theorem 

The Gaussian PDF function was first introduced in 1733 by the French mathematician, A. 
De Moivre, to approximate probabilities of events associated with coin tossing. (De Moivre 
did it because he made his living at a coffee shop by calculating the probabilities of gambling 
bets in various games of chance for gamblers.) The usefulness of the distribution, however, 
was not really revealed until the great German mathematician, K. F. Gauss, used it in 1809 to 
describe the distribution of measurement errors for predicting the locations of astronomical bodies. 
During the second half of the nineteenth century, however, statisticians found that almost all well-
behaved (i.e., normal) data sets have a distribution that fits the bell-shaped Gaussian curve. As a 
consequence, following the lead of the British statistician, K. Pearson, most statisticians started 
to refer to this curve as the normal distribution, especially outside North America where many 
people still call it the Gaussian distribution. 

The bell-shaped Gaussian PDF curve is centered at x. Its only two knee points (i.e., the 
point at which the derivative changes its sign) are x ± a. How flat i t is depends on a 2 . 

Gaussian RVs have many nice mathematical properties, which make them among the most 
easily tractable models for random phenomena. For example, a weighted sum of (independent) 
Gaussian RVs is also Gaussian. These nice properties are the actual (or at least primary) rea-
son why Gaussian models are used in so many practical situations. Of course, having these 
nice properties is the primary reason for it to be chosen by Nature as the honorable "normal" 
distribution. 

The Gaussian distribution is also the limit distribution of several other popular distributions, 
such as the binomial and Poisson distributions (see Section 3.6). Some other (e.g., chi-square) 
distributions can also be derived from the Gaussian distribution, as described in Section 3.6. 

The Gaussian distribution used to be known as the "law of frequency of error" in the old 
times. Its beauty is stated clearly in the following quote from the great statistician and biologist, 
Sir Francis Galton {Natural Inheritance, 1889): 

I know of scarcely anything so apt to impress the imagination as the wonderful form 
of cosmic order expressed by the "Law of Frequency of Error." The Law would 
have been personified by the Greeks and deified, i f they had known of it. It reigns 
with serenity and in complete self-effacement amidst the wildest confusion. The 
huger the mob and the greater the apparent anarchy, the more perfect is its sway. It 
is the supreme law of unreason. . . . Whenever a large sample of chaotic elements 
are taken in hand and marshaled in the order of their magnitude, an unsuspected 
and most beautiful form of regularity proves to have been latent all along. The 
tops of the marshaled row form a flowing curve of invariable proportions and each 
element, as it is sorted into place, finds, as it were, a preordained niche accurately 
adapted to it. 

The mystery of the Gaussian distribution is stated nicely by the great mathematician and 
astronomer, Henri Poincar6: 

There must be something mysterious about the normal law since mathematicians 
think it is a law of nature whereas physicists are convinced that it is a mathematical 
theorem. 
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3.5 Gaussian Distribution and Central Limit Theorem 

The error function is related to #(•) by 

MATLAB has an function e r f that returns the value of the error function. 

0.5(1 -ferf(x/v/2)) 
0.5(1 - erf( |x|/x/2)) 

x > 0 
x < 0 

Example 3.12: Calculation of Gaussian Probability and Percentile by P&R 

Suppose we want to calculate the value of the CDF F(x) of Gaussian RV: X ~ A/*(2.4,0.652) 
at:/: = 2.77. This can be done easily using the companion software P&R as follows: 

51. Click "Tables" in the main window of P&R. 
52. Click "Normal." The "Normal Distribution Table" window wi l l appear. 
53. Enter the mean and variance as shown in Fig. 3.10. Click "Ok." The value of the Gaussian 

CDF F(x) at x = 2.77 with the specified mean x and variance a2 is then shown as 0.7154 
in the box. 

Following the same procedure, we obtained that $(1) F ( l ) | , v ( 0 . i ) = 0.84134. Similarly, 
all the probabilities of Examples 3.13 and 3.14 can be obtained. 

JJSi x: 

RK^er^or HP^fytm RPB̂ ponee Ahwt 
* N u r r r i t i l \ • • • . t r i t i u l i i i r i 1 nt- . l r 

0.65*2 : 

v w i n r i c * should be p a ^ ^ v o 

I^^HllHll 

Figure 3.10: Calculation of Gaussian probability and percentile by P&R. 

The point x that satisfies P{X < x} = a% is called the a% percentile point. For example, 
the above example shows that x = 2.77 is the 71.54% percentile of the J\f(2A10.652) distribution. 
Following a similar procedure (except replacing "Tables" with "Percentile"), we found that the 
22% percentile of the jV(2.4,0.65 2 ) distribution is 1.8981. See Appendix A for details. 
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3.5 Gaussian Distribution and Central Limit Theorem 

Example 3.13: Common Gaussian Probabilities 

Consider a RV X ~ Af(x, a2), where a > 0 and x is a given real number. 

(a) Find P{X - x < a}: 

P{X -x<a} = P{X < x - } - a) I P{X < x + a} = F(x + a) 
<W $ ( ( g + < 7 ) - ^ = $(1) ^(0-11 table g 4 1 % 

(b) Find P{\X-x\ < a}: 

P{\X-x\<a} = P{-a < X - x <a} = {x-a < X <x + a} 
= F{x + a)~ F(x - a) 

3./(x + a) — x\ ,/(x — a)—x\ , . „. 
= $(v ^ ) ~ $ ( Q J = $ ( ! ) - $ ( - ! ) 

cr 
(3.27) = ; $(1) - [1 - $(1)] = 2$(1) - 1 = 68.3% 

Similarly, 

P{X -x<2a} = 97.7% P{X - x < 3a} = 99.9% 
P{\X -x\< 2a} = 95.4% P{\X -x\< 3a} = 99.7% 

These probabilities are commonly used and are better learned by heart. 

Example 3.14: Probability of Power Consumption 

A voltage V ~ JV[0, (10V)2] is applied across a 5fi resistor. What is the proba-
bility that the power P consumed by the resistor is in [10W, 40W]? 

P{10 < P < 40} = P{10 < V2/b < 40} = P{50 <V2< 200} 
= P{V$6 < V < \/20l)} + P{-\/200 < V < -Vsd} 
= P{7.071 < V < 14.14} + P{-14.14 < V < -7.071} 
= Fv-(14.14) - Pv-(7.071) + Pv-(-7.071) - Fy (-14.14) 

14 .^ 

/14.14-0\ ,/7.071 

+ 
10 

- . ( 
7.071 \ 

10 J 

10 
1 • 10 

= 2[$(1.414) - $(0.7071)] = 0.322 
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3.5 Gaussian Distribution and Central Limit Theorem 

Importance of Gaussian RV — The Central Limit Theorem 

The central limit theorem states that, for n independent RVs X\, • • • ,Xn with 
mean X{ and variance of, respectively, 

Y n = ~pl <™? Y~M(0,1) (3.29) 

The central limit theorem has the following interpretation: 

The properly normalized sum of many "uniformly" small and neg-
ligible independent RVs tends to be a standard Gaussian RV. If a 
random phenomenon is the cumulative effect of many "uniformly" 
small sources of uncertainty, it can be reasonably modeled as a Gaus-
sian RV 

Fig. 3.11 illustrates how fast the sum of n independent uniform RVs tends to 
be a Gaussian RV: X\ has a rectangular PDF; X\ + X2 has a triangular PDF; 
X\ + X2 + X% has a PDF with three parabolic pieces that is already quite close 
to a Gaussian PDF. 

(c) n = 3 (d) n = 4 

Figure 3.11: Convergence of sum of uniform RVs to Gaussian distribution. 
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3.5 Gaussian Distribution and Central Limit Theorem 

Central limit theorem is probably the single most important result in the entire probability 
theory. It suggests that the Gaussian assumption is good when the random phenomenon under 
consideration is a cumulative effect of (a large number of independent) sources of uncertainty, 
whose individual effects are "uniformly" small and "negligible." Various versions of the central 
limit theorem give a variety of conditions under which a properly normalized sum of a large 
number of "uniformly" small and negligible independent RVs tends to be a standard Gaussian 
RV. This is the primary justification for the omnipresence of the Gaussian distribution. 

A very nice property of Gaussian RVs is that the weighted sum of two independent Gaussian 
RVs is a Gaussian RV: 

X~Af(x,o*x) ) 
Y~AT(y,o*) \ => Z = aX + bY ~ N(ax + by, a2o\ + b2o2

y) 
X, Y independent J 

Were this property not true, the central limit theorem would be in an awkward position: The 
normalized sum of RVs tends to be Gaussian but it is not true for the sum of Gaussian RVs. 

Central limit theorem is for the convergence of the sum, irrespective of convergence rate. I f 
the individual uncertainties are independent and identically distributed, Gaussian approximation 
is good in practice even when only a small number of random effects are involved. A good 
example is the case of Fig. 3.11. In general, this is typically the case for RVs with smooth and 
symmetric PDFs. 

Independence of RVs wi l l be studied in the next chapter. 
Consider the occurrence of event A in N Bernoulli trials. Suppose that the probability of 

event A in a single trial is p. Define a RV Y that is equal to fc i f A occurs exactly fc times. It is 
clear from (2.27) that Y has the PMF: 

P{Y = fc} - P{A occurs fc times in N trials} - (fy^i1"P)N~k> fc = 0 ,1 ,2 , . . . , iV 

(3.30) 
Such a RV is known as to have a binomial distribution. I f p is not very close to either 0 or 1, 
then a properly normalized Y can be approximated by a standard Gaussian RV X, for large N, 

Y - Np 
p ^X, N large (3.31) 

This result is known as the De Moivre-Laplace theorem. This relation between the Gaussian 
distribution and the repeated coin-tossing explains why not surprisingly it was De Moivre who 
first introduced the Gaussian distribution. 

In fact, the central limit theorem and the Gaussian law are not limited to random phenomena. 
For example, i t can be shown that i f the deterministic functions COSCJÎ , cos o ; 2 £ , . . . , cos unt are 
"independent," the proportion of time during which the normalized sum1 

cosc^it + cos u2t H h cos ujnt xn{t) 

1See M. Mac, Enigmas of Chance, University of California Press, 1987. 
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3.5 Gaussian Distribution and Central Limit Theorem 

satisfies a < xn(t) < b approaches as n increases the area under the normal curve f(x) = 
^e~2x2 over the interval (a, 6). The deterministic functions cosuit, cosu2t, . . . , cosujnt are 
independent" in the sense that the proportion of time during which the following is satisfied 

jointly 
msujit < a i , cosu 2t < a2,..., coscunt < an 

is equal to the product of the proportions of times during which the above is satisfied individually 
for each function. For example, cos uj\t and cos co2t are independent if uji/uj2 is a irrational number 
since in this case, the proportion of time during which both coso/it < « i and cos cu2t < ot2 is 
equal to the product of proportion of time during which cosc^it < ol\ and proportion of time 
during which cos u2t < a2. 

Example 3.15: System Reliability 

A sophisticated system consists of a large number of n independent parts. Each part has an 
operational probability (i.e., reliability) of 0.9. If the system works normally only when at least 
80% of its parts are in operation, find the minimum number of n such that the system's reliability 
(i.e., the probability that the system is operational) is at least 0.95. 

Let RV Y be the number of parts (out of n) that are operational. Note that Y is binomial. 
Then, system is operational if and only if Y > 0.8n and thus the sought-after reliability is simply 

P{Y > 0.8n} > 0.95 

Note that 

F { F > 0 . 8 n } = 1 - P{Y < O.Sn} 

~ 1 P{ ^ ~ N P < ^'^H ~NP \ 
1 - P) ~ \Jnv{l~p)> 

( s 1 ) i - p ( x < 0 ' S n ~ n p 

0.1n\ 
1 #U.3y^i 

= * (Vn/3 ) 

The requirement becomes 
*(>/n/3) > 0.95 

From the table of the standard Gaussian RV, the above requirement is satisfied if y/n/3 > 1.64 
and thus n > 25. Therefore, at least 25 parts are needed to have system reliability of at least 
0.95. 
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3.6 Some Other Commonly Used Distributions 

Some other commonly used distributions are described here. Their PDF or PMF curves with 
various parameter values can be obtained by the companion software P&R. 

3.6.1 Chi-Square Distribution 

A RV with the following PDF: 

f(X) = { 2 - / 2 ^ r ( n / 2 ) ' 
cn/2-l e-x/{2a2) x>0 

x<Q 
(332) 

with a > 0 is said to have a chi-square distribution with n degrees of freedom, denoted by Xn* 
where F(-) is the gamma function, defined by 

too 
T(x) = / u^e^du 

Jo 
Fig. 3.12 depicts the PDFs of chi-square distributed RVs with different degrees of freedom. 

Figure 3.12: PDF of chi-square distribution. 

A chi-square RV has a close relation with Gaussian RVs. It is actually the sum of the squares 
of independent zero-mean Gaussian RVs with a common variance; that is, given n independent 
and identically distributed Gaussian RVs X / s with Xt ~ jV(0 5 cr 2), then 

x = xl + x2

2 + --- + xl 

is a xl, with the PDF given by (3.32). As such, a chi-square xn ^ V is often a good model 
for the total energy or power of a signal that have n independent components. 

Chi-square RVs are often used in the so-called chi-square test, which provides a check of 
the goodness of fit to judge i f a RV contradicts its underlying assumptions made regarding its 
distribution. This test is among the most popular statistical tests. 

The mean and variance, studied later, of a xn are equal to no2 and 2ncr4, respectively. 
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3.6.2 Rayleigh Distribution 

A Rayleigh RV is one with the following PDF: 

/ ( * ) = 
-x2/2a2 

x>0 
x<0 

(3.33) 

where a2 is given. Fig. 3.13 illustrates the PDFs of two Rayleigh distributed RVs. 

af < 4 

01 &2 

Figure 3.13: PDF of Rayleigh distribution. 

A Rayleigh RV is the magnitude of the sum of two independent zero-mean Gaussian RV 
squares with a common variance; that is, i f X = y X f + X2 with independent Xi ~ J\f(03 a2), 
i = 1 , 2 , then X is Rayleigh distributed with PDF given by (3.33). As such, a Rayleigh RV 
is often a good model for measurement error (as the square-root of the sum of squares of two 
independent measurement errors) and the amplitude or envelope of a signal with two orthogonal 
components (in-phase and quadrature components). 

Example 3.16: Plotting Rayleigh PDF Curve by P & R 

The companion software P&R can be used to plot the PDF curve of any distribution covered in 
this book. We illustrate the procedure using the Rayleigh distribution with a2 = 5 as follows: 

51. Click "PDF/PMF" in the main window of P&R. 
52. Click "Rayleigh." The "Rayleigh PDF" window wi l l appear. 
53. Enter the parameter a as s q r t (5) as shown in Fig. 3.14 because a = VE. Click "Ok." 

The Rayleigh PDF curve is then shown as in Fig. 3.14. 
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• 

sqrt(5) 

Figure 3.14: Plotting PDF curve by P&R. 

3.6.3 Exponential Distribution 

The RV in Example 3.21 is an example of an exponential RV. More generally, an exponential 
RV is one with a PDF of the following exponential function: 

f(x) 
\e-\(x-a) 

0 
x > a 
x < a 

(3.34) 

where A > 0 is a scale parameter. Fig. 3.15 depicts the PDF of an exponential distributed RV. 
An exponential RV is often a good model for the time between two consecutive occurrences 

of independent events, which can be modeled as uniform RVs, such as the time between failures 
(or customer visits) at a constant rate. It has many applications in such areas as reliability and 
random service systems (e.g., computer systems and communication systems) for the calculation 
of mean-time-to-failure, mean-time-between-failures, expected life time of a part, etc., as well as 
many other quantities in queuing theory and queuing networks. 

The exponential distribution with a = 0 is a "memoryless" distribution: For s.t > 0, 

P{X > t+s\X > s} 
P{X > t + s, X > 5-} P{X > 1 + s} e -\{t+s) 

P{X > s} P{X > 8} 
e~M - P{X > t} 

where use has been made of the fact that P{X > x} — 1 - P{X < x } = 1 — (1 — e~Xx). Hence, 
i f X is the service time of a device (or life expectancy of a person) and s is the time already 
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Figure 3.15: PDF of exponential distribution. 

served (or the current age of the person), then the above property indicates that the device is 
always "like new" (or the person is "young forever") because the probability of living t more 
years is the same whether the person is s years old P{X > t + s\X > s} or a new-born baby 
P{X > t}. It can be shown that the exponential distribution is the only continuous distribution 
that has this interesting "memoryless" property. Although this cannot be true for any real-world 
quantity, it is sometimes a good approximation for some practical problems. 

3.6.4 Weibull Distribution 

Closely related with the exponential distribution is the so-called Weibull distribution, whose PDF 
is given by 

where a,/? > 0 are shape and scale parameters, respectively, and a = a, b = ( l / / 3 ) a . Fig. 
3.16 shows the PDFs of two Weibull distributed RVs with 6 = 1 and a = 1,2, corresponding to 
exponential and Rayleigh distributions, respectively. Its CDF is given by 

p/ \ _ / 1 ™" e ~ t e G x > 0 1 - / 1 " e ~ ( a v W ° x > 0 
W [ 0 a ; < 0 j \ 0 x<0 

A Weibull RV is often a good model for a failure time with a time-invariant or time-varying 
failure rate or the time to complete a task. The popularity of the Weibull model is a result of the 
fact mat it includes several popular failure models as special cases. Specifically, i t can be shown 

that the failure rate is given by h(t) = | (j^j . It thus reduces to the exponential model when 

a = 1, which corresponds to a constant failure rate. For a > 1, the failure rate is an increasing 
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x 

Figure 3-16: PDF of Weibull distribution. 

function of time. For example, it is a linearly and quadratically increasing function for a = 2 
and 3, respectively. As a result, Weibull distribution has many applications in reliability, and in 
some statistical tests, in particular, the Weibull plots. 

3.6.5 Log-Normal Distribution 

I f the logarithm of a RV is Gaussian (normal), the RV is known as to have the log-normal 
distribution; that is, a log-normal RV is the exponential of a Gaussian RV: 

where a > 0 and —oo < / i < oo are shape and scale parameters, respectively. Fig. 3.17 sketches 
the PDF of a log-normal distributed RV (with p = 0, a = 1). 

A log-normal RV is often a good model for many problems involving random effects that are 
Gaussian when measured in a logarithmic scale. For instance, i f a quantity is the product of a 
large number of terms, such as multiplicative measurement errors, then the lognormal distribution 
is probably a good model. 

3.6.6 Poisson Distribution 

An extremely important and popular discrete distribution is the so-called Poisson distribution. 
Its PMF is given by, for A > 0, 

X = eY with F - J V ( G ? C T 2 ) (3.36) 

Its PDF is given by 
x > 0 
x < 0 

(3.37) 

(3.38) 
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fix) 

x 

Figure 3.17: PDF of log-normal distribution. 

It is a good model for rare events (i.e., those occur rarely). It is very useful in counting the number 
of the occurrences of certain events. TMs has wide-spread applications, ranging from various 
service systems to physics. In service systems, many discrete random quantities, such as the 
number of the customers of a store, are Poisson distributed. That is why the Poisson distribution 
is probably the most important probability model in operations research and management science, 
especially in queueing theory and queueing networks. 

The Poisson distribution is one of the few most important distributions in probability theory. 
It is, in fact, one of the "elementary particles" that constructs various random phenomena, in 
particular those that are described by random processes. 

The Poisson distribution is also the limit and thus a good approximation of the binomial 
distribution for large N when pN is small. 

Example 3.17: Plotting Poisson PMF Curve by P & E 

The companion software P&R can be used to plot the PMF curve of a distribution. We illustrate 
the procedure using the Poisson distribution with A = 3.8 as follows: 

51. Click "PDF/PMF" in the main window of P&R. 
52. Click "Poisson.*5 The "Poisson PMF" window wi l l appear. 
53. Enter the parameter A as 3 .8 as shown in Fig. 3.18. Click "Ok." The Poisson PMF curve 

is then shown as in Fig. 3.18. 

3.6,7 Some Other Discrete Distributions 

There are many other distributions with well-known names. There are, of course, even more 
distributions that arise from practical problems that do not have generally accepted names. 

A binary RV or Bernoulli RV is one that can take only on two possible values with proba-
bilities p and 1 — p, respectively. Only binary RVs may be defined on a coin tossing experiment. 
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Figure 3.18: Plotting PMF curve by P&R. 

The point masses of a binomial RV were given by (3.30) with parameters TV and p. It can 
be applied to many problems of repeated independent trials with only two possible outcomes on 
each trial (Bernoulli trials). Examples of the applications include games of chance and signal 
detection in radar and sonar systems. 

The sum of N independent and identical binary RVs with parameter p has a binomial 
distribution with parameters N and p. 

In Bernoulli trials, the number of the occurrences of A (i.e., nonoccurrences of A) before 
the first occurrence of event A (with a probability p on each trial) is said to have a geometric 
distribution. It has the PMF 

P{X = m} = (1 - p)m-lp m = 1,2,3,.. . (3.39) 

It can be applied to, for instance, the number of failures before the first success, the number of 
items inspected before the first defective one is encountered, the number of items in a batch of 
random size, and the number of items demanded from an inventory. 

The geometric distribution is in some sense the discrete counterpart of the exponential dis-
tribution. As is the exponential distribution for continuous RV, it is the only discrete distribution 
that possesses the "memoryless" (or "like-new," "young for ever") property: P{X = n + m\X > 
n} = P{X = m}. 
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3.7 Expectation and Moments 

3.7.1 Introduction and Motivation 

Recall that given mass M distributed over x\,...,xn with point masses mi, . . . , m n , 
respectively, the center of mass (i.e., centroid) is given by 

X(> — — - - —. 1 ; •—~~ - —— / XjTThj 

£?=i rrii M t i 
If M is distributed continuously over an interval [a, b] with a mass density func-
tion m(x)9 then the center of mass (centroid) is given by 

xm(x)dx f% xm(x)dx HM = I fb 

= / xmlxjax 
J a 

c f*m(x)dx M 
Since probability of a RV X can be viewed as mass with point masses P{X = 
x^} = pi that sum up to unity or with a density function f(x) that integrates up 
to unity, its "centroid" may be defined as 

x = | ^xaH X discrete 
C 1 Ja%f(%)dx X continuous 

Example 3.18: Consider Example 3.2 of die rolling. For the RV X, defined 
by X(Fi) = i, its average value x over all possible outcomes i^'s is 

1 + 2 + 3 + 4 + 5 + 6 6 A i 
x = E = X(FJ} = E « = 3.5 6 <=i i=i6 

Define another RV W by the following assignments: 
W(F{) = 1, W(F3) = 2, W(F 5) = 3, W(m even number shows) = 4 

Its average value w is given by 
1 1 1 1 0 , 1 + 2 + 3 + 4 10 

ffl = 1 . _ + 2 . . + 3 . 5 + 4 . - = 3 * J = T 

Consequently, the average of a discrete RV X should be defined by 

* = E X{P{X = ^} = E ZiPi (3.41) 
i i 

which is a probabilistically weighted sum over all possible outcomes. Note that 
it is identical to (3.40) and thus the average of a RV is the same as the centroid 
of its probability mass. This introduces the expected value. 

100 



3.7 Expectation and Moments 

All children are above average. 

Humorist Garrison Keillor, Lake Wokegon 

3.7.2 Definitions 

The expected value of a RV X with PDF fx(x) or PMF P{X = x^} is defined 

/
oo 

xfx(x)dx X continuous 
Y>^P{X = Xi} X discrete ( 3 * 4 2 ) 

as 
fOO 

x = E[X] -

where Yl stands for sum over all i. Note the following aliases: 

expected value = mean = average = expectation = first moment 

The expected value of a function g(X) of a RV X is given by 

/
oo 

g(x)fx(x)dx X continuous 
] Y.9\xi)P{^ = x i ] X discrete 

(3.43) 

Note that ]Tg(%i)P{X = Xi} is the weighted sum (or average) of g(x). 
i 

Other quantities associated with expectation can then be defined, including: 

• The mth moment of a RV X is defined as E[Xm]9 given by (3.43) with 
g(x) = xm. 

• The mth central moment of X is defined as E[(X — x)m], given by (3.43) 
with g(x) = (x — x)m. 

In the above, m is a positive integer. 
Second moments are of particular interest: 

mean square value E[X2} = second moment 
variance a2

x = var(X) = E[(X - x)2) = second central moment 
standard deviation ax = ^/of 
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Although the CDF and PDF are complete and better descriptions of a RV, they are difficult 
to obtain in many practical situations. Expectation and moments are much easier to obtain. This 
is a major reason why expectation and moments are important. 

It should be clear from Example 3.18 that the expected value of a discrete RV X can be 
interpreted naturally as the common-sense average value of X. Based on this, the definition 
of the expected value of a continuous RV is also well supported by the law of large numbers, 
which, loosely speaking, states that the expected value of a RV is equal to the average value of 
a large number of its realizations x^s: 

The law of large numbers is one of the best representatives of statistical laws. It is a 
primary foundation of probability and statistics. Without it, there would be no probability or 
statistics. Everyone has the experience that the relative frequency of the occurrence of an event 
under "identical" conditions is quite stable. In other words, the stability of relative frequency 
reflects the regularity about the occurrence of an event, usually imbedded in the contingency 
(uncertainties) involved in the event occurrence. The regularity wi l l overcome the contingency 
only through a large number of trials since the uncertainties tend to cancel out each other. As a 
result, probability laws exhibit themselves only through a large number of trials. For example, 
the Bernoulli law of large numbers states that as the number of independent trials increases, the 
relative frequency of the occurrence of an event approaches the probability of the event. 

The top part of (3.42) is valid also for discrete RVs i f the delta functions are allowed. 
Expectation or moments may turn out to be infinity. For example, a RV X with the following 

PDF 

When this is the case, some other measure should be considered. 
The integral of (3.42) is mathematically legitimate only i f i t is absolutely integrable; that is, 

The reason for this requirement is that i f this is not true, then the integral (summation) may depend 
on the order of its terms, which does not make any sense in practice, and thus the expected value 
would be ambiguous. 

There are two fundamentally different methods to calculate the expected value of a function 
of a RV Y = g(X): The first one is to find the PDF or pmf of Y and then use (3.42). The 
second is to use (3.43) directly. Fortunately, the results are identical -— i f one integral converges 
so does the other and they are equal i f the integral converges. 

common-sense average = — ] P Xi = ] P x{P{X = Xi} n - 1 ^ ? expected value 
7 1 i=i i=i 

x > 1 
X < 1 

has an expected value 
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3.7.3 Interpretations 

The expected value of a RV X can be interpreted naturally as 

• the common-sense average value of X over all possible outcomes, where the 
average is weighted by the probability of the occurrence of the outcome 

• the center of gravity (i.e., the centroid or the balance point). 

The standard deviation a is a measure of the dispersion of a RV from its 
mean: A smaller a indicates that the distribution is more concentrated around 
its mean. A RV X with a = 0 must have P{X = x} = 1, meaning that X is 
actually not random. Thus, the standard deviation can be thought of as a measure 
of how random (uncertain) a RV is. 

X has a small variance => X concentrates more around its mean 

X 

larger variance smaller variance 

Figure 3.19: The PDF of a Gaussian RV with different variances. 

/ ( * ) 

0.5 • 

- 1 4 9 
larger variance 

3 4 5 

smaller variance 

Figure 3.20: The PDF of a uniform RV with different variances. 
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It is clear from the introduction that thinking of probability as of (unity) mass on the real 
line, the expected value can be naturally interpreted as the centroid (or the balance point): The 
value of the PDF f(xi) (or point mass p^ acts as the weight located at x = Xi and the line wi l l 
balance (i.e., not tip to the left or right) i f a pivot is placed under the line at the expected value x. 
Similarly, the mean-square value E[X2] can be interpreted as the moment of inertia with respect 
to the origin; the variance a2 as the central moment of inertia; and the standard deviation as the 
radius of gyration. 

The expected value is a quantity that attempts to summarize a distribution function by a 
single value. The standard deviation (or variance) tries to measure the spread of the distribution 
about the expected value by means of a single scalar. It can be shown that a2 = E[(x — x)2} = 
min E[(x — y)2] for any y, meaning that a RV is most concentrated in the minimum mean-square 

sense around its expected value. 
The following joke demonstrates the significance of the variance: A convention was held in 

a resort near a lake. Informed that the lake has an average depth of 1.2 meters, many people 
attending the convention jumped into the water for fun and were drowned because they did not 
known that the variance of the water depth is 5 meters! 

There are other (scalar) measures of the central tendency of a RV One of the most important 
is the mode, defined as the value of the RV at which the PDF is a maximum. It is that value of 
a RV that is most probable (i.e., observed with the greatest frequency). 

Another important measure is the median, defined as the value of a RV at which the CDF is 
equal to 0.5. In other words, the median of a RV is a "center" point in the domain of the CDF 
that divides its range into two "equal" parts. 

The popularity of expected value (mean) is a result of its nice mathematical properties, its 
clear physical interpretations and the law of large numbers. 

For a RV with a PDF of multiple peaks, the standard deviation depends primarily on the 
separation between the peaks of the PDF. 

For a RV with a PDF that is symmetrical about x = a, all its odd central moments vanish 
i f they exist (i.e., are finite), and its mean, mode, and median are all equal to a. However, 
a continuous distribution need not be symmetrical even i f all its odd central moments vanish. 
Topically, the third central moment provides a measure of the skewness of a PDF. Specifically, 
the quantity 1 i s known as skewness, which provides a partial measure of how skew (i.e., 
asymmetrical) a PDF is. 

Most probability inequalities are related with the law of large numbers. The most well-known 
is the following Chebyshev inequality: 

P{\X - E{X)\ > e} < 
var(X) 

e2 
V e > 0 (3.44) 

which provides a bound in probability for how close the RV is to its mean. 
A useful result for a zero-mean Gaussian RV with variance a2 is 

E(X4) = 3<r4 (3.45) 
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3.7.4 Important Properties of Expectation and Variance 

L Expectation (average) of a constant is equal to the constant itself: 

/
OO fOO cfx(x)dx = c / fx(x)dx = c 
-oo J—oo 

This makes sense: a constant will show up the same value in every trial. 
2. Expectation (average) of a constant times a RV is equal to the constant times 

the expectation (average) of the RV: 
foo too 

E[ch(X)} = / ch(x)fx{x)dx = c / h(x)fx{x)dx = cE[h{X)] (3.46) 
J OO J 0 0 

This makes sense: average of scaled numbers = scaled average. 
3. Expectation of the sum of RVs is equal to the sum of expectations: 

E[YMX)] = £ ( ! » ( , ) ) / * ( * ) * = ? £ » / * < * ) * = XEMX)] 

(3.47) 
This makes sense: average of sets of numbers = sum of averages. 

4. variance = mean-square value — (mean)2 (3.48) 

a'i = E[(X - xf) = E[X2 - 2xX + {x)2} = E[X2] - 2xE[X] + (x)2 

= E[X2} - 2(x)2 + {xf = E[X2} - (x)2 

5. Variance of a nonrandom constant times a RV plus a constant is equal to the 
first constant squared times the variance of the RV: 

var(aX + h) = E[{aX + b- (ax + b))2} = E[a2(X - x)2} - a2E[(X - x)2] 
= o2var(X) (3.49) 

This makes sense: Adding a constant in every trial does not alter randomness. 
6. Variance of a constant is zero: var(c) = 0 because c is not random. 

(3.46)~(3.47) implies that expectation E is a linear operator: 

expectation of weighted sum = weighted sum of expectations 
E[ahi(X) + bh2(X)\ = a£[/n(X)] + bE[h2{X)} (3.50) 

However, E[h{X)] / h(E[X]), if h(-) is nonlinear. If y = h(x) ^ax + b for 
some a and b, then h(x) is nonlinear, such as h(x) — cos x and h(x) — e~x. 
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3.7.5 Examples 

Example 3.19: Mean and Variance of Uniform Distribution 

Find the mean and variance of a uniform RV X ~ U{a1 b): 

x = E[X] = [°° xfx(x)dx = fbx-^—dx = i (a + b) 
J~oo J a b — a 2 

a2 = EUX - x)2] = [°°(x- x)2fx(x)dx 
J—OO 

6 — a J <* 
1 1 

b — a3 
(x - xf 

b-a3 
1 1 

i ( 6 - a ) 3 - i ( a - 6 ) 3 ] = l ( 6 - a ) 2 

b — a3 
Alternatively, the variance can be calculated using (3.48) 

CJ2 = E [ X 2 } - ( X ) 2 = fx 
Ja 

l l 

6 2 l-dx :{a + b) 

b — a3" -x a 4̂  7 fe-a3 

a L2 
1 1,., „ 1 ^ ( 6 3 - a 3 ) - ^ ( a + 6)2 

= ^(b2 + ab + a2)-^(a + b)2 

= ^( 4 & 2 + 4 a & + 4° 2 - 3° 2 ~ Qab ~ 3fo2) 

In summary, for any U{a, b) RV, 

mean = -(a + b) = center point 

1 2 (length)2 

vanance = — (b - a)z = ——— 

(3.51) 

(3.52) 

Since the PDF of a uniform RV is nonzero only over a finite interval, caution 
should be taken when using standard deviation (or variance). See Example 3.37 
and problems 3.18 and 3.19. 
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Example 3.20: Mean and Variance of Gaussian Distribution 

Find the mean and variance of a Gaussian RV X ~ a2): 

/
oo too too 

xfx{x)dx = (x- fj)fx(x)dx + fx / fx(x)dx 
-oo J—oo J—oo 

f°° / \ 1 (*~A02 , 
= / ( X — i i ) , e 2o-2 rfX + Jtl 

? 
= 1 

Since 

i—e L i ^ L is even about x = / i I ^ . ^ — M kzn£ . , , u 

2 M ^ > = ^ —=-e 2o-2 is odd about x = fi 

(x — /i) is odd about x = /x J ylna 

by odd symmetry, 

/ (x — /i) T — e~L^~dx = 0 

The mean is then given by 

JE?[X] = x = / i = peak point (3.53) 
In general, a RV X with a symmetric PDF about a point b has E[X) = b. 

Taking derivative on both sides with respect to o of the identity 
foo 1 _ > - f 2 . [oo 1 _ ( « - * ) 2 j /oo _ 2 

/ — 7 = e dx — G\ /— e 2*2 dx = o TV fx; x, cr )ax = a 
i - 0 0 y 2 7 T V27TCT J ~ o o 

yields 
I f 0 0 / _No 1 - ( a " $ 2 1 

—77 / (x — x) — 7 = - e 2*2 dx = 1 
a1 J-00 / 2 7 R 7 

\2 / 0 / T 2 , where JLe-(x~^2/^2 = e - ^ 2 / 2 a 2 [ § ( x - x ) 2 ] ( » 2 ) ^ 3 . Thus, the variance i is 
given by 

var(X) = E[(X - xf) = [°° (x - xf^L- dx = a2 (3.54) 

Consequently, the two parameters /1 and o2 of a Gaussian distribution are 
the mean and variance, respectively. 
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3.7 Expectation and Moments 

Example 3.21: Mean and Variance of Exponential Distribution 

A RV X has the exponential PDF 

f(x) = Xe~Xxu(x) A > 0 u(x) = unit step function 

where the factor A is necessary to guarantee f(x)dx = 1. 

(3.55) 

Figure 3.21: The PDF of an exponentially-distributed RV. 

(a) Find x and cr2: By integration by parts, we have 

x = [°°xXe^Xxdx = ~-xe~~Xx °° + 1°° e^Xxdx = 1/A 
Jo o Jo 

E[X2] = f™\x2e-Xxdxsimil^ 
to above (3.48) 1 

A2 x A2 

Note that a small A implies a flat PDF and a large mean and variance, 
(b) Find the mean and variance of Y = c\X + c2 (ci, c2 are constants): 

y = E[ciX + c2] ( 3 = 0 ) cix + c2 = ci/X + c2 

Tv — C \ G x ~ C l l A 

(c) Find the mean and variance of Z = e a X (a is a constant): 

z = E[e^aX} = £ ° e'axfx(x)dx = A J™ e-°*e 

A 

-Aa; A 

£[Z 2 ] = E[{e~aXf) = B [ e - 2 a Z ] 1 

a 2 = E[Z 2] - (z) 2 = 
A 

2a + A 
A2 

a + A 

(from the above equation) 

a2A 
2a + A (a + A) 2 (2a + A)(a + A) 2 

Note the difference: 

Y = c\X + C2 (a linear function) y = C{X + c-i 
-aX (a nonlinear function) =7^ 2; = e~ 
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3.7 Expectation and Moments 

Example 3.22: Mean and Variance of Binary Distribution 

A binary RV or Bernoulli RV X is one with the PMF P{X = 1} = p, P{X 
0} = 1 — p. Its mean and variance are 

(3.42) E\X) y = ' £ kP{X = £;} = £ kP{X = k}=p 
k~—oo k=0 

E ep{x = k} = j:k*p{x = k}=P 

2 - E[X2}^(E[X])2=p~p2=p(l^p) 

E^x

2] (=3) ^ tfvrv _ 7.1 _ 7.2 

Example 3.23: Mean and Variance of Poisson Distribution 

A Poisson RV X has the PMF given by (3.38). 

(a) Find the mean of X: 

/•2 AO\ 0 0 OO \ k OO \ 
E[X] ( 3 ^ 2 ) £ * P { X = fc} = £ fce"^ = Ae~A £ j ^ — 

00 A n 
n = fc - 1 Ae~A £ ^ = Ae~V = A 

n=o w 

(b) Find the variance of X: 

r2i (3-43) 

00 \ n 
note: eA = £ ^-

n=0 W! 

JE[X*] ^ £ £ 2 P { X = k} = £ * V * £ 
fc=—00 fc=0 

A e - A £ p - 1 ) + 1 ] — 
fc=i (« ~ I)' 

= Ae 

= Ae~A 

£ i (fc-1)! £ i ( f c - l ) ! 
00 \k~-2 

A £ 
fc=2 (A; - 2 ) ! 

+ e' Ae~A(AeA + eA) = A2 + A 

0"., = £[X 2 ] - (£[A'])2 = A2 + A - A2 = A 

Thus, both mean and variance of a Poisson RV are equal to the parameter A. 
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3.7 Expectation and Moments 

The expected values and variances of some commonly used distributions are given in the 
following table. For an engineering student, it is beneficial to study and try to remember important 
results. Memory wi l l often provide a connection that may prove to be useful in e.g. developing or 
inventing a new product. You never know what you missed i f you do not remember the results. 

Table 3.1: Mean and variance of some commonly used distributions. 

Distribution PDF or PMF Mean Variance 
Continuous: 
Chi-square (3.32) no2 2na4 

Exponential 
Gaussian 

(3.34) 
(3.23) 

a + i 
M 

I 

a2 

Log-normal (3.37) {e°2 - l )e 2 "+* 2 

Rayleigh (3.33) (2 - 7r/2)a2 

(6-a) 2 /12 
&- 2 / °{ r ( i + 2 ) - [ r ( i + i ) ] 2 } 

Uniform 
Weibull 

(3.22) 
(3.35) 

\{a + b) 
6 - V « r ( l + i ) 

(2 - 7r/2)a2 

(6-a) 2 /12 
&- 2 / °{ r ( i + 2 ) - [ r ( i + i ) ] 2 } 

Discrete: 
Binary 
Binomial 
Geometric 
Poisson 

Example 3.22 
(3.30) 
(3.39) 
(3.38) 

P 
Np 
1/p 
X 

p{l - p) 
Np(l-p) 
( l - p ) / p 2 

A 
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3.8 Function of a Random Variable 

3.8 Function of a Random Variable 

Given a RV X with the PDF fx(x) and a deterministic function g(-), Y — g(X) 
is another RV, what is the PDF fY(y) of Yl 

A general procedure for obtaining fy(y) from fx(x) is to express first Fy(y) 
in terms of Fx(-) and then find fy(y) = ^Fy(y). 

Example 3.24: PDF of a Linear Function of a RV 

Find fy(y) ofY = aX + b, where X is continuous and a / 0 : 

Fyfo) - P { F < y} = P{aX + 6 < y} 
JP{X<^} = Fx{^) a>0 

\P{X>^}± P{X>Tt±} = l-Fx{^) a < 0 

An alternative and usually better method is to use the following theorem. 
Theorem: The PDF fY(y) of Y = g(X) can be determined from the PDF 

fx(x)ofXby: 

f („\ - fxjXl) ,fx{Xn) , v ^ fx(Xj) 

where g'(x) — ̂ g(x) and x,'s are the (distinct) real roots of the equation y — 
g(x) in terms of y: y = g(xx) = •••= g(xn) = • • •. 

Example 3.25: PDF of the Output of a Square-Law Device 

The output Y of a square-law device is related to its input X by Y = X2. Find 
/r(y) if X ~ Af(0,1). Note first #(x) = a;2 =$• #'(x) = 2x. The two roots of 

±y/y. Thus, fy(y) = 0 for y < 0. For y > 0, we have y — x 2 are xi^ 

f r,,^ = i fx(X2) fx(y/V) fx(-y/ij) 
m V } \g'{Xl)\ + \g'(x2)\ \2Jy\ + |2(-yy)| 

2VV .\Z2TT + V2n 
-2//2 
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3.8 Function of a Random Variable 

Clearly, a deterministic function of a RV X is a RV since it is a function of the outcome of 
the random experiment on which the RV X is defined. 

There are many situations in practice in which we need to find the PDF or CDF of a 
function of a RV. For instance, i f the resistors in a circuit is random due to say, uncertainties 
in the manufacturing process or aging, the current, voltage, and power are all functions of these 
random resistances and are therefore random. Another popular example is that a sinusoidal signal 
with a random phase, frequency, or amplitude (due to noise, etc.) is also random. The study of 
such signals is fundamental for communications. A third popular example is the kinetic energy 
of a molecule Y = \mX2, where m is the mass of the molecule and X its random velocity. 

For a derivation and discussion of Theorem (3.57), see A. Papoulis, Probability, Random 
Variables, and Stochastic Processes, McGraw-Hill, New York, 1991. 

A deterministic function of a discrete RV is a discrete RV. Its PMF can usually be found 
quite easily, as the following examples illustrate. 

Example 3.26: PMF of Output of a Square-Law Device wi th Discrete Input 

Find the PMF of the output Y = X2 of a square-law detector when the input X has the following 
PMF: 

X - 2 - 1 0 1 2 3 
P{X = Xi} 0.2 0.1 0.1 0.3 0.2 0.1 

Clearly, Y has the following possible values: 0, 1,4, and 9. Its probabilities of taking on these 
values are, respectively: 

P{Y = 0} = P{X = 0} = 0.1 P{Y = 1} = P{X = 1} + P{X = - 1 } = 0.4 
P{Y = 9} = P{X = 3} = 0.1 P{Y = 4} = P{X = 2} + P{X = - 2 } = 0.4 

Thus the PMF of Y is 

y 0 1 4 9 
P{Y = Vi} 0.1 0.4 0.4 0.1 

Square-law devices are quite popular in engineering. For example, it is often used in com-
munications for demodulation or in signal detection. 

Example 3.27: PMF of a Function of Binary Random Variable 

Suppose that a binary RV X has PMF P{X = 1} = 0.3 and P{X = 0} = 0.7. Find the PMF 
of t h c R V F = e x . 

Clearly, the PMF of the RV Y = ex is given by 

P{Y = e } ^ P{Y - e x | x = i } - P{X - 1} - 0.3 
P{Y = 1} = P{Y - e* | x =o} - P{X - 0} - 0.7 
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3.8 Function of a Random Variable 

Example 3.28: PDF of a Trigonometric Function with a Random Phase 

Given a random phase X ~ U(—TT, IT), find fy(y) of Y = a tan X, a > 0: 

1 ( 

y 1 J 
._J_ _ i i _ 

g(x) = a tan x = y 

a 

> I 9r{x) - C O s 2 x 

\ = tan^(y/a), i = . . . , - 1 , 0 5 1 , . . . 
a (cos2 Xi + sin2 Xi) a( l + tan 2 Xi) a2 + y2 

cos2 x?- cos2 x,- a 

0 
— 7T < X < 7T 

elsewhere 

There are two roots XQ and x\ in (—7r,7r) [/x(^) = 0 outside (—IT, 7r)]. Thus, 

/ y ( y ) ( 3 = 2 ) V afx(xj) = afx(xo) | afxjxi) = o/27r | a/27r = a/7T 
i=-oo a * + y2 a 2 + y'2 a 2 + y2 a 2 + y2 a 2 + j / 2 a 2 + y2 

(3.58) 
This is the PDF of the Cauchy distribution. 

fx(x) fy(y) 

2TT 
y = a tan X 

•7T 0 7T 
Uniform density 

•-7T/2 0 TT/2 
Cauchy density 
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3.9 Conditional Distributions 

3.9 Conditional Distributions 

Recall that the probability of event A conditioned on the occurrence of event B 
is defined by 

P{A\B} = 3 * 0 * 1 

Since { X < x} is an event, let A = {X < x}. Then the conditional CDF given 
event B is defined by 

F 0 r | B ) = Fx(x\B) = P{X < x\B} = ^ ^ g ^ ^ 0 - 5 9 ) 

The conditional PDF given event J3 is thus defined by 

MB) = ^ 

Delta functions may be introduced at discontinuous points of F(x\B). 
A conditional CDF possesses all the properties of an unconditional CDF, 

including 

F(-oo\B) = 0 
F ( o o | £ ) = l 

0 < F(x\B) < 1 
P{xt <X< x2\B} - F(x2\B) - F{xx\B) 

F(x2\B) > F(x\\B) Wx2 > x\ (nondecreasing) 
MmF(x + e\B) = F(x\B) (continuous from right) 

All the properties of a PDF also apply to a conditional PDF, including 

f(x\B)>0 

/
OO f(x\B)dx = l 
-oo 

Fx{x\B) = fX fx(y\B)dy 
J—oo 

P{xx <X< x2\B} = fX2 fx(x\B)dx 
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3.9 Conditional Distributions 

Example 3.29: Truncated Gaussian 

Let B = {a < X < b}. The following so-called truncated PDF 

MB) = 
d P{X < x,a < X < b} 
dx P{a<X < b] 

d_ 
dx 

J 

0 
P{a<X<x} _ F(x)-F(a) 
P{a<X<b} ~ P{a<X<b} 
P{a<X<b} _ 1 

P{a<X<b} ~~ 1 

P{a<X<b} a < x < b 
elsewhere 

x < a 
a < x <b 
x>b 

(3.61) 

is the original PDF restricted to a < X < b and renormalized, where P{a < 
X < b} acts as a scaling factor to scale up the PDF so that the conditional PDF 
f{x\B) integrates to unity. For example, if X ~ J\f{x, <r2), then 

f(x\a < X < b) = < 

j\f(x; x, a2) 
P{a<X < b} 

0 

a < x < b 

elsewhere 

(3.62) 

which is a truncated (censored) Gaussian. 
The conditional PDF f(x\a < X < b) of (3.62) and the unconditional (orig-

inal) PDF JSf(x; x, a2) are plotted in Fig. 3.22. 

/ ( * ) 

I \ f(x\a < x < b) 

f/ i \ 

— **•4 
/ I 1 s 

1 1 

Figure 3.22: Gaussian PDF f(x) and truncated Gaussian PDF f(x\a < X < b). 

Most Gaussian models of real-world problems are actually truncated Gaus-
sian, such as test score, and height and weight of people. 
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3.10 Generation of Random Numbers 

3.10 Generation of Random Numbers 

Uniform random number generators are available in many software packages. 
Given a uniform random number generator, there are several approaches to 

generate other random numbers. The most popular one is the following. Ran-
dom numbers of some popular distributions can be generated by the companion 
software P&R. 

3.10.1 Generation of Continuous Random Numbers 

Samples of many continuous RVs can be generated by the following inverse-
transform method based on the following theorem: 

If U ~ U(0} 1), then X = F~l(U) has the CDF F(x) provided F(x) 
is continuous and strictly increasing in x, where F™1(*) is the inverse 
function of F(-). 

Thus, if Ui,..., Un are 14(0} 1) random numbers, then . . . , Xn) = [F _ 1(C/i), 
..., F~l(Un)] are random numbers with the distribution F. 

Example 3.30: Generation of Exponential Random Numbers 

An exponential RV has the PDF given by (3.55). The corresponding CDF is 

Its inverse function F 1(u) can be obtained by expressing x in terms of u: 

u = l - e~Xx x = - | l n ( l - u ) x = F"""1^) = ln(l - u) 
A A 

Since F(-) is continuous and strictly increasing, by the above theorem, given 
£7(0,1) random numbers J7i,..., Um the random numbers 

are exponentially distributed with the CDF given above. In fact, (1 - Ui) can be 
replaced by Ui since both Ui and (1 - Ui) are £7(0,1) random numbers. 

x > 0 
x < 0 

( X i , . . . }Xn) = r - ± l n ( l - t / x ) , - ± l n ( l - Un) 
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3.10 Generation of Random Numbers 

One of the most important tools for probabilistic analysis is the so-called Monte Carlo 
simulation. In this method, it is required that random numbers with specified distributions be 
generated. A common approach is to generate random numbers that are uniformly distributed over 
(0,1) first. Then, random numbers with various other distributions are generated as functions of 
these uniform random numbers. 

A routine that generates random numbers uniformly distributed over (0,1) is called a uniform 
random number generator. How such a generator can be developed wi l l not be covered here. 
What is important is that such generators are available in most software packages that enable us 
to use the Monte Carlo method. However, most such packages provide a generator for uniform 
random numbers only. It is thus important to know how to generate other random numbers based 
on this generator. 

The inverse-transform method, also known as the percentile transform method, for the gen-
eration of continuous random numbers described here is convenient for any distribution for which 
the inverse of its CDF can be found analytically (i.e., in a closed form). This is the case for 
many important continuous RVs. For the most important distribution, the Gaussian distribution, 
however, the inverse cannot be determined analytically. There are several methods to generate 
Gaussian random numbers. They wi l l not be covered here because Gaussian random number gen-
erators are available in more and more software packages. For example, MATLAB has an internal 
function " r a n d n " that generates vector-valued Gaussian random numbers that are independent. 

Note that the inverse-transform method works only i f the CDF F(x) is strictly increasing in 
x. Since F(x) is always nondecreasing, it is not strictly increasing only i f i t is a constant (say, 
c) over some interval. Thus, when y = F(x) = c, x is ambiguous, which can be any value in 
the interval and the inverse function does not exist. 

In general, i f a generator generates random numbers Ui,..., Un with zero mean and unity 
variance, then random numbers Xi,..., Xn wi l l have mean x and variance o2

x i f Xi = axUi + x. 
An advantage of the inverse-transform method is its ease of generating random numbers with 

truncated distributions. For example, it can be shown that random numbers Xi,..., Xn with the 
truncated PDF (3.61) or equivalently the following CDF 

can be generated by the following procedure 

51. Generate U{ ~ W(0,1) 
52. Let Vi = F(a) + P{a < X < b}Ui 
53. Return Xt = F~l{Vi). 

Another common approach to random number generation is the so-called acceptance-rejection 
method. Its basic idea is to select (accept) among all the candidate random numbers generated 
only those that satisfy various conditions of the specified distribution. It is particularly good for 
random numbers with complex distributions for which the inverses do not exist or the inverse-
transform method is inefficient. 

0 x < a 
a < x < b 
x>b 1 
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3.10 Generation of Random Numbers 

Example 3.31: Generation of Truncated Gaussian Random Numbers 

Random numbers Xu ... ,Xn that are truncated Gaussian (3.62) over (a,b) can be generated by 
the following procedure based on the acceptance-rejection method 

51. Generate Ui ~ N{x, a2) 
52. I f a < Ui < b then return Xi = Uu otherwise go back to Step 1 and generate another Ui. 

3.10.2 Generation of Discrete Random Numbers 

Given W(0,1) random numbers Ui,... ,Un and a discrete RV X with PMF: 

P{X = Xi}=Pi 

where pi > 0, J2iPi = 1» i f each Xi is obtained by the following logic, with p 0 = 0, 

k-l k 
i f J2 Pj ̂ Ui< J^Pj t i i m ^ = xk 

j = 0 j=0 

then X\,..., Xn are random numbers with the distribution of X. This is illustrated below. 

Q Pl P2 Pm I 
; ~ T ^ ^ ••• ' u 

Figure 3.23: Generation of discrete random numbers Xi from Ui ~ 1/(0,1). 

Example 3.32: Generation of Binary Random Numbers 

Given U(0,1) random numbers U\y..., Un, a sequence X l f . . . , Xn of binary random numbers 
taking on value 1 with p and 0 with I —p can be obtained by 

f l 0<Ui<p 
{ \Q p<Ui<\ 

Note that Y = Xi is binomial distributed with parameters N and p. 

Example 3.33: Generation of Chi-Square Random Numbers by P & R 

Random numbers can be generated easily using the companion software P&R. We use chi-square 
distribution as an example to illustrate the procedure as follows: 

S I . Click "RVGenerator" in the main window of P&R. 
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3.11 Determination of Distribution from Data-

Si. Click "ChiSquare." The "Chi-Square Random Number Generator" window wi l l appear. 
S3. Enter the parameters (i.e., 1.44 for "sigma" and 20 for "number"), as shown in Fig. 3.24. 

Click "Ok." 20 random numbers that are chi-square distributed with parameter a — 1.44 are 
then generated and saved to a data file e3_33. da t as specified and plotted as shown in 
Fig. 3.24. 

( H B i 

* » fn : :*ni.iro 1 ..irnliim N u m b e r ; , 

Sigma should be poerti ^ ̂  
DJD F «D©gr«e of f r w f z ° 

E S S 

Figure 3.24: Generation of random numbers by P&R. 

3.11 Determination of Distribution from Data 

Given a set of numbers (data) that are the realizations of a RV X, how to determine the distribution 
of X ? 

A frequency ratio or relative frequency of X is the fraction (or percentage) of the number 
of values (realizations) of X falling within a specified interval. A histogram is a plot of the 
frequency ratios versus the intervals (also called bins). 

A histogram is a useful tool for the determination of the distribution from data. It can usually 
be plotted as follows. 

51. Find the maximum x m a x and the minimum x m i r i of the data. 
52. Let a be the largest integer that is not larger than xmin and let b be the smallest integer that is 

not smaller than . T ; m a x . I f xm&K—xmhl is much smaller than b—a, then let (a, b) = (xm[n, xmax). 
Then the interval for plotting is (a, b). 
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3.J1 Determination of Distribution from Data 

53. Divide the interval (a, b) by n to obtain n equally spaced frequency intervals, tj = (c i_i , c j , 
z = n, called bins, where c 0 = a and c n = 6. 

54. Examine all data points one by one. I f the j t h data point Xj is in the interval U\ that is, i f 
Q _ I < Xj < C{, then increase the counter / ; of the interval t?; by 1. Repeat this process until 
all data points are examined. 

55. Divide ft's by the total number of data points times the length of the interval (cvi 5 Ci] and 
then plot fi's against V s . This yields the histogram. 

The MATLAB function " h i s t " plot the histogram automatically. Only the data set and the 
number of bins need to be provided. However, make sure the vertical value of the histogram is 
the frequency ratio. 

Given a record of data, its histogram can be obtained by the companion software P&R. 

Example 3.34: Generating Histogram of Data by P&R 

Given the data contained in the data file e 3 „ 3 4 . d a t in the companion software P&R, its 
histogram can be obtained by P&R as follows 2. 

51. Click "Identification" in the main window of P&R. 
52. Choose "Histogram." You wi l l be prompted for the name of a data file. 
53. Choose "data" subdirectory, enter "e3_34 . d a t " and click "Ok." The histogram of the data 

is then plotted, as shown in Fig. 3.25. 

!slUc'3iIt«i*s£fU$ ^PG^narator R P ^ ^ t y ^ u RPE^e&ponse About 

<f \ ti .togtnrri 
Hie EM i&WKitnv 

25 

20 

-4 

Figure 3.25: Generation of a histogram by P&R. 

Fig. 3.26 gives the histogram obtained from P&R by using 10 bins. 

2 Al l data files used by a P&R example are included in P&R. You are strongly encouraged to repeat all these 
examples. 
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3.11 Determination of Distribution from Data 

20 -

15 ~ 

10 -

5 ~ 

0 H 1 1 1 1 1— r™ 
- 3 - 2 - 1 0 1 2 3 

Figure 3.26: A histogram using 10 bins. 

For example, the second highest bar indicates that 20% data have the value in between 0 
and 0.5. 

I f the histogram of the data set matches a known PDF, then we conclude that the RV from 
the set of data was drawn has the known distribution. For example, the above set of data was 
actually 100 realizations of a JV(0,1) RV and thus (the envelope of) the histogram looks similar 
to the standard Gaussian PDF curve. This is more evident i f more data are available, as shown 
in Fig. 3.27 with 20 bins and 400 data points (in e3_34_2 . d a t ) . 

u i 1 1 r ~ 1 1 r— 
- 3 - 2 - 1 0 1 2 3 

Figure 3.27: A histogram using 20 bins. 

It is sometimes not easy to determine the parameters, e.g., the mean and variance, of a 
distribution from a histogram. This can be compensated by calculating the sample mean and 
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3.12 Characteristic Functions 

sample variance of the data set, given by 

sample mean: X = -~r ^ Xi (3.63) 
N t=l 

1 N 

sample variance: V = — — - Y,(xt ~ x f (3.64) 
•* * — j_ 

i w 

where N is the number of data points in the data set and Xi is the value of the zth data point. 
Sample mean and sample variance can be used to replace the unknown mean and variance of X 
approximately. 

3.12 Characteristic Functions 

The characteristic function of a RV X is defined by 

Mx(LJ) = E[ejljX} = [°° eju;xf(x)dx = [°° e^j{~w)xf(x)dx (3.65) 
J—oo J—oo 

This function with ju replaced by s is also known as the moment generating function because 
its i th derivative at s = 0 gives the i th moment: 

Mx(s) = E[esX] T - ^ M X ( S ) = E[Xn] (3.66) 

For example, 

E[X>] = ^-2Mx{s) 
s=o dsz 

E[X] = jMx{s) 
8=0 

Clearly, a characteristic (or moment generating) function and a PDF are a Fourier (or two-sided 
Laplace) transform pair: 

Mx(-u>) = ^|p(x)], Mx(-8) = C]p(x)] 

where two-sided Laplace transform is defined exactly the same as the Laplace transform except 
that the integral is over the entire real line. Since the characteristic (or moment generating) 
function and the PDF are a Fourier (or two-sided Laplace) transform pair, they carry the same 
information about the RV: they are both complete descriptions of the RV. 

Thus they have the same properties as a Fourier (or Laplace) transform does, e.g., 

Max+b{s) = e8bMx(as) 

It can be easily shown that the magnitude of the characteristic (or moment generating) function 
is bounded by unity: 

\Mx(s)\ < M ( 0 ) = 1 
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3.13 Summary and Requirements 

Example 3.35: Moments of Gaussian EV 

The moment generating function of a A/"(0, a2) RV X is 

f oo 
M 2 = / esx e i^cfx = e2 s < 7 / 

Hence: 

E{X} = ^Mx(s)\8=Q = scr2e^ 
as 

E[X2} 

E[X3} 

ds2 

ds3 

di 

Mx{s) 

Mx(s) 
8=0 

8=0 
{a2^(sa2f]e^ 

3=0 

8=0 8=0 
= 0 

s=0 

E[Xi] = —Mx(s) 
8=0 

= 3cr4 

5=0 

Since the moment generating function M ^ s ) for this RV is even in s, it is clear that all odd 
moments vanish, which can be seen also from the fact that the PDF of the jV(0 ? cr2) is even in x. 

The moment generating function of a N{y, cr2) RV Y is 

MY(s) = e** + * a V 

Its moments follow easily from the moments of X in Example 3.35: 

E[Yn] = E[(X + y)n} 

For example, a 2 = E[(Y - y)2) = E [ X 2 ] = a 2 . 

3.13 Summary and Requirements 

A random variable (RV) Is defined as a numerical function of the outcome of a random ex-
periment. It Is discrete i f i t can take on only discrete values. It is continuous i f its possible 
values form a continuous range. A RV is completely described by Its cumulative distribution 
function (CDF) or probability density Junction (PDF), or for a discrete RV by its probability mass 
Junction (PMF). The CDF of a RV X is the probability F(x) - P{X < x} as a function of 
the value x. Its derivative is the PDF f(x)9 which is the density of probability as a function of 
x. The PMF of a discrete RV X taking on values xi}x2)... is the sequence of the probabilities 
p(xi) = P{X = X{}, which is defined only over points x\,x2, The probability masses 
P i = P{X = x^ located at these points are called the point masses. The PDF of a discrete RV 
requires the use of a delta function. 
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3.13 Summary and Requirements 

The CDF, PDF and PMF possess many important properties. The most important one con-
cerning the direct use of a CDF or PDF is the following: 

P{Xl <X<x2} = F(x2) - F(Xl) = / f(x)dx 

The probability of a continuous RV taking on any given value is always zero. 
Although not a complete description of a RV, expectation and moments are usually easier to 

obtain in practice. The expected value of a RV g(X) is 

E[g(X)} 

/•oo 
/ g(%)fx(x)dx X continuous 

J—oo 

^2 g(%i)P{X = X discrete 

The expected value or mean of a RV can be interpreted either as the common-sense average 
value or as the center of mass. The variance of a RV X is var(X) = E[(X — E[X])2}. It is a 
measure of the dispersion of a RV from its mean (or how random the RV is). 

Expectation and moments have many important properties. The most commonly used ones 
are: 

E[ahx{X) + bh2{X)) = aE[h(X)} + bE[h2(X)} 
vm(X) = E[X2} - (E[X})2 

var(aX + b) = a 2 var(X) 

A Gaussian (or normal) RV X, denoted by X ~ A/"(x, cr 2), is one having the following PDF: 

/ ( * ) = A ^ ; z , a 2 ) ^ ^ e - ^ 2 / 2 " 2 

V27RT 

It is the most important distribution. Its mean is x and variance is a2. I f a random quantity is 
the cumulative effect of many "uniformly" small sources of uncertainty, then it can be modeled 
as a Gaussian RV. This is the central limit theorem. 

A RV X uniformly distributed over an interval (a, 6), denoted by X ~ U(a, 5), is one having 
a constant PDF over the interval (a, 6). Its mean is the center (a + b)/2 and its variance is (length 
of the interval) 2/12. 

A deterministic function Y = g(X) of a RV X is a RV. Its PDF can be determined from the 
PDF of the original RV X by: 

where gf(x) = -^g(x) and Xi's are the (distinct) real roots of the equation y = g(x) in terms of 
y> 

A random number X with a continuous and strictly increasing CDF F(x) can be generated 
by X = F-^U), where U - W(0,1) and F~l(-) is the inverse function of F(-). 
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3.14 Additional Examples 

Basic Requirements 

• The emphasis of the chapter is on expectation, PDF, CDF, and Gaussian RVs. 
• Have a clear understanding of the CDF, PDF, and PMF. Be familiar with their relationships 

and properties. 
• Comprehend the concepts of expected value and variance and be familiar with their properties. 
• Be skillful in calculating the expected value and variance of a RV and their functions, making 

full use of the properties of the expectation and variance. 
• Be skillful in calculating various probabilities using the CDF, PDF, or PMF. 
• Be familiar with the PDF or PMF, expected values and variances of popular distributions, 

especially of Gaussian, uniform, exponential, Poisson, and binary distributions. 
• Know how to find the CDF, PDF, and/or PMF of simple problems. 
• Master the procedure to generate a random number from one that is uniformly distributed 

over (0,1). 
• Know how to find the PDF of a simple function of a RV 

3.14 Additional Examples 

3.36 Probability calculation. Consider Example 3.8. Calculate the following probabilities. 

(a) P{2 < X < 7|3 < X < 5} 
(b) P{X = 5|3 < X < 8} 
(c) P{X = 5|3 < X < 5} 
(d) P { X = 0 | X < 0 } 
(e) P{X < 0\X = 0} 
(f) P{2 < X < 7\X = 1}. 

Solution: 

(a) P{2 < X < 7|3 < X < 5} = P i { 2 < X ^ % X < 5 ) } = gg<*<g = 1, which makes sense 
since {3 < X < 5} implies {2 < X < 7}. 

(b) P{X = 5|3 < X < 8} = PK=S<(x3<4<S)} = P l ^ S l = A - 0. 

(c) P{X = 5|3 < X < 5} = PK=§TJ}

<5)} = - 0-
(d) This problem is not well-defined. It depends on now the "infinitesimal" ( i f not absolute 

zero) probability mass is distributed over the interval ( - 0 0 , 0 ] and thus could have 
more than one solution. For example, i f negative values of x is not considered for the 
probability or i f {X < 0} = 0 (impossible event), then P{X = 0\X < 0} = P{X = 
o i * = o} = ^ = i . 

(e) P{X < 0\X = 0} = P{{Xf$%=0)} = g f E § = 1, which make sense since we have 
already known that X = 0 and therefore it must have X < 0. 

(f) P{2 < X < 7\X = 1} = rW<xgn^)} = = o since X = 1 is not 
impossible even though it has zero probability. 
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3.14 Additional Examples 

3.37 Common probabilities for uniform distribution. For a RV X ~ £/(4,6), find its mean 
5 = f^°O0xf(x)dx and standard deviation <r = yjj^ix - x)2f(x)dx and the following 
probabilities: (a) P{X-x < a}; (b) P{X-x < 2a}; (c) P{\X-x\ < o}; (d) P{\X-x\ < 
2a}. 

Solution: From Example 3.19, 

x = ^(xi + x2) = ^(4 + 6) = 5 (the center point) 

2 _ 0 r 2 - * i ) 2 _ ( 6 - 4 ) 2 _ l 
a = 12 = ~ l 2 ~ = 3 ^ ^ V l 

(a) 

P { X - x < a} = P{X - 5 < l / \ / 3 } = P{4 < X < 5 + 1/V3} = jf /(s)da; 

: / -dx (since (4,5 + l/y/Z) C [4,6]) 

l + l /v/3 
6 - 4 

= 0.789 

(b) 

, _ / -5+2/V3 

P { X - s < 2<r} = P{X - 5 < 2 /V3} = J /(x)dx 

= / 6 ————da; (since [4,6] C [4,5 + 2/V5)) 
J 4 0 — 4 

(c) 

P{\X - x\ < a} = P { | X - 5| < 1/V3} = P { 5 - 1/V3 < X < 5 + 1/V3} 

= / -—-dx (since (5 - 1/V3,5 + 1/V3) C [4,6]) 
J5-1/V3 0 — 4 
2/\/3 1 
6 - 4 V3 

(d) 

0.577 

P{\X -x\< 2a} = P{\X - 5| < 2/\/3} = P { 5 - 2 /V3 < X < 5 + 2 /V3} 
/•5+2/\/3 

= / f(x)dx 

= f ^~Adx (since [4,6] C (5 - 2 /V3,5 + 2/y/l) 
JA 6 — 4 

= i 
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3.14 Additional Examples 

3.38 Gaussian percentiles. For a R V l ~ A/^x, a 2 ) , find the values c^'s that satisfy the following 
equations, respectively: 

(a) P{\X - x| < ai<r} = 90% 
(b) P{\X ~x\< a2a} = 95% 
(c) P{\X -x\< a3a} = 99% 
(d) P{X - x < a4a} = 90% 
(e) P{X - x < a5<r} = 95% 
(f) F { X - x < « 6 cr} - 99%. 

These probabilities are commonly used and are better learned by heart. 

Solution: From the above problem, it is clear 

P{\X -x\< aa} = F(x + aa) - F(x ~~ aa) 

= $ (a) - $ ( - a ) = 2$ (a) - 1 
P{X -x < aa} = P{X < x + aa} = F ( x + acr) = # (a) 

Then, in general, 

P{\X-x\ <aa} = 0 $ (a) = ^ - l 

P { X - x < aa) = p = • $ (a) = 0 
Thus: 

(a) P { | X - x\ < axa} = 90%: $(ai) = ktM ax = 1.645 
(b) P { | X - x| < a2a} = 95%: $(0*2) = ^ ^ ^ a 2 = 1.96 
(c) P{\X -x\< 03a} = 99%: $ (a 3 ) = ^tf 2 2 a 3 = 2.575 
(d) P { X - x < a4o-} = 90%: $ (a 4 ) = 0.9 =4- a 4 = 1-28 
(e) P{X -x< a5a} = 95%: $ ( a 6 ) = 0.95 a 5 = 1.645 
(f) P { X - x < a6a} = 99%: $ (a 6 ) = 0.99 a6 = 2.33 

3.39 Computer maintenance. A computer will be damaged with probabilities 0.01, 0.001, and 
0.05, respectively, if its power supply has a voltage X below 100V, in between 100V and 
120V, and above 120V. Suppose that X ~ Af(110V, (10V) 2). Find 

(a) the probability that the computer will be damaged 
(b) the probability that the voltage is above 120V if the computer is damaged 

Solution: Let D = {computer damaged}, V\ = {X < 100}, V2 = {100 < X < 120}, 
V3 = {X> 120}. Clearly, 

P { V : } = P{X < 100} = P { ^ ^ < 1 0 0 ~ 0

1 1 0 } = P{Y < l } | ™ ( „ , i ) = $ ( - 1 ) 
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3.14 Additional Examples 

= 0.159 

P{V2} = P{100 < X < 120} = P ( 1 0 Q - 1 1 0 < < 1 2 0 - 1 1 0 \ 
J I 10 - 10 - 10 / 

= $(1) - $ ( - 1 ) = 0.682 
D f l / 1 n r v 1 o n l n f . Y - 110 120-1101 

P{V*} = P{X > 120} = p | — — > 1 = 1 - $(1) = 0.159 
Note that P{VX} + P{V2} + P{V3} = 1. 

(a) Since V1,V2, V3 form a partition, by total probability theorem, 

P{D} P j D ^ } P { V \ } + P{D\^P{V2} + P{D\^}P{V3} 
=0.01 =0.001 =0.05 

= (0.01)(0.159) + (0.001)(0.682) + (0.05)(0.159) = 0.01022 

(b) By Bayes5 rule 

P{V\™-P{D\V*}P{V3} (0.05)(0.159) _____ 
P{V3\D} _ = 0 Q 1 0 2 2 = 0.7777 

3.40 Mean and variance of a linear junction of a Gaussian RV. For a R V I ~ N{x, cr2), find 
the mean and variance of Y = aX + b for all a ^ 0. 

Solution: Since the mean and variance of X are x and cr2, respectively, we have, by the 
linearity of the expectation (3.50), 

y = E[aX + b] = aJ5?[X] + 6 = + b 

er2 = £J[(F - yf) = E[(aX + b-(ax + b))2] = E [ a 2 ( X - x ) 2 ] = a V 

Note that the above two equations are always valid, not just limited to Gaussian RVs. 

3.41 Inventory analysis. An inventory has three machines that are operational with probabilities 
0.8, 0.9, and 0.95, respectively. Whether a machine is operation is independent of die other 
machines. Let X be the number of machines that are operational. Find the mean and variance 
of X. 

Solution: Let M{ = {machine i operational}. Note that MuM2jM3 are independent; X 
can take only on 4 possible values: 0, 1, 2, 3 and 

P{X = 0} = P{M7M2M} = (1 - 0.8)(1 - 0.9)(1 - 0.95) = 0.001 
P{X = 1} = P{MjfaIfa} + P{M^M2M} + P{MlW2M^ 

= (0.8)(0.1)(0.05) + (0.2)(0.9)(0.05) + (0.2)(0.1)(0.95) = 0.032 
P{X = 2} = P { M i M 2 l 4 } + P{M[M2M-6} + P{M{M2M^} 

- (0.8)(0.9)(0.05) + (0.2)(0.9)(0.95) + (0.8)(0.1)(0.95) = 0.283 
P{X - 3} - P{MtM2M3} = (0.8)(0.9)(0.95) = 0.684 

128 



3.14 Additional Examples 

Thus, 

E[X] = (l)P{X - 1} + (2)P{X = 2} + ( 3 ) F { X = 3} - 2.65 

F [ X 2 ] - (1)2P{X = 1} + ( 2 ) 2 P { X = 2} + ( 3 ) 3 P { X = 3} - 7.32 

var(X) = 7.32 - (2.65)2 = 0.2975 

3.42 Expected GEA. A senior student has to take four more 3-credit courses to complete his 
undergraduate study. Suppose that he has completed 120 credits with a Grade Point Aver-
age (GPA) of 2.7 and wi l l obtain a grade in any of these four courses with the following 
probabilities: 

P { " A " } = 0.15 P { " B " } = 0.25 P { " C " } = 0.4 P{uDn} = 0.15 P { " F 5 } = 0.05 

(a) What is the expected GPA of this student for these four courses? 
(b) What is the expected GPA of this student for his entire undergraduate study? 

Use the following for GPA calculation: A = 4.0, B = 3.0, C = 2.0, D = 1.0, F = 0. 

Solution: Denote G the grade point of a course and 

Gt = A = 4.0, G2 = B = 3.0, G 3 = C = 2.0, G4 = D = 1.0, G 5 = F = 0.0 

(a) For any of the four courses, the expected grade point of the student is then 

S[G] = E G i P { G i } 
1=1 

= (4.0)(0.15) + (3.0)(0.25) + (2.0)(0.4) + (1.0)(0.15) + (0)(0.05) = 2.3 

Since the probability distributions of the grade point for the four courses are identical, 
the expected GPA for these courses are E[G] = 2.3. 

(b) Since the student has a GPA of 2.7 over 120 credits and an expected GPA of 2.3 over 
the last four courses (12 credits), the total expected GPA for the entire undergraduate 
study is 

_ t , (120)(2.7) + (12)(2.3) _ 
Total expected GPA = ^ — i — ^ A ; = 2.66 

F 120 + 12 
3.43 Computer systems analysis. The number of downs of a mainframe computer over a time 

period of x days is Poisson distributed with parameter Xx. Find 

(a) the PDF of the time between two consecutive downs 

(b) the probability that it wi l l be up for 10 more days after it has been up for 10 days 

Solution: Let X be the up time and let N(x) be the number of downs over x days. 
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3.15 Problems 

(a) Since X is nonnegative, Fx(x) = 0,Vx < 0. For x > 0, two events {X > x) and 
{N(x) = 0} are equivalent and 

Fx(x) - P { X < x) = 1 - P { X > x} = 1 - P{i\T(x) = 0} = 1 - e""Ax 

Hence, 

/ ( x ) = s \ 0 x < 0 

which indicates that the up time X is exponentially distributed with parameter A. 
(b) The sought-after probability is 

P{X > 20, X > 10} P{X > 20} e -20A 
-10A 

p { x > 2 0 | x > i o } = ^ { J C ; 1 0 }

 J = ^ i o t = ^ = e 

Note that 
P { X > 20|X > 10} = e~ 1 0 A = P{X > 10} 

which indicates that the computer is always "like new" after knowing it has been oper-
ational for some time. Of all continuous distributions, only the exponential distribution 
has this "memoryless" property. 

3.15 Problems 

3.1 From CDF to probability. Consider Example 3.7. Find the probability that the total power 
consumption is (a) not greater than 3 kW; (b) 1 kW, 2 kW or 3 kW; (c) greater than 2 
kW. 

3.2 Sum ofCDFs. Two RVs X and Y have CDFs Fx(x) and FY(x). Can F(x) = Fx(x) + 
FY(x) be the C D F of some RV? 

3.3 Point mass determination. Find the point masses for RVs X, Y, and Z of Example 3.2, 
respectively. 

3.4 From CDF to PDF. Find the PDF of the total power consumption for Example 3.7. 

3.5 Determination of CDF and PDF. Find the CDF and PDF of the RV X of Example 3.1. 

3.6 Calculation based on CDF. The CDF of a random variable X is 

1 - e~3x x>0 

Find 

(a) the PDF of X 

F ^ = ^ 0 x<0 
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3.15 Problems 

(b) the probability that X > 3 
(c) the probability P{X > 3| - 3 < X < 4} 

3.7 Determination of PDF. Find the PDF of the RV X for Example 3.8. 

3.8 Conditions to be a CDF. Can any of the following functions be a CDF? Justify your 
answer. 

2/3 + (1 - e'x)/3 x>0 
1/3 x<0 
2/3 + ( l~-e~ a : ) /3 x>0 
0 x<0 
1/3 + (1 - e-*)/3 x>0 
0 x<0 
1 - e~x x>0 
0 x<0 

3.9 Conditions to be a PDF. Can any of the following functions be a PDF? Justify your 
answer. 

0 < x < 7T 
elsewhere 
0 < x < TT/2 
elsewhere 
0 < x < 2w 
elsewhere 
0 < x < TT/2 
elsewhere 
- T T / 2 <X<TT/2 
elsewhere 

3.10 Conditions to be a PDF. Can the following function be a PDF? Justify your answer. 

( x 0 < x < 1 
f(x) = I 9/4 - x 1 < x < 3 

[ 0 elsewhere 

3.11 Conditions to be a PDF. Given a continuous RV Xf can the following two functions be 
its PDF? Justify your answer. 

0.4 sin a? 0 < x < w 
0 elsewhere 
sinx —TT/2 < x < TT/2 
0 elsewhere 

F1(x) = 

F2(x) = 

F3(x) = 

fi(x) = 

h{x) = 

h(x) = 

h(x) = 

h(x) = 

sin a; 
0 
sin a: 
0 
sin a; 
0 
cos a; 
0 
cos a; 
0 
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3.12 From PDF to CDF. A RV has the following PDF 

f x / 4 0 < x < 2 
f(x) = I 3-x 2 < x < 3 

[ 0 elsewhere 

(a) Sketch f(x). Is X continuous? 
(b) Is the following calculation of the CDF F(x) correct? 

x < 0 : F(x) = [X Odx = 0 

0 < x < 2 : Fix) = fX x/Adx = x 2 / 2 
Jo 

2 < x < 3 : F(x) = [X(3 - x)dx = 3(x - 2) - x 2 / 2 + 2 = 3x - 4 + x 2 / 2 

x > 3 : F ( x ) = / X Odx = 0 
«/3 

I f not, give the correct calculation of F(x). 

3.13 Determination of PDF and CDF. The following waveform is sampled at a random time 
r over a period T = 1.5. Let X = {sampled value of v(r)}. Find (a) the PDF fx(%) of 
X; (b) the CDF Fx(x) of X ; (c) P { 0 < X < 3} ; and (d) P{0.1 < r < 0.3 | X > 2}. 

0.5 1.0 1.5 2.0 2.5 

3.14 Determination of parameters of a PDF. Determine the value of constants c and d such 
that the following function is a PDF of some RV 

h(x) = (c + de-x^2)u(x) 

where u is the unit step function. 

3.15 Determination of a parameter of a PDF. Determine the value of constant c such that 
h(x) = eX+e-x is a PDF of some continuous RV. 

3.16 Laplace distribution. A Laplace distributed RV X has the following PDF 

f(x) = cc-W 

Find (a) constant c; (b) the CDF of X ; and (c) P { 0 < X < 1}. 
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3.17 Random capacitance. Consider Example 3.4. Assume the capacitance C is a RV uni-
formly distributed over (9,11]. Find 

(a) the CDF and PDF of X 
(b) the probability that the discrete RV X is in level 1 
(c) the probability that X is in the upper two levels (3 or 4) 
(d) the probability that the capacitance is in between 9.3 and 9.5 given that X is in level 

1 
(e) the average capacitance 
(f) the average level for the discrete RV X 

3.18* Percentiles of uniform distribution. Consider a RV X ~ U(a, b), where a < b. 

(a) Find P{X — x < aa} in terms of a, where a is the standard deviation. 
(b) Find the minimum value of a such that P{X — x < aa} = 1. 

3.19* Percentiles of uniform distribution. Given a R V I ~ U(a, b), where a <bf show that 

f 1 a>V3 
P{\x -x\<aa} = l J- 0 < a < \/3 

[ 0 a < 0 

3.20 Probability of a solution. Find the probability that the following equation has a real-valued 
solution 

x2 + 3xY + 1 = 0 

where F is a W(-4 ,4 ) RV. 

3.21 Gaussian percentiles. For a RV X ~ J\f(x,a2), find the following probabilities using 
only the results of Example 3.13 (i.e., you are not allowed to look up any probability table 
because you may not have it at hand): (a) P{\X — x — a\ < a}; (b) P{\X — x — a\ < 2a}. 

3.22 Probability of a Gaussian RV. Given a R V I ~ AT(3? a2) and P{0 < X < 3} = 0.4 but 
a is unknown, find P{X < 0} . 

3.23 Probability of a Gaussian RV. Find P{2 < X < 10} for the random variable X ~ 
^"(4 ,2 2 ) . 

3.24 Price for quality. A production line manufactures 1 fcO resistors that must satisfy 10% 
tolerance. Suppose that the resistance X is adequately described by Af[lkQ, (40Q) 2]. 
What percent of resistors is expected to be rejected? 

3.25 Confidence intervals. In radar detection, assume that the true measurement is a RV 
X - A f ( 1 0 5 ? 3 2 ) . 

(a) Find the one-sided threshold c such that P{X > c} = 0.01. 
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(b) Find the two-sided threshold d such that P{\X - 105| > d} = 0.01. 

3.26 Life time probability. The life time of a light bulb is a RV X ~ jV*(1000,c72). Find a 
such that F{800 < X < 1200} = 0.9. 

3.27 Mean and variance of standardized RV. A standardized RV is defined by X = ^f2-, 
where x and a2 are the mean and variance of X. Show that a standardized RV has zero 
mean and unity variance. 

3.28 Mean and variance. A RV X has the following PDF 

!

x 0 < x < 1 

3/4 - x/4 1 < x < 3 
0 elsewhere 

Find the mean and variance of X. 
3.29 Mean and variance of exponential distribution. An exponentially distributed RV X has 

the PDF given by (3.34). Find the mean and variance of X. 
3.30 Mean, variance, and probability of Poisson distribution. Given a Poisson RV X with 

parameter A, as defined by (3.38), and P{X = 0} = 1/3, find (a) the mean and variance 
of X and (b) the probability P{X > 2} . 

3.31 Mean, variance, and probability of Poisson distribution. Given a Poisson RV X with 
parameter A, as defined by (3.38), and P{X = 1} = P{X = 2} , find (a) the mean and 
variance of X and (b) the probability P{X = 3} . 

3.32 Mean and variance of discrete uniform distribution. Find the mean and variance of the 
discrete uniform distribution over possible values x = n , n + 1 , . . . , m. 

3.33 Median of exponential distribution. Find the median of the exponential distribution, as 
defined by (3.55). 

3.34 Mean of a function of a RV. Given an exponential distributed RV X with parameter A = 1, 
as defined by (3.55), find the mean of Y = 2X + e~ 3 X. 

