
Computer Communications and Networks

Florin Pop
Joanna Kołodziej
Beniamino Di Martino Editors

Resource
Management
for Big Data
Platforms
Algorithms, Modelling, and High-
Performance Computing Techniques

Computer Communications and Networks

Series editor

A.J. Sammes
Centre for Forensic Computing
Cranfield University, Shrivenham Campus
Swindon, UK

The Computer Communications and Networks series is a range of textbooks,
monographs and handbooks. It sets out to provide students, researchers, and
non-specialists alike with a sure grounding in current knowledge, together with
comprehensible access to the latest developments in computer communications and
networking.

Emphasis is placed on clear and explanatory styles that support a tutorial
approach, so that even the most complex of topics is presented in a lucid and
intelligible manner.

More information about this series at http://www.springer.com/series/4198

Florin Pop • Joanna Kołodziej
Beniamino Di Martino
Editors

Resource Management
for Big Data Platforms
Algorithms, Modelling,
and High-Performance Computing
Techniques

123

Editors
Florin Pop
University Politehnica of Bucharest
Bucharest
Romania

Joanna Kołodziej
Cracow University of Technology
Cracow
Poland

Beniamino Di Martino
Second University of Naples
Naples, Caserta
Italy

ISSN 1617-7975 ISSN 2197-8433 (electronic)
Computer Communications and Networks
ISBN 978-3-319-44880-0 ISBN 978-3-319-44881-7 (eBook)
DOI 10.1007/978-3-319-44881-7

Library of Congress Control Number: 2016948811

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To our Families and Friends with Love
and Gratitude

Preface

Many applications generate Big Data, like social networking and social influence
programs, Cloud applications, public web sites, scientific experiments and simu-
lations, data warehouse, monitoring platforms, and e-government services. Data
grow rapidly since applications produce continuously increasing volumes of both
unstructured and structured data. Large-scale interconnected systems aim to
aggregate and efficiently exploit the power of widely distributed resources. In this
context, major solutions for scalability, mobility, reliability, fault tolerance, and
security are required to achieve high performance. The impact on data processing,
transfer and storage is the need to re-evaluate the approaches and solutions to better
answer the user needs.

Extracting valuable information from raw data is especially difficult considering
the velocity of growing data from year to year and the fact that 80 % of data is
unstructured. In addition, data sources are heterogeneous (various sensors, users
with different profiles, etc.) and are located in different situations or contexts. This is
why the Smart City infrastructure runs reliably and permanently to provide the
context as a public utility to different services. Context-aware applications exploit
the context to adapt accordingly the timing, quality and functionality of their ser-
vices. The value of these applications and their supporting infrastructure lies in the
fact that end users always operate in a context: their role, intentions, locations, and
working environment constantly change.

Since the introduction of the Internet, we have witnessed an explosive growth in
the volume, velocity, and variety of the data created on a daily basis. This data is
originated from numerous sources including mobile devices, sensors, individual
archives, the Internet of Things, government data holdings, software logs, public
profiles on social networks, commercial datasets, etc. The so-called Big Data
problem requires the continuous increase of the processing speeds of the servers
and of the whole network infrastructure. In this context, new models for resource
management are required. This poses a critically difficult challenge and striking
development opportunities to Data-Intensive (DI) and High-Performance
Computing (HPC): how to efficiently turn massively large data into valuable

vii

information and meaningful knowledge. Computationally-effective DI and HPC are
required in a rapidly increasing number of data-intensive domains.

Successful contributions may range from advanced technologies, applications,
and innovative solutions to global optimization problems in scalable large-scale
computing systems to development of methods, conceptual and theoretical models
related to Big Data applications and massive data storage and processing.
Therefore, it is imperative to gather the consent of researchers to muster their efforts
in proposing unifying solutions that are practical and applicable in the domain of
high-performance computing systems.

The Big Data era poses a critically difficult challenge and striking development
opportunities to High-Performance Computing (HPC). The major problem is an
efficient transformation of the massive data of various types into valuable infor-
mation and meaningful knowledge. Computationally effective HPC is required in a
rapidly increasing number of data-intensive domains. With its special features of
self-service and pay-as-you-use, Cloud computing offers suitable abstractions to
manage the complexity of the analysis of large data in various scientific and
engineering domains. This book surveys briefly the most recent developments on
Cloud computing support for solving the Big Data problems. It presents a com-
prehensive critical analysis of the existing solutions and shows further possible
directions of the research in this domain including new generation multi-datacenter
cloud architectures for the storage and management of the huge Big Data streams.

The large volume of data coming from a variety of sources and in various
formats, with different storage, transformation, delivery or archiving requirements,
complicates the task of context data management. At the same time, fast responses
are needed for real-time applications. Despite the potential improvements of the
Smart City infrastructure, the number of concurrent applications that need quick
data access will remain very high. With the emergence of the recent cloud infras-
tructures, achieving highly scalable data management in such contexts is a critical
challenge, as the overall application performance is highly dependent on the
properties of the data management service. The book provides, in this sense, a
platform for the dissemination of advanced topics of theory, research efforts and
analysis and implementation for Big Data platforms and applications being oriented
on Methods, Techniques and Performance Evaluation. The book constitutes a
flagship driver toward presenting and supporting advanced research in the area of
Big Data platforms and applications.

This book herewith presents novel concepts in the analysis, implementation, and
evaluation of the next generation of intelligent techniques for the formulation and
solution of complex processing problems in Big Data platforms. Its 23 chapters are
structured into four main parts:

1. Architecture of Big Data Platforms and Applications: Chapters 1–7 introduce
the general concepts of modeling of Big Data oriented architectures, and dis-
cusses several important aspects in the design process of Big Data platforms and
applications: workflow scheduling and execution, energy efficiency, load bal-
ancing methods, and optimization techniques.

viii Preface

2. Big Data Analysis: An important aspect of Big Data analysis is how to extract
valuable information from large-scale datasets and how to use these data in
applications. Chapters 8–12 discuss analysis concepts and techniques for sci-
entific application, information fusion and decision making, scalable and reli-
able analytics, fault tolerance and security.

3. Biological and Medical Big Data Applications: Collectively known as com-
putational resources or simply infrastructure, computing elements, storage, and
services represent a crucial component in the formulation of intelligent decisions
in large systems. Consequently, Chaps. 13–16 showcase techniques and con-
cepts for big biological data management, DNA sequence analysis, mammo-
graphic report classification and life science problems.

4. Social Media Applications: Chapters 17–23 address several processing models
and use cases for social media applications. This last part of the book presents
parallelization techniques for Big Data applications, scalability of multimedia
content delivery, large-scale social network graph analysis, predictions for
Twitter, crowd-sensing applications and IoT ecosystem, and smart cities.

These subjects represent the main objectives of ICT COST Action IC1406
High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)
and the research results presented in these chapters were performed by joint col-
laboration of members from this action.

Acknowledgments

We are grateful to all the contributors of this book, for their willingness to work on
this complex book project. We thank the authors for their interesting proposals
of the book chapters, their time, efforts and their research results, which makes this
volume an interesting complete monograph of the latest research advances and
technology development on Big Data Platforms and Applications. We also would
like to express our sincere thanks to the reviewers, who have helped us to ensure the
quality of this volume. We gratefully acknowledge their time and valuable remarks
and comments.

Our special thanks go to Prof. Anthony Sammes, editor-in-chief of the Springer
“Computer Communications and Networks” Series, and to Wayne Wheeler and
Simon Rees, series managers and editors in Springer, for their editorial assistance
and excellent cooperative collaboration in this book project.

Finally, we would like to send our warmest gratitude message to our friends and
families for their patience, love, and support in the preparation of this volume.

Preface ix

We strongly believe that this book ought to serve as a reference for students,
researchers, and industry practitioners interested or currently working in Big Data
domain.

Bucharest, Romania Florin Pop
Cracow, Poland Joanna Kołodziej
Naples, Italy Beniamino Di Martino
July 2016

x Preface

Contents

Part I Architecture of Big Data Platforms and Applications

1 Performance Modeling of Big Data-Oriented Architectures 3
Marco Gribaudo, Mauro Iacono and Francesco Palmieri

2 Workflow Scheduling Techniques for Big Data Platforms 35
Mihaela-Catalina Nita, Mihaela Vasile, Florin Pop
and Valentin Cristea

3 Cloud Technologies: A New Level for Big Data Mining. 55
Viktor Medvedev and Olga Kurasova

4 Agent-Based High-Level Interaction Patterns for Modeling
Individual and Collective Optimizations Problems 69
Rocco Aversa and Luca Tasquier

5 Maximize Profit for Big Data Processing in Distributed
Datacenters . 83
Weidong Bao, Ji Wang and Xiaomin Zhu

6 Energy and Power Efficiency in Cloud . 97
Michał Karpowicz, Ewa Niewiadomska-Szynkiewicz, Piotr Arabas
and Andrzej Sikora

7 Context-Aware and Reinforcement Learning-Based
Load Balancing System for Green Clouds. 129
Ionut Anghel, Tudor Cioara and Ioan Salomie

Part II Big Data Analysis

8 High-Performance Storage Support for Scientific Big Data
Applications on the Cloud . 147
Dongfang Zhao, Akash Mahakode, Sandip Lakshminarasaiah
and Ioan Raicu

xi

9 Information Fusion for Improving Decision-Making
in Big Data Applications . 171
Nayat Sanchez-Pi, Luis Martí, José Manuel Molina
and Ana C. Bicharra García

10 Load Balancing and Fault Tolerance Mechanisms
for Scalable and Reliable Big Data Analytics 189
Nitin Sukhija, Alessandro Morari and Ioana Banicescu

11 Fault Tolerance in MapReduce: A Survey . 205
Bunjamin Memishi, Shadi Ibrahim, María S. Pérez
and Gabriel Antoniu

12 Big Data Security . 241
Agnieszka Jakóbik

Part III Biological and Medical Big Data Applications

13 Big Biological Data Management . 265
Edvard Pedersen and Lars Ailo Bongo

14 Optimal Worksharing of DNA Sequence Analysis
on Accelerated Platforms . 279
Suejb Memeti, Sabri Pllana and Joanna Kołodziej

15 Feature Dimensionality Reduction for Mammographic
Report Classification . 311
Luca Agnello, Albert Comelli and Salvatore Vitabile

16 Parallel Algorithms for Multirelational Data Mining:
Application to Life Science Problems. 339
Rui Camacho, Jorge G. Barbosa, Altino Sampaio, João Ladeiras,
Nuno A. Fonseca and Vítor S. Costa

Part IV Social Media Applications

17 Parallelization of Sparse Matrix Kernels for Big Data
Applications . 367
Oguz Selvitopi, Kadir Akbudak and Cevdet Aykanat

18 Delivering Social Multimedia Content with Scalability 383
Irene Kilanioti and George A. Papadopoulos

19 A Java-Based Distributed Approach for Generating Large-Scale
Social Network Graphs . 401
Vlad Şerbănescu, Keyvan Azadbakht and Frank de Boer

20 Predicting Video Virality on Twitter . 419
Irene Kilanioti and George A. Papadopoulos

xii Contents

21 Big Data Uses in Crowd Based Systems . 441
Cristian Chilipirea, Andreea-Cristina Petre and Ciprian Dobre

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem
Providing Big Data Analysis. 461
Ioannis Vakintis, Spyros Panagiotakis, George Mastorakis
and Constandinos X. Mavromoustakis

23 A Smart City Fighting Pollution, by Efficiently Managing
and Processing Big Data from Sensor Networks 489
Voichita Iancu, Silvia Cristina Stegaru and Dan Stefan Tudose

Index . 515

Contents xiii

Part I
Architecture of Big Data Platforms

and Applications

Chapter 1
Performance Modeling of Big Data-Oriented
Architectures

Marco Gribaudo, Mauro Iacono and Francesco Palmieri

1.1 Introduction

Big Data-oriented platforms provide enormous, cost- efficient computing power and
unparalleled effectiveness in both massive batch and timely computing applications,
without the need of special architectures or supercomputers. This is obtained by
means of a very targeted use of resources and a successful abstraction layer founded
onto a proper programming paradigm. A key factor for the success in Big Data is the
management of resources: these platforms use a significant and flexible amount of
virtualized hardware resources to try and optimize the trade off between costs and
results. The management of such a quantity of resources is definitely a challenge.

Modeling Big Data-oriented platforms presents new challenges, due to a number
of factors: complexity, scale, heterogeneity, hard predictability. Complexity is inner
in their architecture: computing nodes, storage subsystem, networking infrastructure,
datamanagement layer, scheduling, power issues, dependability issues, virtualization
all concur in interactions and mutual influences. Scale is a need posed by the nature
of the target problems: data dimensions largely exceed conventional storage units,
the level of parallelism needed to perform computation within useful deadlines is
high, obtainingfinal results require the aggregation of large numbers of partial results.
Heterogeneity is a technological need: evolvability, extensibility, andmaintainability
of the hardware layer imply that the system will be partially integrated, replaced or

M. Gribaudo
DEIB, Politecnico di Milano, via Ponzio 34/5, 20133 Milan, Italy
e-mail: marco.gribaudo@polimi.it

M. Iacono (B)
DMF, Seconda Università Degli Studi di Napoli, viale Lincoln 5, 81100 Caserta, Italy
e-mail: mauro.iacono@unina2.it

F. Palmieri
DI, Università Degli Studi di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy
e-mail: francesco.palmieri@unisa.it

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_1

3

4 M. Gribaudo et al.

extended by means of new parts, according to the availability on the market and the
evolution of technology. Hard predictability results from the previous three factors,
the nature of computation and the overall behavior and resilience of the system when
running the target application and all the rest of the workload, and from the fact that
both simulation, if accurate, and analytical models are pushed to the limits by the
combined effect of complexity, scale, and heterogeneity.

The most of the approaches that literature offers for the support of resource man-
agement are based on the benchmarking of existing systems. This approach is a
posteriori, in the meaning that it is specially suitable and applicable to existing sys-
tems, and for tuning or applying relatively small modifications of the system with
respect to its current state. Model-based approaches are more general and less bound
to the current state, and allow the exploration of a wider range of possibilities and
alternatives without a direct impact on the normal operations of a live system. Proper
modeling techniques and approaches are of paramount importance to cope with the
hard predictability problem and to support maintenance, design and management of
Big Data-oriented platforms. The goal of modeling is to allow, with a reasonable
approximation, a reasonable effort and in a reasonable time, the prediction of perfor-
mances, dependability, maintainability and scalability, both for existing, evolving,
and new systems. Both simulative and analytical approaches are suitable for the
purpose, but a proper methodology is needed to dominate complexity, scale, and
heterogeneity at the different levels of the system. In this chapter, we analyze the
main issues related to Big Data Systems, together with a methodological proposal
for a modeling and performance analysis approach that is able to scale up sufficiently
while providing an efficient analysis process.

1.2 Big Data Applications

In order to understand the complexity of Big Data architectures, a brief analysis of
their characteristics is helpful. A first level of complexity comes from their perfor-
mance requirements: typical Big Data applications need massively parallel comput-
ing resources because of the amount of data involved in a computation and/or because
of the fact that results are needed within a given time frame, or they may lose their
value over time. Although Big Data applications are rarely timely critical, timeliness
is often an important parameter to be considered: a good example is given by social
network data stream analysis, in which sentiment analysis may be more valuable if
it provides a fast characterization of a community, but, in general, whenever data are
continuously generated at a given rate at high scale longer computations may result
in more need for storage and eventually a different organization of the computing
process itself. The main point is in the costs, which may scale up quickly and cannot
be worth the value of the results because of different kinds of overheads.

Big Data applications may be seen as the evolution of parallel computing, but
with the important difference of the scale. The scale effect, in this case, does not
only have the same consequences that it has in ordinary parallel computing, but

1 Performance Modeling of Big Data-Oriented Architectures 5

pushes to a dimension in which an automated management of the resources and of
their exploitation is needed, instead of a manual configuration of them or a theory-
driven resource crafting and allocation approach. As management may become an
expensive and time- consuming activity, human intervention is more dedicated to
handle macroscopic parameters of the system rather than on fine grain ones, and
automated parallelization is massively applied, e.g. by means of the Map-Reduce
approach, which can be in some sense considered as an analogous of OpenMP or
other similar tools.

In some sense, Big Data applications may recall analogous in the DataWarehous-
ing field. In both cases, actually, huge amounts of data are supposed to be used to
extract synthetic indications on a phenomenon: an example can be given by Data
Mining applications. In this case, the difference is mainly in a minor and two main
factors: as first, typical DataWarehousing applications are off line, and use historical
data spanning over long time frames; as second, the scale of Big Data data bases is
higher; as third, the nature of the data bases in Data Warehousing and Big Data are
very different. In the first case, data is generally extracted from structured sources,
and is filtered by a strict and expensive import process; this results into a high value,
easily computable data source. Big Data data sources are instead often noisy, prac-
tically unfilterable, poorly or not structured, with a very low a priori value per data
unit1: this means that, considering the low value per and the high number of data
units, in the most of the cases the unitary computing cost must be kept very low, to
avoid making the process unsustainable.

Finally, even if Cloud Computing can be a means to implement Big Data archi-
tectures, common Cloud Computing applications are rather different from Big Data
applications. While in both cases the overall workload of the system is comparably
high, as the amount of resources to be managed and the scale of the system, and vir-
tualization can be usefully exploited in both cases, the similarities are in the underly-
ing architectures: typically, Cloud Computing architectures serve fine grain, loosely
coordinated (if so) applications, run on behalf of big numbers of users that operate
independently, from different locations, possibly on own, private, non shared data,
with a significant amount of interactions, rather than being mainly batch oriented,
and generally fit to be relocated or with highly dynamic resource needs. Anyway,
notwithstanding such significant differences, Cloud Computing and Big Data archi-
tectures share a number of common needs, such as automated (or autonomic) fine
grain resource management and scaling related issues.

Given this basic profile of Big Data applications, it is possible to better understand
the needs and the problems of Big Data architectures.

1A significant exception is given by high energy physics data, which are generated at very high
costs: this does not exclude the fact that, mutatis mutandis, their experimental nature make them
valuable per se and not because of the costs, and that their value is high if the overall results of
the experiment are satisfying; this kind of applications is obviously out of the market, so radically
different metrics for costs and results are applied.

6 M. Gribaudo et al.

1.3 Big Data Architectures

As storage, computing and communication technologies evolve towards a converged
model, we are experiencing a paradigm shift in modern data processing architectures
from the classical application-driven approach to new data-driven ones. In this sce-
nario, huge data collections (hence the name “BigData”), generated by Internet-scale
applications, such as social networks, international scientific corporations, business
intelligence, and situation aware systems as well as remote control and monitoring
solutions, are constantly migrated back and forth on wide area network connections
in order to be processed in a timely and effective way on the hosts and data centers
that provide enough available resources. In a continuously evolving scenario where
the involved data volumes are estimated to double or more, every year, Big Data
processing systems are actually considered as a silver bullet in the computing arena,
due to their significant potential of enabling new distributed processing architectures
that leverage the virtually unlimited amount of computing and storage resources
available on the Internet to manage extremely complex problems with previously
inconceivable performances. Accordingly, the best recipe for success becomes effi-
ciently retrieving the right data from the right location, at the right time, in order
to process it where the best resource mix is available [1]. Such approach results
in a dramatic shift from the old application-centric model, where the needed data,
often distributed throughout the network, are transferred to the applications when
necessary, to a new data-centric scheme, where applications are moved through the
network in order to run them in the most convenient location, where adequate com-
munication capacities and processing power are available. As a further complication
it should be considered that the location of data sources and their access patterns
may change frequently, according to the well known spatial and temporal locality
criteria. Of course, as the amount of involved data and their degree of distribution
across the network grow, the role of the communication architecture supporting the
data migration among the involved sites become most critical, in order to avoid to be
origin of performance bottlenecks in data transfer activities adversely affecting the
execution latency in the whole big data processing framework.

1.3.1 Computing

The significant advantages of Big Data systems have a cost: as they need high
investments, their sustainability and profitability are critical and strongly depend
on a correct design and management. Research is still very active in exploring the
best solutions to provide scalability of computing and data storage architecture and
algorithms, proper querying and processing technologies, efficient data organiza-
tion, planning, systemmanagement and dependability oriented techniques. Themain
issues related to this topic have been analyzed in [2–7], which we suggest to the inter-
ested readers.

1 Performance Modeling of Big Data-Oriented Architectures 7

To be able to dominate the problems behind Big Data systems, a thorough explo-
rations of the factors that generate their complexity is needed. The first important
aspect to be considered is the fact that the computing power is provided by a very
high number of computing nodes, each of which has its resources that have to be
shared on a high scale. This is a direct consequence of the dimensions workloads:
a characterization of typical workloads for systems dealing with large datasets is
provided in [8], which surveys the problem, also from the important point of view
of energy efficiency, comparing Big Data environments, HPC systems, and Cloud
systems. The scale exacerbates known management and dimensioning problems,
both with relation to architecture and resource allocation and coordination, with
respect to classical scientific computing or data base systems. In fact, efficiency is
the key to sustainability: while classical data warehouse applications operate on qual-
ity assured data, thus justify an high investment per data unit, in the most of the cases
Big Data applications operate on massive quantities of raw, low quality data, and do
not ensure the production of value. As a consequence, the cost of processing has to
be kept low to justify investments and allow sustainability of huge architectures, and
the computing nodes are common COTS machines, which are cheap and are easily
replaceable in case of problems, differently from what traditionally has been done in
GRID architectures. Of course, sustainability also includes the need for controlling
energy consumption. The interested reader will find in [9] some guidelines for design
choices, and in [10] a survey about energy-saving solutions.

The combination between low cost and high scale allows to go beyond the limits
of traditional data warehouse applications, which would not be able to scale enough.
This passes through new computing paradigms, based on special parallelization pat-
terns and divide-and-conquer approaches that can be not strictly optimal but suitable
to scale up very flexibly. An example is given by the introduction of theMap-Reduce
paradigm, which allows a better exploitation of resources without sophisticated and
expensive software optimizations. Similarly, scheduling is simplified within a single
application, and the overall scheduling management of the system is obtained by
introducing virtualization and exploiting the implicitly batch nature of Map-Reduce
applications.Moving data between thousands of nodes is also a challenge, so a proper
organization of the data/storage layer is needed.

Some proposed middleware solutions are Hadoop [11, 12] (that seems to be the
market leader), Dryad [13] (a general-purpose distributed execution engine based on
computational vertices and communication channels organized in a custom graph
execution infrastructure), Oozie [14], based on a flow oriented Hadoop Map-Reduce
execution engine. As data are very variable in size and nature and data transfer are
not negligible, one of the main characteristics of the frameworks is the support for a
continuous reconfiguration. This is a general need of Big Data applications, which
are naturally implemented on Cloud facilities. Cloud empowered Big Data environ-
ments benefit of the flexibility of virtualization techniques and enhance their advan-
tages, providing the so-called elasticity feature to the platform. Commercial high-
performance solutions are represented by Amazon EC2 [15] and Rackspace [16].

8 M. Gribaudo et al.

1.3.2 Storage

The design of a performing storage subsystem is a key factor for Big Data systems.
Storage is a challenge both at the low level (the file system and its management)
and at the logical level (database design and management of information to support
applications). File systems are logically and physically distributed along the archi-
tecture, in order to provide a sufficient performance level, which is influenced by
large data transfers over the network when tasks are spawn along the system. In
this case as well, the lesson learned in the field of Cloud Computing is very useful
to solve part of the issues. The management of the file system has to be carefully
organized and heavily relies on redundancy to keep a sufficient level of performances
and dependability. According to the needs, the workloads and the state of the sys-
tem, data reconfigurations are needed, thus the file system is a dynamic entity in the
architecture, often capable of autonomic behaviors. An example of exploitation of
Cloud infrastructure to support Big Data analytics applications is presented in [17],
while a good introduction to the problems of data duplication and deduplication can
be found in [5]. More sophisticated solutions are based on distributed file systems
using erasure coding or peer to peer protocols to minimize the impact of duplications
while keeping a high level of dependability: in this case, data are preprocessed to
obtain a scattering on distribution schemata that, with low overheads, allow a faster
reconstruction of lost data blocks, by further abstracting physical and block-level
data management. Some significant references are [18–21]; a performance oriented
point of view is taken in [22–29].

On the logical level, traditional relational databases do not scale enough to effi-
ciently and economically support Big Data applications. The most common struc-
tured solutions are generally based on NoSQL databases, which speed up operations
by omitting the heavy features of RDBMS (such as integrity, query optimization,
locking, and transactional support) focusing on fast management of unstructured or
semi-structured data. Such solutions are offered by many platforms, such as Cas-
sandra [30], MongoDB [31] and HBase [32], which have been benchmarked and
compared in [33].

1.3.3 Networking

High-performance networking is themost critical prerequisite formodern distributed
environments, where the deployment of data-intensive applications often requires
moving many gigabytes of data between geographically distant locations in very
short time lapses, in order to meet I/O bandwidth requirements between computing
and storage systems. Indeed, the bandwidth necessary for such huge data transfers,
exceeds of multiple orders of magnitude the network capacity available in state-of-
the-art networks. In particular, despite the Internet has been identified as the fun-
damental driver for modern data-intensive distributed applications, it does not seem

1 Performance Modeling of Big Data-Oriented Architectures 9

able to guarantee enough performance in moving very large quantities of data in
acceptable times neither at the present nor even in the foreseeable near future. This is
essentially due to the well-known scalability limits of the traditional packet forward-
ing paradigm based on statistical multiplexing, as well as to the best-effort delivery
paradigm, imposing unacceptable constraints on the migration of large amounts of
data, on a wide area scale, by adversely affecting the development of Big Data appli-
cations. In fact, the traditional shared network paradigm, characterizing the Internet
is based on a best-effort packet-forwarding service that is a proven efficient tech-
nology for transmitting in sequence multiple bursts of short data packets, e.g., for
consumer oriented email and web applications. Unfortunately this is not enough to
meet the challenge of the large-scale data transfer and connectivity requirement of
the modern network-based applications. More precisely, the traditional packet for-
warding paradigm, does not scale in its ability of rapidly moving very large data
quantities between distant sites. Making forwarding decisions every 1500 bytes is
sufficient for emails or 10–100k web pages. This is not the optimal mechanism if we
have to cope with data size of ten orders (or more) larger in magnitude. For example,
copying 1.5TB of data using the traditional IP routing scheme requires adding a lot
of protocol overhead andmaking the same forwarding decision about 1 billion times,
over many routers/switches along the path, with the obvious consequence in terms
of introduced latency and bandwidth waste [34].

Massive data aggregation and partitioning activities, very common in Big Data
processing architectures structured according to the Map-Reduce paradigm, require
huge bandwidth capacities in order to effectively support the transmission of mas-
sive data between a potentially very high number of sites, as the result of multiple
data aggregation patterns between mappers and reducers [1]. For example, the inter-
mediate computation results coming from a large number of mappers distributed
throughout the Internet, each one managing data volumes up to tens of gigabytes,
can be aggregated on a single site in order to manage more efficiently the reduce
task. Thus the current aggregated data transfer dimension for Map-Reduce-based
data-intensive applications can be expressed in the order of petabytes and the esti-
mated growth rate for the involved data sets currently follows an exponential trend.
Clearly, moving these volumes of data across the Internet may require hours or,
worse, days. Indeed, it has been estimated [35] that up to 50% of the overall task
completion time in Map-Reduce-based systems may be associated to data transfers
performed within the data shuffling and spreading tasks. This significantly limits
the ability of creating massive data processing architectures that are geographically
distributed on multiple sites over the Internet [1]. Several available solutions for effi-
cient data transfer based on novel converged protocols have been explored in [36]
whereas a comprehensive survey of map-reduce-related issues associated to adaptive
routing practices has been presented in [37].

10 M. Gribaudo et al.

1.4 Evaluation of Big Data Architectures

A key factor for the success in Big Data is the management of resources: these
platforms use a significant and flexible amount of virtualized hardware resources to
try and optimize the trade off between costs and results. The management of such a
quantity of resources is definitely a challenge.

Modeling Big Data-oriented platforms presents new challenges, due to a number
of factors: complexity, scale, heterogeneity, hard predictability. Complexity is inner
in their architecture: computing nodes, storage subsystem, networking infrastructure,
datamanagement layer, scheduling, power issues, dependability issues, virtualization
all concur in interactions andmutual influences. Scale is a need posed by the nature of
the target problems: data dimensions largely exceed conventional storage units, the
level of parallelism needed to perform computation within useful deadlines is high,
obtaining final results requires the aggregation of large numbers of partial results.
Heterogeneity is a technological need: evolvability, extensibility and maintainability
of the hardware layer imply that the system will be partially integrated, replaced or
extended by means of new parts, according to the availability on the market and the
evolution of technology. Hard predictability results from the previous three factors,
the nature of computation and the overall behavior and resilience of the system when
running the target application and all the rest of the workload, and from the fact that
both simulation, if accurate, and analytical models are pushed to the limits by the
combined effect of complexity, scale and heterogeneity.

The value of performance modeling is in its power to enable developers and
administrators to take informed decisions. The possibility of predicting the perfor-
mances of the system helps in better managing it, and allows to reach and keep a
significant level of efficiency. This is viable if proper models are available, which
benefit of information about the system and its behaviors and reduce the time and
effort required for an empirical approach to management and administration of a
complex, dynamic set of resources that are behind Big Data architectures.

The inherent complexity of such architectures and of their dynamics translates
into the non triviality of choices and decisions in the modeling process: the same
complexity characterizes models as well, and this impacts on the number of suitable
formalisms, techniques, and even tools, if the goal is to obtain a sound, compre-
hensive modeling approach, encompassing all the (coupled) aspects of the system.
Specialized approaches are needed to face the challenge, with respect to common
computer systems, in particular because of the scale. Even if Big Data computing is
characterized by regular, quite structured workloads, the interactions of the under-
lying hardware-software layers and the concurrency of different workloads have
to be taken into account. In fact, applications potentially spawn hundreds (or even
more) cooperating processes across a set of virtual machines, hosted on hundreds of
shared physical computing nodes providing locally and less locally [38, 39] distrib-
uted resources, with different functional and non functional requirements: the same
abstractions that simplify and enable the execution of Big Data applications compli-
cate and modeling problem. The traditional system logging practices are potentially

1 Performance Modeling of Big Data-Oriented Architectures 11

themselves, on such a scale, Big Data problems, which in turn require significant
effort for an analysis. The system as a whole has to be considered, as in a mas-
sively parallel environment many interactions may affect the dynamics, and some
computations may lose value if not completed in a timely manner.

Performance data and models may also affect the costs of the infrastructure. A
precise knowledge of the dynamics of the system may enable the management and
planning of maintenance and power distribution, as the wear and the required power
of the components is affected by their usage profile.

Some introductory discussions to the issues related to performance and depend-
ability modeling of big computing infrastructures can be found in [40–46]. More
specifically, several approaches are documented in the literature for performance
evaluation, with contributions by studies on large-scale cloud- or grid-basedBigData
processing systems. They can loosely be classified intomonitoring focused andmod-
eling focused, and may be used in combination for the definition of a comprehensive
modeling strategy to support planning, management, decisions, and administration.
There is a wide spectrum of different methodological points of view to the problem,
which include classical simulations, diagnostic campaigns, use and demand profiling
or characterization for different kinds of resources, predictive methods for system
behavioral patterns.

1.4.1 Monitoring-Focused Approaches

In this category some works are reported that are mainly based on an extension, or
redesign, or evolution of classical monitoring or benchmarking techniques, which
are used on existing systems to investigate their current behavior and the actual
workloads and management problems. This can be viewed as an empirical approach,
which builds predictions onto similarity and regularity assumptions, and basically
postulatesmodels bymeans of perturbativemethods over historical data, or by assum-
ing that knowledge about real or synthetic applications can be used, by means of a
generalization process, to predict the behaviors of higher scale applications or of
composed applications, and of the architecture that supports them. In general, the
regularity of workloads may support in principle the likelihood of such hypotheses,
specially in application fields in which the algorithms and the characterization of data
are well known and runs tend to be regular and similar to each other. The main limits
of this approach, which is widely and successfully adopted in conventional systems
and architectures, is in the fact that for more variable applications and concurrent
heterogeneous workloads the needed scale for experiments and the test scenarios are
very difficult to manage, and the cost itself of running experiments or tests can be
very high, as it requires an expensive system to be diverted from real use, practically
resulting in a non-negligible downtime from the point of view of productivity. More-
over, additional costs are caused by the need for an accurate design and planning of
the tests, which are not easily repeatable for cost matters: the scale is of the order of

12 M. Gribaudo et al.

thousands of computing nodes and petabytes of data exchanged between the nodes
by means of high speed networks with articulated access patterns.

Two significant examples of system performances prediction approaches that rep-
resent this category are presented in [47, 48]. In both cases, the prediction technique
is based on the definition of test campaigns that aim at obtaining some well chosen
performance measurements. As I/O is a very critical issue, specialized approaches
have been developed to predict the effects of I/O over general application perfor-
mances: an example is provided in [49], which assumes the realistic case of an
implementation of Big Data applications in a Cloud. In this case, the benchmarking
strategy is implemented in the form of a training phase that collects information
about applications and system scale to tune a prediction system. Another approach
that presents interesting results and privileges storage performance analysis is given
in [50], which offers a benchmarking solution for cloud-based data management in
the most popular environments.

Log mining is also an important resource, which extracts value from an already
existing asset. The value obviously depends on the goals of the mining process and
on the skills available to enact a proper management and abstraction of an extended,
possibly heterogeneous harvest of fine grain measures or events tracking. Some
examples of log mining-based approaches are given in Chukwa [51], Kahuna [52],
and Artemis [53]. Being this category of solutions founded onto technical details,
these approaches are bound to specific technological solutions (or different layers of
a same technological stack), such as Hadoop or Dryad: for instance, [54] presents an
analysis of real logs from aHadoop-based system that is composed of 400 computing
nodes, while [55, 56] offers data from Google cloud backend infrastructures.

1.4.2 Simulation-Focused Approaches

Simulation-based approaches and analytical approaches are based on previous
knowledge or on reasonable hypotheses about the nature and the inner behaviors
of a system, instead of inductive reasoning or generalization from measurements.
Targeted measurements (on the system, if existing, or on similar systems, if not
existing yet) are anyway used to tune the parameters and to verify the goodness of
the models.

While simulation (e.g., event-based simulation) offers in general the advantage
of allowing great flexibility, with a sufficient number of simulation runs to include
stochastic effects and reach a sufficient confidence level, and eventually by means
of parallel simulation or simplifications, the scale of Big Data architectures is still a
main challenge. The number of components to be modeled and simulated is huge,
consequently the design and the setup of a comprehensive simulation in a Big Data
scenario are very complex and expensive, and become a software engineering prob-
lem.Moreover, being the number of interactions and possible variations huge aswell,
the simulation time that is needed to get satisfactory results can be unacceptable and
not fit to support timely decision-making. This is generally bypassed by a trade off

1 Performance Modeling of Big Data-Oriented Architectures 13

between the degree of realism, or the generality, or the coverage of the model and
simulation time. Simulation is anyway considered a more viable alternative to very
complex experiments, because it has more economic experimental setup costs and a
faster implementation.

Literature is rich of simulation proposals, specially borrowed from the Cloud
Computing field. In the following, only Big Data specific literature is sampled.

Some simulators focus on specific infrastructures or paradigms: Map-Reduce
performances simulators are presented in [57], focusing on scheduling algorithms on
given Map-Reduce workloads, or provided by non workload-aware simulators such
as SimMapReduce [58],MRSim [59], HSim [60], or Starfish [61, 62] what-if engine.
These simulators do not consider the effects of concurrent applications on the system.
MRPerf [63] is a simulator specialized in scenarios with Map-Reduce on Hadoop;
X-Trace [64] is also tailored on Hadoop and improves its fitness by instrumenting
it to gather specific information. Another interesting proposal is Chukwa [51]. An
example of simulation experience specific for Microsoft based Big Data applications
is in [65], in which a real case study based on real logs collected on large scale
Microsoft platforms.

To understand the importance of the workload interference effects, specially in
cloud architectures, for a proper performance evaluation, the reader can refer to [66],
which proposes a synthetic workload generator for Map-Reduce applications.

1.4.2.1 Simulating the Communication Stratum

Network simulation can be very useful in the analysis of Big Data architectures,
since it provides the ability to perform proof-of-concept evaluations, by modeling
the interactions between multiple networked entities when exchanging massive data
volumes, before the real development of new Big Data architectures and applica-
tions as well as selecting the right hardware components/technologies enabling data
transfers between the involved geographical sites. This also allows testing or study-
ing the effects of introducing modifications to existing applications, protocols or
architectures in a controlled and reproducible way.

A significant advantage is the possibility of almost completely abstracting from
details which are unnecessary for a specific evaluation task, and focus only on the top-
ics that are really significant, by achieving, however, maximum consistency between
the simulated model and the problem to be studied. A satisfactory simulation plat-
formmust provide a significant number of network devices and protocols as its basic
building blocks, organized into extensible packages and modules that allow us to
simply and flexibly introduce new features or technologies in our model.

Modern network simulators usually adopt ad-hoc communication models and
operate on a logical event-driven basis, by running on large dedicated systems or in
virtualized runtime environments distributed on multiple sites [67]. Indeed, complex
simulation experiments may be also handled in a fully parallel and distributed way
significantly improving simulation performance by running onhugemulti-processors
system, computing clusters or network-based distributed computing organization

14 M. Gribaudo et al.

such as grids or clouds. Another important feature that can be considered simultane-
ously as a strength and a drawback of network simulation, is that it does not operate
in real-time. This implies the possibility of arbitrarily compressing or stretching the
time scale on a specific granularity basis, by compressing a very long simulated
period (e.g., a day or a week) into few real-time seconds, or conversely requiring a
long time (maybe days or months) for simulating a few seconds lapse in a complex
experiment. Of course this inhibits natively any kind of man-in-the-loop involvement
within the simulation framework.

There are plenty of network simulation tools available, withwidely varying targets
and able to manage from the simplest to the more complex scenarios. Some of them
are focused on studying a specific networking area or behavior (i.e., a particular
network type or protocol), whereas other one are extremely flexible and adaptive and
able to target a wider range of protocols and mechanisms.

Basically, a network simulation environment should enable users to model any
kind of network topology, as well as creating the proper scenarios to be simulated,
with the involved network devices, the communication links between them and the
different kind of traffic flowing on the network. More complex solution allow users
to configure in a very detailed way the protocols used to manage the network traffic
and provide a simulation language with network protocol libraries or Graphical user
interfaces that are extremely used to visualize and analyze at a glance the results of
the simulation experiments.

A very simplified list of the most used network simulation environments include
OPNET [68], NS-2 [69], NS-3 [70], OMNeT++ [71], REAL [72], SSFNet [73],
J-Sim [74], and QualNet [75].

OPNET is a commercial system providing powerful visual or graphical support
in a discrete event simulation environment that can be flexibly used to study com-
munication networks, devices, protocols, and applications.

NS2, originally based on REAL network simulator, is an open source object-
oriented, discrete event-driven network simulator which was originally developed at
University of California, Berkeley and supporting C++ and OTcl (Object-oriented
Tcl) as its simulation languages

Analogously, NS3, originally designed to replace NS2, is another discrete-event
solution, flexibly programmable in C++ and Python, released under the GNUGPLv2
license and targeting modern networking research applications. NS3 is not an NS2
upgrade since its simulation engine has been rewritten from the scratch without
preserving the backward-compatibility with NS2.

Like NS2 and NS3, OMNeT++ is an open-source, component-based network
simulation environment, mainly targeted on communication networks, providing a
rich GUI support. It is based on a quite general and flexible architecture ensuring its
applicability also in other sectors such as IT systems, queuing networks, hardware
systems, business processing, and so on.

SSFNet is a clearinghouse for information about the latest tools for scalable high-
performance network modeling, simulation, and analysis, providing open-source
Javamodels of protocols (IP, TCP,UDP,BGP4,OSPF, and others), network elements,
and assorted support classes for realistic multi-protocol, multi-domain Internet mod-

1 Performance Modeling of Big Data-Oriented Architectures 15

eling and simulation. It also supports an Integrated Development Environment (IDE)
combining the open-source modeling components with simulation kernels, DML
database implementations, and assorted development tools.

REAL is an old network simulation environment, written in C and running on
almost any Unix flavor, originally intended for studying the dynamic behavior of
flow and congestion control schemes in packet-switched networks.

J-Sim (formerly known as JavaSim) is a platform-neutral, extensible, and reusable
simulation environment, developed entirely in Java and providing a script interface to
allow integrationwith different scripting languages such as Perl, Tcl, or Python. It has
been built upon the notion of the autonomous component programming model and
structured according to a component-based, compositional approach. The behavior of
J-Sim components are defined in terms of contracts and can be individually designed,
implemented, tested, and incrementally deployed in a software system

TheQualNet communications simulation platform is a commercial planning, test-
ing and training tool that mimics the behavior of a real communications network,
providing a comprehensive environment for designing protocols, creating and ani-
mating network scenarios, and analyzing their performance. It can support real-time
speed to enable software-in-the-loop, network emulation, and human-in-the-loop
modeling.

1.4.2.2 Beyond Simulation: Network Emulation Practices

Unfortunately, simulation is not generally able to completely substitute sophisticated
evaluation practices involving complex network architectures, in particular in the
different testing activities that characterize real-life Big Data applications scenarios.

In this situation, we can leverage network emulation, which can be seen as a hybrid
practice combining virtualization, simulation and field test. In detail, in emulated
network environments the end systems (e.g., computing, storage, or special-purpose
equipment), as well as the intermediate ones (e.g., networking devices), eventually
virtualized to run on dedicated VMs, communicate over a partially abstract network
communication stratum, where part of the communication architecture (typically the
physical links) is simulated in real time. This allows us to explore the effects of
distributing Big Data sources on huge geographical networks, made of real network
equipment whose firmware runs on dedicated VMs, without the need of obtaining
a real laboratory/testbed with plenty of wide area network links scattered over the
Internet.

In other words, using enhanced virtualization and simulation technologies, a fully
functional and extremely realistic networking environment can be reproduced, in
which all the involved entities behave exactly as they were connected through a real
network. This allows the observation of the behavior of the network entities under
study on any kind of physical transport infrastructure (e.g., wired, wireless, etc.), by
also introducing specificQoS features (e.g., end-to-end latency, available bandwidth)
or physical impairments (faults, packet losses, transmission errors etc.) on the virtu-
alized communication lines. Thus, any large scale Big Data architecture, relaying on

16 M. Gribaudo et al.

any kind of network topology can be emulated, involving a large number of remote
sites connected withh each other in many ways (dedicated point-to-point links, rings,
heterogeneous meshes) with the goal of assessing in real time the performance or
the correct functionality of complex network-centric or data-centric Big Data appli-
cations and analyzing or predicting the effect of modifications, or re-optimizations
in architectures, protocols, or changes traffic loads. Clearly, in order to ensure a
realistic emulation experience, leading to accurate and reliable results, the simu-
lated communication layer must enforce the correct timing and QoS constraints, as
well as consider and reproduce the right network conditions when delivering packets
between the emulated network entities. This can be achieved through the careful
implementation of artificial delays and bandwidth filters, as well as mimicking con-
gestion phenomena, transmission errors or generic impairments, to reflect the specific
features of the involved communication lines [67].

Complex network emulation architectures can be structured according to a cen-
tralized or a fully distributed model. Centralized solutions use a single monolithic
machine for running all the virtualized network entities together with the simulated
physical communication layer, and consequently despite the obvious advantages in
terms of implicit synchronization, the scalability of the resulting architecture is con-
ditioned by the computing power characterizing the hosting machine.

To cope with such a limitation, fully distributed emulation architectures can rely
on a virtually unlimited number of machines hosting the VMs associated to the
involved network entities, by using complex communication protocols to implement
the simulated links in a distributedway, andbyalso ensuring synchronizationbetween
the different components running on multiple remote machines locates on different
and distant sites. While introducing significant benefits in terms of scalability and
efficiency, such infrastructures are much harder to implement and manage, since an
additional “real” transport layer is introduced under the simulated one, and this should
be consideredwhen simulating all the physical links’ transmission features (capacity,
delay, etc.). Strict coordination is also needed between the involved nodes (and the
associated hypervisors), usually implemented by local communication managers
running on each participating machine. Usually, to ensure the consistency of the
whole emulation environment in presence of experiments characterized by real-
time communication constraints, distributed architectures run on multiple systems
located on the same local area network or on different sites connected by dedicated
high-performance physical links, providing plenty of bandwidth, limited delay, and
extreme transmission reliability [67].

In addition, distributed emulation environments can reach a degree of scalabil-
ity that cannot be practically reached in traditional architectures. Virtualization of
all the involved equipment (both proof-of-concept/prototype architectures under test
and production components making the communication infrastructure), becomes a
fundamental prerequisite for effectively implementing complex architectures, emu-
lating plenty of different devices and operating systems, by disassociating their
execution from the hardware on which they run and hence allowing the seamless
integration/interfacing of many heterogeneous devices and mechanisms into a fully
manageable emulation platform [67].

1 Performance Modeling of Big Data-Oriented Architectures 17

Early experiences in network emulation, essentially focused on TCP/IP perfor-
mance tests, were based on the usage of properly crafted hosts with the role of gate-
ways specialized for packet inspection and management. More recent approaches
leverage special-purpose stand-alone emulation frameworks supporting granular
packet control functions.

NS2, despite more popular in simulation arena, can also be used as a limited-
functionality emulator. In contrast, a typical network emulator such asWANsim [76]
s a simple bridgedWAN emulator that utilizes several specialized Linux kernel-layer
functionalities.

On the other hand, the open source GNS3 environment [77], developed in Python
and supporting distributed multi-host deployment of its hypervisor engines, namely:
Dynamips, Qemu, and VirtuaBox allows real physical machines to be integrated and
mixedwith the virtualized oneswithin the simulation environment. These specialized
hypervisors can be used to integrate real network equipment’s images from several
vendors (e.g., Cisco and Juniper) together with Unix/Linux or MS-Windows hosts,
each running on a dedicated VM. Such VMs can be hosted by a single server or
run on different networked machines as well as within a public or private cloud,
according to a fully distributed emulation schema.

1.4.3 Analytical Models-Focused Approaches

The definition of proper comprehensive analytical models for Big Data systems suf-
fers as well the scale. Classical state space-based techniques (such as Petri nets-based
approaches) generate huge state spaces, which are nontreatable in the solution phase,
if not exploiting (or forcing) symmetries, reductions, strong assumption, or narrow
aspects of the problem. In general, a faithful modeling requires an enormous num-
ber of variables (and equations), which is hardly manageable if not with analogous
reductions or with the support of tools, or by having a hierarchical modeling method,
based on overall simplified models that use the results of small, partial models to
compensate approximations.

Literature proposes different analytical techniques, sometimes focused on part of
the architecture.

As the network is a limiting factor in modern massively distributed systems, data
transfers have been targeted in order to get traffic profiles over interconnection net-
works. Some realistic Big Data applications have been studied in [78], which points
out communication modeling as foundation on which more complete performance
models can be developed. Similarly [79] found the analysis on communication pat-
terns, which are shaped by means of hardware support to obtain sound parameters
over time.

A classical mathematical analytical description is chosen in [80] and in [81,
82], in which “Resource Usage Equations” are developed to take into account the
influence on performances of large datasets in different scenarios. Similarly, [83]
presents a rich analytical framework suitable for performance prediction in scientific

18 M. Gribaudo et al.

applications. Other sound examples of predictive analytical model dedicated to large-
scale applications is in [84], which presents the SAGE case study, and [85], which
focus on load performance prediction.

An interesting approximate approach, suitable for the generation of analytical
stochastic models for systems with a very high number of components, is presented,
in various applications related to Big Data, in [40–43, 46, 86, 87]. The authors deal
with different aspects of Big Data architectures by applying Mean Field Analysis
andMarkovian agents, exploiting the property of these methods to exploit symmetry
to obtain a better approximation as much as the number of components grows. This
can be also seen as a compositional approach, i.e. an approach in which complex
analytical models can be obtained by proper compositions of simpler model accord-
ing to certain given rules. An example is in [88] that deals with performance scaling
analysis of distributed data-intensive web applications. Multiformalism approaches,
such as [41, 86, 87], can also fall in this category.

Within the category of analytical techniques we finally include two diverse
approaches, which are not based on classical dynamical equations or variations.
In [89] workload performances is derived by means of a black box approach, which
observes a system to obtain, by means of regression trees, suitable model parame-
ters from samples of its actual dynamics, updating them at major changes. In [90]
resource bottlenecks are used to understand and optimize data movements and exe-
cution time with a shortest needed time logic, with the aim of obtaining optimistic
performance models for MapReduce applications that have been proven effective in
assessing the Google and Hadoop MapReduce implementations.

1.5 An Integrated Modeling Methodology

At the best of our knowledge, a critical review of the available literature leads us
to conclude that there is no silver bullet, nor it is likely to pop up in the future,
which can comprehensively and consistently become the unique reference to support
performance design in Big Data systems, due to the trade off between the goals of
users and administrators, which proposes on a bigger picture the latency versus
throughput balance.

In fact, the analysis of the literature confirms that the issues behind Big Data
architectures have to be considered not only at different levels, but with a multiplicity
of points of view. The authors agree generally on the main lines of the principles
behind an effective approach to modeling and analysis, but their actual detail focuses
spread on different aspects of the problem, scattering the effort as a complex mosaic
of particulars, in which the different proposals are articulated.

As seen, besides the obvious classification presented in Sect. 1.4, a main, essential
bifurcation between rough classes of approaches can be connected to the prevalent
stakeholder. Users are obviously interested in binding the analysis to a single appli-
cation, or a single application class, thus considering it in isolation or as it were the
main reference of the system, which is supposed to be optimized around it. While

1 Performance Modeling of Big Data-Oriented Architectures 19

such a position is clearly not justifiable if a cloud-based use of an extended architec-
ture, this cannot be intended as obviously restrictive when a cloud-based architecture
is dedicated to Big Data use, as the scale of the application and the scheduling of
the platform play a very relevant role in evaluating this assumption. In principle,
if the data to be processed are enough and independent enough to be successfully
organized so that the computation can effectively span over all, or the most, of the
available nodes, and the application can scale up sufficiently and needs a non neg-
ligible execution time during this massively parallel phase, there is at least a very
significant period of usage of the architecture that sees an optimal exploitation of
the system if the system is optimized for that application. If the runs of such an
applications are recurring, it makes absolutely sense to consider the lifespan of the
architecture as organized in phases, to be analyzed, thus modeled, differently one
from the other (at the cost of raising some question about the optimal modeling of
transitions between phases and their cost). Conversely, if the span of the application,
in terms of execution time or span of needed resources, is a fraction of the workload,
the point of view of a single user (that is, a single application) is still important, but
seems not sufficiently prevalent to influence the assessment of the whole system, so
the modeling and evaluation process of the architecture.

If many applications coexist during a same phase of the life of the system, which
can be assumed as the general case, the user point of view should leave the place
of honor to the administrator point of view. The administrator here considered is of
course an abstract figure including all the team that is responsible for managing with
all the aspects of the care and efficiency of the architecture, be it a dedicated system,
a data center, a federation of data centers, or a multicloud, including those aspect that
are not bound to technical administration, maintenance, evolution and management
but are rather related to profitability, budgeting, and commercial strategies in general.
Analogously, also the throughput concept should be considered in a generalized,
even if with informal meaning and with a macroscopic abuse of notation, abstract
way, which also encompasses the commercial part of the administrator concerns.
The focus is thus on the system as a whole, and on related metrics, but anyway the
goal can be classified as multi-objective and the performance specifications must be
reconducted to the factors that allow to keep all applications within their tolerable
range of requirements while maximizing the overall, generalized throughput of the
system.

It is though necessary to model microscopic and macroscopic aspects of the sys-
tems, including all its components: hardware, operating systems, network infrastruc-
ture, communication protocols, middleware, resource scheduling policies, applica-
tions, usage patterns, workloads. This is possible in principle on existing systems, or
can be designed as a set of sets of specifications for non existing systems. In order
to keep realism, the most of the modeling process must rely on analogies: with other
existing systems, with well known, even if coarsely understood, macroscopic char-
acteristics of the dynamics of the system, the users and the workload, with available
information about parts of the system that are already available or anyway are spec-
ified with a higher level of detail. This pushes somehow back the problem into the
domain of analysis.

20 M. Gribaudo et al.

Anyway, the heaviness of the scale of the problem may be relieved by exploiting
an expectable degree of symmetry, due to the fact that, for practical reasons, the struc-
ture of huge architectures is generally modular: it is quite unlikely that all computing
nodes are different, that there is a high lack of homogeneity in the operating systems
that govern them, that the network architecture is not regularly structured and orga-
nized, that parts of a same Big Data application are executed on completely different
environments. This inclination towards homogeneity is a reasonable hypothesis, as
it stems from several factors.

A first factor is rooted into commercial and administrative causes. The actual
diversity of equivalent products in catalogs (excluding minor configuration variants,
or marketing oriented choices) is quite low, also because of the reduced number of
important component producers formemories, processors and storagedevices that are
suitable for heavy duty use. A similar argument can be asserted for operating systems,
even if configurations may vary in lots of parameters, and for middleware, which
yet must offer a homogeneous abstraction to the application layer, and is probably
to be rather considered an unification factor. Additionally, system management and
maintenance policies benefit from homogeneity and regularity of configurations, so
it is safe to hypothesize that the need for keeping the system manageable pushes
towards behaviors that tend to reduce the heterogeneity of system components and
allows a class based approach to the enumeration of the elements of the system that
need to be modeled.

Our working assumption is thus that we can always leverage the existence of
a given number of classes of similar components in a Big Data system, including
hardware, software, and users, which allows to dominate the scale problem, at least
in a given time frame that we may label as epoch, and obtain a significant model of
the system in an epoch.

It is sufficiently evident that, in the practical exercise of a real Big Data system,
classes representing hardware components (and, to some extent, operating system
and middleware) will be kept through the epochs for a long period of time, as phys-
ical reconfigurations are rather infrequent with respect to the rate of variability of
the application bouquet and workload, while classes representing applications may
significantly vary between epochs.

A modeling technique that exhibits a compositional feature may exploit this class
oriented organization, allowing the design of easily scalable models by a simple
proper assembly of classes, eventually defined by specialists of the various aspects
of the system. A compositional class oriented organization offers thus a double
advantage, which is a good start in the quest for a sound modeling methodology: a
simplification of the organizational complexitymodel and a flexibleworkingmethod.

In fact, the resulting working method is flexible both with respect to the efficiency
of themanagement of themodeling construction process and the possibility of using a
design strategy based on prototypes and evolution. In other words, such an approach
enables a team to work in parallel on different specialized parts of the model, to
speed up the design process and to let every specialized expert free of an independent
contribution under the supervision of the modeling specialist; and allows the model

1 Performance Modeling of Big Data-Oriented Architectures 21

to be obtained as a growing set of refinable and extendable modeling classes2 that
may be checked and verified and reused before the availability of the whole model.

A class-based modeling approach with these characteristics is then suitable to
become the core of a structured modeling and analysis methodology that must nec-
essarily include some ancillary prodromic and conclusive complementary steps, to
feed the model with proper parameters and to produce the means to support the deci-
sion phase in the system development process: anyway, the approach needs a solid
and consistent foundation in a numerical, analytical, or simulative support for the
actual evaluation of the behaviors of the system. It is here that the scale of the system
dramaticallymanifests its overwhelming influence, because, as seen in Sect. 1.4, ana-
lytical (and generally numerical as well) tools are likely to easily meet their practical
or asymptotic limitations, and simulative tools need enormous time and a complex
management to produce significant results. In our opinion, a significant solution is
the adoption of Markovian Agents as backing tool for the modeling phase, as they
exhibit all the features here postulated as successful for the goals, while other tradi-
tional monitoring tools, complemented in case with traditional simulation or analytic
tools, are needed to support the prodromic steps and/or the conclusive steps.

1.5.1 Markovian Agents for Big Data Architectures

Markovian Agents are a modeling formalism tailored to describe systems composed
by a large number of interacting agents. Each one is characterized by a set of states,
and it behaves in a way similar to Stochastic Automata, and in particular to Con-
tinuous Time Markov Chains (CTMCs). The state transitions of the models can
be partitioned into two different types: local transitions and induced transitions.
The former represent the local behavior of the objects: they are characterized by an
infinitesimal generator that is independent of the interaction with the other agents.
Differently from CTMCs, the local behavior of MAs also includes self-loop tran-
sitions: a specific notation is thus required since this type of transition cannot be
included in conventional infinitesimal generators [91]. Self-loop transitions can be
used to influence the behavior of other agents. Induced transitions are caused by the
interaction with the other MAs. In this case, the complete state of the model induces
agents to change their state

Formally, a Markovian Agent Model (MAM) is a collection ofMarkovian Agents
(MAs) distributed across a set of locations V . Agents can belong to different classes
c ∈ C, each one representing a different agent behavior. In Big Data-oriented appli-
cations, ante classes are used to model different types of application requirements or
different steps ofmap-reduce jobs and so-on. In general spaceV can be either discrete

2The term “class” is here intended to define a self containedmodel element that captures the relevant
features of a set (a class, as in the discussion in the first past of this section) of similar parts of the
system, and should not be confused with software class as defined in object oriented software
development methodologies, although in principle there may be similarities.

22 M. Gribaudo et al.

or continuous: when modeling Big Data-oriented applications, V = {v1, v2, . . . vN}
is a set of locations vi . Usually locations represents component of a cloud infrastruc-
ture: they can range from nodes to racks, corridors, availability zones and even
regions. MAM can be analyzed studying the evolution of p{c}

j (t, v): the probability
that a class c agent is in state 1 ≤ j ≤ n{c} at time t , at location v ∈ V . In order to
tackle the complexity of the considered systems, we use counting process and we
exploit the mean field approximation [92, 93], which states that, if the evolution of
the agents depends only on the count of agents in a given state, then p{c}

j (t, v) tends
to be deterministic and to depend only on the mean count of the number of agents.
In particular, let as call ρ{c}(t, v) the total number of class c agents in a location v at
time t . Let us also call π{c}

j (t, v) = p{c}
j (t, v) · ρ{c}(t, v) the density of class c agents

in state j at location v and time t . Note that if each location has exactly one agent, we
have π

{c}
j (t, v) = p{c}

j (t, v). We call static a MAM in which ρ(t, v) does not depend
on time, and dynamic otherwise.

The state distribution of a class c MA in position v at time t is thus described
by row vector π{c}(t, v) = |π{c}

j (t, v)|. We also call ΠV(t) = {(c, v,π{c}(t, v)) : 1 ≤
c ≤ C, v ∈ V} the ensemble of the probability distribution of all the agents of all the
classes at time t . We can use the following equation to described the evolution of the
agents:

dπ{c}(t, v)
dt

= ν{c}(t, v,ΠV) + π{c}(t, v) · K {c}(t, v,ΠV). (1.1)

Term ν(t, v,ΠV) is the increase kernel and K {c}(t, v,ΠV) is the transition kernel.
They can both either depend on the class c, on the position v, and on the time t .
Moreover to allow induction, they can also depend on the ensemble probability ΠV .
The increase kernel ν{c}(t, v,ΠV) can be further subdivided into two terms:

ν{c}(t, v,ΠV) = b{c}(t, v,ΠV) + m{c}
[in](t, v,ΠV). (1.2)

Kernel ν{c}(t, v,ΠV) model the increase of the number of agents in a point in
space. It component b{c}(t, v,ΠV) is addressed as the birth term, and it is used to
model the generation of agents. It is measured in agents per time unit, and expresses
the rate at which class c agents are created in location v at time t . In Big Data models
where agents represents virtual machines or map-reduce tasks, the birth term can be
used to describe the launch of new instances or the submissions of new jobs to the
system. Term m{c}

[in](t, v,ΠV) is the input term, and accounts for class c agents that
moves into location v at time t from other points in space. In the considered Big Data
scenario, it can be used to model the start of new virtual machines due to a migration
process.

The transition kernel K {c}(t, v,ΠV) can be subdivided into four terms:

1 Performance Modeling of Big Data-Oriented Architectures 23

K {c}(t, v,ΠV) = Q{c}(t, v) + I{c}(t, v,ΠV) + (1.3)

−D{c}(t, v,ΠV) − M{c}
[out](t, v,ΠV).

It is used to model both the state transitions of the agents, and the effects that
reduces the number of agents in one location v. Local transitions are defined by
matrix Q{c}(t, v) = |q{c}

i j (t, v)|, where q{c}
i j (t, v) defines the rate at which a class c

agents jumps from state i to state j for an agent position v at time t . In Big Data
application, it is used to model the internal actions of the agents: for example, it
can model the failure-repair cycle of a storage unit, or the acquisition or release of
resources such as RAM in a computation node. The influence matrix I{c}(t, v,ΠV)

expresses the rate of induced transitions. Its elementsI{c}(t, v,ΠV) candependon the
state probabilities of the other agents in the model, and must be defined in a way that
preserves the infinitesimal generator matrix property for Q{c}(t, v) + I{c}(t, v,ΠV).
In Big Data applications, they can model advanced scheduling policies that stop
or start nodes in a given section of a data center to reduce the cooling costs, or
the reconstruction of broken storage blocks from the surviving ones using erasure
conding. The death of agents is described by diagonal matrix D{c}(t, v). Its elements
d{c}
i i (t, v) represent the rate at which class c agents in state i on location v at time t
leaves the model. In Big Data models they can be used to describe the termination
of virtual machines, the completion of map-reduce tasks or jobs, and the loss of
storage blocks due to the lack of enough surviving data and parity blocks to make the
erasure code effective. Finally, Matrix M{c}

[out](t, v,ΠV) is the output counterpart of

vector m{c}
[in](t, v,ΠV) previously introduced. It is a matrix whose termsmout :{c}

i j (t, v)
consider the output for a class c agent from a location v at time t . If i = j , the
change of location does not causes a change of state. Otherwise the state of the agent
changes from i to j during its motion. To maintain constant the number of agents,
M{c}

[out](t, v,ΠV) and m{c}
[in](t, v,ΠV) are related by specific conservation laws. For

instance, the two terms could be related such thatm{c}
[in](t, u,ΠV) = |λ, . . . |π{c}(t, v)

and M{c}
[out](t, v,ΠV) = diag(λ, . . .).

MAMs are also characterized by the initial state of the system. In particular,
ρ{c}(0, v), represents the initial density of class c agents in location v, and p{c}

j (0, v),
the corresponding initial state probability. The initial condition of Eq. (1.1) can then
be expressed as:

π
{c}
j (0, v) = p{c}

j (0, v) · ρ{c}(0, v). (1.4)

1.5.2 A Case Study

In the case study proposed in [40] locations are used to model different data centers
of a geographically distributed cloud infrastructure. Locations V = {dc1, dc2, . . .}
are used to model regions and availability zones of the data centers composing the

24 M. Gribaudo et al.

infrastructure. Agents are used to model computational nodes that are able to run
Virtual Machines (VMs), and storage units capable of saving data blocks (SBs).
Different classes 1 ≤ c ≤ C are used to represent the applications running in the
system, where the states of the agents characterize the resource usage of each type
of application. In particular, the agent density function ρ{c}(t, dc j) determines the
number of class c applications running in data center dc j .

The transition kernel K̃
{c}

(ΠV) models the computational and storage speed of
each application class as function of the resources used. In particular, the local transi-
tion kernel Q{c}(t, v) = 0 since the speed at which application acquires and releases

resources depends on the entire state of the data center, and K̃
{c}

(ΠV) = I{c}(t, v).
If we consider batch processing, where a fixed number of applications is con-

tinuously run, the birth term and death term are set to b{c}(t, v,ΠV) = 0 and
D{c}(t, v,ΠV) = 0. If we consider applications that can be started and stopped, such
as web or application servers in an auto-scaling framework, b{c}(t, v,ΠV) defines
the rate at which new VMs are activated, and the terms 1/d{c}

i i (t, v) of D{c}(t, v,ΠV)

defines the average running time of a VM. As introduced, application migration can
be modeled using terms M{c}

[out](t, v,ΠV) and m{c}
[in](t, v,ΠV). In particular they can

describe the rate at which applications are moved from one data center to another
to support load-balancing applications that works at the geographical infrastructure
level.

1.5.3 Designing New Systems

We already presented in Sect. 1.4 some references showing the value and the effec-
tiveness of Markovian Agents for big scale applications. To illustrate the applica-
bility of a Markovian Agents model based approach, we propose here a structured
methodology, based on the analysis and the considerations previously presented in
this Section, suitable for supporting the design of a new Big Data-oriented system
from scratch.

The methodology is organized into 8 steps, on which iterations may happen until
a satisfactory result is reached in the final step. Figure1.1 shows an ideal, linear path
along the steps.

In this case, as there is no existing part of the system, everything has to be designed,
thus a fundamental role is played by the definition of the target. This is done in the
first step.

The first step is composed of 3 analogous activities, aiming at structuring hypothe-
ses on the workload, the computing architecture and the network architecture of the
target system. The 3 activities are not independent, but loosely coupled, and may be
under the responsibility of 3 different experts, which may be identified in the overall
responsible of the facility, the system architect, or administrator and the network
architect, or administrator. The first task is probably the most sensitive, as it needs,
besides the technical skills, awareness about the business perspectives and the plans

1 Performance Modeling of Big Data-Oriented Architectures 25

Fig. 1.1 Design steps for a new system

related to the short and medium term of the facility, including the sustainability con-
straints. The second task is not less critical, but is partially shielded by the first about
the most relevant responsibilities, and it is essentially technical. While hypothesizing
the computing infrastructure, including operating systems and middleware, the most
important management issues have to be kept into account, e.g., maintenance needs
and procedures. The third is analogous to the second, even if possible choices about
the network architecture are generally less free than the ones related to the computing
architecture. An important factor related to network hypotheses is bound to storage
management, as network bandwidth and resource allocation can heavily impact and
be influenced by the choices about storage organization and implementation. The
hypotheses can be performed by using existing knowledge about similar systems or
applications, andmay be supported by small scale or coarse grain analytical, numeri-
cal or simulation solutions (such as the ones presented in Sect. 1.4). The outcomes of
this step consist of a first order qualitative model of the 3 components, with quantita-

26 M. Gribaudo et al.

tive hypotheses on the macroscopic parameters of the system, sketching the classes
of the components.

The second step consists of the development of the agents needed to simulate the
architecture. In this phase the outcomes of the first step are detailed into Markovian
Agents submodels, by defining their internal structure, the overall macrostructure
of the architecture and the embedded communication patterns, and by converting
the quantitative hypotheses from the first step into local model parameters. When
a satisfactory set of agents is available, classes are mapped onto the agent set. The
outcome is the set of agents that is sufficient to fully represent the architecture and
its behaviors, together with the needed documentation.

The third step is an analogous of the second one, with the difference that the
agents should now include the variability of the applications within and between
epochs, defining all reference application classes and the set of architectural agents
that are potentially involved by their execution. The outcome is the set of agents that
is sufficient to fully represent the various classes of applications that will run on the
system, together with the needed documentation.

The fourth step consists of the definition of agents representing the activation
patterns of the application agents. Here are included users, data generated by the
environment, external factors that may impact onto the activation patterns (includ-
ing, in case, what needed to evaluate the availability and the dependability of the
system). The outcome is the set of agents that is sufficient to fully represent the acti-
vation patterns of all other agents representing the system, together with the needed
documentation.

In the fifth step a model per epoch is defined, by instantiating agents with the
needed multiplicity and setting up the start up parameters. Every model (a single
one in the following, for the sake of simplicity) is checked to ensure that it actu-
ally represents the desired scenario. The outcome is a model that is ready for the
evaluation.

In the sixth step the model is evaluated, and proper campaigns are run to obtain
significant test cases that are sufficient to verify the model and to define suitable
parameters sets that support the final decision. The outcomes consist of the results
of the evaluation, in terms of values for all the target metrics.

The seventh step is the evaluation of results with the help of domain experts, to
check their trustability and accept the model as correct and ready to be used as a
decision support tool. The outcome is an acceptance, or otherwise a revision plan
that properly leads back to the previous steps according to the problem found in it.

The last step is the definition of the final design parameters, which allow to
correctly instantiate the design.

1.5.4 Evolving Existing Systems

The same ideas may be applied to a structured methodology for supporting the
enhancement and reengineering process or an existing architecture. In this case,

1 Performance Modeling of Big Data-Oriented Architectures 27

the system is already available for a thorough analysis, and traces and historical
information about its behaviors provide a valuable resource to be harvested to produce
a solid base on which a good model can be structured, with the significant advantage
that the available information is obtained on the same real system. In this case,
a precious tool is provided by monitoring techniques like the ones presented in
Sect. 1.4.

The methodology is organized into 12 steps, on which iterations may happen until
a satisfactory result is reached in the final step. Figure1.1 shows an ideal, linear path
along the steps, similarly to what presented in the previous case.

The first step is dedicated to understanding the actual workload of the system.
This is of paramount importance, as the need for evolving the system stems from the
inadequacy of the system to successfully performing what required by the existing
workload, or because of additional workload that may be needed to be integrated to
the existing one, which in turn is probably dominant, as it is likely to be composed by
an aggregate of applications. The outcomes of this step is a complete characterization
of the workload (Fig. 1.2).

In the second step all components are analyzed, exploiting existing data about the
system and the influence of the workload, in order to obtain a set of parameters for
each component that characterizes it and allows a classification. The outcomes are
this set of characterizations and the classification.

The third step is analogous to the second step of the previous case, with the
advantage of using actual data in place of estimations, obtained in the previous step.
The outcomes are constituted by the agents that describe the components of the
system.

The fourth step is analogous to the third step of the previous case, with the same
advantages resulting from a complete knowledge of the existing situation. As in the
previous step, the agents describing the applications are the outcomes.

In the fifth step the outcomes from the first step are used to define the agents that
describe the workload, similarly as what seen for the fourth step of the previous case.
Also in this case, agents are the outcomes.

In the sixth step the model is defined, with the significant advantage that it is
supposed to represent the existing system and is thus relatively easy to perform
tunings with comparisons with the reality. The outcome consists of the model itself.

The seventh step is dedicated to the validation of the model, which benefits from
the availability of real traces and historical data. This avoids the need for experts,
as everything can be checked by internal professionals, and raises the quality of the
process. The outcome is a validated model.

The eight step is dedicated to the definition of the agents that describe the desired
extensions to the system. This can be done by reusing existing agents with different
parameters or designing new agents from scratch. The outcome is an additional set
of agents, designed to be coherent with the existing model, which describe the new
components that are supposed to be added or replaced in the system.

The ninth step is devoted with the extension of the model with a proper instanti-
ation of the new agents, and the needed modifications. The outcome is the extended
model.

28 M. Gribaudo et al.

Fig. 1.2 Design steps for
evolving an existing system

In the tenth step the new model is used to evaluate the new behavior of the
extended system, to support the decision process. The model is used to explore the
best parameters with the hypothesized architecture and organization. The outcome
is the decision, which implies a sort of validation of the results, of a rebuttal of the
new model, with consequent redefinition of the extensions and partial replay of the
process.

1 Performance Modeling of Big Data-Oriented Architectures 29

The last step is, again, the definition of the final design parameters, which allow
to correctly instantiate the design.

1.6 Conclusions

The emerging interest on big data architectures is the straightforward consequence
of a modern fully digitalized society, where more and more people, but also inde-
pendent and unattended applications and machines produce, utilize and exchange
large amount of data all over the world. The origins of such a global “digitalization”
process may be found in several trends and phenomena, affecting almost any sector
of our society and everyday life, ranging from the proliferation of the data sources
available on the Internet to the ever growing adoption of digital data representation
and storage formats as well as from the new available ways for sharing and obtaining
information through flexible and powerful semantic/social networking organizations,
to the rapid evolution and widespread deployment of the networking devices with
their ubiquitous and pervasive interconnection through high speed communication
infrastructures. In such scenario, the “always connected life” paradigm, fostered by
the diffusion of mobile personal communication devices has further propelled the
need of new architectures specially crafted for capturing, combining, correlating
and analyzing massive amount of heterogeneous and unstructured data coming from
everywhere on the Internet.

While the exploitation of the potential of these big data architectures can bring
unique and unforeseen opportunities for improving the social conditions as well
as the quality of life (e.g., in surveillance, finance, healthcare, etc.), resulting in a
real “quantum leap” in the efficiency of any kind of IT process or workflow, their
performance is still a partially uncharted territory, due to the extension of the prob-
lem perimeter and extreme complexity of all the involved factors and technology.
Accordingly, we faced this challenge by analyzing themain issues related to BigData
Systems, together with a methodological proposal for a modeling and performance
analysis approach that is able to scale up sufficiently while providing an efficient
analysis process.

Our effort resulted in a glance over themain aspects of performance evaluation for
Big Data architectures, by providing examples of model based evaluation, in order
to show how it is possible to characterize these large scale architectures in order to
support their correct management and capacity planning practices.

Acknowledgments Wewould like to thankDrE. Barbierato for his precious comments, that helped
us to improve the quality of this chapter.

30 M. Gribaudo et al.

References

1. Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: A cluster-based data-centric model for
network-aware task scheduling in distributed systems. Int. J. Parallel Prog. 42(5), 755–775
(2014)

2. Wu, Y., Li, G., Wang, L., Ma, Y., Kolodziej, J., Khan, S.U.: A review of data intensive comput-
ing. In: The 12th IEEE International Conference on Scalable Computing and Communications
(ScalCom 2012), IEEE (Dec 2012)

3. Madden, S.: From databases to Big Data. IEEE Int. Comput. 16(3), 4–6 (2012)
4. Bertino, E., Bernstein, P., Agrawal, D., Davidson, S., Dayal, U., Franklin, M., Gehrke, J., Haas,

L., Halevy, A., Han, J., et al.: Challenges and Opportunities with Big Data. (2011)
5. Fu, Y., Jiang, H., Xiao, N.: A scalable inline cluster deduplication framework for Big Data

protection. In: Proceedings of the 13th International Middleware Conference. Middleware ’12,
pp. 354–373. Springer, New York (2012)

6. Bryant, R.E., Katz, R.H., Lazowska, E.D.: Big-data computing: Creating revolutionary break-
throughs in commerce, science, and society. In: Computing Research Initiatives for the 21st
Century. Computing Research Association (2008)

7. deRoos, D., Eaton, C., Lapis, G., Zikopoulos, P., Deutsch, T.: Understanding Big Data: Ana-
lytics for Enterprise Class Hadoop and Streaming Data. 1st edn. McGraw-Hill Osborne Media
(2011)

8. Inacio, E.C., Dantas, M.A.R.: A survey into performance and energy efficiency in hpc, cloud
and big data environments. IJNVO 14(4), 299–318 (2014)

9. Regola, N., Cieslak, D.A., Chawla, N.V.: The need to consider hardware selectionwhen design-
ing big data applications supported by metadata. In: Hu, W.C., Kaabouch, N. (eds.) Big Data
Management, Technologies, and Applications. IGI Global pp. 381–396. (2014)

10. Majeed, A., Shah, M.A.: Energy efficiency in big data complex systems: a comprehensive
survey of modern energy saving techniques. Complex Adapt. Syst. Model. 3(1), 1–29 (2015)

11. Apache Hadoop: Apache Hadoop web site
12. White, T.: Hadoop: The Definitive Guide. 1st edn. O’Reilly Media, Inc. (2009)
13. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs

from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007. EuroSys ’07, pp. 59–72. ACM, New York, NY, USA
(2007)

14. Oozie: Oozie web site (2011)
15. Amazon Inc.: Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/#

pricing (2008)
16. Rackspace, US Inc.: The Rackspace Cloud. http://www.rackspace.com/cloud/ (2010)
17. Jung, G., Gnanasambandam, N., Mukherjee, T.: Synchronous parallel processing of big-data

analytics services to optimize performance in federated clouds. In: Proceedings of the 2012
IEEEFifth InternationalConference onCloudComputing.CLOUD’12, 811–818.Washington,
DC, USA, IEEE Computer Society (2012)

18. Weatherspoon, H., Kubiatowicz, J.: Erasure coding vs. replication: A quantitative comparison.
In: Revised Papers from the First International Workshop on Peer-to-Peer Systems. IPTPS ’01,
pp. 328–338. Springer, London, UK, (2002)

19. Kameyama, H., Sato, Y.: Erasure codes with small overhead factor and their distributed storage
applications. In: 41st Annual Conference on Information Sciences and Systems, 2007. CISS
’07, pp. 80–85 (March 2007)

20. Dandoush, A., Alouf, S., Nain, P.: Simulation analysis of download and recovery processes in
P2P storage systems. In: 21st International Teletraffic Congress, 2009. ITC 21 2009, pp. 1–8
(Sept 2009)

21. Aguilera,M., Janakiraman,R.,Xu,L.:Using erasure codes efficiently for storage in a distributed
system. In: Proceedings of the International Conference onDependable Systems andNetworks,
2005. DSN 2005, pp. 336–345 (June 2005)

http://aws.amazon.com/ec2/#pricing
http://aws.amazon.com/ec2/#pricing
http://www.rackspace.com/cloud/

1 Performance Modeling of Big Data-Oriented Architectures 31

22. Wu, F., Qiu, T., Chen, Y., Chen, G.: Redundancy schemes for high availability in dhts. In: Pan,
Y., Chen, D., Guo, M., Cao, J., Dongarra, J. (eds.) ISPA. Volume 3758 of Lecture Notes in
Computer Science., pp. 990–1000. Springer (2005)

23. Rodrigues, R., Liskov, B.: High availability in dhts: Erasure coding vs. replication. In: Peer-
to-Peer Systems IV 4th International Workshop IPTPS 2005, Ithaca, New York (Feb 2005)

24. Xiang, Y., Lan, T., Aggarwal, V., Chen, Y.F.R.: Joint latency and cost optimization for erasure-
coded data center storage. SIGMETRICS Perform. Eval. Rev. 42(2), 3–14 (2014)

25. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R., Chen, S.,
Borthakur, D.: Xoring elephants: novel erasure codes for big data. In: Proceedings of the
39th International Conference on Very Large Data Bases. PVLDB’13, VLDB Endowment pp.
325–336 (2013)

26. Lian,Q., Chen,W., Zhang, Z.: On the impact of replica placement to the reliability of distributed
brick storage systems. In: Proceedings of the 25th IEEE InternationalConference onDistributed
Computing Systems, 2005. ICDCS 2005, pp. 187–196 (June 2005)

27. Simon, V., Monnet, S., Feuillet, M., Robert, P., Sens, P.: SPLAD: scattering and placing data
replicas to enhance long-term durability. Rapport de recherche RR-8533, INRIA (May 2014)

28. Gribaudo, M., Iacono, M., Manini, D.: Modeling replication and erasure coding in large scale
distributed storage systems based on CEPH. In: ITAIS2015: Proceedings of XII Conference
of the Italian Chapter of AIS. Volume to Appear of Lecture Notes in Information Systems and
Organisation. Springer, Berlin, Heidelberg (2016)

29. Gribaudo, M., Iacono, M., Manini, D.: Improving reliability and performances in large scale
distributed applications with erasure codes and replication. Future Gener. Comput. Syst. 56,
773–782 (2016)

30. Apache Cassandra: Apache Cassandra web site (2009)
31. MongoDB: MongoDB web site (2011)
32. Apache HBase: Apache HBase web site
33. Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Performance Evalu-

ation of NoSQL Databases. In: Proceedings of the Computer Performance Engineering: 11th
EuropeanWorkshop, EPEW2014, Florence, Italy, September 11-12, 2014, pp. 16–29. Springer
International Publishing, Cham (2014)

34. Palmieri, F., Pardi, S. In: EnhancedNetwork Support for Scalable ComputingClouds. Volume 0
of Computer Communications and Networks. pp. 127–144. Springer, London (2010)

35. Chowdhury,M., Zaharia,M.,Ma, J., Jordan,M., Stoica, I.:Managing data transfers in computer
clusters with orchestra. SIGCOMM-Comput. Commun. Rev. 41(4), 98–109 (2011)

36. Tierney, B., Kissel, E., Swany, D.M., Pouyoul, E.: Efficient data transfer protocols for Big
Data. In: eScience, IEEE Computer Society, pp. 1–9 (2012)

37. Zahavi, E., Keslassy, I., Kolodny, A.: Distributed adaptive routing for big-data applications
running on data center networks. In: Proceedings of the Eighth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems. ANCS ’12, pp. 99–110. ACM,
New York, NY, USA (2012)

38. Palmieri, F., Pardi, S.: Towards a federated Metropolitan Area Grid environment: The SCoPE
network-aware infrastructure. Future Gener. Comput. Syst. 26(8), 1241–1256 (2010)

39. Esposito, C., Ficco,M., Palmieri, F., Castiglione, A.: Interconnecting federated clouds by using
publish-subscribe service. Cluster Comput. 16(4), 887–903 (2013)

40. Castiglione, A., Gribaudo, M., Iacono, M., Palmieri, F.: Modeling performances of concurrent
big data applications. Softw.: Pract. Experience 45(8), 1127–1144 (2015)

41. Barbierato, E., Gribaudo, M., Iacono, M.: Performance evaluation of NoSQL Big Data appli-
cations using multi-formalism models. Future Gener. Comput. Syst. 37, 345–353 (2014)

42. Castiglione, A., Gribaudo,M., Iacono,M., Palmieri, F.: Exploitingmean field analysis tomodel
performances of big data architectures. Future Gener. Comput. Syst. 37, 203–211 (2014)

43. Cerotti, D., Gribaudo, M., Iacono, M., Piazzolla, P.: Modeling and analysis of performances
for concurrent multithread applications on multicore and graphics processing unit systems.
Concurrency Comput.: Pract. Experience 28(2), 438–452 cpe.3504 (2016)

32 M. Gribaudo et al.

44. Xu, L., Cipar, J., Krevat, E., Tumanov, A., Gupta, N., Kozuch, M.A., Ganger, G.R.: Agility
and performance in elastic distributed storage. Trans. Storage 10(4), 16:1–16:27 (2016)

45. Yan, F.,Riska,A., Smirni, E.: Fast eventual consistencywith performanceguarantees for distrib-
uted storage. In: 32nd International Conference on Distributed Computing SystemsWorkshops
(ICDCSW), 2012, pp. 23–28 (June 2012)

46. Barbierato, E., Gribaudo, M., Iacono, M.: Modeling and evaluating the effects of Big Data
storage resource allocation in global scale cloud architectures. Int. J. Data Warehous. Min.
12(2), 1–20 (2016)

47. Duan, S., Thummala, V., Babu, S.: Tuning database configuration parameters with iTuned.
Proc. VLDB Endow. 2(1), 1246–1257 (2009)

48. Zheng, W., Bianchini, R., Janakiraman, G.J., Santos, J.R., Turner, Y.: JustRunIt: Experiment-
based management of virtualized data centers. In: Proceedings of the 2009 Conference on
USENIXAnnual Technical Conference. USENIX’09, pp. 18–18 USENIXAssociation, Berke-
ley, CA, USA (2009)

49. Mytilinis, I., Tsoumakos, D., Kantere, V., Nanos, A., Koziris, N.: I/O performance modeling
for big data applications over cloud infrastructures. In: 2015 IEEE International Conference
on Cloud Engineering, IC2E 2015, Tempe, AZ, USA, March 9–13, 2015, IEEE, pp. 201–206
(2015)

50. Shi, Y., Meng, X., Zhao, J., Hu, X., Liu, B., Wang, H.: Benchmarking cloud-based data man-
agement systems. In: Proceedings of the Second International Workshop on Cloud Data Man-
agement. CloudDB ’10, pp. 47–54. ACM, New York, NY, USA (2010)

51. Boulon, J., Konwinski, A., Qi, R., Rabkin, A., Yang, E., Yang, M.: Chukwa, a large-scale
monitoring system. In: Proceedings of CCA, vol. 8 (2008)

52. Tan, J., Pan, X., Marinelli, E., Kavulya, S., Gandhi, R., Narasimhan, P.: Kahuna: Problem
diagnosis for mapreduce-based cloud computing environments. In: Network Operations and
Management Symposium (NOMS), 2010 IEEE, IEEE, pp. 112–119 (2010)

53. Creţu-Ciocârlie, G.F., Budiu, M., Goldszmidt, M.: Hunting for problems with artemis. In:
Proceedings of the First USENIX Conference on Analysis of system logs, pp. 2–2. USENIX
Association (2008)

54. Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An analysis of traces from a production
mapreduce cluster. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), 2010, IEEE, pp. 94–103 (2010)

55. Hellerstein, J.: Google cluster data (2010)
56. Wilkes, J.: More google cluster data (2011)
57. Cardona, K., Secretan, J., Georgiopoulos, M., Anagnostopoulos, G.: A grid based system for

data mining usingMapReduce. Technical report, Technical Report TR-2007-02, AMALTHEA
(2007)

58. Teng, F., Yu, L., Magoulès, F.: SimMapReduce: a simulator for modeling mapreduce frame-
work. In: 5th FTRA International Conference on Multimedia and Ubiquitous Engineering
(MUE), 2011, IEEE, pp. 277–282 (2011)

59. Hammoud, S., Li, M., Liu, Y., Alham, N.K., Liu, Z.: Mrsim: A discrete event based mapreduce
simulator. In: Seventh International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), 2010, volume 6., IEEE, pp. 2993–2997 (2010)

60. Liu, Y., Li, M., Alham, N.K., Hammoud, S.: HSim: a mapreduce simulator in enabling cloud
computing. Future Gener. Comput. Syst. 29(1), 300–308 (2013)

61. Herodotou,H., Babu, S.: Profiling,what-if analysis, and cost-based optimization ofMapReduce
programs. Proc. VLDB Endowment 4(11), 1111–1122 (2011)

62. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: A
self-tuning system for big data analytics. In: Proceedings of the Fifth CIDR Conference (2011)

63. Wang, G., Butt, A.R., Pandey, P., Gupta, K.: A simulation approach to evaluating design
decisions in MapReduce setups. In: IEEE International Symposium on Modeling, Analysis
& Simulation of Computer and Telecommunication Systems, 2009. MASCOTS’09. IEEE, pp.
1–11 (2009)

1 Performance Modeling of Big Data-Oriented Architectures 33

64. Fonseca, R., Porter, G., Katz, R.H., Shenker, S., Stoica, I.: X-trace: A Pervasive Network
Tracing Framework. In: Proceedings of the 4th USENIX Conference on Networked Systems
Design & Implementation. NSDI’07, pp. 20–20. USENIX Association, Berkeley, CA, USA
(2007)

65. Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha, B., Harris, E.:
Reining in the outliers in map-reduce clusters usingmantri. In: Proceedings of the 9th USENIX
Conference onOperating SystemsDesign and Implementation, pp. 1–16.USENIXAssociation
(2010)

66. Chen, Y., Ganapathi, A.S., Griffith, R., Katz, R.H.: Towards Understanding Cloud Performance
Tradeoffs Using Statistical Workload Analysis and Replay. Technical Report UCB/EECS-
2010-81, EECS Department, University of California, Berkeley (May 2010)

67. Ficco, M., Avolio, G., Palmieri, F., Castiglione, A.: An hla-based framework for simulation of
large-scale critical systems. Concurrency Comput. 28(2), 400–419 (2016)

68. OPNET: Opnet modeler. http://www.opnet.com/. Accessed 30 April 2016
69. NS2: Ns2 official website. http://www.isi.edu/nsnam/ns/. Accessed 30 April 2016
70. NS3: Ns3 official website. http://www.nsnam.org/documents.html. Accessed30 April 2016
71. OMNeT: Omnet++ official website. http://www.omnetpp.org/. 30 April 2016
72. REAL: Real 5.0 simulator overview. http://www.cs.cornell.edu/skeshav/real/overview.html.

30 April 2016
73. SSFNet: Scalable simulation framework (ssf), ssfnet homepage. http://www.ssfnet.org/

homePage.html. Accessed 30 April 2016
74. J-Sim: J-sim homepage. https://sites.google.com/site/jsimofficial/. Accessed 30 April 2016
75. QualNet: Qualnet official site. http://web.scalable-networks.com/content/qualnet. Accessed

30 April 2016
76. Wan simulators and emulators. http://www.wan-sim.net/. Accessed 30 April 2016
77. Welsh, C.: GNS3 network simulation guide. Packt Publ. (2013)
78. Sivasubramaniam, A., Singla, A., Ramachandran, U., Venkateswaran, H.: On characterizing

bandwidth requirements of parallel applications. In: ACM SIGMETRICS Performance Eval-
uation Review, vol 23, pp. 198–207. ACM (1995)

79. Papaefstathiou, E., Kerbyson, D.J., Nudd, G.R.: A layered approach to parallel software per-
formance prediction: A case study. (1994) Technical Report CS-RR-262

80. Schopf, J.M., Berman, F.: Performance prediction in production environments. In: Parallel
Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged Interna-
tional... and Symposium on Parallel and Distributed Processing 1998, IEEE, pp. 647–653
(1998)

81. Armstrong, B., Eigenmann, R.: Performance forecasting: Characterization of applications on
current and future architectures. Purdue Univ. School of ECE, High-Performance Computing
Lab. Technical report ECE-HPCLab-97202 (1997)

82. Armstrong, B., Eigenmann, R.: Performance forecasting: Towards a methodology for charac-
terizing large computational applications. In: Proceedings of the 1998 International Conference
on Parallel Processing, 1998, IEEE, pp. 518–525. (1998)

83. Carrington, L., Snavely, A., Gao, X., Wolter, N.: A performance prediction framework for
scientific applications. Computat. Sci. ICCS 2003, pp. 701–701 (2003)

84. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.: Predictive
performance and scalability modeling of a large-scale application. In: Proceedings of the 2001
ACM/IEEE Conference on Supercomputing (CDROM), pp. 37–37. ACM (2001)

85. Dinda, P.A., O’Hallaron, D.R.: An evaluation of linear models for host load prediction. In:
Proceedings of the The Eighth International Symposium on High Performance Distributed
Computing, 1999. IEEE, pp. 87–96 (1999)

86. Barbierato, E., Gribaudo, M., Iacono, M.: A performance modeling language for big data
architectures. In: Rekdalsbakken, W., Bye, R.T., Zhang, H. (eds.) ECMS, European Council
for Modeling and Simulation, pp. 511–517 (2013)

87. Barbierato, E., Gribaudo, M., Iacono, M.: Modeling apache hive based applications in big data
architectures. In: 7th International Conference on Performance Evaluation Methodologies and
Tools, VALUETOOLS 2013. (Dec 2013)

http://www.opnet.com/
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/documents.html
http://www.omnetpp.org/
http://www.cs.cornell.edu/skeshav/real/overview.html
http://www.ssfnet.org/homePage.html
http://www.ssfnet.org/homePage.html
https://sites.google.com/site/jsimofficial/
http://web.scalable-networks.com/content/qualnet
http://www.wan-sim.net/

34 M. Gribaudo et al.

88. Andresen, D., Yang, T., Ibarra, O.H., Eğecioğlu, Ö.: Adaptive partitioning and scheduling for
enhancing www application performance. J. Parallel Distrib. Comput. 49(1), 57–85 (1998)

89. Bodík, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical machine learn-
ing makes automatic control practical for internet datacenters. In: Proceedings of the 2009
Conference on Hot topics in Cloud Computing. HotCloud’09, USENIX Association Berkeley,
CA, USA (2009)

90. Anderson, E., Ganger, G.R.,Wylie, J.J., Krevat, E., Shiran, T., Tucek, J.: Applying Performance
Models to Understand Data-Intensive Computing Efficiency (2010)

91. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing andComputer ScienceAppli-
cations. John Wiley and Sons Ltd., Chichester, UK (2002)

92. Kurtz, T.: Approximation of Population Processes. Society for Industrial and Applied Mathe-
matics (1981)

93. Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by mean field
method. In: 5th International Conference on Quantitative Evaluation of Systems—QEST2008,
St. Malo (2008)

Chapter 2
Workflow Scheduling Techniques
for Big Data Platforms

Mihaela-Catalina Nita, Mihaela Vasile, Florin Pop and Valentin Cristea

2.1 Introduction

Today, almost everyone is connected to the Internet and uses different Cloud solutions
to store, deliver, and process data. Cloud computing assembles large networks of
virtualized services, such as hardware and software resources [1]. The use of cloud
resources by end users is made in an asynchronous way and in many cases using
mobile devices over different types of networks. Interoperability for such type of
systems with the main aim to ensure dependability and resilience is one of the major
challenges for heterogeneous distributed systems.

While cloud computing optimizes the use of resources, it does not (yet) provide
an effective solution for processing complex applications described by workflows.
Some example of such applications is hostingmultimedia content-driven, and process
tsunami (often in real-time) of content from heterogeneous sources, such as surveil-
lance cameras, medical imaging devices, etc. The current need is an optimal and
validated middleware framework and that can support end-to-end life-cycle oper-
ations of different multimedia content-driven applications on more standard cloud
infrastructures [2].

Many scientific applications are defined as a set of ordered tasks that are linked
by data dependencies. A workflow management system is used to define, manage,
and execute these workflow applications on cluster, grid, cloud environments. In
this context, a workflow scheduling strategy is used to map the task on the different
resources [3, 4].

We live in the data age, and a key metric of present times is the amount of data
that is generated anywhere around us. The largest scientific institution of present
times, CERN near Geneva, Switzerland, produces in the Large Hadron Collider
project over 30 PB of data per year (as of 2013) [5]. Thus the notion of Big Data,

M.-C. Nita · M. Vasile · F. Pop (B) · V. Cristea
Computer Science Department, University Politehnica of Bucharest,
Bucharest, Romania
e-mail: florin.pop@cs.pub.ro

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_2

35

36 M.-C. Nita et al.

a commonplace in all business discussions involving technology. Yet, its definition
is not that clear. Big Data represents data sets of sizes larger than the common ability
of traditional technologies to process given a certain service level agreement. And
this last part brings us to a more meaningful definition: Big Data is the process of
delivering decision-making insights. But, rather than focusing on people, this process
uses a much more powerful and evolved technology, given the latest breakthroughs
in this field, to quickly analyze huge streams of data, from a variety of sources,
and to produce one single stream of human-level knowledge [6]. Nevertheless, in
2001, META Group (now Gartner), proposed a three-dimensional view regarding
data growth challenges and opportunities, taking into consideration the increasing
volume (the amount of data), the velocity (the speed of data in and out) and variety
(the range of data types and sources) [7]. In 2012, Gartner updated this report as
follows: Big Data is high volume, high velocity, and/or high variety information
assets that require new forms of processing to enable enhanced decision-making,
insight discovery and process optimization.1 Lately, another key point—veracity is
added by some organizations to make a strong case for the high need of accuracy of
BigData.We can extend this model to 8-V dimensions of BigData: volume, velocity,
variety, veracity, variability, visualization, volatile, and value [8]. We consider Grids
and Clouds as suitable systems for Big Data platforms.

In this context, we face with the following assumptions for workflow schedul-
ing. The challenges came from dynamic systems affected by faults. In this context
of variety, the stimulating relationship between users, who require better comput-
ing services, and providers, who discover new ways to satisfy them, is the motiva-
tion to introduce future trends oriented on self-* capabilities [9]. For multimedia
applications, real-time scheduling and processing are done on reliable and unreli-
able resources (an example is based on mixed processing based on satellite images
[10, 11], live data streaming and sensor data for video surveillance). The main chal-
lenges are to ensure deadlines (very important in real-time interaction), budget (pay-
per-use Cloud model), energy consumption (battery saving for mobile devices), and
QoS (to guarantee SLA) for complex workflow applications.

When addressing the problem of adaptive workflow scheduling we first need
to investigate the current solutions for managing such workflow applications. With
specific focus on scientificworkflowswe canfind some tools designed by the research
community to help the scientists address/investigate/simulate issues from every area
like: astronomy, bioinformatics, earth science, chemistry. It is important to have a
global picture of the current tools in order to properly choose the one that suits
perfectly in our research area [12, 13].

The chapter is organized as follow. First, we discuss the workflow scheduling
algorithms and techniques in grid and cloud.Wepresent the strengths andweaknesses
of several existing scheduling strategies and we make a critical analysis of workflow
management systems.

1http://www.gartner.com/it-glossary/big-data/.

http://www.gartner.com/it-glossary/big-data/

2 Workflow Scheduling Techniques for Big Data Platforms 37

2.2 Workflow Scheduling in Distributed Systems

We are facing with a strong development of various technologies leading to com-
plex applications, which are able to process Big Data sets and execute different
experiments/tasks on distributed systems. These applications are covering important
aspects of everyday life: health, education, astronomy, research engineering, etc. and
are described by a number of interdependent tasks called workflows. Scientific work-
flows represent the automation of a scientific process in which tasks are organized
based on their control and data dependency.

In this context, distributed systems are offering several advantages, such as: uti-
lizing geographically distributed resources, increasing throughput, reducing costs by
not investing in proprietary resources and using the shared ones, engaging various
scientific teams with different expertise.

A workflow is described by connecting multiple tasks according to their depen-
dency (execution dependency or data dependency). This pool of interconnected tasks
may take two shapes: that of a directed acyclic graph (DAG) or a non-DAG, the dif-
ference consisting in the existence of repeating tasks.

The DAG structure can be categorized as sequential, parallel and choice, while
the non-DAG structure is adding one more structure type: iteration. In a sequential
structure, the tasks are ordered in a serial manner and one task starts only after the
previous one ended. In a parallel structure, the tasks may be computed simultaneous
and in a choice structure, the decision of following a certain path in the graph is done
at runtime. In the iteration structure, several tasks of theworkflowmay be repeated. A
workflow may be described by all the presented structure types simultaneously [14].

2.2.1 Workflow Scheduling Algorithms and Techniques
in Grid

There are two main classes of workflow scheduling: best effort and QoS constraints-
based scheduling [15]. The best-method class wants to minimize the makespan and
ignores other constraints, like budget, energy, etc. On the other hand the QoS con-
strained class, as the name suggests, attempts to minimize cost/time under some QoS
metrics.

2.2.1.1 Best-Effort-Based Workflow Scheduling

Best-effort-basedworkflowscheduling algorithms aremore specifics for community-
based environments, like grids. In this type of environments, there are factors like
elasticity or cost that does not count and the main focus is on the execution time.
This class of scheduling has as target to complete execution at the earliest time.
Best-effort-based scheduling algorithms have two different approaches: heuristics

38 M.-C. Nita et al.

based or meta-heuristics based. The heuristic approach is to develop a scheduling
algorithm for a particular type of problem, while the meta-heuristic-based approach
is to develop an algorithm based on ameta-heuristicmethodwhich provides a general
solution for a specific class of problems.

Individual task scheduling method, as the name suggests it makes scheduling
choices based on a single task at a time. It is not aware of the general context. The
Myopic algorithm [16] implements this method and it schedules an unmapped ready
task to the resource that is expected to complete the task earliest, until all tasks have
been scheduled.

List scheduling prioritizes workflow tasks and schedules the tasks based on their
priorities. It includes two phases: task priority and resource allocation. The list
schedulingmodels can be categorized in three groups:batchmode scheduling, depen-
dency mode scheduling, and a hybrid version: Batch-Dependency Mode scheduling.

Batch mode scheduling algorithms intent to schedule parallel independent tasks
on a pool of resources. Since the number of resources is much less than the number
of tasks, the tasks need to be scheduled on the resources in a certain order [17]. This
priority is made through the following algorithms: Min-Min, Max-Min, and Suffer.

Min-Min heuristic schedules sets of independent tasks iteratively. In each iterative
step, it computes the ECT (Early Completion Time) of each task on its every available
resource and obtains the MCT (Minimum Estimated Completion Time). The task
with minimum MCT is chosen to be scheduled first. The task is assigned on the
resource which is expected to finish it at first.

Max-Min heuristic is similar to the Min-Min heuristic, but it sets high scheduling
priority to tasks which have long execution time.

Sufferage sets high scheduling priority to tasks whose completion time by the
second best resource is far from the first which can complete the task at earliest time.
This method may have optimal results in heterogeneous environments.

Dependency mode intends to provide strategies to map workflow tasks on het-
erogeneous resources based on analyzing the dependencies of the entire task DAG.
Unlike batch mode algorithms, it ranks the priorities of all tasks based on the whole
application context.

The Heterogeneous Earliest Finish Time (HEFT) algorithm proposed in [18] by
Topcuoglu et al. has been applied by the ASKALON project and it first calculates
average execution time for each task and average communication time between
resources of two dependent tasks. Then, each task receives a rank value which is
computed in a recursive manner based on the rank value of the following depen-
dent tasks. So, the exit task in the graph will have the smallest rank value, as being
the average execution time. The tasks previous the exit task will have their average
execution time + the maximum ([communication time from a resource to another
resource] + [the rank value of the successor]). The task with the highest priority will
be scheduled first.

Sakellariou and Zhao [19] proposed a hybrid heuristic for scheduling DAGs on
heterogeneous systems. The heuristic combines dependency mode and batch mode.
It first computes rank values of each task and ranks all tasks in the decreasing order
of their rank values. Then it creates groups of independent tasks. Each group will

2 Workflow Scheduling Techniques for Big Data Platforms 39

have a group number based on the rank values of the group tasks. Then it schedules
tasks group by group and uses a batch mode algorithm to reprioritize the tasks in the
group.

Cluster-based scheduling and duplication-based scheduling aim to avoid the com-
munication time of the data for interdependent tasks, such that it is able to reduce
the overall execution time. The cluster-based scheduling clusters tasks and assign
tasks of the same cluster to the same resource. The duplication-based scheduling
use the idling time of a resource to duplicate some parent tasks and it schedules
them on other resources. Bajai and Agrawal [20] proposed a task duplication-based
scheduling algorithm for network of heterogeneous systems (TANH). This algo-
rithm combines both cluster-based scheduling and duplication-based scheduling. It
first traverses the DAG to compute parameters of each node including earliest start
and completion time, latest start and completion time, critical immediate parent task,
best resource, and the level of the task. Afterwards, it clusters tasks based on these
parameters and it scales down the number of clusters until it is less or equal than
the number of resources. In case of number of clusters being less than the number
of resources, it utilizes the idle times of resources to duplicate tasks and rearrange
tasks in order to decrease the overall execution time.

Genetic Algorithms (GAs) [21] provide robust search techniques that allow an
optimal solution to be derived from a large search space by applying the principle
of evolution. It first creates an initial population consisting of randomly generated
solutions and then it applies genetic operators (selection, crossover and mutation).
Then the individuals are selected based on their fitness values and included in the
next selection steps. These steps are repeated until an optimal solution is found. The
art of scheduling consists in finding the proper fitness function. As an example of
such function designed for scheduling [22] is f (x) = Cmax − FT (I), where Cmax

is the maximum completion time observed so far and FT (I) is the completion time
of the individual I. While trying to minimize the completion time, the individuals
with a larger fitness value will be selected for the next steps.

Simulated Annealing (SA) [23] is inspired by the Monte Carlo method for sta-
tistically searching the global optimal between several local optimal. The concept
is taken from the annealing process, which repeats the heating and slowly cooling
of a structure. The input of the algorithm is an initial solution which is constructed
by assigning a resource to each task randomly. Then, based on an acceptance rate,
the solutions are selected for the next step. At each iterative step the acceptance is
decreased.

2.2.1.2 QoS-Constraint-Based Workflow Scheduling

When talking about QoS Constraints algorithms, in general, we are talking about
two different perspectives: user perspective and scheduler perspective. If the user
perspective refers to QoS of the entire workflow, the scheduler perspective refers to
the QoS of the task. The scheduler may assure a QoS for the entire workflow only if
the QoS of each individual task is assured.

40 M.-C. Nita et al.

Many workflow applications have a tight deadline so the deadline constrained
scheduling algorithms are designed mainly for these types of applications. However
being in pay-per-use environment such as cloud, it is also important to minimize
the cost. In this context, this class of scheduling classes pays attention to the time
framework but without ignoring the cost.

The backtracking heuristic developed by Menasce and Casalicchio [24] assigns
available tasks to least expensive computing resources (in case of many available
tasks, it assigns the most CPU intensive task to the fastest resource). The procedure
is repeated until all tasks are mapped. After each iterative step, the execution time of
current assignment is computed and in case of the execution time exceeding the time
constraint, the heuristic backtracks the previous step and remove the least expensive
resource from its resource list and reassigns tasks with the reduced resource set.

Another deadline constraint heuristic is the deadline distribution [25] heuristic
which partitions a workflow and distributes the overall deadline into each task based
on their workload and dependencies. After deadline distribution, the entire workflow
scheduling problem has been divided into several subtask scheduling problems. A
sub-deadline can be also assigned to each task based on the deadline of its task
partition.

The Budget Constrained scheduling puts accent on the cost constraints while
minimizing the execution time. LOSS and GAIN scheduling approach [26] adjusts
a schedule which is generated by a time optimized heuristic and a cost optimized
heuristic to respect budget constraints. There are two situations:

1. Total execution cost generated by time optimized schedule is grater than the
budget; the LOSS approach is applied: gain a minimum loss in execution time
for the maximum money savings by amending the schedule to satisfy the budget.

2. Total execution cost generated by a cost optimized scheduler is less than the
budget, the GAIN approach is applied in order to use the surplus for decreasing
the execution time: gain the maximum benefit in execution time for the minimum
monetary cost, while amending the schedule.

In [27] a scheduling data-intensive workflows onto storage-constrained distrib-
uted method is proposed. Important improvement in storage use for workflow data
is to add a cleanup job algorithm to erase data files when they are not longer in use
or required by current task or any other task in the workflow process. If the compute
tasks aremapped tomany resources then the data file is also replicated on all resources
thus the cleanup jobs/tasks are added per resource basis. In some situations the data
file required by a task comes from another resource and must not be deleted by the
algorithm at the source before its transferred to the child resource or task. Cleaning
up files on the workflowwhen havingmultiple file dependencies is challenging as the
algorithm inserts cleanup jobs along the executable workflow and cleans up along
the executions. This can generate for complex workflows greater number of cleanup
jobs than the compute tasks itself. More efficient is to have an algorithm for storage
aware when workflow is mapped considering the overall storage requirements, min-
imizing also the requirements. Thinking at an efficient execution of the tasks, these

2 Workflow Scheduling Techniques for Big Data Platforms 41

must be mapped around the workflow taking in consideration the execution time and
using a resource with ample disk space. Main idea is to consider space requirement
and then performance of the resource when allocating the tasks. The algorithm can
be split in a 3-phase algorithm:

1. identification of the resources capable to accommodate the data files;
2. task allocation based on the shortest run time for that task; and
3. cleanup any unnecessary files indicated by the cleanup jobs.

In [28] the problem of scheduling multiple workflows is addressed: how to better
plan multiple workflows instead of merging them as previous solutions proposed.
The proposed solution has three components:

(a) DAG Planner: assigns each job local priority (HEFT-based priority), manages
the job interdependence and submits the jobs to the Job Pool;

(b) Job Pool an unsorted list with all jobs waiting to be scheduled;
(c) Executor reprioritizes the job into the Job Pool.

Each workflow has its own DAG Planner. Each DAG planner sends only indepen-
dent jobs at a time. Once it has finished the execution, the DAG planner is notified
and it will send the successor of that job. At the Executor level there are two types
of priority for two different cases:

(a) If jobs are from the sameDAGplanner, theHighest Rank first rule will be applied
(HEFT);

(b) If jobs are from the different DAG planers, the Lowest Rank first rule will be
applied in order to avoid the starvation of the exit jobs of some DAG planner.

2.2.2 Workflow Scheduling Algorithms and Techniques
in Cloud

One of the main advantages of moving to the cloud is application scalability,
which allows real-time provisioning of resources to respect service level agree-
ments (SLAs)/application requirements. This enables workflow management sys-
tems (WMS) to support real-time provisioning instead of advanced reservations. In
this context, workflow scheduling algorithmswill need to adapt and assure the agreed
level of QoS.

As concluded in [29] the main requirements for Cloud workflow scheduling are:
satisfaction of QoS requirements for individual workflow instances, minimization of
the running cost, ability of assigning fine-grained QoS to facilitate SLAmanagement
and good scalability. These conclusions lead to a two level workflow scheduling:
service-level scheduling and task-level scheduling. The service level is responsible
for the first and third objectivewhile the task-level is responsible for the taskVMopti-
mization process (second and forth objective). The service level is a global scheduler
that identifies the resources needs, makes provisioning and the task-level is a local

42 M.-C. Nita et al.

scheduler which implements the optimal scheduling plan for the given workflow on
the resources obtained.

In [30] Meng Xu et al. propose a multiple QoS constrained scheduling strategy of
multiple workflows for cloud computing (MQMW) which has a similar architecture
with the one proposed in [28], but different names: Preprocessor, Scheduler and
Executor.

The Preprocessor will computed the following attributes for the received tasks:

• the available service number;
• the covariance for time and cost;
• the time quota: the time limit when the task is executed;
• the cost quota: the cost limit when the task is executed;
• the time surplus of the workflow: the difference between the time attribute of QoS
and the finish time of the workflow if all the resources are available;

• the cost surplus of the workflow: the difference between the cost attribute of QoS
and the cost of the workflow if all the resources are available.

Afterwards, the Preprocessor inserts the ready tasks into the queue and for the
first time only entry tasks will be submitted. After the notification given by the
Executor that a certain job has finished, the dependent tasks will be also submitted.
The Scheduler will reorder the jobs in the list and it will allocate a job to the optimal
resource. When a task will be finished the Executor will notify the Preprocessor
about the task completion status.

The Scheduling Strategy is the following:

1. the task with minimum available service number should be scheduled first (that
the task would have not available services, if other tasks are scheduled first);

2. the tasks which belong to the workflow with minimum time surplus and cost
surplus should be scheduled first;

3. the tasks with minimum covariance should be scheduled first. The covariance
describes the strength of the correlation between time and cost. The minimum
covariance means when the time decreasing a definite value, the cost will increase
mostly. So the task should be scheduled first. Otherwise, we should pay more or
the time would increase more.

This algorithm was evaluated in parallel with the one described in [28] and the
results shows that the previous one improves the execution time of the workflow no
matter of the costs. However MQMW respects all the QoS constraints.

In [31] amulti-objective heterogeneous earliest finish time algorithm. Themethod
called MOHEFT is an extension of the Heterogeneous Earliest Finish Time (HEFT)
algorithm and intents to provide an optimal solution to the problem of makespan
and energy reduction. In this context, it is not always possible to find a solution that
minimizes both makespan and energy consumption so they introduced the concept
of dominance. A solution ×1 dominates a solution ×2 if the makespan and energy
consumption of ×1 are smaller than those of ×2.

In this context, two solutions are said to be nondominated whenever none of
them dominates the other (i.e.one is better in makespan and the other in energy

2 Workflow Scheduling Techniques for Big Data Platforms 43

Fig. 2.1 Overview of the best-effort workflow scheduling models

consumption). The set of optimal nondetermined solutions are called Pareto Front.
Similar to HEFT, MOHEFT ranks first the tasks and then instead of creating an
empty solution as HEFT does, it creates a set S of K empty solutions. Afterwards,
the mapping phase begins in which MOHEFT iterates first over the list of ranked
tasks. The idea is to extend every solution by mapping the tasks onto all possible
resources. This strategy results in an exhaustive search if there is any restriction
taken into consideration. Only the best K trade-off solutions from the temporary set
are kept. A solution belongs to the best trade-off if it is not dominated by any other
solution and if it contributes to the diversity of the set. The diversity of the set is
described as the highest crowding distance (the area surrounding a solution where
no other trade-off solution is placed nearby).

An overview of the best-effort workflow scheduling models is presented in
Fig. 2.1.

2.2.3 Scheduling Methods

In the following table, we present a critical analysis of existingmethods for workflow
scheduling, by highlighting the strengths and weaknesses and a short description for
each presented method.

44 M.-C. Nita et al.

A Planner-Guided Scheduling Strategy for Multiple Workflow Applications and
Dynamic scheduling multiple DAGs [28]
Description Dynamic scheduling multiple DAGs; Poisson distribution of the

arrival jobs; Custom ranking system (DAG path for example); Highest
rank first between jobs from the same DAG; Lowest rank first between
jobs from different DAGs, resulting that, applications that are closing
to finish are not starving for resources (the last jobs will have lower
priorities)

Strengths Multiple DAGs scheduling; hybrid priority (improvement of highest
rank first in case of multiple DAGs)

Weaknesses If lower rank workflows are coming continuously, the higher rank task
scheduling will be postponed; not focused on deadline and budget
constraints; not SLA awareness at the Executor level

Immediate Mode: Individual Task Scheduling [16]
Description Myopic algorithm; The best-effort scheduling strategy (more suitable

for grids); Individual task scheduling; Scheduling decision is made
only for one task at a moment; Task is mapped at the resource that is
expected to finish the task first

Strengths Works fine for short tasks and a small number of requests/second
Weaknesses Not suitable for cloud environments; It does not apply any logic in

tasks priority (FIFO rule); which will generate starvation in case of
longer tasks

Batch Mode Scheduling : Min-Min, Max-Min, and Sufferage strategies [17]
Description Batch mode scheduling strategy (best effort/list scheduling); Provides

a strategy to map a number of tasks (T) on a number of resources R,
where T >> R; MIN-MIN a task having a min MECT (Minimum
Estimated Completion Time) will be scheduled first; MAX-MIN task
with max MECT will be executed first; SUFFERAGE priority based
on the suffrage value (the difference between 1st ECT (earliest
completion time) and 2nd ECT

Strengths Experimental results shows that generally MIN-MIN outperforms
MAX-MIN; MAX-MIN may be better in cases of having much more
short tasks than longer tasks (it will not generate starvation for longer
tasks); Suffrage performs better in heterogeneity environments where
there is a remarkable difference between resources performance

Weaknesses Application type-dependent strategy; best effort; suitable only for grid
Dependency Mode Scheduling HEFT [18]
Description Graph dependency is analyzed before scheduling; It ranks the

priorities of all tasks at a time 2 metrics: average execution time and
average communication time; All the tasks are ordered based on a rank
(computed recursively based on previous ranks)

Strengths Based on heterogeneous resources
Weaknesses Mean value is the only best practice; Best effort; Suitable only for grid
Batch-Dependency Mode [19]
Description Hybrid method between batch and dependency methods; Independent

tasks are added into separate groups; Group rank ordering
Strengths Parallel execution of multiple different jobs
Weaknesses Not SLA aware; Suitable for grid environments

2 Workflow Scheduling Techniques for Big Data Platforms 45

Cluster-based scheduling [20]
Description Avoid transfer communication cost; tasks are

grouped in clusters; one cluster is scheduled on
the same resource

Strengths Avoids data transfer cost
Weaknesses Difficult to respect deadline constraints
Duplication-based scheduling [20]
Description Avoid transfer communication cost; Use the

idle time of an resource to schedule parent
tasks (task duplication)

Strengths Good in a heterogeneous environment where
the machine performance is unknown

Weaknesses Parallel job scheduling.
Hybrid method of cluster and duplication scheduling [20]
Description Cluster tasks based on earliest start and

completion time, latest start and completion
time, critical parent task and best resource; If
the number of clusters <R (resources):
duplication; If nr. of clusters >R, scaling down
by merging some clusters

Strengths Avoids data transfer cost; Good in a
heterogeneous environment where the machine
performance is unknown

Weaknesses Difficult to respect deadline constraints;
Merging metrics

Genetic Algorithms meta-heuristics [21]
Description Generates new solutions by modifying

currently known good solutions
Strengths Optimized solution
Weaknesses Its limitations depends on the fitness valuation

function
Simulated Annealing SA meta-heuristics [23]
Description Generates new solutions by modifying

currently known good solutions
Strengths Optimizes the solution
Weaknesses Its limitation depends on the acceptance

function reduction value
Backtracking [24]
Description Assign available tasks to least expensive

resources; Largest computational demand to
fastest resource; After each step, the execution
time of the current assignment is computed; if
its exceed the time constraint, the task will be
reassigned

Strengths Deadline assurance
Weaknesses SLA awareness; Multiple constraints; Dynamic

environments

46 M.-C. Nita et al.

Deadline distributions [25]
Description Synchronization task (multiple parents) versus simple task; Grouped

in sub-workflows with different deadlines; Distributed deadline
Strengths Assures the deadline commitment at a granular level (the smallest unit

task)
Weaknesses SLA awareness; Multiple constraints; Dynamic environments
LOSS and Gain [26]
Description Gain a minimum loss in the execution time while maximizing the cost

savings; First is applied a time optimization heuristics
Strengths Budget constraint; assurance
Weaknesses SLA awareness; Multiple constraints; Dynamic environments
MQMW [30]
Description Scheduling based on the following metrics: service available number,

time surplus, workflow surplus, the covariance for time and cost
Strengths Multiple workflow; Multiple QoS successfully respected
Weaknesses It is not very clear what is the algorithm behavior in case of having a

number of tasks respecting the conditions for prioritization greater
than the number of available resources; Speed; Scalability

MOHEFT—Multi-objective energy-efficient workflow scheduling using list-based
heuristics [31]
Description Extends HEFT by finding the optimal solution and respecting multiple

objectives
Strengths Multiple objectives: energy and time; Interesting to scale for multiple

objectives: cost, energy and time
Weaknesses Multiple workflows problem

2.3 Workflow Modeling and Existing Platforms

This section presents a detailed picture of the major tools used for workflow man-
agement.

Pegasus [29] is aWorkflow system that can take aworkflowdescription, transform
it in an executable sequence of jobs and map it on a local machine, cluster, Condor
Pool, or a cloud (Amazon EC2, Google Cloud Storage). It is developed since 2001
and the last release was in May 2015. Pegasus has been used in several scientific
areas including bioinformatics (DNA sequencing, Epigenomics, etc.), astronomy
(Galactic Plane—NASACollaboration;Montage–Caltech, etc.), earthquake science,
gravitational wave physics, and ocean science. Pegasus major components (Fig. 2.2):

1. Mapper—transforms the abstract workflow definition into an executable set of
dependent jobs. The final will find the appropriate software, data, and computa-
tional resources required for workflow execution.

2. Execution Engine—executes in the specific order the tasks defined in the work-
flow. This component relies on the compute, storage, and network resources
defined in the executable workflow to perform the necessary activities.

2 Workflow Scheduling Techniques for Big Data Platforms 47

Fig. 2.2 Pegasus components

3. Task Manager—manages single workflow tasks, by supervising their execution
on local or remote resources.

Workflows successfully execution is based on the information gathered from the
following components:

1. Replica Catalog: looks for input and output data locations;
2. Transformation Catalog: looks for executables locations: binary files;
3. Site Catalog: looks for the environment infrastructure.

Pegasus is also able tomake decisions in order to improve the overall performance:
cluster small jobs together, data reuse (identical jobs, differentworkflows). Regarding
the subject that is treated in this report, the scheduling problem, Pegasus by default
implements the following policies:

1. Random—the sites are randomly chosen; default option.
2. Round Robin—jobs will be assigned in a round robin manner amongst the sites

that can execute them. A site cannot execute all types of jobs so the round robin
scheduling will be applied on a sorted list of sites. The sorting is done based on
the number of jobs a particular site has been assigned in that job class so far. If a

48 M.-C. Nita et al.

job cannot be run on the first site in the queue (due to no matching entry in the
transformation catalog), it goes to the next one and so on.

3. Group—jobs are grouped and a specific group will be assigned to the site that
can execute them. A job will be put into a specific group based on a profile key
group from the DAG. The jobs that do not have the profile key associated with
them, will be put in the default group. The jobs in the default group are handed
over to the “Random” Site Selector for scheduling.

4. HEFT—HEFT processor scheduling algorithm is used to schedule jobs in the
workflow to multiple grid sites. The implementation assumes default data com-
munication costs when jobs are not scheduled on to the same site. The runtime
for the jobs is specified in the transformation catalog by associating the Pegasus
profile key runtime with the entries. The number of processors in a site is picked
up from the attribute idle-nodes associated with the job manager of the site in the
site catalog.

5. NonJavaCallout—it will call out to an external site selector. A temporary file is
prepared containing the job information that is passed to the site selector as an
argument while invoking it. The path to the site selector is specified by setting
the property pegasus.site.selector.path. The environment variables
that need to be set to run the site selector can be specified using the properties
with a pegasus.site.selector.env.prefix. The target sites used in
planning are specified on the command line using the sites option to pegasus-plan.
If not specified, then it will pick up all the sites in the Site Catalog as candidate
sites and it will map a job on a specific site only if it finds an installed executable
on that site.

Taverna [32] is an open-source Java-based workflow management system devel-
oped at the University of Manchester with the main target in supporting the life
sciences community (biology, chemistry, and medicine) to design and execute sci-
entific workflows and support research experiments. However, it can be applied to a
wide range of fields since it can invoke any web service by simply providing the URL
of its WSDL document. In addition to web services, Taverna supports the invocation
of local Java services (Beanshell scripts), local Java API (API Consumer), R scripts
on an R server (Rshell scripts), and imports data from a CVS or Excel spreadsheet.
Taverna main components are:

• Taverna Engine—enacting workflows.
• Taverna Workbench—client application; users graphically create, edit, and run
workflows on a desktop computer.

• Taverna Server—users set up a dedicated server for executing workflows remotely.
• A Command Line Tool—quick execution of workflows from a command prompt.

Triana [33] is a Java-based scientific workflow system, developed at the Cardiff
University, which combines a visual interface with data analysis tools. It can con-

2 Workflow Scheduling Techniques for Big Data Platforms 49

nect heterogeneous tools (e.g., web services, Java units, and JXTA services) in one
workflow. Triana uses its own custom workflow language, although it can use other
external workflow language representations, such as Business Process Execution
Language (BPEL), available through pluggable language readers and writers.

One of the most powerful aspects of Triana on the other hand is its graphical
user interface. It has evolved in its Java form for over 10years and contains a num-
ber of powerful editing capabilities, wizards for on-the-fly creation of tools and
GUI builders for creating user interfaces. Trianas editing capabilities include: mul-
tilevel grouping for simplifying workflows, cut/copy/paste/undo, the ability to edit
input/output nodes (to make copies of data and add parameter dependencies, remote
controls or plug-ins), zoom functions, various cabling types, optional inputs, type
checking, and so on. Triana may generate Pegasus input files.

Kepler [34] is a Java-based open-source software framework providing a graphi-
cal user interface and a run-time engine that can executeworkflows either fromwithin
the graphical interface or from a command line. It is developed and maintained by
a team consisting of several key institutions at the University of California and has
been used to design and execute various workflows in biology, ecology, geology,
chemistry, and astrophysics.

Askalon [35] is an application development and runtime environment, devel-
oped at the University of Innsbruck, which allows the execution of distributed work-
flow applications in service-oriented Grids. Its SOA-based runtime environment uses
Globus Toolkit as Grid middleware. Workflow applications in Askalon are described
at a high level of abstraction using a custom XML-based language called abstract
grid workflow anguage (AGWL).

The Askalon architecture includes the following components:

• Resource broker—responsible of the resources negotiation and reservation inGrid.
• Resource monitoring—rule-based monitoring; monitors Grid resources.
• Information service—discovery, organization, and maintenance of resources and
data.

• Workflowexecutor—dynamic deployment and fault-tolerant execution of activities
in the Grid nodes.

• Metascheduler—workflow applications mapping in the Grid.
• Performance prediction—estimates execution time of atomic activities and data
transfers; Grid resource availability.

• Performance analysis—unifies the performance monitoring, instrumentation, and
analysis for Grid applications; supports the interpretation of performance bottle-
necks.

• Askalon Scheduler.

One of the Askalon architecture components that represents interest for us is
the MetaScheduler and its architecture described in Fig. 2.3. The Scheduler con-
sists of two major components: Workflow Converter and Scheduling Engine. Event
Generator is a future extension for increasing dynamicity in workflow processing.

50 M.-C. Nita et al.

Fig. 2.3 Askalon components

The Workflow Converter is responsible for transforming all the sophisticated work-
flow graphs to simple DAGs. The Scheduling Engine for scheduling workflows into
specific resources. It is based on a plug-in architecture, where different scheduling
algorithms can be implemented. By default the HEFT algorithm is chosen as the
primary scheduling algorithm for Askalon.

Karajan [36] is a JAVA written system that allows users to compose workflows
through an XML scripting language and a custom language, called K, which is more
user friendly. Both languages support hierarchical workflow descriptions based on
DAGs and have the ability to use instructions such as if/while order to easily express
concurrency. Also, it can be based on Grid tools such as Globus GRAM for dis-
tributed/parallel execution of workflows. The architecture of the Karajan framework
contains the following components:

• Workflow engine—interacts with high-level components (GUImodule for describ-
ing the workflows) and monitors the execution.

• Checkpointing subsystem—checkpoints the current state of the workflow.
• Workflow service—allows the execution of workflows; specific libraries enables
the workflow engine to access specific functionalities.

2.4 Analysis of Workflow Management Systems

In the following table,we present a critical analysis of existingworkflowmanagement
systems, by highlighting the strengths and weaknesses and a short description for
each presented method.

2 Workflow Scheduling Techniques for Big Data Platforms 51

WMS Short description Strengths Weaknesses
Taverna DAG based; Graphical

specification
User-friendly interface
for workflow description;
easy to use by
nontechnical scientists in
their simulations

Relies on the user to
make the choices of
resources for mapping; It
doesn’t offer integration
with public cloud
environments; Adaptive
workflows

Triana Non-DAG based;
Graphical specification

Graphical User Interface;
Pegasus interoperability;
Tool for editing/creating
workflows; Workflow
rewriting: creating
sub-workflows that
execute and feed back
into the main workflow

Job submission made
through GridLab GAT,
which can make use of
GRMS, GRAM or
Condor for the actual job
submission; Passive
approach in case of a
failure (it informs the
users)

Pegasus DAG based; Language
specification

Focus on the mapping
and execution capabilities
and leave the higher level
composition tasks to
other tools; Amazon
EC2/Google Cloud
Support; Support for
optimization decisions

It does not offer support
for adaptive workflows

Kepler Non-DAG based;
Graphical specification

Graphical workflow
specification; Both
workflow specification
support and execution
engine; Local/Web/Grid
services; Fault
tolerance—smart rerun;
Adaptive
workflows—workflows
can modify themselves
during execution

Relies on the user to make
the choices of resources
for mapping; Adaptive
Workflows; It doesnt offer
integration with public
cloud environments

Askalon DAG; Language and
graphical specification

Graphical User Interface;
Support for optimization
decisions; Complex Fault
tolerance mechanism
(checkpointing, task-level
recovery)

Custom description
language (AGWL);
Common Public Cloud
integration; Adaptive
Workflows

Karajan DAG; Language and
graphical specification

Graphical User Interface;
Support hierarchical
workflows; Checkpoint
and rollback assurance

Low support for
interoperability between
workflow management
system (only XML and
custom workflow
specification); Cloud
integration; Adaptive
Workflows

52 M.-C. Nita et al.

2.5 Conclusions

In this chapter, we investigate the current solutions for managing workflow applica-
tions in grids and clouds, offering a critical analysis on existing scheduling algorithms
and management systems. We presented an overview of the best-effort workflow
scheduling models.

Acknowledgments The research presented in this paper is supported by projects:DataWay: Real-
time Data Processing Platform for Smart Cities: Making sense of Big Data—PN-II-RU-TE-2014-4-
2731;MobiWay: Mobility Beyond Individualism: an Integrated Platform for Intelligent Transporta-
tion Systems of Tomorrow—PN-II-PT-PCCA-2013-4-0321; CyberWater grant of the Romanian
National Authority for Scientific Research, CNDI-UEFISCDI, project number 47/2012; clueFarm:
Information system based on cloud services accessible through mobile devices, to increase product
quality and business development farms—PN-II-PT-PCCA-2013-4-0870.

References

1. Pop, F., Zhu, X., Yang, L.T.: Midhdc: Advanced topics on middleware services for heteroge-
neous distributed computing. part 1. Future Gener. Comput. Syst. 56, 734–735 (2016)

2. Pop, F., Potop-Butucaru, M.: Armco: Advanced topics in resource management for ubiquitous
cloud computing: An adaptive approach. Future Gener. Comput. Syst. 54, 79–81 (2016)

3. Simion, B., Leordeanu, C., Pop, F., Cristea, V.: A hybrid algorithm for scheduling workflow
applications in grid environments (icpdp). In: OTM Confederated International Conferences
“On the Move to Meaningful Internet Systems”, pp. 1331–1348. Springer (2007)

4. Vasile,M.A., Pop, F., Tutueanu, R.I., Cristea, V., Kołodziej, J.: Resource-aware hybrid schedul-
ing algorithm in heterogeneous distributed computing. Future Gener. Comput. Syst. 51, 61–71
(2015)

5. Lynch, C.: Big Data: How do your data grow? Nature 455(7209), 28–29 (2008)
6. Pop, F., Iacono,M., Gribaudo,M., Kołodziej, J.: Advances inmodelling and simulation for big-

data applications (amsba). Concurrency Comput. Practice Experience 28(2), 291–293 (2016)
7. Chen, M., Mao, S., Liu, Y.: Big Data: a survey. Mob. Networks Appl. 19(2), 171–209 (2014)
8. Erl, T., Khattak, W., Buhler, P.: Big Data Fundamentals: Concepts. Prentice Hall Press, Drivers

& Techniques (2016)
9. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An overview of

workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540 (2009)
10. Muresan, O., Pop, F., Gorgan, D., Cristea, V.: Satellite image processing applications in medio-

grid. In: 2006 Fifth International Symposium on Parallel and Distributed Computing, pp. 253–
262. IEEE (2006)

11. Gorgan, D., Bacu, V., Rodila, D., Pop, F., Petcu, D.: Experiments on esipenvironment oriented
satellite data processing platform. Earth Sci. Inf. 3(4), 297–308 (2010)

12. Masdari, M., ValiKardan, S., Shahi, Z., Azar, S.I.: Towards workflow scheduling in cloud
computing: a comprehensive analysis. J. Network Comput. Appl. 66, 64–82 (2016)

13. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific
Workflows for Grids. Springer Publishing Company, Incorporated (2014)

14. Pop, F., Dobre, C., Cristea, V.: Performance analysis of grid dag scheduling algorithms using
monarc simulation tool. In: 2008 International Symposium on Parallel and Distributed Com-
puting, pp. 131–138. IEEE (2008)

15. Yu, J., Buyya,R., Ramamohanarao,K.:Workflowscheduling algorithms for grid computing. In:
Metaheuristics for Scheduling in Distributed Computing Environments, pp. 173–214. Springer
(2008)

2 Workflow Scheduling Techniques for Big Data Platforms 53

16. Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in the askalon
grid environment. ACM SIGMOD Rec. 34(3), 56–62 (2005)

17. Maheswaran,M.,Ali, S., Siegal,H.,Hensgen,D., Freund,R.F.:Dynamicmatching and schedul-
ing of a class of independent tasks onto heterogeneous computing systems. In: Heterogeneous
Computing Workshop, 1999.(HCW’99) Proceedings. Eighth, pp. 30–44. IEEE (1999)

18. Topcuoglu,H.,Hariri, S.,Wu,M.Y.: Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

19. Sakellariou, R., Zhao, H.: A hybrid heuristic for dag scheduling on heterogeneous systems. In:
Proceedings of the 18th International Parallel and Distributed Processing Symposium, 2004,
p. 111. IEEE (2004)

20. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous environment. IEEE
Trans. Parallel Distrib. Syst. 15(2), 107–118 (2004)

21. Golberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addion
Wesley 1989, 102 (1989)

22. Hou, E.S., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor scheduling. IEEE Trans.
Parallel Distrib. Syst. 5(2), 113–120 (1994)

23. YarKhan, A., Dongarra, J.J.: Experiments with scheduling using simulated annealing in a grid
environment. In: International Workshop on Grid Computing, pp. 232–242. Springer (2002)

24. Menasce, D.A., Casalicchio, E.: A framework for resource allocation in grid computing. In:
MASCOTS, pp. 259–267. Citeseer (2004)

25. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow applications
on utility grids. In: First International Conference on e-Science and Grid Computing (e-
Science’05), pp. 8–pp. IEEE (2005)

26. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with budget
constraints. In: Integrated Research in GRID Computing, pp. 189–202. Springer (2007)

27. Ramakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellariou, R., Vahi, K., Blackburn, K.,
Meyers, D., Samidi, M.: Scheduling data-intensiveworkflows onto storage-constrained distrib-
uted resources. In: Seventh IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’07), pp. 401–409. IEEE (2007)

28. Yu, Z., Shi, W.: A planner-guided scheduling strategy for multiple workflow applications. In:
2008 International Conference on Parallel Processing-Workshops, pp. 1–8. IEEE (2008)

29. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Ber-
riman, G.B., Good, J., et al.: Pegasus: A framework for mapping complex scientific workflows
onto distributed systems. Sci. Prog. 13(3), 219–237 (2005)

30. Xu, M., Cui, L., Wang, H., Bi, Y.: A multiple qos constrained scheduling strategy of multi-
ple workflows for cloud computing. In: 2009 IEEE International Symposium on Parallel and
Distributed Processing with Applications, pp. 629–634. IEEE (2009)

31. Durillo, J.J., Nae, V., Prodan, R.: Multi-objective energy-efficient workflow scheduling using
list-based heuristics. Future Gener. Compu. Syst. 36, 221–236 (2014)

32. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,
K., Pocock, M.R., Wipat, A., et al.: Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

33. Taylor, I., Shields, M., Wang, I., Rana, O.: Triana applications within grid computing and peer
to peer environments. J. Grid Comput. 1(2), 199–217 (2003)

34. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible
system for design and execution of scientific workflows. In: Proceedings of the 16th Inter-
national Conference on Scientific and Statistical Database Management, 2004, pp. 423–424.
IEEE (2004)

35. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong,
H.L., Villazon, A., Wieczorek, M.: Askalon: A grid application development and computing
environment. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Comput-
ing, pp. 122–131. IEEE Computer Society (2005)

36. von Laszewski, G., Hategan, M.: Java Cog Kit Karajan/Gridant Workflow Guide. Tech. rep,
Technical Report, Argonne National Laboratory, Argonne, IL, USA (2005)

Chapter 3
Cloud Technologies: A New Level
for Big Data Mining

Viktor Medvedev and Olga Kurasova

3.1 Introduction

Conventional technologies for data storage and analysis are not efficient anymore in
the Big Data era, as the data are of high-volumes, come with high-velocity, and have
many varieties.Moreover, there is a need for discoveringmeaningful knowledge from
a large amount of data. Big Data bring new challenges to data mining, because large
volumes and different varieties must be taken into account. The common methods
and tools for data processing and analysis are unable to manage such amounts of
data, even if powerful computer clusters are used. To analyze Big Data, many new
data mining and machine learning algorithms as well as technologies have been
developed. Big Data do not only provide new data types and storage mechanisms,
but also new methods of analysis. The aim of the research is to derive requirements
for data mining systems suitable for Big Data with a view to bring conventional data
mining to a new level in Big Data era using Cloud technologies.

3.2 Data Mining in Big Data Era

Data mining is an important issue in the data analysis process and knowledge discov-
ery in medicine, economics, finance, telecommunication and other scientific fields.
For this reason, for several decades, the attention has been focused on development
of data mining techniques and their applications.

V. Medvedev (B) · O. Kurasova
Institute of Mathematics and Informatics, Vilnius University,
Akademijos str. 4, 08663Vilnius, Lithuania
e-mail: Viktor.Medvedev@mii.vu.lt

O. Kurasova
e-mail: Olga.Kurasova@mii.vu.lt

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_3

55

56 V. Medvedev and O. Kurasova

In themodernworld, we often deal with BigData, because nowadays technologies
are able to store and process larger and larger amount of data. Big Data is the term
for a collection of data sets so large and complex that it becomes difficult to process
and analyze using conventional data processing and mining tools. Big Data can
be characterized by three V’s: volume (large amounts of data), variety (includes
different types of data), and velocity (constantly accumulating new data) [25, 27].
Data become Big Data when their volume, velocity, or variety exceed the abilities of
IT systems to store, analyze, and process them [5, 16]. Big Data are not just about
lots of data, they are actually a new concept providing an opportunity to find a new
insight into the existing data. There are many applications of Big Data: business,
technology, telecommunication, medicine, health care, bioinformatics (genetics),
science, e-commerce, finance, the Internet (information search, social networks),
etc. Some sources of Big Data are actually new. Big Data can be collected not only
from computers, but also frombillions ofmobile phones, socialmedia posts, different
sensors installed in cars, utility meters, shipping and many other sources. In many
cases, data are just being generated faster than they can be processed and analyzed.
Clustering, classification, association rule learning and other data mining problems
often arise in the modern world. There are a lot of applications in which extremely
large or Big Data sets need to be explored, but which are too large to be processed
by conventional data mining methods [21].

3.2.1 Cloud Computing Solutions

Common software has been based on the so-called Service Oriented Architecture
(SOA). It is a set of principles used to build flexible, modular, and interoperable soft-
ware applications. The implementation of SOA is represented by web services. A
Web Service is a collection of functions that are packaged as a single entity and pub-
lished in the network for use by other applications through a standard protocol [14].
The web service allows us to integrate heterogeneous platforms and applications.
Services are running independently in the system, external components do not know
how the services perform their functions. The components only care that the services
would return the expected results. So, web services are widely used for on-demand
computing [3].

Some important technologies related to web services are as follows: WSDL (Web
Service Definition Language) , SOAP (Simple Object Access Protocol) and REST
(REpresentational StateTransfer) .WSDL is anXMLformat to describeweb services
as a set of endpoints operating on messages that consist of either document-oriented
or procedure-oriented information. SOAP is a protocol for exchanging structured
information in web services implementation in computer networks. REST is a style
of software architecture that abstracts the architectural elements within distributed
systems.