3.35* Mean and variance of a mixture. A RV X has the mixture PDF 

0.1 + 0 .5A/fa;0 , l) 0 < x < 5 
0.5Af(x; 0,1) elsewhere 

where M(x; 0,1) was defined by (3.23). Find the mean and variance of X . 

3.36 Lot size estimation. The lot size of a real estate property is measured with a measurement 
error that is Gaussian distributed with mean 1 and variance 4. Suppose that the true lot 
size is equal to 7000. 
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(a) What is the average measured lot size? 
(b) Find the probability that die measured lot size is in between 6997 and 7005? 

3.37 Linear function of a uniform RV. Given a RV X ~ U(0,1), determine the constants c and 
d such that Y = cX + d is uniformly distributed over (a, b). 

3.38* PDF of functions of a uniform RV. Consider a RV X ~ 1/(1, 6). 

(a) Find the PDF of Y = X 2 ? Is it uniform? 
(b) Find the PDF of Y = X 3 ? Is it uniform? 
(c) What are the PDFs of Y = X2 and Z = X3 i f X ~ W ( - l , 6)? Are they uniform? 
(d) What are the PDFs of Y = X2n and Z = X2n+1 i f X ~ W ( - l , 6) (n is a positive 

integer)? Are they uniform? 

3.39 PDF of the magnitude of a RV. Find the PDF fY(y) of the RV Y = \X\ in terms of the 
PDF of the RV X. Write down the explicit expression for jy(y) if X ~ J\f(0,o2). In 
this case, Y is a Rayleigh distributed RV. 

3.40 PDF of the absolute value function of a RV. Find the PDF fY(y) of the RV Y = \X - 3| 
in terms of the PDF of a continuous RV X. Write down the explicit expression for jy(y) 
i f (a) X ~ A/"(3, c r 2 ) ; or (b) X ~ W ( l , 9). Find the corresponding variances of Y for the 
two cases. 

3.41 Expected values of a circle. The radius of a circle is measured four times to be r = 
99,100,101,102, with the probabilities of correct measurement 0.2, 0.3, 0.4, and 0.1, 
respectively. Find the expected value of (a) the radius; (b) die circumference of the circle; 
and (c) the area of the circle. 

3.42 PDF of a linear Junction. Use the theorem in Section 3.8 to find the PDF fy{y) of 
Y = aX + b In terms of the PDF fx(x) of X. 

3.43 PDF of a linear function of a Gaussian RV. Find the PDF fy(y) of Y = aX + 6, where 
X^M(x}®2). 

3.44* Exponential Junction of an exponential RV. For Z = e a X , where a > 0 and X Is an 
exponentially distributed RV with the PDF given by (3.55). Find (a) the PDF of Z and 
(b) the mean and variance of Z. 

3.45* Unique position of the uniform distribution. Consider a continuous RV X with a strictly 
increasing CDF F(x). Let Y = F(X). Find the PDF of Y. 

3.46 Continuous Junction of a RV. Given a continuous function h(x), is Y = h(X) always 
discrete I f X is discrete? Can Y = h(X) be discrete or mixed i f X is continuous? 

3.47 Like-new property of exponential distribution. It is known that the life X of a TV set is 
exponentially distributed with an expected life of 7000 hours. 
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(a) Write down the PDF and CDF of X. 
(b) What is the variance of X ? 
(c) Find the probability that a T V set has a life longer than 5000 hours. 
(d) Find the probability that a T V set is operational for at least another 5000 hours 

knowing that it has been operational for 5000 hours. 
(e) Do you get the same probabilities for part (c) and (d)? Is it true that P{X > x2} = 

P{X > x2 + xi\X > xi} for every possible xu x2 > 0 for this RV XI Justify your 
answer. 

3.48 Conditional exponential PDF. The failure time X of a solid-state device is an exponential 
RV with PDF given by (3.55). It is observed that it is operational at time t0. Find the 
conditional PDF of its failure time f(x\X > to). 

3.49 Machine operation. There are five identical machines in a laboratory. Each of them has a 
probability of 0.8 in operation at any time and consumes 1000 watts if in operation. The 
operation of each machine is independent of other machines. Find 

(a) the probability that at least four machines are in operation at a particular time 
(b) the probability that these five machines will consume at least 4500 watts at a particular 

time 
(c) the average power consumption of these five machines 

3.50 Generation of arbitrary uniform random numbers. Given a random number generator for 
U ~ 11(0, 1), how to generate X ~ U(a, b) for b > a ? Give a specific formula. Use 
your formula to generate and list 100 random numbers that are uniformly distributed over 
(-1,6) . 

3.51 Generation of chi-square random numbers. Given a random number generator for inde-
pendent U ~ JV(0,1), how to generate xl, random numbers? Give a specific formula. 

3.52 Generation of Rayleigh random numbers. Given a uniform random number generator for 
U ~ 14(0} 1), how to generate Rayleigh random numbers with PDF given by (3.33)? Give 
a specific formula. 

3.53 Generation of Rayleigh random numbers. Given a Gaussian random number generator 
for X ~ JV(0,1), how to generate Rayleigh random numbers with PDF given by (3.33)? 
Give a specific formula. 

3.54 Parameter determination for uniform distribution. Given mean x and variance a2 of a 
uniformly distributed RV X, determine the interval over which X is uniformly distributed; 
that is, determine a and b in terms of x and a such that X ~ U(a, b). 

3.55 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too involved. 
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3.16 Computer Exercises 

3.16 Computer Exercises 

3.1 PDF and PMF plots. Use the companion software P&R to plot (a) the PDF curve of the 
chi-square distribution with a = 2.7 and 5 degrees of freedom; and (b) the PMF curve of 
the binomial distribution with N = 30 and p = 0.32. 

3.2 Log-normal probability. Use the companion software P&R to calculate the probabilities 
P{X < 4.4} and P{2.5 < X < 5.7}, where X is a RV having the log-normal distribution 
with a = 1.2 and a = 2.9. 

3.3 Calculation of Poisson probability. 

(a) Write a computer subroutine po i sson_pmf .m to calculate the Poisson probability 

\ 771 
P{X = m}=r-e-x~ 

ml 

for an arbitrary m and A. 
(b) Write a computer subroutine p o i s s o n _ c d f .m to calculate the probability P{X < 

m} of a Poisson RV X given above for an arbitrary m and A. Utilize the subroutine 
in (a). 

(c) Run both subroutines in (a) and (b) for A = 2.4 and m = 0,2,50, respectively. 
Compare the results with your theoretical calculation for m = 0,2. 

(d) Repeat (c) by using the companion software P&R and compare the results with those 
in (c). 

3.4 Chi-square percentile. Use the companion software P&R to calculate the 37% and 89% 
percentile points of the chi-square distribution with a = 3.4 and 6 degrees of freedom. 

3.5 Identify distribution. The data files m3~5x.dat , m3_5y .da t and m3_5z.da t in the 
companion software P&R contain three records of data, which are the realizations of three 
RVs X , V , and Z , respectively. 

(a) Write a computer program to plot three histograms of the three data sets, respec-
tively, and compute the sample means and sample variances of the three data sets, 
respectively. 

(b) Give your guess what the distributions of X , Y and Z are, respectively. Justify. 

(c) Repeat (a) and (b) using P&R. 

3.6 Generation of a random phase. 

(a) Show that i f X ~ U(0,1) then Y = aX + b is uniformly distributed over (6, b - f a). 
(b) What should a and h be such that Y - U(a, (3)1 
(c) Give a formula and procedure to generate a random phase cf> ~ U{—7r, W). 

137 



3.16 Computer Exercises 

(d) Generate 1000 random numbers that are the realizations of the random phase cf> ~ 
W(—7r, 7 r ) . Plot the values of these random numbers. Compute the sample mean and 
sample variance of these random numbers generated. 

3.7 Generation and testing of exponential random numbers. 

(a) Use MATLAB W(0,1) random number generator " r a n d " and the results of Exam-
ple 3.30 to generate 10,000 random numbers that are exponentially distributed with 
parameter A = 10. 

(b) Compute the average value of the 10,000 random numbers generated. 
(c) Compare the average value obtained in (b) with the true mean of an exponential EV 

with parameter A = 10. 
(d) Compute the average value of the first 1,000 of the 10,100 random numbers generated 

and compare them with the true mean obtained in (c). 
(e) Use MATLAB function " h i s t " (with 50 bins) to plot the histogram based on the 

10,000 random numbers generated. The vertical value of the histogram should be 
frequency ratio. 

(f) Generate 10,000 exponentially distributed random numbers with A = 10 using the 
companion software P&R and repeat parts (b) and (e) for these numbers. 

(g) Plot the PDF of an exponentially distributed RV with parameter A = 10 using the 
same x-y scales as the histogram. Overlay the two histograms and the PDF plot in a 
single figure. The height of the histogram should be divided by the total number of 
data points times die length of each bin. Comment on the similarity and difference. 

3.8 Binary random number generation. Given a sequence of W(0,1) random numbers, obtain 
and describe an algorithm that generate binary random numbers with the following point 
masses: 

P{X = 0} = 0.3, P{X = 1} = 0.7 

(a) Find the (theoretical) mean and variance of X. 
(b) Use MATLAB W(0,1) random number generator " r a n d " to generate 10,000 random 

numbers with the above distribution. 
(c) Compute the average value of the 10,000 random numbers generated. Compare it 

with the theoretical mean. 
(d) Give the percentages of the numbers generated that are equal to — 1, 0, and 1, respec-

tively. Compare them with the point masses and make a comment. 
(e) Generate 10,000 random numbers with the above distribution using the companion 

software P&R by taking advantage of the relationship between the binomial and binary 
distributions and repeat (c)-(d) for these numbers. 

3.9 Ternary random number generation. Given a sequence of W(0,1) random numbers, obtain 
and describe an algorithm that generate random numbers with the following point masses: 

P{X = - 1 } = 0.3, P{X = 0} = 0.2, P{X = 1} = 0.5 
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(a) Find the (theoretical) mean and variance of X. 
(b) Use MATLAB W(0,1) random number generator " r a n d " to generate 10,000 random 

numbers with the above distribution. 
(c) Compute the average value of the 10,000 random numbers generated. Compare it 

with the theoretical mean. 
(d) Give the percentages of the numbers generated that are equal to — 1 , 0, and 1, respec-

tively. Compare them with the point masses and make a comment. 

3.10 Approximations to binomial distributions. Use the companion software P&R to do the 
following. 

(a) Generate 200 random numbers of binomial distribution with N = 100 and p = 0.005 
and save to data file m3_10a. dat . Overlay the histogram of the random numbers 
generated and the PMF of Poisson distribution with the sample mean and sample 
variance of the random numbers as its mean and variance, respectively. 

(b) Generate 400 random numbers of binomial distribution with N = 100 and p = 0.55 
and save to data file m3_10b.dat. Overlay the histogram of the random numbers 
generated and the PDF of Gaussian distribution with the sample mean and sample 
variance of the random numbers as its mean and variance, respectively. 

(c) Comment on the conditions under which the binomial distribution can be approxi-
mated by either Poisson or Gaussian distributions. 

3.17 Self-Test Problems 

3.1 Answer the following questions briefly. 

(a) What are the domain and range of a RV? 
(b) Is it possible to define a continuous RV over the outcomes of a die-rolling experiment? 
(c) Can the C D F of a continuous RV have a discontinuous point? 
(d) Is it true that the probability of a RV taking on any given value is zero? 
(e) Given the mean and variance of a Gaussian RV, is the PDF uniquely determined? 
(f) Given the peak value of the PDF of a Gaussian RV and the location of the peak, is 

the PDF uniquely determined? 
(g) Does a larger variance imply a larger or smaller mean? 
(h) If a RV X has mean x and zero variance, what can you say about this RV? 
(i) If Y = aX + b9 where a ^ 0 and b are constants and X is a discrete RV, can Y be a 

continuous RV? 
(j) What is the relationship between the chi-square and Gaussian RVs? 

3.2 Understanding variance. For two RVs X ~ M(af a%) and Y ~ M(by o*)> where ox < oy, 
which of the following is true? Justify your answer. 

(a) P{\X - a| < 1} < P{\Y - b| < 1} for any a and b. 
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(b) P{\X - o| < 1} > P{\Y - b\ < 1} for any a and b. 
(c) P{\X — a\ < 1} > P{\Y — 6| < 1} for some a and b values; for other values, the 

inequality should be reversed. 

3.3 Mean and variance. Given a RV X with PDF 

find the mean and variance of X. 

3.4 Roundoff errors. Roundoff errors X are uniformly distributed, suppose that the sixth 
decimal place of a calculator wi l l be rounded (e.g., 0.00004573 rounded to 0.00005 and 
0.50004486 rounded to 0.50004). Find 

(a) the PDF and CDF of X 
(b) the probability that the numerical error Is In between 0.000001 and 0.000003 
(c) the mean and variance of X 

3.5 GRE test model. Assume the score of a student in a GRE test is a Gaussian RV X ~ 
j V ( / i , a2). Suppose it Is known that the average score is 1440 and 15.9% students' scores 
are above 1650. Find / i , a, and P{1600 < X < 2000}. 

3.6 Test score. A student's test score of an exam is assumed to be a random variable X ~ 
J\/"(18? 2 2 ) (assume that a negative score is also possible — tough?!). 

(a) What are the mean and variance of XI Find the probability that the student's score 
is higher than 18 points. 

(b) I f the score is to be converted to 100-point scale by Y = 4X + c, where c is a 
constant, find the mean and variance of Y in terms of c. Can you express o2 in terms 
of a2l I f you can, what is the expression? How much should c be i f the mean of Y 
is required to be 75? 

(c) Find the PDF of Y. Is Y a Gaussian random variable? 
(d) Suppose that you wi l l answer parts (a), (b), (c), and (d) correctly with probabilities 

0.9, 0.5, 0.7, and 0.7, respectively, what is your expected score on this problem i f a 
total of 10 points are distributed, respectively, over the parts with 20%, 40%, 20%, 
and 20%? 

3.7 Weibull random number generation. For £/(0,1) random numbers Ui,..., Un, derive a 
formula Xi — g(Ui) such that Ays are random numbers with Weibull distribution whose 
PDF is given by (3.35) and thus the CDF is given by 

- 1 < x < 1 
elsewhere 

x>0 
x < 0 

(3.67) 

where a > 0, b > 0. 
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3.18 Solutions to Self-Test Problems 

3.1 (a) The domain is the sample space (I.e., the set of all outcomes) and range is the set of 
all real numbers (real line). 

(b) No, because a die-rolling experiment has only 6 possible outcomes and thus a RV 
defined over these outcomes can have at most 6 different values and therefore cannot 
be continuous. 

(c) No, a continuous RV must have a continuous CDF. 
(d) It is true for a continuous RV but not true in general for a discrete or mixed RV, 

which must have nonzero probability of taking on some specific values. 
(e) Yes, it is uniquely determined as N(x\x,a2), where x and a2 are the mean and 

variance, respectively. 
(f) Yes, It is uniquely determined because the peak locates at x = x and the peak value is 

equal to and thus the mean and variance can be obtained, which then determine 
the PDF uniquely. 

(g) No. A larger variance implies that the RV is more uncertain in the sense that it is 
not so concentrated around its mean but the mean could be any value. 

(h) Practically speaking, we have X = x; that is, the RV is actually not random but equal 
to a constant that is its mean. 

(I) No. Since Y = aX 4- b Is simply the scaling and translation of X , Y w i l l have the 
same number of possible values to take on as X does. Thus, I f X is discrete, so Is 
Y; i f X Is continuous, so is Y. 

(j) A chi-square RV of n degrees of freedom is the sum of n independent zero-mean 
Gaussian RVs of a common variance. 

3.2 Since X has a smaller variance than Y, X wi l l be more concentrated around Its mean, 
which Is a, than Y around b. This means that X w i l l have a higher probability of taking 
on a value close to a than Y taking on a value close to b. As a result, P{\X — a\ < 1} > 
P{\Y — b\ < 1} for any a and b (since the above argument is true for any a and 6). 

3.3 Clearly, f(x) Is symmetrical about x = 0. Thus, the mean of X is zero. Note that 

, , , f 1 + x - 1 < z < 0 
| X | = \ l - x 0 < x < 1 

Hence, 

E[X2] = j° x2(l + x)dx + £ x2{l - x)dx = x3/3 + x4/4 

var(X) = E[X2] - (x)2 = 1/6 - 0 - 1/6 

3.4 Clearly X Is uniformly distributed over [-0.000005,0.000005]. Then 

+ x3/3 - x 4 / 4 1/6 
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(a) 

f { x ) = ] 0.00001 -0.000005 < x < 0.000005 
0 elsewhere 

,x f ° 

F(x) = j_J(x)dx=y-$ 

x < -0.000005 
-0.000005 < : 
x > 0.000005 

J f P -0.000005 < x < 0.000005 

(b) 

P{0.000001 < X < 0.000003} = 0 0 0 0 7 Q - 0 » 1 ° 0 0 0 0 1 = 0.2 

(c) x = center point = (-0.000005 + 0.000005)/2 = 0. 
®l = (length)2/12 = (0.00001)2/12 = 8.33 x 10~ 1 2 . 

3.5 Clearly, ju = 1440, and P{X > 1650} = 0.159. Hence 

p j X -^1440 ^ 6 5 0 - 1 4 4 0 ^ ^ 

F r o m ^ O , 1) table, $(1) = 0.159. This means 1 6 5 0 ; 1 4 4 0 = 1 and thus a = 210. 

P{1600 < X < 2000} = P ( 1 6 0 0 ~ 1 4 4 0 < ^ 0 < 2 0 0 ° - 1 4 4 0 } 
1 5 I 210 210 210 J 

= $(2,667) - $(0,762) = 0.230 

3.6 (a) x = 18 and a2 = 22 = 4. 

P{X > 18} b y s y ^ m e t r y P{X < 18} = l-P{-oo <X<oo} = \ 
(b) 

(c) 

y = E[Y] = E[4X + c] = 4x + c 

a2

y = E[((4X + c) - (4x + c)f) = E[(4(X - x)) 2] = 16a2

x 

75 = y = 4x + c = 4 x l 8 + c =̂ > c = 3 

g(x) = 4x + c =>• <?'(x) = 4 

y = 4x + c has one solution only: x\ = 
Thus 

M 2 / j ^ ( x i ) ! ^ ^ 1 ' 1 8 ' 2 j 4 V 2 ^ . 2 e 

= _L-c-(»-«-e)a/(axiP) = ? 2 + C ) g 2 ) 

y 2TT * 8 

Thus it is a Gaussian RV. 
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(d) Note that the total point for this problem is 10. The expected score is 

E(S) = 10[(0.9)(0.2) + (0.5)(0.4) + (0.7)(0.2) + (0.7)(0.2)] = 6.6 

3.7 Solving the equation u = 1 — e a x for x yields 

x = 
1 
- l n ( l - t i ) 

i/b 

Thus, given U(0,1) random numbers I 7 1 ? . . . , Un, (Xu..Xn) are Weibull distributed 
random numbers, where X{ = [ -£ l n ( l - Ui)]1/b. Since (1 - Ui) and Ui have the same 
distribution, (1 - Ui) can be replaced by Ui in random number generation and finally, 
X ^ h i l n O i ] 1 / * . 
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MULTIPLE RANDOM VARIABLES 

This branch of mathematics [probability] is the only one, I believe, in which 
good writers frequently get results entirely erroneous, 

Charles Sanders Peirce 

In many practical situations, the outcome of a random experiment is better 
labeled by two or more RVs, rather than just one RV. 

This chapter studies the probabilistic tools for problems that involve more 
than one RV. 

Main Topics 

• Joint Distribution Functions 
• Joint Probability Density Functions 
• Independence of Random Variables 
• Expectation and Moments 
• Relation between Two Random Variables 
• Jointly Gaussian Random Variables 
• Functions of Random Variables 

These topics are all extensions of the single RV case. 
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4.1 The Joint Distribution Function 

4.1 The Joint Distribution Function 

The joint cumulative distribution function (joint CDF) of two RVs X and Y is 
defined by 

F{x,y) = FXJ{x,y) - P{(X <x)n(Y< „)} = P{X <x,Y< y} (4.1) 

That is, FXy(x,y) is the joint probability of (X < x) and (Y < y), which 
is often of major interest to us. As shown later, probabilities in the form of 
P{a <X<b,c<Y<d} can also be obtained from the above probabilities. 

Vi 

Figure 4 .1 : Area of {X < x,Y < y}. 
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4.1 The Joint Distribution Function 

In many practical situations, use of only one RV is not enough; that Is, assigning a single 
number to an outcome Is not sufficient. Examples include 

• Three numbers are needed to specify the instantaneous position of a moving object. 
• We would like to investigate the relation between the response of a system to an Input that 

is random due to the existence of noise. We need at least two RVs to model the input and 
output at the same or different time instants. In fact, most often we wi l l need to have two 
random time junctions, to be studied later. 

• We would like to investigate the relation between the measured values at different time 
instants of a random time function. 

Extension from a single RV to two RVs Is not trivial in many cases. Extension from two 
RVs to three or more RVs is usually not hard and thus wi l l not be studied In detail. 

A simple and concrete example In which two RVs are needed Is the combined experiment of 
Subsection 2.6.1 for die-rolling and coin-tossing. We may define X by the assignment X(head) = 
1, X( ta i l ) = 0 and define Y by the assignment Y(Fi) = i 

A pair of RVs can be treated as a random vector whose components are the RVs. Like-
wise, we may define an n-dimensional random vector X as a vector whose components are 
all RVs: X = [Xi,... }Xn]f. Such a random vector may be thought of as a random point 
in an n-dimensional hyperspace. The (joint) CDF of a random vector (I.e., a set of RVs) 
X = [Xi,..., Xn]' Is defined by, using notation x = [xu . . . , a?n]\ 

F x ( x ) - P { X < x } 

meaning that 
^ X i , . . . , X n ( Z i , . . . , X n ) = P{Xi < X U . . . , X n < Xn} 

where { X < x } means {Xi < x\y..., Xn < xn} or 

{ X < x } ^ 

Similarly as for die single RV case, a discrete random vector is one that can take on only 
discrete (finitely or countably many) values. These values are called their point masses. Its CDF 
consists only of products of one-dimensional unit step functions. A continuous random vector Is 
one having a continuous range of values and a mixed random vector is one with both discrete and 
continuous possible values. More rigorously, (X, Y) Is continuous I f there exists a nonnegative 
function f(x, y) such that F(x, y) = | f ^ J*^ f(u, v)dudv, where F(x3 y) is the joint CDF of 
(X, Y) and such a function / (x , y) is known as the joint probability density function of (X, Y ) , 
to be studied later. 

Note that {X < x, Y < y} = {X < x} n {Y < y) represents the joint event of {X < x} 
and {Y < y}. However, the following is not true in general 

P{X <x,Y <y} = P{X < x}P{Y < y} 

unless RVs X and Y are independent, to be discussed later. 

Xx < xi 

Xn ^ xn 
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4 J The Joint Distribution Function 

A RV X may be thought of as a random point on the real line. Likewise, a 
pair of RVs (X, Y) can be thought of as a random point in the x-y plane. 

A pair of RVs (X, Y) is 

• discrete i f it can take on only discrete (finitely many or countably many) 
values; 

• continuous i f it has a continuous range of values; 
• mixed i f it is neither discrete nor continuous. 

If X and Y are discrete RVs, taking on discrete values xi,X2, and 
l / i , f /2 , . . • 5 ym, respectively, then, similarly to (3.7), 

n m 
F(x, y) = E E p i x = %h y = Vj}u(x - Xi)u(y - y5) 

» = i j = i 

= E E = xu Y = y,} = E E (4-2) 
xi<x yj<y Xi<xyj<y 

where n is the unit step function and = P{X = Y = yj} is called the 
point mass at (x^yj). 

Note that if there are JV x/s such that xi < x and M y/s such that < y, 
then the sum in (4.2) has N x M terms. 
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4.1 The Joint Distribution Function 

Important Properties of Joint CDF 

1. F(x, y) is nondecreasing as x or y or both increase: Note that 

{{X < x2) H (Y < y2)} = {X<xuY< Vl} tt) {X < x l l V l <Y<y2} 
W {xt < X < x2, Y < yi} W {Xl < X < x2, yi < Y < y2} 

Since these areas are disjoint, we have 

F(x2, y2) = P{Xl < X < x2,Y < yx} + P{Xl <X <x2,Vl<Y < y2} 
+ F(xu yi) + P{X <xhVl<Y< y2} (4.3) 

Thus, 
F(x2, m) > yi). V a ; 2 > xu y2 > j/i (4.4) 

2. Note that 

(X < Xl)n{Y < y2) = {(X < Xl)n(Y < yi)M(X < xi)n( y i < Y < y2)} 

We have 

F(xhy2) = F{xx, yi) + P{X<x1,y1<Y< y2} 
P{X < Xi, yi<Y< y2} = F(Xl,y2) - F(xh yx) 
P{xi < X < x2, Y < i/i} = F(x2, yi) - F(xi, yx) (by symmetry) 

Substituting into (4.3) yields 

P{xi < X < x2, V l < Y < y2} = F(x2, y2) + F(xi, yi) 
~ F(xi,y2) - F(x2,yx) 

(4.5) 

( A T < n ) n ( y i < K < y i ) 
V2 

(xi < X < x2) n (yi <Y < 7/2) 
1/2 — T 
|/1 »̂"̂ »». W VI. 

<X <x2,yi <Y <y2} 

#1 
(X < xj) n ( y < i/i) (x! < x < s 3 ) n ( F < 2/1) 

Figure 4.4: Breakdown of { X <x2)Y< y2} and F ( x 2 , y 2 ) -
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4.1 The Joint Distribution Function 

3. 0 < F(x, y) < 1, since F(x, y) is a probability. 

4. Since P{X < -oo} - P{Y < -oo} = 0, 

F(-oo 5 y) = Fix, -oo) = F(-oo ? -oo) = 0 (4.6) 

5. F(oo, oo) = 1, since P{X < oo? Y < oo} = P{S} = 1. 
6. The marginal CDFs o f X and Y can be obtained from their joint CDF: 

_ _ _ 
FY(y) = P{Y<y} = P{X<oo,Y<y} = FXy(oo,y) | 1 ° 

If X and y are continuous then the probability of taking on any given value 
is zero: 

P{X = a7Y^b}^ P{X = a,Vl <Y<y2} = P{xt < X < x2jY = b} 
= P{9(X, Y) = c } = 0 (4.8) 

since a single point, a straight line and a curve all have zero area, where 
g(X, Y) = c is a curve in x-y plane. 

(4.7) has the following geometric Interpretation: Fx(x) is the curve deter-
mined by the Intersection of the surface F(x, y) and the plane y = oo and sim-
ilarly, Fy(y) is the curve determined by the intersection of the surface F(x,y) 
and the plane x = oo. 

Figure 4.5: Geometric interpretation of (4.7): intersection of F(x, y) and y = oo. 
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4.1 The Joint Distribution Function 

An additional property of the joint CDF is that it is continuous from right in x and y: 

\imF(x + e,y) = F(x,y), limF(x,y + e) = F(x,y) 

A bivariate function can be the joint CDF of a pair of RVs i f and only i f i t satisfies the properties 
1, 3, 4, 5, the one above, and the following property: 

F(x2jy2) + F(xuyi) - F(xuy2) - F(x2jyi) > 0 

for every quadruple of real numbers xi < x2l yi < y2. Note that this last property is not implied 
by the other properties (see problem 43) . 

(4.7) makes sense: Fx(x) = P{X < x) is the probability that X takes on a value not 
greater than x irrespective of the value of Y (i.e., Y < oo). 

Note that Fx(XQ) [or FY{yo)] is not necessarily continuous at x = XQ [or y = y0] even i f 
F(x0,y0) is continuous at (x,y) = (x0,y0). This should be clear from the fact that Fx(x0) = 
F{XQJOO) [or FY(yo) = F(oo,y0)l 

The probability mass function (PMF) of discrete RVs (X , Y) is 

V(%i, Vj) = P{X =XhY = yj] - YU2Pm,n6m-iSn-j (4.9) 
m n 

where <5m_i is the Kronecker delta function, defined by (3.12). 
The joint distribution of a pair of discrete RVs (X, Y) is sometimes tabulated as folows 

X\Y • • yj ••• 
•• Plj ••• 

X{ Pn • •• Pi,j ••• 

For discrete (X,Y), their point masses = P{X = x^Y = yj} satisfy, denoting by J2 
i 

sum over all i, 
nonnegativity property: p^j > 0, V i , j 
normalization property: ] P ] P pi:j = 1 

* 3 
Conversely, any set of numbers that satisfies these two conditions can be the joint PMF of some 
pair of discrete RVs. 

The marginal PMFs and CDFs of RVs X and Y are 

Pi = p i x = = X>y> Pj = p i Y = Vj} = X>*j 
3 i 

Fx{%) - Y, YlPij = J2 Ph FY{y) = YI J2PM = J2 PJ 
Xi<x j Xi<x yj<y i yj<y 
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4.1 The Joint Distribution Function 

Example 4.1: Consider two RVs X and Y having the joint CDF 
' l-e~v x > 4, y > 0 

F(x, y) = \ f ( l - e~y) 0 < x < 4, y > 0 
0 elsewhere 

(a) Find P{X < 2, Y < 2}: 

P { X < 2, Y < 2} - P{X < 2,1' < 2} = F(2,2) = ^(1 - e'2) = 0.4323 

(b) Find P{1 < X < 2,Y < 2}: 

(c) Find P{0 < X < 4. Y — 1}: Since 1' is continuous, it has zero probability 
of taking on any given value. Hence, P{0 < X < 4,Y = 1} ( = ) 0. 

(d) Find P{X < 4,Y > 2}: 
P{X < 4, Y > 2} = F { - o o < X < 4,2 < Y < oo} 

- F ( 4 , oo) + F(-oo, 2) - F ( - o o , oo) - F ( 4 , 2) 

(e) Find P { - 1 < X < 0,Y < 2}: It is clear from the given joint CDF that 
the probability is zero whenever X is negative. Thus, P{ —1 < X < 0, Y < 
2} = 0. This can also be obtained formally as below: 

(f) Find the marginal CDFs of X and Y: F(x) is the curve determined by the 
intersection of the surface F(x,y) and the plane y — oo and likewise for 

= 0.1353 

P { - 1 < X < 0, Y < 2} = F{0,2) - F(-l, 2) = 0 - 0 = 0 

F{y): 

Note that F(y) ^ 1 — e y because 
F(x, y) — 0, "elsewhere" ==> F(x) = 0 ,Vx<0, F(y) = 0 ,Vy<0 
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4.2 The Joint Density Function 

4*2 The Joint Density Function 

The joint probability density function (joint PDF for two RVs X and Y is 
defined as 

d2 d2 

(410) 

Important Properties of the Joint PDF: 

1. f(x, y) > 0 , Vx,y, since F(x, y) is nondecreasing. 
rx ry 

2. F(x,y) = / / f(u,v)dvdu (true from definition). -
Ju——oo Jv=—oo 

roo roo 

3. By F(oo, oo) = 1 and property 2 above, / / f(u, v)dudv = 1. 
J—oo J—00 

4. By property 2 above and (4.7), 
rx roo 

/ / f(u, v)dvdu = Fix, oo) = Fx(x) 
Ju=—OQ JV——OO 

ry rOO 

/ / f(u, v)dudv = F(oo, y) = FY(y) 
Jv=~oc Ju=—oo 

5. Note that 
d d ( rx r roo I 1 ? roo 

h { X ) = d i F x ( X ) = ^ iZ-oo l l o o ^ ' D U ) " /-oo / ( * ' 
(4.11) 

and similarly for that is, the marginal PDFs of X and F can be 
obtained from their joint PDF: /

OO f OO 

f(x,v)dv, fy(y)= f(u,y)du 
-OO J—OO 

(4.12) 

6. Since 

P{xx<X < x2,yi <Y <y2} 
= F(x2,y2) + F(x1,y1) - F{xhy2) - F(x2lyi) 

= f r r + r r - r r - r r ) 
\J—oo J—oo J—00 J—OO J—oo J—oo J—oo J—oo/ 

= ( [ 2 [V2 — f 2 fVl \ f(u,v)dvdu = [ 2 fV2 f(u,v)dvdu 
\Jxi J—oo Jxi J—oo/ Jx\ Jy\ 

we have 
rx2 ry2 

P{xi < X < x2, yi < Y < y2} = / _ / _ f(x, y)dxdy 
Jx—X\ Jy—yi 

(4.13) 
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4.2 The Joint Density Function 

Similarly as in the single RV case, joint PDF is a density function that indicates where the 
RV values are more (or less) consolidated. 

The marginal CDF (or PDF, PMF) of a RV is simply the CDF (or PDF, PMF) of the RV 
itself. The only difference is that we say marginal CDF (or PDF, PMF) of a single RV when we 
have more than one RV in mind and we are interested in their relations; while we say CDF (or 
PDF, PMF) of the RV i f we are not concerned with its relation to other RVs. 

I f the joint CDF F(x, y) [or joint PDF f(x, y), joint PMF p(x, y)] of (X} Y) is symmetrical 
about x and y9 that is, F(x,y) = F(y,x) [or f(x,y) = f(y,x), p(xhyj) = p(yj,Xi)], X and F 
have an identical marginal CDF (or PDF, PMF). This should be clear from (4.7) and (4.12) since 
the formulas for the two marginal CDFs (or PDFs, PMFs) are also symmetrical about x and y. 

The last equation = in (4.11) follows from the following result in calculus: 

g(u)du = g(x) 

where g(x) = / f ^ f(x, v)dv. 
A geometric interpretation of (4.12) wi l l be given later in terms of conditional distribution. 
The joint PMF and joint PDF of a random vector (i.e., a set of RVs) X = [Xu..., Xn]' are 

defined by 

px(x) = P { X = x } 4 P{X1 = x 1 } . . . , Xn = xn} 

/ x (x ) = ^ F x ( x ) 

The last equation is a compact notation of the following: 

fxu...,Xn{Xu • • • , S „ ) = Q X I , , , Q x FX^X^XU • • • ,XN) 

Similarly as for the single RV case, a discrete random vector is one that has a PDF consisting 
only of products of (one-dimensional) delta functions, as illustrated by (4.15). The PDF of a 
continuous random vector contains no delta functions and a mixed random vector has a PDF with 
both delta functions and other regular functions. 

A l l properties of the joint CDF (or PDF, PMF) of two RVs can be extended to the joint CDF 
(or PDF, PMF) of an arbitrary number of RVs. For example, 

^ X i , . . . , X n ( ^ l , . - - , ^ i - l 5 

^ X l v . . , X m ( ^ l , . . . , ^ m ) 

- o o , x i + i , ...,xn) = 0 
: FXlr..,xn{xi, * * • , x m , o o , • • •) oq) 

n—m fold 
/•oo yoo 

/ * * • / / x i , . . . , x n ( ^ i , • . • , xn)dxm+1 "-dxn 

J—oo J—oo 
(4.14) 

n—m fold 
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4.2 The Joint Density Function 

I f X and Y are discrete RVs, taking on discrete values a?i, x2j • • •, xn and 
Vij 1/23 • • •, ym* respectively, then 

ffa y) = E E p{X = y = yj}6(x - Xi)S(y - I / J ) 

= E E Pu^te - %i)S(y - Vj) 
i = l j = l 

where 5 is the delta (impulse) function. This follows from 

d2 

(4.15) 

(4.2) 

dxdy 
Ql r n m 

dxdy L 5 ? X = Y = J / J M * - - % ) 

= E E [ ^ { ^ = a*, y = s ^a^M* ~ ̂ Ms/ - yj)] 
n rn 

= E E = ̂ , ̂  = - - yj) 

The corresponding PMF is given by 
n m 

p(xi,yj) = £ EPk,i$k-if>i-j 
k=i i=i 

where and <5/_3- are the Kronecker delta functions. 

(4.16) 

2/2/ 

2/1/ 

111 

0,2 ^ 
0.2 

0.2 / 

IO.I / . i0.l X / 

Figure 4.6: The probability mass and density functions of discrete RVs (X,Y). 
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4.2 The Joint Density Function 

Example 4.2: Find PDF from CDF 

Consider again Example 4.1. The joint CDF of RVs X and Y were given before 
by 

1 - e~y x>A,y>Q 
F(x,y) = 

0 
0 

(a) Find the joint PDF of X and Y: 

d2F(x,y) 
f{x,y) dxdy 0 

0 < x < 4 , y>0 
elsewhere 

0 < x < 4, y > 0 
elsewhere 

(b) Find the marginal PDFs of X and Y: Since the marginal CDFs are, from 
Example 4.1, 

Fx(x) x 
4 
0 

x > 4 
0 < x < 4 
x < 0 

My) 
1 - e-y 

0 
y>o 

y<o 

the marginal PDFs are 

fx(x) 

Alternatively, 

/
oo 

f(x,y)dy = 
- O O 

fy{y)= r f(x,y)dx = 
J—OQ 

dFx{x) 
dx 

dFY(y) 
dy 

f O O 1 

' 1 0 < x < 4 
elsewhere 

l / > 0 
^ < 0 

0 < x < 4 
elsewhere 

0 < x < 4 
0 elsewhere 

M 1 _ 
Jo 4 
0 y < 0 0 

y >0 
l / < 0 

(c) Identify the distribution and the associated parameters of RVs X and Y: 
Clearly, X is uniform over [0,4] [i.e., X ~ U(0,4)] and Y is an exponential 
RV (334) with parameter A = 1, a = 0. 
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4.3 Independence of Random Variables 

4.3 Independence of Random Variables 

Recall that two events A and B are independent i f and only i f P{A, B} = 
P{A}P{B}. Let A = {X < x} and B = {Y < y). Then A and B are 
independent i f 

P{X <x,Y <y} = P{X < x}P{Y < y} 

that is 
Fxyfav) = Fx(x)FY(y) (4.17) 

Note that F(xjyi) = F(x)F(y{) for all x implies that the event {X < x} 
for every x (i.e., RV X) and event {Y < yi} for a given y\ are independent. 
F{xi,y\) = F{x\)F{yi) implies the independence of {X < x%} and {Y < yi} 
but not the independence of {X < X2} and {Y < y 2}-

Thus, i f (4.17) holds for every x and y [i.e., function F(x,y) equals the 
product of functions F(x) and F(y)]9 then the RVs X and Y are said to be 
independent. Also, §fg^[(4.17)] yields 

d2F(x,y) 
dxdy 

Consequently, 

X, y independent <= = Fy(a:)iV(y), \fx,y 
y) = fx(x)fY{y), 

(4.18) 

The independence of RVs X and y means that the probability of X taking on 
any value (within any interval) is independent of the value of Y and vice versa. 

Example 4.3: The RVs X and Y of Example 4.1 are independent because 

Fx(x)FY(y) = 
x > 4 
0 < x < 4 
elsewhere elsewhere | 

1 - e-y x>A,y>0 ) 
f ( l - e-y) 0 < a; < 4, y > 0 > = F(x, y) 

10 elsewhere J 
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4.3 Independence of Random Variables 

Example 4.4: Two RVs X and Y have the joint PDF 

J{x,y) ~ | Q elsewhere 

(a) Determine if X and Y are independent: 

/
oo 

f(x3 v)dv = y o 2xvdv = 2x vdv = 2x3 0 < x < 1 

= /_~ f(u, V)du = jf1 2uydu = y, 0 < y < \/2 

That is 

2x 
0 

o My) = 

Thus 

/(a;,?/) = fx(x)fY(y) 

(b) Find F(a:,y): 

Fx(x)=fX fx(x)dx 
J ~ 0 O 

0 < x < 1 
elsewhere 

0 < j/ < \ / 2 
elsewhere 

X and F are independent 

fo x < 0 
X2 0 < x < 1 
1 .r > 1 

fo 2/<0 
0 < y < V2 

i y>V2 
FY(V) = fV fr(y)dy 

J—OO 

Since X and Y are independent, 

F(x,y) = Fx(x)FY(y) = 

This approach is simpler than using property 2 of the joint PDF. 

1 2 9 
7}X y 0<x<l,0<y<V2 
X2 0 < x < l,y > \fl 

x > 1,0 < y < y/2 
1 x > l,y > y/2 
0 elsewhere 
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43 Independence of Random Variables 

Two discrete RVs X and Y are independent i f their joint PMF is the product of their marginal 
PMFs: 

Pxx(xuVj) =Px(xi)pY{yj) 
In general, a set of RVs X l 5 . . . , Xn is said to be independent i f any of the following equivalent 
conditions holds for every group of values x 1 ? . . . , xn 

FXl,...,xn(xu •••,xn) = FXl(x1)'-' FXn(xn) 
fx^XN{XU . . - , X N ) = fXl{xi) • • • fXn(xn) 

To check i f X and Y are independent given their joint PDF, i t is often easier to use the 
following result than based on (4.18): 

Theorem: X and Y are independent i f and only i f their joint PDF / ( x , y) can be factorized 
as (i.e., variables can be separated): 

/(*,») = f1{x)f2(y) or F(x,y) = Fl(x)F2(y) (4.19) 

where fi(x) are nonnegative functions and Fi(x) are nondecreasing nonnegative functions. 
Note that such factorization implies that the region over which f(x, y) is nonzero is also 

separated in the form of x i < x < x 2 , yi < y < y29 where x i , x 2 , yi,y2 are constants. 
A similar result holds 'true for discrete RVs (for PMF). 
Using this criterion, RVs X and Y in Examples 4.1 and 4.4 are clearly independent. 

Example 4.5: Independence Check by Factorization 

I f (X, Y) has the joint PDF 

1 e-* _ c -2y + c-(«+2y) x > Q5 y > o 
F{xiV) i o elsewhere 

then X and Y are independent because 1 - e~x - e~2y + e"^ + 2 ^ = (1 - e~x)(l - e~2y) and 
x > 0, y > 0 = (x > 0) f l (y > 0). Similarly, X and Y are independent i f their joint PDF is 

1 

/ 2 ^ 3 ( l + y 2 ) 

because j\(x) - ^ f2(x) = j ^ . 
X and Y are not independent i f their joint PDF is 

f(xv) = l U 1 + xv) 0 < x < 2 ? 0 < ^ < 4 
n x ' * ' \ 0 elsewhere 

or 
' 2 0<x<l,y<l-x 

f(xjV) i o elsewhere 

because either the function (former case) or the region (latter case) cannot be factorized. 
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4.4 Expectation and Moments 

4.4 Expectation and Moments 

As for the single RV case, although quite often not a complete description of the 
RVs, expectation and moments are numbers that are essential characterizations 
and can usually be obtained easily. 

The expected value, expectation, mean, or average of a function g(x} y) of 
two RVs X and Y is defined by, denoting by E sum over all i, 

E[g(x,Y)} /
oo roo / 9(x,y)f(x,y)dxdy 
-CO ./—CO 

E E9{%u Vj)P{X = xh Y - Vj} 

(X\ Y) continuous 
(X, Y) discrete 

In particular, for p,q>0, 

(p, q)th moment = E[XpYq] 
(p, q)th central moment = E[(X - xf{Y - y)q] 

For example, 

/
oo 

xfx(x)dx 
-oo 

/ / xf[x, y)dxdy 
\ J — 0 0 J—OO 

/ xzfx(x)dx 

(4.20) 

E[X) = x 

E[X2] 0 0 

/
OO roo 2 / x f{x,y)dxdy 

. -oo i—oo 

(method 1) 

(method 2) 

(method 1) 

(method 2) 

0 / (x - xYfx(x)dx (method 1) 
/-r / J—OO 
Ox — \ fOO fOO _ \ 9 / 

/ / (x - xYf(x} y)dxdy (method 2) 
k J—oo J—oo 

Similar formulas are valid for discrete X (or Y). For example, 
J2xiP{X = Xi} (method 1) 
i 

E E ^ P { X = x{, Y = yA (method 2) 
. * J 

' E(xi - z ) 2 P { X = a*} (method 1) 
E E(xi - x)2P{X = xuY = yA (method 2) 

Symmetric formulas are valid for E[Y], E[Y2], and a2. 

E[X] = x = < 

cr„ 
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4.4 Expectation and Moments 

Example 4.6: Given the PDF of a uniform RV for measurement errors: 

f ( r v ) = [ 1/12 0 < * < 6 , 0 < ? y < 2 
n , y ) ' \ 0 elsewhere 

(a) Find x,y, and E(XY): 

/
oo roo roo 1 z-6 r2 

xfx{x)dx = x f{x,y)dydx = — / x dydx = 3 
-oo J—oo J—oo 12 JO JO 

/ oo roo roo 1 /-2 /*6 
-oo = l o o y l o o / ( ; r ' = uJ0yjodxdy =1 

roo roo r6 z-2 1 f6 z-2 
= loo loo X y f ^ y ^ d x d y = Jo Jo T2dxdy = 12 ./o X d x Jo y d y = 3 

Note that 2?[Xy] = xy for this example. When this is the case, we say that 
X and Y are uncorrelated. Clearly, X and Y are independent by the theorem 
on page 159. 

1 x > y (b) Find P{X > Y}: Let gix.y) = 
0 x<y 

Then 

E[g(X, Y)) = l- P{g(X, Y) = l} + 0- P{g(X, Y) = 0} 
= 1 • P{X >Y} = P{X > Y} 

P{X >Y} = E[9(X, Y)] « / ; = 0 / x l 0 g(x, y)±dxdy = £ £ 1 • ±dxdy 

For this function g, E[g(X, Y)] is equal to the area of the shaded region since 
(X, Y) is uniformly distributed over the rectangle. 
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4.5 Relation between Two Random Variables 

4.5 Relation between Two Random Variables 

The correlation of two RVs X and Y is the (1, l)th joint moment: 

Rxy 4 E[XY] = E[g(X, Y)]\g{x^xy (4.21) 

The covariance of two RVs X and Y is the (1, l)th joint central moment: 

Cxy 4 cov(X, y) ^ 4 - - »)] 
= E[9(X,Y)]\g{x!y)={x_s){y_v) 

= E[XY] -xy = Rxy - xy (4.22) 

Note that axy could be negative. This notation is somewhat misleading. 
The correlation coefficient of two RVs X and Y is defined as the correlation 

of the standardized R V s X = ^ a n d F = ^ : 
V 

r(X-x) (Y-yh 

a. 
Cx 

P x y = E[XY] = E±—^-± ^ = - 2 - - 1 < P < 1 (4.23) 

which is a normalized covariance rather than a normalized correlation. 
The correlation coefficient pxy is a measure of linear correlation: 

• pxy = 1 indicates that X and F have a positive linear relation (almost) surely: 
Y-y X - a 
Oy €TX 

m pxy = —I indicates that X and Y have a negative linear relation (almost) 
surely: ^ = 

• Pxy ~ 0 indicates that X and Y" are (almost) surely not related linearly (i.e., 
by a linear equation), which is called uncorrelated. 

• A large (or small) \pxy\ indicates a strong (or weak) likelihood that X and Y 
have a linear relation. 

Surely not correlated 
• 
® : 
Q> 

Not sure 
Figure 4.7: Interpretation of correlation coefficient. 

Surely correlated 
i ... 
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4.5 Relation between Two Random Variables 

To study the interdependence of two RVs X and Y , we may use the following scatter 
diagram: Plot the values of (X, Y) as points in the x-y plane according to the outcomes of many 
performances of the random experiment on which X and Y are defined, such as Fig. 4.8. The 
interdependence of X and Y can be well explained using such a scatter diagram: 

(a) I f the points are scattered throughout the plane without a pattern, then X and Y are inde-
pendent. 

(b) I f all points align over a straight line, then X and Y are linearly correlated and thus \pxy\ = 1 
(pxy = 1 corresponds to a line with a positive slope and pxy = - 1 with a negative slope). 

(c) If the points are scattered closely (or loosely) around a straight line, then X and Y have a 
strong (or weak) linear correlation and thus \pxy\ is large (or small). 

(d) If the points align over a certain curve, then X and Y are related by the equation that 
describes the curve. Note, however, that this does not necessarily imply that X and Y are 
uncorrected even if the curve is not a straight line. See also Example 4.9. 

(e) If the points are scattered closely around a certain curve, then this indicates a strong inter-
dependence between X and Y defined by the equation that describes the curve. 

Figure 4.8: Comparison of independence and correlation by scatter diagrams. 
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4.5 Relation between Two Random Variables 

Suppose that X and Y have a strong linear correlation, say Y = aX + b in some statistical 
sense. The slope a and intercept 5 are unknown and may be determined such that the predicted 
value Y of Y based on a sample value of X is optimal in the sense of having the smallest mean 
square error E[(Y - Y ) 2 ] = E[(Y - (aX 4- b))2]. It can be shown that this leads to 

crj oyox ax oy ax 

It is thus clear that the straight line passes through the point ( f , y) and the correlation coefficient 

p is the slope of the line that gives best standardized predicted value Y = using a sample 

point of the standardized RV X = 
The magnitude of the covariance Cxy or correlation Rxy itself is not a direct measure of the 

linear correlation of X and Y since it does not take into account how random the RVs X and Y 
themselves are. 

An unknown correlation coefficient may be approximated by the sample correlation coeffi-
cient, given by for a data set {(Xu Yi ) , ( X 2 , Y 2 ) , . . . , (Xm Yn)} 

pxy = — L — J2(Xi - X)(Yi - Y) « it(*i - *)(Yi - Y) (4.24) 
(n - 1 ) ^ ~ ( n - 1) ^ V*Vy *=i 

where X , Y , and F y are the sample means and sample variances of X and Y , respectively, 
given by (3.63M3.64). 

(4.23) can be shown easily as follows, noting that E[X2} = E[Y2] = 1, 

0 < E[(X ± Y ) 2 ] = E[X2} ± 2E[XY] + E{Y2} ( 4 = 3 ) 2(1 ±p) |p| < 1 (4.25) 

We emphasize that two RVs are uncorrected only i f it is (almost) sure that they are not 
related linearly — they are correlated i f not (almost) sure. 

A RV and its function are not necessarily correlated, as demonstrated below. 

Example 4.7: Uncorrelatedness of a EV and Its Function 

Consider X - JV(0 51) and Y = X 2 . Note that 

/
OO rpO 

-=e~x /2dx 
-oo V2TT 

x ^-x

2/2jM °dd symmetry ( 

.3 _„2/ 
where the integral vanishes because the integrand ^ e ~ x / 2 is odd symmetrical about x = 0 
(and goes to zero as x —» oo). Then the correlation coefficient p = 0 (because Cxy = 0) and thus 
X and Y are uncorrected. However, note that 

^ 3 . ^ ( i j M ) ^ ; l | ^ / M 

f(x,y) ( = f{y\x)f{x) = 6(y - x2)Af(x;0,1) J 

where f(y\x) = 6(y — x2) since Y = a2 if X = a is known. Thus they are dependent. 
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4.5 Relation between Two Random Variables 

Example 4.8: Determination of Correlation of Two RVs by P&R 

Data file e4_8 . d a t in P&R stores realizations of a pair of RVs (X , Y) in the following format: 

Vn 

The correlation coefficient as well as some other parameters of the RVs X and Y can be obtained 
by P&R following the following steps (see Fig. 4.9): 

51. Click "Identification" in the main window of P&R. 
52. Point to "Estimation and Validation" and then click "2-D Distribution." 
53. You wi l l be prompted to enter the name of a data file. Choose "data" subdirectory and 

enter "e4_8 . d a t " and click "Ok." The computed sample correlation coefficient as well as 
covariance, correlation, means and variances of X and Y are then shown as in Fig. 4.9. 

54. Click "Scatter Diagram." A scatter diagram is then plotted as shown in Fig. 4.9. 

sa»*«seHanssv<? H^&en&rator &,&ApMvmi? SsP f ^spwse Afaot* 

• • • • 
llll^lll 
illllllll 

lll^BIl 
• • • • 

°& Scatter Oiaqram 

4 -

Figure 4.9: Determination of correlation by P&R. 
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4.5 Relation between Two Random Variables 

Example 4.9: Correlation of Nonlinearly Related RVs 

Nonlinearly related RVs are not necessarily uncorrected. Let Y = (X — a) 2. 
If f(x) is symmetrical about its mean x = a, e.g., X ~ AT(a, 1) or X ~ 
U(a — 1, a + 1), then X and Y are uncorrected because 

Cxy = E[(X - x)(Y - y)} = E{(X ~ a)[(X - a)2 - E[(X - a)2}} 
= E[(X - af] - E[X - a]E[(X - a)2} °" 0 - 0 x <x2 = 0 

=• p = 0 

The above is not true if f(x) is not symmetrical or it is symmetrical but x ^ a. 
For example, assume X ~ U(a, a + 1). Then 

<r2 = (length)2/12 = (a + 1 - a)2/12 = 1/12 
= " (V)2 = E\{X - af) - (E[(X - a)2})2 

= / a

a + 1 (rr - afdx - ( £+1(x - afdxf - 1/5 - (1/3)2 = 4/45 

Cxy = E[(X -x)(Y- y)] = E[(X - x)(X - a)2] - E[X - x]y 
= E[(X-a + a- x)(X ~ a)2] = E[(X - a)3] + (a - x)E[(X - a)2] 

1/4-(l /2)(l /3) = 1/12 
1/12 

= 0.968 

This indicates a close-to-perfect linear correlation -although X and Y are actually 
related nonlinearly! This is because Y = (X — a)2 is statistically close to the 
line = P^r^ over a < x < a + 1 but surely not close toY = aX + /3 for 
any a, f3 ^ 0 over a—l<a?<a + l , as shown in Fig. 4.10. Note that the curve 
in (b) can be reasonably approximated by a straight line of a nonzero slope. 

a — 1 a a - f 1 
(a) p = 0: uncorrected 

a a + 1 
(b) p = 0.968: highly correlated 

Figure 4.10: Correlation between X and Y = (X - a)2 
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4.5 Relation between Two Random Variables 

Example 4.10: Numerical Evaluation of Correlation between RVs by P&R 

The correlation of a RV and its linear or nonlinear function can be evaluated numerically by the 
companion software P&R. We demonstrate how this is done by verifying the correlation in the 
last example using 100 pairs of random numbers with a = 2. 

51. Generate pairs of random numbers (X, Y). For the above example, this can be done by 
first generating 100 random numbers Xi ~ U(a — l , a + 1) with a = 2, obtaining the 
corresponding random numbers for Y using Yi = (Xi — a)2 and then saving them in pairs 
to data file e4_10. dat . These are accomplished by the following MATLAB commands at 
the MATLAB prompt (of P&R) (see Appendix B for an explanation): 

c d d a t a 
a=2 ; 
x = 2 * r a n d ( 1 0 0 / 1 ) + a - l ; 
y = ( x - a ) . ~ 2 ; 
z= [x, y ] ; 
s a v e e4_10.dat z - a s c i i 
c d . . 

Alternatively, we may use P&R to generate 100 random numbers Xi ~ U(a — 1, a + 1) with 
a = 2; save them as e4_10x.dat under d a t a subdirectory; and execute the following 
MATLAB commands at the MATLAB prompt (of P&R): 

a=2 ; 
c d d a t a 
l o a d e4_10x.dat 
y=(e4_10x-a) . ~2; 
z= [e4_10x, y ] ; 
s a v e e4_10.dat z - a s c i i 
c d . . 

This latter approach is more convenient if X has a more complex distribution, such as 
log-normal and Weibull distributions because the generation of random numbers of these 
distributions is not easy. 

52. Calculate the correlation between the pairs of random numbers. Following the procedure 
described in Example 4.8, use P&R to obtain the correlation of the data contained in the data 
file e4_10 .dat . The sample correlation results, along with the scatter diagram, are shown 
in Fig. 4.11. Note that the correlation coefficient is indeed approximately zero. 

The above procedure can be repeated for X ~ U(a, a + 1) with only one modification: 
Replace the MATLAB command x=2*rand(100 ,1 ) + a - l with x = r a n d ( 1 0 0 , 1 ) +a or use 
P&R to generate Xi ~ U(a,a + 1) rather than Xi ~ U(a— 1, o + 1 ) . The results of the correlation 
are shown in Fig. 4.12. Note that the correlation coefficient for this case is 0.966, which is very 
close to the theoretical value of 0.968. 
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Figure 4.11; Numerical evaluation of correlation of X ~ U(a - 1, a + 1) and (X - a)2 by P&R. 
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Figure 4.12: Numerical evaluation of correlation of X ~ U(a, a + 1) and (X - a ) 2 by P&R. 
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4.5 Relation between Two Random Variables 

Two RVs X and Y are said to be 
• uncorrelated i f 

E[XY) = E[X]E[Y] (4.26) 
or equivalently 

Cxy = 0 or pxy = 0 (4.27) 
• orthogonal i f 

E[XY] = 0 

• independent if, for every pair (x, y), 

FXy{x,y) - Fx{x)FY(y) 

or equivalently 
fx,v(x^y) = fx(x)fY(y) 

Note that 
uncorrelated = surely not linearly related 

Clearly, i f either X or 7 has zero mean, then 
X and Y are orthogonal X and Y are uncorrelated 

In general, 

X and Y are independent T/^ X and Y are uncorrelated 

This can be shown easily: 

E[XY]=f°° r xyf(x,y)dxdy 
J—oo J—oo 

E[X]E[Y] = f°° xf(x)dx r yf(y)dy = [°° [°° xyf(x)f(y)dxdy 
J—oo J—oo J—oo J—oo 

Thus 
f(x, y) = f(x)f(y) E[XY] = E[X)E[Y] 

It clearly makes sense: 

independence = no dependence = > no linear correlation = uncorrelatedness 

In fact, for two functions g and h, 

X, Y independent = ^ ^(X) and h(Y) independent 
=> E[g(X)h(Y)} = ^ ^ ( X ) ] ^ ^ ^ ) ] (4.28) 
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4.5 Relation between Two Random Variables 

The definitions of expectation, correlation, covariance, independent, uncorrelatedness, and 
orthogonality can be extended to an n-dimensional random vector X = [Xu . . . , Xnf in a straight-
forward way as follows. Let x = [ x i , . . . , x n ] ' denote the value of the random vector X . 

The mean vector of X is defined as the n-fold integral 

x = E[X] = f ••• / x i • • • x n fXl,...,xn(xu . • • i %n)dxi • • • dxn

 s h ° = a n d / x / x (x )cJx 
J—oo J—oo J 

(4.29) 
The covariance matrix of X is the n-fold integral 

Cx = cov(X) 4 E [ ( X - x ) ( X - x) '] = | ( x - x ) ( x - x)7x(x)dx (4.30) 

The correlation matrix of a random n-vector x is the n-fold integral 

R* ^ S [ X X ' ] = j x x 7 x ( x ) d x 

Covariance and correlation matrices are at least positive semidefinite; that is, 

x ' C x x > 0, Vx 
x ' i ^ x > 0, Vx 

The crosscovariance matrix of two random vectors X and Y is 

cov(X, Y ) 4 J5?[(X - x ) ( Y - y)1 = / ( x - x ) ( y - y)7x,Y(x, y)dx = £ [ X Y ' ] - x f 

A set of RVs Xij..., X n , is said to be 

• (mutually) independent if, for every possible point ( x i , . . . , x n ) , 

FXl,...,xn(xu • • • ,a?n) = ( ^ i ) - F x 2 f e ) • * • * X „ ( S n ) 

or equivalently 

• (mutually) uncorrelated i f 

^[XjXj.] = ^ [ X ^ p ^ ] Vi ̂  j or cov(X) is diagonal 

• orthogonal i f 
E[XiXj} = 0 Vi ̂  j or i ? x is diagonal 

These definitions are similar to those for the scalar case, except that the scalars are replaced 
by vectors and the scalar multiplications are replaced by vector outer products. 
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4.5 Relation between Two Random Variables 

Example 4.11: Interpretation of Correlation Coefficient 

Find the correlation coefficient of Y = eosX and Z = cos(X + 0), where the 
random phase X ~ W(--7r,7r) and 0 is a constant. Are Y and Z uncorrelated, 
independent? Clearly, 

1 
/(*) = 2TT 

0 
—7T < X < 7T 

elsewhere 

•da: /
7T 1 

(cos x)—dx = — sin x = 0 (average over a period = 0) 
-7T Z 7 T Z 7 T - 7 T 

/
7T 1 1 I 7 1 " 

cos(x + 9)—dx = —- sin(x + 0) = 0 
= £[F 2 ] - (y)2 = r (cos2 re)—da; = — f - ( 1 + cos2x)da; 

x + - sin 2x = ~ 
V 2 / I - T T 2 47T 

CyZ — 

E[Z 2 ] - (^) 2 = f cos2(x + 0)J™dx = ^ - r «[1 - cos2(x + 0 p 
i - f r 27T 27T J-n 2 

i [ x + iam2(x + ^ = i 

- p = MYZ] = r cos:ccos(a: + 6)^-dx 
J-K Z7T 

*• cos 0 + cos(2rr + 6) J—7T 

Pyz 
a yz 

47T 
(1/2)cos 0 

-dx = 
4TT 

2TT cos 0 + 

2TT 
sin(2x + 0 ) i ^ = - cos 0 

IT 2 
cos0 

7(1/2X1/2) 
Thus, 

• 0 = 0 ==> p = 1 ==> y' = Z (perfect linear relation). 
• 6 = n = > p = — 1 ==> y = —Z (perfect linear relation). 
• 0 = ±7r/2 ==> p = 0 = > y, Z are uncorrelated, meaning that 

y and Z are (almost) surely not related linearly. In fact, they are related 
nonlinearly: Y2 + Z2 = cos2 X + sin2 X = 1, and thus are dependent. This 
makes sense since Y and Z are related through the same RV X. 

• For other 0, 0 < |p| < 1 = > Y, Z are correlated but not perfectly. 
See also Example 4.29 and problems 4.20 and 4.30. 
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4.6 Mean and Variance of Weighted Sum of RVs 

4.6 mean and Variance of Weighted Sum of RVs 

The mean of a weighted sum of two RVs is equal to the weighted sum of the 
individual means: 

roo roo , , 

E[aX + bY}= / (ax + by)f(x, y)dxdy 
J—OO J—00 

/
oo roo roo roo 

/ axf(x,y)dxdy + / byf(x,y)dxdy 
-OO 7—00 i—oo J — oo 

roo roo roo roo 

= ax f(x,y)dydx+ by f(x,y)dxdy 
7 x——oo Jy=—oo J—oo Jx=—oo 

/
oo roo 

xfx(x)dx + b / yfrwdy 
- 0 0 7—00 

= aE[X] + bE[Y] 
This is in fact the same as (3.47). This can be easily extended to a weighted sum 
of n RVs: 

mean of weighted sum of RVs = the weighted sum of means 

E E aiXi = aitfpG] + a2E{X2] + ••• + anE[Xn] 
i=l J 

(4.31) 

The variance of a weighted sum of two RVs can be obtained as 

varfaX + bY] = E [[aX + bY- (ax + by)}2} 
= E [[a(X -x) + b(Y - y)}2] 
= E \a2(X - xf + b2(Y - y)2 + 2ab(X - x){Y - y)] 
= a2a2 + b2a2 + 2abCx •"xy 

Thus, 
var(aX + bY) i f X , Y uncorrelated 2. a'var(X) + ¥vm(Y) 

This can also be extended to a weighted sum of uncorrelated RVs: 

variance of weighted sum of RVs = sum of variances with weight squared 

var( E atXt) , t u n c ^ , a , e d t ^ v a r ^ ) + a*var(X2) + ••• + o*var(Xn) 
V i = l J 

(4.32) 
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4.6 Mean and Variance of Weighted Sum ofRVs 

(4.31) can be shown easily as follows: 

E = E 
* i=2 

-*=2 

= a ^ X i ] + E a2X2 + £ 
t=3 

= ai£7[Xi] + a 2 ^ [ X 2 ] + • • • + O n £ [ X n ] 

Likewise, (4.32) can be shown. In general, i f an expression is tine for two arguments, then it wi l l 
be true for n arguments provided the conditions for the n arguments are really the generalization 
of that for the two arguments. 

In general, the following holds no matter X{ and Xj are uncorrected or not: 

( n v n n 

] T ciiXi )=-YlYl %%cov(X i 5 Xj) 
i=l ' i=l j=l 

n n n 

= E afvaiiXi) + 2 E E aiOjCovpf,-, Xj) 
1=1 i = l j>i 

which reduces to (4.32) i f X{ and Xj are uncorrected for every i ^ j . 

Example 4.12: Mean and Variance of Chi-Square Distribution 

The PDF of the chi-square distribution is defined by (3.32). Its mean and variance can be found 
as follows. Note that an n-degrees of freedom chi-square RV X is the sum of the squares of 
independent zero-mean Gaussian RVs X / s with a common variance a2: X = X\~fXf+• • -+X2, 
where Xi ~ jV(0, a2). Thus the mean is 

E[X} = E[X2 + X2 + --- + X2] 

= E[X2

1} + E[X2} + --- + E{X2} 

= [var^O + (x,)2} + ••• + [var(X„) + (xn)2} 

= a2 + ••• +a2 =na2 

Since the independence of X\, X2, • • •, Xn implies that they are uncorrelated, the variance is 

var(X) = var(X2 + X2 + • • • + X2) 

= v a r ( X 1

2 ) + v a r ( X | ) + --- + var(A^) 

= {E[(X2)2} - (E[X?})2} + ••• + {E[(X2)2] - (E[Xm 

( = 5 ) [3<r 4-<7 4] + - " + [ 3 * 4 - * 4 ] 
= 2ncr 4 
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4.6 Mean and Variance of Weighted Sum of RVs 

Example 4.13: Moments of Sum and Difference 

Consider Example 4.6 again. Let U = X + Y and V = X - 2Y. 

(a) Find E[U] and E[V\: 

E[U] = E[X + Y} = E[X] + E[Y] = 3 + 1 = 4 
E[V] = E[X - 2Y] = E[X] - 2E[Y] = 3 - 2 x 1 = 1 

(b) Find <J\ and a2: 

E ^ = C JZ *V(*. V)dy<lx = i / 0

6 * 2 / 0

2 dydx = 12 

E ^ = / _ : / _ : » v ( * , = - l / ; / ; ^ = | 

£[C/2] = + y) 2] = B[X 2 ] + 2 ^ + E\Y2\ 

= 12 + 2 x 3 + i = l 4 

£ [ y 2 ] = - 2F) 2] = E[X2] - ARxy + AE[Y2] 
4 16 

= 1 2 - 4 x 3 + 4 x - = — 
3 3 

al = E[U2\-{E[U\f = lv\-{A)2=1^ 

a\ = E[V2] - (E[V]f = 16/3 - l 2 = 13/3 
Since X and Y are uncorrelated, a better alternative is to use (4.32), which 
leads to, noting that o2

x = E[X2} - (xf and o\ = E[Y2] - (yf, 

a 2 = ( l ) 2 - (12 -3 2 ) + l 2 . (^-l 2 )=f 
4 

a\ = ( l ) 2 • (12 - 32) + (-2) 2 • (- - l 2 ) = 13/3 

(c) Find the (1, l)th moment RuV and the (1, l)th central moment Cuv: 

RuV = E[UV] = E[(X + Y)(X ~ 2Y)\ 

= E[X2] - 2Rxy + Rxy - 2E[Y2} = 1 2 - 3 - 2 x ^ = 19/3 

Cuv = E[{U - u)(V - v)] = E[UV + uv-Uv- Vu] 
= Ruv- E[U]E[V] = 19/3 - (4)(1) = 7/3 
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4.7 Jointly Gaussian Random Variables 

4.7 Jointly Gaussian Random Variables 

Two RVs X and Y are said to be jointly Gaussian or jointly normal if their 
joint PDF is given by 

1 1 (x-x)2 

2(1-P2) [ 4 
zSl 

/(*,„) = — — = ^ e ^ •* ^ J (4.33) 

where x, f/, C J | ? cr| and p are the mean, variances and correlation coefficient of X 
and Y. This is sometimes denoted by the shorthand 

(X,Y)~Af(x,y;a2

x,a2

y,p) 

Gaussian RVs have many nice and important properties. For example, 

• If (X, Y) are jointly Gaussian, then X and Y are both Gaussian RVs. 
• For jointly Gaussian RVs X, Y, their weighted sum aX + bY is another 

Gaussian RV. Specifically, 

X~N%cl) ) 

X , Y independent 

aX + bY + c ~ M(ax + by + c) a2®l + b2a2) 

for all a, b and c 

(4.34) 
Also, Z = aX + bY + c and W = aX + j3Y + 7 are jointly Gaussian. 
Two jointly Gaussian RVs are independent i f and only i f they are uncorrelated. 
This is clear since (£ , |7 ;^,^,p) | 0 = N(x,al)N{y,al). It is, however, 
not true i f Gaussian RVs X, Y are not jointly Gaussian. 

J(x,y) 

Figure 4.13: The PDF of jointly Gaussian RVs. 
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4.7 Jointly Gaussian Random Variables 

Fig. 4.13 corresponds to p = 0.5. Fig. 4.14 shows three Gaussian PDF 
surfaces corresponding to p = 0, ±0.9, respectively. 

fay) 

(c) p = -0 .9 

Figure 4.14; Illustration of the joint Gaussian PDF with various correlation coefficients. 
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4.7 Jointly Gaussian Random Variables 

The joint Gaussian (normal) distribution Is the most popular and important 
joint distribution. 

Note that 

• Not every pair of Gaussian RVs (X, Y) Is jointly Gaussian. 
• Every pair of independent Gaussian RVs (X, Y) is jointly Gaussian. 
• Marginal PDFs of X, Y do not depend on the correlation coefficient p. 

Example 4.14: Dependence of Weighted Sums of Gaussian RVs 

Consider two Independent RVs X ~ N(x, a2) and Y ~ N(y, a2). Let U = 
aX 4- bY and V = cX + dY, where x, u 2 , y, a2, a, b} c, d are known constants. 

(a) Find the means and variances of U and V: Similar to Example 4.31, 

u = ax + by} v = cx 4- dy 
var(U) = var(aX + bY) ( 4 = } a2var(X) + 62var(F) = a2a2

x + b2a2

y 

var(F) = c V 2 + d2a2 

(b) Find the covariance, correlation, and correlation coefficient of U and V: 

CUv ( 4 = 9 ) aca2

x + frdcr2 + (ad + bc)Cxy 

= aca2 + bda2 + 0 (because X1Y are independent) 

RuV

 ( 4= 2 ) Cuv + uv = aca2 + bda2 + (ax + by)(cx + dy) 
= ac(a2

x + x2) + bd(a2 + y2) + (ad + bc)xy 
Cuv aca2

x + bda2 

P u v = ^ = j(a?al + Va^(&al + <Pafl 

(c) Find the conditions under which U and V are uncorrelated and the conditions 
under which U and V are independent: 

Since U and V are weighted sum of Gaussian RVs, they are jointly 
Gaussian. Thus they are independent if and only i f they are uncorrelated 
(i.e., Cuv = 0); that is, i f and only i f a 2, a2, a, 6, c, d satisfy 

aca2 + bda2 = 0 
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4.7 Jointly Gaussian Random Variables 

I f X and Y are uncorrelated, from Example 4.31, the condition for uncorrelatedness of U 
and V is (4.50). 

The loci of constant values of the Gaussian PDF are ellipses since the following describes 
an ellipse 

{x - x)2

 + (y - y)2 _ Mx -x)(y- y) = r 2 

A vector-valued Gaussian RV or a Gaussian vector X is one with the following joint PDF 

where x and P are the mean vector and covariance matrix of X , defined by (4.29) and (4.30). 
(4.35) is sometimes denoted compactly as 

/ ( x ) = Af(x; x 5 P) or X - A/"(x, P) 

Components of a Gaussian vector are said to be jointly Gaussian. 
As an extension of two-dimensional case, an n-dimensional Gaussian vector also has many 

nice properties. For example, 

• The sum of many "uniformly" small and negligible random effects tends to be Gaussian — 
central limit theorem. 

• The weighted sums of jointly Gaussian RVs are jointly Gaussian: Y i 5 . . . , Ym as defined by 

Yj = aijXi + a2jX2 H h aijXn + bj j = 1,2,. . . , m 

are jointly Gaussian. In matrix-vector language, that is: For every matrix A = [o^] and 
vector b = [ & i , . . . , bm]f of suitable dimensions, 

X - JV(x, P)=> AX + b~ M(Ax + b 5 APA') (4.36) 

(4.34) is actually a special case of (4.36). 
• Independence 4 = ^ uncorrelatedness cov(X) = diagonal 
• It is fully characterized by Its mean vector and covariance matrix. 
• Joint conditional density of jointly Gaussian RVs (I.e., some components of a Gaussian 

vector) given the values of some other components is also Gaussian. 

Example 4.15: Jointly Gaussian vs. Marginal Gaussian 

A well-known example demonstrating that not every pair of Gaussian RVs X and Y is jointly 
Gaussian is the one with the following PDF: 

f(x,y) = ^ - e ~ ^ " ( H - s i n x s i n 2 / ) 

Clearly, (X7 Y) is not jointly Gaussian. But both X and Y are Gaussian RVs since clearly 
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4.7 Jointly Gaussian Random Variables 

Example 4.16: Generation of Jointly Gaussian Random. Numbers by P&R 

Jointly Gaussian random numbers can be generated easily using the companion software P&R. 
The procedure is illustrated as follows: 

5 1 . Click "RVGenerator" in the main window of P&R. 
52. Click "Normal." The "Normal Random Number Generator" window wi l l appear. 
53. Click "2" for "dimension" and enter the parameters as shown in Fig. 4.15. Click "Ok." 

20 random numbers that are jointly Gaussian distributed with parameters (x, y, o-^a^p) = 
(1.25 0.7,0.66,1.48,0.799) are then generated (and saved to a data file i f specified in a two-
column format). A scatter diagram of the random numbers is then plotted as shown in Fig. 
4.15. 

•=J°Jj<Ji 
RVGenerator PDF/PMF Tables Percentile Identification 
Miscellaneous RPGenera.tor RPAnaiyzer RRBesponse About 

1 I v i • 
<~ 1 

1.2 

0.7 

0.66 

1.48 

0.799 

20 

dimension 

x mean 

y mean 

x va.r 

y var 

corr-coeft 

#of points 

* \ ; <:»111»- r I *m<jmm 
File £dit Window Help 

3 
2 
1 
0 

2 

Ok 

JGL 

Options 

F" Display 
K? Plot 
P" Save to ii\e 

Cancel 

~ | q | x > 

. .1 .5 . 

Figure 4.15: Generation of jointly Gaussian random numbers by P&R. 
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4.8 Functions of Random Variables 

4.8 Functions of Random Variables 

4.8.1 PDF of Sum of Random Variables 

The PDF of the sum of two RVs Z = X + Y is in general given by 

/
OO f OO 

fxAz - y> v)dv = / fx,Y(x>z - x ) d x 

-oo J—oo 

If X , Y are independent, then it reduces to the convolution fx * /y : 

/
oo /*oo 

fx(z ~ y)fr{y)dy = / fx(x)fY(z - x)dx 
-oo J—oo (4.37) 

Example 4.17: Sum of Independent Gaussian RVs 

Given independent RVs X ~ Af(0,1) and Y ~ M(0,1), the PDF of the sum 
Z = X + Y is 

J-oo J-OG y/27T V27T 

Note that 
(z - yf y2 _ 2y2 - 2zy + z2 _ 2(y - z/2)2 + z 2/2 _ (y - z/2) 2 ^ 

2 + 2 ~ 2 ~ 2 2x0.5 + 4 
Then 

fz(z) = 4=e-^ r 1 e - ( ^ / 2 ) V ( 2 x O , ) d | / 

= _ j C " a 2 / ( 2 X 2 ) f ° 1

 c - ( ? / - » / 2 ) 2 / ( 2 x 0 . 5 ) , 

( = 3 ) AA(z;0,2) /°° tf(y;z/2,0.5)dy ( = 9 ) Af(z; 0,2) 
Thus, symbolically, A/"(0,1) + JV(0,1) = Z ~ Af(0,2). 

In general, it can be shown that the weighted sum Z E" = 1 o,A"j of indepen-
dent Gaussian RVs X\ ~ A/"( î, 0 - 2 J , - . . , Xn ~ J\f(xn, a2J is a Gaussian RV 
with mean £" = 1 and variance E'jLi afo^; that is, symbolically: 

E a ^ f o , 4 ) = 2 ~ M ^ E (4-38) 
i=i ' v i = i t=i 7 
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4.8 Functions of Random Variables 

For discrete (X} Y), the PMF of a function of two RVs Z = g(X, Y) is equal to the sum of 
the point masses on the curve g(x, y) = z: 

p{z = Z k } = E P { x = ^ y = y , } i f X ' y i n = d e p e n d e n t y, P { X = * , } P { y = » , } 

This can clearly be extended to the general case Z = g(Xx,..., Xn). In particular, i f Z = X+Y, 
then 

P{Z = zk} = J2 P{X = xitY = y j } 
Xi+yj=zk 

if A', V" independent ^ P { X = ^ ^ { V = % } 

^ P { X = a ; i } P { y = ^ - a ; i } 

X : F { A - = z f c - y j } p { r = % . } 

where E denotes "sum over all points x / s where X has a nonzero point mass." The last three 
Xi 

summations are known as convolution sum. 
The study of the sum of RVs is very useful with many applications. For example, we often 

are facing the problem of filtering out the noise in the signal-plus-noise case. 
Similarly to (4.37), the PDF of the sum of n independent RVs Xi,... ,Xn is simply the 

convolution of the PDFs of Xu ... ,Xn: 

fXL+...+Xn(x) = fXl(x) * fy2(x) = fXl(x) * fx2{x) * fYa(x) = fXl(x) * - - - * fXn(%) 

where 

Yx = Xt + X2 + • • • + Xn 

= Xl + (X2+ f l n ) 
s . 

= X1+X2 + (X3 + -y + Xn) = .-. 

Y3 

One of the most popular probability laws deals with the sum of a large number of RVs — 
the central limit theorem. It states that under some fairly nonrestrictive conditions, the sum of 
a large number of "negligible" random effects that are "uniformly small/' meaning that there are 
no dominant ones, is a Gaussian RV. 

Although some versions of the central limit theorem are applicable to sum of dependent RVs. 
a sum of independent RVs is easier to handle and converges to Gaussian more quickly. 

A powerful version of the central limit theorem states that the properly normalized sum 
X = Y.'Li i ^ i f °f independent RVs Xu ... ,Xn,... with mean x{ and variance o f , where 
cr 2 (n) = E?=i °h t e n d s to be a standard Gaussian RV: ( Mm X) ~ AT(0,1), i f the random terms 
are "uniformly small" (i.e., no one stands out) and the sum is over a large number of terms that 
are sufficiently small to be "negligible." 
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4.8.2 Extrema of Random Variables 

Given two independent RVs X and Y with CDFs Fx(x) and Fy(y), what are 
the distributions of U = max(X, Y) and V = min(X, Y)1 

Note that 
max(X, y ) < u (X < u) n (y < «) 

Thus 

Fmax(u) = P{max{X, Y)<u} = P{X < u, Y < u} 

= Fxx(u,u) X'Yind^*Fx(u)FY(u) 

Note that the same value is used in FX(-) and Fy(-) and that Fmax(u) is not 
larger than the smaller of Fx(u) and Fy(u), which makes sense. 

For the minimum V = min(X, Y), note that 

min(X, y) < v ^ (X < v) n (Y < v) 

but 
min(X, Y)>v (X >v)n(Y > v) 

Thus, the CDF ofV — min(X, y) is 

^min(̂ ) = P{min(X,Y) < v} = 1 - P{min(X,y) > 
= 1 - P{X > v, Y > v} x ' Y i ^ A ^ l-P{X> v}P{Y > v} 
= 1 - [1 - Fx(v)][l - FY(v)} 

The above results can be easily extended to the case of n independent RVs. 
Clearly, the CDFs of U = max(Xi,.. . , Xn) and V = min(Xi,. . . , Xn) are 

Fmax{u) = P{max(Xi, ...,Xn)<u} 
= FXl(u)FX2(u)---FXn(u) (4.39) 

iW*>) = P{mm(Xu ...,Xn)<v} 
= 1 - [1 - FXl(v)][l - FX2{v)} • • • [1 - FXn(v)} (4.40) 

These results are very useful in order statistics, where RVs are ranked. 
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Example 4.18: System Reliability 

A system 5 consists of two independent subsystems Si and 5 2 with one of 
the following connections: (a) in series; (b) in parallel; and (c) a subsystem in 
operation while the other in standby. The service times (i.e., times to failure) of 
the subsystems 5i and 5 2 are exponential RVs X and Y with CDFs 

„ , . [l-e-™ x>0) f l - e ^ y>0\ 

with a > 0, b > 0. Find the time to failure Z of the system S. 

(a) Connected in series. In this case, Z = mm(X, Y). Hence, 

Fz(z) = l-[l-Fx{z)][l-FY(z)] = l Q z < Q 

, , , dFz(z) \ (a + b)e-^z z > 0 
f z { z ) = -dT- = \o z<0 

Thus, Z is exponentially distributed with parameter a + b in this case. 
(b) Connected in parallel. In this case, Z = max(X, Y). Hence, 

, . x dFz{z) \ ae~az + be~bz - (a + b)e^a+b> z > 0 
f z { z ) = ^ 7 ~ = \o z<o 

There is no special name for such a RV Z. 
(c) In a standby connection, the second subsystem is put into operation at the 

moment the first subsystem fails, which means Z = X + Y. Note that the 
PDFs of the exponential RVs X and Y are 

, dFx(x) | ae"0* x > 0 1 , , , f fee"* y > 0 1 

Hence, fz{z) = 0 for z < 0, and for z > 0, 

/*(*) (=7) /°° fx(z-y)Mv)dv= [ae-^be^dy 
J—oo JO 

y I a 2 2e _ a z a = b 
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4.8.3 Joint PDF of Functions of a Random Vector 

Consider m functions of n RVs Xu ... ,Xn: 

Yi — 9i{Xi? • • • i Xn) 
Y2 = ^ 2 ( ^ 1 , . . . , X n ) 

Ym — ^ m ( X i , . . . , X n ) 

I f m > n, then Yn+i,..., Ym can be expressed in terms of Y i , . . . , Y w and thus their joint PDF 
can be expressed in terms of the joint PDF of Y i , . . . , Yn. I f ra < n, then we could find the 
joint PDF of Y i , . . . , Ymy Xm+U ..., Xn first and then use (4.14) to determine the joint PDF of 
Y i , . . . , Ym. Therefore, we may reasonably assume n — m. 