There are a large number of distributed and data-intensive applications and data
mining algorithms that simply cannot be fully exploited without Grid or Cloud tech-

3 Cloud Technologies: A New Level for Big Data Mining 57

nologies [20, 29]. The main goal of Cloud computing is to give a possibility to
access distributed computing environments that can utilize computing resources on
demand. Cloud-based data mining allows us to distribute a compute-intensive data
analysis among a large number of remote computing resources.

Special tools for building the Grid and Cloud infrastructure have been devel-
oped. The Globus toolkit (http://www.globus.org), provided by the Globus Alliance,
includes various software for different purposes: security, information infrastructure,
resource management, data management, fault detection [11]. Nimbus (http://www.
nimbusproject.org) is an open-source toolkit focused on providing Infrastructure-as-
a-Service (IaaS) capabilities to the scientific community. Amazon Elastic MapRe-
duce (Amazon EMR) is a web service that enables researchers and data analysts
to easily process large amounts of data. Using Amazon EMR, it is possible to use
different capacities to perform data-intensive tasks for applications such as data
mining, machine learning, scientific simulation, web indexing, and bioinformatics
research (http://aws.amazon.com/whitepapers/). Google introduced an online ser-
vice to process large volumes of data. The service supports ad hoc queries, reports,
data mining, or even web-based applications (https://cloud.google.com).

Hadoop software (http://hadoop.apache.org) is widely used for distributed com-
putations. The software includes some open-source software projects: MapReduce,
HDFS (Hadoop Distributed File System), Hbase, Hive, Pig, etc. [32]. MapReduce is
a programmingmodel for processing large data sets as well as a running environment
in large computer clusters. Due to HDFS Hadoop allows us to save the computing
time, needed for sending data from one computer to another. The Hadoop Mahout
(http://mahout.apache.org) library is developed for data mining, where some classifi-
cation, clustering, regression, dimensionality reduction algorithms are implemented.
However, there are not many data mining algorithms and, due to the MapReduce
particularity, not always the existing data mining algorithm can be used easily and
effectively.

ApacheSpark (http://spark.apache.org) is another open-source parallel processing
framework that supports in-memory processing to boost the performance of Big
Data analytic tasks. Spark is designed to work with HDFS to improve MapReduce
technology. Spark makes it easier for developers and data scientists to work with
data and deliver advanced insights faster. For data mining purposes data scientists
can use scalable machine learning library MLlib where common machine learning
and statistical algorithms have been implemented. Spark is generally a lot faster than
MapReduce because of the way it processes the data.

3.2.2 Scientific Workflows

Many recent data mining systems are implemented using scientific workflows. A
scientific workflow is a specialized form of workflows, developed specifically to
compose and execute a series of data analyses and computation procedures in scien-
tific application. The development of scientific workflow-based systems is under the

http://www.globus.org
http://www.nimbusproject.org
http://www.nimbusproject.org
http://aws.amazon.com/whitepapers/
https://cloud.google.com
http://hadoop.apache.org
http://mahout.apache.org
http://spark.apache.org

58 V. Medvedev and O. Kurasova

Fig. 3.1 Scientific workflow in ClowdFlows

influence of e-science technologies and applications [4]. The aim of e-science is to
enable researchers to collaborate when carrying out a large scale of scientific experi-
ments and knowledge discovery applications, using distributed systems of computing
resources, devices, and data sets [1]. Scientific workflows play an important role in
order to reach this aim. First of all, usage of scientific workflows allows researchers
to compose convenient platforms for experiments by retrieving data from databases
and data warehouses and running data mining algorithms in Cloud infrastructure.
Secondly, web services can be easily imported as a new component of workflows.

Some merits of usage of scientific workflows are as follows: providing an easy-
to-use drag-and-drop environment for researchers to create their own workflows for
individual applications; providing interactive tools for the researchers that enable
them to execute the workflows and view the results in real-time; simplifying the
process of sharing and reusing workflows among the researchers (see Fig. 3.1).

Some systems for scientific workflow management are developed, for example,
Pegasusworkflowmanagement system (http://pegasus.isi.edu), andApacheAiravata
(http://airavata.apache.org).

3.2.3 An Overview of Web Service-Based Data Mining
Solutions

Data mining is the centre of attention among various intelligent systems, because
it focuses on extracting useful information from Big Data. Data mining methods
were rapidly developed by extending mathematical statistics methods and creating
new ones. Later on, the data mining systems, in which several methods were usually
implemented, were developed in order to facilitate solving the data mining problems.
Many of them are open source and available for free, therefore they have become very
popular among researchers. Recently, software applications have been developed
under a SOA paradigm. Thus, some new data mining systems are based on web
services. Attempts are made to develop scalable, extensible, interoperable, modular
and easy-to-use data mining systems.

http://pegasus.isi.edu
http://airavata.apache.org

3 Cloud Technologies: A New Level for Big Data Mining 59

Some popular data mining systems have been reoriented to web services. Here, at
first, we discuss extensions of Weka [13], Orange [8], KNIME [23] and MATLAB
(http://www.mathworks.com).

Weka4WS is an extension of thewidely usedWeka [13] to support distributed data
mining onGrids [30]. The system should be installed on a computer, but there is a pos-
sibility to select computing resources in the Grid environment. Weka4WS adopts the
web services resource framework (WSRF) technology, provided by Globus Toolkit,
for running remote data mining algorithms and managing distributed computing.
In Weka, the overall data mining process takes place on a single machine and the
algorithms can be executed only locally. In Weka4WS, the distributed data mining
tasks can be executed on various Grid nodes by exploiting the data distribution and
improving the application performance. Weka4WS permits to analyze a single data
set, using different data mining algorithms or using the same algorithmwith different
control parameters in parallel on multiple Grid nodes.

Orange4WS [26] is an extension of another well-known data mining system—
Orange. Comparing with Orange, Orange4WS includes some new features. The
ability to use web services as workflow components is implemented. The knowl-
edge discovery ontology describes workflow components (data, knowledge and data
mining services) in an abstract and machine-interpretable way. Usage of ontologies
enables an automated composition of data mining workflows. In Orange4WS, there
is a possibility to import external web services, only the WSDL file location should
be specified.

The KNIME system [23] is also extended by a possibility to use web services. In
KNIME labs, a web service client node is developed that allows us to import web
services to KNIME workflows.

Usage of web services is implemented in a widely used programming and com-
puting environment MATLAB (http://www.mathworks.com), too. There are imple-
mented two types of web services RESTful and SOAP.

Considering to new technologies for data analysis, web service- and Cloud
computing-based data mining systems have been designed and still underdeveloped.
Some tools, related to web services, have been developed through the project myGrid
(http://www.mygrid.org.uk). The tools support the creationof e-laboratories andhave
been used in domains of various systems: biology, social science, music, astron-
omy, multimedia, and chemistry. The tools have been adopted by a large number of
projects: myExperiment [9], BioCatalogue [2], Taverna [24, 34], etc. MyExperiment
is a collaborative environment where scientists can safely publish their workflows,
share them with other scientists [9]. BioCatalogue is a registry of web services for
live science [2]. Taverna is an open source and domain-independent workflow man-
agement system—a suite of tools used to create and execute scientific workflows [24,
34]. The system is oriented to web services, but the existing services are not suitable
for data mining. However, there is implemented a possibility to import external data
mining web service.

All the data mining systems previously reviewed (Weka4WS, Orange4WS,
KNIME and Taverna) still remain desktop applications. Nowadays web applica-
tions become more popular due to the ubiquity of web browsers. ClowdFlows is a

http://www.mathworks.com
http://www.mathworks.com
http://www.mygrid.org.uk

60 V. Medvedev and O. Kurasova

web application based on a service oriented data mining tool [18, 19]. ClowdFlows
is an open-source Cloud-based platform for composition, execution, and sharing of
interactivemachine learning and dataminingworkflows. The datamining algorithms
from Orange and Weka are implemented as local services. Other SOAP services can
be imported and used in ClowdFlows, too.

DAME (DAta Mining & Exploration) is another innovative web-based, distrib-
uted data mining infrastructure (http://dame.dsf.unina.it/), specialized in large data
sets exploration by data mining methods [22]. The DAME is organized as a Cloud
of web services and applications. The idea of DAME is to provide a user-friendly
and standardized scientific gateway to ease the access, exploration, processing and
understanding of large data sets. The DAME system includes not only web applica-
tions, but also several web services, dedicated to provide a wide range of facilities
for different e-science communities.

The systems that provide platforms for the data analysis, using different data
mining methods and technical frameworks for computing performances of learning
algorithms, as well as standardize the testing procedure, recently have gained popu-
larity. The key aim of such systems is to provide a service for comparing and testing
a number of data mining methods on a large number of real data sets.

Using MLcomp (http://mlcomp.org) users can upload programs or data sets (or
use the existing data sets) and run any available algorithms on any available data set
through the web interface. TunedIT offers an online algorithm comparison, too [33].
TunedIT specializes in the fields of data mining, machine learning, computational
intelligence and statistical modelling. TunedIT has a research platform where a user
can run automated tests on datamining algorithms and get reproducible experimental
results through aweb interface.Galaxy is an open,web-based platform for accessible,
reproducible, and transparent computational biomedical research [12]. Users without
programming experience can easily specify parameters and run tools and workflows.
Galaxy captures information so that any user can repeat and understand a complete
computational analysis.

High performance computing (HPC) and distributed computing plays an impor-
tant role in data mining. Data mining often requires huge amounts of resources in the
storage space. Data are often distributed into several databases. Tasks of data mining
are time consuming as well. It is important to develop mechanisms that distribute the
workload of the tasks among several places in a flexible way. Distributed data mining
techniques allow us to apply data mining in a non-centralized way [10]. Data min-
ing algorithms and knowledge discovery processes are compute- and data-intensive,
therefore Grids and Cloud offer a computing and data management infrastructure
for supporting a decentralized and parallel data analysis [7]. So, the Cloud is an
inseparable part of distributed data mining.

Asmentioned before, the usage ofWeka4WS allows us to distribute computations
to some resources. Weka4WS is implemented using theWSRF libraries and services
provided by Globus Toolkit [30]. KNIME Cluster Execution allows us to run the
data mining task in computer clusters.

A review of systems and projects for Grid-based data mining is presented in [31]:
KnowledgeGrid,GridMiner, FAEHIM(FederatedAnalysis Environment forHetero-

http://dame.dsf.unina.it/
http://mlcomp.org

3 Cloud Technologies: A New Level for Big Data Mining 61

Fig. 3.2 Taxonomy of data mining systems

geneous Intelligent Mining), Discovery Net, DataMiningGrid, Anteater, etc. Most of
themwere created by some projects. Unfortunately, when the projects are completed,
the systems are not supported anymore.

A taxonomy of the aforementioned web service-based data mining systems is
performed where five classes are identified:

• The extensions of the existing popular data mining systems by web services are
assigned to the class ‘Extended by WS’. Their former properties remain and new
ones are added.

• The systems developed using web services are assigned to the class ‘Developed
using WS’.

• The web application systems are assigned to the class ‘Web apps’.
• The systems developed to running experiments are assigned to the class ‘Services
for experiments’.

• The systems based on Grid and HPC technologies are assigned to the class ‘Grid-
based’.

The reviewed data mining systems can be assigned to one or some classes
(Fig. 3.2).

3.3 Comparative Analysis of Data Mining Systems

Some comparative analyses of data mining systems are made in [6, 15, 17, 28].
Usually, attention is focused on data mining problems and tasks, while a compara-
tive analysis according to web services and Cloud computing is missing. The aim
of this analysis is to compare web service-based underdeveloped data mining sys-
tems in order to determine the properties which should have a scalable, extensible,
interoperable, modular and easy-to-use data mining systems.

62 V. Medvedev and O. Kurasova

Table 3.1 Grounding of evaluation criteria for data mining systems

No. Criteria Possible values Grounding

C1 Web service SOAP, RESTful SOAP and RESTful are the most
popular types of web services, thus it
is important that both types would be
implemented in the systems

C2 Operating system Yes, No It is important that the systems should
support various common platforms
(Windows, Linux, Mac OS)

C3 Web application Yes, No An advantage of web applications is
that they are used and controlled by a
web browser without additional
installing

C4 External web
services

Yes, No It is important that it would be possible
to import external web services
without additional programming

C5 Cloud computing Yes, No Cloud and Grid computing allows us
to solve complicated and
time-consuming data mining problems

C6 Repository of
user’s data

Yes, No Users can save the data file into the
web repository and it allows
performing the different experiments
with the same data without uploading
them

C7 Open source Yes, No Open source provides to extend and
improve the systems

C8 Scientific
workflow

Yes, No Scientific workflows allow us to create
an environment for experiments, to
save that for further investigations

C9 Data mining
methods

Classification,
Clustering,
Dimensionality
reduction

The system universality is an
important property in solving data
mining problems, often it is necessary
to apply some various data mining
methods to the same problem

First of all, a set of the criteria needs to be selected, according to which the
systems will be evaluated and compared. The selected criteria, their possible values
and grounding are presented in Table3.1.

The data mining systems, assigned to two classes ‘Extended by WS’ and ‘Devel-
oped using WS’ (Fig. 3.2), are selected for evaluation. Taverna is not included into
the evaluation, because it has no web services for data mining. The systems assigned
to other classes should be evaluated by other criteria and it is out of scope of this
research. The evaluation results are presented in Table3.2. Here the sign ‘+’/‘–’
means that a system satisfies/unsatisfies the criterion, respectfully. In the last col-
umn, the total numbers of the pluses for each system are presented. The numbers

3 Cloud Technologies: A New Level for Big Data Mining 63

Ta
bl
e
3.
2

E
va
lu
at
io
n
of

da
ta
m
in
in
g
sy
st
em

s
ba
se
d
on

w
eb

se
rv
ic
es

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

To
ta
l

SO
A
P

R
E
ST

fu
l

M
ul
ti-

O
S

su
pp
or
t

W
eb

ap
p

E
xt
er
na
l

W
S

C
lo
ud

co
m
p.

W
eb

re
po
s-

ito
ry

O
pe
n

so
ur
ce

W
or
kfl

ow
s

C
la
ss
ifi
ca
tio

n
C
lu
st
er
in
g

D
im

.
re
du
c-

tio
n

W
ek
a4
W
S

+
–

–
–

–
+

–
+

+
+

+
+

7

O
ra
ng
e4
W
S

+
–

+
–

+
–

–
+

+
+

+
+

8

K
N
IM

E
+

–
+

–
+

–
–

+
+

+
+

+
8

M
A
T
L
A
B

+
+

+
–

+
+

–
–

–
+

+
+

8

C
lo
w
dF

lo
w
s

+
–

+
+

+
+

–
+

+
+

+
–

9

D
A
M
E

–
+

+
+

–
–

+
–

–
+

+
–

6

To
ta
l

5
2

5
2

4
3

1
4

4
6

6
4

64 V. Medvedev and O. Kurasova

of the systems, satisfying the corresponding criterion, are presented in the last row.
From the results, presented in Table3.2, the conclusions can be drawn:

• Almost all systems use only SOAP web services. The DAME system uses the
RESTful protocol.MATLAB is the only system inwhich two types ofweb services
are implemented.

• All systems with the exception of only Weka4WS run on Windows, Linux, and
Mac operating systems.

• Only two systems ClowdFlows and DAME are implemented as web applications.
• Four systemsOrange4WS,KNIME,MATLAB, andClowdFlows have a capability
to import external web services. This criterion is very important, as data mining
experts can use the web services created by others.

• Four systems are open source, so they can be extended by adding new functional-
ities.

• Scientific workflows are implemented in four systems Weka4WS, Orange4WS,
KNIME, and ClowdFlows. The main advantage of this option is that data mining
scientists can choose different tools and create their workflows to solve a specific
data analysis task.

• All the three groups of data mining methods are implemented in four systems
(Weka4WS, Orange4WS, KNIME and MATLAB).

The total results of the analysis have showed that the system satisfyingmost of the
criteria is ClowdFlows (9 out of 12 points). The main advantages of the ClowdFlows
system are as follows: it supports multi-OS and Cloud computing, it is the open-
source web application, there is possibility to import external web services and to
create scientific workflows. Orange4WS, KNIME and MATLAB have got 8 points.
DAME is rated poorly (only 6 out of 12 points).

From the results of the comparative analysis we can conclude that there is no
data mining system that would satisfy all the criteria. Moreover, the existing systems
usually cannot cope with Big Data mining problems due to large volumes and differ-
ent varieties of data, as the used storage and computational resources are of limited
capabilities. Thus, to process and analyze Big Data, more sophisticated data mining
solutions should be developed to ensure a new level of data mining systems suitable
for massive and complex data of different nature in Big Data era.

3.4 Conclusions

Big Data bring new challenges to data mining as the conventional methods and tools
for data processing and analysis are unable to manage such data. This research deals
with Cloud technologies for Big Data mining. The review of web service based data
mining systems has been presented. Some criteria for evaluating the systems have
been proposed. The analyzed systems are compared by the criteria and it has been
noted that there is no data mining system that would satisfy all the criteria.

3 Cloud Technologies: A New Level for Big Data Mining 65

More sophisticated datamining solutions should be developedwith a view to cope
with challenges of time- and resource-consuming Big Data mining problems. There
is a need for such a system that satisfies the following requirements:

• The system must be based on Cloud technologies. The usage of Cloud computing
gives a possibility to access distributed computing environments that can utilize
computing resources on demand. The system should be a multi-user web applica-
tion with a possibility to set user priorities, when a task queue is formed, the tasks
of users of a higher priority must be run first of all.

• The scientific workflow paradigm should be implemented in the system. Scientific
workflow with drag-and-drop interface provides an easy-to-use environment for
researchers to create their own workflows for individual applications. It ensures a
possibility to make the results of data mining experiments and appropriate work-
flows accessible for other users.

• The state-of-the-art data mining methods suitable for Big Data must be imple-
mented. It should assist to solve different problems arising in the real world such
as prediction, classification, clustering, feature selection, dimensionality reduc-
tion, associative rules mining, etc.

• It should be provided a possibility through drag-and-drop interface to import exter-
nal web services in order to extend the system functionality and to supplement a
set of the implemented data mining methods.

The aforementioned requirements for the systems should bring the conventional
data mining to a new level that should assist to cope with challenges of massive and
complex data of different nature in Big Data era.

References

1. Barker, A., Van Hemert, J.I.: Scientific workflow: A survey and research directions. PPAM
4967, 746–753 (2008). doi:10.1007/978-3-540-68111-3_78

2. Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., Wolstencroft, K.,
Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.A.: Biocatalogue: A universal
catalogue of web services for the life sciences. Nucleic Acid Res. 38 (2010). doi:10.1093/nar/
gkq394

3. Birant, D.: Service-oriented data mining (2011). doi:10.5772/14066
4. Cerezo, N., Montagnat, J., Blay-Fornarino, M.: Computer-assisted scientific workflow design.

J. Grid Comput. 11(3), 585–612 (2013). doi:10.1007/s10723-013-9264-5
5. Che, D., Safran, M., Peng, Z.: From big data to big data mining: challenges, issues, and

opportunities. In: Database Systems for Advanced Applications, Lecture Notes in Computer
Science, pp. 1–15. Springer (2013). doi:10.1007/978-3-642-40270-8

6. Chen, X., Ye, Y., Williams, G., Xu, X.: A survey of open source data mining systems. Emerg.
Technol. Knowl. Discov. Data Min. 4819, 3–14 (2007). doi:10.1007/978-3-540-77018-3_2

7. Congiusta, A., Talia, D., Trunfio, P.: Service-oriented middleware for distributed data mining
on the grid. J. Parallel Distrib. Comput. 68, 3–15 (2008). doi:10.1016/j.jpdc.2007.07.007

8. Demšar, J., Curk, T., Erjavec,A., ČrtGorup,Hočevar, T.,Milutinovič,M.,Možina,M., Polajnar,
M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan,

http://dx.doi.org/10.1007/978-3-540-68111-3_78
http://dx.doi.org/10.1093/nar/gkq394
http://dx.doi.org/10.1093/nar/gkq394
http://dx.doi.org/10.5772/14066
http://dx.doi.org/10.1007/s10723-013-9264-5
http://dx.doi.org/10.1007/978-3-642-40270-8
http://dx.doi.org/10.1007/978-3-540-77018-3_2
http://dx.doi.org/10.1016/j.jpdc.2007.07.007

66 V. Medvedev and O. Kurasova

B.: Orange: Data mining toolbox in Python. J. Mach. Learn. Res. 14, 2349–2353 (2013). http://
jmlr.org/papers/v14/demsar13a.html

9. De Roure, D., Goble, C., Stevens, R.: The design and realisation of the virtual research envi-
ronment for social sharing of workflows (2009). doi:10.1016/j.future.2008.06.010

10. Domenico, T., Paolo, T.: Service-oriented distributed knowledge discovery. Chapman and
Hall/CRC (2012)

11. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. Netw. Parallel Com-
put. 3779, 2–13 (2005). doi:10.1007/11577188_2

12. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting acces-
sible, reproducible, and transparent computational research in the life sciences. Genome Biol.
11, R86 (2010). doi:10.1186/gb-2010-11-8-r86

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). doi:10.1145/
1656274.1656278

14. Heather, K.: Web services conceptual architecture (wsca 1.0). Architecture 5, 6–7 (2001)
15. Hmida,M.B.H., Slimani, Y.:Meta-learning in grid-based datamining systems. Int. J. Commun.

Networks Distrib. Syst. 5(3), 214–228 (2010). 10.5121/ijcnc.2010.2514
16. Japkowicz, N., Stefanowski, J.: A machine learning perspective on big data analysis. In: Big

Data Analysis: New Algorithms for a New Society, pp. 1–31. Springer (2016). doi:10.1007/
978-3-319-26989-4

17. Jovic, A., Brkic, K., Bogunovic, N.: An overview of free software tools for general data mining.
In: 37th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO 2014) 11(3), 1112–1117 (2014). doi:10.1109/MIPRO.2014.
6859735

18. Kranjc, J., Podpecan, V., Lavrac, N.: Clowdflows: A cloud based scientific workflow platform.
In: Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer
Science, vol. 7524, pp. 816–819. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-
642-33486-3

19. Kranjc, J., Smailovič, J., Podpečan, V., Grčar, M., Žnidaršič, M., Lavrač, N.: Active learning
for sentiment analysis on data streams: Methodology and workflow implementation in the
clowdflows platform. Inf. Process. Manage. 51(2), 187–203 (2014). doi:10.1016/j.ipm.2014.
04.001

20. Kravtsov, V., Niessen, T., Stankovski, V., Schuster, A.: Service-based resource brokering for
grid-based data mining. In: in: Proceedings of the International Conference on Grid Computing
and Applications, pp. 163–169 (2006)

21. Kurasova, O., Marcinkevičius, V., Medvedev, V., Rapečka, A., Stefanovič, P.: Strategies for
big data clustering. In: 26th International Conference on Tools with Artificial Intelligence
(ICTAI2014), pp. 740–747. IEEE (2014). doi:10.1109/ICTAI.2014.115

22. Massimo, B., Giuseppe, L., Castellani, M., Cavuoti, S., D’Abrusco, R., Laurino, O.: Dame: A
distributed web based framework for knowledge discovery in databases. Metnorie della Soc.
Astron. Ital. Suppl. 19, 324–329 (2012)

23. Meinl, T., Cebron, N., Gabriel, T.R., Dill, F., Kötter, T.: The konstanz information miner 2,
(2009). doi:10.1145/1656274.1656280

24. Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn,
T., Goble, C.: Taverna, reloaded. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6187 LNCS,
pp. 471–481 (2010). doi:10.1007/978-3-642-13818-8

25. Pattnaik, K.,Mishra, B.S.P.: Introduction to big data analysis. In: Techniques and Environments
for Big Data Analysis, pp. 1–20. Springer (2016). doi:10.1007/978-3-319-27520-8

26. Podpečan, V., Zemenova, M., Lavrač, N.: Orange4ws environment for service-oriented data
mining. Comput. J. 55, 82–98 (2012). doi:10.1093/comjnl/bxr077

27. Schmidt, S.: Data is exploding: the 3 versus of big data. Bus. Comput. World 15 (2012)
28. Stankovski, V., Swain, M., Kravtsov, V., Niessen, T., Wegener, D., Kindermann, J., Dubitzky,

W.:Grid-enabling datamining applicationswithDataMiningGrid:Anarchitectural perspective.
Future Gener. Comput. Syst. 24, 259–279 (2008). doi:10.1016/j.future.2007.05.004

http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html
http://dx.doi.org/10.1016/j.future.2008.06.010
http://dx.doi.org/10.1007/11577188_2
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/978-3-319-26989-4
http://dx.doi.org/10.1007/978-3-319-26989-4
http://dx.doi.org/10.1109/MIPRO.2014.6859735
http://dx.doi.org/10.1109/MIPRO.2014.6859735
http://dx.doi.org/10.1007/978-3-642-33486-3
http://dx.doi.org/10.1007/978-3-642-33486-3
http://dx.doi.org/10.1016/j.ipm.2014.04.001
http://dx.doi.org/10.1016/j.ipm.2014.04.001
http://dx.doi.org/10.1109/ICTAI.2014.115
http://dx.doi.org/10.1145/1656274.1656280
http://dx.doi.org/10.1007/978-3-642-13818-8
http://dx.doi.org/10.1007/978-3-319-27520-8
http://dx.doi.org/10.1093/comjnl/bxr077
http://dx.doi.org/10.1016/j.future.2007.05.004

3 Cloud Technologies: A New Level for Big Data Mining 67

29. Talia, D., Trunfio, P.: How distributed data mining tasks can thrive as knowledge services.
Commun. ACM 53, 132–137 (2010). doi:10.1145/1785414.1785451

30. Talia, D., Trunfio, P., Verta, O.: The weka4ws framework for distributed data mining in service-
oriented grids. Concurrency Comput. Pract. Experience 20, 1933–1951 (2008). doi:10.1002/
cpe.v20:16

31. Werner, D.: Data Mining Meets Grid Computing: Time to Dance? John Wiley and Sons. Ltd
(2009). doi:10.1002/9780470699904.ch1

32. White, T.: Hadoop: The definitive guide, vol. 54. O’Reilly Media (2012)
33. Wojnarski, M., Stawicki, S., Wojnarowski, P.: Tunedit.org: System for automated evaluation

of algorithms in repeatable experiments. Rough Sets Current Trends Comput. 6086, 20–29
(2010). doi:10.1007/978-3-642-13529-3_4

34. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes,
S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A.,
Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S., Goble, C.: The Taverna workflow
suite: designing and executing workflows of web services on the desktop, web or in the cloud.
Nucleic Acids Res. 41(W1), W557–W561 (2013). doi:10.1093/nar/gkt328

http://dx.doi.org/10.1145/1785414.1785451
http://dx.doi.org/10.1002/cpe.v20:16
http://dx.doi.org/10.1002/cpe.v20:16
http://dx.doi.org/10.1002/9780470699904.ch1
http://dx.doi.org/10.1007/978-3-642-13529-3_4
http://dx.doi.org/10.1093/nar/gkt328

Chapter 4
Agent-Based High-Level Interaction Patterns
for Modeling Individual and Collective
Optimizations Problems

Rocco Aversa and Luca Tasquier

4.1 Introduction

Multi-agent systems are systems composed of multiple interacting computing
elements, known as agents. Agents are computer systemswith two important capabil-
ities. First, they are at least to some extent capable ofautonomous action—ofdeciding
for themselves what they need to do in order to satisfy their design objectives. Sec-
ond, they are capable of interacting with other agents—not simply by exchanging
data, but by engaging in common social activities such as cooperation, coordina-
tion, negotiation, and the like [16]. In the context of social interaction, paradigms
it is possible to identify two approaches that aim at different targets (Fig. 4.1): in
the Individual Intelligence the interactions of an individual within the community
are aimed at meeting the objectives of the individual, using a selfish approach; by
the contrary in the Collective Intelligence the interaction of an individual with other
entities of the same community, or with the external environment, is not only aimed
at satisfying individual goals but also the ones of the community to which it belongs.
Multi-agent systems seem to be a natural metaphor for understanding and building
a wide range of what is called artificial social systems. The ideas of multi-agent sys-
tems are not tied to a single application domain: several interaction protocols have
been devised for systems of agents. In cases where the agents have conflicting goals
or are simply self-interested (Individual Intelligence), the objective of the protocols
is to maximize the payoffs (utilities) of the agents [11]. In cases where the agents
have similar goals or common problems (Collective Intelligence), as in distributed
problem solving (DPS), the objective of the protocols is tomaintain globally coherent

R. Aversa · L. Tasquier (B)
Department of Industrial and Information Engineering, Second University
of Naples, Via Roma 29, Aversa, Italy
e-mail: luca.tasquier@unina2.it

R. Aversa
e-mail: rocco.aversa@unina2.it

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_4

69

70 R. Aversa and L. Tasquier

Interaction
Paradigms

Individual Intelligence Collective Intelligence

Fig. 4.1 Social interaction paradigms

performance of the agents without violating autonomy, i.e., without explicit global
control [7].

Agent-based approaches are adopted for solving several types of optimization
problems [2]; in [6] agent based and classic optimization approaches are compared:
according to size, since agent based approaches support the dividing of the global
problem into a number of smaller local allocation problems, large-sized problems
could be handled well in such cases the problem is modular, due to the modular-
ity of the agent based approaches. In terms of computational times, agent-based
approaches can provide some advantages thanks to their ability to divide problems
in several sub-problems: since agents are able to continuously monitor the state of
local environment and typically do not have to make very complex decisions, they
are able to react to changes fast, providing some advantages if the domain of the
problem is characterized by a high changeability/time scale level. From the point of
view of the quality of solution, since agent based approaches are distributed, they
do not have a global view of the state of the system, which often is necessary in
order to find a truly good solution. For these reasons, agent based approaches in opti-
mization techniques tend to be preferable when the size of the problem is large, the
domain is modular in nature and the structure of the domain changes frequently (i.e.,
high changeability). The application domains of multi agent systems designed for
the implementation of optimization techniques are various: in [12] authors see agent
based models useful for manufacturing problems because in this kind of environ-
ments the search space is very complex, with a high number of decision variables,
parameters and constraints; thus the domain is multimodal and suitable for using
cooperative intelligent agents. In [8] the autonomy and the intelligence of the agents
are considered important elements, and the authors claim that agent based approaches
can offer good features to deal with optimization problems. The research activities
presented [10] led to the designing of an uncoordinated fully distributed scheduling
scheme for federated cloud organizations, based on independent, competing, and

4 Agent-Based High-Level Interaction Patterns … 71

self-interested job/task execution agents, driven by optimum social welfare criteria
toward a Nash equilibrium solution.

The presented work aims at defining an high-level interaction paradigm to model
different optimization problems which rely on negotiation and collaboration mech-
anisms: the models will address both Individual and Collective Intelligence imple-
menting them by means of agent based interaction paradigms. The proposed models
will be based on general interaction protocols that can be easily specialized to fit
a specific problem. Starting from high-level models, agent based architectures that
maps these models will be presented in different scenarios. The first one is Cloud
Computing, which represents a challenging test case for the presented model that
implements the designed high-level model related to Individual Intelligence, due to
the heterogeneity of resources, access technologies to services and providers. Cloud
Computing is a computing paradigm wherein the capabilities of business applica-
tions are exposed as services that can be accessed over a network: this paradigm
allows Cloud providers to increase their profits by charging consumers for accessing
these services; on the other hand consumers, such as enterprises, are attracted by the
opportunity for reducing or eliminating costs associated with “in-house” provision
of these services [4]. The proposed multi-agent architecture allows the provisioning,
management, monitoring, and reconfiguration of resources in a transparent way with
respect to the heterogeneity of the infrastructures. The second scenario in which the
designed model for Collective Intelligence are implemented is the context of Smart
Cities: a city can be defined “smart” when investments in human and social capi-
tal and traditional (transport) and modern (ICT) communication infrastructure fuel
sustainable economic development and a high quality of life, with a wise manage-
ment of natural resources, through participatory action and engagement [5]. “Smart
Cities” mainly focus on applying the next-generation information technology to all
walks of life, embedding sensors and equipment to hospitals, power grids, railways,
bridges, tunnels, roads, buildings, water systems, dams, oil and gas pipelines and
other objects in every corner of the world.Within this context, it is presented an agent
based environment that allows the collection of data about energy consumption in a
neighbourhood and the negotiation of the whole produced/consumed energy among
the involved parties in order to maximize the profits of the community: the collective
optimization is implemented by maximizing the auto-consumption of energy by the
actors in the community, and by maximizing the exchange of energy among peers
in the neighbourhood, thus reducing the energy selling by external suppliers. The
presented environment implements a high-level model specifically developed for the
minimization of the individual and community energy costs, being compliant with
the Collective Intelligence interaction paradigm.

This chapter is organized as follows: in Sect. 4.2 the model for Individual Intelli-
gence is presented, while in Sect. 4.2.1 an application of the model within the Cloud
Computing scenario is presented; the model for Collective Intelligence is described
in Sect. 4.3 and its application in Smart Cities context is detailed in Sect. 4.3.1; con-
clusion is due in Sect. 4.4.

72 R. Aversa and L. Tasquier

4.2 Individual Intelligence: An Interaction Model

Takingup fromwhat described inSect. 4.1,within the frameworkof the social interac-
tion paradigms Individual Intelligence occurs when the interactions of an individual
inside a community are aimed at meeting the objectives of the individual, using a
selfish approach. For these reasons, a model that is compliant with this paradigm
should have social skills in order to interact with the community, reasoning capa-
bilities to elaborate data and information coming from individuals and environment
and monitoring abilities to continuously check the satisfaction of individual require-
ments. According to these skills, it is proposed the interaction model depicted in
Fig. 4.2; this schema is based on the “supply and demand” model [3], where the
discriminant is a set of variables that represents the individual requirements. Being
a general model, it can be easily specialized in different optimization problems that
fits with these kind of operations, in particular where there is a limited market and
the buyer’s and seller’s roles are clearly distinct (e.g., [9]).

The developed model is waterfall with feedback: it has also been designed in such
a way that the individual has the ability to continuously monitor its state and the

Fig. 4.2 Individual Intelligence interaction model

4 Agent-Based High-Level Interaction Patterns … 73

state of the environment in which it resides in order to continuously reach states that
maximize the satisfaction of the goals, even in response to external events. Being
compliant with the supply and demand schema, at the beginning of the model the
individual starts asking for offers to the entities in the same community in order to
fulfill its needings; after the receipt of the deals, the individual begins a brokering
phase, where it selects the offers that best fit with its requirements among the required
ones. This first optimization stage does not need interaction among the parties in order
to make the choice; the brokering step is followed by an evaluation of the kind of
chosen proposals: if the selected offers are not flexible, the individual proceeds in
acquiring the selected products; if the deals are flexible, the individual starts a new
optimization phase by interacting with the entities that made the offers in order to
better fulfill its requirements: this step is called negotiation and involves interactions
among the parties that are aimed at the satisfaction of the individual’s objectives.After
the negotiation part, it is possible to acquire the selected products. At this point, the
model provides two parallel activities that are designed to target the optimization
of the individual’s objectives also after the first brokering-negotiation-purchasing
step (also known as provisioning): one of the activity is the satisfaction monitoring:
in this phase the fulfillment of the requirements is continuously controlled and, if
the satisfaction of the objectives is no longer enough, the individual can start a new
provisioning phase in order to retrieve better offers. On the other hand, the individual
handles and evaluates external events that might change its requirements, such as the
arrival of new entities in the community that bing with them new offers (maybe
more favorable for individual’s objectives), the environment’s change, and so on.
All these events are catched and evaluated: if one of this is relevant with respect the
optimization fo the individual’s requirements, the model allows a new provisioning
phase.

As discussed in Sect. 4.1, due to its reactivity and proactivity characteristics and
for its adaptability to the environment, the agent based model is one of the most
suitable paradigms that can embody and implement the aforementioned interaction
paradigms. For this reason, in the following it is presented an agent based architecture
that implements the designed Individual Intelligence model: the chosen application
scenario is is Cloud Computing, with particular application to IaaS level. Due to
the heterogeneity of resources, access technologies to services and providers, Cloud
Computing is a challenging test case for the developed model: the proposed multi-
agent architecture allows the provisioning, management, monitoring and reconfig-
uration of resources in a transparent way with respect to the heterogeneity of the
infrastructures.

By relating the developed model with respect to the Cloud Computing context,
the goals of which the model is in charge of maximizing the satisfaction are:

1. performance indexes: the individual tries to maximize the fulfillment of its appli-
cation parameters, in terms of performance indexes (such as CPU speed, memory
consumption, etc.), with the ones provided by the Cloud vendors;

74 R. Aversa and L. Tasquier

2. QoS parameters: as for the performance indexes, the goal is to maximize the
meeting of application transversal requirements, such as QoS parameters like
availability of the resources, throughput of the virtual network, and so on;

3. cost: the third parameter that is taken into account within Cloud Computing
environment is the cost, that the individual tries to minimize.

On each of these three goals can be fixed some reference values that represent the
thresholds for the fulfillment of the particular requirement. In the provisioning phase,
themodel tries to interpolate the three goals,which represent the variables of itsmulti-
objectives utility function, in order to best meet the constraints. This step consists in
brokering and negotiating offers coming from different Cloud providers, by relying
on the good faith of the vendors for what concerns the effectiveness of the provided
resources’ parameters: the satisfaction of the requirements applied in a multi-Clouds
environment. The model presented in Fig. 4.2 provides a satisfaction monitoring
phasewhere the fulfillment of the requirements is continuously controlled. The appli-
cation of this concept within multi-Clouds environments is translated in checking the
effectiveness of the acquired resource’s parameters in terms of performance indexes,
QoS parameters and cost. If one or more of the agreed objectives and constraints are
not met, the individual can start a new provisioning round, by evaluating new offers.
This activity covers the case in which the vendors are not providing the resources
with the agreed parameters and the case in which the requirements change while the
application is running.

4.2.1 Agent Based Platform for Individual Multi-clouds
Optimization

The high-level interaction model for Individual Intelligence has been implemented
and validated through an agent-based platform that covers all the activities described
in Sect. 4.2: Cloud Agency [15], that is a multi agent system (MAS) that accesses, on
behalf of the user, the utility market of Cloud computing to maintain always the best
resources configuration that satisfies the application requirements. It is in charge to
provide the collection of Cloud resources, from different vendors, that continuously
meets the requirements of users’ applications. According to the available offers, it
generates a service level agreement that represents the result of resource brokering
and booking with available providers. The user is able to delegate to the Agency
the monitoring of resource utilization, the necessary checks of the agreement ful-
fillment and eventually re-negotiations. Cloud Agency will supplement the common
management functionalities which are currently provided by IaaS Private and Public
infrastructure with new advanced services, by implementing transparent layer to IaaS
Private and Public Cloud services. Cloud Agency architecture is depicted in Fig. 4.3.
One of the leading agents that composes Cloud Agency is the Broker Agent that

receives the list of those resources that the application needs for its deployment and
execution, asks to providers for available offers, brokers the best one and allows for

4 Agent-Based High-Level Interaction Patterns … 75

Fig. 4.3 Cloud agency architecture

closing the transaction. Vendor Agents implement a wrapper for a specific Cloud:
they are used to get an offer for resource provisioning, to accept or refuse that offer,
to get informations about a resource or to perform an action on it (start, stop, resume).
Broker Agent and Vendor Agent are responsible of mapping the provisioning phase
of the Individual Interactionmodel described in Fig. 4.2: theVendor Agents represent
the sellers queried by the user to retrieve the offers in the market and support him/her
in acquiring the selected resources, while the Broker Agent embodies the user within
the brokering and negotiation phase.Meter Agents performmeasures of performance
indexes at IaaS level and return their values to the Archiver Agent. The Archiver col-
lects the measures and maintains statistics about the system. For the reconfiguration
service the Tier Agent has been developed: it is triggered by the Archiver and uses
policies defined by the user to apply the necessary reactions. Meter Agents, together
with the Archiver, map the actions due to monitor the user’s satisfaction, while the
Tier Agents are responsible of handling external events, as described in Sect. 4.2. The
Mediator Agent receives requests directly from the user: it is in charge of starting
new transactions for provisioning by creating Broker Agents; it also starts new Tiers
andMeters, and returns information about Cloud Agency configuration and services.
Further details about Cloud Agency architecture and execution are stated in [1, 14].

76 R. Aversa and L. Tasquier

4.3 Collective Intelligence: An Interaction Model

According to the definition given in Sect. 4.1, within the context of the social inter-
action paradigm, the dual approach to the Individual Intelligence concept is the
Collective Intelligence. We talk about Collective Intelligence when the interaction
of an individual with other entities of the same community, or with the external
environment, is not only aimed at satisfying individual goals but also the ones of the
community to which it belongs. On the basis of these skills, it has been developed
an interaction model, as shown in Fig. 4.4. As the one described in Sect. 4.2, the
proposed model is very general and it can well fit with the optimization problems
that require an interaction and a collaboration among the individuals: it can be easily
specialized within the context of the peer-to-peer networks, where the role of each
individual often varies. With respect to the Individual Intelligence model, one of
the main differences is that in this case the products’ sellers are not passive entities
within the community, but they are active players in the optimization model. For
this reason, it is necessary to split the interaction model in two macro-behaviours:
buyer behaviour and seller behaviour. Each individual can play both roles according
to its utility function, that aims at maximizing its satisfaction and the community’s

Fig. 4.4 Collective intelligence interaction model

4 Agent-Based High-Level Interaction Patterns … 77

requirements. As buyer, the individual starts the operations by collecting the offers
coming from the belonging community; after that, it performs the brokering phase
(as described for the Individual Intelligence) and, for each offer, starts a negotiation
phase by providing a purchase proposal to the related seller. The received response
can have three different shapes:

1. proposal accepted: in this case the buyer acquires the selected products from the
related vendor;

2. counterproposal received: if the seller sends a counterproposal, the buyer evalu-
ates it and if the negotiation time for the selected products is not expired, it sends
another proposal to the vendor in order to negotiate the products’ purchasing. If
the negotiation time is expired, the buyer acquires the selected products without
negotiating anymore;

3. proposal rejected: this event can occur, for example, if during the provisioning
phase a vendor already sold the selected products to another buyer that provided
a more convenient proposal (in terms of its objective function); in this case the
buyer must re-tune its objectives by using a new brokering round.

As it is possible to understand, the behaviours of other peers in the community can
impact on the behaviour of the individual that is forced to change its objectives in
order to find another maximization point that maybe is not the absolute optimum for
it but allows to maximize the objectives’ satisfaction of the community. As seller,
the individual starts the behaviour by publishing an offer within the community and
by receiving a proposal. If the proposal is related to an offer that is not valid anymore
(expired or bound to products already sold), the seller answers by rejecting the pro-
posal. If the rejection is due to the offer’s expiration, the seller unpublishes the offer;
it receives a new proposal otherwise. If the proposal is negotiable, the seller evaluates
it by applying its utility function (that takes into account individual and community
satisfaction). If the proposal is acceptable, the individual agrees to the proposal and
sells the products; if not, it generates a counterproposal, sends it to the buyer and
waits for other proposals. At this point, the two macro-behaviours meet each other:
in fact, every entity performs the monitoring and the external events handling activ-
ities, as well as the Individual Intelligence model. These parallel activities aim at
evaluating the objectives’ satisfaction: if one of these activities triggers a relevant
event, the individual can decide to act as buyer or as seller according to its utility
function.

In the following Section, the described Collective Intelligence interaction model
will be appliedwithin the scenario of Smart Cities, where it will be presented an agent
based environment that allows the collection of data about energy consumption in a
neighbourhood and the negotiation of the whole produced/consumed energy among
the involved parties in order to maximize the profits of the community. The proposed
formulationwill be guided by twomain criteria, where the role of individual is played
by the house of the neighbourhood:

1. individual optimization: the first objective that the model will deal with is the
individual optimization, that, in the context of energy trading in Smart Cities, is
the minimization of house’s energy cost;

78 R. Aversa and L. Tasquier

2. community optimization: the second objective that will be considered in the
model’s development is the minimization of community energy cost. In order
to understand deadlines and constraints for the interactions, it will be studied
how the house can be characterized from an energetic point of view.

4.3.1 Agent Interaction Model for Cost Minimization

To implement the abovementioned strategy, we use the agent paradigm, building up
an interaction model for Collective Intelligence that aims at minimizing the overall
neighbourhood’s cost; each house is modeled by an agent that adapts its behaviour in
order to maximize auto-consumption of energy and minimize the exchange with the
energyprovider. Thus the neighbourhood is representedby anumber of agents that are
distributedwithin a “virtual” community and run autonomously in order to implement
their own strategy. Thanks to its reactiveness and proactiveness capabilities, the
agent paradigm is able to match the described selfish behaviour with on-demand
collaboration in a distributed environment by using an asynchronous communication
approach. The agent technology allows to easily react to environment’s changes in
order to reach the cost minimization goals; moreover, the architecture is highly
scalable and can easily grow and decrease with the neighbourhood by simply adding
and removing agents from the platform, thus exploiting the complete decoupling
among the agents.

The minimization’s strategy can be resumed in three agent’s macro-beahviours

1. maximize auto-consumption: whatever state the agent is in, if the agent needs
energy and an energy production’s event occurs, this event triggers a series of
state transitions that lead it to consume the produced energy;

2. minimize energy requests to the provider: if there is an energy request and the
produced energy is not sufficient to completely satisfy the request, the agent asks
for the needed energy to the neighbourhood;

3. collaborative approach: if the house has an excess of produced energy, the agent
provides this energy to the neighbourhood.

The agent interaction model is drawn in Fig. 4.5 while the description of each
state is provided below:

• 1: EVALUATE STATE: in this state are performed all the operations aimed at
evaluating if the agent has to acquire or to sell energy.

• 2: PUBLISH PROPOSAL: if the house produces some exceeding energy, the agent
publishes a proposal in order to sell the energy to other houses in the neighbour-
hood.

• 3: ASK FORPROPOSAL: if the house needs energy and it is not available at home,
it asks the neighbourhood for energy to buy by using a Call for Proposal (CFP).

• 4: WAIT ACCEPTANCE: in this state the house waits for the acceptance of a
proposal published in state 2.

4 Agent-Based High-Level Interaction Patterns … 79

Fig. 4.5 Agent interaction model for energy cost minimization

• 5: CANCEL PROPOSAL: if during the waiting of a proposal acceptance notifica-
tion �t passes, the proposal is canceled.

• 6: SELL ENERGY : if a proposal acceptance notification has been received, the
agent sells the agreed energy to the buyer.

• 7: EVALUATEPROPOSAL: if a proposal is received, the agent evaluates it in order
to the buy neighbour’s energy.

• 8: ACQUIRE FROM NEIGHBOUR: if a proposal evaluation succeeded, the agent
buys the agreed energy from the seller.

• 9: CANCEL CFP: if during a proposal evaluation or the waiting of proposals �t
passes, the CFP is canceled.

• 10: ACQUIRE FROM PROVIDER: this is the worst situation; if the agent needs
energy and no acceptable proposals come within �t , the only thing that the agent
can do is to acquire the needed energy from the energy supplier.

Even if the interaction model is event-based, the full set of operations is marked
by �t : every �t the automata returns to its initial state, starting a new round of
estimation-trading-purchasing/selling. As it is possible to understand, �t becomes
a crucial parameter for the algorithm performance: too small a value of �t makes
stressing the prediction algorithm and might be too short to complete the negotiation
phase; too high a value of �t makes the energy performance of the house too bind
to the accuracy of the forecasting, since an incorrect prediction can impact on the
energy behaviour of the house for a long period, thus reducing the performance. For
these reasons, the tuning of �t strongly impacts on the house cost minimization.
It is important to highlight that, in order to implement the high-level model, each
agent can act as both buyer and seller: it is not bound to a specific role but it can
adapt its behaviour to the specific requirements and execution state.

A detailed description of the specificmodel used tominimize the neighbourhood’s
energy cost together with experimental results used to validate the proposed model
are presented in [13].

80 R. Aversa and L. Tasquier

4.4 Conclusion

This work, starting from commonly used interaction models, proposed high-level
interaction paradigms easy to specialize in order to guide an user in solving his/her
optimization problem on the basis of his/her requirements: moreover, the presented
models have been implemented by means of agent based paradigms and technolo-
gies. In the context of Individual Intelligence, has been presented an interaction
model (waterfall with feedback) based on on the “supply and demand” mechanism.
The application of this model to a Cloud Computing scenario led to the design and
implementation of an agent based platform for the provisioning, management and
monitoring of Cloud infrastructures. This framework covers all the interactions pro-
posed in the high-level model by using the agent capabilities in terms of reactiveness,
proactiveness and social attitudes. In the context ofCollective Intelligence, it has been
proposed a community-oriented optimization model for energy exchange in Smart
Cities and, in order to validate it, it has been presented an agent based interaction
model that aims at maximizing the auto-consumption of the produced energy and at
buying the needed one from neighbours instead of supplier.

References

1. Aversa, R., Tasquier, L., Venticinque, S.: Cloud agency: A guide through the clouds. Mondo
Digitale 13(49) (2014)

2. Barbati, M., Bruno, G., Genovese, A.: Applications of agent-based models for optimization
problems: A literature review. Expert Syst. Appl. 39(5), 6020–6028 (2012)

3. Besanko, D., Braeutigam, R.: Microeconomics. John Wiley & Sons (2010)
4. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging

IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener.
Comput. Syst. 25(6), 599–616 (2009)

5. Caragliu, A., Del Bo, C., Nijkamp, P.: Smart cities in Europe. J. urban Technol. 18(2), 65–82
(2011)

6. Davidsson, P., Persson, J.A., Holmgren, J.: On the integration of agent-based andmathematical
optimization techniques. In: Agent andmulti-agent systems: technologies and applications, pp.
1–10. Springer (2007)

7. Durfee, E.H.: Coordination of distributed problem solvers.KluwerAcademic Publishers (1988)
8. Kornienko, S., Kornienko, O., Priese, J.: Application of multi-agent planning to the assignment

problem. Comput. Ind. 54(3), 273–290 (2004)
9. Kozat, U.C., Harmanci, O., Kanumuri, S., Demircin, M.U., Civanlar, M.R.: Peer assisted video

streamingwith supply-demand-based cache optimization. IEEETrans.Multimedia 11(3), 494–
508 (2009)

10. Palmieri, F., Buonanno, L., Venticinque, S., Aversa, R., DiMartino, B.:A distributed scheduling
framework based on selfish autonomous agents for federated cloud environments. FutureGener.
Comput. Syst. 29(6), 1461–1472 (2013)

11. Rosenschein, J.S., Zlotkin, G.: Designing conventions for automated negotiation. AI magazine
15(3), 29 (1994)

12. Shen, W., Wang, L., Hao, Q.: Agent-based distributed manufacturing process planning and
scheduling: a state-of-the-art survey. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 36(4),
563–577 (2006)

4 Agent-Based High-Level Interaction Patterns … 81

13. Tasquier, L., Aversa, R.: An agent-based collaborative platform for the optimized trading of
renewable energy within a community. J. Telecommun. Inf. Technol. 2014(4) (2014)

14. Venticinque, S., Tasquier, L., Di Martino, B.: Agents based cloud computing interface for
resource provisioning and management. In: 2012 Sixth International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), pp. 249–256. IEEE (2012)

15. Venticinque, S., Tasquier, L., Di Martino, B.: A restfull interface for scalable agents based
cloud services. Int. J. Ad Hoc Ubiquitous Comput. 16(4), 219–231 (2014)

16. Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons (2009)

Chapter 5
Maximize Profit for Big Data Processing
in Distributed Datacenters

Weidong Bao, Ji Wang and Xiaomin Zhu

5.1 Introduction

The volume of data increases drastically in recent years,which leads to a high demand
for Big Data processing. Efficient processing and analysis of Big Data has exhibited
its tremendous potential to facilitate decision-making, production sale and so on.
Despite the huge values, Big Data processing, however, requires big infrastructures
andbig costs,which often exceeds the capacitymost enterprises and institutes are able
to afford. Fortunately, cloud computing, a revolutionary computing service provision
scheme, provides a promising solution for the enterprises and institutes to process
Big Data in a highly effective and economic manner. Enterprises and institutes who
have the demand for Big Data processing submit their service requests to the cloud
service providers (CSPs) such as Amazon, Google, and Microsoft to rent computing
resources for executing Big Data processing applications.

Cloud service providers are supported by large-scale cloud datacenters that are
usually distributed in different geographic regions across the world [4]. For example,
Google operates 13 datacenters across eight countries. The explosion of the Big Data
processing demands also incur a high cost to operate distributed datacenters for these
CSPs. How to manager distributed datacenters and maximize the profit has become
the major concern of CSPs. Nonetheless, there are four-fold challenges to optimize
this problem. (1) The service requests in cloud environments are highly dynamic and
unpredictable. It is nearly impossible for CSPs to make an accurate prediction of the

W. Bao · J. Wang (B) · X. Zhu
College of Information System and Management, National University
of Defense Technology, Changsha, Hunan, People’s Republic of China
e-mail: wangji@nudt.edu.cn

W. Bao
e-mail: wdbao@nudt.edu.cn

X. Zhu
e-mail: xmzhu@nudt.edu.cn

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_5

83

84 W. Bao et al.

future workload. (2) The electricity price and bandwidth price, two major operation
costs of datacenters, are stochastic in practice. Combined with the first challenge,
it makes the optimization in distributed datacenters far more difficult. (3) The huge
amounts of computing resources and service requests incur over-burdened complex-
ity when optimizing this problem, which requires the solution to be a distributed
scheme with high time efficiency. (4) Datacenters in clouds are usually divers in
terms of energy efficiency due to the different geographic locations, infrastructures,
and cooling mechanisms, which make the cost different even processing the same
application among the distributed datacenter.

In this work, to overcome the above-mentioned challenges and attain the optimum
of CSPs’ profit, we jointly take the electricity price, bandwidth price, and geographic
differences into consideration, and then model service requests acceptance control,
requests dispatching, and VM provisioning as an integrated optimization framework
based onLyapunov optimization theory [8]. An efficient online algorithm is proposed
to help CSPs obtain maximal time-averaged profit over the long run. The rigorous
theoretic analysis shows that our framework is able to arbitrarily close to optimum.

The rest of the paper is organized as follows. Section5.2 summaries the related
work. The system model and problem formulation is given in Sect. 5.3. We propose
an online optimization framework in Sect. 5.4, and the performance of this framework
is analyzed in Sect. 5.5. Finally, Sect. 5.6 concludes this paper.

5.2 Related Work

Due to the increasing operation costs of distributed datacenters with the explosion of
Big Data processing, it is imperative to propose a highly efficient approach for CSPs
to reduce operation costs andmaximize profits.Consequently, a series of technologies
and frameworks have been studied to cut expenses of datacenters.

Considering the geographic differences among distributed datacenters, Xu et al.
[10] proposed a temperature aware workload management approach that was solved
by an m-block alternating direction method of multipliers algorithms. In order to
reduce energy costs and environmental impact, Liu et al. [7] studied a holistic
approach of workload management integrated with renewable supply, dynamic pric-
ing, and cooling supply. An optimal workload control and balancing by considering
latency, carbon footprint, and energy cost was proposed by Gao et al. [2]. Zhang
et al. [12] studied a framework for dynamic service placement in geographically
distributed clouds based on control- and game-theoretic models. However, all the
above works require a prior knowledge about the arrival rates of requests to achieve
the long-run optimization, which is usually impossible in cloud environments.

Lyapunov optimization framework is a promising approach to solve the optimiza-
tion problems in cloud computing for its advantage of requiring no knowledge about
the arrival rates in advance to achieve a long-run optimization. Zhou et al. [6] designed
and optimal control framework to make online decisions on request admission con-
trol, routing, and VM scheduling based on the Lyapunov techniques. However, this

5 Maximize Profit for Big Data Processing in Distributed Datacenters 85

work is designed for a single datacenter, and hence not suitable for the environment
of multiple distributed datacenters. An online server and workload management
across datacenters is proposed by Abbasi et al. [1] for minimizing operational cost
while satisfying the carbon footprint reduction goal. Zhao et al. [13] proposed an
online algorithm for dynamic pricing of VMs across datacenters, together with job
scheduling and server provisioning in each datacenter to maximize the profit over
the long run. In addition, a contribution was made in this work to allow the execution
time of each job to be longer than the interval of decision making in the Lyapunov
framework. Yao et al. [11] developed a two-time-scale decision strategy based on
the Lyapunov optimization framework for delay tolerant workloads. These works
have partly solved the optimization problem in distributed datacenter environments.
Nonetheless, it is assumed that only one VM can be used by a service request over
several time slots in these works, which is not appropriate for Big Data processing as
the Big Data processing usually demands multiple VMs simultaneously to accelerate
the processing speed. To overcome this problem, we extend the service model in this
work, and propose an corresponding optimization framework forBigData processing
in distributed datacenters based on the Lyapunov optimization technology.

5.3 System Model and Problem Formulation

In this section, we first give the system model and then formulate the workload
management problem for distributed cloud datacenters. We consider a cloud service
provider that possesses a set D cloud data centers. Each datacenter d ∈ D has Nd

homogeneous servers, which can dynamically change according to the systemwork-
load. It should be noted that although our model assumes that the servers in one
datacenter are homogeneous, it is straightforward to extend the model to incorporate
the heterogeneous case with some additional notations. A cloud service provider
usually provide several types of virtual machine (VM), such as Amazon EC2. Cor-
respondingly, a set V of different types of VMs are modeled in our work. A server
in a datacenter can be virtualized into several VMs of the same type. ndv denote the
number of type-vVMs that a server in datacenter d can host. The system operates in a
time-slotted scheme. In every time slot t , the systemmake the workloadmanagement
decisions to dispatch customers’ service request and control the number of servers
in distributed datacenters.

5.3.1 Service Request Model

Customers submit a setS of distinct types of service request to process the Big Data
applications. Each service request s ∈ S is depicted as a tuple (vs, ns, ωs, ds, rs),
where vs ∈ V is the type of VM requested; ns ∈ [nmin, nmax] is the amount of
type-vs VM requested; ωs ∈ [ωmin

s , ωmax
s] is the amount of time slots requested;

86 W. Bao et al.

ds ∈ [dmin, dmax] is the data volume processed by this kind of application; and rs is
the revenue obtained when the type-s service request is provided.

The amount of type-s service requests submitted to the CSP is denoted as As(t).
We assume that As(t) is independent and identically distributed (i.i.d) over time slots.
In addition, it is assumed that there is a peak amount of service requests Amax

s , such
that {As(t) ≤ Amax

s ,∀s ∈ S ,∀t}.

5.3.2 Service Dispatch and Server Operation Model

Service requests first are submitted to the CSP’s front-end proxy server by customers.
Then, at the beginning of each time slot, the front-end server determines the requests
Rs(t) that are accepted by the CSP (Rmin

s ≤ Rs(t) ≤ As(t)) and decides how to
dispatch these requests to the distributed datacenters. We use Rd

s (t) to denote the
amount of type-r requests dispatched to datacenter d,

∑
d∈D Rd

s (t) = Rs(t). Once
a service request s is dispatched to datacenter d, the requested VMs will run in this
datacenter forωs time slots.μd

s (t) ∈ [0, μmax] denotes the amount of type-s requests
that are scheduled to be served in datacenterd at time slot t . Each datacentermaintains
a queue Qd

s (t) denoting the total size of type-s requests queued at the datacenter for
service at time slot t (Initially, Qd

s (0) = 0,∀s,∀d,∀t). It is updated over time as
follows:

Qd
s (t + 1) = max{Qd

s (t) − nsμ
d
s (t), 0} + ωsns R

d
s (t) (5.1)

The amount of servers in a datacenter can dynamically change to make a good
tradeoff between performance and cost. With the advanced intra-datacenter VM
migration technique [5], the VMs can be consolidated to the minimal number of
servers. Hence, we use Nd

v (t) to denote the amount of servers in datacenter d that
host type-v VMs at time slot t . It satisfies the following inequation:

Nd
v (t) ≥

∑

s:vs=v

nsμ
d
s (t)/n

d
v (5.2)

5.3.3 Cost Model

In this paper, the operating cost of CSPs we considered consists of electricity cost
and bandwidth cost. The electricity cost model is given first in the following part,
and then the bandwidth cost model is described.

Considering the diversity of geo-locations and cooling infrastructures among dis-
tributed datacenters, their PUEs, representing the ratio of the total power consumption

5 Maximize Profit for Big Data Processing in Distributed Datacenters 87

to the power delivered to the computing infrastructures, are different. We use ηd to
denote the PUE of datacenter d. Then, the power consumption of datacenter d at
time slot t can be calculated as ηd ps

∑
v∈V Nd

v (t), where ps is the power consump-
tion of one server. In addition, the electricity price varies with time and regions in
practice. To capture this characteristic, ed(t) is used to denote the electricity price of
datacenter d at time slot t . Consequently, the electricity cost of datacenter d at time
slot t can be modeled as:

cde (t) = ed(t)ηd ps
∑

v∈V Nd
v (t) (5.3)

The bandwidth price exhibits location diversity [9]. Besides, bandwidth is usually
charged based on the basic 95/5 billing scheme. So the price also varies with time in
real-life market. To reflect such characteristics, we use bd(t) to denote the bandwidth
cost for one unit in datacenter d at time slot t . Therefore, the bandwidth cost of
datacenter d at time slot t can be modeled as:

cdb (t) = ds
∑

s∈S
bd(t)μd

s (t) (5.4)

5.3.4 Profit Maximization Problem

TheCSP’s profit is the difference between the revenue obtained by providing services
and the operating cost. The revenue obtained at time slot t is

∑
s∈S rs Rs(t), while

the operating cost of one datacenter is cde (t) + cdb (t). Then, the CSP’s profit at time
slot t is

p(t) =
∑

s∈S
rs Rs(t) −

∑

d∈D
cde (t) + cdb (t) (5.5)

The objective of this paper is to maximize the time-averaged expected profit as
described below

maximize P = lim
T→∞

1

T

T−1∑

t=0

E[p(t)] (5.6)

Then, the profit maximization problem studied in this paper can be formulated as
the following Problem I:

88 W. Bao et al.

max : P (5.7)

s.t. :
∑

v∈V
Nd
v (t) ≤ Nd ,∀d,∀t (5.8)

∑

s:vs=v

nsμ
d
s (t)/n

d
v ≤ Nd

v (t),∀d,∀s,∀t (5.9)

lim
T→∞

1

T

T−1∑

t=0

E[ωsns R
d
s (t)] < lim

T→∞
1

T

T−1∑

t=0

E[nsμd
s (t)],∀d,∀s (5.10)

Tomaximize the time-averaged profit, theCSPneed to strategically determines the
best amount of accepted service requests Rs(t), an appropriate request dispatching
scheme Rd

s (t), the optimal amount of service requests that are scheduled to be served
μd
s (t), and the best amount of active servers. Constraint (8) ensures that the amount

of total active servers is bounded by the amount of servers in a datacenter. Constraint
(9) guarantees the amount of VMs providing service does not exceeds the amount
of active servers. Constraint (10) specifies that the queue Qd

s (t) is stable.

5.4 The Online Optimization Framework

There are two main challenges for the CSP to solve Problem I in practise. First,
the service requests in cloud environment are highly dynamic and unpredictable,
which makes it impossible to get the key parameters such as As(t). Second, the
huge amounts of servers and service requests incur over-burdened complexity when
solving the problem with a centralized method. Therefore, we have to find out an
online and distributed optimization framework to make decisions efficiently.

In response to the above challenges, we exploit the advantages of Lyapunov opti-
mization techniques [8] to design an online optimization framework that is able to
achieve a time-averaged profit arbitrarily close to optimum, while keeps the system
stable. To begin with, we define the Lyapunov function as follows:

L(t) = 1

2

∑

s∈S

∑

d∈D
Qd

s (t)
2

(5.11)

The Lyapunov function represents a scalar metric of queue congestion [8] of all
the distributed datacenters. A small value of L(t) suggests that the cloud system has
strong stability satisfying Constraint (10). To push the Lyapunov function towards a
congestion state, we then define the one-slot conditional Lyapunov drift

Δ(Q(t)) = E{L(t + 1) − L(t)|Q(t)} (5.12)

5 Maximize Profit for Big Data Processing in Distributed Datacenters 89

Meanwhile, in order to maximize the time-averaged profit, the drift-plus-penalty
technique in Lyapunov framework is introduced, which transforms the problem into
the minimization of the upper bound for the following expression in each time slot:

Δ(Q(t)) − V E{
∑

s∈S
rs Rs(t) −

∑

d∈D
cde (t) + cdb (t)} (5.13)

The parameter V (≥0) chosen by the CSP is designed to control the tradeoff
between the system stability and the profit. A lower value of V implies that the CSP
prefers to maintain the cloud system stable rather than obtain higher time-averaged
profit. To derive the upper bound of the drift-plus-penalty expression, we provide the
following lemma:

Lemma 1 In each time slot t , for any value of Q(t), the drift-plus-penalty expression
is up bounded by:

Δ(Q(t)) − V E{ ∑

s∈S
rs Rs(t) − ∑

d∈D
cde (t) + cdb (t)}

≤ B1 + E{ ∑

s∈S

∑

d∈D
ωsns Qd

s (t)R
d
s (t)} − V E{ ∑

s∈S
rs Rs(t)}

+V E{ ∑

d∈D
psed(t)ηd

∑

v∈V
Nd
v (t)}

+E{ ∑

s∈S

∑

d∈D
(Vdsbd(t) − nsQd

s (t))μ
d
s (t)},

(5.14)

where B1 =
∑

s∈S

∑

d∈D
ns 2μmax

s
2+ ∑

s∈S

∑

d∈D
ωs

2ns 2Amax
s

2

2 is a positive constant.

Proof Leveraging the fact that (max[a − b, 0] + c)2 ≤ a2 + b2 + c2 − 2a(b − c),
we have:

Qd
s (t + 1)2 ≤ Qd

s (t)
2 + ns2μd

s (t)
2 + ωs

2ns2Rd
s (t)

2

−2Qd
s (t)(nsμ

d
s (t) − ωsns Rd

s (t))
(5.15)

Based on Eqs. (5.11), (5.12) and (5.15), we can further derive:

Δ(Q(t)) ≤ 1
2 E{ ∑

s∈S

∑

d∈D
ns2μd

s (t)
2} + 1

2 E{ ∑

s∈S

∑

d∈D
ωs

2ns2Rd
s (t)

2}
−E{ ∑

s∈S

∑

d∈D
Qd

s (t)(nsμ
d
s (t) − ωsns Rd

s (t))} (5.16)

Note thatμd
s (t)

2 is bounded byμmax
s

2, and Rd
s (t)

2
is bounded by Amax

s
2. By defin-

ing B1 =
∑

s∈S

∑

d∈D
ns 2μmax

s
2+ ∑

s∈S

∑

d∈D
ωs

2ns 2Amax
s

2

2 , and subtracting V P , the above expression
can be simplified to (5.14).

Instead of minimizing the drift-plus-penalty expression directly, our approach
strives to minimize the upper bound given above, and thus to maximize the lower

90 W. Bao et al.

bound of the profit P . The stability of Qd
s (t) also can be guaranteed in this process,

and hence Constraint (10) is satisfied. Then, by introducing the drift-plus-penalty
technique, Problem I is transformed into the following Problem II:

min :
∑

s∈S

∑

d∈D
ωsns Qd

s (t)R
d
s (t) − V

∑

s∈S
rs Rs(t) + V

∑

d∈D
psed(t)ηd

∑

v∈V
Nd
v (t)

+ ∑

s∈S

∑

d∈D
(Vdsbd(t) − nsQd

s (t))μ
d
s (t)

s.t. : Constraints(8)(9)
(5.17)

Based on the optimization objective of Problem II, it can be investigated that
Problem II can be equivalently decoupled into two independent phases of deci-
sions, including: (a) Request Acceptance Control and Dispatching, and (b) VM
provisioning.

(a) Request Acceptance Control and Dispatching: In each time slot, the CSP
decides the amount of accepted requests Rs(t) and the dispatching scheme Rd

s (t)
for each type of service requests. To minimize (5.17), the part related to Rs(t) and
Rd
s (t) is

∑
s∈S

∑
d∈D ωsns Qd

s (t)R
d
s (t) − V

∑
s∈S rs Rs(t). In addition, as the deci-

sion parameters of different types of requests are independent from each other, this
optimization problem can be decoupled to be computed concurrently as follows:

min :
∑

d∈D
ωsns Q

d
s (t)R

d
s (t) − Vrs Rs(t)

s.t. : Rmin
s ≤ Rs(t) ≤ As(t)

∑

d∈D
Rd
s (t) = Rs(t)

(5.18)

The above problem is a joint optimization of request acceptance control and
dispatching, we first solve a simple case: if the value of Ri (t) is given, then the
problem (5.18) is equivalent to the problem below:

min :
∑

d∈D
ωsns Q

d
s (t)R

d
s (t)

s.t. :
∑

d∈D
Rd
s (t) = Rs(t)

(5.19)

To minimize (5.19), the optimal operation tends to maximally dispatch type-s
requests to the datacenter d∗ whose observed Qd

s (t) if the smallest among all the
datacenters, i.e., d∗ = argmaxd∈DQd

s (t). Hence, all the accepted type-s requests
Rs(t) should be dispatched to d∗:

Rd
s (t) =

{
Rs(t), d = d∗,
0, else.

(5.20)

5 Maximize Profit for Big Data Processing in Distributed Datacenters 91

Then, based on the optimal dispatching scheme, the request acceptance control
decision can be converted into the following equivalent problem:

min : ωsns Q
d∗
s (t)Rs(t) − Vrs Rs(t)

s.t. : Rmin
s ≤ Rs(t) ≤ As(t)

(5.21)

The objective function of the above problem is linear in Rs(t). Hence, we can get
the optimal request acceptance decision as follow:

Rs(t) =
{
As(t), Qd∗

s < Vrs
ωsns

,

Rmin
s , else.

(5.22)

According to the above analysis, in each time slot, for each type of service requests,
the CSP first find the datacenter with the shortest queue, and then compare the value
of Qd∗

s with the threshold Vrs
ωsns

to decide the amount of accepted requests. After that,
all the accepted requests will be dispatched to the datacenter with the shortest queue.

(b) VM Provisioning: In each time slot, each datacenter makes decisions about
when and how to serve the requests dispatched to it by determining the parameter
Nd
v (t) and μd

s (t). Again, because Nd
v (t) and μd

s (t) are independent among different
datacenters, the related part in (5.17) can be decoupled as follows:

min : V pse
d(t)ηd

∑

v∈V
Nd
v (t) +

∑

s∈S
(Vdsb

d(t) − nsQ
d
s (t))μ

d
s (t)

s.t. : Constraints(8)(9)
(5.23)

The above problem also is a joint optimization problem. Similarly, we first assume
one decision parameter Nd

v (t) is known in advance. Then, the problem is converted
to

min :
∑

s∈S
(Vdsb

d(t) − nsQ
d
s (t))μ

d
s (t)

s.t. : Constraints(9)
(5.24)

To minimize the objective expression of (5.26), it is straightforward to maxi-
mally serve the type-s∗ requests whose observed value of Vdsbd(t) − nsQd

s (t) is
the smallest among all types of requests, i.e., s∗ = argmins∈S Vdsbd(t) − nsQd

s (t).
Therefore, the optimal value of μd

s (t) is

μd
s (t) =

{
ndv N

d
v (t)

ns
, s = s∗,

0, else.
(5.25)

92 W. Bao et al.

Then, we determine Nd
v (t) by solving the following equivalent problem:

min : V pse
d(t)ηd

∑

v∈V
Nd
v (t) + (Vds∗bd(t) − ns∗ Qd

s∗(t))
ndvs∗ N

d
vs∗ (t)

ns∗

s.t. : Constraints(8)
(5.26)

Since all the parameters are non-negative, it is intuitive to minimize all types of
servers except Nd

vs∗ (t). For N
d
vs∗ (t), we can get the optimal value as follows:

Nd
vs∗ (t) =

{
Nd , Qd

s∗(t) >
V psed (t)ηd

ndvs∗
+ Vds∗bd (t)

ns∗

0, else.
(5.27)

5.5 Performance Analysis

In this section, we will give two theorems to present the time-averaged performance
of the system in terms of stability and profit.

Before the analysis, we first introduce the following thereom:

Theorem 1 (Existence of Optimal Randomized Stationary Policy) For arbitrary
arrival rates of service requests, there exits a randomized stationary control policy
π that chooses feasible control decisions Rπ

s (t), Rdπ

s (t), μdπ

s (t) and Ndπ

v (t) for
∀t,∀d,∀s,∀v, independent of the current queue, and gets the following steady state
values:

E{Rπ
s (t)} = r∗,

E{Rdπ

s (t)} = rd
∗

s ,

E{ωs Rdπ

s (t)} > E{μdπ

s (t)},
E{Ndπ

v (t)} = Nd∗
v .

(5.28)

where r∗, r d∗
s , and Nd∗

v is the optimal solution to the Problem I.

Because this theorem can be proved by the similar techniques in [3], we omit the
details for brevity here.

Theorem 2 (Profit Optimality) For arbitrary arrival rates of service requests, the
gap between the time averaged profit achieved by the proposed online optimization
framework and the optimal profit ξ ∗ is

lim
T→∞

1

T

T−1∑

t=0

E{
∑

s∈S
rs Rs(t) −

∑

d∈D
cde (t) + cdb (t)} ≥ ξ ∗ − B1

V
(5.29)

where ξ ∗ is the optimal time averaged profit, and B1 is a constant defined in Lemma 1.

5 Maximize Profit for Big Data Processing in Distributed Datacenters 93

Proof Let ξ(t) denote the profit obtained in time slot t . As our proposed method
strives to choose those variables that canminimize the objective of Problem II among
all the feasible decisions, including the control policy π in each time slot, we can
derive

Δ(Q(t)) − V E{ξ(t)} ≤ B1 + E{ ∑

s∈S

∑

d∈D
ωsns Qd

s (t)R
d
s

π
(t)} − V E{ ∑

s∈S
rs Rs

π (t)}
+V E{ ∑

d∈D
psed(t)ηd

∑

v∈V
Nd
v

π
(t)}

+E{ ∑

s∈S

∑

d∈D
(Vdsbd(t) − nsQd

s (t))μ
d
s
π
(t)},

(5.30)
Take the expectations of both sides of the above yields

E{L(t + 1) − L(t)} − V E{ξ(t)}
≤ B1 + E{ ∑

s∈S

∑

d∈D
ωsns Qd

s (t)R
d
s

∗
(t)} − V E{ ∑

s∈S
rs Rs

∗(t)}
+V E{ ∑

d∈D
psed(t)ηd

∑

v∈V
Nd
v

∗
(t)}

+E{ ∑

s∈S

∑

d∈D
(Vdsbd(t) − nsQd

s (t))μ
d
s
∗
(t)},

(5.31)

Based on Theorem 1, we can derive

E{L(t + 1) − L(t)} − V E{ξ(t)} ≤ B1 − ξ ∗, (5.32)

By summing the above over time slots τ ∈ {0, 1, . . . , t − 1} and then divide the
result by t , we get

E{L(t + 1) − L(0)}
t

− V

t

t−1∑

τ=0

E{ξ(t)} ≤ B1 − V ξ ∗ (5.33)

Considering the fact that L(t) ≥ 0 and L(0) = 0, we can get

1

t

t−1∑

τ=0

E{ξ(t)} ≥ ξ ∗ − B1

V
(5.34)

Now, (5.29) follows by taking a lim as t → ∞.

Theorem 3 (Queue Stability Bound) For arbitrary arrival rates of service requests,
there exits an ε > 0, the system using the proposed online optimization framework
with any V ≥ 0 can guarantee that the time averaged queue satisfy:

lim
T→∞

1

T

T−1∑

t=0

∑

s∈S

∑

d∈D
Qd

s (t) ≤ B1 − V ξ ∗

ε
(5.35)

94 W. Bao et al.

Proof The proof is similar to that of Theorem 2 by the combination usage of Lemma
1 and Theorem 1. We omit it for brevity.

5.6 Conclusion

The increasing demand of Big Data processing in distributed datacenters calls for a
highly efficient framework to optimization profit of the service providers, CSPs. In
this work, we jointly consider the key parameters of datacenter operations to propose
an online optimization based on the Lyapunov optimization theory.

The system model and the problem formulation is first presented, based on which
we transform the problem with the Lyapunov optimization theory to make a trade-
off between the system stability and the profit. Then, the framework makes three
independent decisions on three important control phase, including service requests
acceptance control, requests dispatching, and VM provisioning. Through a rigorous
mathematical analysis, the proposed framework can approach a time averaged profit
that is arbitrarily close to optimum, while keeping the system stable.

References

1. Abbasi, Z., Pore, M., Gupta, S.K.S.: Online server and workload management for joint opti-
mization of electricity cost and carbon footprint across data centers. In: 2014 IEEE International
Parallel Distributed Processing Symposium, pp. 317–326 (2014)

2. Gao, P.X., Curtis, A.R., Wong, B., Keshav, S.: Its not easy being green. In: Proceedings of the
ACM SIGCOMM 2012 Conference, pp. 211–222 (2012)

3. Georgiadis, L., Neely, M.J., Tassiulas, L.: Resource allocation and cross-layer control in wire-
less networks. Found. Trends Networking 1(1) (2006)

4. Gu, L., Zeng, D., Guo, S., Xiang, Y., Hu, J.: A general communication cost optimization
framework for big data stream processing in geo-distributed data centers. IEEE Trans. Comput.
Line (2015). doi:10.1109/TC.2015.2417566

5. Hines,M.R., Deshpande, U., Gopalan, K.: Post-copy livemigration of virtual machines. Sigops
Operating Syst. Rev. 43, 14–26 (2009)

6. Liu, F., Zhou, Z., Jin, H., Li, B., Li, B., Jiang, H.: On arbitrating the power-performance tradeoff
in saas clouds. IEEE Trans. Parallel Distrib. Syst. 25(10), 2648–2658 (2014)

7. Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., Hyser, C.:
Renewable and cooling aware workload management for sustainable data centers. Perform.
Eval. Rev. 40(1), 175–186 (2012)

8. Neely, M.: Stochastic network optimization with application to communication and queueing
systems. Synth. Lect. Commun. Netw. 3(1) (2010)

9. Valancius, V., Lumezanu, C., Feamster, N., Johari, R., Vazirani, V.V.: How many tiers? pricing
in the internet transit market. In: Proceedings of the ACM SIGCOMM 2011 Conference, pp.
194–205 (2011)

10. Xu, H., Feng, C., Li, B.: Temperature aware workload management in geo-distributed data-
centers. Acm Sigmetrics Perform. Eval. Rev. 41(1), 373–374 (2013)

11. Yao, Y., Huang, L., Sharma, A., Golubchik, L., Neely, M.: Data centers power reduction: A
two time scale approach for delay tolerant workloads. In: 2012 Proceedings IEEE INFOCOM,
pp. 1431–1439 (2012)

http://dx.doi.org/10.1109/TC.2015.2417566

5 Maximize Profit for Big Data Processing in Distributed Datacenters 95

12. Zhang, Q., Zhu, Q., Zhani, M.F., Boutaba, R.: Dynamic service placement in geographically
distributed clouds. In: 2012 IEEE International Conference onDistributedComputing Systems,
pp. 526—535 (2012)

13. Zhao, J., Li, H., Wu, C., Li, Z., Zhang, Z., Lau, F.: Dynamic pricing and profit maximization
for the cloud with geo-distributed data centers. In: 2014 Proceedings IEEE INFOCOM, pp.
118–126 (2014)

Chapter 6
Energy and Power Efficiency in Cloud

Michał Karpowicz, Ewa Niewiadomska-Szynkiewicz, Piotr Arabas
and Andrzej Sikora

6.1 Introduction

Progress in high energy physics, chemistry, and biology depends on energy-efficient
data mining and computing technologies. Indeed, data centers, supporting both cloud
services and high performance computing (HPC) applications, consume enormous
amounts of electrical energy. In the period from 2005 to 2010 the energy consumed
by data centers worldwide rose by 56 %, which was accounted between 1.1 and 1.5 %
of the total electricity use in 2010. The growth of energy consumption rises operat-
ing costs of data centers but also contributes to carbon dioxide (CO2) production.
According to the analysis of current trends (gesi.org/SMARTer2020), carbon dioxide
emissions of the ICT industry are expected to exceed 2 % of the global emissions, a
level equivalent to the contribution of the aviation [76]. Energy usage in data centers
grow rapidly with the climbing demand for cloud and HPC services. However, as the
analysis of current trends clearly indicates, the growth rate of ICT cannot be sustained
unless the power consumption problem is addressed [1, 39, 66, 113]. In response to
the created momentum new computing elements, i.e., CPUs/GPUs, memory units,
disks, network interface cards (NICs), have been designed to operate in multiple
(performance and idle) modes of differentiated energy-consumption levels (ACPI).

M. Karpowicz · E. Niewiadomska-Szynkiewicz (B) · P. Arabas
Warsaw University of Technology, Warsaw, Poland
e-mail: ens@ia.pw.edu.pl

M. Karpowicz
e-mail: a.karpowicz@elka.pw.edu.pl

P. Arabas
e-mail: p.arabas@elka.pw.edu.pl

M. Karpowicz · E. Niewiadomska-Szynkiewicz · P. Arabas · A. Sikora
Research and Academic Computer Network (NASK), Warsaw, Poland
e-mail: andrzej.sikora@nask.pl

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_6

97

98 M. Karpowicz et al.

Energy efficiency (FLOPS/W) of ICT systems continues to improve (www.
green500.org). However, the rate of improvement does not match the growth rate
of demand for computing capacity. Unless radically new energy-aware technolo-
gies are introduced, both in hardware and software domain, it will not be possible
to meet DARPAs 20-MW exaflop goal (50 GFLOPS/W) by the year 2020 [1, 39].
Computational power improvements are, in fact, heavily constrained by the energy
budget that is necessary for driving data centers and cloud infrastructures. Limit-
ing power consumption and related thermal emission has therefore become a key
problem. Based on the projections of technology development, it has been argued
that the continued scaling of available systems will eventually lead to a data center
consuming more than a gigawatt of electrical power (at Exaflop level), a level that
violates economic rationale for providing cloud or HPC services. Therefore, in order
to meet the challenging goals of modern cloud and high performance computing,
advances in hardware layer development require immediate improvements in the
design of data center and computer network control software. It is obvious that the
optimisation of energy consumption in cloud computing infrastructures is necessary
and must be addressed in response to the market and environment protection needs
[108]. Energy-aware infrastructure components as well as new control and optimisa-
tion strategies may save the energy utilized by the whole system through adaptation
of a computing system capacity and resources to the actual demands and traffic and
computing load, while ensuring quality of service.

Recently, various activities and research projects aimed at developing energy-
efficient computing devices and networks have been undertaken. Approaches ranging
from “green” computing and network devices, optimisation and control strategies to
traffic engineering and routing protocols have been developed and investigated. In
this chapter, the attention is focused on power and energy management methodologies
in distributed computing environments. In general, they can be classified into two
main categories [74, 118]

• static energy management (SEM),
• dynamic energy management (DEM).

The methodologies from both classes can operate on the hardware and software
levels. In the static mode at the hardware level, the energy can be optimised by
using low-power devices or nano-processors. Two common techniques for dynamic
energy management that utilize the power supply modulation or deactivation of the
idle devices can be distinguished as

• smart standby that leverages on the concept of introducing idle mode capabilities,
i.e., the whole device or its component is automatically switched off when it is
idle—there is no data to process or transmit,

• dynamic power scaling that adopts the power consumption of the devices to the
current load—the energy demands are decreased by changing the performance of
the device.

Adaptive rate and low power idle are two common techniques of power scal-
ing approaches. The adaptive rate (AR) method reduces the energy demands in

www.green500.org
www.green500.org

6 Energy and Power Efficiency in Cloud 99

a network by scaling the processing capabilities of a given device or the transmission
or reception speed of the network interface. The low power idle (LPI) allows reduc-
ing the energy requirements by putting the device or its component into a low power
mode during short inactivity periods. While dynamic power scaling approaches often
involve deep modifications in the design of software and hardware components of
computing and network devices, the smart standby method requires only coordina-
tion among these devices to carefully re-distribute the computing and traffic load that
results from switching off selected devices or their components.

Most personal computers implement both AR and LPI techniques. The ACPI
(Advanced Configuration and Power Interface) specification described in [54] defines
a number of energy-aware states attained via voltage and clock frequency scaling and
idle states in which the processor is in the standby mode. Development of APIs and
management tools is, without a doubt, essential for optimal utilization of computing
resources. On the other hand, system-wide regulation of power consumption needs to
be commanded by a centralized management framework, capable of collecting and
processing detailed measurements, and taking real-time coordinated actions across
the data computing cloud infrastructure. The detailed taxonomy of the energy and
power management in highly parametrized distributed environments can be found
in [18, 20, 21, 85, 91, 115]. The selected approaches are described in this chapter.

The remainder of this chapter is organized as follows. The power consump-
tion measurement capabilities and control techniques are described in Sect. 6.2.
Approaches to server-level and network-level power consumption modeling are pre-
sented in Sect. 6.3. Energy efficient servers, data centers, and networks are described
in Sects. 6.4 and 6.5. We conclude this chapter in Sect. 6.6.

6.2 Power Consumption Measurement and Control

Monitoring of cluster performance is fundamental for its efficient management. In
order to keep track of how well the computing tasks are processed, cluster control
systems need to collect accurate measurements of activities of cluster components.
The collected measurements, including both data processing and power consumption
metrics, provide feedback for management operations and serve as a basis for the
design of new cluster control systems.

Figure 6.1 presents an overview of a cluster control system architecture. The racks,
supplied with electric power by power distribution units (PDUs), are filled with
blade servers. The racks are connected into a data center network with a hierarchy of
switches (SW). The management layer is responsible for allocation of resources, job
submission, adjustments of the interconnect settings, power budgeting, and system
monitoring. These tasks are executed by dedicated resource allocation and job man-
agement systems (RJMS) and system-wide energy management systems (SEM). The
lower control layer, composed of operating systems controlling servers, is respon-
sible for job execution and enforcement of resource usage constraints in computing
nodes [48, 65, 117].

100 M. Karpowicz et al.

...

RACK-1

RJMS agent RJMS agentRJMS agent RJMS agent

U
SE

R
S

SW

Sw
itc

h
[to

p
of

 ra
ck

]

...

RACK-m

MEMSE
N

SO
R

S

CORE

C
PU

 G
ov...

CORE

N
O

D
E-

m
1

SW
 [t

op
 o

f r
ac

k]

...

PD
U

-m

PD
U

-1

...

...

SW

NEM
NEM

NEM

Resource and job management System (RJMS)
Po

w
er

 s
up

pl
y

LI
N

K
S

Sy
st

em
-w

id
e

en
er

gy
 m

an
ag

em
en

t (
SE

M
)

Node-level energy management (NEM)

A
PI

MEMSE
N

SO
R

S

CORE

C
PU

 G
ov...

CORE

N
O

D
E-

m
n

MEMSE
N

SO
R

S

CORE

C
PU

 G
ov...

CORE

N
O

D
E-

11

MEMSE
N

SO
R

S

CORE

C
PU

 G
ov...

CORE

N
O

D
E-

1n

Fig. 6.1 An overview of cluster control system architecture

6.2.1 Performance Metrics and Benchmarks

Energy consumption management is a multi-objective optimisation problem in which
multiple performance- and energy-related metrics are considered [14, 79, 89, 119].
Usually at least the following two objectives are considered:

• minimization of peak power consumption,
• maximization of energy-efficiency.

Indeed, limiting peak power consumption is critical to maintaining reliability of data
center, avoiding power capacity overloads and system overheating. At the same time,
since economically feasible power consumption levels are strongly correlated with
the costs of electricity and power provisioning, it is important to maximize efficiency
of operations performed in data center [39, 112, 113].

Energy-efficiency is defined as a number of operations performed per energy
unit, i.e.,

energy efficiency = computing performance

total energy consumed
. (6.1)

This universal metric has been in the center of research focused on energy-aware
control of data processing systems. In order for the metric to be improved, it is
necessary to increase the number of operations performed per unit of energy con-
sumed or to decrease the amount of energy required per operation. Based on the

6 Energy and Power Efficiency in Cloud 101

above observations, various strategies of power management have been developed.
Consequently, the metric has also been used in many benchmarking methodologies.

Basic industry-standard methodology for power and performance benchmarking
of a computing server is SPECpower [77, 93, 110]. The benchmark measures power
consumption of a server running an appropriately designed application (Java applica-
tion server) at workload ranging from 10 to 100 % of peak achievable level. Namely,
a steady flow of work requests is submitted to the server under test to determine the
number of requests that can be satisfied in a given period of time. The benchmark
drivers request work at intermediate points between zero and the maximum through-
put value. The related toolset can be used with other cluster-wide benchmarks.

Energy-efficiency has been used as a default benchmarking metric. In the case
of HPC systems (or batch processing systems), the performance metric is typically
defined by the number of GFLOPS performed on average per Watt while execut-
ing a selected benchmark [40, 61]. Transaction processing systems, composed of
application and web servers, as well as networks of routers have been evaluated in
terms of served requests per Watt during throughput-based benchmarks [9, 28, 73].
Dedicated tests reporting transaction throughput per Watt have been developed for
storage systems [41, 109], as well.

Finally, from the perspective of data center management energy-efficiency is
viewed as a product of [14]:

• PUE (Power Usage Effectiveness)—facility efficiency, the ratio of total amount
of energy used by a data center facility to the energy delivered to computing
equipment,

• SPUE (Server Power Usage Effectiveness)—server power conversion efficiency,
the ratio of total server input power to its useful power consumed by the electronic
components directly involved in the computation,

• server’s architectural efficiency, the ratio of computing performance metric to total
amount of energy used by electronic components.

6.2.2 Power Monitoring and Profiling

Monitoring of power and energy consumption in computing clusters is a complex
problem [37, 48, 51, 87]. Two general approaches can be distinguished that allow to
perform the required measurements. The first one is based on power metering devices
connected to the servers. Basic system-wide measurements are usually provided at
rate ranging from 0.01 to several samples per second by power supply units (PSUs)
and power distribution units (PDUs) through the Intelligent Platform Management
Interface (IPMI) [59]. More accurate and detailed measurements, collected at high
sampling rate and covering selected components of servers, may be provided by
additional and dedicated metering devices [38, 52].

Whenever IPMI-based monitoring systems directly communicate with the Base-
board Management Controllers (BMC) or metering devices, there is no direct

102 M. Karpowicz et al.

overhead on the observed servers caused by the measurements. Otherwise, pertur-
bations of measurements should be expected. In practice, IPMI is often used with
server management software running under the local operating system. This allows to
access hardware-specific function, exposed by available APIs, and conveniently deal
with local measurements, control commands execution, error handling, and alerting.

Monitoring, configuration and control of devices that support IPMI on Linux
systems can be performed with ipmitool utility. A list of sensors visible in the
system and their records can be viewed with commands

$ ipmitool sensor
$ ipmitool sdr -v
$ ipmitool sdr elist full

The second approach to monitoring of power consumption exploits hardware-
level counters provided by selected computing elements, including CPU, GPU, and
DRAM. The most commonly available counters are exposed through Intel’s Run-
ning Average Power Limiting (RAPL) interface and NVIDIA’s Management Library
(NVML) functions [60, 99]. Performance counters allow to collect measurements at
rate ranging from 100 to 1000 samples per second with high accuracy [58]. When
used together with benchmarking probes of the operating system kernel, for example,
based on PAPI or perf_events functions allowing to observe micro-architectural
event (such as instructions completed per cycle and cache-misses), a runtime esti-
mation of power consumption and performance can be realized on a per-application
basis; cf. [2, 3, 73, 114, 122]. This paves the way for high resolution identification
of data processing dynamics and its energy-efficiency, and potentially for the design
of energy-aware application-specific server controllers. Novel autotuning systems
are also developed that allow to introduce server energy control instructions into
application source code [49].

The following listing shows how Linux stress benchmark can be analyzed with
perf tool based on perf_events subsystem of the Linux kernel.

$ perf stat -a \
stress --cpu 32 --io 32 --vm 32 --vm -bytes 512M \

--hdd 10 --timeout 30s

Listing 1 illustrates how an average power consumption of CPU and DRAM
can be calculated in Linux systems. Listing 2 illustrates how desired RAPL MSRs
(address variable) can be accessed from application level.1 In order to get energy

1Appropriate permissions should be setup to access /dev/cpu/*/msr interface.

6 Energy and Power Efficiency in Cloud 103

Listing 1 Simple power consumption monitoring script

#!/bin/bash
SAMPLING_RATE =1 # seconds
MSR_PKG_ENERGY_STATUS="0x611" # CPU energy counter
MSR_DRAM_ENERGY_STATUS="0x619" # DRAM energy counter
Energy Status Units (ESU)
ESU=‘echo "ibase =16;\

1/2^$(rdmsr -X 0x606 -f 12:8)" | bc -l‘
Calculate number of CPU energy status
counter incremants during sampling period
ESPKG=‘a=$(rdmsr -X $MSR_PKG_ENERGY_STATUS);\

sleep $SAMPLING_RATE; echo "ibase =16;\
$(rdmsr -X $MSR_PKG_ENERGY_STATUS)-$a"|bc ‘

Calculate DRAM energy status
counter incremants during sampling period
ESDRAM=‘a=$(rdmsr -X $MSR_DRAM_ENERGY_STATUS);\

sleep $SAMPLING_RATE; echo "ibase =16;\
$(rdmsr -X $MSR_DRAM_ENERGY_STATUS)-$a"|bc ‘

Calculate power consumption [W] CPUPOW=‘echo
"$ESPKG * $ESU" | bc -l‘
DRAMPOW=‘echo "$ESDRAM *
$ESU" | bc -l‘ echo CPU: $CPUPOW W echo
DRAM: $DRAMPOW W

consumption information from the Intel’s RAPL model specific registers (MSRs)2 it
is necessary to multiply increments of appropriate energy status counters, stored
in MSR_*_ENERGY_STATUS registers, by scaled energy status unit, stored in
MSR_RAPL_POWER_UNIT register. Energy status MSRs are updated approxi-
mately every 1 msec, with wraparound time of around 60 s when power consumption
is high [58, 60].

It is important to point out that care must be taken when MSR-based measurements
are used for performance benchmarking. Since readouts are taken on the system under
test the measurements may be significantly perturbed by the measurement process
itself, especially under high sampling rate.

Both methods of monitoring are conveniently integrated by the resource alloca-
tion and job scheduling systems [48]. As a result it is not only possible to perform
energy accounting and power profiling per job but also to setup system power-saving
configuration for the purpose of job execution. Along with the scheduled batch of
jobs appropriately defined control server control policies can be submitted to the
computing nodes, thereby optimising energy efficiency.

2Intel’s SandyBridge processors

104 M. Karpowicz et al.

Listing 2 Example of RAPL MSR read function

int read_msr(int cpu , unsigned int address , uint64_t *value)
{

int err = 0;
char msr_path [32];
FILE *fp;
sprintf(msr_path , "/dev/cpu/%d/msr", cpu);
err = ((fp = fopen(msr_path , "r")) == NULL);
if (!err) err = (fseek(fp , address , SEEK_CUR) != 0);
if (!err) err = (fread(value , sizeof(uint64_t), 1, fp) != 1);
if (fp != NULL) fclose(fp);
return err;

}

6.2.3 Power Control Programming Interfaces

Power management capabilities of hardware layer are exposed in the form of Appli-
cation Programming Interfaces (APIs). The foundations of power control APIs were
built by the Advanced Configuration and Power Interface (ACPI) specification [54].
The specification defines hardware dependent energy saving (idle) and performance
(active) states that can be adjusted on demand from the software level. This allows to
control power saving and data processing efficiency according to a designed policy.

An attempt to design a vendor-neutral API dedicated for power measurement and
control in HPC systems resulted in development of Power API specification [36, 78].
The Power API describes cluster as a collection of objects forming a discoverable
hierarchy. Objects in the system are characterized by a set of attributes which allow
for measurement (reading attributes) and control (overwriting attributes) of their
power saving capabilities. Functions providing gathering of statistics are provided
for objects and groups of objects. Both ACPI and PAPI can be adapted to the Power
API abstract model.

The similar approach has been proposed by the ETSI GAL (Green Abstraction
Layer) standard [26]. This standard describes a general concept of programming
interface for energy state configuration of energy-aware telecommunication fixed
network nodes. A hierarchical representation of a network device is proposed, which
allows to control the available energy-aware states of its internal components. The
innovation is not only in the described unification of control but also in the ability to
query energy-aware capabilities of the components.

6.3 Power Consumption Modeling

Data center management systems require accurate power consumption and workload
models for control purposes. The models can be identified based on data collected
from the monitoring systems and interfaces. Two classes of models are applied,
i.e., static models, taking into account only current values of system statistics, and

6 Energy and Power Efficiency in Cloud 105

dynamic models, predictive models with input variables expressed by historical
workload.

6.3.1 Server-Level Modeling

Commonly used static models estimate server power consumption as a polynomial
function of workload w [10, 23, 105]

Ps(w) =
n∑

i=0

aiw
i . (6.2)

In its simplest form the model represents power as a linear function:

Ps(w) = a0 + a1w, (6.3)

where 0 ≤ w ≤ 1,a0 = Ps1 is the fixed power consumed by server in deep sleep mode
and a1 is the rate at which power consumption rises with the workload. Despite
its simplicity Eq. (6.3) to a reasonable extent reflects internal structure and power
characteristic of a server. A machine that can only operate either in idle or active
state, without any power-saving mechanisms, consumes similar amount of energy at
any workload, which corresponds to a1 ≈ 0. On the other hand, for perfectly power
proportional device Ps1 ≈ 0. It must be noted that due to some physical phenomena
(e.g., leakage currents) it is impossible to reduce the power consumption to zero, even
in the no load conditions. However, Ps1 may be lowered significantly by application
of appropriate energy-saving mechanism.

Empirical studies clearly show that power consumption grows quickly between
low and middle workloads, and saturates close to the capacity of the system. These
nonlinear effects can be accurately represented by polynomial models of higher
orders. Specialized models, designed for particular applications, have been proposed
as well. For example, in [105] it is proposed to extend the linear model by introducing
a power exponent term

Ps(w) = a0 + a1(2w − wβ), 1 ≤ β ≤ 2. (6.4)

Power exponent β allows to model concavity of power characteristic. For an overview
of other approaches, see e.g. [32, 50, 92].

The models discussed above treat server as a black-box adjusting its capabilities
autonomously. More detailed models are required in order to describe impact of
control inputs on the system workload and power consumption. In this case CPU
operating modes, i.e., ACPI-compliant performance and idle states, are usually taken
into account. An external control input f , describing CPU frequency corresponding
to a server operating state, can be introduced to Eq. (6.3) as follows:

106 M. Karpowicz et al.

Ps(w, f) = a0(f) + a1(f)w (6.5)

It should be noticed that in this case the model coefficients are parametrized by the
applied control input.

Stochastic models have been used to describe average power consumption of the
server switching its CPU operating mode [23, 27]. The probability p(w, f) of the
system being in idle state depends on CPU frequency and workload:

p(w, f) = 1 − w

c(f)
(6.6)

where c(f) describes how computing power depends on CPU clock frequency. With
idle probability defined as above the total expected power consumption may be
described as follows:

Ps(w, f) = p(w, f)a0(f) + (1 − p(w, f))a1(f) (6.7)

where f is CPU frequency, a0(f) = Ps1(f) describes power consumption during
idle state and a1(f) = Ps2(f) is the power consumed during active state.

Network traffic processing may be an important part of workload experienced by
servers in data centers. Even if request responses require complex calculations, the
overall workload is usually correlated with the rate of incoming traffic. The general
form of this relationship may be nonlinear, however in many cases (e.g., for network
management and control) it is sufficient to approximate it with linear model of the
form (6.3) [7, 71]. In this case, the overall server workload w may be attributed to
the total traffic incoming on all network interfaces of the server or the rate at which
requests arrive.

Finally, server power consumption may be estimated based on measurements of
CPU power consumption. It can be demonstrated that the two values are correlated
(see Fig. 6.2), however the character of this relation depends on a kind of operations
carried out by the server [7, 71]. The results of experiments show that server power
profiles may be successfully described by polynomial models of low degree

Ps(Pcpu) = a0 + a1Pcpu + a2(Pcpu)
2, (6.8)

where Pcpu is the CPU power read from MSRs and ai , i = 0, 1, 2 are model coeffi-
cients. More specifically, linear models may be used for CPU intensive workloads.
More complicated CPU and memory intensive services, such as video streaming,
exhibits nonlinearity in the form of saturation effects [46]. These, however, can be
quite accurately described with second order polynomial function. Figure 6.3 illus-
trates both relations.

The second class of models used in power management includes dynamic models
with inputs expressed by samples of historical workload estimates and commanded
control signals. These models allow to design controllers adjusting system oper-
ations to the predicted average system workload. Indeed, identification of server

6 Energy and Power Efficiency in Cloud 107

0 100 200 300 400 500 600
0

20

40

60
po

w
er

 [W
]

total power
CPU power

0 100 200 300 400 500 600

time [s]

1.5

2

2.5

3

3.5

C
P

U
 fr

eq
. [

G
H

z]

Fig. 6.2 Comparison of total power consumed by the server, processor power read from MSRs and
cpu clock frequency

Fig. 6.3 Server power
consumption as a function of
CPU power consumption

0 10 20 30 40 50
30

40

50

60

70

80

90

100

processor power [W]

to
ta

l p
ow

er
 [W

]

computation − measurement
computation − linear approx.
transcoding − measurement
transcoding − linear approx.
transcoding − cubic approx.

performance dynamics is an essential step in the controller design procedure. In
most typical settings linear models (ARMAX) are used [11, 84]

A(q)y(t) = B(q)u(t) + C(q)e(t),

A(q) = qna + a1q
na−1 + · · · + ana , (6.9)

B(q) = b0q
nb + b1q

nb−1 + · · · + bnb ,

C(q) = qnc + c1q
nc−1 + · · · + cnc ,

where A, B and C represent polynomials of forward shift operator q (i.e., q f (t) =
f (t + 1)) acting on sequences of system outputs y(t), control inputs u(t) and random

108 M. Karpowicz et al.

disturbances e(t). A general linear controller in the corresponding polynomial form
may be defined as follows:

R(q)u(t) = T (q)uc(t) − S(q)y(t), (6.10)

where uc(t) is an external command signal representing desired setpoint. System
output may represent power consumption, however, it is often related with data
processing performance, workload dynamics and energy efficiency. Control inputs
usually correspond to server operating modes, whereas disturbances are related with
unpredictable background operations of operating systems.

To take advantage of the above formulation, the model coefficients should be
identified experimentally with reasonable accuracy. For this purposes benchmarking
techniques and metering systems may be used, as well as appropriate identifica-
tion procedures [90]. Inherent complexities, such as multiple cores, hidden device
states, and large dynamic power components, all shaping the system’s dynamics,
make the system difficult to describe. Appropriate choice of modeling technique,
both minimizing prediction errors and insensitive to measurement noises, is indeed
challenging.

Several applications of the above approach may be mentioned. In [81, 82], the
above model was used to design PID controller that uses server power measurements
to periodically select the highest performance state while keeping the system within
a fixed power constraint. System identification approach to server workload modeling
is presented in [100], together with the controller design. The model estimator cap-
tures the relationship between application performance and resource allocations, the
controller allocates the right amount of computing resources to keep application per-
formance at the required level. In [47], a design of performance optimising controller
is proposed for a single application server. The paper describes the use of MIMO
techniques to track desired CPU and memory utilization while capturing the related
interactions between CPU and memory. An extensive survey of applied approaches to
controller design exploiting dynamic models of performance and power consumption
can be found in [103].

6.3.2 Network-Level Modeling

The architecture of modern network devices in many aspects resembles that of general
computers. Each network node is a multi-chassis device which is composed of many
entities, i.e., chassis, cpu, memory, switching fabric, line cards with communication
ports, power supply, fans, etc. The only specific element—switching fabric—may
be considered as a kind of specialized processor connected to common buses. The
main difference is however in number and power consumption of line cards. While,
in a general purpose PC there are from one to several network interfaces consuming

6 Energy and Power Efficiency in Cloud 109

only a fraction of power in an average switch or router there are usually from tens
to hundreds network ports occupying several line cards. Therefore, a hierarchical
view of the internal organization of network devices is employed in commonly used
power consumption models. It is represented through several layers, namely a device
itself (the highest level), cards (the middle level) and communication interfaces (the
lowest level). Each component is energy powered. The hierarchical composition is
important when adjusting power states is considered—obviously it is not possible to
lower energy state of a line card without lowering energy states of its ports [96].

Let us consider a computer network formed by the following components: R
routers (r = 1, . . . , R), C line cards (c = 1, . . . ,C) and I communication interfaces
i = 1, . . . , I). As mentioned above, the hierarchical representation of a router is
assumed, i.e., each router is equipped with a number of line cards, and each card
contains a number of communication interfaces. All pairs of interfaces from dif-
ferent cards are connected by E links (e = 1, . . . , E). In case of modern networks
equipped with mechanisms for dynamic power management all network components
can operate in K energy states (EASs) defined as power settings, and labeled with
k = 1, . . . , K . Two ports connected by the eth link are in the same state k. In general,
the corresponding power Pnet (q) consumed by a backbone network transfering a
total traffic q can be calculated as a sum of power consumed by all network devices. In
the network built of standard devices, the energy usage is relatively constant regard-
less of network traffic. The legacy equipment can operate only in two energy states:
deep sleep (k = 1) and active with full power (k = 2). Thus, the corresponding power
consumption Pd(q) for total traffic q served by the network device d, i.e. a router
(d = r), line card (d = c) or link connecting two interfaces (d = e) can be described
as follows [106], (see Fig. 6.4a):

Pd(q) =
{
Pd1 if q = 0,

Pd2 if q > 0,
(6.11)

where Pd1 and Pd2 denote fixed power levels associated to the device d in deep sleep
and active states, respectively.

Novel devices equipped with mechanisms for dynamic power management—e.g.
InfiniBand cards switching between 1× and 4× mode or bundled WAN links [22,
56]—can operate in a number of dynamic modes (k = 1, . . . , K), which differ in
power usage [96] (see Fig. 6.4b):

Pd(q, k) =
{
Pd1 if q = 0,

Pdk if q > 0,
(6.12)

where Pd1 denotes fixed power level associated to the device d in deep sleep state
and Pdk a fixed power level in the k-th active energy state, k = 2, . . . , K .

The 802.3az standard [57] defines the implementation of low power idle for Eth-
ernet interfaces. Numerous formal models that describe the correlation between an
amount of transmitted data and energy consumption are provided in the literature.

110 M. Karpowicz et al.

d1

d

d

d1

d2

d1

d2

d3

d4

d1

d1

d2

d3

42 3

d3

2 3 4

P

α

γ

P

P

P

P

P

P

P
α

α

α

qq q

γ

q q q

0

0 0

0

Po
w

er

TrafficTraffic

Po
w

er
Po

w
er

Po
w

er

Traffic Traffic

(b)(a)

(c) (d)

Fig. 6.4 Power consumption models a two energy states, b multiple energy states, c linear approx-
imation, d multiple energy states, and piece-wise linear approximation

The simplest approximation is a linear modification of (6.11), see Fig. 6.4c:

Pd(q) =
{
Pd1 if q = 0,

αd + γdq if q > 0,
(6.13)

where αd denotes a constant offset, γd a coefficient defining the slope of approximated
characteristic of the power consumed by the device d. The results of application of
linear power consumption models for traffic engineering are presented in [62]. More
precise models require nonlinear functions [23, 53].

Finally, a combined power consumption model can be formulated in which
a device can operate in a number of energy states and power consumption is modeled
as a piece-wise linear function of throughput (see Fig. 6.4d)

Pd(q, k) =
{
Pd1 if q = 0,

αdk + γdkq if q > 0,
(6.14)

where αdk and γdk denote coefficients for k-th active energy state, k = 2, . . . , K .

6 Energy and Power Efficiency in Cloud 111

6.4 Energy-Efficient Servers

According to statistical data [13, 14], utilization of servers in data centers rarely
approaches 100 %. Most of the time servers operate at 10–50 % of their full capacity,
which results from the requirements of providing sufficient quality of service pro-
visioning margins. Over-subscription of computing resources is applied as a sound
strategy to eliminate potential breakdowns caused by traffic fluctuations or internal
disruptions, e.g., hardware or software faults. A fair amount of slack capacity is also
required for the purpose of maintenance tasks. Since the strategy of resource over-
provisioning is, clearly, a source of energy waste, the provisioned power supply is less
than the sum of the possible peak power demands of all the servers combined. This,
however, rises the problem of power distribution in data center. To keep the actual
total power use within the available power range, servers are equipped with power
budgeting mechanisms (e.g., ACPI-based) capable of limiting their power usage. The
challenge of energy-efficient data center control is, therefore, to design control struc-
ture improving the utilization of servers and reducing energy consumption subject
to quality of service constraints in highly stochastic environment (random stream of
submitted jobs, OS kernel task scheduling), capable of providing fast responses to
fluctuations in application workloads.

Server power control in data centers is a coordinated process that is carefully
designed to reach multiple data center management objectives. As argued above, the
main objectives are related with maintaining reliability and quality of data center
services. These include avoiding power capacity overloads and system overheating,
as well as fulfilling service-level agreements (SLAs). In addition to the primary
goals, server control process aims to maximize various energy efficiency metrics
subject to reliability constraints. Mechanisms designed for these purposes exploit
closed-loop controllers dynamically adjusting operating modes of server components
to the variable system-wide workload. Structures of currently developed control
systems usually consist of two layers. The system-wide control layer adjusts power
consumption of computing nodes in order to keep data center power consumption
within the required bounds. Quality of services provided by the application layer is
controlled by server-level control layer, see e.g. [45, 83, 120, 121].

Power consumption controllers are usually designed according to well-established
methods of feedback control theory in order to reach specified objectives and to pro-
vide sufficient guarantees for performance, accuracy and stability of server operations
[11, 12, 16, 44]. Apart from these goals additional requirements are introduced by
hardware- and software-related constraints.

Since power consumption of CMOS circuit is proportional to its switching fre-
quency and to the square of its operating voltage, performance, and power consump-
tion of a processor can be efficiently controlled with dynamic voltage and frequency
scaling (DVFS) mechanisms. These standard mechanisms, simultaneously adapting
frequency and voltage of voltage/frequency islands (VFIs) present on the proces-
sor die [55], are commonly used as a basic method for server power control. First,

112 M. Karpowicz et al.

contribution of CPU in server power consumption spans from 40 to 60 % of total,
which shows the dominant role CPU plays in the server power consumption profile
[14, 68, 112]. Furthermore, since the difference between the maximal and minimal
power usage of CPU is high, DVFS allows to compensate for the power variation of
other server components. Second, most servers support DVFS of processors, power
throttling of memory or other computing components is not commonly available
[120].

In the Linux systems, DVFS is implemented by ACPI-based controllers. Trans-
lation of commands responsible for the CPU frequency control is provided by the
cpufreqkernel module [72, 102]. The module allows to adjust performance of CPU
by activating a desired software-level control policy implemented as a CPU governor.
Typically, the calculated control inputs are mapped to admissible performance ACPI
P-states and passed to a processor driver (e.g., acpi_cpufreq). Each governor of
the cpufreq module implements a frequency switching policy. There are several
standard build-in governors available in the recent versions of the Linux kernel. The
governors named performance and powersave keep the CPU at the highest and
the lowest processing frequency, respectively. The userspace governor permits
user-space control of the CPU frequency. Finally, the default energy-aware governor,
named ondemand, dynamically adjusts the frequency to the observed variations of
the CPU workload. The sleeping state, or ACPI C-state, which CPU enters during idle
periods, is independently and simultaneously determined by the cpuidle kernel
module [101].

Configuration of CPU DVFS control on Linux systems can be performed with
cpufreq configuration files or cpupower utility [4]. The following commands
allows to retrieve available cpufreq kernel information and manually setup CPU
frequency

$ cpupower frequency -info
$ cpupower frequency -set -g userspace
$ cpupower frequency -set -f $FrequencyInkHz -r

A straightforward DVFS-based policy of energy-efficient server control can be
derived immediately from the definition of energy efficiency metric. In order to
increase the number of computing operations performed per Watt it is necessary to
reduce the amount of time the processor spends running idle loops or stall cycles [79].
Therefore, energy-efficiency maximizing controller should implement a workload
following policy dynamically adjusting CPU performance state to the observed short-
term CPU utilization or application-related latency metrics.

The above control concept is implemented in the CPU frequency governors of the
Linux kernel, namely intel_pstate and cpufreq_ondemand. The output
signal used in the feedback loops is an estimated CPU workload [4]. In the case
of Intel IA32 architectures, it can be calculated as the ratio of the MPERF counter,

6 Energy and Power Efficiency in Cloud 113

IA32_MPERF (0xe7), running at a constant frequency during active periods (ACPI
C0 state), and the time stamp counter, TSC (0F 31), incremented every clock cycle
at the same frequency during active and inactive periods (ACPI C-states). Another
commonly applied CPU workload estimate, though somewhat less accurate, is given
by the ratio of the amount of time the CPU was executing instructions since the
last measurement was taken, wall_time − idle_time, to the length of the sampling
period, wall_time. Given the CPU workload estimate the intel_pstate governor
applied PID control rule to keep the workload at the default reference level of 97 %.
The ondemand governor calculates CPU frequency according to the following
policy. If the observed CPU workload is higher than the upper-threshold value then
the operating frequency is increased to the maximal one. If the observed workload
is below the lower threshold value, then the frequency is set to the lowest level at
which the observed workload can be supported.

Many application-specific designs of the energy-efficient policy have been investi-
gated as well. Design of decoding rate control based on DVFS, applied in multimedia-
playback systems, is presented in [86]. The proposed DVFS feedback-control algo-
rithm is designed for portable multimedia system to save power while maintaining
a desired playback rate. In [75], a technique is proposed to reduce memory bus and
memory bank contention by DVFS-based control of thread execution on each core.
The proposed control mechanism deals with the problem of performance gap between
processors and main memory, and the scenario in which memory requests simulta-
neously generated by multiple cores result in memory accesses delay for computing
threads. A process identification technique applied for the purpose of CPU controller
design is presented in [123]. Based on stochastic workload characterization, a feed-
back control design methodology is developed that leads to stochastic minimization
of performance loss. The optimal design of the controller is formulated as a prob-
lem of stochastic minimization of runtime performance error for selected classes of
applications. Adaptive DVFS governors proposed in [111] take the number of stalls
introduced in the machine due to non-overlapping last-level cache misses as their
input, calculate performance/energy predictions for all possible voltage-frequency
pairs and select the one that yields the minimum energy-delay performance. In [67],
a supervised learning technique is used in DVFS to predict the performance state
of the processor for each incoming task and to reduce the overhead of the state
observation. Finally, in [72] an attempt is made to characterize a possibly general
structure of energy-efficient DVFS policy as a solution to stochastic control prob-
lem. The obtained structure is characterized in terms of short-term best-response
function minimizing weighted sum of average costs of server power-consumption
and performance. It is also compared to the ondemand governor, a default DVFS
mechanism for the Linux system. The following interpretation can be given to the
derived policy. Whenever it is possible for the server to process workload with the
CPU frequency minimizing short-term operational cost, then frequency minimizing
short-term costs should be selected. Otherwise, the controller should set the fre-
quency optimising long-term operational cost, this however being bounded from
below by the frequency minimizing short-term costs.

114 M. Karpowicz et al.

Finally, power consumption controllers are designed and implemented directly in
the server firmware [43, 55, 80, 94, 95]. The proposed solutions allow to keep the
reference power consumption set point, control peak power usage, reduce of power
over-allocation and maximize energy-efficiency by following the workload demand.
It should be noted that in this case hardware producers often provide mechanisms
that optimise operations of all interacting server components directly during runtime.

Currently, observed trends in server power control exploit increasing possibili-
ties provided by high-resolution sensors of modern computing hardware and soft-
ware. The related research efforts seem to be drifting beyond CPU control towards
increasing power proportionality of other subsystems, including memory and net-
work interfaces. More advanced control algorithms and structures, outperforming
standard PID controllers, are also proposed for device drivers and kernels of modern
operating systems.

6.5 Energy-Efficient Networks

Reduction of power consumption by a network infrastructure, including both dat-
acenter interconnect networks and wide area network, is another key aspect in the
development of modern computing clouds. Recently, new solutions both in hardware
and software have been developed to achieve the desired trade-off between power
consumption and the network performance according to the network capacity, current
traffic, and requirements of the users. In general, new network equipment is more
energy effective because of modern hardware technology including moving more
tasks to optical devices. However, even greater savings are obtained by employing
energy-aware traffic management and modulating the energy consumption of routers,
line cards and communication interfaces. In the following two subsections the tech-
niques developed for keeping the connectivity and saving the energy that can be used
for energy-efficient dynamic management in backbone and datacenter interconnect
networks and LANs are surveyed and discussed.

6.5.1 Low Energy Consumption Backbone Networks

6.5.1.1 Network Energy Saving Problem Formulation

Energy consumption trends in the next generation networks have been widely dis-
cussed and the optimisation of total power consumption in today’s computer networks
has been a considerable research issue. Apart from improving the effectiveness of
network equipment itself, it is possible to adopt energy-aware control strategies and
algorithms to manage dynamically the whole network and reduce its power consump-
tion by appropriate traffic engineering and provisioning. The aim is to reduce the gap
between the capacity provided by a network for data transfer and the requirements,

6 Energy and Power Efficiency in Cloud 115

especially during off-peak periods. Typically backbone network infrastructure is to
some degree redundant to provide the required level of reliability. Thus, to mitigate
power consumption some parts of the network may be switched off or the speed
of processors and links may be reduced. According to recent studies concerning
Internet service providers networks [17, 107], the total energy consumption may
be substantially reduced by employing such techniques. The common approach to
power management is to formulate an optimisation problem that resembles tradi-
tional network design problem [104] or QoS provisioning task [64, 88], but with a
cost function defined as a sum of energy consumed by all components of the net-
work. In contrary to the traditional network design problem, data transfers should be
aggregated along as few devices as possible instead of balancing traffic in a whole
computer network. The major drawback is complexity of the optimisation problem
that is much more difficult to solve than typical shortest path calculation task. The
complexity has roots in NP-completeness of flow problems formulated as mixed inte-
ger programming, dependencies among calculated paths and requirement for flow
aggregation. Furthermore, energy consumption models are often non-convex making
even continuous relaxation difficult to solve and introducing instability to suboptimal
solutions [116].

Various formulations of a network energy saving problem are provided and dis-
cussed in the literature; starting from a mixed integer programming (MIP) formula-
tion to its relaxation in order to obtain a continuous problem formulation and employ
simple heuristics. The aim is to calculate optimal energy states of all network devices
and corresponding flow transformation through the network. In general, due to high
dimensionality and complexity of the optimisation problem, mentioned above, linear
power consumption models are preferred. Some authors limit the number of energy
states of network equipment (routers and cards) into active and switched off and use
power consumption model (6.11), [31]. Furthermore, they propose to use multi-path
routing, which is typically avoided. However, the recent trend in green network-
ing is to develop devices with the ability to independently adapt performance of
their components by setting them to one of a number of energy-aware states (power
consumption model (6.12) or (6.14)) [24, 25]. It is obvious that modeling such
situation implies larger dimensionality of the optimisation problem and more com-
plicated dependencies among network components. Another approach is to exploit
properties of optical transport layer to scale link rates by selectively switching off
fibres composing them [42] or even build two level model with IP layer set upon
optical devices layer [56]. L. Chiaraviglio et al. describe in [31] an integer linear
programming formulation to determine network nodes and links that can be switched
off. J. Chabarek et al. in [29] solve a large mixed-integer linear problem for a spe-
cific traffic matrix to detect the idle links and line cards. The common solution is to
aggregate nodes and flows to decrease the dimension of the optimisation problem
[31]. P. Arabas et al. describe in [8] four formulations of the network energy saving
problem, starting from an exact MIP formulation, including complete routing and
energy-state decisions, and presenting subsequent aggregations and simplifications
in order to obtain a continuous problem formulation

116 M. Karpowicz et al.

LNPb: Link-Node Problem: a complete network management problem stated in
terms of binary variables assuming full routing calculation and energy state
assignment to all devices and links in a network.

LPPb: Link-Path Problem: a formulation stated in terms of binary variables assum-
ing predefined paths (simplification of LNPb).

LNPc: Link-Node Problem: a complete network management problem stated in
terms of continuous variables assuming full routing calculation.

LPPc: Link-Path Problem: a formulation stated in terms of continuous variables
assuming predefined paths (simplification of LNPc).

Given the notation from Sect. 6.3.2, a complete network management problem
LNPb stated in terms of binary variables k assuming energy state assignment to
routers (k = 1, . . . , Kr), line cards (k = 1, . . . , Kc) and communication interfaces
(k = 1, . . . , Ke), and full routing calculation for recommended network configura-
tion can be formulated as follows:

min
xrk ,xck xek ,ued

[

PLN Pb
net =

R∑

r=1

Kr∑

k=1

Prkxrk +
C∑

c=1

Kc∑

k=1

Pckxck +
E∑

e=1

Ke∑

k=1

Pekxek

]

,

(6.15)
subject to the set of constraints presented and discussed in [96, 98]. The power
consumption and corresponding throughput are presented in Fig. 6.5: The objective
function PLN Pb

net is the total power consumed by all network devices calculated for
energy models of all network devices expressed by (6.12). Variables and constants
used in above formulas denote: xrk = 1, xck = 1, xek = 1 if the router r , card c, link
e, respectively is in the state k (0 otherwise), lci = 1 if the interface (port) i belongs to
the card c (0 otherwise), ued = 1 if the path d belongs to the link e (0 otherwise). Prk ,
Pck , Pek denote the fixed power consumed by router, card, and link in the state k. To
calculate the optimal energy states of network equipment the optimisation problem
(6.15) has to be solved for number of assumed demands (d = 1, . . . , D) imposed on
the network and transmitted by means of flows allocated to given paths. The above-
presented formulation requires predictions of the assumed rate Vd of each flow d
that is associated with a link connecting any two ports: ports of the source and the
destination nodes for the demand d.

The problem formulation obtained after flows aggregation (LPPb) is provided in
[8]. Although LPPb is easier to solve due to smaller number of constraints, but is
still too complex for medium-sized networks. As stated previously the widely used
direction to reduce complexity of a network optimisation problem is to transform
the LNPb problem stated in terms of binary variables to the LNPc with continuous
variables xrk , xck , xek , ued

min
xrk ,xck ,xek ,ued

[

PLN Pc
net =

R∑

r=1

Kr∑

k=1

Prkxrk +
C∑

c=1

Kc∑

k=1

Pckxck +
E∑

e=1

Ke∑

k=1

Pekxek

]

(6.16)

6 Energy and Power Efficiency in Cloud 117

d2

d3

d4

d1

2 3 42 3 4

P

P

P

P

q q q0q q q0

Po
w

er

1

2

3

4

TrafficTraffic

E
ne

rg
y

st
at

e
k

Fig. 6.5 Optimized energy-aware state switching policy (left) and corresponding power consump-
tion profile (right)

and solve it subject to the set of constraints presented and discussed in [96]. In the
above-formulation, the energy consumption and throughput utilization of the link e
in the state k are described in the form of incremental model. The current values of
fixed power consumption (Pek) and the throughput of the link e (qek), both in the state
k are calculated as follows: Pek = Pe(k) − Pe(k − 1) and qek = qe(k) − qe(k − 1);
where, respectively, Pe(k) denotes power used by the link e in the state k and qe(k)
denotes load of the link e in the state k. Furthermore, it is assumed that a given
link can operate in more than one energy-aware state. The additional constraints are
provided to force binary values of variables xrk , xck in case when xek takes a binary
value. The efficient heuristic to solve relaxed optimisation task (6.16) was developed
and presented in [96].

The energy-aware network management problem defined above has an important
disadvantage. The vector of assumed flow rates Vd of flows d = 1, . . . , D, being
crucial for the problem in practice is difficult to predict. When operating close to
capacity limits of the network, which is often the case, a poor estimation of Vd can
lead to the infeasible solution. The two criteria optimisation problem defined in [63,
70] use utility functions instead of a demand vector. The modified formulation of
the optimisation problem is presented below. The modification consists in relaxing
flow rates denoted by vd . The original objective function PLN Pb

net (6.15) is augmented
with a QoS-related criterion Qd , which represents a penalty for not achieving the
assumed flow rate Vd by the flow d. Qd(vd) is a convex and continuous function,
decreasing on interval [0, Vd]. It is reaching minimum (zero) at Vd , the point in which
user expectations are fully satisfied. Finally, a two criteria—i.e., reflecting energy
costs and QoS—mixed integer network problem of simultaneous optimal bandwidth
allocation and routing is formulated as follows

min
xrk ,xck ,xek ,udl ,vd

{

P2C
net = αPLN Pb

net + (1 − α)

D∑

d=1

Qd(vd) =

118 M. Karpowicz et al.

= α

⎡

⎣
E−1∑

e=1,3,5,...

Ke∑

k=1

Pekxek +
C∑

c=1

Kc∑

k=1

Pckxck +
R∑

r=1

Kr∑

k=1

Prkxrk

⎤

⎦+

+(1 − α)

D∑

d=1

Qd(vd)

}

, (6.17)

subject to a set of constraints defined and discussed in [70]. In the above formulation
α ∈ [0, 1] is a scalarizing weight coefficient, which can be altered to emphasize any
of the objectives.

6.5.1.2 Control Frameworks for Dynamic Power Management

Various control frameworks for resource consolidation and dynamic power manage-
ment of the backbone network through energy-aware routing, traffic engineering and
network equipment activity control have been designed and investigated [19, 22,
69, 96, 97]. They utilize smart standby and dynamic power scaling, i.e., the energy
consumed by the network is minimized by deactivation of idle devices (routers, line
cards, communication ports) and by reduction of the speed of link transfers. The
implementation of such framework providing two variants of network-wide control,
i.e., centralized and hierarchical (with two coordination schemes) both with central
decision unit is described and discussed in [96]. In the presented approach, it is
assumed that network devices can operate in different energy-aware states (EAS),
which differ in the power usage (energy model (6.12)). The implementations of both
centralized and hierarchical frameworks provide two control levels

• Local control level—control mechanisms that are implemented in the network
devices level.

• Central control level—network-wide control strategies implemented in a single
node controlling the whole infrastructure.

The objective of the central unit is to optimise the network performance to reduce
power consumption. The decisions about activity and power status of network equip-
ment are determined by solving LNPb or LNPc problems of minimizing the power
consumption utilizing a holistic view of the system. Each local control mechanism
implements adaptive rate and low power idle techniques on a given networking
device. Technologies for dynamic configuration setting of the energy-saving capa-
bilities of the network devices, e.g., described in Sect. 6.4 can be employed.

The outcomes of the levels of the control frame depend on the implementation.
In the centralized scenario, the suggested power status of network devices are cal-
culated by the optimisation algorithm executed by the central unit, and then sent to
adequate network devices. Furthermore, the routing tables for the MPLS protocol
for recommended network configuration are provided. Hence, in this scenario, the
activity of each local controller is reduced to comply with the recommendations cal-

6 Energy and Power Efficiency in Cloud 119

culated by the central unit, taking into account constraints related to current local load
and incoming traffic. In the hierarchical scenario, the central unit does not directly
force the energy configuration of the devices. The outcome of the central controller
is reduced to routing tables for the MPLS protocol that are used for routing current
traffic within a given network. The objective of the local algorithm implemented
in the devices level is to optimise the configuration of each component of a given
device in order to achieve the desired trade off between energy consumption and
performance according to the incoming traffic and measured load of a given device.
The CPU frequency controller described in Sect. 6.4 can be used.

Utility and efficiency of control frameworks employing LNPb and LNPc schemes
for calculating optimal energy states of devices for small-, medium- and large-size
network topologies were verified by simulation and by laboratory tests. The test cases
were carried on a number of synthetic as well as on real network topologies, giving
encouraging results. The results are presented and discussed in [96].

In the presented control frameworks, the total power utilized in a network for
finalizing all required operations is minimized and end-to-end QoS is ensured. How-
ever, both in centralised and hierarchical variants the holistic view of a network is
utilized to calculate the optimal performance of a system. Furthermore, most calcu-
lations are conducted on a selected node. Due to networks scalability and reliability
distributed control is recommended. Distributing energy-aware control mechanisms
extend existing mechanisms—typically routing protocols, e.g., OSPF and MPLS
[19, 33, 35], BGP and MPLS. Important profit of close cooperation with signaling
protocols is that the observed state of the network may be used to estimate flows and
to reconstruct the traffic matrix [30].

An agent-based heuristic approach to energy-efficient traffic routing has been
presented in [69]. Identical agents are running on top of OSPF processes, that activate
or deactivate local links, and the decisions are based on common information about
whole network state. Individual decisions affect in turn OSPF routing. Simulations
show that perfect knowledge about the origin-destination matrix improves energy
savings not much more than when simple local heuristics are applied by agents. On
the other hand, imperfect information about origin-destination matrix can make the
result worse than in case when there is no energy-saving algorithm running at all. The
proposed approach is viable to implement on any routing device, through command
line and basic OSPF protocol.

Bianzino et al. describe in [19] the distributed mechanism GRiDA (Green Dis-
tributed Algorithm) adopting the sleep mode approach for dynamic power man-
agement. GRiDA is an on line algorithm designed to put into sleep mode links in
an IP-based network. Contrary to the centralised and hierarchical control schemes
utilizing LNPb and LNPc for energy saving in computer networks, GRiDA does nei-
ther require a centralized controller node, nor the knowledge of the expected traffic
matrix. This solution is based on a reinforcement learning technique that requires
only the exchange of periodic Link State Advertisements (LSA) in the network. Thus,
the switch off decision is taken considering the current load of incident links and
the learning based on past decisions. GRiDA is fully distributed among the nodes
to: (i) limit the amount of shared information, (ii) limit coordination among nodes,

120 M. Karpowicz et al.

and (iii) reduce the problem complexity. It is a robust and efficient solution. The
simulation results of its application to various network scenarios are presented and
discussed in [19].

6.5.2 Datacenter Interconnect Network

The networks in datacenters and clusters must fill specific requirements for data trans-
fer rate, latency and reliability. Another important goal is to provide a clear cabling
structure allowing to pack equipment in cabinets effectively. Typical topologies are
highly regular, usually hierarchical. The most popular technologies are Ethernet
and InfiniBand [15]. Consistent technology used across datacenter allows to build
switched network limiting delays and complexity. Usually, datacenter networks are
constructed with three layers of switches. Lowest level switches (ToR—Top of the
Rack) are installed in the same cabinet as the servers connected directly to them. To
attain high reliability and multiply bandwidth, the servers use more than one network
interface connected to different switches. Similarly, ToR switches are connected with
two upper-level aggregation devices. The pairs of aggregating switches are intercon-
nected using redundant links. Due to limited number of devices the aggregation layer
can be interconnected in full mesh via the highest layer core switches [34].

The resulting multiple tree topologies are substantially redundant in order to
separate traffic. Paths leading through disjoint physical links allow to attain high
throughput, reliability and, if necessary security. On the other hand, such an archi-
tecture implies relatively high energy consumption. It seems natural that this can be
reduced in the periods of lower load by switching off some links or switches. Further-
more, as a whole network is managed by the same institution and collocated with the
rest of equipment it is possible and in many aspects favorable to use a centralized net-
work management controller. This way energy-efficient interconnect control may be
calculated and implemented. Unfortunately large number of nodes and links makes
mathematical programming task (e.g., of the form known from [104]) formidable
and impossible to solve in acceptable time.

The above-described topology offers high reliability and bandwidth at the cost of
energy demanding provider grade equipment in upper layers. Recent works propose
a number of simplified topologies based on commodity switches at least at two lower
layers. Moreover, limited number of redundant links and regular topology makes it
possible to apply effective heuristic algorithms to manage power consumption. An
example of such an approach is a combined Clos with fat-tree topology [6]. A large
number of commodity switches can be used in all layers to multiply their capacity
(in terms of number of ports and bandwidth) and bisection bandwidth of the whole
network. Another approach is to use a highly specialized equipment and flatten the
network structure to reduce graph diameter, like in the Flattened Butterfly topology
proposed in [5]. The idea is to use switches with relatively high number of ports linked
along several dimensions. In a simplest case a group of n switches forms a dimension,
each of them connects to n − 1 switches in all dimensions it belongs to, it also serves

6 Energy and Power Efficiency in Cloud 121

n computing nodes. The topology is flat in the sense that the longest shortest path
(diameter) may be shorter than in the fat-tree network (3 vs. 4 when basic examples
are considered). Despite the resulting complicated cabling the network requires less
equipment, which allows to save energy. Further savings are possible using link rate
adaptation assisted by adaptive routing.

6.6 Summary and Conclusions

Energy awareness is an important aspect of modern computing systems design and
management, especially in the case of data intensive large-scale distributed com-
puting systems and Internet-scale networks. This chapter presents an overview of
selected technologies, architectures and methods that allow to reduce energy con-
sumption in such infrastructures, which is also the main reason for reducing the total
cost of running a data center and a network. The attention is focused on measurement
technologies and modeling of energy consumption by computing and data transmit-
ting devices. Advantages and disadvantages of various models, control structures,
and mechanisms are presented and discussed.

Acknowledgments This research was partially supported by the National Science Centre (NCN)
under the grant no. 2015/17/B/ST6/01885.