Let Y = [ Y i , . . . , Y n ] \ X = [Xu Xn]'. Then as for the single RV case (p. I l l ) , depending 
on the solution of the following system of equations 

2/2 = ^2 (^1 , . . . , £ n ) 

K Un = 9n{p^l 1 ' ' ' 5 %n) 

(441) 

the joint PDF of Y is given by 

r 0 
/ x ^ j , . . . , ^ ) 
| J ( x x , . . . , x n ) | 

i f (4.41) has no solution 

i f (4.41) has unique solution 

i f (4.41) has more than one solution 

where (x\,..., xn) is the i th solution of (4.41) and the sum is over all solutions; and the Jacobian 
of the transformation (4.41) is given by the determinant 

J(X\, ... , Xn) 

%1 . dgi 
dxn 

dxn 

Example 4.19: Independence of Functions of Random Variables 

Example 4.31 shows that two linear combinations of two correlated RVs X and Y with distinct 
variances can always be made uncorrelated. Moreover, two functions U = g(X, Y) and V = 
h(X, Y) of the same pair of RVs (X1Y) are not even necessarily dependent. For example, 
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consider independent RVs X - A/"(0, a2) and Y - Af{0,a2). Let U = VX2 + Y2 and V = 
X/Y. Then, solving the system of equations: 

u = t/~X2 + y2 

v = x/y 
yields two solutions: 

(£2,3/2) 

uv 

uv u 

Then 

it/ \ I i t turns out i 7 / \ i 
K (^2) 2/2)] = M ( z i , 2 / i ) | det 

1 + 

x=aji,y=yi 

Thus, 

"0 u< 0 
fu,v{u,v) = { / x , y ( z i , y i ) , /x,y(x 2 ,2/ 2 ) 

+ • 1̂ 2,2/2)1 
t i > 0 

0 

1 + v 2 

tit; 

Since 

fxAx,v) = -x2/2a2 1 -,,2/9^2 

and note that fxy(x,y) = / x , y ( - x , - t / ) , 

-y2/2<r2 _ 
_l_p-(x2-h/2)/2<r2 

t i < 0 

ti > 0 

0 
fUy{u,v) = { U 1 

1 + V 2 TXG2 

0 

exp 2„,2 1 / UlV + 2 ( J 2 \ 1 + V 2 1 + t; 2 

ti < 0 

u < 0 

t i > 0 

1 V ^ 2
 u > 0 TT(1 + v2) a2 

1 fo t i < 0 

7r( l + t ; 2 ) 1 4 E " W 2 / 2 £ J 2 W ^ 0 

fv(v) fu(u) 

Thus, [/ and V are independent. In fact, in view of (3.33) and (3.58) U is Rayleigh and V Is 
Cauchy. 

See also problems 4.40 and 4.41. 
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4.9 Uniform Distribution 

A pair of RVs (X, Y) is said to be uniformly distributed over a region D i f its 
PDF is constant over D and zero elsewhere: 

i (x,y)eD 
f(x,v) = { (4.42) [ 0 elsewhere 

where a(D) = area of D; that is, the probability of (X, Y) falling inside any region 
C inside D is proportional to the area of C. Note that the PDF integrates up to 
unity. This is an example that the extension from one-dimension to two-dimension 
is not trivial. Uniform distribution is one of the simplest joint distributions 

Example 4.20: Measurement Errors — Uniform over a Eectangle 

Find the PDF, means, variances, and correlation coefficient of measurement error 
(X, Y) that is uniformly distributed over a rectangle x\ < x < x2,y\ < y < y%\ 
Since a(D) = (x2 — %i)(y2 — yi), we have 

xi < x < x2jyi < y < 2/2 
elsewhere 

mean = center = [x, y) = \{xx + x2), \{yi +1/2) 
2V ' " 2 

variance = [a*, a2

y] - [—(x2 - xtf3-(ja - yif 

and pxy = 0 since it is easy to show that X and Y are independent. 

Example 4.21: Radar Clutter — Uniform over an Ellipse 

Find the PDF of the location (X, Y) of radar clutter that is uniformly distributed 
over the ellipse + < 1: Since the lengths of the semi-axes of this 
ellipse are a and 6, respectively, its area is wab. Thus, the PDF is 

f(x,y) = { a 2 i - 52 ^ 1 
( 0 elsewhere 

The mean (x, = (a, /?), but o2

x, a2 and pX 2 / are not easy to find. 
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4,10 Conditional Distributions 

As an extension of the conditional probability, the conditional distribution of a 
RV X given (the value of) another RV Y provides a powerful tool for the study 
of dependent RVs. 

The conditional PDF of a continuous RV X given another continuous RV 
Y = y is defined by, i f fy{y) > 0, 

which has a clear geometric interpretation: For a specific y = yi, the function 
/ (x , f/i) is a profile of / (x , y) (i.e., the intersection of'die surface / (x , y) and the 
plane y = y{). Thus, the conditional PDF f{x\y) is just this profile normalized 
by the factor l/fy(y) such that f(x\y) integrates up to unity. 

The marginal PDF can be obtained from the conditional PDF: 

It indicates that a marginal PDF is an average conditional PDF. 
It is clear from (4.43) that if X and Y are independent, then the conditional 

PDFs are equal to the marginal PDFs (this makes perfect sense): 

fx\Y{x\y) 
Mv) 

(4.43) 

/
O O POO 
_xi f(x, y)dy = J ^ fx\Y(x\y)fY(y)dy = E[fX\Y(x\y)} 

fx\Y(x\y) = fx(x), Vy 

fY\x(y\x)-= fr(y), Vx 

(4.44) 

(4.45) 

Figure 4.16: }{x,yx) and f{x,y2) as the profiles of the surface f(x,y). 
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4.10 Conditional Distributions 

For discrete (X\ Y) with joint PMF P{X = x^Y = yj} = Pij and marginal PMFs P{Y = 
Vi) = ft' ^ e conditional PMF of X given Y = yj is defined as the joint PMF divided by the 
marginal PMF of Y: 

P i l j 4 P{X = Xi\Y = Vj} =
 P { X

p 7 v f a l F 7 V j } = ^ , WiJ (4.46) 
r\i — y^\ Pj 

This definition is not valid for continuous (X , Y) since P{Y = y} = 0, F { X = ^ } = 0 for 
every given point (x, t/). 

The conditional CDF of a RV X given Y = y is defined by 

* x | y = Urn P { X < x\y - e < Y <y + e} e > 0 

= l im —: —— r € > 0 
e-o P{^/ - e < 1 < 2/ + e} 

Conditional distributions given an event with a nonzero probability has been defined by 
(3.59) and (3.60). 

Note that 
YlVi\j = 1, Y,Pi\j * 1 (4.47) 

* 3 

which should not come as a surprise. 
It is clear from (4.46) that i f X and Y are independent, then the conditional PMFs are equal 

to the marginal PMFs: 

P{X = xi\Y = yj} = P{X = xi} 
P{Y = yj\X = xi}^P{Y = yj} 

This and (4.44) indicate that the definitions of conditional distributions and independence of RVs 
are consistent. 

Conditional Expectation 

The conditional mean of a RV X given an event B is defined by 

/
oo 

xf(x\B)dx 
-oo 

where the conditional PDF f(x\B) was defined by (3.60). For example, i f B = {xi < X < x2}, 
then 

/
oo 

xf(x\xi < X < x2)dx 
-oo 

The conditional mean of a RV X given the value of another RV Y is defined by 

A /*°° 
E[X\y] ± E[X\Y = y}= xfxlY(x\y)dx 

J —OO 
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The conditional variance of a RV X given the value of another RV Y is defined by 

/
oo 

(x - E[X\y]ff{x\y)dx 
-oo 

The conditional expectations of a RV g(X, Y) given the value of Y or event B are defined 
by 

E[g(X,Y)\y} 4 E[g(X,Y)\Y = y] = H g{x,y)fx]Y{x\y)dx 
J — O O 

E[g(X,Y)\B] 4 T [°° g(x,y)f(x,y\B)dxdy 
J —OO J — O O 

The most powerful result relating unconditional expectation and conditional expectation is 
the following total expectation theorem 

E[X] = E[E(X\Y)] 

where the inner expectation is for X alone even though Y is also random, and the outer is for 
Y. Total expectation theorem is closely related with total probability theorem. It may simplify 
greatly the calculation of the unconditional expectation. It has rich applications in statistics, In 
particular, estimation and filtering. 

Example 4.22: Conditional Distribution of Jointly Gaussian RVs 

Given jointly Gaussian RVs 

(X,Y)~tf{x,y-,aa

x,a2

y,p) 

the marginal PDF of Y is H{y; y; a'*) and thus the conditional PDF of X given Y = y is 

f(x,y) _ N"[{x,y);x,y;<7l,tf,p] 
f { x [ y ) f(y) M(y;y;cr2

y) 

1 

1 

V27T(TX\/T 

1 

-P'2 

2(1-P )̂ L °\ 
I 1 (x-x)2

 { (y-y)2 2p(x-x)(y-y) | (y-y)' 

1 f ( x - f ) 2 , ( y - y f p 2 2p(x-x)(y-y)] 

L—- [ (»-*) _ (y-ii) 1 2 

e 2(l-p2) [ <rx \ 
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That is, X conditioned onY~y is also Gaussian distributed with PDF 

f(x\y) = Af(x; * + p^£(y - y) , o*(l - p2) ] 
\ (Ty J 

The conditional mean is given by 

/
oo too ( (J \ (7 

xf(x\y)dx = / xAf[x;x + p— (y - y);a2

x(l - p2) )dx = x + p— (y-y) 
- O O J—OO \ Oy J (Ty 

Note that the conditional mean is a linear function of the value y of the RV Y. This is important 
in estimation and filtering theory. 

The conditional variance var(X|y) is given by 

/
oo 

(x - E[X\y})2f(x\y)dx 
-OO 

= [°° (x - E[X\y))2u(x;x + p^(y - y); a2

x(l - p2))dx 

4.11 Summary and Requirements 

Many random phenomena can only be described by two or more RVs jointly. The joint CDF of 
two RVs X and Y is the joint probability P{(X < x) fi (Y < y)}. Its second partial derivative is 
the joint PDF, which describes the density distribution of the joint probability over the x-y plane. 
Various joint probabilities can be determined in terms of the joint C D F or PDF. The following 
is the most important formula: 

P{xx <X <x2,yi <Y <y2} = F(x2,y2) + F{xuyx) - F(xuy2) - F(x2,yi) 

= / / f(x,y)dxdy 
Jx=xi Jy=yi 

The joint C D F (or PDF) and the marginal CDF (or PDF) are related by 

Fx(x) - F x ,y(x 3oo), FY(y) = FXy(oo,y) 

/
oo fob 

f(x,v)dv, fY(y) = I f(u,y)du 
-oo J—oo 

The expected value, mean or average of a function g(x,y) of two RVs X, Y is defined by 

E[g(X,Y)} 

/ roo roo 
/ / g(x,y)f(x,y)dxdy (X, Y) continuous 

J—oo J —oo 
YI £ 9{xi, yj)P{X = xh Y = Vj} (X, Y) discrete » 3 
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The mean of a weighted sum of RVs is equal to the weighted sum of the individual means: 

L z = l L i=l 

If Xi,. ..,Xn are uncorrelated, then the variance of a weighted sum of RVs is equal to the 
squarely weighted sum of the individual variances: 

^ T a ^ l = £ a ? v a r ( X < ) 
i = l ' i=l 

For two RVs X and Y, their correlation Rxy is the expectation E[XY]\ their covariance 
Cxy is the central expectation E[(X — x)(Y — y)]\ their correlation coefficient p is the normalized 
covariance Cxy/(oxay). They measure how likely if the two RVs are related linearly. If \p\ = 1 
then they are surely related linearly. 

Two RVs X and Y are independent if FX,Y{X, y) = Fx(x)FY(y) or equivalently /x,y(^ 5 1/) 
= fx{x)fy{y)- They are uncorrelated (i.e., surely not related linearly) if = l?[X]l?[Y], 
or their covariance Cxy = 0 or their correlation coefficient pxy = 0. If they are independent then 
they are uncorrelated, but uncorrelatedness does not imply independence in general unless they 
are jointly Gaussian. 

Two jointly Gaussian or jointly normal RVs X and Y have the following joint PDF 

1 "2(7=7*) 
2naxayy/l - p2 

(x-sf j (y-y)2 2p(x-£)(y-y) 

where \p\ < 1 is their correlation coefficient. A linear function (e.g., weighted sum) of jointly 
Gaussian RVs is still Gaussian. Two independent Gaussian RVs are jointly Gaussian. 

The PDF of the sum of two independent RVs is the convolution of their two PDFs. 
A pair of RVs is uniformly distributed if its joint PDF is constant over a single region and 

zero elsewhere. 

Basic Requirements 

• Have a clear understanding of the joint CDF, PDF, and PMF. Be clear about the similarity 
and difference between joint and marginal CDFs and PDFs. Be familiar with their properties, 
especially their relationships with marginal CDFs, PDFs, and PMFs. 

• Know how to find marginal CDFs and PDFs from joint C D F and PDF. 
• Comprehend the concepts of independence and uncorrelatedness of RVs and know how to 

check if two RVs are independent or uncorrelated. 
• Understand the implication of correlation, covariance, and correlation coefficient of two RVs. 

Know how to calculate them. 
• Know how to find the mean and variance of weighted sum of RVs. 
• Be skillful in calculating various probabilities from joint CDF, PDF, or PMF. 
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• Be familiar with the various properties of joint Gaussian distribution. 

The emphasis of the chapter is on the relations between RVs, between the joint and marginal 
distributions and the mean and variance of weighted sum of RVs. 

4.12 Additional Examples 

4.23 From joint CDF to probability. Two jointly exponential RVs X and Y have the joint 
CDF 

(a) Find P{X < 0.5, Y < 1}. 
(b) Find P{0.5 < X < 1,0 < Y < 0.75}. 
(c) Find P{1< X < 2}. 
(d) Find fx(x) and fY(y). 
(e) Find f(x,y). 
(f) Find P{Y < \X}. 

Solution: 

(a) P{X < 0.5, Y < 1} ( = 1 } F(0.5,1) = 1 - e~4x0-5 - e"3 + e~(2+3) = 0.6717 
(b) 

x>0,y>0 
elsewhere 

P { 0 . 5 < X < l , 0 < y <0.75} 

= 5 ) 0.75) + F(0.5,0) - F(0.5,0.75) - F ( l , 0) 

o o 
= (1 - e- 4 - e - 2 2 5 - e"6-25) - (1 - e~2 - e~225 

= 0.1047 

(c) 

P{X <x} = Fx(x) ( = F{x, oo) 
1 - e~ix 

0 
x > 0 
x < 0 

Thus 

P{KX <2} = FX(2)-FX(1) 

= F ( 2 , o o ) - F ( l , o o ) 
= ( l - e - 8 ) - ( l - e - 4 ) 
= 0.01798 
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Alternatively, 

P{1 < X < 2} = P{1< X < 2, -oo < Y < oo} 
= F(2, oo) + F(l, -oo) - F(2, -oo) - F(l, oo) 
= F(2, oo) - F ( l , oo) = 0.01798 

(d) If x > 0,y > 0, then 

dxdy~ v~'6,/ dx 

Hence 

f(x,y) = J?-F{x,y) = | - [3e~3^ - 3e~^+^] = 12e~^+^ 

Check: 

(e) 

f( \ _ i 12e - ( 4 B + 3 ») x>0,y>0 
J { X , y ) \ 0 elsewhere 

/
OO fOO pOO poo 

/ f(u,v)dudv = 12 / / e-^e-^dydx = 1 
-oo J-oo JO J 0 

/
oo /*oo 

/(a;,w)dt; = 12 / e^4x+3v^dv = Ae'4*, x>0 
-oo Jo 

Thus 
, , v f 4e - 4 x s > 0 

0 x < 0 

Alternatively, = where F(x) was given in (c). Similarly, we have 

Check: 

/
OO /*O0 

fx(x)dx = / 4e- 4 xda; = 1 
-oo Jo 

/
oo *oo 

fr(v)dy = / 3e- 3 ^y = 1 
-oo JO 

Note that since f(x, y) = fx(x)fv(y), we know X and F are independent. 
(f) 

-P{V < § X } = P{0 < X < oo,0 < Y < \x) 
fOO r%u 

= / / f(u, v)dudv 
Ju=0 J«=0 
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0 -3v dv 

lo 

le-%u-e-A 

= 12 [°° e~4u /*% 
Ju=Q Jv=0 

L 

0.5294 

4.24 From joint PMF to others. RVs (X, Y) have the following PMF 

du 

12 /°° 

Y 
- 4 

9_ 
17 

du 

) du 

X 1 2 3 
1 1/8 1/8 1/8 
2 1/8 1/8 1/8 
3 0 1/8 1/8 

(a) Find the marginal PMFs of X and Y$ respectively. Are X and Y independent? 
(b) Find the expected values and correlation of X and Y. Are X and Y uncorrelated? 
(c) Find the conditional PMF of X given Y. 

Solution: 

(a) The marginal PMFs can be obtained easily from (4.10) by summing up the corre-
sponding joint PMF: 

X Y 1 2 3 P{X = Xi} 
1 1/8 1/8 1/8 3/8 
2 1/8 1/8 1/8 3/8 
3 0 1/8 1/8 2/8 
P{Y = = % } 2/8 3/8 3/8 1 

P{X = 3}P{Y = 2}, X and Y are not Since P{X = 3,Y = 2} = f ^ | f 
independent. 

(b) The expected values and correlation of X and Y are 

E[X] = (l)(3/8) + (2)(3/8) + (3)(2/8) = 9/8 
E[Y] = (l)(2/8) + (2)(3/8) + (3)(3/8) = 17/8 
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E[XY] = ( l ) ( l ) ( l /8) + (l)(2)(l/8) + (l)(3)(l/8) 
+ (2)(l)(l/8) + (2)(2)(l/8) + (2)(3)(l/8) 
+ (3)(l)(0/8) + (3)(2)(l/8) + (3)(3)(l/8) 
= 33/8 

Since E[XY] ^ E[X]E[Y], X and Y are not uncorrelated. 
(c) The conditional PMF of X given Y is given by 

which leads to 
j = l j = 2 j = 3 

i = l 
i = 2 
* = 3 

1/2 1/3 1/3 
1/2 1/3 1/3 
0 1/3 1/3 

Note that this verifies (4.47). 

4.25 Inventory analysis. An inventory has three machines that are operational with probabilities 
0.8, 0.9, and 0.95, respectively. Whether a machine is operational is independent of the 
other machines. Let X be the number of machines that are operational. Find the mean 
and variance of X. 

Solution: Let = {machine i operational} and 

Then, 

E[X) = E[Xi + X2 + X3] 
= E[Xi\ + E[X2] + E[X3] = 0.8 + 0.9 + 0.95 
= 2.65 

var(X) = P { M i } [ l - P fMi} ] + P{M 2 } [1 - P{M2}] + P{M3}[1 - P{M3}} 
= (0.8)(0.2) + (0.9)(0.1) + (0.95)(0.05) 
= 0.2975 

Note an alternate solution provided in Example 3.41. 

machine i operational (Mi) 
machine i not operational (Mi) 

Clearly 

X = Xi + X2 + X3 

E[Xi\ = (0)P(M~} + (l)P{Mi) = P{Mi} 
E[X*\ = (0) 2P{7l^} + (1 ) 2 P{M 4 } = P{M{} 

var(X 4) = E[Xf\ - (E[Xi])2 = P{Mi}[l - P{Mt}] 
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4.26 Power consumption. A random voltage V ~ U{—3V57V) is applied to a resistor whose 
resistance R is a binary RV taking on a value of either 50 or 120 with equal probability 
and is independent of V. 

(a) Find the expected power dissipated by R . 

Solution: 

(b) Find R>jp, i ? r p , and a\ 

(a) Since 

fv(v) 
i - 3 < v < 7 
0 elsewhere 

/*(0 = ^ ( r - 5 ) + i « ( r - 1 2 ) 

v2fv(v)dv = / r ; 2 - c h , = 
37 
3 

V and J? are independent 4=4» V2 and are independent 
R 

V2 and — are uncorrelated 
R 

the expected power is 

E[P] = ^ [ K 2 / / ? ] =̂ F[F 2 ]£:[l/ i i:] = f ~ = 1-747 (watts) 

(b) 

R ^ = E[VP] = JE[V • V 2/i?,] = 
7-3 i o 

17 17 
— - = 58 x — ~ 8.21 
120 120 

RrP = E[R-V2/R} = E{V2} = ^ 

f7 1 

E[V] = J ^ —dv = 2 [the center point of (-3,7)] 

a\v = R v p - E[V]E[P] = 8.21 - 2 x 1.747 = 4.722 

4.27* Moments of discrete RVs. RVs (X,Y) have the PDF 

f(x, y) = Q.2b8{x - c)8(y - c) + 0A8(x + c)6(y - 3) + 0.35<5(x - l)S(y - 1) 

(a) Find c such that cov(X, Y) is minimum. Find the minimum cov(X, Y). 
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(b) When are X and Y uncorrelated? 

Solution: 

(a) (X , Y) has the following PMF 

X\Y 2/i = = c 1/2 = = 3 2/3 = = 1 
X\ = c Pn = 0.25 Pl2 = 0 Pl3 = 0 

x2 = -c P21 = 0 P22 = 0.4 P23 = 0 
x3 = l 031 = 0 P32 = 0 P33 = 0.35 

Thus 

= P n ( ^ i , 2 / i ) + ^ 2 2 ( ^ 2 , 2 / 2 ) + P 3 3 ( ^ 3 , 2 / 3 ) 

= 0.25(c, c) + 0.4(-c, 3) + 0.35(1,1) 
= (0.35-0.15c, 1.55 +0.25c) 

That is, 
x = 0.35 - 0.15c, y = 1.55 + 0.25c 

Hence, 

cov(X,Y) = E[{X-x)(Y-y)] 

i 3 

= Y,(x* - x)(yi - y)pn 
i 

= 0.25(Xl - x)(yi -y)+ 0.4(z2 - x)(y2 -y) + 0.35(z3 - x){y3 - y) 

= 0.25[c - (0.35 - 0.15c)][c - (1.55 + 0.25c)] 

+0.4[-c - (0.35 - 0.15c)][3 - (1.55 + 0.25c)] 

+0.35[1 - (0.35 - 0.15c)][l - (1.55 + 0.25c)] 

= 0.2875c2 - 1.07657c - 0.1925 

Taking £[cov(X, Y)] and setting it to zero yields c = 0.5341. Since ̂ [cov(X, Y)] = 
0.575 > 0, it is a minimum point. Thus the minimum covariance is 

mincov (X ,y) = 0.2875c2 - 1.07657c - 0.1925| c = 0 5 34i = -0.6122 

(b) X and Y are uncorrelated if and only if 

cov(X, Y) = 0.2875c2 - 1.07657c - 0.1925 = 0 

The solutions of this equation are c\ = —5.311 and c 2 = -0.2812. That is, X and 
Y are uncorrelated if and only if c = -5.311 or c = —0.2812. 

197 



4.12 Additional Examples 

4.28 Circuit reliability. An RLC circuit will be operational only if none of the i?, L , C fails. 
Assume that the failures of the i?, L , C are independent and each of their time-to-failure 
is an exponential RV with the following PDF (with identical parameter A): 

£ ( x f Xe~Xx x > 0 rt^t 0 s < 0 

Find the C D F of the time-to-failure of the circuit. 

Solution: Let XR, XL, Xc be the time-to-failure of R, L , C , respectively. Then, they are 
independent and have identical C D F 

*«)-£/<.)*-{ J-«-*• m 
Hence, the CDF Fy(y) of the time-to-failure of the circuit is, for y > 0, 

FY(y) = P{Y < y} = 1 - P{Y > y} 

= l~P{XR>y,XL>y,Xc>y} 
= 1 - P{XR > y}P{XL > y}P{Xc > y} 
= 1 - [1 - Fx(y)]a 

= 1 - e"3*" 

Note that F is nonnegative. Thus, 

1 - e-'iXy y>0 

which is the exponential distribution with parameter 3A. 

4.29* Uniform distribution over a circle. Suppose that a target with coordinates (X, Y) appears 
uniformly on a radar display screen of radius r; that is, ( X f Y) is uniformly distributed 
over the circle x2 -f y2 < r2. 

(a) Find the correlation coefficient of X and Y. Are X and F uncorrected? 
(b) Find the conditional PDF fy\x(y\^)-
(c) Are X and F independent? 

Solution: Clearly, the joint PDF of (X , Y) is 

= ( ^ ^ 2 + ^ 2 < r 2 (4.48) 
\ 0 elsewhere 
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(a) The marginal PDF of X is, fx(x) = 0 for \x\ > r and for \x\ < r , the upper and 
lower limits of y are \Jr2 — x2 and —y/r2 — x 2 , respectively, and thus 

ry/r2-x2 \ 2 / 

J -v^fZi f 7rr 2 7 rr 2 

By symmetry, 

-Vr2-x2 nr2 

2 4^ 7rr 
0 

r 2 — | / 2 12/1 < r 

\y\ > r 

Note that fx(x) is evenly symmetrical in x about x = 0 and thus E(X) = 0. 
Likewise, I?(Y) = 0. This makes sense since the center of mass (i.e., the balance 
point) of (X, Y) is (0,0). Hence, 

Cxy = E(XY) = Jl' ^dxdy = 0 => P x y = 0 

Thus, X and Y are uncorrelated. 
(b) For \x\ < r , 

f(y\x) = 
f(x,y) 
fx(x) 

irr2 2y/r2 - x2 2y/r2 - x2 

0 

—y/r2 — x2 < y < \Jr2 — x2 

elsewhere 

Note that given x, fy\x(y\x) is a constant and thus die conditional distribution of Y 
is also uniform, but the interval over which Y is uniform depends on the value of X 
(see Fig. 4.17). 

Figure 4.17: Uniform distribution over a circle and straight lines. 
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(c) X and Y are dependent since 

f(x,y) ? fx(x)fY(y) or f(v\x) * fv(y) 

By the theorem on page 159, it is also clear that X and Y are dependent because 
the region over which f(x, y) is nonzero (i.e., the circle) cannot be separated into the 
form of xi < x < x2j yi < y < 2/2, where xi, x2j 2/1,2/2 are constants. In other words, 
the dependence comes from the relation that defines the boundary: x2+y2 < r2. This 
is made explicit in part (b): the interval over which Y (or X) is uniform depends 
on the value of X (or Y), as illustrated in Fig. 4.17. Specifically, if X = X i , then 
Y ~ U(—yu yi). lf X = x2, however, then Y ~ U(-y2, y2). 

4.30 Generation of uniform numbers over a circle. Random numbers (Xi,Yi),..., (Xm Yn) 
that are uniformly distributed over a circle x2jty2 < r2 can be generated by the following 
procedure based on the acceptance-rejection method 

51. Generate Ut ~ U(0,1) and VJ - W(0,1). 
52. If U2 + V? < 1 then return ( X ^ ) = (r t /^ rFi ) ; otherwise go back to Step 1 and 

generate another pair of (Ui, Vi). 

4.31 Decorrelation of Random Variables. Given two RVs X and Y with distinct variances 
<j2, a2, and correlation coefficient pxy, it is always possible to introduce two RVs U = 
aX + bY, V = cX + dY as their linear combinations such that U and F are uncorrelated. 
Clearly, 

u ax + by v = cx + dy 

E{[(aX + bY) - (ax + fty)][(cX + cfF) - (cx + dy)}} 

E{[a(X ~ x) + 6 ( r - »)}[c(X - x) + cf(F - f ) ] } 

E[ac(X - x)2 + bd(Y - y ) 2 + (ad + bc)(X - s ) ( F - y)] 

ac<72 + fedcr2 -f (ad + 6c) (4.49) 

Thus, U and F are uncorrelated if a, 6, c, d are chosen such that 

aar 2 + bda2 -f (ad - f 6c)C x y = (4.50) 

In particular, if a = d = cos 6, b = —c = sin then (4.50) becomes 

0 = (&l - a2) cos 0 sin 0 + (cos' ^#-sm2#)a, = K 2 - ^ ) 
sin 20 

2 
+ (cos20)Ca 

Thus, U and F , given by 

U = Xcose + Ysm6 

V = - X s i n 0 + ycos0 
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are uncorrelated if, since C a 

X Ucose~~Vsm6 
U sin 0 + V cos 0 Y 

Y 

U 

Figure 4.18: Conversion of correlated zero-mean RVs (X,Y) to uncorrelated RVs (U,V). 

4.13 Problems 

4.1 From joint CDF to probability. Consider the jointly exponential RVs of Example 4.23. 

(a) Find P{X > 3, Y < 2}. 
(b) Find P{X > 3 |y < 2}. 
(c) Find P{X > 3 r / 2 } . 

4.2 From joint PDF to probability. Consider the RVs of Example 4.4. 

(a) Find P{X > 1/2. Y < 1}. 
(b) Find P{Y > 1\X < 1/2}. 
(c) Find P{X < Y}. 

4.3* Properties of CDF. Consider a function 

(a) 
(b) 
(c) 
(d) 

Show that g(x, y) is nondecreasing as x or y (or both) increases. 
Show that g(x, y) is continuous from right in x and y. 
Show that g(x,y) satisfies properties 1, 3, 4, 5 of the joint CDF. 
Find g(l, 1) + g(0,0) - g(l, 0) - g(0,1). 
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(e) Can g(x, y) be the joint C D F of some RV? 

4.4 From joint to marginal. Find F(x) and F(y) if 

F(xv) = i l ~ e ' x x > 0 > y > 0 

v | 0 elsewhere 

Identify the RVs X and Y. 
4.5 Symmetric CDF. If the joint C D F F(x,y) of (X, Y) is symmetrical about x and y (i.e., 

Fxy(x,y) = i*x,y(y,ff))» do X and Y have an identical marginal PDF and an identical 
CDF? Justify your answer. 

4.6 Symmetric PDF. If the joint PDF /(#, y) of (X , Y) is symmetrical about x and y (i.e., 
fxy{%,y) = fx,Y(y,xj)i do X and F have an identical marginal PDF and an identical 
CDF? Justify your answer. 

4.7 Identically distributed RVs. Two RVs X and Y have identical marginal CDFs. Are they 
always independent? Is it true that X = Y1 Justify your answer. 

4.8 Problem given PDF. Two RVs X and Y have the joint PDF 

y) = 
3xy 0 < x < 1, 0 < y < ^ 
0 elsewhere 

(a) Determine if X and Y are independent. 
(b) Find F(x,y). 

4.9* Independence check with coupled PDF. Given two RVs X and V with the joint PDF 

g(x,y) 0 < x < 1, 0 < y < 1 - x 
1 0 elsewhere 

where g(x, y) is nonzero everywhere over 0 < X < 1, 0 < y < 1 — £, can X and F be 
independent? Justify your answer. 

4.10 Independence check. Are RVs X and Y independent if their joint PDF is 

f ( , \ x + y 0 < x < l , 0 < y < l 
( a ) / ^ = ( o elsewhere 

J ^ ^ i | 0 elsewhere 

(c) f(xv) = l 2Xe~XXy ^ > 0 , 0 < 2 / < 1 icj j ^ y j | Q elsewhere 

You should be able to answer these questions without obtaining the marginal PDFs. 
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4.11 PDF of uniform distribution. Find the joint PDF of (X , Y) which is uniformly distributed 
over the triangle 0 < x < 2,0 < y < l,x + 2y < 2. 

4.12 From joint PDF to others. Given the joint PDF of (X , Y) 

(a) Find the marginal PDF of X. Check if f(x)dx = 1. What is the marginal PDF 
of y ? 

(b) Are X and Y independent? 

(c) Find the mean E[X] using the marginal PDF and the joint PDF, respectively. 

4.13 Probability of being larger. Two RVs X and Y have the joint PDF 

Find P{X > Y}. 

4.14 Expectation and correlation. Consider the RVs of Example 4.4. 

(a) Find E[X\. 
(b) Find E[Y}. 
(c) Find Rxy and Cxy. 
(d) Are X and Y uncorrelated? 
(e) Find E[X - Y], 

4.15 Expectation and correlation. Consider the jointly exponential RVs of Example 4.23. 

(a) Find E[X]. 
(b) Find E[Yl 
(c) Find i ? ^ and C x r 

(d) Are X and Y uncorrelated? 

4.16 Expectation and correlation. Given the joint PDF of two random variables X and Y 

6 ( 1 - x - y) 0 < x < 1, 0 <y < l - x 
elsewhere 

elsewhere 

0 < a ; < 4 , l < y < 5 
elsewhere 

(a) Find E[X], E[Y}9 E[XY]9 and E[2X + ZY]. 
(b) Are X and F uncorrelated? 
(c) Are X and V independent? 
(d) Find var(2X + 3Y) . 
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4.17 Sum and difference of two RVs. For two random variables X and Y with marginal PDFs 
fx(x) = 2e~2xu(x) and fy(y) = 6(y + 5), form two new random variables U = X 4- Y 
and V = X — Y. Find the expected values of U and V. 

4.18 Correlation of discrete RVs. RVs (X , Y ) have the joint PDF 

f{x,y) = 0 . 1 5 % ) % ) + 0 . 3 % ) % - 2) + 0 .35% - 1 ) % + 2) 
4- 0 .1% - 1 ) % - 1) + 0 . 2 % - 1 ) % - 3) 

(a) Find E(XY), and correlation coefficient pxy. 
(b) Are X and Y uncorrelated? 
(c) Are X and Y orthogonal? 

4.19 Effect of scale and translation on correlation. Find the correlation coefficient puv between 
U = aX + b and V = cY + d, where a, 6, c, d are given real numbers, X and Y are RVs 
with known correlation coefficient pxy. When do pxy and p n v have the same sign? 

4.20* Correlation of a RV and its absolute value. RV X has the so-called Laplace distribution 
with the following PDF: 

fix) = \e-W (4.51) 

(a) Find the correlation coefficient between X and | X | . 
(b) Are X and | X | uncorrelated? 
(c) Are X and | X | independent? 

4.21 Perfectly correlated RVs. Two RVs X and Y are defined over the same sample space. 
They have correlation coefficient p = —1 and x = 1, y = 3, ox = 2, ay = 1. I f {Y = 2.3} 
occurred, what is X equal to? 

4.22* Standard Gaussian RV and its nth power. Let X ~ A/"(0,1) and Y = X n , where n is a 
positive integer. 

(a) Find the expected value of Y. 

(b) Find the correlation coefficient of X and Y. 

4.23 From joint PDF to others. Given the joint PDF of X and Y 

, ^ x __ f 4.8y(2 - x) 0 < x < 1, 0 < y < x 

J{x,y) - | o elsewhere 
(a) Find the marginal PDFs of X and Y. 
(b) Are X and Y independent? 
(c) Find the correlation Rxy and correlation coefficient pxy. 
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4.24 From joint PDF to others. Given the joint PDF of X and Y 

" A sin(x + y) 0 < x < TT/2} 0 < y < TT/2 
f(x,y) = 0 elsewhere 

(a) Determine constant A. 
(b) Find the expected values of X and Y. 
(c) Find the variances of X and- Y. 
(d) Find the correlation coefficient pxy. 

4.25* Mean and variance of uniform RVs over a circle. Find the expected values and variances 
of X and Y that are uniformly distributed over the circle (x — a)2 + {y — b)2 < r2. 

4.26 Correlation of sum and difference. Consider two mutually independent zero-mean RVs 
X and Y with variances o2

x and cr 2, respectively. Let U — X + Y and V = X — Y. 

(a) Find the correlation and correlation coefficient of U and V if a2 = 1 and o2 = 
0.25. Are U and V perfectly correlated, strongly correlated, weekly correlated, or 
uncorrelated? 

(b) Find the correlation and correlation coefficient of U and V if a\ = 1 and a2 = 10. Are 
U and V perfectly correlated, strongly correlated, weekly correlated, or uncorrelated? 

4.27 Sum of squares of Gaussian RVs. For independent RVs X i , X 2 , . . . , X n , each being a 
JV(05 cr 2) RV, form a new RV X = X 2 4- X f 4- • • • + X 2 . 

(a) Find the mean of X . 
(b) Find the variance of X [use (3.45)]. 
(c) What are the mean and variance of a chi-square RV of n degrees of freedom? 

4.28 Mean and variance of sample mean. From n independent RVs X i , . . . , X n with a common 
expected value x and a common variance cr 2, form a new RV 

I 7 1 

II i=l 

which is known as sample average or sample mean. Find the mean and variance of X 
in terms of the true mean x, the sample size n and the variance cr 2. Is X a Gaussian RV 
if Xj's are independent or dependent Gaussian distributed? 

4.29 Mean of sample variance. Given n independent RVs X i , . . . , X n with a common expected 
value x and a common variance cr 2, form a new RV 

where A' is the sample average, defined by (3.63). This is known as sample variance. 
Find the mean of V in terms of the true mean x, the sample size n and the variance a2. 
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4.30 Correlation of sum and difference. Zero-mean RVs X and Y have equal variances. Show 
that C/ = X + y a n d V r = X - y a r e uncorrelated. 

4.31 Orthogonality of sum and difference. Find the real number c, in terms of the moments of 
X and y , such that U = X - cY and V = X + cY are orthogonal. 

4.32 Marginal vs. joint Gaussian. Two RVs X and Y have the following joint PDF 

(a) Find the marginal PDFs of X and Y. 
(b) Are X and Y Gaussian RVs? Are they jointly Gaussian? 

4.33 Probability of sum of independent Gaussian RVs. Given two independent RVs Xi ~ 
Af (2,1) and X2 ~ A f ( l , 4), find P{0 <X1~¥X2< 2} . 

4.34 Distribution of sum of independent uniform RVs. A RV Y is the sum of 500 independent 
and identically distributed RVs X i , X 2 , . . . , X 5 0 0 . Each is uniformly distributed over 
(1,2). Find the mean and variance of Y. Give an approximate distribution or PDF of Y 
and justify your answer. What is the probability that Y is larger than 750? 

4.35 PDF of sum of two RVs. Two resistors with independent random resistances R\ and R2 

are connected in series. 

(a) Find the PDF of the total resistance i f Rx ~ # ( 1 0 0 , 3 2 ) and R2 ~ # ( 5 0 0 , 5 2 ) . 
(b) Find the PDF of the total resistance i f R% and R2 have the following identical PDF: 

4.36 Failure time analysis. Three systems are connected as shown. Their times to failure 
Xu X 2 , X3 have the following CDFs: 

where u(x) is the unit step function. Find the CDF F(x) and PDF f(x) of die time to 
failure X of the total system S. I f a\ = l , a 2 = 2, as = 3, what are F(x) and f{x)l 

\x\ < 7T, \y\ < 7T 

elsewhere 

0 < r < 100 
elsewhere 

F X j ( x ) = ( l - e - ° < > ( x ) , i = 1,2,3 

S 
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4.37 PMF of junctions of discrete RVs. Consider two independent tossing of a fair die. Let 
X(Fl) = z , y ( F 2 ) = z, where Fl and Ff stand for the events that face i shows up 
in the first and second tossing, respectively. Find the PMF of (a) Z = X 4- Y; (b) 
U = max(X, Y); (a) V = min(X 5 Y). 

4.38 Fmm joint PMF to others. RVs (X , Y) have the following PMF 

Y\X 1 1 2 3 4 5 6 
1 0.01 0.04 0.04 0.05 0.06 0.01 
2 0.01 0.06 0.05 0.07 0.05 0.02 
3 0.04 0.09 0.03 0.05 0.05 0.03 
4 0.01 0.05 0.04 0.06 0.06 0.02 

(a) Find the PMF of X. 
(b) Find the PMF of Y. 
(c) Find the PMF of U = max(X}Y), 
(d) Find the PMF of V = min(X, Y). 
(e) Find the PMF of W = X + Y. 

4.39* Correlation of product and difference of independent Gaussian RVs. Consider two inde-
pendent RVs X - JV(0,1) and Y ~ (0,1). Let RVs U = XY and V = X - F . 

(a) Find the expected values of U and V . 
(b) Find the correlation coefficient of 17 and V. 

4.40* Functions of independent RVs. Consider two independent RVs X and Y with identical 
exponential PDF 

Let U = X + Y and V = X/Y. 

(a) Find the joint PDF of 17 and V. 
(b) Find the marginal PDFs of U and V9 respectively. 
(c) Are U and V independent? uncorrelated? 

4.41* Functions of independent RVs. Consider two independent RVs X ~ M(0,1) and Y ~ 
AT(0 51). Let U = X + F and V = t a n ' ^ X / y ) . 

(a) Find the joint PDF of U and V. 
(b) Find the marginal PDFs of 17 and V, respectively. 
(c) Are 17 and V independent? uncorrelated? 
(d) Identify the distributions of 17 and V, respectively. 

x > 0 
x < 0 
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4.42 System reliability. Three independent subsystems Si , S2, S3 are connected in series to 
form a system S. The times to failure of the subsystems Su S2 and S 3 are exponential 
RVs Xu X2, and X3 with CDFs 

, < 0 j ' ? = 1 ' 2 ' 3 

with ^ > 0. Find the CDF and PDF of the time to failure of the system S. Can you 
extend the results to a system with n independent subsystems? 

4.43 Correction to a mistake. For Example 4.1, a student calculates P{(X < 4) f l ( F > 2)} 
as follows: Let Z = — F . Then 

( 1 - e * x>4, z<Q 

[ 0 else 

Thus, 

P{(X < 4) n (F > 2)} = P{(X < 4) n (Z < - 2 ) } 

= Fx,z(^ ~2) = 1 - e~2 

= 0.8647 

Indicate and explain where the student made a mistake. 

4.44 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too Involved. 

4-14 Computer Exercises 

4.1 Scatter diagram.. The MATLAB command r a n d n ( 2 , 1 ) generates a pair of two Inde-
pendent, standard (i.e., with zero mean and unity variance) Gaussian distributed random 

y , that is, (X, Y) - Af(0,0; 1,1,0). Let numbers X and F in the form of 

" u' " 1 3 " " X-2 ' 
V 3 4 Y - 3 

(a) Generate 40 pairs of random numbers (Ui, Vi) for i = 1,2,... ,40 and plot them in a 
scatter diagram; that is, plot V{ vs. u{ for i = 1 ,2, . . . , 40. 

(b) Are U and V dependent? Are they correlated? I f yes, give your best guess of their 
correlation coefficient from the scatter diagram. 
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(c) Give your guess of the means u and v, variances o\ and o\, and correlation coefficient 
Puv 

You may use the companion software P&R as much as possible to complete the above 
tasks. 

4.2 Correlation determination. Data files m4_2a. dat , m4_2b. d a t and m4_2c. d a t in the 
companion software P&R contain n values of (X, Y), ([/, V) and (W, Z ) , respectively, in 
the following format: 

xi yi 
%2 y2 

(a) Plot the data points t / i ) , . . . , (xn, yTl). Plot similarly the data points (ui, vi) and 
(wi, zi) in separate figures. 

(b) Do you think that the two RVs in each of the pairs ( X , F ) , ([/, V), (W,Z) are 
independent, uncorrelated or correlated? Justify your answer. For each pair that you 
think is correlated, give your best guess of how large the correlation coefficients, the 
expected values and the variances of all RVs are. 

(c) Repeat parts (a) and (b) using the companion software P&R. 

4.3 Generation and testing of uncorrelated Gaussian random numbers. A pair of independent 
standard Gaussian RVs Xi and X 2 can be generated by the following formulas: 

fl=^/-21nC/i 
X1 = Rcos(2wU2) 

X2 = R8m(2irU2) 

where U\ ~ U(0,1) and U2 ~ 14(0,1) are independent RVs. 

(a) Write a computer program implementing this method to generate independent Gaus-
sian random numbers. 

(b) Use the companion software P&R to plot the histogram of 500 random numbers 
generated in (a) to verify that they are indeed Gaussian distributed. 

(c) Identify the mean and variance of the RV by calculating sample mean and sample 
variance (3.63)-(3.64) of the random numbers generated. Compare the results with 
those obtained by P&R. 

4.4 Identify parameters of jointly Gaussian distributions. The files m4_4a. dat , m4_4b. dat 
and m4_4c . da t in the companion software P&R contain three records of data, which are 
the realizations of three pairs of jointly Gaussian RVs (X, F ) , ([/, V), (W, Z), respectively. 

(a) Write a computer program to do the following: 
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• Plot six histograms of the six RVs using the three data sets. 
• Compute the sample means, sample variances and sample correlation coefficients 

of the three pairs of RVs, respectively. 
(b) Repeat the above using the companion software P&R. 
(c) Give your guess of the distributions of RVs (X, F ) , (£/, V ) , (W7 Z), respectively. 

4.5 Generation and testing of correlated Gaussian random numbers. The vector form of the 
PDF (4.33) of jointly Gaussian RVs is 

f(x, y) = 
i 

2TT^|C| 

where \C\ is the determinant of the covariance matrix 

T2 

(4.52) 

C = ax paxoy 

.2 pcrxoy 

The MATLAB command r a n d n ( 2 , 1 ) generates a pair of two independent, standard 
(i.e., with zero mean and unity variance) Gaussian distributed random numbers [/, V in 

U , that is, (U, V) ~ #(0 ,0; 1,1,0). If C 7 1 / 2 ( C 1 / 2 ) / = C, where C 1 / 2 can the form of 
V 

be chosen as a lower triangular matrix C1/2 

X 
Y 

Cl/2 u 
V 

a 0 
b c 

+ 

, then 

will be jointly Gaussian with the PDF (4.33); i.e., (X} Y) ~ N(x, y, a 2 , a 2 , pX 2 /). Give a 
procedure for the generation of the following pairs of random numbers: 

{X,Y)~N(x,y,Gl,ol,pXy) 

For each of the following three cases: 

(i) (x, y, cr^ <j2 p X 2 /) = (1,2,1.5,2.3,0), 

(ii) (5, y, o ,̂ o-J, P^) = (10,1,1.5,2.3,0.97), 
(iii) (x, y, a 2 , ex2, p s y ) = (1,2,1.5,2.3,0.7), 

do the following. 

(a) Generate 500 pairs of RVs (X , Y) using the above procedure. Plot the histograms of 
X and Y, respectively, using these pairs of random numbers to verify that they are 
indeed Gaussian distributed. Identify x,y,o2

x,G2,pxy by calculating sample means 
(3.63), sample variances (3.64) and sample correlation coefficient (4.24) of X and 
Y. 
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(b) Use the last 100 pairs of the random numbers generated to plot scatter diagrams to 
check roughly the correlation of X and Y generated in (a). 

(c) Repeat (a) and (b) using the companion software P&R. 

4.6 Generation and testing of correlated Gaussian random numbers. An alternative method 
of generating correlated Gaussian RVs is based on Example 4.22. It was shown there that 
if (X, Y) ~ Af(x, y; cr2, a2

} p), then the conditional PDF of X given Y is given by 

f(x\y) = Af(x; x + p^(y - y), cr 2(l - p2)) 
\ Oy J 

Thus a pair of (X, Y) ~ # ( £ , y; < 7 2 , ( 7 2 , p) RVs can be generated in two steps: 

51. Generate a random number Y ~ M(y; a2) using MATLAB function randn. 

52. Generate a random number X ^ JSf (x + p^(y — y), o2{\ — p 2 )) using MATLAB 
function randn. 

(a) For (x, y, a 2 , a 2 , p) = (1,2,1.5,2.3,0.8), fix s/ = 2.3, using step S2 to generate 1000 
random numbers X / s . 

(b) Plot the histogram of X / s using the random numbers generated to verify that they 
are indeed Gaussian distributed. 

(c) Identify the mean and variance of X given Y = 2.3 by calculating sample mean 
(3.63) and sample variance (3.64) of the random numbers X{ generated. 

(d) Write a program to implement the above method of generating correlated Gaussian 
RVs. 

(e) Generate random numbers for the following three cases, respectively: 
(i) (£,y,o2, ®lpxy) - (1,2,1.5,2.3,0). 
(ii) (S,y,a2,<Tj,A*y) = (10,1,1.5,2.3,0.97). 
(iii) (x, % ol o2 pxy) = (1,2,1.5,2.3,0.7). 

(f) Identify x,y, o2, o2, and pxy by calculating sample means (3.63), sample variances 
(3.64) and sample correlation coefficient (4.24) of X and Y based on data generated 
in (e). 

(g) Use three 100-point scatter diagrams to check roughly the correlation of X and Y 
based on data generated in (e). 

(h) Repeat parts (e)-(g) using the companion software P&R. 

4.7 Numerical evaluation of correlation. Following Example 4.8, use the companion software 
P&R to evaluate the correlation of (a) Y = sin(X + TT/3) and X , and (b) Z = X 4 and 
X , where X has a log-normal distribution with a = 2 and a = 3.4. 
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4.15 Self-Test Problems 

4-15 Self-Test Problems 

4.1 Answer the following questions briefly: 

(a) Is the marginal CDF of RV X equal to the joint CDF of (X, Y) with the value of Y 
fixed at an arbitrary value? 

(b) Is the joint PDF of two RVs always equal to the product of the marginal PDFs of 
each RV? I f not, under what condition is i t true? 

(c) I f g(x, y) describes a curve in the x-y plane, is It always true that P{g(X, Y) = 0} = 
0? I f not, under what condition is it true? 

(d) Can a pair of jointly uniform RVs have two different nonzero PDF values? 
(e) Is it true that X and Y have a stronger linear correlation than 17 and V i f \Rxy\ > 

\Ruv\7 Is It true i f \Cxy\ > \CUV\1 Is it true i f \pxy\ > \puv\l 
(f) Can a RV and its nonlinear function be uncorrelated? 
(g) Are two different functions of two RVs always correlated or uncorrelated? 
(h) For two independent RVs, what is the convolution of their marginal PDFs equal to? 
(i) For two arbitrary Gaussian RVs, Is it true that they are independent i f and only i f 

they are uncorrelated? 
(j) What is the distribution of the sum of two jointly Gaussian RVs? What is the 

distribution of the sum of two Independent Gaussian RVs? 

4.2 Given the joint PDF of two RVs X and Y 

±(l + xy) 0 < x < 25 0 < y < 4 
elsewhere 

(a) Find the joint CDF of X and Y. 
(b) Show that the marginal PDFs of X and Y are, respectively: 

/(*) = 

f(y) = 

A±p 0 < x < 2 
0 elsewhere 

^ 0 < t / < 4 
0 elsewhere 

(c) Find P{X < 0.8, Y < 1}. 
(d) Find P{X + Y > 1}. 
(e) Find P{X - Y > 3}. 
(f) Find the expected values and variances of X and Y. 
(g) Find the correlation coefficient between X and Y. 
(h) Determine if X and Y are independent. Justify your answer. 
(i) Determine if X and Y are uncorrelated. Justify your answer, 
(j) Find E[2X + bY). 

4.3 Given three independent RVs Xx ~ X2 ~ Af(2,l), and X3 ~ 7V(2,4), find 
P{0 <X1 + X2 + X3< 6}. 
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4.4 Given two zero-mean unity-variance random variables X and Y with a correlation coef-
ficient pxy = —0.5, form a new random variable 

V = (cX - 2Y)2 - W 

where c is a real-valued constant. 

(a) Find the value of c such that E[V] = 4. 
(b) Find the value of c that minimizes the mean E[V]. 
(c) Can E[V] be smaller than 2.5? Justify your answer. 

4.5 Given the joint CDF of X and Y 

F x x ( ^ y ) - [ 0 elsewhere 

(a) Find the marginal CDF and PDF of X . Identify RV X . 
(b) Find the marginal CDF and PDF of Y. How many possible values can Y take on? 
(c) Are X and Y independent? 
(d) Find the correlation Rxy. 

4.16 Solutions to Self-Test Problems 

4.1 (a) No, the marginal PDF F(x) = F(x, y)\y^ It is equal to the joint PDF of (X, Y) 
with y fixed at infinity. 

(b) No, the joint PDF of two RVs is equal to the product of the marginal PDFs of each 
RV i f and only i f the two RVs are independent. 

(c) P{g(X, Y) = 0} = 0 i f and only there is no discrete point mass on 'the curve 
g(x, y) = 0. Thus, it is true i f (X , Y) are continuous because a curve has zero area. 

(d) No, a pair of RVs is defined to be jointly uniform i f their PDF is constant over only 
one area. 

(e) Correlation Rxy depends on the expected values and variances as well as the correla-
tion of X and Y; covariance Rxy depends on the variances as well as the correlation 
of X and Y. Thus neither \Rxy\ > \RUv\ nor \Cxy\ > \CUV\ necessarily implies that 
(X , Y) have a stronger linear correlation than ([/ , V). However, since the correlation 
coefficient pxy is the correlation of the standardized RVs X and Y or the properly 
normalized covariance, it is the right thing (measure) for linear correlation between 
RVs and thus i f \pxy\ > \puv\ then (X, Y) have a stronger linear correlation than 
(U,V). 

(f) Yes, see Examples 4.7 and 4.9. 
(g) No, they may or may not be correlated. See Example 4.31. 
(h) The convolution is the PDF of their sum. See (4.37). 
(i) It is true only i f the two RVs are jointly Gaussian. 
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(j) Both are Gaussian distributed. 

4.2 (a) 

/
x ry 

/ /(£, y)dydx 
-oo J—oo 

fo fo ^(1 Jrxy)dydx 

fo fo-k(l + xy)dydx 

fo fo hi1 + xy)dvdx 

(y2 + 2y)/24 
( x 2 + x ) /6 
(zy + x V / 4 ) / 2 4 

£ > 2, y > 4 
x>2, 0 < y < 4 
0 < x < 2 , y > 4 
0 < x < 2 , 0 < 2 / < 4 
elsewhere 

z > 2, y > 4 
^ > 2 5 0 < 2 / < 4 
0 < x < 2 , 2/>4 
0 < x < 2 , 0 < y < 4 
elsewhere 

(b) 

/
oo 

-oo 

/
oo 

f(x,y)dx 
-oo 

/ 0

4 i ( l + x y ) % = i f ^ 

to &(l + a*)<fe = ^ 

0 < rc < 2 
elsewhere 

0 < y < 4 
elsewhere 

(c) 

(d) 

P { X < 0.8, y < 1} = F(0.8,1) = (xy + a r Y / ^ ^ = 0.04 

P { X + Y > 1} = P{Y > 1-X} 
POO f-OO 

= / f(x,y)dxdy 

J x——oo Jy=l—x 

=[ lLk{i+xy)dxdy 

2 i / 0

2 [ 4 " ( i - a ; ) + 4 [ i 6 - ( i - x ) 2 ] 

9 o 2 1 i 2 

6 + - x 2 - - / (x - 2x2 + x3)dx 
2 o 2 Jo 

24 
- J . 
""24 

- J _ 
24 

= 0.9861 

dx 

71 
72 
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(e) P{X — Y>3} can be obtained similarly as for P{X + Y > 1}. However, a better 
way is the following. Since the maximum value that X can take on with nonzero 
probability is 2 and the minimum value that Y can take on with nonzero probability 
is 0, the difference X - Y > a w i l l have a zero probability for any a > 2. Thus, 
P{X - Y > 3} = 0. 

(f) 

xf(x)dx = / x——dx = ^(2 + ^ x 8) = 1.2222 
-oo Jo o 6 3 

E[Y] = f™jf{y)dx = j\l-^-dy = 1 (8 + 1 x 64) = 2.4444 

E[X2} = r x2f(x)dx = f2x*l-±^dx = 1 | + 1 x 16) = 1.7778 
J—oo Jo o o o 4 

^ = /I " I4 = S<T + \ X 2 5 6 ) = 7 - N N 

<r2 = £ [ X 2 ] - {E[X})2 = 0.284 
<r2 = E[Y2} - (E[Y])2 = 1.136 

/
oo rco 

/ xyf(x,y)dxdy 
-oo */ —oo 

= [ f 0

x y h { l + x y ) d x d y 

_ J _ 416 864 
~ 24^2 2 + 3 p 
= 3.037 

(g) 

E[(X-x)(Y-y)} = E[XY]-xy 
ax<Ty crxay 

3.037- (1.2222)(2.4444) 

v/(0.284)(1.136) 
= 0.08706 

(h) Since f(x)f(y) ^ f{x,y), X and F are not independent. 
(i) Since ^ £[x].E[y] (or equivalently, pxy ^ 0), X and F are not uncorrelated. 
( i ) 

£ [ 2 X + 5F] = 2 £ [ X ] + 5£[Y] = (2)(1.2222) + (5)(2.4444) = 14.6664 

4.3 Let Y = Xi + X2 + X3. Since Y is a weighted sum of independent Gaussian RVs, it is 
also Gaussian with the mean 

E[Y] (4=1} E[X1 + X2 + X3} = xl+x2 + x3 = l + 2 + 2 = 5 

a2

y

 ( 4 ^ 2 ) 12 + 12 + 4 2 = 18 
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That is, Y ~ A/"(5,18). Hence, 

P { 0 < A'j + X 2 + X:i < 6} = P{0 < F < 6} 

4.4 

(a) 

18 *" Vl8 x/18'i 
= $(0,236) - $(-1.18) = 0.5933 - 0.119 
= 0.4743 

V = (cX - 2Yf - 3Y = c2X2 + AY2 - AcXY - 3Y 

= c2E[X2} + 4E[Y2} - 4c E[XY] -3y 
—G x & y Pxy 

• c +4- Acax<jypxy - 0 
: 4 + 2c + c 2 

then 

(b) 

E[V) 

£E\V] = 2c + 2 = 0=*c=-l 

c = 0 

j-2E\V] = 2 > 0 
c = —1 minimizes E[V] 

(c) Since min E[V] = E\V]\ = 

4.5 It is better to rewrite FXy(x, y) as 

FXy{x,y) = 

: 4 + 2 ( - l ) + ( - 1 ) 2 = 3 > 2.5, the answer is no. 

l-e~x 

0 
0 
0 

x > 0,y > 0 
a: < 0,|/ > 0 
s < 0,|/ < 0 
x > 0,7/ < 0 

Note that the regions correspond to the four quadrants, respectively. 

(a) Note that Fx(x) = FXy{x, oo). For x > 0, the first piece of FXy{x,y) leads to 
Fx(x) = 1 — e~~x. For x < 0, the second piece indicates that Fx(x) = 0. Thus, the 
marginal CDF of X is 

Fx(x) = 
x > 0 
x < 0 
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The PDF of X is, by taking derivative, 

x > 0 
x < 0 

This indicates that X is exponentially distributed with parameter A = 1. 
(b) For y > 0, the first piece of FXjY(x, y) leads to 

FY(y) = (oo, y) = J im (1 - e'x) = 1 

For y < 0, the last piece indicates that FY(y) = FXy(oo, y) = 0. Thus, the marginal 
CDF of Y is the unit step function; that is, Fy(y) = u(y). Taking derivative yields 
that the marginal PDF is the delta function fy{y) = S(y), which indicates that all the 
probability mass of Y is located at y = 0 and thus Y is actually not random; it is 
equal to 0 (i.e., there is only one possible value for Y). 

(c) It is easy to show that FX,Y(X, y) = Fx{x)FY{y) and thus X and Y are independent. 
The same conclusion could be arrived by showing fx,y{x,y) = / x (^ ) /y (y )» which 
is, however, complicated due to the involvement of delta functions. 

(d) Since X and Y are independent, the correlation Rxy = xy = (1)(0) = 0. 
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INTRODUCTION TO STATISTICS 

Statistical thinking will one day be as necessary for efficient citizenship as the 
ability to read and write. 

H. G. Wells 

Statistics has been likened to a telescope* The latter enables one to see further 
and to make clear objects which were diminished or obscured by distance. The 
former enables one to discern structure and relationships which were distorted 
by other factors or obscured by random variation, 

D. J. Hand, Psychological Medicine (1985) 

This chapter covers some elementary concepts of statistics, which are nec-
essary for probabilistic analysis when an appropriate probabilistic model is not 
given. 

Main Topics 

• Sampling, Sample Mean, and Sample Variance 
• Empirical Distributions 
• Parameter Estimation 
• Hypothesis Testing 
• Linear Regression and Curve Fitting 
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J . I Introduction 

5.1 Introduction 

Previous chapters are devoted to the analysis of a random phenomenon, where it 
is assumed that a probabilistic model of the phenomenon (e.g., the distribution 
of the random variable) is given. In reality, however, it is quite often the case 
that the probabilistic model is not known. In this case, statistics is essential 
in establishing the correct probabilistic model. In this chapter we study some 
elementary concepts of statistics. 

Statistics is a science dealing with data subject to uncertainties. It has an 
extremely wide spectrum of application. Examples of the application areas are 

• Quality control 
• Instrumentation 
• Insurance 
• Poll taking 
• Weather forecasting. 

Statistics is a magic weapon: Given a collection of data/facts, one can arrive 
at almost any conclusion he/she wants by abusing statistics. 

Terminology 

• The entire collection of data being studied is called a population. It is a RV 
whose possible values are the values of the data. 

• A sample ( X t , . . . , Xn) is a subset of the population selected at random. 
• The population size is the number of data pieces that make up the population. 
• The sample size is the number of pieces of data that make up the sample. 

For example, i f we conduct a poll by asking 1,000 people to predict the 
outcome of a U.S. presidential election, then the population consists of all people 
in the U.S. who are eligible to vote. The sample for this poll is those people 
surveyed and the sample size is 1,000. The population size is the number of 
eligible people in the U.S. 

It is almost always assumed that the data (i.e., RVs Xi, X%,..., Xn) making 
up a sample are independent and identically distributed {Ltd.). 
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5.1 Introduction 

Statistics has two fundamental objectives. The primary objective of descriptive statistics Is 
to better understand the population; that Is, i t is concerned with the question of how to collect, 
assemble, and present data in a way that can be easily understood. On the other hand, inductive 
statistics or statistical inference aims at making Inferences, such as decisions and estimates of 
the population based on a limited set of observations called a sample. 

Probability and statistics may be viewed as an analysis-synthesis pair: Probability provides 
tools for the analysis of a random phenomenon while statistics deals with the various topics of 
establishing a probabilistic model of the random phenomenon from the observation (data) of the 
phenomenon. Almost all studies of synthesis are dependent on the corresponding analysis tools, 
so it is natural that the study of statistics relies heavily on the probabilistic tools. 

The field of statistics is extremely vast. It has many areas, including the following. 

• Sampling theory studies problems involving the selection of samples from a collection of 
data called the population. Two examples of such problems are how to select samples from 
a large collection of data and how to determine the properties of a sample. 

• Estimation theory studies various methods of estimating unknowns based on available data 
and how these methods should be evaluated. 

• Hypothesis testing is concerned with the problem of deciding which of a number of hypothe-
ses is true, based on available data, and the properties and decision errors associated with 
the tests. 

• Curve fitting fits curves (i.e., mathematical expressions) to the given data. 
• Analysis of variance assesses the variation in the data (population). 

A population usually has a large size. It Is often unrealistic to study each and every element 
of the population. For example, i f we want to know the average life of a batch of bulbs, It is 
clearly unwise to test each and every bulb for its life because not only is i t time consuming but 
also all bulbs are rained after the test. A natural idea is to study a (small) part of the population 
that represents the population. Such a representative part is called a sample in statistics. A good 
example of using such an Idea is spot-checking wherein a conclusion is made based only on the 
examination of a sample of the products. 

Mathematically, a population is a random variable X and a sample is a set of RVs: { X l s . . . , 
Xny where n is the sample size. To "represent" the population truly and faithfully, a sample has 
three basic requirements: (a) it is random in the sense that each element of the population has an 
equal probability of being sampled (rather than in the sense of just being uncertain); (b) each of its 
elements has the same distribution as that of the population; and (c) its elements are Independent 
of each other. More specifically, let X be the random variable that represents the population and 
let Xi,... ,Xn be the elements of a (random) sample of X. Then the above requirements can be 
stated as: X 1 ? . . . , Xn are independent and they all have the same distribution as that of X. In 
short, X and Xi,... ,Xn are i.i.d. 

In practice, a random sample of independent elements is usually gathered by taking elements 
of the population at random in such a way that the elements taken have no clear relation. For 
example, i f a telephone poll is to be conducted, then at least the phone numbers should be selected 
at random (e.g., from a random number generator). 
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5.1 Introduction 

The sample (Xx,..., Xn) Is a set of RVs. Its particular value is denoted in lower case by 
(X\, . . . 5 X n ) . 

Note that since the elements of a sample are Independent, formulas that require the indepen-
dence of RVs are applicable. 

There are two types of sampling. In the sampling with replacement, after an item is drawn 
from the population, It is put back into the population and thus there Is a chance it would be 
drawn again. As such, Xi and Xj have the same distribution even if the population size is finite. 
If the drawing of an item is done statistically independent of any other drawing, then the RVs 
X i , . . . , Xn that make up a sample are truly i.i.d. On the other hand, in the sampling without 
replacement, an item is not put back into the population after It is drawn. If the population 
size is finite, the distribution of the (remaining) population is no longer the same as before. For 
example, If there is one defective resistor among TV resistors, the probability that any one of them 
is defective is 1/N. If, however, one is drawn and found not defective, then the probability that 
any one of the remaining is defective is now l/(N — 1). If N is not large, the difference would 
be significant. In this case, the distribution of X 2 would clearly depend on the value of X\ and is 
not identical to that of Xx and, therefore, X l 5 . . . , X n that make up a sample would not be i.i.d. 
However, they are approximately i.i.d. if the population size is large (and the defective resistors 
do not have a constant percentage in the population). 

Although the RVs that make up a sample are almost always assumed to be i.i.d., it should 
be noted that this assumption is only approximately valid for sampling without replacement of 
a population of a finite size. In practice, it is almost always the case that sampling without 
replacement is used and thus it is important to apply the statistical tools only to problems with a 
population of a large size unless the i.i.d. assumption is given up. 

Note that when the population size is infinite, sampling with or without replacement makes 
no difference. 

Example 5.1: Biased Sample — The 1936 Literary Digest Poll on the Presidential Election 

Before the presidential election between Franklin Roosevelt and Alf Landon in 1936, the Literary 
Digest polled 2.4 million people, the largest political poll ever conducted, and predicted a landslide 
victory for Landon, 57 percent to 43 percent, with a margin of error "within a fraction of 1 
percent." However, it was Roosevelt who won in a landslide, 62 percent to 38 percent. The 
mistake was due to the fact that the sample used by the Literary Digest was biased. The 
Literary Digest mailed questionnaires to 10 million people. The primary source of their names 
was telephone books in the U.S. In 1936, telephone service was relatively new and expensive, 
and there were only 11 million households with phones. These homes were relatively better 
off financially and were in favor of the Republican candidate Landon, while those households 
without a phone were overwhelmingly for the Democrat Roosevelt. 

In summary, quality is far more important than quantity in sampling — the elements in the 
sample should be independent and have an identical distribution as that of the population. 
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5.2 Sample Mean and Sample Variance 

5.2 Sample Mean and Sample Variance 

5.2.1 Sample Mean 

The sample mean (or sample average) of a sample ( X i , . . . , Xn) is defined as 
the average value of the sample: 

1 n 

x = -j:xi 
n i = l 

(5.1) 

The sample mean is used in practice to estimate (approximate) the unknown 
true mean of the population: 

x = E[X] « X (5.2) 

The sample mean is a RV since it is an (evenly weighted) sum of RVs 
X i , . . . , Xn. Given a realization ( # i , . . . , xn) of the sample (i.e., given the values 
a?i,..., xn of the RVs X i , . . . , Xn% the value (or realization) 

1 n 

x z=z — 2^ X{ 

of the sample mean is a nonrandom number. 
The expected value (mean) of the sample mean is equal to the true mean: 

E[X] = - £ E{Xi] = -±x = x (5.3) 
n i = 1 n i = 1 

which has the following important interpretation: The sample mean equals the 
true mean on the average. 

The variance of the sample mean as a RV is, since X\,..., Xn are i.i.d., 

where o\ is the variance of the population (i.e., of the RV X) . o\ provides a 
measure of the variation of the sample mean. Thus, the variation of the sample 
mean is reduced by increasing the sample size n. 

Since the sample mean is the sum of independent RVs, i f the size is large, the 
sample mean is approximately Gaussian distributed in view of the central limit 
theorem. 
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a\ = var(X) = var ~ £ Xt
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5.2 Sample Mean and Sample Variance 

Example 5.2: Probabilistic Analysis of the Average Score of a Class 

Suppose that the score of a student in a school is approximately a Af(70,102) 
RV. Consider the average score of a class of 20 students. 

Here we are given a sample of size 20 and x = 70, ax = 10. 
(a) Find the expected value of the average score of this class: The average score 

is the sample mean and thus its expected value is 

E[X] = x (true mean) = 70 
(b) Find the variance of the average score of the class: The variance of the 

average score is the variance of the sample mean 

oj (5=4) o*/n = 102/20 = 5 
(c) Is the average score of this class a Gaussian RV? The average score is the 

sample mean of the score of a student in this school. Since it is a weighted 
sum of independent Gaussian RVs for this example, from Example 3.19 it is 
a Gaussian RV. 

(d) Find the probability that a student's score will be in (60,85): The score X 
f -7 i 
10 of an arbitrary student is a «Af(70,102) RV. Thus, X = ^ = ^ is a 

standard Gaussian RV Hence 

P { 60<X<85 } = P { « ^ I 2 < ^ I ° < ^ } = P { - 1 < 1 < I , } 

= $(1.5) - $(-1) *= b l e 0.9332 - (1 - 0.8413) = 77.45% 
(e) Find the probability that the average score of this class will be in (65,75): 

Since E[X] — 70, a\ = 5 and the average score X is a Gaussian RV, it is 

a JV(70,5) RV. Thus, X - X ~ X = X ~]° i s a standard Gaussian RV 
Ox v5 

Hence 
D f c c + _ K 1 n f 6 5 - 7 0 X - 7 0 7 5 - 70i P{65 < X < 7,} = P { - 7 r < - 7 r < - / r ) 

= P{-2.236 < X < 2.236} = $(2,236) - $(-2,236) 
= 0.9873 - (1 - 0.9873) = 97.46% 

From (d) and (e), the distribution of the average score is much more concentrated 
around its mean than the score of a student. Does this make sense? 
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5.2 Sample Mean and Sample Variance 

5.2.2 Sample Variance 

The sample variance of a sample (A'i, X%, •.., Xn) is defined as 

1 
n - l i = i 

(5.5) 

Sample variance is used in practice to estimate the variance of the population: 

o***V (5.6) 

Sample variance is also a RV. Its value, given the value of a sample, will be 
denoted by v. 

E 

Note that 

= E 

= E 

[(Xt -x)-(X- x)}2 

(Xi - x)2 + (X- x)2 - 2(Xi -x)(X- x) 

2 <r* + <r| - 2E (Xi-x)(]-t(Xj 
n i=l 

X 

a2

x + -4 - 2E 
x n 

1 

? 2 I x 
x n 

(Xi-x)--[(X1-x) + --- + (Xn-x)} 
2 1 2<rx 2 a* n- -L 2 

= (J — -—- = — • <7 r 

n n n 
where = follows from the fact that Xi,X2,...,Xn are independent and thus 
uncorrelated. Thus, the expected value of V is 

E[V] = E1—- Y,(Xi - X)2} = —— E E \(Xi - xf 

n - 1 n 
n - 1 

That is, l^e sample variance is equal to the true variance of the population (i.e., 
the RV) on the average. 

I n 
Note that were the sample variance defined as S2 = - E P Q -X)2, it would 

not be equal to the true variance on the average, although it is sometimes also 
called the sample variance. I f the true mean x of the population is known, 
however, the sample variance should be defined as = ^ £ f = 1 pf j — x)2. 

The square root of the sample variance is called the standard error. 
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5.2 Sample Mean and Sample Variance 

Example 5.3: Determination of the Gaussian Curve of Test Scores 

Suppose that the score of a student in a school is approximately a N{x, a2) RV 
and that 30 students were surveyed whose scores are: 79, 43, 66, 99, 91, 88, 89, 
74, 78, 83, 77, 68, 89, 85, 69, 58, 90, 84, 75, 77, 83, 94, 57, 63, 65, 79, 66, 68, 
74, 75. 

(a) The average score of the class is the sample mean, given by 

x = i-[79 + 43 + 66 + • • • + 68 + 74 + 75] = 76.2 

(b) The sample variance is a measure of the deviation of an individual score from 
the average score of the class. It has the value 

1 (79 - 76.2)2 + (43 - 76.2)'2 + • • • + (75 - 76.2)' 
3 0 - 1L 

154.23 

Hence, the standard error is Vt) = VT5423 = 12.42. 
(c) The standard deviation of the sample mean is approximately given by 

at - y^T^ « vŴO = >/l54.23/30 = 2.27 

It Is a measure of the variation (randomness) of the average score. 
We may thus conclude that the test score of a student in this school is ap-

proximately a JV(76.2? 154.23) RV and die average score is approximately a 
J\f(76.25 2.272) RV. The Gaussian curve of the test scores provided by your pro-
fessor may have been generated in this way. 

— Population 

— Sample mean 

Figure 5.1: PDFs of the population and sample mean. 
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5.2 Sample Mean and Sample Variance 

The sample variance is sometimes defined as 

S2 = - , £ ( X I - X ) 2 

71 i=l 

although it is biased, as shown previously, in the sense that its expected (average) value is not 
equal to the true variance. Similarly, the sample moment and sample central moment are defined 
as 

1 
sample kth moment — — ]P X]f 

n i=i 
I n 

sample fcth central moment = — ^T(Xi — X)k 

n i=i 

It can be shown that the sample moments and sample central moments approach the true moment 
and 'true central moment, respectively, as sample size increases. 

Although (5.3) is valid provided that Xt}..., Xn have 'the same mean x, which is always 
the case for sampling of a population, (5.4) is valid only i f Xi,... ,Xn are i.i.d. (or more 
rigorously, uncorrelated and have the same variance), which is clearly not true for sampling 
without replacement of a population of a finite size. In such a case, (5.4) should be replaced by 
the following 

« < * > - ^ 
where N is the population size. Clearly, this variance approaches (5.4) as the sample size n 

increases. Note that this variance vanishes when the sample size n is equal to the population 
size TV. This makes sense since the sample mean in this case is exactly equal to the true mean 
of the population because all elements of the population have been drawn. Note also that this 
variance is identical to (5.4) for n = 1, which makes perfect sense since sampling with or without 
replacement makes no difference when only one item is drawn. 

Since the sample variance itself is a RV, it has a variance. The variance of the sample 
variance (5.5) is given by, after a lengthy but straightforward derivation, 

a2 = var(V) = E{(V - E[V]f] = ±(E[(X - xf] -

It provides a measure of the variation of the sample variance around its mean, which is the true 
variance of the population. 
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5.3 Empirical Distributions 

In the previous chapter, it was assumed that the distribution of a RV X is given. 
In reality, it is more often the case that the distribution is not known but the 
values # i , . . . , xn of a sample of X are given. Note that the elements X\,... , X n 

of a sample are assumed to be independent. How do we obtain an approximate 
distribution of the RV X based on the data x i , . . . , xnl 

The empirical CDF of a RV X given the values . . . , xn of a sample of 
X is defined as 

. x number of sample values x\,... ,xn not greater than x 
F(x\xU . . . , XN) = — • — — — • • 

n 
The empirical CDF can be used to approximate the true CDF. This is justified by 
the so-called Glivenko theorem which states that the empirical CDF uniformly 
converges to the true CDF with probability one as n —• oo. 

..., xn) is actually a histogram of a stairway type. Its value at x is 
the percentage of the points x\,..., xn that are not larger than x. It is often more 
convenient to use a histogram of the PDF type. This can be done based on the 
relation fx{%) ~ P{% < X < x + Ax}/Ax for small Ax. Thus the empirical 
PDF can be defined as 

f(x\xu..., 

Figure 5.2: The empirical CDF of Example 5.4. 
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5.3 Empirical Distributions 

Example 5.4: Identification of Distribution From Data 

The file e5-4 .da t in the companion software P&R contains a record of 400 
pieces of data. The distribution of the population from which the data was drawn 
can be identified as follows. 

51. Use P&R to plot the empirical PDF (i.e., histogram of the PDF type), as 
shown in Fig. 5.3. It can be observed that the empirical PDF resembles 
the PDF of a Weibull or Rayleigh RV. Since Weibull includes Rayleigh as a 
special case, let us assume it is a Weibull RV. 

52. Use P&R to compute the sample mean and sample variance of the data as 
x = 0.8891 and v = 0.2299. From Table 3.1, it is found that the parameters 
a « 1.946 and b « 0.9930. 

53. Use P&R to overlay the empirical PDF and the Weibull PDF with a = 1.946 
and b = 0.993, as shown in Fig. 5.4. They match quite well and thus it 
can be concluded that the population is probably Weibull distributed with 
parameters a = 1.946 and b = 0.993. 

In fact, the data was drawn from a population that is Weibull distributed with 
parameters a = 2 and 6 = 1 (i.e., Rayleigh distributed). 

0.8 i 

Figure 5.3: Empirical PDF of data e5_4. dat. 

Figure 5.4: Comparison of the empirical and theoretical PDFs. 
229 



5.4 Statistical Inference 

5.4 Statistical Inference 

Statistical inference consists of two parts: Estimation and decision making con-
cerning some unknown parameters of the population. 

• Estimation provides an approximate value of the parameter that is close to 
the true value. 

• Decision or hypothesis testing decides whether a given or hypothesized value 
of the parameter should be rejected as the true value or not. 

Example 5.5: Estimation of Mean and Variance of a Gaussian Population 

The mean and variance of a population X ~ J\f(x, a2) are not known, where X 
is the age of a member of a professional society. A random sample ( X i , . . . , Xn) 
of X is available. Many estimates of x and a2 are possible. For example, the 
sample mean and sample variance can be their estimates, respectively, that Is, 
x « Xy a2 « V. x and a can also be estimated by x & Xm and a « R/dn, 
where Xm is the sample median and R is the sample range, defined by 

34, 52, 45, 36, then we have 
x = 43.14, v = 63.12, xm = 41, r = 22 (r/dn)2 = 64.20 

Note that x « xm and v « (r/dn)2. 

Example 5.6: Hypothesis Testing on Mean of Measurement Error 

The measurement error of a device has variance a2 = 0.0004 and an unknown 
mean x. Suppose we hypothesize that x = 0 (i.e., no bias). Should we reject this 
hypothesis given a sample (0.01, -0.06, -0.09,0.04, -0.05,0.08, -0.03,0.07) of 
the measurement error? This is the problem of hypothesis testing. Clearly, it 
would not work by simply comparing the hypothesized value with an estimate of 
the mean (which cannot be equal in general). 
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5.5 Parameter Estimation 

Many methods are available for parameter estimation. We shall focus on two of 
them: the maximum likelihood method and the method of moments. 

The basic idea of the maximum likelihood method is the following. If an 
event occurs in a single observation, then we can reasonably assume that it has 
a large probability — its likelihood is large. As such, the value of the unknown 
parameter that is most likely to have produced that event (i.e., that particular 
sample of data) may be used as the estimate of the parameter. 

The likelihood function L{x\,... ,x n ;0) of a parameter 9 given a sample 
( X i , . . . , Xn) is the joint PDF of {X\,..., Xn) pretending that the parameter is 
known. It is in general a function of the parameter. The maximum likelihood 
estimate (MLE) of 9 is the maximum point (i.e., the peak location — 9 value of 
the peak) of the likelihood function L ( x i , . . . ,xn\9). 

Example 5.7: Maximum Likelihood Estimation of Failure Rate 

The time X to failure of a system is an exponentially distributed RV with PDF 
f(x) = \e~Xxu(x). However, the failure rate A is unknown. Given a sample 
( X i , . . . , Xn), we use the maximum likelihood method to estimate A. 

The likelihood function is, since X\,... ,Xn are independent, 

L(xh... 3xn; A) = fxl9...,xn(xu • • • ,a?n|given A) 

= ft fxfci) = Ae-^ 1 • • • A e - ^ t i f a ) • • • u(xn) 
i=l 

= A n c- A ( x i + ' " + a ! w ) t i (a : i ) • • • u(xn) = \n

e^Xn{t ft u(x{) 
n 

In L = n(ln A — xX) + Yl^n u(xi) 
i=l 

where x = ^ E f = i ^ i . Clearly, L and InL achieve their maximum at the same 
value of A, which is obtained easily by setting ^ In L = 0 as 

\ = 1/X 
That is, the maximum likelihood estimate (MLE) of the failure rate is the recip-
rocal of the sample mean. 
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5.5 Parameter Estimation 

The underlying Idea of the method of moments Is that the sample moment 
should be close to the true moment. Thus, the value of the unknown parameter 
that makes the moments equal can be used as an estimate of the parameter. 
Usually, a lower (e.g., the first or second) moment is preferred. 

Example 5.8: Method of Moments Estimation of Failure Rate 

We now use the method of moments to estimate the failure rate A of the above 
example. For this example we will use the first moment. Since the true mean 
(expected value) of the exponential RV X Is equal to 1/A (see Example 3.21), 
by letting 

1 / A = true mean = sample mean — X 
we have A = which turns out to be equal to the MLE. 

Example 5.9: Maximum Likelihood and Method of Moments Estimation 

Consider a sample (X\,..., Xn) of a population X with the following PDF: 

f(x) = (0 +i)x°, o < x < i, e > -1 
where 9 is an unknown parameter to be estimated. The likelihood function is 

L(xi , ...,xn;0) = (0 + l)x{ • • • {6 + l)x9

n = {6 + l)n(Xl • • • xnf 
In L = n ln(0 + 1) + 0(ln x\ + • • • + In xn) 

Setting ~| In L = 0 leads to 
77 n 

Solving this equation yields the maximum likelihood estimate 

0 = - U +1 
E? = 1 lnX, 

Note that 

x=f1 x{0 + l)xedx = P^x9*2 

Jo v ' 0 + 2 
i _ 0 + 1 
o ~ 0 + 2 

Let x = x. Then the method of moments estimate of 0 is 0 = ^ - j r , which is 
1—SY 

different from the maximum likelihood estimate. 
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5.5 Parameter Estimation 

Desirable Qualities of Estimators 

The formula, as a function of the sample suggested by an estimation method, used to approximate 
an unknown parameter is known as an estimator of the parameter. As stated before, there are 
many possible estimators for a particular unknown parameter. A question thus arises: Which one 
is the best? Unfortunately, the answer to this question is in general not simple because there are 
many measures of how good an estimator is. Simply put, it depends on what do we mean by the 
word "best" — that is, "best" in what sense? 

A good measure of the quality of an estimator 0 of an unknown parameter 0 is the mean-
square error (MSE), define by 

MSE(I) = E[(0 - §f] 
Clearly, it is a measure of the difference between the estimator and the parameter. Note that the 
average error E[9 — 0] would not work here because a small average error does not guarantee 6 
and 6 are close — it could be the case that positive and negative errors cancel each other. The 
use of MSE excludes such possibilities. Of course, average absolute error E[\9 — 0\] could in 
principle be used instead. It is, however, less tractable mathematically than the MSE. 