References

1. ETP4HPC Strategic Research Agenda Achieving HPC leadership in Europe. www.etp4hpc.
eu

2. www.icl.cs.utk.edu/papi
3. www.web.eece.maine.edu/~vweaver/projects/perf_events
4. www.kernel.org/doc/Documentation/
5. Abts, D., Marty, M.R., Wells, Ph.M., Klausler, P., Liu, H.: Energy proportional datacenter

networks. SIGARCH Comput. Archit. News 38(3), 338–347 (2010). June
6. Al-Fares, M., Loukissas, M., Vahdat, A.: A scalable, commodity data center network architec-

ture. In: Proceedings SIGCOMM 2008 Conference on Data Communications, Seattle, WA,
pp. 63–74 (2008)

7. Arabas, P., Karpowicz, M.: Server power consumption: measurements and modeling with
msrs. In: Proceedings AUTOMATION-2016, March 2–4, 2016, Warsaw, Poland, pp. 233–
244. Springer International Publishing (2016)

8. Arabas, P., Malinowski, K., Sikora, A.: On formulation of a network energy saving opti-
mization problem. In: Proceedings of 4th International Conference on Communications and
Electronics (ICCE 2012), pp. 122–129 (2012)

9. Arabas, P., Karpowicz, M.: Server power consumption: measurements and modeling with
MSRs. In: Challenges in Automation, Robotics and Measurement Techniques, pp. 233–244.
Springer (2016)

10. Arjona Aroca, J., Chatzipapas, A., Fernández Anta, A., Mancuso. V.: A measurement-based
analysis of the energy consumption of data center servers. In: Proceedings 5th International
Conference on Future Energy Systems, pp. 63–74. ACM (2014)

www.etp4hpc.eu
www.etp4hpc.eu
www.icl.cs.utk.edu/papi
www.web.eece.maine.edu/~vweaver/projects/perf_events
www.kernel.org/doc/Documentation/

122 M. Karpowicz et al.

11. Åström, K.J., Wittenmark, B.: Computer-controlled systems: theory and design. Dover Pub-
lications, Mineola (2011)

12. Åström, K.J., Hägglund, T.: Advanced PID control. ISA-The Instrumentation, Systems, and
Automation Society; Research Triangle Park, NC 27709 (2006)

13. Andr Barroso, L., Hlzle, U.: The case for energy-proportional computing. IEEE Comput.
40(12), 3337 (2007)

14. André Barroso, L., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to
the design of warehouse-scale machines. Morgan & Claypool Publishers (2013)

15. Benito, M., Vallejo, E., Beivide, R.: On the use of commodity ethernet technology in exascale
hpc systems. In: Proceedings IEEE 22nd International Conference on High Performance
Computing (HiPC), pp. 254–263 (2015)

16. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific,
Belmont (2005)

17. Bianco, F., Cucchietti, G., Griffa, G.: Energy consumption trends in the next generation access
network – a telco perspective. In: Proceedings 29th International Telecommunication Energy
Conference (INTELEC 2007), pp. 737–742 (2007)

18. Bianzino, A.P., Chaudet, C., Rossi, D., Rougier, J.-L.: A survey of green networking research.
IEEE Commun. Surveys Tutorials 2 (2012)

19. Bianzino, A.P., Chiaraviglio, L., Mellia, M.: GRiDA: a green distributed algorithm for back-
bone networks. In: Online Conference on Green Communications (GreenCom 2011), pp.
113–119. IEEE (2011)

20. Bolla, R., Bruschi, R.: Energy-aware load balancing for parallel packet processing engines.
In: Online Conference on Green Communications (GreenCom), pp. 105–112. IEEE (2011)

21. Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Energy efficiency in the future internet: a
survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE
Commun. Surveys Tutorials 13, 223–244 (2011)

22. Bolla, R., Bruschi, R., Davoli, F., Lago, P., Bakay, A., Grosso, R., Kamola, M., Karpowicz,
M., Koch, L., Levi, D., Parladori, P., Suino, D.: Large-scale validation and benchmarking of
a network of power-conservative systems using etsi’s green abstraction layer. Trans. Emerg.
Tel. Tech. 2016(27), 451–468 (2016)

23. Bolla, R., Bruschi, R., Ranieri. A.: Green support for pc-based software router: performance
evaluation and modeling. In: ICC’09 Communications International Conference, pp. 1–6.
IEEE (2009)

24. Bolla, R., et al.: Econet deliverable d2.1 end-user requirements, technology, specifications
and benchmarking methodology. https://www.econet-project.eu/Repository/DownloadFile/
291 (2011)

25. Bolla, R., et al.: Econet deliverable d4.1 definition of energy-aware states. https://www.econet-
project.eu/Repository/Document/331 (2011)

26. Bolla, R., Bruschi, R., Davoli, F., Gregorio, L.D., Donadio, P., Fialho, L., Collier, M., Lom-
bardo, A., Recupero, D.R., Szemethy, T.: Green abstraction layer (GAL): power management
capabilities of the future energy telecommunication fixed network nodes. Technical Report
ES 203 237, ETSI, 2014

27. Bolla, R., Bruschi, R., Lago, P.: Energy adaptation in multi-core software routers. Comput.
Netw. 65, 111128 (2014)

28. Bradner, S., McQuaid, J.: RFC 2544: benchmarking methodology for network interconnect
devices (1999)

29. Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., Wright, S.: Power awareness in
network design and routing. In: Proceedings 27th Conference on Computer Communications
(INFOCOM 2008), pp. 457–465 (2008)

30. Chiaraviglio, L., Mellia, M., Neri, F.: Energy-aware backbone networks: a case study. In:
Proceedings 1st International Workshop on Green Communications, IEEE International Con-
ference on Communications (ICC’09), pp. 1–5. IEEE (2009)

31. Chiaraviglio, L., Mellia, M., Neri, F.: Minimizing ISP network energy cost: formulation and
solutions. IEEE/ACM Trans. Netw. 20, 463–476 (2011)

https://www.econet-project.eu/Repository/DownloadFile/291
https://www.econet-project.eu/Repository/DownloadFile/291
https://www.econet-project.eu/Repository/Document/331
https://www.econet-project.eu/Repository/Document/331

6 Energy and Power Efficiency in Cloud 123

32. Choi, J., Govindan, S., Urgaonkar, B., Sivasubramaniam, A.: Profiling, prediction, and capping
of power consumption in consolidated environments. In: MASCOTS 2008. IEEE International
Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication
Systems, 2008, pp. 110, Sept 2008

33. Cianfrani, A., Eramo, V., Listani, M., Marazza, M., Vittorini, E.: An energy saving rout-
ing algorithm for a Green OSPF protocol. In: Proceedings IEEE INFOCOM Conference on
Computer Communications, pp. 1–5. IEEE (2010)

34. Cisco Systems, Inc.: Cisco Data Center Infrastructure 2.5 Design Guide (2011)
35. Cuomo, F., Abbagnale, A., Cianfrani, A., Polverini, M.: Keeping the connectivity and sav-

ing the energy in the Internet. In: Proceedings IEEE INFOCOM 2011 Workshop on Green
Communications and Networking, pp. 319–324. IEEE (2011)

36. DeBonis, D., Grant, R.E., Olivier, S.L., Levenhagen, M., Kelly, S.M., Pedretti, K.T., Laros,
J.H.: A power api for the hpc community. Sandia Report SAND2014-17061, Sandia National
Laboratories (2014)

37. Diouri, M.E.M., Dolz, M.F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S., Mayo, R.,
Quintana-Ortí, E.S.: Assessing power monitoring approaches for energy and power analy-
sis of computers. Sustain. Comput.: Inf. Syst. 4(2), 68–82 (2014)

38. Dolz, M.F., Heidari, M.R., Kuhn, M., Ludwig, T., Fabregat, G.: ARDUPOWER: a low-cost
wattmeter to improve energy efficiency of HPC applications. In: Green Computing Conference
and Sustainable Computing Conference (IGSC), 2015 Sixth International, pp. 1–8, Dec 2015

39. Dongarra, J. et al.: The international exascale software project roadmap. Int. J. High Perform.
Comput. Appl. 25, 3–60 (2011)

40. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and future.
Concurrency Comput.: Pract. Experience 15(9):803–820 (2003)

41. SNIA Emerald: SNIA emerald power efficiency measurement specification. www.snia.org
42. Fisher, W., Suchara, M., Rexford, J.: Greening backbone networks: reducing energy consump-

tion by shutting off cables in bundled links. In: Proceedings 1st ACM SIGCOMM Workshop
on Green Networking (Green Networking’10), pp. 29–34. ACM (2010)

43. Floyd, M., Allen-Ware, M., Buyuktosunoglu, A., Rajamani, K., Brock, B., Lefurgy, C., Drake,
A.J., Pesantez, L., Gloekler, T., Tierno, J.A., et al.: Introducing the adaptive energy manage-
ment features of the Power7 chip. IEEE Micro 2, 60–75 (2011)

44. Franklin, G.F., David Powell, J., Workman, M.L.: Digital control of dynamic systems, vol. 3.
Addison-Wesley Menlo Park (1998)

45. Gandhi, A., Harchol-Balter, M., Das, R., Lefurgy, C.: Optimal power allocation in server
farms. In: ACM SIGMETRICS Performance Evaluation Review, vol. 37, pp. 157–168. ACM
(2009)

46. Gandhi, A., Harchol-Balter, M., Ram, R., Kozuch, M.A.: Autoscale: dynamic, robust capacity
management for multi-tier data centers. ACM Trans. Comput. Syst. 30(4), 14 (2012)

47. Gandhi, N., Tilbury, D.M., Diao, Y., Hellerstein, J., Parekh, S.: MIMO control of an apache
web server: modeling and controller design. Proc. Am. Control Conf. 6, 4922–4927 (2002)

48. Georgiou, Y., Cadeau, T., Glesser, D., Auble, D., Jette, M., Hautreux, M.: Energy accounting
and control with SLURM resource and job management system. In: Distributed Computing
and Networking, pp. 96–118. Springer (2014)

49. Gerndt, M., César, E., Benkner, S. (eds.): Automatic Tuning of HPC Applications. Shaker
Verlag (2015)

50. Gu, C., Heng, H., Xiuping, J.: Power metering for virtual machine in cloud computing-
challenges and opportunities. IEEE Access 2, 1106–1116 (2014)

51. Hackenberg, D., Ilsche, T., Schone, R., Molka, D., Schmidt, M., Nagel, W.E.: Power measure-
ment techniques on standard compute nodes: a quantitative comparison. In: IEEE International
Symposium on Performance Analysis of Systems and Software, pp. 194–204. IEEE (2013)

52. Hackenberg, D., Ilsche, T., Schuchart, J., Schone, R., Nagel, W.E., Simon, M., Georgiou, Y.:
HDEEM: high definition energy efficiency monitoring. In: Energy Efficient Supercomputing
Workshop, pp. 1–10. IEEE (2014)

www.snia.org

124 M. Karpowicz et al.

53. Hays, R.: Active/Idle toggling with low-power idle. Presentation at IEEE802.3az Task Force
Group Meeting. http://www.ieee802.org/3/az/public/jan08/hays_01_0108.pdf (2008)

54. Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd., and Toshiba
Corp.: Advanced Configuration and Power Interface Specification, Revision 5.0 (2011)

55. Howard, J., Dighe, S., Vangal, S.R., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V., Konow,
M., Riepen, M., Gries, M., et al.: A 48-core IA-32 processor in 45 nm CMOS using on-die
message-passing and DVFS for performance and power scaling. IEEE J. Solid-State Circuits
46(1), 173–183 (2011)

56. Idzikowski, F., Orlowski, S., Raack, Ch., Rasner, H., Wolisz, A.: Saving energy in IP-over-
WDM networks by switching off line cards in low-demand scenarios. In: Proceedings 14th
Conference on Optical Network Design and Modeling (ONDM’10). IEEE (2010)

57. IEEE, Institute of Electrical and Electronics Engineers, IEEE 802.3az Energy Efficient Eth-
ernet Task Force. http://grouper.ieee.org/groups/802/3/az/public/index.html (2012)

58. Ilsche, T., Hackenberg, D., Graul, S., Schöne, R., Schuchart, J.: Power measurements for
compute nodes: improving sampling rates, granularity and accuracy. In: Sixth International
Green and Sustainable Computing Conference (2015)

59. Intel. Intel Intelligent Power Node Manager. www.intel.com
60. Intel Corp.: Intel 64 and IA-32 Architectures Software Developers Manual Combined Vol-

umes: 1, 2A, 2B, 2C, 3A, 3B and 3C (2015)
61. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.H.J.: Perfor-

mance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans.
Parallel Distrib. Syst. 22(6), 931–945 (2011)

62. Jaskóła, P., Arabas, P., Karbowski, A.: Combined calculation of optimal routing and bandwidth
allocation in energy aware networks. In: Proceedings 26th International Teletraffic Congress,
Karlskrona, pp. 1–6. IEEE (2014)

63. Jaskóła, P., Arabas, P., Karbowski, A.: Simultaneous routing and flow rate optimization in
energy-aware computer networks. Int. J. Appl. Math. Comput. Sci. 26(1), 231–243 (2016)

64. Jaskóła, P., Malinowski, K.: Two methods of optimal bandwidth allocation in TCP/IP networks
with QoS differentiation. In: Proceedings Summer Simulation Multiconference (SPECTS’04),
pp. 373–378 (2004)

65. Jha, S., Qiu, J., Luckow, A., Mantha, P., Fox, G.C.: A tale of two data-intensive paradigms:
applications, abstractions, and architectures. In: IEEE International Congress on Big Data,
pp. 645–652. IEEE (2014)

66. Jing, S.-Y., Ali, S., She, K., Zhong, Y.: State-of-the-art research study for green cloud com-
puting. J. Supercomput. 65(1), 445–468 (2013)

67. Jung, H., Pedram, M.: Supervised learning based power management for multicore processors.
IEEE Trans. Comput.-Aid. Des. Integrat. Circuits Syst. 29(9), 1395–1408 (2010)

68. Melanie, K., Martha, A.K.: An experimental survey of energy management across the stack.
In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, pp. 329–344. ACM (2014)

69. Kamola, M., Arabas, P.: Shortest path green routing and the importance of traffic matrix
knowledge. In: 2013 24th Tyrrhenian International Workshop on Digital Communications -
Green ICT (TIWDC), pp. 1–6, Sept 2013

70. Karbowski, A., Jaskóła, P.: Two approaches to dynamic power management in energy-aware
computer networks - methodological considerations. In: Proceedings of Federated Conference
on Computer Science and Information Systems (FedCSIS), pp. 1177–1182, Sept 2015

71. Karpowicz, M., Arabas, P.: Energy-aware multi-level control system for a network of linux
software routers: design and implementation. IEEE Syst. J. PP(99):1–12 (2015)

72. Karpowicz, M.P.: Energy-efficient CPU frequency control for the Linux system. Concurrency
Comput.: Pract. Experience 28(2):420–437 (2016). cpe.3476

73. Karpowicz, M.P., Arabas, P.: Preliminary results on the Linux libpcap model identification. In:
20th International Conference on Methods and Models in Automation and Robotics (MMAR),
pp. 1056–1061. IEEE (2015)

http://www.ieee802.org/3/az/public/jan08/hays_01_0108.pdf
http://grouper.ieee.org/groups/802/3/az/public/index.html
www.intel.com

6 Energy and Power Efficiency in Cloud 125

74. Kołodziej, J., Khan, S.U., Wang, L., Zomaya, A.Y.: Energy efficient genetic-based schedulers
in computational grids. Concurrency Comput.: Pract. Experience (2012). doi:10.1002/cpe.
2839

75. Kondo, M., Sasaki, H., Nakamura, H.: Improving fairness, throughput and energy-efficiency
on a chip multiprocessor through DVFS. ACM SIGARCH Comput. Architect. News 35(1),
31–38 (2007)

76. Koomey, J.: Growth in data center electricity use 2005 to 2010. Analytics Press, Oakland,
Aug, 1, 2010, 2011

77. Lange, K.-D.: Identifying shades of green: the SPECpower benchmarks. IEEE Comput. 42(3),
95–97 (2009)

78. Laros, J.H., III, DeBonis, D., Grant, R., Kelly, S.M., Levenhagen, M., Olivier, S., Pedretti,
K.: High performance computing-power application programming interface specification.
Technical Report SAND2014-17061, Sandia National Laboratories (2014)

79. Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., Keller, T.W.: Energy manage-
ment for commercial servers. Computer 36(12), 39–48 (2003)

80. Lefurgy, C., Wang, X., Ware, M.: Server-level power control. In: The 4th IEEE International
Conference on Autonomic Computing. IEEE (2007)

81. Lefurgy, C., Wang, X., Ware, M.: Power capping: a prelude to power shifting. Cluster Comput.
11(2), 183–195 (2008)

82. Lefurgy, C.R., Drake, A.J., Floyd, M.S., Allen-Ware, M.S., Brock, B., Tierno, J.A., Carter,
J.B., Berry, R.W.: Active guardband management in Power7+ to save energy and maintain
reliability. IEEE Micro 33(4), 35–45 (2013)

83. Lim, H., Kansal, A., Liu, J.: Power budgeting for virtualized data centers. In: 2011 USENIX
Annual Technical Conference (USENIX ATC’11), p. 59 (2011)

84. Ljung, L.: System Identification. Prentice Hall, Upper Saddle River (1998)
85. Lorch, J.R., Smith, A.J.: Improving dynamic voltage scaling algorithms with pace. In: Pro-

ceedings ACM SIGMETRICS 2001 International Conference on Measurement and Modeling
of Computer Systems, p. 5061 (2001)

86. Lu, Z., Hein, J., Humphrey, M., Stan, M., Lach, J., Skadron, K.: Control-theoretic dynamic
frequency and voltage scaling for multimedia workloads. In: Proceedings of the 2002 Inter-
national Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp.
156–163. ACM (2002)

87. Mair, J., Eyers, D., Huang, Z., Zhang, H.: Myths in power estimation with performance
monitoring counters. Sustain. Comput.: Inf. Syst. 4(2), 83–93 (2014)

88. Malinowski, K., Niewiadomska-Szynkiewicz, E., Jaskóła, P.: Price method and network con-
gestion control. J. Telecommun. Inf. Technol. 2, 73–77 (2010)

89. Mastelic, T., Oleksiak, A., Claussen, H., Brandic, I., Pierson, J.-M., Vasilakos, A.V.: Cloud
computing: survey on energy efficiency. ACM Comput. Surv. 47(2):33 (2015)

90. McCullough, J.C., Agarwal, Y., Chandrashekar, J., Kuppuswamy, S., Snoeren, A.C., Gupta,
R.K.: Evaluating the effectiveness of model-based power characterization. In: USENIX
Annual Technical Conference (2011)

91. Min, R., Furrer, T., Chandrakasan, A.: Dynamic voltage scaling techniques for distributed
microsensor networks. In: Proceedings IEEE Workshop on VLSI, pp. 43–46 (2000)

92. Mobius, C., Dargie, W., Schill, A.: Power consumption estimation models for processors,
virtual machines, and servers. IEEE Trans. Parallel Distrib. Syst. 25(6), 1600–1614 (2014)

93. Molka, D., Hackenberg, D., Schöne, R., Minartz, T., Nagel, W.E.: Flexible workload genera-
tion for HPC cluster efficiency benchmarking. Comput. Sci.-Res. Dev. 27(4):235–243 (2012)

94. Nakai, M., Akui, S., Seno, K., Meguro, T., Seki, T., Kondo, T., Hashiguchi, A., Kawahara,
H., Kumano, K., Shimura, M.: Dynamic voltage and frequency management for a low-power
embedded microprocessor. IEEE J. Solid-State Circuits 40(1), 28–35 (2005)

95. Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E.: Power management architecture
of the 2nd generation Intel Core microarchitecture, formerly codenamed Sandy Bridge. In:
Hot Chips, vol. 23, p. 0 (2011)

http://dx.doi.org/10.1002/cpe.2839
http://dx.doi.org/10.1002/cpe.2839

126 M. Karpowicz et al.

96. Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., Kamola, M., Mincer, M., Koodziej, J.:
Dynamic power management in energy-aware computer networks and data intensive systems.
Future Gener. Comput. Syst. 37, 284–296 (2014)

97. Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., Kołodziej, J.: Control framework for
high performance energy aware backbone network. In: Proceedings of European Conference
on Modelling and Simulation (ECMS 2012), pp. 490–496 (2012)

98. Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., Kołodziej, J.: Control system for
reducing energy consumption in backbone computer network. Concurrency Comput.: Pract.
Experience 25, 1738–1754 (2013)

99. NVIDIA. NVML API Reference Manual. www.developer.nvidia.com (2012)
100. Padala, P., Hou, K.-Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant,

A.: Automated control of multiple virtualized resources. In: Proceedings of the 4th ACM
European Conference on Computer Systems, pp. 13–26. ACM (2009)

101. Pallipadi, V., Li, S., Belay, A.: cpuidle: do nothing, efficiently. Proc. Linux Symp. 2, 119–125
(2007)

102. Pallipadi, V., Starikovskiy, A.: The ondemand governor. Proc. Linux Symp. 2, 215–230 (2006)
103. Patikirikorala, T., Colman, A., Han, J., Wang, L.: A systematic survey on the design of

self-adaptive software systems using control engineering approaches. In: ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 33–42. IEEE
(2012)

104. Pióro, M., Mysłek, M., Juttner, A., Harmatos, J., Szentesi, A.: Topological design of MPLS
networks. In: Proceedings GLOBECOM’2001 (2001)

105. Qureshi, A., Weber, R., Balakrishnan, H.: Cutting the electric bill for internet-scale systems.
In: SIGCOMM’09, pp. 123–134. ACM, Aug 17–21 2009

106. Restrepo, J., Gruber, C., Machuca, C.: Energy profile aware routing. In: Proceedings 1st
International Workshop on Green Communications, IEEE International Conference on Com-
munications (ICC’09), pp. 1–5 (2009)

107. Roy, S.N.: Energy logic: a road map to reducing energy consumption in telecom munica-
tions networks. In: Proceedings 30th International Telecommunication Energy Conference
(INTELEC 2008) (2008)

108. Sikora, A., Niewiadomska-Szynkiewicz, E.: A federated approach to parallel and distributed
simulation of complex systems. Appl. Math. Comput. Sci. 17(1), 99–106 (2007)

109. Storage Performance Council (SPC): Storage Performance Council SPC Benchmark 2/Energy
Extension. www.storageperformance.org

110. Standard Performance Evaluation Corporation (SPEC): SPEC Power and Performance Bench-
mark Methodology. www.spec.org/power_ssj2008/

111. Spiliopoulos, V., Kaxiras, S., Keramidas, G.: Green governors: a framework for continuously
adaptive DVFS. In: 2011 International Green Computing Conference and Workshops (IGCC),
pp. 1–8. IEEE (2011)

112. Subramaniam, B., Feng, W.: Towards energy-proportional computing for enterprise-class
server workloads. In: Proceedings of the 4th ACM/SPEC International Conference on Per-
formance Engineering, pp. 15–26. ACM (2013)

113. Subramaniam, B., Saunders, W., Scogland, T., Feng, W.: Trends in energy-efficient comput-
ing: a perspective from the Green500. In: 2013 International Green Computing Conference
(IGCC), pp. 1–8. IEEE (2013)

114. Taniça, L., Ilic, A., Tomás, P., Sousa, L.: Schedmon: a performance and energy monitoring
tool for modern multi-cores. In: Euro-Par 2014: Parallel Processing Workshops, pp. 230–241.
Springer (2014)

115. Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J., Zhang, L.,
Wang, L., Ghani, N., Kołodziej, J., Li, H., Zomaya, A.Y., Xu, C.-Z., Balaji, P., Vishnu, A.,
Pinel, F., Pecero, J.E., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques
in cluster computing systems. Cluster Comput. (2011). doi:10.1007/s10586-011-0171-x

116. Vasić, N., Kostić, D.: Energy-aware traffic engineering. In: Proceedings 1st International
Conference on Energy-Efficient Computing and Networking (E-ENERGY 2010) (2010)

www.developer.nvidia.com
www.storageperformance.org
www.spec.org/power_ssj2008/
http://dx.doi.org/10.1007/s10586-011-0171-x

6 Energy and Power Efficiency in Cloud 127

117. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T.,
Lowe, J., Shah, H., Seth, S., et al.: Apache hadoop yarn: yet another resource negotiator. In
Proceedings of the 4th Annual Symposium on Cloud Computing, p. 5. ACM (2013)

118. Wang, L., Khan, S.U.: Review of performance metrics for green data centers: a taxonomy
study. J. Supercomput. (2011). doi:10.1007/s11227-011-0704-3:1-18

119. Wang, L., Khan, S.U.: Review of performance metrics for green data centers: a taxonomy
study. J. Supercomput. 63(3), 639–656 (2013)

120. Wang, X., Wang, Y.: Coordinating power control and performance management for virtualized
server clusters. IEEE Trans. Parallel Distrib. Syst. 22(2), 245–259 (2011)

121. Wang, Y., Wang, X., Chen, M., Zhu, X.: Partic: power-aware response time control for virtu-
alized web servers. IEEE Trans. Parallel Distrib. Syst. 22(2), 323–336 (2011)

122. Weaver, V.M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D., Moore,
S.: Measuring energy and power with PAPI. In: 41st International Conference on Parallel
Processing Workshops (ICPPW), 2012, pp. 262–268. IEEE (2012)

123. Wu, B., Li, P.: Load-aware stochastic feedback control for DVFS with tight performance
guarantee. In: 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip
(VLSI-SoC), pp. 231–236, Oct 2012

http://dx.doi.org/10.1007/s11227-011-0704-3:1-18

Chapter 7
Context-Aware and Reinforcement
Learning-Based Load Balancing System
for Green Clouds

Ionut Anghel, Tudor Cioara and Ioan Salomie

7.1 Introduction

With the recent technological advancements in the areas of mobile devices and wire-
less sensor networks, the research efforts are moving towards developing complex
distributed systems able to administrate heterogeneous pervasive environments com-
posed of sensors, actuators, smart devices and software agents which interact and
collaborate. To offer support for the human agents during their interactions and to
allow them to concentrate on their tasks, it is essential for the distributed systems
to become aware of their execution context and to adapt their behaviour to different
context situations.

In these circumstances, a new type of complex distributed systems emerges: the
context-aware adaptive systems. They define a special class of distributed systems
which are able to sense and understand the changes from their execution environ-
ment and adapt or optimize their operation accordingly. The development of such
systems poses significant research problems regarding relevant context identification,
acquisition, representation, awareness, and adaptation for operation optimization.

1. Context Definition Unlike traditional systems which do not consider and use
the context to drive their operation, for context-aware systems the context data
becomes a valuable asset for understating the situation in which they evolve and
for adapting their behaviour accordingly. There are many ways in which the con-
textmay be defined, but themost comprehensive one is given in [1]. Dey considers

I. Anghel (B) · T. Cioara · I. Salomie
Technical University of Cluj-Napoca, Memorandumului 28, 400114
Cluj-Napoca, Romania
e-mail: ionut.anghel@cs.utcluj.ro

T. Cioara
e-mail: tudor.cioara@cs.utcluj.ro

I. Salomie
e-mail: ioan.salomie@cs.utcluj.ro

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_7

129

130 I. Anghel et al.

the context as any information relevant for characterizing the situation of an entity
or its interactions. Starting from this definitionwe consider the systems’ execution
context as consisting of all context data relevant for assessing the systems current
operation situation and its interactions. The context data may refer both to the
systems’ execution environment and to the systems’ internal state and available
computational resources.

2. Context Monitoring and Abstraction Context data is usually collected from vari-
ous heterogeneous sources thus being difficult to be automatically processed and
interpreted at run-time. Some of the sensors needed for context-aware comput-
ing differ in their programming interfaces and even more, sensors for collecting
similar information may provide different raw data. This is why, in our vision,
a key component in developing context-aware adaptive systems is the context
model whose main goal is to programmatically represent, fusion and abstract the
acquired raw data so that it can be processed, evaluated, understood, and shared
by all the modules of a context-aware system.

3. Context Dynamicity, Awareness, and Adaptation The context-aware system needs
to respond to context changes by adapting their observable behaviour to optimize
their operation. In our approach, a system becomes aware of its execution con-
text if it is able to understand the changes in its execution context and to identify
those context situations in which adaptation is needed. To achieve these goals, the
development of context management techniques that automatically process and
interpret the context without human factor intervention becomes a key element.
After identifying a situation requiring adaptation, the context-aware adaptive sys-
tem must automatically decide and select the appropriate adaptation actions to
be executed such that system’s observable behaviour is changed according to the
new context.

Lately, the energy consumption of Data Centres (DCs) has dramatically emerged
as one of the most critical environmental challenges to be dealt with. The EU Code
of Conduct for DC Energy Efficiency estimates that DCs consume around 56 TWh
per year in EU as a whole and forecasts that this will increase to 104 TWh per year
by 2020 [2]. The amount of energy consumed by world’s DCs in one year is similar
to the total amount consumed by a single country in the same time period and greatly
affects both the environment and the economy. The global recession of the last years
has not stopped the DCs expansion and in 2014 they consumed up to 3% of all global
electricity production while producing 200million tons of CO2 and generating about
60 billion dollars costs [3].

Currently, many researches, from both management and technical aspects, are
striving to reduce the energy consumption of DCs. Besides the cooling infrastructure,
the low utilization of computing resources (i.e., servers) is one of the main factors
contributing to their high energy consumption [4]. The adoption of virtualization
for DC resources provision allows the hosting of multiple virtualized applications
on the same physical server and the allocation of desired computational capacity
on-demand. The cloud-based DCs are configured to ensure that the peak workload

7 Context-Aware and Reinforcement Learning-Based Load Balancing System … 131

is satisfied, leading to a mean usage ration of DC servers between 10 and 50% and
in consequence to a waste of energy of about 50% [5].

In this chapter, we address the cloud-based DCs energy efficiency problem by
proposing a context-aware adaptive load balancing system capable of dynamically
takingmanagement or adaptation decisions to decrease theDCs energy consumption.

Each of the problems identified for developing context-aware systems are
addressed considering the specific case of a load balancing system for energy efficient
cloud computing. The context definition and abstraction is approached by consider-
ing the load levels and energy consumption values as relevant contextual data and by
deploying relevant physical and virtual sensors for acquiring this data at cloud level.
This allows our context-aware adaptive load balancing system to understand the cur-
rent cloud situation and potential changes and automatically decide on the actions
than need to be executed to schedule and consolidate the virtualized work-load in
an energy efficient manner. To enact the situation and contextual awareness tech-
niques are developed to allow our load balancing system to make assumptions upon
and understand the efficiency of current cloud situation (i.e., snapshot). We aim at
identifying energy inefficient, non-green, cloud situations by defining a set of green
policies for clouds DCs and evaluating if they hold for the current cloud situation.
Another important challenge here is to define the context for the domain of green
clouds which is addressed by considering, among others, the energy consumption
and workload levels as relevant context features. To automatically decide on context
adaptation actions as to scale up or down the cloud computing resources alloca-
tion, a reinforcement learning-based approach is used. The reinforcement learning
process considers all broken green policies, one by one, according to their weight
and determines the workload balancing actions to enforce them.

The rest of the chapter is organized as follows: Sect. 7.2 presents the relevant
relatedwork in the area of energy efficient resources balancing in the context of cloud-
basedDCs, Sect. 7.3 presents the context-awareworkload balancing system, Sect. 7.4
shows details on the implementation of such context-aware load balancing system as
an extension of the OpenNebula clouds management middleware [6] (Green Cloud
Scheduler OpenNebula component [7]) while Sect. 7.5 concludes the chapter.

7.2 Related Work

Hardware resources virtualization is the fundamental technology that powers up
cloud computing. It aims at logically dividing the DCs hardware resources into seg-
ments that can be managed independently [8].

There are several advantages coming with the use of Virtual Machines (VMs) [9].
The first advantage of virtualization is the fact that the server’s hardware resources
will be reproduced through software such that multiple operating systems can share
a single physical server. In non-virtualized DCs, each psychical server may host only
one task (e.g., aweb server application or a file server application). Byusing resources
virtualization, both the previously mentioned applications may run independently

132 I. Anghel et al.

on the same psychical server, therefore reducing the costs and energy. The second
advantage of virtualization is the applications isolation [10]. The context in which
a VM is running is completely transparent to the applications, so an error in one
VM will not affect the physical server running it, or any other machines deployed
on that server. The third advantage of virtualization is the fact that the applications
contained in the VMs are no longer tied to a physical systemwith certain hardware of
software configuration [10]. Instead, they can be migrated from one host to another.
In a DC, VMs are moved between servers to achieve higher computational density
and higher workload consolidation during periods with low requests.

The use of virtualization technique itself increases the energy efficiency of cloud-
based DCs compared to nonvirtualized ones (i.e., collocation) as it is advocated by
Intel [11] in a white paper about the strategies to reduce energy consumption imple-
mented at the CERNphysics laboratory. Similarly in [12] the authors argue that using
virtualization the ratio between the computing efficiency and power consumption of
DCs is increased. Authors of [13] state that by using virtualization the DCs density
increases and the storage will be more optimally used resulting in a decrease of
maintenance and electricity costs. Besides the decreasing of energy consumption of
the IT components, additional energy savings can be further obtained by optimizing
cooling infrastructure operation.

However, virtualization alone is not enough because even if the scheduling deci-
sion for a VM to be hosted into a specific DC server is correct when the VM is created
and deployed, during the lifecycle of the cloud, the distribution of the VMs may get
worse and the usage of resources may become inefficient. This is why load balancing
systems need to be developed to better consolidate the deployment of VMs on DCs
and reduce the fragmentation of computing resources and the ratio of unused servers.
The load balancing and consolidation systems take advantage of virtualization, by
proposing models to migrate the VMs in a DC from one server/cluster to another so
that they better fit on the DCs computing resources. By VMs migration the work-
load distribution can be balanced and consolidated on smaller number of physical
machines allowing for servers, or even entire operation nodes, to be completely shut
down [14]. This increases the overall energy efficiency of the DC but also brings
with it the downside of additional overhead in terms of migration costs, latency and
Quality of Service (QoS)/Service Level Agreement (SLA) penalties. For example,
VMwares published benchmark on ESX latency found an average I/O latency of
13% [15].

For developing of such systems, two challenges need to be addressed: (1) the
effective monitoring of current distribution, usage and energy consumption of cloud
VMs/servers and (2) the energy-aware server consolidation decision process.

The lack of monitoring software or power meters for VMs is one of the main
challenges for using virtualization. Unlike physical servers that provide in-hardware
or outlet level power measurement functions, it is very difficult to estimate the power
required by a VMwhen hosted on a certain hardware configuration [16]. The perfor-
mance andhealthmonitoring counters exposed by theVMhypervisor, correlatedwith
relevant power information about the hosting hardware and simple adaptive power
models can offer relatively accurate information [17]. In [16], Joulemeter is designed

7 Context-Aware and Reinforcement Learning-Based Load Balancing System … 133

and proposed as the solution for providing power metering functionality for VMs
while in [17] the authors acknowledge the challenges of power management in vir-
tualized servers and describe an alternative framework oriented towards hypervisor
systems. The latter framework relies on special drivers at the host OS level, at hyper-
visor level and at guest OS level, coordinating their activities in order to maximize
energy savings. In [18] an alternative for power budgeting of a virtualized server
is defined by means of control theory and used to drive system parameters under
power constraints. A proportional-integral-derivative controller is used to enforce
system-level CPU usage constraints based upon monitored power consumption and
a specified power limit. The output of this controller, along with feedback from VMs
based on a congestion pricing scheme, is used by a resource manager to disperse
CPU allocations amongst guest VMs.

The load balancing and consolidation algorithms can be classified in three dif-
ferent types taking into account the consolidation time [19]: static, semi-static and
dynamic consolidation. In the static consolidation the workload VMs are dispatched
in a consolidated manner without any further migration [20]. This approach is rec-
ommended to be used in case of static workload that doesn’t change in time. In
semi-static consolidation, the server workload is balanced and consolidated once
every day or every week [21]. The dynamic consolidation deals with workloads that
frequently change in time. It requires a run-time manager that should deploy/migrate
workload applications and/or wake-up/turn-off servers as a response to workload
variation [22]. In the rest of this section, we will detail the most relevant state of the
art approaches for dynamic load balancing and consolidation which is the subject of
our context-aware-based approach.

To enable energy efficient dynamic workload balancing , the inter-relationships
between energy consumption, resource utilization, and performance of consolidated
workloads must be considered [23]. In [14], the authors reveal that energy perfor-
mance trade-offs for consolidation and optimal operating points exist. As shown in
[19], the greatest challenge for cloud balancingmethods is decidingwhichworkloads
should be combined on a common physical server since resource usage, performance,
and energy consumption are not additive. In case of resources consolidation [24],
many small physical servers are replaced by one larger physical server, to increase
the utilization of costly hardware resources such as CPU. Although hardware is con-
solidated, typically operating systems are not. Instead, eachOS running on a physical
server is replaced by an equivalent OS running inside a VM. In [25] a framework
called Energy-Aware Grid is proposed and used to increase the energy efficiency of
federatedDCs connected in a grid. The central component of the framework isGlobus
Resource Allocation Manager an energy-aware co-allocator, which takes workload
consolidation, decisions across the grid based on a set of energy efficiency coeffi-
cients. In [26] the problem of power and performance management in virtualized
DCs is approached by dynamically provisioning VMs, consolidating the workload,
and turning on and off servers. To select the appropriate consolidation decisions a
predictive control approach based on the limited look ahead control technique is
proposed. Authors of [27] model the problem of energy-aware workload balancing
in DCs as a multi-dimensional bin-packing problem and to solve it they designed

134 I. Anghel et al.

a swarm-inspired algorithm based on the Ant Colony Optimization meta-heuristic.
In [28] an energy-aware scheduling and consolidation algorithm for VMs in DCS is
proposed. The algorithm is based on a fitness metric to evaluate the consolidation
decision effectiveness.

7.3 Context-Aware Load Balancing System

Figure7.1 presents the conceptual architecture of our context-aware adaptive load
balancing system for cloud-based DCs. To be able to take informed decisions our
context-aware load balancing system needs to define, identify and acquire data from
the cloud-basedDCs relevant for taking adaptation/optimization decisions. The infor-
mation is fused (if needed) and abstracted in the form of cloud snapshots representing
the current situation of the cloud-based DC.

The cloud snapshots are analysed and different green policies or indicators are
evaluated to detect those inefficient situations in which the workload needs to be
rearranged. If such situations are encountered an action plan is constructed to change
the workload distribution, to consolidate existing workload and to avoid servers
fragmentation. The decision process uses a reward penalty approach in which the
reward is given by potential energy saving while the penalty is given by the workload
migration overhead cost.

We define the load balancing problem for cloud-based DCs as a function which
associates to each cloud snapshot that fails to fulfil a predefined set of policies or
indicators, an adaptation action plan that should be executed in order to re-balance
the workload, change its distribution and re-enforce the defined indicators:

BalanceWorkload(Cloudsnapshot , I ndicators) → V Ms Redistribution Plan.

(7.1)

Fig. 7.1 Load balancing system conceptual architecture

7 Context-Aware and Reinforcement Learning-Based Load Balancing System … 135

7.3.1 Cloud Context Identification and Monitoring

This module is responsible for collecting cloud context data and constructing the
Cloud Snapshots. The cloud context data describes the cloud DC workload, its dis-
tribution on the DC servers, the computing resources usage and the associated energy
consumption values. This information is fundamental input for our load balancing
system to understand the context and efficiency of the current investigated Cloud
Snapshot and to take workload balancing and consolidation decisions in an energy-
aware manner.

• At the Application Layer reside business processes oriented applications that are
executed by the cloud-based DCs. This layer provides information regard-ing QoS
and customers agreed SLA levels;

• At the Middleware Layer reside the VMs through which the business processes
activities are executed. This layer provides, data regarding the IT computing
resources allocated to/used by the VMs, VMs distribution and their state (active,
idle, etc.);

• At the Infrastructure Layer reside the DCs hardware resources. This layer pro-
vides data regarding servers load levels and energy consumption values as well as
temperature and energy consumption of the cooling system.

The above-presented situation poses an unavoidable problem: how to effectively
monitor and acquire context data from all cloud-based DC layers? The techniques
for collecting context data are completely distinct for each layer. For instance, the
elements located at the infrastructure layer are mostly physical devices, thus the
relevant data regarding the energy consumption in this layer can be directlymeasured
by deploying sensors (i.e., power meters for measuring instant power consumption)
and using their APIs. On the contrary, the parameters residing at the application
layer are difficult to be monitored and they are usually collected from configuration
files. Table7.1 shows the context data we found to be relevant for our load balancing
system and the associated data sources.

As a consequence, the selection of a proper monitoring tool capable of gathering
all this heterogeneous data in a uniform and integrated manner was a challenging
task. The selected monitoring tool in our approach is Nagios [29], a leading open-
sourcemonitoring tool for systems, networks, and applications. Themajor advantage
of Nagios consists of its plug-in tool box that enables Nagios to be configurable,
implementable and customizable to meet different real and virtual sensors charac-
teristics and APIs. Nagios relies on external programs (plug-ins) to perform actual
checks and provides a plug-in API allowing new plug-ins to be created in different
programming languages for specific data acquisitions. This aspect enables Nagios to
monitor the whole IT infrastructure including systemmetrics, network services (e.g.,
SMTP, POP3, HTTP, etc.), applications, host resources (e.g., HDD space, RAM and
CPU utilization, server exhaust temperatures, etc.) and the network infrastructure.
Nagios-based monitoring infrastructure defined and used to collect the cloud-based

136 I. Anghel et al.

Table 7.1 Context data relevant for load balancing at different cloud-based DC layers

DC layer Context data Data source

Infrastructure layer Total facility/IT Equipment
instant power (W)

Power meter device

Ambient temperature (◦C) Sensor

CPU temperature (◦C)
Server CPU fan speed (rpm),
usage (%), frequency (Mhz)

Cpufreq Linux kernel module

MEM usage (%) Linux command line utility

Internal HDD usage (%) and
speed (rpm)

Hdparm Linux utility

Shared Storage usage (%) and
speed (rpm)

Server Status (ON/OFF) OpenSSH

Middleware layer VM State (Active, Idle) VM Hypervisor

VM allocated CPU (%), MEM
(% and Mb) and HDD (% and
Mb)

VM usage of CPU (%), MEM
(% and Mb), HDD (% and Mb)

Application layer Task requests for CPU (% and
Mhz), MEM (% and Mb) and
HDD (% and Mb)

Configuration files

Maximum response time (s) SLA files

DC con-text data is presented in Fig. 7.2. NDOUtils (Nagios Data Out) add-on allows
the users to store all data collected by Nagios in a Cloud Snapshot database.

7.3.2 Cloud Context Awareness

The goal of this module is to detect those Cloud Snapshots that are inefficient in
terms of workload distribution and power/energy usage. To achieve this, state of the
art indicators defined for each cloud-based DC layer are evaluated for the current
Cloud Snapshot. If some of the indicators fail below the predefined thresholds actions
need to be taken to rebalance the workload as to enforce those indicators. Table7.2
summarizes the indicators we have used at each cloud-based DC layers to detect the
inefficient Cloud Snapshots.

The Power Usage Effectiveness (PUE) indicator was proposed by Green Grid
[30] and measures how much power is used by the IT Equipment in contrast to IT
Facility. The objective is to balance the cloud DC workload distribution to obtain
more efficient cooling and bring the indicator value as close as possible to 1. The
computing formula is presented in Eq.7.2:

7 Context-Aware and Reinforcement Learning-Based Load Balancing System … 137

Fig. 7.2 Cloud context monitoring infrastructure

Table 7.2 Cloud-based DC indicators/policies

DC layer Indicator objectives Used indicators

Infrastructure layer Impose restrictions about the
DC power usage and server
utilization

Power Usage Effectiveness
(PUE), Server CPU &
Memory Usage

Middleware layer Specify the optimal workload
distribution values

VMs CPU&MEM allocation,
Deployed Hardware
Utilization Ratio (DH-UR),
Deployed Hardware
Utilization Efficiency
(DH-UE)

Application layer Describe the QoS and SLA
requirements agreed with
customers for applications
execution

Response time

138 I. Anghel et al.

PUE = Total Facili t y Power

I T Equipment Power
. (7.2)

However, a small PUE value is not enough, because this metric does not consider
the actual utilization of hardware computational resources. Thus we have utilized it
in conjunction with resources usage indicators described below.

The Server CPU&Memory Usage indicators describe the optimal load levels for
a cloud DC server. This value depends on server hardware specification but usually
it is desired to have load levels between 50 and 80%. Under 50% the server will
be underutilized thus will waste energy, while over 80% the client may experience
significant performance penalties.

Userver = Load O f T he Server Processor

Maximum Load At T he Highest Frequency State
. (7.3)

The Deployed Hardware Utilization Ratio (DH-UR) indicator was proposed by
the Uptime Institute [31] and measures the power drained by the idle servers not
executing anyworkload or in otherwords, the amount of powerwaste. The calculation
method is presented in Eq.7.4:

DH −UR = No Servers Running Live Apps

T otal No Servers Deployed
. (7.4)

In a similar manner, DH-UR can be used for assessing storage systems efficiency:
number of terabytes containing frequently accessed data divided by the total number
of terabytes of the storage system.

The Deployed Hardware Utilization Efficiency (DH-UE) indicator was also pro-
posed Uptime Institute [31] and measures the power efficiency of the operating
servers. The calculation method is provided in Eq.7.5

DH −UE = Min No Servers Necessary For Handling Peak Load

Total No Servers Deployed
. (7.5)

The DH-UR and DH-UE indicators need to be as close as possible to 1. If this is
not fulfilled it means that are servers that are not optimally utilized, the workload is
fragmented and workload needs to be re-balanced by means of consolidations and
migrations.

VMs CPU &MEM allocation and applications response time are constraints that
are mandatory to be fulfilled in all Cloud Snapshots since they are usually enforced
by bilateral contracts. They must be taken into account during workload balancing
decisions because their violationswill result in serious penalties and costs for theDC.

7 Context-Aware and Reinforcement Learning-Based Load Balancing System … 139

7.3.3 Cloud Load Balancing Decisions

The decision process is implemented by means of a reinforcement leaning technique
which starts from the current Cloud Snapshot that was assessed as inefficient and
builds a decision (learning) tree by simulating the execution of all potential load
balancing actions with the goal of reducing the load fragmentation on DC servers.
We have considered the following actions: deploy/migrate VMand turn on/off server.

The reinforcement learning is a non-supervised type of learning. In Artificial
Intelligence the reinforcement learning model consists of the following elements
[32]: (i) a set of environment states S, (ii) a set of actions A, (iii) rules of transitioning
between states, (iv) a transition reward and (v) a reinforcement learning agent. The
reinforcement learning algorithm has the following main steps:

1. The reinforcement learning agent receives an environment observation which
corresponds to the current environment state (st ∈ S);

2. The agent executes an action (at ∈ A) from the set of available actions;
3. As a consequence a new environment state and the associated transition

Tr=(st , at , st+1) is generated;
4. The reward is computed for the determined transition Tr;
5. The reinforcement learning agentmoves forward and considers the new generated

environment state (st+1) as current state.

We have mapped the above-presented reinforcement learning algorithm to our
context-aware load balancing decision process as follows:

• The environment states set S corresponds to the potential Cloud Snapshots;
• The set of actionsA includes the deploy/migrateVMand turn on/off server actions;
• The transition rules between states will define how the Cloud Snapshot will be
changed as result of executing the defined actions.

The decision process may generate different Cloud Snapshots with different re-
ward values by means of whatif analysis of potential sequence of balancing actions.
As a consequence, the context-aware load balancing reinforcement learning algo-
rithm has the following steps:

1. A reinforcement learning agent receives a Cloud Snapshot which breaks the con-
ditions imposed by a defined indicator, resulting a faulty context situation (st) in
which workload balancing is needed;

2. The agent simulates the execution of all available adaptation actions (at) on the
current Cloud Snapshot using the defined transition rules;

3. As a consequence, a newCloud Snapshot is virtually generated and the associated
transitions Tr=(st , at , st+1) are generated. The transitions are stored in a learning
tree as follows: st - parent node, st+1- children node, at - annotates the link between
the parent and the children node;

4. For the transition Tr the reward is computed based on the values of a predefined
indicator before (I ndicator Valuest) and after (I ndicator Valuest+1) the action
execution (see Eq.7.4 where ActionCost represents the cost of each possible

140 I. Anghel et al.

Fig. 7.3 Potential cases in the load balancing decision tree and their ending conditions

actions defined in design-time and γ -is a parameter whose value is used to cut-
off the reinforcement learning search process);

Rewardst+1 = Rewardst + γ ∗ (I ndicator Valuest+1 − I ndicator Valuest − Action Cost).
(7.6)

5. The reinforcement learning agent considers st+1 as the current Cloud Snapshot
and re-executes all algorithm steps until one of the ending conditions are met.

Figure7.3 presents the ending conditions for the context-aware load balancing
decision process. During decision process execution we have identified the following
three special cases that need to be handled:

• Case 1: A generated Cloud Snapshot has its reward higher than a defined threshold
(RS5 >T) and the faulty indicator is enforced. In this case the sequence of load
balancing actions leading to this potential Cloud Snapshot (S0, S1, S5) is selected
and the search is stopped;

• Case 2: A generated Cloud Snapshot has its reward smaller than the defined thresh-
old, but higher than the maximum reward determined so far (RS5 < T and RS4 <

RS5 > RS6). We replace the maximum reward with the new reward and continue
the decision process;

• Case 3: A generated cloud snapshot has its reward value lower than both the
threshold and the maximum reward encountered so far (RS5 < T and RS4 > RS5

< RS6); the reinforcement learning algorithm continues the search process. If all
exercised paths of the decision tree are cycles, the algorithm stops and chooses the
path leading to a state with the maximum reward.

7.4 Green Cloud Scheduler: A Load Balancer
for OpenNebula

We have used the context-aware load balancing system presented in Sect. 7.3 to
implement the Green Cloud Scheduler (GCS) as a proof of concept implementation
which augments OpenNebula [6] Cloud Management Middleware with energy-

7 Context-Aware and Reinforcement Learning-Based Load Balancing System … 141

aware task management features. OpenNebula is a middleware for managing virtu-
alized clouds. OpenNebula offers functionalities for VM creation and deployment
on a specific server and VMmigration from a server to another, etc. GCS is available
on the OpenNebula Ecosystem official page [7], fromwhich potential DCsmanagers
can download, install and use it.

GCS substitutes the default OpenNebula scheduler and:

• Maintains low fragmentation of the available cloud computing resources by bal-
ancing the cloud VMs in an energy efficient manner;

• Optimizes the number of servers needed to host the cloud VMs;
• Turns on/off servers considering the workload characteristics.

The decrease in available resources fragmentation reduces the number of servers
needed to host theVMs, leaving room for turning off the unused servers. For obtaining
low fragmentation, VMs aremigrated between servers to better balance the avail-able
workload and exploit the available computing resources.

For cloud context monitoringGCS takes advantage of theOpenNebula Java OCA
API [33] to access the OpenNebula servers pool and VMs pool for retrieving charac-
teristics such as: (i) memory, CPU number of cores, CPU current frequency, etc.,
(ii) information about the clouds VMs (pending VMs, their current state, etc.), and
(iii) clouds available computational resources. For finding the maximum CPU fre-
quency for a server the cpufreq-utils tool is used. To retrieve the MAC addresses
for each server defined in OpenNebula servers pool, the GCS reads the data from
./config/arpTable and if the MAC for a server is not defined, GCS pings the server,
issues an arp and parses the output. The retrieved MAC address is then stored in the
./config/arpTable for later use.

For load balancing actions enforcement GCS uses the following stack of software
resources: CentOS5.5Linux operating system [34],KVM(Kernel-basedVirtualMa-
chine) [35], OpenNebula Middleware [6], Wake-on-LAN [36] and OpenSSH [37].
CentOS is the Linux distribution used by the GCS as servers operating system. GCS
interacts directly with CentOS for enforcing server Turn-off adaptation action. KVM
is a hypervisor which deals with the virtualization of the server hardware resources
so that the workload applications may be executed and is installed on top of CentOS.
The hypervisor also offers functionalities for monitoring and managing a VM. GCS
uses the Wake-on-LAN tool to remotely wake up the DC servers, while OpenSSH is
used to turn off the DC servers remotely. Table7.3 shows (i) the actions considered
by the GCS and (ii) examples on how these actions are enforced at the cloud level.

Table 7.3 GCS actions enforcement

Action Enforcement

Tool Example

Deploy VM OpenNebula VM vm = new VM(VM_ID, openNebulaClient)
vm.deploy(DESTINATION_SERVER_ID)

Migrate VM vm.migrate(DESTINATION_SERVER_ID)

Wakeup server Wake-on-LAN >wakeonlan SERVER_MAC

Turnoff server CentOS/OpenSSH >ssh IP echo disk >/sys/power/state

142 I. Anghel et al.

Fig. 7.4 GCS load balancing sequence diagram

GCS is deployed behind the OpenNebula Middleware and bypasses the default
OpenNebula Scheduler and solely manages and balances the cloud-based DC work-
load (i.e., VMs). In this case, the DC clients are unaware of GCS (see Fig. 7.4).

The VMs are created using the OpenNebula API and placed as pending in the
OpenNebula VM Pool. GCS periodically queries the OpenNebula VM pool for
pending VMs, finds the most appropriate server on which the pending VMs should
be deployed and executes the deployment actions using the OpenNebula API (see
Fig. 7.4 sequence diagram).

7 Context-Aware and Reinforcement Learning-Based Load Balancing System … 143

At the same time, when inefficient Cloud Snapshots are detected, VMs are
re-balanced on servers by means of migration actions aiming to reduce the workload
and resources fragmentation and to consolidate the available servers.

7.5 Conclusions

In this chapter, a context-aware adaptive load balancing system for cloud-based DCs
is presented. The system leverages on concepts and techniques specific to context-
aware computing and state of the art metrics and indicators for detecting inefficient
Cloud Snapshots and the workload needed to be re-balanced. The work-load balanc-
ing decision process is based on reinforcement learning which conducts a what-if
analysis based on defined rewards and penalties. The Green Cloud Scheduler is
presented as a proof of concept implementation of the load balancing system. The
scheduler has been accepted as an official OpenNebula ecosystem component for
energy efficient balance of workload in cloud-based DCs.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., et al.: Towards a Better Understanding of Context and
Context-Awareness. In: Proceedings of the 1st International Symposium on Handheld and
Ubiquitous Computing, pp. 304–307 (2000). http://dl.acm.org/citation.cfm?id=743843

2. Data Centres Energy Efficiency Code of Conduct. http://iet.jrc.ec.europa.eu/energyefficiency/
ict-codes-conduct/data-centres-energy-efficiency

3. Industry Outlook: Data Center Energy Efficiency (2014). http://www.datacenterjournal.com/
it/industry-outlook-data-center-energy-efficiency/

4. Data Center Efficiency Assessment. https://www.nrdc.org/energy/files/data-center-efficiency-
assessment-IP.pdf

5. Ardito, L.: Green IT—Available data and guidelines for reducing energy consumption in IT
systems. Sustainable Comput. 4(1), 24–32 (2013)

6. OpenNebula middleware. http://opennebula.org/
7. Green Cloud Scheduller OpenNebula component. http://community.opennebula.org/

ecosystem:green_cloud_scheduler/
8. Murphy, A.: Virtualization defined: eight different ways. White paper (2007). http://www.f5.

com/pdf/white-papers/virtualization-defined-wp.pdf
9. Brasol, S.M.: Analysis of Advantages and Disadvantages to Server Virtualization. Master

Thesis (2009)
10. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure In-VMmonitoring using hardware virtualiza-

tion. In: Proceedings of the 16thACMConference onComputer andCommunications Security,
pp. 477–487 (2009). http://dx.doi.org/10.1145/1653662.1653720

11. Reducing Data Center Energy Consumption, Intel Whitepaper (2010). http://software.intel.
com/file/6577/

12. Talaber, R., Brey, T., Lamers, L.: Using Virtualization to Improve Data Center Efficiency,
Green Grid White paper (2009). http://www.thegreengrid.org/Global/Content/white-papers/
Using-Virtualization-to-Improve-Data-Center-Efficiency

http://dl.acm.org/citation.cfm?id=743843
http://iet.jrc.ec.europa.eu/energyefficiency/ict-codes-conduct/data-centres-energy-efficiency
http://iet.jrc.ec.europa.eu/energyefficiency/ict-codes-conduct/data-centres-energy-efficiency
http://www.datacenterjournal.com/it/industry-outlook-data-center-energy-efficiency/
http://www.datacenterjournal.com/it/industry-outlook-data-center-energy-efficiency/
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://opennebula.org/
http://community.opennebula.org/ecosystem:green_cloud_scheduler/
http://community.opennebula.org/ecosystem:green_cloud_scheduler/
http://www.f5.com/pdf/white-papers/virtualization-defined-wp.pdf
http://www.f5.com/pdf/white-papers/virtualization-defined-wp.pdf
http://dx.doi.org/10.1145/1653662.1653720
http://software.intel.com/file/6577/
http://software.intel.com/file/6577/
http://www.thegreengrid.org/Global/Content/white-papers/Using-Virtualization-to-Improve-Data-Center-Efficiency
http://www.thegreengrid.org/Global/Content/white-papers/Using-Virtualization-to-Improve-Data-Center-Efficiency

144 I. Anghel et al.

13. Niles, S., Donovan, P.: Virtualization and Cloud Computing: Optimized Power, Cooling, and
Management Maximizes Benefits, White Paper Published by APC Schneider Electric (2012).
http://www.apcmedia.com/salestools/SNIS-7AULCP_R3_EN.pdf

14. Srikantaiah, S., Kansal, A., Zhao, F.: Energy Aware Consolidation for Cloud Computing,
Microsoft Research (2009)

15. Wolf, C.: Themyths of virtualmachine consolidation (2006).www.SearchServerVirtualization.
com

16. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.: Virtual Machine Power Metering
and Provisioning, SOCC (2010)

17. Stoess, J., Lang, C., Bellosa, F.: Energy management for hypervisor-based virtual machines.
In: USENIX Annual Technical Conference (2007)

18. Nathuji, R., England, P., Sharma, P., Singh, A.: Feedback Driven QoS-Aware Power Budgeting
for Virtualized Servers, Microsoft Research (2010)

19. Verma, A., Dasgupta, G., Kumar Nayak, T., et al.: Server workload analysis for power mini-
mization using consolidation. In: USENIX Annual Technical Conference (2009)

20. Zhu, Q., Zhu, J., Agrawal G.: Power-aware consolidation of scientific workflows in virtualized
environments. High Performance Comput. Networking, Storage Anal. 1–12 (2010). http://dx.
doi.org/10.1109/SC.2010.43

21. Uddin, M., Rahman, A.A.: Server consolidation: an approach to make data centers energy
efficient. Green Int. J. Sci. Eng. Res. 1(1), (2010). http://arxiv.org/abs/1010.5037

22. Borgetto, D., Stolf, P., Da Costa, G., Pierson, J.M.: Energy aware autonomic manager. In: 1st
International Conference on Energy-Efficient Computing and Net-working (2010)

23. Torres, J., Carrera, D., Beltran, V.: Tailoring resources: the energy efficient consolidation
strategy goes beyond virtualization. In: International Conference on Autonomic Computing,
pp. 197–198 (2008). http://dx.doi.org/10.1109/ICAC.2008.11

24. Jerger, N.E., Vantrease, D., Lipasti, M.: An Evaluation of server consolidation workloads for
multi-core designs. In: Proceedings of the 2007 IEEE 10th International Symposium onWork-
load Characterization, pp. 47–56 (2007). http://dx.doi.org/10.1109/IISWC.2007.4362180

25. Patel, C., Sharma, R., Bash, C., Graupner, S.: Energy aware grid: global workload placement
based on energy efficiency. In: International Mechanical Engineering Congress and Exposition
(2003). http://www.hpl.hp.com/techreports/2002/HPL-2002-329.html

26. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N.: Power and per-formance management
of virtualized computing environments via lookahead control. In: Proceedings of the 2008
International Conference on Autonomic Computing (2008). http://dx.doi.org/10.1109/ICAC.
2008.31

27. Feller, E., Rillingy, L., Morin, C.: Energy-aware ant colony based workload placement in
clouds. In: Proceedings of the IEEE/ACM 12th International Conference on Grid Computing,
pp. 26–33 (2011). http://dx.doi.org/10.1109/Grid.2011.13

28. Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual
machines using workload-aware consolidation techniques. J. Supercomputing (2011). http://
dx.doi.org/10.1007/s11227-011-0658-5

29. Nagios, the Industry Standard in IT Infrastructure Monitoring. http://www.nagios.org/
30. The Green Grid Data Center Power Efficiency Metrics: PUE and DCiE, Green Grid

White Paper (2007). http://www.thegreengrid.org/Global/Content/white-papers/The-Green-
Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE

31. Stanley, J.R., Brill, K.G., Koomey, J.G.: Four Metrics Define Data Center Greenness,
Uptime Institute Whitepaper (2007). http://www.dcxdc.ru/files%5C4ede4eff-13b0-49d9-
b4da-b0406bfc190e.pdf

32. Dayan, P., Watkins, C.: Reinforcement learning. Encycl. Cogn. Sci. (1999). http://www.gatsby.
ucl.ac.uk/~dayan/papers/dw01.pdf

33. OpenNebula OCA API. http://archives.opennebula.org/documentation:archives:rel2.0:java
34. CentOS Overview. http://www.centos.org/
35. Kernel Based Virtual Machine. http://www.linux-kvm.org/page/Main_Page
36. Wake-On-LAN. http://wakeonlan.me/
37. OpenSSH. http://www.openssh.com/

http://www.apcmedia.com/salestools/SNIS-7AULCP_R3_EN.pdf
www.SearchServerVirtualization.com
www.SearchServerVirtualization.com
http://dx.doi.org/10.1109/SC.2010.43
http://dx.doi.org/10.1109/SC.2010.43
http://arxiv.org/abs/1010.5037
http://dx.doi.org/10.1109/ICAC.2008.11
http://dx.doi.org/10.1109/IISWC.2007.4362180
http://www.hpl.hp.com/techreports/2002/HPL-2002-329.html
http://dx.doi.org/10.1109/ICAC.2008.31
http://dx.doi.org/10.1109/ICAC.2008.31
http://dx.doi.org/10.1109/Grid.2011.13
http://dx.doi.org/10.1007/s11227-011-0658-5
http://dx.doi.org/10.1007/s11227-011-0658-5
http://www.nagios.org/
http://www.thegreengrid.org/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE
http://www.thegreengrid.org/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE
http://www.dcxdc.ru/files%5C4ede4eff-13b0-49d9-b4da-b0406bfc190e.pdf
http://www.dcxdc.ru/files%5C4ede4eff-13b0-49d9-b4da-b0406bfc190e.pdf
http://www.gatsby.ucl.ac.uk/~dayan/papers/dw01.pdf
http://www.gatsby.ucl.ac.uk/~dayan/papers/dw01.pdf
http://archives.opennebula.org/documentation:archives:rel2.0:java
http://www.centos.org/
http://www.linux-kvm.org/page/Main_Page
http://wakeonlan.me/
http://www.openssh.com/

Part II
Big Data Analysis

Chapter 8
High-Performance Storage Support
for Scientific Big Data Applications
on the Cloud

Dongfang Zhao, Akash Mahakode, Sandip Lakshminarasaiah
and Ioan Raicu

8.1 Introduction

While cloud computing has become one of the most prevailing paradigms for big
data applications, many legacy scientific applications are still struggling to leverage
this new paradigm. One challenge for scientific big data applications to be deployed
on the cloud lies in the storage subsystem. Popular file systems such as HDFS [1]
are designed for many workloads in data centers that are built with commodity
hardware. Nevertheless, many scientific applications deal with a large number of
small files [2]—aworkload that is notwell supported by the data parallelism provided
by HDFS. The root cause to the storage discrepancy between scientific applications
and many commercial applications on cloud computing stems from their original
design goals. Scientific applications assume their data to be stored in remote parallel
file systems, and cloud platforms provide node-local storage available on each virtual
machine.

This chapter shares our views on how to design storage systems for scientific big
data applications on the cloud. Based on the literature and our own experience on big
data, cloud computing, and high-performance computing (HPC) in the last decade,
we believe that cloud storage would need to provide the following three essential
services for scientific big data applications:

D. Zhao (B)
University of Washington, Seattle, WA, USA
e-mail: dzhao@cs.washington.edu

A. Mahakode · S. Lakshminarasaiah · I. Raicu
Illinois Institute of Technology, Chicago, IL, USA
e-mail: amahakod@hawk.iit.edu

S. Lakshminarasaiah
e-mail: slakshm6@hawk.iit.edu

I. Raicu
e-mail: iraicu@cs.iit.edu

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_8

147

148 D. Zhao et al.

1. Scalable metadata accesses. Conventional centralized mechanisms for man-
aging metadata on cloud computing, such as GFS [3] and HDFS [1], would not
suffice for the extensive metadata accesses of scientific big data applications.

2. Optimized data write. Due to the nature of scientific big data applications,
checkpointing is the de facto approach to achieve fault tolerance. This implies that
the underlying storage system is expected to be highly efficient on data write as
checkpointing itself involves frequent data write.

3. Localized file read. When a failure occurs, some virtual machines (VM) need
to restart. Instead of transferring VM images from remote file systems, it would be
better to keep a local copy of the image and load it from the local disk if at all possible.

In order to justify the above arguments,we analyze four representativefile systems.
Twoof themare originated fromcloud computing (S3FS [4],HDFS [1]). S3FS is built
on top of the S3 storage offered byAmazonEC2 cloud as a remote shared storagewith
the added POSIX support with FUSE [5]. HDFS is an open-source clone of Google
File System (GFS [3]) without POSIX support. The other two file systems were
initially designed for high-performance computing (Ceph [6], FusionFS [7, 8]). Ceph
employs distributed metadata management and the CRUSH [9] algorithm to balance
the load. FusionFS is first introduced in [10] and supports several unique features
such as erasure coding [11], provenance [12], caching [13, 14], compression [15,
16], and serialization [17]. This study involves two test beds: a conventional cluster
Kodiak [18] and a public cloud Amazon EC2 [19].

The remainder of this chapter is organized as follows. Section 8.2 discusses the
scalability of metadata accesses. We present the design and performance of achiev-
ing optimized file write and localized file read in Sects. 8.3 and 8.4, respectively.
Section 8.5 details a real system that employs the proposed design principles as well
as unique features in caching, compression, GPUs, provenance, and serialization.
We review important literature in big data systems and HPC systems in Sect. 8.6 and
finally conclude this chapter in Sect. 8.7.

8.2 Scalable Metadata Accesses

State-of-the-art distributed file systems on cloud computing, such as HDFS [1], still
embrace the decade-old design of a centralized metadata server. The reason of such a
design is due to the workload characteristic in data centers. More specifically, a large
portion of workloads in data centers involve mostly large files. For instance, HDFS
has a default 64 MB chunk size (typically 128MB though), which implicitly implies
that the target workload has many files larger than 64 MB; HDFS is not designed
or optimized for files smaller than 64 MB. Because many large files are expected,
the metadata accesses are not intensive and one single metadata server in many
cases is sufficient. In other words, a centralized metadata server in the conventional
workloads of cloud computing is not a performance bottleneck.

The centralized design of metadata service, unfortunately, would not meet the
requirement of many HPC applications that deal with a larger number of

8 High-Performance Storage Support for Scientific … 149

Fig. 8.1 Metadata performance comparison

concurrent metadata accesses. HPC applications are, in nature, highly different than
those conventionally deployed on cloud platforms. One of the key differences is file
sizes. For instance, Welch and Noer [20] report that 25–90% of all the 600 million
files from 65 Panasas [21] installations are 64 KB or smaller. Such a huge number of
small files pose a significantly higher pressure to the metadata server than the cloud
applications. A single metadata server would easily become the bottleneck in these
metadata-intensive workloads.

A distributed approach to manage metadata seems to be the natural choice for
scientific applications on the cloud. Fortunately, several systems (for example, [6,
7]) have employed this design principle. In the remainder of this section, we pick
FusionFS and HDFS as two representative file systems to illustrate the importance of
a distributed metadata service under intensive metadata accesses. Before discussing
the experiment details, we provide a brief introduction of the metadata management
of both systems.

HDFS, as a clone of the Google File System [3], has a logically1 single metadata
server (i.e., namenode).The replication of the namenode is for fault tolerance rather
than balancing the I/O pressure. That is, all the metadata requests are directed to the
single namenode—a simple, yet effective design decision for the cloud workloads.
FusionFS is designed to support extremely high concurrency of metadata accesses.
It achieves this goal by dispersing metadata to as many nodes as possible. This
might be overkill for small- to medium-scale applications, but is essential for those
metadata-intensive workloads that are common in scientific applications.

On Amazon EC2, we compare the metadata performance of all four file systems,
i.e., FusionFS, S3, HDFS, and CephFS. The workload we use is asking each client to
write 10,000 empty files to the according file system. Results are reported in Fig. 8.1.

There are a few observations worth further discussing. First, HDFS outperforms
other peers on four nodes and scales well toward 16 nodes. And yet, its scalability
is not as good as FusionFS, whose metadata throughput is significantly higher than

1because it gets replicated on multiple nodes, physically.

150 D. Zhao et al.

HDFS although the former delivers a lower throughput on four nodes. Second, S3
scales well but is hardly competitive compared to other systems because only with 64
nodes its performance becomes comparable to others on four nodes. Third, CephFS’s
scalability is poor even from 4 to 16 nodes. Even worse, its performance is degraded
when scaling from 16 to 64 nodes.

8.3 Optimized Data Write

Data write is one of the most common I/O workloads in scientific applications due
to their de facto mechanism to achieve fault tolerance—checkpointing. Essentially,
checkpointing asks the system to periodically persist its memory states to the disks,
which involves a larger number of data writes. The persisted data only need to be
loaded (i.e., read) after a failure occurs in a completely nondeterministic manner. As
the system is becoming increasingly larger, the time interval between consecutive
checkpoints is predicted to be dramatically smaller in future systems. [22] From
storage’s perspective, cloud platform will have to provide highly efficient data write
throughput for scientific applications.

Unfortunately, HDFS could hardly provide optimized data write due to the meta-
data limitation discussed in Sect. 8.2. Figure 8.2 shows the write throughput of
FusionFS and HDFS on Kodiak. Similarly to the metadata trend, the write through-
put of HDFS also suffers poor scalability beyond 128 nodes.

Another option in cloud platforms is the remote shared storage. It usually provides
a unified interface and scalable I/O performance for applications. One example is
the S3 storage on Amazon EC2 cloud. S3 does not only provide a set of API but also
leverages FUSE [5] to serve as a fully POSIX-compliant file system named S3FS.
Therefore S3FS is becoming a popular replacement of the conventional remote shared
file systems [23, 24] in HPC.

Fig. 8.2 Write throughput of FusionFS and HDFS are compared

8 High-Performance Storage Support for Scientific … 151

Fig. 8.3 Scalable write
throughput on Amazon EC2

We compare all the file systems in discussion so far on the same testbed, i.e.,
m3.large instance on Amazon EC2. The experiment is in modest scale, from four
nodes to 16 nodes, and to 64 nodes in a weak-scaling manner. That is, every node
works on the same amount of data—in this case, writing a hundred of 100 MB files
to the respective file system.

FromFig. 8.3we observe that all these systems scalewell up to 64 nodes. Note that
HDFSandS3were designed for data centers and cloud computing,whileCephFS and
FusionFS targeted at scientific applications and high-performance computing.While
CephFS is relatively slower than others, FusionFS performs faster comparatively to
HDFS and S3 on Amazon EC2 even though FusionFS was not originally designed
for data centers.With FusionFS as an example, we believe in the near future a gradual
convergence, from the perspective of storage and file system, is emerging between
communities of cloud computing and high-performance computing.

We also compare these systems with respect to different file sizes, as shown in
Fig. 8.4. Our results show that starting from 1 MB, file size affects little to the write
performance on all systems. However, we observe two dramatical extremes on 1 KB

Fig. 8.4 Write throughput of different file sizes

152 D. Zhao et al.

files: HDFS achieves an impressing overall throughput on these small files while S3
is extremely slow. This indicates that for applications where small files dominate,
HDFS is in favor with regards to performance.

8.4 Localized File Read

File read throughput is an important metric and is often underestimated since a lot of
effort is put on data write as discussed in Sect. 8.3.When a VM is booted or restarted,
the image needs to be loaded into the memory and this is becoming a challenging
problem in many cloud platforms [25, 26]. Therefore a scalable read throughput is
highly desirable for the cloud storage, which urges us to revisit the conventional
architecture where files are typically read from remote shared file systems. In HPC
this means that the remote parallel file system such as GPFS and Lustre, and in cloud
platforms such as Amazon EC2 it implies the remote S3 storage, or the S3FS file
system.

We compare the read performance of all the file systems on the m3.large instance
of Amazon EC2. Similarly, we scale the experiment from four nodes to 16 nodes,
and to 64 nodes in a weak-scaling manner. Every node read a hundred of 100 MB
files from the respective file system. Figure 8.5 shows that all these systems scale
well up to 64 nodes.

We also compare the systems of interest with respect to their block sizes. In
Fig. 8.6, we let each system read different number of files of various sizes, all on
64 Amazon EC2 m3.large instances. For example, “1k–100KB” means the system
writes 1,000 files of 100 KB.

We observe that for all systems, once the file size is 1 MB and beyond, the read
throughput is relatively stable, meaning the I/O bandwidth is saturated. We also note
that S3 performs significantly worse than others for files of size 1 KB, although it
quickly catches up others at 10 KB and beyond. This suggests that S3 would not be
an ideal medium for applications where small files dominate.

Fig. 8.5 Scalable read
throughput on Amazon EC2

8 High-Performance Storage Support for Scientific … 153

Fig. 8.6 Read throughput of various file sizes

8.5 Put It Altogether: The FusionFS Filesystem

In the previous three sections we discuss three main design criteria for the next-
generation HPC storage system on the cloud. This section will present a real system,
namely FusionFS, that implements all the aforementioned designs as well as its
unique features such as cooperative caching, GPU acceleration, dynamic compres-
sion, lightweight provenance, and parallel serialization.

8.5.1 Metadata Management

FusionFS has different data structures for managing regular files and directories. For
a regular file, the field addr stores the node where this file resides. For a directory,
there is a field filelist to record all the entries under this directory. This filelist field
is particularly useful for providing an in-memory speed for directory read such as
“ls/mnt/fusionfs”. Nevertheless, both regular files and directories share some com-
mon fields, such as timestamps and permissions, which are commonly found in
traditional i-nodes.

The metadata and data on a local node are completely decoupled: a regular file’s
location is independent of its metadata location. This flexibility allows us to apply
different strategies to metadata and data management, respectively. Moreover, the
separation between metadata and data has the potential to plug in alternative com-
ponents to metadata or data management, making the system more modular.

Besides the conventional metadata information for regular files, there is a special
flag in the value indicating if this file is being written. Specifically, any client who
requests to write a file needs to set this flag before opening the file, and will not reset
it until the file is closed. The atomic compare-swap operation supported by DHT
[27, 28] guarantees the file consistency for concurrent writes.

Another challenge on the metadata implementation is on the large-directory per-
formance issues. In particular, when a large number of clients write many small files

154 D. Zhao et al.

on the same directory concurrently, the value of this directory in the key-value pair
gets incredibly long and responds extremely slowly. The reason is that a client needs
to update the entire old long string with the new one, even though the majority of the
old string is unchanged. To fix that, we implement an atomic append operation that
asynchronously appends the incremental change to the value. This approach is simi-
lar to Google File System [3], where files are immutable and can only be appended.
This gives us excellent concurrent metadata modification in large directories, at the
expense of potentially slower directory metadata read operations.

8.5.2 File Write

Before writing to a file, the process checks if the file is being accessed by another
process. If so, an error number is returned to the caller. Otherwise the process can do
one of the following two things: If the file is originally stored on a remote node, the
file is transferred to the local node in the fopen() procedure, after which the process
writes to the local copy. If the file to be written is right on the local node, or it is a
new file, then the process starts writing the file just like a system call.

The aggregate write throughput is obviously optimal because file writes are asso-
ciated with local I/O throughput and avoids the following two types of cost: (1) the
procedure to determine towhich node the datawill bewritten, normally accomplished
by pinging the metadata nodes or some monitoring services, and (2) transferring the
data to a remote node. It should be clear that FusionFS works at the file level, thus
chunking the file is not an option. Nevertheless, we will support chunk-level data
movement in the next release of FusionFS. The downside of this file write strategy
is the poor control on the load balance of compute node storage. This issue could
be addressed by an asynchronous re-balance procedure running in the background,
or by a load-aware task scheduler that steals tasks from the active nodes to the more
idle ones.

When the process finishes writing to a file that is originally stored in another node,
FusionFS does not send the newly modified file back to its original node. Instead,
the metadata of this file is updated. This saves the cost of transferring the file data
over the network.

8.5.3 File Read

Unlike file write, it is impossible to arbitrarily control where the requested data reside
for file read. The location of the requested data is highly dependent on the I/O pattern.
However, we could determine which node the job is executed on by the distributed
workflow system such as Swift [29]. That is, when a job on node A needs to read
some data on node B, we reschedule the job on node B. The overhead of rescheduling
the job is typically smaller than transferring the data over the network, especially

8 High-Performance Storage Support for Scientific … 155

for data-intensive applications. In our previous work [30], we detailed this approach,
and justified it with theoretical analysis and experiments on benchmarks and real
applications.

Indeed, remote readings are not always avoidable for some I/O patterns such as
merge sort. In merge sort, the data need to be joined together, and shifting the job
cannot avoid the aggregation. In such cases, we need to transfer the requested data
from the remote node to the requesting node.

8.5.4 Hybrid and Cooperative Caching

When the node-local storage capacity is limited, remote parallel filesystems should
coexist with FusionFS to store large-sized data. In some sense, FusionFS is regarded
as a caching middleware between the main memory and remote parallel filesystems.
We are interested in what placement policies (i.e., caching strategies) are beneficial
to HPC workloads.

Our first attempt is a user-level caching middle where on every compute node,
assuming a memory-class device (for example, SSD) is accessible along with a
conventional spinning hard drive. That is, each compute node is able to manipulate
data on hybrid storage systems. The middleware, named HyCache [14], speeds up
HDFS by up to 28%.

Our second attempt is a cooperative caching mechanism across all the compute
nodes, called HyCache+ [13]. HyCache+ extends HyCache in terms of network
storage support, higher data reliability, and improved scalability. In particular, a
two-stage scheduling mechanism called 2-Layer Scheduling (2LS) is devised to
explore the data locality of cached data on multiple nodes. HyCache+ delivers two
orders of magnitude higher throughput than the remote parallel filesystems, and 2LS
outperforms conventional LRU caching by more than one order of magnitude.

8.5.5 Accesses to Compressed Data

Conventional data compression embedded in filesystems naively applies the com-
pressor to either the entire file or every block of the file. Both methods have limita-
tions on either inefficient data accesses or degraded compression ratio. We introduce
a new concept called virtual chunks, which enable efficient random accesses to the
compressed files while retaining high compression ratio.

The key idea [16] is to append additional references to the compressed files so
that a decompression request could start at an arbitrary position. Current system
prototype [15] assumes the references are equidistant, and experiments show that
virtual chunks improve random accesses by 2× speedup.

156 D. Zhao et al.

8.5.6 Space-Efficient Data Reliability

The reliability of distributed filesystems is typically achieved through data replica-
tion. That is, a primary copy serves most requests, and there are a number of backup
copies (replicas) that would become the primary copy upon a failure.

One concern with the conventional approach is its space efficiency; for example,
two replicas imply poor 33% space efficiency. On the other hand, erasure coding has
been proposed to improve the space efficiency; unfortunately it is criticized on its
computation overhead. We integrated GPU-accelerated erasure coding to FusionFS
and report the performance in [11]. Results showed that erasure coding could improve
FusionFS performance by up to 1.82×.

8.5.7 Distributed Data Provenance

The traditional approach to track application’s provenance is through a centralized
database. To address this performance bottleneck on large-scale systems, in [31]
we propose a lightweight database on every compute node. This allows every par-
ticipating node to maintain its own data provenance, and results in highly scalable
aggregate I/O throughput. Admittedly, an obvious drawback of this approach is on the
interaction among multiple physical databases: the provenance overhead becomes
unacceptable when there is heavy traffic among peers.

To address the above drawback, we explore the feasibility of tracking data prove-
nance in a completely distributedmanner in [12].We replace the database component
by a graph-like hashtable data structure, and integrate it into the FusionFS filesystem.
With a hybrid granularity of provenance information on both block- and file-level,
FusionFS achieves over 86% system efficiency on 1,024 nodes. A query interface is
also implemented with small performance overhead as low as 5.4% on 1,024 nodes.

8.5.8 Parallel Serialization

We have explored how to leverage modern computing systems’ multi-cores to
improve the serialization and deserialization speed of large objects. [17] Rather
than proposing new serialization algorithms, we tackle the problem from a system’s
perspective. Specifically, we propose to leverage multiple CPU cores to split a large
object into smaller sub-objects, so to be serialized in parallel. While data parallelism
is not a new idea in general, it has never been applied to data serialization and poses
new problems. For instance, serializing multiple chunks of a large object incurs addi-
tional overhead such as metadata maintenance, thread and process synchronization,
resource contention. In addition, the granularity (i.e., the number of sub-objects)

8 High-Performance Storage Support for Scientific … 157

is a machine-dependent choice: the optimal number of concurrent processes and
threads might not align with the available CPU cores.

In order to overcome these challenges and better understand whether the pro-
posed approach could improve the performance of data serialization of large objects,
we provide detailed analysis on the system design, for example, how to determine
the sub-object’s granularity for optimal performance and how to ensure that the
performance gain is larger than the cost. To demonstrate the effectiveness of our pro-
posed approach, we implemented a system prototype called parallel protocol buffers
(PPB)by extending awidely usedopen-source serializationutility (Google’s Protocol
Buffers [32]). We have evaluated PPB on a variety of test beds: a conventional Linux
server, the Amazon EC2 cloud, and an IBM Blue Gene/P supercomputer. Experi-
mental results confirm that the proposed approach could significantly accelerate the
serialization process. In particular, PPB could accelerate the metadata interchange
3.6× faster for FusionFS.

8.6 Related Work

Conventional storage in HPC systems for scientific applications are mainly remote to
compute resources. Popular systems include GPFS [23], Lustre [24], PVFS [33]. All
these systems are typically deployed on a distinct cluster from compute nodes. The
architecture with separated compute- and storage-resources, which was designed
decades ago, has shown its limitation for modern applications that are becoming
increasingly data-intensive [7].

Cloud computing, on the other hand, is built on the commodity hardware where
local storage is typically available for virtual computing machines. The de facto
node-local file system (Google File System [3], HDFS [1]), however, can be hardly
leveraged by scientific applications out of the box due to the concerns on small
file accesses, POSIX interface, and so forth. Another category of storage in the
cloud is similar to the conventional HPC solution—a remote shared storage such
as Amazon S3. A POSIX-compliant file system built on S3 is also available named
S3FS [4]. Unfortunately its throughput performance usually becomes a bottleneck
of the applications and thus limits its use in practice.

Fortunately, researchers havemade a significant amount of effort [34, 35] to bridge
the gap between two extremes (HPC and cloud computing) of storage paradigms,
particularly in terms of scalability [36]. We observe more and more node-local and
POSIX-compliant storage systems (Ceph [6], FusionFS [7]) being tested on the
cloud.

We will briefly review the unique features provided by FusionFS as follows.

158 D. Zhao et al.

8.6.1 Filesystem Caching

To the best of our knowledge,HyCache is thefirst user-level POSIX-compliant hybrid
caching for distributed file systems. Some of our previous work [30, 37] proposed
data caching to accelerate applications by modifying the applications and/or their
workflow, rather than at the filesystem level. Other existing work requires modifying
OS kernel, or lacks of a systematic caching mechanism for manipulating files across
multiple storage devices, or does not support the POSIX interface. Any of the these
concerns would limit the system’s applicability to end users. We will give a brief
review of previous studies on hybrid storage systems.

Some recent work reported the performance comparison between SSD and HDD
in more perspectives [38, 39]. Hystor [40] aims to optimize of the hybrid storage of
SSDs and HDDs. However it requires to modify the kernel which might cause some
issues. A more general multitiering scheme was proposed in [41] which helps decide
the needed numbers of SSD/HDDs and manage the data shift between SSDs and
HDDs by adding a “pseudo device driver,” again, in the kernel. iTransformer [42]
considers the SSD as a traditional transient cache in which case data needs to be
written to the spinning hard disk at some point once the data is modified in the SSD.
iBridge [43] leverages SSD to serve request fragments and bridge the performance
gap between serving fragments and serving large sub-requests. HPDA [44] offers a
mechanism to plug SSDs into RAID in order to improve the reliability of the disk
array. SSD was also proposed to be integrated to the RAM level which makes SSD
as the primary holder of virtual memory [45]. NVMalloc [46] provides a library to
explicitly allow users to allocate virtual memory on SSD. Also for extending virtual
memory with Storage Class Memory (SCM), SCMFS [47] concentrates more on
the management of a single SCM device. FAST [48] proposed a caching system to
pre-fetch data in order to quicken the application launch. In [49] SSD is considered
as a read-only buffer and migrate those random-writes to HDD.

A thorough review of classical caching algorithms on large-scale data-intensive
applications is recently reported in [50]. HyCache+ is different from the classical
cooperative caching [51] in that HyCache+ assumes persistent underlying storage
and manipulates data at the file level. As an example of distributed caching for dis-
tributed file systems, Blue Whale Cooperative Caching (BWCC) [52] is a read-only
caching system for cluster file systems. In contrast, HyCache+ is a POSIX-compliant
I/O storage middleware that transparently interacts with the underlying parallel file
systems. Even though the focus of this chapter lies on the 2-layer hierarchy of a local
cache (e.g., SSD) and a remote parallel file system (e.g., GPFS [23]), the approach
presented in HyCache+ is applicable to multitier caching architecture as well. Mul-
tilevel caching gains much research interest, especially in the emerging age of cloud
computing where the hierarchy of (distributed) storage is being redefined with more
layers. For example, Hint-K [53] caching is proposed to keep track of the last K
steps across all the cache levels, which generalizes the conventional LRU-K algo-
rithm concerned only on the single-level information.

8 High-Performance Storage Support for Scientific … 159

There are extensive studies on leveraging data locality for effective caching. Block
Locality Caching (BLC) [54] captures the backup and always uses the latest local-
ity information to achieve better performance for data deduplication systems. The
File Access corRelation Mining and Evaluation Reference model (FARMER) [55]
optimizes the large-scale file system by correlating access patterns and semantic
attributes. In contrast, HyCache+ achieves data locality with a unique mix of two
principles: (1) write is always local, and (2) read locality depends on the novel 2LS
mechanism which schedules jobs in a deterministic manner followed by a local
heuristic replacement policy.

While HyCache+ presents a pure software solution for distributed cache, some
orthogonal work focuses on improving caching from the hardware perspective.
In [56], a hardware design is proposed with low overhead to support effective shared
caches in multicore processors. For shared last-level caches, COOP [57] is proposed
to only use one bit per cache line for re-reference prediction and optimize both local-
ity and utilization. The REDCAP project [58] aims to logically enlarge the disk cache
using a small portion of main memory, so that the read time could be reduced. For
Solid-StateDrive (SSD), a newalgorithmcalled lazy adaptive replacement cache [59]
is proposed to improve the cache hit and prolong the SSD lifetime.

Power-efficient caching has drawn a lot of research interests. It is worth mention-
ing that HyCache+ aims to better meet the need of high I/O performance for HPC
systems, and power consumption is not the major consideration at this point. Nev-
ertheless, it should be noted that power consumption is indeed one of the toughest
challenges to be overcome in future systems. One of the earliest work [60] tried to
minimize the energy consumption by predicting the access mode and allowing cache
accesses to switch between the prediction and the access modes. Recently, a new
caching algorithm [61] was proposed to save up to 27% energy and reduce the mem-
ory temperature up to 5.45 ◦Cwith negligible performance degradation. EEVFS [62]
provides energy efficiency at the file system level with an energy-aware data layout
and the prediction on disk idleness.

While HyCache+ is architected for large-scale HPC systems, caching has been
extensively studied in different subjects and fields. In cloud storage, Update-batched
Delayed Synchronization (UDS) [63] reduces the synchronization cost by buffering
the frequent and short updates from the client and synchronizing with the underlying
infrastructure in a batch fashion. For continuous data (e.g., online video), a new
algorithm called Least Waiting Probability (LWP) [64] is proposed to optimize the
newly definedmetric called userwaiting rate. In geoinformatics, themethodproposed
in [65] considers both global and local temporal-spatial changes to achieve high cache
hit rate and short response time.

The job scheduler proposed in this work takes a greedy strategy to achieve the
optimal solution for the HyCache+ architecture. A more general, and more dif-
ficult, scheduling problem could be solved in a similar heuristic approach [66,
67]. For an even more general combinatorial optimization problem in a network,
both precise and bound-proved low-degree polynomial approximation algorithms
were reported in [68, 69]. Some incremental approaches [70–72] were proposed to

160 D. Zhao et al.

efficiently retain the strong connectivity of a network and solve the satisfiability
problem with constraints.

8.6.2 Filesystem Compression

While the storage system could be better designed to handle more data, an orthog-
onal approach is to address the I/O bottleneck by squeezing the data with com-
pression techniques. One example where data compression gets particularly popular
is checkpointing, an extremely expensive I/O operation in HPC systems. In [73], it
showed that data compressionhad thepotential to significantly reduce the checkpoint-
ing file sizes. If multiple applications run concurrently, a data-aware compression
scheme [74] was proposed to improve the overall checkpointing efficiency. Recent
study [75] shows that combining failure detection and proactive checkpointing could
improve 30% efficiency compared to classical periodical checkpointing. Thus data
compression has the potential to be combined with failure detection and proactive
checkpointing to further improve the system efficiency. As another example, data
compression was also used in reducing the MPI trace size, as shown in [76]. A small
MPI trace enables an efficient replay and analysis of the communication patterns in
large-scale machines.

It should be noted that a compression method does not necessarily need to restore
the absolutely original data. In general, compression algorithms could be categorized
into to two groups: lossy algorithms and lossless algorithms. A lossy algorithm
might lose some (normally a small) percentage of accuracy, while a lossless one
has to ensure the 100% accuracy. In scientific computing, studies [77, 78] show
that lossy compression could be acceptable, or even quite effective, under certain
circumstances. In fact, lossy compression is also popular in other fields, e.g. the
most widely compatible lossy audio and video format MPEG-1 [79]. This section
presents virtual chunks mostly by going through a delta-compression example based
on XOR, which is a lossless compression. It does not imply that virtual chunks
cannot be used in a lossy compression. Virtual chunk is not a specific compression
algorithm, but a system mechanism that is applicable to any splittable compression,
no matter if it is lossy or lossless.

Some frameworks are proposed as middleware to allow applications call high-
level I/O libraries for data compression and decompression, e.g., [80–82]. None
of these techniques take consideration of the overhead involved in decompression
by assuming the chunk allocated to each node would be requested as an entirety.
In contrast, virtual chunks provide a mechanism to apply flexible compression and
decompression.

There is much previous work to study the file system support for data compres-
sion. Integrating compression to log-structured file systems was proposed decades
ago [83],which suggested ahardware compression chip to accelerate the compressing
and decompressing. Later, XDFS [84] described the systematic design and imple-
mentation for supporting data compression in file systems with BerkeleyDB [85].

8 High-Performance Storage Support for Scientific … 161

MRAMFS [86] was a prototype file system to support data compression to leverage
the limited space of nonvolatile RAM. In contrast, virtual trunks represent a general
technique applicable to existing algorithms and systems.

Data deduplication is a general inter-chunk compression technique that only stores
a single copy of the duplicate chunks (or blocks). For example, LBFS [87] was a
networked file system that exploited the similarities between files (or versions of
files) so that chunks of files could be retrieved in the client’s cache rather than
transferring from the server. CZIP [88] was a compression scheme on content-based
naming that eliminated redundant chunks and compressed the remaining (i.e., unique)
chunks by applying existing compression algorithms. Recently, the metadata for the
deduplication (i.e., file recipe) was also slated for compression to further save the
storage space [89].While deduplication focuses on inter-chunk compressing, virtual
chunk focuses on the I/O improvement within the chunk.

Index has been introduced to data compression to improve the compressing and
query speed, e.g., [90, 91]. The advantage of indexing is highly dependent on the
chunk size: large chunks are preferred to achieve high compression ratios in order
to amortize the indexing overhead. Large chunks, however, would cause potential
decompression overhead as explained earlier in this chapter. Virtual chunk over-
comes the large-chunk issue by logically splitting the large chunks with fine-grained
partitions while still keeping the physical coherence.

8.6.3 GPU Acceleration

Recent GPU technology has drawn much research interest of applying these many-
cores for data parallelism. For example, GPUs are proposed to parallelize the XML
processing [92]. In high-performance computing, a GPU-aware MPI was proposed
to enable the inter-GPU communication without changing the original MPI inter-
face [93]. Nevertheless, GPUs do not necessarily provide superior performance;
GPUs might suffer from factors such as small shared memory and weak single-
thread performance as shown in [94]. Another potential drawback of GPUs lies in
the dynamic instrumentation that introduces runtime overhead. Yet, recent study [95]
shows that the overhead could be alleviated by information flow analysis and sym-
bolic execution. In this paper, we leverage GPUs in key-value stores—a new domain
for many-cores.

8.6.4 Filesystem Provenance

As distributed systems become more ubiquitous and complex, there is a growing
emphasis on the need for tracking provenance metadata along with file system meta-
data. A thorough review is presented in [96]. Many Grid systems like Chimera [97]
and the Provenance Aware Service Oriented Architecture (PASOA) [98] provide

162 D. Zhao et al.

provenance tracking mechanisms for various applications. However these systems
are very domain-specific and do not capture provenance at the filesystem level. The
Distributed Provenance Aware Storage System (DPASS) tracks the provenance of
files in a distributed file system by intercepting filesystem operations and sending
this information via a netlink socket to user-level daemon that collects provenance in
a database server [99]. The provenance is however, collected in a centralized fashion,
which is a poor design choice for distributed file systems meant for extreme scales.
Similarly in efficient retrieval of files, provenance is collected centrally [100].

PASS describes global naming, indexing, and querying in the context of sensor
data [101], which is a challenging problem also from system’s perspective [36].
PA-NFS [102] enhances NFS to record provenance in local area networks but does
not consider distributed naming explicitly. SPADE [103] addresses the issue using
storage identifiers for provenance vertices that are unique to a host and requiring
distributed provenance queries to disambiguate vertices by referring to them by the
host on which the vertex was generated as well as the identifier local to that host.

Several storage systems have been considered for storing provenance. ExS-
PAN [104] extends traditional relational models for storing and querying provenance
metadata. SPADE supports both graph and relational database storage and querying.
PASS has explored the use of clouds [101]. Provbase uses Hbase to store and query
scientificworkflow provenance [105]. Further compressing provenance [104], index-
ing [106] and optimization techniques [107] have also been considered. However,
none of these systems have been tested for exascale architectures. To give adequate
merit to the previous designs, we have integrated FusionFS with SPADE as well as
considered FusionFS’s internal storage system for storing audited provenance.

8.6.5 Data Serialization

Many serialization frameworks are developed to support transporting data over dis-
tributed systems. XML [108] represents a set of rules to encoding documents or
text-based files. Another format, namely JSON [109], is treated as a lightweight
alternative to XML in web services and mobile devices as well. While XML and
JSON are the most widely used data serialization format for text-based files, binary
format is also gaining its popularity. A binary version of JSON is available called
BSON [110]. Two other famous binary data serialization frameworks are Google’s
Protocol Buffers [32] and Apache Thrift [111]. Both frameworks are designed to
support lightweight and fast data serialization and deserialization, which could sub-
stantially improve the data communication in distributed systems. The key differ-
ence between Thrift and Protocol Buffers is that the former has the built-in support
for RPC.

Many other serialization utilities are available at the present. Avro [112] is used by
Hadoop for serialization. Internally, it uses JSON [109] to represent data types and
protocols and improves the performance of the Java-based framework. Etch [113]
supports more flexible data models (for example, trees), but it is slower and generates

8 High-Performance Storage Support for Scientific … 163

larger files. BERT [114] supports data format compatible with Erlang’s binary serial-
ization format. Message Pack [115] allows both binary data and non UTF-8 encoded
strings. Hessian [116] is a binary web service protocol that is 2× faster than the Java
serialization with significantly smaller compressed data size. ICE [117] is a middle-
ware platform that supports object-oriented RPC and data exchange. CBOR [118] is
designed to support extremely small message size.

None of the aforementioned systems, however, support data parallelism. Thus
they suffer the low efficiency problem when multiple CPU cores are available par-
ticularly when the data is large in size. PPB, on the other hand, takes advantage of
the idle cores and leverage them for parallelizing the compute-intensive process of
data serialization

Many frameworks are recently developed for parallel data processing. MapRe-
duce [119] is a programming paradigm and framework that allows users to process
terabytes of data over massive-scale architecture in a matter of seconds. Apache
Hadoop [120] is one of the most popular open-source implementations of MapRe-
duce framework. Apache Spark [121] is an execution engine which supports more
types of workload than Hadoop and MapReduce.

Several parallel programming models and paradigms have been existing for
decades.MessagePassing Interface (MPI) a standard formessages exchange between
processes. It greatly reduces the burden from developers who used to consider
detailed protocols in multiprocessing programs and tries to optimize the perfor-
mance in many scenarios. The major implementation includes MPICH [122] and
Open MPI [123]. OpenMP [124] is a set of compiler directives and runtime library
routines that enable the parallelization of code’s execution over shared memory mul-
tiprocessor computers. It supports different platforms and processor architectures,
programming languages, and operating systems. Posix Threads (Pthread) is defined
as a set of C programming types and function calls. It provides standardized pro-
gramming interface to create and manipulate threads, which allow developers to take
full advantage of the capabilities of threads. Microsoft’s Parallel Patterns Library
(PPL) [125] gives an imperative programming model that introduces parallelism to
applications and improves scalability.

Numerous efforts have been devoted to utilizing or improving data parallelism in
cluster and cloud computing environment. Jeon et al. [126, 127] proposed adaptive
parallelization and prediction approaches for search engine query. Lee et al. [128]
presented how to reduce data migration cost and improve I/O performance by incor-
porating parallel data compression on the client side. Klasky et al. [129] proposed
a parallel data-streaming approach with multi-threads to migrate terabytes of scien-
tific data across distributed supercomputer centers. Some work [130–133] proposed
data-parallel architectures and systems for large-scale distributed computing. In [134,
135], authors exploited the data parallelism in a program by dynamically executing
sets of serialization codes concurrently.

Unfortunately, little study exists on data parallelism for data serialization, mainly
because large messages are usually not the dominating cost by convention. PPB [17]
for the first time identifies that large message is a challenging problem from our

164 D. Zhao et al.

observations on real-world applications at Google. We hope our PPB experience
could provide the community insights for designing the next-generation data serial-
ization tools.

8.7 Conclusion

This chapter envisions the characteristics of future cloud storage systems for scien-
tific applications that used to be running on HPC systems. Based on the literature and
our own FusionFS experience, we believe the key designs of future storage system
comprise the fusion of compute and storage resources as well as completely distrib-
uted data manipulation (both metadata and data), namely (1) distributed metadata
accesses, (2) optimized data write, and (3) localized file read.

To make matters more concrete, we then detail the design and implementation of
FusionFS, whose uniqueness lies in its highly scalable metadata and data throughput.
We also discuss its integral features such as cooperative caching, efficient accesses
to compressed data, space-efficient data reliability, distributed data provenance, and
parallel data serialization. All the aforementioned features enable FusionFS to nicely
bridge the storage gap between scientific big data applications and cloud computing.

References

1. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Proceedings of IEEE Symposium on Mass Storage Systems and Technologies (2010)

2. Carns, P., Lang, S., Ross, R., Vilayannur,M., Kunkel, J., Ludwig, T.: Small-file access in paral-
lel file systems. In: Proceedings of IEEE International Symposium on Parallel and Distributed
Processing (2009)

3. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: ACM Symposium on
Operating Systems Principles (2003)

4. S3FS: https://code.google.com/p/s3fs/. Accessed 6 March 2015
5. FUSE: http://fuse.sourceforge.net. Accessed 5 Sept 2014
6. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-

performance distributed file system. In: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (2006)

7. Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R., Raicu,
I.: FusionFS: Toward supporting data-intensive scientific applications on extreme-scale dis-
tributed systems. In: Proceedings of IEEE International Conference on Big Data, pp. 61–70
(2014)

8. Zhao, D., Liu, N., Kimpe, D., Ross, R., Sun, X.H., Raicu, I.: Towards exploring data-intensive
scientific applications at extreme scales through systems and simulations. IEEETrans. Parallel
Distrib. Syst. 1–14 (2015). doi:10.1109/TPDS.2015.2456896

9. Weil, S.A., Brandt, S.A., Miller, E.L., Maltzahn, C.: Crush: controlled, scalable, decentral-
ized placement of replicated data. In: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (2006)

https://code.google.com/p/s3fs/
http://fuse.sourceforge.net
http://dx.doi.org/10.1109/TPDS.2015.2456896

8 High-Performance Storage Support for Scientific … 165

10. Zhao, D., Raicu, I.: Distributed file systems for exascale computing. In: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC ’12), doctoral
showcase (2012)

11. Zhao, D., Burlingame, K., Debains, C., Alvarez-Tabio, P., Raicu, I.: Towards high-
performance and cost-effective distributed storage systems with information dispersal algo-
rithms. In: IEEE International Conference on Cluster Computing (2013)

12. Zhao, D., Shou, C., Malik, T., Raicu, I.: Distributed data provenance for large-scale data-
intensive computing. In: IEEE International Conference on Cluster Computing (2013)

13. Zhao, D., Qiao, K., Raicu, I.: Hycache+: towards scalable high-performance caching middle-
ware for parallel file systems. In: Proceedings of the 14th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pp. 267–276 (2014)

14. Zhao, D., Raicu, I.: HyCache: a user-level caching middleware for distributed file systems. In:
Proceedings of IEEE 27th International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum (2013)

15. Zhao, D., Yin, J., Qiao, K., Raicu, I.: Virtual chunks: on supporting random accesses to scien-
tific data in compressible storage systems. In: Proceedings of IEEE International Conference
on Big Data, pp. 231–240 (2014)

16. Zhao, D., Yin, J., Raicu, I.: Improving the i/o throughput for data-intensive scientific applica-
tions with efficient compression mechanisms. In: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’13), poster session (2013)

17. Zhao, D., Qiao, K., Zhou, Z., Li, T., Zhou, X., Wang, K., Raicu, I.: Exploiting multi-cores for
efficient interchange of large messages in distributed systems. Concurrency Comput.: Pract.
Experience 2015 (accepted)

18. Kodiak: https://www.nmc-probe.org/wiki/Machines:Kodiak. Accessed 5 Sept 2014
19. Amazon EC2: http://aws.amazon.com/ec2. Accessed 6 March 2015
20. Welch, B., Noer, G.: Optimizing a hybrid SSD/HDD HPC storage system based on file size

distributions. In: IEEE 29th Symposium on Mass Storage Systems and Technologies (2013)
21. Nagle, D., Serenyi, D., Matthews, A.: The Panasas activescale storage cluster: delivering scal-

able high bandwidth storage. In: Proceedings of ACM/IEEE Conference on Supercomputing
(2004)

22. Zhao, D., Zhang, D., Wang, K., Raicu, I.: Exploring reliability of exascale systems through
simulations. In: Proceedings of the 21stACM/SCSHighPerformanceComputing Symposium
(HPC) (2013)

23. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of the 1st USENIX Conference on File and Storage Technologies (2002)

24. Schwan, P.: Lustre: building a file system for 1,000-node clusters. In: Proceedings of the
Linux Symposium (2003)

25. Wu,H., Ren, S., Garzoglio,G., Timm, S., Bernabeu,G., Chadwick,K., Noh, S.-Y.:A reference
model for virtual machine launching overhead. IEEE Trans. Cloud Comput. (pp. 99), 1–1
(2014)

26. Wu, H., Ren, S., Garzoglio, G., Timm, S., Bernabeu, G., Noh, S.-Y.: Modeling the virtual
machine launching overhead under fermicloud. In: 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), May 2014

27. Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z., Raicu, I.:
ZHT: A light-weight reliable persistent dynamic scalable zero-hop distributed hash table. In:
Proceedings of IEEE International Symposium on Parallel and Distributed Processing (2013)

28. Li, T., Ma, C., Li, J., Zhou, X., Wang, K., Zhao, D., Raicu, I.: Graph/z: a key-value store based
scalable graph processing system. In: IEEE International Conference on Cluster Computing
(2015)

29. Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu, I.,
Stef-Praun, T.,Wilde,M.: Swift: Fast, reliable, loosely coupled parallel computation. In: IEEE
Congress on Services (2007)

30. Raicu, I., Foster, I.T., Zhao, Y., Little, P., Moretti, C.M., Chaudhary, A., Thain, D.: The quest
for scalable support of data-intensive workloads in distributed systems. In: Proceedings of
ACM International Symposium on High Performance Distributed Computing (2009)

https://www.nmc-probe.org/wiki/Machines:Kodiak
http://aws.amazon.com/ec2

166 D. Zhao et al.

31. Shou, C., Zhao, D., Malik, T., Raicu, I.: Towards a provenance-aware distributed filesystem.
In: 5th Workshop on the Theory and Practice of Provenance (TaPP) (2013)

32. Protocol Buffers: http://code.google.com/p/protobuf/. Accessed 5 Sept 2014
33. Carns, P.H., Ligon, W.B., Ross, R.B., Thakur, R.: PVFS: a parallel file system for linux

clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference (2000)
34. Li, T., Zhou, X., Wang, K., Zhao, D., Sadooghi, I., Zhang, Z., Raicu, I.: A convergence

of key-value storage systems from clouds to supercomputer. Concurrency Comput.: Pract.
Experience (2016)

35. Zhao, D., Yang, X., Sadooghi, I., Garzoglio, G., Timm, S., Raicu, I.: High-performance
storage support for scientific applications on the cloud. In: Proceedings of the 6th Workshop
on Scientific Cloud Computing (ScienceCloud) (2015)

36. Li, T., Keahey, K.,Wang, K., Zhao, D., Raicu, I.: A dynamically scalable cloud data infrastruc-
ture for sensor networks. In: Proceedings of the 6thWorkshop on Scientific Cloud Computing
(ScienceCloud) (2015)

37. Raicu, I., Zhao, Y., Foster, I.T., Szalay, A.: Accelerating large-scale data exploration through
data diffusion. In: Proceedings of the 2008 InternationalWorkshop on Data-aware Distributed
Computing (2008)

38. Li, S., Huang, H.H.: Black-box performance modeling for solid-state drives. In: 2010 IEEE
International Symposium on Modeling, Analysis Simulation of Computer and Telecommu-
nication Systems (MASCOTS) (2010)

39. Rizvi, S., Chung, T.-S.: Flash SSD vs HDD: High performance oriented modern embedded
and multimedia storage systems. In: 2nd International Conference on Computer Engineering
and Technology (ICCET) (2010)

40. Chen, F., Koufaty, D.A., Zhang, X.: Hystor: making the best use of solid state drives in high
performance storage systems. In: Proceedings of the International Conference on Supercom-
puting (2011)

41. Guerra, J., Pucha, H., Glider, J., Belluomini,W., Rangaswami, R.: Cost effective storage using
extent based dynamic tiering. In: Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (2011)

42. Zhang, X., Davis, K., Jiang, S.: iTransformer: using SSD to improve disk scheduling for high-
performance I/O. In: Proceedings of the 2012 IEEE 26th International Parallel andDistributed
Processing Symposium (2012)

43. Zhang, X., Ke, L., Davis, K., Jiang, S.: iBridge: improving unaligned parallel file access with
solid-state drives. In: Proceedings of the 2013 IEEE 27th International Parallel andDistributed
Processing Symposium (2013)

44. Mao, B., Jiang, H., Feng, D.,Wu, S., Chen, J., Zeng, L., Tian, L.: HPDA: a hybrid parity-based
disk array for enhanced performance and reliability. In: 2010 IEEE International Symposium
on Parallel Distributed Processing (IPDPS) (2010)

45. Badam, A., Pai, V.S.: SSDAlloc: hybrid SSD/RAMmemory management made easy. In: Pro-
ceedings of the 8th USENIX Conference on Networked systems design and implementation
(2011)

46. Wang, C., Vazhkudai, S.S., Ma, X., Meng, F., Kim, Y., Engelmann, C.: Nvmalloc: exposing
an aggregate ssd store as a memory partition in extreme-scale machines. In: Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing Symposium (2012)

47. Wu, X., Narasimha Reddy, A.L.: SCMFS: a file system for storage class memory. In: Pro-
ceedings of International Conference for High Performance Computing, Networking, Storage
and Analysis (2011)

48. Joo, Y., Ryu, J., Park, S., Shin, K.G.: FAST: quick application launch on solid-state drives.
In: Proceedings of the 9th USENIX Conference on File and Stroage Technologies (2011)

49. Yang, Q., Ren, J.: I-CASH: intelligently coupled array of SSD and HDD. In: Proceedings of
the 2011 IEEE 17th International Symposium on High Performance Computer Architecture
(2011)

50. Fares, R., Romoser, B., Zong, Z., Nijim, M., Qin, X.: Performance evaluation of traditional
caching policies on a large system with petabytes of data. In: 2012 IEEE 7th International
Conference on Networking, Architecture and Storage (NAS) (2012)

http://code.google.com/p/protobuf/

8 High-Performance Storage Support for Scientific … 167

51. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACMComput.
Surv. 35(4) (2003)

52. Shi, L., Liu, Z., Xu, L.: Bwcc: a fs-cache based cooperative caching system for network storage
system. In: Proceedings of the 2012 IEEE International Conference on Cluster Computing
(2012)

53. Wu, C., Xubin, H., Qiang, C., Changsheng, X., Shenggang,W.: Hint-k: an efficient multi-level
cache using k-step hints. IEEE Trans. Parallel Distrib. Syst. 99 (2013)

54. Meister, D., Kaiser, J., Brinkmann, A.: Block locality caching for data deduplication. In:
Proceedings of the 6th International Systems and Storage Conference (2013)

55. Xia, P., Feng, D., Jiang, H., Tian, L., Wang, F.: Farmer: a novel approach to file access correla-
tionmining and evaluation referencemodel for optimizing peta-scale file system performance.
In: Proceedings of the 17th International Symposium on High Performance Distributed Com-
puting (2008)

56. Lin, J., Lu, Q., Ding, X., Zhang, Z., Zhang, X., Sadayappan, P.: Enabling software manage-
ment for multicore caches with a lightweight hardware support. In: Proceedings of the 2009
ACM/IEEE Conference on Supercomputing (2009)

57. Zhan, D., Jiang, H., Seth, S.C.: Locality & utility co-optimization for practical capacity
management of shared last level caches. In: Proceedings of the 26th ACM International
Conference on Supercomputing (2012)

58. Gonzalez-Ferez, P., Piernas, J., Cortes, T.: The ram enhanced disk cache project (redcap). In:
Proceedings of the 24th IEEE Conference onMass Storage Systems and Technologies (2007)

59. Huang, S., Wei, Q., Chen, J., Chen, C., Feng, D.: Improving flash-based disk cache with
lazy adaptive replacement. In: 2013 IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST) (2013)

60. Zhu, Z., Zhang, X.: Access-mode predictions for low-power cache design. IEEEMicro 22(2)
(2002)

61. Yue, J., Zhu, Y., Cai, Z., Lin, L.: Energy and thermal aware buffer cache replacement algo-
rithm. In: Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST) (2010)

62. Manzanares, A., Ruan, X., Yin, S., Xie, J., Ding, Z., Tian, Y., Majors, J., Qin, X.: Energy
efficient prefetching with buffer disks for cluster file systems. In: Proceedings of the 2010
39th International Conference on Parallel Processing (2010)

63. Li, Z., Wilson, C., Jiang, Z., Liu, Y., Zhao, B., Jin, C., Zhang, Z.L., Dai, Y.: Efficient batched
synchronization in dropbox-like cloud storage services. In: Proceedings of the 14th Interna-
tional Middleware Conference (2013)

64. Xu, Y., Xing, C., Zhou, L.: A cache replacement algorithm in hierarchical storage of con-
tinuous media object. In: Advances in Web-Age Information Management: 5th International
Conference (2004)

65. Li, R., Guo, R., Xu, Z., Feng, W.: A prefetching model based on access popularity for geospa-
tial data in a cluster-based caching system. Int. J. Geogr. Inf. Sci. 26(10) (2012)

66. Qiao, K., Tao, F., Zhang, L., Li, Z.: A gamaintained by binary heap and transitive reduction for
addressing psp. In: 2010 International Conference on Intelligent Computing and Integrated
Systems (ICISS) (2010)

67. Tao, F., Qiao, K., Zhang, L., Li, Z., Nee, A.: GA-BHTR: an improved genetic algorithm for
partner selection in virtual manufacturing. Int. J. Prod. Res. 50(8) (2012)

68. Calinescu, G., Qiao, K.: Asymmetric topology control: exact solutions and fast approxima-
tions. In: IEEE International Conference on Computer Communications (INFOCOM ’12)
(2012)

69. Calinescu,G.,Kapoor, S., Qiao,K., Shin, J.: Stochastic strategic routing reduces attack effects.
In: Global Telecommunications Conference (GLOBECOM 2011), 2011. IEEE (2011)

70. Zhao, D„ Yang, L.: Incremental isometric embedding of high-dimensional data using con-
nected neighborhood graphs. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 86–98 (2009)

71. Lohfert, R., Lu, J., Zhao, D.; Solving sql constraints by incremental translation to sat. In: Inter-
national Conference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems (2008)

168 D. Zhao et al.

72. Zhao, D., Yang, L.: Incremental construction of neighborhood graphs for nonlinear dimen-
sionality reduction. In: Proceedings of 18th International Conference on Pattern Recognition,
vol. 3, pp. 177–180 (2006)

73. Ferreira, K.B., Riesen, R., Arnold, D., Ibtesham, D., Brightwell, R.: The viability of using
compression to decrease message log sizes. In: Proceedings of International Conference on
Parallel Processing Workshops (2013)

74. Zerin Islam, T., Mohror, K., Bagchi, S., Moody, A., de Supinski, B.R., Eigenmann, R.:
McrEngine: a scalable checkpointing system using data-aware aggregation and compression.
In: Proceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC) (2012)

75. Slim Bouguerra, M., Gainaru, A., Gomez, L.B., Cappello, F., Matsuoka, S., Maruyam, N.:
Improving the computing efficiency of hpc systems using a combination of proactive and pre-
ventive checkpointing. In: IEEE International Symposium on Parallel Distributed Processing
(2013)

76. Noeth, M., Marathe, J., Mueller, F., Schulz, M., de Supinski, B.: Scalable compression and
replay of communication traces in massively parallel environments. In: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing (SC) (2006)

77. Laney, D., Langer, S., Weber, C., Lindstrom, P., Wegener, A.: Assessing the effects of data
compression in simulations using physically motivated metrics. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis
(2013)

78. Lakshminarasimhan, S., Jenkins, J., Arkatkar, I., Gong, Z., Kolla, H., Ku, S.-H., Ethier, S.,
Chen, J.,Chang,C.S.,Klasky, S., Latham,R.,Ross,R., Samatova,N.F.: ISABELA-QA:query-
driven analytics with ISABELA-compressed extreme-scale scientific data. In: Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and
Analysis (SC’11) (2011)

79. MPEG-1: http://en.wikipedia.org/wiki/MPEG-1. Accessed 5 Sept 2014
80. Bicer, T., Yin, J., Chiu, D., Agrawal, G., Schuchardt, K.: Integrating online compression

to accelerate large-scale data analytics applications. In: Proceedings of the 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing (IPDPS) (2013)

81. Schendel, E.R., Pendse, S.V., Jenkins, J., Boyuka, D.A., II, Gong, Z., Lakshminarasimhan, S.,
Liu,Q.,Kolla,H., Chen, J., Klasky, S.,Ross, R., Samatova,N.F.: Isobar hybrid compression-i/o
interleaving for large-scale parallel i/o optimization, In: Proceedings of International Sympo-
sium on High-Performance Parallel and Distributed Computing (2012)

82. Jenkins, J., Schendel, E.R., Lakshminarasimhan, S., Boyuka, D.S., II, Rogers, T., Ethier, S.,
Ross, R., Klasky, S., Samatova, N.F.: Byte-precision level of detail processing for variable
precision analytics. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC) (2012)

83. Burrows, M., Jerian, C., Lampson, B., Mann, T.: On-line data compression in a log-structured
file system. In: Proceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (1992)

84. Joshua, P.: MacDonald. File system support for delta compression. Technical report, Univer-
sity of California, Berkley (2000)

85. Olson,M.A., Bostic,K., SeltzerM.: db. In: Proceedings of theAnnualConference onUSENIX
Annual Technical Conference (1999)

86. Edel, N.K., Tuteja, D., Miller, E.L., Brandt S.A.: Mramfs: a compressing file system for non-
volatile ram. In: Proceedings of the the IEEE Computer Society’s 12th Annual International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems (MASCOTS) (2004)

87. Muthitacharoen, A., Chen, B., Mazières, D.: A low-bandwidth network file system. In: Pro-
ceedings of the EighteenthACMSymposium onOperating Systems Principles (SOSP) (2001)

88. Park, K.S., Ihm, S., Bowman, M., Pai, V.S.: Supporting practical content-addressable caching
with czip compression. In: 2007 USENIX Annual Technical Conference (2007)

http://en.wikipedia.org/wiki/MPEG-1

8 High-Performance Storage Support for Scientific … 169

89. Meister, D., Brinkmann, A., Süß, T.: File recipe compression in data deduplication systems.
In: Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST)
(2013)

90. Lakshminarasimhan, S., Boyuka, D.A., Pendse, S.V., Zou, X., Jenkins, J., Vishwanath, V.,
Papka, M.E., Samatova, N.F.: Scalable in situ scientific data encoding for analytical query
processing. In: Proceedings of the 22nd International Symposium on High-performance Par-
allel and Distributed Computing (HPDC) (2013)

91. Gong, Z., Lakshminarasimhan, S., Jenkins, J., Kolla, H., Ethier, S., Chen, J., Ross, R., Klasky,
S., Samatova, N.F.: Multi-level layout optimization for efficient spatio-temporal queries on
isabela-compressed data. In: Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium (IPDPS) (2012)

92. Shnaiderman, L., Shmueli, O.: A parallel twig join algorithm for XML processing using
a GPGPU. In: International Workshop on Accelerating Data Management Systems Using
Modern Processor and Storage Architectures (2012)

93. Wang, H., Potluri, S., Bureddy, D., Rosales, C., Panda, D.K.: Gpu-awarempi on rdma-enabled
clusters: design, implementation and evaluation. IEEE Trans. Parallel Distrib. Syst. 25(10)
(2014)

94. Bordawekar, R., Bondhugula, U., Rao. R.: Believe it or not!: mult-core cpus can match
gpu performance for a flop-intensive application! In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’10, (2010)

95. Farooqui, N., Schwan, K., Yalamanchili, S.: Efficient instrumentation of gpgpu applications
using information flow analysis and symbolic execution. In: Proceedings of Workshop on
General Purpose Processing Using GPUs, GPGPU-7 (2014)

96. Muniswamy-Reddy, K.-K.: Foundations for provenance-aware systems (2010)
97. Foster, I.T., Vckler, J.S., Wilde, M., Zhao, Y.: The virtual data grid: a new model and archi-

tecture for data-intensive collaboration. In: CIDR’03 (2003)
98. Provenance aware service oriented architecture. http://twiki.pasoa.ecs.soton.ac.uk/bin/view/

PASOA/WebHome. Accessed 6 July 2015
99. Parker-Wood, A., Long, D.D.E., Miller, E.L., Seltzer, M., Tunkelang, D.: Making sense of

file systems through provenance and rich metadata. Technical Report UCSC-SSRC-12-01,
University of California, Santa Cruz, March 2012

100. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware stor-
age systems. In: Proceedings of the annual conference on USENIX ’06 Annual Technical
Conference (2006)

101. Muniswamy-Reddy, K.-K., Macko, P., Seltzer, M.: Making a cloud provenance-aware. In: 1st
Workshop on the Theory and Practice of Provenance (2009)

102. Muniswamy-Reddy, K.-K., Braun, U., Holland, D.A., Macko, P., Maclean, D., Margo, D.,
Seltzer, M., Smogor, R.: Layering in provenance systems. In: Proceedings of the 2009
USENIX Annual Technical Conference (2009)

103. Gehani, A., Tariq, D.: SPADE: support for provenance auditing in distributed environments.
In: Proceedings of the 13th International Middleware Conference (2012)

104. Zhou,W., Sherr,M., Tao, T., Li,X., ThauLoo,B.,Mao,Y.: Efficient querying andmaintenance
of network provenance at internet-scale. In: Proceedings of the 2010 International Conference
on Management of Data, pp. 615–626 (2010)

105. Abraham, J., Brazier, P., Chebotko, A., Navarro, J., Piazza, A.: Distributed storage and query-
ing techniques for a semantic web of scientific workflow provenance. In: 2010 IEEE Interna-
tional Conference on Services Computing (SCC), pp. 178–185. IEEE (2010)

106. Malik, T., Gehani, A., Tariq, D., Zaffar, F.: Sketching distributed data provenance. In: Data
Provenance and Data Management in eScience, pp. 85–107 (2013)

107. Heinis, T., Alonso, G.: Efficient lineage tracking for scientific workflows. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1007–1018
(2008)

108. Extensible Markup Language (XML): http://www.w3.org/xml/. Accessed 13 Dec 2014
109. JSON: http://www.json.org/. Accessed 8 Dec 2014

http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome
http://www.w3.org/xml/
http://www.json.org/

170 D. Zhao et al.

110. Binary JSON: http://bsonspec.org/. Accessed 13 Dec 2014
111. Apache Thrift: https://thrift.apache.org/. Accessed 8 Dec 2014
112. Apache Avro: http://avro.apache.org/. Accessed 13 Dec 2014
113. Apache Etch: https://etch.apache.org/. Accessed 13 Dec 2014
114. BERT: http://bert-rpc.org/. Accessed 13 Dec 2014
115. Message Pack: http://msgpack.org/. Accessed 13 Dec 2014
116. Hessian: http://hessian.caucho.com/. Accessed 13 Dec 2014
117. ICE: http://doc.zeroc.com/display/ice34/home. Accessed 13 Dec 2014
118. CBOR: http://cbor.io/. Accessed 13 Dec 2014
119. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Pro-

ceedings of USENIX Symposium on Opearting Systems Design & Implementation (2004)
120. Apache Hadoop: http://hadoop.apache.org/. Accessed 5 Sept 2014
121. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing

with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing (2010)

122. MPICH: http://www.mpich.org/. Accessed 10 Dec 2014
123. Open MPI: http://www.open-mpi.org/. Accessed 10 Dec 2014
124. OpenMP: http://openmp.org/wp/. Accessed 9 Dec 2014
125. PPL: http://msdn.microsoft.com/en-us/library/dd492418.aspx. Accessed 13 Dec 2014
126. Jeon, M., He, Y., Elnikety, S., Cox, A.L., Rixner, S.: Adaptive parallelism for web search.

In: Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys ’13
(2013)

127. Jeon, M., Kim, S., Hwang, S., He, Y., Elnikety, S., Cox, A.L., Rixner, S.: Predictive paral-
lelization: taming tail latencies in web search. In: Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’14 (2014)

128. Lee, J., Winslett, M., Ma, X., Yu, S.: Enhancing data migration performance via parallel data
compression. In: Proceedings of the 16th International Parallel and Distributed Processing
Symposium, IPDPS ’02 (2002)

129. Klasky, S., Ethier, S., Lin, Z., Martins, K., McCune, D., Samtaney, R.: Grid-based parallel
data streaming implemented for the gyrokinetic toroidal code. In: Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, SC ’03 (2003)

130. Warneke, D., Kao, O.: Nephele: efficient parallel data processing in the cloud. In: Proceedings
of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers, MTAGS ’09
(2009)

131. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., Currey, J.: Dryadlinq:
a system for general-purpose distributed data-parallel computing using a high-level language.
In: Proceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’08 (2008)

132. Ronnie, C., Bob, J., Per-Ake, L., Bill, R., Darren, S., Simon, W., Jingren, Z.: Scope: easy
and efficient parallel processing of massive data sets. Proc. VLDB Endow. 1(2), 1265–1276
(2008)

133. Ahrens, J., Brislawn, K., Martin, K., Geveci, B., Charles Law, C., Papka, M.: Large-scale data
visualization using parallel data streaming. In: Computer Graphics and Applications. IEEE,
21(4), July 2001

134. Allen,M.D., Sridharan, S., Sohi,G.S.: Serialization sets: a dynamic dependence-based parallel
execution model. In: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’09 (2009)

135. Voss,M., Eigenmann, R.: Reducing parallel overheads through dynamic serialization. In: Pro-
ceedings of the 13th International Symposium on Parallel Processing and the 10th Symposium
on Parallel and Distributed Processing, IPPS ’99/SPDP ’99 (1999)

http://bsonspec.org/
https://thrift.apache.org/
http://avro.apache.org/
https://etch.apache.org/
http://bert-rpc.org/
http://msgpack.org/
http://hessian.caucho.com/
http://doc.zeroc.com/display/ice34/home
http://cbor.io/
http://hadoop.apache.org/
http://www.mpich.org/
http://www.open-mpi.org/
http://openmp.org/wp/
http://msdn.microsoft.com/en-us/library/dd492418.aspx

Chapter 9
Information Fusion for Improving
Decision-Making in Big Data Applications

Nayat Sanchez-Pi, Luis Martí, José Manuel Molina
and Ana C. Bicharra García

9.1 Introduction

Nowadays, occupational health and safety (OHS) compliance frameworks must rely
upon information technology to be able to cope with the complexity of designing
effective actions to prevent accidents in any industrial domains.

OHS is a priority concern for offshore oil and gas industry and a determining
factor in its overall success. This is because successful offshore operations must take
into account the implications of oil industry to health, safety, and the environment.
Therefore, there are important investment efforts directed toward accident prevention.

Although the “learning from previous accidents” seems a mantra, the actual
drilling down old episodes to find the reasons that permeate the facts represent a
challenge. Intelligent information system technology may be used to help compa-
nies and employees to assess the risks related to places, activities, and even actions in
aworking environment.Adynamic risk picture for accident detection and recognition
involves reasoning on contextual information such as past events, work environment
information, work force’s behavior, activities’ requirements and premises and task
goals. The situation assessment or situation awareness (SA) is a key component of
any intelligent information system to support OHS decision-makers [1].

N. Sanchez-Pi (B)
Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, Brazil
e-mail: nayat@ime.uerj.br

L. Martí · A.C. Bicharra García
Institute of Computing, Universidade Federal Fluminense, Rio de Janeiro, Brazil
e-mail: lmarti@ic.uff.br

A.C. Bicharra García
e-mail: bicharra@ic.uff.br

J.M. Molina
Computer Science Department, Universidad Carlos III de Madrid, Leganes, Spain
e-mail: molina@ia.uc3m.es

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_9

171

172 N. Sanchez-Pi et al.

Traditional approaches using observational data and a priori models are insuf-
ficient to deal with real-world complex problems, so there is a need of Big Data
techniques to deal with these approaches.

Historical data represents a key source of knowledge that must be analyzed to find
interesting patterns. For this reason, data mining is the an essential part of the knowl-
edge discovery process which combines databases, artificial intelligence, machine-
learning, and statistics techniques. The basic techniques for data mining include:
decision trees and forests induction, rules induction, artificial neural networks, clus-
tering and association rules, among many other. Data mining can be applied to any
domain where sufficiently large databases are available. Some applications areas are:
failure prediction [2], biomedical applications [3], process and quality control [4],
to name a few.

Association rule learning [5] is a popular and well-understood approach for dis-
covering interesting relations between entities in a large databases. It is intended to
discover rules that reflects strong associations among data in databases using differ-
ent distance measurements such as novelty and lift. Many algorithms for generating
association rules have been proposed over time as improvements of the classic Apri-
ori algorithm [6], Eclat [7], and FP-Growth [8].

In this work, we describe an approach to deal with the OHS problem involving
high-level information fusion, domain ontology and association rule data mining
technique. Our proposed architecture provides an integrative picture about how to
integrate historical data in risk analysis that has to do with an employee given its
activities, profile, location, and time in a real-world environment.We have named this
process as cognitive analysis. In particular, we build a causality model for accidents
investigation by means of a well-defined spatiotemporal constraints on offshore oil
industry domain.

The paper is organized as follows. Section 9.2 provides an introduction to theOHS
problemand the role of information fusion processes, alongwith a brief description of
the state of the art and some application domains. Section 9.3 describes the proposed
fusion architecture, the knowledge representation model, and the cognitive analysis
framework. Subsequently, Sect. 9.4 is centered in the knowledge extraction process;
which is then applied in the case study discussed in Sect. 9.5. Finally, Sect. 9.6 puts
forward some conclusive remarks and outlines the current and future work been
carried out in this area.

9.2 Foundations

Data fusion has been defined in [9] as:

“A multi-level process dealing with the association, correlation, combination of data and
information from single and multiple sources to achieve refined position, identify estimates
and complete and timely assessments of situations, threats and their significance.”

9 Information Fusion for Improving Decision-Making … 173

Data fusion (DF) and information fusion (IF) has been treated more or less homo-
geneously in the literature but there are some conceptual differences between them.
Data fusion is represents and deals with raw data, and, on the other hand, when refer-
ring to information fusion it implies a higher semantic level of fusion. The problem
of information fusion has attracted significant attention in the artificial intelligence
community, trying to innovate in the techniques used for combining the data and to
refine state estimates and predictions.

Information fusion can be classified depending on the level of abstraction [10]:
low-level fusion, medium-level fusion, high-level fusion, and multilevel fusion. In
low-level fusion, raw data are directly provided as input to the data fusion process.
The medium-level fusion is a feature level where features are fused to obtain other
features that could be employed for other higher level tasks. In high-level fusion the
input of the fusion process is a combination of symbolic representation. Finally, in
multi-level fusion, the input comes from different levels of abstractions.

Others classifications or taxonomies of information fusion have been proposed.
For example, the Dasarathy’s Functional Model [11] or Joint Directors of Laborato-
ries conceptual model (JDL) proposed by the American Department of Defense [9].
The JDL classification model consists into five processing levels in the transforma-
tion of input signals to decision-ready knowledge. These levels are: level 0 or source
preprocessing; level 1 or object refinement; level 2 or situation assessment; level 3
or impact assessment, and level 4 or process refinement.

High-level fusion starts at level 2. Situation assessment (SA) aims to identify the
most likely situations given the observed events and obtained data. It establishes
relationships between the objects. Relations (i.e., proximity, communication, etc.)
are evaluated to determine the significance of the entities or objects in a specific
environment. The purpose of this level includes performing high-level inferences and
identifying significant activities and events (patterns in general). The output is a set
of high-level inferences. Situation assessment is an important part of the information
fusion process because it is the purpose for the use of IF to synthesize the multitude
of information, it provides an interface between the user and the automation, and
focuses data collection and management.

Intensive research has been done in past years focused on low-level information
fusion, nowadays the focus is currently shifting towards high-level information fusion
[12]. Compared to the increasingly mature field of low-level IF, theoretical and
practical challenges posed by high-level IF are more difficult to handle. Some of
the applications that involve high-level fusion are: Defense [13–17], Computer and
Information Security [18, 19], Disaster Management [20–23], Fault Detection [24–
26], Environment [27–29]. Also techniques for using contextual information in high-
level information fusion architectures has been studied at [30].

In the context of oil and gas industry there is an increasing concern with achieving
and demonstrating good performance with regards to occupational health and safety
(OHS), through the control of its OHS risks, which is consistent with its policy and
objectives. In oil industry exist standards to identify and record workplace accidents
and incidents to provide guiding means on prevention efforts, indicating specific
failures or reference, means of correction of conditions or circumstances that cul-

174 N. Sanchez-Pi et al.

minated in accident. So, events recognition is central to OHS, since the system can
selectively start proper prediction services according to the user current situation and
past knowledge taken from huge databases. In this sense, a fusion framework that
combines data from multiples sources to achieve more specific inferences is needed
[31, 32].

In fact, our proposal is inspired in the semantic strategy of Gomez et al. [30].
In our case, we propose a machine-learning algorithm to learn from past anomaly
events and to predict accidents events in time and space. It also uses additional
knowledge, like the contextual knowledge: user profile, event location and time, etc.
Our proposedmodel provides the big picture about risk analysis for that employee, at
that place, in that moment in a real-world environment. Our contribution is to build a
causalitymodel for accidents investigation bymeans of awell-defined spatiotemporal
constraints on offshore oil industry domain. Also, we use ontological constraints in
the postprocessing mining stage to prune resulting rules.

9.3 A Big Data Solution: A Data Fusion Framework
for OHS

We now focus on the general architecture of the framework being put forward in this
work. We outline the different components and how they are integrated.

9.3.1 Data Fusion Architecture for OHS Environments

The architecture of our context-based fusion framework is depicted in Fig. 9.1. The
context-aware system developed has a hierarchical architecture with the following
layers: Services layer, Context Acquisition layer, Context Representation layer, Con-
text Information Fusion layer, and Infrastructure layer. The hierarchical architecture
reflects the complex functionality of the system as shown in the following brief
description of the functionality of particular layers:

• Infrastructure Layer The lowest level (level 0 in the JDL Model) of the loca-
tion management architecture is the Sensor Layer which represents the variety
of physical and logical location sensor agents producing sensor-specific location
information.

• Context AcquisitionThe link between sensors (lowest layer) and the representation
layer (level 1 in the JDL Model).

• Context Representation This is where the situation is represented by means of an
ontology (level 2 in the JDL Model).

• Context Information Fusion Layer This is where the high-level information fusion
occurs. It is here where reasoning about context and events of the past takes place
(level 3 in JDL Model).

9 Information Fusion for Improving Decision-Making … 175

Fig. 9.1 Information fusion framework architecture

• Cognitive Layer This is where the Big Data techniques are applied and the intra-
and inter-transaction association rules are extracted from the database.

• Services Layer This layer interacts with the variety of users of the system (employ-
ees) and therefore needs to address several issues including access rights to loca-
tion information (who can access the information and to what degree of accuracy),
privacy of location information (how the location information can be used), and
security of interactions between users and the system.

9.3.2 Ontology Definition

Normally, ontology represents a conceptualization of particular domains. In our case,
we will use the ontology for representing the contextual information of the offshore

176 N. Sanchez-Pi et al.

oil industry environment. Ontologies are particularly suitable to project parts of the
information describing and being used in our daily life onto a data structure usable
by computers.

Using ontologies provides an uniform way for specifying the model’s core con-
cepts as well as an arbitrary amount of subconcepts and facts, altogether enabling
contextual knowledge.

An ontology can be defined as an explicit specification of a conceptualization
[33]. An ontology created for a given domain includes a set of concepts as well as
relationships connecting them within the domain. Collectively, the concepts and the
relationships form a foundation for reasoning about the domain.

A comprehensive, well-populated ontology with classes and relationships closely
modeling a specific domain represents a vast compendium of knowledge in the
domain.

Furthermore, if the concepts in the ontology are organized into hierarchies of
higher level categories, it should be possible to identify the category (or a few cate-
gories) that best classify the context of the user.

Within the context of computer science, ontological concepts are frequently
regarded as classes that are organized into hierarchies. The classes define the types
of attributes, or properties common to individual objects within the class. Moreover,
classes are interconnected by relationships, indicating their semantic interdepen-
dence (relationships are also regarded as attributes).

As part of our framework we built a domain ontology for the OHS environment
of oil and gas domain [34] (see Fig. 9.2). We also obtained the inferences that reflect
the dynamic side and we grouped the inferences sequentially to form tasks.

The principal concepts of the ontology are the following:

• Anomaly Undesirable event or situation which results or may result in damage or
faults that affect people, the environment, equity (own or third party), the image
of the industry partner, products, or production processes. This concept includes
accidents, illnesses, incidents, deviations and non-conformances.

– Neglect Any action or condition that has the potential to lead to, directly or
indirectly, damage to people, to property (own or third party) or environmental
impact, which is inconsistent with labor standards, procedures, legal or regula-
tory requirements, requirements management system or practice.
Behavioral neglect Act or omission which, contrary provision of security,
may cause or contribute to the occurrence of accidents.
Non-behavioral neglect Environmental condition that can cause an accident or
contribute to its occurrence. The environment includes adjective here, every-
thing that relates to the environment, from the atmosphere of the workplace to
the facilities, equipment, materials used and methods of working employees
who is inconsistent with labor standards, procedures, legal requirements, or
normative requirements of the management system or practice.

– Incident Any evidence, personal occurrence or condition that relates to the
environment and/or working conditions, can lead to damage to physical and/or
mental.

9 Information Fusion for Improving Decision-Making … 177

Fig. 9.2 Occupational Health and Security (OHS) ontology

– Accident Occurrence of unexpected and unwelcome, instant or otherwise,
related to the exercise of the job, which results or may result in personal injury.
The accident includes both events that may be identified in relation to a par-
ticular time or occurrences as continuous or intermittent exposure, which can
only be identified in terms of time period probable. A personal injury includes
both traumatic injuries and illnesses, as damaging effects mental, neurological,
or systemic, resulting from exposures or circumstances prevailing at the year’s
work force. In the period for meal or rest, or upon satisfaction of other phys-
iological needs at the workplace or during this, the employee is considered in
carrying out the work.
Accident with injury It is all an accident in which the employee suffers some
kind of injury. Injury: Any damage suffered by a part of the human organism
as a consequence of an accident at work.
…with leave Personal injury that prevents the injured from returning to work
the day after the accident or resulting in permanent disability. This injury can
cause total permanent disability, permanent partial disability, total temporary
disability, or death.

178 N. Sanchez-Pi et al.

…without leave Personal injury that does not prevent the injured to return
to work the day after the accident, since there is no permanent disability.
This injury, not resulting in death, permanent total or partial disability or
total temporary disability, requires, however, first aid or emergency medical
aid. Expressions should be avoided “lost-time accident” and “accidentwithout
leave,” used improperly to mean, respectively, “with leave injury” and “injury
without leave.”
Accident without injury Accident causes no personal injury.

9.3.3 Cognitive Analysis

Standard ontology reasoning procedures can be performed within the ontologies to
infer additional knowledge from the explicitly asserted facts. Using an inference
engine, tasks such as classification or instance checking can be performed. Figure
9.3 outlines how this process was carried out in our case.

Risk prevention is a paradigmatic case of inductive reasoning. Inductive reasoning
begins with observations that are specific and limited in scope, and proceeds to a
generalized conclusion that is likely, but not certain, in light of accumulated evidence.
You could say that inductive reasoning moves from the specific to the general. Much
scientific research is carried out by the inductivemethod: gathering evidence, seeking
patterns, and forming a hypothesis or theory to explain what is seen.

In our framework, inductive rules formally represent contextual, heuristic, and
common sense knowledge to accomplish high-level scene interpretation and low-
level location refinement.

Once an employee enters the network, it immediately connects with a local proxy,
which evaluates the position of the client device and assign a role to the employee.
A preprocessing step begins then filtering the relevant features that are selected to

Fig. 9.3 Cognitive analysis

Cognitive analysis

Pre-processing

High-level
Fusion

Mining

Association
rules discovery

Post-processing
belifs

constraints
KD

metrics

A I D

DB

9 Information Fusion for Improving Decision-Making … 179

participate in the process of knowledge discovery by the type of employee (role).
The association rules mining process starts with the selected configuration and the
set of resulting rules can be analyzed. After that, a postprocessing step starts. This is
an important component of consisting meant for eliminating redundancy, pruning,
and filtering the resulting rules.

The fusion engine implements an association rules model that dynamically com-
bines feature selection relying on the profile of the user in order to find spatiotemporal
patterns between different types of anomalies (or event sequence, e.g., neglects, inci-
dents, accidents) that match with the current location of the user.

In this case, the data preprocessing before mining is pretty straightforward, as the
interest is to discover relationships between the values of different attributes and the
possible presence of probabilistic implication rules between them. In particular, each
anomaly is treated as a transaction whose items are the non-null values.

Two categories of association mining are employed: intra-anomaly and inter-
anomaly [35]. Intra-anomaly associations are the associating among items within
the same type of anomaly, where the notion of the transaction could be events where
the same user participates. However, inter-anomaly describes relationships among
different transactions; that means, between incidents, accidents and neglects. Further
details about these two processes are given in the subsequent sections.

9.4 Mining Anomaly Information

As already explained, the task of providing context-based information calls for the
processing and extraction of information in the form of rules. One of the possible
ways of obtaining those rules is to apply an association rule algorithm. In this work,
we employAprori and FP-Growth algorithms in parallel in order tomutually validate
the results from each other.

As also explained in the above section, the fusion engine implements an associ-
ation rules model that combines dynamic feature selection based on the role of the
user in order to find spatiotemporal patterns between different types of anomalies
(or event sequence, e.g., neglects, incidents, accidents) that match with the current
location of the user.

The dataset of anomalies, S , is composed by anomaly instances,

S := {A1, A2, . . . , An} , n ∈ N, (9.1)

with the instances defined as

Definition 1 (Anomaly instance) An anomaly instance can be defined as the tuple,

A := 〈t, c,L ,O,N ,F 〉 , (9.2)

180 N. Sanchez-Pi et al.

that is composed by:

• t , a time instant that marks when the anomaly took place;
• c ∈ {accident, incident, neglect}, that sets the class of anomaly, and, therefore, its
associated gravity;

• L , a set of geo-location description attributes, which describe the geographical
localization of the anomaly at different levels of accuracy;

• O , a set of organizational location attributes that represent where in terms of
organization structure the anomaly took place;

• N , a set of descriptive nominal attributes that characterize the anomaly with a
predefined values, and;

• F , a set of free-text attributes that are used to complement or improve the descrip-
tive power reachable withN attributes.

In order to make the rules produced interesting for the user the mining dataset,S ,
must be preprocessed to meet the her/his needs. Using the above-described problem
ontology, the set of anomalies relevant for mining can be (i) filtered and (ii) its
attributed selected.

For the first task we defined a function

filter_anomalies (u,S) → S ′,S ′ ⊆ S , (9.3)

which determines the subset, S ′, of the anomalies dataset, S , that are of interest
for a given user, u. For the second task we created the function

filter_attributes
(
u,S ′) → S ∗, (9.4)

where ∀A′ =∈ S ′, ∃A∗ ∈ S ∗ such that t∗ = t ′, c∗ = c′, L ∗ ⊆ L ′, O∗ ⊆ O ′,
N ∗ ⊆ N ′ and F ∗ ⊆ F ′.

Relying on the S ∗ dataset customized to the user profile two classes of data
mining operations can be carry out to extract knowledge rules. The first mines for
rules regarding the relations of different attribute values in anomalies, and hence was
called intra-anomaly rule mining. The other, more complex one, mines for relation-
ships between anomalies, that take place in a same location—either geographical or
organizational—and in similar dates. Because of that, this operation was denomi-
nated spatiotemporal or inter-anomaly rule mining. In the subsequent sections we
describe both mining processes.

9.4.1 Mining for Intra-Anomaly Rules

In this case, the data preprocessing before mining is pretty straightforward, as the
interest is to discover relationships between the values of different attributes and the
possible presence of probabilistic implication rules between them. In particular, each
anomaly inS ∗ is treated as a transaction whose items are the non-null values of the

9 Information Fusion for Improving Decision-Making … 181

corresponding N ∗. The descriptive attributes that take part of the mining process
depend in the user profile. In order to model this we created a function the function

Nsel = select_attributesintra (N , u) , (9.5)

which returns the subset of attributes,Nsel ⊆ N , that are of interest to a given user,
u.

The results of applying the rule mining algorithms need to be postprocessed to
eliminate cyclic rules and to sort them according to an interestingness criterion. The
outcome from this process should uncover relations between different values of the
attributes. Some of those relationships might have a trivial.

9.4.2 Mining for Inter-Anomaly Rules

Mining spatiotemporal rules calls for a more complex preprocessing. As the most
relevant anomalies are the accidents mining is centered around them. In this case,
transactions will be constituted by anomalies that took place in the same location
(deduced from the user profile) and with a given amount of time of precedence.

More formally, having the set of all accidents � = {A ∈ S ∗|A.c = accident},
for each element λ ∈ �, we construct the set of co-occurring anomalies, C (λ) as,

C (λ) := {
κ ∈ S ∗|λ.t − κ.t ≤ Δt; loc (λ, u) = loc (κ, u)

}

∪ {λ} , (9.6)

with loc(·), a function that for a given anomaly and user returns the value of the
location attribute of interest for that user according to her/his role, and Δt , a time
interval for maximum co-occurrence.

The set of co-occurring anomalies {C (λ)|∀λ ∈ �} is used as transactions dataset
for themining algorithms. However, anomalies cannot be used as-is, as it is necessary
to express them in abstract form, in order to achieve sufficient generalization as to
yield results that not are excessively particular or refined.

For this task, again depending on the user profile, a group of elements of each
N ∗ is selected to create the abstract anomaly. This reduced set of attribute values
are then used to construct the transactions. Therefore, as in the intra-anomaly case,
we can construct a function

Nsel = select_attributesinter (N , u) , (9.7)

that having given a user, u, returns the subset of attributes, Nsel ⊆ N , that are of
interest to u. Relying on Nsel, the abstracted anomaly Aabstract as the concatenation
of the attribute/value pairs,

182 N. Sanchez-Pi et al.

Fig. 9.4 Schematic representation of a co-occurrence and abstraction process example. The exam-
ple is replies in a simplified anomalies dataset Ssim where, having a given user, u, the location
attribute is l = loc (λ, u), ∀λ ∈ Ssim and the time of anomaly is denoted by t . For brevity reasons,
the anomaly class is represented as c = {A,I,N}, for representing accidents, incidents, and neglects,
respectively, and the set of descriptive nominal attributes N = {a1, a2, a3}. In this sample, there
are three anomalies, which are marked with the A symbol. Assuming thatNsel = {a1, a2} (shaded
in gray in the schema) and a Δt = 2, three transactions are created in the co-occurring anomalies
dataset. This means that, for every accident, λ, λ.c = A the anomalies that took place in the same
location and with time in the interval [λ.t − Δt, λ.t] are abstracted and added as a transaction to
the mining dataset

Aabstract = ⊕
a∈Nsel

a ⊕ A.a, (9.8)

where ⊕ is the concatenation operator. As this concatenated representation is inef-
ficient from a computational point of view, they can be transformed into a reduced
form by applying a hashing [36] or a compression [37] operator.

This process is better understood with an illustrative example. Figure 9.4 puts
forward such co-occurrence and abstraction process example. In this case, we have
a simplified anomalies dataset Ssim where, having a given user, u, we also have the
location attribute l = loc (λ, u), ∀λ ∈ Ssim and the time of anomaly is denoted by t .
For brevity reasons in the figure, the anomaly class is represented as c = {A,I,N}, for
representing accidents, incidents and neglects, respectively, and the set of descriptive
nominal attributes N = {a1, a2, a3}.

9 Information Fusion for Improving Decision-Making … 183

In this sample, there are three anomalies, which are marked with the A symbol.
Assuming that Nsel = {a1, a2} (shaded in gray) and a Δt = 2, three transactions
are created in the co-occurring anomalies dataset. This is because of that, for every
accident, λ, λ.c = A the anomalies that took place in the same location and with time
in the interval [λ.t − Δt, λ.t] are abstracted and added as a transaction to the mining
dataset.

The resulting inter-anomaly mining dataset is composed by transactions that con-
tain the abstracted version of the co-occurring anomalies for a given accident—or
other class of anomaly of interest. As in the previous case, postprocessing is necessary
to filter out possible irrelevant and/or cyclic rules. For this, a set of domain-principled
filtering rules were proposed by the experts in order to define the most interesting
consequences—accidents and incidents—and the preferred form of rules.

As this is part is a sensitive element of the solution, involving trade decisions, we
are not discussing it in detail.

9.5 Case Study

In this section, we present a case study that was carried out with the intention of
asserting from an experimental point of view, the viability of the solution put forward
in this work.

In order to create a controlled context for the tests it is required to (i) select a
subset of the fused dataset, which contains all available anomalies, of such a size
that can be directly handled by an expert and with such properties that guaranties the
existence of rules (ii) create a custom user role that when applied selects a group of
features for intra-anomaly mining and other for inter-anomaly mining.

In order to obtain the data set, we applied a complex data query that filtered all
accidents in a given time interval and their corresponding co-occurring anomalies.
From that set, the accidents that did not have at least one more accident with the
same abstracted co-occurring set were eliminated. This action produced about 2000
anomalies set in which it was certain that there were latent rules relating some of
them.

As the amount of anomalies in the dataset is of a manageable size the application
of data visualization and inspection of software, along with the use of basic statistical
tools allow to uncover at least someof the rules that are latent in the dataset. Therefore,
two sets of expected rules were manually extracted with the purpose of verify that
the mining algorithms were capable of discovering rules known to exist beforehand.

In all experiments the threshold parameters of the rule mining algorithm were set
as: support, 0.2, and confidence, 0.8.

184 N. Sanchez-Pi et al.

Table 9.1 Similarity of the results produced by Apriori and FP-Growth in the intra- and inter-
anomaly mining scenarios

Number shared Shared Apriori results (%) Shared FP-growth
results (%)

Intra-anomaly mining

Freq. item sets 64 100.0000 90.1408

Rules 64 100.0000 84.2105

Inter-anomaly mining

Freq. item sets 230 100.0000 100.0000

Rules 2670 100.0000 100.0000

9.5.1 Intra-Anomaly Rule Mining Results

The application of FP-Growth in the intra-anomaly case yielded 71 frequent sets of
items and 76 rules. The Apriori algorithm, in the other hand, generated 64 frequent
item sets and 64 rules. An important analysis is to compared at what degree the
frequent itemsets and rules generated by each approach overlaps the other. This can
be posed as counting the number of itemsets and rules that have been generated by
both methods. This comparison is presented in Table 9.1. There it can be perceived
that all itemsets and rules discovered by the Apriori method were also found by
FP-Growth. This fact is a fundamental step to assert the validity of results.

Using the semi-automatic method explained above six rules extracted with the
semi-automatic procedure. There ruleswere found to five of those ruleswere detected
by Apriori, while only one by FP-Growth.

9.5.2 Inter-Anomaly Rule Mining Results

After carrying out the process of abstraction and anomaly co-occurrence, grouping a
dataset with 1025 transactions was passed to the rule mining algorithms. Similarly,
in that dataset, six rules were extracted by the semi-automatic method.

The results of both algorithms in this case are interesting. Table 9.1 show that
Apriori and FP-Growth found the same number of frequent itemsets, 230, and of
rules (before filtering), 2670. Again, this results validate the approach proposed.

When determining how many manually extracted rules were actually found by
the algorithms, the results are also encouraging. All six rules were found by both
algorithms as demonstrated in Table 9.2.

9 Information Fusion for Improving Decision-Making … 185

Table 9.2 Presence of the rules previously extracted by a semi-automatic procedure in the results
of Apriori and FP-Growth algorithms

Apriori results FP-growth results

Intra-anomaly mining

Expected rules 5 1

Coverage of expected rules 62.5000% 12.5000%

Percent true positives 7.8125% ≈ 0.0000%

Percent non-expected rules 92.1875% 100.0000%

Inter-anomaly mining

Expected rules 6 6

Coverage of expected rules 100.0000% 100.0000%

Percent true positives 0.2247% 0.2247%

Percent non-expected rules 99.7753% 99.7753%

9.6 Final Remarks

In this work, we have presented a Big Data solution based on an information fusion
framework for providing context-aware services related to risk prevention in offshore
oil industry environment. The proposal put forward aims at providing context-based
information related to accidents and their causes to users depending on their profiles
and location.

Our approach relies on a domain ontology to capture the relevant concepts of the
application and the semantics of the context in order to create a high-level fusion of
information. Along with that we have introduced an innovative use of rule mining for
provisioning knowledge for situation assessment and decision-making regarding risk
an accidents prevention. This form of rule mining is capable of an online high-level
knowledge extraction that represents relations between different kinds of anomalies
that have taken place at the user location and that the system has determined that had
lead to an accident.

This feature has the potential of lowering at great length the development of acci-
dents and incidents as it allows the users to directly act on the causes and conditions
that have prompted such situations in the past. It empowers the users with the tools
that help them to modify their routine and to avoid possible hazards or dangers.

This work is of particular relevance when taking into account the significant
human, social, economical, and environmental impact of accidents in this application
context. From human and social points of view, the class of application described
here is important as the remoteness and isolation of the installations render any
assisting action more complicated and risky than usual. Similarly, oil industry is a
heavily cost-minded industry, where accidents trend to have a important economical
repercussions derived from the stop of production and the cost of the equipment and
repair activities. Last, but certainly not least, the dramatic environmental impact of
this industry has been sadlyverified in the last years.Accidents, in the formof oil spills

186 N. Sanchez-Pi et al.

and fires are one of the main risks and one of the main dangers perceived by society
regarding this industry. The environmental issue implies damages that are frequently
impossible to assess in quantitative terms and whose footprint can potentially remain
latent for future generations. It also has human, social, and economic ramifications
that fall in the above-mentioned areas.

Acknowledgments Thisworkwas partially funded byCNPqPVE314017/2013-5, FAPERJAPQ1
Project 211.500/2015, FAPERJ APQ1 Project 211.451/2015 and by projects MINECO TEC2012-
37832-C02-01, CICYT TEC2011-28626-C02-02.

References

1. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human Factors:
J. Human Factors Ergon. Soc. 37(1), 32–64 (1995)

2. Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent
system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst.
21(04), 277–296 (2011)

3. De Paz, J.F., Bajo, J., López, V.F., Corchado, J.M.: Biomedic organizations: an intelligent
dynamic architecture for KDD. Inf. Sci. 224, 49–61 (2013)

4. Conti, M., Pietro, R.D., Mancini, L.V., Mei, A.: Distributed data source verification in wireless
sensor networks. Inf. Fusion 10(4), 342–353 (2009)

5. Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. In: Piatetsky-
Shapiro G., FrawleyW.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI Press
(1991)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994, pp. 487–499. http://dl.
acm.org/citation.cfm?id=645920.672836

7. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3),
372–390 (2000)

8. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM
SIGMOD Record, vol. 29, pp. 1–12. ACM (2000)

9. White, F.E.: Data Fusion Lexicon. Tech. Rep, DTIC Document (1991)
10. Luo, R.C., Chou, Y.C., Chen, O.: Multisensor fusion and integration: algorithms, applications,

and future research directions. In: International Conference on Mechatronics and Automation,
2007. ICMA 2007, pp. 1986–1991. IEEE (2007)

11. Dasarathy, B.V.: Sensor fusion potential exploitation-innovative architectures and illustrative
applications. Proc. IEEE 85(1), 24–38 (1997)

12. Blasch, E., Llinas, J., Lambert, D., Valin, P., Das, S., Chong, C., Kokar, M., Shahbazian, E.:
High level information fusion developments, issues, and grand challenges: fusion 2010 panel
discussion. In: 2010 13th Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2010)

13. Chong, C.-Y., Liggins, M., et al.: Fusion technologies for drug interdiction. In: IEEE Interna-
tional Conference onMultisensor Fusion and Integration for Intelligent Systems (MFI’94), pp.
435–441. IEEE (1994)

14. Gad, A., Farooq, M.: Data fusion architecture for maritime surveillance. In: Proceedings of
the Fifth International Conference on Information Fusion (FUSION’02), vol. 1, pp. 448–455.
IEEE (2002)

15. Liggins, M.E., Bramson, A., et al.: Off-board augmented fusion for improved target detec-
tion and track. In: 1993 Conference Record of The Twenty-Seventh Asilomar Conference on
Signals, Systems and Computers, pp. 295–299. IEEE (1993)

http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836

9 Information Fusion for Improving Decision-Making … 187

16. Ahlberg, S., Hörling, P., Johansson, K., Jöred, K., Kjellström, H., Mårtenson, C., Neider, G.,
Schubert, J., Svenson, P., Svensson, P., et al.: An information fusion demonstrator for tactical
intelligence processing in network-based defense. Inf. Fusion 8(1), 84–107 (2007)

17. Aldinger, T., Kao, J.: Data fusion and theater undersea warfare-an oceanographer’s perspective.
In: OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04, vol. 4, pp. 2008–2012. IEEE (2004)

18. Corona, I., Giacinto, G.,Mazzariello, C., Roli, F., Sansone, C.: Information fusion for computer
security: State of the art and open issues. Inf. Fusion 10(4), 274–284 (2009)

19. Giacinto, G., Roli, F., Sansone, C.: Information fusion in computer security. Inf. Fusion 10(4),
272–273 (2009)

20. Little, E.G., Rogova, G.L.: Ontology meta-model for building a situational picture of
catastrophic events. In: 8th International Conference on Information Fusion (FUSION’05),
vol. 1, pp. 1–8. IEEE (2005)

21. Llinas, J.: Information fusion for natural and man-made disasters. In: Proceedings of the Fifth
International Conference on Information Fusion (FUSION’02), vol. 1, pp. 570–576. IEEE
(2002)

22. Llinas, J., Moskal, M., McMahon, T.: Information fusion for nuclear, chemical, biological
& radiological (NCBR) battle management support/disaster response management support.
Tech. Rep., Center for MultiSource Information Fusion, School of Engineering and Applied
Sciences, University of Buffalo, USA (2002)

23. Mattioli, J., Museux, N., Hemaissia, M., Laudy, C.: A crisis response situation model. In: 10th
International Conference on Information Fusion (FUSION’07), pp. 1–7. IEEE (2007)

24. Bashi, A.: Fault detection for systems with multiple unknown modes and similar units. Ph.D.
Thesis, University of New Orleans (2010)

25. Bashi, A., Jilkov, V.P., Li, X.R.: Fault detection for systems with multiple unknown modes and
similar units-part i. In: 12th International Conference on Information Fusion (FUSION’09),
pp. 732–739. IEEE (2009)

26. Basir, O., Yuan, X.: Engine fault diagnosis based on multi-sensor information fusion using
dempster-shafer evidence theory. Inf. Fusion 8(4), 379–386 (2007)

27. Heiden, U., Segl, K., Roessner, S., Kaufmann, H.: Ecological evaluation of urban biotope types
using airborne hyperspectral hymap data. In: 2nd GRSS/ISPRS Joint Workshop on Remote
Sensing and Data Fusion over Urban Areas, pp. 18–22. IEEE (2003)

28. Khalil, A., Gill, M.K., McKee, M.: New applications for information fusion and soil moisture
forecasting. In: 8th International Conference on Information Fusion (FUSION’05), vol. 2, p. 7.
IEEE (2005)

29. Hubert-Moy, L., Corgne, S., Mercier, G., Solaiman, B.: Land use and land cover change pre-
diction with the theory of evidence: a case study in an intensive agricultural region of france.
In: Proceedings of the Fifth International Conference on Information Fusion (FUSION’02),
vol. 1, pp. 114–121. IEEE (2002)

30. Gómez-Romero, J., Garcia, J., Kandefer, M., Llinas, J., Molina, J., Patricio, M., Prentice, M.,
Shapiro, S.: Strategies and techniques for use and exploitation of contextual information in
high-level fusion architectures. In: 2010 13th Conference on Information Fusion (FUSION),
pp. 1–8. IEEE (2010)

31. Sanchez-Pi, N., Martí, L., Molina, J.M., Garcia, A.C.B.: High-level information fusion for risk
and accidents prevention in pervasive oil industry environments. In: Highlights of Practical
Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection, pp. 202–213.
Springer (2014)

32. Sanchez-Pi, N., Martí, L., Molina, J.M., Garcia, A.C.B.: An information fusion framework for
context-based accidents prevention. In: 2014 Proceedings of the 17th International Conference
on Information Fusion (FUSION), pp. 1–8. IEEE (2014)

33. Gómez-Romero, J., Patricio, M.A., García, J., Molina, J.M.: Ontological representation of
context knowledge for visual data fusion. In: 12th International Conference on Information
Fusion (FUSION’09), pp. 2136–2143. IEEE (2009)

34. Sanchez-Pi, N., Martí, L., Bicharra Garcia, A.C.: Text classification techniques in oil industry
applications. In: Herrero A., Baruque B., Klett F., Abraham A., Snášel V., Carvalho A.C.,

188 N. Sanchez-Pi et al.

García Bringas P., Zelinka I., Quintián H., Corchado E. (eds.) International Joint Conference
SOCO’13-CISIS’13-ICEUTE’13, vol. 239 of Advances in Intelligent Systems and Computing,
pp. 211–220. Springer International Publishing (2014). http://dx.doi.org/10.1007/978-3-319-
01854-6_22

35. Berberidis, C., Angelis, L., Vlahavas, I.: Inter-transaction association rules mining for rare
events prediction. In: Proceedings 3rd Hellenic Conference on Artificial Intelligence (2004)

36. Tharp, A.L.: File organization and processing. Wiley (1988)
37. Sayood, K.: Introduction to Data Compression, 2nd edn. Morgan Kaufmann Publishers Inc.,

San Francisco (2000)

http://dx.doi.org/10.1007/978-3-319-01854-6_22
http://dx.doi.org/10.1007/978-3-319-01854-6_22

Chapter 10
Load Balancing and Fault Tolerance
Mechanisms for Scalable and Reliable Big
Data Analytics

Nitin Sukhija, Alessandro Morari and Ioana Banicescu

10.1 Introduction

In the past few years, a number of large-scale graph database systems have been pro-
posed for storing, analyzing, processing andqueryingunprecedented amount of struc-
tured or unstructured data frommultiple application sources, such as, social networks,
web 2.0, government chronicles, medical and scientific knowledge bases, and cyber
networks. However, serving large and dynamically changing OLTP (Online transac-
tion processing) workloads frommillions of users involving distributed processing of
terabytes and even petabytes of data is extremely demanding and pushes these graph
databases to their limits [1]. Moreover, frequently occurring resource failures drasti-
cally affect the execution performance of big data applications running on these big
data systems. Therefore, in order to cope up with the most diverse and challenging
workloads and failures, many solutions featured by the graph database management
systems are focused on enhancing the following aspects:

N. Sukhija (B)
Department of Computer Science, Slippery Rock University of Pennsylvania,
275 Advanced Technology & Science Hall Slippery Rock University, Slippery Rock,
Pennsylvania 16057, USA
e-mail: nitin.sukhija@sru.edu

A. Morari
Pacific Northwest National Laboratory, Richland, USA
e-mail: alessandro.morari@pnnl.gov

I. Banicescu
Mississippi State University, Starkville, USA
e-mail: ioana@cse.msstate.edu

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_10

189

190 N. Sukhija et al.

10.1.1 Performance

Performance is a prerequisite and is an extremely challenging issue for ensuring the
efficient management of big data systems in highly unpredictable computing envi-
ronments. The ability of big database systems to manage its performance is mainly
dependent on its capability to optimize the utilization of the underlying computa-
tional resources. The optimizations, such as, sync operation [2], accumulators [3] and
others, employed by big data systems enable them to increase the overall throughput
and to minimize the contention to manage and process the diverse workloads defined
by combinations OLTP transactions, analytic queries and ad hoc system utility and
commands.

10.1.2 Scalability

Scalability is an important feature of a big database system as this determines the
ability of the system in consideration to preserve its performance behavior when
computing resources are added to distribute and manage both the growing data vol-
umes and the transaction workload. In general, adaptiveness as well as elasticity of
these database systems in highly unpredictable data environments is achieved via
horizontal or vertical scaling [4]. The term horizontal scaling means that the big
database systems scales by adding more hardware or software components (data
servers) to its existing pool of computing infrastructure. Herein, both data and the
operational workload are distributed over many data servers according to the load
balancing techniques with no RAM or disk shared among these data servers. In com-
parison with horizontal scaling, the vertical scaling of database system is achieved
by adding more power (i.e., CPU, RAM) to the existing computing machines [5].
Therefore, in vertical scaling the data reside on one computational node and scaling
is done by utilizing the multi-core, which spreads the workload among many cores
and/or CPUs that shares RAM and disks.

10.1.3 Fault Tolerance

Fault tolerance is the ability of a big database system to maximize the reliability of its
data operations in order to hide the occurrence of faults, or the sudden unavailability
of computing resources. With the increasing heterogeneity and scales of today’s
high performance computing environments, failures of computing nodes, disks or
data centers are becoming a norm rather than an exception, thus achieving reliability
is becoming extremely challenging for big data systems [6]. Consequently, the big
data community is looking at various fault-tolerance approaches to alleviate the issue
of resilience against faults, errors and failures [7]. In general, various fault-tolerance

10 Load Balancing and Fault Tolerance Mechanisms … 191

strategies, such as, checkpointing and rollback recovery, replication, are commonly
employed to circumvent the inability of the execution platform to guarantee a failure-
free execution and to insure high performance of the big databases running on the
complex computational systems with unpredictable conditions. The de-facto general
purpose fault tolerancemechanismemployedby the big data systemsmakes use of the
master–worker paradigm that uses checkpoints or message logs along with rollback
and replication recovery mechanisms [8]. Herein, the master nodes are responsible
for the global coordination among the worker nodes performing data computations
when a failures strikes some computational component.

With the exponential growth in production of data generated bymodern day appli-
cations, there has been significant research efforts geared towards the development
of the distributed NoSQL database systems [9] in order to deal with the issues of
scalability and throughput of traditional relational databases. The distributed big data
systems employ several data store replicas to achieve load balancing, fault tolerance
etc., thus improving their performance and ability to process increasingly growing
user’s workloads. However, as the distributed big data system scales, the Brewer’s
CAP Theorem [10] can be applied to describe the trade-offs one is subject to while
working with these distributed data storage systems. The theorem illustrates three
basic systemic requirements ofConsistency,Availability, andPartition tolerance that
exist in a special relationship when it comes to designing and deploying distributed
big data systems. Herein, the Consistency requirement implies that all servers will
have the same data and all the users will receive the same data as a response to each
request (operation, transaction, and query) regardless of which server responds to
the request. The Availability requirement infers that a request made by the user will
always receive a response by the system (which can be even an inconsistent data
or message saying that system not working). Furthermore, the Partition tolerance
requirement states that the system will continue to perform as expected even if an
individual server fails or cannot be reached. This characteristic in the CAP theorem
focuses on how the system will respond if there is a delay or failure in communica-
tion between two servers or nodes (a delay in communication may be considered as
a failure in these complex systems). As big database systems scales out, it is theo-
retically impossible to achieve all the above-mentioned requirements. For instance,
partitioning a network to achieve fault tolerance against network failures makes it
challenging to achieve both availability and consistency requirements at the same
time. Therefore, a combination of two requirements must be chosen to avoid the
performance degradation of these distributed big database systems.

In this chapter, we profile some popular graph database management systems
(DBMS), such as, Titan [11],OrientDB [12],ArangoDB [13],Giraph [14], andNeo4j
[15], along the load balancing and fault tolerance dimensions. The descriptions of
the frameworks highlight significant research pertaining to the existing solutions for
accomplishing scalability and resiliency of big data analytics in such systems.

192 N. Sukhija et al.

10.2 Titan

Titan is a java-based open-source graph database that provides a highly scalable
solution capable of managing extreme transactional workloads interacting in real-
time with massive-scale graphs distributed across cluster of several servers. Titan
incorporates a wide range of building blocks to distinguish it among other graph
databases. The flexibility to support and choose among the pluggable third party
adapters (as shown inFig. 10.1), such as,ApacheCassandra [16],ApacheHBase [17],
or Oracle BerkeleyDB [18] as storage backends helps to cater individually the con-
trasting demands pertaining to the transaction and the scalability aspects of the graph
database systems. The integration of Titan with Cassandra promotes high availabil-
ity of data without any point of failure. Furthermore, it alleviates the constraint on
read and/or writes since there is no master/slave architecture. Moreover, it supports
elastic scalability which allows joining or removing computational resources with-
out degrading performance. In case, there is a need for real-time real/write access to
data, integration with Apache HBase is recommended. The major advantage of using
Apache HBase is its support for reliable strong consistency of data. In comparison
with Apache Cassandra, HBase supports consistent reads and writes. The benefit
of using BerkeleyDB as a storage backend is its ability to work on the same JVM
(Java Virtual Machine) as Titan and local persistence of data with no overhead of
administration. The BerkeleyDB is promising if all the graph data fits on a local disk
and all the frequently accessed graph elements also fits in main memory. Thus, using
BerkeleyDB puts a limit to how much graph data can be worked on as it will not
reveal high performance when the size of the graph exceeds the local disk and cannot
be accessed locally within the same JVM.

Fig. 10.1 Storage backends
of Titan graph database and
their respective preference
toward two of the three
requirements defined by
CAP theorem

10 Load Balancing and Fault Tolerance Mechanisms … 193

10.2.1 Load Balancing

With the increase in the volume of graph data and in the user base interacting with
such graphs, balancingworkloads is extremely important for preserving performance
and is achieved in Titan by utilizing its multiple storage backends. In Titan database
system the graph is stored as a collection of list (Adjacency lists). Therefore, the
amount of vertices that are distributed among machines determines howwell a graph
is partitioned across the cluster. While partitioning a graph in Titan the below men-
tioned methods can be employed:

• Edge Cut This method partitions a graph and optimizes the assignment by placing
the adjacent vertices of frequently traversed edges on the same machine. This
assignment of adjacent vertices in the same partition leads to balanced load and to
a lower communication overhead in graph queries. The performance of processing
a graph query degrades if the graph traversal involves the vertices of frequently
traversed edges that belong to different partitions on different machines.

• Vertex Cut This method focuses on addressing the issue of hotspots on very large
graphs that are caused by vertices with a large number of incident edges. The
Vertex Cut method optimizes the balancing of load by partitioning a vertex and its
adjacency list across thewhole cluster, thus removing hot spots. In Titan, theVertex
Cut is achieved by labeling a high degree vertex and defining it as partitioned, such
that the label will be distributed across the cluster to avoid hot spots.

Titan database uses a random partitioning by default due to its configuration sim-
plicity and efficiency. This approachworkswell andwill result in balanced partitions,
cxcept when the Titan cluster size and communication over graph queries increases
resulting in performance degradation. In order to accommodate more graph data and
to address the bottleneck associated with communication overhead, Titan offers an
explicit graph partitioning option. However, this option necessitates calculation of
the number of virtual partitions and configuration of these partitions beforehand.
Thus, using a large number to partition the cluster can lead to excessive cluster frag-
ments resulting in poor performance. Moreover, the number of the virtual partitions
cannot be changed unless the graph is reloaded. The explicit partitioning can only
be configured with storage backend that support ordered key storage (Hbase and
Cassandra can both support this). Unlike Hbase, Cassandra requires an additional
configuration of using ByteOrderedPartitioner in order to support explicit partition-
ing. The ByteOrderedPartitioner is a partitioner used by Cassandra to order rows
lexically by key bytes [19].

10.2.2 Fault Tolerance

With multiple users, it is important that a database system is robust and can serve
numerous concurrent requests. Titan database system is highly robust and supports

194 N. Sukhija et al.

data distribution and replication for performance and fault tolerance. Titan facili-
tates continuously availability with no single point of failure using Cassandra as
a storage backend. Titan renders a master-master replication setup using the Cas-
sandra’s replication strategy configuration which stores replicas on multiple nodes
to ensure reliability and fault tolerance. The replication strategies, such as RackU-
naware, RackAware, and DatacenterAware [20], configures the nodes where replicas
can be placed and the replication factor decides the total number of replicas at nodes
across the storage system. The replication factor determines the robustness of Titan
in presence of system failures at the cost of data duplication. For instance, a replica-
tion factor of 3 implies that three replicas of each row will be configured and each
replica will be placed on a different node, thus avoiding a single point of failure. Fur-
thermore, a Gossip protocol-based Accrual Failure Detector is employed by Apache
Cassandra for detecting the failures of computational nodes. This detector accrues the
numeric values assigned to each node representing the suspicion level that another
node might be down. These numeric values can be dynamically changed over time
and can be used to trigger action plans. The Hinted Handoff recovery mechanism is
employed by Cassandra for executing partition writes targeting the temporary failed
nodes. Titan also employs a transaction write-ahead logwhich can be utilized to han-
dle and repair the indexing and logging inconsistencies caused due to the transaction
failures [21].

10.3 OrientDB

OrientDB is a distributed open source Multi-Model database management system
which provides a wide-range NoSQL solution and an integrated scalable document
and graph database [22].

10.3.1 Load Balancing

OrientDB database can be distributed across different servers and load-balancing
can be applied among the active servers that are valid candidates to serve the requests
for one user. Furthermore, OrientDB uses sharding (as shown in Fig. 10.2) to spread
the load in order achieve the maximum of performance, scalability and robustness
[4]. In OrientDB’s distributed architecture, sharding is employed to partition the data
of the database into partitions and these partitions are spread across different nodes.
Herein, sharding of data is performed at class level where a developer can define
multiple clusters per class and each cluster is comprised of one or multiple server
nodes where data is replicated. If there are multiple servers available to connect, the
following load balancing strategies can be used in order to deal with the high volume
of user requests:

10 Load Balancing and Fault Tolerance Mechanisms … 195

Fig. 10.2 Shards of data at class level:Multiple clusters defined per class and each cluster comprises
of one or multiple server nodes for data replication

• Sticky It is the OrientDB default strategy and is a connecting characteristic that
enables client to interact (connect) with one server and to switch only to another
server if the current one is unreachable.

• ROUND_ROBIN_CONNECTThis strategy allows a client to connect to a server
from the list of all the available servers at connect time. The round-robin algorithm
cycles through a list of available servers in order and the client will connect to
available ones.

• ROUND_ROBIN_REQUEST This strategy allows a client to connect to a server
from the list of all the available servers before every request in a round robin
manner. This strategy should be used with caution when dealing with strong con-
sistency.

10.3.2 Fault Tolerance

OrientDB’s supports Multi-Master replication and sharded architecture for assuring
the reliability of the ACID transactions [23]. In Multi-Master replication approach,
all the nodes (servers) in OrientDB are considered as master nodes, which give every
server the ability to read and write and perform queries on the database. When a
node failure occurs or any server becomes unavailable, the Auto Discovery feature
(as shown in Fig. 10.3) of OrientDB assist in automatically linking all the clients con-
nected to the failed node to an available server with no fail-over to the application
level. Moreover, OrientDB uses Write Ahead Logging (WAL) as a recovery mecha-
nism for restoring the contents of the database once failure occurs, guaranteeing that
all database transactions are processed accurately.

196 N. Sukhija et al.

Fig. 10.3 Fail over Management in OrientDB: Automatic switching of clients and configuration
update is performed when a server node fails

10.4 Giraph

Apache Giraph is a highly scalable distributed graph processing system that follows
Google’s Pregel [24]Bulk Synchronous model (BSP) [25].Giraphprovides a platform
for enabling iterative large-scale graph computation on the data stored on Hadoop
Distributed File System (HDFS) [26].

10.4.1 Load Balancing

The Giraph framework uses BSP programming model, where the operations are
executed on graph data comprising vertices and edges. All operations in Giraph
framework execute as a Hadoop job that utilizes the Hadoop cluster infrastructure.
Moreover, Giraph follows amaster/worker architecture and applies a Zookeeper [27]
to select a master node to coordinate synchronization, computation and partitioning.
In Giraph, the graph computations are expressed as sequence of iterations called
supersteps, where each superstep is separated by a global synchronization barrier.
During a superstep, the Giraph framework computes a function on each vertex in par-
allel and each vertex reads and processes the messages from previous iteration. Thus,
balancing between computation and communication steps is extremely important for
guaranteeing the performance and efficiency of the Giraph framework. In order to
achieve balanced workload, Giraph uses graph partitioning to distribute work across
the worker nodes (as shown in Fig. 10.4). In general, Giraph uses graph partition-
ing strategies, like hash-based or range-based partitioning that partitions the dataset
based on a simple heuristic with the goal of distributing the vertices evenly among
the partitions across computing nodes, irrespective of their edge connectivity. For
instance the HashRange partitioner in Giraph framework allows the vertices to be
divided into partitions by their hash code using ranges of their hash space [28]. Fur-
thermore, the master node can become a performance bottleneck if it has to perform
all computation processing andmessage communication at end of each superstep. To
address this problem, Giraph employs sharded aggregators [29]. Herein, at the end

10 Load Balancing and Fault Tolerance Mechanisms … 197

Fig. 10.4 Giraph applies master/worker architecture where a master node coordinates synchro-
nization, computation and partitioning among the worker nodes

of the superstep in the BSP model each worker is assigned an aggregator. Thereafter,
each worker is responsible for obtaining and aggregating the values for that aggre-
gator from rest of the workers and sending all its aggregators to the master. Thus,
using sharded aggregators help to balance the aggregation responsibilities among all
the worker nodes and to alleviate the I/O traffic congestion at the master.

10.4.2 Fault Tolerance

The Giraph system is designed to have no single point of failure to perform reliable
graph processing on large dataset which can be represented as a graph. The Giraph
system adds fault tolerance to its infrastructure by employing Apache Zookeeper
as its centralized coordination process which aids in checkpointing paths and in
maintaining the global application state [30]. The Zookeeper maintains a queue of
multiple master threads which is used by the workers nodes to choose a master that
will serve as a computation coordinator. If the current master node fails then a new
master is chosen automatically from the multiple masters’ queue in order to carry out
the operations reliably. In BSP model, any superstep can be restarted from a check-
point. The Giraph framework enables implementation of Checkpointing mechanism
at user-defined intervals which aids in automatically restarting the application when
any worker node fails. The master node also uses the Zookeeper service to detect
failure of a worker node. Once the failed node is detected, the master decides upon

198 N. Sukhija et al.

the last committed superstep of the application. Thereafter, the master coordinates
restart of the workers from the last committed superstep and the application is rolled
back to its last committed superstep automatically.

10.5 ArangoDB

ArangoDB is a high performance multi-model NoSQL database system with flexible
data modeling, where the data can be modeled as combination of graphs, key-value
pairs or documents.

10.5.1 Load Balancing

ArangoDB uses sharding that allows usage of multiple computing nodes to execute
a cluster of ArangoDB instances, which constitutes a single database. This facilitates
automatic distribution of data to different servers, thus balancing the load among the
different database servers and improving the data throughput. The ArangoDB cluster
comprises of two processes: (1) DBservers that stores the data; (2) coordinators that
act as links to the clients via REST interface. The infrastructure is designed to serve
multiple client requests in parallel manner to obtain good performance. However,
some client request scenarios can also lead to performance degradation; for instance
if all the client requests are geared towards one single document. Nevertheless, dis-
tributing the highly requested/interacted documents uniformly over a big sharded
collection will result in balancing the load of client requests/interaction across dif-
ferent DBservers and different coordinators, thus optimizing the parallel execution
performance [31].

10.5.2 Fault Tolerance

The ArangoDB infrastructure supports fault tolerance for the actual DBserver nodes
by employing asynchronous master–slave replication. Herein, pairs of DBservers
are executed, where the primary DBserver cater to the incoming requests from the
coordinators and the secondary DBserver perform replication of primary DBserver’s
data in a synchronous way. Furthermore, in addition to DBserver and coordina-
tor processes (as shown in Fig. 10.5), an ArangoDB’s cluster also contain agents
processes, together called as “agency”. The agent processes are used to manage the
cluster configuration, and to synchronize reconfiguration and fail-over operations
resulting in a high availability. The agency uses an external program etcd [32] that
usesRAFT [33] consensus protocol as an alternative toPaxos [34] protocol to provide
highly consistent and reliable hierarchical key value store.

10 Load Balancing and Fault Tolerance Mechanisms … 199

Fig. 10.5 Processes in the ArangoDB cluster: Coordinators managing the client requests,
DBservers storing and replicating the data along with serving the requests from coordinators, and
Agents performing the fail-over operations

10.6 Neo4j

Neo4j is an open source java-based scalable graph database management system. It
is leading graph database among the current DB-Engines [35] and is ACID complaint
transactional database with high availability and online backup.

10.6.1 Load Balancing

The Neo4j database system scales both horizontally and vertically in order to deliver
high performance of transactions on the large-scale graphs. The enterprise version of

200 N. Sukhija et al.

Neo4j provides high availability (HA) feature and balances the client requests among
the neo4j HA servers by integrating its cluster infrastructure with HAproxy [36]. The
HAproxy is an open source high performance and reliable load balancer for TCP-
and HTTP-based applications involving high traffic rates. The HAproxy supports
almost nine load balancing algorithms, such as, round robin, least connection, uri,
and others, which can employed by the Neo4j cluster to balance the transactional
workload across the HA servers. Furthermore, Neo4j employs cache-based sharding
[37] while dealing with large dataset (represented as graph) that pushes the limits of
resources (such as RAM) available. Therefore, if the graph is too big to fit in cache
of single node, then Neo4j uses a consistent routing algorithm to distribute the graph
load across the caches of different nodes of the cluster. Thus, the consistent request
routing facilitated by cache-based sharding aids in achieving good performance in
presence of resource constraints.

10.6.2 Fault Tolerance

Neo4j scalability package is equipped with mechanisms for handling diverse work-
loads and fault tolerance. Neo4j supports master/slave architecture and all the graph
data is replicated on all the servers across the cluster to provide redundancy in case of
instance failures (as shown in Fig. 10.6). The multi-paxos consensus protocol [38] is
implemented in Neo4j infrastructure to provide fault tolerance against node failures.
Neo4j uses paxos in order to perform cluster management, which involves choosing
a master among the slaves, coordination and synchronization, and data replication
and transaction propagation. Moreover, Neo4j maintain a quorum in order to exe-
cute write operations, where a minimum of servers have to be online in the cluster
to allow propagation of write loads [39]. The quorum allows neo4j service to be

Fig. 10.6 Neo4j high availability (HA) master-slave cluster architecture enabling synchronization
and data replication for a failure-free transaction propagation

10 Load Balancing and Fault Tolerance Mechanisms … 201

reliable and available in the case server failures. Furthermore, an enterprise backup
feature is integrated with Neo4j which enable full or incremental online backup of
mission-critical data on the running clusters.

10.7 Conclusions

With rapidly increasing computing power and decreasing storage cost, many appli-
cations are now producing large volumes of data. This “fire hose” of data presents
unique problems in analyzing the meaning of the data. The applications involving
simulation, analysis, and visualization of big data support numerous challenges, such
as the ability to spot business trends, determine quality of research, prevent diseases,
link legal citations, combat crime, and determine real-time roadway traffic condi-
tions. Graph-based data, e.g., social network, compute network, and power grid, is
becoming increasingly more important to our society. Thus performance of the big
data platforms enabling the processing of big data applications is often essential, even
critical sometimes, to achieve the objectives proposed by the domain areas which are
making use of them.Therefore,many research efforts have been attempted to enhance
the performance and reliability of such computing platforms. These efforts include
improving performance (per core) under stressful workloads, increasing scalability
of their execution in parallel and distributed environments, and dealing with dynam-
ically changing large data sets. Moreover, given the increase in the complexity of the
computational systems, the resource failures are becoming a norm than exception,
thus preserving the reliability of big data analytics executing on such computing sys-
tems is becoming extremely challenging for the big data platforms. Consequently,
gaining deep insight about the state-of-the-art load balancing and fault tolerance
approaches is of paramount importance, especially for researchers from both aca-
demic and industrial domains dealing with issues pertaining to the scalability and
resiliency of applications involving big data.

References

1. Kambatla, K., Kollias, G., Kumar, V., Grama,A.: Trends in big data analytics. J. Parallel Distrib.
Comput. 74(7), 2561–2573 (2014)

2. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed
graphlab: a framework for machine learning and data mining in the cloud. Proc. VLDBEndow-
ment 5(8), 716–727 (2012)

3. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing
with working sets. HotCloud 10, 10–10 (2010)

4. Cattell, R.: Scalable sql and nosql data stores. ACM SIGMOD Rec. 39(4), 12–27 (2011)
5. Zikopoulos, P., Eaton, C., et al.: Understanding big data: Analytics for enterprise class hadoop

and streaming data. McGraw-Hill Osborne Media (2011)
6. Tanenbaum, A.S., Van Steen, M.: Distributed systems: principles and paradigms, Vol. 2. Pren-

tice hall Englewood Cliffs (2002)

202 N. Sukhija et al.

7. Wang, P., Zhang, K., Chen, R., Chen, H., Guan, H.: Replication-based fault-tolerance for
large-scale graph processing. In: 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 562–573. IEEE (2014)

8. Power, R., Li, J.: Piccolo: Building fast, distributed programs with partitioned tables. OSDI
10, 1–14 (2010)

9. Leavitt, N.: Will nosql databases live up to their promise? Computer 43(2), 12–14 (2010)
10. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-

tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)
11. Titan: Titan graph database. http://thinkaurelius.github.io/titan/
12. OrientDB: Orientdb graph database. http://orientdb.com/orientdb
13. ArangoDB: Arangodb nosql database. https://www.arangodb.com/
14. Giraph: Apache giraph. http://giraph.apache.org/
15. Neo4j: Neo4j graph database. http://neo4j.com/
16. Cassandra, A.: Apache Cassandra (2013)
17. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H., Ran-

ganathan,K.,Molkov,D.,Menon,A., Rash, S., et al.: Apache hadoop goes realtime at facebook.
In: Proceedings of the 2011 ACM SIGMOD International Conference onManagement of data,
pp. 1071–1080. ACM (2011)

18. Oracle Berkeley, D.: Java edition (2008)
19. Dede, E., Sendir, B., Kuzlu, P., Hartog, J., Govindaraju, M.: An evaluation of cassandra for

hadoop. In: 2013 IEEE Sixth International Conference on Cloud Computing, pp. 494–501.
IEEE (2013)

20. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS
Operating Systems Review 44(2), 35–40 (2010)

21. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: Aries: a transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging.
ACM Transactions on Database Systems (TODS) 17(1), 94–162 (1992)

22. Tesoriero, C.: Getting Started with OrientDB. Packt Publishing Ltd (2013)
23. Gray, J., Reuter, A.: Transaction Processing: Soncepts and Techniques. Elsevier (1992)
24. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:

Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 135–146. ACM (2010)

25. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111
(1990)

26. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE
(2010)

27. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination for internet-
scale systems. In: USENIX Annual Technical Conference, Vol. 8, p. 9 (2010)

28. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., Kalnis, P.: Mizan: a system
for dynamic load balancing in large-scale graph processing. In: Proceedings of the 8th ACM
European Conference on Computer Systems, pp. 169–182. ACM (2013)

29. Sakr, S.: Processing large-scale graph data: A guide to current technology. IBM Developer-
works, p. 15 (2013)

30. Schelter, S.: Large scale graph processing with apache giraph. Invited talk at GameDuell Berlin
29th May (2012)

31. ArangoDB: Arangodb white paper sharding. https://www.arangodb.com/documents/
32. Store, R.K.V.: Reliable key-value store, etcd. https://coreos.com/etcd/docs/latest/
33. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: 2014

USENIX Annual Technical Conference (USENIX ATC 14), pp. 305–319 (2014)
34. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
35. Webber, J.: A programmatic introduction to neo4j. In: Proceedings of the 3rd Annual Confer-

ence on Systems, Programming, and Applications: Software for Humanity, pp. 217–218. ACM
(2012)

http://thinkaurelius.github.io/titan/
http://orientdb.com/orientdb
https://www.arangodb.com/
http://giraph.apache.org/
http://neo4j.com/
https://www.arangodb.com/documents/
https://coreos.com/etcd/docs/latest/

10 Load Balancing and Fault Tolerance Mechanisms … 203

36. Tarreau, W.: Haproxy-the reliable, high-performance tcp/http load balancer (2012)
37. Montag, D.: Understanding neo4j Scalability. White Paper, Neotechnology (2013)
38. Rao, J., Shekita, E.J., Tata, S.: Using paxos to build a scalable, consistent, and highly available

datastore. Proc. VLDB Endowment 4(4), 243–254 (2011)
39. Partner, J., Vukotic, A., Watt, N., Abedrabbo, T., Fox, D.: Neo4j in Action. Manning Publica-

tions Company (2014)

Chapter 11
Fault Tolerance in MapReduce: A Survey

Bunjamin Memishi, Shadi Ibrahim, María S. Pérez and Gabriel Antoniu

11.1 Introduction

Data-intensive computing has become one of the most popular forms of parallel
computing. This is due to the explosion of digital data we are living. This data
expansion has mainly come from three sources: (i) scientific experiments from fields
such as astronomy, particle physics, or genomics; (ii) data from sensors; and (iii)
citizens publications in channels such as social networks.

Data-intensive computing systems, such as Hadoop MapReduce, have as main
goal the processing of an enormous amount of data in a short time, by transmitting
the computation where the data resides. In failure-free scenarios, these frameworks
usually achieve good results. Given that failures are common at large scale, these
frameworks exhibit some fault tolerance and dependability techniques as built-in fea-
tures. In particular,MapReduce frameworks toleratemachine failures (crash failures)
by re-executing all the tasks of the failed machine by the virtue of data replication.
Furthermore, in order to mask temporary failures caused by network or machine
overload (timing failure) where some tasks are performing relatively slower than
other tasks, Hadoop relaunches other copies of these tasks on other machines.

B. Memishi (B) · M.S. Pérez
OEG, E.T.S. Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de
Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain
e-mail: bmemishi@fi.upm.es

M.S. Pérez
e-mail: mperez@fi.upm.es

S. Ibrahim · G. Antoniu
Inria Campus Universitaire de Beaulieu, Rennes, 35042 Brittany, France
e-mail: shadi.ibrahim@inria.fr

G. Antoniu
e-mail: gabriel.antoniu@inria.fr

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_11

205

206 B. Memishi et al.

Foreseeing MapReduce usage in the next generation Internet [46], a particular
concern is the aim of improving the MapReduce’s reliability by providing better
fault-tolerant mechanisms. As far as we know, there is not a complete review of the
research in MapReduce fault tolerance, in such a way that it represents an overall
picture of what has been done and what is missing. This survey addresses this gap,
by means of the following contributions:

• An exhaustive study on the MapReduce framework, and its default fault-tolerant
mechanisms. As one may assume, the leading MapReduce-based systems which
are open source, with particular emphasis on Hadoop MapReduce, have evolved
significantly since their first appearance. This study has taken into account all of
these releases, by considering the most important advances in the fault-tolerant
area.

• A systematic literature review on contributions with extensive analysis and pro-
posals of new fault-tolerant mechanisms in MapReduce-based systems.

• A discussion about the open issues and key challenges for providing efficient fault
tolerance in MapReduce-based systems.

This book chapter is organized as follows. Section 11.2 introduces the method-
ology which has guided the survey. Section 11.3 represents the MapReduce fun-
damentals, with particular emphasis on its fault-tolerant mechanisms. Section 11.4
gives an extensive analysis of the literature review. Section 11.5 describes some of
the most popular data-intensive computing systems, mentioning their fault tolerance
mechanisms. Section 11.6 discusses the opportunities and challenges to design ef-
ficient fault-tolerant mechanisms in MapReduce. Finally, Sect. 11.7 concludes the
book chapter.

11.2 Methodology

In order to analyze the existing work, a previous identification of the main areas
related to the topic addressed in this survey was performed. Concretely, four groups
were defined:

• Context Contributions related to the general context of dependability.
• MapReduce Contributions that introduce the fundamentals of the MapReduce
framework.

• Optimizations Contributions related to direct fault-tolerant solutions on
MapReduce-based systems.

• Others Contributions proposing different solutions for other systems, which could
be considered as added values in the context of MapReduce-based systems.

Additionally, this study has made a general analysis of the different types of
failures in computing systems, and their connection to the MapReduce framework.
This has enabled a solid construction of boundaries between different failures types

11 Fault Tolerance in MapReduce: A Survey 207

within MapReduce and other distributed systems. In the computer science literature,
it is also very common to have a distinction between faults, errors, and failures [7],
considering faults and errors as implications of failures. According to the existing
literature [8, 11, 50], the most common failure-type division inMapReduce is: crash,
omission, arbitrary, network and security failures. More specifically:

• Crash failure The process crashes at a specific point of time and never recovers
after that time.

• Omission failure It is a more general kind of failures. A process does not send (or
receive) a message that it is supposed to send (or receive).

• Arbitrary (Byzantine) failure The process fails in an arbitrary manner if it can
deviate in any conceivable way from the algorithm assigned to it. It is the most
expensive failure to tolerate. Even though it is assumed mostly as intentional and
malicious, the arbitrary failure can simply be a bug in the implementation, the
programming language, or even the compiler.

• Network failureThe processes cannot communicate with each other. There are two
kind of failures: (i) One-way link. There is difficulty in communication between
two processes (e.g., one communication party can send, but the other party cannot
receive); and (ii) Network partition. A line connecting two larger sections of a
network fails.

• Security failure The messages between processes are inspected, modified, or pre-
vented from being delivered. This group also considers eavesdropping failures,
which are those failures related to leaking information obtained in an algorithm to
an outside entity, possibly threatening the confidentiality of the data handled by
the algorithm.

Section 11.4will further clarify these conceptswithinMapReduce-based systems.

11.3 MapReduce Framework

The MapReduce framework is one of the most widespread approaches of data-
intensive computing. It represents a programmingmodel for processing large datasets
[19, 33]. MapReduce has been discussed by researchers for more than a decade, in-
cluding the database community. Even though its benefits have been questionedwhen
compared to parallel databases, some authors suggest that both approaches have their
own advantages, and there is not a risk that one could become obsolete [54]. MapRe-
duce’s advantages over parallel databases include storage-system independence and
fine-grain fault tolerance for large jobs. Other advantages are simplicity, automatic
parallelism, and scalability. These features make MapReduce an appropriate option
for data-intensive applications, being more and more popular in this context. Indeed,
it is used for different large-scale computing environments, such as Facebook Inc.
[23], Yahoo! Inc. [65], and Microsoft Corporation [45].

By default, every MapReduce execution needs a special node, called master;
the other nodes are called workers. The master keeps several data structures, like

208 B. Memishi et al.

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

...
BLOCK n

MAP 1

MAP 2

MAP n

REDUCE 1

REDUCE n

OUTPUT 1

OUTPUT n

Map Phase Shuffle Phase Reduce Phase

Input data Intermediate data Output data

Fig. 11.1 MapReduce logical workflow

the state and the identity of the worker machines. Different tasks are assigned to the
worker nodes by themaster. Depending on the phase, tasksmay execute two different
functions:Map or Reduce. As explained in [19], users have to specify aMap function
that processes a key/value pair to generate a set of intermediate key/value pairs,
and a Reduce function that merges all intermediate values associated with the same
intermediate key. In this way, many real-world problems can be expressed by means
of the MapReduce model.

A simple MapReduce data workflow is shown in Fig. 11.1. This figure represents
a MapReduce workflow scenario, from the input data to the output data. The most
common implementations keep the input and output data in a reliable distributed
file system, while the intermediate data is kept in the local file system at the worker
nodes.

11.3.1 MapReduce 1.0 Versus MapReduce 2.0

The most common implementation of MapReduce is part of the Apache Hadoop
open-source framework [56]. Hadoop uses the Hadoop Distributed File System
(HDFS) as the underlying storage backend, but it was designed to work on many
other distributed file systems as well.

The main components of Apache Hadoop are MapReduce and HDFS. Hadoop
MapReduce consists of a JobTracker and many TaskTrackers, which constitute the
processing master and workers, respectively. TaskTrackers consist of a limited num-
ber of slots for running map or reduce tasks. The MapReduce workflow is managed
by the JobTracker, whose responsibility goes beyond the MapReduce process. For
instance, the JobTracker is also in charge of the resource management. HDFS con-
sists of a NameNode and many DataNodes, that is, the storage master and workers,
respectively, whereas the NameNode manages the file system metadata, DataNodes
hold a portion of data in blocks.

11 Fault Tolerance in MapReduce: A Survey 209

The traditional version of Hadoop has faced several shortcomings on large-scale
systems, concerning scalability, reliability, and availability. The YARN (Yet Another
Resource Negotiator) project has recently been developed with the aim of addressing
these problems [57].

In the classic version of Hadoop, the JobTracker handles both resource man-
agement and job scheduling. The key idea behind YARN is to separate concerns,
by splitting up the major functionalities of the JobTracker, resource management,
and job scheduling/monitoring, into separate entities. In the new architecture, there
is a global ResourceManager (RM) and per-application ApplicationMaster (AM).
The ResourceManager and a per-node slave, the NodeManager (NM) compose the
data-computation framework. The per-application ApplicationMaster is in charge of
negotiating resources from the ResourceManager and working with the NodeMan-
ager(s) to execute and monitor the progress of the tasks. The ResourceManager in-
cludes two components: a scheduler and applicationmanager.Whereas the scheduler
is in charge of resource allocation, the application manager accepts job submissions,
and initiates the first job container for the job master (ApplicationMaster). This ar-
chitectural change has as main goals to provide scalability and remove the single
point of failure presented by the JobTracker. However, the resource scheduler, the
application manager, and the application master now become single points of failure
in the YARN architecture.

11.3.2 MapReduce Fault Tolerance

In Fig. 11.2 we show a big picture of the default fault-tolerant concepts and their
mechanisms in MapReduce.

At the core of failure detection mechanism is the concept of heartbeat. Any kind
of failure that is detected in MapReduce has to fulfill some preconditions, in this
case to miss a certain number of heartbeats, so that the other entities in the system
detect the failure. The classic implementation of MapReduce has no mechanism for
dealing with the failure of the master, since the heartbeat mechanism is not used to
detect this kind of failure. Workers send a heartbeat to the master, but the master’s

Heartbea�ng Specula�ve
Execu�on Re-execu�on

DETECTION HANDLING RECOVERY

Fig. 11.2 Fault tolerance inMapReduce: The basic fault tolerance definitions (detection, handling,
and recovery) with their corresponding implementations

210 B. Memishi et al.

health is monitored by the cluster administrator. This person must first detect this
situation, and then manually restart the master.

Because theworker sends heartbeats to themaster, its eventual failurewill stop this
notificationmechanism. From theworker side, there is a simple loop that periodically
sends heartbeat method calls to the master; by default, this period has been adjusted
to 3 s in most of the implementations. The master makes a checkpoint every 200s, in
order to detect if it has missed any heartbeats from a worker for a period of 600s, that
is, 10min. If this condition is fulfilled, then a worker is declared as dead and removed
from themaster’s pool of workers uponwhich can schedule tasks on. After themaster
declares the worker as dead, the tasks running on a failed worker are restarted on
other workers. Since the map tasks that completed its work, kept their output on the
dead worker, they have to be restarted as well. On the other hand, reduce tasks that
were not completed need to be executed in different workers, but since completed
reduce tasks saved its output in HDFS, their re-execution is not necessary.

Apart from telling to the master that a worker is alive, heartbeats also are used as a
channel for messages. As a part of the heartbeat, a worker states whether it is ready to
run a new task, and in affirmative case, the master will use the heartbeat return value
for communicating the actual task to the worker. Additionally, if a worker notices
that it did not receive a progress update for a task in a period of time (by default,
600 s), it proceeds to mark the task as failed. After this, the worker’s duty is to notify
the master that a task attempt has failed; with this, the master reschedules a different
execution of the task, trying to avoid rescheduling the task on the same worker where
it has previously failed.

The master’s duty is to manage both, the completed and ongoing tasks on the
worker to be re-executed or speculated, respectively. In the case of a worker failure,
before the master decides to re-execute the completed and ongoing tasks so that may
skip the default timeout of MapReduce (10min), there is only one opportunity left,
speculative execution.

The speculative execution ismeant to be amethod of launching another equivalent
task as a backup, but only after all the normal tasks have been launched, and after the
average running time of the other tasks. In other words, a speculative task is basically
run for map and reduce tasks that have its completion rate below a certain percentage
of the completion rate of the majority of running tasks.

An interesting dilemma is how to differentiate the handling and recovery mech-
anisms. A simple question arises: Does MapReduce differentiate between handling
and recovery?

In some sense, both, speculative execution and re-execution try to complete a
MapReduce job as soon as possible, with the least processing time, while execut-
ing its tasks on minimal resources (e.g., to avoid long occupation of resources by
some tasks).1 However, the sequence of performing the speculative execution and
re-execution is what makes them different, therefore considering the former one be

1This is not particularly true in the case of speculative execution, since it has proven to exhaust a
considerable amount of resources, when executed on heterogeneous environments [39, 72] or when
the system is going under failures [22].

11 Fault Tolerance in MapReduce: A Survey 211

part of the handling process, and the latter one part of the recovery. An additional
difference to this is that, while the re-execution mechanism tries to react after the
heartbeat mechanism has declared that an entity has failed, the speculative execution
does not need the same timeout condition in order to take place; it reacts sooner.

Regarding to the nomenclature related to failures and errors, we consider a job
failurewhen the job does not complete successfully. In this case, the first task that fails
can be considered as an error, because it will request its speculation or re-execution
from the master. A task failure can happen because the network is overloaded (in
this case, this is also an error, because the network fault is active and loses some
deliveries). In order to simplify this, we assume that in MapReduce, a task or any
other entity is facing a failure, whenever it does not fulfill its intended function.

From the point of view ofHadoop’sMapReduce, failures can happen in themaster
and worker. When the master fails, this is a single point of failure. But in the case
of the worker, it may have a task fail (map or reduce task, or shuffle phase) or the
entire worker. During a map phase, if a map task crashes, Hadoop tries to recompute
it in a different tasktracker. In order to make sure that this computation takes place,
most of the reducers should complain for not receiving the map task output or the
number of notifications is higher or equal to three [51]. The failed tasks have higher
priority to be executed than the other ones; this is done to detect when a task fails
repeatedly due to a bug and stop the job. In a reduce phase, a reduce task failure will
have to be executed in a different tasktracker, having in mind that the three reduce
phases should start from the beginning. The reduce task is considered as failed, if
the majority of its shuffle attempts fails, the shuffle phase does not succeed to get
five map outputs, or its progress stops for a long time. During the shuffle phase, a
failure may also happen (in this case, a network failure), because two processes (in
our case two daemons) can be in a working state, but a network failure may stop any
data interchange between them. MapReduce implementations have been improved
by means of the Kerberos authentication system, preventing a malicious reduce task
from requesting another user’s map output.

11.4 Analysis

Several projects have addressed different reliability issues in data-intensive frame-
works, in particular for MapReduce. In this section, we have tried to collect those
studies, adapting them to the most common failure type divisions in distributed sys-
tems [8, 11, 50]: crash, omission, arbitrary, network and security failures. Table11.1
summarizes the main studies included in this review, listed in publication date order.

In [22], authors have evaluatedHadoop, demonstrating a large variation inHadoop
job completion time in the presence of failures. According to authors, this is because
Hadoop uses the same functionality to recover from worker failure, regardless of
the cause or failure type. Since Hadoop couples failure detection and recovery with
overload handling into a conservative design with conservative parameter choices, it
is often slow reacting to failures, exhibiting different response times under failure.

212 B. Memishi et al.

Table 11.1 The main studies included in this review, listed in publication date order

Year and study Algorithms Concepts

2004, [19] Speculative execution The foundations

2008, [72] Longest Approximate Time to End
(LATE)

Heterogeneity considerations

2009, [15] UpRight library (3 f + 1) Byzantine fault tolerance

2009, [59] Metadata replication Crash, failure handling

2009, [10] Re-execution evaluation Crash, omission failure, failure
recovery

2009, [58] MapReduce setup simulation Crash, network failure

2010, [39] Dedicated compute resources, Hibernate
state, Hybrid task scheduling

Volunteer computing systems

2010, [4] Outlier culling, Cause- and
resource-aware

Crash, omission failure, failure
detection, failure handling, failure
recovery, Data locality, Network
hotspot

2010, [37] Intermediate storage system—ISS
(through asynchronous replication,
rack-level replication, selective
replication)

Crash, omission failure, failure
handling, failure recovery

2010, [16] Pipelined intermediate data, Online
aggregation, Continuous queries

MapReduce and beyond (e.g.,
Interactive applications), Crash,
omission failure, failure handling,
failure recovery

2010, [48] BlackBox approach (based on OS-level
metrics)

Crash, omission failure, failure
detection and diagnosis

2010, [55] Massive fault tolerance, replica
management, barriers free execution,
latency-hiding optimization, distributed
result checking

Network failure, failure handling,
failure recovery

2010, [14] Hybrid calculation model (n − step
probability, VM expected lifetime, cost of
termination)

Network, failure handling, failure
recovery

2010, [51] Mandatory access control, differential
privacy

Security failure, failure detection,
failure handling

2011, [41] Map and shuffle (phases) overlap, Task
duplication, pull mechanism, queues

Cloud-based MapReduce, Crash,
single point of failure, failure
detection, failure recovery

2011, [73] Adaptive interval, reputation-based
detector

Crash, failure detection

2011, [9] Metadata replication Crash, failure handling

2011, [34] Stochastic prediction model MapReduce fault tolerance
understanding

2011, [18] Deferred execution, Tentative reduce
execution, Digest outputs, Tight storage
replication

Crash, and Byzantine fault
tolerance, failure handling

(continued)

11 Fault Tolerance in MapReduce: A Survey 213

Table 11.1 (continued)

Year and study Algorithms Concepts

2011, [42] Split message format modification, save
the intermediate work, commit
mechanism modification

Network, failure handling, failure
recovery

2012, [52] Kerberos protocol Security, failure detection, failure
handling

2012, [24] JobTracker re-architecture Crash, single point of failure,
failure handling, failure recovery

2013, [57] JobTracker re-architecture through
Hadoop YARN

Crash, single point of failure,
failure handling, failure recovery

2013, [29] Encryption Eavesdropping failure, failure
detection, failure handling

2013, [35] Analytical failure measurement Crash, failure handling, failure
recovery

2014, [3] Greedy Speculative Scheduling (GS),
Resource Aware Speculative Scheduling
(RAS)

Approximation analytics

2014, [13] Maximum Cost Performance (MCP) Weighted moving average
(EWMA)

2014, [62] Accountability test Byzantine fault tolerance, failure
detection, failure handling

2014, [64] Early cloning, Enhanced Speculative
Execution (ESE)

Single job

2015, [63] Smart Cloning Algorithm (SCA),
Enhanced Speculative Execution (ESE)

Multiple jobs

2015, [44] Diarchy algorithm Single point of failure, failure
handling

2015, [30] Failure recovery evaluation Crash failure, multiple jobs

2015, [66] Failure-aware scheduling Failure handling, failure recovery,
multiple jobs

2015, [49] Energy cost of speculation Omission failure, resource
heterogeneity, energy
considerations

2016, [43] MapReduce timeout analysis Failure detection, handling

Authors conclude that Hadoop makes unrealistic assumptions about task progress
rates, rediscovers failures individually by each task at the cost of great degradation
in job running time, and does not consider the causes of connection failures between
tasks, which leads to failure propagation to healthy tasks.

In [43], authors report that, in the presence of single machine failure the appli-
cations latencies vary not only in accordance to the occupancy time of the failure,
similar to [22], but also vary with the job length (short or long).

In [10], authors have evaluated the performance and overhead of both the
checkpointing-based fault tolerance and the re-execution based fault tolerance in
MapReduce through event simulation driven by Los Alamos National Labs (LANL)

214 B. Memishi et al.

data. Regarding MapReduce, the fault tolerance mechanism which was explored is
re-execution, where all map or reduce tasks from a failed core are reallocated dy-
namically to operational cores whether the tasks had completed or not (i.e., partial
results are locally stored), and execution is repeated completely. In the evaluation
of the performance of MapReduce in the context of real-world failure data, it was
identified that there is pressure to decrease the size of individual map tasks as the
cluster size increases.

In [35], authors have introduced an analytical study of MapReduce performance
under failures, comparing it to MPI. This research is HPC oriented and proposes
an analytical approach to measure the capabilities of the two programming models
to tolerate failures. In the MapReduce case, they have started with the principle
that any kind of failure is isolated in one process only (e.g., map task). Due to
this, the performance modeling of MapReduce was built on the analysis of each
single process. The model consists of introducing an upper bound of theMapReduce
execution time when no migration/replica is utilized, followed by an algorithm to
derive the best performance when replica-based balance is adopted. According to
the evaluation results, MapReduce achieves better performance than MPI on less
reliable commodity systems.

11.4.1 Crash Failure

During a crash failure, the process crashes at a specific point of time and never
recovers after that time. Since a crash failure involves process failing to finish its
function according to its general definition, this means that in MapReduce a crash
failure can lead to a node (machine), daemon (JobTracker or TaskTracker), or task
(map, reduce) failure. These failures surge when a node simply crashes, and affects
all of its daemons. But this is not only the case for a crash failure; there are many
other cases when particular daemons or tasks crash due to Java Virtual Machine
(JVM) issues, high overloads, memory or CPU errors, etc.

At this section point, we will summarize the master crash failures first, and then
continue with other crash failures in MapReduce. An important contribution to the
high availability of JobTracker is the work of Wang et al. [59]. Their paper proposes
a metadata replication-based solution to enable Hadoop high availability by remov-
ing single point of failure in Hadoop, regardless of whether it is NameNode or a
JobTracker. Their solution involves three major phases:

• Initialization phase. Each standby/slave node is registered to active/primary node
and its initial metadata (such as version file and file system image) are caught up
with those of active/primary node.

• Replication phase. The runtimemetadata (such as outstanding operations and lease
states) for failover in future are replicated.

• Failover phase. Standby/new elected primary node takes over all communications.

A well-known implementation of this contribution has been done by Facebook,
Inc. [9], by creating the active and standby AvatarNode. This node is simply wrapped

11 Fault Tolerance in MapReduce: A Survey 215

to theNameNode, and the standbyAvatarNode takes the role of the activeAvatarNode
in less than a minute; this is because every DataNode speaks with both AvatarNodes
all the time.

However, the above solution did not prove to give the optimum for the com-
pany requirements, since their database has grown by 2500× in the past 4years.
Therefore, another approach named Corona [24] was used. This time, for Facebook
researchers it was obvious that they should separate the JobTracker responsibilities:
resource management and job coordination. The cluster manager should look for
cluster resources only, while a dedicated JobTracker is created per each job. As you
can notice, at many points, the design decisions of Corona are similar to Hadoop
YARN. Additionally, Corona has been designed to use push-based scheduling, as a
major difference to the pull-based scheduling of the Hadoop MapReduce.

In thework [47], authors propose an automatic failover solution for the JobTracker
to address the single point of failure. It is based on the Leader Election Framework
[11], usingApacheZookeper [5]. Thismeans thatmultiple JobTrackers (at least three)
are started together, but only one of them is the leader at a particular time. The leader
does not serve any client, but receives periodical checkpoints from the remaining
JobTrackers. If one of the NameNodes fails, the leader recovers its availability from
the most recent checkpointed data. However, this solution within Yarn has not been
explored for job masters [57] and only addresses other single points of failure, such
as the resource manager daemon.

In a recent study [44], the authors propose Diarchy, a novel approach for manage-
ment of masters, whose aim is to increase the reliability of Hadoop YARN, based
on the sharing and backup of responsibilities between two masters working as peers.
Despite the fact that Diarchy seems only to improve the reliability of failure han-
dling between masters, its functioning also puts a lower boundary in the worst-case
assumption, with the number of Diarchy failed tasks not surpassing the half number
of failed tasks of Hadoop YARN.

In case of a TaskTracker crash failure, its tasks are by default re-executed in the
other TaskTrackers. This is valid for both,map and reduce tasks.Map tasks completed
on the dead TaskTracker are restarted because the job is still in the progress phase and
did not finish yet, and contains n number of reduce tasks, which need that particular
map output. Reduce tasks are re-executed as well, except for those reduce tasks that
have completed, because they have saved its output in a distributed file system, that
is, in HDFS.

MapReduce philosophy is based on the fact that a TaskTracker failure does not
represent a drastic damage to the overall job completion, especially long jobs. This
is motivated by large companies [20], which use MapReduce on a daily basis, and
argue that even with a loss of a big number of machines, they have finished in a
moderate completion time.2 Any failure would simply speculate/re-execute the task
in a different TaskTracker.

2Jeff Dean, one of the leading engineers in Google, said: (we) “lost 1600 of 1800 machines once,
but finished fine”.

216 B. Memishi et al.

There are cases where TaskTrackers may be blacklisted by mistake from the
JobTracker. In fact, this happens because the ratio of the number of the failed tasks
in the respective TaskTracker is higher than the average failure rate on the overall
cluster [61]. By default, the Hadoop’s blacklist mechanism marks a TaskTracker as
blacklisted if the number of tasks that have failed is more than four. After this, the
JobTracker will stop assigning future tasks to that TaskTracker for a limited period of
time. These blacklisted TaskTrackers can be brought to live, only by restarting them;
in this way, they will be removed from the JobTracker’s blacklist. The blacklisting
issue could also go beyond this. This can be explained with one scenario. Let us
assume that, at some point, reduce tasks that are running in the other TaskTrackers
will try to connect to the failed TaskTracker. Some of the reduce tasks need the map
output from the failed TaskTracker. However, as they cannot terminate the shuffle
phase (because of the missing map output from the failed TaskTracker), they fail.
Experiments in [22] show that reduce tasks die within seconds of their start (without
having sent notifications) because all the conditions which declare the reduce task
to be faulty become temporarily true when the failed node is chosen among the first
nodes to connect to. In these cases, when most of the shuffles fail and there is little
progress made, there is nothing left except re-execution, while wasting an additional
amount of resources.

The idea behind the paper [18] is doubling each task in execution. This means
that if one of the tasks fails, the second backup task will finish on time, reducing the
job completion time using larger (intuitively, you may guess that doubling the tasks
leads to approximately doubling the resources) amounts of resources.

In [73], authors have proposed two mechanisms to improve the failure detection
in Hadoop via heartbeat, but only in the worker side, that is, the TaskTracker. While
the adaptive interval mechanism adjusts the TaskTracker timeout according to the
estimated job running time in a dynamicway, the reputation-based detector compares
the number of fetch errors reported when copying intermediate data from the mapper
and when any of the TaskTrackers reaches a specific threshold that TaskTracker will
be announced as a failed one.As authors explain, the adaptive interval is advantageous
to small jobs while the reputation-based detector is mainly intended to longer jobs.

In the early versions of Hadoop (including the Hadoop 0.20 version), a crash fail-
ure of the JobTracker involved that all active work was lost entirely when restarting
the JobTracker. The next Hadoop version 0.21 gave a partial solution to this prob-
lem, making periodic checkpoints into the file system [56], so as to provide partial
recovery.

In principle, it is very hard to recover any possible data after a TaskTracker’s
failure. That is why Hadoop’s reaction is to simply re-execute the tasks in the other
TaskTrackers. However, there are works which have tried to take the advantage
of checkpointing [16], or saving the intermediate data in a distributed file system
[37, 38].

11 Fault Tolerance in MapReduce: A Survey 217

Regarding [16], among the interesting aspects of the pipelined Hadoop imple-
mentation is that it is robust to the failure of both map and reduce tasks, introducing
the “checkpoint” concept. It works on the principle that eachmap and reduce task no-
tifies the JobTracker, which spreads or saves the progress, informing the other nodes
about it. For achieving this, a modified MapReduce architecture is proposed that al-
lows data to be pipelined between operators, preserving the programming interfaces
and fault tolerance models of a full-featured MapReduce framework. This provides
significant new functionality, including “early returns” on long-running jobs via on-
line aggregation, and continuous queries over streaming data. The paper has also
demonstrated the benefits for batch processing: by pipelining both within and across
jobs, the proposed implementation can reduce the time to job completion. This study
work can also be considered as an optional solution to an omission failure.

In [37], authors propose an intermediate storage system,with two features inmind:
data availability and minimal interference. According to this paper, these issues are
solved with ISS (intermediate storage system), which is based on three techniques:

• Asynchronous replication. This does not block the ongoing procedures of the
writer. Moreover the strong consistency is not required when having in mind that
in platforms like Hadoop and similar, there is a single writer and single reader for
intermediate data.

• Rack-level replication. This technique is chosen, because of the higher bandwidth
availability within a rack, taking into account that the rack switch is not heavily
used as the core switch.

• Selective replication. It is used considering that the replication will be applied
only to the locally consumed data; in case of failure, the other data may be fetched
again without problems.

This work is important to be mentioned, because for every TaskTracker failure,
every map task that has been completed, it has already saved its output in a reliable
storage system different from the local file system. In this way, the amount of re-
dundant work for re-executing the map task that has been completed on the failed
TaskTracker is reduced again.

A recent study [30] has investigated the impact of failures in shared Hadoop
clusters. Accordingly, the authors evaluated the performance of Hadoop under failure
when applying several schedulers (i.e., Fifo, delay, and capacity schedulers). They
observe that the current failure handling mechanism is entirely entrusted to the core
of Hadoop and hidden from Hadoop schedulers. This in turn results in a significant
increase of the execution time of jobs with failed tasks. The performance degradation
is caused by: (i) the waiting time for free resources to re-execute failed tasks, and
(ii) not considering locality when scheduling failed tasks. In [66], the authors have
proposed Chronos, a failure-aware scheduling strategy in shared Hadoop cluster.

218 B. Memishi et al.

Chronos triggers a lightweight preemption technique to free resources as soon as
failure is detected, thus eliminating the waiting time. Furthermore, Chronos takes
into consideration data locality of recovery tasks when preempting a running task.
As a result, Chronos is able to correct the operation of Hadoops schedulers while
improving the performance of MapReduce applications under failures.

11.4.2 Omission Failure (Stragglers)

An omission failure is a more general kind of failures. This happens when a process
does not send (or receive) a message that it is supposed to send (or receive). In
MapReduce terminology, omission failures are synonym for stragglers. Indeed, the
concept of stragglers is very important in the MapReduce community, especially
task stragglers, which could jeopardize the job completion time. Typically, the main
causes of a MapReduce straggler task are: (i) a slow node, (ii) network overload, and
(iii) input data skew [4].

Most of the state of the art in this direction has intended to improve the job
execution time, by means of doubling the overall small jobs [2], or just by doubling
the suspected tasks (stragglers) through different speculative execution optimizations
[4, 13, 19, 32, 64, 72].

In [72], authors have also proposed a new scheduling algorithm called Longest
Approximate Time to End (LATE) to improve the performance of Hadoop in a
heterogeneous environment, brought by the variation of VM consolidation amongst
different physical machines, by preventing the incorrect execution of speculative
tasks. In this work, authors try to solve the issue of finding the real stragglers3

among the MapReduce tasks, so as to speculatively execute them, while giving
them the deserved priority. As the node heterogeneity is common in the real-world
infrastructures and particularly cloud infrastructures, the speculative execution in the
default Hadoop’s MapReduce implementation is facing difficulties to give a good
performance. The paper proposes an algorithm which should in some way improve
the MapReduce performance in heterogeneous environments. It starts giving some
assumptions made by Hadoop, and how they are broken down in practice. Later on,
it proposes the LATE algorithm, which is based on three principles: prioritizing tasks
to speculate, selecting fast nodes to run on, and capping speculative tasks to prevent
thrashing. The paper has an extensive experimental evaluation, which proves the
valuable idea implemented in LATE.

Mantri [4] is another important contribution related to omission failures, which are
called outliers in this paper. Themain aim of the contribution is to monitor and cull or

3It is important to mention that, differently from [72] which considers tasks as stragglers, in the
default paper of Google [19], a straggler is “a machine that takes an unusually long time to complete
one of the last few map or reduce tasks in the computation”.

11 Fault Tolerance in MapReduce: A Survey 219

relax the outliers, accordingly to their causes. Based on their research, outliers have
many causes, but mainly are enforced by MapReduce data skew, crossrack traffic,
and bad (or busy) machines. In order to detect these outliers, Mantri does not rely
only on task duplication. Instead, its protocol enhances according to outlier causes.
A real-time progress score is able to separate long tasks from real outliers. Whereas
the former tasks are allowed to be run, the real outliers are only duplicated when
new available resources arise. Since the state-of-the-art contributions were mostly
duplicating tasks at the end of the job, Mantri is able to make smart decision even
before this, in case the progress score of the task is heavily progressing. Apart from
data locality, Mantri places task based on the current utilization of network links,
in order to minimize the network load and avoid self-interference among loads.
In addition, Mantri is also able to measure the importance of the task output, and
according to a certain threshold, it decides whether to recompute task or replicate
its output. In general, the real-time evaluations and trace-driven simulations show
Mantri to improve the average completion time for about 32%.

GRASS [3] is another novel optimization framework, which is oriented to trim-
ming the stragglers for approximation jobs. Approximation jobs are very common
in the last period, because many domains are willing to have partial data in a specific
deadline or error margin, instead of processing the entire data in an unlimited time
or with 0% error margin. After the introduction of the MapReduce programming
model, which came with a simple solution of speculative execution of slow tasks
(stragglers), the research community proposed decent alternatives, such as LATE
[72] or Mantri [4]. However, they were not meant to give near to optimal solution for
the domain of approximation analytics. And this is the advantage of GRASS, which
is basically formed of two algorithms:

1. Greedy Speculative Scheduling (GS). This algorithm is intended to greedily pick
a task that will be scheduled next.

2. Resource Aware Speculative Scheduling (RAS). This algorithm is able to mea-
sure the cost of leaving an old task to run or schedule a new task, according to
some important parameters (e.g., time, resources, etc.).

GRASS is a combination of GS and RAS.
Depending on the cluster infrastructure size, but also on other parameters, the

scheduler could impose different limitations per user or workload. Among others, it
is common to place a limit on the number of concurrent running tasks. The overall
set of these simultaneous tasks per each user (or workload) is known as wave. If a
GRASS job requires many waves, then it starts with RAS and finally, in the last two
waves uses GS. If the jobs are short, it may use only GS. This switching is mostly
dependent on:

220 B. Memishi et al.

• Deadline–error bound.
• Cluster utilization.
• Estimation accuracy for two parameters, trem (remaining time for and old job), and
tnew (an estimated time for a new job).

Evaluations show that GRASS improves Hadoop and Spark, regardless of the
usage of LATE or Mantri, by 47 and 38%, respectively, in production workloads of
Facebook and Microsoft Bing. Apart from approximation analytics, the speculative
execution of GRASS also shows to be better for exact computations.

In [13], authors propose an optimized speculative execution algorithm called
Maximum Cost Performance (MCP) that is characterized by:

• Apart from the progress rate, it takes into consideration the process bandwidth in
a phase, in order to detect the slow tasks.

• It uses exponentially weighted moving average (EWMA), whose duty is to predict
the process speed and also predict the task remaining time.

• It builds a cost-aware model that determines what task needs a backup based on
the cluster load.

In addition, the MCP contribution is based on the disadvantages of previous con-
tributions, which mainly rely on the task progress rate to predict stragglers, inappro-
priate reaction on input data skews scenarios, unstable cost comparison between the
backup and ongoing straggler task, etc. Evaluation experiments on a small-cluster
infrastructure show MCP to have 39% faster completion time and 44% improved
throughput when compared to default Hadoop.

In [64], authors propose an optimized speculative execution algorithm that is
oriented to solving a single-job problem in MapReduce. The advantage of this work
is that it takes into account two cluster scenarios, heavy and lightly loaded case.
For the lightly loaded cluster, authors introduce two different speculative execution
policies, early cloning, and later speculative execution based on the task progress rate.
During the stage of heavily loaded cluster, the intuition is to use a later backup task.
In this case, an Enhanced Speculative Execution (ESE) algorithm is proposed, which
basically extends the work of [4]. Same authors have also introduced an additional
extended work that assumes to work for multiple MapReduce jobs [63].

An important project related to Hadoop’s omission failures is presented in [15].
In this work, authors have tried to build separate fault tolerance thresholds in the
UpRight library for omission and commission failures, because omission failures are
likely to be more common than commission failures. As we have mentioned before,
during omission failures, a process fails to send or receive messages specified by
the protocol. Commission failures exclude omission failures, including the failures
upon which a process sends a message not specified by the protocol. Therefore, in
the case of omission failures, the library can be fine-tuned in order to provide the
liveness property (meaning that the system is “up”) despite any number of omission
failures.

In [49], the authors have studied the implications of speculative execution on
the performance and energy consumption in Hadoop clusters. They observed that

11 Fault Tolerance in MapReduce: A Survey 221

speculative executionmay result in a reduction in the energy consumption of Hadoop
cluster if and only if the execution time of MapReduce application is noticeably
reduced to compensate the energy cost of speculative execution (i.e., the extra power
consumption due to the extra used resources).

The TaskTracker omission failures have also been addressed in some of the pre-
vious works we have mentioned [16, 18].

11.4.3 Arbitrary (Byzantine) Failure

The work discussing the omission failures in [15], is actually a wider review that in-
cludes the byzantine failures in general. Themain properties uponwhich theUpRight
library is based are:

• AnUpRight system is safe (“right”) despite r commission failures and any number
of omission failures.

• An UpRight system is safe and eventually live (“up”) during sufficiently long
synchronous intervals when there are at the most u failures of which at most r are
commission failures and the rest are omission failures.

The contribution of this paper is to establish byzantine fault tolerance as a viable
alternative to crash fault tolerance for at least some cluster services rather than any
individual technique. As authors say, much of their work involved making exist-
ing ideas fit well together, rather than presenting something new. Additionally, the
performance is a secondary concern, with no claim that all cluster services can get
low-cost BFT (byzantine fault tolerance).

The main goal of the work presented in [18] is to represent a BFT MapReduce
runtime system that tolerates faults that corrupt the results of computation of tasks,
such as the cases of DRAMandCPU errors/faults. These last ones cannot be detected
using checksums and often do not crash the task they affect, but can only silently
corrupt the result of a task. Because of this, they have to be detected and their effects
masked by executing each task more than once. This BFT MapReduce follows the
approach of executing each task more than once, but in particular circumstances.
However, as the state machine approach requires 3 f + 1 replicas to tolerate at the
most f faulty replicas, which gives a minimum of four copies of each task, this
implementation uses several mechanisms to minimize both the number of copies of
tasks executed and the time needed to execute them. In case there is a fault, from
the evaluation results, it is confirmed that the cost of this solution is close to the
cost of executing the job twice, instead of three times as the naive solution. Authors
argue that this cost is acceptable for critical applications that require high level of
fault tolerance. They introduce an adaptable approach for multicloud environments
in [17].

In [62], authors propose another solution for commission failures called Account-
able MapReduce. This proposal forces each machine in the cluster to be responsible

222 B. Memishi et al.

for its behavior, by means of setting a group of auditors that perform an accountabil-
ity test that checks the live nodes. This is done in real time, with the aim of detecting
the malicious nodes.

11.4.4 Network Failure

During a network failure, many nodes leave the Hadoop cluster; this issue has been
discussed in different publications [14, 39, 42, 55], although for particular environ-
ments.

The work presented in [39] introduces a new kind of implementation environment
ofMapReduce calledMOON,which isMapReduce onOpportunistic eNvironments.
This MapReduce implementation has most of the resources coming from volunteer
computing systems that form a Desktop Grid. In order to solve the resource un-
availability, which is vulnerable to network failure, MOON supplements a volunteer
computing system with a small number of dedicated compute resources. These ded-
icated resources keep a replica in order to enhance high reliability, maintaining the
most important daemons, including the JobTracker. To enforce its design architec-
ture, MOON differentiates files into reliable and opportunistic. Reliable files should
not be lost under any circumstances. In contrast, opportunistic files are transient data
that can tolerate some level of unavailability. It is normal to assume that reliable
files have priority for being kept in dedicated computers, while opportunistic files
are saved in these resources only when possible. In a similar way, this separation
is also managed for read and write requests. MOON is very flexible in adjusting
these features, based on the Quality of Service (QoS) needs. A reason for this is the
introduction of a hibernate state and hybrid task scheduling. The hibernate state is
an intermediate state whose main duty is to avoid having an expiry interval that is
too long or short, which can incorrectly consider a worker node as dead or alive. A
worker node enters in this state earlier than its expiry interval, and as a consequence
it will not be supplied with further requests from clients. MOON changes the specu-
lative execution mechanism by differentiating straggler tasks in frozen and slow lists
of tasks, adjusting their execution based on the suspension interval, which is signif-
icantly smaller than the expiry interval. An important change to speculating tasks
is their progress score, which divides the job into normal or homestretch. During
the normal phase, a task is speculatively executed according to the default Hadoop
framework; in a homestretch phase, a job is considered to have advanced toward
its completion, therefore MOON tries to maintain more running copies of straggler
tasks.

A later project similar to MOON is presented in [55]. Here, authors try to present
a complete runtime environment to execute MapReduce applications on a Desktop
Grid. TheMapReduce programmingmodel is implemented on top of an open-source
middleware, called BitDew [25], extending it with three main additional software
components: theMapReduceMaster,MapReduceworker programs, and theMapRe-
duce library (and several functions written by the user for their particularMapReduce

11 Fault Tolerance in MapReduce: A Survey 223

application). Authors wanted to benefit from the BitDew basic services, in order to
provide highly needed features in Internet Desktop Grid, such as “massive fault toler-
ance, replica management, barriers free execution, and latency-hiding optimization,
as well as distributed result checking”. The last point (distributed checking) is partic-
ularly interesting, knowing that result certification is very difficult for intermediate
results which might be very large to send for verification on the server side. The in-
troduced framework implements majority voting heuristics, even though it involves
larger redundant computation.

A research paper presented in [41] describes Cloud MapReduce (CMR), a new
fully distributed architecture to implement the MapReduce programming model on
top of the Amazon cloud OS. The nodes are responsible for pulling job assignments
and their global status in order to determine their individual actions. The proposed
architecture also uses queues to shuffle results from map tasks to reduce tasks. Map
tasks are meant to write results as soon as they are available and reduce tasks need
to filter out results from failed nodes, as well as duplicate results. The preliminary
results of the work indicate that CMR is a practical system and its performance is
comparable toHadoop. Additionally, from the experimental results it can be seen that
the usage of queues that overlap the map and shuffle phase seems to be a promising
approach to improve MapReduce performance.

The works presented in [14, 42] are related to cloud environments, with partic-
ular emphasis on Amazon cloud. They discuss the MapReduce implementation on
environments consisting of Spot Instances (SIs).4

In [14], a simple model has been represented. This model calculates the n-step
probability, the expected lifetime of a VM, and the cost of termination, that is, the
amount of time lost compared to having the set of machines stay up until completion
of the job. Using the spot instances, in cases when there is no fault, the completion
time may be speeded up. Otherwise, if there are failures, the job completion time
may be longer than without using spot instances.

Liu’s contribution [42] is a more mature proposal than the previous work. Here
authors have tried to prove that their implementation, called Spot CloudMapReduce,
can take full advantage of the spot market, proposed by Amazon WS. As the name
suggests, this implementation has been built on top of Cloud MapReduce (CMR),
with additional changes:

• Modifying the split message format in the input queues (adding a parameter which
indicates the position in the file where the processing should start).

• Saving the intermediate work when a node is terminated.
• Changing the commit mechanism to perform a partial commit.

4Spot instances are virtual machines resources in Amazon Web Services (WS), for which a user
defines a maximum biding price that he/she is willing to pay. If there is no concurrence, the prices
are lower and the possibility of using them is higher. But when the demand is higher, then Amazon
WS has the right to stop your spot instances. If the spot instances are stopped by Amazon, the user
does not pay, otherwise if the user decides to stop them before completing the normal hour, the user
is obliged to pay for that consumption.

224 B. Memishi et al.

• Changing thewayCMRdetermines the successful commit for amap split (electing
a set of commit messages that is one more than the last key–value pair’s offset).

The experimental evaluation shows that Spot CMR can work well in the spot
market environment, significantly reducing cost by leveraging spot pricing.

11.4.5 Security Failure

The security concept is basically the absence of unauthorized access to, or handling
of, system state [7]. This means that, authentication, authorization, and auditing go
hand in hand, in order to ensure a system security. Whereas authentication refers to
the initial identification of the user, the authorization determines the user rights, after
he or she has entered into the system. Finally, the audit process represents an official
user inspection (monitoring) to check if the user behaves according to its role. In
other words, we could equate these terms with the pronouns who (authentication),
what (authorization), and when (audit).

MapReduce’s security in Hadoop is strictly linked to the security of HDFS; as
the overall Hadoop security is grounded in HDFS, this means that other services
including MapReduce store their state in HDFS. While Google’s MapReduce does
not make any assumption on security [19], early versions of Hadoop assumed that
HDFS andMapReduce clusters would be used by a group of cooperating users within
a secure environment. Furthermore, any access restriction was designed to prevent
unintended operations that could cause accidental data loss, rather than to prevent
unauthorized data access [40, 61].

The basic security definitions that include authentication, authorization, and au-
diting, were not present in Hadoop from the beginning. The authorization (managing
user permissions) had been partially implemented. The auditing took place in the ver-
sion 0.20 of Hadoop. The authentication was the last one, which camewith Kerberos,
an open-source network authentication protocol.

A user needs to be authenticated by the JobTracker before submitting, modifying,
or killing any job. SinceKerberos authentication is bidirectional, even the JobTracker
authenticates itself to the user; in this way, the user will be assured that the JobTracker
is reliable. Additionally, each task is seen as an individual user, due to the fact that
tasks now are run from the client perspective, the one which submitted the job,
and not from the TaskTracker owner. In addition, the JobTracker’s directory is not
readable and writable by everyone as it happens with the task’s working directories.
During the authentication process, each user is given a token (also called a ticket)
to authenticate once and pass credentials to all the tasks of a job; the token’s default
lifetime is meant to be around 8h. While the NameNode creates these tokens, the
JobTracker manages a token’s renewal; token expiration is reasonably JobTracker
dependent, in order not to expire prematurely for long-running jobs.

At the same year when Kerberos was implemented in Hadoop, another proposal
called Airavat [51] tried to ensure security and privacy for MapReduce computations

11 Fault Tolerance in MapReduce: A Survey 225

on sensitive data. This work is an integration of mandatory access control (MAC) and
differential privacy.MAC’s duty is to assign security attributes to system resources, to
constrain the interaction of subject with objects (e.g., subject can be a process, object
can be a simple file). On the other side, differential privacy is a methodology which
ensures that the aggregated computations maintain the integrity of each individual
input. The evaluation of Airavat on several case studies shows flexibility in the
maintenance of both accurate and private-preserving answers on runtimes within
32% of the default Hadoop’s MapReduce.

Apart from the different improvements in Hadoop security [31, 61], the work
for preventing the Hadoop cluster from eavesdropping failures, has been slow. The
explanation from the Hadoop community was that encryption is expensive in terms
of CPU and I/O speed [52].

At the beginning, the encryption over the wire was dedicated only to some socket
connections. In the case of Remote Procedure Call (RPC), an important protocol
for communication between daemons in MapReduce, its encryption was added only
after the main security improvement in Hadoop (by integrating Kerberos [36]). Most
of the other encryption improvements (for instance, the shuffle phase encryption)
came in a very recent Hadoop version [29], taking into consideration that Hadoop
clusters may also hold sensitive information.

11.4.6 Apache Hadoop Reliability

Since its appearance in 2006, Apache Hadoop has undergone many releases [27].
Each of them has tried to improve different features of previous version, including
fault tolerance. Table11.2 shows Apache Hadoop 1.0 fault tolerance patches in a
tree-like form, from the first Apache Hadoop 1.0 release (0.1.0) until release 1.2.1
which is the latest stable release up to the time of writing. These upgrades have
played an important role in the later Hadoop evolution. An example of this is the
introduction of speculative execution for reduce tasks, which caused many bugs in
the previous days of its implementation. Therefore, the overall speculative execution
mechanismwas turned off by default later on, due to bugs in the framework. Actually
the speculative execution mechanism was removed for some period, and later on,
placed once again in the default functioning of the Apache Hadoop.

The Hadoop community was very active at the beginning, but this changed drasti-
cally through the years. A crucial reason for thiswas the existence of parallel projects,
which tested newproposed features, but thatwere in their early phases (alpha or beta).
Finally, a new release, Apache Hadoop 2.0, widely known as Hadoop YARN, was
created. Table11.3 shows Apache Hadoop 2.0 fault tolerance patches in a tree-like
form, from the first Apache Hadoop 2.0 release (0.23.0) until release 2.7.1, which is
the latest stable release up to the time of writing.

226 B. Memishi et al.

Table 11.2 Apache Hadoop 1.0: timeline of its fault tolerance patches

Year Release Patch

2006 0.1.0 The first release

0.2.0 Avoid task rerun where it has previously failed (142); Don’t fail
reduce for a map impossibility allocation (169, 182); Five client
attempts to JT before aborting a job (174); Improved heartbeat
(186)

0.3.0 Retry a single fail read, to not cause a failure task (311)

0.7.0 Keep-alive reports, changed to seconds [10] rather than records
[100] (556); Introduced killed state, to distinguish from failure
state (560); Improved failure reporting (568); Ignore heartbeats
from stale TTs (506)

0.8.0 Make DFS heartbeats configurable (514); Re-execute failed tasks
first (578)

0.9.0 Introducing speculative reduce (76)

0.9.2 Turn off speculative execution (827)

2007 0.10.0 Fully remove killed tasks (782)

0.11.0 Add support for backup NNs, to get snapshotting (227, 959);
Rack awareness added in HDFS (692)

0.12.0 Change mapreduce.task.timeout to be per-job based (491); Make
replication computation as a separate thread, to improve
heartbeat in HDFS’s NN (923); Stop assigning tasks to a dead
TT (654)

0.13.0 Distinguish between failed and killed task (1050); If nr of reduce
tasks is zero, map output is written directly in HDFS (1216);
Improve blacklisting of TTs from JTs (1278); Make TT expiry
interval configurable (1276)

0.14.0 Re-enable speculation execution by default (1336); Timed-out
tasks counted as failures rather than killed (1472)

0.15.0 Add metrics for failed tasks (1610)

2008 0.16.0 File permissions improvements (2336, 1298, 1873, 2659, 2431);
Fine-grain control over speculative execution for map and reduce
phase (2131); Heartbeat and task even queries interval,
dependent on cluster size (1900); NN performance degradation
from large heartbeat interval (2576)

0.18.0 Completed map tasks should not fail if nr of reduce tasks is zero
(1318)

0.19.0 Introducing job recovery when JT restarts (3245); Add FailMon
for hardware monitoring and analysis (3585)

2009 0.20.0 Improved blacklisting strategy (4305); Add test for injecting
random failures of a task or a TT (4399); Fix heartbeating (4785,
4869); Fix JT (5338, 5337, 5394)

2010 0.20.202.0
(unreleased)

Change blacklist strategy (1966, 1342, 682); Greedily schedule
failed tasks to cause early job failure (339); Fix speculative
execution (1682); Add metrics to track nr of heartbeats by the JT
(1680, 1103); Kerberos

(continued)

11 Fault Tolerance in MapReduce: A Survey 227

Table 11.2 (continued)

Year Release Patch

2011 0.20.204.0 TT should handle disk failures by
reinitializing itself (2413)

0.20.205.0 Use a bidirectional heartbeat to detect
stuck pipeline (724); Kerberos
improvements

2012 1.0.2 A single failed name dir can cause the
NN to exit (2702)

1.1.0 Lower minimum heartbeat between TT
and JT for smaller clusters (1906)

2013 1.2.0 Looking for speculative tasks is very
expensive in 1× (4499)

1.2.1 The last stable release

Table 11.3 Apache Hadoop 2.0: timeline of its fault tolerance patches

Year Release Patch

2011 0.23.0 The first release; Lower minimum heartbeat interval for
TaskTracker (MR-1906); Recovery of MR AM from failures
(MR-279); Improve checkpoint performance (HDFS-1458)

2012 0.23.1 NM disk-failures handling (MR-3121); MR AM improvements:
job progress calculations (MR-3568), heartbeat interval
(MR-3718), node blacklisting (MR-3339, MR-3460), speculative
execution (MR-3404); Active nodes list versus unhealthy nodes
on the webUI and metrics (MR-3760)

0.23.3 Timeout for Hftp connections (HDFS-3166); Hung tasks timeout
(MR-4089); AM Recovery improvement (MR-4128)

0.23.5 Fetch failures versus map restart (MR-4772); Speculation +
Fetch failures versus hung job (MR-4425); INFO messages
quantity on AM to RM heartbeat (MR-4517)

2.0.0-alpha NN HA improvements: fencing framework (HDFS-2179), active
and standy states (HDFS-1974), failover (HDFS-1973),
standbyNode checkpoints (HDFS-2291, HDFS-2924), NN
health check (HDFS-3027), HA Service Protocol Interface
(HADOOP-7455), in standby mode, client failing back and forth
with sleeps (HADOOP-7896); haadmin with configurable
timeouts for failover commands (HADOOP-8236)

2.0.2-alpha Encrypted shuffle (MR-4417); MR AM action on node health
status changes (MR-3921); Automatic failover support for NN
HA (HDFS-3042)

(continued)

228 B. Memishi et al.

Table 11.3 (continued)

Year Release Patch

2013 0.23.6 AM timing out during job commit (MR-4813)

2.0.3-alpha Stale DNs for writes (HDFS-3912); Replication for appended
block (HDFS-4022); QJM for HDFS HA for NN (HDFS-3901,
HDFS-3915, HDFS-3906); Kerberos issues (HADOOP-9054,
HADOOP-8883, HADOOP-9070)

2.1.0-beta Reliable heartbeats between NN and DNs with LDAP
(HDFS-4222); Tight DN heartbeat loop (HDFS-4656);
Snapshots replication (HDFS-4078); Flatten
NodeHeartbeatResponse (YARN-439); NM heartbeat handling
versus scheduler event cause (YARN-365); NMTokens
improvements (YARN-714, YARN-692); Resource blacklisting
for Fifo scheduler (YARN-877); NM heartbeat processing versus
completed containers tracking (YARN-101);
AMRMClientAsync heartbeating versus RM shutdown request
(YARN-763); Optimize job monitoring and STRESS mode
versus faster job submission. (MR-3787); Timeout for the
job.end.notification.url (MR-5066)

2.1.1-beta RM failure if the expiry interval is less than node-heartbeat
interval (YARN-1083); AMRMClient resource blacklisting
(YARN-771); AMRMClientAsync heartbeat versus runtime
exception (YARN-994); RM versus killed application tracking
URL (YARN-337); MR AM recovery for map-only jobs
(MR-5468)

2.2.0 MR job hang versus node-blacklisting feature in RM requests
(MR-5489); Improved MR speculation, with aggressive
speculations (MR-5533); SASL-authenticated ZooKeeper in
ActiveStandbyElector (HADOOP-8315)

2014 2.3.0 SecondaryNN versus cache pools checkpointing (HDFS-5845);
Add admin support for HA operations (YARN-1068); Added
embedded leader election in RM (YARN-1029); Support
blacklisting in the Fair scheduler (YARN-1333); Configuration
to support multiple RMs (YARN-1232)

2.4.0 DN heartbeat stucks in tight loop (HDFS-5922); Standby
checkpoints block concurrent readers (HDFS-5064); Make
replication queue initialization asynchronous (HDFS-5496);
Automatic failover support for NN HA (HDFS-3042)

2.4.1 Killing task causes ERROR state job (MR-5835)

2.5.0 NM Recovery. Auxiliary service support (YARN-1757); Wrong
elapsed time for unstarted failed tasks (YARN-1845); S3
server-side encryption (HADOOP-10568); Kerberos integration
for YARN’s timeline store (YARN-2247, HADOOP-10683,
HADOOP-10702)

(continued)

11 Fault Tolerance in MapReduce: A Survey 229

Table 11.3 (continued)

Year Release Patch

2.6.0 Encryption for hftp. (HDFS-7138); Optimize HDFS Encrypted
Transport performance (HDFS-6606); FS input streams do not
timeout (HDFS-7005); Transparent data at rest encryption
(HDFS-6134); Operating secure DN without requiring root
access (HDFS-2856); Work-preserving restarts of RM
(YARN-556); Container-preserving restart of NM
(YARN-1336); Changed NM to not kill containers on NM resync
if RM work-preserving restart is enabled (YARN-1367); Recover
applications upon NM restart (YARN-1354); Recover containers
upon NM restart (YARN-1337); Recover NMTokens and
container tokens upon NM restart (YARN-1341, YARN-1342);
Time threshold for RM to wait before starting container
allocations after restart/failover (YARN-2001); Handle
app-recovery failures gracefully (YARN-2010); Fixed RM to
load HA configs correctly before Kerberos login (YARN-2805);
RM causing apps to hang when the user kill request races with
AM finish (YARN-2853)

2.6.1
(unreleased)

Make MR AM resync with RM in case of work-preserving RM
restart (MR-5910); Support for encrypting Intermediate data and
spills in local filesystem. (MR-5890); Wrong reduce task
progress if map output is compressed (MR-5958)

2015 2.7.0 Block reports process during checkpointing on standby NN
(HDFS-7097); DN heartbeat to Active NN may be blocked and
expire if connection to Standby NN continues to time out
(HDFS-7704); Active NN and standby NN have different live
nodes (HDFS-7009); Expose Container resource information
from NM for monitoring (YARN-3022); AMRMClientAsync
missing blacklist addition and removal functionality
(YARN-1723); NM fail to start with NPE during container
recovery (YARN-2816); Fixed potential deadlock in
RMStateStore (YARN-2946); NodeStatusUpdater cannot send
already-sent completed container statuses on heartbeat
(YARN-2997); Connection timeouts to NMs are retried at
multiple levels (YARN-3238); Add configuration for MR
speculative execution in MR2 (MR-6143); Configurable timeout
between YARNRunner terminate the application and forcefully
kill (MR-6263); Make connection timeout configurable in s3a.
(HADOOP-11521)

2.7.1 The last stable release

11.5 Other Data-Intensive Computing Systems

As mentioned before, MapReduce framework represents the de facto standard in the
data-intensive computing community. However, there aremany other projects, whose
design and functionality differ from the basic MapReduce framework. Next, we
present a collection of projects with significant impact in data-intensive computing.

230 B. Memishi et al.

11.5.1 Dryad/DryadLINQ

Knowing the benefits of Google’s MapReduce, Microsoft designed its own data
processing engine. In this way, Dryad [32] was introduced in 2007. After 1year,
Microsoft introduced a high-level language system for Dryad, composed of LINQ
expressions, and called it DryadLINQ [67].

Dryad represents a general-purpose distributed execution engine, whose main tar-
get is coarse-grain data-parallel applications. In order to formadataflowgraph,Dryad
combines computational vertices with communication channels. An application is
run in Dryad by executing the vertices of the graph on a set of available machines,
communicating as appropriate through files, TCP pipes, and shared-memory FIFOs.

Whereas mainly inspired from the (i) graphic processing units (GPUs) languages,
(ii) Google’s MapReduce, and (iii) parallel databases, Dryad is built also having in
mind their disadvantages. As a consequence, Dryad as a framework allows the devel-
oper to have fine control over the communication graph, as well as the subroutines
that live at its vertices. In order to describe the application communication patterns,
and express the data transport mechanisms (files, TCP pipes, and shared-memory
FIFOs) between the computation vertices, a Dryad application developer can spec-
ify an arbitrary directed acyclic graph (DAG). By directly specifying this kind of
graph, the developer has also greater flexibility to easily compose basic common
operations, leading to a distributed analogue of “piping” together traditional Unix
utilities such as grep, sort, and head.

Dryad graph vertices are enabled to use an arbitrary number of inputs and outputs.
It is assumed that the communication flow determines each job structure. Conse-
quently many other Dryad mechanisms (such as resource management, fault toler-
ance, etc.) follow this pattern. A Dryad job is a directed acyclic graph where each
vertex is a program and edges represent data channels. It is a logical computation
graph that is automatically mapped onto physical resources by the runtime. At run-
time each channel is used to transport a finite sequence of structured items.

Every Dryad job is coordinated by a master called “job manager” that runs either
within the cluster or on a user’s workstation, by having network access to the cluster.
The job manager contains (i) the application-specific code, that allows to construct
the job’s communication graph, and (ii) library code, that allows to schedule the work
across the available resources. Vertices transfer the data between them, therefore the
job manager is only responsible for control decisions.

In Dryad, a failure of job manager means that the entire job fails, although other
mechanisms (for example, checkpointing or replication) could be considered. As
mentioned before, the fault tolerance policy works on a common case that all the
vertex executions are deterministic. Due to failures, every vertex may be executed
multiple times in sequence, or its many instances at any given time. If a vertex
program runs slower than its peers, it gets duplicate executions; otherwise, after each
heartbeat timeout, it gets re-executed.

The authors admit that for the nondeterministic vertices, Dryad does not provide
any fault tolerance. However, this issue was planned as future goal of the framework.

11 Fault Tolerance in MapReduce: A Survey 231

Indeed, the Dryad fault-tolerant policy could be implemented by means of an exten-
sible mechanism that allows nonstandard applications the possibility to modify their
own behavior.

DryadLINQ represents a very important extension of Dryad, since it is a set of lan-
guage extensions and the corresponding system that can automatically and transpar-
ently compile SQL, MapReduce, Dryad, and similar programs in a general-purpose
language into distributed computations that can run on large-scale infrastructures.
DryadLINQ does this in two ways, by (i) adopting an expressive data model of .NET
objects; and (ii) by supporting general-purpose imperative and declarative operations
on datasets within a traditional high-level programming language. A DryadLINQ
program is based on LINQ expressions that are sequentially run on top of datasets.
The DryadLINQmain duty is to translate the parallelism portion of the program into
a distributed execution, ready to be executed on the Dryad engine.

11.5.2 SCOPE

SCOPE is a scripting language for massive data analysis [12], also coming from
Microsoft. Its design has a strong resemblance to SQL, which was intentionally
decided. SCOPE is a declarative language. As in the case of MapReduce, it hides
the complexity of the lower platform and its implementation.

A user SCOPE script runs the basic SCOPE modules, (i) compiler, (ii) runtime,
and (iii) optimizer, before initiating the physical execution. In order to manipulate
input and output, SCOPE provides respective customizable commands, which are,
extract and output. The select command of SCOPE is similar to the SQL one, with
the main difference that subqueries are not allowed. To solve this issue, a user should
rewrite complex queries with outer joins.

Apart from the SQL functionalities, SCOPE provides MapReduce-alike com-
mands, which manipulate rowsets: process, reduce, and combine. The process com-
mand takes a rowset as input, and after processing each row, it outputs a sequence
of rows. The reduce command takes a rowset as input, which has been grouped on
the grouping columns specified in the ON clause. Then, it processes each group, and
returns as output zero, one or multiple rows per group. The combine command takes
two rowsets as input. It combines them depending on the requirements, and outputs
a sequence of rows. The combine command is a binary operator.

Every SCOPE script resembles SQL, but its expression is implemented with C#,
which needs to pass through the SCOPE compiler and optimizer, in order to be ready
to run on parallel execution plan, which gets executed on the cluster as a Cosmos
(Dryad) job. According to different evaluation experiments, SCOPE demonstrates
its powerful query execution performance, that scales in a linear manner with respect
to the cluster and data sizes.

The SCOPE fault tolerance policy relies on theDryad’s one. In SCOPE,Dryad has
been renamed as Cosmos. In order to ensure availability, Cosmos replicates the data
and its metadata by a quorum group of 2 f + 1 replicas, so as to tolerate f number

232 B. Memishi et al.

of failures. In order to ensure reliability, Cosmos enforces end-to-end checksums, to
detect crash faulty components, whereas the data on disks is periodically scrubbed,
to detect any corrupted or bit rot data before usage.

11.5.3 Nephele

In [60], authors present the basic foundations of Nephele, a novel research project
at the time, whose aim was parallel data processing in dynamic clouds.

According to authors, state-of-the-art frameworks likeMapReduce and Dryad are
cluster-oriented models, which assume that their resources are a static set of homo-
geneous nodes. Therefore, these frameworks are not prepared enough for production
clouds, whose exploitation of the dynamic resource allocation is a must. Based on
this, they propose Nephele, a project which shares many similarities with Dryad, but
providing more flexibility.

Nephele’s architecture has a master–worker design pattern, with one JobManager
and many Task Managers. Each instance (aka VM) has its own Task Manager. As in
Dryad, every Nephele job is expressed as a directed acyclic graph (DAG), where the
vertices are tasks, and graph edges define the communication flow.

After writing the code for particular tasks, the user should define a Job Graph,
consisting of linked edges and vertices. In addition, a user could specify other details,
such as the number of subtasks in total, the number of subtasks per instance, instance
types, etc. Each user Job Graph is then transformed into an Execution Graph by the
Job Manager. Every specified manual configuration is taken into account by the Job
Manager. Otherwise, the Job Manager places the default configuration according to
the type of the respective job.

Compared to the default Hadoop on a small cloud infrastructure, the evaluation
metrics are impressive and in favor to Nephele, showing better performance and
resource utilization.

The main drawback of Nephele is that, due to its academic origin, it was not
embraced by the research and industry community. One of the reasons could be
its similarity with Dryad. An additional drawback of Nephele was its complexity,
mainly compared to Hadoop MapReduce.

Finally, the Nephele fault tolerance policy still remains an open question. The
authors admit the fault tolerance as desired but uncertain feature, because, as they
mention, the optimal strategy is dependent on many parameters, among others, the
task, its operations, the data, and the environment.

11.5.4 Spark

Spark is a novel framework for in-memory data mining on large clusters, whosemain
focus are applications that reuse the same dataset across multiple operations [69].

11 Fault Tolerance in MapReduce: A Survey 233

In this domain we found basically applications that are based on machine learning
algorithms, such as text search, logistic regression, alternating least squares, etc.
Spark programs are executed on top of the Mesos environment [28], where each
of them needs its own driver (master) program to manage the control flow of the
operations. Currently, Spark can also be run on top of other resource management
frameworks, such as Hadoop YARN.

The main abstractions of Spark are:

• Resilient Distributed Datasets (RDDs) [68]. These are read-only collections of
objects that are spread on cluster nodes.

• Parallel operations. These operations can be performed on top of the RDDs. Ex-
amples of these operations are reduce, collect, foreach, etc.

• Shared variables. These variablesmay be twofold: (i) broadcast variables, that copy
the data value once to each worker; and (ii) accumulators, that can only “add” for
being used as an associative operation, whose purpose (value) is readable by the
driver only.

The most important abstraction of Spark are RDDs. Its primary use is to enable
efficient in-memory computations on large clusters. This abstraction evolves in order
to solve the main issues of parallel applications, whose intermediate results are very
important in future multiple computations.

The main advantage of RDDs is the efficient data reuse, which comes with a good
fault tolerance support. Its interface is based on coarse-grained transformations, by
applying the same operation in parallel to a large amount of data. Each RDD is
represented through a common interface, consisting of:

• A set of partitions. These are atomic pieces of the dataset.
• Set of dependencies. These are dependencies on parent RDDs.
• A function for computing the dataset from its parent.
• Metadata about its (i) partitioning scheme, and (ii) data placement.

Examples of applications that can take advantage of this feature are iterative
algorithms and interactive data mining tools. Spark shows great results on some of
these applications, outperforming Hadoop by 10× [68, 69, 71].

The Spark fault tolerance policy as well the scalability property are mainly based
on the fundamental properties of MapReduce. In the case of the RDDs, they deploy
the fault tolerance by means of the lineage concept, that is, if a node fails and an
RDD partition is lost, the failed RDD partition is rebuilt from its parent datasets and
eventually cached on other nodes. In addition to this, the Spark authors are planning
to extend the fault tolerance in order to support other levels of persistence by means
of in-memory replication across multiple nodes.

As part of Spark, the research community has proposed different modules, such
as D-Streams [70, 71], GraphX [26], Spark SQL [6], and many others.

D-Streams represents a stream processing engine, an alternative to live queries
(or operators) maintained by distributed event processing engines. Authors argue
that it is better to have small batch computations using the advantages of in-memory

234 B. Memishi et al.

RDDs, instead of using long-live queries which are more costly and complex, mainly
in terms of fault tolerance.

GraphX is a graph processing framework, which is built on top of Spark. GraphX
represents an alternative to the classical graph processing systems, because it can
efficiently handle iterative processing requirements of graph algorithm, unlike the
general-purpose frameworks, such as MapReduce. The advantage of GraphX with
respect to the classical graph processing frameworks is that it enables wider range of
computations, andpreserves the advantages of general-purposedataflowframeworks,
mainly the fault tolerance.

Finally, Spark SQL is another Apache Spark module, which enables an efficient
intersectionbetween relational processing andSpark functional programming. It does
this by introducing the (i)DataFrame API, which enables the execution of relational
operations, and (ii) Catalyst, which is another module that optimizes queries, and in
addition simplifies data sources additions, and optimization rules, among others.

The main idea behind Apache Spark is to use iterative queries that are main
memory based, which is also its main drawback. If the user request is not related to
the previous and recent RDDs, the query process should start from the beginning. In
this scenario, if we have to go back to the first iteration,MapReduce usually performs
better than Spark.

11.6 Discussion

MapReduce programming model and the above-mentioned state-of-the-art improve-
ments have filled many gaps on data processing requirements. However, there are
many fault-tolerant issues that have not been solved yet. Below we address some
open challenges.

It has been more than a decade since Google introduced MapReduce [19], but
there are no many projects that analyze MapReduce with real-life traces and real-
time large-scale infrastructures. What we can observe from the current situation is
that leading companies process sensitive data with MapReduce. This data process-
ing is highly confidential for their business and is a sufficient reason to avoid giving
any details related to these results. As a consequence, most of the today’s contri-
butions are based on simulating failures [10, 21, 22, 35], or simulating the overall
environment [58].

In addition, we are not aware of any large-scale comparison of datasets. The
most common comparison we have seen in the data-intensive community field is
the sorting time of 1 PB of data [53]. It would be desirable to have benchmark
competitions of companies’ data processing engines in the Big Data field. Indeed, it
would be really challenging for the research and industry community to formalize a
competition to measure different metrics of data-intensive processing frameworks,
such as performance, scalability, or dependability.

Fault-tolerant abstraction models are another issue which is indeed missing in
data-intensive computing systems. There are some projects that have offered different

11 Fault Tolerance in MapReduce: A Survey 235

approaches for this issue. Jin et al. [34] have derived a stochastic model that in
someway predicts the performance ofMapReduce applications under failures (crash
failures). Their goal was to have a better understanding of fault tolerancemechanisms
in Hadoop. A partial contribution to a theoretical failure model can be found in [58],
which gives a simulation environment, and the possibility of fine-tuning different
kinds of parameters. Another interesting work is presented in [48], where the authors
propose a black box approach in order to detect and diagnose faults in MapReduce
systems. While this contribution is valuable, it fails to solve half of the injected
failures. Moreover, the mechanism has been evaluated only offline.

On the other side, there are studies that have expressed the view that this model
is unworkable. In [10], it was explicitly stated that there is neither equivalent mathe-
matical analysis that starts with a failure distribution and derives expected run time in
the presence of failures nor optimization of the parameters of the system to minimize
expected run time of the parallel applications under execution.

We consider that a theoretical model has not been presented yet, accepted by
the whole community. We believe that additional challenges are important as well
as possible, starting from the basic fault tolerance definitions, such as the failure
detection.

While the handling and recovery in MapReduce fault tolerance via data replica-
tion and task re-execution seem to work well even at large scale [1, 37, 72], there
is relatively little work on detecting failures in MapReduce. Accurate detection of
failures is as important as failures recovery, in order to improve applications latencies
and minimize resource waste. A new methodology to adaptively tune the timeout
detector can significantly improve the overall performance of the applications, re-
gardless of their execution environment [43]. Every MapReduce job should have its
proper timeout, because in this way it could be possible to efficiently detect failures.

When reliability is improved, it is reasonable to think that these improvements are
made at the expense of additional resource consumption. For instance, the replication
improves the reliability, but increases the cost. The same occurs with cloning or
speculating a task. More work is needed in improving reliability, maintaining similar
resource utilization.

11.7 Summary

Many research projects have studied the MapReduce framework in the last few
years, including its fault tolerance concepts and mechanisms. However, as far as we
know, there is not a complete review of the research in MapReduce fault tolerance
as an overall picture of what has been done and what is not solved yet. This survey
addresses this gap, providing a systematic literature review on many contributions
and an extensive analysis of new fault-tolerant mechanisms in MapReduce-based
systems. Since there are other data-intensive approaches that have tried to go beyond
the fundamental MapReduce functionality, we have also listed a relevant selection
of these systems.

236 B. Memishi et al.

Finally, we have outlined some opening issues and key challenges for building
efficient fault tolerance mechanisms in the MapReduce context. We argue that it is
worth having a joint project from the different communities in order to handle issues
such as a large-scale study of failures, where major companies could have a crucial
role, and innovative and optimized failure models, where research communities can
provide a significant contribution.

Acknowledgments The research leading to these results has received funding from the H2020
project reference number 642963 in the call H2020-MSCA-ITN-2014.

References

1. Ananthanarayanan, G., Agarwal, S., Kandula, S., Greenberg, A., Stoica, I., Harlan, D., Harris,
E.: Scarlett: coping with skewed content popularity in mapreduce clusters. In: Proceedings of
the Sixth Conference on Computer Systems, ACM, New York, NY, USA, EuroSys ’11, pp.
287–300, (2011). http://doi.acm.org/10.1145/1966445.1966472

2. Ananthanarayanan,G.,Ghodsi, A., Shenker, S., Stoica, I.: Effective stragglermitigation:Attack
of the clones. In: Proceedings of the 10th USENIX Conference on Networked Systems De-
sign and Implementation, USENIX Association, Berkeley, CA, USA, NSDI’13, pp. 185–198,
(2013). http://dl.acm.org/citation.cfm?id=2482626.2482645

3. Ananthanarayanan, G., Hung, M.C.C., Ren, X., Stoica, I., Wierman, A., Yu, M.: GRASS:
trimming stragglers in approximation analytics. In: Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation, USENIXAssociation, Berkeley, CA,
USA, NSDI’14, pp. 289–302, (2014). http://dl.acm.org/citation.cfm?id=2616448.2616475

4. Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha, B., Harris, E.:
Reining in the outliers inmap-reduce clusters usingMantri. In: Proceedings of the 9th USENIX
conference onOperatingSystemsDesign and Implementation,USENIXAssociation,Berkeley,
CA, USA, OSDI’10, pp. 1–16, (2010). http://dl.acm.org/citation.cfm?id=1924943.1924962

5. Apache Zookeeper: (2015). http://zookeeper.apache.org/
6. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X., Kaftan, T.,

Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark sql: Relational data processing in spark. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
ACM,NewYork, NY,USA, SIGMOD ’15, pp. 1383–1394 (2015). http://doi.acm.org/10.1145/
2723372.2742797

7. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004)

8. Barborak, M., Dahbura, A., Malek, M.: The consensus problem in fault-tolerant computing.
ACM Comput. Surv. 25(2), 171–220 (1993). http://doi.acm.org/10.1145/152610.152612

9. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H., Ran-
ganathan, K., Molkov, D., Menon, A., Rash, S., Schmidt, R., Aiyer, A.: Apache Hadoop goes
realtime at Facebook. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data, ACM, New York, NY, USA, SIGMOD ’11, pp. 1071–1080 (2011).
http://doi.acm.org/10.1145/1989323.1989438

10. Bressoud, T.C., Kozuch, M.A.: Cluster fault-tolerance: An experimental evaluation of check-
pointing and MapReduce through simulation. In: Proceedings of the 2009 IEEE International
Conference on Cluster Computing and Workshops, IEEE, pp. 1–10 (2009). http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5289185

11. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming (2. ed.). Springer (2011)

http://doi.acm.org/10.1145/1966445.1966472
http://dl.acm.org/citation.cfm?id=2482626.2482645
http://dl.acm.org/citation.cfm?id=2616448.2616475
http://dl.acm.org/citation.cfm?id=1924943.1924962
http://zookeeper.apache.org/
http://doi.acm.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/152610.152612
http://doi.acm.org/10.1145/1989323.1989438
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5289185
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5289185

11 Fault Tolerance in MapReduce: A Survey 237

12. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D.,Weaver, S., Zhou, J.: SCOPE: Easy
and Efficient Parallel Processing of Massive Data Sets. Proc. VLDB Endow 1(2), 1265–1276
(2008). http://dl.acm.org/citation.cfm?id=1454159.1454166

13. Chen, Q., Liu, C., Xiao, Z.: Improving mapreduce performance using smart speculative exe-
cution strategy. IEEE Trans. Comput. 63(4), 954–967 (2014). doi:10.1109/TC.2013.15

14. Chohan, N., Castillo, C., Spreitzer,M., Steinder,M., Tantawi, A., Krintz, C.: See spot run: using
spot instances for MapReduce workflows. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, USENIXAssociation, Berkeley, CA, USA, HotCloud’10, pp.
7–7 (2010). http://dl.acm.org/citation.cfm?id=1863103.1863110

15. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.: Upright
cluster services. In: Proceedings of the ACMSIGOPS 22nd Symposium on Operating Systems
Principles, ACM, New York, NY, USA, SOSP ’09, pp. 277–290 (2009). http://doi.acm.org/10.
1145/1629575.1629602

16. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapReduce
online. In: Proceedings of the 7th USENIX Conference on Networked Systems Design and
Implementation,USENIXAssociation,Berkeley,CA,USA,NSDI’10, pp. 21–21 (2010). http://
dl.acm.org/citation.cfm?id=1855711.1855732

17. Correia, M., Costa, P., Pasin, M., Bessani, A., Ramos, F., Verissimo, P.: On the feasibility of
byzantine fault-tolerant mapreduce in clouds-of-clouds. In: 2012 IEEE 31st Symposium on
Reliable Distributed Systems (SRDS), pp. 448–453 (2012). doi:10.1109/SRDS.2012.46

18. Costa, P., Pasin, M., Bessani, A., Correia, M.: Byzantine Fault-Tolerant MapReduce: Faults
are Not Just Crashes. In: Proceedings of the 3rd IEEE Second International Conference on
Cloud Computing Technology and Science, IEEE Computer Society, Washington, DC, USA,
CLOUDCOM ’11, pp. 17–24 (2010). http://dx.doi.org/10.1109/CloudCom.2010.25

19. Dean, J., Ghemawat, S., Inc, G.: MapReduce: simplified data processing on large clusters. In:
Proceedings of the 6th Conference on Symposium on Operating Systems Design & Implemen-
tation, USENIX Association, OSDI’04 (2004)

20. Dean, J.: Building software systems at google and lessons learned. Stanford EE Computer Sys-
tems Colloquium (2010). http://www.stanford.edu/class/ee380/Abstracts/101110-slides.pdf

21. Dinu, F., Ng, T.S.E.: Hadoop’s Overload Tolerant Design Exacerbates Failure Detection and
Recovery. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, ACM, New York, NY, USA, NetDB’11, pp. 1–7 (2011)

22. Dinu, F., Ng, T.E.: Understanding the effects and implications of compute node related fail-
ures in Hadoop. In: HPDC ’12: Proceedings of the 21st International Symposium on High-
Performance Parallel and Distributed Computing, ACM, New York, NY, USA, pp. 187–198
(2012). http://doi.acm.org/10.1145/2287076.2287108

23. Facebook, Inc.: (2015). https://www.facebook.com/
24. Facebook, I.: Under the Hood: Scheduling MapReduce jobs more efficiently with Corona

(2012). http://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-
mapreduce-jobs-more-efficiently-with-corona/10151142560538920

25. Fedak, G., He, H., Cappello, F.: BitDew: A data management and distribution service with
multi-protocol file transfer and metadata abstraction. J Netw. Compu. Appl. 32(5), 961–975
(2009)

26. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx: Graph
processing in a distributed dataflow framework. In: Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementation, USENIX Association, Berkeley, CA,
USA, OSDI’14, pp. 599–613 (2014). http://dl.acm.org/citation.cfm?id=2685048.2685096

27. Hadoop Releases: (2015). http://hadoop.apache.org/releases.html
28. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R., Shenker, S.,

Stoica, I.: Mesos: A Platform for Fine-grained Resource Sharing in the Data Center. In: Pro-
ceedings of the 8th USENIX Conference on Networked Systems Design and Implementation,
USENIX Association, Berkeley, CA, USA, NSDI’11, pp. 22–22 (2011). http://dl.acm.org/
citation.cfm?id=1972457.1972488

http://dl.acm.org/citation.cfm?id=1454159.1454166
http://dx.doi.org/10.1109/TC.2013.15
http://dl.acm.org/citation.cfm?id=1863103.1863110
http://doi.acm.org/10.1145/1629575.1629602
http://doi.acm.org/10.1145/1629575.1629602
http://dl.acm.org/citation.cfm?id=1855711.1855732
http://dl.acm.org/citation.cfm?id=1855711.1855732
http://dx.doi.org/10.1109/SRDS.2012.46
http://dx.doi.org/10.1109/CloudCom.2010.25
http://www.stanford.edu/class/ee380/Abstracts/101110-slides.pdf
http://doi.acm.org/10.1145/2287076.2287108
https://www.facebook.com/
http://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
http://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
http://dl.acm.org/citation.cfm?id=2685048.2685096
http://hadoop.apache.org/releases.html
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488

238 B. Memishi et al.

29. How-to: Set Up a Hadoop Cluster with Network Encryption: (2013). http://blog.cloudera.com/
blog/2013/03/how-to-set-up-a-hadoop-cluster-with-network-encryption/

30. Ibrahim, S., Phuong, T.A., Antoniu, G.: An Eye on the Elephant in the Wild: A Performance
Evaluation of Hadoop’s Schedulers Under Failures. In: Workshop on Adaptive Resource Man-
agement and Scheduling for Cloud Computing (ARMS-CC-2015), held in conjunction with
PODC’15 (2015)

31. Introduction to Hadoop Security: (2013). http://www.cloudera.com/content/cloudera/en/
home.html

32. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel pro-
grams from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys
2007, ACM, New York, NY, USA, EuroSys ’07, pp. 59–72 (2007). http://doi.acm.org/10.
1145/1272996.1273005

33. Jin, H., Ibrahim, S., Qi, L., Cao, H., Wu, S., Shi, X.: The MapReduce programming model
and implementations. Cloud Computing: Principles and Paradigms pp. 373–390. doi:10.1002/
9780470940105.ch14

34. Jin, H., Qiao, K., Sun, X.H., Li, Y.l.: Performance under Failures of MapReduce Applications.
In: Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, IEEE Computer Society, Washington, DC, USA, CCGRID ’11, pp. 608–609
(2011). http://dx.doi.org/10.1109/CCGrid.2011.84

35. Jin, H., Sun, X.H.: Performance comparison under failures of MPI and MapReduce: An Ana-
lytical Approach. Future Gener. Comput. Syst. 29(7), 1808–1815 (2013). http://dx.doi.org/10.
1016/j.future.2013.01.013

36. Kerberos: The Network Authentication Protocol: (2015). http://web.mit.edu/kerberos/
37. Ko, S.Y., Hoque, I., Cho, B., Gupta, I.: Making cloud intermediate data fault-tolerant. In:

Proceedings of the 1st ACM Symposium on Cloud Computing, ACM, New York, NY, USA,
SoCC ’10, pp. 181–192 (2010). http://doi.acm.org/10.1145/1807128.1807160

38. Ko, S.Y., Hoque, I., Cho, B., Gupta, I.: On availability of intermediate data in cloud compu-
tations. In: Proceedings of the 12th conference on Hot topics in operating systems, USENIX
Association, Berkeley, CA, USA, HotOS’09, pp. 6–6 (2009). http://dl.acm.org/citation.cfm?
id=1855568.1855574

39. Lin, H., Ma, X., Archuleta, J., Feng, W.c., Gardner, M., Zhang, Z.: MOON: MapReduce On
Opportunistic eNvironments. In: Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ACM,NewYork, NY, USA, HPDC ’10, pp. 95–106
(2010). http://doi.acm.org/10.1145/1851476.1851489

40. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Tech. rep., University of
Maryland, College Park (2010)

41. Liu, H., Orban, D.: Cloud MapReduce: A MapReduce implementation on top of a cloud
operating system. In: 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), pp. 464–474 (2011). doi:10.1109/CCGrid.2011.25

42. Liu, H.: Cutting MapReduce Cost with Spot Market. In: Proceedings of the 3rd USENIX
Conference on Hot topics in Cloud Computing, USENIX Association, Berkeley, CA,
USA, HotCloud’11, pp. 5–5 (2011). https://www.usenix.org/conference/hotcloud11/cutting-
mapreduce-cost-spot-market

43. Memishi, B., Ibrahim, S., Pérez, M.S., Antoniu, G.: On the Dynamic Shifting of the MapRe-
duce Timeout. In: Kannan, R., Rasool, R.U., Jin, H., Balasundaram, S. (eds) Managing and
Processing Big Data in Cloud Computing, IGI Global, Hershey, Pennsylvania (USA), pp. 1–22
(2016). doi:10.4018/978-1-4666-9767-6

44. Memishi, B., Pérez, M.S., Antoniu, G.: Diarchy: An Optimized Management Approach for
MapReduce Masters. Procedia Comput. Sci. 51, 9–18 (2015). http://www.sciencedirect.com/
science/article/pii/S1877050915009874. International ConferenceOnComputational Science,
ICCS Computational Science at the Gates of Nature

45. Microsoft, Inc.: (2015). http://www.microsoft.com/
46. Mone, G.: Beyond Hadoop. Commun. ACM 56(1), 22–24 (2013). http://doi.acm.org/10.1145/

2398356.2398364

http://blog.cloudera.com/blog/2013/03/how-to-set-up-a-hadoop-cluster-with-network-encryption/
http://blog.cloudera.com/blog/2013/03/how-to-set-up-a-hadoop-cluster-with-network-encryption/
http://www.cloudera.com/content/cloudera/en/home.html
http://www.cloudera.com/content/cloudera/en/home.html
http://doi.acm.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/1272996.1273005
http://dx.doi.org/10.1002/9780470940105.ch14
http://dx.doi.org/10.1002/9780470940105.ch14
http://dx.doi.org/10.1109/CCGrid.2011.84
http://dx.doi.org/10.1016/j.future.2013.01.013
http://dx.doi.org/10.1016/j.future.2013.01.013
http://web.mit.edu/kerberos/
http://doi.acm.org/10.1145/1807128.1807160
http://dl.acm.org/citation.cfm?id=1855568.1855574
http://dl.acm.org/citation.cfm?id=1855568.1855574
http://doi.acm.org/10.1145/1851476.1851489
http://dx.doi.org/10.1109/CCGrid.2011.25
https://www.usenix.org/conference/hotcloud11/cutting-mapreduce-cost-spot-market
https://www.usenix.org/conference/hotcloud11/cutting-mapreduce-cost-spot-market
http://dx.doi.org/10.4018/978-1-4666-9767-6
http://www.sciencedirect.com/science/article/pii/S1877050915009874
http://www.sciencedirect.com/science/article/pii/S1877050915009874
http://www.microsoft.com/
http://doi.acm.org/10.1145/2398356.2398364
http://doi.acm.org/10.1145/2398356.2398364

11 Fault Tolerance in MapReduce: A Survey 239

47. Okorafor, E., Patrick, M.K.: Availability of Jobtracker machine in Hadoop/MapReduce
Zookeeper coordinated clusters. Adv. Comput.: An Int. J. 3(3), 19–30 (2012). http://www.
chinacloud.cn/upload/2012-07/12072600543782.pdf

48. Pan, X., Tan, J., Kavulya, S., Gandhi, R., Narasimhan, P.: Ganesha: blackBox diagnosis of
MapReduce systems. SIGMETRICS Perform. Eval. Rev. 37(3), 8–13 (2010). http://doi.acm.
org/10.1145/1710115.1710118

49. Phan, T.D., Ibrahim, S., Antoniu, G., Bougé, L.: On Understanding the energy impact of specu-
lative execution in Hadoop. In: IEEE International Conference on Green Computing and Com-
munications (GreenCom 2015), Sydney, Australia (2015). https://hal.inria.fr/hal-01238055

50. RedHat: A guide for developers using the JBoss Enterprise SOA Platform (2008). http://www.
redhat.com/docs/en-US/JBoss_SOA_Platform/4.3.GA/html/Programmers_Guide/index.
html,programmersGuide

51. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: security and privacy for
MapReduce. In: Proceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation, USENIX Association, Berkeley, CA, USA, NSDI’10, pp. 20–20 (2010).
http://dl.acm.org/citation.cfm?id=1855711.1855731

52. Shih, J.: Hadoop security overview—from security infrastructure deployment to high-level
services. Hadoop & BigData Technology Conference (2012). www.hbtc2012.hadooper.cn/
subject/keynotep8shihongliang.pdf

53. Sorting 1PB with MapReduce: (2013). http://googleblog.blogspot.com/2008/11/sorting-1pb-
with-mapreduce.html

54. Stonebraker,M.,Abadi,D.,DeWitt,D.J.,Madden, S., Paulson, E., Pavlo,A., Rasin,A.:MapRe-
duce and parallel DBMSs: friends or foes? Commun. ACM 53:64–71 (2010). http://doi.acm.
org/10.1145/1629175.1629197

55. Tang, B., Moca, M., Chevalier, S., He, H., Fedak, G.: Towards MapReduce for Desktop Grid
Computing. In: Proceedings of the 2010 International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, IEEE Computer Society, Washington, DC, USA, 3PGCIC ’10, pp.
193–200 (2010). http://dx.doi.org/10.1109/3PGCIC.2010.33

56. The Apache Hadoop Project: (2015). http://hadoop.apache.org/
57. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T.,

Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., Balde-
schwieler, E.: Apache Hadoop YARN: Yet Another Resource Negotiator. In: Proceedings of
the 4th Annual Symposium on Cloud Computing, ACM, New York, NY, USA, SoCC ’13, p.
5:1–5:16 (2013). http://doi.acm.org/10.1145/2523616.2523633

58. Wang, G., Butt, A.R., Pandey, P., Gupta, K.: A simulation approach to evaluating design
decisions in MapReduce setups. In: 17th Annual Meeting of the IEEE/ACM International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, IEEE, MASCOTS 2009, pp. 1–11

59. Wang, F., Qiu, J., Yang, J., Dong, B., Li, X., Li, Y.: Hadoop high availability through metadata
replication. In: Proceedings of the First International Workshop on Cloud Data Management,
ACM, New York, NY, USA, CloudDB ’09, pp. 37–44 (2009). http://doi.acm.org/10.1145/
1651263.1651271

60. Warneke, D., Kao, O.: Nephele: Efficient parallel data processing in the cloud. In: Proceed-
ings of the 2Nd Workshop on Many-Task Computing on Grids and Supercomputers, ACM,
New York, NY, USA, MTAGS ’09, pp. 8:1–8:10 (2009). http://doi.acm.org/10.1145/1646468.
1646476

61. White, T.: Hadoop—The Definitive Guide: Storage and Analysis at Internet Scale (3. ed.,
revised and updated). O’Reilly (2012)

62. Xiao, Z., Xiao, Y.: Achieving accountable MapReduce in cloud computing. Future Gener.
Comput. Syst. 30, 1–13 (2014). http://dx.doi.org/10.1016/j.future.2013.07.001

63. Xu, H., Lau, W.C.: Optimization for speculative execution in a MapReduce-like cluster. In:
2015 IEEE Conference on Computer Communications, INFOCOM 2015, Kowloon, Hong
Kong, April 26–1May 1, 2015, pp. 1071–1079. http://dx.doi.org/10.1109/INFOCOM.2015.
7218480

http://www.chinacloud.cn/upload/2012-07/12072600543782.pdf
http://www.chinacloud.cn/upload/2012-07/12072600543782.pdf
http://doi.acm.org/10.1145/1710115.1710118
http://doi.acm.org/10.1145/1710115.1710118
https://hal.inria.fr/hal-01238055
http://www.redhat.com/docs/en-US/JBoss_SOA_Platform/4.3.GA/html/Programmers_Guide/index.html, programmersGuide
http://www.redhat.com/docs/en-US/JBoss_SOA_Platform/4.3.GA/html/Programmers_Guide/index.html, programmersGuide
http://www.redhat.com/docs/en-US/JBoss_SOA_Platform/4.3.GA/html/Programmers_Guide/index.html, programmersGuide
http://dl.acm.org/citation.cfm?id=1855711.1855731
www.hbtc2012.hadooper.cn/subject/keynotep8shihongliang.pdf
www.hbtc2012.hadooper.cn/subject/keynotep8shihongliang.pdf
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://doi.acm.org/10.1145/1629175.1629197
http://doi.acm.org/10.1145/1629175.1629197
http://dx.doi.org/10.1109/3PGCIC.2010.33
http://hadoop.apache.org/
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/1651263.1651271
http://doi.acm.org/10.1145/1651263.1651271
http://doi.acm.org/10.1145/1646468.1646476
http://doi.acm.org/10.1145/1646468.1646476
http://dx.doi.org/10.1016/j.future.2013.07.001
http://dx.doi.org/10.1109/INFOCOM.2015.7218480
http://dx.doi.org/10.1109/INFOCOM.2015.7218480

240 B. Memishi et al.

64. Xu, H., Lau, W.C.: Speculative execution for a single job in a mapreduce-like system. In:
2014 IEEE 7th International Conference on Cloud Computing (CLOUD), pp. 586–593 (2014).
doi:10.1109/CLOUD.2014.84

65. Yahoo! Inc: (2015). http://www.yahoo.com/
66. Yildiz, O., Ibrahim, S., Phuong, T.A., Antoniu, G.: Chronos: Failure-aware scheduling in shared

Hadoop clusters. In: IEEE International Conference on Big Data (BigData 2015), pp 313–318
(2015). doi:10.1109/BigData.2015.7363770

67. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., Currey, J.: DryadLINQ:
a system for general-purpose distributed data-parallel computing using a high-level language.
In: Proceedings of the 8th USENIX Conference on Operating Systems Design and Implemen-
tation, USENIX Association, Berkeley, CA, USA, OSDI’08, pp. 1–14 (2008). http://dl.acm.
org/citation.cfm?id=1855741.1855742

68. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker,
S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, USENIX Association, Berkeley, CA, USA, NSDI’12, pp. 2–2 (2012).
http://dl.acm.org/citation.cfm?id=2228298.2228301

69. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing
with working sets. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, USENIXAssociation, Berkeley, CA,USA,HotCloud’10, pp. 10–10 (2010). http://
dl.acm.org/citation.cfm?id=1863103.1863113

70. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: Fault-
tolerant streaming computation at scale. In: Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, ACM, New York, NY, USA, SOSP ’13, pp. 423–438
(2013). http://doi.acm.org/10.1145/2517349.2522737

71. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: An efficient and fault-
tolerant model for stream processing on large clusters. In: Proceedings of the 4th USENIX
Conference on Hot Topics in Cloud Ccomputing, USENIX Association, Berkeley, CA, USA,
HotCloud’12, pp. 10–10 (2012). http://dl.acm.org/citation.cfm?id=2342763.2342773

72. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce per-
formance in heterogeneous environments. In: Proceedings of the 8th USENIX conference on
Operating Systems Design and Implementation, USENIX Association, Berkeley, CA, USA,
OSDI’08, pp. 29–42 (2008). http://dl.acm.org/citation.cfm?id=1855741.1855744

73. Zhu, H., Haopeng, C.: Adaptive failure detection via heartbeat under Hadoop. In: Proceedings
of the 2011 IEEE Asia-Pacific Services Computing Conference, IEEE, New York, NY, USA,
ApSCC’11, pp. 231–238 (2011)

http://dx.doi.org/10.1109/CLOUD.2014.84
http://www.yahoo.com/
http://dx.doi.org/10.1109/BigData.2015.7363770
http://dl.acm.org/citation.cfm?id=1855741.1855742
http://dl.acm.org/citation.cfm?id=1855741.1855742
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://doi.acm.org/10.1145/2517349.2522737
http://dl.acm.org/citation.cfm?id=2342763.2342773
http://dl.acm.org/citation.cfm?id=1855741.1855744

Chapter 12
Big Data Security

Agnieszka Jakóbik

12.1 Introduction

Big Data (BD) systems become essential element for scientists, business executives,
healthcare systems, advertising, online sales systems, companies, and governments.
It enables gathering and processing huge data sets in areas such as Internet search,
media, finance, meteorology, genomics, biology, environmental research, social me-
dia. Big Data systems offer services like business intelligence, cloud computing
and data storage, testing, machine learning and natural language processing, data
visualization, data mining, distributed file systems, and many more.