Another measure of the quality of an estimator 9 is the variance of the estimator, defined by 

var(l) = E[(0 - E[9]f] 

It provides a measure of how random the estimator is around its mean. 
MSE and variance are two commonly used quantitative measures of an estimator. In general, 

an estimator with a smaller MSE and/or variance is better. 
The most commonly used qualitative measures of an estimator are unbiasedness, efficiency, 

and consistency. 
An estimator is said to be unbiased i f its estimation error is zero on the average; that is, i f 

E[0 -9}=0 

The expected error E[9 — 9] is called the bias of the estimator. An unbiased estimator has no bias 
— no estimation error on the average. For a given sample (set of data), an unbiased estimator 
could have a large estimation error. Such error depends on the sample given: for some samples 
it could be large or positive and for others it could be small or negative. The unbiasedness of 
an estimator guarantees nothing but that the average of these errors over all possible samples is 
zero. As such, it is almost necessary for an estimator to be unbiased; otherwise, the estimator is 
not even right on the average. As explained above, a zero average error is not a guarantee for 
the estimator to be close to the parameter. It is in most cases just a necessary but not sufficient 
condition. 

An estimator is said to be efficient i f its M S E is the smallest among all possible estimators of 
the same parameter; that is, i f its M S E achieves some lower bound on the M S E for the estimation 
of the parameter. The most popular such lower bound is the so-called Cramer-Rao lower bound. 
It states that the M S E of any estimator of a parameter cannot be smaller than the inverse of the 
Fisher information I : 

MSE(#) > r1 
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5.5 Parameter Estimation 

where 

I = -E r d
2 

-^\nL(xu...,xn\6) 
= E 

lf6lnL{xi> 
,, xn \ $) 

2i 

and L ( x i , . . . , x n ; 0) is the likelihood function of 6. An efficient estimator is the best estimator 
in the sense of having the smallest estimation error. For an unbiased estimator its MSE is equal 
to Its variance. Thus an unbiased and efficient estimator is guaranteed to be most concentrated 
around its mean, which is the true but unknown parameter value. 

An estimator is said to be consistent i f its estimation error tends to zero as the data (sample) 
size n increases; that is, i f 6 n-z^ 0. I f the data size Is very large, It is very safe to use a consistent 
estimator because It is guaranteed to be very close to the parameter — arbitrarily close i f the 
data size can be as large as desired. As a result, consistency is a property very desirable for an 
estimator. 

Example 5.10: Comparison of Unbiased Estimators by Their Variances 

Given a sample (Xu X2) of a population X ~ jV(/x, a2) with unknown fi but known cr 2, we have 
three estimators (ii = \Xi + \X2, / i 2 = \Xi + | X 2 and (x3 = | X L + | X 2 . A l l three estimators 
are unbiased since 

E[h] = E 

E[h] = E 

E[h] = E 

r l 1 1 

.2* + 5*. 
r 2 „ 3 _ 1 
.5* + l x \ = v> 

2 „ -
+ 3*. 

Their variances are, respectively 

v a r ^ ) = v a r ^ X i + ™X2 

var(/l 2) 

/1 

1 

13 
25 
5 

a + -a 
4 

var(/A 3) = v a r ^ X i + - X 2 ) = 

Clearly, the sample mean estimator fti has the smallest variance. In fact, the variance of the 
estimator decreases when the weights tend to be even. 

Some Properties of the Maximum Likelihood Estimator 
The maximum likelihood estimator has many nice properties. For example, i t is asymptotically 
unbiased, asymptotically efficient, and asymptotically Gaussian (i.e., i t is unbiased, efficient and 
a Gaussian RV in the limit as the data size approaches infinity). In addition, i t is Invariant in the 
following sense. I f g(-) is a single-valued function with a unique single-valued inverse function 

234 
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g *(•), then the maximum likelihood estimate of g(6) is equal to g(9), where 0 is the maximum 
likelihood estimate of 9; that is, g(9) = g(9). 

In general, the method of moments estimator does not have the many nice properties of the 
maximum likelihood estimator. 

To be more rigorous, among all the solutions of the likelihood equation j | In L = 0, only the 
one that gives the maximum value of the likelihood function is the maximum likelihood estimator. 
In view of this, we usually need to check first if the solution is a (local) maximum point by say 
checking if the second derivative is negative at that point and then use the global (i.e., the largest 
local) maximum point as the maximum likelihood estimate. 

Other Popular Estimation Methods 

Another popular estimation method is known as the least squares (LS) method. Its basic idea is 
to choose as the estimate the possible value of the true parameter that best fits a model to the 
data in the sense of having the least squares of fitting errors. A common linear data model for 
l i s 

Xi = HiO + Vi t = l , . . . , n 

where V* is the error in the data. Thus, the least squares estimator §hS of 9 is equal to the value 
of 9 that minimizes the following sum of fitting error squares 

Q = Y,[Xi - Ht6}2 

If the parameter 9 to be estimated is a random variable, then the two most commonly used 
estimation methods are the minimum mean-square error and the maximum a posteriori methods. 

The basic idea of the minimum mean-square error (MMSE) estimator is to choose as the 
estimate the function of the data that gives the smallest expected value of the square of the 
estimation error. That is, | M M S E minimizes the mean of the estimation error square E[(9 — 9)2]. 
It turns out to be the conditional mean of 0 given the sample (Xi,..., Xn): 

pMS* = E[0\Xu...,Xn] 

which is the mean of the conditional distribution f(9\Xu..., Xn) given a sample ( X i , . . . , Xn). 
It can also be easily shown that the conditional mean estimator is always unbiased. 
The basic idea of the maximum a posteriori (MAP) estimator is to choose as the estimate 

the "most probable" value that the random parameter will take, judging from the (particular) 
sample ( X i , . . . , Xn) drawn as well as prior knowledge. The posterior PDF / ( 0 | X i , . . . , X n ) is 
a proper measure of how "probable" 0 will take on a value given the data (sample) as well as 
the prior PDF. Hence, the maximum point (i.e., the mode) of this posterior PDF can be defined 
as the sought-after estimate: | M A P is the value of 6 that maximizes / ( 0 | X i , . . . , Xn). 

Note that the maximum likelihood and the maximum a posteriori estimators are the maximum 
points (i.e., the peak location, also known as mode) of the likelihood function and the posterior 
PDF of the parameter, respectively. 
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5.6 Hypothesis Testing 

In hypothesis testing, we have one or more hypotheses about the values of some 
unknown parameters of the population, and we want to decide whether the in-
formation contained in the sample supports or rejects the hypotheses. 

Consider testing the following single hypothesis on an unknown parameter 9 
of the population 

HQ :0 = 90 

where 9Q is a given constant. Clearly, there are two possible decision errors 
(mistakes): 

• Type I error: We decide that HQ is false but in fact it is true. 
• Type II error: We decide that HQ is true but in fact it is false. 

The type I error probability a is known as the significance and (1 - a) the 
confidence of the test. 

Example 5.11: Instrument Calibration — Test on Population Mean 

An instrument makes a random measurement error X that is Gaussian distributed 
with zero mean: X ~ A/"(0,0.01), i f it is well calibrated according to the product 
specification. It has been calibrated some time ago and we want to decide if 
further calibration is needed by checking if the mean of its measurement error 
can be accepted as zero. That is, our hypothesis is HQ: X = 0. We have obtained 
the following sample of the measurement error: 

0.1294, -0.0336,0.1714,0.2624,0.0308,0.1858,0.2254, -0.0594, -0.044,0.157 

Since the sample mean X has Af(x, a2/n) = A/*(0,0.01/10) distribution, from 
Example 3.38, it should be within the interval (-1.96a/^/l0,1.96cr/vTo) = 
(—0.062,0.062) with 95% probability if HQ is true. Based on the above sample, 
the sample mean X = 0.1025 is outside the interval. Thus, we should reject HQ 
with 95% confidence. After further calibration, we have a sample: 

-0.040,0.069,0.0816,0.0712,0.129,0.0669,0.1191, -0.1202, -0.002, -0.0157 

The sample mean X = 0.0359 is in the interval and thus we should accept 
HQ with 95% confidence and no more calibration is needed. 
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5.6 Hypothesis Testing 

Many hypothesis testing problems can be formulated as the problem of testing a primary 
hypothesis (known as the null hypothesis) 

HQ : 6 = $o 

against some alternative hypothesis, which may be 

Hl:6 = 61 or Ht : 0 > 0O or Hx : 0 < 0O or Ht : 0 ^ 0O 

It is assumed that one and only one hypothesis Is true. The type I and type I I error probabilities 
are then 

a = P{type I error} - P { accept Hi\H0 true} = P{reject HQ\HQ true} 

p = P{type I I error} = P{accept H0\Hi true} = Pjreject H^Ht true} 

Type I and type I I errors are often referred to as false alarm and miss in engineering. 

5.6.1 Neyman-Pearson Hypothesis Testing 
Using a sample of a given size, the type I and type I I error probabilities of any hypothesis test 
cannot be reduced simultaneously: reducing one wi l l usually Increase the other. The only possible 
way of reducing both error probabilities simultaneously is to Increase the sample size. Due to 
the success of an optimal theory of binary hypothesis testing developed by Neyman and Pearson, 
it is customary in practice to control the type I error probability and minimize the type I I error 
probability. As such, the decision error that has a more serious consequence should be assigned 
the type I error. 

Consider the following binary hypothesis testing problem 

H0:9 = 90 vs. Hx : 0 = 0X 

and assume we have a sample X\,..., Xn. The celebrated Neyman-Pearson lemma states that 
the following likelihood ratio test 

* ^ j e c t HL i f {jg-giai < A-
• Accept H, i f jg;;;;;£|ai > A. 

is optimal In that It minimizes the type I I error probability while maintaining the type I error 
probability not greater than a given level a. In the test, the likelihood functions . . . , xn\0 = 
0Q) and . . . , xn\0 = 0i) are the joint PDF of Xu ..., Xn assuming 0 = 0Q and 0 = 0\, 
respectively; x n | ^ o ) * s a n u m b e r , that is, the ratio of the two likelihood functions evaluated 
at the sample value (xi,..., xn) = (Xt1...,Xn)\ and threshold A is determined such that the 
type I error probability Is equal to a. 

This theory Is elegant but not easy to put to use in some practical situations mainly because 
the likelihood ratio and the associated threshold are not easy to come by. 
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5.6.2 Hypothesis Testing Based on Sampling Distributions 
In practice, hypothesis testing is more often carried out based on the known distribution of some 
statistic. Any function of a given sample (Xi,..., Xn) that is not dependent on any unknown 
parameter is called a statistic. The distributions of statistics are known as sampling distributions. 

T e s t o n M e a n wi th K n o w n V a r i a n c e — T h e u T e s t 

From Section 5.2, the sample mean X = ™ TH=I Xi based on a sample of a population (RV) 
X ~ Af(x, o2) clearly has the following distribution X ~ J\f(x,o2/n). This is so because the 
sample mean has mean and variance equal to x and o2/n, respectively, and the weighted sum of 
independent Gaussian RVs is Gaussian distributed. 

By the central limit theorem, for a sample of a large size, the sample mean is approximately 
Gaussian distributed even when the X^s are not Gaussian distributed since it is the sum of a large 
number of independent RVs. This can be explained below. The central limit theorem assures us 
that the standardized RV of the sample mean 

~_X-E[X] 
cr/y/n 

is asymptotically Gaussian distributed as n —» oo even when X^s are not Gaussian distributed. 
As such, X is also asymptotically Gaussian distributed as n —> oo since it is a linear function of 
X. 

Consequently, testing of the mean of a population with known variance when it is Gaussian 
distributed or when the sample size is large can be done based on the fact that the sample mean 
X ~ J\f(x, o2jn) in such a case. Specifically, we check if the statistic X falls inside or outside 
a confidence interval determined by the J\f(x, o2/n) distribution. This is illustrated in Examples 
5.11 and 5.16. 

T e s t o n M e a n wi th U n k n o w n V a r i a n c e — T h e t T e s t 

As explained above that the RV X = X~f^ is Gaussian distributed if the population is Gaussian 
distributed. Otherwise it is asymptotically Gaussian distributed as n —> oo. However, if the true 
variance a2 of the population is not known and is replaced by the sample variance, then the 
statistic 

X - E[X] T •• 

has a so-called student distribution or t distribution with n — 1 degrees of freedom. The t 
distribution has the following PDF 

r [ (n+l ) / 2 ] / <Y("+1)/2 
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where n is called the degrees of freedom. The t distribution with n degrees of freedom is 
denoted by t(n). The t distribution has a shape similar to but different from that of a Gaussian 
distribution. It approaches the Gaussian distribution as n —» oo. 

The above is a special case of the following. For a standard Gaussian RV X and a chi-square 
RV Y with unity variance and n degrees of freedom, the following statistic has a t distribution 
with n degrees of freedom if X and Y are independent: 

In the t test, we check to see if the statistic T falls inside or outside of a confidence interval 
determined by the t distribution. In other words, we replace in the u test the statistic X with 
T and the N{x, o2/n) distribution with the t distribution. This is demonstrated in the example 
below. 

Example 5.12: Instrument Calibration — Test on Population Mean wi th Unknown Variance 

Consider again Example 5.11 but assume that the true variance is not known. For the first 
sample, it was found that the sample variance V = 0.0142 and the statistic T = 2.7250 for the 
assumed true mean x = 0. From the t distribution table (not available in this book) of 9 degrees 
of freedom, we know 

Since T = 2.7250 is outside the two-sided 95% confidence interval [-2.2622,2.2622], we con-
clude that calibration is needed for the instrument. 

After further calibration, it was found from the second sample that V = 0.0042 and T = 
1.7483. Since the new T is inside the two-sided 95% confidence interval [-2.2622,2.2622], we 
conclude that no more calibration is needed. 

Comparing these results with Example 5.11 we see that the same conclusions were made by 
the t test even though the variance is assumed not known. However, the margin for T = 1.7483 
(for the second sample) to be inside the interval [—2.2622,2.2622] is smaller than that for X = 
0.0359 to be inside (—0.062,0.062). Thus, the confidence of the above conclusion is lower than 
in the case of known variance. 

We point out that the sample mean and sample variance are independent if the population is 
Gaussian distributed although they are functions of the same RVs X\,..., Xn. 

C h i - S q u a r e T e s t o n V a r i a n c e 

It was stated in Section 3.6 that the sum of the squares of n i.i.d. Gaussian RVs is chi-square 
distributed with n degrees of freedom. Note that in the above the RVs are independent and 

T = t(n) 

P{-2.2622 < T < 2.2622} = 95% 
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are thus "free" variables; that is, there are no linear constraints that relate them. As such, i f the 
population X is Gaussian distributed, one might think the statistic (i.e., a scaled sample variance) 

(n-l)V = JT(Xi-X)a 

*=1 

is chi-square distributed with n degrees of freedom because the elements of Its sample are 
independent and Gaussian distributed. In fact, (n - l)V is indeed chi-square distributed but the 
degrees of freedom are n — 1 rather than n. This is because 

(Xt - X) + (X2 - X) + • • • + (Xn - X) = X ! + X2 4- • • • + Xn - nX = 0 

is a linear constraint and thus only n — 1 RVs in the n RVs of (n — l)V are "free" variables and 
thus the degrees of freedom are n — 1. 

In view of the above facts, we may perform a chi-square test to test i f a2 = o\ on the value of 
the unknown variance cr 2 of a Gaussian population X ~ A / r (x, c r 2 ) given a sample (Xiy... ,Xn). 
I f the population mean x is unknown, we may check i f the scaled sample variance (n — 1)V is 
chi-square distributed with n — 1 degrees of freedom and parameter o\. I f x is known, we may 
check i f 

i = l 

is chi-square distributed with n degrees of freedom and parameter o\. 

Example 5,13: Quality Control by Chi-Square Test 

It is known from past experience that the breakdown voltage of a small insulator made by a 
manufacturer has a variance a2 = 100. We would like to know i f the breakdown voltage of a 
batch of insulators just received has a higher, lower or the same variance as before. For this 
purpose, we tested twenty samples of the insulators and found their breakdown voltages to be: 

56.34,41.34,47.48,47.54,67.03,57.52,53.60,49.71,47.05,50.33, 

47.53,38.52,52.43,50.61,42.68,50.46,52.23,63.84,43.19,52.14 

Suppose we would like to have 95% confidence in our conclusion; that is, the type I error is 
a = 5%. 

The problem as to whether the variance is higher than before is formulated by the following 
problem of hypothesis testing: 

H0:a2 = 100 vs. Hi : a2 > 100 

I f we know as a fact that the true mean of the breakdown voltage is 50, then Q = (Xi — 50) 2 

would be a xlo with parameter a | = 100 i f H0 is true, where xl, stands for a standard chi-
square RV with n degrees of freedom. From the companion software P&R (by using "Percentile") 
or a chi-square table, we know that 

P{X2

20 > 31.41} = 5% 
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that is, a standard xlo R V w i l l take on a value within the interval [0,31.41] with 95% probability. 
Since for the given sample Q/100 = 9.41 falls inside this one-sided lower 95% interval, we 
cannot reject H0 and accept H\\ that is, we cannot conclude that the variance is higher than 
before. 

If the mean of the breakdown voltage is unknown, then (n — 1)1/ = Y,fti(Xi — X)2 would 
be a x?9 RV with parameter u | = 100 if H0 is true. We found from P&R or a chi-square table 
that the one-sided lower 95% confidence interval of such a chi-square RV is [0,30.14]. Since 
for the given sample (n — 1)F/100 = 9.35 falls inside this interval, we cannot conclude that the 
variance is higher than before. 

The problem regarding whether the variance is lower than before is formulated as follows: 

H0:a2 = 100 vs. Hi : a2 < 100 

Q and (n — 1)V remain the same as above. The corresponding one-sided upper 95% confidence 
intervals are found to be [10.85, oo) and [10.12, oo), respectively. Since for the given sample 
<2/100 and (n - l )Vyi00 fall outside the above intervals, respectively, we reject H0 and accept 
Hi\ that is, we conclude that the variance is lower than before no matter whether the true mean 
is known or not. 

The problem concerning whether the variance is the same as before is formulated as follows: 

HQ : a2 = 100 vs. Hi : a2 ^ 100 

Q and (n~l)V remain the same as above. The corresponding two-sided 95% confidence intervals 
are [9.59,34.17] and [8.91,32.85], respectively, which were found from P&R by 

P{xlo < 9.59} - 2.5% P{x22Q > 34.17} - 2.5% 
P{Xm < 8-91} = 2.5% P{xl9 > 32.85} = 2.5% 

Since for the given sample Q/100 and (n - 1)V710Q fall outside and inside their corresponding 
intervals, respectively, we conclude that the variance is different from before if we know the 
mean is really 50, otherwise we cannot conclude that the variance is different than before. 

Note that the conclusion could be entirely different whether we know the true mean or not. 
Also, the conclusion depends largely on our hypotheses. For example, when the true mean 
is unknown, if we are testing whether the variance is different than before, then we could not 
conclude that it is different. However, if we are testing whether the variance is lower than before, 
then we could conclude that it is indeed so. 
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5.7 Linear Regression and Curve Fitting 

Regression techniques are statistical tools that handle the statistical relation be-
tween two or more variables. 

Consider two RVs X and Y. Assume they are related by 

Y = a + bX + V 

where V ~ J\/"(05 a2) and the coefficients a and b do not depend on X. The 
problem of linear regression is to find the estimates a and b of a and b given a 
sample (data) {(Xh Y i ) , ( X n , Y n )} of the pair of RVs (X, Y) . 

Geometrically, the sample can be plotted in a scatter diagram, as illustrated in 
Fig. 5.5. The problem of regression is then that of curve fitting — find a curve 
(or a straight line for linear regression) that best fits the data points. Assume the 
fitted straight line is given by 

Y = a + bX 

It can be shown that a = y -bx, where x and y are the values of the sample 
means X and Y. Thus 

Y = y + b(X-x) (5.7) 

It can be seen that the regression line passes through the centroid (£, y) of the data 
points in the scatter diagram. It can be shown that least squares and maximum 
likelihood estimation both lead to 

YJ}=1{xi-x){yi-y) 
b = (5.8) 

(a) Nonlinear regression (b) Linear regression 

F i g u r e 5.5: Curve fitting by linear or nonlinear regression. 
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Everybody is familiar with causality — the deterministic relationship between two phenom-
ena, the cause and effect. In reality, the relationship between variables does not always follow 
causality. For Instance, 

• The test score of a student and his/her knowledge of the subject matter of a class are related. 
• The humidity and the flashover voltage of an insulator are related. 
• The sight of a person is related with his/her age. 

Such a non-deterministic relation is known as a statistical relation or correlation. 
Regression analysis Is the branch of statistics that studies the statistical relations between 

two or more variables quantitatively. Linear regression assumes that die variables are related 
linearly where the coefficients of linear relation are determined by regression techniques, such as 
the least squares and maximum likelihood estimation. 

(5.7)-(5.8) can be derived as follows using the maximum likelihood estimation. Since Y = 
a + bX + V, where V ~ J\f (0, a 2 ) , we have Yi = a + bXi-h Vt and thus Y{ ~ Af(a + bXh a2). 
Hence, the likelihood function of Y i , . . . , Yn is, since they are independent, 

£=n/*(w) = n 

(V2TTCT)' 
-exp 

i = 1 \/2TTO-

2a2 

exp -(yi-a- bxHf 2a2" 

Y,(yi -a-bxi)2 

i= i J 

Clearly, maximizing L is equivalent to minimizing the following (i.e., least squares estimation) 
71 

Q = YliVi - a - bxi)2 

i = l 

Setting to zero the partial derivatives of Q with respect to a and b 
n 

= - 2 £ ( y < - a - t e < ) = 0 
dQ 
da 
dQ 
da 

• a — bxi)xi = 0 

yields 

na + nxb = ny 
n n 

nxa -\-^2x2b = J2 %iVi 
i= i »=i 

I f the Xj ' s are not identical, these two equations jointly have a unique solution, given by 

a • y — bx 
ELi XiVi - nxy _ EIUO* - x)(Vi - y) 
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Example 5.14: Linear Regression by P&R 

A sample {{Xu Y i ) , . . . , (A',,, Yn)} of size 50 

1.9140 
1.1175 

11.168 
7.6677 

1.8757 11.455 

of the pair of RVs (A', Y) is given in data file e5_14 .da t in the companion 
software P&R. We have 

x = [1.9140 + 1.1175 + ••• + 1.8757]/50 = 1.6228 
y = [11.168 + 7.6677 + • • • + 11.455]/50 = 8.6861 
- [(1.9140)(11.168) + • • • + (1.8757)(11.455)] - 50(1.6228)(8.6861) 

~ [1.91402 + • • • + (1.8757)2] - 50(L6228)2 

= 2.9536 

a = 8.6861 - (2.9536)(1.6228) = 3.8931 

Consequently, the linear regression of Y on X is given by 

In fact, the above regression equation can be obtained by P&R as follows. 
Following the procedure described in Example 4.8, the correlation of the data in 
the file e5_14. dat can be obtained. The results are 

x = 1.6228, y = 8.6861, vx = 1.616, vy = 15.7545, p = 0.94596 

Y = y + b{X - x) = 8.6861 + 2.9536(A - 1.6228) = 3.8931 + 2.9536X 

If A = 4.294, the best guess of Y is 3.8931 + (2.9536)(4.294) - 16.5759. 
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Y = 3.8931 + 2.9536AT 

b = pyjvy/vx - (0.94596)(vA15.7545)/(vT616) = 2.9536 

Consequently, the linear regression of Y on A' is given by 



5.8 Summary and Requirements 

5.8 Summary and Requirements 

The population is the entire collection of data. It is a RV. A sample is a subset of the population. 
The data making up a sample should be independent and identically distributed. 

The sample mean of a sample X\,..., Xn is the average value of the sample: X = ^ YH=I X{. 
It is used to approximate the unknown true mean. Its mean is equal to the true mean and its 

1 n 

variance is o& = o\jn. The sample variance is given by V = ——- ^2(X{ ~ X)2. It is used to 

approximate the true variance a2. Its expected value is equal to the 'true variance. 
Given the values . . . , xn of a sample of a population, the empirical PDF is defined as 

number of points x\,..., xn in [x, x -f A x ) 
f{x\xu...,xn) nAx 

It can be used to approximate the true PDF of the population. 
Statistical inference studies decisions and estimation of unknown parameters of a population 

based on a its observations — the sample. 
Estimation uses the information contained in the sample to provide an approximate value of 

an unknown parameter that is close to the true value of the parameter. In the maximum likelihood 
method, the value of the parameter that leads to the maximum likelihood of having the particular 
values of the sample is used as the estimate of the parameter. In the method of moments, the 
value of the parameter that makes the true moment equal to the sample moment is used as the 
estimate of the parameter. 

In hypothesis testing, we decide whether the information contained in the sample supports or 
rejects the hypotheses on certain values of unknown parameters of a population. The decisions 
are made subject to a certain error probability, called the significance of the test. 

In linear regression, a RV is assumed to be a linear function of another RV. The associated 
coefficients are estimated from the available data by some estimation methods. Such regression 
techniques are useful in handling statistical relations between two or more variables. 

Basic Requirements 
• Know how to calculate the sample mean and sample variance, their expected values, and the 

variance of the sample mean. Understand what the sample mean and sample variance are 
used for. 

• Know how to compute the empirical PDF and CDF. 
• Understand what statistical inference, estimation, and hypothesis testing do, respectively. 
® Understand the basic ideas of the maximum likelihood estimation and the method of moments. 
• For simple problems, know how to determined the required sample size. 

245 



5.9 Additional Examples 

5.9 Additional Examples 

5.15 Minimum sample size. Given a population of 100 bipolar transistors, one wishes to 
estimate the mean value of the current gain X with true mean x = 120 and variance 
a 2 = 25. How large a sample size is required to obtain the sample mean X with standard 
deviation not larger than 1% of the true mean? 

Solution: Mathematically, the requirement for the sample size is 

<r* < (l%)x = 0.01 x 120 = 1.2 

Note that 
2 1 - 2

 ax 25 
o% = -G% = > n = ™ 2 = o X 9 = 17.36 

^ erf ( L 2 ) 2 

and that crj decreases with n. We have n > 18, that is, at least 18 pieces of data are 
needed. 

5.16* Teaching performance evaluation. Suppose we would like to conduct a poll about a 
professor's teaching performance by giving a single grade on the scale of 100. The 
professor has taught many students (that is, the population is very large). Assume that the 
grade given by a student is Independent of any other student's grade and has an Identical 
mean equal to the true grade G and an Identical standard deviation of 10 points. I f we 
would like to have the resultant grade G of this poll be within 5 points of the true grade 
with probability no smaller than 95%, how many students should be asked? 

Solution: Let X{ be the grade given by the i th student being asked. By the assumption, 
we know that this grade has a standard deviation Oi = 10. Suppose that a total of N 
students is chosen at random, with TV to be determined, which is assumed to be large. By 
the central limit theorem, 

y - ^ l f l ^ y ~ A / x o , l ) 
*=1 V £ i = l Gi 

For our problem, y/E^af = ^ i f e = 1 0 ^ ' ^ = G, and G = 1 = ±E£ I *< . 
Since 

G - G = ^ ( X i - G ) 

we have, for large N, 

^ ^Xi-G » Xi-Xi 
10 ( G - G ) = v ^ - ? ^ = y;-^==s=«y~A/'(o,i) 

Note that "to have the resultant grade G of this poll be within 5 points of the true grade 
with probability no smaller than 95%" in mathematical terms is 

P{\G-G\ < 5 } >0.95 
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or equivalently 

Thus, 

0 . 9 5 < P { | G - G | < 5 } 

= P {-0.5VAT < Y < 0 . 5 V F } 

= $ ( 0 . 5 V F ) - # ( - O . 5 V J V ) 

= 2# (o . 5 \ /F) - 1 

# (0.5\/iV) > ™(1 + 0.95) = 0.975 2V 

From Example 3.13, the above is equivalent to 

0 .5VF > 1.96 AT > 15.37 

Consequently, at least 16 students should be asked. In this case, we may say die resultant 
grade G has an error of not greater than 5%. 

5.17 MLE of the parameters of a uniform distribution. Given a sample . . . , Xn) from a 
population of the following uniform distribution 

elsewhere 

where 62 > 6% are unknown, find the method of moments estimate and the maximum 
likelihood estimate of 0\ and 02. 

Solution: The mean and variance of the uniform distribution are 

£[*] = i (0 i+6> 2 ) 

var(X) = ~(62-61)2 

Hence, let 

E[X] = X 
var(X) = S2 

where X is the sample mean and S2 = £ T."=i(Xi — X)2 is the (biased) sample variance. 
Solving these two equations jointly yields the method of moments estimate 

0i = X - Vss 
62 = X + y/3S 
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The likelihood function is given by 

JL f 1 
L(xu..., x n ; 0i, 0 2) = I I /x,(a;*) = \ Q 

i — 1 V 

1/(02 - ^ l ) n # ! < ^ < ^ 2 , i = l 5 

elsewhere 

Clearly, the likelihood equations 

d In L n 

dlnL n 

= 0 
72 - Vi 

d92 02 - 01 
0 

do not lead to the maximum likelihood estimate. Note, however, that for 02 > 0i > 0, 
the likelihood function L(0i ,0 2 ) increases as either 0i increases or 0 2 decreases. On the 
other hand, since Xi ~ U(9U92), 9i must be smaller than every Xt and thus greater than 
min Xi and 0 2 must be greater than every Xi and thus greater than max Xi. Conse-
l<i<ra l<i<n 
quently, L(0i, 6 2) achieves its maximum at f9i = min X i 5 92 = max X ? ; and thus the 

l<i<n l<i<n 
maximum likelihood estimate is 

9i — min X 
l < i < 7 1 

#2 = max X j 
Ki<n 

5810 Problems 

5.1 Distribution of a sample. A population X is Gaussian distributed with mean 2 and 
variance 4. Find the joint PDF of a sample ( X i , X2) of size 2 of the population. 

5.2 Distribution of a sample. A population X is exponentially distributed with parameter 
A = 3. Find the joint PDF of a sample X2) of size 2 of the population. 

5.3 Average age. Suppose that the age X of a student in a class is a Gaussian RV with 
(X - 20) - A/"(051). Given a class of 25 students, 

(a) What are the mean and standard deviation of XI 
(b) Find the mean E[X) and standard deviation o% of the average age X of this class. 
(c) Find the probability that the age of an arbitrary student will be in (18,22). 
(d) Find the probability that the average age of this class will be in (19.4,20.6). 
(e) Find the constant c such that the probability that the average age of this class will be 

in (20 - c, 20 + c) is 95.4%. 

5.4 Sample mean of random numbers. A calculator is equipped with a random number genera-
tor producing four-digit random numbers that are uniformly distributed over [0.0000,0.9999]. 
Suppose that the following random numbers are generated: 0.2756, 0.1323, 0.0572, 
0.3624, 0.8156, 0.6312, 0.7432, 0.2083, 0.7817. 
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(a) Find the sample mean. 
(b) Find the variance of the sample mean. 
(c) To obtain a sample mean whose standard deviation is no greater than 0.01, how large 

should the sample size be? 

5.5 sample mean and sample variance of Poisson population. A population X is Poisson 
distributed with mean 2.4. Find the expected value and variance of the sample mean based 
on a sample of size 20. Find the expected value of the sample variance. 

5.6 Minimum sample size. Given a population X ~ N{x, <r2), I f it is desirable to have a 
sample mean X whose dispersion from the true mean is smaller than 0.1 with probability 
0.954, how large should the sample size be i f a = 0.8? 

5.7 Distribution of sample mean and sample variance. Given two independent samples 
( X x , . . . , Xn) and ( Y i , . . . , Yn) of two populations X ~ J\f(x, al) and Y ~ Af(y, o2), 
respectively, a new sample {ZX)..., Zn) is formed, where Zi = X* + Yi, i = 1,2, . . . , n. 

(a) Find the mean and variance of the sample mean Z = ~ YH=I Z%> 
(b) Find the mean of the sample variance V = ~ YJi=\{Zi — Z)2. 
(c) What is the distribution of Zl 

5.8 Measurement error. Suppose that the measurement error of a device is a Gaussian RV with 
unknown mean and variance. The following data of the measurement error are obtained 
from a calibration process: 

0.35,0.545 -0.48, -0.08,0.12,0.45, -0.73,0.33, -1.11,0.22, 

1.34,0.65,0.46, -0.54, -0 .01 , -0.05,0.65,0.13, -0.65, -0.43 

(a) Find the sample mean and sample variance of the measurement error given the above 
sample. 

(b) Give an approximate distribution of the measurement error. Give an approximate 
distribution of the sample mean of the measurement error based on the above sample 
of size 20. Justify your answer. 

5.9 Defect detection. We would like to determine I f a meter is defective. The reading error 
is a Af(0, erf) RV i f it is not defective. The error would be a JV(0.5, of) RV should 
it be defective. Suppose that the following meter reading error data are collected in a 
calibration process: 

0.16, -0.43,1.25, -0 .61 , -2.42,0.74, -0.72,2.33, -0.4,1.3,0.04,0.08,0.88, 

-0.22,0.55, -0.51,0.32, -0.54, -0.64,0.54, -0.98, -0.40,0.66, -0.33,0,0.52, 

-0.23,0.33,0.22,0.13,0.34,0.34,0.66, -0.23, -0.33,0.23, -0.12, -0.14,0.36 

(a) Find the sample mean and sample variance. 
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(b) Assuming o\ = 0.5 and o2 = 0.6, is it more probable that the meter is defective? 
(c) Assuming &i and o2 are unknown, is it more probable that the meter is defective? 

5.10 Recursion of sample mean and sample variance. Let Xn and Vn be the sample mean 
(5.1) and sample variance (5.5) of size n, respectively. Show that 

(a) X n + i = ^-[nXn + Xn+X] 
(b) F n + 1 = ^Vn + ^ ( X n + 1 - Xnf 

Note that these formulas indicate that the sample mean and sample variance can be cal-
culated recursively if a new item is added to the sample. 

5.11* Prediction of election outcome. Consider a U.S. Senate election in a southern state. Let 

d = P{D} = probability of an arbitrary voter voting for D 

r = P{R} = probability of an arbitrary voter voting for R 

It turned out that 2,000,000 people voted. In an exit poll, conducted involving 20,000 
voters, candidates D and R received 10,020 and 9,980 votes, respectively. Define a 
random variable for an arbitrary voter 

1 if the voter votes for D 
— 1 if the voter votes for R 

and let Y = (total votes for D) — (total votes for R). 

(a) Assuming a vote is independent of any other vote, determine the expected values and 
variances of X and Y , respectively, in terms of exact d and r. 

(b) Based on the exit poll, use the sample means d and f of the probabilities d and r, 
respectively, to determine which candidate (D or R) will win and with how much 
probability. 

(c) Based on the exit poll, predict how many more votes the winner (D or R) will have 
than the loser (R or D). 

(d) Based on the exit poll, determine (approximately) the standard deviation of Y. Give 
concrete values of the standard deviation. 

5.12 Correlated sample. Find the mean and variance of the sample mean of a correlated sample: 
{x i , x2, £3}, where X\ and x2 have correlation coefficient p12 = 0.5, x3 is independent of 
xx and x2i o2

Xl = o2

X2 = < . 

5.13 MLE of log-normal distribution parameters. A sample (X\1..., Xn) was drawn from a 
population of the log-normal distribution (3.37) with unknown parameters /1 and a2. Find 
the maximum likelihood estimate of fi and cr2. 
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5.14 Estimation of Gaussian variance. A sample ( X 1 ? . . . ,Xn) is taken from a population 
•X ~ N(p, cr2), where both p and cr2 are unknown. Find the maximum likelihood estimate 
and the method of moments estimate of cr2. Are these estimators unbiased? 

5.15 Estimation of uniform distribution parameter. Given a sample ( X i , . . . , Xn) from a 
population of the following uniform distribution 

where 6 is unknown, find the maximum likelihood estimate and the method of moments 
estimate of 0. 

5.16 u test on average resistance. The resistance of a resistor manufactured by a manufacturer 
is Gaussian distributed Af(p, o2) with p = 2000 and a = 7. A new production line was 
recently put in use. It seems from observations that the tolerance in the resistance (i.e., 
CJ) has not changed but the resistance p may have a bias. The following sample was then 
obtained 

2004,2003,1995,2015,1997,1987,1996,2011,2007,2004,2012,1986,1993,2005,1997 

Can we say that the average resistance has changed with 95% confidence? 

5.17 t test on software bug. The truncation error in running a software package is uniformly 
distributed over an interval. It would have zero mean i f the software has no bug. A 
diagnostic program obtained a sample of 30 truncation errors and found the sample mean 
and sample variance are 7.8 x 10~ 1 0 and 2.4 x 10~ 1 5, respectively. From the t distribution 
table, we know P{-2.0452 < £(29) < 2.0452} = 0.05. Can we conclude that the 
software has a bug with 95% confidence? 

5.18 Chi-square test on student readiness. The test score of a large class of 54 students 
is Gaussian distributed with an unknown mean and variance o2. The prior experience 
indicates that a2 = 120 i f the students prepare the test well; otherwise a2 > 120. The 
sample mean and sample variance of the mid-term exam scores are equal to 73.6 and 
157.8, respectively. Can we conclude that the students did not prepare well for the exam 
with 95% confidence? What i f we need only 90% confidence? 

5.19 Relation between regression parameters and sample statistics. For two RVs X and F , 
their sample means, sample variances and sample correlation coefficient are x = 1.3, 
y = 4.67, vx = 0.4, vy = 2.5 and pxy = 0.87. Find the linear regression of Y on X (i.e., 
estimate a and b). I f we know that the RV X is equal to 1.4, what is your best guess of 
the value of YI 

5.20 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too involved. 

0<x<6 
elsewhere 
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5.11 Computer Exercises 

.11 Computer Exercises 

5.1 Testing of uniform random number generator by sample mean and sample variance, 

(a) Use MATLAB U(0,1) random number generator " r a n d " to generate 100,000 random 
numbers that are uniformly distributed over (0,1). 

(b) Find the sample mean of the random numbers generated. 
(c) Find the sample variance of the random numbers generated. 
(d) Compare the computed sample mean and sample variance with the true mean and 

variance. 

5.2 Testing of exponential random numbers by sample mean and sample variance. 

(a) Use MATLAB U(0,1) random number generator " r a n d " and the results of Exam-
ple 3.30 to generate 10,000 random numbers that are exponentially distributed with 
parameter A = 4. 

(b) Compute the sample mean and sample variance of the 10,000 random numbers gen-
erated. 

(c) Compare the computed sample mean and sample variance with the true mean and 
variance of an exponential RV with parameter A = 4. 

(d) Compute sample mean and sample variance for an arbitrary 1,000 of the 10,100 
random numbers generated and compare them with the true mean and variance of an 
exponential RV with parameter A = 4. 

5.3 Testing of binary random numbers by sample mean and sample variance. 

(a) Use MATLAB ZY(0,1) random number generator " r a n d " to generate 10,000 random 
numbers Xu . . . , Xi0,ooo with the following point masses, for i = 1 , . . . , 10000, 

P{Xi = 0} = 0.35, P{X{ = 1} = 0.65 

(b) Find the (theoretical) mean and variance of Xi. 
(c) Compute the sample mean §10,000 and sample variance 610,000 of the 10,000 random 

numbers generated. Compare them with their theoretical mean and variance. 
(d) Compute the sample mean §1,000 and sample variance #1,000 of the first 1,000 of 

the 10,000 random numbers generated. Compare them with §10,000 and 610,000 and 
comment on the difference. 

5.4 Testing of ternary random numbers by sample mean and sample variance. 

(a) Use MATLAB W(0,1) random number generator " r a n d " to generate 10,000 random 
numbers X l 5 . . . , Xi0,ooo with the following point masses, for i = 1 , . . . , 10000, 

P{X = - 1 } = 0.25, P{X = 0} = 0.3, P{X = 1} = 0.45 

(b) Find the (theoretical) mean and variance of Xt. 
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(c) Compute the sample mean #io,ooo and sample variance t)10,ooo of the 10,000 random 
numbers generated. Compare them with their theoretical mean and variance. 

(d) Compute the sample mean £1,000 and sample variance £1,000 of the first 1,000 of 
the 10,000 random numbers generated. Compare them with £10,000 and £10,000 and 
comment on the difference. 

5.5 Distribution identification. The file m5_5. da t In the companion software P&R contains 
a record of data drawn from a population X with a symmetric PDF. Use P&R to do the 
following. 

(a) Compute the sample mean and sample variance. 
(b) Compute the empirical PDF. 
(c) Identify the distribution of X. Justify your answer. 

5.6 Estimation of Gaussian mean and variance. The file m5_6 . d a t In the companion soft-
ware P&R contains a record of data drawn from a population X ~ J\f(p,a2), where 
both p and o2 are unknown. Find the maximum likelihood and the method of moments 
estimates of p and cr2, respectively. 

5.7 Signal detection by u test. The measurement X of a signal s is corrupted by Gaussian 
distributed noise V ~ JV*(05 cr2), where a2 = 1.44 is known. In other words, X = s + V 
if the signal is present and X = V if the signal is absent. A set of measurements 
(X1}...,X100) was made and recorded in file m5_7 . d a t in the companion software 
P&R. Is the signal present with 95% confidence? 

5.8 Linear regression. The file m5_8 . d a t in the companion software P&R contains a data 
record of a pair of RVs (X1Y). 

(a) Write a small computer program to find the linear regression of Y on X. 
(b) Find the linear regression of Y on X using P&R. 
(c) Predict the values of Y given the values of X as 11.5, 32.6 and 22.7, respectively. 

5-12 Self-Test Problems 

5.1 Answer the following questions briefly 

(a) Does the expected value of the sample mean vary with the sample size? 
(b) Does the variance of the sample mean vary with the sample size? 
(c) Does the expected value of the sample variance vary with the sample size? 
(d) What is the primary difference between probability and statistics? 
(e) Why should the data making up a sample be independent? 
(f) What is the use of empirical distributions? 
(g) What is the purpose of estimation? 
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5.12 Self-Test Problems 

(h) What Is the technical term for the procedure of judging whether an hypothesized value 
of an unknown parameter should be accepted? 

(I) Is it true that linear regression is a good tool for handling cause-and-effect relation-
ships? 

(j) I f a chi-square RV has 5 degrees of freedom, what does it mean? 

5.2 Assume that the test score of a student in a very large class is a Gaussian RV X with 
unknown mean x and variance a 2 . Suppose that you have asked 16 students in the class 
and found their scores to be: 87, 55, 58, 89, 97, 78, 91, 88, 65, 88, 93, 90, 66, 77, 75, 
73. 

(a) What is your estimate of the average test score? 
(b) What is the variance of your estimate of the average test score? 
(c) What is your estimate of the variance a2 of the test score? 
(d) Suppose that your score was 92, was your score in the top 10%? Justify your answer. 
(e) I f a score below 60 corresponds to "fail ," what is the probability that one of your 

fellow students whose score you do not know actually failed the test? 

5.3 A sample ( X l 5 . . . , Xn) was drawn from a population X of a Poisson distribution with 
parameter A. Write down the joint PMF of X 1 } . . . , Xn. Find the mean and variance of 
the sample mean and the mean of the sample variance V. 

5.4 It is known that a population is Poisson distributed with an unknown parameter A. Given 
a sample with the following values: 

3,2,3,2,1,2,3,3,3,2,0,3,2,0,4,2,5,4,4,0 

(a) Do sample mean and sample variance have the same expected value for this problem? 
Find the sample mean and sample variance for this sample. 

(b) Write down the likelihood function of A. Find the maximum likelihood estimate of 
A. 

(c) Find the method of moments estimates of A using the first and second moments, 
respectively. 

5.5 The following sample was drawn from a pair of RVs (X, Y) 

Xi 0.8 -1.4 -1.1 -0.6 0.1 0.89 1.0 1.4 1.4 0.5 
V% -0.2 -1.5 -1.2 -0.5 0.05 0.8 1.1 1.3 1.49 0.7 

Find the linear regression of Y on X. What is your best guess of the value of Y given 
the value of X = 0.77 
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5.13 Solutions to Self-Test Problems 

5.13 Solutions to Self-Test Problems 

5.1 (a) The expected value of the sample mean is equal to the true mean and therefore does 
not depend on the sample size. 

(b) The variance of the sample mean is equal to the true mean over the sample size and 
thus decreases with sample size. 

(c) The expected value of the sample variance is equal to the true variance which does 
not depend on the sample size. 

(d) The primary difference between probability and statistics is that statistics is the science 
of establishing a probabilistic model of a random phenomenon from the available data 
while probability assumes the availability of such a model. 

(e) Were the data making up a sample not independent, the conclusion of a statistical 
analysis would depend critically on the choice of the data. As a result, one can arrive 
at almost any conclusion he or she wants by using different dependent data. 

(f) When the true distributions are not known perfectly, empirical distributions are used 
to approximate the true distributions. 

(g) Estimation is to provide a quantity, as a function of the sample, that is approximately 
equal to the unknown parameter. 

(h) It is known as decision or hypothesis testing. 
(I) No, linear regression is a tool for handling statistical relations between two or more 

variables. 
(j) It means that the RV can be decomposed as the sum of the squares of 5 independent 

Gaussian RVs. 

5.2 (a) Estimated average = sample mean = f = ^ E ^ = 79.4. 
(b) Variance of estimated average = variance of sample mean = « = 10.6. 
(c) Estimated o* = sample variance = ^ E<U(*< - x f = ^ - m 4 ) 2 = i m 

(d) 

P{X > 92} = 1 

« 1 

= 1 

= 1 
= 1 

Since P{X > 92} ~ 0.166 > 10%, your score was not in the top 10%. 
(e) 

P { " F " } - P { X < 6 0 } 
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5.13 Solutions to Self-Test Problems 

n(X-x 6 0 - x 

<7x 
60 - 79.4 

5.3 Since, for k = 0,1,2,. . . , 

the joint PMF of Xi,... ,Xn is 

/170 
= $(-1.49) 

= 6.81% 

P{X = x} = e ~ A ^ 
xi 

n(«-A7r)=«-A^--/n^ 
t = i x / i=i 

Since for Poisson distribution, E[X) = A and var(X) = A, we have 

E[X] = E[X} = \ 

var(X) = var(X)/n = X/n 

E[V] = var(X) = A 

5.4 (a) For Poisson distribution, 

x = a2 = X, E[X} = x = X, E[V] = a2 = X => E[X] = E[V] 

They have the same expected value. 

1 W
 1 2 0 

V = — l Y . ( ^ - X ) 2 v = ±J2(Xi-x)2 = 1.9368 
1 1 »=1

 i y i=l 
(b) 

£(A) = xn(xu -,xn]X) = Y[fXi(xi; X) 
i=l 

= I l ^ X ^ = e-nXX^/fl(xi\) 
i=l Xi' i=l 

For our problem with the given sample, 

L(X) = e- 2 0 AA 4 8/[(2 6)(3!f(4!) 35!] = 4.161 x 10~ 2 2 A 4 8 

I n L = —nXA-nx In X 

0 s== ^ = - „ + nx/X ==> A M L = X t h i s s = ^ p l e 2.4 
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(c) Method of moments: 

Use first moment: A = x ~ X => A = X = 2.4 
Use second central moment: A = a2 ~ V = > A = V = 1.9368 

5.5 Using the following MATLAB routine 

x = [ 0 . 8 , - 1 . 4 , - 1 . 1 , - 0 . 6 , 0 . 1 , 0 . 8 9 , 1 . 0 , 1 . 4 , 1 . 4 , 0 . 5 ] ; 
y = [ - 0 . 2 , - 1 . 5 , - 1 . 2 , - 0 . 5 , 0 . 0 5 , 0 . 8 , 1 . 1 , 1 . 3 , 1 . 4 9 , 0 . 7] ; 
xmean=sum(x)/10 
ymean=sum(y)/10 
b=sum( (x-xmean) . * (y-ymean) ) /sum( (x-xmean) ."2) 
a=ymean-b*xmean 

we get 

x = 0.2990, y = 0.2040, a = -0.0877, S = 0.9757 

and thus the linear regression of Y on X is 

Y = -0.0877 + 0.9757X 

The best guess of the value of Y given the value of X = 0.77 is 

Y = -0 .0877+ (0.9757) (0.77) = 0.6636 
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6 
RANDOM PROCESSES 

Fate, Time, Occasion, Chance, and Change — to these all things are subject 

Percy Bysshe Shelley 

The random variable approach is valid only for random problems that are time-
invariant. The mathematical tool for time-varying random problems Is known as 
the random processes. 

This chapter covers fundamentals of random processes with an emphasis on 
Its first two order time-domain characteristics. 

Main Topics 

• Concept of Random Processes 
• Characterization of Random Processes 
• Classification of Random Processes 
• Correlation Functions and Their Properties 
• Sample Correlation Functions 
• Relationship between Two Random Processes 
• Gaussian Random Process 
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6.1 Concept of Random Processes 

6.1 Concept of Random Processes 

Many practical, especially engineering, random problems are time dependent. For 
example, as defined in Chapter 1, a random signal is a random time function. 
Such time functions are called random processes in mathematics. 

Example 6.1: A Sinusoidal Signal with Binary Random Phase 

Consider a sinusoidal signal X(t) = cos(t + <j>), where <f> is a RV determined by 

• X(t) is random since Its values cannot be determined surely beforehand. 
• X(t) is not a RV because a time function rather than a number is assigned 

to it given an outcome of the random experiment. 
• Sample space = {x\(t),X2(t)} = {cost, — cost} since eos(t + ir) = — cost. 
• For any given time t i , X(t{) is a RV with at most two possible values: costi 

and — costi. 

Example 6.2: Rectangular Pulse Train with Random Pulse Width 

Consider a rectangular pulse train with a "period" T, pulse height A, and a 
random pulse width W that is independent from period to period and is uniformly 
distributed over the period: W ~ U(0,T). Note that 

• X(t) is random since its values cannot be determined surely beforehand. 
• X(t) is not a RV because Its value is a time function although for any given 

time t i , X(t\) Is a binary RV with two possible values: 0 or A. 
• The sample space consists of infinitely many time functions. 

A 

0 T 2T 3T 

Figure 6.1: A pulse train with a random pulse width. 
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6.1 Concept of Random Processes 

In general, a random process or stochastic process X[t) can be defined as 

• a time-varying random variable in the sense that the value on which the RV 
may take is time varying, or 

• a random time function in the sense that a whole time function, rather than 
a number, is assigned to each outcome. 

Note that 

• X(t) at any specific time t\ is a random variable X{t\). 
• A realization of X(t) is a time function, called a sample path, sample 

function, or member function, not a number. 
• Its sample space (known as ensemble) is a collection of time functions. 
• X(t) at distinct time instances could have vastly different distributions. 

X 

0 i 

""••* * xi(t) 

Figure 6.2: Two sample functions of a random process. 

/x<ti)0*0 

Figure 6.3: Some possible marginal PDFs of a random process. 

261 



6.1 Concept of Random Processes 

The RV approach is powerful in handling random phenomena. It wi l l , however, break 
down i f the random phenomena vary with time since a RV does not vary with time. In most 
engineering applications that involve uncertainty, such as random signals and systems, the random 
phenomena are not time invariant. Random processes are the right tool for such time-varying 
random phenomena. They are natural extensions of the concept of RVs. 

Recall that a RV assigns a unique number x to the outcome a; of a random experiment: 
X = X(u). I f to every outcome LU, we assign a unique time function, rather than a number, then 
we have a random process, which may be denoted as X(t, UJ), rather than a RV. Thus, the sample 
space consists of time functions, called sample functions, rather than numbers. 

The term stochastic is a widely used technical synonym for the word "random." 
A random process may be visualized as the process of the random motion of a particle. Its 

possible motion trajectories are the sample paths (sample functions) of the random process. 
In Example 6.1, i f a nonzero value of the random process X(t) at a given time is known, then 

the value of the random process for the entire time horizon is known for sure. More generally, all 
future values of some random processes can be determined uniquely given the past values. Such 
processes are sometimes called deterministic random processes. Otherwise the random processes 
are called non-deterministic, such as Example 6.2. These terms are somewhat confusing. 

A random sequence or discrete-time random process X(n) is an (infinite) time sequence 
of RVs. A random sequence is a special random process that is discrete in time. It is nothing 
but an infinite sequence of RVs, which is equivalent to an oo-dimensional random vector. A 
finite sequence of RVs is a degenerated special random process. It may be represented by a 
finite-dimensional random vector. A random sequence is also known as a time series. 

Similarly as in the deterministic case, a random sequence X[n] may be obtained by sampling 
a (continuous-time) random process X(t) (by a constant sampling rate / ) ; that is X[n] = X(nT), 
where T = 1/ / is the sampling interval. Fig. 6.4 illustrates two sample functions of a random 
sequence that is the sampled version of the random process of Example 6.1. 

o o ° o o 

• • • 

u • o o • n 

xi[n] 

Figure 6.4: Two sample functions of a random sequence. 

There are two classes of random pulse trains. The first is random due to the fact that some 
parameters, e.g., amplitude and/or pulse width, are RVs but time invariant. For this class the 
amplitude and pulse width are time-invariant from period to period. The amplitude and/or pulse 
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6.1 Concept of Random Processes 

width (or even the period) in the other class are random and time-varying (different for different 
period). For instance, in Example 6.2 the pulse width is random and time-varying. 

Example 6.3: Generation of a Random Pulse Train by P&R 

Suppose we want to generate a pulse train similar to the one of Example 6.2 with T = 2.5 
seconds except that the amplitude A is a time-invariant Gaussian RV: A ~ AT(3,0.5 2). This can 
be done easily using the companion software P&R as follows: 

51. Click "RPGenerator" in the main window of P&R. 
52. Click "Pulse Train." The "Random Pulse Train Generator" window wi l l appear. 
53. For amplitude choose "Time-Invariant", find and click "Normal" and then enter "3" and 

" 0 . 2 5 " for the mean and variance. Click "Ok." 
54. For pulse width, choose "Time-Varying", find and click "Uniform" and then enter "0" and " 2 " 

as the lower and upper limits, respectively. Click "Ok." 
55. Fi l l out the remaining parts of the window "Random Pulse Train Generator" as shown in Fig. 

6.5. Click "Ok." A single sample function of X(t) is then generated and plotted, as shown 
in Fig. 6.5, and saved to a user-specified data file. 

The above steps can be repeated to generate more than one sample function. 
Since P&R is a computer software, it can generate only discrete points of X(t). A sampling 

rate of 10 Hz means that 10 data points per second wi l l be generated and thus 25 points wi l l be 
generated within each period T = 2.5 seconds in this example. Hence, 100 time points means 
that the data record wi l l have 100 points, covering 4 periods for this example. 

B l ^ H ^ H i l l l i 

4 , 

Figure 6.5: Generation of a random pulse train by P&R. 
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6.1 Concept of Random Processes 

Example 6*4: PDFs of a Random Sinusoidal Signal 

A random process X(t) is defined by tossing two dice to determine which of the 
following three sinusoids to pick: 

!

x\(t) = cost i f the sum is 2 or 12 
x2{t) = 2 cos 2t i f the sum is 3 or 7 
x$(t) = 3 cos 3t otherwise 

(a) Determine the probability of each sample path being the right one: 

P{X(t) = Xl(t)} = P{(1,1)} + P{(6,6)} = 1 + 1 = 1 

P{X(t) = x2(t)} = P{(l,2),(2,l)} 
+ P{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} 

_ 2 6 _ 2 
~ 36 + 36 ~~ 9 

TO = * , « ) } = ! - ^ - M 
(b) Determine fX{«/4)(x), fx^/2){x), and fx{pH)jcW2){F,y): 

t z2(*) 
TT/4 0.707 0 -2.12 
TT/2 0 -2 0 
P{X(t) = ^(i)} 1/18 2/9 13/18 

1 2 13 
fxw)(x) = j^S(x - 0.707) + -8(x) + -6{x + 2.12) 

fx(,/2)(x) = ±6(z) + p(x + 2) + ^8(x) = ^ ( z ) + | « ( * + 2) 

fx(*iA),x{*i2){x, y) = ^8(x - 0.707)%) + p(x)6(y + 2) 
v i •* ii . i -* 

X(t)=^!(t) X(t)=^ 2(t) 

+ +2.12)%) 

X(t)=*s(t) 
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6.2 Characterization of Random Processes 

6.2 Characterization of Random Processes 

Since X(ti) is a RV, we have, by (3.43), 

g(x)fx(tl)(x)dx X ( i i ) is continuous 
E\g{X{h))\ = j Yjjix^PiXih) = Xi} X{tx) is discrete 

where fx{ti){x) is the PDF of the RV X{t\). Then, the mean value, mean-square 
value, and variance of X(tx) are, by (3.42), (3.44)-(3.44), 

/
OO 

^xfx{tl)(x)dx (6.1) 

4*0 = Qx - x^ffx^dx - £[X 2(*i)] ~~ [^(i i)] 2 (6.2) 

Since the above are true for every ti, % can be replaced with the generic time 
argument t and thus x(t), E[X2(t)) and are called the mean function, 
mean-square function, and variance function, respectively. 

Associated with the values X{t\) and Xfa) of X(t) at any two time instants, 
there is a joint PDF fx(ti),x{t2)(xii ^ 2 ) (i.e., the joint PDF of the two RVs) through 
which the joint statistics can be determined by (4.20): 

/ 'OO /'OO 

E[g(X(t1),X(t2))} = / 5 ( ^ 1 , ^2 ) / x ( « 1 ) , x ( i 2 ) ( x i ) x2)dxidx2 
J —OO •.' — OO v 

As special cases, we define autocorrelation function by [see (4.21)] 

RAhM = EiXitJXfo)] (6.3) 

autocovariance function by [see (4.22)]: 

C x ( t i , * 2 ) = E{[A"(/ 1) - x(h)}[X(t2) - x(t2)}} (6.4) 

and correlation coefficient by [see (4.23)] 

n 4 \ C x ( ^ i , ^ 2 ) Cx(ti,t2) , , 

Similarly to (4.22) for two RVs, we have 
Cx{h,t2) = Rx{h,t2) - x{h)x(t2) 

autocovariance = autocorrelation — (mean at ti) x (mean at £ 2 ) 
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6.2 Characterization of Random Processes 

Mean, autocorrelation, and autocovariance are often used as the short terms for mean function, 
autocorrelation function, and autocovariance function, respectively. 

Autocorrelation, autocovariance, and correlation coefficient quantify the coupling of a ran-
dom process at distinct time instants. This is the same in principle as the fact that correlation, 
covariance, and correlation coefficient quantify the coupling between two RVs. 

Autocorrelation is used more widely than autocovariance and correlation coefficient for the 
quantification of coupling of a random process at distinct time instants. This is because many 
random processes encountered in practice have zero mean and a random process Y(t) with a 
nonzero mean y(t) can always be decomposed as Y(t) = X(t) + y(t), where X(t) is a zero-
mean random process. 

Note the following relations: 

E[X2(t)] = Rx(t,t) 
al(t)=Cx(t,t) 

Example 6.5: First Two Moments of a Sinusoid wi th Random Binary Phase 

Consider again the sinusoidal signal X(t) of Example 6.1. Since P{4> = 0} = P{(j> = n} = 1/2, 
its mean, mean-square value, variance, autocorrelation, and autocovariance are 

x(t) = E[X(t)] = E[coB(t + 4>)] 
(3.43) 

E[X*(t)] 

P{(j> - 0} cos(t + ^ = o + P{<f> = ?r} cos(t + 0)1^ 

- cos t + - cos(t + 7T) = 0 

E[ms2{t + <f))] = ^ cos 21 + ™ cos2(t + w) = cos 21 

E[X2(t)}-~[x(t)f = cos2t 

E[X(tt)X(t2)} = E [C O B ( « I + <f>) cos(t2 + </>)] 

EJi[cos(ti - t2) + cos(ti + t2 + 2(f))} 

» cos(ti - t2) + ^£[cos(*i + 1 2 + 20)] 

| cOS( t i -*2 ) + | ~ cos(ti + t2) + I cos(ti + t2 4- 2TT) 

1 
[cos(ti — t2) + cos(ti + t2)] =• costi • cos t2 

Cx(ti,t2) = Rx(ti,t2) - xfyijxfa) = costi • cos t2 

It is not easy to find the first two moment functions of the random pulse train of Example 
6.2, although the random process looks simple. 
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Example 6.6: First Two Moments of a Random Sinusoid 

Consider again the random process X(t) of Example 6.4. 

(a) Determine x(ir/4), x(ir/2), <x2

(7r/4), and ^ ( 7 r / 2 ) : 

x(7r/4) = E Xi(7r/4)P{X(ir/A) = Xi(w/4)} 
i=i 

= (0.707)(1/18) + (0)(2/9) + (-2.12)(13/18) = -1.492 

X(TT/2) = (0)(1/18) + (-2)(2/9) + (0)(13/18) = ~ = -0.4444 

E[X\ir/A)) = E x*(n/4)P{X(ir/4) = ^(TT/4)} 
i=l 

= (0.7072)(1/18) + (02)(2/9) + (-2.12)2(13/18) = 3.274 

E[X 2(TT/2)] = (02)(1/18) + (-2)2(2/9) + 02(13/18) = | 
a 2

( 7 r / 4 ) = E[X2(n/4)} - [X(TT/4)]2 = 3.274 - (-1.492)2 = 1.048 

*L/2) = E[X^/2)} - [X(TT/2)]2 = 8/9 - (-4/9)2 = Q M U 

; X(TT / 4 ) 
T 2 

Tx(ir/2) 

(b) Determine Rx{n/4,-K/2) and Cx(n/4,7r/2): 

i ? x ( 7 r / 4 , 7 r / 2 ) = £[X(7r/4)X(7r/2)] 

- E E ^ ( 7 r / 4 ) ^ ( 7 r / 2 ) P { X ( 7 r / 4 ) = ^(TT/4), 
i=ij=i 

X(TT/2) = ^(TT/2)} 

= E ^ ( 7 r / 4 ) ^ ( 7 r / 2 ) P { X ( 7 r / 4 ) = ^(TT/4), X(TT/2) = ^(TT/2)} 

i = l 

= 0 . 7 0 7 - 0 - ^ + 0 - ( - 2 ) - ? + ( - 2 . 1 2 ) . 0 - | | = 0 

C^TT/4, TT/2) = ^(TT/4, TT/2) - X(TT/4)X(TT/2) 
= 0 - (-1.492) (-0.4444) = -0.6630 

where = follows from the fact that given an outcome of a random event, the 
whole time function is assigned to the random process. Note that Cx(t\, t2) as a 
covariance could be negative and RX(TT/4JW/2) = 0 makes sense because either 
X(TT/2) or X(TT/4) as a RV is equal to zero. 
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6.2 Characterization of Random Processes 

Example 6.7: Mean and Autocorrelation of Random-Phase Sinusoid 

Many sinusoids in reality have a random phase. Consider, e.g., 

X(t) = A$m(oj0t + <f>) 

where .4, u0 > 0 are known constants, 0 is a uniform RV over (-7r, IT]: 

/(</>) 0 
— 7T < 0 < 7T 

elsewhere 

Find the mean and autocorrelation of 

= J5[Asin(o;oi + 0)] - E[g (</>)] - y^Asin(u;n£ + ^ ) / ( ^ ) # 

= 7 p sin(a;ot + 0 ) # = — [ - cos(a;o£ + #)] 0 2?r ' T /~" r
 2TT1 

which does not involve £. This should be the case since a sinusoid with an 
arbitrary phase has zero average over one period. In fact, this is true if <f> is any 
RV with a PDF symmetric about the origin, as can be seen from 

/
IT 

^ A sin(o;ot + (j>)/(^)# = 0 if /(</>) is symmetric about 0 

Note that 
sin a sin (5 = -[cos(a — (3) — cos(a + /?)] 

id 

We have 

Rx(t + r, i ) = E[X(t + r)X(t)} = E[A2 sm(ujQt + U 0 T + <f>) sm(u0t + </>)] 

A2 

A2 

2 
A2 

-{E[COS(U0T)] - E[cos(2u)0t + UQT + 2(f))]} 

| COS(U>QT) - J ^ cos(2cu0t + LJQT + 2(j))f((j))d(f> 

cos(2o;ot + UJQT + 2<p) * —dd 

— COS(UJQT) = R(T) (depends only on time difference r ) 

Note that for this example, x(t) does not depend on t and Rx(t+r, t) is a function 
of the time difference r only. 
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6.2 Characterization of Random Processes 

Example 6.8: Generation of a Random Sinusoid by P&R 

A random sinusoid (i.e., a sinusoid with random amplitude, phase, and/or frequency) can be 
generated using the companion software P&R according to the following steps: 

51. Click "RPGenerator" in the main window of P&R. 
52. Click "Sinusoid." The "Random Sinusoidal Process Generator" window wi l l appear. 
53. Choose "Constant" for amplitude and frequency and enter "2" and " 0 . 5 * p i " In their cor-

responding windows, respectively. Click "Ok." 
54. Choose "Uniform" for phase and enter " - p i " and " p i " as the lower and upper limits, 

respectively; that is, phase is uniformly distributed over (—7r. n). Click "Ok." 
55. Fi l l out the remaining parts of the window "Random Sinusoidal Process Generator" as shown 

in Fig. 6.6. Click "Ok." A single sample function of X(t) is then generated and plotted, as 
shown in Fig. 6.6, and saved to a user-specified data file. 

The above steps can be repeated to generate more than one sample function. 

RVGanarator FpF /PMF X^ l e s Percentile |dent?ficalton Miscellaneous ptPCseneretor 

1 
100 

10 

lillil̂ lHiMiHiiWK̂ Pillllliiii 

11111 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ » f R a n d o . 
Tip Time pointe should bo « p B t e £ - d i t ^ , f , d o w 

De*te*uh values for ©mptitucie ar 
Defssuft value for ph# 

Ok 

Figure 6.6: Generation of a random sinusoid by P&R. 
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6.3 Classification of Random Processes 

6.3 Classification of Random Processes 

A random process X{t) is said to be 

• continuous i f X{t\) for every fixed t\ is a continuous RV. 
• discrete i f X{t\) for every fixed t% is a discrete RV. 
• mixed i f it is neither continuous nor discrete. 
• strictly stationary i f none of its marginal and joint PDFs depend on the choice 

of time origin (this implies that none of its characteristics are time-varying). 
• (wide-sense) stationary (WSS) i f neither its mean nor its autocorrelation de-

pends on the choice of time origin; that is, i f 
• E[X{t)) does not depend on t, and 
m Rx(tijt2) = Rx(h — h) = RX(T), r = t\ — £ 2 , for every t\ and that 

is, autocorrelation depends only on the time difference. 
• nonstationary i f it is not stationary. 
• white i f its values at distinct time instants are uncorrelated; that is, i f its au-

tocovariance is always zero (or equivalently, its autocorrelation is the product 
of the expected values) for distinct time instants: 

• ergodic i f its ensemble average (i.e., mean) x(t)9 defined by (6.1), is equal 
to the time average of its every sample function x(t), defined by 

The concept of stationarity of a random process is similar to that of the 
steady state of a deterministic process: The characteristics of the process are 
time-invariant even though the process itself is time-varying. 

A (wide-sense) stationary process X(t) is white i f its autocovariance is always 
zero for any nonzero r: 

Its autocorrelation is clearly always zero for any nonzero r i f it has zero mean: 

Cx(ti, fe) = 0 [or Rx(th t2) = x(ti)x(t2)] 

given UJ (6.7) 

Cx(r) = E {{X(t + r ) - x][X(t) - £]} = 0 V r ^ O 

R X ( T ) = E[X(t + r)X{t)} - 0 V T ^ O 
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6.3 Classification of Random Processes 

A random process at a given time, as a RV, is sometimes referred to as its state. 
I f the state of a random process at any given time as a RV is discrete, the process is said to 

be discrete (or discrete-valued, discrete-state). If the state is a continuous RV, then the process 
is continuous (or continuous-valued, continuous-state). The process in Example 6.2 is discrete 
because its state has only two possible values, although its ensemble has uncountably many 
elements. The random process in Example 6.1 is also discrete because its state has at most two 
possible values, although these values span a continuous range [—1,1]. 

The concepts of stationarity, steady state, and time-invariance have much in common. They 
all refer to the fact that the characteristics of a system, function, or process do not change with 
time. For a stationary random process, just like the steady state of a deterministic process, the 
characteristics of the process are time-invariant although the process itself is usually time-varying. 
Likewise, a nonstationary process can be thought of as the random process counterpart of the 
transient of a deterministic process. A deterministic function may begin with a transient and 
eventually settle down to the steady state. Analogously, a nonstationary random process may be 
asymptotically stationary, meaning that it tends to be stationary as time Increases. 

It Is sometimes extremely hard to check whether a random process is strictly stationary from 
the definition. In practice, i f the primary physical conditions under which the random process is 
generated do not vary with time, then the random process can be considered (approximately) to 
be strictly stationary. Many random processes encountered in engineering practice are stationary. 
For example, the output noise of a radio receiver in steady state can be treated as a stationary 
random process while the noise is nonstationary during the initial transient (such as right after 
the receiver is turned on). It can be shown that 

I f a process is white, then its values (which are RVs) at distinct time Instants are uncorrelated. 
Whiteness defined this way is also called wide-sense white because there are so-called strictly 
white processes. A random process X(t) is strictly white (or independent) i f its values at 
distinct time instants as RVs are independent. White processes are much easier to handle than 
other random processes. Various physical noises (e.g., thermal noise) are (approximately) white. 

The following three commonly used definitions of autocorrelation Rx(r): 

Rx(T) = E[X(t + r)X(t)l Rx(r) = E[X(t)X(t + r ) ] , Rx(r) = E[X(t)X(t - r ) ] 

are equivalent for a stationary process, although their nonstationary counterparts Rx(t - f r , t), 
Rx{t, t + r) and Rx(t, t — r) are in general all distinct. The first two forms and the last one may 
result in different sample autocorrelations i f a finite duration of a random process is used (see 
Section 6.6). We wi l l not use the second form, albeit most popular, because it is inconsistent 
with the generally accepted definition for a complex (or vector-valued) process Rx(ti,t2) = 

Rx(r) = E[X(t+r)XH(t)} = E[X{t)XH(t-r)] = {E[X(t)XH(t+r))}H ^ E[X(t)XH(t+r)] 
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6.3 Classification of Random Processes 

where H stands for complex conjugate and transposition. Note that the autocorrelation is a matrix 
for a vector-valued process. 

The ergodicity can be interpreted as follows. I f a random process is ergodic, every one of its 
sample functions as time varies visits all possible state (i.e., value) of the process. As such, the 
entire information of the random process is contained in every single sample function and thus 
all characteristics of the random process can be determined from any single sample function. 

Let UJ be an. outcome of a random experiment. An ensemble average is obtained by averaging 
over all x(t, UJ) for a given time instant t and is in general a function of time. A time average is 
obtained by averaging over all time instants for a given sample function and in general depends 
on particular outcome UJ. Conceptually, we may write 

Ergodicity requires that both ensemble average and time average be constants and equal to each 
other. As a result, for an ergodic random process, Its mean (ensemble average) can be obtained 
from the time average of any single realization of the random process. This is extremely important 
in practice since it is usually the case that only a single sample function of a random process is 
available. Fortunately, most random processes involved in real-world problems are ergodic. The 
usefulness of ergodicity is as follows. In most applications, the ensemble average (mean) of a 
random process cannot be obtained directly. A typical example is the case in which the random 
process is a signal whose expression or representation Is not known. I f by some criterion it is 
known that the process is ergodic, then its mean can be approximated by the finite time average 
of any of its single sample functions. 

To be more precise, a random process is ergodic in the mean i f x(t) = X(UJ), where x(t) and 
X(UJ) are the ensemble average (I.e., mean) and time average (for the sample function correspond-
ing to the outcome UJ), defined by (6.1) and (6.7), respectively. It Is ergodic in the autocorrelation 
i f its ensemble autocorrelation is equal to the time autocorrelation of every one of its sample 
functions, which are defined by 

ensemble autocorrelation = E[X(t - f r)X(t)] 

In practice, for any given stationary random we may assume that i t is ergodic unless there is 
a strong indication for the opposite. This is known as the ergodic hypothesis or ergodic principle. 
However, i f the process is not stationary, then it cannot be ergodic. 

The first two moments of an ergodic random process X{t) have clear physical interpretations: 
The mean x is the dc component', the mean-square value is its average power, the variance o\ 
is the average power of its non-dc components; and the standard deviation ox is the effective 
value of its non-dc components. 

ensemble average: x(t) x(t, UJ)P{UJ}J given t 

given UJ 

time autocorrelation = Mm x(t + r)x(t)di, for a single sample function 
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6.3 Classification of Random Processes 

Example 6.9: The random process in Example 6.1 is 
• discrete since X(i) at every fixed time t has at most two possible values. 
• not strictly stationary because its PDF at t = n/2 and t = 0 differ: 

fx(n/2)(x) = S(x) ^ fX(o)(x) = ~8(x - 1) + ^6(x + 1) 

• not WSS because its autocorrelation depends on t as well as r: 

Rx(t + r, t) EmmMe 6 , 5 cos(i + T) cost 

• not white since its autocovariance C(t + r, t) is not always zero for r ^ 0 
(see Example 6.5). 

• ergodic in the mean because its time average 
1 rT 1 T 

x(u) = lim —- / cos(£ + 6)dt = lim —— sin(t + 6) = 0 
/or every 0 is equal to its ensemble average x(t) = 0 (see Example 6.5). 
Example 6.10: The random process in Example 6.7 is 

• continuous since X(t) at every fixed time £ is a continuous RV. 
• not strictly stationary because it can be shown that fx(w/4)(x) fx(ir/2)(%) 

but is wide-sense stationary since x(t) does not depend on t and Rx(t + r, t) 
is a function of the time difference only. 

• not white since its autocorrelation is not always the product of expected values 
for r ^ O : 

A2 

Rx(t + r,t) = — eos(ur) ^ x(t + r)x{t) = 0 

• ergodic in both mean and autocorrelation because, for every </>, 

1 rT 

time average x{u) = lim — J ^ A sin(a;o£ + 4>)dt = 0 = mean x(t) 
1 rT 

time autocorrelation = lim — / x(t + r)x(t)dt 
T—»oo 2JT J—T 

1 rT 
Mm — / rr A2 sm(uj0t + UJ0T + <f>) smfat + <j>)dt 

1 —>oo Zl J~J-
1 1 T 
2^ T^L 2T / - r f C O S ^ ° r ^ _ COS(2CO>Q£ + 20 + o» 0r)]^ 

2T 
J _ 

J _ 
f ^ o 2T 

2T -/-a 

- y i 2 cos(a;or) = ensemble autocorrelation R(T) 
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6.4 Correlation Functions 

• How to measure the similarity {correlation) between two waveforms? 
• Given the value of one waveform, how much confidence do we have in 

estimating the value of the other? 
• How much confidence do we have in estimating the value of a waveform at 

a time given its value at another time? 

The correlation function provides a quantitative answer to such questions. 
The correlation (coupling, similarity) of the waveforms in Fig. 6.7 are 

• Strong (but negative) between X2(t) and x±(t). 
• Very weak (or non-existent) between x${t) and any other waveforms. 
• Medium between x\(t) and x2(t) (positive). 
• Medium between x\{t) and x±(t) (negative). 

The measure should reflect these facts. 

t t 

Figure 8.7: Correlation (coupling, similarity) of waveforms. 
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6.4 Correlation Functions 

Correlation of Deterministic Waveforms 

• The crosscorrelation function of two deterministic "power" waveforms (time 
functions) x(t) and y(t) is defined as 

1 [T 

rxy(r) = Tlirn — y_ y x(t + r)y(t)dt = time average of x(t + r)y(t) (6.8) 

which measures the similarity (coupling, correlation) between the two wave-
forms (time functions). 

• The autocorrelation function of a deterministic power waveform x(t) is 
defined as 

rx(r) = Mm — / x(t + r)x{t)di = time average of x(t + r)x(t) (6.9) 

which measures the similarity (coupling, correlation) between a waveform 
and its time-shifted version. 

A correlation function will have a small/large magnitude i f many/few terms in 
the integral (as a summation) of the product cancel out one another. For example 
for Fig. 6.7, rX2X4(0) has a large magnitude since the product X2{t)x±(t) is almost 
always negative whereas rX2X4(l) has a small magnitude since the positive and 
negative terms of x2(t + l)x^(t) cancel out. 

Correlation of Random Processes 

• The crosscorrelation function (CCF) of two random processes X(t) and 
Y(t) is defined as the average crosscorrelation of the two processes: 

Rxy(t + r, t) = E[X(t + r)Y(t)} = ensemble average of X(t + r)Y(t) 
(6.10) 

• The autocorrelation function (ACF) of a random process X(t) is defined as 
the average autocorrelation of the process: 

Rx(t + r,t) = E[X(t + r)X(t)} = ensemble average of X(t + r)X(t) 
(6.11) 

These correlation functions are not random. They are the ensemble equivalents 
of those [i.e., (6.8) and (6.9)] for deterministic waveforms. 
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6.4 Correlation Functions 

The instantaneous power of a function (or waveform, signal) x(t) is defined as the quantity 
|x(t)| 2. A function x(t) Is said to be a (finite) energy function if it has finite energy over the 
entire time horizon; that is, if / f ^ \x(t)\2dt < oo. A function x(t) is said to be a (finite)power 
function if it has infinite energy but finite average power (but Infinite energy) over the entire 
time horizon; that is, if 

lim — / \x(t)\2dt < oo but / \x(t)\2dt = oo 
T—>oo 2T J-T J-oo 

Random processes are power functions because their sample functions have an infinite du-
ration and may not even approach zero in the limit. 

The correlation functions defined by (6.8) and (6.9) are valid only for power functions. 
They are always zero for energy functions. For energy functions, the crosscorrelation function is 
defined by 

/
oo 

x(t + T)y(t)dt 
-oo 

This definition is more commonly used for deterministic functions. It is, however, not valid for 
power functions since the integral diverges and thus (6.8) and (6.9) should be used as the basis 
for random processes. 

(6.10) can be understood as follows. The crosscorrelation of two random processes X(t) 
and Y{t) can be defined as the expected crosscorrelation of X(t) and Y(t), as defined by (6.8) 
(i.e., crosscorrelation averaged over all sample functions of X(t) and Y(t)): 

Rw(t + T,t) = E[r^(t + TS)] = E\]fa ^= [T X(t + r)Y(t)dt 
L i - *oo Z l J-T 

= 11m / T E[X(t + r)Y(t)]dt = time average of E[X(t + r)Y(t)] 
T-*oo 2T J-T 

If E[X(t + r)Y(t)] depends only on r (e.g., when X(t), Y(t) are jointly wide-sense stationary), 
then the crosscorrelation is simply equal to E[X(i + r)Y(t)], as defined by (6.10). Similarly, the 
autocorrelation of a random process X(t) can be interpreted by 

Rx(t + r, i) = E[rx(t -f T, t)} - time average of E[X(t + r)X(t)] 

and if E[X(t + r)X{t)\ does not depend on t (e.g., when X(t) is wide-sense stationary), then 
the autocorrelation is simply equal to E[X(t + r)X(t)] , as defined by (6.11). 

To measure the correlation of a random process, it is more convenient to use the correlation 
coefficient, defined by (6.5). 

As for the case of two RVs, autocorrelation, autocovariance, and correlation coefficient of a 
random process quantifies the degree of linear correlation between its values at two time instants. 
If p is positive, then X(t' -f- r ) and X(tf) are positively correlated, which implies that they are 
likely to have the same sign. If p is negative, then X(t' + r ) and X(t') are negatively correlated, 
which implies that they are likely to have the opposite sign. 
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For wide-sense stationary random processes, 

R(r) = R(t + r,t) - + r , , \/t,t' 

C(T) = C(* + r, t) = 4- r 51 7), Vt, t ; 

p(r) = p(t + r, t) = p(tf + r 5 f ) = Vfc, 

which depend only on time difference r . 
In general, i f a wide-sense stationary random process X(i) has no periodic components, then 

its correlation between two distinct time instants decreases as the time difference increases; that 
is, r f p(r) I. It is thus convenient to define a correlation time and the values X(tf + r ) 
and X(t') at two time instants are deemed uncorrelated i f their time difference r is larger than 
the correlation time rc for practical purposes. Two commonly used definitions of correlation 
time are: 

• The correlation time r0.05 is defined as the value of r such that the correlation coefficient 
drops to 0.05 of its peak value 1; that is, p(ro.os) = 0.05. 

• The correlation time rc is defined as the value of r such that the area underneath p(r) is 
equal to 2r c; that is, 

poo 
TC = / p(r)dr (6.12) 

Jo 

P(r) 

Tc TQ.05 

Figure 6.8: Some definitions of correlation time. 

It is thus clear that a small correlation time implies a weak correlation between the distinct 
time instants of the random process. Loosely speaking, in such a case, we may say that the 
random process varies quickly (in a probabilistic or statistical rather than deterministic sense) 
since its value at one time can be statistically quite different from that at another time with a 
small time difference. In this sense, white noise has the quickest possible variation. 

Correlation and convolution of two functions are closely related: 

» poo poo poo 
rXY{T)~ x(t' + T)y(t')dt' = x{t)y{t - r)dt = / x(t)y[-(r - t))dt = X(T) * y(-r) 

J —oo J —oo J—oo 
(6.13) 

that is, correlation is convolution with one of the functions "flipped" in time. 
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Example 6.11s A Sinusoid with Random Frequency and Phase 

Given G(t) = Acos(ujt + 0), where UJ and 6 are independent RVs with 6 ~ 
U(0} 2w) and UJ ~ U{uj\, UJ^), UJ2>UJ\> 0, determine the mean E[G(t)], average 
power E[G2(t)], and autocorrelation Rg(r). Note that 

cos(a + P) = cos a cos /? — sin a sin /? (6.14) 

We have 

E[G(t)} = E[Acos(ut + 9)] {6=} AE[cosujt cos 8 — sin u>t sin 0] 

= A{£[cosu;t] £[cos0] -£[sinu;£] £[sin0]} = 0 
^ i |- > ^ i in, iinnrmnn.r̂  

=0 =0 

i2j(r) = E[G(t + r)G(t)} = E[A cos{ut + UJT + 6) • A cos(a;t + 0)\ 

= ^A2E[cosur + cos(2a;i + UJT+28)] 

= \-A2 {E[COSUJT] + E[cos(2ut + UJT) cos 28 - sin(2a>i + UJT) sin28}} 

1 
™A 2{E[cos(2^ + UJT)] E[COB20] -E[sm(2u)t + LOT)} E[sm20] 

=0 =0 

+ £[cos a;r]| 

-^A2£Tcos UJT] = ~A2 f 2 cos UJT • duj 
2 1 2 Jwi UJ2-UJI 

A2 1 . |W2 A 2 . 
x • - • sma;r = — 7 —̂— IsmUJ2T — sinUJ\T\ 

2{u)2 ~ ^ 1 ) T l^i 2r(a;2 — a>i) 

£[G2(*)] = i?fl(0) = lim A ' 
r-*o 2{UJ2 — UJ\) 

^ (co2 - u{) = ^A2 

• sm UJ2T smuJiT 
UJ2~~— UJi 

UJ2T UJ\T 

2{UJ2 — uj\) 2 

Alternatively, E[G2(t)] = E[A2eos2(ujt + 0)] = §E[l + cos2(a;t + 0)] = f . 
Note that in general, if 6 ~ 1/(0, 2TT) and UJ is nonrandom or is random but 
independent of 0, then 

E[cos{u)t + n0)} = 0, n = 0, ± 1 , ± 2 , . . . (6.15) 

This makes sense: A sine wave has a zero average over one or more periods. 
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6.5 Properties of Autocorrelation Functions 

Important properties of the autocorrelation function Rx(r) of a real-valued wide-
sense stationary random process X(t) include: 
1. It is even in the time-shift r: 

Rx(-r) = E[X(t)X(t + r)} = E[X(t + r)X(t)] = R x ( T ) (6.16) 
which makes sense: Rx{r) should be identical for left and right shifts (time 
delays and time advances). 