Big Data systems support modern everyday life by being the engine behind www.
eBay.com, www.Amazon.com, Google or Facebook. Big Data systems are also nec-
essarily and very valuable part of many advanced projects dedicated mainly for
researchers.

Regardless of the objective of data collecting and processing, a huge amount of
critical information is gathered by such systems. This data is stored, processed, and
used by the data owners, BD system vendors and third-party organizations. Data
confidentiality, data provenience, and management of access for the data is very
important. The data volume and velocity of data gathering and processing causes
security problems that are specific to Big Data systems itself.

The paper is presenting short study about the most critical issues concerning
security problems in Big Data Systems. First, main concepts and definitions are pre-
sented. Then, Big Data security is considered from several point of view: user/vendor
security, data security, and security of computer systems. Chosen methods for se-
curity assurance in BD systems are presented. Traditional cryptography solutions
are presented and methods dedicated to BD systems only. As far as trust manage-
ment is considered international standards and institutions are presented. Secure

A. Jakóbik (B)
Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland
e-mail: agneskrok@gmail.com

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_12

241

www.eBay.com
www.eBay.com
www.Amazon.com

242 A. Jakóbik

communication protocols and infrastructure design for security are also described.
Case studies of Hewlett Packard, IBM Microsoft, and Teradata solutions for BD
systems are depicted.

The following survey is not a state of art concerning BD security, but an overview
of problems and solutions for further research investigation. The aim of the article
was to provide broad overview of issues and to be a good starting point for researchers
from the field of Cryptography, Cloud systems, computer networks, complex systems
modeling, and simulation as well as academic users who are employing such systems
during their scientific research.

Furthermore, understanding BD systems and their aware and responsible usage
is essential for any member of Internet of Things society.

12.2 Main Concepts and Definitions

The Big Data Systems (BD) are defined by three features: huge volume of data gath-
ered and proceeded, promptness velocity of data flow, and large variety of data itself.
Petabyte-scale data gathered by such systems are processed using dedicated tech-
niques, [1]. The chosen services offered by vendors are: Virtual Servers, Containers,
Web Deployment, Load Balancing, Database Migration, Caching, Data Warehous-
ing, Object Storage, File System Storage, Archive Storage, Data Transport, Busi-
ness Intelligence, Machine Learning, Streaming Data, Source Code Management,
Code Deployment, Continuous Delivery, API Management, Application Streaming,
Searching engines, Email servers, large variety of data Analysis itself, real-time
stream processing. The data in BD systems is treated differently in comparison to
the traditional systems. The splitting and conjunction of the data is important for
data updating and processing because data is dispersed widely. It was stated also in
[2] that 80% of the effort involved in processing data is cleaning and changing the
incoming stream of data into applicative form.

Big Data projects rarely involve single organization or company. A lot of com-
munication between many participants is incorporated in the process. Moreover, a
lot of analysis in the fields of engineering, computer science, physics, economics,
and life sciences is made using machine learning and automatic methods. These
approaches are beyond the direct control of human, [3]. During all this stages: re-
liance, integrity, confidentiality, genuineness, and availability have to be monitored
and provided nearly in the real time and on the massive scale.

The systems and social media based on Big Data systems such as like LinkedIn,
Netflix, Facebook, Twitter, Expedia, big sales companies, banking companies, and
a lot of other organizations are generating enormous economic, social, and political
impact into modern society. The decision made based on Big Data analytic has large
consequences in the real world, [4].

Therefore, it is very important to assure the save acquisition, storage, and usage of
such data. Especially, when the facts about peoples attributes, behavior, preferences,

12 Big Data Security 243

Table 12.1 Data characteristics in BD systems: composition of each source, data type, and features
is possible in single data set

Source Type Features

Single user At rest Variety

Corporation In motion Velocity

Social media Being processed Variability

Sensors Distributed Incomplete

Automated systems Shared Biased

relationships, and locations are being gathered, processed, and used in favor of many
subjects.

The problem of assuring security in BD systems is very complicated and not very
well recognized. The rapid growth of popularity of such systems imposes the neces-
sity to formulation and formal description of this problem. The main responsibility
relays on BD systems providers but improper, irresponsible or negligent and users
action may cause a lot of damage (Table12.1).

12.3 Big Data Security

This section presents security problems classification that concernsBigData systems.

Information security

ISO/IEC 27002 norm introduces definition of information security as the the
protection of information from a wide range of threats in order to ensure business
continuity, minimize business risk, andmaximize return on investments and business
opportunities. Information security is accomplished in the form of policies, Service
Level Agreements, processes, procedures, organizational structures, software and
hardware functions. These components need to be established, implemented, moni-
tored, reviewed, and improved constantly. Security of computer systems are specified
as the following C-I-A model, [5]:

• the preservation of confidentiality (C)—information should be accessible only to
those authorized to have access,

• integrity (I)—information should be accurate and complete and
• availability (A)—ensuring that authorized users have access to information when
required).

Security of the system user

Security of the systemusermaybe considered as far as the role of user is concerned:

• security from data uploaders point of view, e.g., the right to privacy,
• security from data users point of view, e.g., the right for not being deceived by
having wrongly uploaded or manipulated data,

244 A. Jakóbik

• security from society point of view, e.g., not being abused by those who obtained
information from BD sources.

Computing security, security for computing, computing for security

Another classification proposed in [6] is the following:

• BD computing security as the group of problems concerning security of a com-
puting systems infrastructure,

• security for computing deals with issues connected with the trust on the services
that users are employing using Big Data Technology,

• BD for security involves the usage of BD technologies to develop and deliver
security solutions for massive scale recipients.

SO/IEC 27002:2013 classification

Next classification was specified in the ISO/IEC 27002:2013, [7] standard for
information security published by the International Organization for Standardization
(ISO)

1. Organization of Information Security—responsibilities for information security
assigned to individual persons and duties should be allocated across roles and to
avoid conflicts of interest and prevent inappropriate information leaks.

2. Human Resource Security—security responsibilities monitored during recruit-
ing employees, workers, and temporary staff.

3. Asset Management—data segregated according to the security protection that is
necessary, and security policies diversified appropriately.

4. Access Control—data access restricted and controlled over roles and privileges.
5. Cryptography—cryptography protocols constantly monitored due to their valid-

ity.
6. Physical and environmental security—physical barriers, with physical entry con-

trols and working procedures protecting staff offices, data centers storage places,
delivery/loading areas against unauthorized access.

7. Operation Security–protection against harmful software, backup done regularly,
logging and monitoring as far as users and administrators activities, incidents,
faults and security violation, synchronizing clocks, operational software life
cycle monitoring, operational systems updating.

8. Communication security—all networks and network services properly secured.
9. System acquisition, development, andmaintenance—all software installedmon-

itored, the development environment protected, and external resources con-
trolled.

10. Information security incident management—incidents reported, responded as
soon as possible to and learn from

11. Compliance with legal and contractual requirements enforced.

Variety, Volume, Velocity-related security issues

Aforementioned security fields have to be considered together with treats for
security resulting from with three feathers of Big Data systems itself, [8].

12 Big Data Security 245

Table 12.2 Data life cycle in BD systems and security problems connected to each stage of data
processing

Gathering Warehousing BD system BD application

Massive scale Persistent storage Raw form storage Real-time processing

Authentication Authorization Confidentiality Integrity

Key safety Key management Up to date procedures Valid hash functions

Lean clients methods Velocity tools Volume solutions Fast processing

Provenience Trusted transferring Safe storage Correctness

• Variety: changing traditional relational database into nonrelational databases en-
forces different kind of methods as far as the need to disable reading the data by
unauthorized persons, storing data in the ciphered form, and disable the identity
detection from anonymized data sets by correlating with public databases.

• Volume: The volume of BigData enforces the storage inmultitiered storagemedia.
That causes additional problem of securing data integrity and inviolability when
data are segmented, moving between tiers and merged.

• Velocity: The velocity of data collection enforces usage of such a securitymethods,
algorithms, and hardware that can proceed fast enough not to disrupt the flow of
data.

• Variability: Security and privacy requirements have to be ensured also when the
data are moved to another vendor or are no longer valid and should be erased
(Table12.2).

Big Data may be collected from variety of end points. The roles that are incorpo-
rated into authentication and authorization includemore types than traditional system
providers, consumers, data owners. In particular, mobile users and social network
users have to be taken into consideration. Data aggregation and dissemination must
be secured inside the storage system, because lean clients do not have enough com-
puting power to perform necessary numerical operations involved in data ciphering
or hashing. The secure availability of data on demand by a broad group of stake-
holders have to be ensure using readily understood security frameworks, dedicated
to users who do not have any knowledge in the subject. Data search and selection can
also lead to privacy or security concerns. Legacy security solutions need to be retar-
geted to Big Data. They have to be used in High Performance Computing resources.
Attention must be given particularly to systems that are collecting data from fully
public domains. Methods to prevent adversarial manipulation and preserve integrity
of data have to be incorporated. Its extreme scalability causes that Big Data systems
are also sensitive to recovery methods and practices. Traditional backup tools are
impractical. Big Data systems enforces that monitoring and prevention and protec-
tion against hacker attacks have to be scaled enormously. Security and privacy may
be weakened by unintentional operations made by uneducated users. Therefore ed-
ucational policies for end users have to be considered and the methods for detecting
accidentally caused security threads, [9].

246 A. Jakóbik

Data confidentiality provenance and access management

1. Data Confidentiality. Confidentiality of data in Big Data systems have to be as-
sured during three stages of data processing: in transit, at rest, during processing.
Each stage requires and enables different kind of protocols to compromise be-
tween effectiveness and computational cost. Moreover, methods of computing on
encrypted data have to be used especially during searching and reporting. Ag-
gregating data without compromising privacy, and data anonymization methods
have to be incorporated.

2. Provenance. A mechanisms to validate if input data were uploaded from authen-
ticated, trustful sources. For example, digital signatures may be incorporated.
Moreover, validation at a syntactic level and semantic validation is obligatory.

3. Identity and Access Management. Key management methods have to take into
consideration greater variety of user types and have to be suitable for volume,
velocity, variety, and variability of data. In Big Data systems virtualization layer
identity, application layer identity, end-user layer identity, and identity of provider
is necessary. KeyManagement life cycle involves: generatingKeys, assuring non-
linear Key spaces, transferring Keys, verifying Keys, using Keys, updating Keys,
storing Keys, backuping Keys, compromised management Keys and destroying
Keys, for all participants involved in the process and on the massive scale, [10].

12.4 Methods and Solutions for Security Assurance BD
Aystems

Various cryptographic methods and protocols used in so called ‘traditional cryp-
tography’ may be transformed and successfully used also in BD approaches. The
wide class of such methods includes: symmetric Cryptography methods, One-Way
Hash Functions, Public-Key Cryptography, Digital Signatures with Encryption, Au-
thentication and Key-Exchange Cartographic Protocols, Multiple-Key Public-Key
Cryptography, Secret Splitting and Secret Sharing protocols, Undeniable Digital Sig-
natures, Designated Confirmed Signatures, Blind Signatures, Identity-Based Public-
Key Cryptography methods, [11, 12].

12.4.1 Authorization and Authentication Methods

Authenticationmethods dedicated to theBigData systems requires scalability and in-
stant high performance. Moreover machines on which such a systems are processing

12 Big Data Security 247

are equipped with massively parallel software running on many commodity comput-
ers in distributed computing frameworks. For this reason, all protocols and schemes
have to be optimized to such environment.

Master, scheduler, workers architecture implications.

Big Data (BD) systems are built from few components: Master System (MS)
receives data from data sources, then task Distribution function is applied to distrib-
ute tasks to the workers/slaves of the system (Cooperated System—CS), after Data
distribution function distributes data to the cooperated systems and after tasks are
finished Result Collection function gathers information and sends it to users. These
functions may be installed in different hosts and all stages needs authorization and
authentication methods to obtain the proper flow of the data. Security techniques for
Access Control for each component is necessary. The authorization is much more
complicated than non-Big Data systems, because of the necessity of synchronizing
access privileges between the MS and CSs.

Security Agreements and Service Level Agreement implications.

Security Agreement is made between data uploaders (BD source providers)
and the MS. It helps to categorize security classes of data sources. The aim of SA
is to make decisions about levels of security (or trust) that is required by the data
uploaders (e.g., different security levels for emails, and free stock photographs).
Trust Workers List (TCSL) lists the trusted Workers and categorizes them by the
security classes. MS access Policy is characterizing a set of access rules that are
imposed by Master System into Workers. Worker access Policy is the list of rules
for access to the distributed resources managed by the particular worker (e.g., disk
space, Virtual Machines).

Master—workers secure data flow example

To apply proper data flow, coordination of data up loaders with Master System by
Security Agreement have to be completed, thenMaster System is gathering informa-
tion about availableWorkers. After matching, security needs ofMaster Systems with
security offers by workers, the data are uploaded, task are formulated, and sending
to the Workers. The proposed scheme can be formalized by the following rules: A
set of security classes from c1 to cn combined as

C = {c1, . . . , cn} (12.1)

A set of BD source providers from bd1 to bdn combined as

BD = {bd1, . . . , bdn} (12.2)

A set of Cooperated System from cs1 to csn in the form of the set

CS = {cs1, . . . , csn} (12.3)

248 A. Jakóbik

A set of security attributes from at1 to atn in the set

AT = at1, . . . , atn

A set of (bdx , cx) pairs in the set SA in BD xi C. A set of (csx , cx) pairs in the
set TCSL in CS xi C. A set of MS policy rules from mp1 to mpn in the set

MSP = {mp1, . . . ,mpn} (12.4)

where

mpi = (atx , ax , bdx)

is a tuple where, atx from AT is an attributes, ax is an action, and bdx from BD is a
source provider that means subject with attribute atx is permitted to perform action
ax on object from bdx A set of AC policy rules for CS CSi collected in the set

CSPi = {cspi1, . . . , cspin} (12.5)

where each

cspii = (bdx , ax , rsx) (12.6)

is a tuple where bdx is the element from BD, ax is an action, and rsx is a local
resource from CSi that means subject from bdx is permitted to perform action ax on
object rsx

Let BDU = (u, au, bdu) be the user request; where u is an authenticated BD user
by the MS, au is a requested action, and bdu is a BD source provider of the data or
service that u is request to perform au from. The algorithm to accept (u, au, bdu) on
the csl is, [13]

for Cu = {c1, . . . ck} such that (bdu, ci) is from SA;
if Cu = empty set then
{request = deny (for this csl)
else
CSu = cs1, . . . csk such that (csi , ci) is from TCSL and ci is from Cu ;
if CSu = empty set or csl is not in the set CSu {
request = deny (for this csl)
else
if (there exist (mpx = (atx , ax , bdx) in MSP set, such that
au == ax and bdu == bdx) and (there exist (cspx = (bdx , ax , rsx) in set CSPl
such that au == ax and bdu == bdx and rsx = = resource required))
{
request = granted for this csl

12 Big Data Security 249

if perform au on rsx = = success
return result to RC
else
return RC resource from csl unavailable?
}
else
request = deny for this csl
}
}
}

12.4.2 Data Privacy

Big Data analytics invades the personal privacy of individuals, [14].

The negative impact of the improper usage of BD
The negative impact of the improper usage of the analysis that is made based on

the Data may be

• Discrimination. The usage of predictive analytics to make determinations about
users intelligence, habits, education, health, ability obtain a job, finance. The use
of users associations in predictive analytics to make decisions that have a neg-
ative impact on individuals. Such opinions are automated, and therefore errors
are more difficult to detect or prove, and may influence for example employment,
promotions, fair housing, and many more.

• An embarrassment. Online shops and restaurants, government agencies, univer-
sities, online media corporations may be the reason for the personal information
leakage resulting in revealing the personal information about users or employees.
Especially very private information that people would like to keep separated from
their business life (health problems, sexual orientation, or an illnesses).

• The lost of anonymity. If datamasking is not done effectively, analysis could easily
match the individual whose data has been masked to this person.

• Government exemptions. Personally Identifiable Information (PII): name, any
aliases, race, sex, date and place of birth, Social Security number, passport and
drivers license numbers, address, telephone numbers, photographs, fingerprints,
financial information like bank accounts, employment and business information,
and more are collected by governments. The discredit of such a data bases is the
great threat and might lead to the destabilization of the county, [15].

12.4.3 Technologies and Strategies for Privacy Protection

Encryption algorithms, anonymizationor de identification, deletion andnon-retention
methods helps to protect privacy.

250 A. Jakóbik

There are three basic types of cryptographic algorithms, [16], that were success-
fully adopted to BD systems:

1. Cryptographic hash functions. Hash function produces a short (the length is al-
ways known) representation of a any message. Hash function is a one-way func-
tion: it is easy to compute the hash value from a particular input but calculating
the input from hash value is extremely computationally difficult or impossible.
Hash function are also collision resistant: is extremely difficult to find two par-
ticular inputs that produce the same hash value. Because of these feathers, hash
functions are used to determine whether or not data has changed and are the part
of the digital signature schemes. In Big Data systems data integrity errors could
appear because of splitting ad merging the data, hardware errors, software errors,
intrusions, or user errors. Therefore data integrity needs to be checked after each
stage of data processing. Approved safe hash functions are: from SHA-2 family:
SHA-224, SHA-256, SHA-384 and SHA-512,and SHA-3, [17].

2. Symmetric algorithms (secret key algorithms) incorporating a single key to both
ciphering and to remove or check the protection (deciphering). Additional meth-
ods of safe key exchange between sender and receiver have to be used. The Ap-
proved algorithms for symmetric encryption and decryption are: the Advanced
Encryption Standard (AES) and the Triple Data Encryption Algorithm (TDEA),
based on the Data Encryption Standard (DES). Using symmetric key block cipher
algorithm, in case of the multiple blocks in a message (data stream) are encrypted
they must not be processed separately. The Recommendation for Block Cipher
Modes of Operation defines modes of operation that have to be used, citemodes.

3. Asymmetric algorithms (public key algorithms) incorporating two keys (i.e., a key
pair): a public key (may be stored in public database) and a private key (must be
kept secret) that cannot be calculated one fromanother.Approved safe asymmetric
algorithm is RSA and the length of the key should be set properly, [18].

4. Digital Signatures and theDigital Signature Standard (DSS). A digital signature is
an electronic analogue of a hand-written signature and it is used for proving to the
recipient or a third party, the proof that the message was signed by the originator.
Signature generation process incorporates a private key to generate a signature.
Signature verification process uses the public key that matches to public key,
to verify the signature. Hash functions are used to exclude manipulations with
the sent data. Digital Signature Standard (DSS) includes three digital signature
algorithms: the Digital Signature Algorithm (DSA), the Elliptic Curve Digital
Signature Algorithm (ECDSA) and RSA. The DSS is used with Secure Hash
Standard, [13].

5. Public Key Infrastructure (PKI) regulates generating and distributing methods for
public key certificates and ways of maintaining and distributing certificate status
information for unexpired certificates. PKI defines components

• certification authorities to create certificates and certificate status information,
• registration authorities to verify the information in the public key certificates
and determine certificate status,

• authorized repositories to distribute certificates and certificate revocation lists

12 Big Data Security 251

• online Certificate Status Protocol servers to distribute certificate status infor-
mation,

• key recovery services to backup private keys,
• credential servers to distribute private key material and the corresponding
certificates.

The example of certificates used in PKI may be the X.509 Certificate, [19].

Solutions dedicated to the BD systems
Many cryptography solutionswere proposed that are dedicated to the BD systems:

quantum cryptography and privacy with authentication for mobile data center, group
key transfer based on secret sharing over Big Data, [20], and ID-based generalized
signcryption method to obtain confidentiality or/and authenticity, capability based
authorization.

12.4.4 Quantum Cryptography and Privacy with
Authentication for Mobile Data Center

Quantum cryptography was proposed with Grovers algorithm (GA), [21], and Pair-
Hand authentication protocol, [22], to asset secure communications between the
mobile users and authentication servers.

Proposed model includes several layers, and supports secure Big Data sending by
mobile user to the nearest mobile data center.

• Data center front end Layer: verification and identification of the mobile user and
Big Data using Quantum cryptography and authentication protocols

• Data reading interface Layer: during each operation of the interface, provides the
best performance to minimize the complexity

• Quantum key processing Layer: quantum key distribution (QKD) based on QC is
taken into considerations, and the size of the Big Data and level of the security

• Key management Layer: the size of the Big Data and traffic load, the security key
generations is performed, protocols based on QC are applied

• Application Layer: depending on the applications that are used by data upleader,
division should be made according to organization policy with different level of
the security and privacy.

It was stated that designing mobile data center with the PairHand protocol reduces
the computational cost and increases the efficiency of the handover authentication.

12.4.5 Group Key Transfer Based on Secret Sharing Over
Big Data

Akey transfer protocol for secure group communications overBigDatawas proposed
and designed particularly for group-oriented applications over Big Data systems.

252 A. Jakóbik

Linear secret sharing schemes are used, [23]. A secret is divided into shares and is
shared among a set of shareholders by a trusted dealer in such a way that authorized
subsets of shareholders can reconstruct the secret but unauthorized subsets of cannot.
TheVandermondeMatrix is used as the share generation algorithm, [24].Key transfer
protocol consists of two phases: the secret establishment phase and the session key
transfer phase.

12.4.6 ID-Based Generalized Signcryption Method to Obtain
Confidentiality or/and Authenticity

Generalized signcryption (GSC) methods ware used to provide multi-receiver
identity-based generalized signcryption (MID-GSC) method. Bilinear Diffie–
Hellman (BDH) assumption and Computational Diffie–Hellman (CDH) assump-
tion was used to ensure safety of the system. Either a single message or multiple
messages can be signcrypted for one or multiple receivers and by one or multiple
senders, [25].

12.4.7 Capability-Based Authorization Methods

The capability-based authorization models have many additional feathers in com-
paring to the traditional models, that is, [26]:

• delegation support: a user can obtain access rights to another user, and the permit
ion to further delegate the rights. Moreover, the delegation depth is controllable at
each level,

• capability revocation: the right to the resources may be canceled by authorized
subjects,

• information granularity: dynamic adaptation of permissions and access privileges
is assumed by the provider to react on changes in users needs,

• capability token is used and Role-Based Access Control (RBAC) systems or the
Attribute-Based Access Control (ABAC) are incorporated.

These models were proposed for the systems where, at the same time, users needs
could be highly dynamic and limited in time therefore no permanent link between a
user and an service is beneficial.

A user that has specified a service for which he needs access submits a request to
the Digital Ecosystem Clients Portal. This request is passed to the Policy Decision
Point (PDP). The PDP decides if the users’ request may be accepted or have to be
denied. In the first case, it provides an access token (capability token) that enables
access to the service. This token is given to the user. Each capability token has
the following characteristics: the resource(s) that it gives the permission to use, the
subject (user) to which the rights have been allowed, the granted privileges, and the

12 Big Data Security 253

authorization chain, that user is required to fulfill in order to prove his identity. The
model is using Zero Knowledge Proofs, to prove, without disclosing any personal
information, the user has the right to receive an access capability for a resource.

The proposed CapBAC architecture consists several components:

• the resource in the form of information service or an application service that has
to be identifiable and may serve user,

• authorization capability that is the characterization of rights to be given together
with the specification which ones can be delegated further, and their delegation
depths, in contests of the resources on which those permissions are executed,

• capability revocation rules together with the specification of users whomay revoke
a single capability, a complex capability and all its descendants,

• service/operation request center that is processing requests from users and sending
them to one single vendor,

• Policy Decision Point in charge of managing resource access requests,
• theMonitoring Service that checks capability tokens and digitally signs the request
to prove that it is the owner of the capability. It also is doing formal validity of all
capabilities in the authorization chain and logical validity of the operation request,

• the particular resource manager that proceeds users’ requests for the particular
resource.

12.4.8 No QSL Data Basis Security

NoSQL databases such as CouchDB, MongoDB, and Cassandra were initially not
designed with security issues as a main feature. Therefore, third-party tools and ser-
vices have to be used. Sharding that is also done generates security risks, caused by
geographic distribution of data, un-encrypted data storage, unauthorized exposure of
backup and replicated data, insecure communication over the network. Security of
NoSQL databases involves securing data-at-rest on a single node, data security dur-
ing transmission between various nodes in a sharded environment that aremade often
between countries and inside international structures, [27]. Such methods as Consis-
tent Hashing (Distributed Hash Tables), Flexible Partitioning, and High Availabil-
ity monitoring, Inter-cluster communication, Denial of Service problem governing,
Continuous Auditing, Potential for injection attacks monitoring methods, Intrusion
Detection Systems, Kerberos Mechanism, Bull Eye Algorithm Approach supports
ensuring the safety of data in such systems, [28, 29]. Action aware access control
roadmap was proposed in, [30]. As far as platform selection and analysis is con-
cerned, selection of existing MapReduce systems and NoSQL data stores should be
considered at the first place. Then, identification of policy components have to be
made. The next step is defining of enforcement mechanisms for chosen BD database

• MongoDBwithRole-based access control (RBAC) at database and collection level
access control,

• Cassandra RBAC at key-space and table level access control,

254 A. Jakóbik

• Redis for which access control can only be achieved at application level,
• HBase incorporating control lists at column family and/or table level,
• CouchDB with no native access control,
• Hive equipped with fine grained access control and relational model
• Hadoop having Access control lists at resource level,
• Spark incorporating Access control lists at resource level, [31].

12.4.9 Trust Management

Trust according to the international standards and the international law manage-
ment/monitoring have to assured with special concern about the fact that cryptogra-
phy methods and protocols may become outdated. The listed below institution are
publishing the updated guidance and regulation according to the Big Data security

• US National Security Agency (NSA), [32],
• US National Computer Security Center (NCSC), [33],
• US National Institute of Standards and Technology (NIST), [34],
• RSA Data Security, Inc, [35],
• International Association for Cryptologic Research (IACR), [36],
• International Organization for Standardization (ISO), [37],
• Federal Information Processing Standards (FIPS), [38],
• Cloud Security Alliance, [39],
• Electronic Privacy Information Center (EPIC), [40],
• Academic researchers centers (MIT Computer Science and Artificial Intelligence
Laboratory, Lawrence Berkeley National Laboratory, Industry University cooper-
ative research center for Intelligent Maintenance Systems at university of Cincin-
nati).

The massiveness of Big Data systems has a great impact of privacy, security,
and consumer welfare; moreover it was stated that social and economic costs and
potential negative detriment is very high, [41] (Table12.3).

Table 12.3 Chosen security responsibilities

User BD vendor Third parity

Private key physical safety Key validity Own key physical safety

Data originality Data integrity Proper data usage

Authentication Authorization Authentication

Uniqueness Anonimization Proper generalization

Security awareness Security extortion Security submission

Desk computer security Infrastructure security Applications security

Security agreement Audit Certification

12 Big Data Security 255

The policies may be different for particular regions in with the data are collected,
for example

• Canada The Personal Information Protection and Electronic Documents Act
(PIPEDA), [42], specifies the rules to govern collection, use or disclosure of per-
sonal information, and gives users the rights to understand the reasons why orga-
nizations collect, use, or disclose personal information, to expect organizations to
protect the personal information in a reasonable and secure way.

• European Union: the 8th article of the European Convention on Human Rights
(ECHR) gives the right to respect ones private and family life, his home and his
correspondence is provided. EUmembers states adopted legislation pursuant Data
Protection Directive, [43], adapted their existing laws.

Resolving conflicts of different security rule sets according to different laws in
each country, and the territorial dissipation between data uploaders, data owners, and
data users caused the need for international certification of systems. The examples
of such certificates are

• TRUSTes APEC Privacy Certification program, checking among the others way in
which collected information is used, types of Third Parties, with whom collected
data is shared and for what purpose, methods for updating privacy settings, types of
passive collection technologies used (e.g., cookies, web beacons, device recogni-
tion technologies). A statement that collected information is subject to disclosure
pursuant to judicial or other governmental laws, warrants, orders to protect the
rights of the Participant, or protect the safety of the Individual, [44].

• The ISO 27000 family of standards: ISO 27001 that covers security in the cloud,
ISO 27002, ISO 27018 that is the description of policy for personally identifiable
information to the scope of 27001. ISO 27018 compatibility means that owner of
the data will not use customer data for their own independent purposes, such as
advertising andmarketing, without the customer’s agreement and establishes clear
and transparent parameters for the return, transfer, and secure disposal of personal
information, [45].

• The SSAE16 Auditing Standard: If the system is protected against unauthorized
access, if the system is available for operation and use as committed or agreed,
processingdata is complete, accurate, timely, and authorized, and if data designated
as confidential is protected, [46].

• The Cloud Security Alliance Cloud Controls Matrix (CCM), [47] gathers 13 most
critical security issues to enable the users to compare different BD systems. The
components of the CMM are: as far as Application and Interface Security is con-
sidered: Application Security, Customer Access Requirements, Data Integrity. Re-
garding Audit Assurance and Compliance: Audit Planning, Independent Audits,
and Information System Regulatory Mapping. Considering Business Continuity
Management and Operational Resilience the issues are Business Continuity Plan-
ning, Business Continuity Testing, Datacenter Utilities and Environmental Con-
ditions, Operational Resilience Documentation, Environmental Risks considera-
tions, Equipment Location, Equipment Maintenance, Equipment Power Failures,

256 A. Jakóbik

Impact Analysis, Policies and procedures, Retention Policy. As far as Change
Control and Configuration Management is considered the matrix consists of New
Development/Acquisition problem,OutsourcedDevelopment regulations, Quality
testing requirements, Unauthorized Software Installations procedures, policies for
Changes. RegardingData Security and Information Life cycle Management: clas-
sification by the data owner based on data type, value, sensitivity, and criticality,
Data Inventory/Flows procedures, E-commerce Transactions, Handling/Labeling
Policy, separating Production Data from non-production environments, Owner-
ship/Stewardship of the data. For obtaining Data-center Security: Asset Manage-
ment, Controlled Access Points, Equipment Identification, secure working envi-
ronment policies, Secure Area Authorization methods, User Access restrictions.
Additionally: Sensitive Data Protection, Access Keys management, appropriate
encryption, compliance with security requirements, Risk Assessments, support
in the form of clearly-documented rules, requirements and help documents. The
Matrix also specifies that Policy Enforcement is absolutely necessary and updates
to security policies, procedures, standards, and controls should be done to ensure
credibility and validity of all security procedures. A security awareness training
program have to be obligatory for third-party users and employees.

12.4.10 Secure Communication

Big Data gathering, processing, and storage require cooperation of may system. Data
uploaders may use different methods to connect to the storage servers: computers,
tablets, mobile phones, lean stations equipped with web browser only.

Network layer security protocols ensures secure network communications at the
layer where packets are routing across networks. Transport layer security methods
describe security at the layer responsible for end-to-end communications. Trans-
mission Control Protocol/Internet Protocol (TCP/IP) model, Secure Sockets Layer
(SSL) and Transport Layer Security (TLS), [48] are recommended.

12.4.11 Infrastructure Design for Security

BD systems infrastructure may be designed in such a way that assuring of security
is easier to implement and maintenance, [6]

1. Separation Model incorporates the architecture where separation of duty and
privileges is made by the assumption that at least two or more sides (recipi-
ents/customers/vendors/users/data owners) are involved in any single operation.
In this model, each participant is performing only part of the transaction. It results
in sharing the duties among the sides in such a way that no single side may have
excessive control over security processes and critical operations. The example

12 Big Data Security 257

of such a technique might be to design two independent services responsible for
data processing and data storage.

2. Availability ModelToprovide the fully availability of theBDservices, infrastruc-
ture should be replicated. At least two independent data processing services,
and two independent data storage services should be designed. Data should be
replicated and synchronized by the Replication Service. The Availability Model
incorporates redundancy into the Separation Model.

3. Migration Model where the migration of data is guaranteed by BD service
provider. BD Data Migration Service should be designed as the separate part
of the model and have to cooperate with the Storage Services. Second infrastruc-
ture also should be prepared for a second Storage Service that enables importing
data and exporting data.

4. Tunnel Model incorporates a tunnel infrastructure between the Data Processing
Center and the Data Storage Center. The tunnel is used as a communication
channel between these tho parts of DB system. It serves as an interface, enabling
interaction and provides hiding the unnecessary information. For example, it
enables isolation between data processing information (the exact data source
location) and data storage information (data stored after some post processing).
It also serves as a center for enforcing security policies and both Data Processing
Center and the Data Storage Center.

12.5 Case Studies

The most popular BD solutions are provided by big companies such as Software AG,
Oracle Corporation, IBM,Microsoft, SAP, EMC, HP and Dell. The leading solutions
are Alteryx, KNIME, Microsoft Revolution Analytics, Oracle Advanced Analytics,
RapidMiner, SAP Predictive Analytics, SAS Enterprise Miner, The Teradata Aster
Discovery Platform, Big Data platform from Amazon Web Services. The following
section is the summary of solutions provided by chosen vendors for assuring differ-
ent aspects of security.

Hewlett Packard Enterprise The company incorporated the OECD Guidelines
on the Protection of Privacy and Transborder Flows, EU Directive 95/46/EC, APEC
Privacy Framework, and the Madrid Resolution on International Privacy Standards
and the Australian Privacy Principles under the Privacy Act 1988 (Cth), HPE com-
plies with the U.S. E.U. Safe Harbor framework and the U.S. Swiss Safe Harbor
framework as set forth by the U.S. Department of Commerce regarding the collec-
tion, use, and retention of personal data from European Union member countries and
Switzerland. HPE was also certified according to the Safe Harbor Privacy Principles
of notice, choice, onward transfer, security, data integrity, access, and enforcement.
HPE has also established a set of binding corporate rules (BCR), which have been
approved by the majority of Data Protection Regulators in the EEA and Switzerland,
effective June 2011. The BCRs ensure that personal data from the EEA is adequately

258 A. Jakóbik

protected while being processed by any of HPEs global entities. The company has
received TRUSTe’s APEC Privacy Seal signifying that this privacy statement and
our practices have been reviewed for compliance with the TRUSTe program and the
services are compatible with APEC Cross Border Privacy Rules System, including
transparency, accountability, and choice regarding the collection and use of your per-
sonal information. The certification does not cover information that may be collected
through downloadable software on third party platforms.

IBM IBM has been awarded TRUSTe’s Privacy Seal for the practices connected
with security issues. All services are according to the APEC Cross Border Privacy
Rules System, U.S.–EU Safe Harbor framework and the U.S.-Swiss Safe Harbor
framework are incorporated. IBM implements physical, administrative, and techni-
cal methods to protect information from unauthorized access, use, and disclosure.
The encryption is made for sensitive personal information during transmitting. IMB
require all user of such a data protect it.

Microsoft Data access control is performed using two layers: physical and logi-
cal. Physical access to facilities is permitted by perimeter fencing, security officers,
locked server racks, multifactor access control, alarm systems, and video surveil-
lance. Access to customer data is controlled by role-based access policy, two-factor
authentication, minimizing access to production data, logging and auditing. Mi-
crosoft incorporated data isolation techniques to logically separate users. The systems
was certified with HIPAA and HITECH (The Health Insurance Portability and Ac-
countability Act and the Health Information Technology for Economic and Clinical
Health Act). It also participate in the Cloud Security Alliance STAR Registry pro-
gram. It also was certified with ISO 27001 and SOC1 and SOC2 (AICPAs SSAE16
Service Organization Control for SOC 1 Type 2 requirements). SOC1 Type 2 attest is
checking the design and operating effectiveness of controls implemented by a service
provider and SOC2Type 2 audit is checking security, availability, and confidentiality.

Teradata http://bigdata.teradata.com/ The following are strictly appliqued and
was checked by independent audits: ISO 29100:2011 (Privacy Framework), ISO
27002:2013 (Information Technology Security Techniques Code of Practice for
Information Security Controls), ISO 27018:2014 (Protection of customer PII/data
privacy in public cloud environments), Online Privacy Alliance Guidelines Organ-
isation for Economic Co-operation and Development (OECD), Guidelines on the
Protection of Privacy and Transborder Flows of Personal Data, OECD Guidelines
for Multinational Enterprises (Article VIII regarding Privacy), OECDGuidelines for
the Security of Information Systems and Networks, United Nations (UN) Guidelines
for the Regulation of Computerized Personal Data Files, International Standards on
Privacy and Personal Data Protection (the Madrid Resolution on International Pri-
vacy Standards), Asia Pacific Economic Cooperation (APEC) Privacy Framework,
European Data Protection Directive (EU Directive 95/46/EC), European Privacy
and Electronic Communications Directive (EU Directive 2002/58/EC), Drafts of the
proposed European General Data Protection Regulation (GDPR), Council of Europe

http://bigdata.teradata.com/

12 Big Data Security 259

Convention for the Protection of Individuals with regard to Automatic Processing
of Personal Data, and its Additional Protocol regarding Supervisory Authorities and
Transborder Data Flows.

12.6 Summary

Main problems concerning security in Big Data systems were presented. Security
from user side, data owner, and data uploader point of view was considered. Chosen
methods for the preservation confidentiality, integrity, and availability were pre-
sented. Some of them were adopted from traditional systems and still have to be
adjusted to be fully applicative. The methods particularly designed for BD systems
and may not be still tested enough to provide security. The data life cycle in BD
systems is complicated and involves a lot users and operation. Therefore, there are
many week points as far as security is concerned. Data being sent, data at rest, data
being processed and deleted from the system requires different kind of techniques
to assure authenticity and provenance. The need for third party trust centers was
emphasized. The necessity for external control as far as international low obedience
was stated.

Assuring the security of the users rights, the data itself and the vendor is sometimes
confluent. High level of security incorporated in the system increases the trust for
the vendor but also generates expenses. Not every user needs top security level but
for some users it is indispensable. Security roles and privileges according to the user
requirement have to be balanced with BD vendor business goals. Furthermore, in
every modern society privacy as one of the constitutional issues and some aspects
of security are regulated by the law. That is the reason of external audits and trust
centers certification. The security topics have to be also monitored and developed by
independent organizations not related to BD commercial companies.

Designing fully secure system is impossible. The system that consists of so many
elements will always be vulnerable to some kind of attack. Lack of knowledge from
the users side or targeted action to the detriment are the main week points beyond
the control.

Health care, education, media research, banking, online sales are supported by
analysis, capturing, searching, sharing, storing, transferring, and visualization of
large amount of data. Therefore, BD systems are predicted to be absolutely essential
and growing even bigger in the nearest future. Further studies on the impact of
variety, volume, and velocity on data security is very important. The preservation
of confidentiality, integrity, and availability should be the main concern assuring the
trust for BD services. The social security and scientific credibility.

260 A. Jakóbik

References

1. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Sys-
tems, Manning Publications (2015)

2. Big Data Now: 2012 Edn. OReilly Media, Inc. (2012)
3. Liu,H.,Gegov,A.,Cocea,A.:RuleBasedSystems forBigDataAMachineLearningApproach,

Springer (2016). ISBN:978-3-319-23696-4
4. Davis, K., Patterson D.: Ethics of Big Data, OReilly Media, Inc. (2012)
5. INTERNATIONAL STANDARD ISO/IEC 27002: Information technology Security tech-

niques Code of practice for information security management, ISO/IEC FDIS 17799:2005(E)
(2005)

6. Zhao, G., Rong, Ch., Gilje Jaatun, M., Sandnes, F.E.: Reference deployment models for elim-
inating user concerns on cloud security. J. Supercomputing 61(2), 337–352 (2012). August

7. http://www.iso.org/iso/cataloguedetail?csnumber=54533
8. NIST Special Publication 1500-1, NIST Big Data Interoperability Framework: Vol. 1, De-

finitions, NIST Big Data Public Working Group (NBD-PWG). doi:10.6028/NIST.SP.1500-
1

9. Top Ten Big Data Security and Privacy Challenges, Cloud Security Alliance. http://www.
isaca.org/groups/professional-english/big-data/groupdocuments/big_data_top_ten_v1.pdf.
Accessed 22 March 2016

10. NIST Special Publication 1500-4, NIST Big Data Interoperability, Security and Privacy, NIST
Big Data Public Working Group. doi:10.6028/NIST.SP.1500-4

11. van Tilborg, H.C.A., Jajodia, S. (Eds.): Encyclopedia of Cryptography and Security, Springer.
ISBN:978-1-4419-5905-8

12. Schneier,B.: Applied Cryptography Protocols, Algorithms, and Source Code in C, John Wiley
and Sons (1996)

13. Hu,V.C., Grance, T., Ferraio D. F., Kuhn,D.: An Access Control Scheme for Big Data Process-
ing, National Institute of Standards and Technology, USA. http://csrc.nist.gov/projects/ac-
policy-igs/big_data_control_access_7-10-2014.pdf. Accessed 22 March 2016

14. RotenbergM.: COMMENTSOFTHEELECTRONIC PRIVACY INFORMATIONCENTER,
THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY Request for Information: Big
Data and the Future of Privacy, Electronic Privacy Information Center (EPIC) (2014). https://
epic.org/privacy/big-data/EPIC-OSTP-Big-Data.pdf. Accessed 22 March 2016

15. Armerding, T., The 5 worst Big Data privacy risks (and how to guard against them). http://
www.csoonline.com/article/2855641/big-data-security/the-5-worst-big-data-privacy-risks-
and-how-to-guard-against-them.html. Accessed 22 March 2016

16. Stallings, W.: Cryptography and Network Security: Principles and Practice, Pearson (2013)
17. http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
18. NIST Special Publication 800-57 (SP 800-57), Recommendation for Key Management, pro-

vides guidance on the management of cryptographic keys. http://csrc.nist.gov/publications/
nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf. Accessed 22 March 2016

19. X.509: Information technology - Open Systems Interconnection - The Directory: Public-key
and attribute certificate frameworks. http://www.itu.int/rec/T-REC-X.509/en,cited. Accessed
22 March 2016

20. Zeng, B., Zhang, M.: A novel group key transfer for big data security. Appl. Math. Comput.
249, 436443 (2014). doi:10.1016/j.amc.2014.10.051

21. Goorden, S.A., Horstmann M., Mosk, A.P., Kori, B., Pinkse, P. W. H.: Quantum-Secure Au-
thentication of a Physical Unclonable Key. Optica 1(6) (2014)

22. He, D., Jiajun B., Chan, S., Handauth, Ch.: Efficient Handover Authenticationwith Conditional
Privacy for Wireless Networks. IEEE Trans. Comput. 62(3) (2013)

23. Farras, O., Padr, C.: Ideal hierarchical secret sharing schemes. In: Theory of Cryptography, pp.
219236. Springer (2010)

24. Hsu, C.-F., Cheng, Q., Tang, X., Zeng, B.: An ideal multi-secret sharing scheme based on msp.
Inf. Sci. 181(7), 14031409 (2011)

http://www.iso.org/iso/cataloguedetail?csnumber=54533
http://dx.doi.org/10.6028/NIST.SP.1500-1
http://dx.doi.org/10.6028/NIST.SP.1500-1
http://www.isaca.org/groups/professional-english/big-data/groupdocuments/big_data_top_ten_v1.pdf
http://www.isaca.org/groups/professional-english/big-data/groupdocuments/big_data_top_ten_v1.pdf
http://dx.doi.org/10.6028/NIST.SP.1500-4
http://csrc.nist.gov/projects/ac-policy-igs/big_data_control_access_7-10-2014.pdf
http://csrc.nist.gov/projects/ac-policy-igs/big_data_control_access_7-10-2014.pdf
https://epic.org/privacy/big-data/EPIC-OSTP-Big-Data.pdf
https://epic.org/privacy/big-data/EPIC-OSTP-Big-Data.pdf
http://www.csoonline.com/article/2855641/big-data-security/the-5-worst-big-data-privacy-risks-and-how-to-guard-against-them.html
http://www.csoonline.com/article/2855641/big-data-security/the-5-worst-big-data-privacy-risks-and-how-to-guard-against-them.html
http://www.csoonline.com/article/2855641/big-data-security/the-5-worst-big-data-privacy-risks-and-how-to-guard-against-them.html
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.itu.int/rec/T-REC-X.509/en,cited
http://dx.doi.org/10.1016/j.amc.2014.10.051

12 Big Data Security 261

25. Wang, H., Jiang, X., Kambourakis, G.: special issue on security, privacy and trust in network-
based Big Data. Inf. Sci. 318, 4850 (2015). doi:10.1016/j.ins.2015.05.040

26. Piccione, S., Rotondi, D.: A capability-based security approach to manage access control in
the Internet of Things. Math. Comput. Model. 58, 11891205 (2013)

27. Zahid,A.,Masood,R.,Awais ShibliM.: Security of ShardedNoSQLDatabases:AComparative
Analysis, Conference on InformationAssurance and Cyber Security (CIACS) (2014). doi: 978-
1-4799-5852-8/14/

28. Okman, L., Gal-Oz, N., Gonen, Y., Gudes, Y.: Security Issues in NoSQL Databases. IEEE
(2011). doi:10.1109/TrustCom.2011.70

29. Pazhanirajaa,N., Victer Paula,P., Saleem Bashab M.S., Dhavachelvanc P.: Big Data and
Hadoop-A Study in Security Perspective. Procedia Computer Science, Vol. 50, BigData, Cloud
and Computing Challenges, (2015). doi:10.1016/j.procs.2015.04.091

30. Colombo, P., Ferrari, E.: Privacy Aware Access Control for Big Data: A Research Roadmap.
Big Data Res. 2, 145154 (2015). doi:10.1016/j.bdr.2015.08.001

31. http://craigchamberlain.com/library/security/NIST/NIST%20800-8%20-
%20Security%20Issues%20%20the%20Database%20Language%20SQL.pdf

32. www.nsa.gov
33. www.ncsc.gov
34. www.nist.gov
35. www.rsa.com
36. www.iacr.org
37. www.iso.org
38. www.csrc.nist.gov/publications
39. https://cloudsecurityalliance.org
40. https://www.epic.org
41. Kshetri, N.B.: Big data’s impact on privacy, security and consumer welfare. Telecommun.

Policy 38(11), 1134-1145. www.elsevier.com/locate/telpol. Accessed 22 March 2016
42. Personal Information Protection and Electronic Documents Act, Published by the Minister of

Justice, Canada, (2016). http://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
43. Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on

the protection of individuals with regard to the processing of personal data and on the free
movement of such data, Official Journal L 281, 23/11/1995 P. 0031–0050

44. APEC Certification Standards. https://www.truste.com/privacy-certification-standards/apec/.
Accessed 22 March 2016

45. The International Standard for Data Protection in the Cloud, ISO/IEC 27018 (2014). https://
www.iso.org/obp/ui/iso:std:iso-iec:27018:ed-1:v1:en. Accessed 22 March 2016

46. The SSAE16 Auditing Standard: (2015). http://www.ssae-16.com/. Accessed 22 March 2016
47. https://cloudsecurityalliance.org/group/cloud-controls-matrix/
48. Guide to SSL VPNs, Special Publication 800-113, Recommendations of the National Insti-

tute of Standards and Technology (2008). http://csrc.nist.gov/publications/nistpubs/800-113/
SP800-113.pdf. Accessed 22 March 2016

49. Barker, E.B., Barker,W.C., LeeA.:NISTSpecial Publication 800-21,Guideline for Implement-
ing Cryptography In the Federal Government, U.S. Department of Commerce, (2005). http://
csrc.nist.gov/publications/nistpubs/800-21-1/sp800-21-1_Dec2005.pdf. Accessed 22 March
2016

50. Thayananthan, V., Albeshri, A.: Big data security issues based on quantum cryptography and
privacy, with authentication for mobile data center. Procedia Comput. Sci. 50, 149–156 (2015);
2nd International Symposium on Big Data and Cloud Computing (ISBCC15), (2015). doi:10.
1016/j.procs.2015.04.077

51. Kizza, J.: Computer Network Security. Springer (2005). ISBN-10:0387204733

http://dx.doi.org/10.1016/j.ins.2015.05.040
http://dx.doi.org/10.1109/TrustCom.2011.70
http://dx.doi.org/10.1016/j.procs.2015.04.091
http://dx.doi.org/10.1016/j.bdr.2015.08.001
www.nsa.gov
www.ncsc.gov
www.nist.gov
www.rsa.com
www.iacr.org
www.iso.org
www.csrc.nist.gov/publications
https://cloudsecurityalliance.org
https://www.epic.org
www.elsevier.com/locate/telpol
http://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
https://www.truste.com/privacy-certification-standards/apec/
https://www.iso.org/obp/ui/iso:std:iso-iec:27018:ed-1:v1:en
https://www.iso.org/obp/ui/iso:std:iso-iec:27018:ed-1:v1:en
http://www.ssae-16.com/
https://cloudsecurityalliance.org/group/cloud-controls-matrix/
http://csrc.nist.gov/publications/nistpubs/800-113/SP800-113.pdf
http://csrc.nist.gov/publications/nistpubs/800-113/SP800-113.pdf
http://csrc.nist.gov/publications/nistpubs/800-21-1/sp800-21-1_Dec2005.pdf
http://csrc.nist.gov/publications/nistpubs/800-21-1/sp800-21-1_Dec2005.pdf
http://dx.doi.org/10.1016/j.procs.2015.04.077
http://dx.doi.org/10.1016/j.procs.2015.04.077

Part III
Biological and Medical Big

Data Applications

Chapter 13
Big Biological Data Management

Edvard Pedersen and Lars Ailo Bongo

13.1 Introduction

The cost of producing data in bioinformatics is rapidly decreasing [39]. This has
resulted in several peta-scale omics data repositories [11]. In addition, there is a sim-
ilar growth in reference databases that contain data analysis results [37]. However,
with rapidly increasing dataset sizes, the analysis cost and resource usage are also
rapidly increasing. The wealth of data therefore requires new approaches and techni-
cal solutions for biological data analysis. In this chapter, we will explore challenges
and the use of state-of-the-art technical solutions for big biological data analysis with
a focus on data management.

The current state-of-the-art in big data management [1] include systems such as
Amazon RedShift [18], Google’s Dremel [25], Apache Spark [40], and MapReduce
[8]. Most of these were developed to analyze text-based data with few dimensions.
Biological data differs in that it has more dimensions and noise, it is heterogeneous
both with regard to biological content and data formats, and the statistical analysis
methods are often more complex. It is therefore not straightforward to adapt these
state-of-the-art systems for biological data analysis, nor to integrate these with the
analysis framework. It is challenging to even know at which level of the data analysis
stack to integrate them at.

In this chapter, we give an introduction to biological data analysis, with short
descriptions of the workflows, pipelines, and execution environments used in the
field. In addition, we provide a case study from our own lab. Then we provide a
short review of big data storage and processing solutions, highlighting advantages

E. Pedersen (B) · L.A. Bongo
University of Tromsø- The Arctic University of Norway, Tromsø, Norway
e-mail: edvard.pedersen@uit.no

L.A. Bongo
e-mail: larsab@cs.uit.no

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_13

265

266 E. Pedersen and L.A. Bongo

and disadvantages of different approaches for biological data management. Finally,
we summarize our own experiences in biological data management using big data
systems.

13.2 Biological Data Analysis

In this section, we provide the necessary background required to understand the data
management requirements for biological data analysis. We describe how biological
data analysis is typically implemented, configured, and executed. We use our own
META-pipe [31] pipeline from the metagenomics field as a case study.

13.2.1 Metagenomic Data Analysis

The typical analysis of metagenomic data involves the following steps:

1. Retrieve and prepare the sample. This includes sample cleaning and DNA isola-
tion.

2. Analyze the sample using instruments such as next-generation sequencing
machines.

3. Raw data processing. This is often done using vendor-specific software and oper-
ating procedures, and it is typically done at the instrument lab.

4. Quality control and data cleaning of the data received from the instrument lab.
This is typically the first step done by the researcher, and it can often be done
once for each dataset.

5. Run the data through a series of tools in a pipeline to produce the output data
needed to answer a particular research question. The same data may be used in
several data analysis pipelines, and a pipeline may be run periodically to update
the results with new input data or with updated reference databases.

6. Analyze the output data. This is typically done using interactive visual tools that
are often decoupled from the analysis pipeline.

In this chapter, we will focus on the data analysis pipeline (Step 5). This is the
step where the researchers put most effort into development time and computation
resources.

13.2.2 Data Analysis Pipelines

Biological data analysis is typically done through a collection of tools arranged in
a pipeline where the output of one tool is the input to the next tool (Fig. 13.1). The

13 Big Biological Data Management 267

Fig. 13.1 The META-pipe pipeline tools, file formats, reference databases, and intermediate files.
The items inside the “Provenance data” boxmust have provenance information recorded for analysis
reproducability

268 E. Pedersen and L.A. Bongo

data transformations include file conversion, data cleaning, normalization, and data
integration. A specific biological data analysis project often requires a deepworkflow
that combines many tools [9]. There are many libraries [14, 16, 35] with hundreds
of tools, ranging from small, user-created scripts to large, complex applications [23].

There are four types of data managed for such analysis pipelines:

1. The input, intermediate, and output data. These are typically structured files
with many samples. The files may range in size from megabytes to terabytes.
The pipeline input data is produced by biotechnology instruments such as next-
generation sequencing machines, or downloaded from public repositories such as
GEO [10] and ENA [22]. The pipeline output files are typically analyzed using
standalone interactive visualization tools.

2. Contextual data contains information about the data samples required for data
selection and interpretation. This includes information about how, where, and
when the samples were collected. The contextual data may be used to select the
datasets and records to process for a pipeline execution, and by visualization and
data exploration tools.

3. Reference databases with human or machine curated metadata extracted from
the published literature and from analysis of experimental data [12]. These are
used to annotate the data to make it useful for scientists. The reference databases
range in size from small collections of annotation data (Swiss-Prot), to peta-scale
collections of analyzed samples (European Nucleotide Archive).

4. The Provenance required for experiment reproducibility. This includes data lin-
eage information with descriptions of the pipeline tools, their parameters, data-
bases and versions, and machines used in the analysis.

13.2.3 Pipeline Frameworks and Execution Environments

The analyst specifies, configures, and executes the pipeline using a pipeline frame-
work (a review and taxonomy is provided in [23]). The pipeline framework provides
away of specifying the tools and their parameters, management of data andmetadata,
and execution of the tools. In addition, a pipeline frameworkmay enable data analysis
reproducibility by maintaining provenance data such as the version and parameters
of the executed tools. It may also maintain the content of input data files, reference
databases, output files, and possibly intermediate data.

A pipeline framework may comprise of a set of scripts run in a specific platform,
or a system that maps high-level workflow configuration to executable jobs for many
platforms. There are also frameworks that provide an interactive GUI for workflow
configuration, and a backend that handles data management and tool execution.

Biological data analysis pipelines are typically run on a fat server, high perfor-
mance computing clusters, or a data-intensive computing cluster. Using a single
server has two main advantages. First, most biological analysis tools can be used
unmodified. Second, it is not necessary to distribute and maintain tools and data on

13 Big Biological Data Management 269

Table 13.1 Data management approaches for selected pipeline frameworks

Pipeline Data Contextual data Reference
databases

Provenance

Galaxy Local files None Varies Workflow

GePan Local files None Packaged with
pipeline

Partial

EBI
metagenomics

Remote files Packaged with
data

Packaged with
tools

Report to user

a cluster. The main disadvantage is the lack of scalability, both concerning dataset
size and the number of concurrent users.

Many biological data analysis tools can easily be run on high performance com-
puting (HPC) clusters by splitting the input (or reference databases) into many files
that can be computed in parallel. The main advantage of using an HPC cluster is their
parallel compute performance. The main disadvantage is that the centralized storage
system often becomes a bottleneck for large-scale datasets in I/O bound jobs.

Finally, data-intensive computing clusters [34] distribute storage distributed on
the compute nodes, and provide data processing systems that utilize such distributed
storage. The main advantage is improved performance and scalability for I/O bound
jobs. The main disadvantage is that to fully utilize such a platform the analysis tools
may need to be modified [7, 9, 30].

A comparison of how a selection of workflow managers handle different types of
data is shown in Table 13.1.

13.2.4 Case Study: META-Pipe

To illuminate the data management issues in bioinformatics, we use as a case study,
an in-house workflow manager and pipeline, which we have used extensively in
research in this field. The pipeline and associated workflow managers are called
META-pipe. We are currently developing version 2.0 of the pipeline and workflow
manager that will be provided as a European Service in the ELIXIR e-infrastructure.

META-pipe is a successor to GePan, which was a workflow manager designed
to do annotation of genomes. META-pipe extends GePan by integrating several new
tools, as well as enabling pipelines to be run on supercomputer infrastructure.

META-pipe consists of a workflow manager that automatically generates a
pipeline based on the input parameters, and runs this pipeline on the local supercom-
puter. The pipelines created are for marine metagenomics analysis, and integrates
existing biological analysis frameworks with modern data management techniques
and infrastructures.

The actual execution in META-pipe works by generating scripts based on the
input of the user, these scripts and the input data are then submitted to an execution

270 E. Pedersen and L.A. Bongo

site, where the reference databases and tools are housed. The tools are run in a data-
parallel fashion, enabling the analysis of large samples. The user-facing frontend of
META-pipe is Galaxy, which allows users to examine the output of the pipeline in
several formats.

Data management in META-pipe is to a large degree up to the pipeline devel-
oper and administrator. The input, output, and intermediate data are stored as files
managed by theMETA-pipe scripts. TheMETA-pipe workflowmanager handles the
intermediate data in the pipeline, but the pipeline developer must maintain the input
and output data. For parallel execution, the data must be split and distributed on a
cluster by pipeline scripts. Contextual data is not handled byMETA-pipe, and neither
are the reference databases. These must be manually maintained as files stored on
a global file system. Finally, some data lineage is provided by the META-pipe job
scripts that specify the tools, tool parameters, and file paths. There is however, no
automated way of maintaining or specifying file and database versions unless these
are encoded in the filenames. We provide additional details in the next section.

13.3 Big Data Management

Biological data analysis jobs have moved from personal computers to data centers
and clusters, due to the increased need for storage and data processing resources.
However, bioinformatics analysis tools still often rely on files stored locally. It is
therefore not straightforward to start using state-of-the-art big data management and
processing systems for such analyses, and the developer must consider the strengths
and weaknesses of different big data approaches. In this section, we provide an
overview of these approaches and systems with respect to biological data manage-
ment. Throughout the chapter, we will use META-pipe as a case study for how the
different approaches may be used.

13.3.1 Local Data Storage

The most common interface used by bioinformatics tools is the file system, where
data is stored and managed as files in a directory structure. In addition to files, many
tools use simple relational databases to store provenance and contextual data. This
approach is sufficient for many cases, where the amount of data is limited. We will
not go into detail about different databases and file systems in this chapter.

META-pipe version 1.0 uses the file system for data management. This worked
well for small datasets. However, recent flagshipmetagenomics datasets are too large
to be replicated on each compute node. Hence, the data must be stored on a global
file system, which may then become a performance bottleneck.

13 Big Biological Data Management 271

13.3.2 Distributed Data Storage

In computing, it is often necessary to decrease locality to increase capacity. Examples
include swapping to disk when a dataset does not fit in memory, or using a multilevel
cache. To provide scalable storage and enable large-scale analysis without decreasing
locality, the data must be distributed over multiple machines in a way that enables
efficient distributed computing. Below we provide some approaches, but note that
these approaches are examples of systems that make it easy to develop parallel
programs that do computations on local data in a distributed fashion, and hence
there are other approaches to distribute data while maintaining locality of data for
computations.

One such approach are distributed file systems such as HDFS [34], GPFS [33],
and the Google file system [15]. These have been shown to be extendable to large-
scale datasets and they have been used to store biological datasets used by genomics
analysis pipelines [7, 9, 21]. A distributed file system provides programmers with an
abstraction of a single file system, while also enabling efficient parallel computations
that maintain data locality, such that tasks are scheduled to run on the cluster nodes
that contain the data to be processed.

Other big data fields, such as astronomy, distribute their data among multiple
standalone relational databases and then use distributed queries in the analysis [38].
There are also distributed databases such as Cassandra [5] and HBase [3], which
handle the distribution of queries and data automatically. These approaches both
enable locality, either through user-defined coroutines, or through frameworks such
as Spark or MapReduce. However, we are not aware of bioinformatics tools that
extensively use distributed queries.

There are also many other big data management systems that are distributed
RDBM systems or NoSQL databases. Systems such as MySQL Cluster [28] are
relational databases that are deployed across multiple machines. NoSQL databases
often trade off ACID properties for other features to improve, for example, perfor-
mance. The NoSQL databases vary from simple in-memory distributed key–value
stores such as memcached [13] to almost full-featured databases such as Cassandra
[5]. There are also distributed databases that are even more connected than rela-
tional databases that are useful for biological data management. For example, graph
databases such as Neo4j have been shown to be appropriate for some use cases in
bioinformatics. Have et al. [19] used Neo4j to do calculations on protein interactions
(which map well to graphs), and achieved a large speedup over PostgreSQL.

For META-pipe, we have used Storage Area Network for storage on the super-
computer, Network Addressed Storage for archiving on our smaller cluster, Network
File System for storage on our smaller cluster, HDFS and HBase for expansions like
Mario andGeStore, BerkleyDB for the internal representation of reference databases,
and SQLite as the database for our frontend.

272 E. Pedersen and L.A. Bongo

13.3.3 Generalized Distributed Data Processing

For biological data processing,we are primarily interested in distributed data process-
ing frameworks that: (i) are easy to use and (ii) distribute computation efficiently.

Probably the easiest approach for data analysis is to use declarative queries. Many
data storage frameworks provide the necessary support for queries for their users.
The supported queries include complex joins supported by relational databases, and
simpler operations such as scans and retrieval of a key–value pair supported by key–
value stores andNoSQL databases. All of these queries enable data locality, provided
that the underlying database system supports data locality scheduling of tasks. Many
systems also provide support to extend queries with user-defined functions (stored
procedures) that can be used to implement more complex processing. The combi-
nation enables the ease of use, flexibly, and power to solve many data processing
requirements in a distributed fashion.

Many bioinformatics tools and pipelines can utilize graph-based processing
frameworks such as MapReduce [8] and Spark [40] (note that these are systems
for graph-based processing, and not graph processing systems such as Pregel [24]).
These greatly simplifies embarrassingly parallel computations compared to earlier
approaches such as MPI. These frameworks automate data distribution, manage data
locality concerns, and handle load balancing. These are achieved by partitioning the
work into many small data-parallel tasks, which are scheduled and executed by the
compute engine of the framework. These frameworks model the computations as a
set of shared-nothing operations. For example, the building blocks of theMapReduce
framework are a map that transforms all values in a set, and a reduce that performs
a summary operation. This allows more flexible processing than is available when
using stored procedures or queries, as well as enabling the compute engine to per-
form optimizations such as efficient load balancing as well as strategies to minimize
the effects of stragglers and failures on the parallel program.

The MPI programming model provides operations at an even lower level. The
MPI operations are for passing messages between processes running on different
nodes in the network, and they thereby allow the developer full control over the data
and computational distribution, as well as the communication between nodes. This
framework is widely used in bioinformatics tools that support distributed execution.
The disadvantage of this approach is that it can be very complex to implement even
relatively simple data processing, as all the minutia of data distribution and com-
munication have to be explicitly defined by the developer. The large responsibility
put on the developer renders this framework relatively impractical for many types of
data processing, where something simpler can be used efficiently.

For META-pipe, the original pipeline was extended with analysis with tools that
utilize MPI, as well as batch data processing using MapReduce. The latest version
of META-pipe uses Spark extensively (Table 13.2).

13 Big Biological Data Management 273

Table 13.2 Distributed data processing framework abstractions

Approach Load balance Data-independent Complexity Power

Queries Yes No Low Low

Stored procedure Yes No Low Medium

Graph-based
processing

Yes Yes Medium High

Message passing Yes Yes High High

13.3.4 Specialized Data Processing

The general-purpose frameworks in the previous section have been used to implement
specialized data processing systems for uses such as incremental updates, iterative
computation, and interactive analysis. These systems provide additional features,
besides batch processing and provenance, that are useful for biological data analysis.

Incremental systems, such as the Incoop [6] andMarimba [32]MapReduce exten-
sions, provide iterative computation. These systems reduce the pipeline execution
time for updated datasets, by only processing the new data that is appended to a
dataset. The results are then combined with previously computed results. ForMETA-
pipe, we provide this functionality using GeStore [29], which allows incremental
updates for unmodified biological data analysis tools.

Interactive analysis systems, such as Cloudera Impala [20] and Apache PigPen
[27], are designed to execute interactive data analysis jobs with very short execution
time. Our Mario system, which uses HBase [3] as a backend, is built to interactively
tune the parameters of pipeline tools. We have found parameter tuning especially
useful for finding the best cutoff value for sample quality in a filtering step. This is a
step done early in the pipeline, and parameter changes without Mario would require
manually executing the full pipeline for each parameter.

Graph processing systems, such as GraphX [17], are designed for large-scale
graph processing. These are used in biological data analysis tools such as in Spaler
[2] a de novo graph-based genome assembler.

13.4 Big Data Systems for Biological Data Management

To integrate the data management and processing systems described in the previous
section with the workflow managers and pipelines in use in bioinformatics, several
approaches can be taken:

• Direct integration, where the distributed data management systems are used
directly by the workflow manager or pipeline.

274 E. Pedersen and L.A. Bongo

Table 13.3 Data-intensive computing systems we have used in our research

System What we used it for

HDFS Intermediate files, caching, unstructured data

HBase Structured and semi-structured data

MapReduce Computing delta files, parsing, and exporting
data

• File system integration, where the workflow manager or pipeline is not changed,
but instead the file system operations are replacedwith use of the datamanagement
system through an interface or wrapper.

• Extra tool, where the data management is implemented as a tool in the pipeline,
which is used between steps.

We have used all three approaches for integrating our data analysis pipelines with
our data processing systems [30].

We have primarily used the Hadoop stack (HDFS, HBase, and MapReduce) as
the data management and processing backend. We have also researched and tested
other systems. We chose these as we had need for several layers of data storage and
a simple processing framework. The Hadoop stack provides a simple integrated and
mature framework. Using a mix of HBase and HDFS as well as MapReduce enables
us to minimize the overhead large-scale data processing expansions that we added
to the existing META-pipe workflow manager.

For example, we have been able to achieve a speedup of up to 14× for incremental
updates with minimal changes to the workflow system [29]. This speedup comes
from generating a small reference database for the tools from a tera-scale collection
of reference database versions. In a similar vein, Mario uses HBase to generate tiny
workloads, which in turn enables interactive parameter tuning on real data [7].

Other projects that have combined big data systems with biological data analy-
sis includes ADAM [26], which implements an entire variant calling pipeline using
Apache Avro [4], Parquet [36], and Spark. They achieve large speedups when com-
pared to traditional tools. They also examine using the same approach with an astron-
omy workload, where the Spark-based implementation achieved an 8.9× speedup
compared to a MPI-based approach (Table 13.3).

Diao et al. [9] have used large-scale data processing frameworks to run unmodified
bioinformatics tools in parallel. They provide a generalized approach for using these
tools and discuss some of the advantages and challenges of their approach.

For the next version of META-pipe, we plan to use a hybrid of these two
approaches, where many of the in-house tools will be implemented in Spark, and the
remaining tools will be run unmodified in a data-parallel fashion.

13 Big Biological Data Management 275

13.5 Summary

The field of bioinformatics has just recently started to experience the effects of
exponential data growth. However, bioinformatics pipelines and tools are typically
not designed to scale these large data volumes. There has been large influx of large-
scale data processing frameworks that enable efficient distributed data processing in
fields such as web-scale data mining and astronomy. By leveraging the knowledge
gained in these fields to increase data analysis scalability, the exponential growth of
data can be used to increase the quality of bioinformatics analyses.

We have found that integration with legacy pipelines is challenging but it offers
great potential to improve analysis performance. Our experiences show that the inte-
gration of legacy systems with large-scale data processing can be done without dis-
rupting or supplanting existing pipelines. In addition, it enables features such as better
provenance management, data versioning, fault tolerance, and interactive parameter
tuning. We believe our approaches are general and that they can be applied to other
data analysis pipelines in bioinformatics and other fields.

References

1. Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J., Chaudhuri,
S., Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy, A.Y.,
Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Kossmann, D., Madden, S., Mehrotra, S.,
Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston, C., Ooi, B.C., Ré, C., Suciu, D.,
Stonebraker, M., Walter, T., Widom, J.: The beckman report on database research. Commun.
ACM 59(2), 92–99 (2016)

2. Abu-Doleh, A., Atalyrek, V.: Spaler: Spark and graphx based de novo genome assembler. In:
2015 IEEE International Conference on Big Data (Big Data), pp. 1013–1018 (2015)

3. Apache: Apache HBase. http://hbase.apache.org. Cited 18 April 2016
4. Apache: Avro. http://avro.apache.org. Cited 18 April 2016
5. Apache: Cassandra. http://cassandra.apache.org. Cited 18-April-2016
6. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquini, R.: Incoop: MapReduce for

Incremental Computations. In: Proceedings of the 2ndACMSymposium onCloud Computing,
p. 7. ACM Press (2011)

7. Bongo, L.A., Pedersen, E., Ernstsen, M.: Data-intensive computing infrastructure systems for
unmodified biological data analysis pipelines. In: Computational Intelligence Methods for
Bioinformatics and Biostatistics, LNBI, vol. 8623 (2014)

8. Dean, J., Ghemawat, S.: MapReduce. Commun. ACM 51(1), 107 (2008)
9. Diao, Y., Roy, A., Bloom, T.: Building highly-optimized, low-latency pipelines for genomic

data analysis. In: Proceedings of 7th Biennial Conference on InnovativeData SystemsResearch
(2015)

10. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: NCBI gene expression and
hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

11. EMBL-European Bioinformatics Institute: EMBL-EBI Annual Scientific Report 2014. http://
www.ebi.ac.uk/about/brochures. Cited 18 April 2016

12. Fernández-Suárez, X.M., Rigden, D.J., Galperin, M.Y.: The 2014 nucleic acids research data-
base issue and an updated NAR online molecular biology database collection. Nucleic Acids
Res. 42(Database issue), D1–6 (2014)

http://hbase.apache.org
http://avro.apache.org
http://cassandra.apache.org
http://www.ebi.ac.uk/about/brochures
http://www.ebi.ac.uk/about/brochures

276 E. Pedersen and L.A. Bongo

13. Fitzpatrick, B.: Distributed caching with memcached. Linux J. 2004(124), 5 (2004)
14. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L.,
Yang, J.Y.H., Zhang, J.: Bioconductor: open software development for computational biology
and bioinformatics. Genome Biol. 5(10), R80 (2004)

15. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles. SOSP ’03, pp. 29–43. ACM, New
York, NY, USA (2003)

16. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting acces-
sible, reproducible, and transparent computational research in the life sciences. Genome Biol.
11(8), R86 (2010)

17. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx: Graph
processing in a distributed dataflow framework. In: 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp. 599–613. USENIX Association, Broom-
field, CO (2014)

18. Gupta, A., Agarwal, D., Tan, D., Kulesza, J., Pathak, R., Stefani, S., Srinivasan, V.: Amazon
redshift and the case for simpler data warehouses. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’15, pp. 1917–1923. ACM, New
York, NY, USA (2015)

19. Have, C.T., Jensen, L.J.: Are graph databases ready for bioinformatics? Bioinformatics 29(24),
3107–3108 (2013)

20. Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C., Choi, A., Erickson, J., Grund,
M., Hecht, D., Jacobs, M., Joshi, I., Kuff, L., Kumar, D., Leblang, A., Li, N., Pandis, I.,
Robinson, H., Rorke, D., Rus, S., Russell, J., Tsirogiannis, D., Wanderman-Milne, S., Yoder,
M.: Impala: A modern, open-source sql engine for hadoop. In: CIDR. www.cidrdb.org (2015)

21. Kovatch, P., Costa, A., Giles, Z., Fluder, E., Cho, H.M., Mazurkova, S.: Big omics data expe-
rience. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15, pp. 39:1–39:12. ACM, NewYork, NY, USA (2015)

22. Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tárraga, A., Cheng, Y., Cleland,
I., Faruque, N., Goodgame, N., Gibson, R., Hoad, G., Jang, M., Pakseresht, N., Plaister, S.,
Radhakrishnan, R., Reddy, K., Sobhany, S., Hoopen, P.T., Vaughan, R., Zalunin, V., Cochrane,
G.: The European nucleotide archive. Nucleic Acids Res. 39(SUPPL. 1) (2011)

23. Leipzig, J.: A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics (2016)
24. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:

Pregel: A system for large-scale graph processing. In: Proceedings of the 2010 ACMSIGMOD
International Conference on Management of Data. SIGMOD ’10, pp. 135–146. ACM, New
York, NY, USA (2010)

25. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.:
Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endowment 3(1–2), 330–339
(2010)

26. Nothaft, F.A., Massie, M., Danford, T., Zhang, Z., Laserson, U., Yeksigian, C., Kottalam, J.,
Ahuja, A., Hammerbacher, J., Linderman, M., Franklin, M.J., Joseph, A.D., Patterson, D.A.:
Rethinking data-intensive science using scalable analytics systems. In: Proceedings of the 2015
ACMSIGMODInternational Conference onManagement ofData. SIGMOD’15, pp. 631–646.
ACM, New York, NY, USA (2015)

27. Olston, C., Chopra, S., Srivastava, U.: Generating example data for dataflow programs. In:
Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’09, pp. 245–256. ACM, New York, NY, USA (2009)

28. Oracle: MySQL. http://www.mysql.com. Cited 18 April 2016
29. Pedersen, E., Bongo, L.A.: Large-scale biological meta-database management. In: Future Gen-

eration Computer Systems (2016)

www.cidrdb.org
http://www.mysql.com

13 Big Biological Data Management 277

30. Pedersen, E., Raknes, I.A., Ernstsen, M., Bongo, L.A.: Integrating data-intensive computing
systems with biological data analysis frameworks. In: Proceedings of 23rd Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing, pp. 733–740. IEEE
(2015)

31. Robertsen, E.M., Kahlke, T., Raknes, I.A., Pedersen, E., Semb, E.K., Ernstsen, M., Bongo,
L.A., Willassen, N.P.: Meta-pipe - pipeline annotation, analysis and visualization of marine
metagenomic sequence data. arXiv:1604.04103 (2016)

32. Schildgen, J., Jorg, T., Hoffmann, M., Dessloch, S.: Marimba: A framework for making mapre-
duce jobs incremental. In: 2014 IEEE International Congress on Big Data, pp. 128–135. IEEE
(2014)

33. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In:
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST ’02.
USENIX Association, Berkeley, CA, USA (2002)

34. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies 0(5), 1–10 (2010)

35. Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G.,
Gilbert, J.G.R., Korf, I., Lapp, H., Lehväslaiho, H., Matsalla, C., Mungall, C.J., Osborne, B.I.,
Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E., Wilkinson, M.D., Birney, E.:
The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12(10), 1611–1618 (2002)

36. Twitter, and Cloudera: Parquet. http://www.parquet.io. Cited 18 April 2016
37. UniProt Consortium: UniProt release 201504. http://www.uniprot.org/help/2015/04/01/

release. Cited 18-April-2016
38. Wang, D.L., Monkewitz, S.M., Lim, K.T., Becla, J.: Qserv: A distributed shared-nothing data-

base for the lsst catalog. In: State of the Practice Reports, SC ’11, pp. 12:1–12:11. ACM, New
York, NY, USA (2011)

39. Wetterstrand,K.:DNASequencingCosts: Data from theNHGRIGenomeSequencing Program
(GSP). http://www.genome.gov/sequencingcosts. Cited 18-April-2016

40. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Computing
with Working Sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, p. 10 (2010)

http://arxiv.org/abs/1604.04103
http://www.parquet.io
http://www.uniprot.org/help/2015/04/01/release
http://www.uniprot.org/help/2015/04/01/release
http://www.genome.gov/sequencingcosts

Chapter 14
Optimal Worksharing of DNA Sequence
Analysis on Accelerated Platforms

Suejb Memeti, Sabri Pllana and Joanna Kołodziej

14.1 Introduction

A deoxyribonucleic acid (DNA) sequence contains specific genetic information that
is used in the development, functioning, and reproduction of living organisms. The
DNA sequence consists of two biopolymer strands that form the so-called double
helix. These two strands are composed of simpler units called nucleotides (also
known as bases). The four possible nucleotides of a DNA sequence are: Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T).

Modern genetic sequencing instruments can generate a huge amount of DNA
sequences, and therefore high performance data analytic (HPDA) solutions are
required. According to [44] the rate of growth of genomic data over the last decade
is exponential, doubling approximately every seven months. If the growth continues
at the current rate, in the next five years we should reach more than one Exa-bases (4
bases correspond to 1 byte) per year, and approach one Zetta-bases per year by 2025.

Fast analysis of DNA sequences is important in many contexts, such as, detecting
the evolution of different bacteria and viruses during an early phase [11], diagnosing
genetic predisposition to various diseases, such as cancer or cardiovascular diseases
[29], discovery of evolutionary relationship of different organisms, or in DNA foren-
sics for criminal investigation or parentage testing [27].

Recently different software-based approaches for DNA sequence analysis that are
designed for multi-core systems have been proposed. [18] presented an implemen-

S. Memeti (B) · S. Pllana
Department of Computer Science, Linnaeus University, 351 95 Vaxjo, Sweden
e-mail: suejb.memeti@lnu.se

S. Pllana
e-mail: sabri.pallana@lnu.se

J. Kołodziej
Cracow University of Technology, 31 155 Cracow, Poland
e-mail: jokoldziej@pk.edu.pl

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_14

279

280 S. Memeti et al.

tation of the Aho-Corasick algorithm based on pattern partitioning. A prefix-based
input partitioning approach is presented by [13]. [26] use a speculation approach
based on the most visited states to determine the starting state on a thread’s sub-
input. Related work has addressed the problem of pattern matching algorithms on
heterogeneous systems that are accelerated with GPU devices. [25] proposed the
PFAC algorithm for pattern matching on GPUs. [6] presents a parallel implementa-
tion of the Knuth–Morris–Pratt pattern matching algorithm for GPU. [46] proposed
Aho-Corasick for DNA analysis on clusters of GPUs.

So far not much research was focused on DNA sequence analysis using pattern
matching algorithm that is designed for heterogeneous systems that are accelerated
with the Intel Xeon Phi coprocessor. Such platforms deserve our attention because of
the high performance, programmability, and portability [7, 10, 19, 42, 47]. Further-
more, determining the optimal number of threads, thread affinities, and worksharing
for multi-core processors of the host and the accelerating devices using enumeration
of all possibilitiesmay be prohibitively time consuming. Let us consider that the opti-
mal system configuration is determined by a set of parameters C = {c1, c2, .., cm},
where each parameter ci has a value range Rci . The number of possible system
configurations is a product of parameter value ranges,

m∏

i=1

Rci = Rc1 × Rc2 × .. × Rcm (14.1)

In this chapter,we describe an optimizedHPDAsolution forDNAsequence analy-
sis on heterogeneous systems that are acceleratedwith the IntelXeonPhi coprocessor.
Our parallel DNA sequence analysis algorithm is based on finite automata and finds
patterns in large-scale DNA sequences. The algorithm implementation targets het-
erogeneous systems that are accelerated with the Intel Xeon Phi coprocessor and
exploits both the thread-level and the SIMD parallelism.

Our optimization approach combines combinatorial optimization and machine
learning to determine the optimal system configuration parameters (such as, number
of threads, thread affinities, DNA sequence fractions for the host and accelerating
device) of a heterogeneous system such that the overall execution time of the DNA
sequence analysis is minimized. We propose to use a combinatorial optimization
method, such as the Simulated Annealing, for searching for the optimal system con-
figuration in the given parameter space. For each system configuration suggested by
simulated annealing, we use machine learning (in our case, the Boosted Decision
Tree Regression) for evaluation of system performance. The objective function that
we aim to minimize is the execution time of the DNA sequence analysis. We evalu-
ate our approach experimentally with real-world DNA sequences (of human, mouse,
cat, dog) using a heterogeneous platform that comprises two 12-core Intel Xeon E5
CPUs and an Intel Xeon Phi 7120P coprocessor with 61 cores. Using the near opti-
mal system configuration determined by our optimization approach, we achieved a
speedup of 1.74× compared to the case when all the cores of the host are used, and
up to 2.21× speedup compared to the fastest execution time on the device.

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 281

The major contributions of this chapter include

1. an algorithm for parallel DNA sequence analysis that allows efficient use of the
computational resources on the host and accelerating device,

2. an optimization approach that determines the optimal worksharing between the
host and the accelerating device,

3. an empirical evaluation of our approach for optimized DNA sequence analy-
sis using real-world DNA sequences of human (3.2GB), mouse (2.7GB), cat
(2.4GB), dog (2.4GB).

The rest of the chapter is organized as follows. Section 14.2 provides background
information with respect to pattern matching with finite automata and accelerated
computing platforms. Our methodology for optimized DNA sequence analysis on
accelerated systems is described in Sect. 14.3. Section 14.4 presents the experi-
mentation environment and discusses the experimental evaluation results. The work
described in this chapter is compared and contrasted to the state-of-the-art related
work in Sect. 14.5. Section 14.6 concludes the chapter and discusses the future work.

14.2 Background

In this section we provide background information on the Aho-Corasick algorithm
for pattern matching. Furthermore we describe a heterogeneous computing platform
that is accelerated with the Intel Xeon Phi coprocessor.

14.2.1 Pattern Matching with Finite Automata

The process of pattern matching verifies whether a pattern is present in a string.
Pattern matching is commonly used for determining the locations of a pattern within
a sequence of tokens, in search and replace functions, or to highlight important
information out of a huge data set. In the context of computational biology, pattern
matching is used for analyzing and processing biological information in order to
extract the useful parts of the data and make them evident.

Formally, in DNA sequence analysis, the process of pattern matching can be
defined as follows: the input text (DNA sequence) is an array T [1..n] where n is
the length of the input, and pattern P[1..m] where the length of the pattern m ≤ n.
The finite alphabet

∑
defines the possible characters of the input string, in this case∑ = {A,C,G, T }, each item of

∑
corresponds to one of the four nucleotide bases.

A finite automaton (FA) is a machine for processing information by scanning the
input text T in order to find the occurrences of the pattern P . Formally, a FA can be
defined as follows: FA is a quintuple of (Q,

∑
, δ, q0, F), where Q is the finite set of

states,
∑

is the finite alphabet, δ is the transition function Q × ∑ −→ Q, q0 is the

282 S. Memeti et al.

start state and F is the distinguished set of final states. FA is an efficient technique
for pattern matching, because it examines each character from T exactly once.

A well-known algorithm for multiple pattern matching is the Aho-Corasick algo-
rithm. It is able tomatch any occurrences (including the overlapping ones) ofmultiple
patterns linearly to the size of the input string. It examines each character of the input
string only once. It builds an automaton by creating states and transitions correspond-
ing to these states. It adds failure transitionswhen there is no regular transition leaving
from the current state on a particular character, which makes it possible to match
multiple and overlapping occurrences of the patterns. Furthermore, this algorithm is
capable of delivering input-independent performance if implemented efficiently in
parallel systems, which is a reason why we use this algorithm as basis of our work.

14.2.2 Systems Accelerated with the Intel Xeon Phi

A typical heterogeneous platform that is accelerated with the Intel Xeon Phi is dia-
grammed in Fig. 14.1. Such platforms may consist of one or two CPUs on the host
(left-hand side of the figure), and one to eight accelerators (right-hand side of the
figure). The host CPUs shown in Fig. 14.1 are of type Xeon E5 2694 v2, which com-
prise three columns of four Ivy Bridge Cores (IVB-C) that amount to a total of 12
cores. These cores are connected using a three ring design, which features low latency
and high throughput. The L3 cache is split in two parts, in total it features a 30MB
L3 cache. The CPUs are connected to the memory using the quad-channel memory
controller. The two host CPUs are linked through the QuickPath Interconnect, which
offers speed of up to 8.0 GT/s.

Fig. 14.1 Our target accelerated system comprises a host with two CPUs and an Intel Xeon Phi
device. The host CPUs consists of 12 Intel Ivy Bridge cores. The Intel Xeon Phi consists of 61×86
cores, each core with 4-way symmetric multi-threading and a 512 kb private slice of the unified L2
cache

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 283

The Intel Xeon Phi (codenamed Knights Corner) device is a many-core shared
memory coprocessor, which runs a lightweight Linux Operating System that offers
the ability to connect over ssh. In our system we use the Intel Xeon Phi coprocessor
7120P. The Intel Xeon Phi offers two programming models

1. offload—parts of the applications running on the host are offloaded to the
coprocessor

2. native—the code is compiled specifically for runningnatively on the coprocessor.
The code and all the required libraries have to be transferred on the device.

The Intel Xeon Phi comprises 61×86 cores, each core runs at 1.2GHz base
frequency, and up to 1.3GHz on max turbo frequency [10]. Each core has four
hardware threads (T1, T2, T3, T4), which amounts to a total of 244 threads per
coprocessor. Each core has its own L1 (32KB) and L2 (512KB) cache. The L2
cache is kept fully coherent by a global distributed tag-directory (TD). The cores are
connected through a bidirectional ring bus interconnect, which forms a unified shared
L2 cache of 30.5MB. In addition to the cores, there are 16 memory channels that
in theory offer a maximum memory bandwidth of 352GB/s. The GDDR memory
controllers provide direct interface to the GDDR5 memory, and the PCIe Client
Logic provides direct interface to the PCIe bus. The Intel Xeon Phi, theoretically,
is capable of delivering up to one teraFLOP/s of double-precision performance, or
two teraFLOP/s of single-precision performance. One of the key features of the Intel
XeonPhi is its vector processing units that are essential to fully utilize the coprocessor
[45]. Through the 512-bit wide SIMD registers it can perform 16 (16 wide × 32 bit)
single-precision or 8 (8 wide × 64 bit) double-precision operations per cycle.

The host communicates with the coprocessor through the PCIe bus which is
limited to 8GB/s transfer bandwidth. The PCIe bus is a bottleneck for the offload
programming model, where data has to be transferred from the host to the coproces-
sor and vice versa. To minimize this overhead, it is recommended that the data is
transferred to the coprocessor and is kept there (reused).

14.3 Methodology

In this section we describe our parallel algorithm for DNA sequence analysis on
accelerated systems. Thereafter, we describe our approach for DNA sequence work-
sharing among computational resources of the host and accelerating device such that
the overall execution time is reduced.

284 S. Memeti et al.

Algorithm 1 DFA-based Parallel DNA Sequence Analysis
Input: ST T , final state f , input I , number of threads p, vector length v, pattern length m
Output: Count of pattern matches and their location
1: procedure ac(ST T, f, T, p,m)
2: n = I.length
3: chunkLength = n/p
4: for i = 1 to p do
5: q = 0
6: chunkStart = i ∗ chunkLength
7: for j = 1 to chunkLength do
8: c = j + chunkStart
9: q = δ(q, I [c]) � load the next node from STT, by following the transition from the

current node q labeled by the symbol T [c]
10: if q ≥ f then � check if the transition to next node is final
11: print matching pattern at position c
12: end if
13: end for
14: end for
15: end procedure

14.3.1 Design and Implementation Aspects of our Algorithm
for DNA Sequence Analysis

The key features of our deterministic finite automata (DFA) based algorithm for
parallel DNA sequence analysis are: (1) exploiting the thread-level parallelism by
using a decomposition approach to split the input among the available threads, (2)
exploiting the SIMD-level parallelism, and (3) reducing thememory references using
a suitable representation for the state transition table (STT).

14.3.1.1 Exploiting the Thread- and SIMD-Level Parallelism

Figure 14.2a depicts two possible ways for parallel execution of regular expression
matching for bio-computing applications:

• input-based partitioning (see Fig. 14.2a) that splits the input string into smaller
chunks and processes them in separate threads, and

• pattern-based partitioning (see Fig. 14.2b) that splits the patterns in sub-patterns,
such that for each sub-pattern a separate DFA is built and each thread examines
the given DNA sequence with one of the sub-patterns [18].

The input-based partitioning approach is suitable for applications where the exe-
cution time is dominated by the input length, whereas the pattern-based partitioning
approach is suitable for application where the execution time is dominated by the
size of the pattern data set.

Weuse the input-basedpartitioning strategy to exploit both thread andSIMD-level
parallelism, which is based on splitting the input by the number of available threads

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 285

(a) input-based partitioning approach -
splits the input into smaller chunk sand
processes them in separate threads.

(b) pattern-based partitioning
approach - splits the patterns in sub-
patterns. For each of the sub-patterns
a separate finite automaton is created.
Each thread examines the input with
each different automaton.

Fig. 14.2 Load balancing strategy among the available threads. The input-based partitioning is
suitable when the execution time is dominated by the length of the input text, whereas the pattern-
based partitioning approach is suitable when the execution time is dominated by the size of the
pattern set

and/or length of vector registers. This process is simple and straightforward, however
determining the exact initial state for each sub-input is nontrivial task. Finding the
exact initial state is important to match the occurrences of patterns that appear in the
cross boundaries. Researchers have proposed different solutions to this problem, for
example [26] uses a speculation approach based on the most visited states, [9] uses
an approach based on suffix arrays.

Whether the length of patterns within a pattern set is the same or not, we present
two methods of matching occurrences of patterns that appear in the crossing border

• a pattern length independent approach, which uses a converging point to merge
the matches starting from different possible initial states, and

• a pattern length dependent approach, which overlaps the chunks by m − 1 char-
acters, where m represents the pattern length.

The first approach includes the following steps: (1) find the set of source states
(L) for the first element of the sub-input mapped to the running thread (Tn); (2)
find the set of destination states (S) for the last character of the sub-input mapped
to the previous thread (Tn−1); (3) find the intersection of S and L (S ∩ L), which
is the set of possible initial states [30, 32]. The first thread (T0) always starts from
the initial state q0. Each thread is responsible for finding the set of possible initial
states, and for each state of this set a regular expression matching is performed.
However, only one regular expression matching is required to be fully completed,
the others will converge after a very small number of characters is examined. When
all threads have finished their job, the results are joined by a binary reduction, which
connects the last visited state of Tn to the first visited state of Tn+1. In comparison to

286 S. Memeti et al.

(a) (b)

Fig. 14.3 Thread-level and SIMD parallelism; a splitting the DNA sequence into chunks; b vec-
torization of the transition function

the first approach, the second one is simpler to implement, however it can be used
only to match multiple patterns of the same length [31]. For our experiments we use
pattern set that comprises multiple patterns of the same length, therefore we use the
second approach. The process of splitting the input among the available threads and
overlapping them to match the cross boundary occurrences is depicted in Fig. 14.3a.

We exploit the SIMD parallelism of the Intel Xeon Phi using a similar strategy.
Multiple transitions per cycle are performed using the SIMD-δ function. Figure
14.3b illustrates the SIMD operations assuming that the input assigned to a thread
is the same one as in Fig. 14.3a. The first SIMD δ operations are performed on the
characters at positions 0, 4, 8, and 12, the second SIMD operations are performed
on characters at position 1, 5, 9, and 13, and so on. This function allows for efficient
use of the vector processing unit by performing simultaneously multiple transitions.
An extract from the vectorization report for the SIMD-δ function, which is shown in
Listing 14.1, depicts an estimated potential speedup of 2.6×.

Listing 14.1 Vectorization Report for the SIMD-δ function
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 36
remark #15477: vector loop cost: 12.930
remark #15478: estimated potential speedup: 2.600
remark #15479: lightweight vector operations: 42
remark #15480: type converts: 3
remark #15475: --- end vector loop cost summary ---

14.3.1.2 Implementation Aspects

As a basis for our DNA Sequence analysis approach we use the Aho-Corasick algo-
rithm. It is capable of matching any occurrences of multiple patterns, and promises
the capability to deliver input-independent performance for parallel execution. How-
ever, the nondeterministic automaton that is generated by this algorithm is considered
as a drawback with respect to the performance. We find the right transition for each
state and each character and build a deterministic automaton with only valid transi-
tions. Having a valid transition for each symbol guarantees that for each character
the same number of operations will be performed.

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 287

(a) AC NFA automaton (b) Replacing failure transitions (c) AC DFA automaton

Fig. 14.4 The process of converting an Aho-Corasick NFA into a DFA by replacing the failure
transitions with valid ones. The automaton in the left-hand side shows the NFA generated using the
Aho-Corasick algorithm, which is able to match overlapping occurrences of the following patterns:
tta, acg, cta, cat. The middle figure shows the process of replacing a failure transition with valid
transitions; and in the right-hand side is depicted the result of this process, a DFA that corresponds
to the same NFA

This process is depicted in Fig. 14.4. Figure 14.4a represents the AC-NFA that
is able to match overlapping occurrences of the following patterns: tta, acg, cta,
cat. The process of finding valid transitions for a selected state is depicted in Fig.
14.4b, where the corresponding valid transitions from state q2 are added and the
failure transition is deleted. Figure 14.4c depicts the corresponding DFA to the NFA
automaton shown in Fig. 14.4a.

Regarding the process of checking if a match (represented as final state in DFA)
appeared, we use a simplified approach, which includes reordering of the number
of states. Reordering of the states is done in such a way that the regular states are
numbered from 0 to a − b, and the final states are numbered from a to b, where a is
the length of the set of states, and b is the length of the set of final states. Determining
whether a match has been found is done by checking if the state number is greater
or equal to a − b. For example, finding whether a state is a final one or not in the
automaton in Fig. 14.4c can be done by simply checking if the current states id is
greater or equal to seven (see algorithm 1 line 10).

An equivalent representation of the DFA is the state transition table (STT), which
forms a two-dimensional matrix M of size x × y, where x is the total number of
states, and y is the total number of elements in

∑
. Thus for a given state i and

an input character j , an entry M[i][j] denotes the corresponding next state. This
form of representation, requires a symbol pointer to the columns of the STT (such
as, A → 0, C → 1, G → 2 and T → 3). We consider creating a (ASCII) STT with
256 columns, where only columns that correspond to the elements in

∑
represent

valid transitions, whereas the unused symbols represent failure transitions to the
initial state. In such a way, when M[i][j] entry is needed, instead of asking for j-s
pointer, we use j-s ASCII code to get the entry. Such representation of the STT is
more memory expensive, however it guarantees less operations, so we consider it a
reasonable trade-off between memory space and access speed.

288 S. Memeti et al.

14.3.1.3 Accelerated DNA Sequence Analysis

One of themost compelling features of the Intel Xeon Phi device is the so-called dou-
ble advantage of transforming-and-tuning, which means that applications designed
for the Intel Xeon Phi will most probably perform well on the Intel Xeon CPUs. In
other words, tuning an application on Intel Xeon Phi device for scaling (more cores
and threads), vectorization and memory usage, benefits an application when running
on the Intel Xeon processors.

Our approach for parallel DNA sequence analysis using resources of the host
and the device also benefits from the double advantage of transforming-and-tuning
feature. This is why with not much additional programming effort we can use the
same algorithm for both host and device. We use offload programming model which
allows us to overlap the execution of the application on the host and device. However
when hybrid execution is performed, the workload is partitioned such that both the
load of host processors and the load of Xeon Phi device is balanced.

Our approach is depicted in Fig. 14.5. The preprocessing phase includes two steps:
(1) Splitting the DNA sequence I into the part I ′ assigned to the host CPUs and the
part I ′′ assigned to the Xeon Phi device, and (2) Building the STT.

TheDNA sequence is split based on a given fraction ratio F , which determines the
percentage of the fraction that needs to be processed on the host I ′. The remaining
part I ′′ is assigned to be processed on the device.

I ′ = (F/100) ∗ I (14.2)

I ′′ = I − I ′ (14.3)

An asynchronous host-to-device transfer is initiated immediately, which transfers
I ′′ to the coprocessor. The STT Builder generates a deterministic finite automaton
for the given set of patterns. The process of transferring I ′′ and the building of the
STT is overlapped. Beside I ′′, once the STT is constructed it is also copied to the
devices memory. Both host and device use a similar algorithm implementation to
match the assigned DNA sequence fraction against the given set of patterns. The
device transfers the result (the total number and the location of matched patterns) to
the host, and a simple join is performed.

14.3.2 Determining Optimal System Configuration using
Combinatorial Optimization and Machine Learning

In this section we describe our approach for determining the optimal system con-
figuration parameters (such as, number of threads, thread affinities, DNA sequence
fractions for the host and accelerating device) of a heterogeneous system such that

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 289

Fig. 14.5 Parallel DNA
sequence analysis using
resources of the host and the
device. The preprocessing
phase includes two steps: (1)
Splitting the DNA sequence
I into the part I ′ assigned to
the host CPUs and the part
I ′′ assigned to the Xeon Phi
device, and (2) Building the
STT

the overall execution time of the DNA sequence analysis is minimized. Table 14.1
lists the parameters of our target system.

For determining the optimal system configuration one could try out all possible
parameter values. We refer to this method as enumeration. For evaluation of system
performance for each system configuration we may use measurements or model-
based prediction. For development of the performance model we may use machine
learning. Using enumeration for design space exploration in a real-world context
may be prohibitively time consuming. Therefore, we propose to use a combinatorial
optimization method, such as the Simulated Annealing, for searching for the optimal
system configuration in the given parameter space. For instance, we may use the
SimulatedAnnealing to guide parameter space exploration, and usemeasurements or

290 S. Memeti et al.

Table 14.1 The set of considered parameters and their values for our target system

Host Device

Threads {2, 4, 6, 12, 24, 36, 48} {2, 4, 8, 16, 30, 60, 120, 180, 240}

Affinity {none, scatter, compact} {balanced, scatter, compact}

DNA sequence fraction {1..100} {100—Host Sequence Fraction}

DNA sequences {Human.fna, Mouse.fna,
Cat.fna, Dog.fna}

(a) Enumeration and Measurements (b) Enumeration and Machine Learning

(c) Simulated Annealing and Measurements (d) Simulated Annealing and Machine Learning

Fig. 14.6 System optimization approaches

machine learning for evaluation of system performance. We have considered various
optimization methods (see Fig. 14.6),

(a) Enumeration and Measurements (EM)
(b) Enumeration and Machine Learning (EML)
(c) Simulated Annealing and Measurements (SAM)
(d) Simulated Annealing and Machine Learning (SAML)

Table 14.2 lists major properties of the considered optimization methods. While
EM determines certainly the optimal system configuration, it involves a very large
number of performance experiments and the expected optimization effort is high.

Table 14.2 Properties of optimization methods

Method Space
exploration

Sys. conf.
evaluation

Effort Accuracy Prediction

EM Enumeration Measurements High Optimal No

EML Enumeration Machine
learning

High Near-optimal Yes

SAM Simulated
annealing

Measurements Medium Near-optimal No

SAML Simulated
annealing

Machine
learning

Medium Near-optimal Yes

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 291

Since EM has no performance prediction capabilities, for each new DNA sequence
we need to repeat the whole optimization process. EML uses machine learning to
infer about the system performance in case of a new DNA sequence. However, the
effort for parameter space exploration is high. SAM and SAML reduce significantly
the effort for parameter space exploration. Compared to SAM, SAML provides the
possibility to predict the system performance for new DNA sequences.

In what follows in this section, we describe our approach for parameter space
exploration using Simulated Annealing and our approach for performance prediction
using Machine Learning.

14.3.2.1 Using Simulated Annealing for Space Exploration

There are several heuristic methods [39] for solving optimization problems, includ-
ing: Genetic Algorithms, Ant Colony Optimization, Simulated Annealing, Local
Search, Tabu Search. Choosing the most convenient heuristic depends on various
factors such as, the type of optimization problem and search space, available com-
putational time, or demanded solution quality. We have decided to use simulated
annealing because of its ability to cope with a very large discrete configuration
space, and its global optimization features that promise that it will not get stuck into
local optima.

The simulated annealing method is inspired by the process of material cooling
and annealing. At a high temperature particles of the material have more freedom of
movement, and as the temperature decreases the movement of particles is decreased
as well. When the material is cooled slowly the particles are ordered in the form of
a crystal, which represents its minimal energy state.

Similarly in the simulated annealing, there is a temperature T variable that simu-
lates the cooling process. While T is higher, it is more likely to accept new solutions.
Therefore, there is a corresponding chance to get out of a local minimum, in favor
of searching for a global optimum. The lower the temperature, less likely it accepts
new solutions [39].

The method of simulated annealing is a suitable technique for optimization of
large-scale problems, especially the ones where the global optimum is hidden among
many local optima. Examples like the traveling salesman problem (TSP) or designing
complex integrated circuits are just some of many problems that can be solved using
the simulated annealing. The space over which the objective function is defined is
discrete and very large (factorial) configuration space, for example, in the TSP the
set of possible orders of cities.

In the context of optimizing the DNA sequence analysis on heterogeneous sys-
tems, the configuration space is as follows:

• sequence partitioning is a discrete value from 0–100, which means that if 40% of
the sequence is assigned to the host, the remaining 60% is assigned to the device;

• number of threads for the host and device;
• the thread allocation strategy for the host and device.

292 S. Memeti et al.

The objective function E (analog of energy) of our approach is defined as the total
execution time of the application running on the host and device, which basically is
determined by the maximum of the Thost and Tdevice:

E = max(Thost , Tdevice) (14.4)

We have an initial value of T and a cooling rate coolingRate, which define the
annealing schedule

T = T ∗ (1 − coolingRate); (14.5)

We use the T value in our acceptance function to decide which solution to accept.
When a new solution is generated, we first check whether its energy E is lower than
the energy of the current solution. If it is, we accept it unconditionally, otherwise we
consider how much worse is the time of the new solution compared to the current
one, and what is the temperature of the system. If the temperature is high, the system
ismore likely to accept solutions that are worse. The so-called Boltzmann probability
distribution (p) [39] is expressed as follows

p = exp((E − E ′)/T) (14.6)

where E ′ determines the energy of the newly generated solution.
The acceptance probability distribution p allows the system to get out of the local

optima, and find a new better global one.

14.3.2.2 Using Machine Learning for Performance Evaluation

We use machine learning to predict the execution time of DNA sequence analysis on
the host Thost anddevice Tdevice.Weuse the predicted execution times to determine the
optimal system configuration. The aim is to achieve a good load balancing between
the host and the device, such that the overall execution time is reduced.

For the development of the performance prediction model we have considered
various supervised machine learning approaches [41]: Linear Regression, Poisson
Regression, and the Boosted Decision Tree Regression. In our performance pre-
diction context, we achieved more accurate prediction results using the Boosted
Decision Tree Regression. The Boosted Decision Tree Regression is a supervised
learning algorithm that uses boosting to generate a group of regression trees and
determine the optimal tree based on a loss function.

The execution time for a parallel regular expressionmatching ismainly influenced
by the length of the DNA sequence and the available resources of the computing
platform. Furthermore thread affinities may affect significantly the execution time
of a parallel DNA sequence analysis.

We have generated the training data for the performance prediction model by
executing our DNA sequence analysis algorithm for different numbers of threads,

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 293

thread affinities, and DNA sequences. Table 14.1 lists the features and their possible
values used to train and evaluate our prediction model.

We trained ourmodel by running experiments on two different environments (host
and device), with 2, 4, 6, 12, 24, 36, and 48 threads for the host, and 2, 4, 8, 16, 30,
60, 120, 180 and 240 threads on the Xeon Phi. Furthermore we used none, scatter,
compact thread affinity modes for the host, and balanced, scatter, compact thread
affinity for theXeon Phi.We trained our performance predictionmodel with different
input fractions of four DNA sequences of different organisms (Human, Mouse, Cat,
and Dog). In total, the data of about 7200 experiments were used to train and evaluate
the performance prediction model using the Boosted Decision Tree Regression. Half
of the experiments were used to train the prediction model and the other half were
used for evaluation.

14.4 Evaluation

In this section, we evaluate experimentally our combinatorial optimization approach
for DNA sequence analysis on heterogeneous platforms. We describe the following,

• the experimentation environment,
• scalability of our parallel algorithm implementation for DNA sequence analysis,
• evaluation of our prediction model,
• comparison of the SAML with SAM and EM,
• achieved performance improvement.

14.4.1 Experimentation Environment

In this section we describe the experimentation environment used for the evalua-
tion of our approach including the system configuration, the used data set (that is
DNA sequences), the set of DNA patterns, and the parameters that define the system
configuration.

The experiments were performed on a platform that consists of two Intel Xeon
E5 processors that are accelerated with one Intel Xeon Phi of type 7120P coproces-
sor. The major features of our Emil system at the Linnaeus University are listed in
Table 14.3. An abstract view of the corresponding architecture for the host CPUs
and the device accelerator is depicted in Fig. 14.1. Each of the host CPUs has 12
cores (each core supports two hardware threads known as logical cores) that amount
to a total of 24 cores and 48 threads. The host CPUs have 30MB L3 cache each,
and they are connected to the main memory using the Quick Path Interconnect that
offers speed of 8.0 GT/s.

The Intel Xeon Phi coprocessor has 61 cores (each of the cores support four hard-
ware threads), in total 244 threads per coprocessor. TheμOS, which is a lightweights

294 S. Memeti et al.

Table 14.3 Emil: hardware architecture

Specification Intel Xeon Intel Xeon Phi

Type E5-2695v2 7120P

Core frequency 2.4–3.2 GHz 1.238–1.333 GHz

of Cores 12 61

of Threads 24 244

Cache 30 MB 30.5 MB

Max Mem. Bandwidth 59.7 GB/s 352 GB/s

Memory 8 × 16 GB 16 GB

TDP 115 W 300 W

Table 14.4 DNA data set

Gneome reference Size (MB)

Human GRCh38 3250

Mouse GRCm38.p2 2830

Cat Felis_catus-6.2 2490

Dog CanFam3.1 2440

version of Linux Operating System, runs in one of these cores, so 60 of the cores
are available for our experiments. The coprocessor runs the Intel Manycore Platform
Software Stack version 3.1.1. The Xeon Phi cores have a unified L2 cache of 30MB.

For experimental evaluation of our approach we have used real-world DNA
sequences of human, mouse, cat, and dog. These DNA sequences are extracted from
the GenBank sequence database of the National Center for Biological Information
[34]. Table 14.4 lists the information about the genome references and the corre-
sponding length of the DNA sequences. The data sizes vary from 2.38GB up to
3.17GB, which allows us to evaluate our algorithm with different sizes.

We use a set of patterns from the regex-dna benchmark that matches and extracts
specific k-mers [16] from a DNA sequence. The set of patterns is given as input to
our algorithm in form of a regular expression, which are used to construct a DFA of
137 states that corresponds to a sparse transition table of 137 rows and 256 columns.

The parameters that define the system configuration for our combinatorial opti-
mization approach are shown in Table 14.1. All the parameters are discrete. The con-
sideredvalues for the number of threads for host are {2, 6, 12, 24, 36, 48},whereas for
device are {2, 4, 8, 16, 30, 60, 120, 180, 240}. The thread affinity can vary between
{none, compact, scatter} for the host, and {balanced, compact, scatter} for the
device. The DNA Sequence Fraction parameter can have any number in the range
{0, .., 100}, such that if 60% of the DNA sequence is assigned for processing to the
host, the remaining 100 − 60 = 40% is assigned to the device.

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 295

14.4.2 Evaluation of our Parallel Algorithm for DNA
Sequence Analysis

Execution time of our parallel DNA sequence analysis algorithm for various DNA
sequences and various number of threads is depicted in Fig. 14.7. We may observe a
good scalability of our algorithm when running on host (Fig. 14.7a) and device (Fig.
14.7b). The host has 24 physical cores, each supporting two hyper-threads leading
to a total of 48 hyper-threads (or logical cores). Figure 14.7a shows that there is no
significant performance gain when 48 threads are used compared to the case with 24
threads.

With respect to the speedup, we first compare the performance of our parallel
algorithm for n threads and one 1 thread (Fig. 14.8), and thereafter the performance
of our parallel algorithm is compared with a sequential implementation (Fig. 14.9).

We may observe in Fig. 14.8 that our algorithm achieves a maximum speedup
of 18.5 for 24 threads of the host processors while analyzing the DNA sequence of
dog. We achieve a maximum speedup of 78.73 for 240 threads on the coprocessing
device while analyzing the DNA sequence of mouse.

In Fig. 14.9 we show the speedup of our parallel algorithm compared to the
sequential implementation of the Aho-Corasick algorithm that does not consider our
algorithmic optimizations described in Sect. 14.3.1. As depicted in Fig. 14.9a, our
approach running on host is up to 51.98× better when using 24 threads to analyze
the DNA sequence of dog. For 240 threads in the coprocessing device, we achieve a
maximal speedup of 31.50 when analyzing the DNA sequence of mouse.

The performance results discussed in this section are achieved for compact thread
affinity on the host and balanced thread affinity on the device.

(a) Host (b) Device

Fig. 14.7 Performance of our parallel DNA sequence analysis algorithm on host and device

296 S. Memeti et al.

(a) Host (b) Device

Fig. 14.8 The speedup of our DNA sequence analysis algorithm compared to the execution running
in one thread of host and device

(a) Host (b) Device

Fig. 14.9 The speedup of our DNA sequence analysis algorithm with respect to a sequential
implementation of the Aho-Corasick algorithm

14.4.3 Evaluation of our Performance Prediction Model

We have trained the performance prediction model for a set of four DNA Sequences
of different organisms (Human, Mouse, Cat, and Dog). A total of 7200 experiments
(2880 on host and 4320 on device) were performed, half of which were used to train
the prediction model, and the other half is used to evaluate the model. We use the
absolute error and the percent error to express the prediction accuracy,

absolute_error = |Tmeasured − Tpredicted | (14.7)

percent_error = 100 · absolute_error/Tmeasured (14.8)

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 297

Fig. 14.10 Performance prediction accuracy for the device. A total of 4320 experiments with DNA
sequences of human, mouse, cat, and dog were needed. Half of the experiments are used to train
the model, and the other half to evaluate it

Figure 14.10a–c show the measured and predicted execution time of DNA
sequence analysis on the host CPUs.We perform the experiments for various number
of threads, thread affinities, and fractions of the selected DNA sequences. The frac-
tions include 2.5–100% of the DNA sequence size. We may observe that predicted
values match well the measured values execution times for most configurations.

Figure 14.10d depicts a histogram of the frequency of performance prediction
absolute error for the host. It shows that most of the absolute error values are low.
For instance, 756 predictions have an absolute error less than 0.01 s, 609 predictions
have an absolute error in the range 0.01–0.02 s, and the rest of the predictions have
an absolute error in the range of 0.02–0.2.

Figures 14.11a–c depict the measurement and prediction results of the execution
time on the Intel Xeon Phi device for different number of threads, thread affinities
and fractions of the selected DNA sequences. For most of the test cases the predicted
execution time values match well the measured values.

298 S. Memeti et al.

Fig. 14.11 Performance prediction accuracy for the host. A total of 2880 experiments with DNA
sequences of human, mouse, cat and dog were needed. Half of the experiments are used to train the
model, and the other half to evaluate it

Figure 14.11d depicts a histogram of the frequency of performance prediction
absolute errors for the device. Most of the predictions have an absolute error less
than 0.3 s.

The average percent error that considers all the tested configurations for different
number of threads is shown in Table 14.5. The average percent error for the exper-
iments on the host is 5.239%, whereas the average percent error on the device is
3.132%. In other words, the average absolute error on the host is 0.027 s, and 0.074
on the device.

14.4.4 Comparison of SAML with EM

Enumeration (also known as brute force) finds the system parameter values that result
with the best performance by trying out all values of the parameters of the system
under study. While this approach determines certainly the best system configuration,
for the large search space of real-world problems enumeration may be prohibitively

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 299

Table 14.5 Performance prediction accuracy expressed via the absolute error (s) and percent error
(%) for the host and device

Threads Absolute (s) Percent (%)

Host

2 0.032 1.756

6 0.032 4.102

12 0.027 5.678

24 0.026 7.141

36 0.023 6.555

48 0.023 6.201

Average 0.027 5.239

Device

2 0.159 1.206

4 0.163 1.976

8 0.112 2.684

16 0.061 2.565

30 0.047 2.925

60 0.037 3.543

120 0.032 4.379

180 0.029 4.224

240 0.029 4.683

Average 0.074 3.132

expensive. Results presented in this chapter required 19,926 experiments when we
used enumeration, despite the fact that we tested only what we considered reason-
able parameter values (see Table 14.1 in Sect. 14.3.2). Our heuristic-guided approach
SAML that is based on simulated annealing and machine learning leads to compar-
atively good performance results, while performing only a relatively small set of
experiments compared to enumeration.

For performance comparison, we use the absolute difference and the percent
difference (EM),

absolute_di f f erence = |TEM − TSAML | (14.9)

percent_di f f erence = 100 · absolute_di f f erence/TEM (14.10)

where TEM indicates the best execution time determined using EM, and TSAML

indicates the execution time of our algorithm with a system configuration suggested
by the SAML approach.

Figure 14.12 depicts the execution time of our DNA sequence analysis imple-
mentation using the system configuration suggested by the simulated annealing for

300 S. Memeti et al.

Fig. 14.12 Performance comparison between the best system configuration determined by the
Enumeration and Measurements (EM) and the near-to-optimal one determined by the Simulated
Annealing and Measurements (SAM) and Simulated Annealing and Machine Learning (SAML)

various types of DNA sequences. The horizontal line indicates the execution time of
the system configuration determined with EM.

Simulated annealing suggests at each iteration parameter values for the system
configuration. We may observe that after 1000 iterations, we determine a system
configuration that results with a performance that is close to the performance of the
system configuration determined with 19,926 experiments of EM. By running only
about 5% (that is 100 × 1000/19,926) of experiments we find a near-optimal system
configuration. Please note that simulated annealing is a global optimization approach
and to avoid ending at a local optima during the search sometimesmay accept aworse
system configuration that results with a higher execution time compared to previous
iterations.

The percent difference is shown in Table 14.6, whereas the absolute difference
is shown in Table 14.7. The percent difference for 250 iterations is 20.49%. By
increasing the number of iterations to 500, 750, and 1000 the percent difference
decreases significantly, into 14.13, 12.57, and 9.88% respectively. Further increase

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 301

Table 14.6 Percent difference (%). The performance of system configuration suggested by SAML
after 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 iterations is compared with the best one
determined by EM

System configuration

250 500 750 1000 1250 1500 1750 2000

Human sequence 22.905 15.887 15.051 12.749 11.799 11.707 10.251 10.28

Mouse sequence 22.126 17.231 15.343 12.172 11.578 10.551 10.611 9.775

Cat sequence 17.861 11.212 8.704 6.161 4.966 3.425 4.018 3.354

Dog sequence 19.067 12.191 11.191 8.444 7.554 6.939 6.182 5.023

Average difference 20.489 14.13 12.572 9.881 8.974 8.155 7.765 7.108

Table 14.7 Absolute difference (s). The performance of system configuration suggested by SAML
after 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 iterations is compared with the best one
determined by EM

System configuration

250 500 750 1000 1250 1500 1750 2000

Human sequence 0.101 0.069 0.066 0.056 0.052 0.051 0.045 0.045

Mouse sequence 0.082 0.063 0.056 0.045 0.043 0.039 0.039 0.036

Cat sequence 0.065 0.041 0.032 0.022 0.018 0.012 0.014 0.012

Dog sequence 0.066 0.043 0.039 0.029 0.026 0.024 0.022 0.017

Average difference 0.078 0.054 0.048 0.038 0.035 0.032 0.03 0.027

of the number of iterations (1250, 1500, 1750, and 2000) results with a modest
decrease of the percent difference (8.97, 8.15, 7.76, 7.11).

With respect to the absolute difference, the determined system configuration using
SAMLwith 250 iteration is 0.078 s slower than EM approach. Increasing the number
of iterations into 500, 750, and 1000 decreases the difference between the execution
time into 0.054, 0.048, and 0.038 s, respectively. Using 2000 iterations to determine
the near-to-optimal solution using SAML is slower by 0.027 s compared to the
solution determined with EM.

14.4.5 Performance Improvement

In this section, we present the performance improvement obtained when all available
resources of the host and device are utilized for DNA sequence analysis.

The results in Table 14.8 demonstrate the performance improvement that is
achieved when the system configuration determined by the SAML and EM is used
for DNA sequence analysis compared to the case when all the available cores on
the host are used. We achieve a maximal speedup of 1.74 after 1000 system con-

302 S. Memeti et al.

Table 14.8 Speedup achieved when host and device are used for the DNA sequence analysis
compared with the host only. We consider system configurations determined by EM and SAML
after 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 iterations

System configuration

250 500 750 1000 1250 1500 1750 2000 Enumeration

Human sequence 1.37 1.45 1.46 1.49 1.5 1.51 1.52 1.53 1.68

Mouse sequence 1.6 1.66 1.7 1.74 1.75 1.77 1.77 1.78 1.95

Cat sequence 1.5 1.58 1.62 1.66 1.68 1.7 1.7 1.7 1.76

Dog sequence 1.42 1.51 1.52 1.56 1.57 1.58 1.6 1.6 1.69

Table 14.9 Speedup achieved when host and device are used for the DNA sequence analysis
compared with the device only. We consider system configurations determined by EM and SAML
after 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 iterations

System configuration

250 500 750 1000 1250 1500 1750 2000 Enumeration

Human sequence 1.64 1.74 1.76 1.79 1.81 1.81 1.83 1.84 2.02

Mouse sequence 1.7 1.77 1.80 1.85 1.86 1.88 1.88 1.89 2.07

Cat sequence 1.96 2.08 2.13 2.18 2.21 2.24 2.23 2.24 2.31

Dog sequence 1.99 2.1 2.13 2.18 2.19 2.21 2.23 2.25 2.36

figurations have been tried with SAML, whereas the maximal speedup that can be
achieved using EM is 1.95.

Table 14.9 shows the performance improvement that is achieved when the system
configuration determined by the SAML and EM is used for DNA sequence analysis
compared to the casewhen all the available cores on the device are used. Themaximal
speedup that can be achieved using EM is 2.36. We achieve a close to maximal
speedup (2.21) using only 1000 iterations.

14.5 Related Work

In this section, we discuss related software-based approaches for DNA sequence
analysis that target both multi-core and many-core architectures. Thereafter we dis-
cuss the intelligent methods for resource management that utilize the combined
computation power of multi-core CPUs and many-core accelerators in heteroge-
neous systems.

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 303

14.5.1 Approaches Targeting Multi-core Architectures

[18] presented an implementation of the Aho-Corasick string matching algorithm
using pthreads (posix threads), which is based on the pattern partitioning approach.
A replication of the Herath’s study with the intention to improve the software imple-
mentation of the Aho-Corasick algorithm was conducted by [3].

[13] achieved significant speedup by partitioning the input string among the
threads in such a way that each thread processes only sequences starting with a
specified prefix used to divide the radix tree among the threads. They achieved up to
6.9× speedup on a shared memory system with 8 cores.

Amethod for searching arbitrary regular expressions using speculation is proposed
by [26]. The drawback of this approach is that if an REM performed by a thread does
not converge on its sub-input, then the next thread has to start from a new state that
breaks the serialization and limits the scalability.

An approach based on the Aho-Corasick string matching algorithm designed for
the Cray XMT architecture is proposed by [48]. They split the input among the
available threads, and overlap the input by the pattern length. Their approach is
applicable for multiple patterns as long as they are of the same length, otherwise, the
occurrences of the shortest patterns occurring on the crossing border may be counted
by both threads.

14.5.2 Approaches Targeting Many-Core Architectures

An acceleration of exact string matching Knuth–Morris–Pratt algorithm on GPU is
conducted by [6]. They achieve nearly a 29× speedup compared to the sequential
version of theKMP algorithm. Similarly, [23] conducted an experiment on theNaive,
KMP, Boyer–Moore–Horspool and Quick-Search string matching algorithms in the
context of DNA sequencing using the CUDA toolkit.

[46] implemented the algorithm presented by [48] for GPU clusters. Their imple-
mentation is based on splitting the input into chunks, and then processing each chunk
in a separate thread. In contrast to our approach, their algorithm for pattern matching
relies on the features of the GPU architecture.

[24] implemented in CUDA theWu-Manber algorithm, which is used for approx-
imate matching of nucleotides in DNA sequences on GPU. In contrast our algorithm
performs exact pattern matching.

[25] evaluated their Parallel Failure-less AC algorithm on GPU and showed
improvement of 14.74×. This algorithm allocates a new thread to each character
of the input to identify any pattern starting from that character, which means that it
creates n number of threads, where n is the input length. In their experiments the
length of input string is up to 256 MB.

304 S. Memeti et al.

14.5.3 Intelligent Methods for Resource Management

Utilizing the combined computation power ofmulti-core CPUs andmany-core accel-
erators in heterogeneous systems is important to achieve high performance. Various
approaches to distribute the workload across different devices in heterogeneous sys-
tems have been proposed.

[43] proposed an adaptive worksharing library to schedule computational load
across devices. They extend the accelerated OpenMP by introducing a cross-device
worksharing construct/directive, which allows the programmer to specify the asso-
ciation between the computation and data. Such extensions allows their library to
automatically handle the workload distribution across devices. They evaluate the
speed of each device statically, then use these indicators to split the workload across
different devices.

Similarly [5] investigated the extension ofOpenMP to allowworkload distribution
on future iterations based on the results of first static ones.

[35] proposed an approach that combines the pragma-based XcalableMP (XMP)
[33] programming language with the runtime system by StarPU to utilize both GPU
and CPU resources on each node for work distribution of the loop executions. They
use the XMP for data distribution and synchronization purposes, whereas the StarPU
is used for scheduling the tasks among host CPUs and accelerating devices.

While [5, 43] tend to offer solutions that require minimal changes to the original
source code, task block models, such as StarPU [4] and OmpSs [14] require the user
to determine workload distribution manually and may require significant structural
changes to an original serial code. These models provide a powerful platform for
scheduling on heterogeneous systems, which are based on splitting the workload
into smaller tasks and queuing these tasks across the available resources.

Qilin [28] is a programming system that is based on a regression model to predict
the execution time of kernels. Similarly to our approach, it uses off-line learning that
is thereafter used in compile time to predict the execution time for different input
size and system configuration.

[40] proposed their dynamic scheduling framework that divides tasks into smaller
ones that later on are distributed across different processing elements in a task-
farm way. They consider architectural trade-offs, computation, and communication
patterns while making scheduling decisions. In comparison to our approach, we
consider only system runtime configuration and the input size, which enables us a
more general use of our approach with different applications and architecture.

[12] proposed a C++ framework for dynamic distribution of the work among
the host CPUs and coprocessor devices. The workload is distributed using a priority
queue technique,where one core of the host is responsible for the queuemanagement.

[17] proposed a static partitioning approach to distribute OpenCL programs on
heterogeneous systems. Their approach is based on static analysis to extract code
features from OpenCL programs. These features are then used to determine the best
partitioning across the different devices. Their approach relies on the architectural
characteristics of a system.

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 305

However, in comparison to the aforementioned approaches, we use combinatorial
optimization to determine the near-optimal system configuration.

Our work is closely related to the work presented by [2]. They propose a profiling-
based approach for mapping kernel computations to heterogeneous platforms. Their
approach extracts profiling information by running each application of every device
(including host CPUs and accelerators), to collect information such as execution
time and data transfer time. These information are then passed to solvers such as
Greedy Algorithm to select the optimal mapping for a specific kernel. In compar-
ison to Albayrak et al. we use machine learning to evaluate the performance of a
selected application, and we use simulated annealing to minimize the overall execu-
tion cost, whereas they use an improved version of the Greedy Algorithm. Further-
more, they target applications that are designed as sequence of kernels, whereas we
target OpenMP applications with divisible workload (data parallel).

The use of intelligent methods (such as, meta-heuristics) for efficient scheduling
in the context of Grid computing environments has been addressed by [21, 22]. The
use of intelligent software agents in the context of multi-core computing systems
was proposed by [36] to address the programmer productivity and performance opti-
mization. [20] aim at identifyingwhich parameters of workflow activities affect more
the overall result of the workflow, and propose to use the ant colony optimization
heuristic to search for a subset of most significant parameters.

The of use modeling and simulation techniques to study properties of large-scale
parallel and distributed computing systems has been studied in [1, 8, 15, 37, 38].

14.5.4 Our Approach

In contrast to related work, our approach targets heterogeneous systems that use as
accelerator the Intel Xeon Phi coprocessor. Our approach enables using all avail-
able resources on the host CPUs and Intel Xeon Phi coprocessor for DNA sequence
analysis. Furthermore, we use combinatorial optimization and machine learning to
determine the optimal partitioning of the DNA sequence between the host and accel-
erating device such that the load is balanced between the host and device and the
overall execution time is reduced. In addition, we use combinatorial optimization to
determine the optimal number of threads and thread affinities for the host and device.

14.6 Summary

We have proposed a new approach for DNA sequence analysis designed for het-
erogeneous platforms that comprise a host with multi-core processors and one or
more many-core accelerating devices. Our algorithm uses efficiently all the avail-
able resources of the host and device. Furthermore, we have proposed a combina-
torial optimization approach that uses machine learning to determine the system

306 S. Memeti et al.

configuration (that is, the number of threads, thread affinity, and the DNA sequence
fraction for the host and device) such that the overall execution time is minimized.

Our parallel algorithm scales well when the number of threads is increased. The
speedup of our DNA sequence analysis algorithm compared to the sequential version
is up to 51.98×when using the available resources of the host only, and 31.5×when
using the resources of the device only.

We have observed that searching for the best system configuration using enu-
meration is time consuming, since it required many experiments. Using simulated
annealing to suggest at each iteration parameter values for the system configuration
after 1000 iterations, we determined a system configuration that results with a per-
formance that is close to the performance of the system configuration determined
with 19,926 experiments of enumeration. By running only about 5% of experiments
we were able to find a near-optimal system configuration. Furthermore, we have
proposed a machine learning approach that is able to predict the execution time for
a system configuration. We have observed in our experiments that the average per-
cent error of 4.2% of the performance prediction enables us to satisfactory suggest
near-to-optimal system configurations. Using the near optimal system configuration
determined by the simulated annealing and machine learning, we achieved a maxi-
mal speedup of 1.74× compared to the case when all the cores of the host are used,
and up to 2.21× faster compared to the fastest execution time on the device.

Future work will study DNA sequence analysis on the heterogeneous comput-
ing platforms that use as accelerator the second generation of the Intel Xeon Phi
coprocessor, codenamed Knights Landing.

References

1. Abraham, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E.B., Kondov, I., Pllana, S., Streit,
A.: Preparing HPC applications for exascale: challenges and recommendations. In: 2015 Inter-
national Conference on Network-Based Information Systems (NBiS), IEEE (2015)

2. Albayrak,O.E.,Akturk, I.,Ozturk,O.: Improving application behavior on heterogeneousmany-
core systems through kernel mapping. Parallel Comput. 39(12), 867–878 (2013). doi:10.1016/
j.parco.2013.08.011

3. Arudchutha, S., Nishanthy, T., Ragel, R.G.: String matching with multicore CPUs: performing
better with the Aho-Corasick algorithm. arXiv preprint arXiv:14031305 (2014)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified platform for task
scheduling on heterogeneousmulticore architectures. ConcurrencyComput.: Pract. Experience
23(2), 187–198 (2011)

5. Ayguadé, E., Blainey, B., Duran, A., Labarta, J., Martínez, F., Martorell, X., Silvera, R.: Is the
schedule clause really necessary in OpenMP? In: OpenMP Shared Memory Parallel Program-
ming, pp. 147–159. Springer (2003)

6. Bellekens, X., Andonovic, I., Atkinson, R., Renfrew, C., Kirkham, T.: Investigation of GPU-
based pattern matching. In: The 14th Annual Post Graduate Symposium on the Convergence
of Telecommunications, Networking and Broadcasting (PGNet2013) (PGNet2013) (2013)

http://dx.doi.org/10.1016/j.parco.2013.08.011
http://dx.doi.org/10.1016/j.parco.2013.08.011
http://arxiv.org/abs/14031305

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 307

7. Benkner, S., Pllana, S., Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C., Bachmayer, B., Kessler,
C., Moloney, D., Osipov, V.: PEPPHER: efficient and productive usage of hybrid computing
systems. Micro IEEE 31(5), 28–41 (2011)

8. Brandic, I., Pllana, S., Benkner, S.: An approach for the high-level specification of QoS-aware
grid workflows considering location affinity. Sci. Program. 14(3–4), 231–250 (2006)

9. Chacón, A., Moure, J.C., Espinosa, A., Hernndez, P.: In-step FM-Index for faster pattern
matching. In: Alexandrov V.N., Lees M., Krzhizhanovskaya V.V., Dongarra J., Sloot P.M.A.
(eds.) ICCS, Elsevier, Procedia Computer Science, vol. 18, pp. 70–79 (2013)

10. Chrysos, G.: Intel Xeon Phi Coprocessor-the Architecture. Intel Whitepaper (2014)
11. Collins, F.S., Green, E.D., Guttmacher, A.E., Guyer, M.S.: A vision for the future of genomics

research. Nature 422(6934), 835–847 (2003)
12. Dokulil, J., Bajrovic, E., Benkner, S., Pllana, S., Sandrieser, M., Bachmayer, B.: High-level

support for hybrid parallel execution of C++ applications targeting Intel Xeon Phi coprocessors.
In: ICCS, Elsevier, Procedia Computer Science, vol. 18, pp. 2508–2511 (2013)

13. Drews, F., Lichtenberg, J.,Welch, L.R.: Scalable parallel word search inmulticore/multiproces-
sor systems. J. Supercomput. 51(1), 58–75 (2010)

14. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.:
Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel Process.
Lett. 21(02), 173–193 (2011)

15. Fahringer, T., Pllana, S., Testori, J.: Teuta: tool support for performancemodeling of distributed
and parallel applications. Computational Science - ICCS 2004. Lecture Notes in Computer
Science, vol. 3038, pp. 456–463. Springer, Berlin (2004)

16. Farkaš, T., Kubán, P., Lucká, M.: Effective parallel multicore-optimized k-mers counting algo-
rithm. In: SOFSEM 2016: Theory and Practice of Computer Science: 42nd International Con-
ference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech
Republic, January 23–28, 2016, pp. 469–477. Springer, Berlin (2016)

17. Grewe, D., OBoyle, M.F.: A static task partitioning approach for heterogeneous systems using
OpenCL. In: Compiler Construction, pp. 286–305. Springer (2011)

18. Herath,D., Lakmali, C., Ragel,R.:Accelerating stringmatching for bio-computing applications
onmulti-core CPUs. In: 2012 7th IEEE International Conference on Industrial and Information
Systems (ICIIS), pp. 1–6 (2012)

19. Kessler, C.W., Dastgeer, U., Thibault, S., Namyst, R., Richards, A., Dolinsky, U., Benkner, S.,
Trff, J.L., Pllana, S.: Programmability and performance portability aspects of heterogeneous
multi-/manycore systems. IEEE, pp. 1403–1408 (2012)

20. Khan, F.A., Han, Y., Pllana, S., Brezany, P.: An ant-colony-optimization based approach for
determination of parameter significance of scientific workflows. In: 24th IEEE International
Conference on Advanced Information Networking and Applications. Perth, WA, 2010, pp.
1241–1248 (2010). doi:10.1109/AINA.2010.24

21. Kołodziej, J., Khan, S.: Data scheduling in data grids and data centers: a short taxonomy of
problems and intelligent resolution techniques. In: Nguyen, N.T., Kolodziej, J., Burczyski, T.,
Biba, M. (eds.) Transactions on Computational Collective Intelligence X. Lecture Notes in
Computer Science, vol. 7776, pp. 103–119. Springer, Berlin (2013)

22. Kołodziej, J., Khan, S.U., Wang, L., Zomaya, A.Y.: Energy efficient genetic-based schedulers
in computational grids. Concurrency Comput.: Pract. Experience 27(4), 809–829 (2015)

23. Kouzinopoulos, C., Margaritis, K.: String matching on a multicore GPU using CUDA. In: 13th
Panhellenic Conference on Informatics, 2009. PCI ’09, pp. 14–18 (2009)

24. Li, H., Ni, B., Wong, M.H., Leung, K.S.: A fast CUDA implementation of agrep algorithm
for approximate nucleotide sequence matching. In: SASP, pp. 74–77. IEEE Computer Society
(2011)

25. Lin, C.H., Liu, C.H., Chien, L.S., Chang, S.C.: Accelerating pattern matching using a novel
parallel algorithm on GPUs. IEEE Trans. Comput. 62(10), 1906–1916 (2013)

26. Luchaup, D., Smith, R., Estan, C., Jha, S.: Speculative parallel pattern matching. IEEE Trans.
Inf. Forensics Secur. 6(2), 438–451 (2011)

27. Luftig, M.A., Richey, S.: DNA and forensic science. New Eng. L Rev. 35, 609 (2000)

http://dx.doi.org/10.1109/AINA.2010.24

308 S. Memeti et al.

28. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multiprocessors
with adaptive mapping. In: 42nd Annual IEEE/ACM International Symposium onMicroarchi-
tecture, MICRO-42, 2009, pp. 45–55. IEEE (2009)

29. Mellmann, A., Harmsen, D., Cummings, C.A., Zentz, E.B., Leopold, S.R., Rico, A., Prior,
K., Szczepanowski, R., Ji, Y., Zhang, W., McLaughlin, S.F., Henkhaus, J.K., Leopold, B.,
Bielaszewska,M., Prager, R., Brzoska, P.M.,Moore, R.L., Guenther, S., Rothberg, J.M., Karch,
H.: Prospective genomic characterization of the german enterohemorrhagic escherichia coli
O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 6(7):e22, 751
(2011)

30. Memeti, S., Pllana, S.: PaREM: a novel approach for parallel regular expression matching. In:
17th International Conference on Computational Science and Engineering (CSE-2014), pp.
690–697 (2014). doi:10.1109/CSE.2014.146

31. Memeti, S., Pllana, S.:AcceleratingDNAsequence analysis using IntelXeonPhi. In: PBio at the
2015 IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA). IEEE (2015a)

32. Memeti, S., Pllana, S.: Analyzing large-scale DNA sequences on multi-core architectures. In:
18th IEEE International Conference on Computational Science and Engineering (CSE-2015).
IEEE (2015b)

33. Nakao, M., Lee, J., Boku, T., Sato, M.: XcalableMP implementation and performance of NAS
parallel benchmarks. In: Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, p. 11. ACM (2010)

34. NCBI:National center for biotechnology informationU.S.National Library ofMedicine. http://
www.ncbi.nlm.nih.gov/genbank (2015). Accessed Dec 2015

35. Odajima, T., Boku, T., Hanawa, T., Lee, J., Sato, M.: GPU/CPU work sharing with parallel
language XcalableMP-dev for parallelized accelerated computing. In: 2012 41st International
Conference on Parallel Processing Workshops (ICPPW), pp. 97–106. IEEE (2012)

36. Pllana, S., Benkner, S., Mehofer, E., Natvig, L., Xhafa, F.: Towards an intelligent environment
for programming multi-core computing systems. In: Euro-Par Workshops, Lecture Notes in
Computer Science, vol. 5415, pp. 141–151. Springer (2008a)

37. Pllana, S., Benkner, S., Xhafa, F., Barolli, L.: Hybrid performance modeling and prediction
of large-scale computing systems. In: CISIS 2008. International Conference on Complex,
Intelligent and Software Intensive Systems, 2008, pp. 132–138 (2008b)

38. Pllana, S., Brandic, I., Benkner, S.: A survey of the state of the art in performance modeling and
prediction of parallel and distributed computing systems. Int. J. Comput. Intell. Res. (IJCIR)
4(1), 17–26 (2008c)

39. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes, 3rd edn. In:
The Art of Scientific Computing, 3rd edn. Cambridge University Press (2007)

40. Ravi, V.T., Agrawal, G.: A dynamic scheduling framework for emerging heterogeneous sys-
tems. In: 2011 18th International Conference on High Performance Computing (HiPC), pp.
1–10. IEEE (2011)

41. Rohrer, B.: How to choose algorithms for Microsoft Azure Machine Learning. https://azure.
microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/ (2015).
Accessed Oct 2015

42. Sandrieser, M., Benkner, S., Pllana, S.: Using explicit platform descriptions to support pro-
gramming of heterogeneous many-core systems. Parallel Comput. 38(1–2), 52–56 (2012)

43. Scogland, T.R., Feng, Wc., Rountree, B., de Supinski, B.R.: CoreTSAR: adaptive worksharing
for heterogeneous systems. In: Supercomputing, pp. 172–186. Springer (2014)

44. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz,
M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical? PLoSBiol 13(7):e1002,
195 (2015)

45. Tian, X., Saito, H., Preis, S., Garcia, E.N., Kozhukhov, S., Masten, M., Cherkasov, A.G.,
Panchenko, N.: Practical SIMD vectorization techniques for Intel Xeon Phi Coprocessors. In:
IPDPS Workshops, pp. 1149–1158. IEEE (2013)

http://dx.doi.org/10.1109/CSE.2014.146
http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/

14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms 309

46. Tumeo, A., Villa, O.: Accelerating DNA analysis applications on GPU clusters. In: 2010 IEEE
8th Symposium on Application Specific Processors (SASP), pp. 71–76 (2010)

47. Viebke, A., Pllana, S.: The potential of the Intel (R) Xeon Phi for supervised deep learning. In:
2015 IEEE 17th International Conference on High Performance Computing and Communica-
tions (HPCC). pp. 758–765. IEEE (2015)

48. Villa, O., Chavarra-Miranda, D.G.,Maschhoff, K.J.: Input-independent, scalable and fast string
matching on the Cray XMT. In: IPDPS, IEEE, pp. 1–12 (2009)

Chapter 15
Feature Dimensionality Reduction
for Mammographic Report Classification

Luca Agnello, Albert Comelli and Salvatore Vitabile

15.1 Introduction

Nowadays, the exponential increase in the amount and variety of data generated
from multiple heterogeneous sources, such as networks, sensors, mobile devices,
archives, Internet of Things, software records, health informations, etc., has led to
the scientific community to study how to manage, analyze, and extract information
from large amounts of data.

The Big Data, defined as a collection of very large and complex datasets, inhibits
analysis, manual interpretation, and use of simple data management applications
due to the large amount of informations. They became a common element in many
fields of application in the real world, such as commercial, computer engineering,
medicine, and e-health.

Especially in the healthcare domain, the development of techniques that permit
the management, analysis, mining, and pattern recognition of health data for clinical
decision support systems, genomics, processing of medical images, medical infor-
mation retrieval, health data mining has become worldwide important.

The healthcare sector has very large datasets of different nature that play an essen-
tial role in health information systems (HIS) and clinical decision support systems
(CDSS). Early data insertion, retrieval, and analysis of information from various
health records, such as public health data, drug-to-drug, drug-to-disease, disease-
to-disease, and many others are the challenge of healthcare practitioners that must

L. Agnello · A. Comelli · S. Vitabile (B)
Department of Biopathology and Medical Biotechnologies,
University of Palermo, Palermo, Italy
e-mail: salvatore.vitabile@unipa.it

L. Agnello
e-mail: luca.agnello@unipa.it

A. Comelli
e-mail: albert.comelli@unipa.it

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_15

311

312 L. Agnello et al.

understand and process the RAW health datasets and make an exact final decision.
All this restricts the benefits of large datasets and HIS/CDSS frameworks for medical
decision-making processes.

Thousands of heterogeneous data (images, text, video, sensor data, etc.) are
steadily generated and must be efficiently handled (stored, distributed, and indexed)
in order to not compromise the quality of service of final users in terms of data avail-
ability, delay in data search, delay in data analysis, etc. Many of the existing ICT
systems that store, process, distribute, and index hundreds of heterogeneous data are
not sufficiently adequate or still need to be developed.

Data mining and information retrieval solutions acting on traditional clinical data-
bases [1–5],medical images [6], natural language [7], and artificial intelligence-based
Decision Support System (DDS) [8] are applied to healthcare domain, but they are
not able to manipulate heterogeneous health data distributed in hospital information
systems.

Such automation requires the use of algorithms capable of treating different types
of reports, to evaluate the weight according to what they contain, imitating the cog-
nitive processes of a human being in the analysis of reports, with the potential of
being able to carry out very large quantity data. In other words, the solution of the
problem requires the creation of a form of “artificial intelligence” in the broad sense,
which reproduces the typically human analysis by a computer; therefore, it becomes
essential to build and implement quantitativemethods to recreate and produce strictly
qualitative results. In this sense, the reports must be “deconstructed”, reduced to a
sequence of meaningless symbols from which to deduce properties subsequently
interpretable. In this article, a methodology that improves mammographic reports
memorization, search speed, analysis, and retrieval is proposed. The reports are
converted in widely used Term Frequency-Inverse Document Frequency (TF-IDF)
representation, that has the disadvantage creating large and sparse matrices with a
low percentage of useful information. Data simplification and dimensionality reduc-
tion issues are then addressed. Decomposition methods such as LSI, PCA, and SVD
have been applied to the TF-IDF matrix, obtaining results comparable to the results
achieved using the raw unprocessed matrix, where the processed matrix contains
less than 13% of the raw TF-IDF data using PCI-LSI technique and less than 6%
of the raw TF-IDF data using SVD technique, obtaining computational complexity
and processing time reduction.

In the second section, the related works and theoretical remarks for this work
are presented. In the third section, the proposed methodology is described. In the
fourth section, the experimental results are reported, while in fifth section the final
conclusions are reported.

15.2 Related Works and Theoretical Remarks

Most of the techniques that allow for dimensionality reduction are based on sta-
tistical methods. One of the most common methodology, called Latent Semantic
Analysis (LSA) is useful when we are dealing with a corpus formed by numerous

15 Feature Dimensionality Reduction for Mammographic Report Classification 313

texts, and allows the detection of the so-called “latent semantics”: in other words,
a set of variables that can be interpreted as abstract concepts and it allows greater
efficiency in the analysis of the documents in question, through the use of algebraic
technique called Single Value Decomposition (SVD) as key tool for the detection of
latent semantic, in order to apply the link-oriented research methods to document
collections without its own link structure (such as a document collection inside a
corporate intranet). Typically, the easiest way to extract information from a large set
of documents is using text-matching techniques, where a literal matching between
query data terms and those present in the documents themselves is performed. As
well known, however, this method has many limitations, not even negligible faced
with the evidence of its speed and ease of use. Assuming that there are different ways
to express the same concept (synonymies) and that the same word can have different
meanings, the simple text matching may return documents that have no relevance. A
better approach might be to search for information not on the basis of the signifier,
but on that of meaning.

The authors of [9] have used tools such as ontologies and semantic processing,
calculating the distances between the documents and implementing a retrieval system
using an ad hoc ontology with the addition of “is-a” and “equal to” relationships.
The method, although showing the best results, is slow due to the computationally
expensive algorithm for the processing of documents through the ontology.

The Latent Semantic Indexing (LSI) [10] tries to do some research looking for
a latent semantic structure in the various documents that is partially hidden by the
intrinsic variability of the words. LSI is an indexing technique based on SVD con-
cepts [11], which allows estimation of the semantic structure of the analyzed doc-
uments. This structure is placed at a higher level compared to that occupied by the
meaning of words used in the document.

The authors of [12] describe a new method that generates features in LSI method
by meaning of SVD that reduces the dimensionality and removes the noise in the
raw data matrix. The LSI technique can lead to a great reduction of computation
complexity and CPU time because of the reduction of matrix dimensionality.

The work in [13] proposes to integrate the information retrieval method and doc-
ument clustering as concept space approach. This method used LSI which used SVD
or Principal Component Analysis (PCA) to reduce the matrix dimension by find-
ing the pattern in document collection with refers to concurrent of the terms. Each
method is implemented to weight term-document in vector space model (VSM) for
document clustering using fuzzy c-means algorithm. This research also uses the
cosine similarity measurement as replacement of Euclidean distance. The perfor-
mance of the proposed method is better than document clustering without LSI which
uses Euclidean distance, with a significant improvement when applied in huge data
volumes. In [14] authors developed a data dimensionality reduction approach using
Sparsified Singular Value Decomposition (SSVD) technique, in order to identify and
remove trivial features before applying any advanced feature selection algorithm. A
set of experiments were conducted and the results show that applying feature selec-
tion techniques on the data where the nonessential features are removed by data

314 L. Agnello et al.

dimensionality reduction approach generally results in better performances with sig-
nificantly reduced computing time.

In the research of [15] the authors use large training sets that make computa-
tion complex and expensive. Latent Semantic Indexing Subspace Signature Model
(LSISSM) is applied to labeling for active learning of unstructured text. Based on
SVD, the LSISSMmethodology represents terms and documents as semantic signa-
tures by the distribution of their local statistical contribution across the top-ranking
LSI latent dimensions after dimension reduction. Tests demonstrate that the sample
subsets with the optimized term subsets substantially improve the learning accuracy.

In what follows, a theoretical disquisition on main dimensionality reduction tech-
niques is reported.

15.2.1 Latent Semantic Analysis (LSA)

The Latent Semantic Analysis [16] comes from the need to improve the process by
which search words are associated with the contents of searched papers in question.
The main problem is that usually users search documents relying on concepts, while
the words entered for search do not provide an evidence of the document text in
which they are contained. Usually, there are several ways to express a given concept,
and then the search terms can not be used at all in the searched document. In addition,
many words have multiple meanings so the search terms can appear in a document
that has nothing to do with the searched document.

The LSA analysis operates under the premise that there is some latent semantic
structure that is partially hidden by the randomness of the selected words. In order
to highlight this structure, algebraic and statistics techniques are used to eliminate
noise. The result is a continuous parametric description of terms and documents
based on the underlying structure. In practice, the latent structure is transmitted
through correlation diagrams, arising from the way in which the words appear in
the documents; this leads to a primary language model described by a limited set
of words. In addition, consistent with an approach of quantitative nature, semantics
simply means that the words of a document can be regarded as an indicator of
a document or of its argument. Despite these simplifications, the description that
is obtained is undoubtedly advantageous, improving the recognition of the most
relevant documents on the basis of terms that appear in the search.

Suppose M is an M-unit inventory (for example the words of a vocabulary) and
N a collection of N combinations of those units (a corpus of documents or literary
texts). The purpose of the LSA is to define a mapping between M and N discrete
sets and a continuous vector space L, in which each word ri of M is represented by
a vector ui in L, and each text c j in N is represented by a vector v j in L.

Firstly, a matrixWwith co-occurrences between words and the texts of the corpus
is constructed. The wi , j element is obtained by the standardization with respect to
the text length and the entropy of words:

15 Feature Dimensionality Reduction for Mammographic Report Classification 315

wi, j = (1 − εi)
ki, j
λ j

(15.1)

where ki , j is the number of times that ri appeared in c j , λj is the total number of
words that appear in c j (length normalization) and εi is the normalized entropy ri
within the entire corpus (entropy normalization). By definition of entropy, if τi = Σ j

ki , j is the total number of occurrences of the ith word in the corpus, it results:

εi = − 1

log N

N∑

j=1

ki, j
τi

log
ki, j
τi

(15.2)

The overall weight given by the quantity 1-εi indicates the fact that two units that
appear the same number of times c j does not necessarily make the same amount of
information. A value εi close to 1 indicates that the word is evenly distributed in the
body, and then it carries less information than another with εi closer to 0. It can be
summarized by saying that the overall weight 1-εi is a measure of the “power index”
of the word ri .

15.2.2 Principal Component Analysis (PCA)

The analysis of the Principal Component Analysis [17] is directly derived from the
factor analysis theory, which consists of a set of statistical techniques that allow
obtaining a reduction of the complexity of the number of factors that explain a
phenomenon. It is therefore proposed to determine a number of “latent variables”
(factors not directly measurable in reality) more restricted and summarizing with
respect to the number of starting variables.

Let us consider, for example, the collection of the votes of a class of students in
a school. The votes regard student achievement in various subjects (math, science,
geography, history, etc.). Students can therefore be considered as “variables” that
assume different values (votes) on the different matters. To simplify the problem, it
must be assumed that the learning ability of students can stand in two factors: the
humanities matters and science matters. Thanks to factorial analysis it is possible to
measure these two skills through the construction of two latent synthetic variables
(as a linear combination) of the original variables, each designed on the basis of
the importance in discriminating people on the basis of their scientific and human-
istic skills. The principal component analysis is therefore a factorial method for the
synthesis of p quantitative variables, related to each other, through the identification
of h < p latent variables (not observed) called “main components” that have two
properties:

• are mutually uncorrelated (orthogonal) and linearly related to the original vari-
ables;

• are determined in ascending order of percentage of variability.

316 L. Agnello et al.

In order to simplify, suppose to represent on the Cartesian plane the points unit
whose coordinates are the standardized values of the two variables. With the PCA
identifies the factorial axis in the direction of maximum variability of the cloud of
points units, in order to deform as little as possible the mutual distance between the
points projected on that axis: namely, it minimizes the sum of distances points from
the axis AB, which is equivalent to the Pythagoras’s theorem to maximize the sum of
the projections of the points on the axis OB, i.e., the distance of the points projected
on the axis from the origin.

Suppose that a data matrix X(n × p):

X =
⎛

⎜
⎝

x11 . . . x1p
...

. . .
...

xn1 . . . xnp

⎞

⎟
⎠ (15.3)

The row vectors X are points units in the Rp space generated by variables, instead
column vectors are variable points in Rn space generated by the units. We wish to
project the n vectors (called xi , with 1 ≤ i ≤ n) in the Rp space on a straight line
r1, which will be the first principal component identified with u1: call θ the angle
formed by xi and ui , and OHi the ih projection xi over r1. We obtain:

OHi = xTi � u1 (15.4)

This reasoning can be made for each of the n points, thus defining a matrix of
projections given by:

X � u1 (15.5)

It remains to understand how to choose the straight line r1. To do this the least
squares method is used, and then that line that minimizes the squares of the distances
of the points from the line is taken; this is equivalent to the Pythagorean theorem, to
maximize the amount:

n∑

i=1

OH 2
i = (Xu1)

T � Xu1 = uT1 X
TXu1 (15.6)

Practically we maximize uT
1 XT Xu1 with the constraint that u1 has unit norm: we

solve everything with Lagrange multipliers, defining the function:

F(u1) = uT1 X
TXu1 − λ1(u

T
1u1 − 1) (15.7)

Differentiating with respect to u1 we obtain:

2XTXu1 − 2λ1u1 = 0 (15.8)

15 Feature Dimensionality Reduction for Mammographic Report Classification 317

that is

XTXu1 = λ1u1 (15.9)

This is a simple eigenvalue problem, and maximizing we will have at the same
time that u1 is the eigenvector relative to the largest eigenvalue of the matrix XT X .
Defined u1 we defined the first principal component:

r1 = Xu1 = v1u11 + · · · + vpu1p (15.10)

where vi i are the initial variables (to be not confused with the units xi), that is the
column vectors of the matrix X, and u1i (with 1 ≤ i ≤ n) are the elements of the ith
unit vector u1. In addition, the square norm of r1 is:

‖r1‖ = uT1 X
TXu1 = λ1 (15.11)

that is the norm of the first main direction coincides with the eigenvalue correspond-
ing to the direction of the unit vector u1 (which is the corresponding eigenvector).
The following result is obtained: the first principal component r1 is a linear combi-
nation of the p columns of the matrix X with coefficients equal to the components
of u1 eigenvector, associated with the maximum eigenvalue of the matrix XT X . The
subsequent principal components are obtained in the same way, with the constraint
that they are orthogonal to the previous, or that the random variable corresponding
to the main obtained direction is uncorrelated from the previous.

Remarks: The matrix S = XT X is a symmetric matrix:

• tr(S) = Σλi
• det(S) = Πλi
• the eigenvalues of a symmetric matrix are real;
• the eigenvectors of a symmetric matrix are orthogonal two by two;
• the rank of a symmetric matrix is equal to its number of nonzero eigenvalues.

15.2.2.1 Interpretation of the Main Components

As mentioned above, the PCA is often used to try to study “latent variables”. In this
sense, the generated “artificial variables” are measurements of “hidden variables”,
not directly observable. Other times, the PCA is used as a method to “sum” the
available data. However, the meaning to be attributed to the main components it
is not unique but it is based on an interpretation that can be different on the basis
of external environmental elements; then a central role is the experience and the
sensitivity of those who have the task of giving them meaning.

318 L. Agnello et al.

Said that, some observations can be made. First, the jth main component r j
is defined as a linear combination of the variables v1, v2, . . . , vp with coefficients
ui1, ui2, . . . , uip. That is:

ri j = u j1vi1, u j2vi2, . . . , u jpvip, (15.12)

Then:

y j = Xu j (15.13)

Therefore, the generic coefficient u jh represents theweight that the uh variable has
in the determination of themain component r j (h = 1,…, p); the greater u jh in absolute
value, the greater the weight that vih values (i = 1, …, n) have in determining ri j .
This means that the main component r jwill be further characterized by vh variables
which correspond to the greatest u jh coefficients in absolute value. Thus the u jh .
coefficients give a meaning to the main component r j .

15.2.3 Singular Value Decomposition (SVD)

Singular Value Decomposition [18, 19] is generally used to rank estimation of a
matrix and analysis of canonical correlation. For a rectangular arraywe can not define
the eigenvalues. A generalization of the concept of eigenvalue can be obtained with
the singular values.

Given a Amxn matrix, the matrix ATA has no negative n eigenvalues that, ranked
in a decreasing manner λ1 ≥ λ2 ≥ K ≥ λn ≥ 0, can be expressed in the form:

λi = σ 2
i σi ≥ 0. (15.14)

Scalar values σ1 ≥ σ2 ≥ K ≥ σn ≥ 0 are called singular values of the matrix A.
The singular value decomposition (SVD) of the matrix A is given by:

A = U ′ · 	′ · V ′T (15.15)

where U is an orthogonal matrix (m x m):

U ′ = [u1 u2 K um] (15.16)

V ′ is an orthogonal matrix (n x n):

V ′ = [ν1 ν2 K νn] (15.17)

and Σ ′ is a matrix (m x n):

15 Feature Dimensionality Reduction for Mammographic Report Classification 319

	′ =
[
	 0
0 0

]

	 = diag(σ1, σ2,K, σn) (15.18)

where σ1 ≥ σ2 ≥ K ≥ σn > 0. The number of singular value different than zero is
equal to the rank r of the matrix A. The columns of U ′ are the eigenvalues of the
matrix AAT and the columns of V ′ are eigenvalues of matrix ATA. Taking into
account the structure of Σ ′, we obtain:

A = Ur · 	 · V T
r (15.19)

where Ur and Vr are the matrices obtained respectively from the first r columns of
Ur and Vr .

The next step in the construction of the matrix W (M x N) is its decomposition by
themethod of SVD, a very similar technique to finding the eigenvectors and eigenval-
ues for the square matrices, and the analysis of resulting factors. The decomposition
(of order R) is given by:

W ≈ Ŵ = USV T (15.20)

where U is the left singular matrix (M x R) with ui as column vectors (1≤ i≤M), S
is the diagonal matrix (R x R) of the singular values (the analog of the eigenvalues
of the square matrices) s1 ≥ s2 ≥ . . . ≥ sr n> 0, V is the right singular matrix (N
x R) with vj as row vectors (1 ≤ j ≤N). Finally, R < min (M, N) is the order of
the decomposition. Both right and left matrices U and V are orthonormal columns,
that is UTU = V T V = IR . This is why the column vectors of U and V define an
orthonormal basis for the vector space of dimension R (what we defined as L or the
LSA space) generated by ui and v j carriers. The matrix W is defined as the rank R of
the matrix which best approximates W in norm, for each norm invariant for unitary
transformations (such that ||A|| = ||U AV || for each matrix A with U and V unitary).
This means, for each matrix A of rank R:

min
{A:rank(A)=R}

‖W − A‖ = ‖W − Ŵ‖ = sR+1 (15.21)

where || ∗ || it is the L2 norm, and sR+1 is the smallest singular value decomposition
remained in the order (R + 1) of W.

15.2.4 Stochastic Singular Value Decomposition (SSVD)

The Stochastic Singular Value Decomposition method [20] produces reduced rank
Singular Value Decomposition output in its mathematical definition:

320 L. Agnello et al.

A ≈ U	V� (15.22)

i.e., it creates outputs for matrices U, V and Σ , each of which may be requested
individually. The desired rank of decomposition, henceforth denoted as kεN1, is a
parameter of the algorithm. The singular values inside diagonal matrix Σ satisfy
σi+1 ≤Σi∀iε[1, k−1], i.e., sorted from biggest to smallest. Cases of rank deficiency
rank (A)< k are handled by producing 0s in singular value positions once deficiency
takes place.

Single space for comparing row items and column items: There is an option to
present decomposition output in a form of:

A ≈ UσV�
σ (15.23)

where one can request Uσ = UΣ0.5 instead of U (but not both), Vσ = VΣ0.5 instead
of V (but not both). Here, notation Σ0.5 implies diagonal matrix containing square
roots of the singular values:

	0.5 =
⎛

⎜
⎝

√
σ1 · · · 0
...

. . .
...

0 · · · √
σk

⎞

⎟
⎠ (15.24)

Original singular values Σ are still produced and saved regardless.
This option is a sign to a common need of comparing actors represented by both

input rows and input columns in a common space. For Example, if LSI is performed
such that rows are documents and columns are terms, then it is possible to compare
documents and terms (either existing or fold in new ones) in one common space
and perform similarity measurement between a document and a term, rather than
computing just a term-2-term or a document-2-document similarity.

Common applications for SVD include Latent Semantic Analysis (LSA), Princi-
pal Component Analysis (PCA), dimensionality reduction, and others.

15.2.5 Relationship Between SVD and PCA

Intuitively, the Principal Component Analysis requires to calculate eigenvectors and
eigenvalues of the covariance matrix XT where X denote the initial data matrix.
Since the covariance matrix is symmetric by construction, it is diagonalizable, and
the eigenvectors may be normalized so as to be orthonormal:

XXT = WDWT (15.25)

On the other hand, by applying the Singular Value Decomposition of the data
matrix X we can write:

15 Feature Dimensionality Reduction for Mammographic Report Classification 321

X = USV T (15.26)

and building the covariance matrix using the previous decomposition we have:

XXT = (USV T)(USV T)T (15.27)

that by using the fact that V is orthonormal, gives:

XXT = US2UT (15.28)

The correspondence between the two methods is evident: the square roots of the
eigenvalues of XXT are the singular values of X, with all that implies. In fact, the use
of SVD to perform the PCA is numerically more convenient, since is not required to
calculate the covariance matrix XXT at the beginning of the procedure, a problem
that cannot be well place in some cases.

15.2.6 LSA Space

The decomposition of Eq.15.20 can be interpreted as a representation of each word
and each concept as a linear combination of abstract (hidden) concepts, which gen-
erate the linear space of W. Then, the resulting mapping corresponds to an efficient
representation of empirical data. The idea that is at the basis of the procedure is that
W contains in itself the most relevant structural associations of W and ignores the
higher order effects (i.e., the noise). The closeness between the vectors in L is then
determined from the general scheme of the compositions of the language in N. The
mapping (M, N) − > L finally allows applying known algorithmic techniques, in
the continuous vector space L. To do this, a suitable metric of L that is also adapted
to the SVD formalism must first defined. We observe that the measure by which ri
and r j units have a similar scheme inside the whole corpus can be deduced from the
(i, j) cell of the WWT matrix; in the same way, the measure to which two texts ci
and c j contain similar patterns of words in them can be observed at the position (i,
j) of the WTW matrix; finally, the extent to which the word ri is globally linked to
ci text relative to the entire corpus can be observed from the (i, j) place of the matrix
W itself. All this leads to the following analysis concerning words and texts.

15.2.6.1 Comparison of Two Words

Because WWT = US2UT and S is diagonal, the (i, j) cell of WWT can be obtained
considering the inner product between the ith and jth row of the matrix US; let define
ui = uiS and u j = u jS. To measure the proximity between two words is natural to
consider the metric defined by the cosine of the angle between two vectors:

322 L. Agnello et al.

K (ri , r j) = cos(ui S, u j S) = ui SuTj
‖ui S‖‖u j S‖ (15.29)

for 1≤ i, j ≤ M. K(ri , r j) = 1 if two words always appear in the same type of texts,
while K(ri , r j)≤ 1 if they are used in different contexts. Despite does not constitute
a well-defined distance, it is possible to define a new one. For example, in the interval
[π, 2π],D(ri , r j) = cos−1K(ri , r j) satisfies the properties of a distance on the space
L.

15.2.6.2 Comparison of Two Texts

For the same reasons just explained consider the function:

K (ci , c j) = cos(vi S, v j S) = vi SvTj
‖vi S‖‖v j S‖ (15.30)

for 1 ≤ i, j ≤ N; in the same way, K(i, j) = 1 if two texts contain the same words
while K(i, j)≤ 1 in the decreasing of the words in common.

Comparison of words and texts: Finally, being W = USVT

K (ri , c j) = cos(ui S
1/2, v j S

1/2) = ui SvTj
‖ui S1/2‖‖v j S1/2‖ (15.31)

for 1≤ i≤M and 1≤ j≤N. In this case, K(ri , c j)< 1 as the correlation between the
word ri and c j text within the body decreases.

15.2.7 Cholesky Factorization (Decomposition)

For the Cholesky theorem [21], a symmetric matrix is positive definite if and only
if there is one and only one R lower triangular matrix with positive diagonal entries
such that A = RT R.

Let the matrix A symmetric positive definite for the Cholesky theorem. The fac-
torization for a matrix of this type is simplified for two reasons: it is not necessary
any pivoting and it is only possible to operate on the lower triangle of the matrix,
being the upper one the transposed of the lower one, being A a symmetric matrix.
Therefore, the factorization of the matrix consist in the product of two matrices R
and RT , the first lower triangular, the second transpose of the first. The determination
of the elements of the R = {Ri j } matrix occurs in the following way:

rij = 1

rii
(aij −

i−1∑

k=1

rkirkj), i < j (15.32)

15 Feature Dimensionality Reduction for Mammographic Report Classification 323

rjj = (ajj −
j−1∑

k=1

r2kj)
1
2 , i = j. (15.33)

The matrix must be positive, otherwise it would give rise to complex ri j roots
which would imply the impossibility of implementation of the algorithm. Once R is
calculated, let proceed to the resolution of the two triangular systems:

Ry = b e RTx = y; (15.34)

15.2.8 QR Factorization (Decomposition)

An alternative to the Cholesky factorization is the QR factorization [22]. The QR
factorization procedure consists in the decomposition of the matrix A into twomatri-
ces Q and R, where Q is an orthogonal matrix (i.e., such that QQT = QT Q = I) and
R is an upper triangular matrix.

The relations that bind the elements of A to those of the QR matrix product are
the following:

aij =
n∑

j=1

qijrjk

k∑

j=1

qijrjk (15.35)

Infact, r jk = 0 for y = k + 1, . . . , n being R upper triangular. There are several
methods for the decomposition of the matrix in the QR form, here the Householder
and Givens factorization will be explained, putting in relation the similarities and
key differences. Once the QR factorization has been performed with the methods
mentioned above it is possible to switch to the linear system:

Ax = b, (15.36)

proceeding in the same way of the LU factorization. More precisely, two linear
systems have to been solved:

Qc =b,

Rx =c. (15.37)

The advantage of the introduction of the Q matrix instead of the original matrix
A, consists in the fact that, being Q orthogonal, for the inverse uniqueness, Q-1 = Qt,
so that the vector c = Q-1b is simply obtained by taking the product matrix vector
c = QTb (and not the linear system). As regards the system Rx = c, R being an upper
triangular matrix, it is solved with the resolution of backward steps, as in the case of
LU factorization.

324 L. Agnello et al.

H = I − 2wwT, w ∈ IRn
, ‖w‖ = 1, (15.38)

The Householder factorization consists in the decomposition of the matrix A into
two matrices Q and R from elementary Householder matrices [22]. An elementary
Householder real matrix has the following form:

15.2.8.1 Householder Factorization (Decomposition)

H is an orthogonal and symmetric matrix. This method has some practical advan-
tages; in particular it does not require the calculation of the inverse of an upper
triangular matrix. Since each Householder transformation is orthogonal, it is enough
to show that there is a product of the type matrix H(xi , e j) that transforms A into an
upper triangular matrix with all positive entries on the main diagonal. At this point,
the uniqueness of the factorization ensures that what we have obtained is indeed
the searched QR decomposition, which is called Householder matrix (alternately
Householder reflection, transformation Householder) associated with w.

H1a
(1)
1 = k1e1 (15.39)

We need to create a sequence of matrices A(i), with i = 1,…n so that A(n) is upper
triangular. Multiplying the Householder matrix H1 to the left of the A(1) matrix we
obtain:

A(2) = H1A
(1) = [a (2)

1 a (2)
2 . . . a (2)

n] (15.40)

where:

a1(2) = k1e1 (15.41)

while the remaining elements:

aj(2) = H1aj(1), j = 2, . . . , n (15.42)

The A(2) matrix has the following structure:

A(2) =

⎛

⎜
⎜
⎜
⎝

k1 a
(2)
12 · · · a(2)

1n

0 a(2)
22 · · · a(2)

2n
...

...
...

0 a(2)
n2 · · · a(2)

nn

⎞

⎟
⎟
⎟
⎠

=
(
k1 vT1
0 Â

(2)

)

(15.43)

with 0 column vector and Å(2) a submatrix of appropriate size that we are going to
submit to the same operations performed to H1, after having “edged” with one row
and one column of an identity matrix to make them reach the size n x n and after

15 Feature Dimensionality Reduction for Mammographic Report Classification 325

repeat the procedure as above, until arriving at the generic step where the matrix will
have the form:

A(i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1 • · · · · · · · · · •
0

. . .
. . .

...
...

. . . ki−1 • · · · •
... 0
...

... Â
(i)

0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
A(i)

11 A(i)
12

0 Â(i)

)

(15.44)

in which elements denoted by ∗ will not be changed and the sub-matrix Å(i) has the
form:

Â
(i) =

[
â(i)
i â(i)

i+1 · · · â(i)
n

]
(15.45)

Now let us say:

Ĥiâ
(i)
i = kie1 (15.46)

then Hi with i-1 rows and columns of the identity matrix until obtaining:

A(i+1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1 • · · · · · · · · · •
0

. . .
. . .

...
...

. . . ki • · · · •
... 0
...

... Â
(i+1)

0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15.47)

We denote by:

(HnHn−1 H1)A = Rn (15.48)

where H = (HnHn−1H1) is an orthogonal matrix, while Rn is an upper triangular
matrix with positive values on the main diagonal. Multiplying by Q = HT = H-1
equality above we arrive now at the factorization:

A = QR (15.49)

326 L. Agnello et al.

The description above is valid for square matrices. For rectangular matrices is
necessary to make an additional step to reset the elements of the nth column of A
matrix.

15.2.9 Latent Semantic Indexing (LSI)

A necessary step in the implementation of LSI [23] is the construction of the matrix
terms–documents size, where m is the number of distinct terms present in the n
documents. The generic element ai j of the matrix terms–documents represent the
occurrences of the ith word in the jth document; given that not all the words appear
in all the documents, the terms matrix documents can be considered, without loss of
generality, a sparse matrix.

After calculating the occurrences of each word in each document, it is possible,
according to the chosen LSI implementation type, apply weighting function in such
a way as to consider each word is in the context of local document, and more general
of the whole collection of documents; as said, the generic element ai j of A can takes
the following form:

ai j = L(i, j) · G(i) (15.50)

where L(i, j) is the local weighting function of the term i for the document j, and G(i)
is the global weighting function for the term.

The terms-documents A matrix is then decomposed in three matrices using SVD,
that somehow allows to derive the semantic structure of the document collection
using: orthogonal matrices Ur and Vr (containing, respectively, the singular left and
right vectors of A), and the diagonal matrix Σ of singular values of A.

After creating the matrices Ur , Vr and Σ taking out the first k≤ r singular triple,
it is possible to approximate the original matrix terms-documents A, with the k-rank
matrix Ak , as shown in Fig. 15.1.

The Vr andUr matrices are respectively defined as amatrix of the vector terms and
vector documents, while Σ is said matrix of singular values. The product between
the gray regions of matrices Ur , Vr and the diagonal matrix Σ , represents the Ak .
Considering the decomposition of the Ak matrix in the three matricesUk , Σk and Vk

it is possible to obtain representation of the documents in the k-dimensional space
reduced collection using the following equation:

Â =
−1∑

k

(Uk)
T A (15.51)

Using this formula, it is possible that any two documents, originally different in
them space of all distinct terms, can bemapped into the same vector of limited space;
the set of basis vectors of the dimensional k-space represents the set of concepts or the

15 Feature Dimensionality Reduction for Mammographic Report Classification 327

Fig. 15.1 Terms-documents matrix decomposition using the SVD technique. SVD reduction will
be used in LSI

different meanings that different documents can assume; then a generic document
in the k-dimensional space is represented as a linear combination of concepts or
equivalently the basis vectors of the space itself.

Every document, term or query has therefore its representation in k-dimensional
space. It has gone from a representation in a m-dimensional space (the size is equal
to the number of terms found in the analysis of all documents) to a compressed form
of the same vectors in k<m-dimensional space.

It is important to note that with Ak do not wish deliberately reconstruct in a
perfect manner the matrix A, because it contains a certain level of noise introduced
by uncertainty with which the terms can be chosen to deal with a certain speech or
a certain argument.

15.3 The Proposed Method

In this article, a methodology that improves mammographic reports representation,
analysis, and retrieval is proposed. The simplification of data and the dimensionality
reduction issue is addressed.

A dataset composed of 4461 mammographic reports have been generated ran-
domly extracting the medical diagnosis from the Radiology Information System
(RIS) of the Radiological Department of University of Palermo Policlinico Hospital,
Italy. The reports are created from breast physicians during the daily workflow and
they are written in the italian language.

328 L. Agnello et al.

Fig. 15.2 Workflow of the proposed dimensionality reduction methodology

In Fig. 15.2, the workflow of the proposed method is depicted.
Firstly, a sequence of vectors where each of them represents a report is created.

Vectors are generated from a directory of text documents (mammographic reports),
storing them in the key, value pairs. The key is the report ID, and the value is text
content in UTF-8 format.

In this phase, a procedure of cleaning of documents is performed: the preprocess-
ing removes all punctuation characters (. , : ; ! + ?) and unnecessary stop-words (such
as the Italian counterparts of a, in, of, this, that, the, and so on).

All the vectors are then processed in order to create the Term Frequency-Inverse
Document Frequency (TF-IDF)matrix. TheTF-IDF is a function used in Information
Retrieval to measure the importance of a term with respect to a document or to a
collection of documents. This function increases proportionally to the number of
times that the word is contained in the document, but grows in inverse proportion to
the frequency of the term in the collection. The idea at the basis of this behavior is to
give more importance to the terms that appear in the document, but which in general
are not frequent. The weight of the ith term of the jth document is:

tfi,j = ni,j
|dj| (15.52)

where ni j is the number of occurrences of the ti term in d j document, while the
denominator is simply the size, expressed as number of terms, of the d j document.
The other factor of the function indicates the overall importance of the term in the
collection:

idfi = log
|D|

|{d : ti ∈ d}| (15.53)

where |D| is the number of document of the collection, while the denominator is
the number of documents that contains the ti term. In this way, the TF-IDF score is
calculated as:

15 Feature Dimensionality Reduction for Mammographic Report Classification 329

(tf − idf)i,j = tfi,j × idfi (15.54)

After the TF-IDF matrix calculation, a series of queries have been performed
both on raw data and on the matrix after the application of dimensionality reduction
methods.

15.4 Experimental Results

The obtained TF-IDF matrix is composed of 4461× 1154 values: that is, in 4461
mammographic reports a series of 1154 differentwords have been found (dictionary).
Each row (report) is then composed with the word number 0, 1,…, 1153 of the
dictionary: if the ith word is present, the ith value of the jth vector (report) will
contain the corresponding TF-IDF value of the word, or 0 if the word is missing.

Each report is composed of about 15 words on average (as depicted in Fig. 15.3):
in fact, the matrix is composed of 5,147,944 terms, where only 68,741 of them are
TF-IDF values, with a percentage of useful information of just 1.33%, as depicted
in Fig. 15.4.

A data dimensionality reduction is then almost necessary. Some terms with more
occurrences are depicted in Table15.1.

Fig. 15.3 Number of different words in each of the 4461 reports. On average, 15 words are present
in each reports

330 L. Agnello et al.

Fig. 15.4 Avery small piece of the sparse TF-IDFmatrix. The information (numbers) are extremely
lower than the noninformation values (zeros)

Table 15.1 Most frequent words in mammographic reports

Word (Italian) Word (English) # Occurrences

Immagini Images 4217

Patologich Pathological 4215

Assenza Absence 4095

x-graficamente x-graphically 4086

Mammelle Breast 3940

Controllo Control 3869

Eteroformativo Heteroformative 2876

Fibroadiposa Fibrous fatty 2547

Presenza Presence 1870

Calcificazioni Calcifications 1598

Fibroghiandolare Fibrous glandular 1527

15 Feature Dimensionality Reduction for Mammographic Report Classification 331

In order to execute a simple query, and to check if dimensionality reduction brings
to the same results, a series of queries have been performed.

A query is a simple comparison between a query report and all the other reports,
where the cosine distance has been used in order to obtain a numerical degree of
confidence (distance between vectors).

Given two vectors of attributes, R and S, their cosine similarity is calculated using
a dot product and magnitude:

similarity = cos(θ) = R · S
‖R‖‖S‖ =

=
∑n

i=1 Ri Si
√∑n

i=1 R
2
i

√∑n
i=1 S

2
i

(15.55)

where Ri and Si are components of vector R and S, respectively. The resulting
similarity ranges from 1 (meaning exactly opposite) to 1 (meaning exactly the same),
with 0 indicating orthogonality (decorrelation), and in between values indicating
intermediate similarity or dissimilarity.

For text matching, the attribute vectors R and S are usually the term frequency
vectors of the documents. In the case of information retrieval, the cosine similarity of
two documents will range from 0 to 1, since the term frequencies (TF-IDF weights)
cannot be negative. The angle between two-term frequency vectors cannot be greater
than 90◦.

The query #1 calculated all the cosine distances between the report n.1 with all the
other 4460 reports. All the distances are included in the range from0 (no similarity) to
1 (total similarity). Applying a threshold t≥ 90, the query retrieves 5 similar reports
(reports with cosine similarity major or equal than 0.90 with respect to query report).

In Table15.2, the retrieved reports (translated in English language) using the
cosine distance.

As depicted in the previous table, all reports are quite similar: changes are related
only to few (1–2) words, so the cosine similarity applied to the vectors does the job.
At this point, the main goal of the research is to apply directly to TF-IDF matrix
the dimensionality reduction techniques and to find if the same results with the
RAW matrix are obtained using features reduction methodologies. In this context,
three dimensionality reduction techniques have been compared: Principal Compo-
nent Analysis (PCA), Singular Value Decomposition (SVD), and Latent Semantic
Indexing (LSI). As said before, the PCA convert a set of observations of possibly
correlated variables into a set of linearly uncorrelated variables where the number of
principal components is less than or equal to the number of original variables while
the SVD is a factorization of a real or complex matrix. The LSI is an indexing and
retrieval method that identifies patterns and relationships among data.

332 L. Agnello et al.

Table 15.2 An example of the performed queries. The #PG793706 report has been used as the
query report. The #PG693094, #PG893700, #PG806610, #PG903846, and #PG890481 reports have
been selected by the system. Each selected report has a cosine distance≥ 0.90 from the query report

PG793706 Left breast fibro-adipose structure no
pathological images hetero formative x-sense
graphically appreciable recommends annual
inspection

PG693094 Left breast structure results fibro-fatty no
pathological images hetero x-sense formative
graphically appreciable recommends annual
periodic inspection

PG893700 Left breast mainly structure fibro-fatty no
pathological images hetero x-sense formative
graphically appreciable recommends annual
periodic inspection

PG806610 Results left breast structure fibro-adipose no
pathological images hetero x-sense formative
graphically appreciable recommends annual
periodic inspection

PG903846 Left breast structure fibro-fatty results no
pathological images hetero x-sense formative
graphically appreciable recommends annual
periodic inspection

PG890481 Left breast structure results mainly fibro-fatty
no way pathological images hetero formative
x-graphically appreciable recommends annual
periodic inspection

Resulting dimensionality-reduced matrix have been calculated applying:

• Equations15.3–15.13 for PCA reduction;
• Equations15.14–15.24 for SVD reduction;
• Equations15.50 and 15.51 for LSI reduction.

Moreover, the number of corrected retrieved documents (distance ≥ 0.90) has
been evaluated for different range of number of features.

The graphs depicted in Figs. 15.5, 15.6, and 15.7 show the performance of the
LSI, SVD, and PCA techniques in three testing retrieval tasks.

As depicted in Fig. 15.5, various ranks (number of features) have been tested
in order to plot the number of retrieved reports varying the rank of the reduced
matrices. The dotted line is the number of reports retrieved by means of TF-IDF
query, in this case 10 reports. The LSI and PCA reduction techniques (red and
blue line, respectively) obtains similar results when the number of features becomes
greater than 170 (i.e., the reduced matrix is composed of 170 columns). The result

15 Feature Dimensionality Reduction for Mammographic Report Classification 333

Fig. 15.5 Number of retrieved reports using the different reduction techniques. The plot has been
built varying the number of used features. The dotted horizontal is the number of reports (10)
obtained with the query report #171 using the raw TF-IDF matrix

persists even if the number of features grows. The SVD reduction technique (green
line) achieve the best results, retrieving the correct number of documents when the
number of features is approximately between 55 and 60, but decaying after this limit.

As depicted in Fig. 15.6, the dimensionality reduction brings to results similar
result also using the query report #60. The TF-IDF query retrieves 27 reports: the
LSI and PCA techniques achieve the result when the number of features is over
about 150, while the SVD reduction technique achieve the best results using about
50 features. Also in this case, the LSI and PCA limit of retrieved reports is the TF-IDF
threshold, while the SVD degenerates retrieving a very low number of reports.

334 L. Agnello et al.

Fig. 15.6 Number of retrieved reports using the different reduction techniques. The plot has been
built varying the number of used features. The dotted horizontal is the number of reports (27)
obtained with the query report #60 using the raw TF-IDF matrix

Previous results are also confirmed by the third experiment (Fig. 15.7). The only
difference is that the SVD do not degenerates as before. The number of optimal
features is similar for LSI and PCA techniques, while SVD requests a lower number
of features.

Table15.3 summarizes the maximum number of features required by LSI, PCA,
SVD performing the query tasks on the 4461 mammographic reports.

15 Feature Dimensionality Reduction for Mammographic Report Classification 335

Fig. 15.7 Number of retrieved reports using the different reduction techniques. The plot has been
built varying the number of used features. The dotted horizontal is the number of reports (17)
obtained with the query report #168 using the raw TF-IDF matrix

Table 15.3 Summary of the maximum number of features required by LSI, PCA, SVD to achieve
the performance of the method based on the raw TF-IDF matrix. The results has been extracted
performing the query tasks on the 4461 mammographic reports

PCA LSI SVD

200 200 60

15.5 Conclusions

A comparison of the most known dimensionality reduction techniques has been per-
formed on a dataset composed of 4461 mammographic reports. The dataset is repre-
sented using the TF-IDFweights, resulting in a big and sparse matrix of 4461× 1154
elements, with extremely low information content (1.33%).

336 L. Agnello et al.

A series of queries have been performed on the RAW matrix, simulating a mam-
mographic report retrieval system, and the retrieved number of similar documents
has been used as gold standard.

Techniques such as LSI, PCA, and SVD decomposition have been applied to the
TF-IDFmatrix, obtaining comparable results with respect to the ones achieved using
the raw unprocessed matrix, when the processed reduced matrix contains less than
13%of the rawTF-IDF data using the PCI-LSI technique and less than 6%of the raw
TF-IDF data using the SVD technique. The reduction techniques have successfully
compressed and highlighted the most significant information, reaching the optimal
results using up to 200 features with LSI and PCA reduction techniques, and just
up to 60 features for SVD technique, instead of the 1154 features (words) used with
the raw TF-IDF data matrix.

Due to the reliability of LSI and PCA results, their use is highly recommended,
even if they requires a major number of features if compared to SVD technique,
which they are still fewer than the RAW uncompressed original matrix, increasing
dramatically any computation performed on reduced feature data.

References

1. Fayyad, U.M., Smyth, P., Uthurusamy, R.: Advances in knowledge discovery and data mining,
vol. 21. AAAI Press Menlo Park (1996)

2. Koh, H.C., Tan, G.: Data mining applications in healthcare. J. Healthc. Inform. Manage. 19(2),
65 (2011)

3. Farruggia, A., Magro, R., Vitabile, S.: Bayesian network based classification of mammogra-
phy structured reports. In: 2013 International Conference on Computer Medical Applications
(ICCMA), pp. 1–5. IEEE (2013)

4. Duan, L., Street, W.N., Xu, E.: Healthcare information systems: data mining methods in the
creation of a clinical recommender system. Enterp. Inform. Syst. 5(2), 169–181 (2011)

5. Farruggia, A., Magro, R., Vitabile, S.: A text based indexing system for mammographic image
retrieval and classification. Future Gener. Comput. Syst. 37, 243–251 (2014)

6. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of
brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26(2),
136–150 (2016)

7. Farruggia, A.,Magro, R., Vitabile, S.: A novel web service formammography images indexing.
In: 2013 27th International Conference onAdvanced InformationNetworking andApplications
Workshops (WAINA), pp. 225–230. IEEE (2013)

8. Anchala, R., Pant, H., Prabhakaran, D., Franco, O. H.: Decision support system (DSS) for
prevention of cardiovascular disease (CVD) among hypertensive (HTN) patients in Andhra
Pradesh, India—a cluster randomised community intervention trial. BMC Public Health 12(1),
1 (2012)

9. Comelli, A., Agnello, L., Vitabile, S.: An ontology-based retrieval system for mammographic
reports. In: 2015 IEEESymposiumonComputers andCommunication (ISCC), pp. 1001–1006.
IEEE (2015)

10. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent
semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391 (1990)

11. Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press (2012)

15 Feature Dimensionality Reduction for Mammographic Report Classification 337

12. Yang, Q., Li, F.: Support vector machine for intrusion detection based on LSI feature selection.
In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp. 4113–4117.
IEEE (2006)

13. Muflikhah, L., Baharudin, B.: Document clustering using concept space and cosine similarity
measurement. In: International Conference on Computer Technology and Development, 2009.
ICCTD’09, vol. 1, pp. 58–62. IEEE (2009)

14. Lin, P., Zhang, J., An, R.: Data dimensionality reduction approach to improve feature selection
performance using sparsifiedSVD. In: 2014 International JointConference onNeuralNetworks
(IJCNN), pp. 1393–1400. IEEE (2014)

15. Zhu, W., Allen, R.B.: Active learning for text classification: Using the LSI subspace signature
model. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA),
pp. 149–155. IEEE (2014)

16. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse
process. 25(2–3), 259–284 (1998)

17. Jolliffe, I.: Principal component analysis. John Wiley & Sons, Ltd (2002)
18. Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and principal com-

ponent analysis. In: A Practical Approach to Microarray Data Analysis, pp. 91–109. Springer,
US (2003)

19. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer.
Math. 14(5), 403–420 (1970)

20. Gorrell, G.: Generalized hebbian algorithm for incremental singular value decomposition in
natural language processing. In: EACL, vol. 6, pp. 97–104 (2006)

21. Saunders, M.A.: Large-scale linear programming using the Cholesky factorization (1972)
22. O’Leary, D.P., Whitman, P.: Parallel QR factorization by Householder and modified Gram-

Schmidt algorithms. Parallel Comput. 16(1), 99–112 (1990)
23. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 50–57. ACM (1999)

Chapter 16
Parallel Algorithms for Multirelational Data
Mining: Application to Life Science Problems

Rui Camacho, Jorge G. Barbosa, Altino Sampaio, João Ladeiras,
Nuno A. Fonseca and Vítor S. Costa

16.1 Introduction

The amount of data stored nowadays in databases is huge and increases every year
at a very fast pace. The analysis of such data can be very useful for both business
and research. However, in order to analyze large amounts of data or address highly
complex problems, computational-based tools are required. Knowledge Discovery
in Databases (KDD) [15] aims at the discovery of patterns that are both novel and
potentially useful. In some applications the comprehensibility of the pattern is also a
requirement. The KDD process encompasses a series of steps, one of them being the
DMstep. In theDMstep, algorithms based onMachine Learning (ML) and Statistics,
among others, are used to construct models from the data. One may classify the ML
algorithms into two groups. Those that require the input data to be contained in a
single table of a relational database, and those that can handle directly all the tables
in a database. For simplicity, let us denominate the former ones as propositional

R. Camacho · J.G. Barbosa (B) · J. Ladeiras
DEI & Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias s/n,
4200-465 Porto, Portugal
e-mail: jbarbosa@fe.up.pt

R. Camacho
e-mail: rcamacho@fe.up.pt

A. Sampaio
IPP, Escola Superior de Tecnologia e Gestão de Felgueiras, CIICESI, Portugal
e-mail: ams@estgf.ipp.pt

N.A. Fonseca
EMBL-European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton,
CB10 1SD, UK
e-mail: nunofonseca@acm.org

V.S. Costa
DCC & Faculty of Sciences of University of Porto, Porto, Portugal
e-mail: vsc@dcc.fc.up.pt

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_16

339

340 R. Camacho et al.

learners and the latter ones as multirelational learners. Multirelational learners are
the focus of this chapter and, for simplicity sake, we will use, from now on, a shorter
name, that is relational learners.

One of the most well-known flavors of relational learning is Inductive Logic
Programming [37, 42] (ILP). ILP has been used to construct highly sophisticated
models that address very diverse tasks. Examples include Structure–activity pre-
diction [26, 59], a major challenge in rational drug design; Natural language under-
standingwithGrammar acquisition [62]; Protein secondary structure prediction [27];
Qualitative model identification in naive qualitative physics [6]; Workload predic-
tion in computer networks [1]; and Expected survival time of kidney transplanted
patients [52].

The success of ILP in the above-mentioned applications is due to the following
three major features. First, ILP can very naturally accept background knowledge
that can be integrated into the constructed models. Second, ILP learning can harmo-
niously combine numerical and symbolic computations, while being able to handle
structured data. And finally, and very important, it has the capacity of building highly
comprehensible models even for complex tasks.

In the remaining part of this chapter, we introduce the basic concepts of ILP that
are necessary to understand the rest of the text (Sect. 16.2). We then survey the
main approaches to take advantage of parallel execution to speedup ILP systems
(Sect. 16.3). Scheduling approaches are discussed in Sect. 16.4 to improve execution
of current ILP implementations. In Sect. 16.5, we present applications where the
scheduling techniques discussed herewillmost benefit the parallel execution. Finally,
we present a summary of this chapter and draw some conclusions in Sect. 16.6.

16.2 ILP Basic Concepts

We shall address ILP within the broader area of Machine Learning (ML) called
supervised learning. This core learning task may be stated in a set-theoretic perspec-
tive. It aims at learning an intentional description of a certain set in a universe of
elements (U), given that we are aware that some elements belong in this set (positive
examples), and that others do not (negative examples). The intentional descriptionwe
strive to learn is called the concept. In an ILP setting the concept is usually referred
to as the hypothesis. Elements known to be in the target set are called instances of
the concept. Let Q+ denote the target set. Elements in Q− = {¬x | x ∈ U \ Q+}
are called negative instances or counter-examples and are elements of the universe
that are not instances of the target concept.

Note that both or either Q+ and Q− may be infinite. Learning systems usually
consider finite subsets of Q+ and Q−. These finite subsets will be denoted by E+
(⊆ Q+) and E− (⊆ Q−). If not stated otherwise E+ will be referred as the positive
examples and E− will be referred as the negative examples.

16 Parallel Algorithms for Multirelational Data Mining . . . 341

16.2.1 ILP Framework

ILP is concerned with the generation and justification of hypotheses from a set of
examples making use of prior knowledge. The representation most often used is
Horn clauses, a subset of First-Order Predicate Calculus.1 The induced hypotheses
are represented as a finite set or conjunction of clauses denoted by H. H is of the form
h1 ∧ · · · ∧hl where each hi is a nonredundant clause. The prior knowledge, also called
background knowledge, will be denoted by B. B is described in the same language,
that is, it is a finite set or conjunction of clauses, B = C1 ∧ · · · ∧Cm , typically definite
clauses. In the ILP setting a positive example is often represented by a positive unit
ground clause, also known as a ground atom; this largely corresponds to a database
tuple. E+ is a conjunction of ground atoms. E+ = e+

1 ∧ e+
2 ∧ . . . ∧ e+

n , where e
+
i is an

individual positive example.
Negative examples are typically negative unit ground clauses. E− represents the

conjunction of negated ground atoms. If we denote a negative example by fi then
E− = f1 ∧ f2 ∧ . . . ∧ fr . E+ ∧ E− is the training set.

Notice that ILP systems can use nonground examples and not all of them need
negative examples to arrive at a concept description [40].

In the ILP framework to learn corresponds to induction, and we must meet the
following conditions. First, we must ensure consistency conditions, that is, the back-
ground B and the training set must be logically consistent. The first two conditions
are required for consistency:

B �|= �

E+ ∧ E− �|= �

The background knowledge should be consistent with the negative examples. In other
words, B should not logically imply any of the negative examples. This condition is
called prior satisfiability [38]:

B ∧ E− �|= �.

To justify the need for the induction process it is necessary to satisfy the so called
prior necessity condition [38]:

B �|= E+.

The induced hypotheses should satisfy the posterior satisfiability condition [38]:

B ∧ H ∧ E− �|= �.

That means the hypotheses found should be consistent with the negative examples.

1We refer to John Loyd’s book [30] for basic concepts and definitions of Logic Programming.

342 R. Camacho et al.

The set of hypotheses should not be vacuous and explain the positive examples,
as stated by the posterior sufficiency condition [38]:

B ∧ H |= E+

The last condition states that each hypothesis hi ∈ H should not be vacuous. This
condition is called posterior necessity condition.

B ∧ hi |= e+
1 ∨ e+

2 ∨ · · · ∨ e+
n (∀hi , hi ∈ H)

As an example imagine that the system is learning the concept of a virtuoso player.
Consider that the information given to the system is the following:

B

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

plays_instrument (glenn_gould, piano) ←
plays_instrument (david_oistrach, violin) ←
plays_instrument (f isher, piano) ←
plays_instrument (john, violin) ←
per f ormance(glenn_gould, piano, superb) ←
per f ormance(david_oistrach, violin, superb) ←
per f ormance(f isher, piano, lousy) ←
per f ormance(f isher, chess, superb) ←
per f ormance(john, violin, lousy) ←

E+
{
vir tuoso(glenn_gould) ←
vir tuoso(david_oistrach) ←

E−
{← vir tuoso(f isher)

← vir tuoso(john)

The previously stated prior conditions are met. B is trivially consistent. E+∧E−
are also trivially consistent. B does not logically entail the negative examples or any
of the positive examples since the predicate symbol virtuoso does not appear in B.

A possible hypothesis generated by an ILP system could be the following single
clause:

virtuoso(Player) ←
plays_instrument(Player, Instrument) ∧
performance(Player, Instrument, superb).

The hypothesis found satisfies the posterior conditions. B ∧ H does not logically
entail E− since neither fisher nor john are capable of a superb performance when
playing an instrument.

16 Parallel Algorithms for Multirelational Data Mining . . . 343

16.2.2 A Generalization Ordering

The number of hypotheses satisfying the previously stated conditions is, in general,
very large and even infinite in most cases. However, it is possible to constrain the
hypothesis space by imposing an ordering on the set of clauses. The learning algo-
rithm may then take enumerate hypotheses according to that ordering. The search
space may be systematically searched and some parts of the space may be justifiably
ignored during the search.

One such ordering over the set of clauses was mentioned originally in [53] and is
called subsumption.

Definition 1 If C and D are two distinct nonempty clauses, then C subsumes D and
we write C 	 D iff there is a substitution θ such that Cθ ⊆ D.

Definition 2 A clause C is subsumption equivalent to a clause D and we write C
≡s D iff C	 D and D 	 C. A clause is reduced if it is not subsumption equivalent
to any proper subset of itself.

Subsumption is the most common ordering over the set of clauses used in ILP
systems. θ -subsumption [46] is usually the name used in ILP to refer to the concept
of subsumption. The ordering over the set of clauses is sometimes called a gener-
alization model [7]. If not stated otherwise, the generalization ordering assumed in
the definitions of the rest of the chapter is subsumption.

The concept of redundancy follows naturally from the idea of an ordering over
the set of clauses and the concept of equivalence between clauses or sets of clauses.
Note, that there are two kinds of redundancy. A literal may be redundant within a
clause and a clause may be redundant within a set of clauses.

Definition 3 A literal l is redundant in clause C ∨ l relative to background theory
B iff

B ∧ (C ∨ l) ≡ B ∧ C.

Definition 4 A clause C is redundant in the theory B ∧ C iff

B ∧ C ≡ B.

The subsumption ordering imposes a lattice over the set of clauses.

Definition 5 A lattice is a partially ordered set in which every pair of elements a,b
has a greatest lower bound (glb) (represented by a � b) and least upper bound (lub)
(represented by a � b).

Definition 6 A generalization ordering (or generalization model) is a partial
order2 over the set of clauses. The lattice imposed by a generalization ordering
is called a generalization lattice.

2A partial order is a reflexive, antisymmetric, and transitive binary relation.

344 R. Camacho et al.

Fig. 16.1 An ILP implementation using a greedy cover set procedure. The final set H is constructed
by progressively finding the next best clause in Step 6 (this is the clause with the highest utility).
The search for this clause is some generic search procedure that returns the best clause that meets
the requirements (previously stated in this section)

The top element of the subsumption lattice is �, the empty clause. The glb of
two clauses C and D is called the most general instance (mgi) and is the union of the
two clauses mgi(C,D) = C ∪ D. The lub of two clauses C and D is called the least
general generalization (lgg) [46] of C and D. Under subsumption the glb and lub
of clauses are unique up to renaming of variables.

As pointed out by Mitchell [36] the task of concept learning can be mapped into a
search through a space of hypothesis. A generalization ordering is a crucial concept in
ILP for it is the basis of an organized search of the hypothesis space. The search for an
hypothesis is mapped into the traversal of the generalization lattice. The traversal of
the generalization lattice is, in general, what leads to the computationally expensive
nature of the learning task.

Figure 16.1 shows how these principles are applied in the popular greedy set cover
procedure. We repeatedly enumerate hypotheses until finding the best one, and then
drop all examples entailed by the hypothesis. Opportunities for parallelism arise
within the search process, or by relaxing the coverage algorithm so that searchhes
can run in parallel, as we discuss next.

16.3 Parallel Algorithms for ILP

Based on the principal performance bottlenecks for ILP systems, we classify three
main sources of parallelism in ILP systems [16].

Notice that other classification criteria can be used. For example, as for LP sys-
tems, we can divide strategies into those that expect to use shared memory and those
that expect to use distributed memory. Clare and King’s Polyfarm [9] is an example
of a system designed for distributed environments. Fonseca et al.’s survey of parallel
ILP systems [16] reports that most of the best results for parallel ILP were obtained

16 Parallel Algorithms for Multirelational Data Mining . . . 345

on shared-memory architecture, but argues that there is scope for experimenting with
distributed-memory “clusters”.

Search. We can distinguish here between parallel execution of multiple searches,
and the parallel execution within a search. The granularity of the latter is substan-
tially finer than the former.

Data. In this, individual processors are provided with subsets of the examples
prior to invoking the search procedure in Fig. 16.1. We distinguish between two
forms of parallel execution, with different communication requirements. In the
first, each processor completes its search and returns the best clause. The set of
all clauses are then reexamined in conjunction and a final result constructed by
recomputing the utility of each clause using all the data. In the second approach,
as each processor finds a good clause, its utility in the final set is recomputed using
all the data. The granularity of the second approach is finer than the first, but it
has the advantage that all clauses found will also be in the final set of clauses (in
both cases, recursive clauses cannot be identified reliably).

Evaluation. The search procedure invoked in Fig. 16.1 evaluates the utility of a
clause. This usually requires computing its “coverage”, that is, determining the
subset of E entailed by the Di given B and Hi−1. An “example-based” strategy
involves partitioning E into blocks. The blocks are then provided to individual
processors, which compute the examples covered in the block. The final coverage
is obtained by the union of examples entailed in each block. There is a similarity
to the coarse data parallelism strategy described above. These two processors
are provided with subsets of the data. There, the subsets are used to identify
different clauses. Here, the subsets are used to evaluate a given set of clauses. An
“hypothesis-based” strategy would involve determining subsets of literals in each
Di that can be evaluated independently (this could be identified, for example,
using the “cut” transformation described in [54]). Each such independent subset
is then evaluated on a separate processor and the final result obtained by the
intersection of examples is entailed by the subsets.

The three strategies above are not mutually exclusive. In fact, a parallel algorithm
may exploit several. Furthermore, we again observe that the parallel algorithms can
be classified in many different ways. For instance, we could also classify the parallel
algorithms regarding their correct, i.e., do they produce the same solution (correct)
as the corresponding sequential algorithm. Next, we will focus our classification of
previous work on parallel ILP systems on the three strategies mentioned above, along
with the hardware architecture. Figure 16.2 shows a brief summary of the entries that
follow.

Dehaspe and De Raedt [13] developed the first parallel ILP system that we are
aware of. The system is a parallel implementation of Claudien, an ILP system capa-
ble of discovering general clausal constraints. The strategy is based on the parallel
exploration of the search space where each processor keeps a pool of clauses to spe-
cialize, and shares part of them to idle processors (processors with an empty pool).
In the end, the sets of clauses found in each processor are combined. The system was

346 R. Camacho et al.

Fig. 16.2 Parallel ILP
Systems Reported in the
Literature

evaluated on a shared-memory computer with two data sets and exhibited a linear
speedup up to 16 processors.

Ohwada and Mizoguchi [43] have implemented an algorithm based on inverse
entailment [39]. The implementation uses a parallel logic programming language
and explored the parallel evaluation of clause coverage, and two strategies for search
parallelisation (parallel exploration of independent hypotheses and parallel explo-
ration of each refinement branch of a search space arising from each hypothesis). The
system was applied to three variants of an email classification data set and the exper-
iments performed evaluated each strategy. The results on a shared-memory parallel
computer showed a sublinear speedup in all strategies, although parallel coverage
testing appeared to yield the best results.

An algorithm that explores the search space in parallel was first implemented by
Ohwada et al. [44]. The set of nodes to be explored is dynamic and implemented
using contract net communication [56]. Their paper investigated two types of inter-
process communication, with results showing near-linear speedups on a 10-processor
machine.

Wielemaker [61] implemented a parallel version of a randomized search found
in the Aleph system. The parallel implementation executes concurrently several ran-
domized local searches using a multithreaded version of the SWI Prolog engine.
Experiments examined performance as the number of processors was progressively
increased. Near-linear speedups were observed up to 4 processors, however the
speedup was not sustained as the number of processors increased to 16.

Wang and Skillicorn [55] have implemented a parallel version of the Progol algo-
rithm [41] by partitioning the data and applying a sequential search algorithm to each
partition. Data are partitioned by dividing the positive examples among all proces-
sors and by replicating the negative examples at each processor. Each processor then
performs a search using its local data to find the (locally) best clause. The true utility
of each clause found is then recomputed by sharing it among all processors. Note
that this algorithm exploits the parallelization strategies identified (parallel search,
data and evaluation) mentioned above, thus being an example that the strategies are
not mutually exclusive. Experiments with three data sets suggest linear speedups on
machines with four and six processors.

A study by Matsui et al. [32] evaluates and compares two algorithms based on
data parallelism and parallel evaluation of refinements of a clause (the paper calls this
parallel exploration of the search space, although it really is a parallelisation of the

16 Parallel Algorithms for Multirelational Data Mining . . . 347

clause evaluation process). The two strategies are used to examine the performance
of a parallel implementation of the FOIL [47] system. Experiments are restricted
to a small synthetic data set (the “trains” problem [35]) and the results show poor
speedups from parallelisation of clause evaluation. Data parallelism showed initial
promise, with near-linear speedups up to four processors. Above four processors,
speedup was found to be sublinear due to increased communication costs.

PolyFarm was a parallel ILP system specifically designed for the discovery of
first-order association rules on distributed-memorymachines developed byClare and
King [9]. Data are partitioned amongst multiple processors and the system follows
a master–worker strategy. The master generates the rules and reports the results and
workers perform the coverage tests of the set of rules received from the master on the
local data. Counts are aggregated by a special type of worker that reports the final
counts to the master. No performance evaluation of the system is available.

An implementation of a parallel ILP system, using the PVM message passing
library, was done by Graham et al. [22]. Parallelisation is achieved by partitioning
the data and by parallel coverage testing of sets of clauses (corresponding to different
parts of the search space) on each processor. Near-linear speedups are reported up to
16 processors on a shared-memory machine.

Konstantopoulos [28] has investigated a data parallel version of a deterministic
top-down search implemented within the Aleph ILP system [57]. The parallel imple-
mentation uses the MPI library and performs coverage tests in parallel on multiple
machines. This strategy is quite similar to that reported in Graham et al., with the
caveat that testing is restricted to one clause at a time (Graham et al. look at sets
of clauses). Results are not promising, probably due to the overfine granularity of
testing one clause at a time.

dRap was developed by Blaták and Popelínský [4]. This was a parallel ILP system
specifically designed for the discovery of first-order association rules on distributed-
memory machines. Data are partitioned amongst multiple processors and the sys-
tem follows a master–worker strategy. The master generates the partitions and each
worker then executes a sequential first-order association rules learner. The master
collects the rules found by the workers and then redistributes the rules by all the
workers to compute the support on the whole data set. No performance evaluation
of the system is reported.

Angel-Martinez et al. [31] describe the use of GPUs to perform parallel evaluation
of hypotheses. The authors extended the widely used Aleph system, parallelism is
implemented by evaluating clauses as Datalog queries, and then taking advantage of
prior work in implementing the main database primitives in GPUs. Results show a
one or two order of magnitude in large data sets, where the overhead of sending a
clause to a GPU is significantly less than the benefits of parallel execution.
Results reported by these papers are summarized in Fig. 16.3. The principal points
that emerge are these:

1. Most of the effort has been focused on shared-memory machines where the com-
munication costs are lower than for distributed-memory machines.

348 R. Camacho et al.

Fig. 16.3 Summary of
speedups reported of parallel
ILP systems. The numbers in
parentheses refer to the
number of processors.
Neither Clare and King nor
Blaták and Popelínský report
any speedups

2. Speedups observed on shared-memory machines are higher than those observed
on distributed-memory ones.Maximum disparity is observed with parallel execu-
tion of the coverage tests: this is undoubtedly due to the fact that communication
costs are high for distributed-memory machines, and the granularity of the task
is finer than other forms of parallelism.

Despite the apparently discouraging results observed to date on distributed-
memory machines, we believe that a further investigation is warranted for several
reasons. First, the results are not obtained from a systematic effort to investigate
the effect of the different kinds of parallelism. That is, results that are available are
obtained from a mix of fine and coarse-grained parallelization, on differently config-
ured networks and with different communication protocols. Second, the availability
and-parallelism of shared-memory architecture machines continues to be substan-
tially lower than distributed-memory ones (for example, distributed-memory “clus-
ters” comprised of 10s or 100s of machines are relatively easy, and cheap, to con-
struct). There is, therefore, practical interest in examining if significant speedups are
achievable in distributed-memory architectures. In this paper, we present a systematic
empirical evaluation of coarse-grained search, data and evaluation parallelization for
such architectures using a well-established network of machines (a Beowulf clus-
ter) and a widely accepted protocol for communication (an implementation of the
Message Passing Interface, or MPI [17], that can be used by applications running in
heterogeneous distributed-memory architectures).

16.3.1 The APIS ILP System

There is a strong connectionbetweenparallelism in the context of ILPand-parallelism
in the context of logic programming (LP). Parallelism has been widely studied in
LP [23], where it can be exploited implicitly, by parallelising the LP inference mech-
anism, or explicitly, by extending logic programs with primitives that create and
manage tasks and allow for task communication.

16 Parallel Algorithms for Multirelational Data Mining . . . 349

Two major sources of implicit parallelism have been recognized within LP. In or-
parallelism, the search in the LP system is run in parallel. Or-parallelism is known to
achieve scalable speedups on current hardware [10] but it works best when we want
to perform complete search, which may be expensive in the context of ILP.

And-Parallelism corresponds to running conjunctions of goals, or/and tasks, in
parallel. If the goals communicate during the parallel computation, it is called depen-
dent and-parallelism. Dependent and-parallelism may be used for concurrent lan-
guages or to implement pipelines [5].On the other hand, independent and-parallelism
(IAP) is useful in divide-and-conquer applications and often corresponds to coarse-
grained tasks. Our approach is based on independent and-parallelism (IAP).

The APIS system introduces a new approach to the parallel execution of ILP sys-
tems. APIS partitions the hypothesis space so that each subspace can be executed
in parallel. We define two types of subspaces: standard subspaces requiring theorem
proving for clause evaluation; and subspaces that efficiently compute clause evalua-
tion without the need of theorem proving. Not only the partition enables the parallel
search but also achieves additional speedups resulting from the fact that some of
the subspaces do not use theorem proving to evaluate the hypotheses. Unfortunately,
although a partition is established on the hypothesis space the resulting subspaces
are not completely independent as we discuss later.

It is well known in LP that if a clause has subsets of literals with literals in each
subset not sharing variables with any literal of the other subsets, then each subset
can be executed in parallel. When traversing the hypothesis space an MDIE-based
ILP system constructs and evaluates clauses. Traditionally, clause evaluation is done
using a theorem prover.3 Among the clauses constructed during the search, there are
clauses that satisfy the LP IAP constraint: clauses with sets of literals that do not
share variables. In this case, we can then apply bottom-up techniques. We generate
in parallel each subset of literals in the “traditional” way (using theorem proving
for evaluation) and then combine each subset to form a new clause and make the
evaluation of the combined clause in a more efficient way. The coverage of the
combined clause is computed by the intersection of the coverage lists of the clauses
being combined. This result cannot, however, be efficiently applied in a traditional
ILP system since it is computationally expensive to determine if the partition of the
clause’s literals into subsets that do not share variables exists. The key point of the
APIS system approach is to establish the partition of the hypothesis space based
on the usage mode of the predicates and verify independence at compile time, thus
avoiding the analysis of each clause for independent sets of literals at induction time.
Such partition can be computed as a preprocessing step in an efficient way. The
overall process is therefore divided into two steps: a preprocessing step where user-
provided mode of usage information used to establish the partition of the hypothesis
space; and the execution in parallel of the subspaces resulting from the previous step.
We now explain each step in detail.

An island is a set of mode declarations satisfying the following two conditions.
Each mode declaration shares at least one type with other modes in the same island.

3Counting the number of examples derivable from the hypothesis and the background knowledge.

350 R. Camacho et al.

Each mode declaration does not share any type with any other mode declaration
outside the island. Types of the head literal are excluded from the above-mentioned
“type checking”.

The core of the APIS system is the identification of the islands since they will
be used in the partition of the hypothesis space. The algorithm for the automatic
identification of the islands is described by Algorithm 1. The use of the islands in
the parallel search of the hypothesis space is described by Algorithm 2.

Algorithm 1 Islands computation from the mode declarations
1: function ComputeIslands(AllModes)
2: IslandsSet ← ∅
3: Modes ← removeHeadInputArguments(AllModes) � preprocessing step
4: while Modes �= ∅ do � process all modes
5: Mode = withoutInputArguments(Modes)
6: Modes = Modes \ { Mode }
7: Island = ExtendIsland({Mode}, Modes)
8: IslandsSet ← IslandsSet ∪ { Island }
9: end while
10: return IslandsSet
11: end function
12:
13: function ExtendIsland(Island, Modes)
14: repeat
15: Mode = LinkedToTheIsland(Modes) � returns ∅ if no mode was found
16: Modes = Modes \ { Mode }
17: Island ← Island ∪ { Mode }
18: until Mode = ∅
19: return Island � Island as a set of modes
20: end function

The algorithm accepts as input a set of mode declarations and returns a set of
islands. First, a preprocessing step removes the types appearing in the head mode
declaration and the mode arguments that are constants. After the preprocessing the
algorithm enters a cycle where each island is determined and terminates whenever
there are no more mode declarations to process. In the main cycle a seed mode is
chosen to start a new island and then the island is “expanded”. Expanding an island
consists in adding any mode declaration not yet in the island sharing a type with any
mode already in the island. The expansion stops as soon as there is no mode outside
the island sharing a type with the modes inside the island.

The APIS execution algorithm is schematized as Algorithm 2. Algorithm 2 starts
by computing the islands: each client node is instructed to upload the data set without
the mode declarations. In the line of MDIE greedy cover ILP algorithms the main
cycle generates hypotheses, adds the best discovered hypothesis to the final theory,
and removes the examples covered by the added hypothesis. The cycle repeats until
no uncovered positive examples are left. The specificity of APIS is evident in (Steps
8 through 19). In this part of the algorithm APIS uses a pool of client nodes and
a pool of subspaces of the hypothesis space to search (determined by the partition
made on the mode declarations). Each node searches a subspace. There are two kinds
of subspaces: “saturation-based” subspaces; and “combination-based” subspaces. A
saturation-based subspace is generated as in a typical ILP general-to-specific search

16 Parallel Algorithms for Multirelational Data Mining . . . 351

Algorithm 2 The APIS parallel execution algorithm
1: function InduceTheory(DataSet, Clients)
2: Islands ← ComputeIslands(GetModes(DataSet))
3: Theory ← ∅
4: Examples ← PositiveExamples(DataSet) � initial positive examples
5: broadCast(Clients, loadIslandsDataSets)
6: while Examples �= ∅ do � while not covering all positives
7: Samples = getSample(Examples)
8: Jobs ← getJobs(Islands, Samples)
9: while Jobs �= ∅ do � all islands processed in the cycle
10: if Clients �= ∅ then
11: W ← client(Clients) � get next available client
12: Clients ← Clients \ { W }
13: J ← nextJob(Jobs) � select a nonprocessed job
14: Jobs ← Jobs \ { J }
15: sendMsg(W, J) � client W processes job J
16: end if
17: if FinishedClient(C) �= ∅ then Clients ← Clients ∪ { C }
18: end if
19: end while
20: h = IslandsResults() � returns the best hupothesis
21: Covered = Cover(h, Examples) � compute h coverage
22: Examples = Examples \ Covered
23: if Examples �= ∅ then broadcast(Clients, removeExamples(Covered))
24: end if
25: Theory ← Theory ∪ { h }
26: end while
27: return Theory
28: end function

followed by reduction steps that characterize MDIE systems [39]. The difference is
that to generate the subspace a subset of user-provided mode declarations (an island)
is used. All clauses constructed in this kind of subspace are evaluated by proving the
examples from background knowledge and the hypothesis under evaluation. On the
other hand in “combination-based” subspaces no further theorem proving is required.
Each clause constructed in a combination-based subspace merges pairs of clauses
each one coming from previously searched spaces that do not share islands. This
restriction allows the evaluation of the new clauses by intersection of the parent’s
coverage lists. We can see that there is a dependency among combination-based
subspaces. The saturation-based subspaces are the only ones completely independent.
Let us further remark that in the main cycle of the algorithm we search several
hypothesis spaces at the same time.4 We have an hypothesis space for each example
of the seed. All of the jobs to execute (subspaces to be searched) are in a common pool
but only subspaces belonging to the same example are combined. The number of jobs
associated with each example is equal to the number of all possible combinations of
the islands up to the clause length. First, the saturation-based subspaces are generated,
then these subspaces are combined in pairs, in groups of three, and so on up to the
“clause length” value. The combinations are all computed once before execution of
the algorithm and each subspace is scheduled to run as soon as the two “parents”
finish.

4As many as the size of the sample

352 R. Camacho et al.

16.4 Scheduling and Load Balancing

Parallel implementations have been employed to significantly enhance and speed
up solution search, allowing to reach high-quality results with reasonable execution
times even for hard-to-solve optimization problems. In this section, we first present
the state of the art of computing platforms for parallel computing, and then several
approaches for accelerating ILP algorithms are discussed.

16.4.1 Parallel Computing Platforms

Parallel applications demand for substantial number of computing resources, which
were traditionally deployed by dedicated high-performance computing (HPC)
infrastructures such as clusters, and later by Grid computing [18]. Even though Grids
introduce new capabilities such as larger number of resources belonging to different
administrative domains and the ability to select the best set of machines meeting the
requirements of applications, there are limitations related to runtime environments
for applications and accomplishment of applications’ needs.

Rather than owning physical, fixed-capacity clusters, organizations have recently
shifted onto the Cloud computing [19] paradigm. Compared to aforementioned tra-
ditional networked computing environments, Cloud computing offers to end users a
variety of services covering the entire computing stack. Clouds represent a new kind
of computational model, providing better use of distributed resources, while offering
dynamic flexible infrastructures and quality of service (QoS) guaranteed services.
They support various configurations (e.g., CPU, memory, I/O networking, storage)
and scaling capacities while abstracting resource management. Cloud computing has
recently gained popularity as a resource platform for on-demand, high-availability,
and high-scalability access to resources, using a pay-as-you-go model [3]. Some
of today’s major commercial Cloud providers are Amazon EC2 [2], and Google
Cloud Platform [21]. Clouds rely on virtualisation technology for the management
of traditional data center resource provisioning. Virtualisation has several benefits
for scientific computing, such as provisioning of isolated computing environments
on shared multicore machines. Huang et al. [24] have conducted a performance eval-
uation regarding the use of virtualisation and have concluded that HPC applications
(which are performance oriented) can achieve almost the same performance as those
running in a native, nonvirtualized environment.

By means of virtualisation, a collection of virtual machines (VMs) run on top of
physical machines (PMs) to create virtual clusters [33]. Also, a VMcan be suspended
and later resumed on either the same or on a different PM, which is useful for fault
tolerance and load balancing. A virtual cluster is created so a user has exclusive
access to a customized virtual execution environment. The provisioning of elastic
virtual clusters as on-demand pay-as-you-go resources is an essential characteristic of
Clouds, endowing great flexibility and scalability for end users and their applications.

16 Parallel Algorithms for Multirelational Data Mining . . . 353

In this context, resources can be dynamically allocated, expanded, shrunk, or moved,
according to applications demand.

Parallel and distributed applications, as is the case of parallel implementation of
ILP systems, exploit the processing power of a cluster of processors. As such, these
applications can utilize the Cloud to rapidly deploy an application-specific virtual
cluster infrastructure to achieve new levels of availability and scalability. Although
Clouds were built primarily with business computing needs in mind, their value has
been already recognized within the scientific community as an easy way to store,
process, and retrieve huge data without worrying about the hardware needed. For
example, Delgado et al. [14] have explored the use of Cloud computing to execute
scientific applications, with a specific focus on medical image processing and com-
putational fluid dynamics applications. Also Juve and Deelman [25] discussed many
possible ways to deploy scientific applications on a Cloud, ranging from astronomy
to earthquake science. TheMagellan project, which takes place at the Argonne Lead-
ership Computing Facility and the National Energy Research Scientific Computing
Facility, aimed at investigating the use of cloud computing for science [48]. A diverse
set of scientific data parallel applications, with no tight coupling between tasks, was
running on the Magellan resources, and the results allowed to conclude that current
cloud software can be used for science clouds.

16.4.2 Load Balancing for ILP Algorithms

In the specific case of parallel ILP systems considered in this chapter, islands are char-
acterized by having diverse sizes and requiring different processing capacity needs. A
task parallel approach is adequate to this problem and homogeneously scheduling the
same amount of CPU resource to jobs in charge of processing diverse-sized islands
will result in jobs’ finish time imbalances, with consequent nonoptimized makespan.
Furthermore, if we take into account that Cloud resources are usually billed by hour
[2], an inefficient schedule of parallel ILP jobs will result in increased costs to solve
the parallel ILP search problem. Therefore, it is important to produce schedules of
jobs that consider their diverse needs, and the heterogeneity of resources, in order to
achieve the objectives of reducing the makespan (i.e., the finishing time of the last
job in the system) andmaximizing load balancing. Tominimizemakespan it is essen-
tial to allocate jobs correctly so that computer loads and communication overheads
will be well balanced. In turn, load balancing aims to distribute workload between
available machines to obtain as good throughput and resource utilization as possible.
Despite load balancing and makespan concepts being related, a good load balancing
does not always lead to minimal makespan and vice versa.

Several papers address the problem of static and dynamic minimization of
makespan and maximization of load balancing in parallel and distributed sys-
tems. A good review and classification of state-of-the-art load balancing methods
for jobs dispatched to run independently on multiple computers can be found in
[45, 64, 67]. This section points out some relevant scheduling algorithms and

354 R. Camacho et al.

strategies thatwe believe can improve load balancing and optimizemakespan of inde-
pendent and-parallelism ILP approach. When managing resources in a cloud com-
puting environment, scheduling can be made in different layers, as described next.

16.4.2.1 Scheduling at the Application Level

Concerning the scheduling of jobs onto VMs, Dhinesh and Krishna [29] proposed to
minimize the makespan and maximize load balancing of applications in the Cloud.
They use Swarm Intelligence (SI) to propose an Artificial Bee Colony (ABC) algo-
rithm, named Honey Bee Behavior inspired Load Balancing (HBB-LB), which aims
to achieve well-balanced load across VMs for maximizing the throughput and min-
imization of makespan in a Cloud infrastructure. Cumulatively, HBB-LB algorithm
not only dynamically balances the load but also considers the priorities of tasks in
the waiting queues of VMs in order to minimize the time spent in the queues. The
scheduling problem is solved considering that a job is a honey bee and VMs are
the food sources. First, VMs are grouped into three sets: (i) overloaded VMs; (ii)
underloaded VMs; and (iii) balanced VMs. Processing time of a job varies from one
VM to another based on VM’s capacity. Then, jobs removed from overloaded VMs
have to find suitable underloaded VMs to get placed in. If there are several suitable
VMs to allocate the task in, the task chooses the VMwhich as a less number of tasks
with the same kind of priority. The winning task is allocated to the selected VM and
state information is updated, which includes the workload on all VMs, number of
various jobs in each VM, jobs priority in each VM, and the number of VMs in each
set. These details will be helpful for other jobs, i.e., whenever a high priority job is
submitted, it will consider the VM that has less number of high priority jobs to exe-
cute earlier. Once the jobs switching process is over, the balanced VMs are included
into the balanced VM set. The load balancing process ends when this set contains
all the VMs. This solution was successfully tested with Cloudsim [8] by means of
simulation. The results have showed a good performance for heterogeneous Cloud
computing systems, in terms of average execution time and waiting time of jobs on
queue.

Ramezani et al. [50] contributeswith aTask-basedSystemLoadBalancingmethod
using Particle SwarmOptimization (TBSLB-PSO) that achieves system load balanc-
ing in Cloud environments by only transferring extra tasks from an overloaded VM
instead of migrating the entire overloaded VM (which is known to be time- and
cost-consuming). The problem of finding an optimal solution for allocating these
extra tasks from an overloaded VM to appropriate host VMs is solved using Particle
Swarm Optimization (PSO) heuristic. PSO is a population-based search algorithm
based on the simulation of the social behavior of birds. The scheduling algorithm
is multi-objective, aiming at minimizing task execution time and task transfer time.
TBSLB-PSO method considers both computing-intensive and data-intensive tasks.
Computing-intensive tasks demand extensive computation (e.g., scientific applica-
tions) while data-intensive tasks are characterized by high volumes of data to be
published and maintained over time. The scheduling optimization model takes into

16 Parallel Algorithms for Multirelational Data Mining . . . 355

account the number of CPUs on hostVMs to schedule computing-intensive tasks, and
the bandwidth as a variable to minimize the tasks transferring time for data-intensive
applications. To solve this multi-objective optimization problem, the PSO algorithm
is applied to find an optimal way to allocate extra tasks to the new (underloaded)
VMs with less task execution and task transfer time. The TBSLB-PSO algorithm
works in six steps, ranging from monitoring and analysis of PMs, VMs, and tasks,
determining overloaded VMs, finding optimal homogeneous VMs to transfer the
tasks to and optimal task migration schema, and transferring tasks and updating
the scheduler information. Authors simulated their proposal with Cloudsim toolkit,
which was able to schedule a set of 10 tasks onto 5 VMs over 3 PMs, in 0.224s.
The authors have also solved this problem with Multi-Objective Genetic Algorithm
(MOGA) [49] as an alternative to PSO, although no comparison information of the
two alternatives was provided.

16.4.2.2 Scheduling at the Virtualisation Level

In the case of scheduling VMs onto PMs, Dasgupta et al. [11] proposed a novel load
balancing strategy using Genetic Algorithms (GA) aiming at balancing the load of
the cloud infrastructure while trying to minimizing the makespan of a given tasks
set. GAs is a stochastic searching algorithm based on the mechanisms of natural
selection and genetics, widely used in complex and vast search space and known to
be very efficient in searching out global optimum solutions. The results showed that
the proposed algorithm outperformed the existing approaches like First Come First
Serve (FCFS), Round Robing (RR), and the local search algorithm Stochastic Hill
Climbing (SHC).

16.4.2.3 Scheduling at the Programming Level

Aiming at optimizing load balancing, Xu et al. [65] proposed a novel model to bal-
ance data distribution to improve Cloud computing performance in data-intensive
applications, such as distributed data mining. Their work consists in extending the
classicMapReducemodel [12] in order to fight its computational imbalance problem.
MapReduce provides a set of frameworks that aim to enable productive programming
of computer clusters. The frameworks are efficient in the processing of huge data sets
with flexible job decomposition and subtasks allocation. Using distributed program-
ming frameworks such as Hadoop [60], the application programmers can construct
parallel dataflows usingmap and reduce functions to achieve portability and scalabil-
ity of their applications. However, these frameworks are not suitable for all scientific
workloads since they are designed for data-intensive workloads. In fact, the original
load balance in Hadoop considers only static storage space balance, without consid-
ering the workloads attached to the data blocks, which is of paramount importance
for the unbalanced ILP jobs. To tackle this issue, authors have proposed a completely
distributed approach for adjusting load balancing based on agent–workers running

356 R. Camacho et al.

on nodes, unlike original Hadoop which relies on an agent–master for centralized
task processing such as task allocation. By representing each node, agents can com-
municate with each other to cooperatively manage and adjust the balance of working
loads. These series of agents monitor the data nodes (e.g., hardware performance,
working load in real time), and jointly make decisions on how to move data blocks
to maximize load balancing. In the process of load balancing, the overload nodes
request computing resources from other nodes, and copy their data to the new nodes
who have more resources. Initially, agents have no knowledge of their neighbors’
working load distribution, and so a token-based heuristic algorithm is proposed as
well. The goal of balancing working load is to reduce calculation and free storage
variance. In the optimal case, each node holds at most one computation task and
has almost the same size of the free storage. Authors have evaluated their proposal
through simulation and concluded that agents can improve load balancing efficiency
with limited communication costs among agents.

16.5 Life Science Applications

The Life Sciences have a lot of scientific problems where Machine Learning tech-
nique may be very helpful. However, some of the important problems have to deal
with data from quite different sources, encoded in difference representation schemes
and with structure. To analyze data sets in those kinds of problems/domains using
algorithm such Decision Trees, SVMs or Artificial Neural Nets,5 the data has to be
“enclosed” into a single table of a Relational Database.6 Most often this reduction
procedure leads to information loss or an extensive amount of preprocessing. The
advantages of such algorithm’s analysis are that, usually, they are much faster than
ILP’s analysis.

To analyze data with structure, encoded in different encoding schemes, ILP have
been recognized to have advantages over propositional learners. ILP can handle
“naturally” several relations, data with structure, encoded in different representa-
tion schemes, can combine harmoniously symbolic and numerical computations
and, most importantly the constructed models and most often comprehensible to the
domain experts. This last feature may be of capital importance to scientific appli-
cations where understating the phenomena that produced the data is required. ILP
models may provide clues for such explanations.

In this section, we visit two applications where ILP have given very good results,
produced comprehensiblemodels, and showed several advantages over propositional
learners. We discuss also the advantage of the application of the parallel execution
of ILP in these types of applications.

5Propositional level algorithms
6or a sheet of a spreadsheet

16 Parallel Algorithms for Multirelational Data Mining . . . 357

16.5.1 Structure–Activity Relationship Experiments

ILP have been extensively used in Structure–Activity Relationship7 (SAR) problems.
Published studies include [26, 51, 59]where ILP systems predictedmutagenicity and
[58] caricnogenicity activity. In order to assess the impact of the parallel approach
to ILP implemented in the APIS system (See Sect. 16.3) we have used four data
sets originated from SAR problems.8 Two of them are the ones just mentioned for
predicting mutagenicity and carcinogenicity. The other two are toxicity data sets
(DBPCAN and CPDBAS). DBPCAN is part of the water disinfection by-products
database and contains predicted estimates of carcinogenic potential for 178 chemi-
cals. The goal is to provide informed estimates of carcinogenic potential to be used
as one factor in ranking and prioritizing future monitoring, testing, and research
needs in the drinking water area [63]. The second data set is CPDBAS, the Carcino-
genic Potency Database (CPDB) that contains detailed results and analyzes of 6540
chronic, long-term carcinogenesis bio assays.9 The other two data sets used in this
study were the carcinogenesis and mutagenesis mentioned above.10

The data sets are characterized in Table 16.1 together with the associated Aleph’s
parameters used in the experiments. The nodes limit parameter indicated in the table
concern the sequential execution value. When running APIS same node limit was
used. The background provided for the data sets were as follows. Far all data sets,
the structure of each molecule (atoms and bonds) was available in the background
knowledge. For the toxicity data sets (DBPCAN and CPDBAS) a set of molecular
descriptors for each molecule was also available in the background knowledge.

Table 16.1 Characterization of the data sets used in the study. In the cells of the second column
P/N represents the number of positive examples (P) and negative examples (N). The five right most
columns are the values for Aleph’s parameters

Data set name Number
of
examples

Number
of islands

Clause
length

Nodes
limit
(Mil-
lions)

Noise Minimum
positives

Sample
size

carcinogenesis 162/136 4 5 0.5 10 12 30

mutagenesis 125/63 5 6 1 4 9 25

dbpcan 80/98 37 7 1 2 5 30

cpdbas 843/966 37 6 0.1 150 150 5

7An approachwhere the activity of a compound, for example, is predicted only based on its structure
features.
8A detailed description of this study can be found in [66]
9Source data for both data sets is available from the Distributed Structure-Searchable Toxicity
(DSSTox) Public Database Network from the US Environmental Protection Agency http://www.
epa.gov/ncct/dsstox/index.html, accessed Dec 2008.
10Available from the Oxford University Machine Learning repository http://www.cs.ox.ac.uk/
activities/machlearn/applications.html

http://www.epa.gov/ncct/dsstox/index.html
http://www.epa.gov/ncct/dsstox/index.html
http://www.cs.ox.ac.uk/activities/machlearn/applications.html
http://www.cs.ox.ac.uk/activities/machlearn/applications.html

358 R. Camacho et al.

Table 16.2 Speedups (a) and accuracy (b) obtained in the experiments numbers in each cell corre-
spond to average and standard deviation (in parenthesis). There is no statistical difference (α ≤ 0.05)
between the sequential execution accuracy values and the parallel execution for each data set.

(a)

Data set Number of worker nodes

2 4 6 7

carcinogenesis 4.8(2.1) 5.6(2.7) 6.7(2.6) 6.1(2.6)

mutagenesis 76.5(32.9) 138.9(82.7) 188.4(119.3) 231.3(148.6)

dbpcan 13.8(2.5) 26.7(4.3) 36.5(5.5) 41.1 (5.9)

cpdbas 18.3(7.0) 31.4(16.1) 36.2(26.9) 28.5(11.8)

(b)

Data set name Sequential
execution

Number of worker nodes

2 4 6 7

carcinogenesis 53.7(3.8) 58.9(5.5) 57.8(3.8) 57.8(4.8) 58.0(7.6)

mutagenesis 84.1(6.9) 80.7(5.4) 82.0(4.8) 80.9(5.2) 81.3(4.7)

dbpcan 87.9(5.0) 89.8(4.1) 89.3(5.1) 89.3(5.1) 89.3(5.1)

cpdbas 54.0(1.8) 51.2(1.4) 53.6(1.2) 53.5(1.2) 53.4(1.0)

Overall, the results show that significant speedups were achieved by APIS, well
beyond the number of processors (Table 16.2 (a))11 without affecting accuracy (no
statistical significant difference for α ≤ 0.05), Table 16.2 (b).

The major contribution for the speedups is, however, from the parallel search of
the subspaces. We identified two sources of the parallel execution on the speedups.
With enough CPUs (number of workers larger than the number of the islands) the
execution time would be broadly determined by the slower subspace search. For
example, in mutagenesis data set, if we have more than five CPU workers we can
search the five saturation-based subspaces in parallel. The overall time is determined
by the slower search.With this effect alone we would expect the speedups to be close
to the speedup of the search in the slower subspace.

However, we have also noticed that the speedup of the slowest subspace search
alone does not explain the global speedups obtained. In a deeper analysis, we can see
that the number of “slow” subspaces (1 in mutagenesis and 3 in dbpcan, for example)
than the other subspaces use less than 10% of the time of the slower ones. That is,
there are one or few “slow” subspaces and their run time is much larger than the
others. This means that we can start processing the next example much earlier than
the finish time of the slower subspace. In practice we can run several examples in
parallel. This is also a significant contribution for the global speedup.

Another contribution, although weaker, for the speedup results is the use of inter-
section of coverage lists instead of theorem proving. The number of clauses evaluated

11Except for the carcinogenesis data set

16 Parallel Algorithms for Multirelational Data Mining . . . 359

using intersection of coverage lists is rather small (when compared with the theorem
proving case) but represent also a faster method to evaluate clauses.

As seen from the above results, the APIS approach provides several “opportuni-
ties” for the parallel execution to produce very good speedups. In the next applica-
tion, we describe an example of a chemoinformatics application where the number of
islands that can be identified is quite large making that kind of applications adequate
for the use of the APIS approach.

16.5.2 Predicting Drug Efficiency in Cancer Cells Treatment

The data used in the experiments is the result of the work done in the “Genomics
of Drug Sensitivity in Cancer” project [20], and its preprocessing follows the same
approach used in [34]. The original data set, publicly available in the “Genomics of
Drug Sensitivity in Cancer” project website, consists of measured IC50 values for
various cell lines and compound pairs. It contains 639 different cell lines, eachwith 77
gene mutation properties. Each cell line also has information about its microsatellite
instability status (MIS), cancer type, and correspondent tissue. The IC50 value is
available in its natural logarithmic form, ranging from−18.92 (6.07E-9 raw form) to
15.27 (4.28E-6 raw form). Each gene mutation is described by its sequence variation
and copy number variation.

The data set contains 131 drugs that were applied to the cell lines leading to
83709 potential IC50 values. Each example was characterized with the cell line
feature together with the features of the drug that was used in that cell line and the
IC50 value obtained. Cell features are the cell mutation properties and drug features
are molecular descriptors and fingerprints generated with the same version of PaDEL
used in [34]. The final amount of cell line features was 142, and the final amount of
drug features was 790, resulting in a total of 932 features plus the IC50 value. The
final data set resulted in 40,691 instances.

An experiment was done using the Aleph ILP system in the classification task of
predicting “good” drugs in the cell line data set described above.Wehave transformed
the original regression problem into a binary classification problem. We have sorted
the examples by their IC50 value and established a lower threshold below which
examples are in class “good” and a upper threshold above which example where in
class “bad”. Examples in the “gray zone” between the lower and upper thresholds
were discarded. The discretisation resulted in a total of 27,120 examples. The back-
ground knowledge included the molecular descriptors, fingerprints as well as the cell
lines features.

Some simple rules found by Aleph include:
body of Rule 1: pubchemfp567(Compound), pubchemfp516(Compound), pub-

chemfp692(Compound); Positive cover = 3571, Negative cover = 77.
“If the compound molecule has the substructure O-C-C-O, the substructure [#1]-

C=C-[#1], and the substructure O=C-C-C-C-C-C, then the IC50 is considered as
good (98% of the covered examples).”

360 R. Camacho et al.

body of Rule 2: pubchemfp188(Compound); Positive cover = 4069, Negative
cover = 2915.

“If the compound molecule has two or more saturated or aromatic heteroatom-
containing ring of size 6, then the IC50 is considered good (58% of the covered
examples).”

Aleph was able to construct very simple rules that are easily understood by the
experts. The accuracy was 91%.

The background knowledge used in the just described experiment is typical in
chemoinformatics data analysis. There is a large number of molecular descriptors
and fingerprints. When encoding such information in the background knowledge, a
large number of [APIS] islands will be produced. These types of chemoinformatic
data analysis can profit a lot from the type of parallelisation available in the APIS
system.

16.6 Conclusions

In this chapter, we have discussed how ILP systems can profit fromparallel execution.
We have surveyed parallel and distributed executions of ILP systems. We have paid
special attention to the parallel approach implemented in the APIS ILP system.
A survey on parallel and distributed computation was also presented. To link ILP
to parallel execution we have also discussed how a distributed system scheduler
framework could be used to improve the execution of ILP systems by running in
parallel several of the tasks involved in the execution of an ILP system. We have
presented several applications where ILP have been successfully used and discussed
how those applications can profit from a parallel approach like the one of the APIS
system.

As a conclusion we may state that ILP systems have several advantages when
applied to data analysis in Life Sciences domains. Those applications can profit even
more if a parallel execution is used. A parallel execution can substantially improve
execution time or improve the quality of the models by searching larger regions of
the hypothesis space in the same time as the sequential execution. Parallel execution
can be used in a very large number of parts of an ILP algorithm. We can use it at the
theory-level search (coarse level) to the hypothesis space search to even use ILP with
a parallel execution of the Prolog engine, for highly nondeterministic background
knowledge.

References

1. Alves, A., Camacho, R., Oliveira, E.: Discovery of functional relationships in multi-relational
data using inductive logic programming. In: Proceedings of the 4th IEEE International Con-
ference on Data Mining (ICDM 2004), 1-4 Nov 2004, Brighton, UK, pp. 319–322 (2004)

2. EC Amazon: Amazon elastic compute cloud (amazon ec2), 2010. https://aws.amazon.com/
ec2/

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

16 Parallel Algorithms for Multirelational Data Mining . . . 361

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

4. Blaták J., Popelínský, L.: dRAP: A framework for distributed mining firts-order frequent pat-
terns. In: Proceedings of the 16th Conference on Inductive Logic Programming, pp. 25–27.
Springer, (2006)

5. Bone, P., Somogyi, Z., Schachte, P.: Estimating the overlap between dependent computations
for automatic parallelization. TPLP 11(4–5), 575–591 (2011)

6. Bratko, I., Muggleton, S., Varsek, A.: Learning qualitative models of dynamic systems. In:
Proceedings of the Eighth International Machine Learning Workshop, San Mateo, Ca, 1991.
Morgan-Kaufmann

7. Buntine, W.: Generalised subsumption and its applications to induction and redundancy. Artif.
Intell. J. 36(2):149–176 (1988). revised version of the paper that won the A.I. Best Paper Award
at ECAI-86

8. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw.: Pract. Experience 41(1):23–50 (2011)

9. Clare, A., King, R.D.: Data mining the yeast genome in a lazy functional language. In: Pro-
ceedings of the Fifth International Symposium on Practical Aspects of Declarative Languages,
pp. 19–36 (2003)

10. Costa, V.S., de Castro Dutra, I., Rocha, R.: Threads and or-parallelism unified. TPLP 10(4–6),
417–432 (2010)

11. Dasgupta, K., Mandal, B., Dutta, P., Kumar Mandal, J., Dam, S.: A genetic algorithm (ga)
based load balancing strategy for cloud computing. Proc. Technol. 10, 340–347 (2013)

12. Jeffrey, D., Sanjay, G.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

13. Dehaspe, L., De Raedt, L.: Parallel inductive logic programming. In: Proceedings of theMLnet
FamiliarizationWorkshop on Statistics, Machine Learning and Knowledge Discovery in Data-
bases (1995)

14. Delgado, J., Salah Eddin, A., Adjouadi, M., Sadjadi, S.M.: Paravirtualization for scientific
computing: performance analysis and prediction. In: 2011 IEEE 13th International Conference
on High Performance Computing and Communications (HPCC), pp. 536–543. IEEE (2011)

15. Fayyad, U.M., Uthurusamy, R., (eds.) In: Proceedings of the First International Conference on
Knowledge Discovery and Data Mining (KDD-95), Montreal, Canada, August 20-21, 1995.
AAAI Press (1995)

16. Nuno, A., Ashwin Srinivasan, F., Silva, F.M.A., Camacho, R.: Parallel ilp for distributed-
memory architectures. Mach. Learn. 74(3), 257–279 (2009)

17. Message Passing Interface Forum: MPI: A message-passing interface standard. Technical
Report UT-CS-94-230, University of Tennessee, Knoxville, TN, USA (1994)

18. Ian Foster and Carl Kesselman: The Grid 2: Blueprint for a new computing infrastructure.
Elsevier (2003)

19. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I.: Above the clouds: A berkeley view of cloud computing. Dept. Electrical Eng. and
Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS 28:13 (2009)

20. Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau, K.W., Patricia
Greninger, I., Thompson, R., Luo, X., Soares, J., et al.: Systematic identification of genomic
markers of drug sensitivity in cancer cells. Nature 483(7391), 570–575 (2012)

21. Cloud Google: Google cloud platform. https://cloud.google.com/
22. Graham, J., Page,D.,Kamal,A.:Accelerating the drugdesignprocess throughparallel inductive

logic programming data mining. In: Proceeding of the Computational Systems Bioinformatics
(CSB’03). IEEE (2003)

23. Gupta, G., Pontelli, E., Ali, K.A.M., Carlsson, M., Hermenegildo, M.V.: Parallel execution of
prolog programs: a survey. ACM Trans. Program. Lang. Syst. 23(4), 472–602 (2001)

https://cloud.google.com/

362 R. Camacho et al.

24. Huang,W., Liu, J., Abali, B., Panda, D.K.: A case for high performance computing with virtual
machines. In: Proceedings of the 20th annual international conference on Supercomputing, pp.
125–134. ACM (2006)

25. Juve, G., Deelman, E.: Scientific workflows and clouds. Crossroads 16(3), 14–18 (2010)
26. King, R., Muggleton S., Lewis, R., Sternberg, M.: Drug design by machine learning: The use

of inductive logic programming to model the structure-activity relationships of trimethoprim
analogues binding to dihydrofolate reductase. Proc. National Acad. Sci. 89(23) (1992)

27. King, R., Sternberg, M.J.E.: A machine learning approach for the prediction of protein sec-
ondary structure. J. Mol. Biol. 216, 441–457 (1990)

28. Konstantopoulos, S.K.: A data-parallel version of Aleph. In: Proceedings of the Work-
shop on Parallel and Distributed Computing for Machine Learning, co-located with
ECML/PKDD’2003, Dubrovnik, Croatia, 2003

29. Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in cloud computing envi-
ronments. Appl. Soft Comput. 13(5), 2292–2303 (2013)

30. Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1984)
31. Martinez-Angeles, C.A., de Castro Dutra, I., Costa, V.S., Buenabad-Chavez, J.: A datalog

engine for gpus. In: Declarative Programming and Knowledge Management - Declarative
ProgrammingDays, KDPD2013, Unifying INAP,WFLP, andWLP,Kiel, Germany, September
11-13, 2013, Revised Selected Papers, vol. 8439 of Lecture Notes in Computer Science, pp.
152–168. Springer (2013)

32. Matsui, T., Inuzuka, N., Seki, H., Itoh, H.: Comparison of three parallel implementations
of an induction algorithm. In: 8th International Parallel Computing Workshop, pp. 181–188.
Singapore (1998)

33. Mauch, Viktor, Kunze, Marcel, Hillenbrand, Marius: High performance cloud computing.
Future Gen. Comput. Syst. 29(6), 1408–1416 (2013)

34. Menden, M.P., Iorio, F., Garnett, M., McDermott, U., Benes, C.H., Ballester, P.J., Saez-
Rodriguez, J.: Machine learning prediction of cancer cell sensitivity to drugs based on genomic
and chemical properties. PloS one 8(4), e61318 (2013)

35. Michalski, R.S.: Pattern recognition as rule-guided inductive inference. In: Proceedings of
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 349–361 (1980)

36. Mitchell, T.M.: Generalization as search. Artificial intell. 18(2), 203–226 (1982)
37. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–317 (1991)
38. Muggleton, S.: Inductive logic programming: derivations, successes and shortcomings. In:

Proceedings of the European Conference onMachine Learning: ECML-93, pp. 21–37, Vienna,
Austria, April 1993

39. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. Special issue on Inductive
Logic Programming 13(3–4), 245–286 (1995)

40. Muggleton, S.: Learning frompositive data. In: InductiveLogic Programming, 6th International
Workshop, ILP-96, Stockholm, Sweden, August 26-28, 1996, Selected Papers, pp. 358–376
(1996)

41. Muggleton, S., Firth, J.: Relational rule induction with CProgol4.4: a tutorial introduction. In:
Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 160–188. Springer (2001)

42. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic
Program. 19(20), 629–679 (1994)

43. Ohwada, H., Mizoguchi, F.: Parallel execution for speeding up inductive logic programming
systems. In: Proceedings of the 9th International Workshop on Inductive Logic Programming,
number 1721 in LNAI, pp. 277–286. Springer (1999)

44. Ohwada, H., Nishiyama, H., Mizoguchi, F.: Concurrent execution of optimal hypothesis search
for inverse entailment. In: Cussens, J., Frisch, A. (eds.) Proceedings of the 10th International
Conference on InductiveLogic Programming, vol. 1866 of LNAI, pp. 165–173. Springer (2000)

45. Pacini, Elina, Mateos, Cristian, Garino, Carlos García: Distributed job scheduling based on
swarm intelligence: a survey. Comput. Electr. Eng. 40(1), 252–269 (2014)

46. Plotkin, G.D.: A note on inductive generalisation, pp. 153–163. In: Meltzer, B., Michie, D.
(eds.) Edinburgh University Press, Edinburgh (1969)

16 Parallel Algorithms for Multirelational Data Mining . . . 363

47. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: Amidterm report. In: Brazdil, P. (ed.) Proceedings
of the 6th European Conference on Machine Learning, vol. 667, pp. 3–20. Springer (1993)

48. Ramakrishnan, L., Zbiegel, P.T., Campbell, S., Bradshaw, R., Canon, R.S., Coghlan, S., Sakre-
jda, I., Desai, N., Declerck, T., Liu, A.: Magellan: experiences from a science cloud. In: Pro-
ceedings of the 2nd International Workshop on Scientific Cloud Computing, pp. 49–58. ACM
(2011)

49. Ramezani, F., Lu, J., Hussain, F.: Task based system load balancing approach in cloud envi-
ronments. In: Knowledge Engineering and Management, pp. 31–42. Springer (2014)

50. Ramezani, F., Jie, L., Hussain, F.K.: Task-based system load balancing in cloud computing
using particle swarm optimization. Int. J. Parallel Programm. 42(5), 739–754 (2014)

51. RD1, K., Muggleton, S.H., Srinivasan, A., Sternberg, M.J.: Structure-activity relationships
derived by machine learning: the use of atoms and their bond connectivities to predict muta-
genicity by inductive logic programming. Proc Natl Acad Sci USA, 9(93(1)):438–42 (1996)

52. Reinaldo, F., Fernandes, C., Rahman, A., Malucelli, A., Camacho, R.: Assessing the eligibility
of kidney transplant donors. In: Machine Learning and Data Mining in Pattern Recognition,
6th International Conference,MLDM2009, Leipzig, Germany, July 23–25, 2009. Proceedings,
pp. 802–809 (2009)

53. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),
23–41 (1965)

54. Vítor, S.C., Ashwin, S., Rui, C., Hendrik, B., Bart, D., Gerda, J., Jan, S., Henk, V., Wim, V.L:
Query transformations for improving the efficiency of ILP systems. J. Mach. Learn. Res. 4,
465–491 (2003)

55. Skillicorn, David B., Wang, Yu.: Parallel and sequential algorithms for data mining using
inductive logic. Knowl. Inf. Syst. 3(4), 405–421 (2001)

56. Smith, R.G.: The contract net protocol: high-level communication and control in a distributed
problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

57. Srinivasan, A.: The Aleph Manual, 2003. http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph

58. Srinivasan, A., King, R.D., Muggleton, S., Sternberg, M.J.E.: Carcinogenesis predictions using
ILP. In: Inductive Logic Programming, 7th International Workshop, ILP-97, Prague, Czech
Republic, Sept. 17–20, 1997, Proceedings, pp. 273–287 (1997)

59. Fonseca, N.A., Pereira,M., Santos Costa, V., Camacho, R.: Interactive discriminativemining of
chemical fragments. In: Proceedings of the 2010 International Conference on Inductive Logic
Programming (ILP 2010), number 6489 in Lecture Notes in Artificial Intelligence, pp. 59–66.
Springer (2011)

60. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2012)
61. Wielemaker, J.: Native preemptive threads in SWI-Prolog. In: Palamidessi, C. (ed.) Proceedings

of the 19th International Conference on Logic Programming, vol. 2916 of LNAI, pp. 331–345.
Springer (2003)

62. Wirth., R.: Learning by failure to prove. In: Proceedings Third European Working Session on
Learning, pp. 237–251. London (1988) Pitman

63. Woo, Y.T., Lai, D., McLain, J.L., Manibusan, M.K., Dellarco, V.: Use of mechanism-based
structure-activity relationships analysis in carcinogenic potential ranking for drinking water
disinfection by-products. Environ. Health Perspect 110((Suppl 1)), 75–87 (2002)

64. Wu, F., Wu, Q., Tan, Y.: Workflow scheduling in cloud: a survey. J. Supercomput. 1–46 (2015)
65. Xu, Y., Wu, L., Guo, L., Chen, Z., Yang, L., Shi, Z.: An intelligent load balancing algorithm

towards efficient cloud computing. In: Workshops at the Twenty-Fifth AAAI Conference on
Artificial Intelligence (2011)

66. Zaverucha, G., Santos Costa, V., Paes, A. (eds.) Inductive logic programming—23rd Interna-
tional Conference, ILP 2013, Rio de Janeiro, Brazil, August 28-30, 2013, Revised Selected
Papers, volume 8812 of Lecture Notes in Computer Science. Springer (2014)

67. Zhan, Z.H., Fang Liu, X., Jiao Gong, Y., Zhang, J., Shu-Hung Chung, H., Li. Y.: Cloud comput-
ing resource scheduling and a survey of its evolutionary approaches. ACMComputing Surveys
(CSUR) 47(4), 63 (2015)

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph

Part IV
Social Media Applications

Chapter 17
Parallelization of Sparse Matrix Kernels
for Big Data Applications

Oguz Selvitopi, Kadir Akbudak and Cevdet Aykanat

17.1 Introduction

There is a growing interest in scientific computing community for big data analyt-
ics. Recent approaches aim to benefit the big data analytics with the methods and
techniques that are very common in the mature field of optimization for high perfor-
mance computing (HPC) [20]. These efforts rely on the observation that graphs often
constitute the spine of the data structures used in analyzing big data (as data is almost
always sparse), and the adjacency list representation of a graph actually corresponds
to a sparsematrix. Hence, analysis operations on big data can be expressed in terms of
basic sparse matrix kernels. For example, the popular graph mining library PEGA-
SUS (A Peta-Scale Graph Mining System) [17] uses an optimized sparse matrix
vector multiplication kernel, called GIM-V, as the basic operation in several graph
mining algorithms such as PageRank, spectral clustering, finding connected compo-
nents, etc. Thiswork focuses on efficient parallelization of two other important sparse
kernels on distributed systems: sparse matrix–matrix multiplication (SpGEMM) of
the form C = AB and sparse matrix–dense matrix multiplication (SpMM) of the
form Y = AX .

SpGEMM kernel finds its application in a wide range of domains such as
finding all-pair shortest paths (APSP) [11], finite element simulations based on
domain decomposition (e.g., finite element tearing and interconnect (FETI) [13]),
molecular dynamics (e.g., CP2K [10]), computational fluid dynamics [19], climate

O. Selvitopi · K. Akbudak · C. Aykanat (B)
Department of Computer Engineering, Bilkent University, 06800, Cankaya,
Ankara, Turkey
e-mail: aykanat@cs.bilkent.edu.tr
URL:http://www.cs.bilkent.edu.tr

O. Selvitopi
e-mail: reha@cs.bilkent.edu.tr

K. Akbudak
e-mail: kadir@cs.bilkent.edu.tr

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_17

367

368 O. Selvitopi et al.

simulation [25], and interior point methods [6]. These applications necessitate
efficient large-scale parallelization in order to obtain shorter running times for
processing today’s rapidly growing “Big Data”. There exist several software pack-
ages that provide SpGEMM computation for distributed-memory architectures such
as Trilinos [15] and Combinatorial BLAS [7]. Trilinos uses one-dimensional (1D)
partitioning of input matrices. Matrices A and C are stationary, whereas matrix B is
communicated in K stages for a parallel system with K processors. This algorithm
corresponds to replicating B matrix among K processors in K stages. Combinatorial
BLAS uses the parallel matrix multiplication algorithm (SUMMA [30]) based on
dense matrices. The motivation of Combinatorial BLAS is large-scale graph analytic
for “Big Data”. It also contains scalable implementations of kernel operations such
as sparse matrix–vector multiplication (SpMV) and subgraph extraction. Recently,
a matrix-partitioning method based on two-constraint hypergraph partitioning is
proposed in [3] for reducing total message volume during outer-product–parallel
SpGEMM. [3] is known to be the first work that proposes to preprocess the sparsity
patterns of the matrices in order to reduce parallelization overheads. In [3], it is also
proposed that the input and output matrices can be simultaneously partitioned.

SpMM is also an important kernel and many graph analysis techniques such as
centrality measures use it as a building block. Apart from its popularity in block
methods in linear algebra [14, 22, 23], it is also a very basic kernel in graph analysis
as several works pointed out its relation to graph algorithms [2, 8, 17, 24, 28]. In
these methods, the dimensions of the dense matrices X and Y are usually very small
compared to the dimensions of the sparse matrix A. The importance of this kernel
is also acknowledged by vendors Intel MKL [1] and Nvidia cuSPARSE [21], being
realized respectively for multi-core/many-core and GPU architectures.

Our contributions in this work are centered around partitioning models to effi-
ciently parallelize these two kernels on distributed systems. In order to do so we aim
at reducing communication overheads. The proposed model for the SpGEMM ker-
nel aims to reduce total message volume while the proposed model for the SpMM
kernel consists of two phases and it strives for reducing both total and maximum
message volume. The experiments on up to 1024 processes show that scalability can
be drastically improved using the proposed models.

The rest of the paper is organized as follows: Section 17.2 describes the SpGEMM
kernel and the proposed model for parallelization. Section 17.3 describes the SpMM
kernel and the two-phase methodology to achieve parallelization. Section 17.4
presents our experiments separately for these two kernels and Sect. 17.5 concludes.

17.2 Parallelization of the SpGEMM Kernel

We investigate efficient parallelization of the SpGEMM operation on distributed-
memory architectures. The communication overhead and imbalance on computa-
tional loads of processors become significant bottleneck in large-scale parallelization.
Thus, we propose an intelligent matrix-partitioning method that achieve reducing

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 369

total message volume while maintaining balance on computational loads of proces-
sors in outer-product-based parallelization of the SpGEMM operation.

In Sect. 17.2.1, the outer-product-based parallelization of the SpGEMM oper-
ation is presented. We present the hypergraph model for this outer-product-based
parallelization in Sect. 17.2.2. Section 17.2.3 describes how to decode a hypergraph
partition as a matrix partition.

17.2.1 Outer-Product–Parallel SpGEMM Algorithm

We consider the SpGEMM computation of the form C= AB. Here, A and B denote
the input matrices, and C denotes the output matrix, where all of these matrices are
sparse.

Outer-product–parallel SpGEMMoperation uses 1Dcolumnwise and 1D rowwise
partitioning of the input A and B matrices, respectively, as follows:

Â = AP = [A1A2 · · · AK] and B̂ = PB =

⎡

⎢
⎢
⎢
⎣

B1

B2
...

BK

⎤

⎥
⎥
⎥
⎦

. (17.1)

In Eq. (17.1), K denotes the number of parts, which is in turn equal to the number
of processors of the parallel system, P denotes the permutation matrix obtained from
partitioning. The same permutationmatrix is used for reordering columns ofmatrix A
and rows of matrix B so that outer products are performed without any computation.

According to the input matrix partitioning given in Eq. (17.1), the SpGEMM
computation is performed in two steps. The first step consists of local outer-product
computations performed as follows by each processor Pk :

Ck = Ak Bk where k = 1, 2, . . . , K .

The second step consists of summing low-rank Ck matrices, which incur communi-
cation. The following operation is performed by all processors as follows:

C = C1 + C2 + · · · + CK where k = 1, 2, . . . , K .

17.2.2 Hypergraph Model

We propose a hypergraph partitioning (HP) based method to reduce the total mes-
sage volume that occur in the second step of the outer-product–parallel SpGEMM
algorithm (Sect. 17.2.1) while maintaining balance on computation loads of outer

370 O. Selvitopi et al.

products performed by processors in the first step of the parallel algorithm. The
objective in this partitioning is to cluster columns of matrix A and rows of matrix
B that contribute to the same nonzeros of matrix C into the same parts as much as
possible. In other words, the outer-product computations that contribute to the same
C-matrix nonzeros are likely to be performed by the same processor without any
communication.

We model an SpGEMM instance C= AB as a hypergraph H (C, A, B) =
(V ,N). V contains a vertex vx for each outer product of x th column of A with x th
row of B. vx represents the task of computing this outer product without any com-
munication in the first step of the parallel SpGEMM algorithm given in Sect. 17.2.1.
N contains a net (hyperedge) ni, j for each nonzero ci, j of C . Net ni, j connects the
vertices representing the outer products producing scalar partial results for ci, j . That
is,

Pins(ni, j) = {vx : x ∈ cols(ai,∗) ∧ x ∈ rows(b∗, j)} ∪ {vi, j }.

Here, cols(ai,∗) denotes the column indices of nonzeros in row i (ai,∗), whereas
rows(b∗, j) denotes the row indices of nonzeros in column j (b∗, j). Hence, ni, j
represents the summation operation of scalar partial results to obtain final result of
ci, j in the second step of the SpGEMM algorithm. Each vertex vx ∈ V is associated
with a weight w(vx) as follows:

w(vx) = |Nets(vx)|,

where Nets(vx) denotes the set of nets that connect vertex vx . This vertex weight
definition encodes the amount of computation performed for the outer products. Each
net ni, j ∈ N is associated with a unit weight, i.e.,

w(ni, j) = 1.

This net weight definition encodes the multi-way relation between the outer products
regarding a single nonzero ci, j .

17.2.3 Decoding Hypergraph Partitioning as Matrix
Partitioning

A vertex partition Π(V) = {V1,V2, . . . ,VK } can be used to obtain a conformal
columnwise and rowwise partition of A and B. That is, vx ∈ Vk is decoded as assign-
ing the outer product of x th column of A with x th row of B to processor Pk . If all
the pins of ni, j reside in the same part Vk (i.e., the net is uncut), the summation
operation regarding ci, j is performed locally by Pk . Otherwise, it means that the net
is cut and this summation operation is assigned to one of those processors that yield

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 371

a scalar partial result for ci, j . Hence, Π induces a 1D partition of A and B, and a 2D
nonzero-based partition of C .

In the proposedHP-basedmethod, the partitioning constraint usedwhile obtaining
Π corresponds to maintaining balance on computational loads of processors. Each
cut net incurs communication of scalar partial results. The amount of communication
due to a nonzero ci, j is equal to one less of the number of parts in which ni, j has
pins. This in turn corresponds to one less of the number of processors that send scalar
partial results to the processor responsible for ci, j . Thus the partitioning objective
of minimizing the cutsize according to “connectivity-1” metric [9] corresponds to
minimizing the total message volume.

17.3 Parallelization of the SpMM Kernel

We consider the SpMM operation of the form Y = AX , where A is an n × n sparse
matrix and X and Y are n × s dense matrices. Whatever the context, SpMM often
reveals itself as an expensive operation and hence parallelization of this kernel must
be handled with care in order to squeeze the best performance out of it. In this
regard, communicationmetrics centered aroundvolumeplay a crucial role.Assuming
Y = AX is performed in a repeated/iterativemanner, where the elements of X change
in each iteration and the elements of A remain the same, the partitions on X and Y
matrices should be conformable in order to avoid unnecessary communication during
the parallel operations.

In a system with K processors, we consider the problem of obtaining a rowwise
partition of A, where processor Pk stores the submatrix blocks Ak�, for 1 ≤ � ≤ K ,
where size of Ak� is nk × n� These submatrix blocks form the row stripe Rk and
Pk is held responsible for computing Yk = Rk X . Since Pk only stores Xk , it needs
to receive the corresponding elements of X from other processors to compute Yk .
This necessitates point-to-point communication between processors. This scheme is
called one-dimensional row-parallel algorithm and it consists of the following steps
for any processor Pk with 1 ≤ k ≤ K :

1. For each off-diagonal block A�k , for 1 ≤ � ≤ K , with at least one nonzero in it,
Pk sends the respective elements of Xk to processor P�. If ai j is a nonzero in this
off-diagonal block, then j th row of X need to be communicated.

2. Perform computations on local submatrix Akk using Xk . Local computations do
not necessitate communication. Yk is first set with the result of this computation.

3. For each off-diagonal block Ak�, for 1 ≤ � ≤ K , with at least one nonzero in it, Pk
receives the respective elements of X from P� in order to perform computations
on the respective nonlocal submatrix block. Yk is updated with the results of
nonlocal computations and its final value is computed.

372 O. Selvitopi et al.

Then, with some possible densematrix operations that involve Y , new X is computed
and used in the upcoming iteration. A local submatrix block is simply the diagonal
block owned by the respective processor (Akk), whereas nonlocal submatrix blocks
are the off-diagonal ones (Ak�, with k �= �). As hinted above, computations involv-
ing local submatrix blocks can be carried out without communication, whereas the
computations involving nonlocal ones may necessitate communication if they are
nonempty. In the following sections, we describe how to distribute these three matri-
ces to processors via a hypergraph partitioning model that minimizes total commu-
nication volume and another model that reduces maximum volume applied on top
of the former, hence able to address two important communication cost metrics that
contain message volume.

In order to parallelize the SpMM kernel, we utilize the concept of an atomic task,
which signifies the smallest computational granularity that cannot further be divided,
hence, an atomic task shall be executed by a single processor. In SpMM, the atomic
task is defined to be the multiplication of row ai,∗ with whole X . The result of this
multiplication are the elements of row yi,∗. In the hypergraph model, the atomic tasks
are represented by vertices.

17.3.1 Hypergraph Model

In the hypergraph model H = (V ,N), the vertices represent the atomic tasks of
computing the multiplication of rows of A with X , i.e., vi ∈ V represents ai,∗X .
Note that vi also represents the row ai,∗ as well as the computations associated with
this row. The computational load of this task is the number of multiply-and-add
operations. The weight of vi is assigned the computational load associated with the
corresponding multiplication, i.e.,

w(vi) = nnz(ai,∗) · nnz(X).

The dependencies among the computational tasks are captured by the nets. For each
row of X , there exists a net n j in the hypergraph and it captures the dependency of
the computational tasks to the row j of X . In other words, n j connects the vertices
corresponding to the tasks that need row j of X in their computations. Hence, the
vertices connected by n j are given by

Pins(n j) = {vi : ai j �= 0}.

n j effectively represents column j of A as well. Note that |Pins(n j)| = nnz(a∗, j),
where nnz(·) denotes the number of nonzeros in a row or column of matrix. Since the
number of elements in a row of X is s, n j is associated with a cost c(n j) proportional
to s. In other words,

c(n j) = s.

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 373

This quantity signifies the number of elements required by the computational tasks
corresponding to the vertices in Pins(n j). As a result, there are m vertices, n nets
and nnz(A) pins inH . This model is a simple extension of the model used for sparse
matrix vector multiplication [9].

17.3.2 Partitioning and Decoding

The formed hypergraph H = (V ,N) is then partitioned into K vertex parts to
obtain Π = {V1, . . . ,VK }. Without loss of generality, the set of rows corresponding
to the vertices inVk and the respective computations involving these rows are assigned
to processor Pk . A net n j in the cut necessitates communication of the elements of
row j of X and this communication operation involves the processors corresponding
to the parts in the connectivity set of this net. Specifically, if Vk ∈ Λ(n j) is the
owner of row j of X , then it needs to send this row to the remaining processors,
i.e., to each processor P� such that V� ∈ Λ(n j) − {Vk}, amounting to a volume of
s · (|Λ(n j)| − 1), s being the number of elements in row j . An internal net does not
necessitate communication as all the rows corresponding to the vertices connected by
this net belong to the same processor. The objective of minimizing cutsize according
to the connectivity metric [9] in the partitioning hence encodes the total volume of
communication. The constraint of maintaining balance on the vertex part weights
corresponds to maintaining balance on the computational loads of the processors.

Aforementioned formulation strives for reducing total communication volume.
However, the high volume overhead of SpMM kernel makes another related volume-
related metric maximum communication volume also important, which we
address next.

17.3.3 A Volume-Balancing Extension for SpMM

The formulation used to balance the volume loads of processors is based on a hyper-
graph model. This model was used to address multiple communication cost metrics
regarding one- and two-dimensional sparse matrix vector multiplication success-
fully [26, 27, 29]. Although the main objective of this model is to reduce the latency
overhead by aiming to minimize total message count, another important aspect of it
is to maintain a balance on communication volume. In our case, i.e., for SpMM, the
latter proves to be more crucial. Note that maintaining a balance on volume loads of
processors corresponds to providing an upper bound on the same metric. We extend
this model for SpMM. For this model, it is assumed a partition information is inher-
ent, such as the one obtained in the previous section—which is also utilized for this
model.

Using the partitioning informationΠ = {V1, . . . ,Vk}obtained onH = (V ,N),
we form another hypergraph H C = (V C ,N C) to summarize the communication

374 O. Selvitopi et al.

operations due to this partitioning. Recall that a net n j necessitates communication
if it is cut in Π . This communication operation is represented by a vertex inH C . In
other words, there exists a vertex vCj ∈ V C for each cut net n j ∈ N

V C = {vCj : |Λ(n j)| > 1}.

There exists a net nCk ∈ N C for each processor corresponding to the parts in Π .
Hence, there are K nets in H C . vCj is connected to each net corresponding to the
processor that participate in the communication operation represented by vCj . Hence,

Nets(vCj) = {nCk : Vk ∈ Λ(n j)}.

The vertices connected by nCk correspond to the communication operations that Pk
participates in

Pins(nCk) = {vCj : Pins(n j) ∩ Vk �= ∅} ∪ vCf .

Net nCk connects another vertex vCf , which is fixed to V C
k in partitioning and later

used to decode the assignment of communication operations to processors. Here, the
important point is the assignment of vertexweights inH C as they signify the volume
incurred in communication operations. The volume incurred in communicating a row
j of X is already described in the previous section and here the vertex weight is set
accordingly to this quantity

w(vCj) = s · (|Λ(n j)| − 1).

The nets are assigned unit costs
c(nCj) = 1.

Now consider a partition ΠC = {V C
1 , . . . ,V C

K } of H C . This vertex partition
induces a distribution of communication operations, where the responsibility of the
communication operations represented by the vertices in V C

k are assigned to proces-
sor Pk without loss of generality. A net nCj in the cut necessitates messages between
the respective processors. In other words, if the fixed vertex vCf connected by this
net is in part V C

k , this implies Pk will receive a message from each of the processors
corresponding to the vertex parts in Λ(nCj) − {V C

k }. Hence, the number of messages
incurred by this net is equal to |Λ(nCj) − {V C

k }|, which can be at most K − 1 as there
are K vertex parts. In the partitioning, the objective of minimizing cutsize according
to the connectivitymetric [9] hence encodes the total message count. As a part weight
indicates the amount of volume that the respective processor is responsible for, the
constraint of maintaining balance corresponds to maintaining balance on the volume
loads of the processors, and thus bounding the maximum volume.

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 375

With the partitioning of H , we address total volume and with the partitioning
of H C , we address total message count and maximum volume. By making use
of respective models, we are able to address communication cost metrics that are
important for SpMM.

17.4 Experiments

17.4.1 SpGEMM

17.4.1.1 Dataset

We include sparsematrices fromStanfordNetworkAnalysis Project (SNAP) [18] and
the Laboratory for Web Algorithmics (LAW) [4, 5]. These matrices are downloaded
from the University of Florida Sparse Matrix Collection [12] and their properties
are given in Table 17.1. These matrices commonly represent the adjacency matrices
of road networks or web-related graphs such as relations between products, etc.
On such graphs, APSP algorithms can be used to find distances among the entities
according to a predetermined metric. In this work, we only consider squaring the
original adjacency matrix once, as a representative of the APSP algorithm [11].

Table 17.1 Properties of input and output matrices

Matrix Input matrices Output
matrix

Number of nnz in row nnz in column

rows columns nonzeros avg max avg max nnz

Road networks

belgium_osm 1,441,295 1,441,295 3,099,940 2 10 2 10 5,323,073

luxembourg_osm 114,599 114,599 239,332 2 6 2 6 393,261

netherlands_osm 2,216,688 2,216,688 4,882,476 2 7 2 7 8,755,758

roadNet-CA 1,971,281 1,971,281 5,533,214 3 12 3 12 12,908,450

roadNet-PA 1,090,920 1,090,920 3,083,796 3 9 3 9 7,238,920

roadNet-TX 1,393,383 1,393,383 3,843,320 3 12 3 12 8,903,897

Web-related graphs

144 144,649 144,649 2,148,786 15 26 15 26 10,416,087

amazon-2008 735,323 735,323 5,158,388 7 10 7 1,076 25,366,745

amazon0505 410,236 410,236 3,356,824 8 10 8 2,760 16,148,723

amazon0601 403,394 403,394 3,387,388 8 10 8 2,751 16,258,436

nnz: number of nonzeros

376 O. Selvitopi et al.

17.4.1.2 Experimental Setup

In order to verify the validity of the proposed parallelization method, an SpGEMM
code is implemented and run on aBlueGene/Q system, named Juqueen. For partition-
ing the hypergraphs, PaToH [9] is used with default parameters except the allowed
imbalance ratio, which is set to be equal to 10%.

As a baseline algorithm, we implemented a binpacking-based method which only
considers computational load balancing. This method adapts the best-fit-decreasing
heuristic used in K -feasible binpacking problem [16]. The outer-product tasks are
assigned to one of K bins in decreasing order of the number of scalar multiplications
incurred by the outer products. The best-fit criterion is assigning the task to the
minimally loaded bin, whereas the capacity constraint is not used in this method.

17.4.1.3 Results

The performances of the proposed HP-based method and the baseline binpacking-
based method are compared in terms of speedups in Figs. 17.1 and 17.2. As seen
in these figures, in all cases, the proposed HP-based method performs substantially
better than the baseline method. Thus, this improvement verifies the benefit of reduc-
ing total message volume. As seen in the figures, the parallel efficiency of HP-based
method remains above 20% in almost all instances.

17.4.2 SpMM

17.4.2.1 Dataset

We test 10 matrices for SpMM. The properties of these matrices are given in
Table 17.2. These sparse matrices are also from Stanford Network Analysis Project
(SNAP) [18] and the Laboratory forWebAlgorithmics (LAW) [4, 5], and they are all
downloaded from the University of Florida Sparse Matrix Collection [12]. A com-
mon operation that can be performed on these matrices for any kind of graph analysis
is the execution of the breadth-first search from multiple sources. This corresponds
to multiple SpMM iterations.

17.4.2.2 Experimental Setup

We tested our model for SpMM on SuperMUC supercomputer, which runs IBM
System x iDataPlex servers. A node on this system consists of two Intel Xeon Sandy
Bridge-EP processors clocked at 2.7GHz and has 32GB of memory. The communi-
cation interconnect is based on Infiniband FDR10.

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 377

Fig. 17.1 Speedup curves comparing performances of the proposed and baseline SpGEMM algo-
rithms on road networks

We test twomodels in our experiments. This first is the plain hypergraph partition-
ing for SpMMdescribed in Sects. 17.3.1 and 17.3.2. Thismodel aims at only reducing
communication volume and is abbreviated with HP. The second model we test is the
one that extends the HP as described in Sect. 17.3.3. This model aims at reduc-
ing communication volume and balancing communication volume in two separate
phases and is abbreviatedwithHPVB. The dimension of the densematrices is used as

378 O. Selvitopi et al.

Fig. 17.2 Speedup curves comparing performances of the proposed and baseline SpGEMM algo-
rithms on web link matrices

Table 17.2 Properties of matrices tested for SpMM

Name Kind #rows/cols #nonzeros

amazon_2008 Amazon book
similarity graph

735,323 5,158,388

amazon0312 Amazon product
co-purchasing network

400,727 3,200,440

eu-2005 crawl of the .eu
domain

862,664 19,235,140

roadNet-CA road network 1,971,281 5,533,214

roadNet-PA road network 1,090,920 3,083,796

roadNet-TX road network 1,393,383 3,843,320

333SP car mesh 3,712,815 22,217,266

asia_osm road network 11,950,757 25,423,206

coPapersCiteseer citation network 434,102 32,073,440

coPapersDBLP citation network 540,486 30,491,458

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 379

s = 5. SpMM kernel is repeated in a loop for certain number of times and a warming
up phase is included for healthier timing. We test for K ∈ {64, 128, 256, 512, 1024}
processors.

17.4.2.3 Partitioning and Runtime Results

We present the partitioning and runtime results in Table 17.3 for K = 512 and K =
1024. There are two communication costmetricswe consider and display in the table:
total volume, indicated via “TV” column and volume load imbalance as percent,
indicated via “VI (%)” column. Communication volume is in terms of communicated
words and volume imbalance is on the send volumes of processors. The time of a
single SpMM obtained by the two compared methods is given under the “runtime”
column and it is in terms of microseconds. The lower runtimes for a specific test case
are indicated via bold text.