2. It is bounded by its value at the origin: 

Rx(r)\<Rx(0) (6.17) 
which makes sense: X(t) is most "similar" to itself (without shift). This can 
be shown as follows: 

0 < E {[X{t + T ) ± X{t)}2} = E [X2{t + r) ± 2X(t + r)X(t) + X2{t)} 
= Rx(0)±2Rx(T) + Rx(0) 

3. The above bound Rx(0) equals the mean-square value: 

Rx(0) = E[X(t + 0)X(t)] - E[X2(t)} 1 E[X2} = mean-square value 
(6.18) 

The mean-square value is called the average power of the process. 
4. If X(t) has a periodic component, then Rx(r) will also have a periodic 

component with the same frequency. For example, assume 
X(t) = Acos(aj0t + 6) + Y(t) 

where 9 ~ U(0,2n), and is independent of Y(t). Then 
Rx(r) = E{[Acos(uQ(t + r) + e) + Y(t + T)}[Acos(u0t + 6)+Y(t)]} 

= E[A2 cos(u0t + 6) cos(u0t + LO0T + 9) + Y(t + r)Y(t) 
+A cos(ujot + 9)Y(t + T) + A cos(uQt + U 0 T + 9)Y(t)] 

= E | . 4 2 - [coswor + cos(2w0t - U0T + 26>)]| + Ry(r) + 0 + 0 

= ^A2 cos u0r + Ry(r) (6.19) 

where = follows from cos a cos f3 = |[cos(a — (3) + COS(QJ + / ? ) ] . 
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For a deterministic function x(t), its instantaneous power is defined as x2(t) and its average 
power is defined by 

P x = lira — / x2(t)dt (6.20) 

Thus, the average power of a random process may be defined by 

1 r°° 
PX = E\px) ------ lini —- / £[X 2(£)]cft = time average of E[X2(t)} (6.21) 

Some other properties of the autocorrelation function include: 

© I f X(t) has a constant (dc) term, then Rx{r) wi l l also have a constant (dc) term: 

X(t) - A + F ( t ) i 4 ( r ) - + y ( * + r)][A + 

This can be seen as a special case of the property 4 above in which the frequency is equal 
to zero and the phase Is not random. 

• I f X(t) has no periodic component, then X(t -f r ) and X(t) are uncorrelated as r —> oo; 
that Is, C x ( o o ) = 0 or Rx(oo) = (x)2: 

• An autocorrelation function cannot have an arbitrary shape. For example, i t cannot have 
jumps, flat tops, or any discontinuity in amplitude. 

• For a random process, its autocorrelation function (If exists) Is uniquely determined by the 
joint probability density function. The latter, however, cannot in general be determined 
uniquely by the former. 

• Let 

Mi) * !*<«) 
Then, the autocorrelation function of the derivative of a random process X(t) is the negative 
second-order derivative of that of X(t): 

RXX(T) = E[X(t + r)X(t)} = ^Rx{T) (6.22) 

Rx(r) 4 E[X(t + r)X(t)} = -^Rx(T) (6.23) 

This is a special case of (6.37), to be studied later. 
• Let h(t) be a deterministic function and let X(t) be wide-sense stationary. Then 

Y(t) = X(t) + h(t) y(t) =x + hit), Cy(r) = Cx(r) (6.24) 

Y(t) = h(t)X{t) y(t) = xh{t), Cy(t + r,t) = h(t + T)h(t)Cx(r) (6.25) 

That Is, an additive deterministic term of a random process has no effect on its autocovariance 
and a multiplicative factor acts as a scaling factor. Note that Y(t) Is no longer stationary I f 
the additive or multiplicative term h(t) is time-varying. 
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6.5 Properties of Autocorrelation Functions 

Example 6.12: Radar Range Determination 

In a radar, a signal X(t) is sent out by its transmitter, bounced back by the target, 
and received by the radar receiver with attenuation and noise. 

Z(t)^RyX(r) 

Assume that X(t) and zero-mean noise N(t) are both wide-sense stationary 
and mutually independent (which is reasonable) and K > 0 is a constant, known 
as attenuation factor. It can been easily shown that 

• Y(t) and X(t) are jointly wide-sense stationary (see problem 6.35). 
• RyX(r) = KRX{T — To), where r is known but TQ is unknown. 

From linear systems theory, we have, since the output of a lowpass filter is 
approximately equal to its dc term (i.e., average value), 

Z{t) = [Y(t)X(t - r)] * h(t) « E[Z{t)) = £?[ jf' h(X)Y (t - A) X(t - r - X)dX 

= J*E[Y(t- A) X(t-r- A)] h(X)dX = J* RyX(r)h(X)dX 

= Ryx(r) f h(X)dX = RyX{r) - KRx(r - r 0 ) 
^ ^ ,.| i i, nnn„ ̂  
= 1 by design 

Consequently, r 0 can be determined by adjusting r such that Z(t) & K R x ( T - T Q ) 
reaches its maximum KRx(0) (which occurs when r = r 0 ) and then the distance 
is determined by: 

vr 2d = vr distance d = 
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6.6 Sample Mean and Sample Correlation Functions 

6.6 Sample Mean and Sample Correlation Functions 

It is often the case in practice that mean and correlation functions of random 
processes cannot be obtained from their definitions because the required density 
functions or ensemble is not available. They are usually approximated by sample 
mean and sample correlations. 

Consider an ergodic random process X(t). Let x(nT) be a sampled (i.e., 
discrete-time) version of one of its sample functions x(t), where T is the sampling 
interval. Denote x(nT) by x[n]. Assume x[n] has a finite duration from n = 1 
to n = N, which is denoted by { x [ n ] } ^ = 1 . 

A natural estimate of the mean, known as sample mean, of X(t) based on 
{*M}JLi is 

1 N 

Two popular estimators of the autocorrelation function of X(i)9 known as 
sample autocorrelations, based on { x f n ] } ^ are, for 0 < m <C N, 

unbiased: R£[m] = Ru

x(mT) 

biased: Rx[m] = Rx(mT) 

The autocorrelation for negative m can be found by R[—m] = R[m], 
The biased estimator Rx[m] is more widely used than the unbiased estimator 

Rx[m] mainly because 

• It is usually more accurate in the sense of having a smaller (mean-square) 
estimation error than Rx[rn). 

• It preserves the important property of autocorrelation: Rx[m] < Rx[0], which 
is not preserved by Rx[m\. 

The autocovariance, correlation coefficient of a random process and the cross-
correlation and crosscovariance functions, and correlation coefficient of two er-
godic random processes X(t) and Y(t) can also be estimated by their sample 
quantities, defined similarly on the next page. 

1 N-m 

x[i + m]x[i] (6.26) 
I N-m 

— E x[i + m]r»[i] (6.27) 
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6.6 Sample Mean and Sample Correlation Functions 

x and R(T) are called sample mean and sample autocorrelation because they are calculated 
from a single sample function. They are also known as time average and time autocorrelation, 
respectively. 

The estimators and Rx[rn] are clearly discrete-time versions of (6.9). Estimator Rx[m] 
is unbiased because E(R%[m\) = Rx[m}\ that is, iQra] is equal to the true autocorrelation 
Rx[m] on the average (over all sample functions). Rx[m] does not have this desirable property: 
E(RX[m]) ^ Rx[m], although it is asymptotically unbiased: 2£(limjv-+oo Rx[™]) — Rx\m\- hi 
fact, it can be shown easily (see problem 6.36) that 

E(Rx[m])=(l-^Rx[m] 

For an ergodic process, both of these estimators approach to the true autocorrelation as N in-
creases, which is said to be consistent in estimation theory. 

If the time difference m is comparable with the data record length Nf e.g., m > 0.27V, then 
the estimators Rx[m] and Rx[m] may lead to poor results. 

The crosscorrelation of two ergodic random processes X(t) and Y(t) can be estimated based 
on their discrete-time sample functions x{n) and y(n) with a finite duration from n = 1 to 
n = N, for 0 < m< N9 

j N—m, 
unbiased: Rxv[rn] - -rz— V x[i + m]y[i] (6.28) 

Y TV — rn jz^ 
I N~m 

biased: Rxy[rn] = ]P x[i + m)y[i) (6.29) 
i"="l 

The biased sample autocovariance, crosscovariance, and correlation coefficients are 
•| N—m 

i V »=i 

C[m] 

C[0] 
| N-m 

Cxy[m) - — J ] + m] - x)(y[i] - y) 
*=i 

Cxy[m] 

y/ds[0]dv[0] 

Note that for sample mean, correlation, and covariance calculated from a finite-duration 
sample function, in general we have 

C[m] = R[m] - (xf but C[m) ^ R[m] - (xf 
Cxy[m] = Rxy[m) - xy but Cxy[m] ^ A^ra] - xy 

In practice, sample correlations are widely used even if we do not know whether the ran-
dom process is ergodic or not. (6.13) can be utilized to implement the calculation of sample 
correlations. 
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6.6 Sample Mean and Sample Correlation Functions 

Example 6.13: Estimation of Mean and Autocorrelation of a Process 

The following record (sequence) of 100 data is a discrete-time sample function 
(with sampling interval T = 0.1) of a zero-mean ergodic random process with 
autocorrelation R(r) = Se"10^: -2.5770, 3.5065, -2.3735, ••-,-0.9592. 

The sample mean and correlation functions are computed and compared with 
the true ones: 

1 1 0 0 1 
£ = 7?^ E x[n] = ™ [-2.577 + 3.5065 + • • • - 0.9592] = -0.0458 « x = 0 100 n=i 100 

1 1 0 0 1 
R [ 0 ] = T o o £ x 2 [ n ]

 = W(_2-577)2 +"'+ (-°-9592)2] = 2-845 « *(°) =3 

1 100 1 
C[0] = ^ Y,(x[n] - xf = —[(-2.5312) 2 + • • • + (-0.9134)2] = 2.843 

1 100-1 
= E x[n + l]x[n] = 0.7868 « i?(T) = #(0.1) = 3c"1 = 1.1036 

100 n=i 
1 100-1 

C[l] = — E + 1] - x)(x[n] - x) - 0.7871 « C(T) = i?(T) = 1.1036 
100 n = i 

= £111 = 0.2769 « p(T) - ^22 = 0.3679 
1 J C[0] C(0) 

1 100-2 
R[2] = — J2 4n + 2]x[n] = 0.3319 « i2(2T) = #(0.2) = 3e"2 = 0.406 

100 n=i 

Note that R[m] « C[m] although in principle R[m] = C[m] for this example. 
The true and sample autocorrelations, computed by P&R, are shown in Fig. 

6.9. Better accuracy is achievable i f the data record is longer. 

3 
2 
1 H 

-1 

R 
• Truth 

• • • Sample 

, , , _ m T 

0 1 2 3 

Figure 6.9: Comparison of true and sample autocorrelation functions. 
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6.6 Sample Mean and Sample Correlation Functions 

Example 6,14: Correlation Coefficient of a Random Sinusoid 

Consider a random process X(t) = 2sin(0.5-jrf + where <j> ~ U(—ir, n). 
Fig. 6.10 (a) and (b) illustrate two sample functions of X(t), generated by the companion 

software P&R. Plots (c) and (d) show the true and 100-point sample correlation coefficient 
functions (with 10 Hz sampling rate) of X(t), computed also by P&R. Note the difference 
between the two coefficient functions. The difference, arising from the fact that only 100 points 
were used in the latter, increases with the time difference r . Plots (e) and (f) give the 1000-point 
sample correlation coefficient (with 10 Hz sampling rate), also computed by P&R. Clearly, the 
accuracy of the sample correlation coefficients for the first 100 points increases greatly using 
1000 points, rather than 100 points. 

This example demonstrates that the computed sample correlations are accurate only for small 
time difference compared with the data record length. 

0 2 4 6 8 10 

(a) Sample function' with 0 = 0 

P 

4 6 

(c) True coefficient 

0 2 4 6 

(b) Sample function with <j> = n/2 

P 

10 

(d) With 100 points 

0 2 

(e) With 1000 points for small r 

40 60 80 

(f) With 1000 points 

100 

Figure 6.10: Sample correlation coefficients of a random sinusoid. 
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6.6 Sample Mean and Sample Correlation Functions 

Example 6.15: Computation of Sample Autocorrelations by P & E 

Example 6.14 can be computed using the companion software P&R. First, generate a 1000-point 
discrete sample function (with a sampling rate fs ~- 10 Hz) of the random sinusoid X(t), as 
in Example 6.8, and store it in e6_15. d a t . Then the correlation coefficient of X(t) can be 
computed using P&R with the following steps; 

S I . Click "RPAnalyzer" in the main window of P&R. 
82. Click "lime Domain." You wi l l be prompted to enter the name of a data file. Choose "data" 

subdirectory, enter the data file name "e6_15 . d a t " and click "Ok." 
53. The window "Time-Domain Analyzer" w i l l appear, with the computed sample mean and 

sample variance. Set the "Max time difference" to 100. Click "Corr-Coeff", as shown in Fig. 
6.11. Then the correlation coefficients p(i/fs) are computed, plotted and saved to a user-
specified data file for the first 101 points (/ -= 0 , 1 , . . . , 100), which correspond to r < 10 
since sampling rate is 10 Hz. Fig. 6.10(e) was generated this way. 

54. F ig . 6.10(f) can be generated by repeating the above steps with "Max time difference" setting 
to 1000. 

^ i & c e i i a t n e o u ' * R F ^ Q e r s e t ^ t o r R . F ' a A n o , l y z e r R R B e s p o r j « ; % » ^ b o u t 

hA&x t i m e c l i f f e r e n c a I 

I H ^ H H I I I 

1 0 0 

l l i i l l l B B l l I 

lllllllllllH^HKiiilillilii 

S H H H H B 

A u t o c a r r e l a t i o n j A u t o c o v » r i a n c e J C o r ^ C o e f f [ 

C r o s < s t r e f g r i t o n j C f o s s c ^ ' S H a r i G e j C r o % s C o r r - C o e f t j 

S e q u a n c e J j 

— ' 1 

1PQ 

Figure 6.11: Computation of correlation functions by P&R. 
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6.7 Relationship Between Two Random Processes 

6.7 Relationship Between Two Random Processes 

Two random processes X(t) and Y(t) are said to be 

• jointly (wide-seme) stationary (JWSS) if 

• X(t) and Y(t) are both wide-sense stationary, and 
m Rxy(t + r, t) and RyX(t + r, t) depend only on the time difference r; that 

is, 

Rxyit + T, t)=Rxy(r) 
Ryx(t + r, t) = Ryx(r) 

• uncorrelated if their crosscorrelation is equal to the product of their mean 
functions for all time t\ and t2: 

Rxy(tu t2) = «(ti)y(*2), Vti, t 2 (630) 

or equivalently, their crosscovariance is zero for all time t\ and t2: 

Cxy(tht2) 4 - «(tl)][y(* 2) - »(*2)]} = 05 Vti,*2 (631) 

• orthogonal if their crosscorrelation is zero for all time t\ and t2: 

Rxy(h,h) = 0, Vti, t2 

• independent if every set of RVs X ( t i ) 5 . . . , X(tn) is independent of every set 
of RVS y(«i),...,y(C). 
Clearly, if X(t) and Y(t) are jointly wide-sense stationary, then 

X(t) and Y{t) are uncorrelated Rxy{^) = xy (632) 

(631) and (630) are clearly equivalent in view of (6.6). (6.30) follows clearly 
from (4.26) since X(ti) and Y(t2) are simply two RVs. 

Two RVs are said to be orthogonal if their correlation is zero. This is because 
two RVs can be viewed as two vectors in a linear space and they are perpendicular 
if their correlation is zero. The orthogonality of two random processes is a 
generalization of this concept. 
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6.7 Relationship Between Two Random Processes 

Example 6.16: Correlation of Weighted Sums of Random Processes 

Given two JWSS processes X(t) and Y(t), let 

U(t) = aX(t) + bY(t) V(t) = cX(t) + dY(t) 

where a, b, c, d are real constants. Determine if U(t) and V(t) are JWSS. 

(a) First check if U(t) and V(t) are wide-sense stationary: Note first 
X(t) and Y(t) are JWSS => X(t) and Y(t) are both WSS 

E[U(t)] = £[aX(£) + ±ax + by = u (time invariant) 

= E[cX(i) 4- dY{t)] = cx + dy = v (time invariant) 
Ru{t, t') = - £{[aX(t) + 6F(t)][aX(t') + W (£')]} 

- E[a2X(t)X(t') + abX(t)Y(t') + abY(t)X(t') + b2Y(t)Y(t')} 
= a2Rx(t, t') + abRxy(t, t') + abRyX(t, t') + b2Ry(t, t') 

Thus, since X(t) and Y{t) are jointly stationary, 

Ru(t + r,t) = a2Rx{r) + abRxy(r) + abRyX{r) + b2Ry(r) = i^ ( r ) 

and by symmetry, 

Rvit + r,t) = C2Rx(T) + cdRxy(r) + cdRyX{r) + d2Ry(r) = Rv{r) 

which are functions of r only. Hence, U(t) and V(t) are both wide-sense 
stationary. 

(b) Check the other two conditions for JWSS of U(t) and V(t): 

RuV(t', t) = E[U(t')V(t)} = E{[aX(t') + bY(t')}[cX(t) + dY(t)}} 
= E[acX(t')X(t) + adX(t')Y(t) + bcY(t')X(t) + bdY(t')Y(t)] 

Ruv(t + r, *) = acRx{r) + adRxy(r) + bcRyX(r) + bdRy{r) = Ruv{r) 

RvU(t + r, *) = caRx(r) + cbRxy(r) + daRyX(r) + dbRy(r) = Rvu(T) 

Thus, U(t) and V(t) are jointly wide-sense stationary. Note that 

• Every pair of the four processes X(t)9 Y(t), U(t) and V(t) is JWSS. 
• If X(t), Y(t) are zero-mean and uncorrelated, U(t), V(t) are zero-mean also 

but not necessarily uncorrelated: RuV(r) = acRx(r) + bdRy(r) ^ 0. 
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6.8 Properties of Crosscorrelation Functions 

6.8 Properties of Crosscorrelation Functions 

Important properties of the crosscorrelation function of two jointly wide-sense 
stationary random processes X(t) and Y(t) include 

1. Rxyif) and Ryx{r) are mirror images of each other: 

Rxy(r) = E[X(t + r)Y(t)} = E[Y(t)X(t + r)] = RyX(-r) (6.33) 

as depicted in Fig. 6.12. This makes sense: Shifting Y(t) in one direction is 
equivalent to shifting X(t) in the other direction as far as crosscorrelation is 
concerned. A special case is 

Rxy(0) = Ryx(0) (6.34) 

Figure 6.12: Mirror image relation between Rxy(r) and RyX{r). 

2. The crosscorrelation is bounded by the geometric and arithmetic averages of 
Rx(0) and Ry(0): 

\RXy(r)\ < [Rx(0)Ry(0)]l/2 < ~\[RX(0) + Ry(0)} (6.35) 
s v ' A , 

geometric average 77 ~? 
° arithmetic average 

The first inequality implies that the crosscorrelation coefficient is bounded 
by 1 in magnitude: |p x y (r) | < 1. 

3. Let X(t) = 4fX(t). Then 

Riy(r) 4 E[X(t + r)Y(t)} = ^-Rxy(r) 

Riyir) ± E[X(t + r)Y(t)} 
d2 

dr2 

(6.36) 

(6.37) 
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6.8 Properties of Crosscorrelation Functions 

The second inequality in (6.35) follows from the fact that for positive numbers, geometric 
average is never larger than arithmetic average. The first inequality can be derived easily as in 
problem 6.33 following the same procedure as (4.25). Alternatively, i t can be shown as follows, 
which demonstrates the use of Schwarz inequality. Since 

Rxy(r) = E[X(t + r)Y(t% Rx(0) = E[X2] 

Ryx(r) = E[Y(t + r ) X ( t ) ] , Ry(0) = E[Y2} 

the first inequality follows clearly from the following Schwarz inequality: 

{E[X{t)Y{t')]f < E[X2(t)]E[Y2(t% V * , f (6.38) 

where the equality holds i f and only i f Y(tl) = aX(t) for some real-valued scalar a. The 
Schwarz inequality can be shown as follows. Since the average of a positive quantity must be 
positive, E[(aX — Y)2] = 0 i f and only i f Y = aX; that is, the only solution to die equation 
E[(aX - y)2] = 0 is Y = aX. On the other hand, the equation 

E[(aX - Yf] = E[X2]a2 - 2E[XY}a + E[Y2] = 0 

has its solution(s) given by 

2E[XY] ± Jl{E[XY\)*-4E\X*\E\y*\ 
0 1 = 2EW) ( 6 3 9 ) 

It has a unique solution if and only if (E[XY})2 = E[X2]E[Y2} and thus (E[XY})2 = 
E[X2]E[Y2] if and only if Y = aX. In addition, if Y + aX, then E[(aX - Yf\ = 0 
has no (real-valued) solution, which corresponds to, according to (6.39), 

(E[XY])2 < E[X2]E[Y2} 

In this case, E[(aX — Y)2] > 0. In summary, the Schwarz inequality holds because otherwise 
E[{aX — Y)2] = 0 would have two distinct (real-valued) solutions, which is impossible. 

(6.36) follows from below: 

± R ( r ) = l i m

 R*v(T +£) ~ R*y^ = l i m

 E W + r + e ) y ^ ) l ~ E \ - X ^ + T ) Y ^ 

E lim X ( t + T + e ) y ( * ) _ X(f + r)FW 

= E l im ^ J ^ L £ ^ = E[x{t + T)Y{t)] = R±y{T) 

and similarly for (6.37). More generally, let X{n)(t) = Then 
jn+m D ( T \ 

If X(t) and Yit) are orthogonal, then 

RXV(T) = RyX{r) = 0 

Rx+v(T) = Rx(r) + Ry(T) 
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6.8 Properties of Crosscorrelation Functions 

Example 6.17: Computation of Sample Crosscorrelation by P&R 

Consider two random processes X(t) —• sin(o;ot + <j>) and Y(t) = cos(uj0t + 0), where LU0 is 
a nonrandom constant and <j> ~ U(~TT, TT). Sample functions o f X(t) and Y(t) can be gen-
erated by the companion software P&R fo l lowing Example 6.8. Suppose that two 500-point 
discrete sample functions (w i th sampling rate fs = 10 Hz) o f X(t) and Y(t) are stored in the 
data fi les e 6 _ 1 7 x . d a t and e 6 _ 1 7 y . d a t . Then the crosscorrelation coefficient pxy(i/fs):. i = 
0 , 1 , . . . , 50 o f X(t) and Y(t) can be computed using P&R w i th the fo l lowing steps: 

51. C l ick "RPAnalyzer" i n the main window o f P & R . 
52. C l ick "Time Domain." You w i l l be prompted to enter the name of a data f i le. Choose "data" 

and enter the data f i le name " e 6 _ 1 7 x . d a t " and cl ick "Ok." 
53. The window "Time-Domain Analyzer" w i l l appear, w i th the computed sample mean and 

sample variance. Set "Max time difference" to 5 0 . C l ick "CrossCorr-Coeff", as shown i n F ig. 
6.13. 

54. You w i l l be prompted for another data f i le name. Choose "data" subdirectory, enter the data 
f i le name " e 6 _ 1 7 y . d a t " and c l ick "Ok." Then the crosscorrelation coefficients p(i/fs) 
are computed, plotted and saved to a user-specified data f i le for the first 51 points (/ = 
0 , 1 , . . . , 50), wh ich correspond to r < 10 since sampling rate is 10 Hz. 

Note that the result o f F ig. 6.13 agrees w i th the theoretical results of self-test problem 6.6. 

l l l i i i iHip i i i l 
BHIIIH 

l ^ B i i i i i l i 
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# i,tn\-,( (mt'l"slum {'ui'tlM icrtt 

Figure 6.13: Computation of crosscorrelation function by P & R . 
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6.9 Gaussian Random Processes 

6.9 Gaussian Random Processes 

Similarly as for the RV case, a number of random processes are frequently en-
countered in the theory and application and thus are given names. The most 
important of them is the Gaussian process. 

A Gaussian process is such a random process X(t) that, for any n and any 
set of time instants tu ..., tn, the RVs X(ti), X(t2)}..., X(tn) are jointly 
Gaussian; that is, they have the following joint PDF: 

fx(ti)Jfo),...M*n)(xl> X^ • * ' » Xn) = exp 

where x = [xi,x2,..., x n ] ' , x = [xi, ^ 2 , . . . , xn]f is its mean, and C x = cov(X) 
is the covariance of the RVs X(ti)9 X(t2),..., X ( t n ) , defined by (4.30) and is 
given explicitly as 

C2\ c22 • • * c2n 

Cnl Cn2 Cn 

where = cov[X(fc), = - XftJHXfo) - *(*;)]}. 
Gaussian processes have many nice and distinctive properties, e.g., 

1. It is completely determined by its mean and autocorrelation junctions. This 
follows from the definition of a Gaussian process. 

2. It is strictly stationary if and only if it is wide-sense stationary. This is 
clear from the above property since everything depends only on the mean and 
autocorrelation. 

3. It is independent (strictly white) if and only if it is uncorrelated (wide-sense 
white). 

4. Every linear junction of a Gaussian process is a Gaussian process. This 
follows from the fact that a family of RVs are Gaussian if and only i f every 
linear function of them is Gaussian. 

5. The response of a linear system to a Gaussian process is again a Gaussian 
process. 

Gaussian processes are especially useful in modeling noise processes. 
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6.9 Gaussian Random Processes 

For a Gaussian process X(t), its mean conditioned on its values at some time instants are 
linear in those values; that is, E[X{t)\X(ti),... ,X(tn)] is linear in X{ti),... ,X(tn) for any 
positive integer n and any set t\,... ,tn. This has important consequence in estimation and 
filtering theory. 

The popularity of the Gaussian process is a result of its mathematical tractability, due to its 
nice properties, and the central limit theorem. 

Two random processes X(t) and Y(t) are said to be jointly Gaussian i f the RVs X(ti), 
X(t2),... ,X(tn) and Y(t[), Y{t'2),... ,Y(tf

m) are jointly Gaussian for any positive integers 
n, m and any two sets of time instants ti, t2}..., tn and t'v i 2 l . . . , tf

m. 

Example 6.18: Generation of a Gaussian Process 

A Gaussian process X(t) with mean x(t) and autocorrelation function Rx{r) = ae~ 6l r ' , a, b > 0, 
can be generated as follows. Let 

A sequence of n RVs Y ( T ) , Y(2T),..., Y(nT) can thus be obtained by generating an 
n-dimensional jointly Gaussian random vector Y = [F(T) , Y(2T),..., Y{nT)\. Finally, a 
discrete-time sequence of the Gaussian process X(t) at t = iT1 i = 1,2,... ,n, is generated by 
adding x(iT) to the ith term of the sequence F ( T ) , F ( 2 T ) , Y ( n T ) : 

The required n-dimensional jointly Gaussian random vector Y can be generated by an ex-
tension of Computer Exercise 4.5 as follows. 

51. Generate a vector Z consists of n independent standard Gaussian RVs (i.e., with zero mean 
and unity variance) using, say, MATLAB command randn(n, 1) . 

52. Y = C 1 / 2 Z is the sought-after random vector, where C 1 / 2 is the so-called standard deviation 
matrix, which is the positive (semi)definite square-root matrix of the covariance matrix 

Y(t) = X{t)-x(t) 

Then, by (6.24), Y(t) has zero mean and autocorrelation function 

Ry(r) = RX{T) = ae 

X(iT) = Y(iT) + x(iT) 

e-(n-l)bT " 
e - ( n - 2 ) 6 T 

C = a 

e~(n-l)bT e-(n-2)bT 1 

Note that C 1 / 2 can be obtained using MATLAB command sqrtm(C) . 

An alternative method of generating Gaussian processes is studied in Chapter 8. 
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6.9 Gaussian Random Processes 

Example 6.19: Generation of a Gaussian Process by P&R 

The companion software P&R can be used to generate a Gaussian process X(t). Assume X(t) 
has mean x(t) = 2e~l cost and autocorrelation Rx(r) = 6 e ~ 1 2 ' r L Since P&R is a computer 
software, it can only generate discrete points of X(t). Let us assume we want to generate 200 
such points with a sampling rate of 10 Hz. This can be done by the following steps: 

51. Click "RPGenerator" in the main window of P&R. Click "Gaussian." 
52. Fi l l out the window "Gaussian Process Generator" as shown in Fig. 6.14. Click "Ok." The 

Gaussian process is then generated. 

The Gaussian process generated is saved to a user-specified data file and plotted as shown in 
Fig. 6.14. Note that 

• The input to "Mean" must be a valid MATLAB expression. For instance in this example, 
" 2 * e x p { - 1 . " 2 ) . * c o s ( t ) " cannot be replaced by something like " 2 e x p ( - t 2 ) co s t " , 
which would not work, i f x = r ^ ] ' and y = [yi,y2]\ then x . * y and x . "2 yield 

£22/2]' and [x\, x%\f, respectively. The dot operations . * and . ~ are necessary here 
since t is a vector (of dimension 200). See MATLAB instruction. 

• Gaussian white process can also be generated by choosing "White" on the window. 

Mean J 2*G\p(-t.' 2) .Acos(t) 

Time Points p--— 

Sm&lm^ Rate I 

200 

V V * \r.: : re * . - ^ y , * 

MATLAB express 1 0 

^^^^^^^^^^^^ 5 

• H 3 

Figure 6.14: Generation of a Gaussian process by P&R. 
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6.10 Summary and Requirements 

6.10 Summary and Requirements 

A random process is a time-varying RV or a random time function. For a fixed time, it is a RV; 
given the outcome of the random experiment, a time function, known as sample function, rather 
than a number is assigned to it . 

The definitions of mean x(t), autocorrelation Rx(ti1t2), autocovariance Cx(t%} t2), and cor-
relation coefficient p(t\,t2) of a random process X(t) follow from the corresponding definitions 
for RVs X(ti) and X(t2): 

/
oo 

xfx{tl){x)dx 
-OO 

RSuh) = ElXitJXih)] 
Cx(h,t2) = E{[X(h) - x ( t i ) ] [X( ta) - x(t2)}} 

ox\ti)ox[t2) 

A stationary random process has a constant mean and its autocorrelation depends only on 
the time difference; that is, 

x(t) = x 

RSiM) = Rxih - t2) = Rx(r), r = * I - < 2, V * i , t 2 

A random process is white i f its values at distinct time Instants are uncorrelated, or equivalently 
Cx(ti,t2) = 0 or Rx{ti,t2) = x(ti)x(t2) for every ti ^ t2. The ensemble average (i.e., mean) of 
an ergodic random process is equal to the time average of any of its sample functions. 

The crosscorrelation of two random processes X(t) and Y(t) is a measure of the similarity 
or coupling between X(t) and Y(t): 

Rsyit + Ttt) ^ E[X(t + r)Y(t)] 

A large \pxy(t + r , i)\ implies that Y(ti) can be predicted largely from X(ti + r) and vice versa. 
The autocorrelation of a stationary random process has many nice properties: It is even In 

the time difference r ; It Is bounded In magnitude by its value at the origin, which is equal to the 
mean-square value (i.e., average power); it has a periodic component i f the random process has 
a periodic component. 

Two random processes are jointly stationary i f they are both stationary and their crosscor-
relations depend only on the time difference. They are uncorrelated i f their crosscovariance Is 
always zero. They are orthogonal i f their crosscorrelation Is always zero. They are independent 
i f the RVs of one random process at arbitrary time instants are independent of the RVs of the other 
random process at arbitrary time instants. Crosscorrelation of jointly stationary random processes 
are mirror images of each other: Rxy{r) = RyX(—r). They are also bounded in magnitude by 
the geometric average and arithmetic average of the autocorrelations of the two processes. 
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Basic Requirements 

« Know how to find mean, correlation, and covariance functions. 
• Comprehend the concepts of a random process and its stationarity and whiteness. 
• Know how to compute sample correlation functions by your own and by the companion 

software P&R. 
• Know how to determine i f a random process is stationary, white, or ergodic. 
• Be familiar with the properties of autocorrelation and crosscorrelation functions. 
• Understand the concept of uncorrelatedness and independence of two random processes. 
• Know how to find the marginal and joint PDFs of a random process for simple problems. 

The emphasis of the chapter is on general concept of a random process and its autocorrelation 
and stationarity. 

6.11 Additional Examples 

6.20 Sinusoid with uniform amplitude and phase. Find the autocorrelation function Rx(t + r, t) 
of the continuous random process X(t) — A cos(ujQt + 0 ) , where UJ0 is a known constant, 

is a RV uniformly distributed over (0,1), and 0 is a RV uniformly distributed over 
(0,2?r). Assume that A and 0 are independent. 

Solution: Since A and 0 are independent, A2 and [cos UJQT + cos(2uj0t + UJQT + 20)] are 
uncorrelated. Thus, we have 

6.21 Sinusoid with uniform amplitude, frequency, and phase. Find the autocorrelation function 
Rx(t + r,t) of the continuous random process X(t) = Acm(ujt 4- 0), where UJ, A, and 
0 are mutually independent RVs uniformly distributed over (1,2), (0,1), and (0,7r/2), 
respectively. 

Solution: Since A, UJ, and 0 are independent, f(A), g(uj) and h(8) are uncorrelated for 
any / , g and h. Thus, we have 

Rx(t + r , t) = E [Acos(ut + UJT + 0) • Acos{ut + 9)} 

Rx(t + r , t) = E [Acos(uj0t + UJQT + <jj) - Acos(uj0t + (j>)) 

= -E{A2[COSUJQT + cos(2a;ot + UJQT + 20)]} 

= ~E[A2]E[COSUJQT + cos(2ujQt + UJ0T + 20)] 

= -COSUJQT = J?(r) 
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= ^E{A2{COSU)T + cos(2wi + LOT + 26)}} 

= ^E[A2}E[COSLOT + cos(2wt + LOT) COS 20 - sin(2wf + LOT) sin 26} 

= \{°A + [E(A)}2}{E(COSCOT) + E[cos(2t + T)LO]E[COS26} 

- E[sm(2t + T)Lo}E[sm26}} 

l r ( l - O ) 2 / l + 0 \ 2 ] f pcosujT , 

i i 2 - 1 io TT/2 i i 2 - 1 io TT/2 J 
sin 2r ~- sin r sin 2(2t 4- r ) — sin(2£ 4- r ) sin 7r — sin 0 

" ~~ 6r ~ 4 ^ 2t -f- r " 6TT 

cos 2(2t + r ) — cos 2(t 4- r ) cos n — cos 0 
~ 2 T T r ~ ~ 6TT 

sin 2r — sin r cos 2(2t 4- r ) — cos 2(t 4- r ) 
3TT(2* + r ) ~~ 

Note that the random process X(t) is not (wide-sense) stationary since Rx{t+r, i) depends 
on t as well as r . 

6 .22 Secondary voltage of a transformer with random tap position. The primary voltage of a 
transformer is a deterministic waveform x(t) = 10cos(1207rt 4~ 60°) and the secondary 
voltage of a transformer is a random process Y(t) having the sample space {yi(t),y2{t)}, 
where y{{t) = A{ COS(120TT£ 4- 60°) with Ax = I IOOA/2 and A2 = lOOOV^. Y(t) = ^ ( t ) 
or Y(t) = y2(t) depends on whether the transformer is in tap position 1 or 2, respectively, 
which is random with equal probability. 

(a) Find the probabilities that Y(t) = yi(t) and Y(t) = y2(t), respectively. 
(b) Find the mean function y(t) and mean y(0) of Y(t). 
(c) Find the autocorrelation Ry(t 4- r , t) of Y(t). 
(d) Is Y(£) wide-sense stationary? Justify your answer. 

Solution: 

(a) Since the tap position of the transformer is random with equal probability, we have 

P{Y(t) = yi(tj}=P{Y(t) = y2(t)}=1-

(b) The mean function y(t) and mean y(0) are 

2 

y(t) = E[Y(t)} = Y, ^ cos(1207rt 4- 60°)P{Y(t) - yt(t)} 
i=l 
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= cos(120?rt + 60°) [llO0y/2P{Y(t) = y^t)} + 10O0y/2P{Y(t) - y2(t)}] 

= i(1100\/2 + 1000\/2) cos(120?rf + 60°) 

= 1050V2 oos(1207rt + 60°) 
y(0) = y ( « ) | t = 0 = 1050^/2 cos 60° = 525\/2 = 742.46 

(c) The autocorrelation function Ry(t + r, t) is 

iJ y ( t + r , t ) = JB[r(t + r )y (* ) ] 
= £ [ACOS(120TT(£ + r ) + 60 O )ACOS(120TT£ + 60°)] 

= E[A2] cos(1207r(t + r ) + 60°) cos(120?rt + 60°) 
2 

= cos(120?rt + 60°) COS(120TT(£ + T ) + 60°) £ A2P{Y(t) = yi(t)} 

= cos(120?rt + 60°)cos(120?r(t + r ) + 60°)^ [(1100\/2) 2 + (IOOOV2) 5 

= 2210000 cos(1207rt + 60°) COS(120TT(£ + r ) + 60°) 

(d) Since y(t) is actually a function of time (not time invariant), Y(t) is not wide-sense 
stationary. 

6.23 Stationarity and ergodicity of a RV as a random process. Determine i f random process 
Y(t) = aX is stationary or ergodic, where a ^ 0 is a constant and X is a RV with 
nonzero variance. 

Solution: Since 

E[Y(t)} = aE[X] = constant 

Ryft + r , t) = E[Y(t + r)Y(t)} - E [ a X a X ] = a2E[X2} = constant 

Y(t) is wide-sense stationary. This makes perfect sense since the characteristics of Y(t) 
do not change with respect to time. Note that the time average of an arbitrary sample 
function of Y(t) is 

- 0 0 2T J - : 
which depends on the value of x and thus is not always equal to the ensemble average 
x. Consequently, the process is not ergodic (in the mean), which makes sense since the 
mean of Y(t) cannot be obtained by an arbitrary sample function of Y(t). 

6.24 Sum of random process and RV with increasing variance. Consider a wide-sense stationary 
process X(t) with zero mean and autocorrelation Rx(r). Let Y(t) = X(t) - f At, where 
A is a zero-mean random variable with unity variance, which is Independent of X(t). 

(a) Find the mean E[Y(t)] and autocorrelation Ry(t + r , t) of Y(t). 
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6.11 Additional Examples 

(b) Is Y(t) wide-sense stationary? 
(c) Find the crosscorrelation Rxy(t + r , t) between X(t 4- r ) and Y(t). 
(d) Are X(t) and Y(t) jointly wide-sense stationary? 

Solution: 

(a) 

Ry(t + r , *) = + r ) + A ( « + r ) ] [ X ( i ) + At]} 
= JS?[Jf ( t ) X ( t 4- r ) + A2t(t + r ) + X ( t ) A ( t + r ) + A t X ( t + r ) ] 
= i i x ( r ) 4- £ p 2 ] t ( i + r ) + s ( t )A( t + r ) + + r ) 
= J4(r)+£(£ + r ) 

(b) Since + T, t ) depends on t as well as r , Y(t) is not wide-sense stationary, 
(c) 

+ r , t ) = + r)[X(t) + A t ] } 
= JS7[X(t)X(t + r ) + X ( t + r) i4t] 
= J % B ( r ) + a ( t ) A = i?a.(T) 

(d) Since Y(t) is not wide-sense stationary, X(t) and are not jointly wide-sense 
stationary. 

6.25 Average power of various components. A stationary random process X(t) has autocorre-
lation R(T) = 20 + 5 COS(2T) + 10e~4'TL Find (a) the average power of its dc component, 
ac (i.e., periodic) components, non-dc components, and non-periodic components; (b) 
average power of X(t); and (c) the variance of X(t). 

Solution: R(r) can be decomposed into periodic and non-periodic components as 

R(T) = Rtir) + R2(r) = 5cos(2r) + 20 + 10e" 4 | r | 

where the periodic and non-periodic components are, respectively, 

JfJi(r) = 5cos(2r) = ^A2 cos(2r) 

R2(T) = 20 + 10e~ 4 | T t 

By property 4 of autocorrelation function, in particular (6.19), the periodic (ac) component 
of X(t) is A cos(2t + 0). It has zero mean. Its average power is J?i(0) = ^A2 = 5. The 
average power of the non-periodic components is i? 2(0) = 20 + 10 = 30. From the prop-
erty of autocorrelation function described on page 280, for the non-periodic component, 
l i m r ^ o o i ? 2 ( r ) = (x)2. Thus, the dc component is equal to 

x = ± J l i m R2IT) = ± A / l i m (20 + 10e~4M) = ±4.472 
y T - + 0 0 v ' y r-*oox 7 

299 



6.11 Additional Examples 

It has the power l im T _ > 0 0 R2(r) = (x)2=20. The average power of X(t) is 

E[X2} = R(0) = 5 4- 20 4-10 = 35 

The variance is 

a2 = E[X2} - (x)2 = R(0) - (x)2 = 35 - 20 = 15 

which is the average power of the non-dc components. Note that 10e~4'T' is a non-dc and 
non-ac component. It has the average power of 10. 

6.26* First-order polynomial in time with random coefficient. Given a random process X(t) = 
Y 4 Zt, where Y and Z are two standard Gaussian RVs, independent of each other, find 

(a) the mean and variance of X(t) 
(b) the marginal PDF and CDF of X(t) 
(c) the joint CDF of X(t): FX(t),x(t')(xux2) 

Solution: For a fixed t, X(t) is a RV. 

(a) 

Y~AT{0,1) ) 
Z - Af(0,1) = » Zt - Af(0, t2) \ 

Y, Z and thus Y, Zt are independent J 

Thus for a fixed t, X(t) is a zero-mean Gaussian RV with variance 1 4 t2. 
(b) The PDF of X(t) at a fixed time t is, from part (a), 

X(t) ^Y + Zt 
X(t) ~AT(Q,l + t2) 

fx(t)(x) = 
/2n(l-i-t2) 

The CDF of X(t) at a fixed time t is thus 

1 
X(t) /

x 

-c 

e 2(1+*^) 

e w+*2)dx 

- Xit) ' ' i t ' ' Y ' 
x(i?) l t Z 

(c) Note that 

and Y and Z are independent Gaussian RVs. Since X(t) and X(t') are weighted 
sum of Y and Z, they are jointly Gaussian with zero mean and covariance 

cov[X(t),X{t')] = E[(X{t) - x(t))(X{t') - x{t'))) 
= E[(Y + Zt)(Y + Zt')} 

= E[Y2 + ZHt' + YZt' + YZt] 

= E[Y2} + E[Z2}tt' + E[Y]E[Z}(t' +1) 
= 1 + W 
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6.12 Problems 

6.1 PDF of a discrete random process. For the random process X(t) of Example 6.1, find 

(a) fx(7r/4){x),fx(n/2)(x), and fx(w)(%) 
(b) fx(w/4)fx(w/2)(xi1x2) and fx(w/4),x(w)(xi,x2) 
(c) f (7r/4), X ( 7 T ) , and x(t) in terms of t 
(d) Rx{ir/2, 7T) and C x(£ 4- T, t ) for every t and r 

6.2 PDF and CDF of a discrete random process. Given a random process X(t) = A sin £, 
where A is a discrete RV with point masses 

P{A - 1} = 0.4, P{A - 2} = 0.3, P { A - 3} = 0.3 

(a) Find the marginal CDF FX(t)(x) for all f . 
(b) Find the joint CDF FX(7r/4c),x(o){xux2). 

6.3 PDF of a simple random process. Find the mean, autocorrelation, variance, and autoco-
variance of the random process X(t) = tU, where U ~ ZY(0,1). 

6.4 Mean and autocorrelation. Given a random process X(t) — Ae~at, where a is a nonran-
dom constant and A ~ U(0,1), find the mean and autocorrelation of X(t). 

6.5 Mea« and autocorrelation. Given a random process Z(£) = X sin 2t + Y cos £ + t , where 
X and F are independent RVs with x = 1,<7 2 = 2,1/ = 2 , C J 2 = 4, find the mean and 
autocorrelation of Z ( i ) . 

6.6 Mean and autocorrelation. Given a random process Z ( t ) = Xt 4 F t 2 , where X and Y 
are independent RVs with x = 1, cr2 = 1, y = 2, cr2 = 4, find the mean and autocorrelation 
of 

6.7 From autocorrelation to mean and variance. A random process X(t) has autocorrelation 
R(r) = 14- 4 cos(7r) 4 6e~ 3l rL Find the mean, mean-square value, and variance of X(t). 

6.8 From autocorrelation to mean and variance. Find the mean and variance of a stationary 
2 

random process with autocorrelation function R(r) = 7 H - . 
1 4 9 r 2 

6.9 Sinusoid with random amplitude. Consider a sine wave X(t) = A sin Lu0t with random 
amplitude, where a;0 is known constant and A is a standard Gaussian RV. 

(a) Find the PDF at t = 0 and t = TT/2O;O of X ( t ) . 
(b) Find the mean, autocorrelation and autocovariance of X(t). 

6.10 Sinusoid with random phase. Consider the random process X(t) ~~ ,4cos(a;o£4#), where 
A and UJ0 are real constants and 0 ~ W(0, 2TT). 
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(a) Find the mean function E[X(t)] and the autocorrelation function Rx(t+r, t). Is X(t) 
wide-sense stationary? Why? 

(b) Assume now 0 ~ W(0, TT/2). Determine the mean-square value E[X2(t)\. Is E[X2(t)] 
deterministic? time dependent? Is the new random process X(t) wide-sense station-
ary? Why? I f E[X2(t)] is time varying, what is its time average? 

6.11 Sinusoid with random phase. Consider a random process X(t) = Acos(uJot + <f>)9 where 
A and LJQ are nonrandom positive constants and <f> is a RV uniformly distributed over 
(0,TT), i.e., 0 ~ W(0,7r). 

(a) Find the mean function of X ( ^ ) . 
(b) Find the autocorrelation Rx(t + r , t) and autocovariance Cx(£ + r , t ) of 
(c) Is discrete/continuous/mixed? wide-sense stationary? or white? Justify your 

answer. 

6.12 Sinusoid with random phase. Given a random process X(t) = Acos(uot + ncj)) with 
<f> ~ W(0,27r/m) and A and o;0 are nonrandom constants, where m and n are two arbitrary 
but fixed positive integers, find the mean and autocorrelation function of X(t). Your 
results should be valid for all positive integers n and m. 

6.13 Mean and autocorrelation. Consider a random process X(t) = Ae2t sin 4t, where A is a 
RV with mean 1 and variance 2. 

(a) Find the mean and autocorrelation function of Y(t) = X(t). 
(b) Find the mean and autocorrelation function of Z(i) = JlX{r)dr. 

6.14 Stationarity of two simple random processes. Determine the wide-sense stationarity of 
random processes Y(t) = aX and Z(t) = tX9 where X is a RV and a is constant. 

6.15 Classification of a random process. For the random process X(t) in Example 6.4, 

(a) Is X(t) continuous, discrete, or mixed? 
(b) Is X(t) strictly stationary? Is it wide-sense stationary? 
(c) Is X{t) white? 
(d) Is X(t) ergodic? 

6.16 Stationarity check. Suppose that random processes Xi(b)> i = 1,..., 5, have time-invariant 
mean functions and the following autocorrelation functions, respectively. Determine i f they 
are wide-sense stationary. 

(a) RXl(ti,t2) = sin2ticost 2 — cos2tisint 2 . 
(b) RX2(t1}t2) = e^e-'K 
(c) R,MM = e~qetl 
(d) i ? , 4 ( t 1 ? t 2 ) = e ^ ^ l E [ X 4 ( t 1 ) ] . 
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6.17 Stationarity of product of random processes. Show that the product Z(t) = X(i)Y(t) of 
two independent and stationary random processes is also stationary. 

6.18 Stationarity of sine and cosine waves. Consider two independent, stationary, and zero-
mean random processes X(t) and Y(t) with a common autocorrelation R(r). Let 

U(t) = X(i) cos cj0t 

V(t) = Y(t) sin a;0£ 

W(t) = U(t) + V(t) 

where UJ0 is a positive constant. Determine i f U(£), V(t), W(t) are stationary, respectively. 

6.19 Stationarity of sinusoid with random amplitude and phase. Given a random process 
X(t) = A cos(12O7r£+0), where A ~ J\f(011) is independent of <f> ~ U(—7r, 7r), determine 
i f X(t) is wide-sense stationary. 

6.20 Ergodicity of sum of random in-phase and quadrature components. Consider random 
process X(t) = Y cosuĵ t + Zsinuot, where u0 is a nonrandom constant, Y and Z are 
zero-mean RVs. 

(a) Determine I f X(t) is ergodic In the mean. 
(b) Determine i f X(t) is ergodic in the mean-square value. 

6.21 Sum of stationary and deterministic processes. Let X(t) be a wide-sense stationary 
random process with mean x and autocorrelation Rx(r). Let Y(t) — X(t) 4- g(t)$ where 
g(t) Is a deterministic function. 

(a) Find the mean, autocovariance, and autocorrelation of Y(t). 
(b) Is Y(t) wide-sense stationary? 

6.22 Power of signal and noise. For the random process X(t) of Example 6.7. Let Y(t) = 
X(t) -f N(t), where iV(t) is a random noise process with average power Pn = E[N2(t)] 
and is uncorrelated with X(t). 

(a) Find the average power of X(i). 
(b) Find the average power of Y(t). 
(c) I f N(t) = Bcos(uit 4- 0), where B and ui are known and # ~ U(—w} TT), what are 

the mean and average power of N(t)l 

6.23 Sum of random in-phase and quadrature components. Consider the random process 
X(t) = Y sin uj0t + Z cos u0t, where u0 is a constant; V and Z are uncorrelated RVs with 
zero-mean and a common variance <J2. 

(a) Find the mean function of X(t). 
(b) Find the autocorrelation function of X(t). 
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(c) Is X(t) wide-sense stationary? 
(d) Is X(t) strictly stationary? 

6.24 Autocorrelation of derivative. Find the autocorrelation function of the derivative X(t) of 
the random process X(t) with autocorrelation Rx(r) = 30e _ r I2 cos(20r). 

6.25* Mixed random process determined by differential equation. A mixed random process 
X(t) at any time takes on a value 

• equal to the maximum and minimum values ±xm with equal probability 0.2 
• equal to zero with probability 0.4 

o uniformly distributed over [—xmj xm] with the remaining probability mass 0.2 

Assume that the random process satisfies the following differential equation 

X(t) - -aX(t) + N(t) 

where N(t) is a stationary zero-mean white noise process with autocorrelation function 

Rn{r) = E[N(t + r)N(t)] - 2aa26(r) 

(a) Find the marginal probability density function. 
(b) Find the mean function of X(t). 
(c) Find the mean square function of X(t). 
(d) Find the autocorrelation function of X(t). 
(e) Is X(t) wide-sense stationary? 
(f) Is X(t) strictly stationary? 

6.26 Properties of autocorrelation. Determine which of the functions in Fig. 6.15 can/cannot 
be considered autocorrelation functions. Justify your answer. 

6.27 Properties of autocorrelation. Determine which of the functions in Fig. 6.16 can/cannot 
be considered autocorrelation functions. Justify your answer. 

6.28 Sinusoids with random phase. Consider a random process X(t) = A cos(ujot + 0), where 
A and UJ0 are constants, 9 ~ ZY(0,2n). Let Y(t) = X2(t). 

(a) Find the mean function of Y(t). 
(b) Find the autocorrelation function of Y(t). 
(c) Find the crosscorrelation function of X(t) and Y(t). 
(d) Are X(t) and Y(t) wide-sense stationary? 
(e) Are X(t) and Y(t) jointly wide-sense stationary? Are they orthogonal? 

6.29 Stationarity of random frequency components. Consider two independent and zero-mean 
RVs X and Y with a common variance a2. Let 

U(t) = X cos(ujQt) + Y sm(ujQt) 
V(t) = X cos(2o/0£) + Y sin(2uj0t) 
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Figure 6.15: Candidate functions as autocorrelation functions. 

where CJ0 is a positive constant. Determine i f U(t) and V(t) are jointly stationary. 

6.30 Stationarity of two random processes. A zero-mean wide-sense stationary random process 
X(t) has an autocorrelation function Rx(r). Define a new process Z(t) = X(t) 4 F t , 
where F is a zero-mean unity-variance RV that is independent of X(t). 

(a) Determine the autocorrelation function Rz(i 4 T, t ) . Is Z(t) wide-sense stationary? 
Why? 

(b) Determine the cross-correlation function Rxz(t 4 r, t ) . Are X(t) and Z(t) jointly 
wide-sense stationary? Why? 

6.31 Orthogonality of sine and cosine functions. Consider random processes X(t), F ( t ) and 
Z(t), defined by 

where u0 is nonrandom, <j> ~ U(0, 2TT), 9 ~ W(0, rr) and ip ~ W(0,7r/2) are independent. 

(a) Find the mean functions of X(t), Y(t) and Z(t). 
(b) Find the crosscorrelations of X(t), Y(t) and Z(t) and the average cross powers 

E[X(t)Y(t)]9 E[X(t)Z(t)] and E{Y(t)Z{t)}. 
(c) Are random processes X(t), Y(t) and Z(i) orthogonal? 

6.32 Correlation of sum and difference. Two uncorrelated zero-mean random processes X(t) 
and F ( t ) have autocorrelation functions Rx(r) = 2COST and Ry(r) = 3e~'TL Find 

X(t) 
Y(t) 
Z(t) 

s'm(ujot 4 </>) 
cos(a%t + 9) 
s i n ^ t 4- <p) 
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6.12 Problems 
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Figure 6.16: Candidate functions as autocorrelation functions. 

(a) the autocorrelation of U(t) = X(t) 4- Y(t) 
(b) the autocorrelation of V(t) = X{t) - Y(t) 
(c) the crosscorrelation of U(t) and V(t) 

6.33 Correlation of random processes proportional to two RVs. Given two random processes 
X(t) - Zt, Y(t) = Ze~\ where Z is a RV, find Rx(r), Ry(r), and Rxy{r). 

6.34 Properties of crosscorrelation. For stationary random processes X(t) and show the 
first inequality in (6.35) using the following inequality 

6.35 Stationarity of signal plus noise. For Example 6.12, show that X(t) and Y(t) are jointly 
wide-sense stationary. 

6.36 Expected values of sample autocorrelations. Find the expected values of the unbiased 
and biased sample autocorrelations (6.26) and (6.27), respectively, in terms of the true 
autocorrelation' R(r). 

6.37 Joint PDF of Gaussian process. Given a stationary Gaussian random process X(t) with 
mean 5 and autocorrelation R(r) = 3.4e-4-6M, find the joint PDF of X(tx) and X ( * i + 3). 

6.38 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too involved. 
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6.13 Computer Exercises 

.13 Computer Exercises 

6.1 Generation and testing of a random sinusoid. 

(a) Write a MATLAB routine random_sin.m to generate 100 discrete-time sequences 
x(nT) that are sampled (i.e., discrete-time) versions of the sample functions of the 
random process X(t) of Example 6.7 for time period from zero to 1 second, with 
A = 1, a/o = IOTT and T = 0.02 second (i.e., sampling rate is 50 Hz). Plot three of 
these sequences in one plot. 

(b) Find the average value of the 100 sequences at t = nT = 0.4 second. Justify your 
result. 

6.2 Generation and testing of a random pulse train. 

(a) Write a MATLAB routine random_pulse_w. m to generate 100 discrete-time se-
quences x[n) that are the sampled versions (with 10 Hz sampling rate) of the sample 
functions of the random process X(t) of Example 6.2 for time period from zero to 5 
seconds, with A = 1 and the period T = 1 second. Plot two of these sequences in 
two separate plots. 

(b) Find the average value of the 100 sequences at t = 1.3 seconds. Justify your result. 
(c) Use MATLAB routine h i s t to plot the histogram of the 100 sequences at t = 1.3 

seconds using 10 bins. Justify your result. 
(d) Use the companion software P&R to generate one sequence and plot the sequence as 

in part (a). 

6.3 Generation and testing of a random pulse train. Consider a pulse train X(t) with an 
amplitude A that is time-invariant and uniformly distributed over (0,1); that is, A ~ 
W(0,1). The pulse has a constant width that is 0.5 second and the period is 1 second. 

(a) Write a MATLAB routine random_pulse_a. m to generate 100 discrete-time se-
quences x[n] that are sampled versions (with 10 Hz sampling rate) of the sample 
functions of the random pulse train X(t) for time period from zero to 5 seconds. Plot 
two of these sequences in two separate plots. 

(b) Find the average value of the 100 sequences at t = 1.4 seconds. Justify your result. 
(c) Use MATLAB command h i s t to plot the histogram of the 100 sequences at t = 1.4 

seconds using 10 bins. Justify your result. 
(d) Use the companion software P&R to generate one sequence and plot the sequence as 

in part (a). 

6.4 Estimation of autocorrelation from a sample function. The data file m6_4 . d a t in the 
companion software P&R contains a sequence. It is a sampled version of a sample function 
of an ergodic random process X(i) with sampling interval T ; that is, the random sequence 
is X(T% X(2T% . . . , X{vO). 
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(a) Write a MATLAB function subroutine a u t o c o r r . m to find the autocorrelation 
Rx(mT) of X(t) for an arbitrary m and a random sequence X(T), X(2T), ... , 
X(nT) with a finite duration (n points). Justify your solution. 

(b) Use routine a u t o c o r r . m to find RX(T)9 RX(3T) and RX(—2T) using the data file. 
(c) Compare your results with those obtained by using P&R. 

6.5 Ergodicity check. The data file m6_5 . d a t in the companion software P&R contains [a 
sequence that Is a sampled version of] a sample function of the random process G(t) of 
Example 6.11 with uj\ = 5w,uj2 = 16TT. Use MATLAB to determine if G(t) is ergodic 
using this data file. Justify your answer. Compare your results with those obtained by 
using P&R. 

6.6 Estimation of crosscorrelation from sample functions. The data files m6_6x.dat and 
m6_6y.dat in the companion software P&R contains two sequences x[n] and y[n], 
respectively. They are the sampled versions of two sample functions of two random 
processes X(t) and Y(t), respectively, with sampling interval T. 

(a) Write a MATLAB function subroutine c r o s s c o r r _ c o e f f .m to estimate the cross-
correlation coefficient pxy(kT) for an arbitrary rn using random sequences X(T), 
X(2T)i . . . , X(nT) and Y ( T ) , Y(2T), . . . , Y[mT). Justify your solution. 

(b) Use routine c r o s s c o r r _ c o e f f .m to find pxy(T) and pyx(3T) using the data file. 
(c) Compare your results with those obtained by using P&R. 

6.7 Correlation coefficient of a random sinusoid. Consider a random sinusoidal signal X(t) = 
A sin(27r£ -f <̂ ), where A and </> are two independent RVs, with A ~ U(0,2) and $ ~ 
W(0,2TT). 

(a) Find the theoretical correlation coefficient of X(t). 
(b) Use the companion software P&R to generate a 100-point sampled version of a sample 

function of X(t) with 10 Hz sampling rate. 
(c) Use P&R to compute the correlation coefficient of X(t) based on the 100-point 

discrete-time sample function of X(i) obtained in (b). 
(d) Compare results of (a) and (c) and make comments. 
(e) Repeat (b), (c), and (d) with 100 points replaced by 1000 points. 

6.8 Generation and testing of a Gaussian process. 

(a) Write a MATLAB routine gauss_proc .m to generate 100 discrete-time sequences 
x[n] that are sampled versions (with 10 Hz sampling rate) of the sample functions 
of a Gaussian process with zero mean and autocorrelation Rx(r) = e~15'r' for time 
period from zero to one second. Plot three of these sequences in one plot. 

(b) Find the average value of the 100 sequences at i = 0.6 second. Justify your result. 
(c) Find the average autocorrelation over the 100 sequences for r = 0.1 second. Justify 

your result. 
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(d) Use MATLAB command h i s t to plot the histogram of the 100 sequences at t = 0.6 
second using 8 bins. Justify your result. 

(e) Use the companion software P&R to generate one sequence, plot the sequence as in 
part (a), and find the autocorrelation over the 100 sequences for r < 0.1 second. 
Compare the results with those in parts (a) and (c). 

6.9 Sample mean of a colored sequence of finite length. Use the companion software P&R 
to do the following. 

(a) Generate two discrete-time (with 10 Hz sampling rate and 100 time-points) sample 
functions of a zero-mean Gaussian process X(t) with R(r) = 4e~°-3lTL Compute the 
sample means of the two sample functions. 

(b) Generate two discrete-time (with 10 Hz sampling rate and 100 time-points) sample 
functions of a zero-mean Gaussian process Y(t) with R(r) = 4e~ 1 2 ' TL Compute the 
sample means of the two sample functions. 

(c) Generate two discrete-time (with 10 Hz sampling rate and 500 time-points) sample 
functions of the zero-mean Gaussian processes X(t) and Y(t) of parts (a) and (b), 
respectively. Compute the sample means of the two sample functions. 

(d) Compare and discuss the results obtained in (a), (b), and (c). 

6.14 Self-Test Problems 

6.1 Answer the following questions briefly. 

(a) Are sample functions of a random process deterministic or random? 
(b) What is the probability P{X(ti) = xi(t),X(t2) = x2(t)}, where xi(t) and x2(t) are 

two sample functions of X(t)l 
(c) A random process has a time-varying mean function and its autocorrelation depends 

only on the time difference. Is it stationary? 
(d) I f the values X(ti) and X(t2) of a random process X(t) at two arbitrary and distinct 

time instants are uncorrelated, what is this random process called? 
(e) Given an arbitrary sample function of a random process, is it true that its average 

over time is equal to the mean of the random process? 
(f) Can a random process having different means at distinct times be ergodic? 
(g) Is it true that the mean of a sinusoid with a random phase uniformly distributed over 

an interval is always equal to zero? 
(h) Is it true that Rx(r) < 11,(0) and Rxy(r) < #^(0)? Why or why not? 
(i) Is it true that i f X(ti) and Y(ti) are uncorrelated then X(t) and Y(i) are uncorrelated? 

6.2 Sinusoid with binary phase. For Example 6.1, determine 

(a) / x ( i r / 2 ) ( 4 / ^ w ( 4 and /x(fr/2),x(^)(^5 !/)• 
(b) X ( T T / 2 ) and c r 2

( 7 r / 2 ) . 
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(c) ii x(7r/4,7r/2). 

6.3 Sinusoid with ternary amplitude. Given a random process X(t) = A cos t, where A is a 
discrete RV with the following probability masses 

P{A = 0} = 1/2, P{A = 1} = 2/5, P{A - - 1 } = 1 /10 

(a) Find the mean function of X(t). 
(b) Find the autocorrelation function of X(t). 
(c) Is X(t) wide-sense stationary? Is it ergodic? 
(d) Find the marginal PDF and CDF of X(t) for all t. 

6.4 Sinusoid with random phase. Given a random process X(t) = A COS(CJO£ + ^4>) with 
4> ~ W(0,2m7r) and A and cu0 are nonrandom constants, where m and n are two arbitrary 
but fixed positive integers, find the mean and autocorrelation function of X(t). Your 
results should be valid for all positive integers n and m. 

6.5 Product of random and deterministic processes. Let X(t) be a wide-sense stationary 
random process with mean x and autocorrelation Rx{r) and Y(t) = X(t)g(t), where g(t) 
is a deterministic function. 

(a) Find the mean, autocovariance, and autocorrelation of Y(t). 
(b) Is Y(t) wide-sense stationary? 

6.6 Orthogonality of sine and cosine functions. Consider two random processes X(t) and 
Y(t), defined by 

X(t) = sm(u0t + (j)) 

Y(t) = cos(a;ot + ()>) 

where LJ0 is nonrandom and ^ ~ U{—TT, 7T). 

(a) Find the average cross power E[X(t)Y(t)]. 
(b) Are random variables X(ti) and F ( t i ) orthogonal for a fixed t i ? 
(c) Are random processes X(t) and Y(t) orthogonal? 

6.15 Solutions to Self-Test Problems 

6.1 (a) Deterministic because a sample function of a random process is the function given 
an outcome of the random experiment. 

(b) The probability is equal to zero (an impossible event) because given an outcome of 
a random event, the whole time function is assigned to the random process. In other 
words, i t is not allowed to change the time function halfway. 

(c) No, the mean function of a stationary random process must be constant. 
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(d) It is said to be a white random process. 
(e) It is true i f and only i f the random process is ergodic. 
(f) No, ergodicity requires that the time average (which is a number) be equal to the 

mean. This would be impossible i f there are two values of the mean. 
(g) No. The mean of a sinusoid sm(ujot + <j>) with a random phase <f> ~ U(00j 60 + 2w) 

(i.e., uniformly distributed over an interval of length 2TT) is always zero. The same 
is true i f 0 ~ U(60,90 + 2w/n). For other cases, it is better to find the mean by the 
formula. See problem 6.12 and self-test problem 6.4. 

(h) It is always true that Rx(r) < Rx(0) because a random process is "most similar" to 
itself (i.e., without time shift r = 0). For crosscorrelation, however, it is not always 
true that Rxy(r) < Rxy(0). For example, X(t) and Y(t) = X(t + 3) are "most 
similar" when r = 3; that is, Rxy(r) < Rxy(3) because Rxy(3) = E[X(t)Y{t-3)] = 
E[X2{t)}. 

(i) No, X(t) and Y(t) are uncorrelated i f and only i f X(ti) and Y(t2) are uncorrelated 
for every t\ and t2\ that is, for the same time and for different time. 

6.2 (a) Since 
t Xl{t) x2(t) 
TT/4 0 . 7 0 7 - 0 . 7 0 7 

TT/2 0 0 

7T - 1 1 

P{X(t) = Xi(t)} 1 / 2 1 / 2 

we have 

1 1 
fx(*/2){x) = ^{x) + 28(x) = 6(x) 

fxM(x) = ±6{x + l) + ±6(x-l) 

/x(7r/2)x(7r)(x, y) - -6(x)6(y + 1) + -8{x)8(y - 1) 
Vi,,,,,,,,, mi, mi „v. ' N. T.„wtmmrri^ > 

X(t)=Xi(t) X(t)=x2(t) 

(b) 

x(ir/2) = J2Xi(ir/2)P{X(n/2) = xt(n/2)} - 0 - ^ + 0 ^ = 0 
i—1 

£ [ X 2 ( T T / 2 ) ] = £ x'(n/2)P{X(n/2) = ^ ( T T / 2 ) } = 0 2 • ± + 0 2 • \ = 0 

a 2

( 7 r / 2 ) = E[X\v/2)} - [x(n/2)}2 = 0 - 0 = 0 

Actually, we know X(n/2) ----- 0 for sure, which agrees with c 2 ^ ) = 0 . 
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(c) 

RX{W/4,TT/2) = E[X(ir/4)X(ir/2)} 
2 2 

= E E x i(7r/4)a; j(7r/2)P{X(7r/4) = n ( i r / 4 ) , X ( T T / 2 ) = ^ ( T T / 2 ) } 
2 

= X > ( W 4 ) * i ( 7 r / 2 ) P { X ( 7 r / 4 ) = x i (7r/4), .X( 7 r/2) - ^ ( T T / 2 ) } 

2 

-X:^ (7 r /4 )^ (7 r /2 )P{X(7r /4 ) = ^ ( T T / 4 ) } 
I=I 

- 0.707 • 0 • i + (-0.707) • 0 • i 

where the double summation is reduced to single summation since X(t) cannot be 
both xi(t) and x2(t). In other words, X(t) = xi(t) and X ( f ) = x 2 ( t ' ) cannot be 
both true. Note that Rx(-K/A, TT/2) = 0 agrees with the fact that X{n/2) = 0 for sure, 
since X(ir/2) = 0 implies that it is not similar to (correlated with) any other value. 
For this reason, the probability should better be replaced by P{X(i) = Xi{t)}. 

3 (a) E[X{t)\ = (2/5) cost - (1/10)cost = 0.3cost. 

(b) Since E [ A 2 \ = (0)(2/5) + (l 2 )(2/5) 4- (-1) 2(1/10) = 0 .5, 

R(t 4 r , t) = E[A cos(t 4 r)A cost] = J5[A2] cos(t 4 r ) cost = 0.5 cos(t 4 r ) cost 

(c) Since £ [X( t ) ] depends on time, X(t) is not stationary and thus not ergodic, either. 
(d) The marginal PDF and CDF of X{t) are 

fx(t)(x) = ^6(x) + §S(X ~ c o s t ) + Yo^X + c o s ^ 
1 2 1 = -zu(x) 4 -u(x - cost) 4- — u(x 4 cost) 

4 (a) 

x(t) = E[X(t)] 

= A-
2m7r 

n 0 2mir 
sin(c^ot 4 —) 

n o 

~ ^ integer 
^ = integer 
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(b) 

Rx(t + T,t) = E A2 cos (w0t + LJ0T + - ) cos (u>0t + —j 

2<p 

A2 

COs(woT) + COS I 2u}()t + U)QT + 

2 
A]_ 
2 

2 

r2m-K / 

COS(O;OT) + J cos ^2u)ot -f UJQT + 
20 \_ 1 
n J 2m7r 

2cj)\ 2 m 7 r 

# 

cosfcjor) + r — sin 2o; 0t + o ; 0 r + — -
2ra7r V n / 

4 r r a i \ 
COS(CJ0T) + ( sm(2w0t + UJ0T H ) - siii(2a>o* + w 0 r) I 

4TO7T V n / . 
COS(LJ0T) ~ = integer 

f [cos(w0r) + ^ (sm[uj0(2t + T) + ^ ] - sinwQ(2t + r))\ ^ integer 

6.5 (a) 

(b) 

6.6 (a) 

(b) 
(c) 

E[y(i)] = £ [ * ( % ( * ) ] = £ [ x ( t ) ] $ ( t ) = x 5 ( t ) 

Cy(t + r,t) = E[(X{t + r)5(i + T) - x 5 ( t + T))(X(«)5(*) -
= + r ) - + r)(X(t) - x)g(t)] 

= E[(X(t + r ) - x)(X(t) - x)}g(t + r)g{t) 

= CX(T)g(t + r)g(t) 

Ry(t + r,t) = Cy(t + r,t) + y(t + r)y(t) = [Cx(t) + (x)2]g(t + r)g(t) 

Clearly, Y(t) is not wide-sense stationary (even though X(t) is stationary) since 
Cy(t + T, t) depends on t as well as r. 

1 /•* l 
E[X(t)Y(i)] = E[cos(u0t + <f>) sin(w0i + <?)] = - / sin(2w0* + 2<p)—d<f> = 0 

2 J-TT 2TT 
From part (a), E[X(*i)y(*i)] = 0 ==• X( t i ) ± y f a ) , V*i 
Since 

E [ X ( * i ) y (*2)] = E [sin(6a0*i + 0 ) cos(wb*2 + <t>)] 
1 

= -{E[s inu;o^i - t2)] + ^ [ s i n ^ o t i + u0t2 + 20)]} 
z v ' 

=o 

sm[u0(ti -1 2 ) } 

siii(cJoT) 

is not always equal to zero, X(t) and Y(i) are not orthogonal. 
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POWER SPECTRAL DENSITY 

The "spectre" of power spectra is a vivid presence rather than a ghostly 
apparition in engineering and science. 

Author 

Frequency-domain methods, such as Fourier transform, are useful in science 
and engineering. This chapter covers the characterization of random processes 
in frequency domain. 

Main Topics 

® Concept of Power Spectral Density 
• Properties of Power Spectral Density 
• White Noise 
• Power Spectrum Estimation 
• Cross-Power Spectrum and Its Properties 
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7.1 Concept of Power Spectral Density 

7.1 Concept of Power Spectral Density 

Frequency-domain tools, such as Fourier series and Fourier transform, are widely 
used in engineering. 

The Fourier transform of a function (signal) f(t) is defined by 

F(u) = f°° f(t)e-*"dt = F[f(t)} (7.1) 
J—OO 

and is called the (amplitude) spectrum (or spectral density) of /(£). It describes 
the distribution of its relative amplitude strength with respect to frequency. F(UJ) 
and f(t) are a Fourier transform pair. They contain the same information. f(t) 
can be recovered from F(u) by inverse Fourier transform: 

f(t) = T~l[F(u;)] = ~ / " F(u)e^du (7.2) 
Z7T J-oo 

Fourier transform has many nice properties, listed in Table 7.4. For signal 
and system analysis, the most important one is the convolution property that 
time-domain convolution amounts to frequency-domain multiplication. 

Example 7.1: Fourier Transform of a Pulse 

' A 0 < t < T 
The Fourier transform of f\(t) 0 elsewhere i s 

u ' toT/2 
(7.3) 

The most prevalent frequency component of fi(t) is dc, which makes sense. 
There are no ±2n/T, ±4n/T, ... components in the pulse. 

/ 
.AT 

¥ ¥ 
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7.1 Concept of Power Spectral Density 

As we have learned, Fourier series, Fourier transform, and Laplace transform are powerful 
tools for electric circuits, signal and system analysis, solving differential equations, etc. They 
simplify greatly certain problems that may be complex in time domain. 

The English word "spectrum" came from the Latin word "spectre." 
Fourier series 

oo oo 

f(t)= £ and™at= Finwo)^ 
n=—oo n=—oo 

is valid only for a periodic function (waveform) with a period T = 2IT/UJQ. It gives distribution 
of the amplitudes of discrete (fundamental and harmonic) frequency components. An aperiodic 
function, however, does not have a Fourier series expansion. A possible solution is to use 
Fourier transform f(t) = / f ^ F(uj)ejuJt^. Comparing with the Fourier series coefficients an = 
F{nujQ)1 —oo < n < oo, it can be seen that the Fourier transform F(u) provides a description 
of the distribution of the amplitudes over a continuous frequency spectrum. Note, however, the 
difference between Fourier series and Fourier transform: an^0 implies that f(t) has a sinusoidal 
component with frequency nuj0 (i.e., nth harmonic), while F(u>i) ^ 0 does not imply that f(t) 
has a sinusoidal component with frequency UJI. It simply means that there is an integral part in 
f(t) that has frequency UJI. For instance, consider Example 7.1. Although |Fi(o;)| has the peak 
at UJ = 0, the signal fi(t) actually has no dc term since its average over the entire time horizon 
is zero. 

With the help of impulse (delta) functions, the (extended) Fourier transform is valid for peri-
odic as well as aperiodic functions because the discrete frequency components can be represented 
by the delta functions. As a result, Fourier transform covers Fourier series as a special case. 

(7.3) can be obtained as follows 

F1(UJ) = [T Ae-f^dt 
Jo 

1 . T 
= A—-e.-^ 

-ju o 
„ 1 - e~^T 

= A 

= 2Ae~^2- 6 

2jaj 

= ~Ae-^2siii(ujT/2) 
UJ 

Note that the height of the main lobe in Fi(u) is proportional to A and T, which makes 
good sense: As A or T increases, the pulse has more significant "dc term." 

Example 7.2: Fourier Transform of a Symmetric Pulse 

The Fourier transform of 
f,m = M \t\<T/2 

J 2 K ' 1 0 elsewhere 
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7.1 Concept of Power Spectral Density 

F(uJ)~ATMujT/2) F2(u>)-AT w T / 2 

Note that f2(t) is fi(t) time shifted by —T/2. Clearly, the difference between Fi(u) of 
Example 7.1 and F2(u) of this example makes sense from the time-shifting property of Fourier 
transform (see Table 7.4) — a shift in time corresponds to a phase difference only (i.e., the 
amplitude does not change): 

H [ T ) - H { I " T / 2 ) ^ \ IF2(UJ) = LF^UJ) + u;T/2 

A prism performs a Fourier transform naturally. This is not surprising because everybody 
knows that i f white light enters into a prism, what comes out is a complete spectrum of colored 
light, ranging from red to violet, as shown below. 

Figure 7.1: Fourier transform of white light by a prism. 

Not every function has a Fourier transform. The following conditions are sufficient (but not 
necessary) for the existence, of the Fourier transform of a function f(t): 

• Dirichlet conditions: f(t) has bounded variation meaning that it is bounded with at most 
a finite number of maxima and minima and a finite number of discontinuities in any finite 
period; 

• f(t) is absolute integrable; that is, f^m \f(t)\dt < oo. 
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Consider naturally the extension of Fourier transform to a random process. A 
direct extension to a random process X(t) itself would not work: not only would 
its Fourier transform be random and clumsy to use, but also it would 
exist only i f the Fourier transforms of all its sample functions exist, which is 
almost never the case. A solution is to consider instead the (nonrandom) average 
power of X(t)9 of which the Fourier transform usually exists. 

The average power of a deterministic function x(t) is defined by 

Vx — Hm f x2(t)dt (7.4) 

which can be viewed as an abstraction of average power dissipation of the current 
i(t) through (or voltage v(t) across) a 10 resistor: 

power 4 lim [T Ri2(t)dt = Mm ~4 / T 

The average power of a random process X(t) is similarly defined by 

Px = E\ lim / T X2(t)dt) = lim ^= fT E \X2(t)} dt (7.5) 

which is the time average of the mean-square value. For stationary X(t)9 the 
average power is the time-invariant mean-square value: 

P X = r ^m ^ f_T Rx(0)dt = Rx(0) = E ( X 2 ) (7.6) 
The power spectral density (PSD) or power spectrum of a random process 

X(t) is defined as the Fourier transform of its average power. If X(t) is station-
ary, it turns out to be (see next page) the Fourier transform of its autocorrelation: 

Sx(u) = T[Rx(r)] 4 [°° Rx{r)e-^dr (7.7) 

Power spectrum is a measure of how average power is distributed with respect 
to frequency. Sx(UJ) and Rx(r) are a Fourier transform pair: 

Rx{r) = F-l[Sx{u)) - i - J^Sx{u)e^ duj (7.8) 

Average power equals the integral of power spectrum over all frequencies: 

P X = R X ( T ) = f°° Sx(u)e^p = J - r Sx(u)dw (7.9) 
T=O J-oo 2TT T=0 27TJ-°° 
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A random process is actually a collection of sample functions in which exactly which one 
is picked depends on the outcome of the underlying random experiment. As such, the Fourier 
transform of a random process would be the weighted sum of the Fourier transforms of these 
sample functions, where the weights are the probabilities of the corresponding outcomes. Conse-
quently, the Fourier transform of a random process would not exist provided at least one of the 
sample functions does not have a Fourier transform. 

At first glance, since Laplace transform exists for a larger class of functions than Fourier 
transform, the existence problem of the Fourier transform of a random process may be avoided 
or alleviated by using the (two-sided) Laplace transform. It turns out, however, that the corre-
sponding inverse transform may suffer from a similar existence problem. 

In plain words, (7.5) is 

average power = time average of mean-square value 

It was stated in Chapter 6 that the mean of an ergodic random process is its dc component', 
the mean-square value is its average power; the variance is the average power of its non-dc 
component; and the standard deviation is the effective value of its non-dc component. This can 
be explained as follows. Since the mean of an ergodic process is its constant part, i t is the dc 
component, which has power x2; its average power is by (7.6) the mean-square value; its variance 
o2 = E[X2] - x2 = average power — dc power and is thus the power of its non-dc component; 
since the effective value of a signal is the square root of its power, the standard deviation is the 
effective value of its non-dc component. 

From circuit analysis, Ri2(t) and v2(t)/R are the instantaneous powers consumed in a 
resistor with R resistance. For an abstract signal or function x(t), i t is thus reasonable to define 
the quantity \x(t)\2 as its instantaneous power. Accordingly, the total energy of a (nonrandom) 
function x(t) with a finite nonzero duration [ - T , T] is defined by 

/
oo tT 

\x(t)\2dt= / \x(t)\2dt 
-oo J-T 

Consequently, i t is natural to define the average power by (7.4). By the Parseval theorem (also 
known as the Rayleigh energy theorem) for Fourier transforms (see Table 7.4), 

\x(t)\2dt= I W f ^ (7.10) 
-oo J - o o Z7T 

where Fx(u) is the Fourier transform of x(t), we may view | F x ( a ; ) | 2 as the energy spectral 
\F (u))\2 

density and thus 2j> a s ^ e average power spectral density. With this understanding, (7.10) 
simply means that the energy in time domain and in frequency domain are equal. To be valid for 
functions with an infinite duration, we may thus define the power spectral density via limit by 

8x(u) = l i m H f M f (7.11) 
X X ; T^oo 2T 
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7.1 Concept of Power Spectral Density 

Since the time-correlation property (see Table 7.4) of Fourier transforms states that the magnitude 
square of the Fourier transform of a time function Is the Fourier transform of the autocorrelation 
of the function, this definition is equivalent to the following 

SJUJ) = 11m -~^T / x(t + r)x(t)dt 
J-T 

I rT 

lim — / x(t + r)x(t)dt 
"-oo 2TJ-T V ; w . T-+oo Z ' i ' J - T 

= T{A(x(t + r)x(t))} 

1 
where A(g(t)) = l̂im — J g(t)dt Is the time average of g(t). 