As seen in the table, HPVB obtains significant improvements over HP in com-
munication volume load imbalance. At K = 512 processors, it achieves up to 8×
improvement and at K = 1024 processors it achieves up to 9× improvement. It

Table 17.3 Partitioning and runtime results for SpMM for K = 512 and K = 1024

K Matrix TV VI (%) Runtime (us)

HP HPVB HP HPVB HP HPVB

512 amazon-2008 563,327 800,380 209 61 1855 1195
amazon0312 324,433 447,455 155 56 1340 948
eu-2005 320,741 428,054 438 57 1205 751
roadNet-CA 33,764 51,524 120 37 275 266
roadNet-PA 29,944 45,996 83 34 124 120
roadNet-TX 28,901 44,124 120 37 181 177
333SP 132,105 207,317 95 31 713 729

asia_osm 10,149 15,517 451 58 1213 1236

coPapersCiteseer 832,267 1,078,184 159 50 2489 1724
coPapersDBLP 1,863,018 2,240,814 128 48 3860 3082

1024 amazon-2008 649,869 908,269 197 57 1977 1049
amazon0312 383,068 518,843 168 181 1310 1132
eu-2005 485,614 623,844 479 92 1325 1174
roadNet-CA 52,915 81,568 111 36 125 128

roadNet-PA 44,564 69,284 121 34 71 65
roadNet-TX 44,288 67,460 134 40 158 160

333SP 208,154 324,505 73 31 395 374
asia_osm 17,971 27,222 523 58 530 504
coPapersCiteseer 1,021,506 1,277,537 213 55 1797 959
coPapersDBLP 2,112,593 2,522,300 233 52 3737 1959

380 O. Selvitopi et al.

Fig. 17.3 Runtimes for SpMM

increases total volume compared to HP, causing an increase up to 57 and 56% at
512 and 1024 processors, respectively. However, the reduction in maximum volume
proves to be more vital for performance as HPVB almost always performs superior
to HP as seen from the runtimes. Out of 20 instances at K = 512 and K = 1024
processors, HPVB obtains lower runtimes in 16 of them.

We present the obtained speedups in four test matrices in Fig. 17.3. As seen
from the figure HPVB scales better than HP as its performance usually gets better
compared to HP with increasing number of processors.

17.5 Conclusion

We described efficient parallelization of two important sparse matrix kernels for dis-
tributed systems that frequently occur in big data applications: sparse matrix–matrix
multiplication and sparse matrix–dense matrix multiplication. For these two kernels,
we proposed partitioningmodels in order to reduce the communication overheads and
hence improve scalability. Our experiments show that efficient parallel performance

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 381

for big data analysis on distributed systems requires careful data partitioning models
and methods that are capable of exploiting certain communication cost metrics.

Acknowledgments This work was supported by The Scientific and Technological Research Coun-
cil of Turkey (TUBITAK) under Grant EEEAG-115E212. This article is also based upon work from
COST Action IC1406 (cHiPSet).

References

1. Intel math kernel library (2015). https://software.intel.com/en-us/intel-mkl
2. Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scalable graph exploration on multicore

processors. In: Proceedings of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’10, pp. 1–11. IEEE Computer
Society, Washington, DC, USA (2010). doi:10.1109/SC.2010.46

3. Akbudak,K.,Aykanat,C.: Simultaneous input andoutputmatrix partitioning for outer-product–
parallel sparse matrix-matrix multiplication. SIAM J. Sci. Comput. 36(5), C568–C590 (2014).
doi:10.1137/13092589X

4. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution
coordinate-free ordering for compressing social networks. In: Srinivasan S., Ramamritham
K., Kumar A., Ravindra M.P., Bertino E., Kumar R. (eds.) Proceedings of the 20th Interna-
tional Conference on World Wide Web, pp. 587–596. ACM Press (2011)

5. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings of
the Thirteenth International World Wide Web Conference (WWW 2004), pp. 595–601. ACM
Press, Manhattan (2004)

6. Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Heroux, M., Preis, R.: LDRD report:
Parallel repartitioning for optimal solver performance. Tech. Rep. SAND2004–0365, Sandia
National Laboratories, Albuquerque, NM (2004)

7. Buluç, A., Gilbert, J.R.: Parallel sparse matrix-matrix multiplication and indexing: implemen-
tation and experiments. SIAM J. Sci. Comput. (SISC) 34(4), 170–191 (2012). doi:10.1137/
110848244; http://gauss.cs.ucsb.edu/~aydin/spgemm_sisc12.pdf

8. Buluç, A., Madduri, K.: Parallel breadth-first search on distributed memory systems. In: Pro-
ceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pp. 65:1–65:12. ACM, New York, NY, USA (2011). doi:10.
1145/2063384.2063471; http://doi.acm.org/10.1145/2063384.2063471

9. Catalyurek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst. 10(7), 673–693 (1999)

10. CP2K: CP2K home page (Accessed at 2015). http://www.cp2k.org/
11. D’Alberto, P., Nicolau, A.: R-kleene: A high-performance divide-and-conquer algorithm for

the all-pair shortest path for densely connected networks. Algorithmica 47(2), 203–213 (2007).
doi:10.1007/s00453-006-1224-z

12. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math.
Softw. (TOMS) 38(1), 1 (2011)

13. Dostál, Z., Horák, D., Kučera, R.: Total FETI-an easier implementable variant of the FETI
method for numerical solution of elliptic PDE. Commun. Numer. Meth. Eng. 22(12), 1155–
1162 (2006)

14. Feng, Y., Owen, D., Peri, D.: A block conjugate gradient method applied to linear sys-
tems with multiple right-hand sides. Comput. Meth. Appl. Mech. Eng. 127(14), 203–
215 (1995). http://dx.doi.org/10.1016/0045-7825(95)00832-2; http://www.sciencedirect.com/
science/article/pii/0045782595008322

https://software.intel.com/en-us/intel-mkl
http://dx.doi.org/10.1109/SC.2010.46
http://dx.doi.org/10.1137/13092589X
http://dx.doi.org/10.1137/110848244
http://dx.doi.org/10.1137/110848244
http://gauss.cs.ucsb.edu/~aydin/spgemm_sisc12.pdf
http://dx.doi.org/10.1145/2063384.2063471
http://dx.doi.org/10.1145/2063384.2063471
http://doi.acm.org/10.1145/2063384.2063471
http://www.cp2k.org/
http://dx.doi.org/10.1007/s00453-006-1224-z
http://dx.doi.org/10.1016/0045-7825(95)00832-2
http://www.sciencedirect.com/science/article/pii/0045782595008322
http://www.sciencedirect.com/science/article/pii/0045782595008322

382 O. Selvitopi et al.

15. Heroux,M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B.,
Long, K.R., Pawlowski, R.P., Phipps, E.T., et al.: An overview of the Trilinos project. ACM
Trans. Math. Softw. (TOMS) 31(3), 397–423 (2005)

16. Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Computer Science Press
(1978)

17. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: A peta-scale graph mining system imple-
mentation and observations. In: Proceedings of the 2009 Ninth IEEE International Conference
on Data Mining, ICDM ’09, pp. 229–238. IEEE Computer Society, Washington, DC, USA
(2009). doi:10.1109/ICDM.2009.14

18. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.
stanford.edu/data (2014)

19. Marion-Poty, V., Lefer, W.: A wavelet decomposition scheme and compression method
for streamline-based vector field visualizations. Comput. Graphics 26(6), 899–906
(2002). doi:10.1016/S0097-8493(02)00178-4; http://www.sciencedirect.com/science/article/
pii/S0097849302001784

20. Mattson, T., Bader, D., Berry, J., Buluc, A., Dongarra, J., Faloutsos, C., Feo, J., Gilbert, J.,
Gonzalez, J., Hendrickson, B., Kepner, J., Leiserson, C., Lumsdaine, A., Padua, D., Poole, S.,
Reinhardt, S., Stonebraker,M.,Wallach, S., Yoo,A.: Standards forGraphAlgorithmPrimitives.
ArXiv e-prints (2014)

21. NVIDIA Corporation: CUSPARSE library (2010)
22. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra

Appl. 29(0), 293–322 (1980). http://dx.doi.org/10.1016/0024-3795(80)90247-5; http://www.
sciencedirect.com/science/article/pii/0024379580902475. Special VolumeDedicated toAlson
S. Householder

23. O’Leary, D.P.: Parallel implementation of the block conjugate gradient algorithm. Paral-
lel Comput. 5(12), 127–139 (1987). http://dx.doi.org/10.1016/0167-8191(87)90013-5; http://
www.sciencedirect.com/science/article/pii/0167819187900135. Proceedings of the Interna-
tional Conference on Vector and Parallel Computing-Issues in Applied Research and Devel-
opment

24. Sarıyuce, A.E., Saule, E., Kaya, K., Çatalyurek, U.V.: Regularizing graph centrality compu-
tations. J. Parallel Distrib. Comput. 76(0), 106–119 (2015). http://dx.doi.org/10.1016/j.jpdc.
2014.07.006; http://www.sciencedirect.com/science/article/pii/S0743731514001282. Special
Issue on Architecture and Algorithms for Irregular Applications

25. Sawyer,W.,Messmer, P.: Parallel gridmanipulations for general circulationmodels. In: Parallel
Processing and AppliedMathematics. Lecture Notes in Computer Science, vol. 2328, pp. 605–
608. Springer, Berlin (2006)

26. Selvitopi, O., Aykanat, C.: Reducing latency cost in 2D sparse matrix partitioning models.
Parallel Comput. 57, 1–24 (2016). http://dx.doi.org/10.1016/j.parco.2016.04.004; http://www.
sciencedirect.com/science/article/pii/S0167819116300138

27. Selvitopi, R.O., Ozdal, M.M., Aykanat, C.: A novel method for scaling iterative solvers: avoid-
ing latency overhead of parallel sparse-matrix vector multiplies. IEEE Trans. Parallel Distrib.
Syst. 26(3), 632–645 (2015). doi:10.1109/TPDS.2014.2311804

28. Shi, Z., Zhang, B.: Fast network centrality analysis using gpus. BMCBioinf. 12(1), 149 (2011).
doi:10.1186/1471-2105-12-149

29. Uçar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in partitioning
sparse rectangular matrices for parallel matrix-vector multiplies. SIAM J. Sci. Comput. 25(6),
1837–1859 (2004). doi:10.1137/S1064827502410463

30. Van De Geijn, R.A., Watts, J.: Summa: scalable universal matrix multiplication algorithm.
Concurrency-Pract. Experience 9(4), 255–274 (1997)

http://dx.doi.org/10.1109/ICDM.2009.14
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://dx.doi.org/10.1016/S0097-8493(02)00178-4
http://www.sciencedirect.com/science/article/pii/S0097849302001784
http://www.sciencedirect.com/science/article/pii/S0097849302001784
http://dx.doi.org/10.1016/0024-3795(80)90247-5
http://www.sciencedirect.com/science/article/pii/0024379580902475
http://www.sciencedirect.com/science/article/pii/0024379580902475
http://dx.doi.org/10.1016/0167-8191(87)90013-5
http://www.sciencedirect.com/science/article/pii/0167819187900135
http://www.sciencedirect.com/science/article/pii/0167819187900135
http://dx.doi.org/10.1016/j.jpdc.2014.07.006
http://dx.doi.org/10.1016/j.jpdc.2014.07.006
http://www.sciencedirect.com/science/article/pii/S0743731514001282
http://dx.doi.org/10.1016/j.parco.2016.04.004
http://www.sciencedirect.com/science/article/pii/S0167819116300138
http://www.sciencedirect.com/science/article/pii/S0167819116300138
http://dx.doi.org/10.1109/TPDS.2014.2311804
http://dx.doi.org/10.1186/1471-2105-12-149
http://dx.doi.org/10.1137/S1064827502410463

Chapter 18
Delivering Social Multimedia Content
with Scalability

Irene Kilanioti and George A. Papadopoulos

18.1 Introduction

CDNs aim at overcoming Internet issues and ensuring smooth and transparent con-
tent delivery. They principally replicate content in locations as near as possible to
the user that is bound to consume it. CDNs handle altogether the major issues of
(i) the most efficient placement of surrogate servers in terms of high performance
and less infrastructure cost; (ii) the best content diffusion placement, namely the
decision of which content will be copied in the surrogate servers and to what extent;
and (iii) the temporal diffusion, related to the most efficient timing of the content
placement [15]. They are, however, very dissimilar in terms of the services pro-
vided and their geographic coverage. The optimization of their overall efficiency,
as far as user is concerned, is practically achieved with the automatic detection of
the medium (either computer or mobile -smartphone/tablet), optimized management
of the browser cache, server load-balancing, the consideration of specific nature of
the content of the media provider (video on demand, live videos, geo-blocked con-
tent, etc.,) or features of certain operators, such as real-time compression, session
management, etc.

Utilization of CDNs is likely to have profound effects on large data download
through enhanced performance, scalability, and cost reduction. Extended use of
OSNs, and the increasing popularity of streaming media are the factors that drive
the HTTP traffic growth [4]. The amount of traffic generated on a daily basis by
online multimedia streaming providers is multiplied by the transmission over OSNs
(with more than 400 tweets per minute including a YouTube video link [3] being

I. Kilanioti (B) · G.A. Papadopoulos (B)
Department of Computer Science, University of Cyprus, 1 University Avenue,
P.O. Box 20537, 2109 Nicosia, Cyprus
e-mail: ekoila01@cs.ucy.ac.cy

G.A. Papadopoulos
e-mail: george@cs.ucy.ac.cy

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_18

383

384 I. Kilanioti and G.A. Papadopoulos

published per minute). Subsequently, CDN users can benefit from an incorporated
mechanism of social awareness over the CDN infrastructure. In [15, 16] Kilanioti
and Papadopoulos introduce a dynamic mechanism of preactive copying of content
to an existing validated CDN simulation tool and propose an efficient copying policy
based on prediction of demand on OSNs along with its variations.

18.1.1 A Toy Example of Our Approach

Let us consider Bob, located in London and assigned to the London CDN servers of
an OSN service. Most of Bob’s social friends are geographically close to him, but he
also has a few friends in Europe and Australia assigned to their nearest servers. Bob
logs into the OSN and posts a video that he wants to share. Pushing the video content
to all other geographically distributed servers immediately before any requests occur
would be the naive way to ensure that this content is as close as possible to all users.
Aggregated over all users, pushing can lead to traffic congestion, and users would
experience latency in accessing the content, which, moreover, could not be consumed
at all. The problem of caching would be intensified when Alice, the only friend of
Bob in Athens, would be interested in that content, and with many such Alices in
various places.

Rather than pushing data to all surrogates, we can proactively distribute it only
to friends of Bob likely to consume it and only at the time window that signifies a
non-peak time for the upload in London area and a non-peak-time for the download
in Athens area, thus taking advantage of the timezone differences of our geo-diverse
system. The content will be copied only under certain conditions (content with high
viewershipwithin themedia service, copied to geographically close timezoneswhere
the user has mutual friends with high influence impact). This would contribute to
smaller response times for the content to be consumed (for the users) and lower
bandwidth costs (for the OSN provider).

18.1.2 Contributions

In this work we modify the Social Prefetcher algorithm [15, 16] to incorporate best
performing caching mechanisms. We conduct experiments over a large corpus of
YouTube videos and use Twitter, where information propagates via retweeting across
multiple hops in the network [19]. Social cascades are directly analyzed, as the real
dataset of User Generated Content (UGC) used includes multimedia links over the
OSN. The Twitter dataset contains geographic locations, follower lists and tweets
for 37 million users, spreading of more than one million YouTube videos over this
network, a corpus of more than 2 billions messages and approximately 1.3 million
single messages with an extracted video URL. The wide popularity and massive user
base ofYouTube andTwitter allowus to obtain safe insights regarding user navigation

18 Delivering Social Multimedia Content with Scalability 385

behavior on other similar media and microblogging platforms, respectively. The
implemented variations are incorporated in a validated simulator for CDNs, and
restrictions of the CDN infrastructure (storage issues, network topology) are taken
into account.

The present work goes beyond the Social Prefetcher algorithm [16] in terms of
performance. The latter surpasses performance improvement of similar works in
pull-based methods, that are employed by most CDNs, whereas moreover uses more
refined topology of data centers and does not neglect storage issues. Storage costs are
still a significant challenge despite the proliferation of cloud computing. In this work
we examine which caching schemes in the surrogate server affect the CDN metrics
the most. We further enhance the performance of Social Prefetcher algorithm, an
optimization analysis of which is presented by the authors in [15]. The findings of
present work can be exploited for future policies complementary to existing CDN
solutions or incorporated to OSN providers mechanisms, to handle larger scale data.

The rest of this paper is structured as follows: Sect. 18.2 reviews previous related
work. Section18.3 formally describes the addressed problem. The proposed algo-
rithm is described in Sect. 18.4. Section18.5 gives an outline of the methodology,
along with the preparation of the employed datasets. Our main findings are pre-
sented in Sect. 18.6. Section18.7 concludes the paper and discusses directions for
future work.

18.2 Related Work

Systems that leverage information from OSNs with various research goals, such as
the decision for copying content or improvement of policy for temporary caching,
include [20, 21, 23]. Traverso et al. [23] improve QoS by exploiting time differences
among sites and the access patterns that users follow. Sastry et al. [20] analyze social
cascades and access to social profiles via a third-party page.

As long as the behavior of users in different media services is concerned, the
traffic on YouTube is described in several studies [4, 10–12, 18], with emphasis on
the characteristics of media content, such as file size, bitrate, usage patterns, and
popularity. In [11], the authors study the YouTube workload to discover that there
are many similarities between traditional Web and media streaming workloads. The
authors in [7] find a strong correlation among YouTube videos, because the links to
related videos generated by uploaders depict small-world characteristics. In [9] the
authors analyze how the popularity of individual YouTube videos evolves.

Authors in [16] extend the Social Prefetcher algorithm proposed in [15] to include
information about peak-time of various timezones of a geo-diverse system, as well
as contextual information about the viewership of video content within the media
service. The basic algorithm gives a near-optimal solution to the problem of content
delivery and addresses memory usage issues related to the very large graph dataset
accommodated. The suggested mechanism added to a CDN simulator overcomes the
testing limitations of other existing CDN platforms, such as the blackbox treatment
of CDN policies or the need for the participation of third users.

386 I. Kilanioti and G.A. Papadopoulos

18.3 Problem Description

We aim atmitigating the inherent Internet performance issues by improving the CDN
infrastructure mechanisms. We aim at the reduction of the response time for the user,
increase of the hit ratio of our request, as well as restriction of the cost of copying
from the origin server to surrogate servers. We consider the network topology, the
server location, and restrictions in the cache capacity of the server. Taking as input
data from OSNs and actions of users over them, we want to recognize objects that
will eventually be popular in the realm of the OSN platform.

We search a policy such that given a graph G(V,E), a set of R regions, where
the nodes of the social network are distributed, and the posts P of the nodes, it will
recognize the set of objects O that will be popular only in a subset of the regions
(Table18.1), where the content is likely to be copied. The policy is represented by the
function Put(ni,Predict(G,P,R,O)), which takes as input a surrogate server ni ∈ N
and the results of function Predict (set of g objects that will be globally popular and
λ objects that will be locally popular), such that

Qhit

Qtotal
(18.1)

is maximum, whereas constraint

∑

∀i∈O
Sifik ≤ Ck (18.2)

is fulfilled, where:

fik =
{
1 if object i exists in the cache of surrogate server k

0 if object does not exist
(18.3)

Function Put(ni,Predict(G,P,R,O)) returns the set of objects o ∈ O that have
to be placed in surrogate server ni ∈ N .

18.4 Proposed Dynamic Policy

The proposed algorithm encompasses an algorithm for each new request arriving in
the CDN and an algorithm for each new object in the surrogate server. Internally, the
module communicates with the module processing the requests and each addressed
server separately (Fig. 18.1).

18 Delivering Social Multimedia Content with Scalability 387

Table 18.1 Notation overview

G(V,E) Graph representing the social network

V = {V1, . . . , Vn} Nodes representing the social network users

E = {E11, . . . ,E1n, . . . ,Enn} Edges representing the social network
connections, where Eij stands for friendship
between i and j

R = {r1, r2, . . . , rτ } Regions set

N = {n1, n2, . . . , nu} The surrogate servers set. Every surrogate
server belongs to a region ri

Ci, i ∈ N Capacity of surrogate server i in bytes

O = {o1, o2, . . . , ow} Objects set (videos), denoting the objects users
can ask for and share

Si, oi ∈ O Size of object i in bytes

iκ Object accessed at the κ-th iteration, κ: the
counter maintained and incremented each time
there is a request for an object

ΔTiκ Number of accesses since the last time object i
was accessed

Πi Popularity of object i, i ∈ O

qi = {t, Vψ, ox}, 1 < x < w, 1 < ψ < n Request i consists of a timestamp, the id of the
user that asked for the object, and the object id

P = {p12, p13, . . . , pnw} User posts in the social network, where pij
denotes that node i has shared object j in the
social network

ptsi, ptei, 1 < i < τ peak time start and peak time end for each
region in secs

Q = {q1, q2, . . . , qζ } Object requests from page containing the
media objects, where qi denotes a request for
an object of set O

Qhit , Qtotal Number of requests served from surrogate
servers of the region of the user/total number of
requests

X,Y ∈ R Closest timezones with mutual followers/with
highest centrality metric (HITS) values

18.4.1 For Every New Request in the CDN

The main idea is to check whether specific time has passed after the start of the
cascade, and then define to what extent the object will be copied. Initially, we check
whether it is the first appearance of the object. The variable o.timestamp depicts the
timestamp of the last appearance of the object in a request and helps in calculating the
timer related to the duration of the cascade. If it is the first appearance of the object,
the timer for the object cascade is initialized and o.timestamp takes the value of the
timestampof the request. If the cascade is not yet complete (its timer has not surpassed

388 I. Kilanioti and G.A. Papadopoulos

Request Handler
Surrogate server 1

Surrogate server 2
Surrogate server 3

Surrogate server 4
Surrogate server 5

. . .
Surrogate server u

Predict (G,P,R,O)

Prefetching Unit

Servicing
Unit

Fig. 18.1 The prefetching unit

a threshold), we check the importance of the user applying the Hubs Authorities
(HITS) algorithm and checking its authority score, as well as the viewership of the
object in the media service platform (Fig. 18.2).

For users with a high authority score, we copy the object to all surrogate servers
of the user’s timezone and to the surrogate servers serving the timezones of all

Fig. 18.2 Algorithm for every new request (timestamp, Vi, o) in the CDN

18 Delivering Social Multimedia Content with Scalability 389

Fig. 18.3 Subpolicy I

followers of the user (global prefetching). Otherwise, selective copying includes
only the surrogates that the subpolicy decides (local prefetching).

Centrality is measured with the HITS algorithm [17], a link analysis algorithm
that rates web pages. Twitter uses a HITS style algorithm to suggest to users which
accounts to follow [13], as well. A so-called good hub represents a page that points to
many other pages, whereas a good authority represents a page that is linked by many
different hubs. Memory usage issues for the very large graph dataset accommodated
led to calculation of HITS with the MapReduce technique. Subpolicy (Fig. 18.3)
checks the X closest timezones where a user has mutual friends and out of them,
the Y with the highest value of the centrality metric as an average. Highest value
of the metric means that the object is likely to be asked for more times. Copying is
performed to the surrogate servers that serve the above timezones.

18.4.2 For Every New Object in the Surrogate Server

Surrogate servers keep replicas of the web objects on behalf of content providers. In
the case that the new object does not fit in the surrogate server’s cache, we define the
time_threshold as the parameter for the duration that an object remains cached.

We check for items that have remained cached for a period longer than the
time_threshold and we delete those with the largest timestamp in the cascade. In
case there exist no such objects or all objects have the same timestamp, we apply
various policies for the removal of objects

• Least Recently Used (LRU) In the most straightforward extension of LRU for
handling nonhomogeneous-sized objects we prune the least recently used items
first. The algorithmkeeps track ofwhatwas usedwhen, tomake sure that it discards
the least recently used item.

• Least Frequently Used (LFU) The algorithm keeps track of the number of times an
object is referenced in memory. When the cache is full and more room is required,
it purges the item with the lowest reference frequency. We simply employ an LFU
algorithm by assigning a counter to every object that is loaded into the cache. Each
time a reference is made to that object the counter is increased by one. When the
cache reaches capacity and a new object arrives, the system will search for the
object with the lowest counter and remove it from the cache.

390 I. Kilanioti and G.A. Papadopoulos

Table 18.2 Applied caching schemes

Name Primary key Secondary key

LRU Time since last access

LFU Frequency of access

SIZE Size Time since last access

• Size-adjusted LRU (SIZE) The optimization model devised in [1] to generalize
LRU is approximately solved by a simple heuristic and the policy is called Size-
adjusted LRU or SIZE. In this policy the objects are removed in order of size with
the largest object removed first. In case two objects have the same size, objects
longer cached since their last access are removed first. Objects in the cache are
reindexed in order of increasing values of Si · ΔTiκ and highest index objects are
greedily selected and purged from the cache until the new object fits in.

Varying algorithms depending on the caching scheme used (Table 18.2) are
depicted in Figs. 18.4, 18.5 and 18.6. The heuristics applied in our approach are
based on the following observations [15]: Users are more influenced by geographi-
cally close friends, and moreover by mutual followers, with the most popular users
acting as authorities. Social cascades have a short duration, and in our prefetching
algorithm we take into account the observation that the majority of cascades end
within 24 h. However, we introduce a varying time threshold for the cascade effect
and the time that an object remains in cache. Values given in the time threshold
variable also include 48 h, as well as threshold covering the entire percentage of
requests.

Fig. 18.4 VariationA—Algorithm for every new object o in the surrogate server nk

18 Delivering Social Multimedia Content with Scalability 391

Fig. 18.5 VariationB—Algorithm for every new object o in the surrogate server nk

Fig. 18.6 VariationC—Algorithm for every new object o in the surrogate server nk

Prinicipally we check whether specific time has passed after the start of cascade
and, only in the case that the cascade has not ended, define to what extent the object
will be copied (algorithm for every new request). This check is also performed
in algorithm for every new object, where we define the time_threshold. The latter
roughly expresses the average cascade duration, as it defines the duration that an
object remains cached.

392 I. Kilanioti and G.A. Papadopoulos

18.5 Experimental Evaluation

For the experimental evaluation, we used a stand-alone CDN simulator for CDNs.
The configuration of the simulation values is depicted inTable18.3. For the extraction
of a reliable output, we had to conclude to a specific network topology, as well as
make assumptions regarding the input dataset. The simulator takes as input files
describing the underlying CDN and the traffic in the network, and provides an output
of statistical results, discussed in the next Section.

• Network Topology There follows a short description of the process defining the
nodes in the topology. These nodes represent the surrogate servers, the origin
server, and the users requesting the objects (Fig. 18.7). For an in-depth analysis you
can refer to [15]. To simulate our policy and place the servers in a real geographical
position, we used the geographical distribution of the Limelight network [14]. For
the smooth operation of the simulator the number of surrogate servers was reduced
by a ratio of 10%, to ultimately include 423 servers (Table18.4). Depending on
the closer distance between the surrogate region defined by Limelight and each of
the timezones defined by Twitter (20 Limelight regions, 142 Twitter timezones),
we decided where the requests from each timezone will be redirected. The popu-
lation of each timezone was also taken into consideration. The INET generator [4]
allowed us to create an AS-level representation of the network topology. Topol-
ogy coordinates were converted to geographical coordinates with the NetGeo tool
from CAIDA [5], a tool that maps IP addresses and Autonomous System (AS)
coordinates to geographical coordinates [22], and surrogate servers were assigned
to topology nodes.
After groupingusers per timezone (due to the limitations the large dataset imposes),
each group of users was placed in a topology node. We placed the user groups in
the nodes closer to those comprising the servers that serve the respective timezone
requests, contributing this way to a realistic network depiction.

• Number of Requests 1million requests were considered sufficient, with the number
of objects being the dominant factor increasing the memory use of the simulation
tool. Also similar concept approaches use similar number of requests ([23] on a
daily basis and [21]), and samenumber of distinct videos for generation of requests.

Table 18.3 Simulation characteristics

Number of nodes in the topology 3500

Redirection policy Cooperative environment (closest surrogate)

Number of origin servers 1

Number of surrogate servers 423

Number of user groups 162

Bandwidth 100 Mbit/s

18 Delivering Social Multimedia Content with Scalability 393

We define the regions with surrogate servers (Limelight)

We define the number of surrogate servers in every region (Limelight – 10% reduction)

We assign surrogate servers for serving request in every time zone

We convert the topology coordinates into geographical coordinates (NetGeo)

We assign the surrogate servers to nodes in the topology

Fig. 18.7 Methodology followed

Table 18.4 Distribution of servers over the world for the experimental evaluation

City Servers City Servers

Washington DC 55 Toronto 12

New York 43 Amsterdam 20

Atlanta 11 London 30

Miami 11 Frankfurt 31

Chicago 37 Paris 12

Dallas 19 Moscow 10

Los Angeles 52 Hong Kong 8

San Jose 37 Tokyo 12

Seattle 15 Changi 5

Phoenix 3 Sydney 1

394 I. Kilanioti and G.A. Papadopoulos

• Cache Size The requests generated from the generator follow a long-tail distribu-
tion, thus 15% of the whole catalog size was considered to be sufficient.

• Threshold Values Experimenting was conducted for time thresholds of 24 h and
48 h, as well as for the time threshold that covered all the requests. The thresh-
old for media service viewership was set at 402.408 (average media viewer-
ship in the dataset). The authority threshold score was tested for various values
(0.006/0.02/0.04).

18.6 Main Findings

The statistic reports produced by the simulator are used to evaluate the proposed
policy. There follows a short explanation of the metrics used in our experiments for
the extraction of statistical results.

18.6.1 Client Side Metrics

They refer to activities of clients, i.e., the requests for objects.

• Mean Response Time indicates how fast a client is satisfied. It is defined as

M−1∑

i=0
ti

M

where M is the number of satisfied requests and ti is the response time of the
ith request. It starts at the timestamp when the request begins and ends at the
timestamp when the connection closes.

18.6.2 Surrogate Side Metrics

They are focused on the operations of the surrogate servers.

• Hit Ratio: is the percentage of the client-to-CDN requests resulting in a cache hit.
High values indicate high quality content placement in the surrogate servers.

• Byte Hit Ratio: is the hit ratio expressed in bytes, counting the corresponding bytes
of the requests. High values indicate optimized space usage and lower network
traffic.

18 Delivering Social Multimedia Content with Scalability 395

18.6.3 Network Statistics Metrics

They run on top of TCP/IP and concern the entire network topology.

• Active Servers refers to the surrogate servers being active serving clients.
• MeanUtility of the Surrogate Servers is a value that expresses the relation between
the number of bytes of the served content against the number of bytes of the
pulled content (from the origin server or other surrogate servers). It is bounded
to the range [0, 1] and provides an indication about the CDN performance. High
net utility values indicate good content outsourcing policy and improved mean
response times for the clients.

We conducted a multitude of experiments (55 for each caching scheme and time
threshold combination). Table18.5 presents the average values of four parameters
for six cases of testing. The lowest mean response times appear for the cases of the
time threshold covering all requests for all caching schemes. We observe that LFU
scheme outperforms LRU and SIZE in terms of mean response times and hit ratios
achieved.

• Hit Ratio To begin with, Fig. 18.8 illustrates how the hit ratio of the requests
is affected by modifying the number of timezones with highest centrality met-
ric examined. The caching scheme of LFU appears to perform better than the
LRU scheme. LRU and LFU offer comparable results, whereas they both outper-
form SIZE. We come to the conclusion that there is a realistic room for perfor-
mance improvement by implementing various web caching characteristics in a
CDN infrastructure, even though the social cascading mechanisms have already
been activated to improve its performance.

• Mean Utility of the Surrogate Servers For a fixed number of 10 closest timezones
with mutual followers LRU scheme appears to depict the highest mean utility of
the surrogate servers, followed by LFU and SIZE (Fig. 18.9).

Table 18.5 Average metric values for X = 10 timezones of close mutual friends

Mean response
time (Avg, 10−2
s)

Hit ratio (Avg, %) Active servers Mean utility
(Avg, %)

LFU—24-h 1.1383 32.81 326 96.01

LFU—48-h 1.1352 33.08 325 96.01

LFU—all-h 1.1112 34.69 324 96.01

SIZE—24-h 1.1541 32.10 327 95.94

SIZE—48-h 1.146076 32.03 326 95.98

SIZE—all-h 1.1274 33.17 326 96.00

LRU—24-h 1.1412 32.12 326 95.99

LRU—48-h 1.1377 32.42 325 96.02

LRU—all-h 1.1181 34.16 325 96.04

396 I. Kilanioti and G.A. Papadopoulos

1 5 10

32

33

34

Number of timezones

H
it
 R

at
io

 (
%

)

LRU
LFU
SIZE

1 5 10

32

33

34

Number of timezones

B
yt

e
H

it
 R

at
io

 (
%

)

LRU
LFU
SIZE

(a) (b)

Fig. 18.8 Effect of timezones used as Y on a Hit Ratio and b Byte Hit Ratio for X = 10 closest
timezones with mutual followers for LRU, LFU and SIZE

1 5 10

95.94

95.96

95.98

96.00

96.02

96.04

Number of timezones

M
ea

n
ut

ili
ty

 o
f
th

e
su

rr
og

at
e

 s
er

ve
rs

 (
%

) LRU
LFU
SIZE

1 5 10

322

324

326

Number of timezones

A
ct

iv
e

se
rv

er
s

LRU
LFU
SIZE

(a) (b)

Fig. 18.9 Effect of timezones used as Y on a Mean Utility of the Surrogate Servers and b Active
Servers for X = 10 closest timezones with mutual followers for LRU, LFU, and SIZE

• Active Servers For a fixed number of 10 closest timezones with mutual followers
LFU appears to use less active servers after the first timezone of highest centrality
in the scenario of time threshold covering all the requests. SIZE depicts higher
values of active servers for the cases of 5 and 10 timezones examined (Fig. 18.9).

• Mean Response Time For the most representative case of all requests for LRU and
LFU schemes, the trade-off between the reduction of the response time and the
cost of copying in servers is expressed with a decrease of the mean response time
as the timezones increase, and a point after which the mean response time starts
to increase again (Figs. 18.10 and 18.11). This decrease in the mean response time
occurs with approximately five timezones out of the 10 used for LRU scheme
(for a fixed number of closest timezones with mutual followers), and with seven
timezones for LFU. After this point the slight increase in the mean response time
is attributed to the delay for copying content to surrogate servers. The cost for
every copy is related to the number of hops among the client asking for it and

18 Delivering Social Multimedia Content with Scalability 397

1 2 3 4 5 6 7 8 9 10

1.1170

1.1175

1.1180

1.1185

1.1190

1.1195

Number of timezones

M
ea

n
R

es
po

ns
e

T
im

e
(m

s) LRU

1 2 3 4 5 6 7 8 9 10

1.1155

1.1160

1.1165

Number of timezones

M
ea

n
R

es
po

ns
e

T
im

e
(m

s) LFU

(a) (b)

Fig. 18.10 Effect of timezones used as Y on Mean Response Time for X = 10 closest timezones
with mutual followers for a LRU and b LFU

1 2 3 4 5 6 7 8 9 10

1.146

1.148

1.150

1.152

Number of timezones

M
ea

n
R

es
po

ns
e

T
im

e
(m

s) SIZE

1 2 3 4 5 6 7 8 9 10

1.12

1.13

1.14

1.15

Number of timezones

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

LRU
LFU
SIZE

(a) (b)

Fig. 18.11 Effect of timezones used as Y on Mean Response Time for X = 10 closest timezones
with mutual followers for a SIZE and b all caching schemes

the server where copying is likely to be made, according to the Put function. We
observe that SIZE depicts a poor performance, since it does not take advantage of
the frequency skew.

18.7 Conclusions

CDN infrastructures rapidly deliver multimedia content cached on dispersed geo-
graphical servers to Web browsers worldwide. The growing demands for quick and
scalable delivery, also due to HTTP traffic increase, can be satisfied with efficient
management of the content replicated in CDNs. Specifically, we need Web data
caching techniques and mechanisms on CDNs, as well as policies recognizing the
patterns of social diffusion of content, to ensure satisfying performance in a con-
stantly changing environment of continuing data volume growth.

398 I. Kilanioti and G.A. Papadopoulos

In the present work, we further extended a dynamic policy of OSN content
prefetching implemented with temporal and other contextual parameters, to depict
how various caching schemes can affect the content delivery infrastructure. Band-
width-intensive multimedia delivery over a CDN infrastructure is experimentally
evaluated with realistic workloads, that many works in the related literature lack.
While recognizing that we used one media service and one OSN platform for our
experimentation, we believe that our results are generally applicable, with a poten-
tially high impact for large-scale systems where traffic is generated by online social
services and microblogging platforms. We aim to generalize our proposed policies
in the future, to deal with multiple OSN platforms, as well as mobile CDN providers.

Acknowledgments For the development of algorithms and conducting of the accompanying exper-
iments, the cloud infrastructure of the Department of Computer Science of the University of Cyprus,
as well as Amazon Web Services, were used.

References

1. Aggarwal, C., Wolf, J.L., Yu, P.S.: Caching on the World Wide Web. IEEE Trans. Knowl. Data
Eng. 11(1), 94–107 (1999). doi:10.1109/69.755618

2. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.A.: The role of social networks in information
diffusion. In: Proceedings of the 21stWorldWideWebConference,WWW2012, Lyon, France,
16–20 April 2012, pp. 519–528 (2012). doi:10.1145/2187836.2187907

3. Brodersen, A., Scellato, S.,Wattenhofer,M.: YouTube around theworld: geographic popularity
of videos. In: Proceedings of the 21stWorldWideWebConference,WWW2012, Lyon, France,
16–20 April 2012, pp. 241–250 (2012). doi:10.1145/2187836.2187870

4. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.B.: I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video system. IN: Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, IMC 2007, San Diego, California,
USA, 24–26 Oct 2007, pp. 1–14 (2007). doi:10.1145/1298306.1298309

5. Center for Applied Internet Data Analysis. https://www.caida.org. Accessed 30 Jun 2016
6. Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social Cloud: cloud computing in social

networks. In: Proceedings of the 3rd IEEE International Conference on Cloud Computing,
CLOUD 2010, Miami, FL, USA, 5–10 July 2010, pp. 99–106 (2010). doi:10.1109/CLOUD.
2010.28

7. Cheng, X., Dale, C., Liu, J.: Statistics and social network of YouTube videos. In: Proceedings
of the 16th International Workshop on Quality of Service, IWQoS 2008, University of Twente,
Enskede, The Netherlands, 2–4 June 2008, pp. 229–238 (2008). doi:10.1109/IWQOS.2008.32

8. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets—Reasoning About a Highly
Connected World. Cambridge University Press (2010)

9. Figueiredo, F., Benevenuto, F., Almeida, J.M.: The tube over time: characterizing popularity
growth of YouTube videos. iN: Proceedings of the 4th International Conference onWeb Search
andWeb Data Mining, WSDM 2011, Hong Kong, China, 9–12 Feb 2011, pp. 745–754 (2011).
doi:10.1145/1935826.1935925

10. Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: YouTube everywhere: impact
of device and infrastructure synergies on user experience. In: Proceedings of the 11th ACM
SIGCOMMConference on InternetMeasurement, IMC 2011, Berlin, Germany, 2–4Nov 2011,
pp. 345–360 (2011). doi:10.1145/2068816.2068849

11. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: YouTube traffic characterization: a view from the
edge. In: Proceedings of the 7th ACM SIGCOMMConference on Internet Measurement, IMC

http://dx.doi.org/10.1109/69.755618
http://dx.doi.org/10.1145/2187836.2187907
http://dx.doi.org/10.1145/2187836.2187870
http://dx.doi.org/10.1145/1298306.1298309
https://www.caida.org
http://dx.doi.org/10.1109/CLOUD.2010.28
http://dx.doi.org/10.1109/CLOUD.2010.28
http://dx.doi.org/10.1109/IWQOS.2008.32
http://dx.doi.org/10.1145/1935826.1935925
http://dx.doi.org/10.1145/2068816.2068849

18 Delivering Social Multimedia Content with Scalability 399

2007, San Diego, California, USA, 24–26 Oct 2007, pp. 15–28 (2007). doi:10.1145/1298306.
1298310

12. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Characterizing user sessions on YouTube. In: Proceed-
ings of the SPIE Multimedia Computing and Networking Conference, MCN 2008, San Jose,
California, USA, 30–31 Jan 2008, pp. 6818060–6818068 (2008). doi:10.1117/12.775130

13. Gupta, P., Goel, A., Lin, J., Sharma, A.,Wang, D., Zadeh, R.:WTF: the who to follow service at
Twitter. In: Proceedings of the 22nd International World Wide Web Conference, WWW 2013,
Rio de Janeiro, Brazil, 13–17 May 2013, pp. 505–514 (2013). doi:10.1145/2488388.2488433

14. Huang, C., Wang, A., Li, J., Ross, K.W.: Measuring and evaluating large-scale CDNs. In:
Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, IMC 2008,
Vouliagmeni, Greece, 20–22 Oct 2008, pp. 15–29 (2008)

15. Kilanioti, I.: Improving multimedia content delivery via augmentation with social information.
The Social Prefetcher approach. IEEE Trans. Multimedia 17(9), 1460–1470 (2015). doi:10.
1109/TMM.2015.2459658

16. Kilanioti, I., Papadopoulos, G.A.: Socially-awaremultimedia content delivery for the cloud. In:
Proceedings of the 8th IEEE/ACM International Conference on Utility and Cloud Computing,
UCC 2015, Limassol, Cyprus, 7–10 Dec 2015, pp. 300–309 (2015). doi:10.1109/UCC.2015.
48

17. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5),
604–632 (1999). doi:10.1145/324133.324140

18. Mitra, S., Agrawal, M., Yadav, A., Carlsson, N., Eager, D.L., Mahanti, A.: Characterizing
web-based video sharing workloads. TWEB 5(2), 8 (2011). doi:10.1145/1961659.1961662

19. Rodrigues, T., Benevenuto, F., Cha, M., Gummadi, P.K., Almeida, V.A.F.: On word-of-mouth
based discovery of the web. In: Proceedings of the 11th ACM SIGCOMM Conference on
InternetMeasurement, IMC2011,Berlin,Germany, 2–4Nov2011, pp. 381–396 (2011). doi:10.
1145/2068816.2068852

20. Sastry, N., Yoneki, E., Crowcroft, J.: Buzztraq: predicting geographical access patterns of social
cascades using social networks. In: Proceedings of the 2nd ACMEuroSysWorkshop on Social
Network Systems, SNS 2009, Nuremberg, Germany, 31March 2009, pp. 39–45 (2009). doi:10.
1145/1578002.1578009

21. Scellato, S.,Mascolo,C.,Musolesi,M.,Crowcroft, J.: Trackglobally, deliver locally: improving
content delivery networks by tracking geographic social cascades. In: Proceedings of the 20th
International Conference onWorldWideWeb,WWW2011,Hyderabad, India,March 28–April
1, 2011, pp. 457–466 (2011). doi:10.1145/1963405.1963471

22. Torres, R., Finamore, A., Kim, J.R., Mellia, M., Munafò, M.M., Rao, S.G.: Dissecting video
server selection strategies in the YouTube CDN. In: Proceedings of the 31st International
Conference on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota, USA,
20–24 June 2011, pp. 248–257 (2011). doi:10.1109/ICDCS.2011.43

23. Traverso, S., Huguenin, K., Trestian, I., Erramilli, V., Laoutaris, N., Papagiannaki, K.: Tailgate:
handling long-tail content with a little help from friends. In: Proceedings of the 21st World
Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012, pp. 151–160 (2012).
doi:10.1145/2187836.2187858

http://dx.doi.org/10.1145/1298306.1298310
http://dx.doi.org/10.1145/1298306.1298310
http://dx.doi.org/10.1117/12.775130
http://dx.doi.org/10.1145/2488388.2488433
http://dx.doi.org/10.1109/TMM.2015.2459658
http://dx.doi.org/10.1109/TMM.2015.2459658
http://dx.doi.org/10.1109/UCC.2015.48
http://dx.doi.org/10.1109/UCC.2015.48
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1145/1961659.1961662
http://dx.doi.org/10.1145/2068816.2068852
http://dx.doi.org/10.1145/2068816.2068852
http://dx.doi.org/10.1145/1578002.1578009
http://dx.doi.org/10.1145/1578002.1578009
http://dx.doi.org/10.1145/1963405.1963471
http://dx.doi.org/10.1109/ICDCS.2011.43
http://dx.doi.org/10.1145/2187836.2187858

Chapter 19
A Java-Based Distributed Approach
for Generating Large-Scale Social
Network Graphs

Vlad Şerbănescu, Keyvan Azadbakht and Frank de Boer

19.1 Introduction

Distributed systems and applications require large amounts of resources in terms of
memory and computing power and are becoming a standard for large businesses and
enterprises [12] within and outside the domain of Computer Science. A very impor-
tant topic for distributed applications is Big Data management and more specifically
the generation of large-scale social networks graphs where the number of nodes
reaches very large numbers. Analysis of such networks is of importance in many
areas, e.g., data mining, network sciences, physics, and social sciences [3]. The need
for efficient and scalable methods of network generation is frequently mentioned
in the literature [8], particularly for the preferential attachment process [1, 13, 14].
Barabasi–Albert model, which is based on preferential attachment (PA) [4], is one
of the most commonly used models to produce artificial networks, because of its
explanatory power, conceptual simplicity, and interesting mathematical properties
[13]. Nevertheless the large number of nodes in such graphs may not fit in the mem-
ory on one machine. The need for efficient solutions which provide scalability also
requires more computational resources as well as implementation considerations. As
such, distribution and synchronization are two main challenges. In this chapter, we
investigate as a case study a distributed solution for PA-based graph generationwhich
avoids low level synchronization management, thanks to the notion of cooperative
scheduling and futures.

V. Şerbănescu (B) · K. Azadbakht · F. de Boer
Centrum Wiskunde and Informatica, Science Park 123, 1098 Amsterdam,
XG, Netherlands
e-mail: vlad.serbanescu@cwi.nl

K. Azadbakht
e-mail: kazadbakht@cwi.nl

F. de Boer
e-mail: frb@cwi.nl

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_19

401

402 V. Şerbănescu et al.

In several examples of distributed applications such as high-energy physics appli-
cations, research digital libraries or secure banking systems with millions of users,
communication between remote machines is a significant challenge. Modeling dis-
tributed communication such that it can be analyzed at development phase for syn-
chronization issues or deadlocks allows the design of reliable and efficient software
that will not require extensive testing and debugging. We provide in this paper a
library that allows a more intuitive mapping from a modeling language, the abstract
behavioral specification language(ABS) [6], to a programming language. Since the
modeling language is tailored toward asynchronous communication, the distributed
implementation of the library will not require any remote object field access or syn-
chronous remote method invocations.

The expressive power of the above-mentioned library is shown in the PA-based
graph generation case study where the array representing the graph is partitioned and
located on remote machines, each is owned by an actor. According to PA, the slots
of each array are resolved by the values from (the same or) other arrays by which
the new connections between the nodes are formed. The future construct provides a
means for each actor on a machine to synchronize on the return value from a process
(i.e., a runtime method execution of an actor) on remote machines. The process itself
can also suspend on a boolean condition (i.e., the continuation of the process can be
activated when the condition is evaluated to True), and then returning the value. As
shown in the case study, using such powerful constructs eliminates the need for low
level synchronizatoin mechanisms.

While the Java language is one of the most popular, intuitive and easy to use
languages in terms of software development and has significant support for paral-
lel and distributed programming, its most basic entity for representing a block of
running code is a Thread which is very expensive memory-wise. There are several
interfaces which abstract lightweight tasks and subtasks, but in order to schedule
and preempt these tasks they still need to be encapsulated in the form of a Thread.
The issue appears when an application requires multiple context switches between
several tasks which have significant call stack sizes. As this number becomes very
large the thread explosion affects the main memory thus the application’s perfor-
mance. The major contribution of this chapter is to provide a library with distributed
support of the actor-based model in the Java language, with enhanced future syn-
chronization capabilities that become available in a distributed setting. Furthermore
we introduce data structures to manage propagation of futures and allow them to be
garbage collected on each machine. We also provide a notification mechanism for
future resolution in order to avoid inefficient busy-waiting loops. The rest of this
paper discusses related work in Sect. 19.2, followed by a detailed explanation of the
new library in Sect. 19.3. We present a case study that is suitable for evaluating our
solution in Sect. 19.4 and its high-level implementation in Sect. 19.5. We draw the
conclusions and present the next steps for this work in Sect. 19.6.

19 A Java-Based Distributed Approach … 403

19.2 Background and Related Work

In the ABS, the core language semantics imposes that all objects created in the
program are actors with an independent behavior, with a possibility to communicate
with other actors and use futures to synchronize at certain execution points. The
language groups actors into Concurrent Object Groups (COG) which allow objects
to communicate with each other synchronously, but apart from the actors in the
same COG, all other actors are considered remote and may only invoke each other
asynchronously. The physical location of an actor in ABS is completely transparent
as there are no virtual machines or IP addresses inserted in this high-level language.
The language features one construct for the asynchronous communication, another
construct for blocking an actor’s execution on a future and a third and very powerful
construct for suspending and scheduling methods within one single actor, a construct
that introduces the notion of cooperative scheduling.

These two latter constructs can be preceded by annotations that allow custom
schedulers to be defined in order to satisfy an application’s specific requirements.
Further annotations can be associated to method calls to specify costs and deadlines
in order to create a very powerful scheduler. All these constructs are written in a very
simple and concise way in ABS, in order to allow system designers a simple view
of their application which can be even large enough to be deployed in a cloud envi-
ronment [7]. However, from this modeling language we need to generate code for
programs to execute on multiple resources, tasks to be submitted to those resources
and also incorporate the powerful schedulers. To this end ABS has several execu-
tion backends in a simulation language (Maude), functional language (Haskell), and
object-oriented languages (Erlang and Java). Our focus for this contribution is the
Java language backend for which the translation process of distributed applications
may create multiple redundant objects, threads, and data structures that significantly
impact performance.

Listing 1 Scheduling in ABS example

interface Ainterface {
Int recursive_m(Int i) ;

}

interface Binterface{
Int compute() ;

}

class A implements Ainterface{

Int recursive_m(Int i){
i f (i>0){

this . recursive_m(i − 1);
}
else{

B computation = new B () ;
Future f = computation ! compute() ;
await f ?

} } }

class B implements Binterface {

Int compute(){
Int result ;

404 V. Şerbănescu et al.

/∗do some work ∗/
return result ;

} }

{ / / Main block:
Int i = 0;
A master_i = new A () ;
List futures = EmptyList;

while (i < 100){
Future f = A ! recursive_m (10);
futures = cons(f , futures) ;

}

while (futures != EmptyList){
Future f = head (futures) ;
futures = ta i l (futures) ;
f . get ;

} }

To illustrate how cooperative scheduling works, we look at a simple program
in Listing 1. The program creates an object of Class A which contains method
“recursive_m.” The construct “o.recursive_m” is a regular synchronous call that
must be executed without any preemption. Inside the method, we create an object of
class B which has a method “compute.” The construct “computation!compute()” is
an asynchronous call that allows the object of class B to execute in parallel themethod
“compute.” At this point there are two constructs for synchronizing with a call that
executes in parallel with the current object. The first construct, “f.get” is at the level
of the object and forces the current object to block and wait for the completion of
method “compute” that was captured in the future f. The second construct “await f
?” is more fine grained in the sense that only the current method that is executing
this statement, namely “computation!compute()” blocks, while subsequent calls of
“computation!compute()” resulting from the main for loop, can be scheduled and
run by the object o. An important observation here is to understand that all calls
like “computation!compute()” are inserted into a queue that each object has and are
scheduled to be run by the same object and not in parallel. The degree of parallelism
is determined by the number of objects created.

The ABS-API library [9–11] was introduced as a solution to translate ABS code
into production code initially for parallel applications. Java 8 new features allow
wrapping of method calls into lightweight lambda expressions such that they can be
put into a scheduling queue of an Executor Service to which the running objects are
mapped, significantly reducing the number of idle Threads at runtime. Furthermore
we minimized the number of threads created by saving the call stack of suspended
methodswithin an actor caused by the “await” statement. Our first solution to achieve
this was to add a central context for all actors in the system and follow this execution
sequence.

• Each asynchronous call/invocation is a message delivered in the corresponding
object’s queue.

• All objects in the same Concurrent Object Group (COG) compete for one Thread.
• A Sweeper Thread decides which task should be created and be available for
execution from the available queues.

• A thread pool executes available tasks based on a work stealing mechanism.

19 A Java-Based Distributed Approach … 405

• On every await statement, we try to optimally suspend the message thread until
the continuation of the call is released.

This Sweeper Thread however becomes a bottleneck when the number of actors
is very large while also making actors dependent on each other. The new library that
is the main contribution of this chapter, however, is tailored to support distributed
actor-based programming and therefore requires a different organization of thread
management and future propagation. Furthermore in a distributed setting there can be
no centralized thread for all actors, therefore we propose a new solution that replaces
the purpose of this thread.

19.3 Description of the Distributed ABS-API Library

In this section we describe the newest version of the ABS-API library that is written
in Java to support an actor programmingmodel in a distributed setting, with enhanced
cooperative scheduling, distributed future control and garbage collection.We present
awhole newand simple format for classifying actors basedon their intendedbehavior.
In this versionweoptimize even further thememorymanagement of actor by reducing
the number of Threads created at runtime. We use certain triggers to determine the
start and ending of a live context and eliminate the use of redundant Threads that
correspond to the running process of an actor.We introduce a class hierarchy of actors
running on remote hosts, on local host and actors whose functionality is reachable
from a remote host. This hierarchy simplifies garbage collection and reduces the
number of peer-to-peer communications between remote hosts, as well as offering a
clear separation between an application runningon a singlemachine or in a distributed
environment.

19.3.1 Actor Class Hierarchy, Naming Scheme
and Asynchronous Communication

In the previous implementation of the ABS-API we had one single interface to allow
an actor programming paradigm. This single interface encapsulated the entire behav-
ior of the actor that comprised of the continuous running cycle, the task message
queue, the single thread restriction and the cooperative scheduling of its suspended
tasks. However, when deploying actors in a distributed environment they have par-
ticular locality and visibility characteristics. It is also important to take into account
how actors will communicate with each other depending on their location and what
elements need to be specific to themachine. Therefore an actor needs to have a global
identity (represented by a JavaURI)making it discoverable on all themachines of the
application while its internal structure exists on only one machine. The URI takes the
format of “IP:actorName”, where IP is the host machine’s address and actorName is

406 V. Şerbănescu et al.

a unique identifier that distinguishes between actors on this machine. This allows for
a scheme where local generation of actors avoids inconsistencies at a global level.
The discovery mechanism is very simple:

• An actor is instantiated on only one machine and is given a URI comprised of the
machine’s IP and a unique name.

• To communicate with a remote actor, a machine requires a reference with the
unique global identifier.

For inter-machine communication each twomachines in the system are connected
by one socket and actors send messages through the machine’s socket streams. Fur-
thermore, each machine maintains a actorMap of all of its actors in order to have a
mapping between the Java URI and the Java reference of the actor such that it can
forward remote requests to the correct actor. A certain special type of actor is intro-
duced that is classified as local and has no global identity such that it is not reachable
by other machines and can only receive messages from other actors on the machine it
runs on. These particular characteristics allow for a simple classification of the actors
according to the class diagrams in Fig. 19.1 and provide a clear separation between
a parallel and a distributed setting.

The diagram in Fig. 19.1, presents how we classify actors based strictly on the
machine on which they reside and therefore their physical existence on the machine.
The API has a parent abstract class called DeploymentComponent which maintains
data specific to the machine. Firstly, it contains a customized ThreadPoolExecutor
to which the actors residing on the machine will submit their tasks. This ThreadPool

Fig. 19.1 Class diagram based on ABS transparency

19 A Java-Based Distributed Approach … 407

Executor is available to all actors on one machine and it has an overridden afterEx-
ecute method to control several behaviors specific to actors which we will discuss
further in this section. Secondly, the class also contains the actorMap of all the
actors that are initialized on one machine such that remote messages can be routed
to the correct actor. Finally, the class contains a table of the socket streams with all
other machines in the system that grows and shrinks dynamically, as more machines
are added to the system. An important observation is to notice that socket streams
are initialized only when a remote actor belonging to a node that was previously
unknown is instantiated in the system and a listener thread is assigned to the stream
processing either incoming messages to the machine and as such, only if the setting
is distributed. The machines communicate through serialized messages and objects
that can be of four types that will be explained in the next two subsections:

• asynchronous method invocations.
• futures that are passed as parameters.
• a resolved future result.
• actor URI or futureID used to identify actors and futures on remote machines.

The DeploymentComponent class is subclassed into a LocalActor class which
represents the simplest abstraction of an actor that is not connected to the outside of
themachine. This actor has amessage queue that can receive asynchronousmessages
that are executed in a FIFO order with submissions to the machine’s thread pool. An
important optimization is introduced in the execution instance of a standard actor.
Instead of spawning a task that continuously loops through an actor’s queue from
the point it is instantiated, the task is now spawned only when the first message
is introduced in the queue and finishes once the queue is empty. Therefore actors
no longer have a live thread corresponding to their run if they are idle. The second
subclass of the DeploymentComponent is the ReachableActor which has two very
distinct behaviors, but ensures the transparency of the ABS language presented in
Sect. 19.2. This class can identify either an actor that is extended with distributed
support to receive remote calls or a remote actor which forwards messages to the
correct machine. In both cases the actor is instantiated with the global identifier
that we discussed earlier in this section, and this identifier distinguishes its general
behavior on the machine. If its identifier’s host IP is the same with the machine IP,
then it behaves like a standard actor, only it is included in the machine’s actorMap
such that incoming messages can be forwarded to it for execution. On the other
hand, if the IP differs from the machine IP, the actor is a remote actor and it is
only a reference used for transparency on the machine. In this case, asynchronous
messages are forwarded to the machine’s output stream such that they can be sent
via the machine socket to the machine where the remote actor actually resides.

408 V. Şerbănescu et al.

19.3.2 Distributed Futures Control

The most important feature of our library is that it now has support for programming
with distributed actors. A more detailed illustration in Fig. 19.2 explains the role of
the ReachableActor on both a local and remote machine. In this setting we have an
actor a1 with a unique global identifier which is a Java URI that is “IP2:a1”, where
IP2 is the IP address of Node 2 on which the actor was instantiated and a1 is a unique
identifier of the actor. Node 1 has a reference to this actor and its interface which
contains method m() is also available. An important objective of our solution is to
avoid actors entering a busy-waiting loop in order to check the resolution of futures.
To achieve this, we insert a remoteUncompletedFutures data structure which retains
all the futures that were generated by calls to remote actors. The machine then sends
a serialized lambda expression of the asynchronous method call to the socket. Each
machine is aware of the senders of incoming messages, therefore when an actor
completes a remote call, the serialized result of the actor can be sent back as a reply.
This behavior is part of the afterExecutemethod of the machine’s main executor and

Fig. 19.2 Future Flow

19 A Java-Based Distributed Approach … 409

is illustrated by the state afterExecture in the state diagram of the actor Fig. 19.4. In
Sect. 19.2 we discussed how messages in an actor are executed in the order that they
arrive in its queue and how the await statement allows for the rescheduling of these
messages. To allow remote actors to identify which reply belongs to which future
in the queue we introduce a naming scheme in the form of “IP:f” where IP is the
address of the actor that will complete the future and f the unique global identifier
(futureID) of the future.

The general mechanism is best described in terms of an example scenario with
two asynchronous calls to the same actor:

1. Node 1 sends the following sequence of messages to actor a1 on Node 2.

• A futureID “IP2:f1” identifying the future that will be generated by the fol-
lowing asynchronous method call.

• A pair< I P2 : a1,m() > representing the first asynchronous method call to
actor a1.

• A futureID “IP2:f2” identifying the future that will be generated by the next
asynchronous method call.

• A pair< I P2 : a1,m() > representing the second asynchronous method call
to actor a1.

2. The two uncompleted futures f1 and f2 and their corresponding identifiers are
stored as mappings as remoteUncompletedFutures.

3. Actor a1 receives from the socket stream the two identifiers and two messages
msg1 and msg2 in the same order and inserts them in the message queue.

4. Actor a1 schedules msg1 and msg2 in a FIFO order on Node 2 main executor
unless rescheduled by an await statement.

5. When either message has finished executing, the afterExecute method of the
main executor sends back the corresponding futureID within either pair< I P2 :
f 1, result > or< I P2 : f 2, result >back to the socket stream where the mes-
sage came from.

6. The socket stream forwards the result to Node 1.
7. Future f1 or f2 is completed with the received result depending on the futureID.

The semantics of ABS allows actor references and futures to be passed remotely
through asynchronous method calls. However the semantics restrict actors from
accessing fields of remote references or making synchronous calls on these ref-
erences. The transparency feature of ABS means that remote futures are accessible
by any actor and can be used together with the await and get statements to synchro-
nize. A more difficult challenge is how futures are propagated throughout the system
as parameters of method calls and when they become available for garbage collec-
tion on each machine. While remote objects that may be passed as parameters are
handled by the class hierarchy, remote futures need a heuristic to be propagated and
notified of completion once they are passed as parameters. A serialized future object,
together with the futureID, needs then to be sent before the actual method call that
contains it, such that it can be identified on the remote machine. This is a different

410 V. Şerbănescu et al.

type of message from the one that just sends a futureID like in the previous scenario,
as the remote actor actually needs the object to call get and await statements on. This
future is then inserted into a table of remotePassedFutures and the corresponding
list of machines to which they have been passed as parameters, or the table is simply
updated with another machine if the future already exists. Whenever an actor passes
a future as a parameter of a remote asynchronous class it takes the following steps:

1. It checks if the future is completed and if so, sends it via the socket stream before
sending the asynchronous call.

2. If it is uncompleted, the future is still sent before the call, but also saved in a
map with the format < futureID : List < DeploymentComponent >> where the
list contains all the remote actors that have received this future as part of an
asynchronous method call.

3. The received future is stored by the actor in the remoteUncompletedFuturesmap.
4. When the future is completed either by:

• a local actor.
• a remote actor as explained in the protocol before.
• a remote actor explained in the next step.

the list of machines that require the future is retrieved and the entry in the map is
removed.

5. The actor sends a pair < futureID, result > to all the machines in the list that
require it.

6. When a machine receives such a pair it completes the future identified by the
futureID with the result and possibly runs steps 3 and 4 itself if it propagated this
future as well.

19.3.3 Actor Execution Context

Actors run in a parallel and distributed environment through simple messages that
are presented in Fig. 19.3. In addition to the usual object-oriented implementation,
an actor exposes a method send which allows it to receive asynchronous method
calls form other actors and this provides parallel execution between the actors. The
class simply creates a lambda expression that takes the form of a Java Runnable or
Callable and subsequently a wrapper future which may be used for synchronization
purposes. In our previous version of the API, each actor had an execution lock that
limited it to one method running at a time.

For a single machine, there was a single thread, called a Sweeper, available across
all actors, that continuously checked all “unlocked” actors and submitted the head of
their queue to the executor service. Actor execution is now demand-driven as shown
in Fig. 19.4, with a single thread that is spawned into the state ready once the first
message is received in the actors queue, moves to state execute and runs all messages
in the queue and goes into state stop once the queue becomes empty, restarting once

19 A Java-Based Distributed Approach … 411

Fig. 19.3 Message encapsulation

Fig. 19.4 Actor state diagram

another message is inserted in the queue. This makes actors completely independent
from each other unless they explicitly call the synchronization mechanisms get and
await.

19.3.4 Synchronization and Cooperative Scheduling

A key feature of the Sweeper thread was that it allowed efficient scheduling of tasks
within an actor. It prevented redundant thread creation by having suspended tasks
of an actor given priority once they were released to compete for the actor’s lock.
With the Sweeper thread deleted from the model of the API, we introduce a new
mechanism to support cooperative scheduling. First of all when a get statement is
called on a future, the actor moves to the state block until the future is resolved. If
an await statement is encountered, the actor invokes another exposed method await
which receives a boolean condition or a future to suspend on and a continuation in

412 V. Şerbănescu et al.

the form of a lambda expression. The actor will then store a mapping of the contin-
uation and the condition or future in a separate map as either futureContinuations
or conditionContinuations specific to each actor and moves to state ready. The main
executor introduced in the library is now responsible when, a thread completes, to run
the afterExecute method which verifies if the method is remote in which case it has
to forward the result to the socket from which it came to avoid a busy-waiting thread
that may do this work. If the method invocation is from a local actor, the after execute
method has to search each actor’s continuation maps to identify the continuations
that may have been resolved by this method (either an existing boolean condition or
the actual future that has been resolved).

19.4 Description of the Preferential Attachment Algorithm

In this paper, we represent social networks through the notion of a graph where nodes
are the members of the network and edges are the connections between them. The
notion of Preferential Attachment (PA) is a specific model of adding a new member
preferentially to a social network.We consider the above-mentioned preference to be
the degree of the nodes, that is, roughly speaking, the more the degree of a node in the
existing graph, the higher probability that it makes a connection with the new node.
In this model, an existing graph of n nodes has a discrete probability distribution for
the nodes with the probabilities P1, P2, . . . , Pn where

∑n
i=1 Pi = 1 and

Pi = deg(i)
∑n

j=1 deg(j)

where deg(i) returns the degree of the node i . One of the existing nodes is then ran-
domly selected based on the above distribution tomake connectionwith the newnode.
The Barabasi–Albert model [4], which is designed to generate scale-free networks
using the preferential attachment mechanism, is one of the most commonly used
models to produce artificial networks, because of its explanatory power, conceptual
simplicity, and interesting mathematical properties [13]. The procedure to generate
a PA-based graph with n nodes starts with a given initial clique with m0 nodes (a
small complete graph). The remaining nodes are then added to the graph so that each
new node makesm distinct connections with the existing graph (1 ≤ m ≤ m0) based
on the distribution. The nodes are added sequentially (i.e., addition of the next node
starts after terminating the addition of the current node) since, as shown in the above
definitions, adding each new node influences the whole distribution.

Adopted fromCopyModel, [8], we employ the array data structure to represent the
graph. As depicted in Fig. 19.5a, from left to right each pair of array slots represents
an edge of the array. In order to set up an array which represents the graph with the
above-mentioned parameters, the array size is

19 A Java-Based Distributed Approach … 413

Fig. 19.5 The array
representing the graph

S = init + 2m ∗ (n − m0)

where init is the size of initial graph which can be a complete graph, init = m0 ∗
(m0 − 1). Figure19.5b shows an abstraction of the array where the node n will be
attached to the existing graph and m = 3. The array can be optimized in terms of
memory since one slot of each pair for all the edges is calculable (e.g., n in Fig. 19.5b).
However we ignore this optimization in this section. The next step is to resolve
the unresolved slots for the node n (depicted by 0) according to the probability
distribution of the existing nodes (i.e., P1, . . . , Pn−1). We simply use a uniform
distribution over all the slots placed previous to the slots regarding node n since the
number of occurrences of each node equals to its degree. Note that the values for
the three unresolved slots must be distinct, which is simply checked via a function.
The sequential solution is fairly straightforward. Given the array with the initial

graph at the beginning slots, according to above properties, the sequential solution
is achieved via adding the nodes sequentially to the array.

However, the solution is more challenging in a parallel or distributed setting. To
this aim, first of all the nodes (and the corresponding array) should be partitioned
so that each partition is resolved by an actor. In the array, each node is represented
by a sequence of slots where the first slot of each pair is the node’s id (e.g., the
slots regarding node n in Fig. 19.5b). If we consider all the partitioned arrays to be
one virtual global array (like what we expect in the sequential approach) then the
direction of dependencies and computations is depicted in Fig. 19.6. The arrow x
in this figure shows a special kind of dependency, unresolved dependency, which

Fig. 19.6 The direction of dependencies (right to left) and computations (left to right)

414 V. Şerbănescu et al.

shows the slot whose resolution is dependent on yet another unresolved slot, target
slot. It is not difficult to see that unresolved dependencies only appear in the parallel
solution. In order to remain consistent with the original PA model, the distributed
approach keeps unresolved dependencies and uses the value of the target slot when it
is resolved. How to keep the dependencies and use their target results after resolution
is a low-level challenge. Figure19.7 shows two different strategies to deal with this
challenge. The first approach (Fig. 19.7a) is already examined in [1]. The second one
(Fig. 19.7b) is adopted from [2], which is for multicore architecture, and tailored to
fit the distributed setting. In the former case, the actor b places the request explicitly
in a data structure and replies to it when the corresponding slot is resolved by the
Actor. On the other side, actor a needs to keep track of the number of required
responses corresponding to the requests. The latter however does not require such low
level explicit synchronization management since it utilizes the notion of cooperative
scheduling [5] via await on boolean conditions [2] to introduce a higher level of
abstraction. Our implemented model follows the latter case.

Fig. 19.7 The process of dealingwith unresolved dependencies in an actor-based distributed setting

19 A Java-Based Distributed Approach … 415

19.5 Implementation of the Algorithm Using the ABS-API
Library

The implementation of the preferential attachment algorithm assumes a settingwhere
the number of machines and actors is established a priori such that the application
can assign predetermined global names to all the actors. In this manner all machines
already have RemoteActor references to the actors they need to communicate with
and corresponding communication streams setup as soon as all actors are instantiated
and initialized. Figure19.8 specifies our solution in a high-level pseudocode, which

Fig. 19.8 The sketch of the proposed approach

416 V. Şerbănescu et al.

represents the scheme depicted in Fig. 19.7b. Each actor is responsible to resolve one
partition of the virtual global array.

As shown in Fig. 19.5b, each node (as a new node) is associated with 2m slots
of the array. Each actor starts processing its corresponding partition. The way array
is partitioned has a considerable influence on the performance since it has a direct
impact on the number of the unresolved dependencies (e.g., Consecutive and Round
Robin Node Partitioning). In this section we abstract from the partitioning details. To
this aim,we introduce two functions in the code. The functionwhichSlot(i) returns the
local index corresponding to the virtual global index i , and the function whichAc-
tor(i) returns the actor index whose associated partition contains the local index
corresponding to the virtual global index i .

The process request suspends on the boolean condition until it evaluates to True.
The continuation is then queued and activated according to the actor’s scheduling
policy. The process delegate is also suspended until the future f is resolved. f ?
returns a boolean value which represents whether the future is resolved or otherwise.
Therefore the await on the future suspends the process until the future is resolved. The
exclamation and dot are for asynchronous and synchronousmethod calls respectively.
Finally the method duplicate checks whether the obtained value will cause a conflict,
that is, a node makes two connections to the same target.

19.6 Conclusion

In this paper we presented a library to generate executable code in Java for an actor-
based modeling language with very fine-grained scheduling heuristics formal analy-
sis and verification tools. In this implementation we added support for distributed
actors, future propagation and significantly reduced the number of threads created
and alive throughout the application’s lifetime ensuring efficient memory consump-
tion and performance. We offered an enhanced API for distributed communication
and explicit control of synchronization. Our focus was on the abstract behavioral
specification language which represents an excellent solution for modeling cloud
applications and this implementation allows the language to be extended with coop-
erative scheduling capabilities and powerful scheduling algorithms.We presented the
details of how our new solution uses the latest Java 8 concurrent library to map the
ABS constructs that invoke the scheduler and also ensure transparency with respect
to actor’s locations. We motivated our contribution by outlining the implementa-
tion of a specific scenario for generating large-social network graphs which can be
deployed in a distributed environment using this library. The next step to this scien-
tific work is to integrate this implementation into the ABS compiler that is currently
in use to translate ABS code into executable Java code and investigate how to provide
syntactic sugaring for ABS asynchronous method invocations. This will allow the
direct modeling of our case study using ABS and testing it against the state-of-the
art implementation in MPI.

19 A Java-Based Distributed Approach … 417

Acknowledgments Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Vir-
tualized Services (http://www.envisage-project.eu). Partly funded by the EU project FP7-612985
UpScale: From Inherent Concurrency to Massive Parallelism through Type-based Optimizations
(http://www.upscale-project.eu).

References

1. Alam, M., Khan, M., Marathe, M.V.: Distributed-memory parallel algorithms for generating
massive scale-free networks using preferential attachment model. Proceedings of the Inter-
national Conference on High Performance Computing, p. 91. Storage and Analysis, ACM,
Networking (2013)

2. Azadbakht, K., Bezirgiannis, N., De Boer, F.S., Aliakbary, S.: A high-level and scalable
approach for generating scale-free graphs using active objects. In: Proceeding of the ACM/SI-
GAPP Symposium on Applied Computing, To appear (2016)

3. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-world
networks. In: International Conference on Parallel Processing, 2006. ICPP 2006, 539–550.
IEEE (2006)

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

5. De Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: Programming
Languages and Systems, pp. 316–330. Springer (2007)

6. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: Abs: A core language for
abstract behavioral specification. In: Formal Methods for Components and Objects, pp. 142–
164. Springer (2010)

7. Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.:Modeling resource-aware virtualized applications for
the cloud in real-time abs. In: Formal Methods and Software Engineering, pp. 71–86 Springer
(2012)

8. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic
models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, 2000, pp. 57–65. IEEE (2000)

9. Nobakht, B., de Boer, F.S.: Programming with actors in java 8. In: Leveraging Applications
of Formal Methods, Verification and Validation. Specialized Techniques and Applications, pp.
37–53. Springer (2014)

10. Serbanescu, V., Azadbakht, K., Boer, F., Nagarajagowda, C., Nobakht, B.: ADesign Pattern for
Optimizations in Data Intensive Applications Using Abs and Java 8. Practice and Experience,
Concurrency and Computation (2015)

11. Serbanescu, V., Nagarajagowda, C., Azadbakht, K., de Boer, F., Nobakht, B.: Towards type-
based optimizations in distributed applications using abs and java 8. In: Adaptive Resource
Management and Scheduling for Cloud Computing, pp. 103–112. Springer (2014)

12. Serbanescu, V.N., Pop, F., Cristea, V., Achim, O.M.: Web services allocation guided by reputa-
tion in distributed soa-based environments. In: 2012 11th International Symposium on Parallel
and Distributed Computing (ISPDC), pp. 127–134. IEEE (2012)

13. Tonelli, R., Concas, G., Locci, M.: Three efficient algorithms for implementing the preferential
attachment mechanism in yule-simon stochastic process. WSEAS Trans. Inf. Sci. Appl. 7(2),
176–185 (2010)

14. Yoo, A., Henderson, K.: Parallel generation of massive scale-free graphs (2010). arXiv preprint
arXiv:1003.3684

http://www.envisage-project.eu
http://www.upscale-project.eu
http://arxiv.org/abs/1003.3684

Chapter 20
Predicting Video Virality on Twitter

Irene Kilanioti and George A. Papadopoulos

20.1 Introduction

The diffusion of video content is fostered by the ease of producing online content via
media services. It mainly happens via ubiquitous Online Social Networks (OSNs),
where social cascades can be observed when users increasingly repost links they
have received fromothers. Twitter is one of themost popular OSNswith its core func-
tionality centered around the idea of spreading information by word-of-mouth [16].
It provides mechanisms such as retweet (forwarding other people’s tweets), which
enable users to propagate information across multiple hops in the network.

If we knew beforehand when a social cascade will happen or to what range it will
evolve, we could exploit this knowledge in various ways. For example, in the area
of content delivery infrastructure, we could prefetch content by replicating popular
items and subsequently spare bandwidth. The knowledge of the evolution of social
cascades could lead to reduction schemes for the storage of whole sequences of large
social graphs and the reduction of their processing time.

Towards this direction, in this work we present a model for efficiently calculating
the number of retweets of a video. The number of retweets is associated with a
score depicting the influence of its uploader in the Twitter dataset, the increasing or
decreasing trend the score depicts as well as the distance of content interests among
users of the YouTube and Twitter community.

I. Kilanioti (B) · G.A. Papadopoulos (B)
Department of Computer Science, University of Cyprus, 1 University Avenue,
P.O. Box 20537, 2109 Nicosia, Cyprus
e-mail: ekoila01@cs.ucy.ac.cy

G.A. Papadopoulos
e-mail: george@cs.ucy.ac.cy

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_20

419

420 I. Kilanioti and G.A. Papadopoulos

20.1.1 Contributions

Our work focuses on video virality over an OSN. Study of social cascades is active
aiming at the prediction of the aggregate popularity of a resource or the individual
behaviour of a user. Few works, however, combine detailed information both of the
OSN and the media service with a small and easily extracted feature set. Our study
proposes a prediction model that performs better than methods like support vec-
tor machines (SVM), stochastic gradient descent (SGD) and K-Nearest Neighbours
(KNN), among others, and we, furthermore, proceed to incorporate our prediction
model into a mechanism for content delivery with substantial improvement for the
user experience.

The remainder of this paper is organized as follows. Section20.2 reviews previous
related work. Section20.3 formally describes the addressed problem. Section20.4
provides an outline of the methodology, followed by the preparation of the employed
datasets. Ourmain findings are presented in Sect. 20.5, where also a validation is con-
ducted. Section20.6 investigates the incorporation of the proposed model into a con-
tent delivery mechanism. Section20.7 concludes the work and discusses directions
for future work.

20.2 Related Work

The field of predicting social virality is active [2, 5, 6, 13, 15, 17, 22], etc. Many
studies focus on the prediction of the amount of aggregate activities (e.g. aggregate
daily hashtag use [14]), whereas others focus either on the prediction of user-level
behaviour, like retransmission of a specific tweet/URL [7, 15] or on the prediction
of growth of the cascade size [5].

Although our work focuses solely on video sharing, we identify the following
methods for virality prediction in general. Feature-based methods and time series
analysis methods. They are both based on the empirical observation of social cas-
cades. Our approach falls into the first category.

Feature-based methods are based on content, temporal and other features, and
the learning algorithms schemes they use are based on simple regression analysis
[5, 18], regression trees [2], content-based methods [19], binary classification
[8, 9, 12] etc. They do not focus, though, on the underlying network infrastruc-
ture, and often encounter difficulty in extracting all the necessary features due to the
large volume of accommodated graphs.

Time-series analysis works [20, 21], on the other hand, argue that patterns of a
resource’s growth of popularity are indicative for its future retransmissions.

Finally, we shouldmention that one branch of virality research is based on study of
the evolution of cascades during a specific time-window [12, 14, 19], whereas there
exist works that examine the cascades continuously over their entire duration [5].

20 Predicting Video Virality on Twitter 421

20.3 Problem Description

We consider a directed graphG(t) = (V (t), E(t)) representing a social network that
evolves through time, consisting at time t of V vertices and E edges. Edges between
the nodes of the graph denote friendship in case of a social network (e.g. for Twitter
B is a follower of A if there is an edge between B and A pointing at A).

Our problem is stated as follows (Table20.1). We want to predict the number of
retransmits of a video link by a user v ∈ V after u ∈ V has transmitted the link. User
v is a follower of u.

We express this number, intuitively, as a combination of the following features:
the Score(u, t) of node u, dScore(u, t)/dt of node u, and content distance between
the content interests of the involved users both in the OSN and themedia service. The
validity of the predictors is analyzed in this paper. The intuition for their selection
is based on the notion, that, the higher influence score a node depicts, the more
influence it is expected to exert on other nodes of the social graph. Moreover, the
dScore/dt (u, t) expresses the popularity rise/fall of the node, and, lastly, the content
distance associates the resource with the user context.

Denoting the output, the predicted output and the total number of predicted values
by Au2v, ̂Au2v and M , we aim to find the values α, β, γ, so that:

Au2v = α ×Score(u, t) + β ×d Score(u, t)

dt
+ γ ×content_dist (20.1)

and √
√
√
√ 1

M

M∑

i=1

(̂Au2v − Au2v)2 (20.2)

is minimum.

Table 20.1 Notation overview

G(t) = (V (t), E(t)) OSN graph G at time t of V vertices and E
edges

Au2v Number of actions where u influenced v

̂Au2v Predicted output

M Total number of predicted values

α, β, γ Coefficients of feature set variables

U Vector of YouTube interests of user u

V Vector of Twitter interests of user v

Features set

Score(u, t) Score of node u at time t

dScore = dScore(u, t)/dt Derivative of Score of node u at time t

content_dist Content distance

422 I. Kilanioti and G.A. Papadopoulos

20.4 Proposed Methodology

20.4.1 Dataset

Interests of users were analyzed in [1] against directory information from http://
wefollow.com, a website listing Twitter users for different topics, including Sports,
Movies, News & Politics, Finance, Comedy, Science, Non-profits, Film, Sci-Fi/
Fantasy, Gaming, People, Travel, Autos, Music, Entertainment, Education, Howto,
Pets, and Shows.

The activity of Twitter users was quantified, and a variety of features were
extracted, such as the number of their tweets, the fraction of tweets thatwere retweets,
the fraction of tweets containing URLs, etc. Aggregated features of YouTube videos
shared by a user in the dataset include the average view count, the median inter-event
time between video upload and sharing, etc.

A sharing event in the dataset is defined as a tweet containing a valid YouTube
video ID (with a category, Freebase topic and timestamp). We augmented the pro-
vided dataset with Tweet content information about the 15 million video sharing
events included in the dataset, as well as information about the followers of the 87
K Twitter users.

20.4.2 User Score Calculation

A user score is calculated combining the number n of its followers, reduced by a
factor of 1000 to compensate the wide range of followers in the dataset from zero
to more than a million, a quantity b catering for users with reciprocal followership,
calculated by taking an average of number of a user’s followers to the number of users
he follows, as well as the effect e of a user’s tweet, measured by multiplying average
number of retweets with number of user’s tweets and normalizing it to correspond
to the total number of tweets. The distribution of these combined metrics depicts
large variance and we have applied a logarithmic transformation in order to avoid
the uneven leverage of extreme values.

Score = log

(

n +
((

b

100

)

× n

)

+ e

)

(20.3)

20.4.3 Content Distance

The content distance content_dist expresses a measure of similarity of user’s u
YouTube and his follower’s v Twitter interests. Content distance is calculated using

http://wefollow.com
http://wefollow.com

20 Predicting Video Virality on Twitter 423

cosine similarity between vectors of user’s u YouTube and user’s v Twitter video
interests, as follows:

content_dist = 1 − U · V
‖U‖‖V ‖ (20.4)

20.5 Experimental Evaluation

By combining user ids, followership information, user features and tweet context we
build a measure of Au2v, expressing the number of times a user’s u tweet is retweeted
by his followers v. We aim to associate the independent variables of the features set
(X dataframe) with the series depicting Au2v (y) (Table20.2).

20.5.1 Selection of Predictors

The regression summary of Table20.3 shows that coefficients of all predictors are
significant (P > |t | is significantly less than 0.05). Therefore, Score, dScore and
content_dist can be considered as good predictors. We note that t here refers to t −
statistic, denoting the quotient of the coefficient of dependent variable divided by
coefficient’s standard error. P refers to the P − value, a standard statistical method
for testing an hypothesis. P − value < 0.05 means we can reject the hypothesis
that the coefficient of a predictor is zero, in other words the examined coefficient is
significant (Table20.4).

Table 20.2 Regression results (i)

Dep. variable Au2v R-squared 0.396

Model OLS Adj. R-squared 0.396

Method Least squares F-statistic 1.570e+04

Prob (F-statistic) 0.00 Log-likelihood −8576.9

No. observations 71952 AIC 1.716e+04

Df residuals 71949 BIC 1.719e+04

Df model 3 Covariance type nonrobust

Table 20.3 Regression results (ii)

Coef Std err t P > |t | 95% Conf. int.

Score 5.79e-05 3.78e-06 15.300 0.000 5.05e-05 6.53e-05

dScore 4.36e-05 4.51e-06 9.667 0.000 3.48e-05 5.25e-05

con_dist 0.389 0.002 213.060 0.000 0.386 0.393

424 I. Kilanioti and G.A. Papadopoulos

Table 20.4 Regression results (iii)

Omnibus 2091.840 Durbin-Watson 1.723

Prob(Omnibus) 0.000 Jarque-Bera (JB) 2323.421

Skew 0.408 Prob(JB) 0.00

Kurtosis 3.333 Cond. No. 746

The selection of the above predictors comes as a result of comparing the P −
values of various metrics in the dataset and the combination of those with the lowest
P − value. The metrics included the number of distinct users retweeted, fraction of
the users tweets that were retweeted, average number of friends of friends, average
number of followers of friends, number of YouTube videos shared, the time the
account was created, the number of views of a video, etc., among many others.

20.5.2 Effect of Outliers

The regression plots for each predictor in Fig. 20.1 show the effect of outliers on
the estimated regression coefficient. Regression line is pulled out of its optimal
tracjectory due to the existent outliers. The detailed regression plots for individual
predictors (Score, dScore and content_dist) appear in Figs. 20.2, 20.3, and 20.4

Fig. 20.1 Regression plots for each independent variable

20 Predicting Video Virality on Twitter 425

Fig. 20.2 Regression plots for Score

Fig. 20.3 Regression plots for dScore

426 I. Kilanioti and G.A. Papadopoulos

Fig. 20.4 Regression plots for content_dist

Fig. 20.5 Fitted values of Au2v versus Score

respectively. The fitted (predicted) values of Au2v and the prediction confidence for
each independent variable appear in Figs. 20.5, 20.6, and 20.7. We observe that fitted
values are quite close to the real values of Au2v with the exception of the outliers. This
suggests that removal of outliers would yield a better estimate, since it is obvious
that the plot is skewed due to their presence.

20 Predicting Video Virality on Twitter 427

Fig. 20.6 Fitted values of Au2v versus dScore

Fig. 20.7 Fitted values of Au2v versus content_dist

A rough estimate of detecting outliers can be based on the quantile distributions
of each independent variable in Table20.5. Observing Table20.5 with an overview
of data distribution we surmise that we could take values of Score and dScore only
upto 10 and 5, respectively. The quantiles appearing on the table are calculated when
data is rearranged in ascending order and divided into four equal sized parts. Thus,
interpreting the second quantile we notice that 50% of Score values are less than
2.562232. In the table, we notice that we have huge maximum values for Score and
dScore, but 75% of the data are below 6.902750 and 2.308805, respectively. Thus,

428 I. Kilanioti and G.A. Papadopoulos

Table 20.5 Outliers thresholds

Score dScore Content_dist

Count 71952.000000 71952.000000 71952.000000

Mean 21.227703 15.880803 0.459111

Std 349.102908 292.727717 0.315837

Min 0.000000 –1610.253490 0.000000

25% 0.787060 0.000140 0.172534

50% 2.562232 0.526050 0.415394

75% 6.902750 2.308805 0.724986

Max 43262.678131 30235.027960 1.000000

Table 20.6 Regression results without outliers (i)

Dep. variable Au2v R-squared 0.629

Model OLS Adj. R-squared 0.629

Method Least Squares F-statistic 3.072e+04

Prob (F-statistic) 0.00 Log-Likelihood 13947

No. Observations 54473 AIC −2.789e+04

Df Residuals 54470 BIC −2.786e+04

Df Model 3 Covariance Type nonrobust

Table 20.7 Regression results without outliers (ii)

Coef Std err t P > |t | 95% Conf.Int.

Score 0.1460 0.001 145.244 0.000 0.144 0.148

dScore 0.0200 0.001 25.819 0.000 0.018 0.022

con_dist 0.1656 0.003 65.690 0.000 0.161 0.171

Table 20.8 Regression results without outliers (iii)

Omnibus 10848.216 Durbin-Watson 1.966

Prob(Omnibus) 0.000 Jarque-Bera (JB) 22428.486

Skew 1.183 Prob (JB) 0.00

Kurtosis 5.070 Cond. No. 5.19

we select 10 and 5 as values to take most of the data and exclude data points with
extremely large out of general range values (outliers).

Results of regression model on data obtained after removing outlier data points
appear in Tables20.6, 20.7, and 20.8. The results show considerable improvement
with respect to regression with presence of outliers (Tables20.2, 20.3 and 20.4).
Also, Durbin–Watson statistic close to 2 confirms normality assumption of residu-

20 Predicting Video Virality on Twitter 429

als, verifying the normality of error distribution, one of the assumptions of linear
regression.

Figure20.10 plots reinforce the argument that after removing outliers we get a
better fit of regression line on each independent variable. Namely, the removal of
outliers leads to better alignment of the path of regression line to the optimal path.

20.5.3 Tenfold Cross-Validation

We performed a tenfold cross validation on the dataset, fitting the regressor to 90%
of the data and validating it on the rest 10% for the prediction of Au2v dependent
variable from Score, dScore and content − dist independent variables. Predictive
modeling was conducted after removing outliers from the data. The results of the
predictivemodeling using linear regression show thatwe achieve a rootmean squared
error of 0.1873 (across all folds), which means that our prediction varies by 0.1873
from the real values of Au2v. This shows a considerable improvement in prediction
error compared to modeling with original data, where a root mean squared error
of 0.2728 across all folds was achieved. Plots in both cases appearing in Figs. 20.8
and 20.9 depict how close our predictions are to the real values of the dependent
variable (Fig. 20.10).

20.5.4 Classification and Comparison with Other Models

We predict a user popularity as follows. If Au2v crosses a threshold, e.g. 30%, i.e.,
if more than 30% tweets of user u are retweeted by others users, then user u can be
considered as a popular user.

Fig. 20.8 tenfold
cross-validation of Au2v

430 I. Kilanioti and G.A. Papadopoulos

Fig. 20.9 tenfold cross-validation of Au2v without outliers

Fig. 20.10 Regression plots for each independent variable

Classification was conducted initially with three different methods: Linear
Regression, i.e., the Predictive Model we present in this study, Random Forest and
Naive Bayes methods. Area Under the Curve (AUC) is a score that computes aver-
age precision (AP) from prediction scores. This average precision score corresponds
to the area under the precision-recall curve and the higher AUC represents better
performance. Plots in Fig. 20.11 correspond to computed precision-recall pairs for
different probability thresholds and the AUC score computes the area under these
curves. Best performance is achieved by Linear Regression (0.699), followed by

20 Predicting Video Virality on Twitter 431

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Linear Regression (AUC: 0.699)

Naive Bayes (AUC: 0.608)

Random Forest (AUC: 0.608)

Support Vector Machines (AUC: 0.608)

Stochastic Gradient Descent (AUC: 0.580)

Nearest Neighbors (AUC: 0.601)

Precision

R
ec
al
l

Fig. 20.11 Comparison with other models

Naive Bayes (AUC:0.608) and Random Forest (AUC:0.608). Complementary meth-
ods tested were support vector machines (SVM), stochastic gradient descent (SGD)
and K-Nearest Neighbours (KNN).

SVM is a supervised learning model with associated learning algorithm that ana-
lyzes data used for classification and regression analysis. Given a set of training
examples, each marked to belong to one of the two categories (popular/non-popular
user), the SVM training algorithm builds a model that assigns new examples into
each of the categories, acting as a non-probabilistic binary linear classifier.

Next classification model was stochastic gradient descent (SGD), a gradient
descent optimizationmethod forminimizing an objective functionwritten as a sumof
differentiable functions. It encompasses a popular algorithm for training awide range
of models in machine learning, including linear support vector machines, logistic
regression and graphical models. Its use for training artificial networks is motivated
by the high cost of running backpropagation algorithm over the full training set, as
SGD overcomes this cost and still leads to fast convergence.

The last classifier implemented here was K-Nearest Neighbours (KNN), a method
classifying objects based on closest training examples in the feature space. The input
consists of positive, typically small, integer −15 in our case—of closest training
examples in the feature space. InKNNclassification, the output is a classmembership
(popular/non-popular user), whereas an object is classified by a majority vote of its

432 I. Kilanioti and G.A. Papadopoulos

neighbours, with the object being assigned to the class most common among its
K-Nearest Neighbours.

After plotting the results of computed precision-recall pairs for various probability
thresholds we observe that best performance is noticed in the case of our Predictive
Model, followed by Naive Bayes (AUC:0.608), Random Forest (AUC:0.608), SVM
(AUC:0.608), KNN (AUC:0.601), and, lastly, SGD (AUC:0.580).

20.6 Incorporation into Content Delivery Schemes

Content Distribution Networks (CDNs) aim at improving download of large data
volumes with high availability and performance. Content generated by online media
services circulates and is consumed over OSNs (with more than 400 tweets per
minute including a YouTube video link [3] being published per minute). This content
largely contributes to internet traffic growth [4]. Consequently, CDNusers can benefit
from an incorporated mechanism of social-awareness over the CDN infrastructure.
In [10, 11] Kilanioti and Papadopoulos introduce a dynamic mechanism of preactive
copying of content to an existing validated CDN simulation tool and propose various
efficient copying policies based on prediction of demand on OSNs.

Rather than pushing data to all surrogates, they proactively distribute it only to
social connections of the user likely to consume it. The content is copied only under
certain conditions (content with high viewership within the media service, copied
to geographically close timezones of the geo-diversed system used where the user
has mutual social connections of high influence impact). This contributes to smaller
response times for the content to be consumed (for the users) and lower bandwidth
costs (for the OSN provider). Herein, we incorporate the proposed Predictive Model
in the suggested policy [11] and prove that it further improves its performance.

The proposed algorithm encompasses an algorithm for each new request arriving
in the CDN and an algorithm for each new object in the surrogate server (Table20.9).
Internally, the module communicates with the module processing the requests and
each addressed server separately (Fig. 20.12).

• For Every New Request in the CDN
Prinicipally we check whether specific time has passed after the start of cascade
and, only in the case that the cascade has not ended, define to what extent the object
will be copied.We introduce the time_threshold that roughly expresses the average
cascade duration. The main idea is to check whether specific time has passed after
the start of the cascade, and then define to what extent the object will be copied.
Initially, we check whether it is the first appearance of the object (Fig. 20.13). The
variable o.timestamp depicts the timestamp of the last appearance of the object in
a request and helps in calculating the timer related to the duration of the cascade. If
it is the first appearance of the object, the timer for the object cascade is initialized
and o.timestamp takes the value of the timestamp of the request. If the cascade is

20 Predicting Video Virality on Twitter 433

Table 20.9 Content delivery verification—notation overview

G(t) = (V (t), E(t)) Graph representing the social network

V (t) = {V1(t), . . . , Vn(t)} Nodes representing the social network users

E(t) = {E11(t), . . . , E1n(t), . . . , Enn(t)} Edges representing the social network
connections, where Ei j stands for friendship
between i and j

R = {r1, r2, . . . , rτ } Regions set

N = {n1, n2, . . . , nυ } The surrogate servers set. Every surrogate
server belongs to a region ri

Ci , i ∈ N Capacity of surrogate server i in bytes

O = {o1, o2, . . . , ow} Objects set (videos), denoting the objects users
can ask for and share

Si , oi ∈ O Size of object i in bytes

Πi Popularity of object i , i ∈ O

qi = {t, Vψ, ox }, < x < w, 1 < ψ < n Request i consists of a timestamp, the id of the
user that asked for the object, and the object id

P = {p12, p13, . . . , pnw} User posts in the social network, where pi j
denotes that node i has shared object j in the
social network

ptsi , ptei , 1 < i < τ Peak time start and peak time end for each
region in secs

Q = {q1, q2, . . . , qζ } Object requests from page containing the
media objects, where qi denotes a request for
an object of set O

Qhit , Qtotal Number of requests served from surrogate
servers of the region of the user/total number of
requests

X, Y ∈ R Closest timezones with mutual followers/with
highest centrality metric values

Fig. 20.12 The social-aware CDN mechanism

434 I. Kilanioti and G.A. Papadopoulos

1: if o.timestamp == 0 then
2: o.timer = 0;
3: o.timestamp = request timestamp;
4: else if o.timestamp != 0 then
5: o.timer = o.timer + (request timestamp - o.timestamp);
6: o.timestamp = request timestamp;
7: end if
8: if o.timer > time threshold then
9: o.timer = 0;
10: o.timestamp = 0;
11: else if o.timer < time threshold and user.Score > Score threshold then
12: copy object o to surrogate that serves user’s Vi(t) timezone;
13: for all user Vy(t) that follows user Vi(t) do
14: find surrogate server n j that serves Vy(t)’s timezone;
15: copy object o to n j;
16: end for
17: else if o.timer < time threshold then
18: copy object o to surrogates n j that Subpolicy decides;
19: end if

Fig. 20.13 Algorithm for every new request (timestamp, Vi (t), o) in the CDN

not yet complete (its timer has not surpassed a threshold), we check the importance
of the user applying its Score.
For users with Score surpassing a threshold (average value: 1.2943 in the dataset),
we copy the object to all surrogate servers of the user’s timezone and to the sur-
rogate servers serving the timezones of all user’s followers. Otherwise, selec-
tive copying includes only the surrogates that the subpolicy decides. Subpolicy
(Fig. 20.14) checks the X closest timezones where a user has mutual friends and
out of them, the Y with the highest value of the combined feature set (Predictive
Model(Score, dScore, content_dist)) as an average. Copying is performed to
the surrogate servers that serve the Y timezones of highest combined feature set
value, according to the coefficients derived from our analysis. We note here that
variations of the Subpolicy include the replacement of the timezones depicting the
highest average values of Predictive Model(Score, dScore, content_dist), with
those being derived from the application of Naive Bayes, Random Forest, SVM,
SGD, and KNN schemes.

1: find X timezones where (user Vi(t) has mutual followers and they are closer to user’s Vi(t)
timezone);

2: find the Y ⊆ X that (belong to X and depict the highest average values of Predictive
Model(Score, dScore, content dist));

3: for all timezones that belong to Y do
4: find surrogate server n j that serves timezone;
5: copy object o to n j;
6: end for

Fig. 20.14 Subpolicy

20 Predicting Video Virality on Twitter 435

1: if o.size + current cache size ≤ total cache size then
2: copy object o to cache of surrogate nk;
3: else if o.size + current cache size > total cache size then
4: while o.size + current cache size > total cache size do
5: for all object o′ in current cache do
6: if (current timestamp - o′.timestamp) + o′.timer > time threshold then
7: copy o′ in CandidateList;
8: end if
9: ifCandidateList.size>0 andCandidateList.size != total cache size then
10: find o′ that o′.timestamp is maximum and delete it;
11: else if CandidateList.size==0 orCandidateList.size==total cache size then
12: use LRU to delete any object o ∈ O;
13: end if
14: end for
15: end while
16: put object o to cache of surrogate nk;
17: end if

Fig. 20.15 Algorithm for every new object o in the surrogate server nk

• For Every New Object in the Surrogate Server
Surrogate servers keep replicas of the web objects on behalf of content providers.
In the case that the new object does not fit in the surrogate server’s cache, we
define the time_threshold as the parameter for the duration that an object remains
cached. We check for items that have remained cached for a period longer than
the time_threshold and we delete those with the largest timestamp in the cascade.
In case there exist no such objects or all objects have the same timestamp, we
prune the least recently used items first. To ensure that least recently used items
are discarded, the algorithm keeps track of their usage (Fig. 20.15).

The nodes representing the surrogate servers, the origin server, and the users
requesting the object (Fig. 20.16) in the simulated network topology are analyzed
in detail in [10]. To simulate our policy and place the servers in a real geographical
position, we used the geographical distribution of the Limelight network.

For the smooth operation of the simulator the number of surrogate servers was
reduced by a ratio of 10%, to ultimately include 423 servers. Depending on the
closer distance between the surrogate region defined by Limelight and each of the
timezones defined by Twitter (20 Limelight regions, 142 Twitter timezones), we
decided where the requests from each timezone will be redirected. The population of
each timezone was also taken into consideration. The INET generator [4] allowed us
to create an AS-level representation of the network topology. Topology coordinates
were converted to geographical coordinateswith theNetGeo tool fromCAIDA, a tool
that maps IP addresses and Autonomous System (AS) coordinates to geographical
coordinates, and surrogate servers were assigned to topology nodes. After grouping
users per timezone (due to the limitations the large dataset imposes), each group of
users was placed in a topology node.We placed the user groups in the nodes closer to
those comprising the servers that serve the respective timezone requests, contributing
this way to a realistic network depiction.

The heuristics applied in [11] are based on the observation that users are more
influenced by geographically close friends, and moreover by mutual followers, as

436 I. Kilanioti and G.A. Papadopoulos

We define the regions with surrogate servers (Limelight)

We define the number of surrogate servers in every region (Limelight – 10% reduction)

We assign surrogate servers for serving request in every time zone

We convert the topology coordinates into geographical coordinates (NetGeo)

We assign the surrogate servers to nodes in the topology

Fig. 20.16 Methodology followed

well as on the short duration of social cascades (about 80% of the cascades end
within 24 h, with 40% of them ending in less than 3 h). In our prefetching algorithm,
we introduce varying time thresholds for the cascade effect and the time an object
remains in cache. Values given in the time threshold variable include thresholds
covering the entire percentage of requests.

We examine Mean Response Time (MRT), a client-side metric that indicates
how fast a CDN client is satisfied, for the most representative case of time threshold
covering all the examined requests of our dataset. The trade-off between the reduction
of the response time and the cost of copying in servers is expressed for all schemes
used (Linear Regression, Naive Bayes, Random Forest, SVM, SGD, KNN) with an
MRT decrease as the timezones increase and a point after which the MRT starts to
increase again (Fig. 20.17). For the scheme augmented with our Predictive Model,
namely the Linear Regression, this shift occurs with approximately 6 timezones out
of the 10 used (for a fixed number of closest timezones with mutual followers). After
this point the slight increase in the MRT is attributed to the delay for copying content
to surrogate servers. The cost for every copy is related to the number of hops among
the client asking for it and the serverwhere copying is likely to take place.We observe
that Linear Regression outperforms all the other schemes, depicting MRTs smaller
than their respective.Wenote here that timezoneswith highest average values for each
scheme, that Subpolicy defines, are precalculated, in order to reduce computational
burden in the simulations.

20 Predicting Video Virality on Twitter 437

1 2 3 4 5 6 7 8 9 10

11.5

12

12.5

Number of timezones

M
ea

n
R

es
po

ns
e

T
im

e
×1

0−
1

(m
s)

Naive Bayes
Linear Regression
SVM
Random Forest
KNN
SGD

Fig. 20.17 Effect of timezones used as Y on Mean Response Time for various schemes (X = 10
closest timezones with mutual followers)

20.7 Conclusions

We come to the conclusion that video sharings over an OSN platform can be pre-
dicted with a small set of features extracted from both the platform and the media
service. Despite the focused scope of this work and the limitations of its conduction
solely with Twitter and YouTube data, the scale of the medium allows us to make
assumptions for generalization across different OSNs and microblog platforms. We
plan to extensively analyze this generalization in the future. Future extensions also
include experimentation with variations of content distance interpretation among
users, with various score assignment formulas, as well as subsequent verification in
the realm of content delivery. We hope that our findings will broaden the view on the
spread of information in web today.

References

1. Abisheva, A., Garimella, V.R.K., Garcia, D., Weber, I.: Who watches (and shares) what on
YouTube? And when?: Using Twitter to understand Youtube viewership. IN: Proceedings of
the 7th ACM International Conference on Web Search and Data Mining, WSDM 2014, New
York, NY, USA, 24–28 Feb 2014, pp. 593–602 (2014). doi:10.1145/2556195.2566588

2. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying
influence on Twitter. In: Proceedings of the 4th International Conference on Web Search and
WebDataMining,WSDM2011, HongKong, China, 9–12 Feb 2011, pp. 65–74 (2011). doi:10.
1145/1935826.1935845

http://dx.doi.org/10.1145/2556195.2566588
http://dx.doi.org/10.1145/1935826.1935845
http://dx.doi.org/10.1145/1935826.1935845

438 I. Kilanioti and G.A. Papadopoulos

3. Brodersen, A., Scellato, S.,Wattenhofer,M.: YouTube around theworld: geographic popularity
of videos. In: Proceedings of the 21stWorldWideWebConference,WWW2012, Lyon, France,
16–20 April 2012, pp. 241–250 (2012). doi:10.1145/2187836.2187870

4. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.B.: I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video system. In: Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, IMC 2007, San Diego, California,
USA, 24–26 Oct 2007, pp. 1–14 (2007). doi:10.1145/1298306.1298309

5. Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted?
In: Proceedings of the 23rd International World Wide Web Conference, WWW 2014, Seoul,
Republic of Korea, 7–11 April 2014, pp. 925–936 (2014). doi:10.1145/2566486.2567997

6. Dow, P.A., Adamic, L.A., Friggeri, A.: The anatomy of large Facebook cascades. In: Pro-
ceedings of the 7th International Conference on Weblogs and Social Media, ICWSM 2013,
Cambridge, Massachusetts, USA, 8–11 July 2013

7. Galuba, W., Aberer, K., Chakraborty, D., Despotovic, Z., Kellerer, W.: Outtweeting the
Twitterers—Predicting Information Cascades in Microblogs. In: Proceedings of the 3rd Work-
shop on Online Social Networks, WOSN 2010, Boston, MA, USA, 22 June 2010

8. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in Twitter. In: Proceedings of
the 20th International Conference onWorldWideWeb,WWW2011, Hyderabad, India, March
28–April 1, 2011 (Companion Volume), pp. 57–58 (2011). doi:10.1145/1963192.1963222

9. Jenders, M., Kasneci, G., Naumann, F.: Analyzing and predicting viral tweets. In: Proceedings
of the 22nd International World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil,
13–17 May 2013, Companion Volume, pp. 657–664 (2013)

10. Kilanioti, I.: Improving multimedia content delivery via augmentation with social information.
The Social Prefetcher approach. IEEE Trans. Multimedia 17(9), 1460–1470 (2015). doi:10.
1109/TMM.2015.2459658

11. Kilanioti, I., Papadopoulos, G.A.: Socially-awaremultimedia content delivery for the cloud. In:
Proceedings of the 8th IEEE/ACM International Conference on Utility and Cloud Computing,
UCC 2015, Limassol, Cyprus, 7–10 Dec 2015, pp. 300–309 (2015). doi:10.1109/UCC.2015.
48

12. Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., Kustarev,
A.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM Interna-
tional Conference on Information and Knowledge Management, CIKM 2012, Maui, HI, USA,
October 29–November 02, 2012, pp. 2335–2338 (2012). doi:10.1145/2396761.2398634

13. Kwak, H., Lee, C., Park, H., Moon, S.B.:What is Twitter, a social network or a newsmedia? In:
Proceedings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh,
North Carolina, USA, 26–30 April 2010, pp. 591–600 (2010). doi:10.1145/1772690.1772751

14. Ma, Z., Sun, A., Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter.
JASIST 64(7), 1399–1410 (2013). doi:10.1002/asi.22844

15. Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! Predicting message propagation in Twitter.
In: Proceedings of the 5th International Conference on Weblogs and Social Media, ICWSM
2011, Barcelona, Catalonia, Spain, 17–21 July 2011

16. Rodrigues, T., Benevenuto, F., Cha, M., Gummadi, P.K., Almeida, V.A.F.: On word-of-mouth
based discovery of the web. In: Proceedings of the 11th ACM SIGCOMM Conference on
InternetMeasurement, IMC2011,Berlin,Germany, 2–4Nov2011, pp. 381–396 (2011). doi:10.
1145/2068816.2068852

17. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors
impacting retweet in Twitter network. In: Proceedings of the 2nd IEEE International Confer-
ence on Social Computing, SocialCom / IEEE International Conference on Privacy, Security,
Risk and Trust, PASSAT 2010, Minneapolis, Minnesota, USA, 20–22 Aug 2010, pp. 177–184
(2010). doi:10.1109/SocialCom.2010.33

18. Szabó, G., Huberman, B.A.: Predicting the popularity of online content. Commun. ACM 53(8),
80–88 (2010). doi:10.1145/1787234.1787254

19. Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of ideas
in microblogging communities. In: Proceedings of the 5th International Conference on Web

http://dx.doi.org/10.1145/2187836.2187870
http://dx.doi.org/10.1145/1298306.1298309
http://dx.doi.org/10.1145/2566486.2567997
http://dx.doi.org/10.1145/1963192.1963222
http://dx.doi.org/10.1109/TMM.2015.2459658
http://dx.doi.org/10.1109/TMM.2015.2459658
http://dx.doi.org/10.1109/UCC.2015.48
http://dx.doi.org/10.1109/UCC.2015.48
http://dx.doi.org/10.1145/2396761.2398634
http://dx.doi.org/10.1145/1772690.1772751
http://dx.doi.org/10.1002/asi.22844
http://dx.doi.org/10.1145/2068816.2068852
http://dx.doi.org/10.1145/2068816.2068852
http://dx.doi.org/10.1109/SocialCom.2010.33
http://dx.doi.org/10.1145/1787234.1787254

20 Predicting Video Virality on Twitter 439

Search and Web Data Mining, WSDM 2012, Seattle, WA, USA, 8–12 Feb 2012, pp. 643–652
(2012). doi:10.1145/2124295.2124320

20. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the
4th International Conference onWeb Search andWebDataMining,WSDM2011, Hong Kong,
China, 9–12 Feb 2011, pp. 177–186 (2011). doi:10.1145/1935826.1935863

21. Yang, S., Zha, H.: Mixture of mutually exciting processes for viral diffusion. In: Proceedings
of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA,
16–21 June 2013, pp. 1–9 (2013)

22. Zaman, T.R., Herbrich, R., Van Gael, J., Stern, D.: Predicting information spreading in Twitter.
In: Proceedings of theWorkshop on Computational Social Science and theWisdom of Crowds,
Nips, vol. 104, pp. 17, 599–601 (2010)

http://dx.doi.org/10.1145/2124295.2124320
http://dx.doi.org/10.1145/1935826.1935863

Chapter 21
Big Data Uses in Crowd Based Systems

Cristian Chilipirea, Andreea-Cristina Petre and Ciprian Dobre

21.1 Introduction

Crowd Sensing represents a new paradigm whose potential and limitations still
require a lot of research. Classically if someone wanted to gather information about
an area shewould deploy a large enough number of sensors that provided the required
data. This solution has some severe limitations. First of all, the number of sensors
can be extremely high depending on the application. Take for instance, measuring
the noise level inside a city. This would require microphone-like sensors deployed
on every street. These sensors would need to communicate in order to send the data
to a central location. This in turn means deploying a wire or wireless infrastructure.
Furthermore, the sensors require energy. They can either use high power expensive
batteries, that require maintenance or a connection to an electrical infrastructure,
which is not easily available. All these problems: the sensors, the communication,
the power requirements impose an extremely high price for the simple application
of noise monitoring. And the problem does not stop with the price. Sensors need to
be replaced when they are broken, they need to be protected so that the quality of the
measurements is not disturbed and because they are static they are limited in their
view of the noise in parts of the city where they are not deployed.

Here comes the idea of using a crowd. Instead of deploying an expensive, difficult
to maintain infrastructure, one could use the power of the crowd in order to obtain
the same, or even better measurements. The power of the crowd is well known. The
first example of this was made by Wikipedia [64], where a collection of articles,

C. Chilipirea · A.-C. Petre · C. Dobre (B)
University Politehnica of Bucharest, Spl. Independentei 313, Bucharest, Romania
e-mail: ciprian.dobre@cs.pub.ro

C. Chilipirea
e-mail: cristian.chilipirea@cs.pub.ro

A.-C. Petre
e-mail: andreea.petre@cti.pub.ro

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_21

441

442 C. Chilipirea et al.

created, and edited by individuals across the Internet built the largest encyclopedia.
This work was not managed or coordinated in any way. All participants contributed
with as much or as little as they felt.

The idea of using a crowd is further explored by applications such as Amazons
Mechanical Turk [3]. This is a marketplace application that proposes the use of
crowds in order to solve small tasks in exchange for small amount of money. Many
similar specialized marketplaces have appeared over time.

All these systems are based on crowd sourcing. Having a large number of indi-
viduals solve one small problem. In most cases crowd sourcing requires the direct
involvement of the individual in order for the problem to be solved.

Crowd sensing is a subset of crowd sourcing. If crowd sourcing proposes the use
of crowds in order to solve a problem, crowd sensing requires that the problem be of
a “sensing” one by nature. The previously presented noise problem is a sensing one.

To take advantage of crowd sensing in order to solve the noisemonitoring problem
one would require only a simple application, installed on the phones of many users.
Smartphones are an ideal platform: they are now ubiquitous; they all have one of
three popular operating systems, Android OS, iOS, or Windows Mobile; they are
very powerful complex pieces of hardware with a processor, internet access and
many sensors; and finally they are very mobile. Particular to the noise application,
they also have microphones already included in them.

With an application that takes microphone data, process it to determine a noise
level, and sends it to a central location one can use the power of crowds to monitor
large cities. This is all donewithminimal costs or resources.Because of humanmobil-
ity, many different areas are constantly being monitored. The only thing required is
the good will of the crowds, and this has been shown time after time again through
platforms such asWikipedia. Furthermore, the goodwill can always be replaced with
incentives, monetary, or of different nature, such as gamification.

Multiple crowd sensing tasks can be run at the same time. For instance, one task
can measure the noise level, while another measures the pollution level or even
pedestrian density. With more tasks, more data is being generated and more difficult
it is to process. But with more data more information can be extracted and specialists
can make more sense of what is going on.

There are multiple factors that introduce an extremely high scale to the crowd
sensing problem: Large number of users that generate the data; Multiple concurrent
monitoring tasks; Constant monitoring, all devices are periodically gathering data.
This creates an extremely large volume of data.

Volume is the first of the “three V’s of Big Data” as defined by Gartner [41].
The V’s are: Volume, Velocity and Variety. Crowd sensing data has all these fea-
tures. The data is constantly being generated at a very high speed by many sensors,
this represents Velocity. The data can be generated by different, complex sensors,
representing Variety. The volume is given by the scale of this data set.

IBM added a fourth V as a Feature of Big Data [35]. This V represents Veracity,
the fact that the data is uncertain, or unclear. This is especially true in crowd sensing,
where there can be only little trust in the data being generated.

21 Big Data Uses in Crowd Based Systems 443

Crowd sensing raises interesting problems that never existed in the case of any
other sensing system. Crowd sensing is extremely dependent on crowd dynamics.
Sensors arewhere people are. This doesmean they can cover a large area, but this also
means they are not always available. For instance, take a task of sensing pollution
levels in a city. During the night people are mostly inside their homes and very
few are outside offering readings. In the day, most people are mobile and so are
the sensors they are carrying, covering large areas, and delivering large amounts of
relevant data. This makes it very important to first understand crowd dynamics so
that crowd sensing data can be correctly evaluated and used.

Fortunately, there is currently a large amount of research that tries to make sense
of crowd dynamics. Crowd tracking applications make use from anything fromGPS,
WiFi signals to inertial sensors. The data from these applications have very similar
properties to the crowd sensing data. There is a high volume of data, given by the large
number of individuals, with a high velocity given by the constant location updates,
as well as, high variety and veracity given by the different methods in which this data
can be acquired.

In the next section we offer related work and a motivation for this research. This is
followed by a detailed analysis on Crowd Sensing systems. Next we present different
methods of measuring Crowd dynamics, information relevant to the crowd sensing
systems. We continue by presenting different types of Context that can be used in
conjunction with crowd tracking and crowd sensed data. Finally, we discuss how Big
Data can be used to extract information from this data sources and finish with our
Conclusions.

21.2 Related Work

Crowd based systems are raising more interest. More and more research projects aim
the construction of such a system. In this chapter we are interested in two categories
of crowd-based systems, in systems that use the crowd for the purpose of sensing
and in systems that try to monitor a crowd.

Sensing data using a crowd, or simply called crowd sensing represents an inter-
esting promise, of cheap, scalable, powerful data gathering system. These systems
make use of the mobility of crowds in order to extract sensed from multiple loca-
tions. On overview on crowd sensing and a listing of many possible applications is
available in [31].

With the increase of interest in crowd sensing systems, in recent years, many
platforms have appeared that try to implement and solve this problem. Medusa [54]
represents the most popular crowd sensing platform. It consists of a programming
framework where people can define sensing tasks. These tasks are then spread to the
users and they can gather the sensor data and forward it to the requester. In order to
reward the users Medusa uses Amazon Mechanical Turk [3].

In comparison Metador [15, 16] represents a platform for crowd sensing that
concentrates on context information. Tasks are created and delivered only to the

444 C. Chilipirea et al.

individuals that are in the right context. For instance, information of a crowd sensing
campaign requiring a picture of a building is sent only to individuals in proximity of
the building.

Mosden [36] represents a platform for crowd sensed data whose main idea is to
separate logic behind communication, storage and data acquisition. The platform is
demonstrated using an application that uses crowd sensed data to determine noise
pollution inside a city.

Another platform for crowd sensing is implemented on top of Cupus [6]. It uses
a publish/subscribe interface based on the cloud. It is meant for Internet of Thing
systems. The platform is used with an application for air quality monitoring. The air
quality sensors are small dongles that can connect with Bluetooth to a smartphone.
Using the Cupus publish/subscribe systems the data from multiple such devices is
collected and processed in the cloud.

Probably the first platform that can be used for crowd sensing purposes is the
mCrowd platform [67]. It integrates ChaCha [17] and Amazon Mechanical Turk [3]
and offers tasks set on these systems on mobile platforms. The tasks take mostly the
form of image or text responses and require human interaction to complete.

Platforms for mobile crowd sensing have appeared in order to make it simple to
deploy crowd sensing campaigns or applications. There are a lot of problems that
make it difficult to deploy crowd sensing applications. Manny of them are detailed
in [65]. Among the problems identified we note: heterogeneity of mobile devices
software anddifficulty of installing applications, especially if each crowd sensing task
requires a different application. There are also problems of scalability and resource
utilization. Platforms for crowd sensing have the potential of solving most problems.
With the large number of crowd sensed platforms there are also multiple applications
for crowd sensing. For instance, in [2] the authors present MAP++ a system where
semantic data is automatically added to maps using a crowd sensing system. Their
system uses only sensors from inside smartphones, such as the accelerometer, and
require no user interaction. Multiple road features can be detected such as bumps
or roundabouts. However, their system is calibrated to work only for smartphones
carried inside vehicles.

A similar system that uses only sensors that already exist is smartphones is pre-
sented in [63]. Here the authors show how Bluetooth modules can be used in order
to determine the density of people in different areas. Their application makes use of
multiple smartphones that continuously record Bluetooth signals, making it a crowd
sensing application. The authors prove that their system has an accuracy of 75%.

The Mahali project [51] represents probably the most daring of crowd sensing
applications. It proposes the use of a dual frequencyGPS receiver, in order tomeasure
ionosphere features. This information can be used to get high resolution weather
maps. Smart phones are likely to have dual frequency GPS receivers in the near
future due to the need of precise localization. In the meantime, they are still useful
to fill the gap in connecting remotely placed static sensors, without network access
by being an intermediary node in connecting it to the internet. This method is called
delay tolerant networking.

21 Big Data Uses in Crowd Based Systems 445

Crowd sensing can be used to further many science experiments that would oth-
erwise require large costs and man power to complete. In [32] the authors propose
a crowd sensing application intended for use by students. The application asks the
users to go to specific locations and take pictures of different plants. These pictures
are then used by environmental scientists in order to better understand the flora of
the campus. The application has as basis the idea of gamification, the incentive of
taking the pictures being a simple set of in-game points. The method of gamification
is called floracahing and is similar to geocaching [28].

Not all applications that need sensing data require the deployment of a new crowd
sensing campaign. For instance, in [22] the authors use Foursquare data in order to
determine the growth of cities.Because of the scale of this data set popular locations in
cities can be observed and the increase in density of these locations can be measured.
Cities themselves have require many types of data if they are to become what is
known as smart cities. The authors of [33] conduct an in depth look of multiple types
of sensing that can be done in smart cities. Many of these can be applied to crowd
sensing.

With all these platforms and application for mobile crowd sensing appearing in
recent years it is clear that the potential givenby these system is quite large.But, crowd
sensing platforms and solutions all suffer from privacy issues. A few papers try to
solve this problem. The work presented in [40] takes privacy as the most important
consideration. In order to preserve the privacy of people generating the data they
propose a cloud-based approach with a system that gathers the data and obfuscates
it before it is being sent to the data requester. Similarly, the authors of [38] create an
application that provides anonymous authentication to their service. This application
of crowd sensing permits park operators to determine important characteristics of the
crowds that move around their park. For instance, the operators are able to determine
queue lengths and even recommend better routes for incoming visitors. A survey on
privacy of crowd sensing applications is available in [53].

Other works try to improve the reliability of crowd sensing systems. The authors
of [27] tackle the problem of how to insure that crowd sensed data is accurate.
For instance, when an application requires pictures from an event, how to confirm
the pictures are actually valid. The solution of the authors is given by a Bluetooth
communication between devices. Multiple devices use their GPS data and increase
the trust that the image is indeed taken in that location. This is done without any
human intervention. A similar solution is provided in [49] where trust in the data is
treated. The requester needs to have trust in the data being sent by random users. In
order to improve trust this paper proposes a way of discovering the “truth” in data
by correlating multiple reports.

Finally, one has to determine the optimal number of users for a crowd sensing
application. In order to determine this number a simulation environment is pro-
posed [26]. This environment is specifically targeted at urban parking. The informa-
tion extracted from the crowd sensing application being used in order to determine
where a parking lot is available.

In order to completely understand crowd sensing and the data it offers, it is vital
that data analysts have access to crowd dynamics information. There is a need to

446 C. Chilipirea et al.

first understand the position of individuals that participate in the sensing process and
then to understand the flows of crowds.

Measuring crowd dynamics is classically done using visual systems [57]. These
system consists of a number of video cameras placed around the city and powerful
software that can identify a face and track it across multiple cameras. Because facial
recognition is still not a completely solved problem and the results are highly proba-
bilistic, the results of these systems are not very accurate. Furthermore, implementing
this type of systems requires huge investments in infrastructure, starting from cam-
eras and the communication network for their data to be gathered at a central location,
to large processing centers required to run the face recognition algorithms.

Other solutions have appeared in the literature. GPS [8] is the most known and
most highly used positioning technology. It is present in most modern cars and in
almost all smartphones, which are now ubiquitous. This solution has been imple-
mented in the case of large crowd monitoring [10]. Taking advantage of the large
number of smart phones the authors built an app that gathered GPS data from any
device that had the app installed to a central location. They proved the feasibility of
this method by deploying it during a three-day Swiss festival.

Requiring people to install an app in order to provide the required information is
not a solution that scales very well. Individuals need to have a level a trust in the app
and its use needs to be widespread, which in turn might require incentives. Methods
that do not require the involvement of the individuals being tracked are preferred.

An increasingly popular alternative is given by the use of communication signals.
Whenever a phone transmits data it uses one of several standardized protocols. By
having scanners that can record these signals it is then possible, within a limited
accuracy, to identify where a device is and how it is moving. Because protocols such
as WiFi includes the address of the device within most packets it is possible to track
one device across multiple scanners.

Using WiFi in order to track crowds of people and understand human mobility
has been done in for music festivals [11] or for campus monitoring [37]. More inter-
esting applications try to use this type of data in order to inform on building facility
planning [55] or even measure flows of people through airport checkpoints [56]. The
technology has also been proved useful in measuring human queues [61].

Other works have searched ways of improving the use of WiFi scanning tech-
niques. In [19] we try to show a number of filters that can be used in order to obtain
a smaller data set with less noise. The solution for the RSS variance problems in this
type of monitoring is solved presented in [59]. Improvements have also taken place
in the form of building better tools for visualizing movement data [5].

In the search for accurate device positioning and tracking some works have tried
using multiple technologies at the same time. This is apparent in [50] where multiple
communications methods and magneto metric sensors are used at the same time, or
in [25] where WiFi is used at the same time as inertial sensors.

21 Big Data Uses in Crowd Based Systems 447

21.3 Crowd Sensing

Crowd sourcing is becoming a very powerful tool for solving large tasks (even at a
scale that makes them seem impossible) that can be broken down in a large number
of simple tasks that require just a bit of human involvement. This idea is the basis of
Wikipedia [64], a website where anyone can contribute to build one massive, open
encyclopedia. This same website for instance offers an extensive list of cases where
crowd sourcing is used in order to solve otherwise impossible tasks.

Crowd sensing is a part of crowd sourcing where the people inside the crowd
are tasked with gathering sensor data. The authors of [30] define crowd sensing as
a natural extension of participatory sensing. Where participatory sensing represents
a task where the crowd is used to gather sensor data, and crowd sensing uses this
data in conjunction with offline or previously gathered data. An even more important
difference is given by the lack of need of participation that was implied by the
participatory sensing systems. For instance, a campaign that tries to measure noise
pollution requires that the mobile devices send data with regards to noise, but they
dont require the mobile device owner to actively do anything. In contrast a campaign
that requires images of a building or of an event, requires that the owner of the mobile
device actively take these pictures.

To have a crowd sensing campaign, one requires that individuals inside an area
carry a device that has the sensing capabilities required by the crowd sensing cam-
paign. The data gathered by the devices then needs to be sent to the campaign man-
ager, the one that requested the data, or to an individual to whom the data is useful.

Because of the popularity of smartphones, it is now possible to have large scale
deployments of crowd sensing applications, where as many users that own smart-
phones can participate. Smartphones are ubiquitous and with this the popularity of
crowd sensing applications has grown. However, all crowd sensing applications that
make use of smartphones are limited by the features that are found inside them. A
solution is to extend the capabilities of smartphones with external hardware, like a
Bluetooth dongle that contains only the needed sensor. An example of this is avail-
able in [66]. The smartphone is still an important part of the system because with
its powerful CPU and communication capabilities it dramatically lowers the price
of the scanner. With powerful sensors, such as pollution sensors, or sensors that can
detect humidity or pressure, crowds can gather all types of data.

Campaigns that require external sensor aremore difficult to deploy. They aremore
expensive because of the extra hardware and they require people to carry another
device with them, which is inconvenient. Smartphones are now powerful computers
with an already large variety of sensors. These sensors are themost popular for crowd
sensing campaigns. The most popular sensors inside smartphones are

• Accelerometer—The accelerometer in smart phones is commonly used as an iner-
tial sensor, capable of inferring the speed with which the person is moving, as
well as, offer support for many other applications as impressive as gesture recog-
nition [34] or even authentication [48]. When a large number of these sensors

448 C. Chilipirea et al.

are used applications such as earthquake detection and measuring [27] can be
implemented.

• GPS—This sensor is used primarily for localization purposes. In conjunction with
maps and interactive applications it can be used to assist with choosing the shortest
path through a city. With many of these sensors crowds and congestions can be
detected [47].

• Photo/Video Camera—Smartphones are now capable of taking high resolution
photos and videos. People use them extensively and post photos on social networks
and these can be used in crowd sensing campaigns [23]. The photos can also be
used to enable citizen journalism [68].

• Microphone—Communication remains the main feature of a smartphone and
microphones are the central sensor that enables it. With enough microphones
crowd sensing campaigns can measure noise pollution [45].

• Magnetometer—Are sensors that detect magnetic fields, they are used in conjunc-
tion with accelerometers in order to improve positioning.

• Thermometer—Are mainly used to measure the temperature of the CPU to insure
that it is working appropriately. However, these sensors can also be used tomeasure
the temperature of the environment [7].

• WiFi—WiFi represents the module used to communicate data, mainly for internet
usage. Because of the details of the 802.11 protocol this module can be used in
order to detect other WiFi enabled devices through WiFi scanning [4]. Making a
list of static WiFi devices is done through a technique called war-driving [21] and
it can be used to improve localization.

• Bluetooth—Similar to WiFi, Bluetooth represents a data communication technol-
ogy. It is mainly used for personal area networks and is meant to connect smart-
phones to wearables or headphones. They can be used to facilitate communication
with other devices and this means they can also be used to detect them and with
them the size of crowds [63].

The data gathered by the sensors can be sent to a central authority. Alternatives
are to store the data until an Internet connection is available or to send the data in
a distributed manner. For instance, if the sensors measure the traffic on a street, the
information can be useful to people located on adjacent streets.

In order for any crowd sensing campaign to be successful it requires people to
participate in the crowd sensing process. This means people have to be incentivized
in order for them to participate in the campaign. There are many articles that propose
incentives for crowd sensing systems [14, 42–44] as this is the primary assumption
that needs to be addressed in order to implement any such campaign.

With appropriate incentives crowd sensing systems can reach the required number
of users. Because the sensors are usually small range, take for instance microphones
which work for only few meters, this means lots of people need to take part in the
crowd sensing system in order to be able to monitor large areas.

Crowd sensing itself is usually opportunistic. Sensed data is only gathered in
locations where people are. If they do not go to different areas, then there will
simply be no data from those areas. In order to improve this, active systems could be

21 Big Data Uses in Crowd Based Systems 449

implemented in order to guide people to where sensed data needs to be gathered. This
is the case for floracache [32] where people are told where to go to gather the data.

Outside of smartphones there are a few other classes of devices that can prove
useful for crowd sensing initiatives. Cars now have many powerful computers and
sensors as well as communication capabilities with central locations or even other
cars [24]. The computers and sensors in these cars can be repurposed in order to
participate in crowd sensing networks. Because of their large volume and carrying
capabilities, cars can be equipped with larger more complex sensors. We ask the
reader to consider if it is not fit for the cars that contributed to pollution to be the
ones that are tasked to measure it.

Wearables [58] represent a large class of devices that people can wear. They are
now popular in the form of smart watches and fitness bands, but they can take many
forms. They have the advantage of being in extremely close proximity to the user.
With increases in processing power and multiple sensors they will soon become
another interesting alternative for crowd sensing.

To our knowledge there is no real open data set available that shows the results of
a crowd sensing campaign.

Withmany alternatives for applications andmany available platforms crowd sens-
ing is likely to be an important part of our daily lives. But in order to understand
the accuracy and the benefits of crowd sensed data it is vital that there is access to
crowd dynamics information. Understanding crowd dynamics enables us to measure
the quality of the sensing data, by understanding what areas are covered and which
are not, as well as, be able to predict which areas will be covered in the future.
This even enables campaign runners to deploy static sensors in areas that do not get
enough traffic.

21.4 Measuring Crowd Dynamics

Crowd dynamics represent all movements and stationary actions that crowds make.
They can apply to a small area such as an indoor facility or be as large as an entire
city. Crowds display flows and they can merge or split throughout their movement.
They are affected by the density of people that make out a crowd.

Ideally a crowd tracking system would be able to offer a precise positioning for
every person at any time. No known system is capable of such a task, but instead
they all offer approximations.

The most popular method measuring crowds and tracking them is by use of video
feeds. This is mostly made apparent by CCTV systems [29]. These systems however
require expensive infrastructure and large processing centers aimed at analyzing
the video feeds. Because face recognition and individual tracking is still difficult to
implement with computers, these systems still have a large room for improvement.

Newer systems make use of smartphones which are considered ubiquitous. This
can be done by installing an application of the devices ofmany citizens or by scanning
for the communication signals they send. The application can use GPS positioning to

450 C. Chilipirea et al.

determine the location of the device.Unfortunately,GPSonlyworks outdoors and has
large errors, in the order of meters. Scanning for WiFi hotspots and matching them
with locations obtained from war-driving represents a possible alternative which has
the advantage of being energy efficient. However, the accuracy is even lower than
GPS and the exact location of hotspots is not always known.

Installing software at a large scale is difficult. People need incentives and they
are worried about the security of their device as well as their own personal privacy.
Because of this, methods that simply scan for communication signals are simpler to
implement and deploy.

It is important to understand that all communication signals suffer from a high
variety of noise sources. First of all, not all devices are built the same. Then, the
weather or surroundings can affect the way in which the signal propagates. This phe-
nomenon is made even worse when we consider mobile features of the surroundings
such as cars or other pedestrians.

Not all people own smartphones and from those that do own them not everyone
uses the WiFi module. Other people stop the WiFi module when they are not using it
due to energy consumption constraints and the fact that they wish to preserve battery.
This means that only a portion of the population is being tracked using these systems.

Another important factor that needs to be considered when deploying crowdmon-
itoring applications is the privacy of the people being monitored. The data needs to
be obfuscated in a way in which it remains useful but hides the identities of all the
individuals being tracked.

If the crowd dynamics information is obtained by deploying applications on the
user devices this makes it a crowd sensing application that is able to reveal for
instance density. There are many applications that can result from this type of data,
for instance we were able to infer the map of Roma [18] given only GPS localization
data from several taxis.

21.5 Crowd Data for Crowd Dynamics

As we mentioned previously crowd sensing data is not openly available. We did
manage to identify an important source for open crowd tracking, and crowd related
data. This source is called CRAWDAD [39] and it hosts a large number of scientific
data sets related to wireless data.

In order to have a better picture of what crowd tracking data is and what it can be
used for we make a small analysis on five data sets from the CRAWDAD website.
All these data sets contain localization data.

The five data sets we chose are

• Reality [62]—Represents a data set gathered from100 subjects fromMITduring an
academic year. The people, consisting mainly of students carrying mobile phones
capable of recording the cells of GSM towers.

21 Big Data Uses in Crowd Based Systems 451

Fig. 21.1 No. of detections

• Zebranet [60]—Applied on the Sweetwaters Game Reserve near Nanyuki, Kenya.
Zebras were fitted with collars that contained a GPS receiver, a CPU as well as
storage and wireless transceiver. Their system uses opportunistic communication
in order to gather the data set.

• Roma Taxis [12]—In the city of Rome taxis were fit with special devices and
software that recorded their movements.

• Amd [1]—At the hackers on planet earth conference guests were given RFID
tags. These tags were detected by static sensors placed in different rooms of the
conference.

• Epfl [52]—Similar to the Roma data set, the data is gathered from taxis. This data
set is gathered in the city of San Francisco.

The statistics on the five data sets are available in Fig. 21.1 where the number of
recorded data elements is displayed. In Fig. 21.2, we compare the number of devices
in each of the data sets.

Fig. 21.2 No. of devices

452 C. Chilipirea et al.

Fig. 21.3 Duration

Fig. 21.4 Average time
between consecutive packets

Figure21.3 shows the duration of each of the data sets. These first three figures
show how diverse the data sets can be. They can contain data recorded over any
number of days with a large variation in the number of elements in the data set or the
number of devices. The large variety in the data sets permits anyone to do analysis
on very different scenarios and use cases.

It is not only the scenario that differs but the technology used to gather the data set.
These technologies span from GPS recordings to WiFi detection to even RFID tags.
Because of this difference there is also a difference in the average time between two
consecutive detections of the same device. This is best made apparent in Fig. 21.4.
This difference is made not only by the technologies but by the settings and the
behaviors of the participants.

Finally, we tried to identify the similarities between the data sets. Given our
experience with various crowd tracking data sets we learned to expect a day night
pattern in any data set that involves people. We managed to identified this feature
in all of the data sets. In Fig. 21.5, we display the number of detections or data set
elements as they change during the day. The data is normalized by having a ratio to
the maximum number of detections for each data set. The day was chosen randomly

21 Big Data Uses in Crowd Based Systems 453

Fig. 21.5 No. of detections over time

from the data sets. It is clear that in all of these the number of packets raises during
the day and drops during the night.

We offered only a small overview on some characteristics of crowd tracking data.
Further analysis can reveal more interesting features such as patterns that people take
each day in their movements. Obtaining these features and this information requires
extensive data analysis usually done with the help of Big Data.

21.6 Context

Context represents all types of data set that can help in making more sense of the
crowd data. Unlike the data sets we presented in the previous sections, context data
represents unstructured data. It usually comes in the form of text and requires natural
language processing systems [20]. Unlike the crowd sensed data and crowd tracking
data, the origin of context data is not clear. There are various possible open internet
sources as well as closed ones. The trust put in the data is dependent on these sources.

We have identified a few potential context data types

• Weather—It directly affects the behavior of people. In case of bad weather people
are more likely to remain indoors. This can explain a drop in the number of
individuals performing crowd sensing outside.

• Schedules—There are many types of schedules, from the mostly static once of
shops and school, to schedules of complex events. Using schedules one can better
understand the reasoning behind crowd movements. This is made specifically
apparent in day/night patterns observed in crowd data.

454 C. Chilipirea et al.

• Social network data—People post a high variety of information on social networks
from picture to restaurant rating. Based on this data we reasonable to expect certain
behaviors in crowd movements. For instance, restaurants with bad reviews are
avoided while the ones with good ones have a lot of traffic.

• News—Various events are not predictable. This is especially true for high impact
disasters. News sources can be used in order to understand what is going on,
beyond the normal schedule, or social network information.

There are many sources of context data and many types of it. Making sense with
it and matching it with the crowd sense data requires a lot of resources. This is where
Big Data jumps in. It is specialized in processing large amounts of structured or
unstructured data. Because of its variety context can be continuously extended as
new sources of context data are identified and integrated with the existing ones.

21.7 Crowd Data as Part of Big Data

BigData [46] represents a newparadigm in data processing. It goes beyond traditional
database querieswhere extracting informationwas done in a straight forwardmanner.
In contrast, instead of giving simple information such as the maximum or average of
a data set, Big Data queries use machine learning techniques [13] to offer answers
without the need for a question. They offer new information about the data without
the analyzer even knowing what to look for. A good example of this is usually
given in machine learning courses as the “beer and diapers” example. At a large
supermarket chain Big Data analysis revealed that people who buy diapers also buy
beer. The example sticks because it is clear how unlikely it is that someone would
search through data sets to see if people buy diapers and beer at the same time, and
the result has a simple application, place the two products next to each other. This
type of information can relevant for crowds. Take for instance groups of people that
visit the same two shops in the same order. This would enable the prediction of
crowd flows.

We showed in the previous sections that crowd data, be it crowd sensing or crowd
tracking, exhibits the features of Big Data. Crowd data has all four versus: Volume,
Velocity, Variety, and Veracity. In order to better fit with Big Data we propose the
use of crowd sensing as well as crowd tracking. Crowd tracking provides important
information as towhere the crowd sensed data is gathered from.Contextwith itsmany
forms bring only improvements to these two data sets, and all of them taken together
pose an interesting challenge to Big Data and opens the door to many applications.

By applyingBigData techniques on crowd datawe open the door towhat is known
as smart cities [9]. Places where real time-data and information offers better living
conditions, less traffic and overall increase in the quality of life. The information
extracted permits automated systems that respond to citizen needs and better planning
for the authorities.

21 Big Data Uses in Crowd Based Systems 455

But Big Data does not show only human behavior in order for decisions to be
made based on past data, it can also help in making predictions on what will happen.
For instance, when a large event is organized, having knowledge of possible crowd
behaviors can help with many of the decisions.

Another important aspect is given by disaster scenarios. By having real life data
as well as appropriate models of human movement, the rescue teams can respond
faster, with more knowledge and more information. Even more, facilities can be built
in such a way that evacuation is simple and it fits with appropriate models of human
behavior.