For a random process X(t)f the above can be thought to be valid for each sample function 
and its Fourier transform is random, depending on which sample function Is the true one. As a 
result, the (average) power spectral density may be defined by 

Sx(u) = E 

lim 

lim „ m 

T->oo 2T 

E[\Fx(u)\2} 
T - . 0 0 2T 

= F{A(E[x(t + T)x(t)))} = HMRx{t + T, t))} 

lim i / Rx(t + T,t)dt 

(7.12) 

(7.13) 

That is, i t turns out that power spectrum is the Fourier transform of the time average of the 
autocorrelation function: 

Sx(UJ) 
time average of Rx(t + r , t) 

- J*[time average of Rx(t +• r , t)] 

Clearly, this relation, known as Wiener-Khmchine theorem, is more general than the one given 
by (7.7) because it is valid for nonstationary as well as stationary processes. It clearly reduces to 
(7.7) for wide-sense stationary processes. From the above discussion, i t is clear that SX(UJ) thus 
defined deserves the name "power spectral density." Similarly, \Fx{w)\2 can be justified as the 
energy spectral density. 

In the above, Fx{w) is the Fourier transform of the truncated version of X(t) with a finite 
duration [—T, T ] , which usually exists. Note that the Fourier transform of the untruncated X(t) 
usually does not exist since its existence requires the existence of Fourier transforms of all the 
sample functions of X(t). That is why we take Fourier transform before taking limit and not the 
opposite. 

Unlike Fourier transform of a deterministic function, power spectrum carries no phase (time 
shift) information about the random process because "power" does not depend on time shift 
(phase). 

Stronger results, e.g., (7.17) of the next section, than (7.9) hold for the relation between the 
power spectrum and the average power. 
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7.1 Concept of Power Spectral Density 

Example 7.3: Power of a Signal with Random Phase and DC Bias 

Determine the power spectrum Sx(u) and average power Px of the random pro-
cess X(t) = A + B cos(o;ot + 0), where 9 ~ ZY(0, 2TT), A, J3, are independent 
RVs, and UJQ > 0 is a constant. Note that 

J i ^ i + r, *) = JS7{[A + £ cos((j0* + a;0r + 0)][i4 + B cos(uj®t + 9)]} 
= A? + AB {E[cos(u)0t + 9)\ + E{cos(ujQt + UJQT + 6)}} 

=0 =0 

+S2"E[cos(a;ot + 9) cos(uj0t + UJQT + 9)] 

= A* + ~WE[COS(UJ0T) + cos(2u)0t + UJQT + 29)] 

= A*+ ~Wcos{u;0r) = RX(T) (7.14) 

We have, from Example 6.11, 

Px = Rx(0) = A2 + ]-B2 = dc power + ac power 

Sx(u) = T[RX{T)} = A?F[1] + ±WT[COS(U0T)} 

Tabk7.5 2T^8{U) + ITTW[8(UJ - UJ0) + 6{u + w 0 ) ] 

Alternatively, 

Note that a dc term in X(t) corresponds to a 6(u) term in S(u) and a sinusoid 
with UJ = UJQ in X( t ) corresponds to a pair of <S(u; — UQ) and 5(a; + C J Q ) . 

f s 2 fB2 

-wo 0 
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7.2 Properties of Power Spectral Density 

7.2 Properties of Power Spectral Density 

Since S(UJ) is a Fourier transform, it has all properties of Fourier transforms, 
such as those listed in Table 7.4. Furthermore, 

1. S(UJ) is real-valued and nonnegative: S(UJ) > 0, which can be seen in 
tuitively from (7.12) since the expected value of a nonnegative quantity is 
nonnegative. This is consistent with that S(UJ) is a density function. 

2. Sx(UJ) is even in UJ: 

S(-u) = r R{r)e^^drt^T /~°° R(^t)e~~jwtd(-~i) 

(6.16) R ( t \ e - j * t d t = S ^ ( 7 < 1 5 ) 

J—oo 

3. Average power is equal to the integral of S(co) [i.e., area underneath S(UJ)]: 

r> (7-9) Z 1 0 0

 c / (7.15) - / ° ° „ , v d w 

2TT 
(7.16) 

Average power in the frequency band [u;i,u;2] for u>2 > u\ > 0 is given by 

(7.17) 
du _ 

If frequency / instead of angular frequency u is used, then Px is the area 
under S(u) over -oo < / < oo and Px{h,f2] * s t h e area under 5(o;) over 
[ - / 2 , and [ / i , / 2 ] (or two times the area under S{u) over [ f i , ^ ] ) . In 
(7.16)-(7.17), negative frequency spectrum has been folded into the positive 
frequency spectrum by the even symmetry of S(UJ) since negative frequency 
has no direct physical meaning. 

S{u>) 

4hM = 2 • area 

Figure 7.2: Relation between average power and power spectrum. 
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7.2 Properties of Power Spectral Density 

Property 2 is valid only i f X(i) is real-valued because it relies on Rx(—r) = Rx(r). Thus, 

Sx(ou) = 2 / Rx(T) cos(UJT)dr 
Jo 

It follows easily from the fact that for a real-valued random process, Rx(r) = Rx(—r) and 
e~juJT = COS(CJT) — jsm(ujr). For complex-valued random processes, it is easy to check that 
flx(-r) ^ RX(T) but Rx{-r) = R*X(T). 

(7.17) wi l l be shown in Example 8.6. Caution should be taken when using it when S(UJ) 
contains a S(cu). (In this case, only half of the impulse should be counted in the integral.) 

Table 7.1: Additional properties of autocorrelation and power spectrum. 

Random Process Autocorrelation Power Spectrum 
X(t) Rx(r) Sx(u) 
aX(t) W\'RX{T) 

X(t) + b with E[X(t)} = 0 RX(T) + \b\2 Sx(oj)+2K\b\26(uj) 
Xi(t) + X,(t) with Xx(t) ± X2(t) RXI(T) + RX2(T) SXL {LO) + Sx2{u) 
dnX(t) 

dtn . 
CP"RX(T) 

{ ' dT2n 
uJ2NSx{w) 

X(t)ejwot with nonrandom u>0 Rx(r)e**>r Sx(u -u)0) 
X(t) coa{u0t + 0) with 9 ~ U(0, 2TC) Rx^) COS(W0T) %[Sx(w + uo) + Sx(w - wo)] 

Some additional properties are given in Table 7.1. They are interpreted as follows. 

• The first property is consistent with the interpretation that autocorrelation and power spectrum 
are quantities associated directly with power (squared value) rather than amplitude of the 
process. 

• The second property indicates that a constant term in the process is a dc (u = 0) term. 
• The third property indicates that i f Xi(t) and X2{t) are orthogonal, the power of their sum 

is simply the sum of their powers. Note that uncorrelatedness or even independence is not 
sufficient here because the power of their sum would not be the sum of their powers i f they 
both have a dc component. 

• The differentiation property can be obtained by a repeated application of (6.23) and the 
differentiation property of Fourier transforms. As a special case, the power spectrum of the 
derivative X(t) = dX{t)/dt ( i f it exists) is UJ2 times that of X(t): 

SX(U)=OU2SX(UJ) (7.18) 

This follows from (6.23) or (6.37) with Y(i) = X(t) and the differentiation property of the 
Fourier transform. 

• The second last property implies that we can treat ejuJot as a phase-shift factor, exactly the 
same as in systems applications and signal processing. 

• The last property, known as the modulation property, is very useful in communications. 
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7.2 Properties of Power Spectral Density 

Example 7.4: Determination of Various Power from Power Spectrum 

A wide-sense stationary process X(t) has power spectrum S(u) = 

(a) Find the average power of X(t): 

Px = R(Q) = T -1 4 

Table 7.5 

r = 0 

6U 2 + 3 
2 

73 

- 1 

r = 0 2 ^ ^ 2 + ( ^ 2 J 
(2)(V3) 

T = 0 

(b) Find the average power over frequency band 0 < u < 3: Since J~ tan""1 x = 

x 2+r we have 

z(0,3) 
(7.17) 

7T -/O C J 2 + 3 

tan _ 1(a;/V^) 
3 

1 
(uj/Vsy +1 

4 TT 4 

d(u/y/S) 

o V&r 3 " 3v"3 
Note that in (7.17) frequency band UJI < u < UJ2 actually means the frequency 
bands u\ < \w\ < u2 (because negative frequency has no direct physical 
meaning and S(—u) = S(u)). Thus, in the above, frequency band 0 < u < 3 
actually means the two-sided frequency band -3 < CJ < 3. 

(c) Find the average power of its non-dc components: Since the average power 
of non-dc components is the variance o\ = E[X2} - x2 = Px - x2, we need 
only to find x. Assume x = b and let Y(t) be the zero-mean part of X(t); 
that is, X(t) = Y(t) + 6. Then 

R^r)^E{[Y(t + r) + b)[Y(t) + b)} 
= E[Y(t + r)Y(t)] + E[Y(t + r)]b + bE[Y(t)} + b2 = Ry(r) + b2 

This leads to Sx(u) = Sy(u) + 2wb28(u). Thus, i f there should be a constant 
(dc) term in X(t)9 its power spectrum would have a delta function at u = 0. 
More generally, a random process X(i) has a sinusoidal component with 
frequency UJQ if and only if its power spectrum has a pair of delta functions 
at u = ±UJQ (see Example 73). Since Sx(UJ) of the current problem does 
not have a delta function at C J = 0, x = b = 0 and finally, the variance 

^2 Px = 2/V3, although ^ ( a ; ) ! ^ ? 0. 

326 



73 White Noise 

7.3 White Noise 

A zero-mean noise process N(t) is said to be white noise i f it has no coupling 
between distinct time instants, or equivalently, its power spectrum is constant: 

Rn(r) = S06(T) Sn(u) = So (7.19) 

Rn(r) 

i S06(r) So 

Figure 7.3: Autocorrelation and power spectrum of white noise. 

where So is called its intensity. This is analogous to white light, which has a 
spectrum constant over all visible light frequencies. White noise is a popular 
mathematical model of physical (e.g., thermal) noises. It is 

• completely unpredictable because its future is uncorrelated with (or indepen-
dent of) its past and present — worst case 

• easiest to handle because its value at one time is uncorrelated with (or inde-
pendent of) any other time — easiest case 

• physically unrealizable because it has infinite power: Pn = Rn(0) = oo 

A noise process that is not white is called colored noise. A typical example 
of colored noise is one with the following exponential autocorrelation 

Figure 7.4: Autocorrelation and power spectrum of a colored noise process. 
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7.3 White Noise 

Thermal noise has a power spectrum that is constant up to very high frequency 
and then decreases. A more realistic mathematical model for such zero-mean 
noise is the so-called bandlimited white noise. Its lowpass version has the 
following power spectral density 

M < W = 2ixB 
elsewhere 

(7.21) 

where B (or W) is called its bandwidth in Hz (or in radians per second); So its 
intensity. The corresponding autocorrelation function can be shown to be (see 
problem 7.17), by inverse Fourier transform 

i2n(r)=^- 1[5 ,n(w 
S0Wsm{WT) 

7T 

In this case 

Rn{0) 
1 

lim 
T-*0 

S0Wsm(WT) 
7T , WT 

1 rW 

WT 

or 

(7.22) 

1 tOO 1 rW 

- jQ Sn(uj)duj = - yo Sn(uj)duj 

SQW 
7T 

(7.23) 

which has finite power and is thus physically "realizable." 
It is clear that bandlimited white noise is colored but it becomes white noise 

as bandwidth goes to infinity. 
Sometimes it is desirable to consider a white noise process that is independent, 

rather than just uncorrelated, across time. Such noise is known as strictly white 
noise or strict-sense white noise. 

Figure 7.5: Power spectrum and autocorrelation of lowpass white noise. 
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7.3 White Noise 

White noise with R(r) = SQ6(T) in (7.19) clearly means that there is no coupling between 
any two distinct time instants. It has a correlation coefficient 

P{r) = 
R( 
R(0) 

r = 0 

a in (7.20) is sometimes called the correlation time constant. 
Bandlimited white noise can also be bandpass. Its power spectrum is 

and its autocorrelation is (see problem 7.18 for a proof) 

So 
0 

|w ± u>c\ < W/2 
elsewhere 

p , . S0Wsm(WT/2) 
hn{r)^— wVj2~QO<U}'-T) 

which has a bandwidth of B ~ and power given by (7.23). 

Rn(r) 

(7.24) 

(7.25) 

" V/ 
4TT V 

" W 

2 Ay 11 
1 j 

11 \/27r V | J " W IV "w 

Figure 7.6: Power spectrum and autocorrelation of bandpass white noise. 

In fact, any random process with a power spectrum that has a flat top or sharp corner is not 
really physically realizable. This is the case for bandlimited white noise. Unlike white noise, 
however, it can be implemented within an arbitrary accuracy. 

Note the factors W and W/2 in (7.21) and (7.24), respectively. As a result, although 
lowpass (LP) is usually equivalent to bandpass (BP) with uc = 0, for bandlimited white noise, 
S%p(u) ^ S n P M L = o - Instead, we have 

The correlation coefficients of lowpass and bandpass white noise are, respectively, 

LP( \ C«(T) Rn(T) (7.22) sin(TVr) 
( r ) = am = Rjoj = (7-26) 

BP/ \ Mr) (7.25) s in(Wr/2) 
Pn (r) = QM = RJO) = " lv772- c o s ( W c T ) ( 7 - 2 7 ) 
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7.3 White Noise 

The definition of white noise based on (7.19) is valid only for zero-mean noise processes. 
More generally, white noise is defined as a noise process whose autocovariance is a delta function 

Cn(r) = S0S(r) Sn(u>) = S0-¥ 2*[E(N)]26(u) 

where E(N) is the time-invariant mean of the noise N(t). 

Example 7.5: Power Spectrum of Nonzero-Mean White Noise 

Find the power spectrum and autocorrelation of a white noise with mean 10V and a power 
spectrum of its non-dc component equal to 100V2/Hz. 

First, i t should be identified that E(N) = 10, S0 = 100 and thus Cn(r) = S0S(r) = 1(XW(T). 
Thus 

Rn(r) = Cn(r) + [E(N)f = 1 0 0 % ) + 100 

Taking Fourier transform yields 

Sn(uj) = S0 + 2W[E(N)]2S(UJ) = 100 + 2 0 0 T T % ) 

Although white noise is not physically realizable, its study is very meaningful for engineering 
practice. One of die best examples to demonstrate that proper abstraction of real-world problems 
is important is that of the historical evolution of the number systems. 

Positive integers (natural numbers) are the first abstraction necessary for counting. This was 
learned in our early childhood. The well-known mathematician Kronecker had a famous saying 
"Natural numbers were created by God and all the other numbers were created by man."1 Negative 
integers and zero were introduced only because we need to perform subtraction (in other words, 
only for the convenience of subtraction). Decimal points, fractions, and in general, rational 
numbers2, were introduced for the convenience of division. Irrational numbers were introduced 
due to the need of such mathematical operations as taking square root (e.g., y/2 is an irrational 
number). The operation on rational and irrational numbers led to real numbers. The introduction 
of complex numbers had not been generally accepted until the one-to-one correspondence was 
found between these numbers and the points on the plane in Cartesian coordinates. In the 
modern era, numbers have various extensions. One direction is the vector, matrix, and array of 
an arbitrary dimension. Another direction is the cardinal number of an infinite set3. 

1Die ganzen zahlen hat Gott gemacht, alles andere ist Menschenwerk. 
2 A rational number is one that can be written in the form of n/m, where m and n are integers. Otherwise, it is 

an irrational number. 
3Simply put, the cardinal number describes how large a (finite or infinite) set is, or more specific, how many 

elements a set has. Different infinite sets could have different numbers of elements. For example, the set of positive 
integers has a smaller cardinal number than the set of real numbers. It has, however, the same cardinal number as 
the set of rational numbers has, which is not easily acceptable by people new to this theory. 
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7.3 White Noise 

Example 7.6: Signal Detection 

We want to decide if there is a signal S(t) = A sm(u)owt+9) in the noisy random 
process X(t)9 where 9 ~ U(0, 2TT). In other words, there are two possibilities: 

X(t) = S(t) + N(t) i f the signal is present 
X(t) = N(t) i f the signal is absent 

where N(t) is white noise with power spectrum So, and we want to determine 
which one is true. 

X(t) would have the following autocorrelation and power spectrum were the 
signal present 

Rx(r) = Rs(r) + Rn(r) = ^ A 2 cos(uj0r) + SQ6(r) 

SX(T) = Sa(r) + Sn(r) = ^A2[6{LJ - m) + % + + So 

or the following autocorrelation and power spectrum were the signal absent: 

RX(T) = SO6(T) 

Sx(r) = So 

Consequently, i f a delta function (i.e., high peak) in the power spectrum or a 
sinusoid in the autocorrelation of X(t) is found, then we can declare that there 
is a sinusoidal signal in X(t), as for the case shown in Fig. 7.7 where the signal 
is observed to have a frequency around 1/8 of the sampling frequency f3. 

p 
450 

350 -

250 -

150 

50 f N * x / ^ V ^ — / / / a 
0 1/12 1/4 1/2 

Figure 7-7: Power spectrum of a signal imbedded in noise. 
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7.3 White Noise 

Example 7 J : Power of a Signal Amplitude-Modulated by Noise 

Consider a random process Y(t) = N(t)cos(uj®t + 0), where 9 ~ U(0}2n); 
N(t) is a bandlimited white noise with intensity SQ and bandwidth W; N(t) is 
independent of 9; and LUQ > 0 is a known constant. Find Sy(uj) and Py. 

Solution: 

E[Y(t)} = E[N(t) cos(ujQt + 9)] i n d e p ^ d e n c e E[N(t)]E[cos(uj0t + 9)] ( 6 = } 0 
Ry(t + T , t) = E[N(t + r) cos(a;o* + ^ o ^ + 9)N(t) cos(uj0t + 9)] 

= E[N(t + r)iV(t)] • ̂ E[cos(a;or) + cos(2a;o£ + u)0r + 29)} 

= ~Rn(r) cos(u0r) = Ry{r) (7.28) 

Thus, Y(t) is wide-sense stationary. Now 

Py = Ry(0) = \Rn(0) cos 0 = l-Pn

 (7^3) ^ 

Sy(to) = T[Ry{j)] = ^[Rn(r) cos(a,'0r)] 
Ta=74 \ [Sn(co - o;0) + Sn(u + u0)\ (7.29) 

where Sn(u) is the power spectrum of N(t) with intensity SQ and bandwidth W. 
(7.29) follows from the frequency shifting property of Fourier transform (Table 
7.4). 

-V/ w 

So 

. W -W UJQ^W u>o -1- W 7 

Figure 7.8: Power spectrum of amplitude modulation by noise. 
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7.4 Power Spectrum Estimation 

7.4 Power Spectrum Estimation 

An important issue in practice is how to estimate the power spectrum of a stationary random 
process, given a finite-length data record of the process. 

There are two classes of methods for power spectrum estimation: parametric and nonpara-
metric. A parametric method estimate the power spectrum of a random process based on an 
assumed model for the process and is thus also known as a model-based method. Since the 
model is assumed, the estimation of the power spectrum thus reduces to the estimation of the 
parameters of the model, hence the name. If the model is a good fit to the process, the corre-
sponding parametric method can usually yield better estimates than the nonparametric methods, 
where no assumptions are made with respect to the random process. The parametric methods for 
power spectrum estimation is beyond the scope of this book. 

Unfortunately, there is no simple and accurate method for power spectrum estimation that is 
versatile. In fact, power spectrum estimation is in a virtual "Tower of Babel" of methods. 

One of the most commonly used nonparametric estimators of power spectrum of a random 
process X[n] is the so-called periodogram: 

= jj\xN(w)\2 = 1 
N 

x\n\e (7.30) 

where x[n] is a discrete-time sample function of the random process; XN(uo) is its discrete Fourier 
transform (DFT); and N is the length of the data record. A straightforward implementation of the 
periodogram requires, for each frequency u9 the calculation of the DFT of x[n], which is usually 
done by the so-called fast Fourier transform (FFT) — computationally efficient implementations 
of the DFT. 

The periodogram can be justified by (7.11): It is clear that (7.30) is the discrete-time coun-
terpart of (7.11), which is clearly related to the true power spectrum, defined by (7.13). 

Although widely used, the periodogram is in general not a good spectral estimator: It is 
biased in the sense that its average value is not necessarily equal to the true power spectrum; 
and as the length of the data record increases, its variance does not decrease although its mean 
approaches to the true power spectrum. To increase its accuracy, an average over a number of 
periodograms, each computed on the basis of a segment of the data record, is often used. 

MATLAB signal processing toolbox has a routine p s d that calculates the power spectrum 
of a signal (sequence), albeit not accurately. This routine is based on the so-called Welch's 
averaging modified periodogram method. It divides the signal sequence into a number of possibly 
overlapping segments and calculate the periodogram for each segment. The average of these 
periodograms is then taken as the estimate of the power spectrum. A so-called Hanning window 
may be used to smooth out any end effects caused by the abrupt transition between adjacent 
segments prior to computing the periodogram. 

The power spectrum is estimated in the companion software P&R based on the Welch's 
method of averaging periodogram, similarly as in the MATLAB function psd. However, two ad-
ditional windows are available: rectangular and Hamming. In addition, two choices are available 

333 



7A Power Spectrum Estimation 

for the spectrum type: smoothed and unsmoothed. These will be described below in Example 
7.8. To use P&R, each record of the signal of which the PSD is to be estimated should be stored 
in a data file. 

Another general method of estimating power spectrum is to compute the sample autocorre-
lation function first and then compute its discrete Fourier transform. 

Example 7.8: Estimation of Power Spectrum of a Random Pulse Train by P&R 

Given a data record, its power spectrum can be easily estimated by the companion software P&R. 
Suppose that a data record of a 1024-point (with 100 Hz sampling rate) pulse train with 

a random amplitude is stored in the data file e7_8 .da t . The pulse train has a "period" of 
0.1 second, a pulse width of 0.05 second and an amplitude that is time-varying and uniformly 
distributed over (0,4). It can be generated by the companion software P&R following the steps 
shown in Example 6.3. 

Then the power spectrum of this pulse train can be estimated according to the following 
simple steps: 

51. Click "RPAnalyzer" on the main window of P&R. 
52. Click "Frequency Domain." You will be prompted to enter the name of a data file. 
53. Choose "data" subdirectory and enter the data file name "e7_8. d a t " and click "Ok." 
54. Pill out the window "Power Spectrum Estimator" as shown in Fig. 7.9 and click "Ok." Then 

a MATLAB figure window will appear and the positive part of the power spectrum of the 
data stored in the data file is plotted. 

Please note the following: 

• The segment length is better to be in the power of 2 for the convenience of FFT. It should 
not exceed the length of the data record. A shorter segment length will result in a smoother 
PSD curve, at the cost of losing frequency resolution. The highest frequency resolution is 
achieved by setting the segment length to that of the data record. See Computer Exercise 
7.6. 

• Overlapped N is the number of overlapping samples between two adjacent segments used in 
the Welch's method, described before. It is better to be in the power of 2 and should not 
exceed the segment length. A smoother PSD curve is obtained if this number is set to a 
larger value. 

• The sampling rate fs is used only in two places: (a) to determine the fundamental interval, 
as described below; and (b) to scale the magnitude of the power spectrum curve in the case 
of white noise so as to ensure the correct value for a discrete-time signal. As a result, you 
need to enter the correct fs only for white noise. In other case you may enter an arbitrarily 
large sampling rate if you do not know the true sampling rate. 

• The maximum frequency for the PSD plot can be set to any positive number not larger than 
one half of the sampling rate f3. This is because all the higher frequencies of a discrete-time 
signal can be folded into the fundamental interval [—/a/2, fs/2] in the sense that they are 
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7.4 Power Spectrum Estimation 

identical to (i.e., indistinguishable from) the corresponding frequencies in the fundamental 
interval. You may of course choose a maximum frequency for plot smaller than fs/2 to 
zoom in the lower frequency part. The left and right bottom plots in Fig. 7.9 correspond to 
the choices of 50 Hz and 20 Hz for the maximum frequency for plot, respectively. 

• The rectangular window corresponds to the division of the data record into segments without 
any windowing technique to smooth out the end effects due to the abrupt transition between 
adjacent segments. 

• The smoothed spectrum type uses an FFT of a sequence of length that is approximately four 
times that of the data record. The sequence is expanded by zero-padding, a commonly used 
technique in FFT processing for interpolating the values of the computed spectrum at more 
frequencies so that smoother curves are resulted. The unsmoothed version does not utilize 
such technique. 
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Figure 7.9: Estimating power spectrum of a random pulse train by P&R. 

335 



7.4 Power Spectrum Estimation 

Example 7.9: Estimation of Power Spectrum of White Noise 

Fig. 7.10 Illustrates a 512-point (with 2000 Hz sampling rate) sample function of a zero-mean 
Gaussian white noise sequence, with a variance of 4, generated by the companion software P&R 
following similar steps as Illustrated In Example 6.19. 

Fig. 7.11 gives the estimated power spectrum of the white noise, obtained by P&R following 
similar steps as the previous example. Note that the estimated power spectrum Is not a constant 
although the theoretical one is. Since the sampling frequency is 2000 Hz, the fundamental 
interval for the sampled random sequence is (—1000,1000) Hz. In other words, by the sampling 
theorem, the highest frequency component that can be recovered without distortion (known as 
aliasing) is 1000 Hz. Recall that the average power, which is 4 in this example, is equal to the 
area underneath the power spectrum curve. For a random sequence, that is 2000(7 = 4. Thus, 
C = 2 x 10~ 3 is the theoretical value (constant) of the power spectrum of the sampled white 
noise. The estimated power spectrum of Fig. 7.11 agrees with this analysis. This is the case 
only when "White Sequence" is selected and the correct sampling rate is entered, along with a 
rectangular window, for an unsmoothed spectrum. I f a window of another type, such as Hanning 
window, were used, the magnitude of the PSD would change greatly and the shape might also 
change. I f the smoothed spectrum were sought, the magnitude might change slightly. I f "Other 
Processes" were selected, the shape of the PSD curve would be correct but the magnitude of the 
plot would correspond to the spectral density of the continuous-time white noise, rather than the 
sampled one. 

- 4 -

0 512 

Figure 7.10: A sample function of a white sequence. 
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Figure 7.11: The estimated power spectrum of the white sequence. 
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Example 7.10: Estimation of Power Spectrum of a Sinusoid 

A 180-point discrete-time (with sampling rate fs = 720 Hz) sample function of the sinusoid of 
Example 6.7 with amplitude A = 2y/2, frequency UJQ = 120TT and a random phase uniformly 
distributed over (—7r,7r) is given. The autocorrelation of this random sinusoid is (see Example 
6.7) a single cosine function R(r) = \A2 COS(UJQT). Its Fourier transform (i.e., power spectrum) 
is theoretically a delta function located at o;0: 

S(UJ) = ^A2[6(U;-UO) + 6(UJ + UJ0)} 

However, for a sequence x [ n ] , n = 0 , 1 , . . . , L — 1 of finite length L (L < 180 in this example is 
the segment length), its power spectrum turns out to be 

sin[(a; - wp)L/2] ^ ^ ( L - i m +

 SH(^ + WQ)L/2]^ 
sin[(u ~ UJQ)/2] sin[(o; - f UJQ)/2] 

The magnitude plot of the positive frequency part is thus 

7rA2\sm{(u) ~~uj0)L/2}\ 
2 |sin[(o; - u ; 0 ) / 2 ] | 

Consequently, the above should be divided by 2w i f the power spectrum is in terms of frequency / 
in Hz, rather than angular frequency u in radians per second. This leads to A2L/A per Hz as the 
height of the peak in the power spectrum. Fig. 7.12 shows the estimated power spectrum with a 
peak height of 360, which was obtained by the companion software P&R with the segment length 
set to the data record length of 180 to yield the maximum frequency resolution, in agreement 
with the above analysis of peak height: A2L/4 - (8)(180)/4 = 360/Hz. The peak would be 
sharper i f more data points were used. 

Note that the location of the peak times the sampling rate is equal to the frequency of the 
sinusoid: (1/12) (720) = 60 Hz. 

For the dc term x of a discrete-time signal of length L , its power spectrum is S(UJ) = 
2w(x)2sm(ujL/2)/sm(uj/2). Consequently, the corresponding peak height per Hz is A 2 L instead 
of ^ 2 L / 4 . 

P 
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Figure 7.12: The estimated power spectrum of a random sinusoid. 
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7.5 Cross Power Spectrum 

7.5 Cross Power Spectrum 

Given jointly wide-sense stationary random processes X(t) and Y(t)9 their sum 
Z(t) = X(t) + Y(t) has the following autocorrelation and power spectrum 

Rz(r) = E{[X(t + T) + Y(t + r)][X(t) + Y(t)]} 

= Rx(r) + Ry(r) + Rxy{r) + Ryx{r) (7.31) 
SZ(LO) = T[Rx(r) + Ry{r) + Rxy(r) + RyX(r)} 

= Sx(u) + Sy(u) + T[Rxy{r)} + FiRyxir)] (7.32) 

Or 
Sz(u) = Sx(u) + Sy((v) + Sxy(u) + Syx(u) (7.33) 

if we define the cross-power spectral density as the Fourier transform of the 
crosscorrelation 

Sxy(u) = F[Rxy(T)} = Rxy(r)e-jWTdr (7.34) 

Likewise for Syx(u). 
Unlike the (auto-)power spectrum, the cross-power spectrum need not be 

real, nonnegative, or an even function of ui. They have, however, the following 
properties for real-valued random processes: 

1. Let * denote complex conjugate. Then 

Syx(u) = Sxy(u)* = Sxy(-u) (7.35) 

2. Their real parts Re[5yx(u;)] = Re[Sxv(co)] are even in u>. 
3. Their imaginary parts ImfS^u;)] = -lm[Sxy(u>)} are odd in u. 

4. If X(t) and Y(t) are uncorrelated and have constant -means, then 

Sxy(oj) = Syx(u) = 2TTE[X]E[Y}8(UJ) (7.36) 

This reduces to, if X(t) and Y(t) are orthogonal (see Section 6.7), 
Sxy{u) = Syx{u) == 0 (7.37) 

Sz(u) = Sx(u) + Sy(u) (7.38) 
Sxz(u) = Sx(u) (7.39) 

where Z(t) = X(t) + Y(t). 
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7.5 Cross Power Spectrum 

The cross-power spectrum Sxy(u) does'not have a physical interpretation as simple and clear 
as the power spectrum SX(LJ). 

The average cross power of two nonrandom waveforms x(t) and y(t) can be defined as 

1 rT 

where rxy(r) is the crosscorrelation function defined by (6.8). For random processes X(t) and 
Y(t), the expected (average) cross power can be defined by 

Pxy — E\pxy\ 

lim — / X(t)Y(t)dt 
r~*oo 21 J-T 

/
oo 

Fx(u))Fy{uj)*dw 
- O O 

• E\ lim — 

Mm —E[Fx(u,)Fy(u>Y]du> 
5 T-*oo 21 

(7.40) 

(7.41) 

where Fx(u) and Fy(u) are the Fourier transforms of the truncated version of X(t) and Y(t) 
that have a finite duration [—T, T] , and (7.40) follows from the following Parseval theorem for 
two real-valued functions x(t) and y(t)9 both with a finite duration [—T, T ] , 

r T 1 f°° 
/ s(t)y(t)<ft = — / Fx(o;)Fy(a;)*du; 

J-T Z7T J - o o 

From the above and following a discussion similar to the one given on page 321, Fx(u))Fy(u))* 
can be called cross-energy spectrum and the cross-power spectrum Sxy(uj) can be defined as 

E[Fx(u)Fy(u,y] 
Sxy(uj) = lim 

T 

= E lim 
T-*oo 

2T 
F B (w)F w (w)' 

2T 
rT 

E[F{A{x(t + T)y(t))}] 

F{A{E[x(t + T)y(t)])} 

F{A{Rxy{t + r,t))} 

(7.42) 

(7.43) 

where A(g(t)) is the time average of g(t) and (7.42) follows from the correlation property of 
Fourier transforms (Table 7.4), which implies that the product of the above Fourier transforms 
is the Fourier transform of the crosscorrelation of the two functions. Consequently, cross-power 
spectrum can be defined as the Fourier transform of the time average of the crosscorrelation 
function: 

Sxy(uj) = .F[time average of Rxy(t + r , t)] 
time average of Rxy(t + r,t) = ̂ r _ 1 [ 5 I t , (w ) ] 
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7.5 Cross Power Spectrum 

Clearly, this relation is more general than the one given by (7.34) because it is valid for nonsta-
tionary as well as jointly stationary processes. It clearly reduces to (7.34) for jointly stationary 
processes. It is thus clear that Sxy(uj) so defined deserves the name "cross-power spectral density." 

From the above discussion, it is clear that we have the following relationship 

1 roo 
Pxy = 7~ / Sxy(uj)duJ 

Z7T J-OO 

P y x = 2 ^ L 
Syx(uj)duj 

Property 1 follows from the following directly 

/
oo roo 

RyX{r)e~jWTdT= / E[Y(t + T)X(t)]e-j"TdT 
- O O J — OO 

/
OO 

E[X(t)Y(t + T)]e-i"Tdr 
- O O 

/
OO 

Rxy{-r)e'^TdT 
- O O 

/
OO 

Rxy{T)e?"rdT = Sxy{-w) 
- O O 

(7.44) 

(7.45) 

J — C 

Rxy(T)e-j"TdT 

Properties 2 and 3 follow from the following facts directly: 

Syx(uj) = Sxy(uj)* => Re[5^(o;)] - Re[S^(a;)] ? lm[Syx{uj)} = - I m ^ ( U J ) * } 

Re[Sxy(uj)] = Rc[Sxy(ujy] = Re[Sxy(—uj)} = ^ they are even in UJ 

lm[Sxy(uj)] = —lm[Sxy(ujy] = —lm[Sxy(—uj)} they are odd in UJ 

(7.37) follows from (7.36) since xy u n c o ^ l a t e d E[XY] o r t h l o n a l 0. (7.38) follows from (7.34) 
and (7.37) directly. It indicates that PZ — Px - f PY, that is, i f X(t) and Y(t) are orthogonal, 
then the power of their sum is equal to the sum of their powers. (7.39) makes sense since 
XZ = X(X 4- Y) = XX + XY and X(t) and Y(t) are orthogonal. 

It can also be shown 

rb pb rb 
I Sxy(uj)duj < / Sx(uj)duj / Sy(uj)duj 

J a J a J a 

\Sxy(u>)\2 < Sx(w)Sy(w) 

Sxx(w) =jwSx(u;) 

(7.46) 

(7.47) 

(7.48) 

(7.46) will be shown in Chapter 8 using (6.35) with r = 0. (7.47) can be shown using Schwarz 
inequality. The derivation of (7.48) is left as an exercise (problem 7.24). 
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Example 7.11: Power Spectrum of Sum of Two Random Processes 

Determine the autocorrelation and power spectrum of Z(t) = X(t) + Y(t)9 where 

X(f) = A + B eos(u)0t + 9) 
Y(t) = N(t) cos(uj0t + 9) 

UJQ > 0 is a constant; A, B, and 9 are independent RVs with 9 ~ ZY(0, 2TT); and 
N(t), independent of A, B, and 0, is a bandlimited white noise with a constant 
(nonzero) mean. Clearly, from Example 7.3, 

Rxy{r) = E{[A + B cos(uj®t + UJQT + 9)]N(t) cos(ujQt + 9)} 
= E[AN(t) cos(uj0t + 9)] 

+ E[B cos(uj0t + W0T + 9)N(t) cos(uot + 9)] 

= AN E[cos(u0t + 9)} +BN 1 1 0 ; \ u —u n 

>—— 2 
=0 by (6.15) 

= ~BN cos((Jor) 

RyX{r) = Rxy(-r) = ^BN COS(U0T) 

S „ ( U ) = HR^r)] ™ * » \ B m » - <*) + % + "»)] 

Hence, from Examples 7.3 and 7.7, 

RZ{T)
 ( 7 = } Rx(r) + Ry(r) + R X Y ( T ) + Ryx(r) 

(7.14) I 1 

= T[Rz{r)} 

Tabk7.4 2 ^ ( 0 ; ) + I ? r B ^ - U0) + 8{uJ + U)0)] 
Z 

1 

+- [Sn(u - LOQ) + 5„.(u; + UJ0)] + -KBN[8(LO - uQ) + 8 (to + OJ0)] 

= 2nA^8(uj) + 7T ( ^ / F + BN^j [8{u - w0) + 8{u + u0)} 

+ l- [Sn(uj - UQ) + Sn{u + UJQ)} 
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7.6 Power Spectrum In Laplace Domain 

It is sometimes, e.g., in systems applications, more desirable to use Laplace 
transform than Fourier transform. Thus, we may define the power spectrum as 
the two-sided Laplace transform of the autocorrelation function: 

Sx(s) - C2[RX{T)) = f°° Rx(r)e-STdr = [°° RX(T)e~^TdT (7.49) 
J— OO J — O O (jj=—js 

The more popular one-sided Laplace transform is applicable only i f R(T) = 
0, Vr < 0, which is never true (except for white noise) since R{~r) = R(r). 
Clearly 

Sx(s) = SaMU*-^ , Sx(u) = Sx(s)\s=juJ (7.50) 

For a random process with the following (proper) rational power spectrum 

b x [ S ) d(8)d(-8) 

its average power is given by 

Px = ^(0) = C-\Sx{s)\ = ~ r f i e l d s ± In (7.51) 
s=o 2TTJ J-JOO d{s)d{—s) 

where c(s) and d(s) are two polynomials i n s, given by 

c(s) = cn-isn~1 + • • • + c\8 + Co, d(s) = d n s n -I + dis + d0 

with d(s) having a higher degree than c(s) and no zero coefficients, the following 
table is very useful i n determining the power o f X(t). 

T a b l e 7.3: Some useful integrals I N (average powers). 

= ±2 — —™" 
2d 0 di 2dodid2 

j _ c^dpdi + (c\ - 2cQC2)dQd3 + 4^4 
3 2dod3(did2 — d0d3) 

j - ctdo(diD2 ~ d0d3) + d0did4(cl - 2 C J C 3 ) 4- dQdzdA(c\ - 2c 0 c 2 ) 4- cld4(d2d3 - dxdA) 
^ 2dpd4{d\d2d3 — rfpcl| — cff d4) 
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Example 7.12: Determination of Power from Power Spectrum 

Determine the average power of a random process X(t) with power spectrum: 

Sx(u) UJ 

a;4 + 52a;2 + 576 
The following is not a good way to obtain the power for such a problem, 

2 
I / 1AJ UJ . SJuMu = — I . 

2TT J-OO 

1 roo 1 fc 
-dco 

2TT J-OO UJ* + 52u2 + 576 
because it is difficult to evaluate the integral involved. A better way is, 

•2 - - 1.8 0.8 
RX{T)=T-1\SX{U)]=F-1 

0.15-
2(6) 

L(u;2 + 36)(a;2 + 16)J 
- i 

w 2 + 6 2 u 2 + 4 2 

-0.1 
2(4) 

w + 4 2 
0.15e-6|rl - 0.1e-4|r | 

u2 + 62 "'"a;2 

and thus, Px = Rx(0) — 0.05. Note that Rx(r) is obtained as a by-product. 
Alternatively, we can express Sx(s) as 

Sx(s) = 
c{s)c{-s) 

s 4 - 52s2 + 576 (s + 6) (s + 4) (s - 6)(s - 4) d(s)d(-s) 
and then use Table 7.3 to determine the average power: 

Px = ^(0) = -L /'°° S x(S)ds -
Z7TJ J~JOO 27T.7 J-™J°° 

— 3 

2TTJ i-ioo 54 - 52s2 + 576 
ds 

Since 

C{s) = Cn__i5n 1 + • • • + C\S + CQ = 5, Co = 0, ci = 1 
d(s) = dnsn + -- + dis + d0 = (s + 6)(s + 4) = s2 + 10s + 24, 

d0 = 24, di = 10, d2 = 1 

from Table 7.3, we have 
1 poo s(—s) 

2irj J-j<x> ( 5 2 + 1 0 5 + 24)(s2 - 10s + 24) 
c2d0 + c2

0d2 _ 1 2(24)+ 02(1) 

^6 = 1 2 

2d^d\d2 2(24)(10)(1) 
0.05 
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7.7 Appendix: Some Facts About Fourier Transforms 

7J Appendix: Some Facts About Fourier Transforms 

Some important properties of Fourier transforms are listed in Table 7.4. Some most frequently 
used Fourier transform pairs are listed in Table 7.5. 

Table 7.4: Salient properties of Fourier transforms. 

Description f(t)=F-1[F(u)} F(co) = n.f(t)} Notes 

/ ( ( - to) 

Definition 

Shifting 

Modulation 

Scaling (dilation) 
Duality 
Conjugation 

Differentiation 

Integration 

Linearity 

Convolution 

Correlation 

Parseval theorem 

Tdr 

/(*)« 
f(t) cos(w0t) 
f(t)ejuot 

fiat) 
F(t) 

/(*)* 
f(-ty 
dnf(t) 

(-jt)nf(t) 

/ f{x)dx 
J — OO 

nf(Q)6(t) -

f(t)e 

F(uj)e-jut0 

F(u - LJQ) 

±[F(UJ - UJQ) + F ( U J + 
F(u - u0) 

2nf(-uj) 
F*(-u>) 

(joj)NF(oj) 

dNF{to) 

t0: real constant 
u>0: real constant 

u)0)] LJ0: real constant 
u>o'- real constant 
a ^ 0: real constant 

du)n 

TTF{0)6(UJ) + 

f F{x)dx 
J — OO 

3" 

a.i. complex constants 

h{t)* f2{t) F^Fziw) 
2irh(t)hit) F1(LU)*F2{U) 
hit)of2(t) F1(oj)F2(uJy 
2nh(t)h(t)* FI(UJ) o F2(w) 

/
oo 1 t o o 

hit)hitydt = — / F^F^uydu 
-oo Z7T J - o o 

/
oo 1 roo 

\f(t)\2dt=± \F(oj)fdw 
-oo Z7T J - o o 

Fiiu 
Fiiuj 
Fiiuj 
Fiiuj 
Fiioj 

= Hfiit% Vi 
= ^ [ / i ( t ) ] , t = l ,2 
= ^ [ / i ( i ) ] , i = l ,2 
= ^[ft(t)],i = 1,2 
= F[hit)],i-~-l,2 

F i ( w ) = ^ [ / < ( * ) ] , * = 1,2 

Convolution is defined as fi(y) * f2(y) = / fi{x)f2(y ~~ x)dx 
J—oo 

A f°° 
Correlation is defined as fx(y) o f2(y) = / f1(x)f2(x - y)dx 

J—oo 
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7.8 Summary and Requirements 

Table 7.5: Some frequently used Fourier transform pairs. _ = 
a 2na5(uj) a: constant 
6(t) 1 

u(t) TTS(UJ) + — 

6(t - 1 0 ) e~jujt° tQ: real constant 
cos(ujQt) n[6(uj — (j0) -f 8(UJ -f OJQ)} 
sm(uot) —JTT[6(U> — u0) — S(u + WQ)} 
e i w °* 2 TT$(O ; - o;0) 

\w-]h •<") 
u; z + a 2 

u(t)e-at _ 1 _ a > 0 
ja; + a 

n(-™i)e a t — - — a > 0 ,7 a; — a 

7.8 Summary and Requirements 

Power spectrum of a random process Is the Fourier transform of the autocorrelation of the process, 
given by 

SX(L>) = F[RX(T)} 4 Rx(T)e-^dT 
J — oo 

It is the correct frequency description of a random process because Fourier transform of the 
random process itself does not exist. It describes the distribution of the average power of the 
process with respect to frequency. It, however, does not contain any information of the time shift 
or phase since it is the "power" spectrum and is always real and nonnegative (not a complex 
quantity and thus has no phase). It is an even function of frequency. The autocorrelation function 
can be obtained from the power spectrum by inverse Fourier transform. 

The average power of a random process is the integral of the power spectrum over all 
frequencies: 

1 f°° 
PX =• Rx(0) = — / Sx{u)<kj 

The average power in the frequency band [ c ^ i , ^ ] for u2 > UJI > 0 is given by 

Px[^,w2} = - / Sx{u)duj 
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7.9 Additional Examples 

White noise is a zero-mean noise process whose power spectrum is constant over the entire 
frequency range. This amounts to having its autocorrelation equal to a delta function. The values 
of a white noise process at distinct time instants are uncorrelated. This makes it easy to handle 
and thus white noise is a popular random process model for many engineering applications. I f 
a noise process is not white, then it is called colored noise. I f the power spectrum of a random 
process is constant over a finite frequency band and zero elsewhere, then it is bandlimited white. 

Cross-power spectrum is the Fourier transform of the crosscorrelation function. It is in-
troduced for convenience to handle the coupling between random processes. It has some nice 
properties but it is not an even function of frequency and could be complex-valued. 

Power spectrum can also be defined using two-sided Laplace transform. 

Bask Requirements 

• Comprehend the concept of power spectrum. 
• Know how to find the power spectrum of a random process and how to find the autocorre-

lation and average power from the power spectrum. 
• Be familiar with the properties of power spectrum. 
• Be familiar with the concept of white noise and its power spectrum and autocorrelation. 
• Be skillful in the various methods of finding average power. 
• Be familiar with the power spectrum, average power, and autocorrelation of sinusoids with 

random phase, frequency, and/or amplitude. 
• Understand the concept of cross-power spectrum and know how to find it. 

The emphasis of the chapter is on the concept of power spectrum, its relation with autocorrelation, 
and white noise. 

7.9 Additional Examples 

7.13 Average power of a sinusoid. Consider a waveform X(t) = Acos(u0t 4- </>). Find the 
average power of X(t) i f 

(a) nothing in X(t) is random 
(b) <j> ~ W(—7r,7r) and nothing else in X(t) is random 
(c) UJQ ~ W(100,200) and nothing else in X(t) is random 
(d) A ~ Af(10,1) and nothing else in X(t) is random 
(e) Compare and discuss the results obtained in the above parts. 

Solution: 

(a) 
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= Km ± £ » A 2 [ 1 + cos2(a*t + 0 ) ] * 

1 , 2 1 sin2(o;oT + 0) - sin2(-u;oT + 0) 
= - A + lim — — 

2 T-OO 2T 2LJ0 

= 
2 

(b) From Example 6.7, = ^4sin(a;ot + (j)) with 0 ~ U(~-7T,IT) has autocorrelation 
J?(r) = ™ COS(O;OT) and thus average power P x = A 2 / 2 . Since j4sin(a;0t+0) is just 
a time-shifted version of Acos(Lj0t + 0), they should have the same average power 
P a = A2/2. 

(c) Following Example 6.11, we have 

Rx(t + r, t) = cos(a;ot + o;0r + 0) • Acos(a;o£ + (j))] 
1 

T4 2E[COS U; 0T + cos(2cti0* + UJQT + 20)] 

1 /-200 J 
- A 2 / [cos(o;or) + cos(2c^0t 4- u0r + 2 0 ) ] — —efc^o 
2 Jioo 200 — 100 
A2 ( I . 1 

— r — Sin CJQT + — — — 
200 Lr 2t + r 
,42 rsm2Q0r - sin lOOr 
200 ~ ~ T """"" 

sin[(2t + r)ujQ + 2(f)] 

200 - 100 
200 

m=ioo 

+ 
sin[200(2t + r) -f 20] - sin[100(2i + r ) + 20] 

E [ X ( t ) 2 ] = lim i ? s ( r ) 
T—*0 

= TTLTI lim 200 W-o 

2i + r 

„ sin200r , sinlOOr' 
200—— 100 

200r lOOr 

+ sin(400i + 2<j)) - sin(200i + 2<f>) j 

200 
100 + 

2t 
sin(400i + 2(p) - sin(200i + 20) 

2t 

Note that the mean-square value is time varying. The average power is 

lim 2 r—l 

T™L 2T J-T 200 

2 

100 + sin(400i + 2(j>) - sin(200i + 2(f)) 
2t 

dt 

(d) 

Rx(t + r, /.) — E[A cos(iu'ot + UQT + 0)A cos(w0£ + 4>)\ 
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= E[A2] cos ((Jo ̂  + WOT + <t>) cos(uQt + (j)) 
= [o\ + (£[-4]) 2] cos(£j0t + o;0r + 4>) cos(cu0t + 0) 
= [1 -f 102] cos(a;ot + <fi) cos(u}0t + UJQT -f (f>) 
= 101 cos(o;ot + </>) cos(o;ot + U/QT + 0) 

Thus, the mean-square value Is given by 

E[X(t)2] = Rx(t,t) = 101[COS(CJ0* 4- (j))}2 = — [ 1 + cos 2 ^ + (f>)] 

which Is time varying, and thus the average power is 

101 
2 

= 50.5 

(e) The expected instantaneous power (i.e., the mean-square value) depends on what is 
random and the corresponding distribution. The average power is always a time-
invariant constant, which is equal to ^42/2 i f A is not random. Note the similarity 
between the average power of a random process and that of a deterministic function. 

7.14 Find frequency, mean and power from PSD. Given the following power spectrum of a 
random process X(t) with a nonrandom dc term 

Sx(u) = 8W6(UJ) + 1.2WS(UJ - 2.3TT) + 1 .2TT% + 2.3TT) + 4w6(u; - 5) + 4TT6(UJ + 5) 

(a) What frequencies are included in X{t)l How large are these frequency components 
In magnitude? 

(b) Find the mean value and average power of X(t). 
(c) Find the variance of X(t). 

Solution: 

(a) 

Sx(UJ) 8TT 6{U) +1.2TT [6(u - 2.3TT) + 6(UJ + 2.3TT)] +4TT [S(U - 5) + 6(u> + 5)] 

Rx(r) T a b i 7 ' 5 4 + 1.2COS(2.3TTT) + 4cos(5r) 
Thus, 

dc term in R(r) = 4 ==> dc power = 4 => X(t) has a dc term = 2 
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ft = 1.15 has a power of = 1.2 
f2 = 0.796 has a power of \A2 = 4 

A = 1.55 
A = 2.83 relative to dc term, which is 1 

(b) mean value = dc value = 4. 
Average power = mean-square value = Rx(0) = 4 + 1.2 + 4 = 9.2. 

(c) var(x) = mean-square value - (mean value)2 = 9.2 — 4 = 5.2. 

7.15 Find autocorrelation from PSD. A random process has the power spectrum S(u) 
a; 2 + 4 

—————-. Find its autocorrelation function. 
UJ4 + 8UJ2 + 7 
Solution: The autocorrelation function is given by the inverse Fourier transform 

i?(r) = ^-1[5(cc)] 
w2 + 4 

1 

Lw4 + 8CJ2 + 7\ 

LO2 + 4 
L(w2 + l)(w 2 + 7) 

1/2 1/2 
+ w2 + 1 UJ2 + 7. 

1 2 • 1 1 
+ 

2- y/7 

4w 2 + l 2 4 v

/ 7 w 2 + ( v /7 ) 2 

+ 
-V7|r| 

7.16 Find PSD from autocorrelation. A random process has autocorrelation R(T) = 7e 5 ' r l + 
2.4e _ 2l rl cos(37rr) + 3cos(47rr). Find its power spectrum. 

Solution: By linearity of Fourier transform, 

% ) = « 
= 7f[e-5W] + 2AT\e-2^ cos(37rr)] + 3.F[COS(4TTT)] 

(2)(2) , (2)(2) = 7 - ^ 4 + (2.4)(l/2) 
+ 5 2 + 

+ 3ir[8(w - 4?r) + 6(u + 4ir)) 
70 4.8 

+ 7 r + 

L(w-37r) 2 + 2 2 (w + 3?r)2 + 2 2 

4.8 
+ STT[6(W - 4x) + 8(ui + 4?r)] 

u2 + 25 ' ( C J - 3 T T ) 2 + 4 ' (W + 3TT ) 2 +4 

where use has been made of the modulation property of Fourier transforms: 

F[f(t) cos(woi)] = l[F(u> - co0) + F(u> + CJ0)] 
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7.17 Requirements to he a PSD. Determine which of the following functions are power spec-
tram, which are not: 

(a) Sxiu) = e ->~ 2 ) 2 

, . , 2 

(b) S2(") 

(c) SsM 

(d) 5 4 M 

(e) S5(") 

1 + 2a; 2 + jo ; 4 

C J 2 + 5 
(a; 2 +lJ(^+3) 

cos 2a; 
1 -f- 2a; 2 + a ; 4 

OJ2 + 3 
a; 4 + a ; 2 - 2 

Justify your answer. 

Solution: 

(a) 5 I ( O J ) = e" ( u ;" 2 ) 2 is not a power spectrum because it Is not an even function of u 
(although it is symmetric about UJ = 2). 

(b) S2(OJ) = ] " + 2oT2 - f ju* i s n o t a P o w e r spectrum because i t Is not real-valued. 

f x o / \ + 5 
(c) 5 3 (o ; j = — - — . T is a power spectrum. 

(u2 + 1)(CJ4 + 3) 
/ j \ o / \ cos 2a; 

(a) 5 4(a;j = ] + 2^2 + ^4. 1 S n o t a P o w e r spectrum because i t is not always nonnegative. 

/*\ Q r \ u'2 + 3 ^ 2 + 3 
(e) 5 5(a;j -= — — — z — - = 7 - 5 — l W 9 , o N is not a power spectrum because it is not 

a;4 + or — 2 ( a ; 2 — l)(u2 + 2) r 

always nonnegative. 
7.18 Sum of time-shifted versions. Suppose that a wide-sense stationary random process X(t) 

has power spectrum Sx(UJ). Find the power spectrum Sy(uj) of Y(t) = X(t) + X(t - t 0 ) 
in terms of Sx(LJ)9 where t 0 is a nonrandom constant. 
Solution: 

RY(T) = E[Y(t + r)Y(t)} 

- E{[X(t + r) + X(t - t0 + r)][X(t) + X(t - t 0 ) ] } 

= E[X(t)X(t + r ) + X(t)X(t - t0 + r ) + X ( t - t0)X(t + r ) 

+ X ( t ~ t o ) X ( t - - t 0 + r)] 

= RX(T) + i ? , ( r + t 0 ) + i? . ( r - t 0 ) + Rx(r) 

- 2 f i . ( r ) 4- RX(T + t 0 ) + i ? , ( r - t 0 ) 

S » = ^ [ i 2 y ( r ) ] 
- ^ [ 2 J ? , ( r ) ] + T[RX{T + t 0)] + T[RX{T - t 0 )] 

= 2S x(o;) + e?^Sx{u)) -f e-**>Sx(u>) 

350 



7.10 Problems 

= 25 , (0; ) + (e i w t 0 + e'ju;tQ)Sx(uj) 
= 2SX(CJ)[1 + cosuto] 

where use has been made of the time-shifting property of Fourier transforms. 

7.10 Problems 

7.1 Average power of a sinusoid. Consider a waveform X(t) = Acos(uot + <t>). Find the 
average power of X(t) if 

(a) <j> ~ 14(00,00 + 27r), where 9o is a given constant, and nothing else in X(t) is random 
(b) (j) ~ 14(00, $o + | T T ) , where 0O is a given constant, and nothing else in X(t) is random 
(c) A is a RV, with mean A and variance o\, and nothing else in X(t) is random 
(d) Compare and discuss the results obtained in the above parts. 

7.2 Power spectrum of a sinusoid. Consider a waveform X(t) = Acos(uJot + (j))- Find the 
power spectrum of X(t) if 

(a) (j) ~ U(0o,0o + 27r), where 60 is a given constant, and nothing else in X(t) is random 
(b) <j> ~ U(Qo, Oo + |TT ) , where 00 is a given constant, and nothing else in X(t) is random 
(c) A is a RV, with mean A and variance cr% and nothing else in X(t) is random 
(d) Compare and discuss the results obtained in the above parts. 

7.3 Average power by two definitions. Consider a random process X(t) = cos(o;ot + 0) , 
where </>~ £/(0,7r/2). 

(a) Find its average power using (7.5). 
(b) Find its average power using (7.16), where S(UJ) is obtained by 

S(u) = E lim \FX(UJ) |2i 

.T-̂ oo 2T 

(c) Are these two methods lead to the same results? 

7.4 Find power spectrum from autocorrelation. A random process has autocorrelation R(r) = 
a + 5 e" cl Tl[cos(2r)] 2, where a, 6, c are real-valued constants. Find its power spectrum. 

7.5 RV as a random process. A random signal X(t) has only a dc component A9 where A is a 
zero-mean (time-invariant) random variable with unity variance. Find the autocorrelation 
and power spectrum of X(t). 

7.6 Effect of scaling. Given a stationary random process X(t) and its autocorrelation function 
Rx(T) and power spectrum Sx(u), find the autocorrelation and power spectrum of Y(t) = 
aX(t), where a is a nonrandom real constant. 
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7.7 Effect of adding a constant. Given a zero-mean stationary random process X(t) and its 
autocorrelation function Rx(r) and power spectrum SX(UJ), find the autocorrelation and 
power spectrum of Y(t) = X(t) + a, where a is a nonzero nonrandom real constant. 

7.8 Find power spectrum from autocorrelation. Given a wide-sense stationary random process 
X(t), find Its power spectrum if its autocorrelation is (a) R(r) = cr 2e~ 2 6' rl,6 > 0; (b) 
R(T) = a2 CQS(LJQT). 

7.9 Power spectrum of a triangular autocorrelation. Find the power spectrum of the random 
process with the following triangular autocorrelation function 

R(r) = { \r\<T 

where T is a positive number. 

7.10 Power spectrum of frequency shifting. Given a stationary random process X(t) and its 
autocorrelation function Rx(r) and power spectrum Sx(u), find the autocorrelation and 
power spectrum of Y(t) = X(t)ejuJot, where UJQ is a nonrandom real constant. 

7.11 Power spectrum of derivative. Show that (7.18) holds. 

7.12 Requirements to be a power spectrum. Can the following functions be power spectra of 

some random processes? Justify your answer, (a) — - ; (b) COS(3CJ -f TT/4); (C) e~Iw'; 
1 + o r 

(d) e~> + 1 »; (e) , , 0 + 
( u ; - l ) 2 + 3 (<j +1) 2 + 3' 

7.13 Requirements to be a power spectrum. Determine which of the following functions are 
power spectra and which are not. Justify your answer. 

51(o;) = e-(-+1) S2(CJ) = - 7 = L = 
V l - oJ 

o? + 5 „ , , w 2 + 6 
5 3 ( W ) = (w2 + 2 ) (a ; 4 -3 ) ^ = 1 + a;2 - 2a;4 

| s ina;| ( x j u / 2 

^ = l + 3 u , 2 + c 4 W - 1 + 2 c 2 + a, 4 

7.14 Find power from power spectrum. Determine the average power of the stationary random 

process X(t) with the power spectrum S(co) = +^16)(" 2V 4)' 
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7.15 Find power from power spectrum. Find the average power of the random process with 
the following power spectrum 

S(UJ) = { A

4 ^ 

7.16 Find power from power spectrum. Two stationary random processes Xi(t) and X2(t) 
have the following power spectra 

CJ 2 + 1 
a)4 + 5u;2 + 6 

12 

SX2(UJ) = 10n6(w) + rr—-r + —7^ + • 9 + a/2 9 + ( u ; - 4 ) 2 9 + (a> + 4 ) 2 

Find their average powers, respectively. 

7.17 Autocorrelation of lowpass white noise. Given a bandlimited noise process with power 
spectrum given by (7.21), show that its autocorrelation function is given by (7.22). 

7.18 Autocorrelation of bandpass white noise. Given a bandlimited noise process with power 
spectrum given by (7.24), show that its autocorrelation function is given by (7.25). 

7.19 Cross-power spectrum of orthogonal processes. Show that i f real-valued random processes 
X(t) and Y(t) are orthogonal (i.e., i f E[X(t)Y(f)] = 0, V«,f). then 

Sxy(uj) = Syx(uj) = 0 

7.20 Cross-power spectrum of uncorrelated processes. Show that i f real-valued random pro-
cesses X(t) and Y(t) are uncorrelated and have constant means, then 

Sxy(uj) = Syx(u;) = 2TTE{X]E[Y}8(UJ) 

7.21 Sum of two random processes. Given stationary random processes Xi(t) and X2(t)J along 
with their autocorrelation functions R X L ( r ) and RX2(T), and power spectra, SXL (UJ) and 
SX2(UJ), find the autocorrelation and power spectrum of the sum X(t) = Xx(t) + X2(t) i f 

(a) Xx(t) and X2(t) are orthogonal; that is, E[X1(t)X2(t')} = 0, V t , t ' 
(b) Xi(i) and X2(i) are uncorrelated; that is, E[Xl(t)X2(1f)] = JBfXJ^^],"it , i f 
(c) X i ( t ) and X 2 ( t ) are independent; that is, Xi(ti),Xi(t2),.. .,Xi(tn) and X2(t[), 

X2(t'2),..., X 2 ( t ^ ) are mutually independent for every n and m. Assume that they 
have time-invariant but in general nonzero mean functions. 

Justify your answers. 
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7.22 Sum of sine and cosine waveforms. For two random processes X(t) = 2 cos(ajQt + (/>) and 
Y(t) = 5 sin(o;ot + <f>) 4-10, where UJQ is a nonrandom positive number and <j> ~ £/( J, 
form a new random process Z( t ) = + Y(t). Find 

(a) average power of X(t), Y(t), and 
(b) power spectra of X(t), Y(t), and Z(i) 

7.23 Om?-j?ower spectrum of weighted sums of processes. Find the cross-power spectrum 
Suv(u) of random processes 

U(t) - aX(t) + &y (t) 

- cX{t) + d y ( t ) 

where and Y(£) are jointly wide-sense stationary with power spectra Sx(uS), Sy(uj), 

7.24 Cross-power spectrum of random process and its derivative. Show that the cross-power 
spectrum of a stationary random process X(t) with power spectrum SX(LJ) and its deriva-
tive X(t) is given by 

SXX(UJ) =juSx(u) 

7.25 Sum of independent processes. Given two mutually independent wide-sense stationary 
random processes X(t) and Y(t) with power spectra Sx(u), Sy(uj) and nonzero means 
x, y, respectively, find the power spectrum Sz(UJ) of 

Z(t) = X(t) + Y(t) 

7.26 Power spectrum of weighted sum of processes. Consider a weighted sum of stationary 
and orthogonal random processes Xi(t), given by 

X(t) = JT,aiXi(t) 
2=1 

where at are real-valued constants. Show that the power spectrum of X(t) is given by 

n 

i=l 

where SXi(u) is the power spectrum of Xi(t). 

7.27 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too involved. 
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7.11 Computer Exercises 

.11 Computer Exercises 

7.1 PSD of a random sinusoid 

(a) Generate a sequence of 150 data points by sampling (with 15 Hz sampling rate) a 
sample function of the random process X(t) = 4sin(5.37r£-f</5), where (j) ~ W(0, 2TT). 

(b) Use MATLAB routine p s d to plot the power spectral density of the sequence in (a). 
(c) Repeat (a) and (b) using the companion software P&R and compare with results of 

(a) and (b). 

7.2 PSD of a pulse train of random amplitude. Consider a pulse train with period T = 
1 second, pulse width W = 0.4 second and a random amplitude A that Is uniformly 
distributed over (0,4). The pulse train has the same amplitude over all periods. Use the 
companion software P&R to do the following. 

(a) Generate a discrete-time (with 10 Hz sampling rate and 256 time points) sample 
function of this pulse train. Plot It. 

(b) Estimate the mean, autocorrelation, and power spectrum of the random pulse train. 
Plot the autocorrelation and power spectrum. 

7.3 PSD of a pulse train of random amplitude. Consider a pulse train with period T = 
1 second, pulse width W = 0.4 second and a random amplitude A that is uniformly 
distributed over (0,4). The amplitude of different periods are independent. Use the 
companion software P&R to do the following 

(a) Generate a discrete-time (with 10 Hz sampling rate and 256 time points) sample 
function of this pulse train. Plot it. 

(b) Estimate the mean, autocorrelation and power spectrum of the random pulse train. 
Plot the autocorrelation and power spectrum. 

7.4 PSD of a Gaussian white noise. Use the companion software P&R to do the following. 

(a) Generate a discrete-time (with 8 Hz sampling rate and 500 time points) sample func-
tion of a zero-mean Gaussian white noise process. Plot it. 

(b) Estimate the mean, autocorrelation, and power spectrum of the Gaussian noise process 
generated in (a). Plot the autocorrelation (the first 20 points) and power spectrum. 

(c) Repeat (a) and (b) with 5000 time points rather than 500 points. 
(d) Comment on the accuracy of your results. 

7.5 PSD estimation. The data files m7_5x. da t and m7_5y. da t in the companion software 
P&R contain two data records that are discrete-time (with 1000 Hz sampling rate) sample 
functions of two zero-mean ergodic random processes X(t) and Y(t), respectively. Use 
P&R to calculate and plot the power spectra of X(t) and Y(t), respectively. Are X(t) 
and Y(t) white? 
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7.6 Resolution of power spectrum. 

(a) Use the companion software P&R to generate two discrete-time (with 10 Hz sam-
pling rate and 100 time points) sample functions of two random sinusoids X(t) = 
2.6sin(4.27rt + (j)) and Y(t) = 2.1sin(4.4?rt + 0), respectively, where 4> ~ U(Q, 4TT) 
and 9 ~ W(—7r, TT) are independent. Save the functions as data files m7_6x. d a t and 
m7_6y. d a t , respectively. 

(b) Let Z(t) = X(t) + Y(t). Use the following MATLAB routine to read in the two data 
records from the two data files, add the corresponding terms to yield a data record 
for Z(t) and save it as m7_6z. d a t : 

c d d a t a 
l o a d m7_6x. d a t 
l o a d m7_6y. d a t 
z =m7 _6x+m7 _6y ; 
save m7_6z .da t z - a s c i i 
c d . . 

(c) Use P&R to estimate and plot the power spectrum of Z(t). 
(d) Repeat (a), (b), and (c) using 10 Hz sampling rate and 1000 time points. Adjust 

sequence length. 
(e) Discuss the frequency resolutions of the two power spectra of Z(t) based on your 

results. 

7.7 Estimating power spectrum of colored noise. 

(a) Use the companion software P&R to generate a 256-point (with 1000 Hz sampling 
rate) sample function of a zero-mean Gaussian colored noise with an exponential 
autocorrelation R(r) = 3e _ 0 - 4 | r | . 

(b) Use the companion software P&R to estimate the power spectrum of the Gaussian 
colored noise sequence. Set the segment length to 256. 

(c) Repeat part (b) with the segment length set to 32. 
(d) Find the theoretical power spectrum of the colored noise in question. 
(e) Compare your results in parts (b), (c), and (d). 

7.12 Self-Test Problems 

7.1 Answer the following questions briefly. 

(a) Why don't we define spectrum of a random process as the Fourier transform of the 
process directly? 

(b) Does the power spectrum of a random process contain the information of time shift 
of the process? 

(c) Can the power spectrum of a random process be negative? Can the cross-power 
spectrum of two random processes be negative? 
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(d) Is the power spectrum the Fourier transform of the average power of a random process? 
(e) What does a pair of delta functions at u = ±LU\ in the power spectrum indicate? 
(f) How do you understand the existence of the factor 1/2TT in (7.9)? 
(g) Is it possible to have "white" noise with autocorrelation function R(r) — S0S(r —t0) 

for some to 7̂  0? 
(h) Are the values of bandlimited white noise uncorrelated at distinct time Instants? 
(i) Is it true that a lowpass white noise and a bandpass white noise with the same intensity 

and bandwidth have the same average power? 

7.2 Consider a waveform X(t) = Acos((j0t + <j>). Find the average power of X(t) i f 

(a) (j) ~ U(6Q, 9Q + 27r), where 9® is a given constant, and nothing else in X(t) is random 
(b) (j) ~ U(9Q, 0Q + | 7 r ) , where 90 is a given constant, and nothing else in X(t) is random 
(c) LU0 ~ U{<JU\,U)2), where o;2 > ^ 1 > 0 are given, and nothing else In X(t) is random. 

Note that the following is bounded: 

fT sm(2ut + 26) , 
l im / — K — — — ^ d t 

T - . 0 0 7 _ T 2t 

(d) A is a RV with mean A and variance o\, and nothing else in X(t) is random 
(e) (j) ~ U(9o,9o + 27r) with 90 given; u0 ~ U{(JJ^U2) with CJ2 > u>i > 0 given; A is a 

RV with mean A and variance a2

A\ and (f),uo,A are mutually independent. 
(f) Compare and discuss the results obtained in the above parts. 

7.3 Given a random process Y(t) = X(t) cosLu0t, where UQ is constant and X(t) is stationary 
random process with power spectrum Sx(u>), find the power spectrum of Y(t). 

7.4 Find the autocorrelation and average power of the random process with power spectrum 

Q( \ =

 3 A ; 2 + 4 

7.5 Find the autocorrelation and power spectrum of random process X(t) ~ Y sinuj0t - f 
Z cosuot, where F and Z are independent zero-mean RVs with the same variance a2. 

7.13 Solutions to Self-Test Problems 

7.1 (a) Because the required Fourier transform does not exist. 
(b) No, power spectrum is the spectrum of "power" only. Two purely time-shifted ver-

sions of the same random process would have the power spectrum. 
(c) The power spectrum of a random process cannot be negative. The cross-power 

spectrum of two random processes can be negative or even complex. 
(d) No, the power spectrum is not the Fourier transform of the average power, but the 

Fourier transform of the autocorrelation function. This is similar to the case where 
the "amplitude" spectrum of a deterministic function is not the Fourier transform of 
the amplitude itself but the Fourier transform of the whole function. 
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(e) It indicates that the random process has a component of frequency UJI. 
(f) Because the integral is over the range of radian frequency UJ rather than frequency / . 

The factor l/2w would disappear were the integral over / . 
(g) It is impossible to have a random process with R(r) = SQ6(T — tQ) for some to ^ 0 

because this autocorrelation does not satisfy the condition R(r) < R(0). 
(h) No, they are actually correlated but the correlation is weak i f the time difference is 

not small. 

(i) Yes, since the area under the power spectral densities are equal. 

7.2 Average power is given by 

(a) 

= E[A2 cos 2(o/ 0£ + </>)] i f A not random A2 

—E[l + cos(2oj 0t + 20)] 

A2 A2 

— + — E[coB{2uJot + 20)] 

A2 A2 reo+2* 1 A2 

(b) 

A2 A2 r0Q+ 

E[X\t)} = /± + /± r / —j- cos(2o;ot + 2cj))d(j) 
JOQ 7T/2 

A2 A2 . / f t ^ / 0 + f 
= — + — s i n ( 2 w b t + 2^ ) 

= — - — sin(2o;ot + 20 o ) 
2 7T 

which is time variant. Thus the average power is the time average: 

P = A{E[X2(t)}) = lim - L f_T [ ~ - ^ sin(2a;o< + 20o) 
dt 

2 

(c) 

cos(2o;ot + 2(f)) dcf) ^ 2 2 luji UJ2 — UJ\ 
A2 A2 1 

= — + — — s in (2oV + 2(j>) 
2 u>2 — uj\ 2t 

A?_ _ A2 sm(2qj 2t + 20) - sin(2o;it + 20) 
2 At UJ2 — UJI 
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which is also time variant. Thus the average power is the time average: 

Px = A(E[X2(t)}) 
1 fT \A2 A2 siri(2o>2* + 2<f>) - sin ( 2 ^ + 2<f>) 

• a 
• l im n m , 
T-^OO 2T J-T L 2 4t UJ2-UJI 

2 

dt 

where 
1 fT A2 sm(2uj2t + 2(f)) - sin(2a;1t + 20) 

-T At UJ2 — OJi T - o o 2T 7-7 

follows from the fact that 

(d) 

l im / 
^ O O J-

is bounded. 

J sm(2ojt + 20) , 
l im / — x - — — ^ d t 

T 2t 

Px = E[A2 cos2 (uj0t + 0)] = £ [ A 2 ] cos2(w0t + <f>) = [̂ 42 + c^] cos2(oj0i + 0) 

(e) 

PT = E[A2 cos2(o;ot + 0)] 

= E [ A 2 ] E [ J ( 1 + cos(2o;ot + 20))] 
Z 

= [(A)2 + c r | ] i E [ t + cos 2cj0t cos 20 - sin 2a;0£ sin 20] 

= ~[(Af + oi][l + E[cos2a;ot] £[cos20] -£[sin2u;o£] E[sin20]] 
=0 =0 

(f) The average power of Aco&{u)^t + 0) is equal to one half of the mean-square value 
of A i f the phase 0 is not random or is uniformly distributed. 

7.3 The autocorrelation function of Y(t) Is 

Ry(t + T,t) = E\Y(t + T)Y(t)] 
= E[X(t + r ) cosa;o(t + r)X(t) cos uj0t] 
= E[X(t + r)X(t)] cosuj0t cosujQ(t + r) 
= Rx(r) cos ujot cos ujo(t + r) 
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7.13 Solutions to Self-Test Problems 

Clearly, Y(t) is nonstationary since the above is a function of i as well as r. The time 
average of the above is 

(7.5) 
A{Ry(t + T,t)) A(RX(T) cos u)®t cos uJo(t + r ) ) 

-~ RX(T) A (cos UJQT + cos(2o;ot + OJQT)) 

1 1 1 fT 

-Rx(r) cosLU0T + -Rx(r) lim — / cos(2u;o£ + ujQr)dt 
2 2 T->oo 21 J-T 
2 
1 

= ~RX(T) COS QJQT 

Thus the power spectrum is 

7.4 

7.5 

^[A(Ry(t + T,t))\ 

Example 7.7 1 
[Sx(u - OJQ) + Sx(u> + w0)] 

J i ( r ) = . F - 1 [ S M ] 
3w2 + 4 

4 

2w4 + Qw2 + 4 
3w2 + 4 

l(2u;2 + 2)(a;2 + 2) 
1 1 

2UJ2 + 2 w 2 + 2 
1 1 1_ 

.2w 2 + l + 

1 2-1 

4w 2 + l 2 

1 V2|r | 

2- \/2 
L2v/2u;2 + (\/2)2J 

fl(T) = £?[A-(t + T ) X ( t ) ] 

= E { [ y sin(u;o(i + T)) + Z cos(u0{t + T))][Y smu0t + Z cos u0t]} 

= E [ Y 2 ] smu)0tsm(iv0(t + r)) + E [ Z 2 } cosbj0tcos(v0{t + r)) 

+E[Y Z][smuot cos(co0(t + r)) + cosw 0£ sin(w0(i + r))] 

= a2(sinwof siri(<x»'o(i + r)) + coso;o£cos(u;o(£ + r))] + yzsin(2u;o£ + w 0 r) 

= a 2 COS(WOT) 

S(w) = F[R(T)] = a2Tr{8(w - too) + 6{w + u0)} 
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8 
LINEAR SYSTEMS 

WITH RANDOM INPUTS 

Man is a species that invents its own responses. It is out of this unique ability 
to invent, to improvise, his responses that cultures are bom. 

Ashley Montagu 

What we have studied in the previous chapters is applied to the analysis of 
linear systems with random input in this chapter. 

Male Topics 

• Deterministic Linear Systems 
• Time-Domain Analysis 
• Frequency-Domain Analysis 
• Linear Systems with White Noise Input 
• Equivalent Noise Bandwidth 
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8.1 Deterministic Linear Systems 

8.1 Deterministic Linear Systems 

From the input-output viewpoint, a linear system y(t) = L[x(t)] is one of which 
the response (output) y(t) is related to the input x(t) linearly; that is, with the 
following linearity property: 

ai2/i(t) + OL2V2{t) = L[aiXi{t) + a2x2(t)] Vai, a2j xi(t),x2(t) (8.1) 

where yi(t) = L[xi(t)] and y2(t) = L[x2(t)] are the responses to input x\(t) and 
x2(t), respectively. In other words, the weighted sum of inputs of a linear system 
results in the same weighted sum of the corresponding outputs. 

Example 8.1: Differentiator as a Linear System 

A differentiator (whose output is the derivative of its input) is a linear system 
because y(t) = -jfix(t) implies 

d 
«i2/i(*) + <X2V2(t) = — [aixi(t) + a2x2(t)} Vai 5 a2, xi(t), x2(t) at 

A linear system can be represented by its impulse response function h(t} to) = 
L[6(t — to)}, which is the response of the system to a delta function 6(t — t o ) 
(i.e., unit impulse applied at time to) as the input. In general, it depends on the 
impulse application time to as well as the current time t. 

A linear system is said to be time-invariant i f and only if 
• all the coefficients of the linear differential (or difference) equation(s) that 

describes the system are time invariant; or equivalently, 
• its response to the impulse input S(t — to) applied at any time to is h(t — to), 

meaning that it depends only on the time difference, rather than the two time 
instants. In other words, a time shift in the input will result only in the same 
time shift in the output: y(t — to) = L[x(t — to)]. 

Powerful methods are available for linear time- invariant (LTI) systems. 
Time invariance of a system, steady state of a deterministic time function, 

and stationarity of a random process are similar concepts. They all refer to the 
fact that the characteristics of a system, function, or process do not change with 
time. 
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8.1 Deterministic Linear Systems 

X(t) 
LTI system h(t) Y(t) 

Figure 8.1: A linear time-invariant system. 

In general, a linear or nonlinear system is said to be 

• causal if its response (effect) does not come before its input (cause) 
• stable if every bounded input results in bounded response (output) 

An LTI system can be represented in terms of its 

• impulse response function h(t) in time domain 
• frequency response function H(UJ) in frequency domain as the Fourier trans-

form of h(t) or transfer function H(s) as the Laplace transform of h(t) 
• state variables in state space 

An LTI system is 

• causal if and only if h(t) = 0, Vi < 0, which makes sense since h(t) is 
the response to input 6(t) at t = 0 and h(f) ^ 0 for some f < 0 implies a 
response prior to the input 

• stable if and only if its impulse response function is absolutely integrable 

or equivalently, all poles of its transfer function H(s) are in the negative (left) 
half plane (excluding the imaginary axis for bounded input bounded output 
( B I B O ) stability) 

A noncausal system has the response (effect) that comes before the input 
(cause) and is thus not physically realizable. The study of noncausal systems 
is, however, meaningful in both theory and practice. An unstable system cannot 
be used in most applications since its output may grow unbounded even for nice 
bounded input. 

In this chapter, we shall study LTI systems with random process as input. In 
these cases, both response (output) and state of the system are random. 
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8.1 Deterministic Linear Systems 

The response of a linear system has two components: response to input and response to the 
system's nonzero initial condition. We are concerned only with the response to input. 

From both input-output and state-space viewpoints, in addition to the input-output linearity 
property (8.1), a linear system has to satisfy two more conditions: 

• state linearity: the state of the system is linear with respect to the initial state 
• response additivity: the responses to zero-input and zero-state are additive: y(t) = yZi(t) + 

yzs(t), where yZi(t) and yzs(t) are zero-input and zero-state responses, respectively 

In general, a linear or nonlinear system is said to be time-invariant i f its characteristics are 
invariant with respect to time; or more specifically, i f 

• all the coefficients of the differential (or difference) equation(s) that describes the system are 
time invariant; or equivalently, 

• a shift in time in the input wi l l result only in the same time shift in the output. 

Both linear systems and time-invariant systems are abstraction of physical systems. There 
is hardly any physical system that is either perfectly linear over the entire (state or input-output) 
space, due to e.g., saturation. It is also hard to find a system that is time invariant over an 
infinite period of time, due to e.g., aging. However, a great many of physical systems may be 
approximated quite accurately by the models of linear time-invariant systems over the space and 
time of most interest. 

In essence, input-output description of a system looks the system from outside; whereas the 
state-space description is an internal representation of the system. 

The stability used here is the so-called bounded input bounded output (BIBO) stability. It 
is an external property of the system, meaning that it is a property observed from outside of 
the system. There is another popular concept of stability, the Lyapunov (asymptotical) stability, 
which has a closer relation with the state-space representation of the system. It is an internal 
property of the system under the assumption of no external excitation. Mathematically speaking, 
the input-output description of a system can be viewed as a mapping from the input to the 
output. As such, the BIBO stability is equivalent to that this mapping is bounded. In contrast, 
the Lyapunov stability states that the state as a function of time is bounded for any small initial 
perturbation. In other words, i f a system is Lyapunov stable, then its state wi l l stay in a small 
neighborhood of the equilibrium point for any small initial disturbance, provided that no external 
excitation is applied. Although different, these two concepts of stability are closely related. For 
example, for a large class of time-invariant systems, 

Lyapunov asymptotical stability <==> BIBO stability 

Note that the system itself considered in this chapter is deterministic. Its output and state 
are random only because its input is random. 

It is also assumed throughout this chapter that the system has zero initial conditions. Or 
more rigorously, the system is relaxed at t = —oo. A system is relaxed at t = t0 i f and only i f 
its output is determined solely and uniquely by its input on and after t0. 
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8.1 Deterministic Linear Systems 

Example 8.2: An RC Circuit as a Linear System 

Consider the RC circuit shown in Fig. 8.2. Treat the voltages x(t) and y(t) as 
the input and output. Let a = 1/RC. Clearly, it has the frequency response 

H(u>) 
X{UJ) + ju + l/(RC) jto + a 

Thus, its impulse response is, denoting by u(t) the unit step function, 

- l a 

JUJ + a. 
Table 7.5 -ai = ae U{t) 

Note that this circuit is 

• a linear system since the following is true from the circuit theory: 

atyi(t) + a2y2(t) = L[aixi(t) + a2x2(t)] Vai,a2,xi(t),x2(t) 

• time-invariant provided R C is a constant 
• causal since h(t) = 0 for all t < 0. This must be the case since a system is 

causal if and only i f it is physically realizable and the circuit is a physical 
system in the real world. 

• stable since H ( s ) has only poles in the left half plane or 
oo 

/
oo roo , roo , 

\h(t)\dt = / \ae-atu(t)\dt = / ae'aldt = -e 
-oo J—oo JO 

•at 1 < OO 
0 

R 

x(t) 

rI(t) 

y(t) 

Figure 8.2: An RC circuit. 
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8.2 Time-Domain Analysis 

8.2 Time-Domain Analysis 

Recall that the output y(t) of an LTI system is the convolution of its input x(t) 
and impulse response function h(t): 

y(t) = x(t) * h(t) = h(t) * x(t) (8.2) 

where the convolution of two functions is defined by 

/(*) * 9(t) = g(t) *f(t) = T g(X)f(t - X)dX = I" f(X)g(t - X)dX 
J—oo J—oo 

Since this holds for every corresponding pair of sample functions of the 
random processes X(t) as input and Y(t) as output, we may write 

Y(t) = X(t) * h(t) (83) 

The mean of the output is the convolution of the input mean and the impulse 
response 

E[Y(t)] = E[X(t)] * h(t) (8.4) 

or 
average response = response to average input 

which should be the case: (8.2) holds for every corresponding pair of sample 
functions of X(t) and Y(t) and thus should be valid for their means. In particular, 
if the input X(t) has a time-invariant mean, so does the output Y(t): 

E[Y(t)} = y = xJ™ooh(t)dt = xH(0) 
output dc component = (input dc component) x (system's dc gain) 

where H(0) is the dc gain of the system, given by 

h(t)e-jutdt = [ h(t)dt (8.6) 
-oo w=0 J—OO 

The crosscorrelation of the output Y(t) and a stationary input X(t) is 

Rxy(t + T , t) = E[X(t + r)Y(t)] = E [x(t + r) h(X)X(t - A)dAJ 

/
oo roo h(X)E[X(t + r)X(t - X)]dX = I h(X)Rx{r + X)dX 
-oo J—oo 

t==x f°° h(-t)Rx(r-t)dt9{t)=={~t} r g(t)Rx(r-t)dt 
J—OO- J—oo 

= Rx(r)*g(T) = Rx(r)*h(-T) 
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8.2 Time-Domain Analysis 

Thus 

/
oo 
^ h{~t)Rx{r - t)dt 

= r h(t)Rx(r + t)dt (8.7) 
J —OO 

RyX(r) = Rxy(-r) = Rx(-T) * h(r) ( = 6 ) Rx(r) * h(r) (8.8) 

They are usually nonzero since Y(t) is the response to X(t) and thus is correlated 
with X(t). 

The autocorrelation of the response Y(t) to an input X(t) is 

Ry(t + T,t) = E[Y(t + r)y(t)] = # [ ( £ ~ /i(A)X(* + r - A)dA) Y(i) 

/
OO 

fc(A)£[A"(* + r - X)Y(t)]d\ 
-oo 

/
oo 

ft(A)i^(t + r--A,t)dA 
For a (wide-sense) stationary input, it becomes 

/
oo 
^ / i ( A ) ^ ( r - X)dX = i?^(r) * fc(r) (8.9) 

Similarly, 
J ^ r ) = i2^(r) * / i ( - r ) (8.10) 

Consequently, the autocorrelations of the output and stationary input of an LTI 
system have the following relationship, substituting (8.7) into (8.9), 

/
OO f oo 

/ h{h)h{t2)RX{T -ti + t2)dtldt2 
- 0 0 J—00 

or, by (8.8) and (8.10), 

Ry(r) = R X ( T ) * h(r) * h(-r) (8.11) 

The above indicates that for an LTI system, 

input is WSS output and input are jointly WSS (8.12) 

This makes sense: Since a time-invariant system and a stationary process both 
have time-invariant characteristics, it is expected that the response of such a 
system to such an input would also have time-invariant characteristics. 

The average power of the response Y(t) to a stationary input is 

Py = E[\Y(t)\2} = Ry(0) 
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8.2 Time-Domain Analysis 

(8.4) can also be shown as follows: 

/
oo "I roo 

h{X)X(t - X)dX = / h(X)E{X(t - X)}dX = h(t) * E[X(t)] 
_ -oo J J—oo 
" roo "1 too 

= E h(t- X)X(X)dX = h(t- X)E[X(X)]dX = E[X(t)] * h(t) 
.J—oo J J—oo 

In the above and on several occasions, we have interchanged the order of integration and ex-
pectation. This is not always legitimate. In general, for a random process X(i) and a nonrandom 
function / (£) , such order interchange is valid, that is 

E [b X(t)f(t)dt] = I ' E[X(t)]f(t)dt 
J a. J J a 

if X(t) is bounded on the interval [a, 6], meaning that none of the sample functions of X(t) tend 
to oo on any point on [a, b] (which is true for all physical processes), and 

' l B [ | X ( l ) | ] | / ( ( ) | < i « < « . / 
J a 

where a and b could be infinite. These conditions are satisfied in almost all practical situations, 
including our cases. 

(8.5) indicates that the average output will be zero if either the input has zero mean or the 
system has zero dc gain (i.e., the system's passband does not include u — 0). 

For a causal LTI system, since h(t) = 0, Vi < 0, its convolution with a random or nonrandom 
time function g(t) can be simplified to 

too tt 
h(t) * g(t) = / h(X)g(t - X)dX = / g(\)h{t - \)d\ 

Jo J~oo 
where in our case, g(t) = x(t), X(t), E[X(t% h(-t), or R(r). For example, 

t o o t o o 

Ry(r) = / / / i ( i i ) / j ( i 2 ) i ? x ( r - h + t2)di1dt2 

Jo Jo 
too too 

Py = E[\Y{t)\2} = Ry{0)= / hitJh^Rxfo - tjdtidti 
Jo Jo 

t o o 

RyX(r) = J h(t)Rx(~T + t)dt 

The derivation of (8.10) is left as an exercise (problem 8.2). 
In general, the response of a linear or nonlinear time-invariant system to a strictly stationary 

random input is always strictly stationary. This can be easily understood from the explanation 
following (8.12). Rigorously speaking, (8.12) is true only when the system was relaxed at t = —oo 
and input applied at t = —oo. In other words, the response of a linear system, relaxed ait = —oo, 
to a wide-sense stationary input, applied at t = —oo, is also wide-sense stationary. However, the 
response of a linear stable system, relaxed at t < 0, to a wide-sense stationary input, applied at 
t = 0, is in general not wide-sense stationary but asymptotically wide-sense stationary (i.e., as 
time increases, it tends to be wide-sense stationary) due to the possible transient caused by the 
sudden application of input at t = 0. 
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Example 8.3: System Identification by Input-Output Crosscorrelation 

A popular method of identifying (measuring the impulse response h(t) of) an 
unknown LTI system is using the following system: 

White noise X(t) 

with Sx(LJ) = S0" 
Unknown linear 

system h(t) 

Y(t) 

Adjustable 
delay r 

Lowpass filter Z{T) * S 0 h ( r ) 

X ( t - r ) 

Figure 8.3: Input-output crosscorrelation approach to system identification. 

Since the lowpass filter operates in such a way that its output is approximately 
the time average of its input, i f X(t) is ergodic white noise with autocorrelation 
RX{T) = SQ6(T)9 then we have, for r > 0, 

Z(r) ^ A(Y(t)X(t - r)) (A(-) stands for time average) 
= E[Y(t)X(t - r)] (by ergodicity of X(t)) 

/
oo too h(t)RJr -t)dt= / h(t)S06(T - t)dt = Sohfr) 
-co J—oo 

Note that Z(r) depends only on r and thus if r is fixed, then Z(r) is (nearly) 
constant. Consequently, the impulse response can be obtained from Z(r) by 
varying r: h(r) = Z ( T ) / S O , where the proportionality factor So, i.e., the power 
spectral intensity of the input noise, is known. 

The following remarks are in order. 

• Intuitively, identifying an unknown system by measuring its input-output rela-
tionship makes perfect sense. What is somewhat surprising is that measuring 
the crosscorrelation alone is sufficient. 

• In practice, the input X(t) need not be white provided that its power spectrum 
is nearly flat over an interval (called bandwidth, to be studied later) that is 
large compared with that of the unknown system. 

• An advantage of this white-noise approach to system identification is that 
it is applicable in real time (while the system is in normal operation) by 
superimposing a small random input on the normal input. 
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Example 8.4: Time-Domain Analysis of EC Circuit with White Noise Input 

Consider the RC circuit of Fig. 8.2 on p. 365. Let a = l/RC. Suppose now 
that the input x(t) is a stationary white noise process X\{t) with zero mean and 
autocorrelation RXi(T) = SQ6(T). Recall that it has the impulse response function 

h(t) = ae^atu(t) 

The autocorrelation of the output of this LTI system is given by, from (8.11) 

Ry1(T) = So6(T)*h(T)*h(~~r) 

/
oo 

h(t)6(T-t)dt *h(-r) 
_ -oo J 

= S0[h(r) * h(-r)] (8.13) 

/
OO 

h(-t)h(r - t)dt 
-OO 

= S0 r ae a tw(-i)ae- a ( r-* )u(r - t)dt 
J —O O 

= a2SQe~aT [° e2atu(r - t)dt 
J—OO 

a2SQe-aT 

a2S0e-aT 

i \aS{)e 
l f^oe a T 

2So£ 

-oo 
"0 Jlat dt 

,'lat. dt 
—oo 

ar r > 0 

r > 0 

r < 0 

r < 0 
So 

2RCi 

\T\/RC (8.14) 

and the average power of the output of this LTI system is given by 

2/i 
Elm)]2) = RyM 

aSQ 

Note that the calculation for r < 0 is actually redundant in view of the 
symmetry property of the autocorrelation: R(—r) = R(r). It, however, provides 
a check of the result obtained. 

It is interesting to note that the time constant aTl = RC of the RC circuit is 
also the time constant for Ryi ( r ) to die out. 
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8.2 Time-Domain Analysis 

Example 8.5: Time-Domain Analysis of RC Circuit with Colored Noise 
Input 

If the input to the previous RC circuit is colored noise X2(t) with autocorrelation 
RX2{T) = 5 2e~ 6 | rl, where b ̂  a, h > 0, the autocorrelation of the output is shown 
on the next page to be, for r > 0, 

Ry2(T) = RX2(T)^h(T)^h(-T) 

aS2 

ae a 2 ™ 6 2 

Thus, by symmetry R(—r) = R(T), we have 

aS2 

be (8.15) 

(8.16) 

Note that i f S2 = §&So then Ry2(r) tends to Ryx(r) of the previous example 
as b increases; that is, 

Ry2(T)\s2=UsQ 

baSc] 

a 2 - 5 2 ae 
~b\r\ 

This makes sense since the colored noise input X2(t) tends to be white (i.e., tends 
to have the same autocorrelation as the white noise Xt(t)) under this condition: 

^ 2 ( r ) U = | 6 S o = \bSoe-W S06(r) = RXl(r) 

which follows from 

b2 

J 6-»oc o>z + £r 

1 = T[6(r)} 

T lim i & e ^ l = Mm Table 7.5 

. &-»oo 2 6—»oo L2 J 

A simpler solution to this problem is using a frequency-domain method, stud-
ied in the next section. 

The results of these two examples will be used repeatedly later. 
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8.2 Time-Domain Analysis 

I f the white noise in Example 8.4 has a nonzero mean x9 then the autocorrelation function 
calculated in Example 8.4 should be replaced by its corresponding autocovariance function. The 
mean of the output is given by 

Efrit)] = xH(0) = x 

which makes perfect sense: "The dc output voltage is equal to the dc input voltage" since the 
capacitor should be treated as open circuit as far as dc voltage is concerned. 

The corresponding autocorrelation function is given by 

= Rm + (x)2 = | S o e - f l M + (x)2 

(8.15) can be derived as follows: 

Rv2(T) = R*2(T)*h(T)*h(-T) 

/
oo /»oo 

/ M * l ) ^ ( * 2 ) ^ x a ( T - t l + «a)dti«tt2 
-OO J—OO 

/
OO too 

/ ae-a^u{h)ae-at2u{t2)S2e-h\T-t^dtldt2 

-oo J—OO 

= a2S2 j°° e~atA r**2

 e - « T - t l + V e - a t l d t 1 + f°° eb^+t^e~atldU 
•lo I Jo JT+t2 

p o o r /•r-f-to r o o 

rp-b{T+t2) / x Jb( 
» 6 (1 _ c - ( a - 6 ) ( r + * a ) \ + f j 

. a - b V / a + 6 
= a 2 S 2 y e~at2 I 1 - e - ( « - & ) ( ^ 2 ) ^ +

 e

 p-{a+b){r+t2) 
) 
-e~ 

dt2 . 

Jo La — b \a-\~b a — 
6 1 5 2 I _ e - 6 r e - ( a + 6 ) < 2 

a 2 - 6 2 

aS2 

ae~bT - be 

+ -e-aTe~2at2 

a 

a 2 - ft2 

For Example 8.5, the crosscorrelations can be found to be 

Rxim(r) = RXl(r) * h(-r) 

/
oo 

/i(-™-t)i?Sl(r-t)& 
-oo 

/
oo 

h(-t)S06(T - « ) d t 
-oo 

= S o M - r ) 

= a 5 0 e a T w ( - r ) 

Rx2y2(r) = RX2(T) * h{-r) 

/
oo 

/ i ( -£) i? X 2 (r -£)d£ 
-oo 
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8.2 Time-Domain Analysis 

/
oo ,, , 

aeatu(-t)S2e-b^dt 
-OO 

f 
J — ( = aS2[J_ 

= aS2 

= aS2 

aeatS2e-blr^dt 

min(0,r) 
eate 

J min(0,r) 
br 

a + 6 
1 

a + b 
aS2 

Jrr min(0,r) g« 
+ ——t 

- 0 0 a - b 

,(a-b)t 
0 

min(0,T) 

br (a+b) mini in(0,r) +

 1
 cbr A _ e(a-b) min(0,r)\ 

a — b ^ ' e e 

br 

ab2 

.52 [(a + 6 ) c 6 r - 2 6 c a r ] 

r > 0 

T < 0 

The other crosscorrelations ijy i a ? 1 ( r ) and i ^ 2 X 2 ( r ) follow from symmetry Rxy(-r) = RyX(r). 
Note that for r > 0, i ? x m ( r ) = 0 but RX2y2(r) ^ 0. This makes sense: the current output 
of a causal system depends only on the past and current X(i). I f X(t) is white noise, its future 
value X(t + r) (for r > 0) is uncorrelated with its past and current values and thus uncorrelated 
with the current output Y(t). Hence Rxy{r) = E[X(t + r)Y(t)\ = 0. I f X(t) is colored noise, 
however, X(t + r ) (for r > 0) is correlated with its past and current values and thus correlated 
with the current output Y(t). Hence Rxy(r) = E[X(t + r)Y(t)] ^ 0. 

Note that 

lim 
b—»oo 

^22/2 ( T ) 
0 T > 0 

T < 0 
a 5 0 e a r ^ ( - r ) = Rxiyi{r) 

which shows again that the colored noise tends to be white when S2 = |&S 0 and 6 —> 0 0 . 
(8.16) can also be obtained from the crosscorrelation calculated above using (8.9). For r > 0, 

Ry2(T) = RX2y2(r) * h(r) 

7 
7° 

h(r — t)RX2y2(t)dt 
> 

i ? X 2 y 2 ( t ) a e - a ( r - t ) ' a ( T -

[ / ° ( ( a + 6 ) e » * _ 2fc*) e ^ t + f V d i 
U - 0 0 a2 — b2 v ' Jo a + 6 

a2S 
0 + 6 

aS2 

2 e" a r 

( a - J ' 
e (a+6 ) t _ ^ e 2 o t J _ (a - 6 ) t | T \ 

ae 
-6r 

a 2 - 6 2 

Then, (8.16) follows from the symmetry R(-r) = R(r). 
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8.3 Frequency-Domain Analysis 

For a nonrandom input x(t)9 by the convolution property of Fourier (or Laplace) 
transforms, we have 

y(t) = h(t)*x(t) Y{UJ) = H(LJ)X(U) Y(s) - H(s)X(s) 

where and H(s) are the frequency response and transfer function of the 
system, respectively. This property is the most important reason for the popularity 
of Fourier (Laplace) transforms in signals and systems analysis. 

For a random process, the corresponding frequency representation is its power 
spectral density. The power spectral density (PSD) of the output Y(t) is related 
to that of a stationary input X(t) by 

Sy(u) = \H(UJ)\2SX(UJ) (8.17) 

where \H(LO)\2 is called power gain (or power transfer function) of the system. 
(8.17) is one of the most important results in frequency domain. It states that 

output power spectrum = (power gain) x (input power spectrum) 

It follows from (8.11) and the convolution and conjugation properties of Fourier 
transforms: 

Ry(r) = RX(T) * h(r) * ft(-r) 
I I I I 

Sy(u>) = SX(UJ) • H(u) • H(u>)* 
(8.17) implies that a system may be viewed as a filter that allows/disallows 

selectively certain frequency components of the input process to pass. Note that 
S(UJ) and \H(u)\2 are associated with the average power of the process. They 
carry no information about the phase: A process Y(t) and any of its purely 
time-shifted version Y(t — r ) have the same power spectrum Sy((j). 

x(t) 

X(s) 

LTI system 
h(t), H(u) or H{s) 

y(t) = h(t) * x(t) 
Y(u>) = H(UJ)X(U) 

Y(s) = H(s)X(s) 

Figure 8.4: Input-output relationship of an LTI system with deterministic input. 
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8.3 Frequency-Domain Analysis 

Since autocorrelation and power spectrum are a Fourier transform pair, 

Ry(r)^^l[\H(uj)\2Sx(uj)} (8.18) 

the power of the response Y(t) to a stationary input X(t) is then 

(8.19) 
I /'OO I too 

Py = Ry(0) = —j_^Sy{u))dU = ~ \H'(u)\LSX(uj)dUJ 

Similar to (8.17), the input-output cross-power spectra follow from (8.7)-
(8.8): 

Rxy(r) = Rx(r) * h(-r) Ryx{r) = Rx(r) * h(r) 

I I I I I I (8.20) 
Sxy(u) = Sx(u?) . H(UJY Syx(uj) = SX(UJ) • H(UJ) 

It also follows from (8.17) and (8.20) or from (8.11) and (8.7) that 

Sy{u) = SXy(uj)H(u)) = SyX(u)H(uj)* 

Example 8.6: Output Power of an Ideal Bandpass System 

(7.17) can now be shown as follows. Consider that a random process X(t) is 
applied to an ideal LTI bandpass system with frequency response 

^ \ 0 elsewhere 

This system (filter) allows all frequency components of X(t) in the band [u>i, u^] 
to pass without distortion and nothing else to pass. Thus, 

P x M = Pv^^£L Sy(u)du> = i - \ H ( u ) \ 2 S x { u > ) d u > 
1 1 

= - f ° \H(u)\2Sx(u)dw = - r Sx(u)dw 
7T JO 7T J^i 

Since the above is valid for any u\ < LJ2, we have 

SX(UJ) « lim — 1 — - f 2 5x(o;)du; = lim ^ i ^ L > 0 

O J 2 - U i 7 T J " i 0Ji~^uJ2 UJ2 - A ; 1 

Thus, property 1 of the power spectrum on p. 323 is also shown. 
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(8.17) can also be derived directly: 

/
oo 

Ry{r)e-*"dT 
-oo 

/

oo r too too l 
/ / A(ti)A(t 2)flx(T + t2 - h)dhdt2 e'^d 

-oo lJ—oo J—oo 

/
oo fOO fOO . 

/ / h(t1)h(t2)Rx(t)e-M*-tt+tl)dtdt1dt3 

-oo J—oo J—oo 

/
OO / o o /»oo 

h^e-^dh / h(t2)ejuJt2dt2 / Ry(t)e-jutdt 
-oo J—oo J—oo 

> v ^ v s, ' 
Jf(w) Jf(u;)* S x(w) 

- H(LJ)H{UJ)*SX(LJ) = \H(UJ)\2SX(UJ) 
(8.20) can also be derived directly: 

/
oo r /*oo 

/ h(\)Rx(-T + X)dX 
-OO U — oo 

/
OO fOO . 

/ / i ( A ) i ^ ( - i ) e - J u ( t + A W A 
-OO J — oo 

/
OO /"OO 

/i(A)e~J dA / R^e-^dt 
-oo J—oo 

e - j U T d T 

H{ui) Sx(u) 

Sxy(u>) = Syx(-u) = S , ( - u / ) f f ( - w ) = Sx{u)H(u>y 

If (two-sided) Laplace transforms, instead of Fourier transforms, are desirable and used, then 
the power spectrum of the output is given by 

Sy(s) = S » U - i s = SX(JLJ)H(JU)H(-JCJ)1=-js = Sx(s)H(s)H(-s) 

that is, 
Sy(s) = f f ( s ) f f ( - s ) S a ( s ) 

where H(s)H(—s) is the power gain or power transfer function now. 
Similarly, the cross-power spectra are given by 

S y x ( s ) = S ^ w ) !„,=_.,•, = S'xO'w)F(jw)| u = _ j s = Sx{s)H{s) 

Sxy(s) = Sx(s)H(-s) 

The power of the response Y(t) to a stationary input X(t) is 

Pv = / T 1 |r=o = C-^StWHtfHi-s)]^ 

= o" - 7 S * ( s ) f f ( s ) # ( - s ) d s 
ZTVJ J-joo 
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Example 8/7: Frequency-Domain Analysis of the RC Circuit 

Consider again Examples 8.4 and 8.5 for the RC circuit. The power gain of the 
system is 

m UJ = 
a 

juj + a 
\a\ a 

\juj + a\2 (a + juo)(a — ju;) cu2 + a2 

The power spectra of the white noise and colored noise inputs are 

a f \ T\c -b\rh Table 7.5 2652 
S^u) = F[S2e ] = -^—^ 

The power spectra of the corresponding outputs are 

a2S0 SVl(u) = \H(u,)\*SXl{u) = 

Sy2(u) = \H(u)\2SX2(u) = 

UJ2 + a2 

or 2hS2 

UJ2 + a2 UJ2 + b2 

The autocorrelations of the corresponding outputs are 

- l Ryi(r) = jr-i[Syi{u)] = jr 

Ry2{T) = T-'[Sm{u)]=T~l 

a2Sn 

-UJ2 + a2 

a2 

Table 7.5 « Q tt|. 

2bSo 
u>2 + a2u>2 + b2 

1 

Table 7.5 

^2a2bS2( 1 _ 
La2 - b2\u2 + b2 ^+a2 

aSo 
- a,_„[«-* l-fc-w] 

The average powers of the corresponding outputs are 

pyt = Ryifi) = 2 ^ ° ' 1/2 ^ ( 0 ) aS2 

a + h 

(8.21) 

(8.22) 

Compared with Examples 8.4 and 8.5, frequency-domain analysis is clearly 
much simpler than the time-domain method. This is true, in general, when the 
system's frequency response function and input power spectrum are both rational 
(i.e., ratios of polynomials). 
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Example 8.8: Frequency-Domain Analysis of an RL Circuit 

Consider the following circuit excited by zero-mean white noise X(t) with 
Sx(u) = SQ. Let a = R/L. From the circuit, we have 

0 7 \ ^ ( ^ ) _ aRI(uj) aR aa 
^ " Xjuj " 1JUL + R)I(u) ™ JUJL + R " ju + a 

(a) Determine Sy(u) and Syx(uj): 

Sy(u) = Sx(uj)\H(uj)\2 = S0 

Syx(w) = Sx(u)H(u) = a a S ° 
JUJ + a 

(b) Determine i ^ ( r ) and RyX{r): 

ju i + a 

2^2 
5 o a a 

c u 2 + a 2 

Ry{r) = T-l[Sy{u)]=r - 1 

L2 

^ ( r ) = ^ - 1 [ ^ ( a ; ) ] = F - l 

a aSo 

aaSn 

2a 
a; 2 + a 2 

Table 7.5 

JUJ + a 
Table 7.5 0 -ar / \ 

= aaboe u(r) 

where the unit step function guarantees that Y(t) is uncorrelated with future 
X(t)9 which makes sense since X(t) is white noise, 

(c) Determine Py, y9 and ay: 

Py = Ry(0) - ^a2aS0j y = xH(Q) = ax = 0 

*2 = E[Y2} - (y)2 = Py- (f/)2 = \a2aS0 - a2(x)2 = a2(\aSQ - (x)2 

(y — ax) makes sense: output dc component = a x (input dc component). 

378 
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Example 8.9: Probabilistic Analysis of E L Circuit by P & E 

Consider the R L circuit of the last example above with R = 20 and L = 100mH. The input is 
white noise X(t) with S(LU) = 3TT. We demonstrate how the companion software P&R can be 
used to analyze this circuit. 

Suppose that the data record in file e8_9x . da t is a discrete-time sample function of the 
white noise input. Assume a = 0.5. Note that a = R/L — 20 and aa = 10. Then the response 
of the system, and autocorrelations and power spectra of the input and output can be obtained by 
P&R according to the following steps: 

51. Click "RPResponse" in the main window of P&R. 
52. Click "Rational System." You wi l l be prompted to enter the name of a data file. 
53. Choose "data" subdirectory, enter the data file name "e8_9x .dat" and click " O k . " 
54. Fi l l out the window "Response Generator for Rational System" as shown in Fig. 8.5 and 

click " O k . " You wi l l be prompted for a data file name since "Save to file" box is checked. 
Choose "data" subdirectory and enter the data file name "e8_9y .dat." Click " O k . " Then 
a MATLAB figure window wi l l appear with a plot of the output y(t) (see Fig. 8.6 (a)). 

WMmfytBf RPfiesponse About 

1000 

I 'otior: 

!7 ziy 
Canes! 

Figure 8.5: Generating response of a rational system by P & R . 
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55. Follow the steps in Example 6.15 to get two autocorrelation plots for the input and output 
contained in e8_9x. d a t and e8_9y. d a t , respectively. The plots for the small r are shown 
in Fig. 8.6 (c) and (d). 

56. Follow the steps in Example 6.17 to get an crosscorrelation plot for the output and input (see 
Fig. 8.6 <b)). 

57. Follow the steps in Example 7.8 to get two power spectrum plots for the input and output 
(see Fig. 8.6 (e) and (f)). 

0.0 0.5 

(a) Output 

0.12 

0.06 -

0.00 
0 50 100 

(b) Crosscorrelation 

R 
io -

0 -

0 25 50 

(c) Input autocorrelation 

0 100 200 

(d) Output autocorrelation 

0.02 -

0.00 i f (Hz) 
0 250 500 

(e) Input power spectrum 

-i n - — r — T ~ r f (Hz) 
0 20 40 60 80 100 

(f) Output power spectrum 

Figure 8.6: Correlation and power spectra of the input and output of the rational system. 
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8.4 Summary of Input-Output Relationships 

For a linear time-invariant system, the relationships between its input and output 
in terms of some "amplitude" functions are summarized in Fig. 8.7, where Xi and 
yi are a pair of sample functions of the input X(t) and output Y(t); Xi and Yi 
are the corresponding Fourier (Laplace) transforms; the use of notations x and y 
implicitly assumes that X(t) has a time-invariant mean. 

Xi(s) 
x(t) 
x(t) 

X 

h(t) 
Vi{t) = Xi(t) * h(t) 

Yi(uj) - H(tj)Xi(u) 
Yi(s) = H(s)Xi(s) 
y(t) = x(t) * h(t) 
y{t) = x(t) * h(t) 

y = H(0)x 

Figure 8.7: "Amplitude" relationships between input and output of an LTI system. 

The relationships between its stationary input and output in terms of some 
"power" (quadratic) functions are summarized in Fig. 8.8. For these relationships, 
the LTI system should be replaced with the cascade of itself and its time-reversed 
(adjoint) system. 

n,{r) fc(-T) Rxy(r) = Rx{r) * h(-r) 

Sx(u) H(w)* sxy(u) = sx{u)H(uy 

H(-s) Sxv(s) = Sx(s)H(-s) 

pr h(0) Pxy = R*(T) * h(r)\T=0 

RX(T) 

Sx(v) 

Sx(s) 

h(r) 

H(OJ) 

H(s) 

HO) 

Ryz(T) = RX(T) * h(T) 

Syx{u) = Sx(u))H{ui) 

SIJ:C(s) = Sx(s)H(s) 

Pvx= RX(T) * ft(r)|T=0 

h(T) 

h(0) 

H{-8) 

h(0) 

Ry(r) = Rxy(r) * h(r) 
= Rx(r) * h{-r) * h{r) 

Sv(u) = Sxy(w)H(w) 
= \H(U)\'S,{U) 

Sy(s) =SXV{S)H(S) 
= H(-s)H(s)Sx(s) 

Py = RX(T) * h{r) * M - r ) | T = 0 

Ry(r) = Ryx(r) * ft(-r) 
= RX(T) * h(r) * h(-r) 

Sy(u) = Syx(u)H(w)* 
|ff(w)|2Sx(u;) 

Sv(s) = Syx(s)H(-s) 
= H(s)H(-s)Sx(s) 

Pv = RJr) * h(r) * h(-r)\T=0 

Figure 8.8: "Power" relationships between input and output of an LTI system. 
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In engineering practice, frequency-domain methods are usually simpler and thus more prefer-
able. Frequency-domain analysis is usually simpler than time-domain analysis in the cases where 
the frequency response (or transfer) function of the system and the input power spectrum are 
both rational (a ratio of polynomials). This advantage is greater for a more complex system. If, 
however, the impulse response and the autocorrelation function of the input have simple nonzero 
form over a finite time interval, then time-domain methods are usually simpler. 

Clearly, for "amplitude" relationships, the output is the convolution in time domain (or 
multiplication in frequency domain) of the input and the system's impulse response function (or 
frequency response, transfer function). Fig. 8.7 is valid for arbitrary (nonstationary as well as 
stationary) input, except for the last line, which holds only for input with a time-invariant mean. 

For "power" relationships, the output is the two-fold convolution in time domain (or double 
multiplications in frequency domain) of the input and the system's impulse response (or frequency 
response, transfer) function. Or equivalently, the output is the convolution in time domain (or 
multiplication in frequency domain) of the input and the impulse response (or frequency response, 
transfer) function of an equivalent LTI system consisting of the cascade of the original system and 
its adjoint system (simply put, the adjoint system of an LTI system is its time-reversed system). 
Note that interchange the order in the cascade of these two systems does not alter the (external) 
input-output "power" relationships. 

For simplicity, only results for stationary input are given in Fig. 8.8. Results similar to Fig. 
8.8 but more complex also hold for nonstationary input. 

Figs. 8.7 and 8.8 hold for a system with an input applied at t = —oo. As a consequence, the 
input and output of a linear time-invariant system are jointly wide-sense stationary i f the input is 
wide-sense stationary and applied at t = —oo. In fact, the following stronger results hold under 
the same conditions: 

# The input and output are jointly strict-sense stationary. 
• The output is ergodic i f the input is ergodic. 

I f the input was not applied at t = —oo, then the response of the linear time-invariant system 
is in general neither strict- nor wide-sense stationary because the existence of the nonzero initial 
condition certainly indicates that the choice of time origin is important. 

As stated before, the response of a linear system consists of two parts: the response to 
input, known as zero-state response, and the response due to the fact that the system was not 
relaxed (i.e., the system has a nonzero initial condition), which is known as zero-input response. 
Most students are familiar only with the zero-state response. The convolution-based methods, 
including the time-domain analysis of Section 8.2, are applicable only to the zero-state response 
because the convolution relationship between the input and output holds only for the zero-state 
response. This is also the case for the methods based on Laplace, Fourier, or z-transforms unless 
the nonzero initial conditions are taken into account. The method based on the solution of a 
differential or difference can yield the total response by utilizing the initial condition. The state 
variable method wi l l yield the total response. 
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8.5 Linear Systems with White Noise Input 

The dependence of the response, along with its autocorrelation and power spec-
trum, of a linear time-invariant system to white noise X(t) is given in Fig. 8.9 
below. In general, the output is colored (autocorrelated), except for memoryless 
systems. 

The crosscorrelations between the input and output are 

/
oo 
^ h(-t)S06(r - t)dt = S0h(-r) (8.23) 

Ryx(r) = R x ( T ) * h(r) = f°° h(t)S08(r - t)dt = S0h{r) (8.24) 
J—OO 

(8.24) also follows from (8.23) and the mirror image property: RyX{^) = Rxyi—f). 
The corresponding power spectra are given by 

Sxy(u) (=3) S0H(uY, Syx(u) ( 8 = } S0H(u) (8.25) 

The autocorrelation and average power of the output are given by 

R y ( r ) = S08(T) * h(r) * h(-r) 
= S0[h(r) * h(-r)] (8.26) 

/
oo roo h(-t)h(r - t)dt = S0 / h(t)h(r + t)dt 
-oo * J—oo 

P y = Ry(0) ( = 6 ) S0/_~ \h(t)\2dt (8.27) 

(8.19) So roo m u ) { 2 d w ( 8 > 2 8 ) 

Z7T J - o o 

In fact, the last two equations are also connected by the Parseval theorem. 

white noise X(t) Y(t) = : X(t) * h(t) 

x(t) h(t) m = x{t) * h(t) 
Rx(r) = S0S(T) ' Ry(r) = S0[h(r) * fc(-r)] 

Sx{u>) = So = \H(u)\2S0 

F i g u r e 8.9: Input-output relationships of an LTI system with white noise input. 
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Example 8.10: Besponse of an Ideal Bandpass System to White Noise 

An ideal bandpass system or bandpass filter with frequency response 

B { u ) = f«M k ± - d < W / 2 
[ 0 elsewhere 

has a bandwidth W9 where UJC is called its center frequency. I f it is excited 
by stationary white noise with zero mean and power spectrum SX{LO) = So, its 
output has the power spectrum 

Sv(u) ^ \H(u)fS0

 (8^9) ( f ^ ^ ) l 2 I " ± ^ < W"/2 ( 8 3 0 ) 

y x ' y 0 elsewhere 
That is, the output is (bandpass) bandlimited white noise. Hence, its autocorre-
lation and power are given by 

R*r) °2>
 m ( f W S ™ ^ r ) (8.31) 

q g , S0\HJ)?W ' 

7T 

Its average output is always zero even if the input has nonzero mean x: E[Y(t)] = 
xH(0) = 0 since dc component cannot pass through an (ideal) bandpass system 
because II(0) = 0; that is, UJ = 0, the frequency of dc component, is not in its 
passband (UJC — W/2, UJC + W/2). 

Figure 8.10: Input and output power spectra of an ideal bandpass system. 
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Example 8.11: Filtering — Noise Removal 

Data file e 8 _ l l x . d a t contains a noisy signal X(t) ^ S(t) + N(t), where 
S{t) • ^ A sin(ujQ7Tt + 9) is the signal, with 9 ^ U(0, 2TT)9 and N(t) is white noise 
with power spectrum S0. The bottom left plot in Fig. 8.11 depicts X(t). The 
response of a bandpass filter with center frequency uc = u;0 = 8007r and a 20Hz 
bandwidth to X(t) can be obtained by P&R as follows: 

1. Click "RPResponse" in the main window of P&R. 
2. Click "Bandpass System." You will be prompted to enter a data file name. 
3. Choose "data" subdirectory, enter file name " e 8 _ l l x . d a t " and click "Ok." 
4. Fill out the window "Response Generator for Bandpass System" as shown 

in Fig. 8.11 and click "Ok." Then the output Y(t) is plotted on bottom right 
in Fig. 8.11. 

Clearly, the noise in the output of the bandpass filter is reduced greatly. 

R p A n a J y t e r R P R e s w o r n a A b o u t 

R e s p o n s e of B a n d p a s s * ; ' y - ! 

I'I 

0 50 100 150 200 

Figure 8-11: Noise reduction by a bandpass filter. 
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8.6 Equivalent Noise Bandwidth 

Most signals have significant frequency components concentrated in a finite band, 
the width of which is called bandwidth of the signal. Various bandwidths can 
be defined in terms of how "significance" is interpreted. The bandwidth of a 
system can be defined as the width of the frequency range outside of which the 
frequency components will be attenuated to almost zero. 

Example 8.12: Response of an Ideal Lowpass System to White Noise 

An ideal lowpass system or lowpass filter with frequency response 

' H(0) \UJ\ < W 

0 elsewhere 
(8.33) 

has a bandwidth W. Its response to stationary white noise with zero-mean and 
power spectrum Sx(UJ) = So has power spectrum 

Sy(u) ^ \H(u)fS0

 (8^3) ( !f ( 0 ) | 2 5° ^ ^ 
y y { 0 elsewhere 

and is thus (lowpass) bandlimited white noise. Hence, its autocorrelation and 
average power are given by (7.22)-(7.23) with S0 replaced by jH(0)| 25 0 . If the 
input has a nonzero mean x, then its average output is y = H(0)x, which is 
nonzero i f x ^ 0. 

Clearly, the output of a lowpass filter has significant frequency components 
only over |u;| < W. 

SX{CJ 

H(0) — 

w w 

Figure 8.12: Input and output power spectra of an ideal lowpass system. 
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Various definitions of bandwidth are possible. For an ideal lowpass or bandpass system 
(or signal), their bandwidths under various definitions coincide. This should be the case since 
different definitions are based on different interpretations of what "significant" components really 
mean in signals and systems analysis. Owing to this, the differences among these bandwidths 
are small and may be neglected i f the frequency response of the system is close to the ideal case. 

No matter how the bandwidth of a system is defined, it should depend only on the parameters 
of the system itself, regardless of its input. 

The correlation coefficient of the response of the ideal lowpass system (833) to zero-mean 
white noise is that of lowpass white noise, given by (7.26). The corresponding correlation time 
is 

(6.12) f°° f . (7.26) f°° sin(WY) w 6.12) f°° , . (7.26) f 
= yo Py(j)dr = I dr 

WT 2W 
The correlation coefficient of the response of the ideal bandpass system (8.29) to zero-mean white 
noise is that of bandpass white noise, given by (7.27). Thus, it can be seen that PyP{r) has two 
multiplicative components: the carrier cos(a/cr), which varies quickly, and the envelope s m ^ j | ^ , 
which varies slowly. The correlation time is often defined by the slow varying component alone 

(6.12) f°° , v , (7.27) f°° sm(Wr/2) . N _ f°° sm(Wr/2) _ w 
Jo P y { T ) d T = Jo ~ l ^ C O s M Wr/2 v c } Jo Wr/2 W 

This is convenient and reasonable since autocorrelation (coupling) depends primarily on the 
magnitude (i.e., envelope) of the correlation coefficient. 

Note that the correlation time of the bandlimited white noise is inversely proportional to 
the bandwidth. This makes sense because a smaller bandwidth implies that fewer frequency 
components can get through the system (filter) and thus those that do get through have a stronger 
correlation and thus a larger correlation time. 

A bandpass system with a center frequency much higher than its bandwidth (i.e., uc > W) 
is called a narrowband system. 

(8.32) can be used to measure the power spectrum of a random process X(t) as follows. 
Apply this process as the input to an LTI system (filter) that has an adjustable center frequency 
UJC and a very narrow bandwidth of Wn compared with that of X(t). It then foEows from (8.32) 
and (8.30) that 

o / \ Sy(^c) _ 7tPy(u)c) 
Oxi^c) = 7777—\H w I u v — M 2 (5.34) 

\H(ujc)\2 Wn\H(uc)\2 

Thus, the power spectrum at LJC is obtained by measuring the average power Py{wc) of the output 
when the filter is operational with the center frequency uc. This procedure can be repeated for 
different center frequencies uc. 

Example 8.13: Generation of the Response of a Lowpass System by P & R 

Suppose that the data record in file e 8 _ 1 3 x . d a t contains a sample function of a white noise 
input to a lowpass system with a cutoff frequency of 200 Hz and gain of 2. Then the response 
of the lowpass system can be obtained by P&R according to the following steps: 
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8.6 Equivalent Noise Bandwidth 

51. Click "RPResponse" in the main window of P&R. 
52. Click "Lowpass System." You wi l l be prompted to enter the name of a data file. 
53. Choose "data" subdirectory, enter the data file name "e8_13x .da t " and click "Ok." 
54. Fi l l out the window "Response Generator for Lowpass System" as shown in Fig. 8.13 and 

click "Ok." You wi l l be prompted for a data file name since "Save to file" box is checked. 
Choose "data" subdirectory and enter the data file name "e8_13y. da t . " Click "Ok." Then 
a MATLAB figure window wi l l appear with a plot of the output y(t). 

55. Follow the steps in Example 7.8 to get two power spectrum plots for the input and output con-
tained in e 8 _ 1 3 x . d a t and e8_13y .da t , respectively. The two spectral plots correspond 
to the bottom left and right plots in Fig. 8.13. 

Clearly, the input has a power spectrum almost constant (with small variations) over all frequencies 
while the power spectrum of the output is mostly limited to / < 200Hz. 
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Figure 8.13: Generating Response of lowpass system by P&R. 
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8.6 Equivalent Noise Bandwidth 

Equivalent Noise Bandwidth 

The previous three examples indicate that (lowpass or bandpass) bandlimited 
white noise is the response of an ideal (lowpass or bandpass) bandlimited system 
to white noise. Conversely, the response of a real-world system to white noise 
may be treated (accurately or crudely) as bandlimited white noise. As such, the 
bandwidth of this bandlimited white noise can be defined as that of the system. 
This is the concept of equivalent noise bandwidth. It greatly simplifies signals 
and systems analysis when dealing with noise. Here the equivalence is in the 
sense that the actual system and the equivalent ideal bandlimited system have 
equal average output power and equal maximum gain when excited by white 
noise. 

Similarly, the bandwidth of a colored noise process can be defined as that of 
the equivalent bandlimited white noise with both equal average power and equal 
maximum value of their power spectra. 

S*(u>) ' \H(u)\ Sy(u) 

Figure 8-14: Input and output power spectra of a lowpass system. 

SX(UJ) \H(«>)\ SV(UJ) 

Figure 8.15: Input and output power spectra of a bandpass system. 
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8.6 Equivalent Noise Bandwidth 

Specifically, consider a bandlimited system with the frequency response H(UJ) 
excited by white noise with SX(UJ) = SQ. T O simplify analysis, it is often de-
sirable to replace (or approximate) its actual output Y(t) by an "equivalent" 
bandlimited white noise process N(t) with equal average power and intensity 
Sn = So\H(cjn)\9 where ujn is the peak location of \H(UJ)\. The average powers 
of the two processes 

„ .... S.W. _ So\H(w„)|2W„ 
*n •— -——— — — — — 

will be equal i f the bandwidth Wn of N(i) is chosen by 

f00 \H(uj)\2duj r\H(uj)\2daj 
w — J~°° —Jo m w\ 
W n ~ 2\H(unW ~ \HM\* { } 

Wn so defined is known as the equivalent noise bandwidth of the system (the 
divider \H(un)\2 is to ensure that two systems H\{u) and H2(cu) = aH\{uj) have 
the same bandwidth). Thus, in a simplified analysis, the actual output can be 
replaced with the bandlimited white noise N(t); or equivalently, the system is 
replaced with an ideal one defined by (8.29) or (8.33). Often, ujn = 0 for a 
lowpass system and ujn = uc for a bandpass systems, where uc is the center 
frequency of the passband. Then, 

r \H(uj)\2duj 
bandpass system: Wn = , R R / — T T ^ — (8.36) 

l#K)r 
[°° \H(L0)\2dw TT / ° ° \h(t)\2dt 

I U(a\\2 ~~ I roo ~ 2 ~ lowpass system: Wn = J 0 , r r , . x l 9 = - f ^ 2 2 T~ ( 8 - 3 7 ) \H(0) 
/

OO , x 

h(t)dt 
-OO where the last equation above follows from the Parseval theorem and (8.6). 

Since a colored noise process can be considered as the response of an L T I 
system to white noise input, its equivalent noise bandwidth may be defined by 
that of the system. Specifically, i f it has Sn(u) = \H(U)\2SQ, then its equivalent 
(white) noise bandwidth is defined by (8.35). 
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8.6 Equivalent Noise Bandwidth 

Example 8.14: Signal-to-Noise Ratio of an RC Circuit 

Assume the RC circuit of Example 8.2 has an input X(t) = S(t) + N(t)9 where 

• N(t) is zero-mean white noise with Sn(uj) = SQ 
• S(t) = A sin(a;oi + <f>) is a signal with nonrandom A and UJQ < |TT, a = ^ 
• (j) ~ U{—7C,TT) is independent of N(t) 

Since the system (RC circuit) has the power gain 

\H(UJ)\2 = H(uj)H(u)f 
a2 

juj + a —juo + a u2 + a2 

it is lowpass and has the following equivalent noise bandwidth: 

| i l (0 ) | 2 •'O a;'1 + a1 2 27r •/-°° ur + cr 
a 2 a "II 1 -a l t l 

= -a.7re a | t | Lw2 + a2Jli=o 2 

From Example 6.7, we have 

t=o 2 

t=o 
7T (8.38) 

i? s(r) = ^A2cos(u0r) 

Ss(co) T a bM 7- 5 | A 2 [ % - a,0) + 6(u + u0)} 

The response S0(t) to the sinusoidal component S(t) has the power spectrum 
and power 

SSo(u) = \H(u)\2Ss(u) = ^P^-[6(UJ - wo) + b{u + a*)] 

1 /-oo a27r^2/2r_. , . . . a2A2/2 
2-7T • ' - o o or - f a z

 WQ + a 2 

This average power also follows from the fact that for a pure sinusoidal input 
X(t) with frequency CUQ, the input and output powers are related by 

Py = \H(iVQ)\2PX 
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8.6 Equivalent Noise Bandwidth 

As a special case, the output dc power and input dc power are related by 

i f =\H(0)\2lf 

The response N0(t) to the white noise component N(t) has the power spec-
tram and power 

Sno(uj) = \HH\2Sn(co) q 2 S o 

UJ2 + a2 

1 roo a2S0 xr a2S0 i a | t | 

Pi,, = 7T~ / - 9 - = o L 2 . „ = o b ( ) B 

+ or 
a 

t=o 2 
This average power can also be obtained easily from the system's noise bandwidth 
using (832) and noting that Wn = |w,a;c = 0 for this example: 

_ S0\H(uc)\2Wn _ a 

This demonstrates how easily the output power can be obtained using the equiva-
lent noise bandwidth. Note that the output power is proportional to the system's 
bandwidth. 

S(t) and zero-mean N(t) are orthogonal since they are independent and thus 
uncorrelated. Hence, the power spectrum of the output Y(t) is the sum of their 
power spectra: 

Sy(uj) T a = 7 J SSo(u) + Sno(uj) 

and the average power of die output is given by 

P - P + P -
 a ' A 2 / 2 i Q<7„ 

The output signal-to-noise ratio (SNR) is given by 

PSO = \H(UJ0)\2Ps = aA2/SQ 

PnQ S0\H(0)\2WN/7T ul + a2 

which is larger i f the frequency UQ of the sinusoid is lower and/or the system's 
bandwidth is narrower. Its maximum is A2/(aSo), which occurs when the desired 
signal is dc. 

Note that the input SNR is 0 since the input noise is white noise, which has 
infinite power. 
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8.6 Equivalent Noise Bandwidth 

Example 8.15: Consider again Examples 84 and 8.5 with the RC circuit. 
From Example 8.4, the RC circuit has the following input-output relationship: 

White noise X(t) 

with Sx(u) = SQ 

RC circuit 
With a = J L 

Colored noise Y(t) 

with Ry(r) = § S 0 e - a l r l 

Its noise bandwidth is §TT, from (8.38). Thus, X2(t) with RX2(r) = §S0e""6|r| can 
be treated as the response of an RC circuit, with b = l/(R2C2), to white noise 
input with S(u) = So. It has an equivalent bandwidth of fur. The autocorrelation 
of the response to the input X2(t)9 given by (8.16), can be rewritten as, for 
S2 — f *SQ, 

Ry2(r) aS2 

b2 ae -bW\ be 

(a/6)2 1 & - ( 6 - a ) | r | 

Thus, far b >» a, f/ie response to the colored noise input is roughly the same as 
to white noise input: 

a 
1̂ 0 5bc-°lTl = i2 W (T) 

or, from (8.21)-(8.22), 

b2S0 a2So 
to2 + a2 UJ2 + b2 

a2S® 
LO2 + a2 oo2 + a2 1 + (u/b)2 

where the last approximate equation follows from the fact that almost all signifi-
cant frequency components of the output are confined by the system's bandwidth 
f 7r; that is, |u;| < b. 

The implication of the above is quite significant for the simplification of 
analysis: If the input is autocorrelated but with a large bandwidth (|fr far this 
example) compared with the system's bandwidth (§7r for this example), it may 
be replaced by (treated as) white noise since the output will be approximately 
the same. As such, the output power is proportional to the system's bandwidth. 
This is a major reason why white noise model is so popular. 
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8.7 Output of a Linear System as a Gaussian Process 

The most commonly used definition of the bandwidth of a system is the so-called half-power 
bandwidth, also known as 3-dB bandwidth. It is defined as the width of the frequency band over 
which the power gain (i.e., power transfer function) \H(u>)\2 is larger than one half (3dB below) 
of the maximum gain; or equivalently, the magnitude is larger than l / \ / 2 of its maximum. For 
the RC circuit of Example 8.4, since its power gain is \H(u)\2 = a ; 2

Q

f , Q 2 > which is lowpass and has 
a maximum gain of unity, its half-power frequency is u = a and thus its half-power bandwidth 
is W1/2 = a = - ^ 7 . It is seen that the equivalent noise bandwidth Wn of this system is n/2 times 
the half-power bandwidth. The equivalent noise bandwidth is also known as noise-equivalent 
bandwidth. 

An advantage of using the equivalent noise bandwidth (and any other bandwidth) is that it, 
along with the maximum or nominal power gain \H(ujn)\2, provides an approximate description of 
a possibly very complex system. For such a system, an accurate analysis may be too complicated 
or too costly and quite often not worth it. Furthermore, relatively simple methods are available 
to measure the equivalent noise bandwidth and the maximum power gain of a system. Thus, 
equivalent noise bandwidths of actual systems provide a basis for the comparison of signal-to-
noise ratio of the systems. However, this approximation is good only when the random input has 
a power spectrum that is nearly constant over a frequency band that is substantially greater than 
the system's bandwidth. Otherwise, great errors may be introduced by using the equivalent noise 
bandwidth. 

8.7 Output of a Linear System as a Gaussian Process 

We have studied in this chapter the first two moments (mean, mean-square value, autocorrelation, 
crosscorrelation) and power spectra of the output and input of a linear system. Two natural 
questions are the following. What are the marginal and joint distribution or density functions 
of the output? What is the joint distribution or density function between the input and output? 
Unfortunately, a general answer to these questions is yet to be found. 

However, in the special case where the input to the linear system is a Gaussian process, the 
output is also a Gaussian process with the mean and autocorrelation given by (8.4) and (8.11) (or 
its nonstationary counterpart), respectively. This follows from the fact that every linear function 
of a set of jointly Gaussian RVs is a Gaussian RV (see (4.36)). 

An important result related to equivalent noise bandwidth is the following. 
I f the input process is not Gaussian but is stationary and has a bandwidth much wider than 

that of the linear system, then the output random process is (more or less) approximately Gaussian 
no matter what distribution the input process has. This follows from the central limit theorem 
since the output is the sum of a large number of (nearly uncorrelated) RVs in this case. Note that 
bandwidth is inversely proportional to correlation time and that i f system bandwidth is small, the 
number of terms in the summation is large. 

In general, a random sequence Y[n] that is the sampled version of a zero-mean colored Gaus-
sian random process Y(t) with autocorrelation R(r) or power spectrum S(u) can be generated 
as follows. 
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8.7 Output of a Linear System as a Gaussian Process 

51. Generate a white Gaussian random sequence X[n] with unity variance using say MATLAB 
function randn. 

52. Apply X[n] as input to an LTI system with frequency response H(UJ) satisfying \H(UJ)\2 = 
S(UJ). Then, by (8.17), the output Y[n] has the power spectrum S(UJ). 

Since the input to the linear system is Gaussian, the output Y[n] is thus Gaussian with power 
spectrum S(UJ). 

Example 8.16: Generation of a Colored Gaussian Random Process 

Use the method described above to generate a random sequence Y[n) that is the sampled version 
of a zero-mean colored Gaussian process Y(t) with autocorrelation R(r) = ae-6'7"', a, b > 0. 

From Table 7.5, the power spectrum of Y(t) is given by 

2ab 
S{UJ) = uj2~hb2 

Note that this power spectrum can be decomposed as 

JUJ + 0 —JUJ + o 

It is thus clear by (8.17) that the response of the LTI system 

^2ab 
v } juj + b 

to a white Gaussian process input X(t) with power spectrum Sx(UJ) = 1 is then a Gaussian 
process with R(r) = ae" 6' r |. Note that the LTI system H(UJ) = is neither stable nor 
causal. 

The state-variable equation for the causal and stable LTI system H(UJ) = ^ | is 

Y(t) = ~bY(t) + y/2abX(t) 

with X(t) as input and Y(t) as output. Sampling (without holding) the above equation yields 
the following difference equation: 

Y[n + 1] = e~bTY[n] + ^ a ( l - e " ^ ) I [ n ] 

where T is the sampling interval. Thus, the required random sequence Y[n] is generated using 
the above equation with an initial Y[l] that is a zero-mean Gaussian RV with variance a and 
independent of X[n]. 

We can use Z[n] = Y[n] -(- ^[n] to generate a Gaussian sequence Z[n] with the above 
autocorrelation but a nonzero mean z[n] = z(nT). 

For example, if a = 55 b = 20 5 T = O.M(t) = 3.5, then the following MATLAB routine 
generates the required Gaussian sequence of length 1000: 
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8.8 Summary and Requirements 

f u n c t i o n y = r p _ g a u s s . c o l o r ( a , b , T , N ) 
x = r a n d n ( N - l , 1 ) ; 
y = z e r o s ( N , 1 ) ; 
y ( l ) = s q r t ( a ) * r a n d n ( l , 1 ) ; 
c = e x p ( - b * T ) ; c 2 = s q r t ( a * ( l - c * c ) ) ; 
f o r n = l : N - l 

y ( n + 1 ) = c * y ( n ) + c 2 * x ( n ) 

end 
r e t u r n 

a=5; b=20; T = 0 . 1 ; N=1000; z _ b a r = 3 . 5 * o n e s ( N f 1 ) ; 
y=rp_gauss_color (a , b , T,N) ; 
z=y+z_bar; 

8.8 Summary and Requirements 

The response of a linear system to random input is random. For a linear time-invariant system 
(relaxed at t = -oo), if its input is stationary, then its output and input are jointly stationary. 
Specifically, the autocorrelation of the output is related to that of the input by 

Ry(r) = i ^ ( r ) * fc(r) * A ( - r ) 

the average output is equal to the convolution of the average input with the impulse response 
and for a stationary input it is simply 

y = xH(0) 

where H(0) is the dc gain of the system; the crosscorrelations of the output and input are given 
by Rxy{r) = Rx(T) * h(-r) and RyX{r) = Rx(~r) * h{r). 

In frequency domain, the power spectrum of the output and the cross-power spectra of the 
output and input are related to that of the input by 

Sv{ui) = \H(UJ)\2SX(UJ) 

and Sxy(uj) = Sx(u>)H(u>)*9 Syx(ou) = SX(UJ)H(UJ). 
In general, if the power spectrum of the input is rational, frequency-domain analysis is easier; 

if the autocorrelation of the input has a finite nonzero duration, however, the time-domain analysis 
may be simpler. 

The analysis of a linear system with white noise input is much simpler than with colored 
noise input. 

A lowpass (or bandpass) white noise process is the response of an ideal lowpass (or bandpass) 
system to white noise. Most autocorrelated (i.e., colored) noise can be approximated by the 
response to white noise input of a lowpass (or bandpass) system with the same (equivalent noise) 
bandwidth as that of the input. 

396 



8.9 Additional Examples 

The equivalent noise bandwidth of a linear system is the (approximate) bandwidth of its 
response to white noise. It is given by 

where ujn is the central frequency of the passband for a bandpass system or zero for a lowpass 
system. To simplify system or signal analysis, a real-world linear system can be replaced approx-
imately by an ideal bandlimited system with the same equivalent noise bandwidth and maximum 
gain, and the autocorrelated random input can be replaced by white noise i f the input has a much 
wider bandwidth than the equivalent noise bandwidth of the system. 

The response of a linear system to Gaussian process input is a Gaussian process. 

Bask Requirements 

• Know how to calculate the power spectra, correlation functions, and average output of the 
response of a linear time-invariant system to random input, in particular to white noise input. 

• Know roughly when the frequency domain is preferred to the time domain and when it is 
not for system and signal analysis. 

• Know how to calculate the equivalent noise bandwidth of a linear system. 
• Master the concepts of bandlimited, lowpass, bandpass, narrowband, and passband. Under-

stand the similarity of these concepts as applied to a system and to a signal (or a process). 

The emphasis of the chapter is the relationships of power spectra, means .and autocorrelations 
between the input and output. 

8.9 Additional Examples 

8.17 Finite-time integrator. Consider a finite-time integrator with impulse response 

Its input is a zero-mean white noise with S(cu) = S0. 

(a) Show that the output is in some sense the average of its input (no matter what it is). 
(b) Find the mean, autocorrelation, and power spectrum of the output. 
(c) How large should T be i f it is desired to have an output power of lOSo? 
(d) Determine the equivalent noise bandwidth of the integrator. 

0 < t < T 
elsewhere (839) 
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8.9 Additional Examples 

Solution: 

(a) 

y{t) = h{t) * x{t) 

h(r)x(t — r)dr 
o 
1 

, x(t — r)dr 
o T } 

A = t - T fi"Tl n 1 1 

I fx{x)dX 

- / z(A)dA 
average of the (immediate past) input over time period T 

(b) 

E[Y(t)} = E [ i £ t x(A)dA] = i £ t E[X{\)]d\ = 0 

X(t ) is white noise input => use (8.26) for Ry(r): 

/
oo 

+ r)dt 
-oo 

Determine the limits as follows: 

0 <t <T 0 <t <T \ / A , x . ^ ^ x 
0 < r + t < r ^ - r < t < T ^ r P ^ ^ 

0 < t < T - r 0 < r < T 
—r < t < T —T < r < 0 

Thus: 

/
oo 

ft(t)x(* + r)<i£ 
-oo 

5 o / o T _ T ? ^ 0 < r < T 
5 o / T T ^ « K - T < r < 0 
0 elsewhere 

§b(T-r) 0<T<T 
$(T + T) -T<T<0 
0 elsewhere 

§H(T-\T\) 0<\T\<T 
0 elsewhere 
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8.9 Additional Examples 

In fact, we need only to work out Ry(r) = f | ( T - | r | ) for 0 < r < T. Then, Ry(r) 
for r < 0 can be obtained by symmetry R(—r) = R(r). 
From Example 7.1 with A = 1/T, we have 

v ; uT/2 A=l/T 

sin(o;r/2) , . r / 2 

wT/2 

Then 
sin 2(cjT/2) 

(u/T/2) 2 So 
2S 0 

w 2 T 2 
[1 - cos(wT)] 

Alternatively: 

/
oo 

i ? y ( r ) e - ^ d r 
-OO 

So 
T2 

So 
T2 

So 
j>2 

[ J°t(T + r)e~jurdT + j \ r - r)e-jurdT 

1 J T e - j " T d T + J Te~jWTdT -f 
Jo 

re 
rdr 

-JUJ 

1 

-re + 
- T -JUJ 
T 1 PT 

1 f° 
—JUJ J-T 

-JUJ 
-re o -JUJ Jo J \ 

So 
-JUJT2 

1 

-JUT 

~~JUJ 

So 

JUJ JO 
T T 

- 1 + ^ T - -juT 
-JU 

( - j u ; ) 2 T 2 

^ [ 1 - 0 0 8 ( 0 ^ ) ] 

which agrees with the above. 
(c) Py = Ry(0) = §%[T - 0] = f = 10S 0 = • T = 1/10. 
(d) 

g(0) = lim SintTo/2) = M ° = 

/ | ff( W ) | 2 S 0 da; 

J—oo 

lowpass 

2SQ 2TT . 
Ry(Q) 
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— Ry(fi) :— • 
DQ Oo 1 
TT 

= f 
Alternatively: 

1 f°° N t 2 _ 1 [°° (sm(uT/2)]2

 3 2 r 0 0 sin 2 x , 2 TT TT 
W « = 2 7 - 0 0 ^ = 2 7-oc *" - T L ~ r d x

 = r i = f 
Although the solution to the problem is not simple, it would be much more complicated 
were a frequency-domain technique is used for this problem. 

8.18 Output autocorrelation of a discrete-time system. A linear system is described by the 
following difference equation 

Vn = %n ~~* %n—1 

Find the autocorrelation Ry(n, n - k) of yn given that the input to the system is zero-mean 
stationary white noise with unity variance. 

Solution: 

Ry{n,n- k) = E[ynyn-k] 
= E[{xn - x n _ i ) ( x n _ f c - x n _ i _ f c ) ] 

£'[x n.x n_^ — xnxn—\-.}z Xfi—iXji—k 4~ xn—\Xn—\—}^ 

= Rx{k) - Rx{k + 1) - Rx(k ~~ 1) + Rx(k) 

(2 k = 0 
= I - 1 - ± 1 

[ 0 elsewhere 

Since it depends only on the time difference A\ it is wide-sense stationary. 

8.19 Output signal-to-noise ratio. A noisy signal X(t) = S(t) + N(t) passes through a linear 
R L circuit with a frequency response H(u) = JJ+R/L, where the zero-mean noise N(t) 
with autocorrelation function Rn(r) = K6(r) is independent of S(t). Suppose that the 
power spectrum of the output Y(t) is 

SyM = ( ^ ^ 2 {f + ̂ ) + % * " O ) ] + ^ } 

(a) Find the average power of the input noiseless signal and the input signal-to-noise 
ratio. 

(b) Find the power of the output noiseless signal, the power of the output noise power, 
and the output signal-to-noise ratio. Is the response of the linear circuit considered to 
a pure noiseless sine wave still a sine wave? What is the relation between the power 
of the response and that of the input? 
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8.9 Additional Examples 

Solution: 

(a) The input power spectrum is given by 

SX(OJ) 

{uL)2+R2 {Z[6(U + U>O) + 6{U-UO)] + K} 
R 2 

( w L ) W 

= - + UJ0) + 8(QJ - UJQ)] 4- K 

Since S(t) and N(t) are independent and N(t) has zero mean, they are orthogonal, 
and thus 

Sx(uj)Tah^1A Ss(w) + Sn(uj) 

Hence, the noiseless input signal has the power spectrum 

7T 
Ss(LJ) = Sx(v) - Sn(uj) = ~[S(UJ + OL>Q) + 6(LJ - uj0)] 

It has average power 

- { \ [% + wo) + 6(u> - } 

1 
2 

1 
2 

cos(o;or) 
r = 0 

Since the input noise is a white noise process, which has infinite power, the input 
signal-to-noise ratio is zero, 

(b) From part (a), the output noiseless signal has the power spectrum corresponding to 
the first term of Sy(uj) and thus the power 

PM = 
1 roo 

2TT J-OO (UJ 

R2 

27T J-OO (OJL)2 + R2 2 
[6(LU + UJQ) -f S(ou — LUo)]du 

1_7T_ 

2^2 
1 

R2 

(UJL)2 4- R2 

R2 

+ 
J?2 

(UJL)2 + J22 

2 (UJQL)2 + i? 2 

The output noise power is 

1 f°° 
j 
J—o 

R2 

2TT i_oo {UJL)2 + R? 
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8.10 Problems 

2R/L 

= KR/(2L) [ e m / L ] T = Q 

= KR/(2L) 

The output signal-to-noise ratio (SNR) is thus 

1 R2 

SNR = 
RL 

2 [(aj0L)2 + R2]KR/(2L) K[(UJQL)2 + R2} 

8.10 Problems 

8.1 Differentiator with random input. Let h(t) be the impulse response of a linear differen-
tiator sueh that its output x(t) = ^Ltel is the derivative of its input x(t). Let the random 
input be X(t) - 5 cos(1007r£ + (j)) + 10, where <j> - W(0, 2TT). 

(a) Are X(t) and Y(t) jointly wide-sense stationary? 
(b) Find the crosscorrelation Rxy(t + r , t) and the autocorrelation Ry(t + r,t). 
(c) Find the variances al(t) and cr|(t). 
(d) Find the smallest value of r in magnitude for which the output is uncorrelated with 

the input. 

8.2 Relation between output autocorrelation and input-output crosscorrelation. Show that 
(8.10) is true. 

8.3 Response of linear system to white noise. Consider a causal linear time-invariant system 
with an impulse response 

h(t) = (1 + t)[u(t) - u(t - 2)] + 3tu(t - 4)u(t) 

with a white noise input of mean 10 and non-dc power spectrum 100F 2/Hz. 

(a) Is the system causal? 
(b) Find the expected value of the output E[Y(t)]. 
(c) Find the mean-square value and variance of the output. 

8.4 Time constant determination. For the RC circuit of Example 8.4, i f the input is zero-
mean white noise with intensity S0 = 10~ 6V 2/Hz, find the smallest time constant RC (in 
seconds) such that the output has a variance (intensity) not larger than 100V2. 

8.5 Response of a bandpass filter to white noise. Zero-mean white noise of power spectral 
density 25F 2 /Hz enters a bandpass filter, operating at a center frequency fc = 2Hz, with 

s 
the transfer function H(s) = — — — . Find 
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(a) the power spectrum of the output 
(b) the average power of the output 

8.6 Response of linear system to colored noise. A linear time-invariant system with an 
impulse response h(f) = 2e~2tu(t) has a zero-mean noise input with a power spectrum 

S { S ) = + 

(a) Is the system causal? 
(b) Find the expected value of the output E[Y(t)]. 
(c) Find the power spectrum and average power of the output. 

8.7 Autocorrelation and power spectrum of derivative process. Consider a differentiator such 
that its output Y(t) = ™ ^ is the derivative of its input X(t). Use the relationships of 
the autocorrelations and power spectra between its input and output to show (6.23) and 
(7.18). 

8.8 Response of cascade RC circuit to white noise. Zero-mean white noise with Sx(u) = SQ 
is the input to the LTI lowpass filter (system) consisting of two stages of the RC circuits 
as shown in Fig. 8.16, where R\C\ ^ R2C2. Assume that the loading effect can be 
neglected; that is, assume that the output of stage 1 is identical with or without stage 2. 
Find 

(a) the mean and autocorrelation of the output 
(b) the power spectrum and power of the output 

Figure 8.16: A cascade of two simple RC circuits with different parameters. 

.9 Response of cascade RC circuit to white noise. Zero-mean white noise with Sx(u) = So 
is the input to the LTI lowpass filter (system) consisting of two identical stages of the RC 
circuits of Fig. 8.17. Assume that the loading effect can be neglected; that is, assume that 
the output of stage 1 is identical with or without stage 2. Find 

(a) the mean and autocorrelation of the output 
(b) the power spectrum and power of the output 
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+ o -

R R 

X(t) ' c c Y{t) 

Figure 8.17: A cascade of two Identical simple RC circuits. 

8.10 Autocorrelation and power spectrum of second derivative. Given a stationary random 
process X(t) and its autocorrelation function Rx(r) and power spectrum Sx(cu), derive 

the autocorrelation and power spectrum of Y(t) = 

8.11 State of linear system driven by white noise. A linear system is described by the following 
state-space equation 

d_ 
dt 

X(t) - -aX(t) + N(t) 

Suppose that this system is driven by zero-mean white noise N(t) with power spectrum 
S0. Find 

(a) the frequency response H(u) and impulse response h(t) between the noise N(t) and 
state X(t) 

(b) the autocorrelation and power spectrum of the state X(t) 
(c) the crosscorrelation and power spectrum between the state X(t) and the noise N(t) 

8.12 Response of RLC circuit to white noise. Zero-mean white noise with Sx(u) ~- SQ is the 
input to the R L C circuit shown in Fig. 8.18. Find the mean, autocorrelation and power 
spectrum of the output, assuming that the loading effect can be neglected. 

X(t) 

R2 

'c 

-o + 

Y(t) 

Figure 8.18: An RLC circuit. 

.13 Response of ideal bandpass system to signal plus noise. Consider the ideal bandpass 
system of Example 8.10 with input X(t) = 2 cos^ot + fy + N^), where u0 is nonrandom; 
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</> ~ U(Q, 2ix)\ N(t) is zero-mean white noise with power spectrum So; cj> and N(t) are 
independent. Find 

(a) the average output 
(b) the average power of the output 
(c) the ratio of output average power of the sinusoidal component to the noise component 

8.14 Finite-time integrator with colored noise input. A finite-time integrator with the following 
impulse response has a random process X(t) as its input, whose autocorrelation function 
is plotted in Fig. 8.19. 

(a) Find the mean, autocorrelation, and power spectrum of the output. 
(b) Explain how X(t) can be generated using white noise generator. Hint: Use results 

from the above problem. 
(c) Determine the bandwidth of the integrator. 

Figure 8.19: Impulse response and input autocorrelation of a finite-time integrator. 

8.15 Response of two-stage finite-time integrator to white noise. Two identical finite-time 
integrators are connected in cascade, each with impulse response given by (8.39). Its 
input is white noise with S(UJ) = So/2. Find the mean, autocorrelation, and power 
spectrum of the output. 

8.16 Response of RL circuit to random input. A random process (voltage) X(t) is applied to 
the RL circuit of Fig. 8.20. 

L 
o^*^m^.f™Y'*~Y**\«mm—_____—_____ .Q _|_ 

X(t) ^ R Y(t) 

o-™™-«™- —,̂ __i....,̂  _~-~_̂_._o __ 

Figure 8.20: An RL circuit. 
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(a) Show that the frequency response function of the R L circuit is given by 

Y{u) a 
H{w) 

X(u) a + JUJ 

where a = R/L. 
(b) Assume that the power spectrum of X(t) is SX(UJ) = So. What are the autocorrelation 

function Rx(r) and average power Pxl Determine the power spectrum and the average 
power of Y(t). Is Y(t) white? 

(c) Consider now the same RL circuit with L = 1 H and R = 1 O. The input voltage 
X(t) is now a random process F(t) corrupted by an independent additive white noise 
N(t). F(t) and N(t) are jointly wide-sense stationary. The power spectral densities 
of F(t) and N(t) are, respectively, 

0 elsewhere 

Determine the average SNR of the output process Y(t). 

8.17 Response ofRL circuit to exponentially correlated noise. For the RL circuit of Fig. 8.20, 
i f the input X(t) is a colored noise process with Rx(r) = e~c'T', c ^ R/L, find the power 
spectrum and autocorrelation of die output Y(t). 

8.18 LTI system with white noise input. An LTI system with an impulse response h(t) = 
2e~Atu(t) has a zero-mean white noise input with a power spectrum S(UJ) = S0. Find 

(a) the frequency response of this system 
(b) the average output 
(c) the power spectrum of the output 
(d) the autocorrelation and the average power of the output 
(e) the equivalent noise bandwidth of this system 

8.19 LTI system with white noise input. An LTI system h(t) has a zero-mean white noise input 
X(t) with power spectrum S(u) = SQ. Find the crosscorrelation and the cross-power 
spectrum of the input and the output. 

8.20 Linear system with white noise input. A linear system with impulse response function 
h(t) = e~2tu(t) is excited by zero-mean white noise with power spectrum Sx(u) = 
10V 2 /Hz. 

(a) What is the autocorrelation of the input X(t)l 
(b) Find the frequency response function H(LJ) of the system and the power spectrum 

Sy(uj) of the output. Is the output white? 
(c) Find the autocorrelation and average power of the output. 
(d) Find the average power of the non-dc components of the output. 
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(e) Find the equivalent noise bandwidth of the system. 

8.21 Simplification by noise bandwidth. An ideal lowpass linear system with bandwidth W = 
IT/24: and H(0) = 2 is excited by colored noise X(t) with power spectrum Sx(UJ) = 

3 
(o;2 + 9)(o;2 + l ) " 

(a) the equivalent noise bandwidth of the input 
(b) the exact power spectrum Sy(uj) of the output 
(c) the exact average power of the output 
(d) the approximate average power of the output using equivalent noise bandwidth 
(e) approximate average power of the output if the bandwidth of the ideal lowpass system 

is doubled 

8.22 Output power calculation using noise bandwidth. A linear system with impulse re-
sponse function h(t) = e~mu(t) is excited by zero-mean white noise with power spectrum 

(a) Find the frequency response function H(UJ) of the system and the power spectrum 
Sy(uj) of the output. 

(b) Find the equivalent noise bandwidth of the input. 
(c) Find the equivalent noise bandwidth of the system. 
(d) Find the equivalent noise bandwidth of the output. 

8.23 Output power calculation using noise bandwidth. A linear system with impulse response 
function h{t) = e~lu{t) is excited by zero-mean white noise with power spectrum SX(UJ) = 

Find 
UJ- + 202* 

(a) the frequency response function H(u) of the system and the power spectrum Sy(u) 
of the output 

(b) the equivalent noise bandwidth of the input 
(c) the equivalent noise bandwidth of the system 
(d) approximate average power of the output using equivalent noise bandwidth 

8.24 Output distribution. The R C circuit of Example 8.2 has an input that is a zero-mean 
stationary Gaussian white noise process with power spectrum S(u) = SQ. Find the 
marginal PDF of the output process at an arbitrary time. Find the joint PDF of the output 
at ti and ti + r . 

8.25 Distribution of LTI system output. The R C circuit of Example 8.2 has a zero-mean 
stationary white noise input with power spectrum S(OJ) = 20TT. IS the output a Gaussian 
process? Justify your answer. Give the marginal PDF of the output process at an arbitrary 
time if you can. 
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8.26 Output and signal correlation. An LTI system h(i) has the response Y(t) to the input 
X(t) = S(t) + N(t), where S(t) is a signal and N(t) is noise. Show that 

Rysij) = ^ ( r ) * / i ( r ) 

8.27 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too involved. 

8.11 Computer Exercises 

8.1 System response and stability. Consider two systems with the following transfer functions, 
respectively: 

2s + 5 
ffi(s) 

5 2 + 3 0 5 + 2 0 0 

5 5 - 6 

A random input X(t) is applied to the above two systems, respectively. 

(a) Are Hi(s) and H2(s) stable? 
(b) The data file m 8 _ l x l . d a t contains a discrete-time (with 1000 Hz sampling rate) 

sample function of X(t). Use the companion software P&R to find the responses 
yi(t) and t/2(t) of the systems to this input. Do yi(t) and y2(t) grow unbounded? 

(c) The data file m8_lx2 . d a t contains another sample function of X(t). Repeat (b) 
with this input. 

(d) Discuss your results. 

8.2 Determination of dc gain. The data files m 8 _ 2 x . d a t and m 8 _ 2 y . d a t contain the data 
records of an ergodic random input and its ergodic response of a linear time-invariant 
system, respectively. Write your own MATLAB routine to determine the dc gain of the 
system. Use the companion software P&R to verify your result. 

8.3 Verification of crosscorrelation. The input to the RC circuit of Fig. 8.2 is a zero-mean 
Gaussian noise X(t) with autocorrelation R(r) = 2e~ 4 0 M, where R = 1000O and C = 

(a) Use the companion software P&R to generate a 256-point sample function of X(t). 
Use a sampling rate fs = 2000 Hz. Save it as m8_3x . da t . 

(b) Use P&R to generate a 256-point sample function of the output Y(t). Use a sampling 
rate fs = 2000 Hz. Save it as m8_3y .da t . 
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(c) Use P&R to plot the autocorrelations Rx(i/fs) of X(t) and Ry{i/fs) of Y(t) for 
i = 0 ,1 , . . . , 20. 

(d) Use P&R to plot the crosscorrelation RyX{r) of Y(t) and X(t) for r., z = 0,1, . . . , 20. 
Note that Ryx(r) is neither even nor odd symmetric. So you need to use the mirror 
image property to get RyX(r) for r < 0 from Rxy(r). 

(e) Find the theoretical Ryx{r) and compare it with Ryx(r) of (d). 

8.4 RC circuit as a lowpass filter. The input to the RC circuit of Fig. 8.2 is zero-mean 
Gaussian white noise X(t) with power spectrum 2, where R = 1000O and C = 1/iF. 
Use the companion software P&R to do the following. 

(a) Generate a 1024-point sample function of X(t). Use a sampling rate of 2000 Hz. 
(b) Plot the power spectrum of X(t). 
(c) Generate a 1024-point sample function of the output Y(t). Use a sampling rate of 

2000 Hz. 
(d) Plot the power spectrum of the output Y(t). 
(e) Compare the power spectra of X(t) and Y(t) and comment on your results. 

8.5 Analysis of a lowpass filter. A lowpass filter has a cutoff frequency of 100 Hz and 
unity gain. The input to the filter is a zero-mean Gaussian white noise X(t) with power 
spectrum 4. Use the companion software P&R to do the following. 

(a) Generate a 1024-point sample function of X(t). Use a sampling rate fs = 2000 Hz. 
(b) Plot the power spectrum of X(t). 
(c) Plot the autocorrelation Rx{i/fs) of X(t) for i = 0 ,1, . . . , 70. 
(d) Plot the power spectrum of the output Y(t). 
(e) Plot the autocorrelation Ry{i/fs) of Y(t) for i = 0 ,1, . . . , 70. 
(f) Plot the crosscorrelation Rxy(i/fs) of X(t) and Y(t) for i = 0 ,1, . . . , 70. 
(g) Plot X(t) and Y(t). 
(h) Discuss your results. 

8.6 Noise reduction by a bandpass filter. A bandpass filter has a center frequency of 500 Hz, 
a bandwidth of 200 Hz and a gain of 1. The input to the filter is X(t) = S(t) + N(t), 
where S(t) = 0.1sin(10007rf + ir/6) and N(t) is zero-mean Gaussian white noise with 
power spectrum 2. Use the companion software P&R to do the following. 

(a) Generate a 1024-point sample function of S(t) and N(t) with a sampling rate of 2000 
Hz. Save them as m8__6s.dat and m 8 . 6 n . d a t , respectively. Use the following 
MATLAB routine to calculate X(t) from S(t) and N(t) saved before: 

c d d a t a 
l o a d m8_6s. d a t 
l o a d m8_6n. d a t 
x=m8_6s+m8_6n ; 
save m8- .6x .dat x - a s c i i 
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Cd . . 
X(t) is then saved to m8_6x.dat. 

(b) Plot the power spectrum of X(t). 
(c) Plot the power spectrum of the output Y(t). 
(d) Compare the power spectra of X(t) and Y(t) and comment on your results. 

8.7 Bandpass filter design. A bandpass filter has an adjustable center frequency and a band-
width of 20Hz and a gain of 1. A data record of length 256 (with 4000 Hz sampling rate) 
of a noisy signal X{t) is given in the data file m8_7 . dat . The signal X(i) = S(t) + N(i) 
is corrupted by zero-mean white noise N(t)$ where S(t) is a sinusoid with an unknown 
frequency. Use the companion software P&R to design the filter (i.e., to select the center 
frequency in Hz) such that the output of the filter has the maximum signal to noise ratio. 
You should set the segment length to the data record length in the power spectrum esti-
mator. You may use a bandpass of a larger bandwidth to locate roughly the sinusoid first 
and then to fine tune the 20Hz filter's center frequency. 

8.8 Determination of noise bandwidth. A data record of a signal X(t) is given in the data file 
m8_8 . d a t with 2000 Hz sampling rate. Use the companion software P & R to determine 
its equivalent noise bandwidth in Hz. 

8.9 Generation of colored Gaussian process. Following Example 8.16, write a MATLAB 
routine to generate a 1024-point colored Gaussian random sequence with autocorrelation 
R(r) = 3.4e~ 1 5 , r' with sampling rate of 15Hz. Use the companion software P & R to plot 
the autocorrelation and power spectrum of the sequence generated. Discuss your results. 

8.12 Self-Test Problems 

8.1 Answer the following questions briefly. 

(a) If a linear system has a zero dc gain, what is its average response to a stationary 
input? 

(b) What kind of process is the response of a lowpass system to white noise? Is it white? 
(c) Does the equivalent noise bandwidth of a system depend on the input? 
(d) What can you say about the input power spectrum if the power spectrum of the output 

of a linear system is a pair of delta functions located at UJ = ±uQ7 
(e) What remains unchanged when replacing an (approximately) bandpass system with 

an ideal one with the same equivalent noise bandwidth? 
(f) Will an ideal bandlimited system always improve the signal-to-noise ratio if the fre-

quencies of the input signal are all within the passband of the system? 
(g) Is the average response of a linear time-invariant system equal to the response of the 

system to the average input even if the input is a nonstationary process? 
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8.2 A noisy signal X(t) = cos(ujQt + 6) + N(t) passes through a linear circuit with a fre-
quency response function H(UJ) = JJ^R/L* w ^ e r e * s a zero-mean noise process with 
autocorrelation function Rn(r) = K8(r); UJ0 is a known constant; 6 is a random variable 
uniformly distributed over (?r, 2?r); and N(t) and 6 are independent. 

(a) Find the mean x(t) and autocorrelation Rx(t + r, t ) of 
(b) Is X(t) wide-sense stationary? Is N(t) wide-sense stationary or white? Justify your 

answer. 
(c) Find the mean y(t) and autocorrelation Ry(t + r, t) of the output Y(t) of the linear 

circuit. Is Y(t) wide-sense stationary? 
(d) What is the power spectrum of N(t). Find the power spectrum of X(t). Find the 

power spectrum of Y(t). 

8.3 Consider a differentiator whose response Y(t) to a random input X{t) is 

(a) For this system, show that convolution of the input with the impulse response amounts 
to differentiation of the input. 

(b) Find the average response of this system to the random input X(t) in terms of the 
mean of X(t). 

(c) Find the average response of this system to the random input X(t) = 2 eos(a/oi 4- 0 ) , 
where UJQ is nonrandom and <f) ~ U(w} 2ir). 

(d) For a system consisting of the cascade of n such differentiators, show that its average 
response to X(t) is simply -^E[X(t)]. 

8.13 Solutions to Self-Test Problems 

8.1 (a) By (8.5), it is equal to zero no matter what the stationary input is. 
(b) The response is lowpass white noise process. It is colored but with a flat power 

spectral density over a finite frequency band. 
(c) It is independent of the actual input, although it is defined assuming the input is white 

noise. It is one of the inherent parameters of the system. 
(d) By (8.17), the input power spectrum must also be a pair of delta functions located at 

u = ±UJQ and the intensity is that of the output divided by \H(UJQ)\2. This indicates 
that the input is a sinusoid. 

(e) Two things remain unchanged: the maximum gain and the average power of the 
system's response to white noise. 

(f) Yes, because the signal part of the input w i l l pass the system without attenuation while 
some frequency components (i.e., those that are outside of the system's passband) of 
the noise part of the input wi l l not pass the system. As a result, the signal-to-noise 
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ratio is higher at the output than at the input because the output has the same signal 
power and a smaller noise power than the input, 

(g) Yes, (8.4) is valid for nonstationary as well as stationary processes. 

8.2 (a) The mean x(t) is 

x(t) = E[X{t)] = E[co8(uot 4- 9) + N(t)] 
= E[cos(cj0t 4- 6)} 4- E[N(t)} 

f2w 1 
= / cos(u0t + e)——~-de + 0 

sin(a;o£ 4- 2TT) — §m(uot 4- 7r) 
TT 

2 . , v = — sm(o;ot) 
TT 

and the autocorrelation Rx(t 4- r, t) is 

i? x ( t4-r , t ) = £?[X(t + r)A:(t)] 

- E{[cos(a;ot + uQr + 0) + N(t 4- r)][cos(a;o£ 4- 0) + iV(£)]} 

= E[cos(ujQt 4- 0) cos(a;ot 4- UJQT +19)] 4- E[ms(^0t + 6)N{t 4- r)] 

+E[N(t) cos(a/0£ + CJ 0 T + 6)} + £[iV(t + r)N(t)] 

= ^£[COS(U;OT) + cos(2a;ot + U0T + 2(9)] + J5[cos(c^ + 4- r)] 

+E[N(t)}E[cos(uj0t 4- a;0r + 0)] + Rn(r) 

= i[cos(a;or) + 0] + 0 + 0 + J 4 ( r ) 

= | COS(CJ 0T) + Rn(r) 

= Rx(r) (depends only on r ) 

(b) Since x(t) is not constant, X(i) is not wide-sense stationary. Since N(t) = 0 = 
constant and Rn(t 4- r ,t) = Rn(r)f N(t) is wide-sense stationary. Since I ? n ( r ) = 
K6(T), N(t) is white [N(£i) and iV(£2) are uncorrelated for every tx 4"- h]> 

(c) Let a = R/L. Since 

the mean y(i) is 

a 
J O J 4- a. 