Let us finish with a possible example of Big Data application with crowds. This
is just one of many possible uses. Given a crowd tracking data set, which enables
us to know where people are gathered and what their flows are, as well as a crowd
sensing data set which enables us to map the noise level throughout the city. In the
case of an unexpected event, we have more information on the behavior of crowds
and how better to guide them. Adding context data can offer even more insight, it
can determine if the event was a music event starting or if it was a dangerous event
and emergency response units need to be deployed. The decision can even be taken
before anyone even succeeds in reporting what happened.

Big Data opens the doors to a variety of applications and use cases that may be
unimaginable, the more we explore it the more we can push its limits and be able to
build truly smart cities and smart environments.

21.8 Conclusions

In this chapter, we presented crowd sensing and crowd tracking applications. We
discussed the high potential they have and their current limitations. We continued
with a discussion on different types of context and how this context information can
have a high impact in extracting information from crowd sensed and crowd tracking
data.

Finally, we showed how Big Data can be used to put everything together. We
showed that crowd data is a type of Big Data and by using multiple crowd data
sources in conjunction with context we can obtain various and even surprising new
information.

Because the field is still young there is a lot that remains for future work. Multiple
crowd sensing applications need to be deployed at a large scale and the data needs to
be exchanged in an open manner. Privacy implications need to be considered in order
to make this possible. Once the data is open multiple groups can identify different
ways to best analyze and extract information from the given data sets. The multitude
of crowd data sets and the high potential they have opens a lot of doors for future
applications.

456 C. Chilipirea et al.

Acknowledgments The research presented in this paper is supported by projects: MobiWay,
Mobility beyond Individualism: An Integrated Platform for Intelligent Transportation Systems
of Tomorrow—PN-II-PTPCCA-2013-4-0321; DataWay, Real-time Data Processing Platform for
Smart Cities: Making sense of Big Data—PN-II-RUTE-2014-4-2731. We would like to thank the
reviewers for their time and expertise, constructive comments and valuable insight.

References

1. Aestetix, P.C.: CRAWDAD dataset hope/amd (v. 2008-08-07). http://crawdad.org/hope/amd/
20080807, doi:10.15783/C7101B

2. Aly, H., Basalamah, A., Youssef, M.: Map++: A crowd-sensing system for automatic map
semantics identification. In: 2014 Eleventh Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), pp. 546–554. IEEE (2014)

3. Amazon: Amazon Mechanical Turk (2016). https://www.mturk.com/mturk/welcome.
Accessed 1 July 2016

4. Anand, A.,Manikopoulos, C., Jones, Q., Borcea, C.: A quantitative analysis of power consump-
tion for location-aware applications on smart phones. In: 2007 IEEE International Symposium
on Industrial Electronics, pp. 1986–1991. IEEE (2007)

5. Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement
data. ACM SIGKDD Explor. Newsl. 9(2), 38–46 (2007)

6. Antonić, A., Marjanović, M., Pripužić, K., Žarko, I.P.: A mobile crowd sensing ecosystem
enabled by cupus: Cloud-based publish/subscribe middleware for the internet of things. Future
Gener. Comput. Syst. 56, 607–622 (2016)

7. Aram, S., Troiano, A., Pasero, E.: Environment sensing using smartphone. In: Sensors Appli-
cations Symposium (SAS), 2012 IEEE, pp. 1–4. IEEE (2012)

8. Bajaj, R., Ranaweera, S.L., Agrawal, D.P.: Gps: location-tracking technology. Computer 35(4),
92–94 (2002)

9. Batty, M., Axhausen, K.W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M.,
Ouzounis, G., Portugali, Y.: Smart cities of the future. The Eur. Phys. J. Spec. Top. 214(1),
481–518 (2012)

10. Blanke, U., Tröster, G., Franke, T., Lukowicz, P.: Capturing crowd dynamics at large scale
events using participatory gps-localization. In: 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 1–7. IEEE
(2014)

11. Bonné, B., Barzan, A., Quax, P., Lamotte, W.: Wifipi: Involuntary tracking of visitors at mass
events. In: 2013 IEEE 14th International Symposium and Workshops on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), pp 1–6. IEEE (2013)

12. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A.: CRAWDAD dataset
roma/taxi (v. 2014-07-17). http://crawdad.org/roma/taxi/20140717, doi:10.15783/C7QC7M

13. Carbonell, J.G.,Michalski, R.S.,Mitchell, T.M.: An overview ofmachine learning. In:Machine
Learning, Springer, pp. 3–23 (1983)

14. Cardone, G., Foschini, L., Bellavista, P., Corradi, A., Borcea, C., Talasila, M., Curtmola, R.:
Fostering participaction in smart cities: a geo-social crowdsensing platform. IEEE Commun.
Mag. 51(6), 112–119 (2013)

15. Carreras, I., Miorandi, D., Tamilin, A., Ssebaggala, E.R., Conci, N.: Crowd-sensing: Why
context matters. In: 2013 IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PERCOMWorkshops), pp. 368–371. IEEE (2013)

16. Carreras, I., Miorandi, D., Tamilin, A., Ssebaggala, E.R., Conci, N.: Matador: Mobile task
detector for context-aware crowd-sensing campaigns. In: 2013 IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOMWorkshops), IEEE, pp.
212–217. IEEE (2013)

http://crawdad.org/hope/amd/20080807
http://crawdad.org/hope/amd/20080807
http://dx.doi.org/10.15783/C7101B
https://www.mturk.com/mturk/welcome
http://crawdad.org/roma/taxi/20140717
http://dx.doi.org/10.15783/C7QC7M

21 Big Data Uses in Crowd Based Systems 457

17. ChaCha: Cha Cha (2016). http://www.chacha.com/. Accessed 29 June 2016
18. Chilipirea, C., Petre, A., Dobre, C., Pop, F., Xhafa, F.: Enabling vehicular data with distributed

machine learning. In: Transactions on Computational Collective Intelligence XIX, pp. 89–102.
Springer (2015)

19. Chilipirea, C., Petre, A.C., Dobre, C., van Steen, M.: Filters for wi-fi generated crowd move-
ment data. In: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), pp. 285–290. IEEE (2015)

20. Chowdhury, G.G.: Natural language processing. Annu. Rev. inform. Sci. Technol. 37(1), 51–89
(2003)

21. Constandache, I., Choudhury, R.R., Rhee, I.: Towards mobile phone localization without war-
driving. In: Infocom, 2010 Proceedings IEEE, pp. 1–9. IEEE (2010)

22. Daggitt, M.L., Noulas, A., Shaw, B., Mascolo, C.: Tracking urban activity growth globally with
big location data. R. Soc. Open Sci. 3(4),150, 688 (2016)

23. Demirbas, M., Bayir, M.A., Akcora, C.G., Yilmaz, Y.S., Ferhatosmanoglu, H.: Crowd-sourced
sensing and collaboration using twitter. In: 2010 IEEE International Symposium on a World
of Wireless Mobile and Multimedia Networks (WoWMoM), pp. 1–9. IEEE (2010)

24. Eichler, S., Schroth, C., Eberspächer, J.: Car-to-car communication. In: VDE-Kongress 2006,
VDE VERLAG GmbH (2006)

25. Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor
mobile positioning. Eurasip J. Appl. Sig. Process. 2006, 164–164 (2006)

26. Farkas, K., Lendák, I.: Simulation environment for investigating crowd-sensing based urban
parking. In: 2015 International Conference on Models and Technologies for Intelligent Trans-
portation Systems (MT-ITS), pp. 320–327. IEEE (2015)

27. Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy, K.M., Krause, A.: The next big one:
Detecting earthquakes and other rare events from community-based sensors. In: 2011 10th
International Conference on Information Processing in Sensor Networks (IPSN), pp. 13–24.
IEEE (2011)

28. Geocaching: Website (2016). https://www.geocaching.com. Accessed 29 June 2016
29. Gill, M., Spriggs, A.: Assessing the Impact of CCTV. Home Office Research, Development

and Statistics Directorate London (2005)
30. Guo, B., Yu, Z., Zhou, X., Zhang, D.: From participatory sensing to mobile crowd sensing. In:

2014 IEEE InternationalConference onPervasiveComputing andCommunicationsWorkshops
(PERCOM Workshops), pp. 593–598. IEEE (2014)

31. Guo, B., Wang, Z., Yu, Z., Wang, Y., Yen, N.Y., Huang, R., Zhou, X.: Mobile crowd sensing
and computing: The review of an emerging human-powered sensing paradigm. ACM Comput.
Surv. (CSUR) 48(1), 7 (2015)

32. Han, K., Graham, E.A., Vassallo, D., Estrin, D.: Enhancingmotivation in amobile participatory
sensing project through gaming. In: 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social
Computing (SocialCom), pp. 1443–1448. IEEE (2011)

33. Hancke, G.P., Hancke Jr., G.P., et al.: The role of advanced sensing in smart cities. Sensors
13(1), 393–425 (2012)

34. Hartmann, B., Link,N.:Gesture recognitionwith inertial sensors and optimized dtwprototypes.
In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 2102–
2109. IEEE (2010)

35. IBM: IBM Big Data & Analytics Hub (2016). http://www.ibmbigdatahub.com/infographic/
four-vs-big-data. Accessed 29 June 2016

36. Jayaraman, P.P., Perera, C., Georgakopoulos, D., Zaslavsky, A.: Efficient opportunistic sensing
usingmobile collaborative platformmosden. In: 2013 9th International Conference Conference
on Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom),
pp. 77–86. IEEE (2013)

37. Kalogianni, E., Sileryte, R., Lam, M., Zhou, K., Van der Ham, M., Van der Spek, S., Verbree,
E.: Passive wifi monitoring of the rhythm of the campus. In: Proceedings of The 18th AGILE

http://www.chacha.com/
https://www.geocaching.com
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data

458 C. Chilipirea et al.

International Conference on Geographic Information Science; Geographics Information Sci-
ence as an Enabler of Smarter Cities and Communities, Lisboa (Portugal), 9–14 June 2015;
Authors version, Agile

38. Konidala, D.M., Deng, R.H., Li, Y., Lau, H.C., Fienberg, S.E.: Anonymous authentication
of visitors for mobile crowd sensing at amusement parks. In: International Conference on
Information Security Practice and Experience, pp. 174–188. Springer (2013)

39. Kotz, D., Henderson, T.: Crawdad: A community resource for archiving wireless data at dart-
mouth. IEEE Pervasive Comput. 4(4), 12–14 (2005)

40. Krontiris, I., Dimitriou, T.: Privacy-respecting discovery of data providers in crowd-sensing
applications. In: 2013 IEEE International Conference on Distributed Computing in Sensor
Systems, pp. 249–257. IEEE (2013)

41. Laney, D.: 3D data management: Controlling data volume, velocity and variety. META Group
Res. Note 6, 70 (2001)

42. Lee, J.S., Hoh, B.: Dynamic pricing incentive for participatory sensing. Pervasive Mobile
Comput. 6(6), 693–708 (2010a)

43. Lee, J.S., Hoh, B.: Sell your experiences: a market mechanism based incentive for participatory
sensing. In: 2010 IEEE InternationalConference onPervasiveComputing andCommunications
(PerCom), pp. 60–68. IEEE (2010)

44. Luo, T., Tan, H.P., Xia, L.: Profit-maximizing incentive for participatory sensing. In: IEEE
INFOCOM2014-IEEE Conference on Computer Communications, pp. 127–135. IEEE (2014)

45. Maisonneuve, N., Stevens,M., Ochab, B. (2010) Participatory noise pollutionmonitoring using
mobile phones. Inf. Polity 15(1, 2), 51–71

46. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big Data:
The Next Frontier for Innovation, Competition, and Productivity (2011)

47. Marfia, G., Roccetti, M.: Vehicular congestion detection and short-term forecasting: a new
model with results. IEEE Trans. Veh. Technol. 60(7), 2936–2948 (2011)

48. Mayrhofer, R., Gellersen, H.: Shake well before use: Authentication based on accelerometer
data. In: International Conference on Pervasive Computing, pp. 144–161. Springer (2007)

49. Meng, C., Jiang, W., Li, Y., Gao, J., Su, L., Ding, H., Cheng, Y.: Truth discovery on crowd
sensing of correlated entities. In: Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, pp. 169–182. ACM (2015)

50. Mirowski, P., Ho, T.K., Yi, S., MacDonald, M.: Signalslam: Simultaneous localization and
mappingwithmixedwifi, bluetooth, lte andmagnetic signals. In: 2013 InternationalConference
on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–10. IEEE (2013)

51. Pankratius, V., Lind, F., Coster, A., Erickson, P., Semeter, J.: Mobile crowd sensing in space
weather monitoring: the mahali project. IEEE Commun. Mag. 52(8), 22–28 (2014)

52. Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD dataset epfl/mobility
(v. 2009-02-24). http://crawdad.org/epfl/mobility/20090224, doi:10.15783/C7J010

53. Pournajaf, L., Xiong, L., Garcia-Ulloa, D.A., Sunderam, V.: A survey on privacy in mobile
crowd sensing task management. Tech. rep., Technical Report TR-2014-002, Department of
Mathe-matics and Computer Science, Emory University (2014)

54. Ra,M.R., Liu, B., La Porta, T.F., Govindan, R.:Medusa: A programming framework for crowd-
sensing applications. In: Proceedings of the 10th International Conference onMobile Systems,
Applications, and Services, pp. 337–350. ACM (2012)

55. Ruiz-Ruiz, A.J., Blunck, H., Prentow, T.S., Stisen, A., Kjærgaard, M.B.: Analysis methods for
extracting knowledge from large-scale wifi monitoring to inform building facility planning. In:
2014 IEEE International Conference on Pervasive Computing and Communications (PerCom),
pp. 130–138. IEEE (2014)

56. Schauer, L., Werner, M., Marcus, P.: Estimating crowd densities and pedestrian flows using wi-
fi and bluetooth. Proceedings of the 11th International Conference on Mobile and Ubiquitous
Systems: Computing, pp. 171–177. Networking and Services, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering) (2014)

57. Siebel, N.T., Maybank, S.: The advisor visual surveillance system. In: ECCV 2004 workshop
applications of computer vision (ACV), Citeseer, vol. 1 (2004)

http://crawdad.org/epfl/mobility/20090224
http://dx.doi.org/10.15783/C7J010

21 Big Data Uses in Crowd Based Systems 459

58. Starner, T.: Human-powered wearable computing. IBM Syst. J. 35(3.4), 618–629 (1996)
59. Tsui, A.W., Chuang, Y.H., Chu, H.H.: Unsupervised learning for solving rss hardware variance

problem in wifi localization. Mob. Networks Appl. 14(5), 677–691 (2009)
60. Wang, Y., Zhang, P., Liu, T., Sadler, C., Martonosi, M.: CRAWDAD dataset princeton/zebranet

(v. 2007-02-14). http://crawdad.org/princeton/zebranet/20070214, doi:10.15783/C77C78
61. Wang, Y., Yang, J., Liu, H., Chen, Y., Gruteser, M., Martin, R.P.: Measuring human queues

using wifi signals. In: Proceedings of the 19th Annual International Conference on Mobile
Computing & Networking, pp. 235–238. ACM (2013)

62. Wang, Y., Chen, Y., Ye, F., Yang, J., Liu, H.: Towards understanding the advertiser’s perspec-
tive of smartphone user privacy. In: 2015 IEEE 35th International Conference on Distributed
Computing Systems (ICDCS), pp. 288–297. IEEE (2015)

63. Weppner, J., Lukowicz, P.: Bluetooth based collaborative crowd density estimationwithmobile
phones. In: 2013 IEEE international conference on Pervasive computing and communications
(PerCom), pp. 193–200. IEEE (2013)

64. Wikimedia Foundation, Inc.: Wikipedia (2016). https://en.wikipedia.org/wiki/Main_Page.
Accessed 28 June 2016

65. Xiao,Y., Simoens, P., Pillai, P., Ha,K., Satyanarayanan,M.: Lowering the barriers to large-scale
mobile crowdsensing. In: Proceedings of the 14th Workshop on Mobile Computing Systems
and Applications, p. 9. ACM (2013)

66. Xu, C., Li, S., Zhang, Y., Miluzzo, E., Chen, Y.F.: Crowdsensing the speaker count in the wild:
Implications and applications. IEEE Commun. Mag. 52(10), 92–99 (2014)

67. Yan, T., Marzilli, M., Holmes, R., Ganesan, D., Corner, M.: Mcrowd: a platform for mobile
crowdsourcing. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, pp. 347–348. ACM (2009)

68. Zaslavsky, A., Jayaraman, P.P., Krishnaswamy, S.: Sharelikescrowd: Mobile analytics for par-
ticipatory sensing and crowd-sourcing applications. In: 2013 IEEE 29th International Confer-
ence on Data Engineering Workshops (ICDEW), pp. 128–135. IEEE (2013)

http://crawdad.org/princeton/zebranet/20070214
http://dx.doi.org/10.15783/C77C78
https://en.wikipedia.org/wiki/Main_Page

Chapter 22
Evaluation of a Web Crowd-Sensing IoT
Ecosystem Providing Big Data Analysis

Ioannis Vakintis, Spyros Panagiotakis, George Mastorakis
and Constandinos X. Mavromoustakis

22.1 Introduction

The uprising of the Internet of Things (IoT) [1] has brought new opportunities in
data analysis and management from a multitude of new databases. This is due to
the fact that the development of IoT applications is booming so much that in a few
years it is expected to change the current state of Internet in a fully integrated Internet
with billions of devices [2]. With the Internet of Things devices like smartphones and
tablets generate tremendous quantity of data in a daily base. All this new information
is generated and stored in different formats such as structured or unstructured data
that varies from text to pictures or audio. Figure 22.1 illustrates an Internet of Things
ecosystem with a variety of devices and a variety of choices for storing the retrieved
information. The diversity of data has led to the creation of new databases, which
can face the new distributed trend, and cut off from the traditional bases. In this
context, NoSQL databases, also known as “Not only SQL” databases, have made
their appearance in the web development market to offer an alternative solution. The
main differences between them and SQL databases is, first that they do not use table
format and second that they do not use SQL as query language [3].

I. Vakintis · S. Panagiotakis (B) · G. Mastorakis
Department of Informatics Engineering, Technological Educational Institute of Crete,
71004 Heraklion, Crete, Greece
e-mail: spanag@ie.teicrete.gr

I. Vakintis
e-mail: vakintis@gmail.com

G. Mastorakis
e-mail: gmastorakis@staff.teicrete.gr

C.X. Mavromoustakis
Department of Computer Science, University of Nicosia, Nicosia, Cyprus
e-mail: mavromoustakis.c@unic.ac.cy

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_22

461

462 I. Vakintis et al.

Fig. 22.1 Internet of things
ecosystem

The typical Internet provides us with some capabilities such as email, e-shop,
and social networking. The IoT vision would expand all these capabilities by letting
the user to interact with IoT devices. As IoT devices referred the devices that can be
controlled or monitored remotely by Web technologies. Web technologies along with
IoT are also known as the Physical Web [4]. IoT applications have been used for a wide
range of activities in our society. Transportation and Civil Infrastructure Monitoring
[6, 7], Environmental Monitoring [8–14], Health Care and Fitness [15], urban sensing
[16] and traffic monitoring, social networks [17] are some areas which benefit from
physical web. Smart devices have played a major role to this trend. Smartphones,
tablets, music players, sensor embedded gaming systems, and in-vehicle sensing
devices (e.g., GPS navigators) are flooding the market and feed with sensor data the
Internet. They are equipped with various sensors (e.g., accelerometer, ambient light,
camera, microphone, gyroscope, proximity, and meteo sensors), so they transform a
near-ubiquitous smart device into a global mobile sensing device [18, 19].

As it is obvious, the sensing capabilities of smartphones can recognize individual
or community phenomena. The category of individual phenomena includes several
actions of a specific device’s owner, which usually are divided into three categories
(a) movement patterns such as walking and running, (b) modes of transportation such
as biking, driving, or taking a bus, and (c) activities such as listening to music and
making coffee. Most of the time, the user can have access to his personal data which
are presented graphically as analytics. On the other hand, community phenomena are
related to the actions of a set of people and are not limited to a specific user. Commu-
nity phenomena include real-time traffic patterns, air [20], water or noise pollution,
and pothole patrol. The way in which users are involved in the process of collect-

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 463

ing sensor data distinguishes sensing of community phenomena to participatory and
opportunistic.

One of the biggest challenges for IoT is that many people have the belief that
physical infrastructure is separated from Internet infrastructure. But with IoT, all
physical components (etc., chips and networks) act as a unified infrastructure. Except
from smart devices there are also ordinary objects that can be smart and connected
and it is possible to control the physical world from a distance. As it has been
understood, all those physical devices produce a significant amount of data, known
as Big Data. IoT applications need flexibility, agility, and scalability to handle Big
Data and this is the next challenge for IoT. Normally, IoT data are processed at cloud
side. There are two options for handling Big Data, relational databases, and NoSql
databases. Relational databases are more suitable for structured data and horizontal
scalability. Databases need to adopt and meet these new IoT requirements with greater
data processing agility, multiple analytical tools including real-time analytics, and
consistent views of the data.

In this chapter, we evaluate a web-based crowd-sensing cross-platform in the
fields of access networks and databases. The architecture of the platform [5] is based
upon various HTML5 APIs in order to sense and collect useful information data for
the ambient environment of its users. After the collection of the data, we group and
graphically present the retrieved data following statistical processing, so they are
available for public use. To the best of our knowledge, this is the first crowd-sensing
platform that exclusively uses HTML5 APIS for the collection of sensor data. The
application is multisensor as it can collect data from almost all sensors of mobile
devices and is totally based on HTML5 features. Besides the use of the platform
as a participatory and opportunistic sensing application [21], our endmost aim is to
be used with other Internet of Things equipment for the introduction to the third
generation of Web characterized as ubiquitous Web [22]. More details about the
architecture, the technologies and the capabilities of the platform will be discussed
in the second section. Next, we will present the main scope of this chapter that is to
evaluate the performance of such a platform in terms of latency when it is accessed
via various wireless networks (e.g., Wi-Fi, 2G, 3G) or various databases (MySQL,
MongoDB, and Redis) are used for data storage.

22.2 Web Platform Overview and Related Technologies

22.2.1 Architecture

In this section, we briefly describe the architecture of our crowd-sensing platform.
To the best of our knowledge it is the first platform that uses HTML5 APIs to
deliver real-time sensor data to end users. Our platform is a modern, real-time web
application system for gathering sensor data from mobile devices and illustrating
them in real time. The basic functionality of the platform include: (1) Gathering

464 I. Vakintis et al.

Fig. 22.2 Middleware platform architecture

mobile sensor data (e.g., noise intensity, luminous intensity, and connection-type
information) (2) Displaying sensor data in real time (3) Analyzing them through the
cloud and presenting the results to the community in order to provide interesting
statistical reports. Figure 22.2 shows the design of the platform, which is based on
the multitier paradigm [23]. In software engineering, multitier or n-tier architecture
is a client–server architecture in which, presentation, application processing and data
management are logically separated processes.

The presentation tier includes the client-side, which is the collector of the sensor
data and the visitor side, which is responsible for the presentation of the sensor
data following statistical processing at server-side. The collected sensor data are
illustrated in a fully interactive world map and in nice informative, responsive charts.
Also, it offers the data to the community via web services API. The sensor data could
then be used for further purposes such as for making surveys, scientific research, or
experiments.

22.2.1.1 Client Component

The client component is a web application responsible for the implementation of
HTML5 APIs for the communication with the device sensors, the storing of sensor
data to the local database and their transfer to the server. The implementation of
the client component is based on the Meteor framework. Meteor is a full stack
real-time framework that uses MongoDB as its main database and Distributed Data
Protocol (DDP), based on websockets, as the communication channel between its
components. We use Meteor because its nature is to be real-time by default. Also,
MongoDB is a next-generation document-oriented database, which is storing data in
a JSON-like format, making the integration of data in certain types of applications

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 465

Fig. 22.3 Client application

easier and faster. MongoDB provides scalability and flexibility to the developer. It is
perfect for IoT applications, which need very large databases, and also for real-time
analytics that need lightweight data. Meteor acts as an application server between
the structural components of our platform. In particular, it undertakes to transfer the
information quickly and safely to the server via DDP. Probably, the most critical
job for Meteor is the synchronization of the data in both client- and server-side.
For implementation purposes we have chosen to collect location data and ambient
noise and light data provided by the location sensor, the microphone device, and the
light sensor of clients, respectively. To this end, we use the Geolocation, the Web
Audio, and the Ambient Light APIs, while exploit the getUserMedia() function with
a gain node analyzer. The client component is the main source of sensor data in our
architecture. The user interface of the client application is essentially a real-time
application which includes an interactive Map. It depicts all the online users that use
the client application. Figure 22.3 shows a screenshot from the client application.
This service displays points with noise and geolocation information over a Google
map. After the page is rendered, we initialize the Google map. Also we initialize the
overlays for the info panels and the controls.

22.2.1.2 Server Component

The server component is responsible for storing the sensor information from the
clients, processing and distributing it to various collections for visualization purposes.
The main server jobs are: Reverse geocoding, time aggregation, and NoiseTube data
request. With reverse geocoding the server updates user data by translating location
coordinates to country, locality, and place information using Google services. Time
aggregation job is to manipulate and insert sensor data into collections in order
to achieve a spatiotemporal visualization in the visitors’ page. Finally, there is the

466 I. Vakintis et al.

NoiseTube data request job with which the server fetches data from the NoiseTube
API to create more crowd-full visualization charts for demonstration purposes.

22.2.1.3 Visitor Component

The visitor web page component, similar to the client component, is built upon the
Meteor framework. The visitor component provides a friendly way for visualizing
the data collected by the client devices of our framework in real time and is available
to anyone visits our web platform, client or not. By real-time we mean that the data
are manipulated by the server at regular intervals so the generated charts visualize
the last samples with statistical ways. The visitors’ web application provides two
ways for visualization:

(1) Mapping services. The data for the real-time map are derived from two sources
of data: Client components and the NoiseTube API. This service displays the last
gathered values over a Google map as points with noise and geolocation infor-
mation. Figure 22.4 shows a screenshot from the real-time map of the visitors’
page.

(2) Analytics’ charts. This service displays spatial–temporal analytics. The logic
behind this service is to convert sensor data from the collection of records in the
database to chart data format. The charts can display daily, monthly, and yearly
data for all the countries that participate in the project. In particular the daily
graph illustrates hourly information for an exact date, the monthly chart daily
information for the selected month, and the yearly chart monthly information
for the selected year. Figure 22.5 shows a screenshot of such a chart page. Ana-
lytics charts are provided in two formats: (a) time charts, aggregated by country
and locality information and (b) averages’ graphs, aggregated by country data.

Fig. 22.4 Reactive real-time map

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 467

Fig. 22.5 Spatial-temporal analytics daily chart

Averages’ graphs are provided as both 2D graphics by the Ext JS framework and
3D graphics by the X3Dom framework.

Another service of the visitors’ application is the Heatmap. We use Heatmap in
two separate services. The first service provides a world map with historical noise
data based on a specific date. There is a filter area which gives users the capability to
select data based on location, date, or noise volume range. Figure 22.6 is a screenshot
from the historical map.

The second service upon Heatmaps offers the capability to any visitor user to
upload custom sensor data to our server, which are then displayed as a Heatmap.
Figure 22.7 shows a sample of such noise data that are appeared as heat points in a
Google map. Also, the dynamic map service can store such data in the sensor col-
lection of our database, so it can be also used for illustration and statistical purposes.

Fig. 22.6 Historical world heatmap

468 I. Vakintis et al.

Fig. 22.7 Heatmap from uploaded data

Fig. 22.8 Access data API documentation

The last service is the Access data API that allows users to have access to raw
sensor data from our server by specifying parameters such as the maximum number
of returned data, the type of the data (noise, light or both), coordinates, maximum and
minimum level of sensor data. Figure 22.8 shows the Access Data API documentation
from the User Interface of our visitor page.

A more detailed presentation of our platform can be found in [5], which starts with
the structural components of the architecture, analyzes the incorporated technologies
and services to conclude with several implementation details.

22.2.2 Related Technologies

Our web platform has been constructed with an aggregation of web technologies.
Starting with the client component we use various HTML5 APIs to gather the required
sensor information such as the geolocation API for user location, the ambient light

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 469

sensor API for luminosity, and the network information API for network information.
The transmission of sensor data from the client component to the server is made with
Websockets in Json format. Also, the platform contains a variety of ways to present
statistical information such as Google maps, Ext JS framework, X3D and X3DOM
technologies. Finally, the development of our platform made on top of the Meteor
web platform. Meteor is considered to be one of the dominant web technologies
in the near future since it combines a full stack isomorphic system using the same
language (Javascript) in both frontend and backend [24]. Table 22.1 summarizes the
related technologies.

22.3 Platform Performance Evaluation

22.3.1 Introduction

The evaluation and performance tests we have performed are twofold. In the first set
of tests we evaluate the performance of our platform under various wireless access
technologies (e.g., Wi-Fi, 2G, 3G) in terms of latency. In particular, we measure the
latency involved in the performance of several tasks such as: (1) the appearance of the
marker from a client login to the visitors’ page, (2) the delay between the uploading
of data to the server and their visualization on a dynamic map, (3) the elapsed time
to visualize data in the historical map, charts and averages, (4) the time to retrieve
data from the Access data API.

In the second part of evaluation tests, we create a test bed to compare the current
database of Meteor (Mongo DB) with two others databases, MySQL and Redis. In
more specific, we are benchmarking the three databases to evaluate their differences
into fundamental operations such as read and write. In this context, we keep the
database size stable and are conducting six performance tests: Data insertion test,
Data reading test, Data reading with sorting test, Data searching test, Data removing
test, and Data aggregation test.

22.3.2 Latency Tests for Different Access Networks

22.3.2.1 Methodology

The purpose of making the performance tests is to identify how fast our platform
services are delivered to the visitors’ page under various conditions (i.e., different
wireless network technologies, or transferred data sizes). In order to have reliable
results we repeat each test 15 times and write down the average latency value. The

470 I. Vakintis et al.

Table 22.1 Web platform technologies

Web platform technologies

HTML5 HTML5 [25–28] is a programming language used for describing
the layout and presenting the contents of Web pages

Geolocation API Geolocation API [29] allows the client-side device to provide
geographic positioning information to javascript web applications

Ambient Light Sensor API The Ambient Light Sensor API [30] senses the environment of the
device to provide web applications with the measured luminosity in
lux units

Media Capture
and Streams API

The Media Capture and Streams API (or GetUserMedia API) [31]
offers to web applications access to multimedia streams, such as
video and audio, from local devices (webcam or microphone)
through a browser

Network Information API The Network Information API [32] measures the available
bandwidth and offers to the developers the ability to adapt web
media elements, as images, videos, audios and fonts, accordingly
for a better user experience with multimedia content

WebSockets The WebSocket protocol [33, 34], provides a bidirectional
communication channel using a single TCP connection

Web Audio API The Web Audio API is a high-level versatile JavaScript API for
controlling, processing, and synthesizing audio

Google Maps and Google
Maps API v3

Google Maps [35] is a web mapping service and technology for
desktop and mobile devices that provided by Google. The
capabilities of the specific platform are satellite imagery, street
maps, and street view perspectives

Google Geocoding APIv3 Geocoding or forward geocoding is the procedure of translating
addresses (e.g., Delaporta, Heraklion 71409, Greece) into
geographic coordinates (latitude 35.3191579 and longitude
25.1483078) [36, 37]

Geo-fence A geo-fence [38] is a virtual boundary around a real-world
geographical area which defines a point of interest

Meteor Meteor is a real-time Javascript web application framework which
is written on top of Node.js and concludes various packages like
MongoDB and jQuery

JSON JSON or else JavaScript Object Notation [39] is a way to store
information in an organized, easy-to-access manner

BSON BSON [40] is based on JSON objects and the “B” is referred to
Binary data. It is a data interchange format that is used mainly as
data storage

GeoJSON GeoJSON [41] is an open standard format for encoding a variety of
geographic data structures and is based to JavaScript Object
Notation

Ext JS framework Ext JS [42, 43] is a Javascript application framework suitable for
interactive web applications. Ajax, DHTML and DOM scripting
are some of the techniques that Ext JS use to present graphics in
web pages

X3D and X3DOM HTML5 [44, 45] through its canvas element enabled the
presentation of X3D graphics from web pages without requirement
for any plugin.

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 471

majority of our tests concern the tier between visitors’ page and server. Only our
marker display test concerns the wholeness of our architecture, i.e., the tree tiers:
client, server, and visitor.

The tool that helps us to complete the elapsed time tests is the “new Date()”
function of Javascript. The “new Date()” returns a data object in the following
form: Tue Mar 10 2015 00:03:44 GMT+0200 (X ε ι μ ε ρ ι νη̇ ω̇ ρ α GTB). When
it is specified as current time a new date() minus zero, it responds with the Unix time
stamp format of the time. The format of Unix Timestamp has the following structure
1421091697521. It is a big number in seconds which counts the time from January
1, 1970. Hence, specifying a second new date() function at the end of each test and
abstracting the first time stamp from the second, we can calculate the duration of
each experiment.

In order to emulate different wireless network technologies at the tier between
client and server or between visitors and server, we used a proxy server between the
client and the server. We emulate 2G, 3G, and Wi-Fi network via the proxy server.
The proxy server we used is the WinGate, version 8.2.5 [46]. The proxy server acts as
an intermediary between the endpoint device, in our case the computer, and another
server from which the client is requesting the service. It provides us with options
to adjust the link bandwidth in our network to the one we wish. In the bandwidth
control panel we can set up the restrictions for our network.

22.3.2.2 Results

Marker Test

In the marker test we measure the time that our system needs to display a marker in
the visitors’ live map following the login of a client in our system. To be more precise
we measure the time from the moment that the client grants the client application with
the right to read his sensor data, pushing the OK button, until a marker associated with
his presence is displayed in the live map of our system (both at client and visitors’
page). Below is the process schema that we follow:

The client user presses the button the Client application sends the noise level
data to the database (every 1000 ms) the Geocoding job updates the data collection

the Data aggregation job inserts the data into the live user collection the Client
application updates the live map (every 1000 ms).

Code used:

On Client applica on

insert "new Date()-0" as a ribute “user” into collec on “sensor”

472 I. Vakintis et al.

On Visitor applica on

if(parseInt(res[k].user)>142108320){

var datenow=new Date()-0;

console.log("created: "+res[k].user+";
displayed:"+datenow+"; difference:"+(datenow-
parseInt(res[k].user))+"ms");

}

where “res[k]” is the data for each point

The final result is the difference between the two time stamps. The first time stamp
is created when the data is sent to the database and the second when the marker is
displayed in the google map.

"created: 1421091697521; displayed:1421091698956; difference:1435ms"

Figure 22.9 illustrates the results of the marker test. The test conducted assuming
three different wireless technologies between client and server: Wi-Fi (4 Mbps), 2G
(250 kbps), and 3G (750 kbps). As it is depicted in the figure the difference between
the three access technologies is small. Wi-Fi is the fastest one (1700 ms), 3G is
second (2200 ms), and 2G follows with 2400 ms. The small difference between these
measurements denotes that most of the elapsed time is consumed in data processing
than in transmission or propagation.

Fig. 22.9 Marker test results

0

500

1000

1500

2000

2500

3000

1

Markers

Wifi 2g (250kbps) 3g (750kbps)

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 473

Fig. 22.10 Dynamic map
results

0

20

40

60

80

100

12 24 36 48 96

Ti
m

e
(m

ill
is

ec
on

ds
)

Dynamic map

KBytes

Dynamic Map Test

In the dynamic map test we measure the time that elapses between the moment the
user presses the button to upload a bundle of sensor data to the server until the time
they are displayed in our dynamic map (on the visitors’ page). To this end, we make
as samples 4 different JSON files of different sizes. The structure of the JSON file
has similar structure as our sensor data. It contains 4 fields, two with coordinates, one
with time (in Unix time stamp format) and one with noise value. The tested samples
are of 12, 24, 36, 48, and 96 KB. Figure 22.10 depicts the results of the dynamic map
test. As we see in the figure the system takes more time to display the data when the
size of the document is bigger.

Access Data API Test

In the Access Data API test we measure the time that our system needs to return the
requesting JSON objects from the database. We perform 3 queries via the API with
different parameters. The first query returns 10 objects, the second 100 and the third
500 objects. Figure 22.11 shows the results of the API test. As we see in the chart,
the response time of our system for 10,100 and 500 objects is 15, 30 and 80 ms,
respectively.

Fig. 22.11 Collection API
results

0

20

40

60

80

100

10 100 500

Ti
m

e
(m

ill
is

ec
on

ds
)

Collection API

JSON objects

474 I. Vakintis et al.

Country, Locality, Averages Charts Tests and Historical Map Test

In the country charts test we measure the time it takes our graphs to be displayed
in the visitors’ page. The specific test was conducted on January 31, 2015 and the
total number of countries that were displayed that day in the visitors’ page was 12.
Figure 22.12 depicts the results of the country charts test. We repeated the test for
three different wireless access technologies: Wi-Fi (4 Mbps), 2G-GPRS (250 kbps),
and 3G (750 kbps). As it is depicted in Fig. 22.12, a Wi-Fi connection takes less
time to display the charts than the other two technologies. The Wi-Fi connection
takes 2745 ms to conclude, with 2G and 3G to take almost the same times, 2842 and
2840 ms, respectively.

Similar tests with country charts were made with the country averages charts.
The specific test was also conducted on the January 31, 2015 and the total number
of countries that were displayed in the visitors’ page was 64. Figure 22.13 shows the
results of the country averages charts test. As it is depicted, the Wi-Fi connection
takes less time to display the charts with small difference from the 3G connection.
The slowest connection is 2G.

Locality charts test was conducted on January 31st and the total number of locali-
ties that were displayed in the visitors’ page was ten. We take as an example localities
of Greece. Figure 22.14 depicts the results of the locality charts test. As it is depicted,

Fig. 22.12 Country charts
results

2650

2700

2750

2800

2850

2900
Country charts

Wifi 2g (250kbps) 3g (750kbps)

Fig. 22.13 Country
averages results

110

115

120

125

130

135

140
Country Averages

Wifi 2g (250kbps) 3g (750kbps)

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 475

Fig. 22.14 Locality charts

0

200

400

600

800

1000
Locality charts

Wifi 2g (250kbps) 3g (750kbps)

Fig. 22.15 Historical map
results

110

115

120

125

130

135

140
Historical map

Wifi 2g (250kbps) 3g (750kbps)

the Wi-Fi connection takes less time to display the charts. The other two connections
2G and 3G had similar times for the specific charts.

The last test was conducted with the historical map. Figure 22.15 shows the results
of the historical map test. As it is depicted, the Wi-Fi connection takes less time to
display the historical map than the other two wireless connections 3G and 2G. The
difference between Wi-Fi and 3G is less than the one between Wi-Fi and 2G.

22.3.3 Benchmarking Database Ecosystems

22.3.3.1 Introduction

Regularly, crowd-sensing applications can be developed with one of the follow-
ing three models: Remote procedure calls (RPC), publish/subscribe, and database-
centric approach. Our platform is based on the third approach, the database-centric.
Database-centric is a software architecture where a database plays critical role to all
the procedures that take place inside the application. It is the most preferred solution

476 I. Vakintis et al.

when the application has to do with Big Data. Generally, a database can provide
fault tolerant and reliable transactions. In this benchmark we compare two kind of
databases: SQL (MySQL) and NoSQL (MongoDB, Redis).

22.3.3.2 NoSQL Versus SQL

SQL (Structured Query Language) was developed in the 1970s by IBM and since
then has become the standard query language for Relational DataBase Management
Systems (RDBMS). Databases that belong to SQL category are MySQL, Oracle,
and SQLServer. They have slightly different syntaxes but there is not required any
significant change when switching from one such system to another. A RDBMS is
organized into relations between entities, each of which is represented by a table
consisting of rows and columns. The header of the table consists of the list of the
columns and the body of the table consists of the rows. RDMS are based in the key
concept, which is used to order data or map data to relations. The most important
key of a table is the primary key which uniquely identifies the rows of the table. A
SQL uses the CRUID tasks to access database entries. The initials CRUD is referred
to: Creating, Reading, Updating, and Deleting data. SQL databases [47] are used for
low-volume and low-velocity data such as customer data and billing.

• Pros: Follow ACID (Atomicity, Consistency, Isolation, Durability) rules, data
integrity, data reliability

• Cons: Scaling problem with growing data volume and workload demands.

NoSQL (not only SQL) is another type of DBMS that can be used on the cloud.
NoSQL, refers to a well-known group of non-relational database management sys-
tems, where databases are not built primarily on tables, and generally do not use
SQL for data manipulation [47]. The NoSQL database is the generation of DBMS
which have as scope to eliminate the weak points of relational databases. There are
many types of NoSQL databases, such as documents, graph, key-value pairs, and
column family. All types have as common that are non-relational. NoSQL deals with
data that are more flexible or need a simpler structure. They do not have limitations
on data structure, allowing nested documents or multidimensional arrays. Also, they
are meant to be schema-free and suitable to store data that is simple, schema-less, or
object-oriented. Primary uses of NoSQL Database are [48]:

(1) Large-scale data processing
(2) Basic machine-to-machine information look-up and retrieval
(3) Exploratory analytics on semi-structured data
(4) Large volume data storage.

Table 22.2 summarizes the main differences between general SQL databases and
NoSQL databases.

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 477

Table 22.2 SQL versus NoSQL

SQL NoSQL

Relational model Non-relational data (schema-less, unstructured, simpler)

Tables Key-value, document, graph, column family stores

ACID BASE

Consistency Availability, Performance

Single server Cluster of servers (Horizontal scalability)

SQL query Simpler and different API

22.3.3.3 NoSQL Categories

NoSQL databases can be classified into four major categories: Key-Value stores,
document stores, column Family stores, and graph databases. In this section we will
analyze Key-Value stores and document stores because we use databases that belong
to these categories.

Key-Value Stores

Key-value stores are the simplest type of NoSQL databases. They store data in pairs
of key and value. The value is a block of data that have any type and any structure.
They do not need any schema to be defined and let the user to define the semantics
for the values and how to parse the data. They are easy to build and scale and they
have good performance. The basic API to have access to the data are: (1) put (key,
value), (2) get (key), and remove (key). Redis belongs to the type of key-value store
databases.

Document Stores

A document store database uses a database as a collection of documents. It is one
step higher than key/value stores. Every document consists of various named fields
and one of them is the unique documentID. Document databases are schema free.
The data can be of any structure and different among documents. The data types
allowed for use vary from strings, numbers, and dates to more complex ones such
as trees, dictionaries, or nested documents. The output format can be JSON, BSON,
or XML. This is a characteristic that makes document stores databases very popular
to developers because the server can support not only simple key-value lookup but
also queries on the document contents. MongoDB belongs to the type of document
store databases.

22.3.3.4 Overview of Tested Databases

In this section we describe the characteristics of the 3 databases that we use in our
benchmark: MySQL, MongoDB and Redis. We analyze the theoretical approach of
those databases and we also underline the main functionalities that each supports.

478 I. Vakintis et al.

MySQL

MySQL belongs to the category of SQL databases and it is the most popular in
business industry. It is owned by Oracle. Many famous applications use SQL such
as Facebook, Lindedln, Google, and Twitter. MySQL is a relational database and
organizes its data into tables, rows, and columns. For accessing data it uses SQL
statements. The basic statements are: INSERT, SELECT, UPDATE, and DELETE.
There are also others functionalities such as join, group by, and views.

MySQL supports a variety of storage engines with different characteristics to
manipulate data. The default storage engine is the InnoDB after the version 5.5. It
is ACID compliant and supports various kinds of transactions such as commit, roll
back, and crash-recovery. For caching data in memory it uses a pool buffer. Pool
buffer is a linked list of pages, keeping heavily accessed data at the head of the list
by using a variation of the least recently used (LRU) algorithm.

MongoDB

MongoDB belongs to the category of document store—NoSQL databases. It has
been developed by 10gen and written in C++. It is the most famous NoSQL database
and well-known applications such as foursquare use it. Its main characteristic is
scalability and speed, so it is suitable to work with large amount of data. The structure
of its data has flexible schema. The database itself contains multiple collections and
every collection contains multiple documents. Data is stored in BSON format, which
is a binary-encoded format of JSON. BSON objects are lightweight, traversable and
efficient, so they are very fast in encode and decode operations. Every object contains
a unique ID that the system automatically adds it to the object if the user does not
assign it. In Fig. 22.16 we can see the structure of the Object_id.

In the field of querying, MongoDB has a very large set of available queries and
user does not need to write MapReduce functions. Mongo shell is the MongoDB
client that communicates with the database from a command line. The commands to
query the database are insert, find, update, and remove. MapReduce operations and
a simple aggregation framework are responsive to the aggregations tasks.

Redis

Redis belongs to the category of in-memory key-value store—NoSQL databases. It
is considered as a very fast database due to the in-memory storage. It offers high
performance and more flexibility than a usual key-value database. A database in

Fig. 22.16 MongoDB object_id

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 479

Redis is characterized by dictionaries that are pairs of keys and values. Redis offers
a lot of choices for data structure. Data can be stored in: String, list of strings, set
of strings, sorted set of strings and a hash. Every data structure has its own set of
commands.

Redis store data in RAM in order to achieve high performance. Sometimes, this
is a drawback because RAM can be used by other applications or services. Redis can
also store data in disks. It uses three methods for data persistence: append-only file,
snapshots, and a combination of both. Snapshots save a dataset periodically when
a number of keys is changed. On the other hand, append-only file logs all the write
operations.

22.3.3.5 Test Bed of Databases

Experimental Methodology and Setup

In this section, we describe the methodology used to evaluate the performance of the
three databases: MySQL, MongoDB and Redis, when deployed in our platform. For
each experiment that was conducted, we will describe the benchmark functions and
commands, the procedure and the final results.

Experimental Overview

The main goal of these tests was to compare the performance of MongoDB, the
default database of Meteor, with two other databases MySQL and Redis. The data-
bases were implemented in the cloud server of our platform and the benchmark is
considered to be a database benchmark over sensor data. The benchmark architecture
also includes 3 different database clients, one for each database implementation. The
benchmark performs basic read, write, search, and remove operations and some more
advanced, such as search with sorting and aggregation. Each database is evaluated
and tested separately, meaning that only one test is running upon time for the current
database. Every test comprises a series of requests, such as read and write, from
server to database. We set a database client in the server-side of the application. In
the following sections we will analyze each test separately. The performance of the
databases is evaluated by measuring the elapsed time for each request to conclude.
Measurements for each test are taken multiple times in order to maintain reliability.
Specifically, the values illustrated in the charts that follow have been derived from
the average value of a 10-time run of each test. This is a safe way to ensure that the
underlying network will not alter the results.

Test Bed Environment

The whole benchmark was implemented in the server-side of our Meteor platform.
The server was deployed on a virtual machine instance running 64-bit Ubuntu 14.14
on a Digitalocean instance (droplet) (1 GB memory, 30 GB SSD Disk). The Database
editions that we tested are MySQL 5.6.10, MongoDB 2.6.7, and Redis 2.8.9. In order

480 I. Vakintis et al.

to connect and interact with the database servers, the following libraries and drivers
were used for the implementation of the database clients:

• MySQL: numtel: mysql [49]
• MongoDB: native Meteor driver
• Redis: slava: redis-livedata [50]

In the case of Redis we needed to run a Redis server and a url to connect to it. This
is because Redis is not yet shipped with Meteor. Hence, the following command is
needed to be passed in the server in order to start the Redis server:

REDIS_CONFIGURE_KEYSPACE_NOTIFICATIONS=1.

Benchmark Implementation

The scope of the benchmark was to run various common operations for databases
and record their performance upon Big Data from sensors. All tests were made on
the server-side of our middleware platform (located in the cloud). The benchmark
comprises 6 separate tests: data insertion test, data reading test, data reading with
sorting, data searching, data removal, and data aggregation. The visitor of the client
page of our platform can easily run the benchmark test by the administrator page we
have created. The benchmark test’s architecture is shown in Fig. 22.17.

All tests are the same for every database. In every test we feed the database with
a certain number of documents, namely 10, 100, 500, 1000, and 2000. The scope is
to measure the time that elapses between the submission of the query and the time
we get the result from the database. We are getting start time upon the submission
of the query from the server to the database and we obtain the difference with the

Fig. 22.17 Benchmark architecture

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 481

timestamp upon the receipt of the results by the server. After that, the server method
returns the difference in milliseconds to the client-side function, which displays it.
All the tests include a remove and insert method for data. In every test we start from
scratch and this is the reason that it takes some time to proceed. So, for every test,
we have two constants:

• The data have the same structure for all records.
• The database collection has no data when we start the tests.

We run the administrator page from the client-side of the Meteor platform. The
benchmark command enables the query at the server-side and then the benchmark
process starts. To start the administrator page and run the benchmark tests we need
to configure the url of MongoDB driver and enable keyspace notifications for Redis:

(1) MONGO_URL=mongodb://localhost:27017/noiseserver
(2) REDIS_CONFIGURE_KEYSPACE_NOTIFICATIONS=1
(3) ROOT_URL=http://html5platform.tk:3400meteor-port3400

Data Structure

The common data structure for all records is shown in Table 22.3. Each document
has exactly the same structure as the one we obtain from the client application. It
has four numbers and one string. The first two numbers represent the location’s
latitude and longitude and their values derive from a number array with 10 pairs
of coordinates. The third number contains the date in unix format and the fourth
contains the sensor data. Finally, the string represents the locality and it is fed from
an array of 10 localities.

Experimental Results

In this section, we report the results of all the tests conducted. Figures 22.19, 22.20,
22.21, 22.22, 22.23 and 22.24 display the charts with the measurements in each cat-
egory. Figure 22.18 shows the administrator page of the benchmark test. Although
NoSQL databases claim that they deliver faster performance with Big Data than
classic RDBMS databases, we reach to the conclusion that MySQL has better per-
formance in our tests. Also, MongoDB, the default database of Meteor, has very
good response time in comparison to Redis. However, Redis is not fully supported

Table 22.3 Sensor data structure

Name Type Example

Lat Double 32.8133112

Lng Double 4.1426565

locality String New York City

Hour Double 1422012856380

Noise Double 30.5

482 I. Vakintis et al.

Fig. 22.18 Administrator page

yet in Meteor. Redis in Meteor does not support documents so it makes for each part
of the document one record. In case Redis was fully supported, it would definitely
perform much better.

A general outcome from the results is that all databases (MySQL, Mongo, and
Redis) have almost equal response time in case of small number of entries but when
this number increases, MySQL and Mongo perform significantly better than Redis. It
is worth noting, here, that the initial thought of Meteor developers was to use MySQL
as the default database when they started to create Meteor. The reason for choosing
Mongo, finally, was that it is consistent with Javascript and the Meteor developers
was familiarized with it.

All the tests of the benchmark work with the same way: We are getting the start
time at the beginning of each procedure and obtaining the difference with current
time stamp at the end. When the procedure is over, the server returns the difference
in millisecond. The result denotes server time, since the server sends the query to the
database and gets the results back.

Insertion Test

Every time we run the benchmark test for a database we consider 5 cases, each
with 10, 100, 500, 1000 and 2000 documents, respectively. All tests have the same
structure when they start. As we described above, we take some precautions in order
to have the same characteristics for every database. When the user presses the button
to make a query, we at first remove all the documents from the database and then
we insert the necessary documents. Just before the insertion procedure we keep the
starting time. When the insertion procedure ends we keep the ending time and we
abstract it from the starting time. Figure 22.19 shows the results from the insertion
test. MySQL and Mongo has very close response times in almost all cases except for
2000 documents. On the other hand, Redis has satisfactory times until the insertion
of 1000 documents but in case of 2000 its performance falls in very low values.

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 483

Fig. 22.19 Insertion test

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

10 100 500 1000 2000
Ti

m
e

(m
ill

is
ec

on
ds

)
Number of elements

Insertion test

Redis Mongo Mysql

Reading Test

As we referred above, we also have 5 cases for the insertion of documents. Also,
we take the same precautions with insertion test. In fact, hereafter we will have a
removing and insertion operation exactly before the starting of the main test. When
the insertion job finishes we keep the finishing time. The abstraction of insertion
finishing time with the reading finishing time gives us the desired reading time.
Figure 22.20 shows the results from the reading test. MySQL has a clear superiority
against Mongo and Redis.

Reading with Sorting Test

The “read with sorting” test is the same with the reading one with just ordering of the
results in the returned recordset. Recordset is descendingly sorted by the “locality”

Fig. 22.20 Reading test

0

50

100

150

200

250

10 100 500 1000 2000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of elements

Reading test

Redis Mongo Mysql

484 I. Vakintis et al.

Fig. 22.21 Reading with
sorting

0

50

100

150

200

250

300

350

10 100 500 1000 2000
Ti

m
e

(m
ill

is
ec

on
ds

)

Number of elements

Reading with sorting

Mongo Mysql

field. For MySQLl we use “order by” command and for Mongo we use “sort”. There
is no ordering support in Redis driver for the moment. Figure 22.21 shows the results
from reading test. MySQL has a clear superiority against Mongo in large number of
documents. When the procedure starts both databases have similar response times.

Searching Test

In searching test we search the database by locality “Manila”. Figure 22.22 shows
the results of searching test. MySQL along with Mongo has almost equal times.
An important notice is that both MySQL and Mongo has the same performance for
almost all the procedure. On the other hand, Redis has the same rate with the other
two databases until the last set of documents. The searching time rises from 5 to 324
ms when redis searches between 2000 documents. We also tested Redis in searching
on more than 2000 documents and the additional time was disappointing.

Fig. 22.22 Searching test

0

50

100

150

200

250

300

350

400

10 100 500 1000 2000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of elements

Searching test

Redis Mongo Mysql

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 485

Removing Test

In removing test, MySQL is also the dominant database and Mongo the second. For
one more time Redis comes third. All databases have close times which sometimes
are equal. For 1000 documents both MySQL and Redis need 6 ms to finish the test.
Mongo is 1 ms faster. Figure 22.23 illustrates our results.

Aggregation Test

The last test is the aggregation test. MySQL and Mongo were tested in aggregation
procedure. By the time we made the tests there was not support for aggregation in
Redis. For aggregation we used the “group by” command in Mysql and the mete-
orhacks:aggregate library in Mongo. At first we grouped by locality and then we
summarized the results of each group. Finally we computed the average value for
each group. The aggregation pipeline provides an alternative to map-reduce and may
be the preferred solution for aggregation tasks where the complexity of map-reduce
may be unwarranted. Figure 22.24 depicts the results of the aggregation test. For one
more time MySQL has better times than Mongo. In both databases it takes more time
to aggregate small datasets than large ones.

Fig. 22.23 Removing test

0

5

10

15

20

25

30

10 100 500 1000 2000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of elements

Removing test

Redis Mongo Mysql

Fig. 22.24 Aggregation test

0
5

10
15
20
25
30
35

10 100 500 1000 2000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of elements

Aggregation test

Mongo Mysql

486 I. Vakintis et al.

22.4 Conclusion

In this chapter we presented the implementation of a web middleware platform
which is interfaced with the real world through various mobile sensors. HTML5
offers the capability to the developers to interact with mobile and standalone sensors
with a web manner. HTML5 sensor APIs offer access to the device hardware with
only some lines of Javascript code. In that context, the fundamental functionality of
our platform is to gather, process, and visualize the information that acquires from
the device sensors. Furthermore, the platform groups and graphically presents the
retrieved data following its statistical processing. The uniqueness of the platform is
that it solely uses HTML5 APIs to deliver real-time sensor data to the end users.
Google maps and rich-interactive charts are some of the visualization ways that
are applied. The platform, also, provides more advanced capabilities including an
API which integrates with the database for collecting bulk sensor measurements or
accessing the collected data. All these web services are offered to the end users via
a visitors’ component. Sensor data, in general, can be a very important source of
information. With appropriate analysis they can offer better understanding of the
environment that surrounds us. In that context, the almost real-time analysis offered
by our platform based on the events from sensors can be a serious help for various
urban communities. Of course, raw sensor data is just numbers. This is why our
platform processes, analyzes, and stores the information in forms with human value
including maps, graphs, or aggregations.

As we refer above, the purpose of the platform is to transfer sensor data from
clients to visitors in an almost real-time manner. For that reason we evaluated the
response time of the platform by doing performance tests in various tasks. Perfor-
mance tests measure the time it takes for delivering sensor data from the initial
component (client) to the destination component (visitor). Also, we measured the
time it takes for the visitors’ page to retrieve data from the database through the server
component. The performance tests made under various access communication net-
works such as Wi-Fi, 2G, and 3G. All the networks had similar execution times with
very small differences between them, with Wi-Fi to perform faster followed by 3G
and 2G. We also evaluated the latency performance of three well-known databases:
MySQL, MongoDB and Redis. We tested the databases in basic operations such as
read and write, but also in most complicated ones such as aggregation and read with
sorting. These tests can be characterized as competitive tests between two different
families of databases: SQL (MySQL) and NoSQL (MongoDB and Redis) ones, over
big sensor data volumes. A general outcome from the results is that all databases
(MySQL, Mongo and Redis) scored almost an equal execution time with a small
number of entries. When the number of entries was increased, MySQL and Mongo
had significant superiority over Redis. It is worth mentioning here, that the initial
thought of the Meteor’s developers was to use MySQL as the default database when
they started creating Meteor.

22 Evaluation of a Web Crowd-Sensing IoT Ecosystem … 487

References

1. Wikipedia.: Internet of Things. http://en.wikipedia.org/wiki/Internet_of_Things Retrieved
2015-03-20

2. Jun-Wei, H., Shouyi, Y., Leibo, L., Zhen, Z., Shaojun, W.: A crop monitoring system based on
wireless sensor network. Procedia Environ. Sci. 11, 558–565 (2011)

3. Hammes, D., Hiram, M., Harrison, M.: Comparison of NoSQL and SQL Databases in the Cloud.
In: Southern Association for Information Systems (SAIS) Proceedings. Paper 12 (2014)

4. Guinard, D., Vlad, T.: Towards the web of things: Web mashups for embedded devices.
In: Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web
(MEM 2009), in proceedings of WWW (International World Wide Web Conferences), Madrid,
Spain (2009)

5. Vakintis, I., Spyros, P.: “Middleware platform for mobile crowd-sensing applications using
HTML5 Apis and web technologies”, Accepted for publication as chapter contribution in the
HandBook “Internet of Things (IoT) in 5G Mobile Technologies”. Springer (2016)

6. Thiagarajan, A. et al.: VTrack: accurate, energy-aware road traffic delay estimation using
mobile phones. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems. ACM (2009)

7. UC Berkeley/Nokia/NAVTEQ.: Mobile Millennium. http://traffic.berkeley.edu/. Accessed 10
March 2015

8. Maisonneuve, N., Matthias, S., Bartek, O.: Participatory noise pollution monitoring using
mobile phones. Inform. Polity 15(1), 51–71 (2010)

9. D’Hondt, E., Matthias, S.: Participatory noise mapping. In: Demo Proceedings of the 9th
International Conference on Pervasive (2011)

10. D’Hondt, E., Matthias, S., An J.: An: Participatory noise mapping works! An evaluation of
participatory sensing as an alternative to standard techniques for environmental monitoring.
Pervasive Mob. Comput. 9(5), 681–694 (2013)

11. Maisonneuve, N. et al.: NoiseTube: Measuring and mapping noise pollution with mobile
phones. Information Technologies in Environmental Engineering, pp. 215–228. Springer,
Berlin, Heidelberg (2009)

12. Maisonneuve, N. et al.: Citizen noise pollution monitoring. In: Proceedings of the 10th Annual
International Conference on Digital Government Research: Social Networks: Making Connec-
tions between Citizens, Data and Government. Digital Government Society of North America
(2009)

13. Drosatos, G. et al.: A privacy-preserving cloud computing system for creating participatory
noise maps. In: Computer Software and Applications Conference (COMPSAC), 2012 IEEE
36th Annual. IEEE (2012)

14. Mun, M. et al. PEIR, the personal environmental impact report, as a platform for participa-
tory sensing systems research. In: Proceedings of the 7th International Conference on Mobile
Systems, Applications, and Services. ACM (2009)

15. Consolvo, S. et al.: Activity sensing in the wild: a field trial of ubifit garden. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2008)

16. Andreas, K., Eric, H., Aman, K., Feng, Z.: Toward community sensing. In: Proceedings of
the 7th International Conference on Information Processing in Sensor Networks, p. 481–492,
22–24 April 2008

17. Miluzzo, E. et al.: Sensing meets mobile social networks: the design, implementation and eval-
uation of the cenceme application. In: Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems. ACM (2008)

18. Campbell, A.T. et al.: The rise of people-centric sensing. Int. Computi. IEEE 12.4, 12–21
(2008)

19. Pintus, A. et al.: Connecting smart things through web services orchestrations. Springer, Berlin,
Heidelberg (2010)

http://en.wikipedia.org/wiki/Internet_of_Things
http://traffic.berkeley.edu/

488 I. Vakintis et al.

20. Dutta, P. et al.: Common sense: participatory urban sensing using a network of handheld air
quality monitors. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems. ACM (2009)

21. Panagiotakis, S. et al.: Towards Ubiquitous and Adaptive Web-Based Multimedia Commu-
nications via the Cloud. In: Resour. Manage. Mob. Cloud Comput. Networks Environ. 307
(2015)

22. http://www.labnol.org/internet/web-3-concepts-explained/8908/. Accessed 10 Dec 2015
23. WikiPedia, Multitier architecture. http://en.wikipedia.org/wiki/Multitier_architecture.

Accessed 10 March 2015
24. Meteor official website. https://www.meteor.com/. Accessed 10 Dec 2015
25. Sabari website. http://www.sabarimarketing.com/blog/html5-the-fifth-revision-of-the-

hypertext-markuplanguage-html. Accessed 10 Dec 2015
26. W3C, HTML5. http://www.w3.org/2014/10/html5-rec.html.en. Accessed 10 Dec 2015
27. W3C, HTML5 recommendation. http://www.w3.org/html/wg/drafts/html/master/. Accessed

10 Dec 2015
28. WikiPedia, HTML5. http://en.wikipedia.org/wiki/HTML5. Accessed 10 Dec 2015
29. W3C, Geolocation API. http://www.w3.org/TR/geolocation-API/. Accessed 10 Dec 2015
30. W3C, Ambient light. http://www.w3.org/TR/ambient-light/. Accessed Dec 2015
31. W3C, Media capture and streams. http://www.w3.org/TR/mediacapture-streams/. Accessed

Dec 2015
32. W3C, Network information API. http://www.w3.org/TR/netinfo-api/. Accessed 10 Dec 2015
33. Websocket official webpage. https://www.websocket.org/. Accessed 10 Dec 2015
34. HTML5rocks, websockets. http://www.html5rocks.com/en/tutorials/websockets/basics/.

Accessed 10 Dec 2015
35. Google maps official webpage. https://www.google.gr/maps/. Accessed 10 Dec 2015
36. WikiPedia, Geocoding process. http://en.wikipedia.org/wiki/Geocoding/. Accessed 10 Dec

2015
37. The Google Geocoding API. https://developers.google.com/maps/documentation/geocoding/.

Accessed 10 Dec 2015
38. WikiPedia, Geo-fence. http://en.wikipedia.org/wiki/Geo-fence. Accessed 10 Dec 2015
39. WikiPedia, JSON. http://en.wikipedia.org/wiki/JSON. Accessed 10 Dec 2015
40. WikiPedia, BSON. http://en.wikipedia.org/wiki/BSON. Accessed 10 Dec 2015
41. WikiPedia, GeoJSON. http://en.wikipedia.org/wiki/GeoJSON. Accessed 10 Dec 2015
42. WikiPedia, Ext_JS framework. http://en.wikipedia.org/wiki/Ext_JS. Accessed 10 Dec 2015
43. Ext JS, documentation. http://docs.sencha.com/extjs/4.2.1/#/guide/charting. Accessed 10 Dec

2015
44. W3C, HTML5. http://www.w3.org/html/wg/drafts/html/master/. Accessed 10 Dec 2015
45. WEB3D. http://www.web3d.org/wiki/index.php/X3D_and_HTML5. Accessed 16 Dec 2015
46. Wingate, proxyserver. http://www.wingate.com/download/wingate/download.php
47. Heroku, NoSQL databases. https://blog.heroku.com/archives/2010/7/20/nosql. Accessed 10

March 2015
48. Moniruzzaman, A.B.M., and Syed Akhter, H.: Nosql database: New era of databases for Big

Data analytics-classification, characteristics and comparison. arXiv:1307.0191 (2013)
49. Reactive MySQL for Meteor. https://github.com/numtel/meteor-mysql
50. Redis Livedata. https://github.com/meteor/redis-livedata

http://www.labnol.org/internet/web-3-concepts-explained/8908/
http://en.wikipedia.org/wiki/Multitier_architecture
https://www.meteor.com/
http://www.sabarimarketing.com/blog/html5-the-fifth-revision-of-the-hypertext-markuplanguage-html
http://www.sabarimarketing.com/blog/html5-the-fifth-revision-of-the-hypertext-markuplanguage-html
http://www.w3.org/2014/10/html5-rec.html.en
http://www.w3.org/html/wg/drafts/html/master/
http://en.wikipedia.org/wiki/HTML5
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/ambient-light/
http://www.w3.org/TR/mediacapture-streams/
http://www.w3.org/TR/netinfo-api/
https://www.websocket.org/
http://www.html5rocks.com/en/tutorials/websockets/basics/
https://www.google.gr/maps/
http://en.wikipedia.org/wiki/Geocoding/
https://developers.google.com/maps/documentation/geocoding/
http://en.wikipedia.org/wiki/Geo-fence
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/BSON
http://en.wikipedia.org/wiki/GeoJSON
http://en.wikipedia.org/wiki/Ext_JS
http://docs.sencha.com/extjs/4.2.1/#/guide/charting
http://www.w3.org/html/wg/drafts/html/master/
http://www.web3d.org/wiki/index.php/X3D_and_HTML5
http://www.wingate.com/download/wingate/download.php
https://blog.heroku.com/archives/2010/7/20/nosql
http://arxiv.org/abs/1307.0191
https://github.com/numtel/meteor-mysql
https://github.com/meteor/redis-livedata

Chapter 23
A Smart City Fighting Pollution,
by Efficiently Managing and Processing
Big Data from Sensor Networks

Voichita Iancu, Silvia Cristina Stegaru and Dan Stefan Tudose

23.1 Introduction

World population is on the rise and becoming more and more urbanized which, in
the short term, translates to urban areas becoming increasingly populated. This trend
pushes to the limits the existing fabric of urban facilities and gives rise to a need for
a better and more efficient city infrastructure, that can withstand the effects of an
increasing population density.

This is why, one of the major environmental concerns of our time is air pollution.
Apart from severely degrading the natural environment, air pollution directly affects
our health. Short-term and long-term effects range from light allergic reactions,
such as: irritation of the nose, throat and eyes; to serious conditions like: bronchitis,
pneumonia, aggravated asthma, lung and heart diseases.

In this chapter, we propose a system, representing a smart environment that should
increase air quality in crowded urban areas, such as crossroads or highways. The goal
of the resulting Smart City is to monitor the air quality by pinpointing polluted areas
of the city in real time.

Both the sensor networks, in the context of Internet of Things, and Big Data
services are offered to citizens to provide various types of functionalities, that they
will be able to use in everyday life. They are of strong interest for large communities,
which can benefit from

V. Iancu · S.C. Stegaru · D.S. Tudose (B)
Computer Science and Engineering Department, University Politehnica of Bucharest,
Splaiul Independenţei 313, Sector 6, Bucharest, Romania
e-mail: dan.tudose@cs.pub.ro

V. Iancu
e-mail: voichita.iancu@cs.pub.ro

S.C. Stegaru
e-mail: silvia.stegaru@cs.pub.ro
URL: https://cs.pub.ro/

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_23

489

490 V. Iancu et al.

1. a detailed perspective upon the surrounding world, via sensors;
2. the robust and reliable infrastructure behind the Big Data services.

The two aspects are forecasted to continue to grow in the near future, which is
why we think that they are likely to represent a solution for today’s cities de-noising
and cleansing problems, also known as pollution.

Nowadays cities rely more and more on the fast growing amounts of data, coming
fromsensor networks.Consequently, these networks heavily increase their nodenum-
ber as they expand geographically. The involved sensors are measuring a wide range
of aspects, such as: temperature, power consumption, gas consumption, radioactivity,
earthquakes, pollution, etc. They may be interconnected via wired or wireless, even
mobile, networks (e.g., PANs, such as Bluetooth, Zigbee, 6LowPan, etc.), which usu-
ally take the information gathered from the sensors to a data interpreting and process-
ing center. This interpreting and processing center is needed because of the individual
sensor’s reduced storage and processing power. That is why the sensors themselves
are unable to process and interpret the information extracted from the environment,
in order to obtain relevant information about it. This relevant information can only be
obtained by processing large volumes of data and possibly interpolating them over
time. The processing of the real-time Big Data coming from the sensors needs to be
performant, scalable robust and reliable, in order to be able to issue relevant actions,
in due time, for the envisaged Smart City. Thus, the Big Data processing systems
are able to extract important relevant information. They do this by processing large
volumes of apparently insignificant things that gather over time and are organized in
a historicalmanner. This is possible by using AI (Artificial Intelligence) data mining
or by means of HPC (high performance computing) techniques, depending on the
type of information to be processed and on the expected types of results.

In the remainder of this book chapter, wewill detail our viewof a Smart Citywhich
benefits from the combined help of the sensors and of Big Data techniques. We will
focus mostly on the description of its architecture, namely on: (1) the management
of a reliable and trustworthymobile and static sensor network, which will gather the
data; and (2) the spatial and temporal Big Data storage organization. We will also
point out hints about the way in which we envisage that the Smart City actions will be
derived from the Big Data and the way in which they will actually be materialized by
the Smart City’s actuators. In Sect. 23.2 there is a description of the related scientific
literature. In Sect. 23.3 there is an overview of the highly available architecture of
our Smart City. For the architecture, we detail each individual component and the
interactions among them, with a special accent on load balancing, fault tolerance,
scalability, and trust. The Big Data will prevail into discussion in Sect. 23.4, which
is a special section arguing about the way to organize the data, both physically and
logically, in a scalable and highly available manner. It is also about how Big Data
systems are of help for a Smart City fighting pollution. A short hint toward techniques
that could be of use to extract meaningful information from the data gathered using
the sensors, will be given in Sect. 23.5. Based on those data processing techniques,

23 A Smart City Fighting Pollution … 491

we have introduced in Sect. 23.6 a detailed description of effective measures that
the Smart City could take, based on its internal mechanisms. Last but not least,
the conclusions and directions for future developments, regarding our Smart City’s
architecture, can be found in Sect. 23.7.

23.2 State of the Art

Even if real Smart Cities do not currently exist, we base our proposal for a Smart City
fighting against pollution mainly on the scientific research within the fields of
Big Data and of both wired and wireless sensor networks.

We rely on many efficient existing high availability mechanisms [1], since extra
care has been taken to:

1. balance the load between the sensor data gathering nodes, in a DHT-like
(Distributed Hash Table) manner;

2. use fault tolerant techniques, such as data replication, journaling, or even inter-
polation based on neighboring data that has not been lost, in order not to lose the
recent data gathered by the sensors;

3. organize the data gathering nodes in a scalable architecture, in order to obtain
high availability for the whole Smart City system.

In our work, we have only addressed security in terms of trust between the sensor
nodes.

For Big Data, the scientific background we base our work on is related to: (1)
on one hand, the yet classical NoSQL system based on MAP-REDUCE, which is
Google Big Table [2], optimized by Blobseer [3] for more reliable Big Data orga-
nization, by Berkeley Spark cluster for very efficient data retrieval [4, 5] and very
recently by the brand new and radically different Google Spanner [6]; and (2) on the
other hand, data center and High Performance cluster techniques and tools, such as
LUSTRE FS[7] and tape libraries, which are techniques that are in use or we could
use within the University Politehnica of Bucharest’s cluster.

Sensor Networks are a technology that can offer a significant contribution in com-
pleting the ubiquitous computing paradigm and they now represent a new revolution
in computing. Growing importance of context-awareness, as an enabler for more
intelligent, invisible, and autonomous applications and services has highlighted the
need for a greater integration of the physical with the digital world [8], which is
also the case of a Smart City. We propose to study how sensor networks scale to the
standards of a Smart City infrastructure, with emphasis on pollution tracking [9].
Among the topics of interest, we consider remote monitoring and control of the
sensor network [10] and also integration of the data gathered from sensors into a
Big Data management and processing infrastructure.

492 V. Iancu et al.

23.2.1 Big Data Logical Organization Techniques

Big Data is a domain that has emerged as a result of a long chain of data storage
techniques, including: (1) SQLdatabases, such asMySQL [11]; (2) database clusters,
such as MySQL cluster [12]; (3) distributed file systems, such as NFS (Network File
System) [13]; (4) and even the World Wide Web [14], viewed as a huge collection of
unstructured, but still useful, data. Data gathering from a large collection of sensors
has not been exploited so much until recently, but it contains a huge challenge for
the Big Data storage, retrieval and processing techniques.

The forerunner of Big Data storage platforms would be the peer-to-peer data
sharing systems, such as the DHTs (Distributed Hash Table): Chord [15], CAN [16],
Pastry [17], andTapestry [18]. They have appeared in the early 2000s and have grown
very popular in sharing especially multimedia content. The stored data can have a
variable size and is not usually something to be stored in an SQL-like database, but
in a distributed filesystem.

The most representative DHT is Chord, being an elegant and efficient solution for
a fast, fault tolerant, highly scalable, and fairly load-balanced DHT solution. Based
on the SHA-1 [19] hash, Chord is fit not only for data sharing, but also for uniformly
hashing distributed data among Internet users. Chord FS (CFS) [20] is a distributed
filesystem, which is a layer above Chord that has better performance than NFS when
sharing large amounts of data coming from volatile nodes.

We consider that DHT systems are still fit for storing and partitioning larger
collections of data into smaller and more manageable ones.

DHTs and the other peer-to-peer systems have been data sharing finding and
retrieving techniques that were developed by small companies or by research organi-
zations, having both practical and scientific characteristics, to illustrate the feasibility
and the usefulness of such tools. A more systematic and visible approach, from the
point of view of the ordinary Internet users, has the proprietary solutions developed
by companies such as Google. In 2006, the company has published a well-known
paper about Google Big Table [2], concerning the organization of data that would be
fit for web page search queries. In [2], Google first introduces the MAP-REDUCE
concept, a flavor of fork-join for large sets of parallel and distributed tasks.

Based on Google Big Table [2], the open source community, composed of both
scientific and industrial players from the Internet field, has developed the very popular
system called Hadoop [21], which stores its data in the HDFS (Hadoop File Sys-
tem) [22] filesystem.Hadoop is a flexible and extensible tool, and, being open-source,
it has been subject to many types of improvements, one of which is Blobseer [3],
developed to store large amounts of binary data, thus its name: Binary LargeOBjectS.

The data retrieval system is very important, and should be extremely efficient
when it comes to collections of Big Data that need to be structured and processed.
This has been the subject of the PACMan in-memory cache solution [23] and of the

23 A Smart City Fighting Pollution … 493

Orchestra data flow reordering and planning solution [4], both being developed by
the University of Berkeley, as extensions to HDFS-like storage systems.

Still, none of the above Big Data solutions is really fit for gathering huge amounts
of data from sensor nodes planted throughout a large city. The nodes can transmit
frequently data toward the datacenter, in order to store the data for later, periodical
processing.We plan to complement the features of each of the above described tools,
in order to achieve the goal of a Big Data storage system for the data gathered via
the sensor nodes of a Smart City.

A Big Data storage system is extremely useful within the Smart City when it
comes to detecting failures in a large network of nodes.

23.2.2 Failure and Abnormal Behavior Detection (FABD)
Based on the Big Data

The Johnson Space Center describes the goal of failure management as being: “to
effectively detect faults and accurately isolate them to a failed component in the
shortest time possible” [24]. As such, maintenance operations become necessary in
a Smart City, in order to establish a trust system for the data coming from the nodes.

From an architectural point of view, failure detectionmodules for sensor networks
can be classified into server-centric and self-organizing systems.

In the first case, a server is used to gather data from the sensor nodes and process
it to obtain an accurate, global view of the activity in the network. Usually, only part
of the data in the network is analyzed in order to avoid congestion and occupying
the bandwidth. Consequently, the analysis that takes place at the server side is not
fully informed. However, depending on the types of operations applied on the data,
this approach can lead to a strong or a weak detection.

Sympathy [25] is a server-based tool, useful for detecting and debugging failures
in wireless sensor networks. The analysis involves comparing data from the sensors
against certainmetrics and classifying the result into a small set of possible scenarios.

MANNA [26, 27] is a different type of server-based tool which only analyzes
the battery power of the sensor nodes in a WSN. It creates an energy map for each
node in the network and only exchanges messages when a node’s internal state has
changed. This event-driven method can only detect crashes and can generate false
positives, if there are connectivity problems in the network.

A different approach for detecting failures is ANFD (Adaptive Neighborhood
Failure Detection) [28]. The authors use piggybacking in order to minimize the com-
munication overhead. Moreover, this server-based method also uses self-organizing
techniques, by letting the nodes decide when a sensor node should be investigated.
These local perceptions of neighboring nodes are contained in lists, which the nodes
exchange among each other and later piggyback to the central server. This hybrid
approach can identify crashed nodes, and also communication problems.

494 V. Iancu et al.

As opposed to the server-based approach, self-organizing systems (i.e., TinyD2
[29], LD2 [30]) do all the processing directly on the nodes. This method avoids the
extra overhead implied by sending messages to a central instance. Unfortunately,
this method is even poorer informed than the previous approach because it lacks
feedback from non-neighboring nodes and its input can be biased if nodes have a
small number of neighbors.

It follows that the failure and abnormal behavior detection model strictly depends
on the sensor network design.

23.2.3 City-Wide Wireless Sensor Network Infrastructure

Wireless sensor networks have been the focus of intense research in the past decade.
Most of these deployments are designed to be vertically integrated as an infrastruc-
ture [31–33]. In such a system, the sensor network is designed with only one specific
application in mind, in which is the system that has full knowledge of all the para-
meters and functionalities the sensor network can provide.

However, a recent trend is for an application to spread over different sensor net-
works in order to have a more comprehensive view of the system. The large number
of sensor networks an application might manage can lead to unwanted complex-
ity and can become increasingly cumbersome, to a point at which it cannot further
maintain coherency.

Another aspect is the reuse of an existing infrastructure for multiple applications,
which could avoid the deployment of similar sensor networks at the same physical
location and, thus, allow for a minimal investment cost and higher returns. Recent
research has been focused on changing the tightly coupled vertical system to a more
flexible sensor integration framework [34–36].

The aim is system horizontalization; the breakup of initial systems into reusable
components which can be addressed by any application. These frameworks provide
functionalities that significantly reduce the complexity of interaction between the
application and the underlying system.

Some sources of information on air pollution already exist and are publicly avail-
able [37–39]. However, they do not cover the entire monitored area as they are based
on measurements performed at fixed locations. Thus, it is not easy to discover local-
ized pollution sources. Our system has the potential of collecting much more data
than a traditional one due to its multi-agent architecture. The more users in the sys-
tem, the larger the area covered will be and better granularity. In addition, our devices
could be installed on public transportation vehicles in order to provide an accurate
overview of the pollution generated by traffic.

IrisNet [34] is one of the first systems to try and aggregate data and provide access
to different geographically distributed sensor networks over the Internet. It works by
reusing the existing infrastructure of sensor networks and sharing existing sensor
feeds among different sensing services through the use of a distributed database in
which sensor data is collected.

23 A Smart City Fighting Pollution … 495

Hourglass [40] creates a framework that connects homogeneous sensor networks
which are geographically distributed to applications that use and manage the sensor
information. Hourglass delivers a data collection network which manages service
naming and discovery, routing from sensor networks to applications and a support
for integrating services to perform data aggregation and buffering.

Sensor Web Enablement (SWE) [41] is a set of standards developed by the Open
Geospatial Consortium which enable the discovery, exchange, and processing of
sensor information and also the access to sensor networks via the Internet. SWE
desires to achieve a true plug-and-play integration of sensor networks and to enable
their access and control via web-based applications.

SenseWeb [42] shares information from globally distributed sensor networks to
applications. At the center of the framework lies a coordinator whichmanages access
of applications and sensor network publishers. This central broker coordinates infor-
mation access of all applications to their relevant sensor networks.

The Urban Sensing Project [36] has three types of applications: urban, social, and
personal. The personal application uses only end-user information and is targeting
only the end users. The social application is similar to a social networking site where
users share data for free. The urban scenario has users sharing data between them
but also with the general public, which imposes some new constraints on privacy and
security. The authors argue that a new network architecture is required to share the
data in order to ensure sharing and quality checking. Through these scenarios, the
authors want to reveal the evolution of networks from single domain, to collective
sharing of WSN data and finally to a large-scale fully featured infrastructure, that is
likely to be used in a Smart City.

23.3 A Highly Available Architecture for the Smart City

We have seen the existing elements and premises on which we could build a Smart
City, in Sect. 23.2. In this section we focus, from the Big Data organization point of
view, on how we think of partitioning the very large set of data, gathered from all
over the city, into smaller sets, using DHT-like techniques. Furthermore, we plan to
manage the obtained partitions by means of enhanced Hadoop-like systems, being
able in the end to efficiently retrieve the necessary data at any time in the future. This
is a generic model, which can be used for many Smart City scenarios, and which we
are going to fully describe in the case of pollution sensors.

We present an overview of the highly available architecture of our proposed
Smart City, by detailing its individual components and the interactions among them,
with a special accent on load balancing, fault tolerance, scalability, and trust derived
from failure detection.

496 V. Iancu et al.

23.3.1 General Overview of the Architecture

The architecture of theSmartCity’smechanisms,which help it fight against pollution,
can be observed in Fig. 23.1. Starting from lowest to highest level, its components
are

1. The Smart City’s actuators, which is a set of active elements that can be usually
found all over the city, which can also react to some commands, and slightly
change their behavior. They can be smart traffic lights, reversible traffic lanes,
etc. They are controlled by the data processing unit, which will be described into
more detail in Sect. 23.3.5.

2. The pollution sensor network is the wired and wireless sensor network gathering
information about the types and quantities of particles within the air surrounding
the sensor. This network sends its data to the data acquisition module and is
controlled by the node control module, both ofwhich are described in Sect. 23.3.3.
This component will be detailed in Sect. 23.3.2.

3. The data acquisition module is a distributed software component that serves
groups of sensors located in the same vicinity, with each of these data acqui-
sition modules furtherly sending the data one level upwards, toward the Big Data

Fig. 23.1 The overall architecture of the elements involved in the Smart City fighting pollution

23 A Smart City Fighting Pollution … 497

storage and retrieval module. This component will be described in more detail
in Sect. 23.3.3.

4. The sensor controlmodule is a distributed software component that communicates
both with the data acquisition module and with the pollution sensor network, in
order to maintain a healthy and functional sensor network. This component will
be described into more detail in Sect. 23.3.3.

5. The Big Data component represents a combination of the hardware and software
solutions that are used for storing the data coming from the sensors, both on
a geographical and on a historical dimension. Its subcomponents are, thus, the
Big Data physical storage solution and the logical Big Data management and
retrieval solution. As a whole, this component interacts with the data acquisition
module, to store the data acquired by it, and with the data processing unit, for fast
data retrieval and for storing back into the BigData physical storage the processed
results. The present component will be described into more detail in Sect. 23.3.4.

6. The data processing unit is a software component that periodically extracts mean-
ingful information from the data acquired from the sensors, data that has been pre-
viously stored in the Big Data storage and retrieval module. The data processing
techniques could include datamining techniques and even high performance com-
puting (HPC) techniques. It interacts with the storage platform, for retrieval and
write back, and also directlywith the Smart City actuators, whose adaptive behav-
ior it determines. The present component will be described in more detail in
Sect. 23.3.5.

All the above-mentioned components are parts of the Smart City, and they should
function as a highly available distributed system. They will be presented, in order,
in the remainder of this section.

23.3.2 The Wireless Sensor Network

There are major issues that need to be tackled in urban areas in order for the new
infrastructure to work properly. Most of them are related to the environment, pri-
vacy and security and network reliability. To meet these requirements, sensors and
actuators will probably need to be ubiquitous and, therefore, integrated into every
aspect of urban life. This will lead to the mapping of physical space into a virtual
network, or creating the paradigm of Internet of Things (IoT), which will allow users
to interact both locally and remotely with the physical environment.

When applied to a large-scale urban scenario, the IoT paradigm gives rise to a
so-called City InformationModel (CIM) in which the design of every aspect of urban
fabric, such as buildings, sewage, water, gas, and power distribution, street manage-
ment, public transportation, etc., are shaped and governed by this new paradigm.

Buildings, whether residential or offices will be automated by wireless sensor and
actuator networks in order to enhance and improve their users’ daily activities. The
envisioned applications of such networks are multiple, from sensing environmen-

498 V. Iancu et al.

Fig. 23.2 Smart City infrastructure

tal conditions like pollution, temperature, humidity, luminosity, user presence in a
certain room, or measuring energy consumption rate. The system can then automat-
ically adjust itself to a certain energy management policy by switching on lighting
or heating only when certain parameters are met.

In our Smart City, buildings can have status and performance indicators which
are reported in real time and are calculated by constant measurements of physical
data from sensors. The sensor nodes placed on buildings are wired to the Smart City
network, thus being static. However, each involved sensor node has its own unique
identifier, for example the IPv6 address, which enables even ordinary people to
provide data to the network, such as information about the degree of pollution. The
sensor nodes in this case are mobile, i.e., sensors on mobile phones or any devices
that have an active Internet connection.

Each sensor node is connected to a gateway, as shown in Fig. 23.2. Each root
gateway will communicate with its dedicated server, forwarding to it the information
collected from the nodes, as described in Sect. 23.3.3.

The solution offered by our system relies on devices that can detect an abnormally
high concentration of an air pollutant. The devices record the measured data along
with location coordinates and can periodically transfer them to a central process-
ing system. Gathered data can be used not only to monitor pollution, but can also
have very interesting secondary usages in measuring overall efficiency of buildings
and products, population changes, energy production and consumption, and even
individual movement patterns.

The same concept of traffic management which is in common use today for mon-
itoring and altering car traffic on crowded roads and intersections can be applied
on another scale in public transportation systems. For example, usage of subway or
buses can be monitored by measuring how many passengers pass through ticketing
barriers or validate their tickets.

23 A Smart City Fighting Pollution … 499

By capturing this huge amount of data into a storage system, such as the one
described inSect. 23.3.4,management systems canoptimize passenger flow, reducing
wait times and crowding.

23.3.3 The Data Acquisition and Node Control Model

Given that the Smart City generates a large amount of information in short peri-
ods of time, the data acquisition model is a vital component within the Smart City
architecture. Designing this component is not straightforward, since it has to handle
real- time data. Moreover, the model has to take into account that nodes can fail and
information can be misleading.

Before beginning to describe the architecture of a trustworthy data acquisition sys-
tem for a Smart City, we need to analyze the types of faults that should be addressed.
The authors of [43] have classified faults into two major categories

• Functional faults: usually manifest themselves as node crashes or transmission
timeouts.

• Data faults: the node sends erroneous data, either because it malfunctioned or
because it has been compromised in terms of security.

We propose to mainly take into account data faults, but also handle faults in which
nodes have stopped responding.

The network is composed of nodes and gateways, the latter providing routes to
the application server. In order to minimize the overhead of the messages sent, they
shouldmainly be piggybacked togetherwith relevant data. The server does not ask for
data from the nodes, unless it has to investigate a fault and requires more information.
Instead, it receives periodical samples from the nodes in the network. The samples
that have to be processed or that are very recent can be stored in a local database.
However, as soon as the samples have been processed, they should be moved to
the fresh storage system described in Fig. 23.5 to make room for new data from the
sensor nodes. The purpose of the fresh storage system in this case is to maintain a
list of structured entries with the previous values from the nodes and to eventually
process data at a higher level, namely by the Big Data processing unit described
in Sect. 23.3.5.

The data acquisition and node control functionalities are combined to form the
Failure and Abnormal BehaviourDetection (FABD)module. This module itself con-
sists of several components, which can be visualized in Fig. 23.3. The local database,
also called the fresh storage system, is used to store the data received from the nodes,
through the communications handler, and provides data for the data analysis com-
ponent. This component transforms the data into useful output, that the management
component can be used to decide upon a node’s degree of trust (e.g., the data analysis
component only provides the rough analysis results, but the management component
applies the thresholds imposed by an administrator in order to reach a conclusion
concerning trust).

500 V. Iancu et al.

Fig. 23.3 Component interaction in the FABD module

Fig. 23.4 The failure detection flowchart of actions

A basic flowchart of actions for the FABD module can be observed in Fig. 23.4.
Following the data analysis step, trust values can be generated for each node, in order
to appreciate their activity. The nodes start with a maximum value, which decreases
when faults occur.When a node’s trust value falls below a threshold, an administrator
will be notified to take action.

If the node is detected to be failing, it will be notified, hoping that its self-healing
mechanism can identify the problem and fix it. During its recovery period, the node
can be temporarily blacklisted so it will not affect other node’s data. If the problem
persists, actions such as shutting down the node and notifying an administrator should
be taken.

Consequently, the Smart City needs the FABD module to prepare the data for the
thorough analysis performed by the data processing unit described in Sect. 23.3.5.

23 A Smart City Fighting Pollution … 501

However, before reaching this stage, the data will be stored by a specialized compo-
nent, described in Sect. 23.3.4.

23.3.4 The Big Data Component

We will begin to describe the innovative Big Data component of a Smart City archi-
tecture bymeans of a bottom-up approach.Wewill only detail the logical component,
the physical component being a SAN managed by the Lustre FS, for the newer data,
and by libraries of tapes to archive the very old data.

Each FABD module owns a local small database, as seen in Sect. 23.3.3. This
is where they store their fresh data, which is periodically flushed into the Big Data
permanent storage system, to be later processed by the BigData processing unit. This
then stores back the results and also issues commands to the Smart City’s actuators.
This is how the whole system is able to help control the pollution in the city.

In order for the FABD servers to scale and be highly available, they should be
replicated and connected via a Chord-like DHT network, in the fresh storage system.
This way, if a FABD server fails, another onewill take its place. This high availability
scheme can be achieved by installing more independent FABD servers. For this, we
also configure a Chord network, which includes all the FABD servers and sensor
nodes within the Smart City. The keys in this system represent the ID of the data
provided by each individual sensor at a given moment in time, as seen in Fig. 23.5.

Fig. 23.5 The fresh storage system

502 V. Iancu et al.

Fig. 23.6 The entire storage system

With an ensemble view, we see the storage system as being composed of two
physically independent storage elements, as can be seen in Fig. 23.6:

1. The fresh storage system, which is closer to the nodes, resides on the FABD
server Sect. 3.3. For the fresh storage system, the storage elements will be ordi-
nary MySQL databases [11], but, in order to achieve a highly scalable storage
system that is also resilient to individual failures, each of these databases will be
connected in a Chord ring [15], as seen in Fig. 23.5. Thus, the temporary data will
be organized by means of a DHT, in the same manner described in [1].

2. The permanent storage system is the storage system that holds historical data
about the nodes, by using a NoSQL (Not Only SQL) database, for which we
have chosen Blobseer [3], as seen in Fig. 23.7. This is an ever extending database,
which periodically gets enriched with fresh snapshots about the situation of the
pollution in the city, gathered from the sensor nodes via the fresh storage system.

More details about the organization of the Smart City’s Big Data can be found
in Sect. 23.4. This model organizes the data in such a manner that it can be further
processed to reach the Smart City goals, in our case to complete the pollution map.

23.3.5 The Data Processing Unit

The data access model depends on the type of the processing to be performed on the
sensed data, that is stored in the permanent storage system. The data processing unit
extracts the raw data from the permanent storage system, it processes it via a more or

23 A Smart City Fighting Pollution … 503

Fig. 23.7 The permanent storage system

less elaborate algorithm. It is not the scope of this chapter to show exactly by which
algorithm the pollution information is inferred, but rather we aim at pointing out the
interactions between a data processing unit, which is a replaceable component in the
system, and the rest of the Smart City architecture.

In brief, for our Smart City fighting against pollution, we are interested in the time
and space evolution of a function that represents the degree of pollution. In fact, we
must have an algorithm to determine the degree of pollution within the given city.

The purpose of the data processing unit is to determine the pollution map of the
city. In order to achieve this, it will measure relatively often individual degrees of
pollution at different points in the city. After this, an interpolation method will be
used to measure how the function of pollution f(position, time) varies, and
we should also correlate this variation with the physical map.
The outcome of the performed computations should be translated into actions to
be performed by the Smart City’s actuators. For example, if on a given street we
have a degree of pollution higher than a given threshold, T1, we should make that a
permanent one-way street. If on a given street we have a degree of pollution higher
than a second given threshold, T2 > T1, we should also perceive a pollution tax
for the street. And, finally, if on a given street we have a degree of pollution higher
than a third given threshold, T3 > T2 > T1, we should close the street for car
circulation a number of hours a day.

Less drastic measures, involving adaptive traffic lights or smart reversible lanes
could be envisaged. This can only be possible if the huge amount of data received
from the sensors is logically organized, thus prepared for the processing unit.

504 V. Iancu et al.

23.4 Organizing the Smart City’s Big Data

This is a special section, arguing about the way to organize the data, both physically
and logically, in an original scalable and highly available manner, that is suitable
for the Smart City. It will also describe how the existing Big Data systems presented
in Sect. 23.2 are of help for a Smart City fighting against pollution.

The main challenges that we see for a Big Data sharing system would be

• To be fault tolerant and persistent.
• To be scalable, as to easily adapt to increasing volumes of data.
• To be easily and rapidly accessible by the data processing tools.

We will address all the identified requirements for a Big Data system in the
remainder of this section.

We have already given a brief description of the Big Data component from the
Smart City architecture, in Sect. 23.3.4. We have seen that we have a fresh storage
system, which stores temporary data associated to individual FABD servers, and also
a permanent storage system, which periodically receives new data from the sensors,
and which keeps the historical data from them.

Based onFig. 23.6,we can state that the Smart City’sBigData component is a two-
dimensional storage system, both from the physical and from the logical organization
point of view. The physical perspective has been described in Sect. 23.3.4. The logical
perspective is given by: (1) the Chord Big Data storage solution, that is the fresh
storage system, which represents the spatial dimension of the city; (2) the Blobseer
Big Data storage solution, that is the permanent storage system, which represents
the temporal dimension of the city.

In the fresh storage system, we have seen that actually each FABD server is
responsible for a group of adjacent sensors. The adjacent nodes that a sensor network
gateway is responsible for represent the set of allmobile or static sensors in its vicinity.
The FABDmodules store the raw data from their nodes into their own local databases
for raw data, which are periodically flushed into the permanent storage system.
All the sensor network gateways involved into the Smart City are connected together
in a Chord ring, which involves logarithmic routing time and thus logarithmic time
to data, as seen in Fig. 23.5. Actually, there is a caching that is performed with
respect to the data gathered from the sensors, and only after a certain amount of data
has been read from the sensors, periodically, there will be a write in the permanent
database, i.e., a flush. Of course, replication mechanisms are put in place for the
temporary data, i.e., the data that has not already been written into the permanent
database. Ifwedo so,wewill reduce verymuch thewrite bottleneck for the permanent
database, by performing some kind of a hierarchical, 2-time, writing, performed at
random moments in time, done by each individual gateway. This flushing technique
is somewhat similar to collision detection and avoidance in Ethernet, in the following
order: (1) not to lose any significant amount of sensor data; and (2) not to create a
bottleneck for the operation of writing into the permanent database.

23 A Smart City Fighting Pollution … 505

It should be mentioned that, in the fresh storage system, each gateway and its local
database can be identified on the Chord ring by having a unique identifier, a hash of
its IP address, for example. Furthermore, each individual sensor’s identifier can be
determined by prefixing its parent server’s ID with the sensor’s own ID, in order to
obtain the routing key in the Chord network

sensor_ID = hash(parent_server_IP) + hash(own-IP)
As already mentioned earlier, in Sect. 23.3.1, please note that each static or mobile
device’s and FABD server’s IP are considered to be their IPv6 addresses, which are
unique identifiers.

In the permanent storage system, a Smart City BLOB defined in our solution in
Fig. 23.7, by following the Blobseer spirit and terminology, will be the set of data
associated to a specific gateway, which will keep growing over time, and which gets
stored periodically by the fresh storage system into the permanent storage system.
Actually, the BLOB (Binary Large OBject) will represent a geographical vicinity
within the Smart City,managed by a certain, unique gateway,whichwill concatenate,
over a short period of time, the data from all the sensors connected to it, thus creating
pollution snapshots for that vicinity.
In case a sensor network gateway fails, its functionality will be taken by its successor
in the Chord ring, and, as a consequence, the BLOB of its successor will become
the reunion between the set which represented its initial BLOB and the set that
represented the BLOB of its predecessor. For this to be (almost) instantaneously
possible by means of the Chord resilience to failure mechanisms, each node should
replicate its data gathered from the sensors onto its successor. This way, the data
gathered from the sensors is never lost, thuswe have obtained a reliable and persistent
fresh data storage system.

Having the fresh storage system and the permanent storage system as described
above in this section,we can safely say thatwehave covered thefirst two requirements
that we have identified for a Big Data storage system for the Smart City, that is we
have found architectural solutions for: data persistence, fault tolerance and for a
scalable storage model. The only issue that remains to be accessed is to have a
means of fast access to the Big Data. We have done this, by using an in-RAM cache-
like data access method, which significantly speeds up data access, by prefetching
and caching more interesting parts of the stored sensor data on the processing nodes.
This has been done by customizing a tool called Spark [44], which has been designed
to interact with Hadoop-like storage systems [21], such as our permanent storage
system: Blobseer [3].

23.5 Smart City’s Data Mining

Based on the data organization scheme, presented in Sect. 23.4, this section con-
tains hints toward data mining techniques that could be of use to extract meaningful
information from the data gathered from the sensors involved in the Smart City.

506 V. Iancu et al.

As discussed in Sect. 23.3.3, the data gathering process has to be intertwined
with a Failure and Abnormal Behavior Detection process, in order to best determine
the relevant data coming from trusted nodes. The results provided by the FABD
component rely heavily on the metrics used to analyze the data. As such, the metrics
in Table23.1 should be regarded as a minimal set [45].

The first two represent values verifications, which are employed for each value
of each sensor node. This is a simple test, that can be easily employed on the sensor
nodes as well. However, in the context of Big Data it is important to be able to keep
track of the faults that occur, in order to differentiate between one time faults and
recurrent faults, that could also form a pattern.

The third table entry completes the values test, revealing more information about
how the data has changed in a fixed period of time for a certain sensor node. Together
with the first type of tests, patterns can already be formed to classify the data received,
as seen inTable23.2.Moreover, the so-formed patterns can lead to amore fine grained
control of the IoT system, and even self-adaptation to context.

Entries number 4 and 5 in Table23.1 represent average and median variance in
the measured data. These types of analysis are also achieved for each node individ-
ually, on the set of data received within a time frame. Just as the first two types of
analysis, these two have to be utilized together for better results. For instance, there

Table 23.1 The minimal set of metrics used in failure detection

Nr. crt. Threshold Description

1 MIN_READING The minimum allowed value of the sensor readings

2 MAX_READING The maximum allowed value of the sensor readings

3 MAX_GROWTH_RATE Growth rate represents how fast the values read from
the sensors increase or decrease over a fixed period of
time. This threshold represents the maximum allowed
growth rate

4 MAX_AVG_VARIANCE The average variance between nodes in a group. This
threshold represents the maximum allowed variance
between the average data from the nodes

5 MAX_MEDIAN_VARIANCE Median variance is similar to the average variance, but
instead of computing the average, only the median
value of a group of readings is taken into account.
This threshold represents the maximum allowed
variance between the median data from the nodes

6 MAX_UPTIME The maximum uptime allowed for a node before
maintenance is necessary

7 MAX_MSG_RECV_COUNT The maximum number of messages received by the
server from the node before maintenance is necessary

8 MAX_MSG_SENT_COUNT The maximum number of messages sent by the server
to the node before maintenance is necessary

9 MIN_BATTERY The minimum estimated voltage of a node before an
alert is generated

23 A Smart City Fighting Pollution … 507

Table 23.2 Developing patterns from the values and growth rate tests

Values Growth rate Pattern

Detected Detected Out of range

Detected Not detected Bad values in a close range

Not detected Detected Acceptable spikes

Not detected Not detected No problem

are cases where the average test can result in false positives that the median filter
does not acknowledge. For instance, consider the case where most nodes provide
small temperature values, but a subset of nodes starts to send bigger values, without
exceeding the growth rate or values thresholds. Depending on the number of nodes
with this behavior and on the values themselves, there could be a case where the
average threshold is triggered both for the failing node and for most of the healthy
nodes. However, if there are more than half of the nodes healthy, then the median
threshold will only be exceeded by the failing nodes.

Entries 6 through 9 in Table23.1 present metrics used to monitor statistical data
coming from the nodes. This data can be piggybacked on regular messages to the
server in order to best utilize the network bandwidth.

The battery power metric is relevant only for wireless sensor networks. In a wired
network, the is no need to estimate battery power. However, in the context of Big
Data systems, it might be of interest to keep track of the power consumption of the
system in order to be able to minimize it. The power consumption can be estimated
as a function of the initial battery power, the number of messages exchanged and
the cost of transmitting or receiving a message. This approach avoids querying the
nodes for their battery state in order to save bandwidth; if piggybacking is used, this
estimation can be corrected periodically with data from the nodes themselves.

This data gathering model performs preliminary tests on the data, or samples
of data received from the sensor nodes, in order to identify faults in the network
infrastructure. The results obtained can be further used to modify trust values for
each node. Consequently, these trust values can help validate the data coming from
the sensor nodes. The Big Data analysis on the information stored should only use
data coming from trusted nodes in order to ensure a certain degree of trustworthiness
for the results provided.

23.6 Smart Measures for a Smart City

Based on the Smart City’s architecture presented in Sect. 23.3 and on the data organi-
zation from Sect. 23.4 and on the associated data mining techniques from Sect. 23.5,
this section contains a detailed description of the effective smart measures that the
Smart City could take. There are a lot of reasons to have a Smart City, capable of

508 V. Iancu et al.

fighting against pollution by itself. If the city could adapt itself to diminish the degree
of pollution, this would in term make life healthier and more pleasant for its citizens.
Fighting pollution could be done by means of: (1) individual smart traffic lights,
which adapt for the time they stay red or for the time they stay green depending on
the amount of traffic they detect; (2) correlated and interacting smart traffic lights,
which could cooperate in order not to generate light traffic in some broad areas, but
heavy traffic in other parts of the city, if possible; (3) reversible traffic lanes, which
can switch directions for traffic depending on the difference between the amounts
of traffic in the two different ways; and (4) producing consistent and exhaustive
topological and historical data analysis, in order to predict a traffic model for each
city street and provide recommendations for the Police Office about how to make
one-way streets or even close traffic on certain portions of streets and provide better
public transportation coverage in those areas, thus diminishing pollution.

23.6.1 Smart Measures from the FABD Model

The information analyzed by the data gathering component can reveal several faults
of the data or hardware issues (i.e., related to connectivity, or crashes). From these
results, several objective measures can be taken to alleviate the consequences, or to
help maintain the network. Furthermore, such actions, if automated, can form the
basis of a self-adaptive Internet of Things system.

Analyzing the data using the tests described in Sect. 23.5 reveals certain patterns
of the data. Consequently, transitioning from one pattern to another can denote a sig-
nificant change in the analyzed system.As such, different data patterns can be created
from one or several consecutive analysis of the system. Furthermore, these states can
be analyzed from a historical point of view to reveal changes in the patterns that
would require attention. For example, in a system consider that we constantly detect
an unacceptable growth rate, but the values received are still within their respective
thresholds. This, as shown in Table23.2, means that the system is constantly dealing
with acceptable spikes—a fact which represents the pattern exhibited by the data.
Now consider that at some point the system also starts receiving bad values. In this
case, the change represents the transition to a state of constant out of range spikes.
While the first state might just represent a warning that there will soon be a failure,
the system still works. The transition means that the system gradually started to fail.
However, if the system goes from a no problem state directly to constant bad values,
this could mean that the malfunction has physical causes (i.e., natural disasters, fire,
vandalism, etc.).

On a larger scale, these faults can also be analyzed groupwise to reveal which
regions have a tendency to fail more often and provide possible reasons for these
faults. Consequently, special measures can be taken to prevent the failures from
happening.

The prevention of hardware faults should be a priority for BigData systems. There
are no studies at this time that we are aware of that investigate the impact of incorrect

23 A Smart City Fighting Pollution … 509

data in the context of Big Data analysis. Moreover, such a study would depend
heavily on the type of data it is analyzing and the impact of faults could vary from
one application to another. Given this case, the data gathering component should also
warn an administrator about possible future failures of the Smart City infrastructure.
We plan on achieving this by analyzing the different statistical data of the system.
Indicators such as the uptime of the nodes, the number of messages transmitted
and received, and the estimated battery power can help with maintenance tasks.
Moreover, this will lower the costs of maintenance because it enforces maintenance
on demand, rather than periodical controls. Of course, the periodical controls will
remain an essential duty, but they will become considerably less frequent, a factor
that is inherently related to the costs of these actions.

23.6.2 Pollution Measures for the Smart City

One of the most important aspects of the sensor nodes is the fact that the sensors
are pluggable. Thus, the users can select from various types of sensors the ones that
are most relevant to their situation and use exactly the needed sensors to serve their
purposes. A list of sensors that our Smart City should support includes sensors for
the following pollutants:

• Carbon monoxide is generated by incomplete combustion of carbon. Even rel-
atively small amounts of it can lead to hypoxic injury, neurological damage, and
possibly death [46];

• Ammonia is one of the most widespread gases. Children with asthma may be par-
ticularly sensitive to ammonia fumes; also a significant part of respiratory allergies
are related to this gas and prolonged exposure to ammonia may cause nasopha-
ryngeal and tracheal burns, bronchial and alveolar edema, and airway destruction
resulting in respiratory distress or failure [47, 48];

• Hydrogen sulfide is generated by bacteria as part of organic material decompos-
ing. It can cause eye, throat, and lung irritation, asthma attacks, nausea, headache,
nasal blockage, sleeping difficulties, weight loss, and chest pain [49].

• Gasoline and diesel exhaust are major pollutants of populated areas. Exposure
to this mixture may result in asthma attacks, increase likelihood of cancer, chronic
exacerbation of asthma and other health problems [50].

• Natural gas, propane,methane andother petroleumderivative gases. These gases
are essentially fossil fuels that can cause irritations to the upper respiratory tract,
and, in contact to a source of heat, can provoke fires and explosions.

• Carbon dioxide and general indoor pollutants are generated by a multitude of
human activity. They indirectly increase the likelihood of asthma attacks and may
cause a rise in asthma cases among children [51].

Many people will immediately benefit from our system: asthmatics, people who
do jogging, etc. On the long term, government agencies that regulate and impose

510 V. Iancu et al.

pollution standards can benefit from the large amounts of data gathered by our system
which can result in better statistics and understanding of the way pollutants affect the
urban environment. It can also lead to better air quality management and to pinpoint
major pollution sources inside of a city.

Due to its modular design, our system can be extended to offer additional func-
tionality. For instance, multiple mobile sensor nodes could be installed on public
transportation buses and trams, offering an up-to-date and detailed picture of urban
pollution.More complex logic could be incorporated in the server application, allow-
ing the automated identification of problem areas and possibly the prediction of air
pollution patterns and expansion, based on meteorological data.

23.7 Conclusion

To our knowledge, our envisaged architecture for a Smart City represents an original
approach. This is true, since it ingeniously combines the Big Data management
techniques with the Internet of Things, i.e., for pollution sensor networks.

We aim at designing some prototype mechanisms that enable the Smart City to
be context-aware and self-organizing. To attain this purpose, we make use of: (1)
sensor networks, connected bywired ormobilewireless networks; andof (2)BigData
scalable and reliable management techniques.

The main advantages of our design, which also represent original components
presented within this chapter, are

1. the FABD server, which is at the same time able to monitor and control the sensor
node network and to reliably store only the trustworthy pieces of information
regarding pollution that are gathered by the sensors;

2. the two-levelBigData storage system,which has both a provisional spatial dimen-
sion and a permanent temporal dimension, both of them building a scalable and
robust data management model.

Our chapter includes a special, very important, section about the actual measures
that the Smart City should take in order to efficiently reduce pollution, in Sect. 23.6.

Even if it has been beyond the scope of this chapter to detail them, our design
has kept in mind that artificial intelligence data mining techniques together with
high performance computing techniques should also be applied in order to obtain an
accurate model describing the pollution in the Smart City.

As far as the sensor network is concerned, the sensors we have envisaged for our
Smart City were derived from the Pollution Track project [52], thus being similar to
them.

Future developments for the Smart City, besides actually implementing such a
city, are

1. optimized high performance computing techniques to determine a more accu-
rate model for the Smart City’s intrinsic mechanisms for fighting against pollu-

23 A Smart City Fighting Pollution … 511

tion and also designing models of interaction between weather forecast and the
Smart City’s mechanisms in order to obtain accurate pollution forecast models;

2. an improved secured communication model between the Smart City’s compo-
nents, so that the Smart City’s functionality could not be altered by any outside
or inside attacker.

Last but not least, a very important improvement that can be implemented for the
data gathering and failure detection component is making the analysis group aware.
Besides, studies have to be done on the impact of faulty data present in Big Data
systems. These studies should reveal how small changes in the data set analyzed can
influence decision-making within the larger system.

References

1. Almăşan, V.: Using peer-to-peer scalable techniques to increase service availability in SIP
networks. PhD thesis, Universitatea Tehnică din Cluj-Napoca, Romania (2011)

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. In OSDI,
Seattle, WA, USA (2006)

3. Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-Amarie, A.: BlobSeer: next generation
data management for large scale infrastructures. J. Parallel Distrib. Comput. 71(2), 168–184
(2011)

4. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data transfers in com-
puter clusters with orchestra. In: SIGCOMM (2011)

5. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker,
S., Stoica, I.: A Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI, San
Jose, CA, USA (2012)

6. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat, S., Gubarev,
A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik,
S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor,
C., Wang, R., Woodford, D.: Spanner: Google’s Globally-Distributed Database. In OSDI,
Hollywood, CA, USA (2012)

7. Schwan, P.: Lustre—building a filesystem for 1000-node cluster. In: Proceedings of Linux
Symposium (2003)

8. Weiser, M.: Some Computer Science Problems in Ubiquitous Computing. Communications of
the ACM (1993)

9. Tudose, D., Patrascu, T.A., Voinescu, A., Tataroiu, R., Tapus, N.: Mobile sensors in air pol-
lution measurement. In: Proceedings of the 18th Workshop on Positioning, Navigation and
Communication (WNPC’11), Dresden, Germany, April 2011

10. Tataroiu, R., Tudose, D.: Remote monitoring and control of wireless sensor networks. In:
Proceedings of the 17th International Conference of Control Systems and Computer Science
(CSCS17), vol. 1, pp. 187–192. Bucharest, Romania (May 2009)

11. The MySQL database. http://dev.mysql.com/
12. Davies, A., Fisk, H.: MySQL Clustering. MySQL Press (2006)
13. SunMicrosystems, I.: NFS: Network File System Protocol Specification. RFC 1094 (Standard)

(1989)
14. Wilde, E.: Wilde’s WWW. Springer (1998)
15. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-To-

Peer Lookup Service for Internet Applications. In: Proceedings of the 2001 ACM SIGCOMM
Conference, pp. 149–160 (2001)

http://dev.mysql.com/

512 V. Iancu et al.

16. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-addressable
network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, vol. 31, pp. 161–172. ACM
Press, October 2001

17. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for large-
scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), pp. 329–350, Nov 2001

18. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry:
A resilient global-scale overlay for service deployment. IEEE J. Sel. Areas Commun. 22(1),
41–53 (2004)

19. SHA-1—Secure Hash Standard. http://www.itl.nist.gov/fipspubs/fip180-1.htm
20. Dabek, F., Brunskill, E., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I., Balakrishnan, H.:

Building peer-to-peer systems with chord, a distributed lookup service. In: Proceedings of the
8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), Schloss Elmau, Germany,
IEEE Computer Society, May 2001

21. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H., Ran-
ganathan, K., Molkov, D., Menon, A., Rash, S., Schmidt, R., Aiyer, A.: Apache hadoop goes
realtime at facebook. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, SIGMOD ’11, pp. 1071–1080. ACM, New York, NY, USA, (2011)

22. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), MSST ’10, IEEE Computer Society, pp. 1–10. Washington, DC, USA (2010)

23. Ananthanarayanan, G., Ghodsi, A., Wang, A., Borthakur, D., Kandula, S., Shenker, S., Stoica,
I.: PACMan: Coordinated Memory Caching for Parallel Jobs. In NSDI, San Jose, CA, USA
(2012)

24. Johnson Space Center: Fault-Detection, Fault-Isolation and Recovery (FDIR) Techniques.
NASA Engineering Network, Technique DFE-7 (1994)

25. Nithya, R., Kevin, C., Rahul, K., Lewis, G., Eddie, K., Deborah, E.: Sympathy for the Sensor
Network Debugger. In: 3rd Embedded Networked Sensor Systems, pp. 255–267 (2005)

26. Linnyer Beatrys, R., Isabela, G.S, Leonardo, B.O., Hao, C.W., José Marcos S.N., Antonio
A.F.L.: Fault Management in Event-Driven Wireless Sensor Networks. In: Proceedings of the
7th ACM international Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (2004). doi:10.1145/1023663.1023691

27. Jinran, C., Shubha, K., Arun, S.: Distributed fault detection of wireless sensor networks. In:
Proceedings of the 2006 Workshop on Dependability Issues in Wireless ad Hoc Networks and
Sensor Networks (2006). doi:10.1145/1160972.1160985

28. Benhamida, F.Z., Challal, Y., Koudil,M.: Efficient adaptive failure detection for query/response
based wireless sensor networks. In: Wireless Days, IFIP (2011). doi:10.1109/WD.2011.
6098190

29. Kebin, L., Qiang, M., Xibin, Z., Yunhao, L.: Self-diagnosis for large scale wireless sensor
networks. In: IEEE INFOCOM (2011)

30. Qiang, M., Kebin, L., Xin, M., Yunhao, L.: Sherlock is around: detecting network failures with
local evidence fusion. In: IEEE INFOCOM (2012)

31. Alan, M., David, C., Joseph, P., Robert, S., John, A.: Wireless sensor networks for habitat mon-
itoring. In: Proceedings of the 1st ACM international Workshop on Wireless Sensor Networks
and Applications, WSNA (2002). doi:10.1145/570738.570751

32. Jeongyeup, P., Chintalapudi, K., Govindan, R., Caffrey, J.,Masri, D.: Awireless sensor network
for structural health monitoring: performance and experience. In: Proceedings of the 2nd IEEE
Workshop on Embedded Networked Sensors, pp. 1–9. EmNets (2005)

33. Clemens, L., Nagendra, B.B., Daniel, R., Gerhard T.: On-body activity recognition in a dynamic
sensor network. In: Proceedings of the ICST 2nd international conference on Body area net-
works, BodyNets (2007)

34. Phillip, B.G., Brad, K., Yan, K., Suman, N., Srinivasan, S.: IrisNet: An architecture for a
worldwide sensor web. IEEE Pervasive Comput. 2(4), 22–33 (2003). doi:10.1109/MPRV.2003.
1251166

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://dx.doi.org/10.1145/1023663.1023691
http://dx.doi.org/10.1145/1160972.1160985
http://dx.doi.org/10.1109/WD.2011.6098190
http://dx.doi.org/10.1109/WD.2011.6098190
http://dx.doi.org/10.1145/570738.570751
http://dx.doi.org/10.1109/MPRV.2003.1251166
http://dx.doi.org/10.1109/MPRV.2003.1251166

23 A Smart City Fighting Pollution … 513

35. Adam, D., Richard, G., Sergio, A.M., Arnold, P., Mats, U.: Janus: an architecture for flexible
access to sensor networks. In: Proceedings of the 1st ACM workshop on Dynamic intercon-
nection of networks, DIN, pp. 48-52 (2005). doi:10.1145/1080776.1080792

36. Mani, S., Mark, H., Jeff, B., Andrew, P., Sasank, R.: Wireless Urban Sensing Systems (2006)
37. Jung, Y.J., Lee, Y.K., Lee, D.G., Ryu, K.H., Nittel, S.: Air pollutionmonitoring system based on

geosensor network. In: Geoscience and Remote Sensing Symposium, IGARSS (2008); IEEE
International, vol. 3 (2009)

38. Kularatna, N., Sudantha, B.: An environmental air pollution monitoring system based on the
IEEE 1451 standard for low cost requirements. IEEE Sens. J. 8(4) (2008)

39. Tsow, F., Forzani, E., Rai, A., Wang, R., Tsui, R., Mastroianni, S., Knobbe, C., Gandolfi, A.J.,
Tao, N.: Awearable andwireless sensor system for real-timemonitoring of toxic environmental
volatile organic compounds. IEEE Sens. J. 9(12) (2009)

40. Jeff, S., Peter, P., Jonathan, L., Mema, R., Margo, S., Matt, W.: Hourglass: An Infrastructure
for Connecting Sensor Networks and Applications (2004)

41. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC Sensor Web Enablement: Overview and
High Level Architecture, ed. pp. 175–190. Springer (2006)

42. Aman, K., Suman, N., Jie, L., Zhao, Feng: SenseWeb: an infrastructure for shared sensing.
IEEE Multimedia 14(4), 8–13 (2007). doi:10.1109/MMUL.2007.82

43. Shuo, G., Ziguo, Z., Tian, H.: FIND: faulty node detection for wireless sensor networks. In:
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 253-
266. Berkeley, California (2009). doi:10.1145/1644038.1644064

44. Spark – lightning-fast cluster computing. http://spark-project.org/
45. Silvia Stegaru: Failure and Abnormal Behaviour Detection inWireless Sensor Networks. Mas-

ter thesis (2013)
46. United States Environmental Protection Agency: Carbon Monoxide (CO). http://www.epa.

gov/iaq/co.html
47. Agency for Toxic Substances and Disease Registry: Medical Management Guidelines for

Ammonia. http://www.atsdr.cdc.gov/mmg/mmg.asp?id=7&tid=2
48. Healthy child, healthy world: Keep amonia out of your home. http://healthychild.org/easy-

steps/keep-ammonia-out-of-your-home/
49. New York Department of Health: Hydrogen Sulfide Chemical Information Sheet. http://www.

health.state.ny.us/nysdoh/environ/btsa/sulfide.htm
50. American Lung Association Energy Policy Development: Transportation Background Docu-

ment. Prepared by M.J. Bradley & Associates LLC (2011)
51. WebMD Asthma Health Center: High Carbon Dioxide Levels May Up Asthma

Rate. http://www.webmd.com/asthma/news/20040429/high-carbon-dioxide-levels-may-up-
asthma-rate?lastselectedguid=%7b5FE

52. Pollution Track. http://pollutiontrack.com/

http://dx.doi.org/10.1145/1080776.1080792
http://dx.doi.org/10.1109/MMUL.2007.82
http://dx.doi.org/10.1145/1644038.1644064
http://spark-project.org/
http://www.epa.gov/iaq/co.html
http://www.epa.gov/iaq/co.html
http://www.atsdr.cdc.gov/mmg/mmg.asp?id=7&tid=2
http://healthychild.org/easy-steps/keep-ammonia-out-of-your-home/
http://healthychild.org/easy-steps/keep-ammonia-out-of-your-home/
http://www.health.state.ny.us/nysdoh/environ/btsa/sulfide.htm
http://www.health.state.ny.us/nysdoh/environ/btsa/sulfide.htm
http://www.webmd.com/asthma/news/20040429/high-carbon-dioxide-levels-may-up-asthma-rate?lastselectedguid=%7b5FE
http://www.webmd.com/asthma/news/20040429/high-carbon-dioxide-levels-may-up-asthma-rate?lastselectedguid=%7b5FE
http://pollutiontrack.com/

Index

A
Amazon Mechanical Turk, 444
Artificial Intelligence, 139

B
Batch mode scheduling, 38
Big Data, 3, 55, 241, 442
Big Data analytics, 367
Big Data architectures, 4
Big Data systems, 6, 241
Boosted Decision Tree Regression, 280

C
Caching scheme, 390
Cassandra, 8, 194
CDN infrastructure, 386
ChaCha, 444
Classification, 430
Clinical decision support systems, 311
Cloud computing, 5, 35
Cloud cryptographic methods, 246
Cloud datacenters, 83
Cloud infrastructure, 58
Cloud Management Middleware, 140
Cloud resources, 35
Cloud service providers, 83
Cloud Snapshots, 136
Cloud Workflow Management Systems, 41
Cluster-based scheduling, 39
Combinatorial optimization, 280
Content distribution network, 383, 432
Cross validation, 429
Crowd sensing data, 442

D
Data aggregation, 9
Data center, 104
Data-intensive applications, 8
Dependency mode scheduling, 38
Directed acyclic graph, 37
DNA sequence, 288
Dynamic workload balancing, 133

E
Energy consumption, 130
Energy efficiency, 7, 98
Energy-efficient computing

devices, 98
Energy management systems , 99

F
Fault tolerance, 194, 207

G
Genetic Algorithms, 39
Green Cloud Scheduler, 140

H
Hadoop, 215
HBase, 8
Health data mining, 311
Heterogeneous distributed systems, 35
Heterogeneous Earliest Finish Time algo-

rithm, The, 38
Heuristic schedules, 38

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7

515

516 Index

I
Individual task scheduling, 38
Information security, 244

L
Latent Semantic Analysis, 312
Least frequently used, 389
Least recently used, 389
List scheduling, 38
Load balancing, 131, 194

M
Machine Learning, 280
Mammographic reports, 312
MapReduce, 206
Medical imaging devices, 35
Micro-architectural event, 102
MongoDB, 8
Monte Carlo method, 39

N
NoSQL databases, 8

O
One-Way Hash Functions, 246
Online Social Networks, 419
OpenNebula, 140

P
Parallelmatrixmultiplication algorithm, 368
PEGASUS, 367
Power distribution units, 99
Predictive model, 428
Prefetcher algorithm , 385
Prefetching, 386, 432

R
Regression analysis, 423

Relational databases, 8
REpresentational State Transfer, 56
Routing protocols, 98
Running Average Power Limiting, 102

S
Security , 243
Service Level Agreements, 41
Simple Object Access Protocol, 56
Simulated Annealing, 39, 280
Size-adjusted LRU, 390
Social-awareness, 432
Social cascade, 384, 419
Social network, 432
Social network, Easley, Bakshy, Chardi, 383
Social Prefetcher, 384
Social Prefetcher algorithm, 385

T
Term Frequency–Inverse Document Fre-

quency, 312
Titan, 193
Twitter, 384

U
User generated content, 384

V
Video popularity, 428

W
Web Service, 56
Web Service Definition Language, 56
Workflow scheduling, 36
Workflow scheduling algorithms, 37

Y
YouTube, 384

	Preface
	Acknowledgments

	Contents
	Part I Architecture of Big Data Platforms and Applications
	1 Performance Modeling of Big Data-Oriented Architectures
	1.1 Introduction
	1.2 Big Data Applications
	1.3 Big Data Architectures
	1.3.1 Computing
	1.3.2 Storage
	1.3.3 Networking

	1.4 Evaluation of Big Data Architectures
	1.4.1 Monitoring-Focused Approaches
	1.4.2 Simulation-Focused Approaches
	1.4.3 Analytical Models-Focused Approaches

	1.5 An Integrated Modeling Methodology
	1.5.1 Markovian Agents for Big Data Architectures
	1.5.2 A Case Study
	1.5.3 Designing New Systems
	1.5.4 Evolving Existing Systems

	1.6 Conclusions
	References

	2 Workflow Scheduling Techniques for Big Data Platforms
	2.1 Introduction
	2.2 Workflow Scheduling in Distributed Systems
	2.2.1 Workflow Scheduling Algorithms and Techniques in Grid
	2.2.2 Workflow Scheduling Algorithms and Techniques in Cloud
	2.2.3 Scheduling Methods

	2.3 Workflow Modeling and Existing Platforms
	2.4 Analysis of Workflow Management Systems
	2.5 Conclusions
	References

	3 Cloud Technologies: A New Level for Big Data Mining
	3.1 Introduction
	3.2 Data Mining in Big Data Era
	3.2.1 Cloud Computing Solutions
	3.2.2 Scientific Workflows
	3.2.3 An Overview of Web Service-Based Data Mining Solutions

	3.3 Comparative Analysis of Data Mining Systems
	3.4 Conclusions
	References

	4 Agent-Based High-Level Interaction Patterns for Modeling Individual and Collective Optimizations Problems
	4.1 Introduction
	4.2 Individual Intelligence: An Interaction Model
	4.2.1 Agent Based Platform for Individual Multi-clouds Optimization

	4.3 Collective Intelligence: An Interaction Model
	4.3.1 Agent Interaction Model for Cost Minimization

	4.4 Conclusion
	References

	5 Maximize Profit for Big Data Processing in Distributed Datacenters
	5.1 Introduction
	5.2 Related Work
	5.3 System Model and Problem Formulation
	5.3.1 Service Request Model
	5.3.2 Service Dispatch and Server Operation Model
	5.3.3 Cost Model
	5.3.4 Profit Maximization Problem

	5.4 The Online Optimization Framework
	5.5 Performance Analysis
	5.6 Conclusion
	References

	6 Energy and Power Efficiency in Cloud
	6.1 Introduction
	6.2 Power Consumption Measurement and Control
	6.2.1 Performance Metrics and Benchmarks
	6.2.2 Power Monitoring and Profiling
	6.2.3 Power Control Programming Interfaces

	6.3 Power Consumption Modeling
	6.3.1 Server-Level Modeling
	6.3.2 Network-Level Modeling

	6.4 Energy-Efficient Servers
	6.5 Energy-Efficient Networks
	6.5.1 Low Energy Consumption Backbone Networks
	6.5.2 Datacenter Interconnect Network

	6.6 Summary and Conclusions
	References

	7 Context-Aware and Reinforcement Learning-Based Load Balancing System for Green Clouds
	7.1 Introduction
	7.2 Related Work
	7.3 Context-Aware Load Balancing System
	7.3.1 Cloud Context Identification and Monitoring
	7.3.2 Cloud Context Awareness
	7.3.3 Cloud Load Balancing Decisions

	7.4 Green Cloud Scheduler: A Load Balancer for OpenNebula
	7.5 Conclusions
	References

	Part II Big Data Analysis
	8 High-Performance Storage Support for Scientific Big Data Applications on the Cloud
	8.1 Introduction
	8.2 Scalable Metadata Accesses
	8.3 Optimized Data Write
	8.4 Localized File Read
	8.5 Put It Altogether: The FusionFS Filesystem
	8.5.1 Metadata Management
	8.5.2 File Write
	8.5.3 File Read
	8.5.4 Hybrid and Cooperative Caching
	8.5.5 Accesses to Compressed Data
	8.5.6 Space-Efficient Data Reliability
	8.5.7 Distributed Data Provenance
	8.5.8 Parallel Serialization

	8.6 Related Work
	8.6.1 Filesystem Caching
	8.6.2 Filesystem Compression
	8.6.3 GPU Acceleration
	8.6.4 Filesystem Provenance
	8.6.5 Data Serialization

	8.7 Conclusion
	References

	9 Information Fusion for Improving Decision-Making in Big Data Applications
	9.1 Introduction
	9.2 Foundations
	9.3 A Big Data Solution: A Data Fusion Framework for OHS
	9.3.1 Data Fusion Architecture for OHS Environments
	9.3.2 Ontology Definition
	9.3.3 Cognitive Analysis

	9.4 Mining Anomaly Information
	9.4.1 Mining for Intra-Anomaly Rules
	9.4.2 Mining for Inter-Anomaly Rules

	9.5 Case Study
	9.5.1 Intra-Anomaly Rule Mining Results
	9.5.2 Inter-Anomaly Rule Mining Results

	9.6 Final Remarks
	References

	10 Load Balancing and Fault Tolerance Mechanisms for Scalable and Reliable Big Data Analytics
	10.1 Introduction
	10.1.1 Performance
	10.1.2 Scalability
	10.1.3 Fault Tolerance

	10.2 Titan
	10.2.1 Load Balancing
	10.2.2 Fault Tolerance

	10.3 OrientDB
	10.3.1 Load Balancing
	10.3.2 Fault Tolerance

	10.4 Giraph
	10.4.1 Load Balancing
	10.4.2 Fault Tolerance

	10.5 ArangoDB
	10.5.1 Load Balancing
	10.5.2 Fault Tolerance

	10.6 Neo4j
	10.6.1 Load Balancing
	10.6.2 Fault Tolerance

	10.7 Conclusions
	References

	11 Fault Tolerance in MapReduce: A Survey
	11.1 Introduction
	11.2 Methodology
	11.3 MapReduce Framework
	11.3.1 MapReduce 1.0 Versus MapReduce 2.0
	11.3.2 MapReduce Fault Tolerance

	11.4 Analysis
	11.4.1 Crash Failure
	11.4.2 Omission Failure (Stragglers)
	11.4.3 Arbitrary (Byzantine) Failure
	11.4.4 Network Failure
	11.4.5 Security Failure
	11.4.6 Apache Hadoop Reliability

	11.5 Other Data-Intensive Computing Systems
	11.5.1 Dryad/DryadLINQ
	11.5.2 SCOPE
	11.5.3 Nephele
	11.5.4 Spark

	11.6 Discussion
	11.7 Summary
	References

	12 Big Data Security
	12.1 Introduction
	12.2 Main Concepts and Definitions
	12.3 Big Data Security
	12.4 Methods and Solutions for Security Assurance BD Aystems
	12.4.1 Authorization and Authentication Methods
	12.4.2 Data Privacy
	12.4.3 Technologies and Strategies for Privacy Protection
	12.4.4 Quantum Cryptography and Privacy with Authentication for Mobile Data Center
	12.4.5 Group Key Transfer Based on Secret Sharing Over Big Data
	12.4.6 ID-Based Generalized Signcryption Method to Obtain Confidentiality or/and Authenticity
	12.4.7 Capability-Based Authorization Methods
	12.4.8 No QSL Data Basis Security
	12.4.9 Trust Management
	12.4.10 Secure Communication
	12.4.11 Infrastructure Design for Security

	12.5 Case Studies
	12.6 Summary
	References

	Part III Biological and Medical Big Data Applications
	13 Big Biological Data Management
	13.1 Introduction
	13.2 Biological Data Analysis
	13.2.1 Metagenomic Data Analysis
	13.2.2 Data Analysis Pipelines
	13.2.3 Pipeline Frameworks and Execution Environments
	13.2.4 Case Study: META-Pipe

	13.3 Big Data Management
	13.3.1 Local Data Storage
	13.3.2 Distributed Data Storage
	13.3.3 Generalized Distributed Data Processing
	13.3.4 Specialized Data Processing

	13.4 Big Data Systems for Biological Data Management
	13.5 Summary
	References

	14 Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms
	14.1 Introduction
	14.2 Background
	14.2.1 Pattern Matching with Finite Automata
	14.2.2 Systems Accelerated with the Intel Xeon Phi

	14.3 Methodology
	14.3.1 Design and Implementation Aspects of our Algorithm for DNA Sequence Analysis
	14.3.2 Determining Optimal System Configuration using Combinatorial Optimization and Machine Learning

	14.4 Evaluation
	14.4.1 Experimentation Environment
	14.4.2 Evaluation of our Parallel Algorithm for DNA Sequence Analysis
	14.4.3 Evaluation of our Performance Prediction Model
	14.4.4 Comparison of SAML with EM
	14.4.5 Performance Improvement

	14.5 Related Work
	14.5.1 Approaches Targeting Multi-core Architectures
	14.5.2 Approaches Targeting Many-Core Architectures
	14.5.3 Intelligent Methods for Resource Management
	14.5.4 Our Approach

	14.6 Summary
	References

	15 Feature Dimensionality Reduction for Mammographic Report Classification
	15.1 Introduction
	15.2 Related Works and Theoretical Remarks
	15.2.1 Latent Semantic Analysis (LSA)
	15.2.2 Principal Component Analysis (PCA)
	15.2.3 Singular Value Decomposition (SVD)
	15.2.4 Stochastic Singular Value Decomposition (SSVD)
	15.2.5 Relationship Between SVD and PCA
	15.2.6 LSA Space
	15.2.7 Cholesky Factorization (Decomposition)
	15.2.8 QR Factorization (Decomposition)
	15.2.9 Latent Semantic Indexing (LSI)

	15.3 The Proposed Method
	15.4 Experimental Results
	15.5 Conclusions
	References

	16 Parallel Algorithms for Multirelational Data Mining: Application to Life Science Problems
	16.1 Introduction
	16.2 ILP Basic Concepts
	16.2.1 ILP Framework
	16.2.2 A Generalization Ordering

	16.3 Parallel Algorithms for ILP
	16.3.1 The APIS ILP System

	16.4 Scheduling and Load Balancing
	16.4.1 Parallel Computing Platforms
	16.4.2 Load Balancing for ILP Algorithms

	16.5 Life Science Applications
	16.5.1 Structure--Activity Relationship Experiments
	16.5.2 Predicting Drug Efficiency in Cancer Cells Treatment

	16.6 Conclusions
	References

	Part IV Social Media Applications
	17 Parallelization of Sparse Matrix Kernels for Big Data Applications
	17.1 Introduction
	17.2 Parallelization of the SpGEMM Kernel
	17.2.1 Outer-Product--Parallel SpGEMM Algorithm
	17.2.2 Hypergraph Model
	17.2.3 Decoding Hypergraph Partitioning as Matrix Partitioning

	17.3 Parallelization of the SpMM Kernel
	17.3.1 Hypergraph Model
	17.3.2 Partitioning and Decoding
	17.3.3 A Volume-Balancing Extension for SpMM

	17.4 Experiments
	17.4.1 SpGEMM
	17.4.2 SpMM

	17.5 Conclusion
	References

	18 Delivering Social Multimedia Content with Scalability
	18.1 Introduction
	18.1.1 A Toy Example of Our Approach
	18.1.2 Contributions

	18.2 Related Work
	18.3 Problem Description
	18.4 Proposed Dynamic Policy
	18.4.1 For Every New Request in the CDN
	18.4.2 For Every New Object in the Surrogate Server

	18.5 Experimental Evaluation
	18.6 Main Findings
	18.6.1 Client Side Metrics
	18.6.2 Surrogate Side Metrics
	18.6.3 Network Statistics Metrics

	18.7 Conclusions
	References

	19 A Java-Based Distributed Approach for Generating Large-Scale Social Network Graphs
	19.1 Introduction
	19.2 Background and Related Work
	19.3 Description of the Distributed ABS-API Library
	19.3.1 Actor Class Hierarchy, Naming Scheme and Asynchronous Communication
	19.3.2 Distributed Futures Control
	19.3.3 Actor Execution Context
	19.3.4 Synchronization and Cooperative Scheduling

	19.4 Description of the Preferential Attachment Algorithm
	19.5 Implementation of the Algorithm Using the ABS-API Library
	19.6 Conclusion
	References

	20 Predicting Video Virality on Twitter
	20.1 Introduction
	20.1.1 Contributions

	20.2 Related Work
	20.3 Problem Description
	20.4 Proposed Methodology
	20.4.1 Dataset
	20.4.2 User Score Calculation
	20.4.3 Content Distance

	20.5 Experimental Evaluation
	20.5.1 Selection of Predictors
	20.5.2 Effect of Outliers
	20.5.3 Tenfold Cross-Validation
	20.5.4 Classification and Comparison with Other Models

	20.6 Incorporation into Content Delivery Schemes
	20.7 Conclusions
	References

	21 Big Data Uses in Crowd Based Systems
	21.1 Introduction
	21.2 Related Work
	21.3 Crowd Sensing
	21.4 Measuring Crowd Dynamics
	21.5 Crowd Data for Crowd Dynamics
	21.6 Context
	21.7 Crowd Data as Part of Big Data
	21.8 Conclusions
	References

	22 Evaluation of a Web Crowd-Sensing IoT Ecosystem Providing Big Data Analysis
	22.1 Introduction
	22.2 Web Platform Overview and Related Technologies
	22.2.1 Architecture
	22.2.2 Related Technologies

	22.3 Platform Performance Evaluation
	22.3.1 Introduction
	22.3.2 Latency Tests for Different Access Networks
	22.3.3 Benchmarking Database Ecosystems

	22.4 Conclusion
	References

	23 A Smart City Fighting Pollution, by Efficiently Managing and Processing Big Data from Sensor Networks
	23.1 Introduction
	23.2 State of the Art
	23.2.1 Big Data Logical Organization Techniques
	23.2.2 Failure and Abnormal Behavior Detection (FABD) Based on the Big Data
	23.2.3 City-Wide Wireless Sensor Network Infrastructure

	23.3 A Highly Available Architecture for the Smart City
	23.3.1 General Overview of the Architecture
	23.3.2 The Wireless Sensor Network
	23.3.3 The Data Acquisition and Node Control Model
	23.3.4 The Big Data Component
	23.3.5 The Data Processing Unit

	23.4 Organizing the Smart City's Big Data
	23.5 Smart City's Data Mining
	23.6 Smart Measures for a Smart City
	23.6.1 Smart Measures from the FABD Model
	23.6.2 Pollution Measures for the Smart City

	23.7 Conclusion
	References

	Index