T a b l | 7 . 5 a e - a t u W 

»(t) = * h{t) 

/
OO 

/i(t — r)x(r)dr 
-oo 
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-f 
J — a 

ae 

2a _atear[asin(cL;oT) — UJQ COS(UOT)} T 

2a 
rc(a2 + ul) 

a2 -hug 
[a sin(a;oO — &o cos(u)ot)] 

As a result, Y(t) is not wide-sense stationary since its mean is not time invariant. 
Since Sy(u) is given as below in part (d), the autocorrelation Ry(r) is, compared 
with the Fourier transform pair of Rx(r) and Sx(u), 

Ry{T) = T 
- l i 1 a2 ... . c . .. a?K 

' 'K{0{U) + LOQ) +6(U> - w 0 ) j + 

2a 

_u2 -f a2 

Table 7.5 1 a • COS(UJOT) 
Ka 

2(4 +a2 

(d) The power spectrum of iV(t) is 

Sn(u) = F{RN(T)} = F[K6{T)] = K 

The power spectrum of X(t) is 

Sx(UJ) = F [ i ? , ( r ) ] - cos^or) + Rn(r)} 

= T[^C08{uoT)]+T[Rn(T)] 

Table 7.5 TT 

-J*[cos(a/Or)] 4- S N M 

[5(a; + uj0) + - UJ0)] + K 

The power spectrum of Y(t) is 

S„H = S l(a;)|ff(a;)| 2 

8.3 (a) 

+ Wo) + «(w - w 0 ) ] + 

1 o 2 . . . . c . a 2 K 
2 i + Wo) + 0(LJ - LJ0)\ H 2w§ + a 2 

y(t) = /i(i) * 

UJ2 + a2 

M i ) * X ( t ) = - X ( t ) 
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(b) 

(c) 

8.13 Solutions to Self-Test Problems 

average response = E[Y(t)} (=4) E[X{t)} * h{t) = ^E[X(t)] 

f2ir 1 

E[X{t)} = / 2 cos(uj0t + (/>)- d<(> 
Jir Z7T — 7T 
2 2TT 

= — sin(o;ot + 0) 

2 

= -[sin(o;ot + 27r) - sin(u;o£ + 7r)] 

= — sm(o;ot) 
7T 

average response = --E[X(t)] = — cos(u;oO 
at TC 

(d) Consider n cascade stages of such linear differentiators. Clearly 

y(t) = xn(t) = -[xn-1(t)] 

d ( d r , 

cf1 

eft" x 0 ( i ) ] 

- i ( t ) 

That is, 
cf1 

average response = E[Y(t)\ = — E[X(t)] 
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9 
OPTIMAL LINEAR SYSTEMS 

A problem well put is a problem half solved. 

An Axiom 

In Chapter 8, we analyzed linear systems with random input. In this chapter, 
we synthesize linear systems that are optimal in some sense for some problems 
of practical importance. 

Main Topics 

• Signal-to-Noise Ratio 
• The Matched Filter 
• The Wiener Filter 

The matched filter and Wiener filter are widely used in engineering, such as 
communications and signal processing. 
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9.1 Introduction 

An optimal linear system is a linear system that is optimal in some sense. The 
optimal systems considered here have a random (noisy) input X(t) = S(t)+N(t) 
that is the sum of a (deterministic or random) signal S(t) and noise N(t)9 as 
depicted below. Due to linearity, the output is the sum of the corresponding 
responses: Y(t) = S0(t) + N0(t). 

Y(t) = S0(t) + N0(t) S(t) X(t) 
h(t) 

N(t) 

Figure 9.1: Input and output of an optimal system. 

The task of such an optimal system is to provide an output that removes the 
noise (or enhances the signal) as much as possible. 

How to quantify (or measure) the amount of noise removal (or signal enhance-
ment) is application dependent, though general guidelines exist. Correspondingly, 
several popular optimality criteria are available, including the following. 

• Maximization of output signal-to-noise ratio (SNR): 
The ratio of output signal power to output noise power at some specified 

time is maximized. This is typically used in e.g., digital communication and 
radar systems when the noiseless input signal is deterministic, such as to 
detect the presence/absence of a deterministic signal of a known shape or its 
occurrence time. 

• Minimization of the mean-square error (MSB): 
The mean-square value of the difference between the system's output and 

the desirable input (noise-free) signal is minimized. This is typically used in 
e.g. speech signal processing when the noiseless input signal is random but 
with known characteristics, such as to estimate the value (form) of a signal 
that is known to be present. 

Use of mean (average) error is not a good choice because positive and 
negative errors will more or less cancel out each other. The mean-square 
error, rather than mean absolute error, is chosen because the former is much 
easier to handle mathematically than the latter. 
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9.2 Signal-to-Noise Ratio 

In general, signal-to-noise ratio (SNR) for a noisy signal is defined as 

SNR ( a v e r a 8 e ) sig11^ power 
(average) noise power 

It measures how "noisy" a signal is. Specifically, consider a signal s(t) corrupted 
by noise N(t) with average power Pn: 

X(t) = s(t) + N(t) 
• If s(t) is deterministic, then SNR at t = to is given by 

SNRI = S i m a l P ° W e r a t t = z t ° = l*(*o)l2 

average noise power Pn 

The average SNR is 

where Ps is the average power of s(t) and (|s(£)|2) is the time average of 
Ki)p: 

(\s(t)\2) = lim - J - / T \s(t)\2dt=: lim [°° \S(u;)\2(h) 

where 5(u;) = and the last equation above follows from the Parseval 
theorem of Fourier transforms. For example, if s(t) = Acos((jJcjt + 9), then 
its average power is given by 

=& h I - T \ A 2 [ 1 + C O S 2 ( U ¥ + 6 ) ] D T 

--A2 lim 1 s i n 2 ( a ; o y + A) ~ s i n 2 ( - ^ + A) _ 1^2 

• If s(t) is random, then, the average SNR is given by 

SNR = — s t a t i o n ^ y s^ — Rs(ty 
Pn Pn 

Note that SNR in dB is 10 log SNR not 20 log SNR unless SNR is defined as 
amplitude (not power) ratio. 
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9.2 Signal-to-Noise Ratio 

Example 9.1: Maximization of Output SNR 

The input X(t) to the lowpass RC circuit of Example 8.2 is a deterministic signal 
s(t) = A cos uot corrupted by additive zero-mean white noise with Sn(uj) = SQ. 
Determine R and C such that the steady-state SNR at the output is maximized. 

The steady-state response to the input s(t) is 

s8

0

s(t) = \H(^Q)\Acos[(jdt + lH(^Q)] E x a m j ! e 8 * 2

 r^L— cos[uQt - tan""1 (uJQ/a)] 
y ui + a1 

The output steady-state signal power and noise power and the steady-state output 
SNR are given by Example 8.14 as 

- A V P„ = S*, SNR A ' a 
s° 2(u,0

2 + a 2)' n° 2 SQ(ul + a?) 

To find the maximum SNR, we take derivative and set it to zero: 

daK } S0 ' (wg + a 2 ) 2 S0(u$ + a 2 ) 2 

since (f)' = which leads to 

1 
a =u0 or a = — = u)0 

This gives the maximum steady-state SNR: 
A2 

SNRm a x —-
SQ((JJQ + a2) a=u0 2WQSQ 

which can be verified to be the maximum by plotting SNR vs. a, or by checking 

da2 SQ (UJI + a 2 ) 4 S0 H 2 + « 2 ) 4 

in the neighborhood of a = a;o because the point with zero first derivative and 
negative second derivative is a maximum. 

This example illustrates how to optimize performance by parameter adjust-
ment, given the system structure. In this example, only one parameter (i.e., a) is 
involved. It would be more complicated i f more than one parameter is involved. 

418 



9.3 The Matched Filter 

9.3 The Matched Filter 

A matched filter is a system that maximizes the output SNR. Consider the system 
of Fig. 9.2, where s(t) is a deterministic signal and N(t) is wide-sense stationary 
white noise with Sn(u) — So- We wish to find the matched filter (i.e., to 
determine H{u) or h{t) that maximizes the output SNR) for s(t) ait = to. 

s(t) X(t) 
h(t) 

Y(t) = s0{t) + N0(t) 

N(t) 

Figure 9.2: Input and output of a matched filter. 

The output SNR att — to is given by 

\s0(to)\2 \h(t0) * s(t0)\2 /_„ h(t)s(to - t)dt 
SNR| t = t o -

Pn0 (1/2TT) f°° Sn{u)\H(u)\2ckj (SO/2TT) f°° \H(u)\2du 
J—oo J—oo 

too |2 

/ h(t)s(to - t)dt\ (by Parseval theorem) 

< 

S0 [°° \h(t)\2dt 
J—OO 

f°° \h{t)\2dt f°° \s{to - t)\2dt r Wa - t)\2dt 
J—OO J—OO J—OO 

So r \h(t)\2dt 
J—OO 

So 

The inequality above follows from the powerful Schwarz inequality: 
2 

fbf(t)g(t)dt < fb\f(t)\2dtfb\g(t)\2dt Vf(t),g(t) (9.1) 
Ja Ja Ja 

where the equality holds iff (if and only if) f(t) = Kg*(t) on [a, b] with K an 
arbitrary real-valued constant. Thus, the maximum SNR at t = to is given by 

SNRm a x = | - f ° \s(t0 - t)\2dt = ^f°° \s(r)\2dr = 
total energy in s(t) 

power spectrum of N(t) 
(9.2) 

which turns out to be irrelevant of to and is achieved iff the equality holds, that 
is, the optimal h(t) (i.e., matched filter for white noise) is given by 

h(t) = Ks*(t0-t) (9.3) 
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9.3 The Matched Filter 

The Matched Filter for Colored Noise 
The matched filter for the case of colored noise can be derived in frequency domain. Let Sn(uj) 
be the power spectrum of N(t) and S(UJ) = f[s{t)]. The SNR at t = t0 is 

SNR| , = t 0 : 
2TT /

oo 
S(w)H(w)e^*°du 

-OO 

1 f°° 

2TT 
SnQduJ 

-oo 

1 y° 
2TT 7-( 5„H do; 

The inequality above follows from letting 

F(u) = y/s^)H(cj) G(UJ) = l 7 I — 
27ry / S^j 

and the following Schwarz inequality (which is identical to (9.1) with t replaced by UJ): 

[b F(u)G(u)du < t \F(uj)\2(hj t \G(uj)\2dw VF(a;) 5 G(UJ) 
J a J a J a 

where the equality holds i f f F(u) = cG* (UJ) on [a, 6] with c an arbitrary real-valued constant. 
Consequently, the maximum SNR at t = to is given by 

12 l r™ \S(UJ)\2 

S N R m a x = — / ^ r v ^ (9.4) 

which turns out to be irrelevant of t0 and is achieved if and only if F(OJ) = cG*(u>): 

S*(u>)e-jwt0 

jSn{w)H{ui) = cG*(u) = c 

Thus, the matched filter for colored noise is given by 

c S*(w) 
filtered signal 

H(u) 
2TT S „ ( W ) 

(9.5) 

whitening filter matched filter for white noise 

and by inverse Fourier transform, its impulse response satisfies 

ft(r)*/in(r) = Ca*(*o-T) (9.6) 

I f N(t) is white noise, then (9.6) reduces to (9.3), (9.4) reduces to (9.2) by Parseval theorem, 
and (9.5) becomes 

H(UJ) = 7^rS*(uj)e~jUJtQ = KS*(u)e~juJto 

which agrees with (9.3), by the shifting and conjugation properties of Fourier transforms. 

420 



9.3 The Matched Filter 

Remarks: 
h(t) is matched to the signal s(t) at time t = to? hence the name. It is the 

input signal waveform ran backwards in time and delayed by to* 
The matched filter requires perfect knowledge of the noiseless input signal 

s(t). For different time to, it is in general different since h(i) = Ks*(to — t). 
Thus, even with perfect knowledge of a system with fixed parameters cannot 
match the signal for different times. 

The matched filter has a (nonzero) arbitrary real-valued constant K, meaning 
that it is optimal no matter what amplitude gain the filter has. This makes sense 
since the input signal and noise are scaled by the same gain and thus has no 
effect on output SNR. 

The time to at which the output SNR is maximized enters into the system 
only as a pure time delay. Its value is usually upon design and may be selected 
to make the matched filter causal. 

The above matched filter is in general noncausal (physically unrealizable). If 
a system that is optimal of all causal systems is of interest, then h(t) = 0, Vt < 0, 
implies that the lower limit — oo of all the time integrals above should be replaced 
by 0. As a result, the causal matched filter is given by 

hcmml(t) = Ks(t0 - t)u{t) u(t) = unit step (9.7) 

and the corresponding maximum SNR at t = to is given by 

SNR - ^ ~"
 t^dt

 - I'Qo^T^2(iT -
 e n e r g y i n

 * ( * ) Q v e r ( - Q Q ^ o ] 

So So power spectrum of N(t) 
(9.8) 

This SNR increases with to and is in general smaller than the one given by (9.2) 
for the noncausal filter. Thus, i f s(t) vanishes after some time T, best SNR is 
achieved by choosing to = T. 

(9.5) implies that the matched filter for colored noise is a cascade of a whiten-
ing filter with H(u) = -~j^== that converts colored noise input with Sn(uj) into 
white noise output and the matched filter for white noise, 

The matched filter is optimal also under several other optimality criteria, such 
as the likelihood ratio and the smallest error probability. It is, however, not good 
for recovering (reconstructing) the input signal. 
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9.3 The Matched Filter 

Example 9.2: A Causal Matched Filter 

The matched filter for the signal 

s(t) = Ae~atu(t) a>0 

at t — to has the impulse response: 

h{t) = Ks*(t0 -t) = KAe-atoeatu(to -t) = ceatu(t0 - t) 

X(w) -ato 

L-> Delay t0 

ce Y(UJ) 

Figure 9.3: Input signal, impulse response, and block diagram of the matched filter. 

Clearly, h(t) ^ 0, for some t < 0 , meaning that the optimal (matched) filter 
is noncausal (physically unrealizable). However, a good realizable approximation 
to this filter is to force h(t) = 0 for all t < 0 : 

h(t) = ceatu(tQ - t)u(t) ===> H(u) = ceate~j^dt ce Mo 
?-at0 _ „-jujto 

It is identical to the one given by the causal matched filter (9.7). 
The maximum SNRs at t = t 0 for the causal and noncausal filters are 

SNR— ( 9= 8 ) 1 f° s\t)dt = 1 £A*e-*«dT = - e-™°) 

SNRn 

\aS( 

Clearly, the realizable (suboptimal) matched filter gives an SNR (slightly) smaller 
than the maximum SNR. If a large t0 is chosen (such a system is usually more 
costly), their difference is negligible. 

This demonstrates how an "unpractical" theory can be useful: 

optimal but unrealizable (theory) => realizable but suboptimal (practice) 
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9.4 The Wiener Filter 

9.4 The Wiener Filter 

Consider the following system where the noiseless signal S(t) is a random process 
with known characteristics. 

S(t) X(t) 
h(t) 

Y(t) 

N(t) 

F i g u r e 9.4: Input and output of a Wiener filter. 

The Wiener filter is an optimal system h(t) whose output Y(t) is an estimate 
of the signal S(t + to) with a minimum mean-square error: 

€(to) = E{\S(t +10) - Y(t)\2} = E{\S(t + to) - [X(t) * h(t)]\2} 

where to is an arbitrary time shift, which could be positive, zero, or negative. 
As shown on the next page, this optimal system (Wiener filter) h(t) is exactly 

the solution of the following Wiener-Hopf equation: 

/
oo h(t)Rx(r - t)dt (9.9) 
-OO 

where Rsx is the crosscorrelation between S(t) and the noisy input X(t). 
(9.9) can be solved easily by Fourier transform to yield the (noncausal) Wiener 

filter in frequency domain [see (9.13)]: 

Sx(uj) 
(9.10) 

If the signal S(t) and noise N(t) are orthogonal, then 

SSX(UJ)
 ( 7^ 9 ) Ss(uj) SX(UJ)

 ( 7= 8 )
 SS(UJ) + Sn(uj) 

and thus (9.10) becomes 

H(u) = 
Ss(u) Jut0 Jut0 

SS(UJ) + Sn(uj) l + Sn(u)/Ss(uj) 

This makes good sense: the optimal filter suppresses the frequency band that 
contains a large (small) amount of noise (signal) energy, and has a pure time 
advance (if to > 0) or delay (if to < 0). 
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9.4 The Wiener Filter 

The Wiener-Hopf equation (9.9) can be derived as follows. Let £ h and £ h + e g be the mean-
square error of the LTI systems h(t) and h(t) - f cg(t), respectively, where e is an arbitrary 
real-valued constant. Then, since 

Rsy(t0) = E[S(t + to)Y*(t)] - E[S(t + t0){X(t) * h(t)}*] 
poo 1 roo 

= E S(t + to) h(T)*X*(t-T)dT = h(T)*E[S(t + t0)X*(t-T)]dT 

J—oo J J—oo 
= r h(T)*Rsx(tQ + T)dr ( 8 = 7 ) R„(to) * h*(-to) (9.11) 

•J —oo 

we have 

£h = E{\S(t +10)\2 + \Y{t)\2 - 2Re[5(i + U)Y*{t)\) = R.(0) + Ry(0) - 2Re[Rsy(t0)} 
= Rs(0) + Rx(0) * h(0) * h*{0) - 2Re{Rsx(t0) * h*(-t0)} 

£h+eg = Rt(0) + Rx(0) * [h(0) + eg(0)] * [h(0) + eg(0)]* - 2Re[R„{t0) * [h(-t0) + eg(-t0)}*} 
= R.(Q) + Rx(0) * h(0) * h"(0) - 2Re[Rsx(t0) * h*(-t0)] 

- 2eRe[iU*o) * g'(-t0)] + 2eRe[i?x(0) * h(0) * g*(0)} + e2Rx(0) * g(0) * g'(Q) 
= €h + e2 Rx(0) * g(0) * g*(0) +2eRe[Rx(0) * h(0) * g*(0) - Rsx(t0) * g*(-t0)} 

v ,,„ i UII.J, J 

=Rz(Q) 

where Re[«] stands for real part and Z(t) is the response of the system g{t) to input X(t). I f h(i) 
is optimal, then, for every e,g(t), 

4 + e , - Sh = e2J^(Q) + 2eRe[il £(0) * ft(0) * g*(0) - i ^ f t o ) * / H o ) j > 0 

>o if zfi 0, could choose e so that £h+eg < £h 

and thus a necessary and sufficient condition for h(t) to be optimal is, for every g(t), 

0 = Re[i^(0) * fe(0) * g*(0) - i ? ^ ( t 0 ) * S*(-*o)] 

= Re 

= Re 

/
oo /*oo too 

g*{r) / / i(i)/?,(r - i)dtdr - / g*(T)Rax(t0 + r)di 
-OO J—OO J—OO 

/ oc 

-o 

9\r) 
/

oo 

h(t)Rx(T - - i ? s a : ( i o + T ) 
_ -oo 

Since this has to be true for every g(i), the above condition is equivalent to 

Re{Rsx{t0 + T)} = R e / h(t)Rx(r - t)dt = Re[/i(r) * Rx(T)} 
J—OO J 

(9.12) 

which reduces to the Wiener-Hopf equation (9.9) for real-valued X(t) and h(t). 
(9.10) follows from Fourier transforming (9.9) and its shifting and convolution properties: 

Rsx{T + t0) = h{r) * RX{T) 

t I I 
Ssx(w)e^° = H(u) • Sx(u) 

(9.13) 
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9.4 The Wiener Filter 

The Wiener filter (9.10) is noncausal because the solution of (9.9) does not 
guarantee h(t) = 0 for t < 0. The causal Wiener filter is the solution of the 
following causal Wiener-Hopf equation: 

roo 

Rsx(r + t0) = Jo h{t)Rx(r - t)dt (9.14) 

which has lower limit 0 instead of —oo. (9.14) is, however, considerably more 
difficult to solve than (9.9). Simple and general solution is available only for 
input with rational power spectrum, which is based on spectral factorization and 
whitening techniques. 

In general, the Wiener filter is a cascade of a whitening filter and a Wiener 
filter for white input, as depicted below. 

Whitening filter Hw(u) 

Wiener filter H(u) 

X(t) 
Wiener filter H'{u) for white noise 

Y(t) 

Figure 9.5: Constituents of the Wiener filter. 

If the input X(t) has a rational power spectrum Sx(u), it can always be 
factorized as 

Sx(u) = G(UJ)G*(UJ) = \G(UJ)\2 (9.15) 

where G(s) has all its zeros and poles in the left-half s-plane. 
It can be shown that the system HW(UJ) = 1/G(u) 

• is causal (and stable) and thus can be actually implemented 
• is a whitening filter: it converts colored input X(t) into white output X(t) 

since 

Sx(u) = SX(U)\HW{LJ)\2 = \G(LU)\2/\G{LJ)\2 = 1 (constant) 

• preserves information: its output X(i) is called innovations (i.e., new infor-
mation process) that contains new and only new information about its input 
X{t) and is thus more convenient to use. In other words, what the whitening 
filter does is the complete removal of the autocorrelation in X(t). 
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9.4 The Wiener Filter 

I f h(t) is restricted to be causal (physically realizable), then following the same procedure 
as that led to (9.12), we have 

r roo 
R4Rsx(t0 + r ) ] = Re / h(t)Rx(r - t)dt 

UQ 
which reduces to the Wiener-Hopf equation (9.14) for real-valued X(t) and h(t). (9.14) and 
(9.9) also follow immediately from the so-called orthogonality principle, an important result in 
linear estimation that is not covered here. 

For a rational power spectrum 

b{uj)=a- - z n ^ p m 

(u-pl)'"(uj- pM) 
spectral factorization (9.15) can always be done due to the following properties: 

• S(u) is real-valued implies that S(UJ) = S*(UJ) and thus a2 must be real and all complex 
zeros and poles must be in conjugate pairs. 

• S(UJ) is integrable over — oo < UJ < oo (this yields the average power, except for the cases 
with white noise) implies that it cannot have real-valued poles and the spectrum must be 
proper (i.e., N < M). 

• S(UJ) is nonnegative implies that all real-valued zeros must be in even multiplicity. 

Hence, we have 

S(u>) = a <" ~ • • > - J U ~ "ll • • > - t2| N<M 
V (U-PI)'-(U-PM/2) (U-PI)--(V-PM/2) 
S

 v
 's ' V ' 

where zn have nonnegative imaginary parts and pm have positive imaginary parts. Thus 

G(s) = G(uj)\^J8 

= -(Af-AQ/2 (S -JZl)-'(s- jZN/2) 
(s-jpi)---(s-jpM/2) 

— nAM-N)/2 
(s + I m f o ] - jRefo])--- (s + Jm[zN/2] - j R e [ z * / 2 ] ) 
(s + Im[pi] - jRe\pi}) • • • (s + I m [ p M / 2 ] - j R e [ p M / 2 ] ) 

has all its poles and zeros in the left-half s-plane. Such a system is said to have minimum phase. 
Thus, G(UJ) is clearly stable. It can also be shown to be causal 

The use of the whitening filter here is an excellent example of how important and useful the 
"unpractical" white noise model is. 
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9.4 The Wiener Filter 

For t 0 = 0 and white X(t) with Rx(r) = S(r)9 (9.14) has the solution (i.e., 
the Wiener filter) 

h\t) = Rsx(t)u(t) u(t) = unit step (9.16) 

The corresponding frequency response is given by 

H'(u) = Jo°°Rai(T)dT = Jo T~ 
°° /r._lf'S'sx(w) e-^dr + (9.17) 

\-G*(UJ) 

where as shown by (9.20), F [ R s x ( T ) } = fg^; [F{-)}+ stands for the causal (and 
stable) part of F(-) (i.e., the part with all zeros and poles in the left-half s-plane), 
defined by 

F(u) = F{F-l\F(u)))} = f° T-1[F(u)]e-j"tdt+ f°°^[Fiu^e'^dt 
J—oo JO , 

[F(u)]~ and [F(u)]+ can be obtained from F(u) by partial fraction expansion. 
Consequently, the (causal) Wiener filter is given by 

H(u>) = Hw{u)H'(u) = 1 
G{uj)iG*(uj) 

+ (9.18) 

The corresponding minimum mean-square error for to = 0 is given by 

£min = E{[S{t) - Y(t)]2} = Rs{0) + Ry(0) - 2Rsy(0) ( 9 = } Rs(0) - Ry(0) 

= RS(0) - i - r \H(co)\2Sx(u)duj ( 9 ^ 5 ) Rs(0) - J - f0 \H(u)G{u)\2dw 
Z7T J-oo Z7T J~oo 

= Rs(0) - l°° \H'{U)\2<LJ [by Fig. 9.5 and (9.15)] 

= # s(0) - /°° |h'(t)|2d£ (by Parseval theorem) 
f OO Q 

i?s(0) — / |J? S5(r)| clr for causal Wiener filter 
9oo 9 

Rs(0) — / \Rsx(r)\ dr for noncausal Wiener filter 

(9.19) 

where the last equation above follows from the fact that the causal Wiener filter 
has its hf(t) given by (9.16) while the noncausal Wiener filter has 

h'{t) = Rsx{t) 

Note that the causal filter has a larger MSB than the noncausal filter. 
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9.4 The Wiener Filter 

The solution of (9.14) for the white input X(t), which has autocorrelation Rx(r) = S(r) 
since Sx(u) = 1, is given by 

hf(t) = R3X(t + t0)u(t) 

where u(t) is the unit step function. Similarly to (9.11), we have (replacing y with x) Rsx{r) = 
RSX(T) T ) , which leads to, by convolution and conjugate properties of Fourier transforms, 

S*(u>) = S8X(UJ)H*W(UJ) 

Hence, we have 

HRS*(T + to)} = Sai{uj)e?^ = Sax{u;)Hl{uj)e^ 

Then, the causal Wiener filter for white input X(t) is given by 

(9.20) 

fOO 

H'(u) = F[h'(i)] = / Rs,(T + t^e-^dr 
Jo 

- r 
Jo G*(u) 

SSX{UJ) ,JutQ 

G*{u) 

which reduces to (9.17) for tQ = 0. Consequently, the causal Wiener filter for random input 
with a rational power spectrum is given by 

H(u) 
L r° 

to) Jo 
Jut0 

G*(UJ) 
e~jwtdt = 

1 

G*{UJ) 

which clearly reduces to (9.18) for t0 = 0. 
Note that the noncausal Wiener filter (9.10) can also be written in a form similar to the 

above: 
#(W) = ^fMe**. = 1 

G*{w) SX(UJ) G(UJ) 

The above methodology based on spectral factorization and whitening techniques is general. 
It also works for input X(t) with a power spectrum that is not rational. The spectral factorization 
is very simple for a rational function but is quite difficult for a general function, which calls for 
a more sophisticated function theory. Since techniques for approximating arbitrary power spectra 
by rational functions are available, it is often sufficient in practice to consider only rational 
functions. 

Note that (9.11) implies that 

Rsy(r) = Rsx(r) * h*(-r) = » Ssy(uj) = S3X(UJ)H*(UJ) 

Furthermore, for the (causal or noncausal) Wiener filter, we have 

(9.9) or (9.14) R8X(T) = Rx(r) * h(r) =4> Ssx{u) = H(U)SX(LJ) 

(9.11) and (9.21) Rsy(r) = Ry(r) Ssy(u) = Sy(UJ) 

(9.21) 

(9.22) 
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9.4 The Wiener Filter 

Example 9.3: Causal and Noncausal Wiener Filters for White Noise 

Consider a noisy input X(t) = S(t) + N(t), where N(t) is zero-mean white 
noise with Sn(uj) = 1, independent of the signal S(t) with power spectrum 

S(t) and zero-mean N(t) are orthogonal since they are independent. Thus 

•2 2 + ju 2 - ju 
Q , v (7.38) c / x . c / x 4 + CJ 

6 x(o;) = Ss{u) + Sn(u) = ——-
1 + or 

Ssx(u) (?=9) Sa(u) 

Hence, we have 
Ssx(u) 3 I - ju 

1+ JU 1 — J C J 

G(UJ) G*(u) 

1 

= G(u)G*(w) 

+ G*(u) l+u22-ju {l+ju)(2-ju) l+ju 2-ju 

Its causal (and stable) part is j ~ (poles and zeros are in the left-half s-plane). 
Thus, the (non)causal Wiener filters are given in frequency domain by, for to = 0, 

H' •causal (9.18) {u) = 1 S8x(u) 
G(u)lG*(u) 

1 + ju 1 1 
2 + ju 1 + j u ; 2 + ju 

Ssx(u) 3 1+u2 3 
Sx(u) G(u)G*(u) l + u2i + u2 4 + u2 

or in time domain by (from inverse Fourier transforms) 

hcmsa\t) = e-2tu{t), 2t„ Kt) = - £P-2|t| 

The corresponding minimum mean-square errors are given by (9.19) as 

^ n S a l = ^ r - \HCama\u)\2Sx(u)]du 
ATT . /—OO 

1+ u2 

Jr=0 

1 4 + U 2 

4 + u2 1 + a>2 

•|ff(a;)!25x(a;)]rfa; 

9 4 + a;2 

uz 4- 1 r=0 

1 + (4 + w 2 ) 2 1 + 'J2 

= JF-l • 3 • '^ e-2 | r |" 

T=0 Lu2 + 4. T=0 4 T=0 
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9.5 Summary and Requirements 

The Wiener Filter for ae Arbitrary Desired Response 

In fact, the Wiener filter can be used to minimize the mean-square error between the output and 
a desired output, which is not necessarily the time-shifted version of the input signal S(t +1 0 ) . 
Let D(t) be the desired output. Then the mean-square error between the actual output Y(t) and 
D(t) is: 

£ = E{\D(t) - Y(t)\2} = E{\D(t) - [X(t) * h(t))\2} 

The Wener-Hopf equation for this problem is 

Rdx(r) = h(r) * Rx(r) 

where i ? ^ ( r ) is the crosscorrelation between D(t) and the noisy input X(t). The corresponding 
Wiener filters are 

noncausal: H(u) = ^j^) 

causal: H(UJ) = 
1 

G{UJ)[G*(UJ). 

which have the following minimum mean-square errors: 

/
oo 

Rdx(r)h(r)dr 
-oo 

too 
causal: £min = Rd(0) - / Rdx(r)h(r)dT 

io 

9.5 Summary and Requirements 

An optimal linear system is a linear system that is optimal under some optimality criterion. Two 
such optimal systems are studied in this chapter: the matched filter and the Wiener filter. 

The matched filter maximizes die output signal-to-noise ratio (SNR), defined by 

SNR — ( a v e r a & e ) s % n a l P o w e r 

(average) noise power 

For the case of a deterministic signal s(t) corrupted by white noise, the matched filter has the 
form 

h(t) = Ks*(t0 - t) 

where t 0 is the time at which the output SNR is to be maximized. Such a filter is in general 
noncausal. Its causal version is 

h(t) = Ks*(to-t)u(t) 

It has an SNR proportional to the total signal energy through time t0, smaller than the signal's 
total energy, which corresponds to the SNR of the noncausal matched filter. 

430 



9.6 Additional Examples 

The Wiener filter minimizes the mean-square error between the output and the signal part of 
the input. The key to the Wiener filter is the Wiener-Hopf equation: 

R8x(T-¥t0) = h(T)*Rx(r) 

which relates the crosscorrelation R3X(r + to) (between input signal S(t) and the noisy input 
X(t)) with the autocorrelation Rx(r) of X(t) through the system h(t). Solving it using Fourier 
transform yields the (noncausal) Wiener filter 

where Ssx(u) and Sx(u) are the power spectra corresponding to R3X(r) and Rx(r). The above 
filter is noncausal. I f only causal systems h(t) = 0 5 1 < 0 are considered, the corresponding 
Wiener-Hopf equation is in general not easy to solve. The general causal Wiener filter for 
colored noise is the cascade of a whitening filter Hw(w) = and the Wiener filter H'(uS) for 
white noise: 

H(u>) = Hw(uj)Hf(u;) -
1 + 

G{w) 

where G(u) is such that Sx(UJ) = G(u)G*(u) and [F(o;)] + is the causal and stable part of F(u), 
which can be obtained easily by spectral factorization and partial fraction expansion i f Sx(u) is 
rational. 

Basic Requirements 
• Understand the concept of an optimal system and the underlying optimality criteria for the 

matched filter and the Wiener filter. 
• Master the concept of signal-to-noise ratio. 
• Know how to determine the causal and noncausal matched filters for white noise case and 

the corresponding maximum SNRs. 
• Know how to obtain the causal and noncausal Wiener filters for input with rational power 

spectrum and the corresponding minimum mean-square errors. 

9.6 Additional Examples 

9.4 Optimal linear differentiator in the presence of noise. An LTI system is intended to be 
a differentiator; that is, its output is the differentiation of its input. I f the input is noisy, 
however, the output could be extremely noisy. It is desired that the output is approximately 
the differentiation of the signal part S(t) of the input X(t) = S(t) + N(t), where S(t) and 
N(t) are uncorrelated and have zero mean and power spectra S8(UJ) and n (cj) , respectively. 
Find the optimal linear system that minimizes the mean-square error between its output 
Y(t) and ftS(t). 
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9.7 Problems 

Solution: The optimal linear system that minimizes the mean-square error between its 
output Y(t) and ftS(t) is the Wiener filter with the desired output D(t) = jj~S(i). Since 

.7 Problems 

9.1 SNR optimalization by parameter adjustment. The RL circuit of Example 8.8 has a 
random input X(i) = sin(o;o + 4>) corrupted by zero-mean white noise with Sn(uj) = So, 
where <f) ~ W(0, 2TT) is independent of N(t). 

(a) Find the average steady-state power of the response to the random signal. 
(b) Determine the values of R/L and a such that the average output SNR is maximized. 

9.2 Matched filter for white noise. Consider a deterministic signal 

corrupted by white noise with S(LJ) = 2. 

(a) Find the causal matched filter for s(i) at an arbitrary but fixed time t0. Find the 
output SNR of this filter. 

(b) Find the smallest time t0 at which this causal matched filter yields largest output 
SNR. Find its output SNR at this time. 

(c) Find the response of the matched filter obtained in (b) to deterministic signal s(t). Is 
it good to use the matched filter to recover s(t) from the noisy input? Why? 

9.3 Signal recovery performance of matched filter. For Example 9.2, find the response s0(t) 
of the causal matched filter with to = 5 to s(t) = 10e~'u(£). Compare sQ(t) with s(t). Is 
it good to use the matched filter to recover s(t) from the noisy input? 

9.4 Matched filter for triangular signal. Consider the deterministic signal 

Sdxjv) = SsxJUj) __ jidSsx(uj) 
SX(UJ) SJu) Sx(u) 

0 < t < 20 
elsewhere 

elsewhere 
1*1 < r 

corrupted by white noise N(t) with power spectrum S„(to) = SQ. 
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9.7 Problems 

(a) Plot s(t). 
(b) Find the noncausal matched filter, matched to s(t) at to = T/2, and the corresponding 

output SNR. 
(c) Find the causal matched filter, matched to s(i) at t0 = T /2 , and the corresponding 

output SNR. 
(d) Is i t good to use the (causal or noncausal) matched filter to recover the input signal 

from the output? Justify your answer. I f yes, how large is the error between the 
output and the input signal? I f no, suggest an alternative filter for this job (signal 
recovery). 

9.5 Wiener filter. The sum X(t) of a signal S(t) and noise N(i) is a white random process 
with SX(UJ) = 3, where S(t) and N(t) are orthogonal. The cross-power spectrum between 

4 
S(t) and X(t) is S8X(UJ) = ——-. Find the causal and noncausal Wiener filters (for u2, + 1 
to = 0) in both frequency and time domains. Find the corresponding mean-square errors. 

9.6 Wiener filter. We would like to design a causal Wiener filter H(OJ) for an input X(t) = 
S(t) + N(t), where the signal S(t) and noise N(t) are independent, with power spectra 

1 UJ2 

SS(UJ) = 9 , 1 and Sn(u) = respectively, 
or -t-1 UJZ + 1 

(a) Determine H(cu) for the Wiener filter and the mean-square error between S(t) and 
the output Y(t). 

(b) Determine H(co) for the optimal realizable Wiener filter and the mean-square error 
between S(t) and the output Y(t). 

9.7 Wiener filter. Consider a noisy input X(t) = 3S(t) + N(t), where N(t) is zero-mean 
white noise with Sn(uj) = 1, independent of the signal S(t) with power spectrum Ss(u) = 

1 
2 +a;2"" 

(a) Find the causal and noncausal Wiener filters in both time and frequency domains that 
minimize E{[S(t) - Y(t)}2}. 

(b) Find the minimum mean-square error E{[S(t) — Y(t)]2}. 

9.8 From noncausal to causal Wiener filter. The noncausal Wiener filter for a random input 
X(t) with power spectrum Sx(u) = 4 is given by 

h(t) = 2e- 3W 

Find the causal Wiener filter in time domain for this input. 

9.9 From noncausal to causal Wiener filter. The noncausal Wiener filter for a random input 

X(t) with power spectrum SX(UJ) = • •• is given by 
UJ - j - 1 

h(t) = 2e-3l*l 
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9.7 Problems 

Find the causal Wiener filter in time domain for this input. 

1 
9.10 Causal Wiener filter for signal recovery. A random signal S(t) with Sa(u) 

a2S 
is corrupted by colored noise with Sn(u) = 2 ° 2 that is independent of S(t). Find 

o; 2 + l 

!?L 

u'z + a2 

the causal Wiener filter that reconstructs the signal with a minimum £{[5(1) — F ( t ) ] 2 } , 
where Y(t) is the output of the filter. 

9.11 Signal recovery by Wiener filter. A random signal X(t) satisfies the following equation 

±X(t) = ~X(t) + W(t) (9.23) 
at 

where W(t) is white with Sw(u) = 3. It is observed (measured) as Z(t) in the presence 
of white noise N(t) with spectrum Sn(uj) = 1 and independent of X(t): 

Z{t) - X(t) + N(t) (9.24) 

(a) Find the autocorrelation and power spectrum of X(t). 
(b) Find the noncausal Wiener filter to recover X(t) from Z(t). 
(c) Design the causal Wiener filter to recover X(t) from Z(t). 
(d) Find and compare the mean-square errors of the two Wiener filters. 

9.12 Wiener filter. Given a random process X(t) = S(t) + N(t) where the random signal S(t) 
and noise N(t) are orthogonal and have zero mean and autocorrelations Rs(r) = e~'Tl 
and RS(T) = e _ 2 , r l , find the causal Wiener filter. 

9.13 Most probable value. Suppose that a system's output Y(t) is the response to the input 
X(t) corrupted by additive noise N(t) that is independent of X(t), where X(t) for any 
given time is a random variable X(t) ~ W(0,6) and the noise has the marginal PDF 

fn(x) = 0M(x - 2) + 0 . 5 % - 14) 

What is the most probable value of X i f we observe that Y = 8? 

9.14 Optimal bandwidth. We would like to design an ideal lowpass filter with the following 
frequency response 

H(u;) = l 1 ~ W 

^ ' \ 0, elsewhere 
for an input X(t) = S(t) + N(t), where signal S(t) and noise N(t) are independent, with 
power spectra given below for the positive u: 

' I 0 < u < 20 
SS(QJ) = { 0.5 40 < < 60 

0 elsewhere 

Sn(") = j j 10 < UJ < 50 
elsewhere 
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9.8 Computer Exercises 

Determine the optimal bandwidth W such that the output SNR is maximized. 

U 5 Puzzling questions. Raise two technical questions of your own that you are puzzled by 
and that are closely related to the material covered in this chapter. These questions should 
be important, not too simple, and not too involved. 

8 Computer Exercises 

9.1 Matched filter. A random process X(t) is the sum of a deterministic signal s(t) = 
sin(1207rf) and zero-mean Gaussian white noise N(t) with intensity 2. 

(a) Find the matched filter for time to = 2 for this problem theoretically. 
(b) Use the companion software P&R to generate a 2400-point discrete-time (with sam-

pling rate of 600 Hz) sample function of X(t). 
(c) Write a MATLAB routine to generate the response of the above matched filter to the 

input X(t). 
(d) Calculate output SNR of the matched filter. 
(e) Compare the output and input waveforms of the matched filter and comment on their 

difference. Can we have another LTI system that yields a smaller difference between 
the input and output? Can we have another LTI system that yields a larger output 
SNR? 

9.2 Wiener filter. A random process X(t) is the sum of a deterministic signal S(t) = 
sin(1207r£ + 6) and zero-mean Gaussian white noise N(t) with intensity 2, where 6 ~ 
W(0,27r), 6 and N(t) are independent. 

(a) Find the causal and noncausal Wiener filters for time t0 = 0 for this problem theo-
retically. 

(b) Use the companion software P&R to generate a 2400-point discrete-time (with sam-
pling rate of 600 Hz) sample function of X(t). 

(c) Write a MATLAB routine to generate the response of the noncausal Wiener filter to 
the input X(t). 

(d) Calculate output SNR of the Wiener filters. 
(e) Compare the output and input waveforms for the Wiener filters, respectively. Com-

ment on their differences. Can we have another LTI system that yields a smaller 
difference between the input and output? Can we have another LTI system that yields 
a larger output SNR? 
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9.9 Self-Test Problems 

9.9 Self-Test Problems 

9.1 Answer the following questions briefly. 

(a) What is the optimality criteria for the matched filter and the Wiener filter? 
(b) Is the matched filter for white noise case unique (i.e., are two matched filters for the 

same signal at a given time with the same white noise always identical)? 
(c) Given an arbitrary deterministic signal corrupted by white noise, can we have an LTI 

system that is the matched filter for different time? 
(d) Is it good to use the matched filter to recover the signal in the input? 
(e) Which one has a smaller mean-square error, the noncausal or causal Wiener filter? 
(f) Can a nonoptimal noncausal system have smaller mean-square error than the causal 

Wiener filter? 
(g) Can a causal system have smaller mean-square error than the noncausal Wiener filter? 
(h) What is the relation between the Wiener filter for colored noise and for white noise? 

9.2 Find the causal Wiener filter for a random process X(t) that is the sum of a random signal 
S(t) with autocorrelation Rs(r) = \e~^ and zero-mean noise N(t) with autocorrelation 
Rn(r) = |e™"2'Tl, where S(i) and N(t) are uncorrelated. 

9.10 Solutions to Self-Test Problems 

9.1 (a) The matched filter maximizes the output SNR while the Wiener filter minimizes the 
mean-square error between the output and the signal. 

(b) No. The matched filters for white noise case are not unique. They can be different 
by a proportionality factor. 

(c) No. The impulse response function of the matched filter depends on the time instant 
at which the match is sought and thus the matched filter in general cannot be time-
invariant. 

(d) No. The matched filter maximizes the output SNR but its output may differ substan-
tially from its input signal and is thus not suitable for signal recovery. 

(e) The noncausal Wiener filter in general has a smaller mean-square error than the causal 
one. 

(f) Yes. The causal Wiener filter is optimal (have smallest mean-square error) only of 
all causal systems. 

(g) No. The noncausal Wiener filter is optimal (have smallest mean-square error) of 
all (causal and noncausal) systems and thus a causal system cannot have smaller 
mean-square error than the noncausal Wiener filter. 

(h) The Wiener filter for colored noise is the cascade of a whitening filter and the Wiener 
filter for white noise. 
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9.10 Solutions to Self-Test Problems 

9.2 Since S(t) and zero-mean N(t) are uncorrelated, they are orthogonal. Thus 

(7.38) 
Sx{u) = Ss(u) + Sn(u) 

5 +2a; 2 

( l + w2)(4 + w 2) 

(1 + ju)(2 + ju) (1 - ju)(2 - ju) 
^ min, iimmm,mmi n J V imm iiiiiiiniiiininiiiir i i niinii II -* 

G(u>) 

G(w)G*(a;) 

Hence, we have 

Ssx{u) (?=9) Ss(u) 
1+u2 

1 ( l - j w ) ( 2 - j w ) 
1 + 1 - V^Cv^S - jw) 

2-ju 
y/2(y/2X-jcj)(l+jw) 
0.822 

+ • 
0.115 

1 + ju ' v/2.5 - ju 

Its causal (and stable) part (poles and zeros are in the left-half s-plane) is 

Ssx(u) 
lG*(u) 

0.822 
1+ju 

Thus, the causal Wiener filter is given in frequency domain by 

IT f \ ( 9 ' 1 8 ) 

H(u) = 
1 

G(u) 
Ssx(u) 
G*(u) 

(1 + ju){2 + ju) 0.822 
V2(V2l + jw) 

2 + ju 
= 0.582 

/ 2 J 5 + ju 
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A 
COMPANION SOFTWARE P&R 

The companion software package is written in MATLAB and runs in a Windows environment. 
It is entirely menu-driven and is intended to be extremely user-friendly. It does not require the 
knowledge of any programming language, including MATLAB. However, a basic knowledge 
of MATLAB helps the reader run P&R more effectively and smoothly. Many of the computer 
exercises included in this book would require too much computer programming effort without 
this companion software. 

Fig. A . l shows the main window of P&R, along with some of its menus. 

B^mmm; PDF/FW l̂ btes ĝc©r*tfe PliBiiJBBWf M̂ t̂o****** ^iken&mm? f^PAjp.mmr 

LouNoi'iiaJ 

Figure A.1: The main window of P&R. 
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Companion Software P&R 

P&R can be activated by double clicking on the P&R icon. It can also be activated by typing 
m a i n at the MATLAB prompt when the current working directory is the one that houses P&R 
(i.e., where m a i n . m of P&R is located). 

P&R is capable of the following tasks: 

• generating random numbers with a variety of commonly used one- and two-dimensional 
distributions 

• plotting probability density (or mass) functions of a variety of commonly used one-dimensional 
distributions 

« looking up tables of probability distributions and percentiles of a variety of commonly used 
one-dimensional distributions 

• plotting histograms, empirical PDFs, and scatter diagrams of data 
• identifying distributions of data 
• generating random processes, including Gaussian processes, random sinusoids, and random 

pulse trains 
• estimating means, correlation functions, and power spectra of random processes 
• generating responses of linear systems 
• solving all computer exercises (instructor's version only) 
• performing other miscellaneous tasks 

Generation of Random Numbers. P&R can be used to generate random numbers having 
the following distributions 

• one-dimensional binomial, chi-square, exponential, Gaussian, log-normal, Poisson, Rayleigh, 
uniform, and Weibull distributions 

• two-dimensional correlated as well as uncorrelated jointly Gaussian distributions 

The procedure for generating random numbers is simple, as demonstrated in Example 3.33 for a 
chi-square distribution and in Example 4.16 for a jointly Gaussian distribution. 

Plotting PDF/PMF Curves. The procedure for plotting the probability density (or mass) 
functions of binomial, chi-square, exponential, Gaussian, log-normal, Poisson, Rayleigh, uniform, 
and Weibull distributions by P&R is illustrated in Example 3.16 for a continuous distribution 
and in Example 3.17 for a discrete distribution. Knowledge of the PDF/PMF curves of various 
distributions is useful in, e.g., identifying the distribution of data. 

Looking Up Distribution Tables. Example 3.12 illustrates the procedure for finding the 
probabilities (i.e., CDF) or tail probabilities of binomial, chi-square, exponential, Gaussian, log-
normal, Poisson, Rayleigh, uniform, and Weibull distributions using P&R. It is because of this 
capability of P&R that no probability tables are provided in this book. 

Determination of Percentiles. No percentile tables are provided in this book because P&R 
provides a simple means to determine the percentile points of binomial, chi-square, exponential, 
Gaussian, log-normal, Poisson, Rayleigh, uniform, and Weibull distributions. This can be done 
according to the following simple steps (using the chi-square distribution as an example): 

S I . Click "Percentile" in the main window of P&R. 
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Companion Software P&R 

52. Click "ChiSquare." The "Percentiles of Chi-Square Distribution" window wi l l appear. 
53. Enter "2" for D.O.F. (degrees of freedom) and '0.99" for Percent, as shown in Fig. A.2. Click 

"Ok." The 99% percentile point of the (standard) chi-square distribution with two degrees 
of freedom wil l then appear in the grey box as x = 9,2103. 

0 99 

Illlllllllllî ^̂ ^̂ BB̂ ^̂ K̂̂ ÎIlllllllllll 

Figure A.2: Determination of chi-square percentiles by P&R. 

Plotting Histograms. P&E can be used to plot the histograms of data, as illustrated in 
Example 3.34. The data should be arranged in columns. One histogram wi l l be generated from 
each column. The corresponding histograms wi l l be overlaid i f two or more columns of data are 
present. 

Distribution Identification. The "identification" menu in P&R can be used to identify the 
one-dimensional distribution of a given set of data. The following example assumes that the data 
are contained in the file e5_4 . d a t in the subdirectory of P&R. 

51. Plot the histogram of the data as described above and illustrated in Example 3.34. The 
histogram is given in Fig. A.3. 

52. Choose a candidate distribution with a theoretical PDF/PMF curve resembling the histogram 
in shape.1 Suppose that a chi-square distribution is chosen by an inspection of the histogram 
and Fig. 3.12. 

53. Click "Identification" in the main window of P&R. Point to "Estimation and Validation" and "1_-D 
Distribution." Then choose (click) the candidate distribution identified above (i.e., "ChiSquare" 
for this example). 

1 Knowledge of the shapes of various PDF/PMF curves is clearly beneficial here. Such knowledge can be gained 
by plotting the PDF/PMF curves of various distributions using P&R as described above. 
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Companion Software P&R 

54. Choose the correct subdirectory and the data file that contains the data (i.e., e5_4 . d a t under 
d a t a subdirectory in this example). The "Parameter Estimation5' window for the candidate 
distribution wi l l appear with the estimated parameters of the distribution from the data, that 
is, the sample mean, sample variance, estimated a and degrees of freedom for this example 
with the chi-square distribution. 

55. Click "Validate." Two curves wi l l appear, one being the empirical PDF (i.e., the approximate 
PDF obtained from the data, which is the histogram with the correct scale as a PDF) and 
the other the theoretical PDF using the estimated parameters. 

56. I f the two curves are sufficiently close, the candidate distribution with the estimated parame-
ters may thus be identified as an approximate theoretical distribution of the data. Otherwise, 
repeat Steps 2 through 5 for another candidate distribution. For the chi-square distribution 
in the current example, the two curves are not close enough, as shown in Fig. A 3 , and thus 
we may try a Weibull distribution. This then becomes exactly Example 5.4. 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

1 ] 0Q 

^^HlBi l i l 

- . .HMJ Itlll 4 hi'.qiJiiri' f ii-

Figure A.3: Identification of the distribution of data by P&R. 

Plotting Empirical PDFs. A plot of the empirical PDF of a set of data can clearly be 
obtained by following Steps 3 through 5 in the above "Distribution Identification" task by using 
any continuous distribution as the candidate. 

Calculation of Sample Statistics. P&R can be used to calculate the sample statistics of data, 
including the sample mean and sample variance for one-dimensional distributions and additionally, 
the sample crosscorrelation, sample crosscovariance, and sample correlation coefficient for two-
dimensional distributions. This is demonstrated in Example 4.8. 

Plotting Scatter Diagrams. The scatter diagram of a set of two-dimensional data can easily 
be plotted using P&R, as illustrated in Example 4.8. The data should be arranged in two columns. 
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Companion Software P&R 

Generation of Gaussian Processes. It is a simple task to generate a white or correlated 
Gaussian random process with an exponential autocorrelation using P&R. This is illustrated in 
Example 6.18. The generated random process is in a column format. 

Generation of Random Pulse Trains. Example 6.3 demonstrates the simple procedure for 
generating a pulse train with time-varying or time-invariant random amplitude and/or pulse width. 
The generated random process is in a column format. 

Generation of Random Sinusoids. Sinusoids with random amplitude, phase, and/or fre-
quency can be generated easily by P&R, as illustrated in Example 6.8. The generated random 
process is in a column format. 

Time-Domain Analysis. Examples of time-domain analysis of random processes by P&R 
can be found in Examples 6.13 through 6.15 and in Example 6.17. The analysis includes the 
estimation/computation of means, variances, autocorrelations, autocovariances, correlation coeffi-
cients, crosscorrelations, crosscovariances, and crosscorrelation coefficients. The random process 
to be analyzed should be in a column format. 

Frequency-Domain Analysis. P&R can be used to estimate the power spectra of random 
processes. This is demonstrated in Examples 7.8 through 7.10. The random process to be 
analyzed should be in a column format. 

Generation of System Responses. P&R includes a response generator for LTI systems, 
including lowpass, bandpass, bandstop, highpass, and rational systems. This is demonstrated in 
Examples 8.9, 8.11 and 8.13. The input random or deterministic process should be in a column 
format. 

Miscellaneous Tasks. P & R can also be used to perform some other tasks, including con-
ducting Bernoulli trials (Example 2.25), calculating its relevant probabilities (Example 2.26), and 
performing linear regression (Example 5.14). 
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B 
TIPS FOR USING MATLAB 

MATLAB is a technical computing environment which is particularly convenient for math-
ematical operations involving vectors, matrices, and/or arrays. MATLAB also possesses good 
plotting capabilities for the visualization of data. 

Although the companion software P&R runs under MATLAB, the use of P&R does not 
require the knowledge of MATLAB. However, a good knowledge of MATLAB does help the 
reader make better use of P&R mainly in two aspects: entering mathematical expressions into 
P&R and utilizing the results obtained by P&R. 

Table B . l presents a sample of MATLAB rales useful for entering a mathematical expression 
into P&R. 

Table B.1: A sample of useful MATLAB rules for operations. 
Operation Formula MATLAB Example 

Multiplication ab a * b 2 . 5 * 4 . 6 
Power ab a ' b 4 . 3 ~ 4 

Square root \/a s q r t ( a ) s q r t ( 4 . 3 ) 
Absolute value \a\ a b s ( a ) a b s ( - 4 . 3 ) 

Exponential function e~x e x p ( - x ) e x p ( - 4 . 3 ) 
Sine function sinx 

TT 

1.5 x M r 8 

s i n (x ) 
p i 

1 . 5 e - 8 

s i n ( p i / 3 ) 

Element-by-element 
multiplication 

[aibi] or [aijbij] a . * b 
a = [ l , 2 ] b = [ 3 , 4 ] ' 
a . * b = [ 3 , 8] ' 

Element-by-element [a?] or [a* ] a '"3 
a = [ 2 , 3 ] ' 

power [a?] or [a* ] d • «J a . * 3 = [ 8 , 27] ' 

Examples of MATLAB commands that are useful for utilizing the results of P&R are listed 
in Table B.2. 
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TIPS FOR USING MATLAB 

Table B.2: Examples of useful MATLAB commands. 

MATLAB command Explanation 
c d d a t a 
c d . . 
h i s t ( z , 2 0 ) 
l o a d e4_l . d a t 
save e 4 _ l . d a t z - a s c i i 
x = r a n d ( 1 0 0 , 1 ) 
x=randn(100 / 1 ) 
x = 2 * r a n d ( 1 0 0 / l ) - l 

y=mean(x) 

y = v a r ( x ) 
y = s q r t ( x ) 

Y=sqrtm(X) 
y = ( x - a ) . " 2 

z=[x , y ] 

Change working directory to subdirectory d a t a 
Change working directory to parent directory 
Generate histogram(s) of data contained in z using 20 bins 
Load data from file e 4 _ l . d a t to a matrix named e 4 _ l . da t 
Save variable z as ascii data into file e 4 _ l . d a t 
x is a vector of 100 independent W(0,1) random numbers 
x is a vector of 100 independent jV(0,1) random numbers 
x is the vector with each element equal to twice the 
corresponding random number minus 1 
y is the average value of the elements of x, i.e., 
y is the sample mean of the data contained in x 
y is the sample variance of the data contained in x 
Equivalent to y=x. ~ ( 1 / 2 ) , meaning yt = xLJ2 or i 
elements of y are the square of the corresponding elements of x 
Y is the square-root matrix of X, i.e., X = YYf 

Each element of y equals the square of the corresponding 
element of x minus a 
z is the matrix formed by columns of x and y 

1/2 
. T • • 

The following two documents are good for getting started with MATLAB: User's Guide of 
the Student Edition of MATLAB, and Getting Started with MATLAB, which is distributed along 
with MATLAB. For more information, consult the MATLAB User's Guide. 

Some tips for writing and running a MATLAB program are: 

• Take advantage of the help capabilities whenever using the software. MATLAB provides 
two good online help mechanisms: either from the "Help" menu in the MATLAB window or 
by typing "help" followed by a word/command/function in question at the MATLAB prompt. 

• Run your programs as well as P&R from a special directory on your hard disk. It takes 
much less time running a program using files on a hard disk than on a floppy disk. 

• Start each program file with one or more comment lines explaining what the file is for. This 
will save you a lot of time later when trying to figure out what the file is for. A comment 
line is preceded by a % character. 

• Before you start to make major modifications in a file that works, save the file under another 
name. 

• Save frequently what you have written when you are writing a program. 
• Use matrix operations directly as much as possible and avoid do, f o r and/or w h i l e loops 

if possible. This often reduces the computational time in MATLAB to a surprising degree. 
• Avoid a program with too many lines. Break it down using smaller subroutines. 
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3-dB bandwidth, 394 

A posteriori probability, 36 
A priori probability, 36 
Absolutely continuous, 70, 71 
Acceptance-rejection method, 117, 200 
Addition rale of probability, 22 
Adjoint system, 382 
Alternative hypothesis, 237 
Analysis of variance, 221 
Archimedes, 21 
Asymptotically stationary, 271, 368 
Asymptotically unbiased, 283 
Autocorrelation, 265, 266, 275, 275-280, 295 

of derivative, 304 
output, 396 
properties, 279, 280, 304, 324 
response, 367 

Autocorrelation function, see autocorrelation 
Autocovariance, 265, 266, 295 
Autocovariance function, see autocovariance 
Average, 100, 101, 103, 124, 160 
Average cross power, 339 
Average output, 396 
Average power, 272, 279, 280, 319, 320, 323, 345 

response, 367, 375, 376 
sinusoid, 346, 351 
various components, 299 

Average score of a class, 224 
Average value, see average 
Axiom, 20 

Axiom 3, 21 
countable additivity, 20 
finite additivity, 20 
nonnegativity, 20 
unity, 20 

Axiomatic method, 21 

Bagehot, W., 1 

Bandlimited white noise, 328, 329, 384 
Bandpass, 329 
Bandpass filter, 384 
Bandpass system, 375, 384 

response, 375, 443 
Bandpass white noise, 329, 353, 396 
Bandstop system 

response, 443 
Bandwidth, 328, 329, 369, 384, 386, 392, 393 

3-dB, 394 
equivalent noise, see equivalent noise bandwidth 
half-power, 394 
noise-equivalent, see equivalent noise bandwidth 
optimal, 434 
system, 393 

Bayes' formula, 36 
Bayes' rale, 36* 36-39, 47 
Bayes' theorem, 36 
Benoulli distribution, see binary distribution 
Bernoulli random variable, see binary random variable 
Bernoulli trials, 41, 45, 47, 60 
Bias, 233 
BIBO stability, 364 
Bin, 119, 120 
Binary distribution, 98 

mean, 110 
variance, 109, 110 

Binary random variable, 98, 109 
Binomial coefficient, 41 
Binomial distribution, 91 

approximation, 91, 98, 139 
mean, 110 
table, 440 
variance, 110 

Binomial random variable, 99 

Cauchy distribution, 113, 185 
Causal, 243, 363, 365 
CCF, see crosscorrelation function 
CDF, see cumulative distribution function 
Censored Gaussian, 115 
Center frequency, 384 
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Center of gravity, 103 
Centra! limit theorem, 90, 90-92, 124, 181, 238 
Central moment, 101, 160 
Centroid, 100 
Chain role, 25 
Characteristic function, 122 
Chebyshev inequality, 104 
Chi-square distribution, 93 

mean, 110, 173 
percentile, 137, 440 
table, 440 
variance, 110, 173 

Chi-square test, 93, 239-241, 251 
Cicero, 1 
Colored noise, 327, 346 
Combination, 42 
Combinatorics, 42 
Combined experiment, 40 
Complement, 12, 22 
Conditional distribution, 114, 187 

jointly Gaussian, 189 
Conditional expectation, 188, 189 
Conditional mean, 188, 235 
Conditional probability, 24-27, 46 
Conditional probability density function, 114, 187 
Conditional probability mass function, 188 
Conditional variance, 189 
Confidence, 236, 253 
Confidence interval, 133, 238 

one-sided lower 95%, 241 
one-sided upper 95%, 241 
two-sided 95%, 239, 241 

Consistent, 234, 283 
Continuous random variable, 66, 148 
Convolution, 180, 181, 277, 344, 366 
Convolution sum, 181 
Correlation, 162-201, 243, 266, 274, 277, 344 

numerical evaluation, 167, 168, 211 
sum and difference, 205, 305 

Correlation coefficient, 162-201, 265, 266, 276, 295 
Correlation matrix, 170 
Correlation time, 277, 387 
Correlation time constant, 329 
Countable, 11 
Covariance, 162, 191, 266 
Covariance matrix, 170 
Cramer-Rao lower bound, 233 
Cross-energy spectrum, 339 
Cross-power spectral density, see cross-power spec-

trum 

Cross-power spectrum, 338, 339, 338-341, 346 
output and input, 396 
properties, 338 

Crosscorrelation, 275, 276, 295 
output and input, 366, 396 
properties, 289 

Crosscorrelation function, see crosscorrelation 
Cumulative distribution function, 70, 70-75, 123 

empirical, 228 
joint, 146 

properties, 149, 151 
marginal, 150 
properties, 72, 201 

Curve fitting, 221, 242 

DC component, 272 
De Mere, 32 
De Mere°s perplexity, 32, 59 
De Moivre, 87, 91 
De Moivre-Laplace theorem, 91 
De Morgan's laws, 14 
Decision, 230 
Decorrelation, 200 
Defect detection, 249 
Degrees of freedom, 93, 238-240 
Delta function, 76, 77, 82 
Dependent, 29 
Descriptive statistics, 221 
Deterministic, 2 
Deterministic random process, 262 
Die rolling, 16, 17, 23, 43, 56, 68 
Dirac function, 77 
Discrete delta function, 77 
Discrete random variable, 66, 148 
Discrete set, 15 
Discrete uniform distribution, 84 

mean, 134 
variance, 134 

Discrete-time random process, 262 
Disjoint, 10, 20, 31, 32, 34 
Disjoint probability, 55 
Disjoint union, 15 
Distribution 

binary, see binary distribution 
binomial, see binomial distribution 
Cauchy, see Cauchy distribution 
chi-square, see chi-square distribution 
conditional, see conditional distribution 
determination, see distribution determination 
discrete uniform, see discrete uniform distribu-

tion 
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empirical, see empirical distribution 
even, see discrete uniform distribution 
exponential, see exponential distribution 
Gaussian, see Gaussian distribution 
geometric, see geometric distribution 
identification, see distribution identification 
jointly Gaussian, see jointly Gaussian 
jointly normal, see jointly Gaussian 
Laplace, see Laplace distribution 
log-normal, see log-normal distribution 
normal, see Gaussian distribution 
Poisson, see Poisson distribution 
Rayleigh, see Rayleigh distribution 
student, see student distribution 
t, see t distribution 
tables, 440 
uniform, see uniform distribution 
Weibull, see Weibull distribution 

Distribution determination, 119 
Distribution identification, 229, 441 

Effective value, 272, 320 
Efficient, 233 
Element, 10 
Empirical cumulative distribution function, 228 
Empirical distribution, 228-229, 442 
Empirical probability density function, 228, 229, 245 
Empty set, 10, 15 
Energy function, 276 
Energy spectral density, 320, 321 
Ensemble, 261 
Ensemble autocorrelation, 272, 273 
Ensemble average, 270, 272, 273 
Equivalent noise bandwidth, 390, 389-394, 397, 406, 

407 
Ergodic, 270, 270-272, 295 

in autocorrelation, 272, 273 
in mean, 272, 273 

Ergodic hypothesis, 272 
Ergodic principle, 272 
Error function, 86 
Estimate, see estimation o r estimator 
Estimation, 230, 245 

autocorrelation, 307 
crosscorrelation, 308 
least squares, see least squares 
maximum a posteriori, see maximum a posteriori 
maximum likelihood, see maximum likelihood 
method of moments, see method of moments 
minimum mean-square error, see minimum mean-

square error 

power spectrum, 333 
Estimation theory, 221 
Estimator, 233 

biased, 282 
consistent, 234 
efficient, 233 
least squares, see least squares 
maximum a posteriori, see maximum a posteriori 
maximum likelihood, see maximum likelihood 
method of moments, see method of moments 
minimum mean-square error, see minimum mean-

square error 
unbiased, 233, 234, 251, 282 
variance, 233 

Euclid, 21 
Even distribution, see discrete uniform distribution 
Event, 16 
Exhaustive, 34 
Expectation, see a l s o expected value, 101, 100-105, 

124, 160 
properties, 105 

Expected GPA, 129 
Expected value, 100, 101, 124, 160 
Exponential distribution, 95, 231 

forever young property, 96, 130 
like-new property, 96, 130, 135 
mean, 108, 110, 134 
median, 134 
memoryless property, 96, 130 
percentile, 440 
table, 440 
variance, 108, 110, 134 

Exponential probability density function, 108 
Exponential random variable, 95, 116 

Failure rate, 231, 232 
Failure-time analysis, 206 
False alarm, 237 
Fermat, 32 
Filtering, 385 
Finite set, 11 
Finite-time integrator, 397, 405 
First moment, 101 
Fisher information, 233 
Fourier series, 317 
Fourier transform, 316, 344 

properties, 344 
table, 345 

Fraud probability, 56 
Frequency response, 363, 374 
Function of a random variable, 111 
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Function of random variables 
independence, 184 
joint probability density function, 184 

Galton, R, 87 
Gauss, K. E , 87 
Gaussian curve of test scores, 226 
Gaussian distribution, 85, 85-91, 124 

mean, 107, 110 
percentile, 88, 127, 133, 440 
standard, 86 
table, 88, 440 
variance, 107, 110 

Gaussian probabilities, 89 
Gaussian process, 292-294 

as output of a linear system, 394 
generation, 293, 308, 395, 443 
testing, 308 

Gaussian vector, 178 
Geometric distribution, 99 

forever young property, 99 
like-new property, 99 
mean, 110 
memoryless property, 99 
variance, 110 

Geometric probability, 17, 18 
Goodness of fit, 93 

Half-power bandwidth, 394 
Hand, D. J., 219 
Highpass system 

response, 443 
Hilbert, 21 
Histogram, 119, 441 
Hypothesis 

alternative, 237 
null, 237 

Hypothesis testing, 221, 230, 236-241, 245 

i.i.d., see independent and identically distributed 
Impossible event, 16 
Impulse function, 77 
Impulse response, 362 
Independence, 29, 42, 47, 56, 57, 157,157, 159, 169, 

170, 191, 292, 295 
by pairs, 30 
events, 29-33 
experiment, 42 
pairwise, see pairwise independence 
random process, 271, 287 
random variables, 157 

Independent and identically distributed, 220 
Inductive statistics, 221 
Infinite set, 11 
Innovations, 425 
Instantaneous power, 276, 280, 320 
Instrument calibration, 236, 239 
Intensity, 327 
Intersection, 12 
Inverse-transform method, 116 

Joint cumulative distribution function, 146, 190 
Joint event, 23 
Joint probability, 23, 46 
Joint probability density function, 147, 153, 190 
Jointly Gaussian, 175-179, 189, 191, 293 

parameter identification, 209 
Jointly Gaussian distribution, 175-179 
Jointly normal, see jointly Gaussian 
Jointly wide-sense stationary, 287, 295 
Jury verdict, 48 
JWSS, see jointly wide-sense stationary 

Keillor, G., 101 
Knuth, D. E . , 61 
Kolmogorov, A. N., 11, 21 
Kronecker delta function, 76, 77 

Lagrange, 21 
Laplace, 1, 9 
Laplace distribution, 132, 204 
Law of large numbers, 102 
Least squares, 235, 242, 243 
Life expectancy, 27 
Life insurance premium, 49 
Likelihood equation, 235 
Likelihood function, 231, 232, 237, 243, 248 
Likelihood ratio test, 237 
Linear correlation, 162 
Linear operator, 105 
Linear regression, 242-244, 253, 257 
Linear system, 362, 365 

white noise input, 383 
Linear time-invariant, 362 
Linearity property, 362 
Literary Digest poll, 222 
Log-normal distribution, 97 

mean, 110 
percentile, 440 
table, 440 
variance, 110 

Lowpass, 328 
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Lowpass filter, 386 
Lowpass system, 386 

response, 386, 387, 389, 443 
Lowpass white noise, 328, 353, 396 
LS, see least squares 
LTI, see linear time-invariant 
Lyapunov stability, 364 

Mae, M., 91 
MAP, see maximum a posteriori 
Marginal cumulative distribution function, 150, 190 
Marginal Gaussian, 178, 206 
Marginal probability density function, 153, 190 
Matched filter, 419-422, 430 

causal, 421, 422 
for colored noise, 420 
for white noise, 419 

Maximum a posteriori, 235 
Maximum likelihood, 231, 232, 234, 235, 242, 243, 

245, 247, 248 
distribution, 231 
failure rate, 231 
Gaussian mean and variance, 253 
Gaussian variance, 251 
log-normal distribution, 250 
Poisson distribution, 256 
Poisson population, 254 
properties, 234 . 
uniform distribution, 251 

Maximum SNR, 418-421 
Mean, see also expected value, 85, 101,124,160,265 

output, 366 
Mean absolute error, 416 
Mean error, 416 
Mean function, see mean 
Mean vector, 170 
Mean-square error, 233, 416, 423, 427 
Mean-square function, 265 
Mean-square value, 101, 266, 279, 319 
Median, 104 
Member function, 261 
Method of moments, 232, 235, 245, 247 

failure rate, 232 
Gaussian mean and variance, 253 
Gaussian variance, 251 
Poisson distribution, 257 
Poisson population, 254 
uniform distribution, 251 

Minimum mean-square error, 235, 429, 430 
Minimum mean-square error estimator, 235 
Minimum phase, 426 

Miss, 237 
Mixed random variable, 66, 148 
MLE, see maximum likelihood 
MMSE, see minimum mean-square error 
Mode, 104, 235 
Moment, 101, 124, 160 

method of, see method of moments 
Moment generating function, 122 
Montagu, A., 361 
Monte Carlo simulation, 117 
MSE, see mean-square error 
Multiple-choice problems, 52 
Multiplication rule, 24, 25 
Mutually exclusive, 20, 31, 32, 34, 46 

Narrowband system, 387 
Negatively correlated, 276 
Newton, 21 
Neyman-Pearson, 237 
Neyman-Pearson lemma, 237 
Noise, 2 
Noise removal, 385 
Noise-equivalent bandwidth, see equivalent noise band-

width 
Nonstationary, 270, 271 
Normal distribution, see Gaussian distribution 
Nuclear power plant, 33 
Null hypothesis, 237 
Null set, 10 

Occurrence of an event, 16 
One-to-one correspondence, 11 
Optimal linear system, 416, 430 
Optimality criteria, 416, 421 
Orthogonal, 169 

random process, 287 
random variable, 169, 170, 295 

Orthogonality of sine and cosine functions, 305, 310 
Outcome, 16 

Pairwise independence, 30, 57 
Papoulis, A., 73, 112 
Parameter estimation, 231-235, 442 
Parseval theorem, 320, 344, 417 
Partition, 34 
Pascal, 32 
Passband, 384 
PDF, see probability density function 
Pearson, K., 87 
Peirce, S., 145 
Percentile, 88, 240, 440 
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chi-square, see chi-square distribution percentile 
Gaussian, see Gaussian distribution percentile 
uniform, see uniform distribution percentile 

Periodogram, 333 
Permutation, 42 
Physically realizable, 327, 363 
PMF, see probability mass function 
Poincare, H . , 87 
Point mass, 72, 73, 76, 82, 147, 148 
Poisson distribution, 97, 98 

mean, 109, 110 
percentile, 440 
plotting curves of, 98 
table, 440 
variance, 109, 110 

Poisson random variable, 109 
Population, 220, 245 
Population size, 220 
Positively correlated, 276 
Power, see average power 

average, see average power 
instantaneous, see instantaneous power 
spectrum, see power spectrum 

Power function, 276 
Power gain, 374, 376 
Power spectral density, see also power spectrum, 319, 320, 

374 
Power spectrum, 319, 321, 345 

estimation, 355, 356, 443 
Laplace domain, 342 
output, 374, 396 
properties, 323, 324 
rational, see rational power spectrum 
sinusoid, 351 

Power system security, 58 
Power transfer function, 374, 376 
Prediction of election outcome, 250 
Principle of indifference, 19 
Principle of sufficient reason, 19 
Probability, 3, 46 

addition rule, 22 
classical, 17 
classical definition, 17 
complement of an event, 22 
conditional, 24 
geometric, 17 
geometric definition, 17 
joint, 23 
of communication error, 59 
of correct communication, 37 

of modem error, 53 
of set difference, 55 
of typos, 44 
relative-frequency definition, 17 
union of three events, 55 
union of two events, 22, 46 

Probability density function, 76, 76-82, 123 
conditional, 187 
empirical, 228 
joint, 147, 153 

properties, 153 
marginal, 153 
plotting curves of, 94, 440 
properties, 79 

Probability mass function, 76, 123, 151 
conditional, 188 
plotting curves of, 98, 440 

Product of random and deterministic processes, 310 
Product of random processes, 303 
Product rale, 24, 25 
PSD, see power spectral density 

Radar range determination, 281 
Random experiment, 16 
Random number, 440 

binary, 118, 138, 252 
binomial, 440 
chi-square, 118, 136, 440 
continuous, 116 
correlated Gaussian, 210, 211 
discrete, 118 
exponential, 116, 138, 252, 440 
Gaussian, 440 
jointly Gaussian, 179, 440 
log-normal, 440 
Poisson, 440 
Rayleigh, 136, 440 
ternary, 138, 252 
truncated Gaussian, 118 
uncorrelated Gaussian, 209 
uniform, 116, 136, 252, 440 
uniform over a circle, 200 
Weibull, 140, 440 

Random process, 3, 260, 261, 265, 295 
characterization, 265 
classification, 270 
continuous, 270, 271, 273 
continuous-state, 271 
continuous-valued, 271 
coupling, 275 
deterministic, 262 
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discrete, 270, 271, 273 
discrete-state, 271 
discrete-time, 262 
discrete-valued, 271 
independent, see independence, 271, 287 
mixed, 270 
orthogonal, 287 
similarity, 274, 275 
uncorrelated, 287 
weighted sums, 288 

Random pulse train, 260, 262 
generation, 263, 307 
generation , 443 
power spectrum, 334, 355 
testing, 307 

Random selection and sampling of waveform, 38 
Random selection of capacitor, 39 
Random sequence, 262 
Random signal, 2 
Random sinusoid, 278 

autocorrelation, 268 
correlation coefficient, 285, 308 
distribution, 264 
generation, 286, 307, 443 
mean, 268 
moments, 266, 267 
power spectral density, 355 
testing, 307 

Random system, 2, 363, 364 
Random time function, 261 
Random variable, 66, 85, 123 

continuous, 66, 123, 148 
discrete, 66, 123, 148 
extrema, 182 
function of, see function of random variable(s) 
mixed, 66, 148 
PDF of sum of, 180 
standardized, see standardized random variable 
sum, 181 
time-varying, 261 
value of, 66 
weighted sum, 172 

Random vector, 147, 154 
Randomness, 2 
Rational power spectrum, 426 
Rational system 

response, 379, 443 
Rayleigh distribution, 94, 185, 229 

mean, 110 
percentile, 440 

plotting curves of, 94 
table, 440 
variance, 110 

Rayleigh energy theorem, 320 
Rayleigh random variable, 94 
RC circuit, 365, 370, 371, 377, 391, 393, 407, 418 
Realization, 66, 261 
Regression, 242 
Regression analysis, 243 
Regression equation, 244 
Relative frequency, 17 
RL circuit, 378, 379, 400, 405, 406 
RLC circuit, 404 
Robbins, A., 54 
RV, see random variable 

Sample, 220, 221 
Sample autocorrelation, 271, 282-286, 443 

expected value, 306 
Sample autocovariance, 443 
Sample average, see sample mean 
Sample central moment, 227 
Sample correlation coefficient, 164, 283, 285, 442, 

443 
Sample crosscorrelation, 283, 291, 442, 443 
Sample crosscovariance, 442, 443 
Sample function, 261, 295 
Sample mean, 121, 205, 223-227, 229, 238, 245, 249, 

282, 442, 443 
mean, 223, 227 
Poisson population, 249, 254 
recursion, 250 
variance, 223 

Sample median, 230 
Sample moment, 227 
Sample range, 230 
Sample size, 220 

minimum , 249 
Sample space, 16, 40, 260, 261 
Sample variance, 122, 205, 225-227, 229, 245, 247, 

249, 442, 443 
mean, 225 
Poisson population, 249, 254 
recursion, 250 
variance, 227 

Sampling 
with replacement, 42, 55, 222 
without replacement, 42, 222, 227 

Sampling distribution, 238 
Sampling theory, 221 
Scatter diagram, 163, 165, 208, 211, 242 
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Scatter diagrams, 442 
Schwarz inequality, 419, 420 
Set, 10-15 

algebra, 14 
countable, 11 
difference, 12 
discrete, 15 
disjoint, see disjoint 
empty, see empty set 
equal, 10 
equivalent, 11 
finite, 11 
infinite, 11 
intersection, 12 
null, 10 
one-to-one correspondence, 11 
product, 12, 15 
sum, 12, 15 
uncountable, 11 

Set operation, 13 
Shelley, P. B., 259 
Signal, 2 
Signal detection, 253, 331 
Signal recovery, 434 
Signal-to-noise ratio, 392, 400, 416, 417, 418, 430 
Significance, 236 
Sinusoid 

with random amplitude, 301 
with random amplitude and phase, 303 
with random phase, 301, 302, 304, 310 
with uniform amplitude, frequency, and phase, 

296 
Skewness, 104 
SNR, see signal-to-noise ratio 
Space, 10 
Spectral density, 316 
Spectral factorization, 425, 426, 428 
Spectrum, 316 
Spot check, 58 
Stable, 363, 365 
Standard deviation, 101, 103, 104 
Standard error, 225, 226 
Standard Gaussian, 86, 90, 91 
Standard normal, see standard Gaussian 
Standardized random variable, 162 
Stationary, 270, 273, 292, 295 

asymptotically, 271, 272, 368 
jointly, see jointly wide-sense stationary 
strictly, see strictly stationary 
wide-sense, 270 

Statistic, 238 
Statistical independence, 30 
Statistical inference, 221, 230, 245 
Statistical regularities, 5 
Statistical relation, 243 
Statistics, 3, 19, 220 

descriptive, 221 
inductive, 221 

Stochastic, 262 
Stochastic process, 261 
Strict-sense white noise, see strictly white noise 
Strictly stationary, 270, 273, 292, 382 
Strictly white, 271, 292 
Strictly white noise, 328 
Student distribution, 238 
Subset, 10 
Sum of independent random variables, 181 
Sum of random in-phase and quadrature components, 

303 
Sum of two random variables, 180 
Summation law, 55 
Sure event, 16 
System identification, 369 
System reliability, 92, 183, 208 

parallel, 183 
series, 183 
stand by, 183 

System's bandwidth, 393 

T distribution, 238, 239 
T test, 238, 239, 251 
Test 

chi-square, see chi-square test 
likelihood ratio, see likelihood ratio test 
Neyman-Pearson, see Neyman-Pearson 
t, see t test 
u, see u test 

Test on mean with known variance, 238 
Test on mean with unknown variance, 238 
Textgraph, xi, 6 
Thurber, J., 65 
Time autocorrelation, 272, 273, 283 
Time average, 270, 272, 273, 283, 321, 417 
Time series, 262 
Time-invariant, 362, 364, 365 
Time-varying random variable, 261 
Total energy, 320 
Total expectation theorem, 189 
Total probability theorem, 34, 35, 37-39, 47 
Transfer function, 363, 374 
Trial, see also Bernoulli trials, 16 
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Truncated Gaussian, 115 
Truncated probability density function, 115 
Type I error, 236, 237 
Type I error probability, 237 
Type I I error, 236, 237 
Type II error probability, 237 

U test, 238, 251, 253 
Unbiased, see estimator, 283 
Uncorrelated, 161, 162, 169, 169, 170, 191, 292, 295 

random process, 287 
Uncountable, 11 
Uniform distribution, 83, 84, 124, 186, 203 

mean, 110 
over a circle, 198 
percentile, 133, 440 
table, 440 
variance, 110 

Uniform random number generator, 117 
Uniform random variable, 83 
Union, 12 
Union of events, 22 
Union probability, 22, 31 
Unit step function, 72 
Universal set, 10 

Variance, 85, 101, 124, 265 
properties, 105 

Vector-valued Gaussian random variable, 178 
Venn diagram, 12, 15 

Weaver, W , 32 
Weibull distribution, 96, 140, 229 

mean, 110 
percentile, 440 
table, 440 
variance, 110 

Wells, H. G., 219 
White, 27Q, 271, 273, 292, 295 

strictly, 271 
wide-sense, 271 

White noise, 327, 346 
autocorrelation, 327 
bandlimited, 328, 329 
bandpass, 329 
lowpass, 328 
nonzero-mean, 330 
power spectrum, 327, 330, 336 
strict-sense, 328 
strictly, 328 

Whitening, 425, 428 

Whitening filter, 421, 425 
Wide-sense stationary, see Stationary 
Wide-sense white, see white 
Wiener filter, 423, 423^31 

causal, 425, 427, 428 
desired response, 430 
for white noise, 429 
noncausal, 427 

Wiener-Hopf equation, 423-425, 430, 431 
Wiener-Khinchine theorem, 321 
WSS, see wide-sense stationary 

Zero-input response, 364, 382 
Zero-state response, 364, 382 
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